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Abstract

Random graphs are of great interest as a modeling framework for a wide variety of real-

world complex networks, such as social networks, information networks, scientific collaboration

networks, and technological networks. In this thesis, we focus on two specific application areas

of random graph theory, namely, i) modeling secure connectivity of large-scale wireless sensor

networks utilizing random predistribution of cryptographic keys, and ii) modeling real-world

social networks. Although these two areas are tied together with random graphs, they are

inherently different and each one poses distinct research problems that rise naturally in the

corresponding context. Hence, we will tackle each of them separately and focus on the relevant

research problems in each area.

In the first part of the thesis, we focus on the role of random graphs in providing a mod-

eling framework for secure connectivity of large-scale, heterogeneous wireless sensor networks

utilizing random predistribution of cryptographic keys. In this part, we propose a novel com-

posite random graph obtained by the intersection of inhomogeneous random key graphs with

Erdős-Rényi graphs as a model for a large scale wireless sensor network secured by the hetero-

geneous random key predistribution scheme under a uniform on-off channel model. We derive

scaling conditions on the model parameters so that with high probability i) the network has

no isolated nodes, ii) is connected, iii) the minimum node degree is no less than k, and iv) the

network is k-connected. We then proceed by generalizing the uniform on-off channel model to

a heterogeneous on-off channel model where the wireless link availability between two nodes is

determined based on their respective classes. This induces a novel composite random graph

model formed by the intersection of inhomogeneous random key graphs with inhomogeneous

Erdős-Rényi graphs. We derive scaling conditions on the model parameters such that with

high probability i) the network has no isolated nodes, and ii) is connected. We close this part

by proposing inhomogeneous random K-out graphs as a novel modeling framework for secure

connectivity of large-scale, heterogeneous wireless sensor networks utilizing random pairwise
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key predistribution schemes. We derive scaling conditions on the model parameters such that

with high probability the resulting network is connected.

In the second part of the thesis, we look at random graphs as models for real-world social

networks. In contrast to the first part where we mainly focus on proposing novel random graph

models, herein, we utilize existing random graph models of social networks to understand how

infectious diseases (or, information) that entail evolutionary adaptations propagate in social

contexts. In particular, we consider the propagation of inhomogeneous spreading processes,

governed by the multiple-strain model, on contact networks modeled by i) random graphs with

arbitrary degree distributions (generated by the configuration model) and ii) random graphs

with clustering. The former graphs capture the skewed degree sequences observed in real-

world social networks, yet it has a vanishing clustering coefficient in the limit of large network

size. The latter model generalizes the former as it could also generate graphs with non-trivial

clustering, hence, it resembles real-world social networks that are typically clustered. We start

by investigating the propagation of spreading processes governed by the multiple-strain model

on random graphs with arbitrary degree distributions. We propose a mathematical theory

that characterizes the expected epidemic size and the epidemic threshold as functions of the

structure of the underlying contact network, the properties of the spreading process, and

the evolutionary pathways of the propagating object. We also present extensive simulation

results on synthetic and real-world contact networks to validate our theory and reveal the

significant shortcomings of the classical epidemic models that do not capture evolutionary

adaptations. We then investigate the propagation of the same class of spreading processes, yet

on random graphs with clustering. We propose a mathematical theory that accurately captures

the probability of emergence (the probability that the spreading process would eventually reach

a positive fraction of the nodes) and the epidemic threshold as functions of the structure of the

underlying contact network (which takes clustering into consideration), the properties of the

spreading process, and the evolutionary pathways of the propagating object. Our theoretical

results are validated by a simulation study that also reveals the impact of clustering on the

vi



probability of emergence and the epidemic threshold.

A common takeaway from both parts of the thesis is that homogeneous models are

more resource-efficient than their inhomogeneous counterparts, despite the fact that

the latter facilitate a broader modeling framework that accurately captures real-world networks

and spreading processes. In particular, in the first part of the thesis, we show that in some

cases, inhomogeneous random graph models require orders of magnitude more resources (e.g.,

number of cryptographic keys per sensor node) than their homogeneous counterparts to be

connected with high probability. In addition, in the second part of the thesis, we show that

inhomogeneous models for spreading processes entailing evolutionary adaptations (on random

graphs with arbitrary degree distribution) could achieve (depending on the initial strain) a

lower probability of emergence at a given mean degree as compared to a homogeneous spreading

process without evolution.
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Chapter 1

An outline of the thesis

Random graphs are of great interest as a modeling framework for a wide class of real-world

complex networks including social networks, information networks, scientific collaboration net-

works, and biological networks [17, 64, 116]. The study of random graphs dates back to 1959

when Paul Erdős and Alfred Rényi [52] introduced the random graph model G(n;M), as

a graph selected uniformly at random from the collection of all graphs with n nodes and

M edges. Contemporaneously and independently, Gilbert [59] introduced the random graph

model G(n; p), where each pair of vertices is connected (respectively, not connected) by an

edge independently with probability p (respectively, 1 − p). The pioneering works of Gilbert,

Erdős, and Rényi lie at the heart of random graph theory and represent the first endeavor to

study random graphs in their own right.

Since their inception, random graphs have received much attention across multiple research

domains due to several factors. One factor of particular interest to this thesis is the role of

random graphs in modeling real-world complex networks. For instance, random graphs with

arbitrary degree distribution (generated by the configuration model [100, 115]) provide a mod-

eling framework that accurately captures degree sequences observed in real-world complex

networks, e.g., social networks which are characterized by their heavy-tailed degree distribu-

tion [12, 14, 40]. In addition, random key graphs were shown to provide an accurate modeling

framework for large-scale wireless sensor networks that utilize random predistribution of cryp-

tographic keys in order to secure communications. Random geometric graphs [121] can also be

used to model proximity-based social networks, or the connectivity of wireless ad-hoc networks
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where two nodes could establish communication if they are within range of one another [68].

In addition to their roles in modeling the structure of real-world complex networks, random

graphs offer a tractable mathematical framework that paves the way for investigating the

characteristics of spreading processes, such as information or infectious diseases, in real-world

contact networks. For instance, modeling real-world contact networks by random graphs with

arbitrary degree distribution (generated by the configuration model) allows the investigation

of several key properties of the underlying spreading process, such as its expected epidemic size

and probability of emergence, owing to the locally tree-like property of these graphs [61,115].

In this thesis, we focus on two specific application areas of random graph theory, namely,

i) modeling secure connectivity of large-scale wireless sensor networks utilizing random predis-

tribution of cryptographic keys, and ii) modeling real-world social networks. Although these

two areas are tied together with random graphs, they are inherently different and each one

poses distinct research problems that rise naturally in the corresponding context. Hence, we

will tackle each of them separately and focus on relevant research problems in each area. In

particular, this thesis is composed of two parts, with each part entirely dedicated to one of

the above application areas. As will become apparent soon, there are common takeaways from

both parts, albeit being distinct. The structure of the thesis is depicted in Figure 1.1.

In the first part of the thesis, we focus on the role of random graphs in providing a model-

ing framework for secure connectivity of large-scale wireless sensor networks utilizing random

predistribution of cryptographic keys. In this part, our objective is to propose novel inhomo-

geneous random graphs that accurately model the secure connectivity of large-scale, hetero-

geneous wireless sensor networks. In particular, we propose a novel composite random graph

obtained by the intersection of inhomogeneous random key graphs with Erdős-Rényi graphs

as a model for a large scale wireless sensor network secured by the heterogeneous random key

predistribution scheme under a uniform on-off channel model. We derive scaling conditions on

the model parameters so that with high probability i) the network has no isolated nodes, ii) is

connected, iii) the minimum node degree is no less than k, and iv) the network is k-connected.
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Figure 1.1: In this thesis, we focus on two specific application areas of random graphs, with a
different objective associated with each application area.

We then proceed by generalizing the uniform on-off channel model to a heterogeneous on-off

channel model where the wireless link availability between two nodes is determined based on

their respective classes. This induces a novel composite random graph model formed by the

intersection of inhomogeneous random key graphs with inhomogeneous Erdős-Rényi graphs.

We derive scaling conditions on the model parameters such that with high probability i) the

network has no isolated nodes, and ii) is connected.

We close this part by proposing inhomogeneous random K-out graphs as a novel modeling

framework for secure connectivity of large-scale, heterogeneous wireless sensor networks utiliz-

ing random pairwise key predistribution schemes. We derive scaling conditions on the model

parameters such that with high probability the resulting network is connected.

As will become apparent soon, the scaling conditions derived for the proposed random

graph models directly map to conditions on the parameters of the underlying random key

predistribution scheme so that the resulting wireless sensor network exhibits a desired property,

such as being connected. Since our results are typically presented in the form of sharp zero-one

laws, they provide a precise threshold for the model parameters, allowing for efficient design
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of the underlying key predistribution scheme.

In the second part of the thesis, we look at random graphs as models for real-world social

networks. In contrast to the first part where we mainly focus on proposing novel random graph

models, herein, we utilize existing random graph models of social networks to understand how

infectious diseases (or, information) that entail evolutionary adaptations propagate in social

contexts. In particular, we consider the propagation of inhomogeneous spreading processes,

governed by the multiple-strain model on contact networks modeled by i) random graphs with

arbitrary degree distributions (generated by the configuration model) and ii) random graphs

with clustering. The former graphs capture the skewed degree sequences observed in real-world

social networks, yet they have a vanishing clustering coefficient in the limit of large network

size. The latter model generalizes the former as it could also generate graphs with non-trivial

clustering, hence, it resembles real-world social networks that are typically clustered.

We start by investigating the propagation of spreading processes governed by the multiple-

strain model on random graphs with arbitrary degree distributions. We propose a mathematical

theory that characterizes the expected epidemic size and the epidemic threshold as functions of

the structure of the underlying contact network, the properties of the spreading process, and

the evolutionary pathways of the propagating object. We also present extensive simulation

results on synthetic and real-world contact networks to validate our theory and reveal the

significant shortcomings of the classical epidemic models that do not capture evolutionary

adaptations. We close this part by investigating the case where co-infection with multiple

pathogen/information strains is possible and show that co-infection could lead the order of

phase transition to change from second-order to first-order.

We then investigate the propagation of the same class of spreading processes, yet on ran-

dom graphs with clustering. We propose a mathematical theory that accurately captures the

probability of emergence (the probability that the spreading process would eventually reach a

positive fraction of the nodes) and the epidemic threshold as functions of the structure of the

underlying contact network (which takes clustering into consideration), the properties of the
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spreading process, and the evolutionary pathways of the propagating object. Our theoretical

results are validated by a simulation study that also reveals the impact of clustering on the

probability of emergence and the epidemic threshold.

A common takeaway from both parts is that homogeneous models are more resource-

efficient than their inhomogeneous counterparts, despite the fact that the latter facilitate

a broader modeling framework that accurately captures real-world networks and spreading pro-

cesses. In particular, in the first part of the thesis, we show that in some cases, inhomogeneous

random graph models require orders of magnitude more resources (e.g., number of crypto-

graphic keys per sensor node) than their homogeneous counterparts to be connected with high

probability. In addition, in the second part of the thesis, we show that inhomogeneous models

for spreading processes entailing evolutionary adaptations (on random graphs with arbitrary

degree distribution) could achieve (depending on the initial strain) a lower probability of emer-

gence (the probability that the spreading process would eventually reach a positive fraction of

the nodes) at a given mean degree as compared to a homogeneous spreading process without

evolution.
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Chapter 2

Application Area I: Modeling secure connectiv-

ity of large-scale wireless sensor networks

The proliferation of wireless sensor networks in multiple application domains, such as military

applications, health care monitoring, among others, is attributed to their unique character-

istics, such as their versatility, small-size, low-cost, ease of use, and scalability [2, 92, 161].

These features, however, give rise to unique security challenges that render wireless sensor net-

works vulnerable to a variety of security threats such as node capture attacks, node replication

attacks, and eavesdropping [142]. Indeed, power-hungry cryptosystems such as asymmetric

cryptosystems (public-key) are infeasible for securing large-scale wireless sensor networks that

typically consist of battery-powered nodes with simple computation and communication archi-

tectures [24, 53, 88, 134]. Accordingly, symmetric cryptosystems were shown to offer a faster

and more energy-efficient alternative than their asymmetric counterpart, and they are deemed

as the most feasible choice for securing wireless sensor networks [24,53].

One key question associated with the use of symmetric cryptosystems is the design of key

distribution mechanisms that facilitate the establishment of a secure communication infras-

tructure upon deploying the network and throughout its operation [24,37]. These mechanisms

shall i) be fully distributed to avoid relying on any third party or a base station, ii) not assume

any prior knowledge of post-deployment configuration, and iii) obey the hardware limitations

of wireless sensor networks. Additionally, the resulting network shall be securely connected in

a sense that there exists a secure communication path (not necessarily single-hop) between any

7



pair of sensor nodes. The connectivity of the network is essential to its proper operation as it

allows the exchange of control and data messages between any pair of sensor nodes.

Random key predistribution schemes were proposed in the seminal work of Eschenauer

and Gligor [53] to provide a feasible solution for key distribution in large-scale wireless sensor

networks utilizing symmetric cryptosystems. In Eschenauer-Gligor scheme, each sensor node

is assigned (before deployment) K cryptographic keys selected uniformly at random from a

large key pool of size P . After deployment, two sensor nodes can communicate securely over

an existing wireless channel if they share at least one key. The scheme does not require any

prior knowledge of post deployment configuration and the communication infrastructure could

be bootstrapped in a fully distributed manner. The resulting notion of adjacency under full

visibility case (when all wireless channels are available and reliable, hence the only condition for

two nodes to be adjacent is to share a cryptographic key) induces random key graphs, denoted

K(n;K,P ), on the vertex set {1, . . . , n} where n is the number of sensor nodes.

Random key graphsK(n;K,P ) are constructed as follows. Given the set V = {v1, v2, . . . , vn}

of n vertices, and an object pool of size P , each vertex vi is assigned a set Σi of K objects

selected uniformly at random (without replacement) from the object pool. Two nodes vx and

vy are said to be adjacent if Σx ∩ Σy 6= ∅. Random key graphs provide a modeling framework

that enables the investigation of key design questions related to Eschenauer-Gligor scheme. For

example, how to choose the parameters of the scheme to ensure that the resulting network is

securely connected [159]. If the resulting network is securely connected, then there exists a se-

cure communication path between every pair of sensors. This secure path allows the exchange

of control and data messages between participating nodes [80].

Eschenauer and Gligor scheme paved the way for several other random key predistribution

schemes, including random pairwise key predistribution scheme proposed by Chan et al [24].

The random pairwise key predistribution scheme operates as follows. Each of the n sensor

nodes is paired (offline) with K distinct nodes which are randomly selected from among all

other nodes. If nodes i and j were paired during the node-pairing stage, a unique (pairwise) key
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is generated and stored in the memory modules of each of the paired sensors together with both

their IDs. After deployment, a secure link can be established between two communicating nodes

if they have at least one pairwise key in common. Under full visibility, the random pairwise

key predistribution scheme induces the random K-out graph, denoted H (n;K), on the vertex

set {1, . . . , n} where n is the number of sensor nodes.

Random K-out graphs H (n;K) are constructed on the vertex set V = {1, 2, . . . , n} as

follows. Each node v selects K distinct nodes uniformly at random from V \ {v} without

replacement. An undirected edge is assigned between nodes u and v if u selects v or v selects u,

or both; see [152] for details. Similar to the case with Eschenauer-Gligor scheme, the modeling

framework provided by random K-out graphs paves the way for investigating the relationship

between the parameters of random pairwise key predistribution scheme, namely the number of

choices K, and the secure connectivity of the resulting network [152]. In addition to modeling

secure connectivity of wireless sensor networks, a structure similar to random K-out graphs

was recently suggested by Fanti et al. [54, Algorithm 1] to provide anonymity guarantees for

transactions over cryptocurrency networks.

2.1 Inhomogeneous random graphs as models for het-

erogeneous wireless sensor networks

A common property among the aforementioned random graph models is their inherent homo-

geneity, characterized by a uniform treatment of all vertices which leads to a homogeneous de-

gree distribution. For instance, each vertex is given the same number of objects in random key

graphs, or picks the same number of nodes to be paired to in random K-out graphs. However,

real-world complex networks and emerging real-world applications are fundamentally complex

and heterogeneous [13, 17], inducing the need for inhomogeneous variants of these classical

random graph models. In fact, the literature on random graphs is already shifting towards

inhomogeneous models initiated by the seminal work of Bollobás et al. on inhomogeneous
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Erdős-Reńyi graph [19] (see also [32]).

Emerging wireless sensor networks represent a pronounced example of heterogeneous net-

works that no longer fit the homogeneous modeling framework provided by the aforementioned

random graph models. In fact, many commercial and military applications are envisioned to

consist of heterogeneous nodes [38, 91, 148, 150]. Namely, it is expected that participating

sensors will have varying level of resources (for communication, computation, storage, power,

etc.) and possibly a varying level of security and connectivity requirements. Hence, it may

be reasonable to assign more keys to mission-critical nodes to enhance their connectivity and

increase their robustness.

2.2 Inhomogeneous random key graphs

In [157], Yağan proposed a new variation of Eschenauer and Gligor scheme, referred to as

the heterogeneous random key predistribution scheme to tackle the aforementioned class of

heterogeneous networks. The scheme is described as follows. Given r classes, each sensor is

independently classified as a class-i node with probability µi > 0 for each i = 1, . . . , r such that∑r
i=1 µi = 1. Then, sensors in class-i are each assigned Ki keys selected uniformly at random

from a key pool of size P . Similar to Eschenauer and Gligor scheme, nodes that share key(s)

can communicate securely over an available channel after the deployment.

Under full visibility, the heterogeneous random key predistribution scheme gives rise to

a class of inhomogeneous random graphs referred to as inhomogeneous random key graphs

K(n;µµµ,KKK,P ) in [157] (this model is also known in the literature as the general random inter-

section graph; e.g., see [16, 62, 167]). These random graphs are constructed as follows. Given

the set V = {v1, v2, . . . , vn} of n vertices, and a key pool of size P , each node is assigned to one

of r possible classes according to a probability distribution µµµ = {µ1, µ2, . . . , µr} with µi > 0

for each i = 1, . . . , r and
∑r

i=1 µi = 1 where r is a fixed integer that does not scale with n. A

class-i node selects Ki objects uniformly at random from an object pool of size P . Without

loss of generality, it is assumed that K1 ≤ K2 ≤ . . . ≤ Kr. As with classical random key
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graphs, two nodes are said to be adjacent if they have at least one object in common. In [157],

Yağan investigated the connectivity of inhomogeneous random key graphs under full visibility.

In particular, the analysis given in [157] provides guidelines on how to choose the parameters

of the heterogeneous random key predistribution scheme such that the resulting network is

securely connected under full visibility.

Note that edges in K(n;µµµ,KKK,P ) represent pairs of sensors that share at least one cryp-

tographic key, hence the model only encodes shared-key connectivity. In other words, it is

assumed that all wireless channels are available and reliable, hence the only condition for two

nodes to communicate securely is to share a cryptographic key. In practice, the wireless chan-

nel is often unreliable and sensor nodes typically have limited communication ranges, hence,

two sensor nodes which share a key may not eventually be adjacent due to the unavailability

of their corresponding wireless channel. Accordingly, the secure connectivity of the network

would not only be governed by the shared-key connectivity discussed above, but also by the

wireless connectivity. As a result, the scaling conditions given in [157] would be too optimistic

for real-world deployments characterized by unreliable wireless media.

2.3 Thesis contributions I

In this thesis, we aim to extend the results given by Yağan in [157] by modeling the wireless

connectivity of the network using an appropriate random graph model I(n; ·), whose edges

represent pairs of sensors which have a wireless communication channel available in between.

The overall model of the network will then be an intersection of K(n;µµµ,KKK,P ) and I(n; ·) since a

pair of sensors can establish a secure communication link if they share a key and have a wireless

channel available. A good candidate to model the wireless connectivity of a wireless sensor

network would be the disk model [68]: Assuming that nodes are distributed over a bounded

region D of a euclidean plane, nodes vi and vj located at xxxi and xxxj, respectively, are able to

communicate if ‖xxxi − xxxj‖ < ρ, where ρ denotes the transmission radius. The case when node

locations are independently and uniformly distributed over the region D induces the random
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geometric graph [121], hereafter denoted I(n; ρ).

Consider a composite random graph obtained by intersecting inhomogeneous random key

graphs with random geometric graphs, namely, K(n;µµµ,KKK,P ) ∩ I(n; ρ). Indeed, the result-

ing random graph represents an accurate model for a wireless sensor network secured by the

heterogeneous random key predistribution scheme, where two nodes are adjacent only if they

share a key and are within the transmission radius of each other. Unfortunately, analyzing the

connectivity of K(n;µµµ,KKK,P ) ∩ I(n; ρ) is likely to be very challenging [156]. For example, de-

spite many attempts, the Gupta-Kumar conjecture [68] on the connectivity of G(n;α)∩ I(n; ρ)

where G(n;α) represents an Erdős-Rényi graph, has remained unsolved until very recently by

Penrose [122]; see [156] for a detailed discussion on the difficulties involved in analyzing the

intersection of different types of graphs.

The preceding discussion brings about a crucial question, namely, is there any communi-

cation model that provides a good approximation of the classical disk model, but also allows a

comprehensive analysis of the resulting composite random graph? This question was answered

in the affirmative in [152, 156], where it was shown that an independent on-off channel model

– represented by an Erdős-Rényi graph G(n;α) – provides a good approximation of the disk

model in settings similar to those considered here.

Inspired by the success in these previous approaches, here we also model the wireless com-

munication connectivity of the wireless sensor network by an Erdős-Rényi graph G(n;α) and

investigate key properties of the intersection model K(n;µµµ,KKK,P ) ∩ G(n;α). As soon will be-

come apparent, this approach paves the way for i) establishing rigorous results concerning key

properties of the intersection model and ii) demonstrating via simulations that these results

still appear to apply under the more realistic disk model. In particular, simulation results

indicate that K(n;µµµ,KKK,P )∩ I(n; ρ) and K(n;µµµ,KKK,P )∩G(n;α) behave similarly with respect

to the properties of interest, when α and ρ are matched to lead to the same probability of

wireless channel availability.

A summary of the results we establish for the composite random graph K(n;µµµ,KKK,P ) ∩
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G(n;α) is given below.

• A zero-one law for the absence of isolated nodes in K(n;µµµ,KKK,P ) ∩G(n;α) [47, 50].

• A zero-one law for the connectivity of K(n;µµµ,KKK,P ) ∩G(n;α) [47, 50].

• A zero-one law for the minimum node degree of K(n;µµµ,KKK,P ) ∩ G(n;α) being no less

than k [42, 44].

• A zero-one law for the k-connectivity1 of K(n;µµµ,KKK,P ) ∩G(n;α) [42, 45].

The aforementioned theoretical results are all obtained in the asymptotic regime when the

number of nodes tends to infinity, yet they are also supported by simulation studies demon-

strating that i) despite their asymptotic nature, they are in fact useful in designing finite-node

wireless sensor networks so that they achieve secure connectivity with high probability; and

ii) despite the simplicity of the on-off communication model, the probability of connectivity in

the resulting wireless sensor network approximates very well the case where the disk model is

used.

We then proceed by investigating the connectivity of wireless sensor networks secured by

the heterogeneous random key predistribution scheme under a heterogeneous on-off channel

model. In this channel model, the wireless channel between a class-i node and a class-j node

is on with probability αij and off with probability 1− αij, independently. This gives rise to a

r × r channel probability matrix ααα where the element at the ith row and jth column is given

by αij. The heterogeneous on-off channel model accounts for the fact that different nodes

could have different radio capabilities, or could be deployed in locations with different channel

characteristics. In addition, it offers the flexibility of modeling several interesting scenarios,

such as when nodes of the same type are more (or less) likely to be adjacent with one another

than with nodes belonging to other classes. The heterogeneous on-off channel model gives rise

to inhomogeneous Erdős-Rényi graphs [19,32], denoted hereafter byG(n,µµµ,ααα). In these graphs,

1Note that a network is said to be k-connected if its connectivity is preserved despite the failure of any
(k − 1) nodes or links; a network is said to be connected if it is 1-connected.
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each of the n vertices is classified as class-i with probability µi > 0 such that
∑r

i=1 µi = 1. Two

vertices vx and vy, which belong to class-i and class-j, respectively, are adjacent if B(αij) = 1,

where B(αij) denotes a Bernoulli random variable with success probability αij.

The overall network in this case can be modeled by a composite random graph model

formed by the intersection of an inhomogeneous random key graph with an inhomogeneous

Erdős-Rényi graph. We denote the intersection graph by K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα). An edge

exists in K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) only if it exists in K(n;µµµ,KKK,P ), i.e., both nodes share a

key, and G(n;µµµ,ααα), i.e., both nodes share a wireless channel. Hence, edges in H(n;µµµ,KKK,P,ααα)

represent pairs of sensors that both i) share a key and ii) have a wireless channel in between

that is on.

A summary of the results we establish for the composite random graph K(n;µµµ,KKK,P ) ∩

G(n;µµµ,ααα) is given below.

• A zero-one law for the absence of isolated nodes in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) [48].

• A zero-one law for the connectivity of K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) [41].

Essentially, our results provide design guidelines on how to choose the parameters of the het-

erogeneous random key predistribution scheme such that the resulting wireless sensor network

is securely connected under a heterogeneous on-off channel model. Our results are supported

by a simulation study demonstrating that despite their asymptotic nature, our results can

in fact be useful in designing finite-node wireless sensor network so that they achieve secure

connectivity with high probability.

2.4 Inhomogeneous random K-out graphs

Random K-out graphs provide an accurate modeling framework for a class of wireless sensor

networks utilizing random pairwise key predistribution scheme. An inherent assumption, how-

ever, is that all nodes are treated uniformly in a sense that each node selects the same number K

of other nodes to be paired to. Indeed, the heterogeneity of emerging wireless sensor networks
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gives rise to the cases where nodes have dissimilar roles, or dissimilar connectivity, centrality,

or security requirements, hence different nodes could be paired to a different number of other

nodes. This induces the need for a broader modeling framework that generalizes Chan et al.

scheme [24] to heterogeneous networks.

2.5 Thesis contributions II

In this thesis, we propose inhomogeneous random K-out graphs H(n;µµµ,KKK) [46,51] as a modeling

framework for a class of random pairwise key predistribution schemes that generalize Chan et

al. scheme [24] for heterogeneous networks under full visibility. Inhomogeneous random K-out

graphs H(n;µµµ,KKK) are constructed as follows. First, each of the n nodes is assigned to class-i

with probability µi > 0 for i = 1, . . . , r, where r is a fixed positive integer that does not scale

with n and
∑r

i=1 µi = 1. Each class-i node chooses Ki distinct nodes selected uniformly at

random from among all other nodes. Two nodes u and v are connected by an edge if u selects

v, v selects u, or both. Without loss of generality, we assume that K1 ≤ K2 ≤ . . . ≤ Kr.

The connectivity of random K-out graphs was studied in [55,152], where it was shown that

lim
n→∞

P [H(n;K) is connected] =


0 if K = 1

1 if K ≥ 2

(2.1)

In other words, it is sufficient to set K = 2 to obtain a network that is connected with high

probability as the network size tends to infinity. In fact, from the bounds obtained in [152], it

is seen that probability that H(n; 2) is connected exceeds 0.99 already with n = 50 nodes.

We investigate the connectivity of H(n;µµµ,KKK) for the particular case when K1 = 1 (note

that if K1 ≥ 2, then the graph is connected with high probability according to (2.1)). More

precisely, we seek conditions on K2, K3, . . . , Kr and µµµ such that the resulting graph is connected

with high probability when K1 = 1. Our main results [49,51] show that

• H (n;µµµ,KKK) is connected with high probability if and only if Kr,n = ω(1). In other words,
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if the largest key ring size Kr,n grows unboundedly large as n→∞, then the probability

that H(n;µµµ,KKKn) is connected approaches one in the same limit.

• However, any bounded choice of Kr,n, i.e., Kr,n = O(1) gives a positive probability of

H (n;µµµ,KKKn) being not connected in the limit of large n.

Comparing our results with (2.1) sheds the light on a striking difference between inhomo-

geneous random K-out graphs H (n;µµµ,KKK) and their homogeneous counterparts H (n;K). In

particular, the flexibility of organizing the nodes into several classes with different character-

istics (with K1 = 1) comes at the expense of requiring limn→∞Kr,n = ∞, in contrast to the

homogeneous case where having K = 2 was sufficient to ensure connectivity.

Before we transition into the second application area, we summarize our contributions thus

far in Table 2.1.
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Application
Area I: Modeling
secure connectivity
of large-scale
wireless sensor
networks

Proposed Model I:
K(n;µµµ,KKK,P ) ∩G(n;α)

Modeling connectivity of wireless sensor
networks secured by the heterogeneous ran-
dom key predistribution scheme under a uni-
form on-off channel model
Results:

• A zero-one for the absence of isolated
nodes.

• A zero-one law for connectivity.
• A zero-one law for the minimum node

degree being no less than k.
• A zero-one law for k-connectivity.

Proposed Model II:
K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)

Modeling connectivity of wireless sensor
networks secured by the heterogeneous ran-
dom key predistribution scheme under a het-
erogeneous on-off channel model
Results:

• A zero-one for the absence of isolated
nodes.

• A zero-one law for connectivity.

Proposed Model III:
H(n;µµµ,KKKn)

Modeling connectivity of wireless sensor
networks secured by the heterogeneous ran-
dom pairwise predistribution scheme under
full visibility
Results:

• Showing that the probability of con-
nectivity is strictly less than one when
Kr,n = O(1).

• Deriving a one law for connectivity
when Kr,n = ω(1).

Table 2.1: A summary of the proposed models and contributions with regard to the first
application area, namely, modeling secure connectivity of large-scale wireless sensor networks
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Chapter 3

Application Area II: Modeling real-world social

networks

The study of Social networks has attracted great interest and curiosity from a multidisciplinary

perspective. In social sciences, theoretical and empirical studies were carried out for over 50

yeas [113, 143] to investigate the patterns of social connections among humans, and their

implications on the spread of diseases, rumors, or information [110]. More recently, there has

been a surge of interest in social networks from applied mathematics and related fields due to

the availability of large-scale datasets representing real-world social networks and the advances

in mathematical modeling of networks. We refer the reader to [57, 113,143] for a brief history

of social network analysis.

Social networks represent a class of networks where vertices denote social entities such as

individuals, communities, or countries, and an edge between two vertices represents a social

relation between them. The social relation could represent a friendship between two individuals,

a flow of trade between two countries, etc. Modeling such complex social systems by networks

paves the way for investigating the influence of the connection patterns among social entities

on the behavior of the network. For example, the prevalence of communities (or clusters) of

people who share similar features, such as ethnicity, in a social network reveals the presence of

homophily [94]. Indeed, homophily has a tremendous effect on the behavior of a social system,

as it limits the information people receive and the interactions they experience only to those

similar to them [107].

18



The theory of random graphs is of significant relevance to the area of social networks. In

particular, a large body of research has proposed several random graph models with the aim

of creating networks that resemble the structure of real-world social networks. For example,

random graphs with arbitrary degree distribution [100,115] are widely used as models for social

networks since they can match the skewed degree distribution observed in real-world social

networks [116]. In addition, random graphs with clustering [97,109] (graphs that are generated

randomly from given distributions specifying the number of single edges and triangles for any

given node) could resemble the structure of clustered real-world social networks.

3.1 Spreading processes

Of particular interest in the context of social networks is the study of how spreading processes,

such as rumors, information, influence, or diseases propagate over these networks [12, 35, 108,

149, 168]. A typical question in this context is whether an information (or rumor, infectious

disease, etc.) starting from an arbitrary individual would eventually reach a significant number

of people. A conventional model for spreading processes is the SIR epidemic model. In this

context, an individual is either susceptible (S) meaning that she has not yet received the

information/disease, or infectious (I) meaning that she has received the information/disease

and is capable of spreading it to her contacts, or recovered (R) meaning that she is no longer

spreading the information/disease. The dynamics of diffusion can be described as in [108].

An infectious individual i transmits the information/disease to a susceptible individual j with

probability Tij = 1− exp(−βijτi), where βij denotes the rate of infectious contacts from node

i to node j and τi denotes the infectious period of node i, i.e., the period of time during which

node i remains infective.

The infectious period τi is a random variable with a Cumulative Distribution Function

(CDF) Fτ (u), and the infectious contact rate βij is also a random variable with a CDF Fβ(v).

It was established in [108] that when i) the infectious contact rates between individuals are

independent and identically distributed (i.i.d) and that ii) the infectious periods for all individ-
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uals are also i.i.d., then the spread of a diseases/information on a contact network is isomorphic

to a bond-percolation model on the contact network with a bond percolation parameter given

by1

T = 〈Tij〉 = 1−
∫ ∞

0

e−βτdFβ(β)dFτ (τ)

where T was called the transmissibility of the disease. The isomorphism to a bond-percolation

problem allowed for the use of the generating function approach to derive the threshold, prob-

ability, and final size of epidemics on a contact network with arbitrary degree distributions.

3.2 Evolutionary adaptations

One inherent assumption related to the classical bond-percolation framework is that the prop-

agating object, i.e., a disease or a piece of information, is transferred across the nodes without

going through any modification or evolution [10, 35, 114, 124, 149, 168]. However, in real-life

spreading processes, pathogens often evolve in response to changing environments and medi-

cal interventions [3, 7, 86], and information is often modified by individuals before being for-

warded [1,163]. In fact, 60% of the (approximately) 400 emerging infectious diseases that have

been identified since 1940 are zoonotic 2 [75,105]. A zoonotic disease is initially poorly adapted,

poorly replicated, and inefficiently transmitted [118], hence its ability to go from animal-to-

human transmissions to human-to-human transmissions depends on the pathogen evolving to a

strain that is well-adapted to the human host. For instance, genetic variations in some critical

genes were reported to be essential for the transition from animal-to-human transmission to

human-to-human transmission in the severe acute respiratory syndrome (SARS) outbreak of

2002-2003 [136].

In this thesis, we aim to bridge the disconnect between how spreading processes propagate

1Later on, Kenah and Robins [78] proved that this isomorphism to a bond-percolation problem is valid only
when the distribution of the infectious periods is degenerate, i.e., τi = τ0 for all i = 1, 2, . . ., where τ0 is a
constant.

2A zoonosis is any disease or infection that is naturally transmissible from vertebrate animals to humans
[117].
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and evolve in real-life, and the current propagation models that by and large ignore evolution-

ary adaptations. In particular, we consider a class of inhomogeneous epidemic models referred

to as multiple-strain models. These models account for evolutionary adaptations as follows.

The initial strain of the pathogen/information could mutate to a different strain with different

transmissibility at some point during the propagation. The mutant could also further mutate

to another strain, or mutate back to the original strain at some point during the propagation.

At any point during the propagation, multiple strains with different transmissibilities may

coexist in the population. Hence, multiple-strain models essentially generalize the SIR model

by creating several possible substates for the infected state, e.g., infected with strain-1, in-

fected with strain-2, etc., and providing mutation rules governing the transitions among these

substates.

We analyze the propagation of spreading processes governed by the multiple-strain model

on random graphs with arbitrary degree distribution, generated by the configuration model

[100, 115]. The configuration model generates random graphs with specified degree sequence

(sampled from an arbitrary degree distribution), but are otherwise random, by taking a uni-

formly random matching on the half-edges of the specified degree sequence. The configuration

model provides a tractable mathematical framework that allows the investigation of several

key properties related to the spreading process and how it interacts with the structure of the

underlying graph, as specified by its degree distribution. In addition, since the model could

match the degree sequence of real-world social networks, it would essentially generate graphs

that resemble such real-world networks to a great extent.

3.3 Thesis contributions III

We investigate the evolution of spreading processes, such as infectious diseases or information,

in social networks with the aim of i) revealing the role of evolutionary adaptations on the

threshold, probability, and final size of epidemics; and ii) exploring the interplay between the

structural properties of the network and the process of evolution. We start by considering
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the case where co-infection with different pathogen strains (respectively, different variations of

information) is not possible, i.e., a susceptible individual may only be infected with a single

pathogen strain (respectively, a single variant of the information). In this case, we develop a

mathematical theory that accurately predicts the epidemic threshold and the expected epidemic

size as functions of the characteristics of the spreading process, the evolutionary pathways of

the pathogen (respectively, information), and the structure of the underlying contact network.

In addition to the mathematical theory, we perform extensive simulations on synthetic and

real-world contact networks to verify our theory and reveal the significant shortcomings of the

classical bond percolation models that do not capture evolution.

Our results reveal that the classical bond percolation models may accurately predict the

threshold and final size of epidemics, but their predictions on the probability of emergence are

inaccurate on both synthetic and real-world networks. This inaccuracy sheds the light on a

fundamental disconnect between the classical bond-percolation models and real-life spreading

processes that entail evolution. Then, we consider the case when co-infection is possible, i.e.,

a susceptible individual who receives simultaneous infections with multiple pathogen strains

(respectively, multiple variations of information) becomes co-infected. We show by computer

simulations that co-infection gives rise to a rich set of dynamics: it can amplify or inhibit the

spreading dynamics, and more remarkably lead the order of phase transition to change from

second-order to first-order. We investigate the delicate interplay between the characteristics of

co-infection, the structure of the underlying contact network, and the evolutionary pathways

of the pathogen (respectively, information) and reveal the cases where such interplay induces

a first-order phase transition for the expected epidemic size.

3.4 Clustered social networks

Although random graphs generated by the configuration model could resemble the degree

sequences observed in real-world social networks, they have a vanishingly small clustering

coefficient that tends to zero in the limit of large network size. Hence, the random graphs
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generated by the configuration model can not accurately capture some important aspects of

real-world social networks, most notably the property of high clustering [132, 144], which has

a significant impact on the behavior of various spreading processes [70, 72].

To better model real-world social networks that are typically clustered, we utilize a model

that generates random networks with clustering as introduced by Miller [97] and Newman [109],

i.e., graphs are generated randomly from given distributions specifying the number of single

edges and triangles for any given node. Our objective is to investigate the characteristics of

spreading processes that entail evolutionary adaptations on such random graph models with

tunable clustering. In particular, we aim to present a mathematical theory that predicts the

epidemic threshold and the probability of emergence as functions of the characteristics of the

spreading object, the evolutionary pathways of the pathogen/information, and the structure

of the underlying network as given by the degree distribution and the clustering coefficient.

3.5 Thesis contributions IV

We investigate the evolution of spreading processes, such as infectious diseases or informa-

tion, in clustered social networks, hence we extend our previous results for the case when the

underlying graph had a vanishingly small clustering coefficient. Our objectives are to i) re-

veal the role of evolutionary adaptations on the threshold and probability of epidemics when

the network exhibits a non-vanishing clustering coefficient; as well as ii) identify the inter-

play between the structural properties of the network (as given by the degree distribution and

clustering coefficient) and evolutionary adaptations. Our results are given in the form of a

mathematical theory that accurately predicts the epidemic threshold and the probability of

emergence as functions of the characteristics of the spreading process, the evolutionary path-

ways of the pathogen (respectively, information), and the structure of the underlying contact

network (as given by its degree distribution and clustering coefficient). Simulation results on

synthetic networks are also provided to verify our theory.

A summary of our contributions in this application area is given in Table 3.1.
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Application
Area II: Modeling
real-world social
networks

Proposed Model I:
Inhomogeneous spreading
processes governed by the
multiple-strain model on
random graphs with
arbitrary degree
distribution generated by
the configuration model

Modeling the spread of information or in-
fectious diseases entailing evolutionary adap-
tations on real-world social networks charac-
terized by their degree distribution
Results:

• Proposing a mathematical theory that
predicts the threshold and final size of
epidemics.

• Revealing the shortcomings of classi-
cal bond percolation model that do
not capture evolutionary adaptations
through extensive simulations results
on synthetic and real-world networks.

• Specifying the interplay between the
characteristics of co-infection and the
type of phase transition that the ex-
pected epidemic size undergoes

Proposed Model II:
Inhomogeneous spreading
processes governed by the
multiple-strain model on
random graphs with
clustering

Modeling the spread of information or in-
fectious diseases entailing evolutionary adap-
tations on clustered real-world social net-
works
Results:

• Proposing a mathematical theory that
predicts the threshold and probability
of epidemics.

Table 3.1: A summary of the proposed models and contributions with regard to the second
application area, namely, modeling real-world social networks
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Chapter 4

The structure of the thesis

The rest of the thesis is organized as follows. In the first part of the thesis (Part II), we focus on

the first application area, namely, the role of random graphs in providing a modeling framework

for secure connectivity of large-scale wireless sensor networks utilizing random predistribution

of cryptographic keys. In Chapter 6, we present our results on the connectivity of wireless

sensor networks secured by the heterogeneous random key predistribution scheme under a

uniform on-off channel model where the channel between two nodes is on (respectively, off)

with probability α (respectively, 1 − α), independently and regardless of the class of the two

nodes. In particular, we present a novel composite random graph formed by the intersection

of inhomogeneous random key graphs and Erdős-Rényi graphs as a model for the shared-key

connectivity and wireless connectivity of the sensor network. We then establish sharp zero-one

laws for the properties that i) the graph has no isolated nodes, ii) the graph is connected, iii)

the minimum node degree is no less than k, and iv) the graph is k-connected.

In Chapter 7, we generalize the uniform on-off channel model to a heterogeneous on-off

channel model, where the channel between a class-i node and a class-j node is on (respectively,

off) with probability αij (respectively, 1 − αij) independently. We present a novel composite

random graph formed by the intersection of inhomogeneous random key graphs and inhomoge-

neous Erdős-Rényi graphs as a model for the shared-key connectivity and wireless connectivity

of the sensor network in this case. We then establish zero-one laws for the properties that i)

the graph has no isolated nodes, and ii) the graph is connected.

In Chapter 8, we propose inhomogeneous random K-out graphs as a modeling framework for
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heterogeneous wireless sensor networks utilizing random pairwise key predistribution scheme.

In our model, each node is classified as class-i with probability µi > 0 for i = 1, . . . , r and a

class-i node selects Ki,n other nodes to be paired to. With K1,n ≤ . . . Kr,n, we focus on the

particular case when K1,n = 1 and derive i) an upper-bound on the probability of connectivity

when the largest number of selections Kr,n is finite, and ii) a one-law for connectivity when

Kr,n = ω(1).

The second part of the thesis (Part III) focuses on the second application area, namely,

random graphs as models for real-world social networks. In this part, we investigate the prop-

agation of inhomogeneous spreading processes characterized by the multiple-strain model on

contact networks modeled by i) random graphs with arbitrary degree distributions (Chapter 9)

and ii) random graphs with clustering (Chapter 10). In Chapter 9, we derive a mathematical

theory that characterizes the expected epidemic size and the epidemic threshold for spreading

processes governed by the multiple-strain framework on random graphs with arbitrary degree

distributions. We also show by computer simulations (on synthetic and real-world networks)

the significant shortcomings of the classical bond-percolation models that do not capture evo-

lutionary adaptations. We close the chapter by considering the case where co-infection with

multiple pathogen strains is possible and show by computer simulations that co-infection could

lead the order of phase transition for the expected epidemic size to change from second-order

to first-order.

In Chapter 10, we consider contact networks modeled by random graphs with clustering

to account for the fact that many real-world social networks are highly clustered. We de-

rive a mathematical theory that characterizes the probability of emergence and the epidemic

threshold for spreading processes governed by the multiple-strain framework on contact net-

works modeled by random graphs with clustering. Our results are complemented by computer

simulations that validate their accuracy and reveal the impact of clustering.

Finally, in Chapter 11, we give the concluding remarks and in Chapter 12, we discuss

potential directions for future work.
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Chapter 5

Notations and conventions

All limiting statements, including asymptotic equivalence are considered with the number of

sensor nodes n going to infinity. The random variables (rvs) under consideration are all defined

on the same probability triple (Ω,F ,P). Probabilistic statements are made with respect to

this probability measure P, and we denote the corresponding expectation by E. The indicator

function of an event E is denoted by 111[E]. We say that an event holds with high probability

(whp) if it holds with probability 1 as n→∞. For any event E, we let E denote the complement

of E. For any discrete set S, we write |S| for its cardinality. For sets Sa and Sb, the relative

complement of Sa in Sb is given by Sa \ Sb. In comparing the asymptotic behaviors of the

sequences {an}, {bn}, we use an = o(bn), an = ω(bn), an = O(bn), an = Ω(bn), and an = Θ(bn),

with their meaning in the standard Landau notation. Namely, we write an = o(bn) (respectively,

an = ω(bn)) as a shorthand for the relation limn→∞
an
bn

= 0 (respectively, limn→∞
an
bn

= ∞),

whereas an = O(bn) means that there exists c > 0 such that an ≤ cbn for all n sufficiently large.

Also, we have an = Ω(bn) if bn = O(an), or equivalently, if there exists c > 0 such that an ≥ cbn

for all n sufficiently large. We write an = Θ(bn) if we have an = O(bn) and an = Ω(bn) at the

same time. We also use an ∼ bn to denote the asymptotic equivalence limn→∞ an/bn = 1. We

write N0 to denote the set of natural numbers excluding zero, i.e., N0 = {1, 2, 3, . . .}. Finally,

we write X
d
= Y , for two random variables X and Y , to mean that X and Y are equal in

distribution.
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Part II

Application Area I: Modeling Secure

Connectivity of Large-Scale Wireless

Sensor Networks
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Chapter 6

Results on inhomogeneous random key graphs

intersecting Erdős-Rényi graphs

6.1 Motivation

In their seminal work, Eschenauer and Gligor proposed a random key predistribution scheme

as a practical and efficient method for key-establishment in large scale wireless sensor networks

[53]. Their scheme operates as follows: before deployment, each node is given a random set of

K cryptographic keys, selected uniformly (without replacement) from a large key pool of size

P . After deployment, two nodes can communicate securely over an existing channel if they

share at least one key1. Eschenauer-Gligor scheme is currently regarded as one of the most

feasible solutions for key-establishment among sensor nodes, e.g., see [125, Chapter 13], [22],

and references therein, and has led the way to several other variants, including the q-composite

scheme [24], the random pairwise scheme [24], and many others.

Eschenauer-Gligor scheme inherently assumes that all nodes are homogeneous in terms of

their roles and capabilities, hence they are assigned the same number K of keys. However,

emerging wireless sensor network applications are complex and are envisioned to require the

coexistence of different classes of nodes with different roles and capabilities [150]. For instance,

1There are multiple reasons why node-to-node encryption/decryption is vital to wireless sensor networks.
Firstly, each node broadcasts an encrypted packet which contains the entire header info; i.e., source and
destination addresses are encrypted. Hence, each packet has to be decrypted to be routed. Furthermore, the
lack of a trusted third party induces the need for shared-keys between nodes to ensure the authenticity of
communication among them [24].
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a particular class of nodes may act as cluster heads that are used to connect several clusters

of nodes together. These cluster heads need to communicate with a large number of nodes in

their vicinity and they are also expected to be more powerful than regular nodes. Thus, more

keys should be given to the cluster heads to ensure high levels of connectivity and security.

To cope with the expected heterogeneity in wireless sensor network topologies, Yağan pro-

posed a new variation of Eschenauer-Gligor scheme, referred to as the heterogeneous random

key predistribution scheme [157]. The heterogeneous scheme considers the case when the

network includes sensors with varying levels of resources, features, security, or connectivity re-

quirements. The scheme is described as follows. Given r classes, each sensor is independently

classified as a class-i node with probability µi > 0 for each i = 1, . . . , r. Then, sensors in class-i

are each assigned Ki keys selected uniformly at random from a key pool of size P . Similar

to Eschenauer-Gligor scheme, nodes that share at least one common key (regardless of their

class) can communicate securely over an available channel after deployment.

Given the randomness involved in Eschenauer-Gligor scheme and the heterogeneous scheme,

there is a positive probability that a pair of nodes may have no common key, thus can not

establish a secure communication link in between. Moreover, two nodes that share a key may

not have a wireless channel in between (possibly because of the limited transmission radius).

Hence, it is natural to ask whether the resulting network would be securely connected or not.

Specifically, two nodes are securely connected if they share a key and have a communication

channel in between. A network is said to be connected if there is a path between every pair of

vertices. In essence, one needs to know if it is possible to control the parameters of the scheme

(possibly as functions of the network size n), such that the resulting network is connected with

high probability. Indeed, there is a fundamental interplay between the security and connectivity

of the resulting network. To see this, consider the classical Eschenauer-Gligor scheme where

all nodes receive the same number of keys K from a key pool of size P . Note that when

an adversary captures one node, a K/P fraction of the key pool is revealed to the adversary

allowing her to compromise secure communications. Thus, from a security standpoint, it is
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better to minimize the fraction K/P to improve the resiliency of the network against node

capture attacks [33]. However, it is clear that from a connectivity standpoint, it is always

better to increase K or decrease P (thus increasing the fraction K/P ), to make it more likely

for two nodes to end up sharing a key. That is why it is crucial to know the exact minimum

conditions required to achieve the desired level of connectivity by means of a sharp zero-one

law -Only then we can avoid overshooting the parameters and losing from resiliency.

In [157], Yağan considered a wireless sensor network secured by the heterogeneous scheme

under full-visibility assumption, i.e., all pairs of sensors have a communication channel in

between, hence the only condition for two nodes to be connected is to share a key. Therein, they

established scaling conditions on the parameters of the heterogeneous scheme as functions of the

network size n such that the resulting network is connected with high probability as the number

of nodes gets large. In particular, they considered a random graph model naturally induced

by the heterogeneous scheme and established scaling conditions on the model parameters such

that the resulting graph is connected with high probability as the number of nodes gets large.

Specifically, withKKK = {K1, K2, . . . , Kr}, µµµ = {µ1, µ2, . . . , µr}, and n denoting the network size,

we letK(n;µµµ,KKK,P ) denote the random graph induced by the heterogeneous key predistribution

scheme, where any pair of vertices are adjacent as long as they share a key. This model was

referred to as the inhomogeneous random key graph in [157], where zero-one laws for absence

of isolated nodes and connectivity were established. The inhomogeneous random key graph

models the shared-key connectivity of the wireless sensor networks under the heterogeneous

scheme.

This chapter is motivated by the fact that the full-visibility assumption is not likely to hold

in real-world implementations of wireless sensor networks. In particular, the randomness of the

wireless channel as well as limited transmission ranges would severely limit the availability of

wireless channels between nodes, rendering two nodes disconnected even when they share a key.

In fact, as wireless connectivity comes into play, an essential question arises: Under a given

model for wireless connectivity, is it possible to control the parameters of the heterogeneous
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scheme to ensure that the resulting network is connected?

In [156], it was shown that an independent on-off channel model provides a good approxi-

mation of the more-realistic disk model for understanding the critical scalings of connectivity

in settings similar to ones we consider here. In the independent on-off channel model, the

wireless channel between any given pair of nodes is either on (with probability α) or off (with

probability 1− α) independently from all other channels. The model induces an Erdős-Rényi

graph G(n;α), where an edge exists (respectively does not exist) between two vertices with

probability α (respectively 1 − α) independently from all other edges. With this in mind,

we model the wireless connectivity of the wireless sensor network by an Erdős-Rényi graph

G(n;α) and study the connectivity of the intersecting graph K(n;µµµ,KKK,P )∩G(n;α). This ap-

proach allows us to i) establish rigorous results concerning the secure connectivity of wireless

sensor networks albeit using a simplified wireless communication model, and ii) demonstrate

via simulations that these results still apply under the more realistic disk model.

In addition to having connectivity, reliability against the failure of sensors or links is impor-

tant in wireless sensor network applications where sensors are unattended for long periods of

time (e.g., environmental monitoring), or, are prone to node-capture attacks (e.g., battlefield

surveillance), or, are used in life-critical applications (e.g., patient monitoring). With this in

mind, we will also derive scaling conditions on the parameters of the intersecting graph with

respect to the network size n such that i) the minimum node degree of the graph is no less

than k and ii) the graph is k-connected. A network is said to be k-connected if its connectiv-

ity is preserved despite the failure of any (k − 1) nodes or links; a network is simply said to

be connected if it is 1-connected. Therefore, k-connectivity provides a guarantee of network

reliability against the possible failures of sensors or links due to adversarial attacks, battery

depletion, or harsh environmental conditions. Also, k-connectivity ensures that each pair of

nodes in the network are connected by at least k mutually disjoint paths [121].

k-connectivity – a fundamental property of graphs – is particularly important in secure

sensor networks where nodes operate autonomously and are physically unprotected. For in-
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stance, k-connectivity provides communication security against an adversary that is able to

compromise up to (k− 1) links by launching a sensor capture attack [24]; i.e., two sensors can

communicate securely as long as at least one of the k disjoint paths connecting them consists

of links that are not compromised by the adversary. Also, k-connectivity improves robustness

against network disconnection due to battery depletion, in both normal mode of operation and

under battery-depletion attacks [87,138]. Furthermore, it enables flexible communication-load

balancing across multiple paths so that network energy consumption is distributed without

penalizing any access path [58]. In addition, k-connectivity is useful in achieving consensus

despite adversarial nodes in the network. Specifically, if k = 2m + 1 where m is the number

of adversary-controlled nodes, k-connectivity guarantees that consensus can be reached in any

network with n � m nodes [36, 166]. Finally, k-connectivity has important implications on

mobile connectivity of wireless sensor networks. For instance, if a network is k-connected, then

any of its (k − 1) nodes can be made mobile, and move anywhere in the network freely, while

the network remains at least 1-connected all the time. So, in applications where only a small

number of sensors need to be mobile, whereas others will be static, k-connectivity will be a

crucial property that ensures continuous connectivity of the network.

6.2 A roadmap

In this chapter we propose a novel composite random graph that offers a modeling frame-

work for large-scale wireless sensor networks secured by the heterogeneous key predistribution

scheme under an independent on-off channel model. The heterogeneous scheme induces an

inhomogeneous random key graph, denoted by K(n;µµµ,KKK,P ) and the on-off channel model

induces an Erdős-Rényi graph, denoted by G(n, α). Hence, the overall random graph modeling

the network is obtained by the intersection of K(n;µµµ,KKK,P ) and G(n, α). We start by present-

ing conditions on how to scale the parameters of the intersecting graph with respect to the

network size n such that the graph i) has no isolated nodes and ii) is connected, both with high

probability as the number of nodes gets large. Then, we proceed by presenting scaling condi-
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tions on the model parameters such that iii) the minimum node degree is no less than k, and

iv) the graph is k-connected. Our results are supported by a simulation study demonstrating

that i) despite their asymptotic nature, our results can in fact be useful in designing finite-node

wireless sensor networks so that they achieve secure connectivity with high probability; and

ii) despite the simplicity of the on-off communication model, the probability of connectivity in

the resulting wireless sensor network approximates very well the case where the disk model is

used.

6.3 Model definitions

We consider a network consisting of n sensor nodes labeled as v1, v2, . . . , vn. Each sensor

is assigned to one of the r possible classes (e.g., priority levels) according to a probability

distribution µµµ = {µ1, µ2, . . . , µr} with µi > 0 for each i = 1, . . . , r; clearly it is also needed that∑r
i=1 µi = 1. Prior to deployment, each class-i node is given Ki cryptographic keys selected

uniformly at random from a pool of size P . Hence, the key ring Σx of node vx is a PKtx -valued

random variable (rv) where PA denotes the collection of all subsets of {1, . . . , P} with exactly

A elements and tx denotes the class of node vx. The rvs Σ1,Σ2, . . . ,Σn are then i.i.d. with

P[Σx = S | tx = i] =

(
P

Ki

)−1

, S ∈ PKi .

After the deployment, two sensors can communicate securely over an existing communication

channel if they have at least one key in common.

Throughout, we let KKK = {K1, K2, . . . , Kr}, and assume without loss of generality that

K1 ≤ K2 ≤ . . . ≤ Kr. Consider a random graph K induced on the vertex set V = {v1, . . . , vn}

such that distinct nodes vx and vy are adjacent in K, denoted by the event Kxy, if they have

at least one cryptographic key in common, i.e.,

Kxy := [Σx ∩ Σy 6= ∅] . (6.1)
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The adjacency condition (6.1) characterizes the inhomogeneous random key graphK(n;µµµ,KKK,P )

that has been introduced recently in [157]. This model is also known in the literature as the

general random intersection graph; e.g., see [16,62,167].

The inhomogeneous random key graph models the cryptographic connectivity of the un-

derlying wireless sensor network. In particular, the probability pij that a class-i node and a

class-j node have a common key, and thus are adjacent in K(n;µµµ,KKK,P ), is given by

pij = P[Kxy] = 1−
(
P −Ki

Kj

)/(
P

Kj

)
(6.2)

as long as Ki + Kj ≤ P ; otherwise if Ki + Kj > P , we clearly have pij = 1. We also find it

useful to define the mean probability λi of edge occurrence for a class-i node in K(n;µµµ,KKK,P ).

With arbitrary nodes vx and vy, we have

λi = P[Kxy

∣∣ tx = i] =
r∑
j=1

pijµj, i = 1, . . . , r, (6.3)

as we condition on the class ty of node vy. In addition, we define the mean key ring size by

Kavg; i.e.,

Kavg =
r∑
j=1

Kjµj. (6.4)

In this work, we consider the communication topology of the wireless sensor network as

consisting of independent channels that are either on (with probability α) or off (with prob-

ability 1 − α). More precisely, let {Bij(α) : 1 ≤ i < j ≤ n} denote i.i.d Bernoulli rvs, each

with success probability α. The communication channel between two distinct nodes vx and vy

is on (respectively, off) if Bxy(α) = 1 (respectively if Bxy(α) = 0). The on-off channel model

induces an Erdős-Rényi graph G(n;α) [18], defined on the vertices V = {v1, . . . , vn} such that

vx and vy are adjacent, denoted Cxy, if Bxy(α) = 1.

We model the overall topology of the wireless sensor network by the intersection of an inho-

mogeneous random key graph K(n;µµµ,KKK,P ) and an Erdős-Rényi graph G(n;α). Namely, nodes
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vx and vy are adjacent in K(n;µµµ,KKK,P )∩G(n;α), denoted Exy, if and only if they are adjacent

in both K and G. In other words, the edges in the intersection graph K(n;µµµ,KKK,P ) ∩G(n;α)

represent pairs of sensors that can securely communicate as they have i) a communication

link in between that is on, and ii) a shared cryptographic key. Therefore, studying the con-

nectivity properties of K(n;µµµ,KKK,P ) ∩G(n;α) amounts to studying the secure connectivity of

heterogeneous wireless sensor network under the on-off channel model.

To simplify the notation, we let θθθ = (KKK,P ) and ΘΘΘ = (θθθ, α). The probability of edge

existence between a class-i node vx and a class-j node vy in K(n;µµµ,θθθ) ∩G(n;α) is given by

P[Exy
∣∣ tx = i, ty = j] = P[Kxy ∩ Cxy

∣∣ tx = i, ty = j] = αpij

by independence. Similar to (6.3), the mean edge probability for a class-i node in K(n;µµµ,θθθ) ∩

G(n;α), denoted Λi, is given by

Λi =
r∑
j=1

µjαpij = αλi, i = 1, . . . , r. (6.5)

Throughout, we assume that the number of classes r is fixed and does not scale with n, and

so are the probabilities µ1, . . . , µr. All of the remaining parameters are assumed to be scaled

with n.

6.4 Preliminaries

This is a collection of technical results that would be used throughout. The first result follows

easily from the scaling condition (6.15).

Proposition 6.4.1 ( [157, Proposition 4.1]). For any scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 ,

we have (in view of (6.15))

λ1(n) ≤ λ2(n) ≤ . . . ≤ λr(n) (6.6)

for each n = 2, 3, . . ..
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In view of (6.5), Proposition 6.4.1 implies that

Λ1(n) ≤ Λ2(n) ≤ . . . ≤ Λr(n), n = 2, 3, . . . . (6.7)

Lemma 6.4.2 ( [157, Lemma 4.2]). Consider any scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 . For

any i, j = 1, . . . , r,

lim
n→∞

pij(n) = 0 if and only if lim
n→∞

Ki,nKj,n

Pn
= 0

and we have the asymptotic equivalence

pij(n) ∼ Ki,nKj,n

Pn
. (6.8)

Proposition 6.4.3 ( [157, Proposition 4.4]). For any set of positive integers K1, . . . , Kr, P

and any scalar a ≥ 1, we have

(
P−daKie

Kj

)(
P
Kj

) ≤

((P−Ki
Kj

)(
P
Kj

) )a

, i, j = 1, . . . , r. (6.9)

Proposition 6.4.4. Consider a random variable Z defined as

Z = 1− p1i =

(
P−K1

Ki

)(
P
Ki

) , with probability µi, i = 1, . . . , r.

We have var [Z] ≤ 1
4

(p1r)
2 .

Proof. We start by showing that under (6.103), the quantity pij(n) is increasing in both i and

j. Fix n = 2, 3, . . . and recall that under (6.103), Ki increases as i increases. For any i, j such

that Ki + Kj > P , we see from (6.2) that pij(n) = 1; otherwise if Ki + Kj ≤ P , we have

pij(n) < 1. Given that Ki + Kj increases with both i and j, it will be sufficient to show that
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pij(n) increases with both i and j on the range where Ki +Kj < P . On that range, we have

(
P−Ki
Kj

)(
P
Kj

) =

Ki−1∏
`=0

(
1− Kj

P − `

)

Hence,
(
P−Ki
Kj

)
/
(
P
Kj

)
decreases with both Ki and Kj, hence with i and j. From (6.2), it follows

that pij(n) increases with i and j. As a consequence, with Z = 1− p1i, we have

1− p1r ≤ Z ≤ 1− p11.

From Popoviciu’s inequality [74, pp. 9], we see that

var [Z] ≤ 1

4
(Zmax − Zmin)2 =

1

4
(p1r − p11)2 ≤ 1

4
(p1r)

2

since p1r ≥ p11 ≥ 0.

Fact 6.4.5. If λ1(n) = o(1), then

p1i(n) = o(1), i = 1, . . . , r

Proof. Recalling (6.3), we obtain

p1i(n) ≤
(

1

µi

)
λ1(n) = O (λ1(n)) = o(1)

under the given assumption that λ1(n) = o(1).

Fact 6.4.6. For 0 ≤ x ≤ 1, the following properties hold.

(a) [166, Fact 2] If 0 < y < 1, then (1− x)y ≤ 1− xy.

(b) Let a > 1. Then, 1− xa ≤ a(1− x).

38



Proof. By a crude bounding, we have

1− xa =

∫ 1

x

ata−1 dt ≤
∫ 1

x

a dt = a(1− x).

Fact 6.4.7 ( [166, Fact 5]). Let a, x, and y be positive integers satisfying y ≥ (2a+1)x. Then,

(
y−ax
x

)(
y
x

) ≥

[(
y−x
x

)(
y
x

) ]2a

Other useful bounds that will be used throughout are

(
n

`

)
≤
(en
`

)`
, ` = 1, . . . , n, n = 1, 2, . . . (6.10)

bn2 c∑
`=2

(
n

`

)
≤ 2n (6.11)

(1± x) ≤ e±x, x ∈ (0, 1) (6.12)

Finally, we find it useful to write

log(1− x) = −x−Ψ(x) (6.13)

where Ψ(x) =
∫ x

0
t

1−t dt. From L’Hôpital’s Rule, we have

lim
x→0

Ψ(x)

x2
=
−x− log(1− x)

x2
=

1

2
. (6.14)
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6.5 Connectivity and absence of isolated nodes

In this section, we present conditions (in the form of zero-one laws) on how to scale the

parameters of the intersection model so that with high probability i) the graph has no isolated

nodes; and ii) the graph is connected. We also present numerical results to support our findings

in the finite-node regime.

We refer to a mapping ΘΘΘ = K1, . . . , Kr, P, α : N0 → Nr+1
0 × (0, 1) as a scaling if

1 ≤ K1,n ≤ K2,n ≤ . . . ≤ Kr,n ≤ Pn/2 (6.15)

for all n = 2, 3, . . .. We note that under (6.15), the edge probability pij is given by (6.2).

We first present a zero-one law for the absence of isolated nodes in K(n;µµµ,θθθ) ∩G(n;α).

6.5.1 A zero-one law for the absence of isolated nodes in K(n;µµµ,θθθ)∩

G(n;α)

Theorem 6.5.1. Consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i =

1, . . . , r and a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1) such that

Λ1(n) = αnλ1(n) ∼ c
log n

n
(6.16)

for some c > 0. We have

lim
n→∞

P

 K(n;µµµ,θθθ) ∩G(n;α)

has no isolated nodes

 =


0 if c < 1

1 if c > 1

(6.17)

The scaling condition (6.16) will often be used in the form

Λ1(n) = cn
log n

n
, n = 2, 3, . . . (6.18)
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with limn→∞ cn = c > 0.

Next, we present an analogous result for connectivity.

6.5.2 A zero-one law for the connectivity of K(n;µµµ,θθθ) ∩G(n;α)

Theorem 6.5.2. Consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i =

1, . . . , r and a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1) such that (6.16) holds for some c > 0. Then, we

have

lim
n→∞

P[K(n;µµµ,θθθ) ∩G(n;α) is connected] =


0 if c < 1

1 if c > 1

(6.19)

under the additional conditions that

Pn ≥ σn, n = 1, 2, . . . (6.20)

for some σ > 0 and

p11(n) = ω

(
1

nαn

)
. (6.21)

6.5.3 Discussion

The resemblance of the results presented in Theorem 6.5.1 and Theorem 6.5.2 indicates that ab-

sence of isolated nodes and connectivity are asymptotically equivalent properties forK(n;µµµ,θθθ)∩

G(n;α). Similar observations were made for other well-known random graph models as well;

e.g., inhomogeneous random key graphs [157], Erdős-Rényi graphs [18], and (homogeneous)

random key graphs [159].

Conditions (6.20) and (6.21) are enforced mainly for technical reasons and they are only

needed in the proof of the one-law of Theorem 6.5.2. In particular, condition (6.20) is essential

for real-world implementations of wireless sensor networks in order to ensure the resilience

of the network against node capture attacks; e.g., see [33, 53]. For instance, assume that an

adversary captures a number of sensors, compromising all the keys that belong to the captured
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nodes. If Pn = o(n), then it would be possible for the adversary to compromise Ω(Pn) keys

by capturing only o(n) sensors (whose type does not matter in this case). In this case, the

network would fail to exhibit the unassailability property [95, 153] and would be deemed as

vulnerable against adversarial attacks.

Also, condition (6.21) is enforced mainly for technical reasons for the proof of the one-law

to work. The need of such a lower bound arises from the fact that our scaling condition (6.16)

merely scales the minimum mean edge probability, not the minimum (or each) edge probability,

as log n/n. For instance, the current scaling condition (6.16) gives us an easy upper bound on

the minimum edge probability in the network, but does not specify any non-trivial lower bound

on that probability. More specifically, it is easy to see that αnp11(n) = O (Λ1) = O (log n/n),

but it is not clear if the sequence αnp11(n) has a non-trivial lower bound. In fact, authors in [32]

investigated the connectivity of an inhomogeneous Erdős-Rényi (ER) graph, while setting the

probability of an edge connecting two nodes of classes i and j to κ (i, j) log n/n, where κ (i, j)

returns a positive real number for each pair (i, j); i.e., each individual edge was scaled as

log n/n.

In summary, condition (6.20) is needed to ensure the resilience of the network against node

capture attacks, while condition (6.21) is needed to provide a non-trivial lower bound on the

minimum edge probability of the network. To provide a concrete example, one can set Pn =

n log n and have K1,n = (log n)1/2+ε with any ε > 0 to satisfy (6.21) for any αn ≥ 1/(log n)ε

(see Lemma 6.4.2). In this case, setting Kavg,n = log n3/2 ensures that the resulting network is

connected whp (see Corollary 6.5.3).

Theorem 6.5.1 (resp. Theorem 6.5.2) states that K(n;µµµ,θθθ) ∩G(n;α) has no isolated node

(resp. is connected) whp if the mean degree of class-1 nodes (that receive the smallest number

K1,n of keys) is scaled as (1 + ε) log n for some ε > 0. On the other hand, if this minimal mean

degree scales as (1 − ε) log n for some ε > 0, then whp K(n;µµµ,θθθ) ∩ G(n;α) has an isolated

node, and hence not connected. These results indicate that the minimum key ring size in the

network has a significant impact on the connectivity of K(n;µµµ,θθθ) ∩G(n;α).
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The importance of the minimum key ring size on connectivity can be seen more explicitly

under a mild condition on the scaling, as shown in the next corollary.

Corollary 6.5.3. Consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i =

1, . . . , r and a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1) such that λ1(n) = o(1) and

αn
K1,nKavg,n

Pn
∼ c

log n

n
(6.22)

for some c > 0, where Kavg,n is as defined at (6.4). Then we have the zero-one law (6.17) for

absence of isolated nodes. If, in addition, the conditions (6.20) and (6.21) are satisfied, then

we also have the zero-one law (6.19) for connectivity.

Proof. In view of (6.3), we see that λ1(n) = o(1) implies p1j(n) = o(1) for j = 1, . . . , r. From

Lemma 6.4.2, this then leads to p1j(n) ∼ K1,nKj,n
Pn

, whence

λ1(n) =
r∑
j=1

µjp1j(n) ∼
K1,n

∑r
j=1 µjKj,n

Pn
=
K1,nKavg,n

Pn

Thus, the scaling conditions (6.16) and (6.22) are equivalent under λ1(n) = o(1) and Corollary

6.5.3 follows from Theorem 6.5.1 and Theorem 6.5.2.

We see from Corollary 6.5.3 that for a fixed mean number Kavg,n of keys per sensor, network

connectivity is directly affected by the minimum key ring size K1,n. For example, reducing K1,n

by half means that the smallest αn for which the network becomes connected whp is increased

by two-fold (see Figure 6.2 for a numerical example demonstrating this phenomenon).

6.5.4 Effect of heterogeneity

To better understand the effect of heterogeneity, we would focus on the scaling condition (6.22)

and compare it with the equivalent one for the homogeneous case, where all nodes receive the

same numberK of keys from the key pool (which induces random key graphsK(n;K,P )). Since
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heterogeneity is mainly stemming from inhomogeneous random key graph, we will focus on the

case of full-visibility, i.e., when αn = 1 for n = 2, 3, . . .. To compare with the homogeneous

case, we set r = 1, to get the corresponding scaling condition for random key graphs under full

visibility. Namely, with

K2
n

Pn
∼ c

log n

n
, c > 0 (6.23)

analogs of Theorems 6.5.1 and 6.5.2 were obtained for K(n;K,P ) [159]. Put differently, with

the scaling condition (6.23), the graph K(n;K,P ) has no isolated node and is connected, both

with high probability, if the parameters are chosen such that c > 1. The graph has at least

one isolated node (hence, not connected) with high probability of the parameters are chosen

such that c < 1.

Let us focus on the absence of isolated nodes property and set Pn = n log n. The hetero-

geneity of our model offers the flexibility of having a positive fraction of the sensors, each,

being assigned as few as one key per node. However, this would come at the expense of hav-

ing to assign significantly larger key rings to a positive fraction of other nodes so that (6.22)

still holds with c > 1. In particular, with K1,n = O(1), we must have Kr,n = Ω
(
(log n)2) to

have no isolated nodes as given by Corollary 6.5.3. Observe that (6.23) implies that setting

Kn = (1 + ε) log n is sufficient to ensure the absence of isolated nodes. This sheds the light

on the fact that homogeneous models are more resource-efficient than their inhomogeneous

counterparts, as the heterogeneity of the latter could come at the expense of requiring more

resources for the graph to have no isolated nodes.

6.5.5 Comparison with related work

Our main results extend the work in [157] and [164], where authors established zero-one laws for

the connectivity of a wireless sensor network secured by the heterogeneous key predistribution

scheme under the full-visibility assumption. Although a crucial first step in the study of

heterogeneous key predistribution schemes, the assumption that all pairs of sensors have a

communication channel in between is not likely to hold in most practical settings. In this
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regard, our work extends the results in [157] and [164] to more practical wireless sensor network

scenarios where the wireless connectivity of the network is taken into account. By setting

αn = 1 for each n = 1, 2, . . . (i.e., by assuming that all links are available), our results reduce

to those given in [157].

Authors in [156] (respectively, [165]) investigated the connectivity (respectively, k-connectivity)

of wireless sensor networks secured by the classical Eschenauer-Gligor scheme under an inde-

pendent on/off channel model. However, when the network consists of sensors with varying

level of resources (e.g., computational, memory, power), and with varying level of security and

connectivity requirements, it may no longer be sensible to assign the same number of keys to

all sensors. Our work addresses this issue by generalizing [156] to the cases where nodes can

be assigned different number of keys. When r = 1, i.e., when all nodes belong to the same

class and receive the same number of keys, our result recovers the main result in [156].

6.5.6 Numerical results

We now present numerical results to support Theorems 6.5.1 and Theorem 6.5.2 in the finite

node regime. Furthermore, we show by simulations that the on-ff channel model serves as a

good approximation of the disk model. In our simulations, we fix the number of nodes at

n = 500 and the size of the key pool at P = 104.

The first step in comparing the on-off channel model to the disk model is to propose a

matching between Erdős-Rényi graph G(n;α) and the random geometric graph I(n; ρ) in a

way that leads to the same probability of link availability. In particular, consider 500 nodes

distributed uniformly and independently over a folded unit square [0, 1]2 with toroidal (con-

tinuous) boundary conditions. Since there are no border effects, we get

P [‖xxxi − xxxj‖ < ρ] = πρ2, i 6= j, i, j = 1, . . . , n

whenever ρ < 0.5. Thus, in order to match the two communication models we set α =
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πρ2. Next, we present several simulation results comparing the (empirical) probabilities that

K(n;µµµ,θθθ) ∩G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ) are connected, respectively.

We start by considering the channel parameter α = πρ2 = 0.2, α = πρ2 = 0.4, α = πρ2 =

0.6, and α = πρ2 = 0.8, while varying the parameter K1 (i.e., the smallest key ring size) from

5 to 35. The number of classes is fixed at 2 with µµµ = {0.5, 0.5} and we set K2 = K1 + 5.

For each parameter pair (KKK,α) (respectively, (KKK,πρ2)), we generate 800 independent samples

of the graphs K(n;µµµ,θθθ) ∩ G(n;α) (respectively, K(n;µµµ,θθθ) ∩ I(n; ρ)) and count the number of

times (out of a possible 800) that the obtained graphs i) have no isolated nodes and ii) are

connected. Dividing the counts by 800, we obtain the (empirical) probabilities for the events of

interest. We observed that K(n;µµµ,θθθ)∩G(n;α) is connected whenever it has no isolated nodes

yielding the same empirical probability for both events. This is in parallel with the asymptotic

equivalence of the two properties as implied by Theorems 6.5.1 and 6.5.2.

In Figure 6.1, we show the empirical probabilities of the connectivity of K(n;µµµ,θθθ)∩G(n;α)

(represented by lines) and K(n;µµµ,θθθ) ∩ I(n; ρ) (represented by symbols). We observe that

the empirical probabilities are almost identical, supporting the claim that the on-ff channel

model serves as a good approximation of the disk model under the given matching condition.

Furthermore, we show the critical threshold of connectivity predicted by Theorem 6.5.2 by a

vertical dashed line for each curve. More specifically, for a given α, the vertical dashed lines

stand for the minimum integer value of K1 that satisfies

λ1(n)=
2∑
j=1

µj

(
1−

(
P−Kj
K1

)(
P
K1

) ) >
1

α

log n

n
(6.24)

According to Theorem 6.5.2, at this critical value of K1 the network would be connected with

probability 1 as the number of nodes tends to infinity. We see from Figure 6.1 that even in the

finite-node regime (n = 500), the critical value of K1 results in a connected network with high

probability.

Figure 6.2 is generated in a similar manner with Figure 6.1, this time with an eye towards

understanding the impact of the minimum key ring size K1 on network connectivity. We fix
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Figure 6.1: Empirical probability that K(n;µµµ,θθθ)∩G(n;α) and K(n;µµµ,θθθ)∩I(n; ρ) are connected
as a function of KKK for α = πρ2 = 0.2, α = πρ2 = 0.4, α = πρ2 = 0.6, and α = πρ2 = 0.8 with
n = 500 and P = 104; in each case, the empirical probability value is obtained by averaging
over 800 experiments. Vertical dashed lines stand for the critical threshold of connectivity
asserted by Theorem 6.5.2.

the number of classes at 2 with µµµ = {0.5, 0.5} and consider four different key ring sizes KKK each

with mean 40; we consider KKK = {10, 70}, KKK = {20, 50}, KKK = {30, 50}, and KKK = {40, 40}.

We compare the probability of connectivity in the resulting networks as α (respectively, πρ2)

varies from zero to one. Although the average number of keys per sensor is kept constant in

all four cases, network connectivity improves dramatically as the minimum key ring size K1

increases; e.g., with α = πρ2 = 0.2, the probability of connectivity is one when K1 = K2 = 40

while it drops to zero if we set K1 = 10 and K2 = 70 so that the mean key ring size is still 40.

This confirms the observations made via Corollary 6.5.3.

Finally, we investigate the effect of the network size n on the probability of connectivity.

Recall that our scaling condition is equivalent to

αn
K1,nKavg,n

P
∼ c

log n

n

by virtue of Corollary 6.5.3. Thus, as we increase n for fixed P and α, the fraction log n/n
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Figure 6.2: Empirical probability that K(n;µµµ,θθθ)∩G(n;α) and K(n;µµµ,θθθ)∩I(n; ρ) are connected
as a function of α and πρ2 for four choices of KKK = (K1, K2), each with the same mean.

decreases, leading to a decrease on the critical value of K1,nKavg,n needed to ensure that c > 1.

We would also expect the probability of connectivity to exhibit a sharper transition between 0

and 1 as we increase n by virtue of Theorem 6.5.2. This is illustrated in Figure 6.3.

6.5.7 Additional preliminaries

Lemma 6.5.4. Consider a scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 such that (6.16) holds. We

have

cn
log n

nαn
≤ p1r(n) ≤ cn

µr

log n

nαn
(6.25)

If in addition (6.21) holds, we have

prr(n) = o

(
(log n)2

nαn

)
. (6.26)
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Figure 6.3: Empirical probability that K(n;µµµ,KKK,P )∩G(n;α) is connected as a function of KKK
for n = 500, n = 1000, n = 1500, and n = 2000. We set K2 = K1 + 5, µµµ = (0.5, 0.5), α = 0.4
and P = 104. In each case, the empirical probability value is obtained by averaging over 2000
experiments. Vertical dashed lines stand for the critical threshold of connectivity asserted by
Theorem 3.2.

Proof. We know from (6.18) that

λ1(n) =
r∑
j=1

µjp1j = cn
log n

αnn
.

Since p1j is monotone increasing in j = 1, . . . , r by virtue of (6.6), we readily obtain the bounds

cn
log n

nαn
≤ p1r(n) ≤ cn

µr

log n

nαn
(6.27)

which establishes (6.25).

In view of (6.27) that implies p1r(n) = Θ( logn
αnn

), we will obtain (6.26) if we show that

prr(n) = o(log n)p1r(n). Here this will be established by showing that

prr(n) ≤ max

(
2,

8cn
µr

log n

wn

)
p1r(n), n = 2, 3, . . . (6.28)
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for some sequence wn such that limn→∞wn =∞. Fix n = 2, 3, . . . . We have either p1r(n) > 1
2
,

or p1r(n) ≤ 1
2
. In the former case, it automatically holds that

prr(n) ≤ 2p1r(n) (6.29)

by virtue of the fact that prr(n) ≤ 1.

Assume now that p1r(n) ≤ 1
2
. We know from [159, Lemmas 7.1-7.2] that

1− e−
Kj,nKr,n

Pn ≤ pjr(n) ≤ Kj,nKr,n

Pn −Kj,n

, j = 1, . . . , r (6.30)

and it follows that

K1,nKr,n

Pn
≤ log

(
1

1− p1r(n)

)
≤ log 2 < 1. (6.31)

Using the fact that 1− e−x ≥ x
2

with x in (0, 1), we then get

p1r(n) ≥ K1,nKr,n

2Pn
. (6.32)

In addition, using the upper bound in (6.30) with j = r gives

prr(n) ≤
K2
r,n

Pn −Kr,n

≤ 2
K2
r,n

Pn

as we invoke (6.15). Combining the last two bounds we obtain

prr(n)

p1r(n)
≤ 4

Kr,n

K1,n

(6.33)

In order to bound the term Kr,n/K1,n, we recall from Lemma 6.5.5 that (6.21) implies

(6.35), i.e., that
K2

1,n

Pn
= wn

nαn
, for some sequence wn satisfying limn→∞wn = ∞. Using this
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together with (6.32) and (6.27) we then get

Kr,n

K1,n

=

K1,nKr,n
Pn
K2

1,n

Pn

≤ 2p1r(n)
wn
nαn

≤
2 cn
µr

logn
nαn

wn
nαn

=
2cn
µr

log n

wn

Reporting this into (6.33) we get

prr(n) ≤ 8cn
µr

log n

wn
p1r(n). (6.34)

Combining (6.29) and (6.34), we readily obtain (6.28).

Lemma 6.5.5. Under (6.21), we have

K2
1,n

Pn
= ω

(
1

nαn

)
, (6.35)

and

K1,n = ω(1). (6.36)

Proof. It is a simple matter to check that p11(n) ≤ K2
1,n

Pn−K1,n
; see [159, Proposition 7.1-7.2] for

a proof. In view of (6.15) this gives p11(n) ≤ 2
K2

1,n

Pn
. Thus, we have

K2
1,n

Pn
= Ω (p11(n)) = ω

(
1

nαn

)
.

From (6.20), (6.35), and αn ≤ 1, we readily obtain (6.36).
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6.5.8 Proof of Theorem 6.5.1

Establishing the one-law

The proof of Theorem 6.5.1 relies on the method of first and second moments applied to the

number of isolated nodes in K(n;µµµ,θθθ) ∩ G(n;α). Let In(µµµ,ΘΘΘn) denote the total number of

isolated nodes in K(n;µµµ,θθθ) ∩G(n;α), namely,

In(µµµ,ΘΘΘn) =
n∑
`=1

111[v` is isolated in K(n;µµµ,θθθ) ∩G(n;α))] (6.37)

The method of first moment [73, Eqn. (3.10), p. 55] gives

1− E[In(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn) = 0]

It is clear that in order to establish the one-law, namely that limn→∞ P [In(µµµ,ΘnΘnΘn) = 0] = 1,

we need to show that

lim
n→∞

E[In(µµµ,ΘΘΘn)] = 0. (6.38)

Recalling (6.37), we have

E [In(µµµ,ΘΘΘn)] = n
r∑
i=1

µiP
[
v1 is isolated in K(n;µµµ,θθθ) ∩G(n;α)

∣∣ t1 = i
]

= n
r∑
i=1

µiP
[
∩nj=2[vj � v1] | v1 is class i

]
= n

r∑
i=1

µi (P [v2 � v1 | v1 is class i])n−1 (6.39)

where (6.39) follows by the independence of the rvs {vj � v1}nj=1 given Σ1. By conditioning
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on the class of v2, we find

P[v2 � v1

∣∣ t1 = i] =
r∑
j=1

µjP[v2 � v1

∣∣ t1 = i, t2 = j]

=
r∑
j=1

µj(1− αpij) = 1− Λi (6.40)

Using (6.40) in (6.39), and recalling (6.6) and (6.12), we obtain

E[In(µµµ,ΘΘΘn)] = n
r∑
i=1

µi (1− Λi(n))n−1

≤ n (1− Λ1(n))n−1 ≤ elogn(1−cn n−1
n ).

Taking the limit as n goes to infinity, we immediately get (6.38) since limn→∞(1 − cn n−1
n

) =

1− c < 0 under the enforced assumptions (with c > 1) and the one-law is established.

Establishing the zero-law

Our approach in establishing the zero-law relies on the method of second moment applied to a

variable that counts the number of nodes that are class-1 and isolated. Clearly if we can show

that whp there exists at least one class-1 node that is isolated under the enforced assumptions

(with c < 1) then the zero-law would immediately follow.

Let Yn(µµµ,ΘΘΘn) denote the number of nodes that are class-1 and isolated in K(n;µµµ,θθθ) ∩

G(n;α), and let

xn,i(µµµ,ΘΘΘn) = 111[ti = 1 ∩ vi is isolated in K(n;µµµ,θθθ) ∩G(n;α)],

then we have Yn(µµµ,ΘΘΘn) =
∑n

i=1 xn,i(µµµ,ΘΘΘn). By applying the method of second moments [73,

Remark 3.1, p. 55] on Yn(µµµ,ΘΘΘn), we get

P[Yn(µµµ,ΘΘΘn) = 0] ≤ 1− E[Yn(µµµ,ΘΘΘn)]2

E[Yn(µµµ,ΘΘΘn)2]
(6.41)

53



where

E[Yn(µµµ,ΘΘΘn)] = nE[xn,1(µµµ,ΘΘΘn)] (6.42)

and

E[Yn(µµµ,ΘΘΘn)2] =nE[xn,1(µµµ,ΘΘΘn)] (6.43)

+ n(n− 1)E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

by exchangeability and the binary nature of the rvs {xn,i(µµµ,ΘΘΘn)}ni=1. Using (6.42) and (6.43),

we get

E[Yn(µµµ,ΘΘΘn)2]

E[Yn(µµµ,ΘΘΘn)]2
=

1

nE[xn,1(µµµ,ΘΘΘn)]

+
n− 1

n

E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

E[xn,1(µµµ,ΘΘΘn)]2

In order to establish the zero-law, we need to show that

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞, (6.44)

and

lim sup
n→∞

(
E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

E[xn,1(µµµ,ΘΘΘn)]2

)
≤ 1. (6.45)

Proposition 6.5.6. Consider a scaling K1, . . . , Kr, P : N0 → Nr+1
0 and a scaling α : N0 →

(0, 1) such that (6.16) holds with limn→∞ cn = c > 0. Then, we have

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞, if c < 1
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Proof. We have

nE [xn,1(µµµ,ΘΘΘn)] = nP [v1 is isolated in K(n;µµµ,θθθ) ∩G(n;α) ∩ t1 = 1]

= nµ1P
[
∩nj=2[vj � v1]

∣∣ t1 = 1
]

= nµ1P
[
v2 � v1

∣∣ t1 = 1
]n−1

= nµ1

(
r∑
j=1

µjP
[
v2 � v1

∣∣ t1 = 1, t2 = j
])n−1

= nµ1

(
r∑
j=1

µj(1− αnp1j)

)n−1

(6.46)

= nµ1 (1− Λ1(n))n−1 = µ1e
βn (6.47)

where βn = log n+ (n− 1) log(1− Λ1(n)). Recalling (6.13), we get

βn = log n− (n− 1) (Λ1(n) + Ψ(Λ1(n)))

= log n− (n− 1)

(
cn

log n

n
+ Ψ

(
cn

log n

n

))
= log n

(
1− cn

n− 1

n

)
− (n− 1)

(
cn

log n

n

)2 Ψ
(
cn

logn
n

)(
cn

logn
n

)2 (6.48)

Recalling (6.14), we have

lim
n→∞

Ψ
(
cn

logn
n

)(
cn

logn
n

)2 =
1

2
(6.49)

since cn
logn
n

= o(1). Thus, βn = log n
(
1− cn n−1

n

)
− o(1). Using (6.47), (6.48), (6.49), and

letting n go to infinity, we get

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞

whenever limn→∞ cn = c < 1.
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Proposition 6.5.7. Consider a scaling K1, . . . , Kr, P : N0 → Nr+1
0 and a scaling α : N0 →

(0, 1) such that (6.16) holds with limn→∞ cn = c > 0. Then, we have (6.45) if c < 1.

Proof. Consider fixed ΘΘΘ.

E [xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = E [111[v1 is isolated , v2 is isolated ∩ t1 = 1, t2 = 1]]

= µ2
1E
[
111[v1 is isolated , v2 is isolated]

∣∣∣ t1 = 1, t2 = 1
]

= µ2
1E

[
111[v1 � v2]

n∏
m=3

111[vm � v1, vm � v2]

∣∣∣∣∣ t1 = t2 = 1

]

Now we condition on Σ1 and Σ2 and note that i) Σ1 and Σ2 determine t1 and t2; and ii) the

events [v1 � v2], {[vm � v1 ∩ vm � v2]}nm=3 are mutually independent given Σ1 and Σ2. Thus,

we have

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = µ2
1E

[
P
[
v1 � v2

∣∣∣ Σ1,Σ2

]
· (6.50)

n∏
m=3

P
[
vm � v1 ∩ vm � v2

∣∣∣ Σ1,Σ2

] ∣∣∣∣ t1 = t2 = 1

]

Define the {0, 1}-valued rv u(θθθ) by

u(θθθ) := 111[Σ1 ∩ Σ2 6= ∅]. (6.51)

Recalling (6.75), (6.50) gives

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = µ2
1E

[
(1− α)u(θθθ)

n∏
m=3

(P−∣∣∣∪i∈ν2,m(α)Σi

∣∣∣
|Σm|

)(
P
|Σm|

) ∣∣∣∣∣ t1 = t2 = 1

]

Conditioned on u(θθθ) = 0 and v1, v2 being class-1, we have

∣∣∪i∈ν2,m(α)Σi

∣∣ = |ν2,m(α)|K1.
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Also, we have

P[u(θnθnθn) = 0 | t1 = t2 = 1] = 1− p11.

Thus, we get

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ) 111[u(θθθ) = 0]] = µ2
1(1− p11)E

[
n∏

m=3

(
P−|ν2,m(α)K1|

|Σm|

)(
P
|Σm|

) ]

= µ2
1(1− p11)E

[(
P−|ν2,3(α)|K1

|Σ3|

)(
P
|Σ3|

) ]n−2

= µ2
1(1− p11)

(
r∑
j=1

µjE

[(
P−|ν2,3(α)|K1

|Σ3|

)(
P
|Σ3|

) ∣∣∣∣ t3 = j

])n−2

= µ2
1(1− p11)

(
r∑
j=1

µjE

[(P−|ν2,3(α)|K1

Kj

)(
P
Kj

) ])n−2

≤ µ2
1(1− p11)E

 r∑
j=1

µj

((P−K1

Kj

)(
P
Kj

) )|ν2,3(α)|n−2

where we use (6.9) in the last step.

Now, let Z(θθθ) denote a rv that takes the value

(
P−K1

Kj

)(
P
Kj

) with probability µj, j = 1, . . . , r. (6.52)

In other words, Z(θθθ) = 1− p1j with probability µj so that E[Z(θθθ)] = 1− λ1. Then,

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111 [u(θθθ) = 0]] ≤ µ2
1(1− p11)E

[
Z(θθθ)|ν2,3(α)|]n−2

(6.53)

Under the independent on-ff channel model, we have that |ν2,3(α)| is a Binomial rv, i.e.,
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|ν2,3(α)| =st Bin(2, α). Hence,

µ2
1(1− p11)E

[
Z(θθθ)|ν2,3(α)|]n−2

= E

[
2∑
i=0

(
2

i

)
αi(1− α)2−iZ(θθθ)i

]n−2

= µ2
1(1− p11)E

[
(1− α)2 + 2α(1− α)Z(θθθ) + α2Z(θθθ)2

]n−2

(6.54)

Conditioning on u(θθθ) = 1 and t1 = t2 = 1, we have

| ∪i∈ν2,m(α) Σi| =


0 if |ν2,m(α)| = 0

K1 if |ν2,m(α)| = 1

2K1 − |Σ1 ∩ Σ2| if |ν2,m(α)| = 2

and by a crude bounding argument, we have

| ∪i∈ν2,m(α) Σi| ≥ K1111[|ν2,m(α)| > 0] (6.55)

Using (6.55) and recalling the analysis for E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111[u(θθθ) = 0]], we obtain

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111[u(θθθ) = 1]] ≤ µ2
1p11(1− α)E

[
Z(θθθ)111[|ν2,3(α)|>0]

]n−2

= µ2
1p11(1− α)E

[
(1− α)2 +

(
1− (1− α)2

)
Zn
]n−2

(6.56)

Combining (6.53), (6.54), and (6.56), we get

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)]

= E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ) (111[u(θθθ) = 0] + 111[u(θθθ) = 1])]

≤ µ2
1(1− p11)

(
(1− α)2 + 2α(1− α)E[Z(θθθ)] + α2E

[
Z(θθθ)2

])n−2

+ µ2
1p11(1− α)

(
(1− α)2 +

(
1− (1− α)2

)
E[Z(θθθ)]

)n−2
(6.57)
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It is clear from (6.46) and the definition of Z(θθθ) that

E[xn,1(µµµ,ΘΘΘ)] = µ1

(
r∑
j=1

µj(1− αp1j)

)n−1

= µ1 ((1− α) + αE [Z(θθθ)])n−1 (6.58)

Combining (6.57) and (6.58), we get

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)]

E[xn,1(θθθ)]2
≤ (1− p11)

((1− α)2 + 2α(1− α)E[Z(θθθ)] + α2E[Z(θθθ)2])
n−2

((1− α) + αE [Z(θθθ)])2(n−1)

+ p11
((1− α)2 + (1− (1− α)2)E[Z(θθθ)])

n−2

((1− α) + αE [Z(θθθ)])2(n−1)

:= A+B (6.59)

where we use the fact that 1− α ≤ 1.

We now consider a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1) as stated in Proposition 6.5.7 and bound

the terms A and B in turn. Our goal is to show that

lim sup
n→∞

(A+B) ≤ 1. (6.60)

First, we write E[Z(θθθn)2] = E[Z(θθθn)]2 + var[Z(θθθn)], where var[Z(θθθn)] can be bounded by the

Popoviciu’s inequality [74, p. 9] as follows (see Proposition 6.4.4)

var[Z(θθθn)] ≤ 1

4
(p1r(n))2 .

Then, we get from the scaling condition (6.18) and (6.27) that

E[Z(θθθn)2] ≤ E[Z(θθθn)]2 +
1

4

(
cn
µr

log n

nαn

)2
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Reporting this into (6.59) we get

A ≤ (1− p11)

(
((1− αn) + αnE[Z(θθθn)])2 +

(
cn

2µr

logn
n

)2
)n−2

((1− αn) + αnE [Z(θθθn)])2(n−1)

= (1 + o(1))(1− p11)

1 +

(
cn

2µr

logn
n

1− αn + αnE [Z(θθθn]

)2
n−2

where we used the fact that

((1− αn) + αnE[Z(θθθn)])2 = (1− αnλ1(n))2 = 1− o(1) (6.61)

since αnλ1(n) = cn log n/n. Finally, we have

1 +

(
cn

2µr

logn
n

1− αn + αnE [Z(θθθn]

)2
n−2

≤ exp

n
(

cn
2µr

logn
n

1− cn logn
n

)2
 = o(1)

since limn→∞ cn = c > 0 and µr > 0. Thus, we obtain the bound

A ≤ (1− p11) (1 + o(1)) . (6.62)

We now consider the second term in (6.59). Recall (6.61) and that E [Z(θθθn)] = 1−λ1(n) =

1− cn log n/n. We have

B =
p11

(1− αn + αnE [Z(θθθn)])2 ·
(

1 +
α2
nE[Z(θθθn)](1− E[Z(θθθn)])

(1− αn + αnE [Z(θθθn)])2

)n−2

≤ p11(1 + o(1)) exp

{
n
α2
ncn

logn
nαn

(1− cn logn
nαn

)

(1− cn logn
n

)2

}

≤ p11(1 + o(1)) exp

{
cnαn log n(
1− cn logn

n

)2

}
(6.63)

We will now establish the desired result (6.60) by using (6.62) and (6.63). Our approach is

based on the subsubsequence principle [73, p. 12] and considering the cases limn→∞ αn log n = 0
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and limn→∞ αn log n ∈ (0,∞] separately.

Assume that limn→∞ αn log n = 0 From (6.63) we get B ≤ (1 + o(1))p11 and upon us-

ing (6.62) we see that A + B ≤ (1 + o(1)) establishing (6.60) along subsequences with

limn→∞ αn log n = 0.

Assume that limn→∞ αn log n ∈ (0,∞] Since p1j is monotonically increasing in j = 1, . . . , r

(see (6.6)), we have

λ1 =
r∑
j=1

µjp1j ≥ p11

r∑
j=1

µj = p11

Thus, p11 ≤ λ1(n) = cn log n/(αnn). Then, (6.63) gives

B ≤ (1 + o(1))
cn log n

αnn
exp

{
cnαn log n

(1− cnlog n/n)2

}
= (1 + o(1))

cn(log n)2

αn log n
n
−1+ cnαn

(1−cnlogn/n)2

= o(1)

since limn→∞ αn log n > 0 along this subsequence and

lim
n→∞

−1 +
cnαn

(1− cn log n/n)2 < 0

given that limn→∞ cn = c < 1. From (6.62) and the fact that p11 ≤ 1, we have A ≤ 1 + o(1),

and (6.60) follows.

The two cases considered cover all the possibilities for the limit of αn log n. By virtue of

the subsubsequence principle [73, p. 12], we get (6.60) without any condition on the sequence

αn log n; i.e., we obtain (6.60) even when the sequence αn log n does not have a limit!

Collectively, Proposition 6.5.6 and Proposition 6.5.7 establish (6.44) and (6.45) respectively,
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which in turn establish the zero-law of Theorem 6.5.1.

6.5.9 Proof of Theorem 6.5.2

Let Cn(µµµ,ΘΘΘn) denote the event that the graph K(n;µµµ,θθθ) ∩ G(n;α) is connected, and with a

slight abuse of notation, let In(µµµ,ΘΘΘn) denote the event that the graph K(n;µµµ,θθθ)∩G(n;α) has

no isolated nodes. It is clear that if a random graph is connected then it does not have any

isolated node, hence

Cn(µµµ,ΘΘΘn) ⊆ In(µµµ,ΘΘΘn)

and we get

P[Cn(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn)] (6.64)

and

P[Cn(µµµ,ΘΘΘn)c] = P[In(µµµ,ΘΘΘn)c] + P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)]. (6.65)

In view of (6.64), we obtain the zero-law for connectivity, i.e., that

lim
n→∞

P[K(n;µµµ,θθθ) ∩G(n;α) is connected] = 0 if c < 1,

immediately from the zero-law part of Theorem 6.5.1, i.e., from that limn→∞ P[In(µµµ,ΘΘΘn)] = 0

if c < 1. It remains to establish the one-law for connectivity. In the remainder of this section,

we assume that (6.16) holds for some c > 1. From Theorem 6.5.1 and (6.65), we see that the

one-law for connectivity, i.e., that

lim
n→∞

P[K(n;µµµ,θθθ) ∩G(n;α) is connected] = 1 if c > 1,

will follow if we show that

lim
n→∞

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] = 0. (6.66)
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Our approach will be to find a suitable upper bound for (6.66) and prove that it goes to zero

as n goes to infinity with c > 1.

We now work towards deriving an upper bound for (6.66); then we will show that the bound

goes to zero as n gets large. Define the event En(µµµ,θθθ,XXX) via

En(µµµ,θθθ,XXX) := ∪S⊆N :|S|≥1

[
| ∪i∈S Σi| ≤ X|S|

]
where N = {1, . . . , n} and XXX = [X1 · · · Xn] is an n-dimensional array of integers. Let

Ln := min

(⌊
P

K1

⌋
,
⌊n

2

⌋)
(6.67)

and

X` =


bβ`K1c ` = 1, . . . , Ln

bγP c ` = Ln + 1, . . . , n

(6.68)

for some β and γ in (0, 1
2
) that will be specified later. In words, En(µµµ,θθθ,XXX) denotes the event

that there exists ` = 1, . . . , n such that the number of unique keys stored by at least one subset

of ` sensors is less than bβ`K1c111[` ≤ Ln] + bγP c111[` > Ln]. Using a crude bound, we get

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] ≤ P[En(µµµ,θθθn,XXXn)] + P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

(6.69)

Thus, (6.66) will be established by showing that

lim
n→∞

P[En(µµµ,θθθn,XXXn)] = 0, (6.70)

and

lim
n→∞

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0 (6.71)

Proposition 6.5.8. Consider scalings K1, . . . , Kr, P : N0 → Nr+1
0 and α : N0 → (0, 1) such
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that (6.16) holds for some c > 1, (6.20) and (6.21) hold. Then, we have (6.70) where XXXn is

as specified in (6.68), β ∈ (0, 1
2
) and γ ∈ (0, 1

2
) are selected such that

max

(
2βσ, β

(
e2

σ

) β
1−2β

)
< 1 (6.72)

max

(
2

(
√
γ

(
e

γ

)γ)σ
,
√
γ

(
e

γ

)γ)
< 1 (6.73)

Proof. The proof is similar to [157, Proposition 7.2]. Results only require conditions (6.20)

and K1,n = ω(1) to hold. The latter condition is clearly established in Lemma 6.5.5.

The rest of the chapter is devoted to establishing (6.71) under the enforced assumptions

on the scalings and with XXXn as specified in (6.68), β ∈ (0, 1
2
) selected small enough such

that (6.72) holds, and γ ∈ (0, 1
2
) selected small enough such that (6.73) holds. We denote by

K(n;µµµ,θθθ) ∩G(n;α)(S) a subgraph of K(n;µµµ,θθθ) ∩G(n;α) whose vertices are restricted to the

set S. Define the events

Cn(µµµ,ΘΘΘn, S) := [K(n;µµµ,θθθ) ∩G(n;α)(S) is connected]

Bn(µµµ,ΘΘΘn, S) := [K(n;µµµ,θθθ) ∩G(n;α)(S) is isolated]

An(µµµ,ΘΘΘn, S) := Cn(µµµ,ΘΘΘn, S) ∩Bn(µµµ,ΘΘΘn, S)

In other words, An(µµµ,ΘΘΘn, S) encodes the event that K(n;µµµ,θθθ)∩G(n;α)(S) is a component, i.e.,

a connected subgraph that is isolated from the rest of the graph. The key observation is that a

graph is not connected if and only if it has a component on vertices S with 1 ≤ |S| ≤
⌊
n
2

⌋
; note

that if vertices S form a component then so do vertices N −S. The event In(µµµ,ΘΘΘn) eliminates

the possibility of K(n;µµµ,θθθ) ∩ G(n;α)(S) containing a component of size one (i.e., an isolated
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node), whence we have

Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ⊆ ∪S∈N :2≤|S|≤bn2 cAn(µµµ,ΘΘΘn, S)

and the conclusion

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] ≤
∑

S∈N :2≤|S|≤bn2 c
P[An(µµµ,ΘΘΘn, S)]

follows. By exchangeability, we get

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤
bn2 c∑
`=2

 ∑
S∈Nn,`

P[An(µµµ,ΘΘΘn, S) ∩ En(µµµ,θθθn,XXXn)c]


=

bn2 c∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] (6.74)

where Nn,` denotes the collection of all subsets of {1, . . . , n} with exactly ` elements, and

An,`(µµµ,ΘΘΘn) denotes the event that the set {1, . . . , `} of nodes form a component. As before we

have An,`(µµµ,ΘΘΘn) = C`(µµµ,ΘΘΘn) ∩ Bn,`(µµµ,ΘΘΘn), where C`(µµµ,ΘΘΘn) denotes the event that {1, . . . , `}

is connected and Bn,`(µµµ,ΘΘΘn) denotes the event that {1, . . . , `} is isolated from the rest of the

graph.

Next, with ` = 1, 2, . . . , n− 1, define ν`,j(α) by

ν`,j(α) := {i = 1, 2, . . . , ` : Bij(α) = 1} (6.75)

for each j = ` + 1, . . . , n. Namely, ν`,j(α) is the set of nodes in {v1, . . . , v`} that are adjacent
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to node vj in the Erdős-Rényi graph G(n;αn). For each ` = 1, . . . , n− 1, we have

Bn,`(µµµ,ΘΘΘn) =
n⋂

m=`+1

[(
∪i∈ν`,m(αn)Σi

)
∩ Σm = ∅

]
.

We have

P
[
Bn,`(µµµ,ΘΘΘn)

∣∣ Σ1, . . . ,Σ`

]
= E

 n∏
m=`+1

(P−|∪i∈ν`,m(αn)Σi|
|Σm|

)(
P
|Σm|

) ∣∣∣∣ Σ1, . . . ,Σ`


=

n∏
m=`+1

E

(P−|∪i∈ν`,m(αn)Σi|
|Σm|

)(
P
|Σm|

) ∣∣∣∣ Σ1, . . . ,Σ`


= E

(P−|∪i∈ν`(αn)Σi|
|Σ|

)(
P
|Σ|

) ∣∣∣∣ Σ1, . . . ,Σ`

n−` (6.76)

noting the fact that the collection of rvs {ν`,m,Σm : m = `+1, . . . , n} are mutually independent

and identically distributed. Here, ν`(αn) denotes a generic rv distributed identically with

ν`,m(αn) for any m = ` + 1, . . . , n. Similarly, |Σ| denotes a rv that takes the value Kj with

probability µj.

We will leverage the expression (6.76) in (6.74) in the following manner. Note that on the

event En(µµµ,θθθn,XXXn)c, we have

∣∣∪i∈ν`(αn)Σi

∣∣ ≥ (Xn,ν`(αn) + 1
)

111[|ν`(αn)| > 0] (6.77)

while the crude bound ∣∣∪i∈ν`(αn)Σi

∣∣ ≥ K1,n111[|ν`(αn)| > 0] (6.78)

always holds. These bounds lead to

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]
≤ E

(P−max(K1,n,Xn,ν`(αn)+1)111[|ν`(αn)|>0]

|Σ|

)(
P
|Σ|

)
n−`

(6.79)
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Conditioning on Σ1, . . . ,Σ` and {Bij(αn), 1 ≤ i < j ≤ `}, we get

P [An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

= E

E
111[C`(µµµ,ΘΘΘn)] · 111[Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

∣∣∣∣∣ Σ1, . . . ,Σ`

Bij(αn), 1 ≤ i < j ≤ `




≤ E
[
111[C`(µµµ,ΘΘΘn)] · P

[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]]
(6.80)

since C`(µµµ,ΘΘΘn) is fully determined by Σ1, . . . ,Σ` and {Bij(αn), 1 ≤ i < j ≤ `}, and Bn,`(µµµ,ΘΘΘn)

and En(µµµ,θθθn,XXXn) are independent from {Bij(αn), 1 ≤ i, j ≤ `}.

The next result establishes bounds for both terms at (6.80).

Lemma 6.5.9. Consider a distribution µµµ = (µ1, µ2, . . . , µr), integers K1 ≤ · · · ≤ Kr ≤ P/2,

and α ∈ (0, 1). With XXXn as specified in (6.68), β ∈ (0, 1
2
) and γ ∈ (0, 1

2
), we have

P[C`(µµµ,ΘΘΘ)] ≤ min
{

1, ``−2 (αprr)
`−1
}

(6.81)

and

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]
≤ min

{
1− αλ1,min{1− µr + µre

−αp1rβ`, e−αp11β`}+ e−γK1111[` > Ln]
}

(6.82)

The proof of Lemma 6.5.9 is given in Section 6.5.10. Note that as we report (6.82) back in

(6.80), we get

P [An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤ P[C`(µµµ,ΘΘΘ)] ·min
{

1− αλ1,min{1− µr + µre
−αp1rβ`, e−αp11β`}+ e−γK1111[` > Ln]

}
(6.83)
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Our proof of (6.71) will be completed (see (6.74)) upon establishing

lim
n→∞

bn2 c∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0 (6.84)

by means of (6.83), (6.81), and (6.82). These steps are taken in Section 6.5.11.

6.5.10 Establishing Lemma 6.5.9

The bounds given at Lemma 6.5.9 are valid irrespective of how the parameters involved scale

with n. Thus, we consider fixed ΘΘΘ with constraints given in the statement of Lemma 6.5.9.

We first establish (6.82) starting with the first bound. Recall that |ν`(α)| is a Binomial rv

with ` trials and success probability α. Recall also the rv Z(θθθ) defined at (6.52). Using a crude

bound and then (6.9) we get

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]
≤ E

(P−max(K1,Xn,ν`(α)+1)111[|ν`(α)|>0]

|Σ|

)(
P
|Σ|

)


≤ E

[(
P−K1111[|ν`(α)|>0]

|Σ|

)(
P
|Σ|

) ]

≤ E
[
Z(θθθ)111[|ν`(α)|>0]

]
= (1− α)` +

(
1− (1− α)`

)
E[Z(θθθ)]

≤ 1− α + αE [Z(θθθ)] = 1− αλ1(n). (6.85)

upon noting that E [Z(θθθ)] = 1− λ1 ≤ 1.

Next, consider range ` = 1, . . . , Ln, where we have

(
Xn,ν`(α) + 1

)
111[|ν`(α)| > 0] ≥ dβ |ν`(α)|K1e
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Recalling (6.9), we get

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]
≤ E

(P−max(K1,Xn,ν`(α)+1)111[|ν`(α)|>0]

|Σ|

)(
P
|Σ|

)


≤ E

[(
P−β|ν`(α)|K1

|Σ|

)(
P
|Σ|

) ]

= E
[
Z(θθθ)β|ν`(α)|]

= E

[∑̀
j=0

(
`

j

)
αj(1− α)`−jZ(θθθ)βj

]

= E
[(

1− α
(
1− Z(θθθ)β

))`]
≤ E

[
(1− αβ (1− Z(θθθ)))`

]
≤ E

[
e−α(1−Z(θθθ))β`

]
(6.86)

using the fact that 1−Z(θθθ)β ≥ β(1−Z(θθθ)) with Z(θθθ) ≤ 1 and 0 ≤ β ≤ 1; a proof is available

at [156, Lemma 5.2]. On the range ` = Ln + 1, . . . ,
⌊
n
2

⌋
, |ν`(α)| can be less than or greater

than Ln. In the latter case, we have

max(K1, Xn,ν`(α) + 1)111[|ν`(α)| > 0] ≥ bγP c+ 1

Using (6.86) and the fact that (see [155, Lemma 5.4.1] for a proof)

(
P −K1

K2

)/(
P

K2

)
≤ e−

K2
P
K1

for K1 +K2 ≤ P , we have

E

(P−max(K1,Xn,ν`(α)+1)111[|ν`(α)|>0]

|Σ|

)(
P
|Σ|

)
 ≤ E [e−α(1−Z(θθθ))β`111[|ν`(α)| ≤ Ln]

]
+ E

[
e−
|Σ|
P

(bγP c+1)111[|ν`(α)| > Ln]
]

≤ E
[
e−α(1−Z(θθθ))β`

]
+ e−γK1111[` > Ln] (6.87)
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by virtue of the fact that |Σ| ≥ K1.

Finally, we get (6.82) from (6.85) and (6.87) by noting that

E
[
e−α(1−Z(θθθ))β`

]
=

r∑
j=1

µje
−αp1jβ` ≤ (1− µr) + µre

−αp1rβ`

and that

E
[
e−α(1−Z(θθθ))β`

]
=

r∑
j=1

µje
−αp1jβ` ≤ e−αp11β` (6.88)

The last step used the fact that pij is monotone increasing in both i and j.

Next, we establish (6.81). This is a version of a fairly standard bound derived previously

for various other random graph models including ER graphs [18], random key graphs [159],

and random K-out graphs [151,154]. The proof is very similar to that of [157, Proposition 9.1]

and [156, Lemma 10.2]. We give it below for completeness.

Let G`(n;µµµ,ΘΘΘ) denote the subgraph of G(n;µµµ,ΘΘΘ) induced on the vertices {v1, . . . , v`}.

G`(n;µµµ,ΘΘΘ) is connected if and only if it contains a spanning tree; i.e., we have

C`(µµµ,ΘΘΘ) = ∪T∈T` [T ⊆ G`(n;µµµ,ΘΘΘ)]

where T` denotes the collection of all spanning trees on the vertices {v1, . . . , v`}. Thus,

P[C`(µµµ,ΘΘΘ)] ≤
∑
T∈T`

P [T ⊆ G`(n;µµµ,ΘΘΘ)] . (6.89)

Given that K1 ≤ K2 ≤ . . . ≤ Kr, the probability of T being contained in G`(n;µµµ,ΘΘΘ) is

maximized when all nodes receive the largest possible number Kr of keys. Thus, for any
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T ∈ T and distribution µµµ we have

P [T ⊆ G`(n;µµµ,ΘΘΘ)] ≤ P [T ⊆ G`(n;µµµ = {0, 0, . . . , 1},ΘΘΘ)]

= (αprr)
`−1 (6.90)

where the last equality follows from the facts that i) a tree on ` vertices contain ` − 1 edges,

and ii) since all nodes have the same key ring size, edges in G`(n;µµµ = {0, 0, . . . , 1},ΘΘΘ) are

pairwise independent; see [159, Lemma 9.1] and [156, Eq. 64]. We obtain (6.81) upon using

(6.90) in (6.89) and noting by Cayley’s formula [93] that there are ``−2 trees on ` vertices, i.e.,

|T`| = ``−2.

6.5.11 Establishing (6.84)

We will establish (6.84) in several steps with each step focusing on a specific range of the

summation over `. Throughout, we consider a scalings K1, . . . , Kr, P : N0 → Nr+1
0 and α :

N0 → (0, 1) such that (6.16) holds with c > 1, (6.21), and (6.20) hold.

The case where 2 ≤ ` ≤ R

This range considers fixed values of `. Pick an integer R to be specified later at (6.96). Use

(6.16), (6.26), (6.10), (6.80), (6.81), and the first bound in (6.82) to get

R∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

R∑
`=2

(en
`

)`
``−2 (αnprr(n))`−1 (1− αnλ1(n))n−`

≤
R∑
`=2

(en)`
(

(log n)2

n

)`−1(
1− cn

log n

n

)n−`
≤

R∑
`=2

n
(
e(log n)2

)`
e−cn lognn−`

n

=
R∑
`=2

(
e(log n)2

)`
n1−cn n−`n
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With c > 1, we have limn→∞
(
1− cn n−`n

)
= 1− c < 0. Thus, for each ` = 2, 3, . . ., we have

(
e(log n)2

)`−1
n1−cn n−`n = o(1),

whence we get

lim
n→∞

R∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0.

The case where R + 1 ≤ ` ≤ min{Ln, b µrn
βcn logn

c}

Our goal in this and the next subsubsection is to cover the range R + 1 ≤ ` ≤ b µrn
βcn logn

c.

Since the bound given at (6.82) takes a different form when ` > Ln, we first consider the range

R + 1 ≤ ` ≤ min{Ln, b µrn
βcn logn

c}. Using (6.26), (6.10), (6.80), (6.81), and the second bound in

(6.82) we get

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤
min{Ln,b µrn

βcn logn
c}∑

`=R+1

(en
`

)`
``−2

(
(log n)2

n

)`−1

·

(
1− µr

(
1− e−αnβ`p1r(n)

))n−`

(6.91)

From the upper bound in (6.25) and ` ≤ µrn
βcn logn

, we have

αnβ`p1r(n) ≤ αnβ
µrn

βcn log n

cn
µr

log n

nαn
= 1.

Using the fact that 1− e−x ≥ x
2

for all 0 ≤ x ≤ 1, we get

1− µr
(
1− e−αnβ`p1r(n)

)
≤ 1− µrαnβ`p1r(n)

2
≤ e−β`cnµr

logn
2n (6.92)

using the lower bound in (6.25). Reporting this last bound in to (6.91) and noting that

n− ` ≥ n

2
, ` = 2, 3, . . . ,

⌊n
2

⌋
, (6.93)
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we get

min{Ln,b µrn
βcn lognc}∑

`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

min{Ln,b µrn
βcn logn

c}∑
`=R+1

n
(
e(log n)2

)`
e−β`cnµr

logn
2n

n
2

≤ n

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
e (log n)2 e−βcn

µr
4

logn
)`

≤ n

∞∑
`=R+1

(
e (log n)2 e−βcn

µr
4

logn
)`

(6.94)

Given that β, µr > 0 and limn→∞ cn = c > 0 we clearly have

e (log n)2 e−βcn lognµr
4 = o(1). (6.95)

Thus, the geometric series in (6.94) is summable, and we have

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤ (1 + o(1))n

(
e (log n)2 e−βcn lognµr

4

)R+1

= (1 + o(1))n1−(R+1)βcn
µr
4

(
e(log n)2

)R+1

= o(1)

for any positive integer R with

R >
8

βcµr
. (6.96)

This choice is permissible given that c, β, µr > 0.

The case where min{b µrn
βcn logn

c,max(R,Ln)} < ` ≤ b µrn
βcn logn

c

Clearly, this range becomes obsolete if max(R,Ln) ≥ b µrn
βcn logn

c. Thus, it suffices to consider

the subsequences for which the range max(R,Ln) + 1 ≤ ` ≤ b µrn
βcn logn

c is non-empty. There, we
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use (6.26), (6.10), (6.80), (6.81), and the second bound in (6.82) to get

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] (6.97)

≤
b µrn
βcn lognc∑

`=max(R,Ln)+1

(en
`

)`
``−2

(
(log n)2

n

)`−1 (
1− µr

(
1− e−β`αnp1r(n)

)
+ e−γK1,n

)n
2

≤
b µrn

2βc lognc∑
`=max(R,Ln)+1

n
(
e (log n)2)` (e−β`cnµr logn

2n + e−γK1,n

)n
2

where in the last step we used (6.92) in view of ` ≤ µrn
βcn logn

.

Next, we write

e−β`cnµr
logn
2n + e−γK1,n = e−β`cnµr

logn
2n

(
1 + e−γK1,n+β`cnµr

logn
2n

)
≤ exp

{
−β`cnµr

log n

2n
+ e−γK1,n+β`cnµr

logn
2n

}

≤ exp

−β`cnµr log n

2n

1− e−γK1,n+
µ2
r
2

β`cnµr
logn
2n

 (6.98)

where the last inequality is obtained from ` ≤ µrn
βcn logn

. Using the fact that ` > Ln =

min{b Pn
K1,n
c, bn

2
c} and (6.20) we have

e−γK1,n

β`cnµr
logn
2n

≤ max

{
K1,n

Pn
,

2

n

}
2n

e−γK1,n

βcnµr log n

≤ max

{
2K1,ne

−γK1,n

βcnµrσ log n
,

4e−γK1,n

βcnµr log n

}
= o(1)

by virtue of (6.36) and the facts that β, µr, σ, cn > 0. Reporting this into (6.98), we see that

for for any ε > 0, there exists a finite integer n∗(ε) such that

(
e−β`cnµr

logn
2n + e−γK1,n

)
≤ e−β`cnµr

logn
2n

(1−ε) (6.99)
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for all n ≥ n∗(ε). Using (6.99) in (6.97), we get

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤ n

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
e (log n)2 e−βcnµr

logn
2n

(1−ε)n
2

)`
≤ n

∞∑
`=max(R,Ln)+1

(
e (log n)2 e−βcnµr

logn
4

(1−ε)
)`

(6.100)

Similar to (6.95), we have e (log n)2 e−βcnµr
logn

4
(1−ε) = o(1) so that the sum in (6.100) converges.

Following a similar approach to that in Section 6.5.11, we then see that

lim
n→∞

b µrn
2βc lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0

with R selected according to (6.96) and ε < 1/2.

The case where b µrn
βcn logn

c+ 1 ≤ ` ≤ bνnc

We consider b µrn
βcn logn

c + 1 ≤ ` ≤ bνnc for some ν ∈ (0, 1
2
) to be specified later. Recall (6.25),

(6.10), (6.80), the first bound in (6.81), and the second bound in (6.82). Noting that
(
n
`

)
is

monotone increasing in ` when 0 ≤ ` ≤
⌊
n
2

⌋
and using (6.93) we get

bνnc∑
`=b µrn

βcn logn
c+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤
bνnc∑

`=b µrn
βcn logn

c+1

(
n

bνnc

)(
1− µr + µre

−αnβ`p1r(n) + e−γK1,n
)n

2

≤
bνnc∑

`=b µrn
βcn logn

c+1

( e
ν

)νn (
1− µr + µre

−αnβ µrn
βcn logn

cn logn
nαn + e−γK1,n

)n
2

≤ n
( e
ν

)νn (
1− µr + µre

−µr + e−γK1,n
)n

2

= n

(( e
ν

)2ν (
1− µr + µre

−µr + e−γK1,n
))n

2

(6.101)
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We have 1 − µr + µre
−µr < 1 from µr > 0 and e−γK1,n = o(1) from (6.36). Also, it holds

that limν→0

(
e
ν

)2ν
= 1. Thus, if we pick ν small enough to ensure that

( e
ν

)2ν (
1− µr + µre

−µr
)
< 1, (6.102)

then for any 0 < ε < 1− (e/ν)2ν (1− µr + µre
−µr) there exists a finite integer n?(ε) such that

( e
ν

)2ν (
1− µr + µre

−µr + e−γK1,n
)
≤ 1− ε, ∀n ≥ n?(ε).

Reporting this into (6.101), we get

lim
n→∞

bνnc∑
`=b µrn

2βc lognc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0

since limn→∞ n(1− ε)n/2 = 0.

The case where bνnc+ 1 ≤ ` ≤ bn
2
c

In this range, we use (6.11), (6.80), the first bound in (6.81), the last bound in (6.82), and

(6.93) to get

bn2 c∑
`=bνnc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

bn2 c∑
`=bνnc+1

(
n

`

)(
e−β`αnp11(n) + e−γK1,n

)n
2

≤

 bn2 c∑
`=bνnc+1

(
n

`

)(e−βνnαnp11(n) + e−γK1,n
)n

2

≤
(
4e−βνnαnp11(n) + 4e−γK1,n

)n
2

With β, ν, γ > 0 have e−βνnαnp11(n) = o(1) from (6.21) and e−γK1,n = o(1) from (6.36). The
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conclusion

lim
n→∞

bn2 c∑
`=bνnc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0

immediately follows and the proof of one-law is completed.

6.6 k-connectivity and minimum node degree

In this section, we present conditions (in the form of zero-one laws) on how to scale the

parameters of the intersection model so that with high probability i) all of its nodes are

connected to at least k other nodes, i.e., the minimum node degree of the graph is no less than

k; and ii) the graph is k-connected, i.e., the graph remains connected even if any k − 1 nodes

leave the network. These results are shown to complement and generalize several previous

results in the literature. We also present numerical results to support our findings in the

finite-node regime.

We start by noting some additional notation that will be useful in this section. For any

three distinct nodes vx , vy and vj, we define Exj∩yj := Exj ∩ Eyj, Exj∩yj := Exj ∩ Eyj,

Exj∩yj := Exj ∩ Eyj, and Exj∩yj := Exj ∩ Eyj. Consider the vertex set V = {v1, . . . , vn}. For

each node vi ∈ V , we define Ni as the set of neighbors of node vi. Also, for any pair of vertices

vx, vy, we let Nxy be the set of nodes in V \ {vx, vy} that are neighbors of both vx and vy; i.e.,

Nxy = Nx ∩Ny. We also let Nxy denote the set of nodes in V \ {vx, vy} that are neighbors of

vx, but are not neighbors of vy. Similarly, Nxy is defined as the set of nodes in V \{vx, vy} that

are not neighbors of vx, but are neighbors of vy. Finally, Nxy is the set of nodes in V \ {vx, vy}

that are not neighbors of either vx or vy. We also define Sxy = Σx ∩ Σy.

We refer to a mapping K1, . . . , Kr, P : N0 → Nr+1
0 as a scaling (for the inhomogeneous

random key graph) as long as the conditions

2 ≤ K1,n ≤ K2,n ≤ . . . ≤ Kr,n ≤ Pn/2 (6.103)
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are satisfied for all n = 2, 3, . . .. Similarly any mapping α : N0 → (0, 1) defines a scaling for

Erdős-Rényi graphs. As a result, a mapping ΘΘΘ : N0 → Nr+1
0 × (0, 1) defines a scaling for the

intersection graph K(n;µµµ,θθθ) ∩ G(n;α) given that condition (6.103) holds. We remark that

under (6.103), the edge probabilities pij will be given by (6.2).

We first present a zero-one law for the minimum node degree being no less than k in the

inhomogeneous random key graph intersecting Erdős-Rényi graph.

6.6.1 A zero-one law for the minimum node degree being no less

than k

Theorem 6.6.1. Consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i =

1, . . . , r and a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1). Let the sequence γ : N0 → R be defined through

Λ1(n) = αnλ1(n) =
log n+ (k − 1) log log n+ γn

n
, (6.104)

for each n = 1, 2, . . ..

(a) If λ1(n) = o(1), we have

lim
n→∞

P

 Minimum node degree

of K(n;µµµ,θθθ) ∩G(n;α) ≥ k

 = 0 if lim
n→∞

γn = −∞

(b) We have

lim
n→∞

P

 Minimum node degree

of K(n;µµµ,θθθ) ∩G(n;α) ≥ k

 = 1 if lim
n→∞

γn =∞.

Next, we present a zero-one law for the k-connectivity of K(n;µµµ,θθθ) ∩G(n;α).
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6.6.2 A zero-one law for k-connectivity

Theorem 6.6.2. Consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i =

1, . . . , r and a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1). Let the sequence γ : N0 → R be defined through

(6.104) for each n = 1, 2, . . ..

(a) If λ1(n) = o(1), we have

lim
n→∞

P [K(n;µµµ,θθθ) ∩G(n;α) is k-connected] = 0 if lim
n→∞

γn = −∞

(b) If

Pn = Ω(n), (6.105)

Kr,n

Pn
= o(1), (6.106)

Kr,n

K1,n

= o(log n), (6.107)

we have

lim
n→∞

P [K(n;µµµ,θθθ) ∩G(n;α) is k-connected] = 1 if lim
n→∞

γn =∞. (6.108)

6.6.3 Discussion

Theorem 6.6.1 (respectively Theorem 6.6.2) states that the minimum node degree inK(n;µµµ,θθθ)∩

G(n;α) is greater than or equal to k (respectively K(n;µµµ,θθθ) ∩ G(n;α) is k-connected) whp

if the mean degree of class-1 nodes, i.e., nΛ1(n), is scaled as (log n+ (k − 1) log log n+ γn)

for some sequence γn satisfying limn→∞ γn = ∞. On the other hand, if the sequence γn

satisfies limn→∞ γn = −∞, then whp K(n;µµµ,θθθ) ∩ G(n;α) has at least one node with degree

strictly less than k, and hence is not k-connected. This shows that the critical scaling for the

minimum node degree of K(n;µµµ,θθθ)∩G(n;α) being greater than or equal to k (respectively for

K(n;µµµ,θθθ)∩G(n;α) to be k-connected) is given by Λ1(n) = logn+(k−1) log logn
n

, with the sequence

γn : N0 → R measuring the deviation of Λ1(n) from the critical scaling.
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The scaling condition (6.104) can be given a more explicit form under some additional

constraints. In particular, it was shown in [157, Lemma 4.2] that if λ1(n) = o(1) then

λ1(n) ∼ K1,nKavg,n

Pn
(6.109)

where Kavg,n =
∑r

j=1 µjKj,n denotes the mean key ring size in the network. This shows that

the minimum key ring size K1,n is of paramount importance in controlling the connectivity and

reliability of the network; as explained previously, it then also controls the number of mobile

sensors that can be accommodated in the network. For example, with the mean number Kavg,n

of keys per sensor is fixed, we see that reducing K1,n by half means that the smallest αn (that

gives the largest link failure probability 1 − αn) for which the network remains k-connected

whp is increased by two-fold for any given k; e.g., see Figure 6.6 for a numerical example

demonstrating this.

We first comment on the additional technical condition λ1(n) = o(1). This is enforced

here mainly for technical reasons for the proof of the zero-law of Theorem 6.6.1 (and thus of

Theorem 6.6.2) to work. A similar condition was also required in [166, Thm 1] for establishing

the zero-law for the minimum node degree being no less than k in the homogeneous random

key graph intersecting Erdős-Rényi graph. In view of (6.109), this condition is equivalent to

K1,nKavg,n = o(Pn). (6.110)

In real-world wireless sensor network applications the key pool size Pn is envisioned to be orders

of magnitude larger than any key ring size in the network [33,53]. As discussed below in more

details, this is needed to ensure the resilience of the network against adversarial attacks. In

conclusion, (6.110) (and thus λ1(n) = o(1)) is indeed likely to hold in most applications.

Conditions (6.105) and (6.106) are also likely to be needed in practical implementations of

wireless sensor networks in order to ensure the resilience of the network against node capture

attacks; e.g., see [33,53]. To see this, assume that an adversary captures a number of sensors,
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compromising all the keys that belong to the captured nodes. If Pn = O(Kr,n) contrary to

(6.106), then it would be possible for the adversary to compromise a positive fraction of the

key pool (i.e., Ω(Pn) keys) by capturing only a constant number of sensors that are of type r.

Similarly, if Pn = o(n), contrary to (6.105), then again it would be possible for the adversary

to compromise Ω(Pn) keys by capturing only o(n) sensors (whose type does not matter in this

case). In both cases, the network would fail to exhibit the unassailability property [95,153] and

would be deemed as vulnerable against adversarial attacks. We remark that both (6.105) and

(6.106) were required in [157,166] for obtaining the one-law for connectivity and k-connectivity,

respectively, in similar settings to ours.

Finally, the condition (6.107) is enforced mainly for technical reasons and takes away

from the flexibility of assigning very small key rings to a certain fraction of sensors when

k-connectivity is considered; we remark that (6.107) is not needed for the minimum node

degree result given at Theorem 6.6.1. An equivalent condition was also needed in [157] for

establishing the one-law for connectivity in inhomogeneous random key graphs. We refer the

reader to [157, Section 3.2] for an extended discussion on the feasibility of (6.107) for real-world

implementations of wireless sensor networks, as well as possible ways to replace it with milder

conditions.

We close by providing a concrete example that demonstrates how all the conditions required

by Theorem 6.6.2 can be met in a real-world implementation. Consider any number r of sensor

types, and pick any probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for all i = 1, . . . , r.

For any channel probability αn = Ω( logn
n

), set Pn = dn log ne and use

K1,n =

⌈
(log n)1/2+ε

√
αn

⌉
and Kr,n =

⌈
(1 + ε)(log n)3/2−ε

µr
√
αn

⌉

with any 0 < ε < 0.5. Other key ring sizes K1,n ≤ K2,n, . . . , Kr−1,n ≤ Kr,n can be picked

arbitrarily. In view of Theorem 6.6.2 and the fact [157, Lemma 4.2] that λ1(n) ∼ K1,nKavg,n

Pn
,

the resulting network will be k-connected whp for any k = 1, 2, . . .. Of course, there are many

other parameter scalings that one can choose.
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6.6.4 Comparison with related work

Several properties of the homogeneous random key graph, K(n;K,P ), have been extensively

studied in literature. In particular, the 1-connectivity of K(n;K,P ) has been investigated

in [15, 33, 128, 159] under full visibility, i.e., when all pairs of nodes have a communication

channel in between. Therein, authors provided scaling conditions on the key ring size Kn

and the key pool size Pn as functions of the network size n such that the resulting network is

connected with high probability as the number of nodes gets large. Moreover, the k-connectivity

property of K(n;K,P ) was investigated under full visibility in [129].

Our work extends these results to the heterogeneous setting, where sensor nodes have

different levels of resources and security/connectivity requirements, thus possibly belonging to

different classes. Such heterogeneity induces the need for the inhomogeneous random key graph

K(n;µµµ,KKK,P ) as an accurate model for the crypto-connectivity of the resulting network. Also,

unlike the aforementioned results that assume full visibility, our work considers the wireless

connectivity of the network through the on-ff channel model.

In [166], Zhao et al. investigated the k-connectivity property of K(n;K,P ) under an an/off

channel model. There, zero-one laws for the property that the minimum node degree is no

less than k and the property that the graph is k-connected were established for K(n;K,P ) ∩

G(n;α). Clearly, our work extends these results to the heterogeneous setting as we consider the

intersection of the inhomogeneous random key graph with Erdős-Rényi graph. In particular,

with r = 1, i.e., when all nodes belong to the same class and thus receive the same number K of

keys, Theorem 6.6.1 and Theorem 6.6.2 recover the results of Zhao et al. (See [166, Theorems 1-

2]).

In comparison with the existing literature on similar models, our result can be seen to

extend the work by Eletreby and Yağan in [50]. Therein, the authors established a zero-one

law for the 1-connectivity of K(n;µµµ,KKK,P )∩G(n;α), i.e., for a wireless sensor network under the

heterogeneous key predistribution scheme and on-off channel model. Although these results

form a crucial starting point towards the analysis of the heterogeneous key predistribution
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scheme, they do not guarantee that the wireless sensor network would remain connected when

sensors fail due to battery depletion or get captured by an adversary. Moreover, the results

in [50] are not applicable for mobile wireless sensor networks since the mobility of even a single

sensor may render the network disconnected. The results established here fill these gaps by

establishing k-connectivity results.

Our work also generalizes the work by Yağan [157] who considered the inhomogeneous

random key graph K(n;µµµ,KKK,P ) under full visibility; i.e., when all pairs of nodes have a

communication channel in between. There, Yağan established zero-one laws for the absence of

isolated nodes (i.e., absence of nodes with degree zero) and 1-connectivity. Our work generalizes

Yağan’s results on two fronts. Firstly, we consider more practical wireless sensor network

scenarios where the unreliability of wireless communication channels are taken into account

through the on-ff channel model. Secondly, in addition to the properties that the graph has

no isolated nodes (i.e., the minimum node degree is no less than 1) and is 1-connected, we

consider general minimum node degree and connectivity values, k = 0, 1, . . ..

6.6.5 Numerical results

We now present numerical results to support Theorems 6.6.1 and 6.6.2 in the finite node regime.

Moreover, we also verify the validity of our claim that the on-off channel model serves as a good

approximation of the disk model in the context of k-connectivity property. In all experiments,

we fix the number of nodes at n = 500 and the size of the key pool at P = 104.

To compare the connectivity behavior of the heterogeneous key predistribution scheme

under the disk model with that of the on-off channel model, we use the matching condition

(see Section 6.5.6) α = πρ2. In what follows, we present several simulation results comparing

the (empirical) probabilities that K(n;µµµ,θθθ) ∩G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ) are k-connected,

respectively.

In our first set of experiments, we consider the channel parameters α = πρ2 = 0.2, α =

πρ2 = 0.4, α = πρ2 = 0.6, and α = πρ2 = 0.8, while varying the parameter K1, i.e., the
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smallest key ring size, from 10 to 40. The number of classes is fixed to 2, with µµµ = {0.5, 0.5}.

For each value of K1, we set K2 = K1 + 5. For each parameter pair (KKK,α), we generate 1000

independent samples of the graphs K(n;µµµ,θθθ) ∩G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ), and count the

number of times (out of a possible 1000) that the obtained graphs i) have minimum node

degree no less than 2 and ii) are 2-connected. Dividing the counts by 1000, we obtain the

(empirical) probabilities for the events of interest. In all cases considered here, we observe that

K(n;µµµ,θθθ) ∩ G(n;α) (resp. K(n;µµµ,θθθ) ∩ I(n; ρ)) is 2-connected whenever it has minimum node

degree no less than 2 yielding the same empirical probability for both events. This supports

the fact that the properties of k-connectivity and minimum node degree being larger than k

are asymptotically equivalent in K(n;µµµ,θθθ) ∩G(n;α).

The results obtained for the empirical probabilities of 2-connectivity are depicted in Fig-

ure 6.4, where lines represent the results under the on-off model and symbols represent the

results under the disk model. In all cases, we see that empirical probabilities are almost iden-

tical, supporting the claim that the on-ff channel model serves as a good approximation of the

disk model (under α = πρ2). More importantly, this shows that our main results are likely to

hold also under the disk communication model. For each curve in Figure 6.4, we also show the

critical threshold of connectivity “predicted” by Theorem 6.6.2 by a vertical dashed line. More

specifically, the vertical dashed lines stand for the minimum integer value of K1 that satisfies

λ1(n)=
2∑
j=1

µj

(
1−

(
P−Kj
K1

)(
P
K1

) ) >
1

α

log n+ (k − 1) log log n

n
(6.111)

with any given k and α. We see from Figure 6.4 that the probability of k-connectivity transi-

tions from zero to one within relatively small variations in K1. Moreover, the critical values of

K1 obtained by (6.111) lie within the transition interval.

In Figure 6.5, we consider four different values for k, namely we set k = 4, k = 6, k = 8, and

k = 10 while varying K1 from 10 to 40 and fixing α = πρ2 = 0.4. The number of classes is fixed

to 2 with µµµ = {0.5, 0.5} and we set K2 = K1 +5 for each value of K1. Using the same procedure

that produced Figure 6.4, we obtain the empirical probability that K(n;µµµ,θθθ) ∩ G(n;α) and
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Figure 6.4: Empirical probability that K(n;µµµ,θθθ) ∩ G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ) are 2-
connected as a function of KKK for α = πρ2 = 0.2, α = πρ2 = 0.4, α = πρ2 = 0.6, and
α = πρ2 = 0.8 with n = 500 and P = 104; in each case, the empirical probability value is
obtained by averaging over 1000 experiments. Vertical dashed lines correspond to the critical
values of K1 obtained from (6.111).

K(n;µµµ,θθθ) ∩ I(n; ρ) are k-connected versus K1. The critical threshold of connectivity asserted

by Theorem 6.6.2 is again shown by a vertical dashed line. Again, we see that numerical results

are in parallel with Theorem 6.6.2, and that the k-connectivity behaviors of K(n;µµµ,θθθ)∩G(n;α)

and K(n;µµµ,θθθ) ∩ I(n; ρ) are very close to each other.

Figure 6.6 is generated in a similar manner with Figure 6.4, this time with an eye towards

understanding the impact of the minimum key ring size K1 on network connectivity. To that

end, we fix the number of classes at 2 with µµµ = {0.5, 0.5} and consider four different key ring

sizes KKK each with mean 40; we consider KKK = {10, 70}, KKK = {20, 60}, KKK = {30, 50}, and

KKK = {40, 40}. We compare the probability of 2-connectivity in the resulting networks while

varying α (and consequently πρ2) from zero to one. We see that although the average number of

keys per sensor is kept constant in all four cases, network connectivity improves dramatically

as the minimum key ring size K1 increases; e.g., with α = πρ2 = 0.2, the probability of

connectivity is one when K1 = K2 = 40 while it drops to zero if we set K1 = 10 while
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Figure 6.5: Empirical probability that K(n;µµµ,θθθ) ∩ G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ) are k-
connected as a function of K1 for k = 4, k = 6, k = 8, and k = 10, with n = 500 and
P = 104; in each case, the empirical probability value is obtained by averaging over 1000
experiments. Vertical dashed lines stand for the critical threshold of connectivity asserted by
Theorem 6.6.2.

increasing K2 to 70 so that the mean key ring size is still 40. Once again, we see that the

results under the on-off model are very similar to those obtained under the disk model. In fact,

Figure 6.6 suggests that our work can be useful in determining the minimum transmission

radius ρ needed to achieve a certain probability of k-connectivity in the network; e.g., to

guarantee 2-connectivity almost surely with K1 = 20 and K2 = 60 (with other parameters as

in the caption of Figure 6.6), we need to have at least πρ2 = 0.38.

In Figure 6.7, we examine the reliability of K(n;µµµ,θθθ)∩G(n;α) by looking at the probability

of 1-connectivity as the number of deleted (i.e., failed) nodes increases. From a mobility

perspective, this is equivalent to investigating the probability of a wireless sensor network

remaining connected as the number of mobile sensors leaving the network increases. We set

n = 500,µµµ = {1/2, 1/2}, α = 0.4, P = 104, and select K1 and K2 = K1 + 10 from (6.111) for

k = 8, k = 10, k = 12, and k = 14. With these settings, we would expect (for very large

n) the network to remain connected whp after the deletion of up to 7, 9, 11, and 13 nodes,
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Figure 6.6: Empirical probability that K(n;µµµ,θθθ) ∩ G(n;α) and K(n;µµµ,θθθ) ∩ I(n; ρ) are 2-
connected with n = 500,µµµ = (1/2, 1/2), and P = 104; we consider four choices ofKKK = (K1, K2)
each with the same mean.

respectively. Using the same procedure that produced Figure 6.4, we obtain the empirical

probability that K(n;µµµ,θθθ)∩G(n;α) is connected as a function of the number of deleted nodes2

in each case. We see that even with n = 500 nodes, the resulting reliability is close to the

levels expected to be attained asymptotically as n goes to infinity. In particular, we see that

the probability of remaining connected when (k − 1) nodes leave the network is around 0.75

for the first two cases and around 0.90 for the other two cases.

Finally, we provide a simulation study that characterizes the effect of network size n on the

probability of k-connectivity. Our objective is to observe the influence of n on the behavior of

the probability of k-connectivity. In Figure 6.8, we examine the probability of 4-connectivity of

K(n;µµµ,θθθ)∩G(n;α) as we set P = 104, α = 0.4, vary K1 from 4 to 40, and set K2 = K1 +5. To

characterize the effect of n, we compute the empirical probability for the cases when n = 300,

n = 500, n = 1000, and n = 10000. We observe that the probability of connectivity exhibits a

2We choose the nodes to be deleted from the minimum vertex cut of K(n;µµµ,θθθ) ∩ G(n;α), defined as the
minimum cardinality set whose removal renders it disconnected. This captures the worst-case nature of the
k-connectivity property in a computationally efficient manner (as compared to searching over all k-sized subsets
and deleting the one that gives maximum damage).
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Figure 6.7: Empirical probability that K(n;µµµ,θθθ) ∩ G(n;α) remains connected after deleting
nodes from the minimum vertex cut set. We fix n = 500,µµµ = (1/2, 1/2), α = 0.4, P = 104, and
choose K1 and K2 = K1 + 10 from (6.111) for each k = 8, k = 10, k = 12, and k = 14; i.e., we
use K1 = 30, 33, 36, 38, respectively.

sharper transition between 0 and 1 as we increase n, which is expected by virtue of Theorem 3.2

that provides sharp zero-one law in the limit of large network size. In addition, we observe that

as we increase n, the fraction logn+(k−1) log logn
n

decreases, leading to a decrease on the critical

value of K1,n needed to ensure k-connectivity (for fixed P , α, and K2.).

6.6.6 Additional preliminaries

A number of technical results are collected here for easy referencing.

Proposition 6.6.3. Consider a scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 and a scaling α : N0 →

(0, 1). Let the sequence γ : N0 → R be defined through (6.104) for each n = 1, 2, . . .. Under

(6.105) and (6.107), we have

K1,n = ω(1) (6.112)

when limn→∞ γn = +∞.
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Figure 6.8: Empirical probability that K(n;µµµ,θθθ) ∩G(n;α) is 4-connected as a function of K1

for n = 300, n = 500, n = 1000, and n = 10000, with P = 104; in each case, the empir-
ical probability value is obtained by averaging over 1000 experiments. Highlighted symbols
correspond to the critical values of K1 obtained from (6.111).

Proof. From (6.104), we clearly have

λ1(n) >
log n

nαn
(6.113)

for all n sufficiently large when limn→∞ γn = +∞. We also know from [159, Lemmas 7.1-7.2]

that

p1j(n) ≤ K1,nKj,n

Pn −Kj,n

≤ 2
K1,nKj,n

Pn
, j = 1, . . . , r

where the last bound follows from (6.103). This leads to

λ1(n) =
r∑
j=1

µjp1j ≤ 2
r∑
j=1

µj
K1,nKj,n

Pn
≤ 2

K1,nKr,n

Pn
(6.114)

Combining (6.113) and (6.114) we get

K2
1,n

Kr,n

K1,n

>
Pn
2

log n

nαn
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for all n sufficiently large. Under (6.105) and (6.107), this immediately establishes (6.112) since

αn ≤ 1.

Fact 6.6.4. For any positive constants `1, `2, the function

f(x) = x`1(1− x)n−`2 , x ∈ (0, 1) (6.115)

is monotone decreasing in x for all n sufficiently large.

Proof. Differentiating f(x) with respect to x ∈ (0, 1), we get

d

dx
f(x) = `1x

`1−1(1− x)n−`2 − (n− `2)x`1(1− x)n−`2−1

= x`1−1(1− x)n−`2−1(`1(1− x)− (n− `2)x).

The conclusion follows since (`1(1 − x) − (n − `2)x) < 0 for all n sufficiently large, for any

positive `1, `2 and x ∈ (0, 1).

Fact 6.6.5 ( [166, Fact 3]). Let x and y be positive functions of n. If x = o(1), and x2y = o(1)

hold, then

(1− x)y ∼ e−xy

We will use several bounds given below throughout the chapter:

(x+ y)p ≤ 2p−1 (xp + yp) , x, y ≥ 0, p ≥ 1 (6.116)(
n

`

)
≤ n`, ` = 1, . . . , n, n = 1, 2, . . . (6.117)
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6.6.7 Proof of Theorem 6.6.1

A roadmap

The proof of Theorem 6.6.1 consists of two parts. Namely, in Section 6.6.7, we establish

the one-law part of Theorem 6.6.1, while in Section 6.6.7, we establish the zero-law part. In

establishing the one-law part, we utilize the first moment method [73, Eqn. (3.1), p.54] to

show that under the scaling condition (6.104) with limn→∞ γn =∞, the number of nodes with

degree ` in K(n;µµµ,θθθ)∩G(n;α) is zero for ` = 0, 1, . . . , k− 1 with high probability in the limit

of large network size. The result implies that the minimum node degree of the graph is no less

than k, which establishes the one-law part of Theorem 6.6.1. In establishing the zero-law part,

we utilize the second moment method [73, Remark 3.1, p. 54] to show that under the scaling

condition (6.104) with limn→∞ γn = −∞, there exists at least one class-1 node with degree

` < k with high probability in the limit of large network size, which readily implies that the

minimum node degree of the graph is less than k, i.e., the zero-law part of Theorem 6.6.1.

Establishing the one-law

The proof of Theorem 6.6.1 relies on the method of first and second moments applied to the

number of nodes with degree ` in K(n;µµµ,θθθ)∩G(n;α). Let X`(n;µµµ,ΘΘΘn) denote the total number

of nodes with degree ` in K(n;µµµ,θθθ) ∩G(n;α), namely,

X`(n;µµµ,ΘΘΘn) =
n∑
i=1

111 [vi is of degree ` in K(n;µµµ,θθθ) ∩G(n;α)]

The first moment method [73, Eqn. (3.1), p. 54] gives

P [X`(n;µµµ,ΘΘΘn) = 0] ≥ 1− E [X`(n;µµµ,ΘΘΘn)] (6.118)

The one-law states that the minimum node degree in K(n;µµµ,θθθ) ∩ G(n;α) is no less than

k asymptotically almost surely (a.a.s.); i.e., limn→∞ P [X`(n;µµµ,ΘΘΘn) = 0] = 1, for all ` =
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0, 1, . . . , k − 1. Thus, the one-law will follow if we show that

lim
n→∞

E [X`(n;µµµ,ΘΘΘn)] = 0, ` = 0, 1, . . . , k − 1. (6.119)

We let Di,`(n;µµµ,ΘΘΘn) denote the event that node vi in K(n;µµµ,θθθ) ∩ G(n;α) has degree `

for each i = 1, 2, . . . , n. Throughout, we simplify the notation by writing Di,` instead of

Di,`(n;µµµ,ΘΘΘn). By definition, we have X`(n;µµµ,ΘΘΘn) =
∑n

i=1 111 [Di,`] and it follows that

E [X`(n;µµµ,ΘΘΘn)] =
n∑
i=1

P [Di,`] = nP [Dx,`] (6.120)

by the exchangeability of the indicator rvs {111 [Di,`] ; i = 1, . . . , n}.

In view of (6.118) and (6.120), we see that (6.119) and hence the one-law would follow upon

showing

lim
n→∞

nP [Dx,`] = 0, ` = 0, 1, . . . , k − 1. (6.121)

We start by deriving the probability of Dx,`. For any node vx, the events3

E1x, E2x, . . . , E(x−1)x, E(x+1)x, . . . , Enx

are mutually independent conditionally on the type tx. It follows from (6.5) that the degree of

a node vx, i.e., Dx, is conditionally binomial leading to

Dx
d
= Bin(n− 1,Λi), with probability µi, i = 1, . . . , r.

3Recall that Exy denotes the event that nodes vx and vy are adjacent in K(n;µµµ,θθθ) ∩G(n;α).

92



Thus, we get

P [Dx,`] =
r∑
i=1

µiP
[
Dx,`

∣∣ tx = i
]

=
r∑
i=1

µi

(
n− 1

`

)
(Λi(n))` (1− Λi(n))n−`−1

≤

(
(`!)−1

r∑
i=1

µi (nΛi(n))` (1− Λi(n))n−`−1

)

≤ (`!)−1 (nΛ1(n))` (1− Λ1(n))n−`−1

≤ (`!)−1 (nΛ1(n))` e−(n−`−1)Λ1(n)

for all n sufficiently large, as we invoke Fact 6.6.4 together with (6.7), and noting that ` is a

non-negative integer constant and that
(
n−1
`

)
≤ (`!)−1 n`. Combining (6.104) and (6.116), and

using the fact that Λ1(n) ≤ 1, we see that

nP [Dx,`] ≤ n (`!)−1 (log n+ (k − 1) log log n+ γn)` e− logn−(k−1) log logn−γne(`+1)Λ1(n)

≤ 2`−1
(

(log n)` (1 + o(1))` + γ`n

)
e−(k−1) log logn−γneO(1)

= O(1)e−(k−1−`) log logn−γn +O(1)γ`ne
−(k−1) log logn−γn .

When limn→∞ γn = ∞, we readily get the desired conclusion (6.121). This establishes the

one-law.

Establishing the zero-law

Our approach in establishing the zero-law relies on the method of second moment applied to

a variable that counts the number of nodes in K(n;µµµ,θθθ) ∩ G(n;α) that are class-1 and with

degree `. Similar to the discussion given before, we let Y`(n;µµµ,ΘΘΘn) denote the total number of
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nodes that are class-1 and with degree ` in K(n;µµµ,θθθ) ∩G(n;α), namely,

Y`(n;µµµ,ΘΘΘn) =
n∑
i=1

111 [vi is class 1 and has degree ` in K(n;µµµ,θθθ) ∩G(n;α)] (6.122)

Clearly, if we can show that whp there exists at least one class-1 node with a degree strictly less

than k under the enforced assumptions (with limn→∞ γn = −∞) then the zero-law immediately

follows.

With a slight abuse of notations, we let Di,`(n;µµµ,ΘΘΘn) denote the event that node vi in

K(n;µµµ,θθθ) ∩ G(n;α) is class-1 and has degree ` for each i = 1, 2, . . . , n. Throughout, we

simplify the notation by writing Di,` instead of Di,`(n;µµµ,ΘΘΘn). Thus, we have Y`(n;µµµ,ΘΘΘn) =∑n
i=1 111 [Di,`]. The second moment method [73, Remark 3.1, p. 54] gives

P [Y`(n;µµµ,ΘΘΘn) = 0] ≤ 1− E [Y`(n;µµµ,ΘΘΘn)]2

E [Y`(n;µµµ,ΘΘΘn)2]
. (6.123)

We have E [Y`(n;µµµ,ΘΘΘn)] = nP [Dx,`] and

E
[
Y`(n;µµµ,ΘΘΘn)2

]
= nP [Dx,`] + n(n− 1)P [Dx,` ∩Dy,`] ,

whence

E [Y`(n;µµµ,ΘΘΘn)2]

E [Y`(n;µµµ,ΘΘΘn)]2
=

1

nP [Dx,`]
+
n− 1

n

P [Dx,` ∩Dy,`]

(P [Dx,`])
2 . (6.124)

In view of (6.123) and (6.124), we will get limn→∞ P [Y`(n;µµµ,ΘΘΘn) = 0] = 0, for some ` =

0, 1, . . . , k − 1 (which in turns establishes the zero-law) if we show that

lim
n→∞

nP [Dx,`] =∞, (6.125)

and

P [Dx,` ∩Dy,`] ∼ (P [Dx,`])
2 (6.126)

for some ` = 0, 1, . . . , k − 1.
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The next two results will help establish (6.125) and (6.126) along two specific subsequences

(on which nΛ1(n) has a limit) with a different value of ` for each particular subsequence.

Lemma 6.6.6. If Λ1(n) = o
(

1√
n

)
, then for any non-negative integer constant ` and any node

vx, we have

P [Dx,`] ∼ µ1 (`!)−1 (nΛ1(n))` e−nΛ1(n) (6.127)

Proof. Considering any class-1 node vi, and recalling (6.5), we know that the events

E1i, E2i, . . . , E(i−1)i, E(i+1)i, . . . , Eni

are mutually independent. Thus, it follows that the degree of a given node vi, conditioned on

being class-1, follows a Binomial distribution Bin(n− 1,Λ1(n)). Thus,

P [Di,`] = µ1P
[
Di,`

∣∣ ti = 1
]

= µ1

(
n− 1

`

)
Λ1(n)` (1− Λ1(n))n−`−1

Next, given that Λ1(n) = o
(

1√
n

)
and ` is constant, it follows that Λ1(n) = o(1) and

Λ1(n)2(n − ` − 1) = o(1). Invoking Fact 6.6.5, and the fact that
(
n−1
`

)
∼ (`!)−1 n`, the

conclusion (6.127) follows.

Lemma 6.6.7. Consider scalings K1, . . . , Kr, P : N0 → Nr+1
0 and α : N0 → (0, 1), such that

λ1(n) = o(1) and (6.104) holds with limn→∞ γn = −∞. The following two properties hold

(a) If nΛ1(n) = Ω(1), then for any non-negative integer constant ` and any two distinct

nodes vx and vy, we have

P [Dx,` ∩Dy,`] ∼ µ2
1 (`!)−2 (nΛ1(n))2` e−2nΛ1(n) (6.128)
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(b) For any two distinct nodes vx and vy, we have

P [Dx,0 ∩Dy,0] ∼ µ2
1e
−2nΛ1(n) (6.129)

Note that the events Dx,` and Dy,` already imply that nodes vx and vy are class-1, i.e.,

|Σx| = |Σy| = K1. In this case, one may conjecture that the proof of Lemma 6.6.7 would

precisely follow that of [166, Lemma 3] for the homogeneous case where all nodes receive the

same number of keys K1. Although the proof does follow that of [166, Lemma 3], we remark

that even when we explicitly fix the class of the two particular nodes vx and vy, their adjacent

nodes could still belong to any class. Hence, extra effort has to be made to precisely bound

the probability that some vertex, say vj, is adjacent to both vx and vy, as vj could be class-

i with probability µi. Since the proof of Lemma 6.6.7 closely (although, not entirely as we

mentioned above) follows that of [166, Lemma 3], it is skipped here for brevity and given

in [42, Appendix B] for completeness.

We now show why the zero-law follows from Lemma 6.6.6 and Lemma 6.6.7 by means of

establishing (6.125) and (6.126) for some ` = 0, 1, . . . , k − 1.

Let

P (n;µµµ,ΘΘΘn) := P [ Minimum node degree of K(n;µµµ,θθθ) ∩G(n;α) ≥ k]

In what follows, we will consider the cases where nΛ1(n) = Ω(1) and nΛ1(n) = o(1), sepa-

rately. We will show that: i) when nΛ1(n) = Ω(1), conditions (6.125) and (6.126) hold for

` = k − 1, thus we have limn→∞ P (n;µµµ,ΘΘΘn) = 0; ii) when nΛ1(n) = o(1), conditions (6.125)

and (6.126) hold for ` = 0, hence we have limn→∞ P (n;µµµ,ΘΘΘn) = 0. Collectively, we have

limn→∞ P (n;µµµ,ΘΘΘn) = 0 whenever nΛ1(n) = Ω(1) or nΛ1(n) = o(1). By virtue of the subsubse-

quence principle [73, p. 12], this readily implies that limn→∞ P (n;µµµ,ΘΘΘn) = 0 holds even when

the sequence nΛ1(n) does not have a limit.

The case where there exists an ε > 0 such that nΛ1(n) > ε for all n sufficiently
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large: In this case we will establish (6.125) and (6.126) for ` = k−1. First, we see from (6.104)

that Λ1(n) ≤ logn+(k−1) log logn
n

= o
(

1√
n

)
when limn→∞ γn = −∞. Invoking Lemma 6.6.6, this

gives

nP [Dx,`] ∼ nµ1 (`!)−1 (nΛ1(n))` e−nΛ1(n) (6.130)

for each ` = 0, 1, . . .. Setting ` = k − 1 and substituting (6.104) into (6.130), we get

nP [Dx,`] ∼ nµ1 [(k − 1)!]−1 (nΛ1(n))k−1 e− logn−(k−1) log logn−γn

= µ1 [(k − 1)!]−1 (log n+ (k − 1) log log n+ γn)k−1 e−(k−1) log logn−γn (6.131)

Let

fn(k; γn) := (log n+ (k − 1) log log n+ γn)k−1 e−(k−1) log logn−γn ,

and note that (log n+ (k − 1) log log n+ γn) ≥ ε for all n sufficiently large by virtue of the

fact that nΛ1(n) > ε. Fix n sufficiently large, pick ζ ∈ (0, 1) and consider the cases when

γn ≤ −(1− ζ) log n and γn > −(1− ζ) log n, separately. In the former case, we get

fn(k; γn) ≥ εe−(k−1) log logn+(1−ζ) logn,

and in the latter case, we get

fn(k; γn) ≥ (ζ log n)k−1 e−(k−1) log logn−γn = ζk−1e−γn .

Thus, for all n sufficiently large, we have

fn(k; γn) ≥ min
{
εe−(k−1) log logn+(1−ζ) logn, ζk−1e−γn

}
.
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It is now clear that

lim
n→∞

fn(k; γn) =∞, (6.132)

since ζ ∈ (0, 1) and limn→∞ γn = −∞. Reporting (6.132) into (6.131), we establish (6.125).

Furthermore, from Lemma 6.6.6 and Lemma 6.6.7, it is clear that (6.126) follows for ` = k−1.

The case where limn→∞ nΛ1(n) = 0: In this case, we will establish (6.125) and (6.126)

for ` = 0. Setting ` = 0 in (6.130), we obtain

nP [Dx,0] ∼ nµ1e
nΛ1(n) ∼ nµ1

by virtue of the fact that nΛ1(n) = o(1). This readily gives (6.125). Furthermore, from

Lemma 6.6.6 (with ` = 0) and Lemma 6.6.7, (6.126) immediately follows.

The two cases considered cover all the possibilities for the limit of nΛ1(n). By virtue of

the subsubsequence principle [73, p. 12], we get the zero-law of Theorem 6.6.1 without any

condition on the sequence nΛ1(n).

6.6.8 Proof of Theorem 6.6.2

A roadmap

The proof of Theorem 6.6.2 consists of two parts. Namely, in Section 6.6.8, we establish

the zero-law part of Theorem 6.6.2, while in Section 6.6.8, we establish the one-law part. In

establishing the zero-law part, we note that if the minimum node degree of a graph is strictly

less than k, then the graph is certainly not k-connected. This follows from the fact that for

a k-connected graph, there is no node with degree strictly less than k. The aforementioned

observation indicates the zero-law part of Theorem 6.6.1 already implies the zero-law part of

Theorem 6.6.2. The proof of the one-law part of Theorem 6.6.2 consists of several steps. The

crux of the proof lies in showing that the probability of the vertex connectivity of K(n;µµµ,θθθ)∩

G(n;α) being ` is zero for ` = 0, 1, . . . , k− 1 in the limit of large network size. Specifically, we

derive an upper bound on the probability of vertex connectivity being ` (for ` = 0, 1, . . . , k−1)
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and show that each term appearing in the upper bound approaches zero as n tends to infinity

under the scaling condition (6.104) with limn→∞ γn =∞.

Establishing the zero-law

Let κ denote the vertex connectivity of K(n;µµµ,θθθ)∩G(n;α), i.e., the minimum number of nodes

to be deleted to make the graph disconnected. Also, let δ denote the minimum node degree in

K(n;µµµ,θθθ)∩G(n;α). It is clear that if a random graph is k-connected, meaning that κ ≥ k, then

it does not have any node with degree less than k. Thus [κ ≥ k] ⊆ [δ ≥ k] and the conclusion

P[κ ≥ k] ≤ P[δ ≥ k] (6.133)

immediately follows. In view of (6.133), we obtain the zero-law for k-connectivity, i.e., that

lim
n→∞

P[K(n;µµµ,θθθ) ∩G(n;α) is k-connected] = 0,

when limn→∞ γn = −∞ from the zero-law part of Theorem 6.6.1. Put differently, the conditions

that lead to the zero-law part of Theorem 6.6.1, i.e., λ1(n) = o(1) and limn→∞ γn = −∞,

automatically lead to the zero-law part of Theorem 6.6.2.

Establishing the one-law

Before we proceed with the proof of the one-law of Theorem 6.6.2, we take a moment to

explain why the probabilistic bounds that we derive next look substantially different than

those given in [166] for the homogeneous case. In establishing the zero-law of Theorem 6.6.1,

it was sufficient to show that there exists at least one node of class-1 with degree less than

k to prove that the minimum node degree is less than k with high probability. As we fixed

the key ring size of the node(s) under consideration, the heterogeneity partially vanished,

rendering our probabilistic bounds closely related to the ones given in [166], except for some

cases, as discussed in Section 6.6.7. However, as we establish the one-law of Theorem 6.6.2,
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the heterogeneity of the key ring sizes comes into play, leading to considerably more difficult

expressions and substantially different bounds than the ones given in [166] for the homogeneous

case. This will become apparent in Sections 6.6.9 and 6.6.10, where we prove a key result that

establishes the one-law for k-connectivity.

An important step towards establishing the one-law of Theorem 6.6.2 is presented in Sec-

tion 6.6.11. There, we show that it suffices to establish the one law in Theorem 6.6.2 under

the additional condition that γn = o (log n), which leads to a number of useful consequences.

Let a sequence β`,n : N× N0 → R be defined through the relation

Λ1(n) =
log n+ ` log log n+ β`,n

n
(6.134)

for each n ∈ N0 and ` ∈ N. Put differently, we have

β`,n := nΛ1(n)− log n− ` log log n,
n = 1, 2, . . .

` = 0, 1, . . . ,

where as in (6.5), Λ1(n) is given by

Λ1(n) =
r∑
j=1

µjαnp1j =
r∑
j=1

µjαn

(
1−

(
Pn−K1,n

Kj,n

)(
Pn
Kj,n

) )
.

In view of the arguments in Section 6.6.11, the one-law (6.108) follows from the next result.

Theorem 6.6.8. Let ` be a non-negative constant integer. Under (6.105), (6.106), (6.107),

and (6.134) with β`,n = o (log n) and limn→∞ β`,n = +∞, we have

lim
n→∞

P [κ = `] = 0.

Before we give a formal proof, we first explain why the one-law (6.108) follows from Theo-

100



rem 6.6.8. Comparing (6.134) with (6.104) and noting that γn = o (log n), we get

β`,n = (k − 1− `) log log n+ γn = o (log n) (6.135)

Moreover, for ` = 0, 1, . . . , k − 1, we have

lim
n→∞

β`,n = +∞ (6.136)

by recalling the fact that limn→∞ γn = +∞. Recalling (6.135) and (6.136), we notice that

the conditions needed for Theorem 6.6.8 are met when ` = 0, 1, . . . , k − 1; thus, we have

P [κ = `] = o(1) for ` = 0, 1, . . . , k − 1, which in turn implies that limn→∞ P [κ ≥ k] = 1, i.e.,

the one-law.

We now give a road map to the proof of Theorem 6.6.8. By a simple union bound, we get

P [κ = `] ≤ P [δ ≤ `] + P [(κ = `) ∩ (δ > `)] .

It is now immediate that Theorem 6.6.8 is established once we show that

lim
n→∞

P [δ ≤ `] = 0 (6.137)

and

lim
n→∞

P [(κ = `) ∩ (δ > `)] = 0 (6.138)

under the enforced assumptions of Theorem 6.6.8. We start by establishing (6.137). Following

the analysis of Section 6.6.7, it is easy to see that

nP [Dx,`] ≤ 2`−1
(

(log n)` (1 + o(1))` + β``,n

)
e−` log logn−β`,neO(1)

= O(1)e−β`,n +O(1)β``,ne
−` log logn−β`,n ,
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and it follows that limn→∞ nP [Dx,`] = 0 as long as limn→∞ β`,n = +∞. From (6.118) and

(6.120), this yields

lim
n→∞

P [δ = `] = 0 when lim
n→∞

β`,n = +∞ (6.139)

However, from (6.134) it is easy to see that β`,n is monotonically decreasing in `. Thus, the

fact that limn→∞ β`,n = +∞ for some ` implies

lim
n→∞

βˆ̀,n = +∞, ˆ̀= 0, 1, . . . , `

From (6.139) this in turn implies that P[δ = ˆ̀] = o(1) for ˆ̀= 0, 1, . . . , `, or equivalently (6.137).

We now focus on establishing (6.138) under the enforced assumptions of Theorem 6.6.8.

The proof is based on finding a tight upper bound on the probability P [(κ = `) ∩ δ > `] and

showing that this bound goes to zero as n goes to infinity. Let N denote the collection of all

non-empty subsets of {v1, v2, . . . , vn}. Define N∗ = {T : T ∈ N , |T | ≥ 2} and

E(JJJ) = ∪T∈N∗
[
| ∪vi∈T Σi| ≤ J|T |

]
where JJJ = [J2, J3, . . . , Jn] is an (n − 1)-dimensional integer-valued array. E(JJJ) encodes the

event that for at least one |T | = 2, . . . , n, the total number of distinct keys held by at least

one set of |T | sensors is less than or equal to J|T |. Now, define

mn := min

(⌊
Pn
K1,n

⌋
,
⌊n

2

⌋)
(6.140)

and let

Ji =


max (b(1 + ε)K1,nc , biζK1,nc) i = 2, . . . ,mn

bψPnc i = mn + 1, . . . , n

(6.141)

for some ε chosen arbitrarily in (0, 1) and for some ζ, ψ in (0, 1) to be specified later at (6.142)
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and (6.143), respectively. A crude bounding argument gives

P [(κ = `) ∩ δ > `] ≤ P [E(JJJ)] + P
[
(κ = `) ∩ δ > ` ∩ E(JJJ)

]

Hence, establishing (6.138) consists of establishing the following two results.

Proposition 6.6.9. Let ` be a non-negative constant integer. Assume that (6.134) holds with

β`,n > 0, and that we have (6.106) and (6.107). Also, assume that (6.105) holds such that

Pn ≥ σn

for some σ > 0 for all n sufficiently large. Then

lim
n→∞

P [E(JJJ)] = 0,

where JJJ is as defined in (6.141) with arbitrary ε ∈ (0, 1), constant ζ ∈ (0, 1
2
) selected small

enough such that

max

(
2ζσ, ζ

(
e2

σ

) ζ
1−2ζ

)
< 1 (6.142)

and ψ ∈ (0, 1
2
) selected small enough such that

max

(
2

(√
ψ

(
e

ψ

)ψ)σ

,
√
ψ

(
e

ψ

)ψ)
< 1 (6.143)

Proof. The proof follows the same steps with [157, Proposition 7.2] to show that it suffices to

establish Proposition 6.6.9 for the homogeneous case where all key rings are of the same size

K1,n. This is evident upon realizing that with U`(µµµ,θθθ) = | ∪`i=1 Σi| and U`(K1,n, Pn)
d
= U`(µµµ =

{1, 0, . . . , 0}, θθθ), we have

U`(K1,n, Pn) � U`(µµµ,θθθ),
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where � denotes the usual stochastic ordering. After this reduction, the proof reduces to [166,

Proposition 3]. The proof only require conditions (6.105), (6.112), and K1,n = o(Pn) to hold.

We note that K1,n = o(Pn) follows from (6.106) and the fact that K1,n ≤ Kr,n. Also, (6.112)

follows under the enforced assumptions as shown in Proposition 6.6.3.

Proposition 6.6.10. Let ` be a non-negative constant integer. Under (6.105), (6.106), (6.107),

and (6.134) with β`,n = o (log n) and limn→∞ β`,n = +∞, we have

lim
n→∞

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
= 0

The proof of Proposition 6.6.10 is given in Section 6.6.9. Proposition 6.6.9 and Proposi-

tion 6.6.10 establish (6.138) which, combined with (6.137), establish Theorem 6.6.8. We recall

that Theorem 6.6.8 establishes the one-law.

6.6.9 Proof of Proposition 6.6.10

For notational simplicity, we denote K(n;µµµ,θθθ)∩G(n;α) by KG. Let KG(U) be a subgraph of

KG restricted to the vertex set U . For any subset of nodes U , define U c := {v1, . . . , vn} \ U .

We also let NUc denote the collection of all non-empty subsets of {v1, v2, . . . , vn} \U . We note

that a subset T of NUc is isolated in KG(U c) if there are no edges in KG between nodes in T

and nodes in U c \ T , i.e.,

Eij, vi ∈ T, vj ∈ U c \ T.

Next, we present key observations that pave the way to establishing Proposition 6.6.10. If

κ = ` but δ > `, then there exists subsets U and T of nodes with U ∈ N , |U | = `, T ∈ NUc ,

|T | ≥ 2 such that KG(T ) is connected while T is isolated in KG(U c). This ensures that KG

can be disconnected by deleting a properly selected set of ` nodes, i.e., the set U . This would

not be possible for sets T ∈ NUc with |T | = 1 since we have δ ≥ ` + 1 which implies that the

single node in T is connected to at least one node in U c \ T . Finally, having κ = ` ensures

that KG remains connected after removing (`−1) nodes. Then, if there exists a subset U with
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|U | = ` such that some T ∈ NUc is isolated in KG(U c), each node in U must be connected to

at least one node in T and at least one node in U c \ T . This can be proved by contradiction.

Consider subsets U ∈ N with |U | = `, and T ∈ NUc with |T | ≥ 2, such that T is isolated

from U c \ T . Suppose there exists a node vi ∈ U such that vi is adjacent to at least one node

in T but not adjacent to any node in U c \ T . In this case, it is easy to see that there are no

edges between nodes in U c \ T and nodes in {vi} ∪ T . Thus, the graph could have been made

disconnected by removing nodes in U \ {vi}. But |U \ {vi}| = ` − 1, and this contradicts the

fact that κ = `.

We now present several events that characterize the aforementioned observations. For each

non-empty subset T ⊆ U c, we define CT as the event that KG(T ) is itself connected, and DU,T

as the event that T is isolated in KG(U c), i.e.,

DU,T :=
⋂
vi∈T

vj∈Uc\T

Eij,

Moreover, we define BU,T as the event that each node in U is adjacent to at least one node in

T , i.e.,

BU,T :=
⋂
vi∈U

⋃
vj∈T

Eij,

and finally, we let AU,T := BU,T ∩DU,T ∩CT . It is clear that AU,T encodes the event that KG(T )

is itself connected, each node in U is adjacent to at least one node in T , but T is isolated in

KG(U c). The aforementioned observations enable us to express the event [(κ = `) ∩ (δ > `)]

in terms of the event sequence AU,T . In particular, we have

[(κ = `) ∩ (δ > `)] ⊆
⋃

U∈Nn,`,T∈NUc ,|T |≥2

AU,T

with Nn,` denoting the collection of all subsets of {v1, . . . , vn} with exactly ` elements. We also

note that the union need only to be taken over all subsets T with 2 ≤ |T | ≤
⌊
n−`

2

⌋
. This is

because if the vertices in T form a component then so do the vertices in NUc \ T . Now, using
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a standard union bound, we obtain

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
≤

∑
U∈Nn,`,T∈NUc ,2≤|T |≤bn−`2 c

P
[
AU,T ∩ E(JJJ)

]

=

bn−`2 c∑
m=2

∑
U∈Nn,`,T∈NUc,m

P
[
AU,T ∩ E(JJJ)

]

where NUc,m denotes the collection of all subsets of U c with exactly m elements. Now, for

each m = 1, . . . , n − ` − 1, we simplify the notation by writing A`,m := A{v1,...,v`},{v`+1,...,v`+m},

D`,m := D{v1,...,v`},{v`+1,...,v`+m}, B`,m := B{v1,...,v`},{v`+1,...,v`+m}, and Cm := C{v`+1,...,v`+m}. From

exchangeability, we get

P [AU,T ] = P [A`,m] , U ∈ Nn,`, T ∈ NUc,m

and the key bound

P
[
(κ = `) ∩ (δ > `) ∩ E(JJJ)

]
≤
bn−`2 c∑
m=2

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]
(6.144)

is readily obtained upon noting that |Nn,`| =
(
n
`

)
and |NUc,m| =

(
n−`
m

)
. Thus, Proposition 6.6.10

will be established if we show that

lim
n→∞

bn−`2 c∑
m=2

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]
= 0. (6.145)

We now derive bounds for the probabilities P
[
A`,m ∩ E(JJJ)

]
. First, for m = 2, . . . , n−`−1,

we have

D`,m =
n⋂

j=m+`+1

[(
∪i∈νm,jΣi

)
∩ Σj = ∅

]
(6.146)

where νm,j is defined as

νm,j := {i = `+ 1, . . . , `+m : Cij}
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for each j = 1, . . . , ` and j = m + ` + 1, . . . , n. Put differently, νm,j is the set of indices in

i = `+ 1, . . . , `+m for which nodes vj and vi are adjacent in the Erdős-Rényi graph G(n;αn).

Then, (6.146) follows from the fact that for vj to be isolated from {v`+1, . . . , v`+m} in KG, Σj

needs to be disjoint from each of the key rings {Σi : i ∈ νm,j}.

Now, using the law of iterated expectation, we get

P
[
D`,m

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
111 [D`,m]

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
E
[
111 [D`,m]

∣∣∣ Σ`+1,...,Σn
Cij ,i=`+1,...,`+m

j=`+m+1,...,n

] ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]

= E

 n∏
j=`+m+1

(P−|∪i∈νm,jΣi|
|Σj |

)(
P
|Σj |

)
 ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m


= E

[(
P−|∪i∈νmΣi|

|Σ|

)(
P
|Σ|

) ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]n−`−m
(6.147)

by independence of the random variables νm,j and |Σj| for j = ` + m + 1, . . . , n. Here we

define νm and |Σ| as generic random variables following the same distribution with any of

{νm,j, j = ` + m + 1, . . . , n} and {|Σj|, j = ` + m + 1, . . . , n}, respectively. Put differently,

|νm| is a Binomial rv with parameters m and α, while |Σ| is a rv that takes the value Kj with

probability µj.

Next, we bound the probabilities P [B`,m]. We know that

B`,m = ∩`i=1 ∪mj=`+1 Eij.
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Thus,

P
[
B`,m

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
111 [B`,m]

∣∣∣ Σ`+1, . . . ,Σ`+m

]
= E

[
E
[
111 [B`,m]

∣∣∣ Σ1,...,Σ`+m
Cij ,i=`+1,...,`+m

j=1,...,`

] ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]

= E

∏̀
j=1

1−

(P−|∪i∈νm,jΣi|
|Σj |

)(
P
|Σj |

)
 ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m


= E

[
1−

(
P−|∪i∈νmΣi|

|Σ|

)(
P
|Σ|

) ∣∣∣∣∣ Σ`+1, . . . ,Σ`+m

]`
(6.148)

by independence of the random variables νm,j and |Σj| for j = 1, . . . , `.

We note that, on the event E(JJJ), we have

| ∪i∈νm Σi| ≥
(
J|νm| + 1

)
111 [|νm| > 1]

and it is always the case that | ∪i∈νm Σi| ≥ K1111 [|νm| > 0] and

| ∪i∈νm Σi| ≤ |νm|Kr. (6.149)

Next, we define

L(νm) = max
(
K1111 [|νm| > 0] ,

(
J|νm| + 1

)
111 [|νm| > 1]

)
so that on E(JJJ), we have

| ∪i∈νm Σi| ≥ L(νm). (6.150)
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Using (6.150) in (6.147) and (6.149) in (6.148), we get

P
[
A`,m ∩ E(JJJ)

]
= E

[
111 [Cm] 111 [B`,m] 111

[
D`,m ∩ E(JJJ)

]]
= E

[
E
[
111 [Cm] 111 [B`,m] 111[D`,m ∩ E(JJJ)]

∣∣∣ Σ`+1,...,Σ`+m
Cij ,i,j=`+1,...,`+m

]]
= E

[
111 [Cm]P

[
B`,m

∣∣∣ Σ`+1, . . . ,Σ`+m

]
P
[
D`,m ∩ E(JJJ)

∣∣∣ Σ`+1, . . . ,Σ`+m

]]
(6.151)

since Cm is fully determined by the rvs Σ`+1, . . . ,Σ`+m and {Cij, i, j = `+ 1, . . . , `+m} while

B`,m, D`,m, and E(JJJ) are independent from {Cij, i, j = ` + 1, . . . , ` + m}. Here, we also used

the fact that given {Σ`+1, . . . ,Σ`+m}, D`,m is independent from B`,m.

The following lemma provides upper bounds for (6.151).

Lemma 6.6.11. Let JJJ be defined as in (6.141) for some ε ∈ (0, 1), ζ ∈
(
0, 1

2

)
such that (6.142)

holds, ψ ∈
(
0, 1

2

)
such that (6.143) holds. Assume that Λ1(n) = o(1) and (6.105), (6.106), and

(6.107) hold. Then for all n sufficiently large, and for each m = 2, 3, . . . , n, we have

P
[
A`,m ∩ E(JJJ)

]
≤ min

{
1,mm−2 (αnprr(n))m−1}(111

[
m>

⌊
Pn −Kr,n

2Kr,n

⌋]
+ 111

[
m ≤

⌊
Pn −Kr,n

2Kr,n

⌋] (
1− e−3mαnprr(n)

)`)·
·

(
min

{
1− Λ1(n), e

−
(

1+ ε
2

)
Λ1(n)

, e−ψK1,n111 [m > mn] + min
{

1−µr+µre
−αnp1r(n)ζm, e−αnp11(n)ζm

}})n−m−`
(6.152)

The proof of Lemma 6.6.11 is given in Section 6.6.12. Now, the proof of Proposition 6.6.10

will be completed upon establishing (6.145) by means of Lemma 6.6.11. We devote Sec-

tion 6.6.10 to establishing (6.145).
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6.6.10 Establishing (6.145)

A roadmap

Our objective is to establish (6.145) using the bounds given by Lemma 6.6.11. We start by

defining fn,`,m as

fn,`,m =

(
n

`

)(
n− `
m

)
P
[
A`,m ∩ E(JJJ)

]
Thus, establishing (6.145) becomes equivalent to showing

lim
n→∞

bn−`2 c∑
m=2

fn,`,m = 0. (6.153)

Our approach is to establish (6.153) in several steps with each step focusing on a specific

range of m. In particular, we can write

bn−`2 c∑
m=2

fn,`,m =
M∑
m=2

fn,`,m+

min{mn,b µrn
2ζ logn

c}∑
M+1

fn,`,m+

b µrn
2ζ logn

c∑
min{b µrn

2ζ logn
c,mn}

fn,`,m+

bνnc∑
b µrn

2ζ logn
c+1

fn,`,m+

bn−`
2
c∑

bνnc+1

fn,`,m,

(6.154)

where M is an integer to be specified later at (6.164) and ν ∈
(
0, 1

2

)
is to be specified later at

(6.170). In establishing (6.153), we will show that each term appearing in (6.154) approaches

zero as n tends to infinity using the bounds given by Lemma 6.6.11. This will be established in

Section 6.6.10 through Section 6.6.10, where we use different approaches and utilize different

bounds from Lemma 6.6.11 to show that each term appearing in (6.154) approaches zero as n

tends to infinity. Finally, in this section, we make use of the following lemma several times.

Lemma 6.6.12. Consider a scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 and a scaling α : N0 →

(0, 1) such that (6.134) holds with β`,n = o(log n). We have

1

2

log n

n
≤ αnp1r(n) ≤ 2

µr

log n

n
, (6.155)
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for all n sufficiently large, i.e., αnp1r(n) = Θ
(

logn
n

)
. If in addition (6.107) holds, we have

αnprr(n) = o (log n)αnp1r(n) = o

(
(log n)2

n

)
(6.156)

and

αnp1r(n) = o (log n)αnp11(n) (6.157)

The proof of Lemma 6.6.12 is given in Section 6.6.15.

We now proceed with establishing (6.145). Throughout, we consider scalingsK1, . . . , Kr, P :

N0 → Nr+1
0 and α : N0 → (0, 1) such that (6.134) holds with limn→∞ β`,n = +∞ and β`,n =

o(log n), and (6.105), (6.106), (6.107) hold. We will make repeated use of the bounds (6.10),

(6.11), (6.117), and (6.156).

The case where 2 ≤ m ≤M

This range considers fixed values of m. Pick an integer M to be specified later at (6.164). We

note that on this range we have m ≤ bPn−Kr,n
2Kr,n

c for all n sufficiently large by virtue of (6.106).

On the same range we also have

1− e−3mαnprr(n) ≤ 3mαnprr(n) (6.158)

by virtue of (6.156), (6.12), and the fact that m is bounded.

Using (6.117), (6.152), (6.156), and (6.158), and noting that Λ1(n) = o(1) under (6.134)
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with β`,n = o(log n), we get

fn,`,m ≤ n`nmmm−2 (αnprr(n))m−1 (3m)` (αnprr(n))` e−(1+ ε
2)(n−m−`)Λ1(n)

= O(1)n`+m (αnprr(n))`+m−1 e−(1+ ε
2)(n−m−`)Λ1(n)

= o(1)n`+m
(

(log n)2

n

)`+m−1

e−(1+ ε
2)(logn+` log logn+β`,n)

= o(1)n−
ε
2 (log n)`(1− ε

2)+2(m−1) e−(1+ ε
2)β`,n

= o(1)

since ` is non-negative integer constant, m is bounded, and limn→∞ β`,n = +∞. This establishes

lim
n→∞

M∑
m=2

fn,`,m = 0.

The case where M + 1 ≤ m ≤ min{mn, b µrn
2ζ logn

c}

Our goal in this and the next subsubsection is to cover the range M + 1 ≤ m ≤ b µrn
2ζ logn

c. Since

the bound given at (6.152) takes a different form when m > mn (with mn defined at (6.140)),

we first consider the range M + 1 ≤ m ≤ min{mn, b µrn
2ζ logn

c}; we note from (6.106) and (6.103)

that limn→∞mn =∞.

On the range considered here, we have from (6.10), (6.117), and (6.152) that

min{mn,b µrn
2ζ logn

c}∑
m=M+1

fn,`,m ≤
min{mn,b µrn

2ζ logn
c}∑

m=M+1

n`
(en
m

)m
mm−2 (αnprr(n))m−1 (1− µr (1− e−αnp1r(n)ζm

))n−m−`
.

(6.159)

From the upper bound in (6.155) and the fact that m ≤ µrn
2ζ logn

for all n sufficiently large, we

have

αnp1r(n)ζm ≤ 2 log n

µrn
ζ

µrn

2ζ log n
= 1.
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Using the fact that 1− e−x ≥ x
2

for all 0 ≤ x ≤ 1, we get

1− µr
(
1− e−αnp1r(n)ζm

)
≤ 1− µrαnp1r(n)ζm

2

≤ e−ζmµr
logn
4n (6.160)

as we invoke (6.12) and the lower bound in (6.155). Reporting this last bound and (6.156) into

(6.159), and noting that

n−m− ` ≥ n− `
2
≥ n

3
, m = 2, 3, . . . ,

⌊
n− `

2

⌋
, (6.161)

we get

min{mn,b µrn
2ζ logn

c}∑
m=M+1

fn,`,m ≤
min{mn,b µrn

2ζ logn
c}∑

m=M+1

n`+mem
(

(log n)2

n

)m−1

e−ζmµr lognn−m−`
4n

≤ n`+1

∞∑
m=M+1

(
e (log n)2 e−ζ

µr
12

logn
)m

(6.162)

for all n sufficiently large. Given that ζ, µr > 0 we have

e (log n)2 e−ζ
µr
12

logn = o(1). (6.163)

Thus, the geometric series in (6.162) is summable for n sufficiently large, and we have

min{mn,b µrn
2ζ logn

c}∑
m=M+1

fn,`,m ≤ O(1)n`+1−(M+1)ζ µr
12 (e log n)2(M+1)

and it follows that

lim
n→∞

min{mn,b µrn
2ζ logn

c}∑
m=M+1

fn,`,m = 0

for any positive integer M with

M >
12(`+ 1)

ζµr
. (6.164)
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This choice is permissible given that ζ, µr > 0.

The case where min{b µrn
2ζ logn

c,mn} < m ≤ b µrn
2ζ logn

c

Clearly, this range becomes obsolete if mn ≥ b µrn
2ζ logn

c. Thus, it suffices to consider the subse-

quences for which the range mn + 1 ≤ m ≤ b µrn
2ζ logn

c is non-empty. On this range, following

the same arguments that lead to (6.159) and (6.162) gives

b µrn
2ζ logn

c∑
m=mn+1

f`,n,m ≤
b µrn

2ζ logn
c∑

m=mn+1

n`+1
(
e(log n)2

)m (
1− µr

(
1− e−ζmαnp1r(n)

)
+ e−ψK1,n

)n
3

≤ n`+1

b µrn
2ζ logn

c∑
m=mn+1

(
e (log n)2)m(e−ζmµr logn

4n + e−ψK1,n

)n
3

(6.165)

where in the last step we used (6.160) in view of m ≤ µrn
2ζ logn

. Next, we write

e−ζmµr
logn
4n + e−ψK1,n = e−ζmµr

logn
4n

(
1 + e−ψK1,n+ζmµr

logn
4n

)
≤ exp

{
−ζmµr

log n

4n
+ e−ψK1,n+ζmµr

logn
4n

}

≤ exp

−ζmµr log n

4n

1− e−ψK1,n+
µ2
r
8

ζmµr
logn
4n

 (6.166)

where the last inequality is obtained from m ≤ µrn
2ζ logn

. Using the fact that m > mn =

min{b Pn
K1,n
c, bn

2
c} and that Pn ≥ σn for some σ > 0 under (6.105), we have

e−ψK1,n+
µ2
r
8

ζmµr
logn
4n

≤ max

{
K1,n

Pn
,

2

n

}
4n

e−ψK1,n

ζµr log n
· e

µ2
r
8

≤ max

{
4K1,ne

−ψK1,n

ζµrσ log n
,

8e−ψK1,n

ζµr log n

}
· e

µ2
r
8

= o(1)
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by virtue of (6.112) and the facts that ζ, µr, σ > 0. Reporting this into (6.166), we see that for

for any ε > 0, there exists a finite integer n∗(ε) such that

(
e−ζmµr

logn
4n + e−ψK1,n

)
≤ e−ζmµr

logn
4n

(1−ε) (6.167)

for all n ≥ n∗(ε). Using (6.167) in (6.165), we get

b µrn
2ζ logn

c∑
m=mn+1

f`,n,m ≤ n`+1

b µrn
2ζ logn

c∑
m=mn+1

(
e (log n)2)m (e−ζmµr logn

4n
(1−ε)

)n
3

≤ n`+1

∞∑
m=mn+1

(
e (log n)2 e−ζµr

logn
12

(1−ε)
)m

(6.168)

Similar to (6.163), we have e (log n)2 e−ζµr
logn
12

(1−ε) = o(1) so that the sum in (6.168) converges

for n sufficiently large. Following a similar approach to that in Section 6.6.10, we then see that

b µrn
2ζ logn

c∑
m=mn+1

fn,`,m = O(1)n`+1−mnζµr(1−ε)
12 (e log n)2(mn+1) = o(1)

since limn→∞mn =∞ under the enforced assumptions.

The case where b µrn
2ζ logn

c+ 1 ≤ m ≤ bνnc

We consider b µrn
2ζ logn

c+ 1 ≤ m ≤ bνnc for some ν ∈
(
0, 1

2

)
to be specified later at (6.170). Re-

calling (6.10), (6.117), (6.152), (6.155), and (6.161), and noting that
(
n
m

)
is monotone increasing
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in m when 0 ≤ m ≤
⌊
n
2

⌋
, we get

bνnc∑
m=b µrn

2ζ logn
c+1

fn,`,m ≤
bνnc∑

m=b µrn
2ζ logn

c+1

n`
(

n

bνnc

)(
1− µr + µre

−ζmαnp1r(n) + e−ψK1,n
)n

3

≤ n`
bνnc∑

m=b µrn
2ζ logn

c+1

( e
ν

)νn(
1− µr + µre

−ζ µrn
2ζ logn

logn
2n + e−ψK1,n

)n
3

≤ n`+1
( e
ν

)νn (
1− µr + µre

−µr
4 + e−ψK1,n

)n
3

= n`+1

(( e
ν

)3ν (
1− µr + µre

−µr
4 + e−ψK1,n

))n
3

(6.169)

for all n sufficiently large.

We have 1− µr + µre
−µr

4 < 1 from µr > 0 and e−ψK1,n = o(1) from (6.112). Also, it holds

that limν→0

(
e
ν

)3ν
= 1. Thus, if we pick ν small enough to ensure that

( e
ν

)3ν (
1− µr + µre

−µr
4

)
< 1, (6.170)

then for any 0 < ε < 1− (e/ν)3ν (1− µr + µre
−µr

4

)
there exists a finite integer n?(ε) such that

( e
ν

)3ν (
1− µr + µre

−µr
4 + e−ψK1,n

)
≤ 1− ε, ∀n ≥ n?(ε).

Reporting this into (6.169), we get

lim
n→∞

bνnc∑
m=b µrn

2ζ logn
c+1

fn,`,m = 0

since limn→∞ n
`+1(1− ε)n/3 = 0 for any positive constant integer `.
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The case where bνnc+ 1 ≤ m ≤ bn−`
2
c

In this range, we use (6.11), (6.117), (6.152), and (6.161) to get

bn−`2 c∑
m=bνnc+1

fn,`,m ≤ n`
bn−`2 c∑

m=bνnc+1

(
n

m

)(
e−ζmαnp11(n) + e−ψK1,n

)n
3

≤ n`

 bn−`2 c∑
m=bνnc+1

(
n

m

)(e−ζνnαnp11(n) + e−ψK1,n
)n

3

≤ n`
(
8e−ζνnαnp11(n) + 8e−ψK1,n

)n
3

Noting that ζ, ν, ψ > 0 and recalling (6.157) and the lower bound of (6.155), we get

e−ζνnαnp11(n) = e−ζνn
wn

logn
αnp1r(n) ≤ e−

ζνwn
2

for some sequence wn satisfying limn→∞wn = +∞. It is now obvious that e−ζνnαnp11(n) = o(1).

Moreover, we have e−ψK1,n = o(1) from (6.112). The conclusion

lim
n→∞

bn−`2 c∑
m=bνnc+1

fn,`,m = 0

immediately follows and the proof of one-law is completed.

6.6.11 Confining γn

In this section, we show that establishing the one-law of Theorem 6.6.2 under the additional

constraint

γn = o(log n) (6.171)

establishes the one-law for the case when that additional constraint is not present. Namely, we

will show that for any scaling that satisfies conditions (6.105), (6.106), (6.107), and (6.104) with

limn→∞ γn = +∞, there exists a scaling that satisfies the same conditions with limn→∞ γn =
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+∞ and γn = o(log n), such that the probability of k-connectivity under the latter scaling

(with γn = o(log n)) is less than or equal to that under the former scaling.

Firstly, consider a probability distribution µµµ = {µ1, . . . , µr} with µi > 0 for i = 1, . . . , r, a

scaling K∗1 , K
∗
2 , . . . , K

∗
r , P

∗ : N0 → Nr+1
0 , and a scaling α∗ : N0 → (0, 1) such that

Λ∗1(n) = α∗nλ
∗
1(n) =

log n+ (k − 1) log log n+ γ∗n
n

, (6.172)

for each n = 1, 2, . . .. Assume that

P ∗n = Ω(n),
K∗r,n
P ∗n

= o(1), and
K∗r,n
K∗1,n

= o(log n) (6.173)

and that we have limn→∞ γ
∗
n = +∞; i.e., the ∗-scaling satisfies all conditions enforced by part

(b) of Theorem 6.6.2.

Now, with the same distribution µµµ, consider a scaling K̂1, K̂2, . . . , K̂r, P̂ : N0 → Nr+1
0 and

a scaling α̂ : N0 → (0, 1) such that P̂n = P ∗n and K̂KKn = KKK∗n. Obviously, we have λ̂1(n) = λ∗1(n)

by recalling (6.2) and (6.3) and also that

P̂n = Ω(n),
K̂r,n

P̂n
= o(1), and

K̂r,n

K̂1,n

= o(log n).

Next, let γ̂n := min (γ∗n, log log n) and define α̂n through

α̂nλ̂1(n) =
log n+ (k − 1) log log n+ γ̂n

n
. (6.174)

Clearly, we have γ̂n = o(log n) and limn→∞ γ̂n = +∞. This establishes that for any scaling

satisfying the conditions of part (b) of Theorem 6.6.2, there exists another scaling (with the

same µµµ,KKKn, and Pn) that satisfies all of the same conditions and (6.171). In addition, this

latter scaling has a smaller probability of a channel being on than the original scaling; i.e., we

have

α̂n ≤ α∗n, n = 2, 3, . . . (6.175)
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by virtue of the fact that γ̂n ≤ γ∗n for all n.

In view of the above, we will establish that part (b) of Theorem 6.6.2 under γn = o(log n)

implies Theorem 6.6.2 if we show that

P

KG(n;µµµ,KKK∗n, P
∗
n , α

∗
n)

is k − connected

 ≥ P
KG(n;µµµ,K̂KKn, P̂n, α̂n)

is k − connected

 (6.176)

This is clear since (6.176) would ensure that if KG(n;µµµ,K̂KKn, P̂n, α̂n) is k-connected asymptot-

ically almost surely (as would be deduced from Theorem 6.6.2 under γn = o(log n)), then so

would KG(n;µµµ,KKK∗n, P
∗
n , α

∗
n).

In view of (6.175), we get (6.176) by means of an easy coupling argument showing that

KG(n;µµµ,K̂KKn, P̂n, α̂n) is a spanning subgraph of KG(n;µµµ,KKK∗n, P
∗
n , αn). This follows from the

fact that under (6.175) the corresponding Erdős-Rényi graphs satisfy

G(n; α̂n) ⊆ G(n;α∗n)

meaning that for any monotone increasing graph property P (e.g., k-connectivity), the proba-

bility that G(n;α∗n) has P is larger than that of G(n; α̂n); see [166, Section V.B] for details.

6.6.12 Proof of Lemma 6.6.11

The following result will be utilized in the proof of Lemma 6.6.11.

Lemma 6.6.13. With m ≥ 2 and Λ1(n) = o(1), we have

E

[(
Pn−Q(νm)
|Σ|

)(
Pn
|Σ|

) ]
≤ e−(1+ ε

2)Λ1(n),

for all n sufficiently large and any ε ∈ (0, 1), where we define

Q(νm) = K1,n111 [|νm| = 1] + (b(1 + ε)K1,nc+ 1)111 [|νm| > 1] .
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Proof. Consider fixed KKK,P . We have

Q(νm) ≥ K1 (111 [|νm| = 1] + (1 + ε)111 [|νm| > 1])

Thus, by recalling (6.9), we get

E

[(
P−Q(νm)
|Σ|

)(
P
|Σ|

) ]
≤ E

(P−K1

|Σ|

)(
P
|Σ|

) 111[|νm|=1]+(1+ε)111[|νm|>1]


= E
[
Z111[|νm|=1]+(1+ε)111[|νm|>1]

]
where Z =

(P−K1
|Σ| )

( P|Σ|)
. Taking the expectation over |νm|, we get

E

[(
P−Q(νm)
|Σ|

)(
P
|Σ|

) ]
≤ E

[
(1− α)m +mα (1− α)m−1 Z +

(
1− (1− α)m −mα (1− α)m−1)Z1+ε

]
≤ E

[
(1− α)2 + 2α (1− α)Z +

(
1− (1− α)2 − 2α (1− α)

)
Z1+ε

]
= (1− α)2 + 2α (1− α)E[Z] + α2E

[
Z1+ε

]
by virtue of the fact that

(1− α)m +mα (1− α)m−1 T +
(
1− (1− α)m −mα (1− α)m−1)T 1+ε

is monotonically decreasing in m (see [166, Lemma 12]).

Next, we have

E [Z] =
r∑
j=1

µj

(
P−K1

Kj

)(
P
Kj

) = 1− λ1
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Also by recalling Fact 6.4.6, we get

E
[
Z1+ε

]
= E

((P−K1

|Σ|

)(
P
|Σ|

) )1+ε


=
r∑
j=1

µj

((P−K1

Kj

)(
P
Kj

) )1+ε

=
r∑
j=1

µj(1− p1j)(1− p1j)
ε

≤
r∑
j=1

µj(1− p1j)(1− εp1j)

= 1− λ1(1 + ε) + ε
r∑
j=1

µjp
2
1j.

From Proposition 6.4.4, we have

r∑
j=1

µj (1− p1j)
2 = E [Z]2 + var [Z]

≤ (1− λ1)2 +
1

4
(p1r)

2

≤ 1− 2λ1 + λ2
1

(
1 +

1

4µ2
r

)

since p1r ≤ λ1/µr. This gives
r∑
j=1

µjp
2
1j ≤ λ2

1

(
1 +

1

4µ2
r

)
and we get

E

[(
P−Q(νm)
|Σ|

)(
P
|Σ|

) ]
≤ (1− α)2 + 2α (1− α) (1− λ1) + α2

(
1− λ1 (1 + ε) + ελ2

1

(
1 +

1

4µ2
r

))
= 1− Λ1

(
2− (1− ε)α− ε

(
1 +

1

4µ2
r

)
Λ1

)

Now, consider a scaling such that Λ1(n) = o(1). We have Λ1(n) ≤ 4µ2
r

2(4µ2
r+1)

for all n
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sufficiently large. Given also that αn ≤ 1, we get

E

[(
Pn−Q(νm)
|Σ|

)(
Pn
|Σ|

) ]
≤ 1− Λ1(n)

(
2− (1− ε)− ε

2

)
≤ e−(1+ ε

2)Λ1(n)

by virtue of (6.12) for all n sufficiently large. This completes the proof.

Lemma 6.6.11 will be established by bounding each term in (6.151). First, we note from

[157, Proposition 9.1] that

P [Cm] ≤ mm−2 (αnprr(n))m−1

Next, we derive upper bounds on the terms E
[
1− (P−|νm|Kr|Σ| )

( P|Σ|)

]
and E

[
(P−L(νm)

|Σ| )
( P|Σ|)

]
, respectively.

It is clear that Lemma 6.6.11 will follow if we show that

E

[
1−

(
Pn−|νm|Kr,n

|Σ|

)(
Pn
|Σ|

) ]
≤ 1− e−3αnprr(n)m (6.177)

for all m ≤ bP−Kr,n
2Kr,n

c and that

E

[(
Pn−L(νm)
|Σ|

)(
Pn
|Σ|

) ]
≤ min

(
1− Λ1(n), e−(1+ ε

2)Λ1(n),min
(

1− µr + µre
−αnp1r(n)ζm, e−αnp11(n)ζm

)
+

e−ψK1,n111 [m > mn]

)
. (6.178)

We establish (6.177) and (6.178) in turn in the next two sections.

6.6.13 Establishing (6.177)

First, with m ≤ P−Kr
2Kr

, we have |νm| ≤ m ≤ P−Kr
2Kr

and using Fact 6.4.7 we get

E
[
1−

(
P−|νm|Kr
|Σ|

)(
P
|Σ|

) ]
≤ E

[
1−

((
P−Kr
|Σ|

)(
P
|Σ|

) )2|νm| ]
= 1−E

[
W 2|νm|

]
(6.179)
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where we set W =
(P−Kr|Σ| )
( P|Σ|)

. We also have

E
[
W 2|νm|

]
= E

[
m∑
j=0

(
m

j

)
αj (1− α)m−jW 2j

]

= E
[(

1− α
(
1−W 2

))m]
≥ E [(1− 2α (1−W ))m] (6.180)

using Fact 6.4.6 in the last step. We also know that

W =

(
P−Kr
|Σ|

)(
P
|Σ|

) ≥ (P−KrKr

)(
P
Kr

) = 1− prr (6.181)

Thus,

αn(1−Wn) ≤ αnprr(n) ≤ 1

4

for all n sufficiently large by virtue of (6.156) and that β`,n = o (log n). Using the fact that

1− 2x ≥ e−3x for all 0 ≤ x ≤ 1
4
, we then get from (6.180) and (6.181) that

E
[
W 2|νm|
n

]
≥ E

[
e−3αn(1−Wn)m

]
≥ e−3αnprr(n)m

for all n sufficiently large. The desired conclusion (6.177) now follows immediately by means

of (6.179).

6.6.14 Establishing (6.178)

Let YYY be defined as follows

Yi =


biζK1,nc i = 2, . . . ,mn

bψPnc i = mn + 1, . . . , n
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where ζ ∈ (0, 1
2
) selected small enough such that (6.142) holds, and ψ ∈ (0, 1

2
) selected small

enough such that (6.143) holds. Recalling (6.141), we see that

Ji =


max (b(1 + ε)K1,nc , Yi) i = 2, . . . ,mn

Yi i = mn + 1, . . . , n

Next, we let

M(νm) = K1,n111 [|νm| = 1] + max
(
K1,n, Y|νm| + 1

)
111 [|νm| > 1] ,

and

Q(νm) = K1,n111 [|νm| = 1] + (b(1 + ε)K1,nc+ 1)111 [|νm| > 1] .

We also recall that

L(νm) = max
(
K1,n111 [|νm| > 0] ,

(
J|νm| + 1

)
111 [|νm| > 1]

)
Let’s consider the following three cases:

1. |νm| = 0: In this case we have L(νm) = M(νm) = Q(νm) = 0.

2. |νm| = 1: In this case we have L(νm) = M(νm) = Q(νm) = K1,n.

3. |νm| ≥ 2: In this case we have

– M(νm) = max
(
K1,n, Y|νm| + 1

)
.

– Q(νm) = b(1 + ε)K1,nc+ 1.

– L(νm) = max
(
K1,n, J|νm| + 1

)
.

More specifically, considering the case when |νm| = 2, 3, . . . ,mn, we have

J|νm| = max
(
(1 + ε)K1,n, Y|νm|

)
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and it follows that

L(νm) = max
(
K1,n, b(1 + ε)K1,nc+ 1, Y|νm| + 1

)
= max (b(1 + ε)K1,nc+ 1,M(νm))

= max (Q(νm),M(νm))

Also, when |νm| = mn + 1, . . . , n, we clearly have J|νm| = Y|νm|, and thus

L(νm) = M(νm) = max (K1,n, bψPnc+ 1) .

Since K1,n ≤ Kr,n = o(Pn) in view of (6.106), we have

bψPnc ≥ b(1 + ε)K1,nc

for all n sufficiently large. Thus, we can rewrite L(νm) as

L(νm) = max (K1,n, bψPnc+ 1, b(1 + ε)K1,nc+ 1)

= max (Q(νm),M(νm)) .

Combining, we conclude that it always holds that L(νm) = max (Q(νm),M(νm)), whence

E

[(
P−L(νm)
|Σ|

)(
P
|Σ|

) ]
≤ min

(
E

[(
P−M(νm)
|Σ|

)(
P
|Σ|

) ]
,E

[(
P−Q(νm)
|Σ|

)(
P
|Σ|

) ])
(6.182)

Note that it was shown in [50, Lemma 7.2] that

E

[(
P−M(νm)
|Σ|

)(
P
|Σ|

) ]
≤ min

(
1− Λ1(n),min

(
1− µr + µre

−αnp1r(n)ζm, e−αnp11(n)ζm
)

+ e−ψK1,n111 [m > mn]
)
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for all n sufficiently large. On the same range, we also get from Lemma 6.6.13 that

E

[(
Pn−Q(νm)
|Σ|

)(
Pn
|Σ|

) ]
≤ e−(1+ ε

2)Λ1(n)

upon noting that Λ1(n) = o(1) under (6.134) with β`,n = o(log n). Reporting the last two

bounds into (6.182), we establish (6.178).

6.6.15 Proof of Lemma 6.6.12

From (6.134) and the fact that β`,n = o(log n), we clearly have

1

2

log n

n
≤ Λ1(n) ≤ 2

log n

n
(6.183)

for all n sufficiently large. We also have

Λ1(n) = αn

r∑
j=1

µjp1j(n) ≥ µrαnp1r(n)

Now, since p1j is monotone increasing in j = 1, . . . , r (see the proof of Proposition 6.4.4), we

also see that

Λ1(n) = αn

r∑
j=1

µjp1j(n) ≤ αnp1r(n)
r∑
j=1

µj = αnp1r(n)

Thus, we obtain that

Λ1(n) ≤ αnp1r(n) ≤ 1

µr
Λ1(n)

and the conclusion (6.155) immediately follows by virtue of (6.183) for all n sufficiently large.
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Next, we establish (6.156). Here this will be established by showing that

prr(n) ≤ max

(
2, 4

log n

wn

)
p1r(n), n = 2, 3, . . . (6.184)

for some sequence wn such that limn→∞wn =∞. Fix n = 2, 3, . . . . We have either p1r(n) > 1
2
,

or p1r(n) ≤ 1
2
. In the former case, it automatically holds that

prr(n) ≤ 2p1r(n) (6.185)

by virtue of the fact that prr(n) ≤ 1.

Assume now that p1r(n) ≤ 1
2
. We know from [159, Lemmas 7.2] that

1− e−
Kj,nKr,n

Pn ≤ pjr(n) ≤ Kj,nKr,n

Pn −Kj,n

, j = 1, . . . , r (6.186)

and it follows that

K1,nKr,n

Pn
≤ log

(
1

1− p1r(n)

)
≤ log 2 < 1. (6.187)

Using the fact that 1− e−x ≥ x
2

with x in (0, 1), we then get

p1r(n) ≥ K1,nKr,n

2Pn
. (6.188)

In addition, using the upper bound in (6.186) with j = r gives

prr(n) ≤
K2
r,n

Pn −Kr,n

≤ 2
K2
r,n

Pn

as we invoke (6.103). Combining the last two bounds we obtain

prr(n)

p1r(n)
≤ 4

Kr,n

K1,n

(6.189)
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Next, combining (6.107) and (6.189), we get

prr(n) ≤ 4
log n

wn
p1r(n) (6.190)

for some sequence wn such that limn→∞wn = ∞. Combining (6.185) and (6.190), we readily

obtain (6.184).

It is easy to see that (6.157) can be established using the same steps with the proof of

(6.184).

6.7 Conclusion

In this chapter, we have investigated the secure and reliable connectivity of wireless sensor net-

works secured by the heterogeneous random key predistribution scheme under an on-ff channel

model. The heterogeneous random key predistribution scheme induced an inhomogeneous

random key graph, denoted K (n;µµµ,KKK,P ), while the on-ff channel model induced an Erdős-

Rényi graph, denoted G (n;α). Hence, we modeled the overall network by the intersection of

both graphs, denoted K(n;µµµ,KKK,P ) ∩ G(n;α). Namely, two vertices vi and vj are adjacent

in K(n;µµµ,KKK,P ) ∩ G(n;α) if i) they share a cryptographic key and ii) have a communication

channel in between that is on. We have presented conditions on how to scale the parameter

of the intersection model K(n;µµµ,KKK,P ) ∩G(n;α) so that i) it has no isolated node, ii) is con-

nected, iii) the minimum node degree of is no less than k , and iv) is k-connected, all with

high probability in the limit of large network size. We then proceeded by presenting numerical

results that supported our theorems in the finite-node regime. Moreover, we demonstrated via

simulations that our results are also useful when the on-ff channel model is replaced with the

more realistic disk communication model.
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Chapter 7

Results on inhomogeneous random key graphs

intersecting inhomogeneous Erdős-Rényi graphs

7.1 Motivation

In Chapter 6, we investigated the connectivity of wireless sensor networks secured by the het-

erogeneous random key predistribution scheme [157] under a uniform on-off channel model,

where the channel between two nodes is on (respectively, off) with probability α (respectively,

1 − α). The heterogeneous scheme induces inhomogeneous random key graphs K(n;µµµ,KKK,P ),

while the independent on-off channel model induces an Erdős-Rényi graph G(n;α). Hence, the

overall model is given by a composite random graph formed by the intersection of inhomoge-

neous random key graphs and Erdős-Rényi graph, i.e., K(n;µµµ,KKK,P )∩G(n;α). An edge exists

in the intersection graph if it exists in K(n;µµµ,KKK,P ), i.e., both node share at least a key, and

G(n;α), i.e., both nodes have an available wireless channel.

In this chapter, we consider a heterogeneous on-off channel model, instead of the uniform

on-off model used in Chapter 6. In this channel model, the wireless channel between a class-i

node and a class-j node is on with probability αij and off with probability 1−αij, independently.

This gives rise to a r × r channel probability matrix ααα where the element at the ith row and

jth column is given by αij. The heterogeneous on-off channel model accounts for the fact

that different nodes could have different radio capabilities, or could be deployed in locations

with different channel characteristics. In addition, it offers the flexibility of modeling several
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interesting scenarios, such as when nodes of the same type are more (or less) likely to be

adjacent with one another than with nodes belonging to other classes. The heterogeneous on-

off channel model gives rise to inhomogeneous Erdős-Rényi graphs [19, 32], denoted hereafter

by G(n,µµµ,ααα). In these graphs, each of the n vertices is classified as class-i with probability

µi > 0 such that
∑r

i=1 µi = 1. Two vertices vx and vy, which belong to class-i and class-j,

respectively, are adjacent if B(αij) = 1, where B(αij) denotes a Bernoulli random variable with

success probability αij.

Edges in inhomogeneous random keys graphs encode shared-key relationships, while edges

in inhomogeneous Erdős-Rényi graphs encode the availability of wireless channels. Hence, the

overall network can be modeled by a composite random graph model formed by the intersection

of an inhomogeneous random key graph with an inhomogeneous Erdős-Rényi graph. An edge

exists in K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) only if it exists in K(n;µµµ,KKK,P ), i.e., both nodes share a

key, and G(n;µµµ,ααα), i.e., both nodes share a wireless channel. Hence, edges in K(n;µµµ,KKK,P ) ∩

G(n;µµµ,ααα) represent pairs of sensors that both i) share a key and ii) have a wireless channel in

between that is on.

7.2 A roadmap

In this chapter, we investigate the connectivity of the composite random graph K(n;µµµ,KKK,P )∩

G(n;µµµ,ααα) and present conditions (in the form of zero-one laws) on how to scale its parameters,

i.e., µµµ, KKK, P , and ααα, so that it i) has no secure node which is isolated and ii) is securely

connected, both with high probability when the number of nodes gets large. Essentially, our

results provide design guidelines on how to choose the parameters of the heterogeneous random

key predistribution scheme such that the resulting wireless sensor network is securely connected

under a heterogeneous on-off channel model. Our results are supported by a simulation study

demonstrating that despite their asymptotic nature, our results can in fact be useful in de-

signing finite-node wireless sensor network so that they achieve secure connectivity with high

probability.
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7.3 Model definitions

In practical deployments of wireless sensor networks, nodes typically have limited communi-

cation ranges and the channel between two nodes may not be available, e.g., due to excessive

interference. In other words, two sensor nodes which share a key may not eventually be adjacent

due to the unavailability of their corresponding wireless channel. Hence, the secure connectiv-

ity of the network would not only be governed by the shared-key connectivity discussed above,

but also by the wireless connectivity.

In modeling the wireless connectivity of the network, we utilize a heterogeneous on-off

channel model, where the wireless channel between a class-i node and a class-j node is on

(respectively, off) with probability αij (respectively, 1− αij) for i, j = 1, . . . , r. Note that the

heterogeneous on-off channel model accounts for the fact that different nodes could have differ-

ent radio capabilities, or could be deployed in locations with different channel characteristics.

This is indeed a generalization of the uniform on-off channel model, where the channel between

any two nodes is on (respectively, off) with probability α (respectively, 1−α) regardless of the

corresponding classes. Hence, the heterogeneous on-off channel model offers the flexibility of

modeling several interesting scenarios, such as when nodes of the same type are more (or less)

likely to be adjacent with one another than with nodes belonging to other classes.

Consider a random graph G induced on the vertex set V = {v1, . . . , vn} such that each

node is classified into one of the r classes with a probability distribution µµµ = {µ1, µ2, . . . , µr}

with µi > 0 for i = 1, . . . , r and
∑r

i=1 µi = 1. Then, a distinct class-i node vx and a distinct

class-j node vy are adjacent in G, denoted by vx ∼G vy, if Bxy(αij) = 1 where Bxy(αij) denotes

a Bernoulli rv with success probability αij. This gives rise to an r× r edge probability matrix

ααα where αij denotes the element of row i and column j of ααα. The aforementioned adjacency

conditions induces the inhomogeneous Erdős-Rényi graph G(n;µµµ,ααα) on the vertex set V , which

has received interest recently [19,32].

Although the on-off channel model may be considered too simple, it allows a comprehensive
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analysis of the properties of interest and is often a good approximation of more realistic channel

models, e.g., the disk model [68]. In fact, the simulations results in [43] suggest that the k-

connectivity behavior of wireless sensor networks secured by the heterogeneous random key

predistribution scheme under the uniform on-off channel model (where αij = α for i, j =

1, . . . , r) is asymptotically equivalent to that under the more-realistic disk model.

Inhomogeneous random key graphs (see Section 6.3) and inhomogeneous Erdős-Rényi graphs,

each, captures a particular notion of connectivity, namely shared-key connectivity and wireless

connectivity, respectively. In what follows, we construct a random graph model that jointly

considers both notions, hence, it accurately describes practical deployments of wireless sensor

networks, where two nodes are adjacent if they both share a key and have an available wireless

channel in between.

We consider a composite random graph obtained by the intersection of inhomogeneous

random key graphs K(n;µµµ,KKK,P ) with inhomogeneous Erdős-Rényi graphs G(n;µµµ,ααα). Hence,

edges in the intersection graph K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) represent pairs of sensor which i)

share a key and ii) have a wireless channel in between that is on. In particular, a distinct

class-i node vx is adjacent to a distinct class-j node vy in K(n;µµµ,KKK,P )∩G(n;µµµ,ααα) if and only

if they are adjacent in both K and G.

To simplify the notation, we let θθθ = (KKK,P ), and ΘΘΘ = (θθθ,ααα). By independence, we see

that the probability of edge assignment between a class-i node vx and a class-j node vy in

K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is given by

P[vx ∼ vy | tx = i, ty = j] = αijpij

Similar to (6.3), we denote the mean edge probability for a class-i node in K(n;µµµ,KKK,P ) ∩

G(n;µµµ,ααα) as Λi. It is clear that

Λi =
r∑
j=1

µjαijpij, i = 1, . . . , r. (7.1)
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We write Λm to denote the minimum mean edge probability in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα),

i.e.,

m := arg min
i

Λi. (7.2)

We further let αmin := mini,j{αij} and αmax := maxi,j{αij}. Finally, we define d and s as

follows

d := arg max
j
{αmj}, (7.3)

s := arg max
j
{αmjpmj}. (7.4)

Throughout, we assume that the number of classes r is fixed and does not scale with n, and

so are the probabilities µ1, . . . , µr. All of the remaining parameters are assumed to be scaled

with n.

7.4 Preliminaries

Several technical results are collected here for convenience. Some of the results already ap-

peared in Chapter 6, but we provide them below (without a proof) for completeness.

Proposition 7.4.1 ( [157, Proposition 4.1]). For any scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 ,

we have

λ1(n) ≤ λ2(n) ≤ . . . ≤ λr(n) (7.5)

for each n = 2, 3, . . ..

Proposition 7.4.2 ( [157, Proposition 4.4]). For any set of positive integers K1, . . . , Kr, P

and any scalar a ≥ 1, we have

(
P−daKie

Kj

)(
P
Kj

) ≤

((P−Ki
Kj

)(
P
Kj

) )a

, i, j = 1, . . . , r (7.6)
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Lemma 7.4.3. Consider a scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 and a scaling ααα = {αij} :

N0 → (0, 1)r×r such that (7.29) and (7.32) hold. We have

αmin(n)p1r(n) = Θ

(
log n

n

)
(7.7)

Proof. We note from (7.32) that

αmr(n)pmr(n) ≤ Λm(n)

µr
=
cn
µr

log n

n
,

Next, we show that under (6.15), the quantity pij(n) is increasing in both i and j. Fix

n = 2, 3, . . . and recall that under (7.26), Ki increases as i increases. For any i, j such that

Ki +Kj > P , we see from (6.2) that pij(n) = 1; otherwise if Ki +Kj ≤ P , we have pij(n) < 1.

Given that Ki+Kj increases with both i and j, it will be sufficient to show that pij(n) increases

with both i and j on the range where Ki +Kj < P . On that range, we have

(
P−Ki
Kj

)(
P
Kj

) =

Ki−1∏
`=0

(
1− Kj

P − `

)

Hence,
(
P−Ki
Kj

)
/
(
P
Kj

)
decreases with both Ki and Kj, hence with i and j. From (6.2), it follows

that pij(n) increases with i and j. As a consequence, we have p1r ≤ pmr and it follows that

αmin(n)p1r(n) ≤ αmr(n)pmr(n) ≤ cn
µr

log n

n
. (7.8)

Combining (7.29) and (7.8) we readily obtain (7.7).

Lemma 7.4.4. Consider a scaling K1, K2, . . . , Kr, P : N0 → Nr+1
0 and a scaling ααα = {αij} :
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N0 → (0, 1)r×r such that (7.27) holds. From (7.29), (7.30), (7.31), and (7.8), we have

αmax(n)prr(n) = o

(
(log n)τ+2

n

)
(7.9)

and

αminp11(n) = ω

(
1

n

)
, (7.10)

Proof. From (7.31) and (7.8), we have

αmax(n)p1r(n) =

(
αmax(n)

αmin(n)

)
αmin(n)p1r(n) = O

(
(log n)τ+1

n

)
(7.11)

It is now immediate that Lemma 7.4.4 is established once we show that

prr(n)

p1r(n)
= o (log n) , (7.12)

leading to

αmax(n)prr(n) =

(
prr(n)

p1r(n)

)
αmax(n)p1r(n) = o

(
(log n)τ+2

n

)

We proceed by establishing (7.12). The proof is similar with [50, Lemma 5.4], but we give it

below for completeness.

In particular, we will show that

prr(n) ≤ max

(
2,

log n

wn

)
p1r(n), n = 2, 3, . . . (7.13)

for some sequence wn such that limn→∞wn =∞. Fix n = 2, 3, . . . . We have either p1r(n) > 1
2
,

or p1r(n) ≤ 1
2
. In the former case, it automatically holds that

prr(n) ≤ 2p1r(n) (7.14)
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by virtue of the fact that prr(n) ≤ 1.

Assume now that p1r(n) ≤ 1
2
. We know from [159, Lemmas 7.1-7.2] that

1− e−
Kj,nKr,n

Pn ≤ pjr(n) ≤ Kj,nKr,n

Pn −Kj,n

, j = 1, . . . , r (7.15)

and it follows that

K1,nKr,n

Pn
≤ log

(
1

1− p1r(n)

)
≤ log 2 < 1. (7.16)

Using the fact that 1− e−x ≥ x
2

with x in (0, 1), we then get

p1r(n) ≥ K1,nKr,n

2Pn
. (7.17)

In addition, using the upper bound in (7.15) with j = r gives

prr(n) ≤
K2
r,n

Pn −Kr,n

≤ 2
K2
r,n

Pn

as we invoke (7.26). Combining the last two bounds we obtain

prr(n)

p1r(n)
≤ 4

Kr,n

K1,n

= 4
log n

wn
(7.18)

by virtue of (7.30) for some sequence wn satisfying limn→∞wn = ∞. Combining (7.14) and

(7.18), we readily obtain (7.13). This establishes (7.9).

Next, Combining (7.29), and the fact that p1r(n)/p11(n) = o(log n) (see (7.13)), we get

αmin(n)p11(n) =

(
p11(n)

p1r(n)

)
αmin(n)p1r(n) = ω

(
1

n

)

which readily establishes (7.10).
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Lemma 7.4.5. Under (7.10), we have

K2
1,n

Pn
= ω

(
1

nαmin

)
, (7.19)

and

K1,n = ω(1). (7.20)

Proof. It is a simple matter to check that p11(n) ≤ K2
1,n

Pn−K1,n
; see [159, Proposition 7.1-7.2] for

a proof. In view of (7.26) this gives p11(n) ≤ 2
K2

1,n

Pn
. Thus, we have

K2
1,n

Pn
= Ω (p11(n)) = ω

(
1

nαmin

)
.

From (7.28), (7.19), and αmin ≤ 1, we readily obtain (7.20).

Other useful bound that will be used throughout is

(1± x) ≤ e±x, x ∈ (0, 1) (7.21)(
n

`

)
≤
(en
`

)`
, ` = 1, . . . , n, n = 1, 2, . . . (7.22)

bn2 c∑
`=2

(
n

`

)
≤ 2n (7.23)

Finally, we find it useful to write

log(1− x) = −x−Ψ(x), x ∈ (0, 1) (7.24)

where Ψ(x) =
∫ x

0
t

1−t dt. From L’Hôpital’s Rule, we have

lim
x→0

Ψ(x)

x2
=
−x− log(1− x)

x2
=

1

2
. (7.25)
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7.5 Connectivity and absence of isolated nodes

We refer to a mapping K1, . . . , Kr, P : N0 → Nr+1
0 as a scaling (for inhomogeneous random

key graphs) if

1 ≤ K1,n ≤ K2,n ≤ . . . ≤ Kr,n ≤ Pn/2 (7.26)

hold for all n = 2, 3, . . .. Similarly any mapping ααα = {αij} : N0 → (0, 1)r×r defines a scaling for

inhomogeneous Erdős-Rényi graphs. A mapping ΘΘΘ : N0 → Nr+1
0 × (0, 1)r×r defines a scaling for

the intersection graph K(n;µµµ,KKK,P )∩G(n;µµµ,ααα) given that condition (7.26) holds. We remark

that under (7.26), the edge probabilities pij will be given by (6.2).

We first present a zero-one law for the absence of isolated nodes inK(n;µµµ,KKK,P )∩G(n;µµµ,ααα).

7.5.1 A zero-one law for the absence of isolated nodes

Theorem 7.5.1. Consider a probability distribution µµµ = {µ1, µ2, . . . , µr} with µi > 0 for

i = 1, . . . , r, a scaling K1, . . . , Kr, P : N0 → Nr+1
0 , and a scaling ααα = {αij} : N0 → (0, 1)r×r

such that

Λm(n) ∼ c
log n

n
(7.27)

holds for some c > 0.

i) If

lim
n→∞

αmd(n) log n = 0 or lim
n→∞

αmm(n) log n = α∗ ∈ (0,∞]

holds, then we have

lim
n→∞

P [K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) has no isolated nodes] = 0 if c < 1

ii) We have

lim
n→∞

P [K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) has no isolated nodes] = 1 if c > 1
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Next, we present an analogous result for connectivity.

7.5.2 A zero-one law for connectivity

Theorem 7.5.2. Consider a probability distribution µµµ = {µ1, µ2, . . . , µr} with µi > 0 for

i = 1, . . . , r, a scaling K1, . . . , Kr, P : N0 → Nr+1
0 , and a scaling ααα = {αij} : N0 → (0, 1)r×r

such that (7.27) holds for some c > 0.

i) If

lim
n→∞

αmd(n) log n = 0 or lim
n→∞

αmm(n) log n = α∗ ∈ (0,∞]

holds, then we have

lim
n→∞

P [K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected] = 0 if c < 1

ii) If

Pn ≥ σn, n = 1, 2, . . . (7.28)

for some σ > 0, and

αmin(n)p1r(n) = Ω

(
log n

n

)
(7.29)

Kr,n

K1,n

= o (log n) (7.30)

αmax(n)

αmin(n)
= O ((log n)τ ) (7.31)

for any finite τ > 0. Then, we have

lim
n→∞

P [K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected] = 1 if c > 1
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The scaling condition (7.27) will often be used in the form

Λm(n) = cn
log n

n
, n = 2, 3, . . . (7.32)

with limn→∞ cn = c > 0. Also, condition (7.29) will often be used in the form

αmin(n)p1r(n) ≥ ρ
log n

n
, for ρ > 0 and n = 2, 3, . . . (7.33)

7.5.3 Discussion

Theorems 7.5.1 and 7.5.2 state that K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) has no isolated node (and is

connected) with high probability if the minimum mean degree, i.e., nΛm, is scaled as (1+ε) log n

for some ε > 0. On the other hand, if this minimum mean degree scales as (1 − ε) log n

for some ε > 0, then with high probability K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) has an isolated node,

and hence is not connected. The resemblance of the results presented in Theorem 7.5.1 and

Theorem 7.5.2 indicates that absence of isolated nodes and connectivity are asymptotically

equivalent properties for K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα). Similar observations were made for other

well-known random graph models as well; e.g., inhomogeneous random key graphs [157], Erdős-

Rényi graphs [18], and (homogeneous) random key graphs [159].

Note that if the matrix ααα is designed in such a way that αii = maxj{αij}, i.e., two

nodes of the same type are more likely to be adjacent in G(n;µµµ,ααα), then we have αmd =

αmm and the condition of the zero-law of Theorems 7.5.1 and 7.5.2 would collapse to i)

limn→∞ αmm(n) log n = 0 or ii) limn→∞ αmm(n) log n ∈ (0,∞]. At this point, the zero-law

follows even when the sequence αmm log n does not have a limit by virtue of the subsubsequence

principle [73, p. 12] (see also [43, Section 7.3]). In other words, if αmd = αmm, then the zero-law

of Theorems 7.5.1 and 7.5.2 follows without any conditions on the sequence αmm(n) log n.

We now comment on the additional technical conditions needed for the one-law of Theo-

rem 7.5.2. Condition (7.28) is likely to be needed in practical deployments of wireless sensor
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networks in order to ensure the resilience of the network against node capture attacks; e.g.,

see [33, 53]. To see this, assume that an adversary captures a number of sensors, compromis-

ing all the keys that belong to the captured nodes. If Pn = o(n), contrary to (7.28), then it

would be possible for the adversary to compromise Ω(Pn) keys by capturing only o(n) sensors

(whose type does not matter). In this case, the wireless sensor network would fail to exhibit

the unassailability property [95, 153] and would be deemed as vulnerable against adversarial

attacks. We remark that (7.28) was required in [43,50,157,166] in similar settings to ours.

Condition (7.29) provides a non-trivial lower bound on the edge probability αmin(n)p1r(n)

and is enforced mainly for technical reasons for the proof of the one-law of Theorem 7.5.2

to work. Note that it is easy to show that αmin(n)p1r(n) = O (log n/n) from (7.32) (see

Lemma 7.4.3 for a proof), however, the scaling condition given by (7.32) does not provide

any non-trivial lower-bound on the product αmin(n)p1r(n). Observe that, even with condition

(7.29), our results do not require each edge probability to scale as log n/n, in contrast to the

results given in [32] on the connectivity of inhomogeneous Erdős-Rényi graphs. In particular,

the probability of an edge between a class-i node and a class-j node was set to κ (i, j) log n/n

in [32], where κ (i, j) returns a positive real number for each pair (i, j); i.e., each individual

edge was scaled as Θ(log n/n).

Condition (7.30) is also enforced mainly for technical reasons and it takes away from the

flexibility of assigning very small key key rings to a certain fraction of sensors when connectivity

is considered. An equivalent condition was also needed in [157] for establishing the one-law for

connectivity in inhomogeneous random key graphs. We refer the reader to [157, Section 3.2]

for an extended discussion on the feasibility of (7.30) for real-world implementations of wireless

sensor networks. Condition (7.31) also limits the flexibility of assigning very small values for

αmin, but it is much milder than condition (7.30) in a sense that it requires αmax(n)/αmin(n) to

be O ((log n)τ ) for some finite τ > 0, i.e., one can still afford to have a large deviation between

αmin(n) and αmax(n) as compared to the case if αmax(n)/αmin(n) had to be scaled as o(log n),

similar to the case in (7.30).
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We close by providing a concrete example that demonstrates how all the conditions required

by Theorem 7.5.2 can be met in a real-world implementation. Consider a sensor network

consisting of two classes, i.e., r = 2. Pick any probability distribution µµµ = {µ1, µ2} with µi > 0

for all i = 1, 2. Set Pn = dn log ne as well as

K1,n =

⌈
(log n)1/2+ε√

αmin(n)

⌉
and K2,n =

⌈
(1 + ε)(log n)3/2−ε

µ2

√
αmin(n)

⌉

with any 0 < ε < 0.5. Observe that the above selection satisfies (7.28) as well as (7.30). Next,

set

ααα = αmin(n)

1+ε
µ1

(log n)1−2ε 1

1 µ2

1+ε
(log n)1+2ε


Note that the above selection satisfies (7.31) with τ = 1 + 2ε. For simplicity, assume that

λ1(n) = o(1) which implies that p1j(n) = o(1) for j = 1, 2. In this case, we have p1j(n) ∼
K1,nKj,n

Pn
for j = 1, 2 (see [157, Lemma 4.2]). With this parameter selection, we have

αmin(n)p12(n) ∼ αmin(n)
K1,nK2,n

Pn
=

1 + ε

µ2

log n

n

which satisfies (7.29).

Finally, observe that with the above parameter selection, both Λ1(n) and Λ2(n) are strictly

larger than log n/n. Hence, in view of Theorem 7.5.2, the resulting network will be connected

with high probability. Of course, there are many other parameter scalings that one can choose.

7.5.4 Comparison with related work

The connectivity (respectively, k-connectivity) of wireless sensor networks secured by the clas-

sical Eschenauer-Gligor scheme under a uniform on/off channel model was investigated in [156]

(respectively, [166]). The network was modeled by a composite random graph formed by the

intersection of random key graphs K(n;K,P ) (induced by Eschenauer-Gligor scheme) with

Erdős-Rényi graphs G(n;α) (induced by the uniform on-off channel model). Our work gener-
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alizes this model to heterogeneous setting where different nodes could be given different number

of keys depending on their respective classes and the availability of a wireless channel between

two nodes depends on their respective classes. Hence, our model highly resembles emerging

wireless sensor networks which are essentially complex and heterogeneous.

In [157], Yağan considered the connectivity of wireless sensor networks secured by the

heterogeneous random key predistribution scheme under the full visibility assumption, i.e.,

all wireless channels are available and reliable, hence the only condition for two nodes to be

adjacent is to share a key. It is clear that the full visibility assumption is not likely to hold

in most practical deployments of wireless sensor networks as the wireless medium is typically

unreliable. Our work extends the results given in [157] to more practical scenarios where the

wireless connectivity is taken into account through the heterogeneous on-off channel model. In

fact, by setting αij(n) = 1 for i, j = 1, . . . , r and each n = 1, 2, . . . (i.e., by assuming that all

wireless channels are on), our results reduce to those given in [157].

In comparison with the existing literature on similar models, our result can be seen to extend

the work by Eletreby and Yağan in [50] (respectively, [43]). Therein, the authors established

a zero-one law for the 1-connectivity (respectively, k-connectivity) of K(n;µµµ,KKK,P ) ∩G(n;α),

i.e., for a wireless sensor network under the heterogeneous key predistribution scheme and a

uniform on-off channel model. Although these results form a crucial starting point towards the

analysis of the heterogeneous key predistribution scheme under a wireless connectivity model,

they are limited to uniform on-off channel model where all channels are on (respectively, off)

with the same probability α (respectively, 1 − α). The heterogeneous on-off channel model

accounts for the fact that different nodes could have different radio capabilities, or could be

deployed in locations with different channel characteristics. In addition, it offers the flexibility

of modeling several interesting scenarios, such as when nodes of the same type are more (or

less) likely to be adjacent with one another than with nodes belonging to other classes. Indeed,

by setting αij(n) = α for i, j = 1, . . . , r and each n = 1, 2, . . ., our results reduce to those given

in [50].
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7.5.5 Numerical results

In this section, we present a simulation study to validate our results in the finite-node regime.

In all experiments, we fix the number of nodes at n = 500, the size of the key pool at P = 104,

and the number of experiments to 400.

In Figure 7.1, we set the channel matrix to

ααα =

0.3 α12

α12 0.3


and consider three different values for the parameter α12, namely, α12 = 0.2, α12 = 0.4, and

α12 = 0.6. We also vary K1 (i.e., the smallest key ring size) from 5 to 25. The number of classes

is fixed to 2, with µµµ = {0.5, 0.5}. For each value of K1, we set K2 = K1 +5. For each parameter

pair (KKK,ααα), we generate 400 independent samples of the graph K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) and

count the number of times (out of a possible 400) that the obtained graphs i) have no isolated

nodes and ii) are connected. Dividing the counts by 400, we obtain the (empirical) probabilities

for the events of interest. In all cases considered here, we observe that K(n;µµµ,KKK,P )∩G(n;µµµ,ααα)

is connected whenever it has no isolated nodes yielding the same empirical probability for both

events. This confirms the asymptotic equivalence of the connectivity and absence of isolated

nodes properties in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) as is illustrated in Theorems 7.5.1 and 7.5.2.

For each value of α12, we show the critical threshold of connectivity given by Theorem 7.5.2

in the form of highlighted symbols. More specifically, highlighted symbols stand for the mini-

mum integer value of K1 that satisfies

Λm(n) =
2∑
j=1

µjαmj

(
1−

(
P−Kj
Km

)(
P
Km

) ) >
log n

n
. (7.34)

upon noting that K2 = K1 + 5. We see from Figure 7.1 that the probability of connectivity

transitions from zero to one within relatively small variations of K1. Moreover, the critical

values of K1 obtained by (7.34) lie within this transition interval and correspond to high
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Figure 7.1: Empirical probability that K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected as a function of
KKK for α12 = 0.2, α12 = 0.4, and α12 = 0.6. We set α11 = α22 = 0.3. Highlighted symbols stand
for the critical threshold of connectivity asserted by Theorem 7.5.2.

probability of connectivity. Note that for each parameter pair (KKK,ααα) in Figure 7.1, we have

Λm = Λ1 by construction.

Next, we set the channel matrix to

ααα =

α11 0.2

0.2 0.2


in Figure 7.2, and consider three different values for the parameter α11, namely, α11 = 0.2,

α11 = 0.4, and α11 = 0.6. We also vary K1 from 10 to 25. The number of classes is fixed to

2, with µµµ = {0.5, 0.5}. For each value of K1, we set K2 = K1 + 5. Similar to Figure 7.1, we

obtain the empirical probability that K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) is connected versus K1. As

before, the critical threshold of connectivity asserted by Theorem 7.5.2 is shown by highlighted

symbols in each curve.

Note that for α11 ≥ 0.4, fixed α12, and fixed α22, the probability of connectivity (along with
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Figure 7.2: Empirical probability that K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected as a function of
KKK for α11 = 0.2, α11 = 0.4, and α11 = 0.6. We set α12 = α22 = 0.2. Highlighted symbols stand
for the critical threshold of connectivity asserted by Theorem 7.5.2.

the critical value of K1) behave in a similar fashion regardless of the particular value of α11.

The reason behind this is intuitive. When α11 = 0.2, we have Λm = Λ1, while for α11 ≥ 0.4, we

have Λm = Λ2. Consequently, the value of α11 (which only appears in Λ1) becomes irrelevant

to the scaling condition given by (7.34).

Finally, we set the channel matrix to

ααα =

 α 0.2

0.2 α


and consider four different values for the parameter K1, namely, K1 = 20, K1 = 25, K1 = 30,

and K1 = 35 while varying the parameter α from 0 to 1. The number of classes is fixed to 2 with

µµµ = {0.5, 0.5} and we set K2 = K1 + 5 for each value of K1. We plot the empirical probability

that K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) is connected versus α and highlight the critical threshold of

connectivity asserted by Theorem 7.5.2. Note that K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) has a positive
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Figure 7.3: Empirical probability that K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected as a function of
α for K1 = 20, K1 = 25, K1 = 30, and K1 = 35. We set α12 = 0.2. Highlighted symbols stand
for the critical threshold of connectivity asserted by Theorem 7.5.2.

probability to be connected with α12 > 0 even when α = 0. In this case, the connected

instances of K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) represent connected bipartite graphs, where one set of

the bipartite graph represents class-1 nodes and the other represents class-2 nodes. The results

given by Figure 7.3 reveal the importance of cross-type edge probability in establishing a

connected graph. In particular, when α11 = α22 = 0, the graph could still be connected owing

to cross-type edges. Indeed, the graph cannot be connected when cross-type edges have zero

probability, even when same-type edges have positive probability since the graph would consist

of at least two isolated components, as captured by Figure 7.4.

7.5.6 Proof of Theorem 7.5.1

The proof of Theorem 7.5.1 relies on the method of first and second moments applied to the

number of isolated nodes in K(n;µµµ,KKK,P )∩G(n;µµµ,ααα). Let In(µµµ,ΘΘΘn) denote the total number
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Figure 7.4: Empirical probability that K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected as a function of
α12 for K1 = 20, K1 = 25, K1 = 30, and K1 = 35. We set α11 = α22 = 0.2. Highlighted
symbols stand for the critical threshold of connectivity asserted by Theorem 7.5.2.

of isolated nodes in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα), namely,

In(µµµ,ΘΘΘn) =
n∑
`=1

111[v` is isolated in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)] (7.35)

The method of first moment [73, Eqn. (3.1), p. 54] gives

1− E[In(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn) = 0]

Establishing the one-law

It is clear that in order to establish the one-law, namely that limn→∞ P [In(µµµ,ΘnΘnΘn) = 0] = 1, we

need to show that

lim
n→∞

E[In(µµµ,ΘΘΘn)] = 0.
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Recalling (7.35), we have

E [In(µµµ,ΘΘΘn)] = n
r∑
i=1

µiP
[
v1 is isolated in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)

∣∣ t1 = i
]

(7.36)

= n

r∑
i=1

µiP
[
∩nj=2[vj � v1] | t1 = i

]
= n

r∑
i=1

µi (P [v2 � v1 | t1 = i])n−1 (7.37)

where (7.36) follows by the exchangeability of the indicator functions appearing at (7.35) and

(7.37) follows by the conditional independence of the rvs {vj � v1}nj=1 given t1. By conditioning

on the class of v2, we find

P[v2 � v1

∣∣ t1 = i] =
r∑
j=1

µjP[v2 � v1

∣∣ t1 = i, t2 = j] =
r∑
j=1

µj(1− αpij) = 1− Λi(n). (7.38)

Using (7.38) in (7.37), and recalling (7.2), (7.21) we obtain

E[In(µµµ,ΘΘΘn)] = n
r∑
i=1

µi (1− Λi(n))n−1

≤ n (1− Λm(n))n−1

= n

(
1− cn

log n

n

)n−1

≤ elogn(1−cn n−1
n )

Taking the limit as n goes to infinity, we immediately get

lim
n→∞

E[In(µµµ,ΘΘΘn)] = 0.

since limn→∞(1 − cn n−1
n

) = 1 − c < 0 under the enforced assumptions (with c > 1) and the

one-law is established.
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Establishing the zero-law

Our approach in establishing the zero-law relies on the method of second moment applied to a

variable that counts the number of nodes that are class-m and isolated. Clearly if we can show

that whp there exists at least one class-m node that is isolated under the enforced assumptions

(with c < 1) then the zero-law would immediately follow.

Let Yn(µµµ,ΘΘΘn) denote the number of nodes that are class-m and isolated in K(n;µµµ,KKK,P )∩

G(n;µµµ,ααα), and let

xn,i(µµµ,ΘΘΘn) = 111[ti = m ∩ vi is isolated in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)],

then we have Yn(µµµ,ΘΘΘn) =
∑n

i=1 xn,i(µµµ,ΘΘΘn). By applying the method of second moments [73,

Remark 3.1, p. 54] on Yn(µµµ,ΘΘΘn), we get

P[Yn(µµµ,ΘΘΘn) = 0] ≤ 1− (E[Yn(µµµ,ΘΘΘn)])2

E[Yn(µµµ,ΘΘΘn)2]
(7.39)

where

E[Yn(µµµ,ΘΘΘn)] = nE[xn,1(µµµ,ΘΘΘn)] (7.40)

and

E[Yn(µµµ,ΘΘΘn)2] =nE[xn,1(µµµ,ΘΘΘn)] + n(n− 1)E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)] (7.41)

by exchangeability and the binary nature of the rvs {xn,i(µµµ,ΘΘΘn)}ni=1. Using (7.40) and (7.41),

we get

E[Yn(µµµ,ΘΘΘn)2]

(E[Yn(µµµ,ΘΘΘn)])2 =
1

nE[xn,1(µµµ,ΘΘΘn)]
+
n− 1

n

E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

(E[xn,1(µµµ,ΘΘΘn)])2

In order to establish the zero-law, we need to show that

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞,
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and

lim sup
n→∞

(
E[xn,1(µµµ,ΘΘΘn)xn,2(µµµ,ΘΘΘn)]

(E[xn,1(µµµ,ΘΘΘn)])2

)
≤ 1. (7.42)

Proposition 7.5.3. Consider a scaling K1, . . . , Kr, P : N0 → Nr+1
0 and a scaling ααα = {αij} :=

N0 → (0, 1)r×r such that (7.27) holds with limn→∞ cn = c > 0. Then, we have

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞, if c < 1

Proof. We have

nE [xn,1(µµµ,ΘΘΘn)] = nE [111[t1 = m ∩ v1 is isolated in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)]]

= nµmP
[
v1 is isolated in K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα)

∣∣ t1 = m
]

= nµmP
[
∩nj=2[vj � v1]

∣∣ t1 = m
]

= nµmP
[
v2 � v1

∣∣ t1 = m
]n−1

= nµm

(
r∑
j=1

µjP
[
v2 � v1

∣∣ t1 = 1, t2 = j
])n−1

= nµm

(
r∑
j=1

µj(1− αmjpmj)

)n−1

(7.43)

= nµm (1− Λm(n))n−1 = µme
βn (7.44)

where

βn = log n+ (n− 1) log(1− Λm(n)).
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Recalling (7.24), we get

βn = log n− (n− 1) (Λm(n) + Ψ(Λm(n)))

= log n− (n− 1)

(
cn

log n

n
+ Ψ

(
cn

log n

n

))
= log n

(
1− cn

n− 1

n

)
− (n− 1)

(
cn

log n

n

)2 Ψ
(
cn

logn
n

)(
cn

logn
n

)2 (7.45)

Recalling (7.25), we have

lim
n→∞

Ψ
(
cn

logn
n

)(
cn

logn
n

)2 =
1

2
(7.46)

since cn
logn
n

= o(1). Thus, βn = log n
(
1− cn n−1

n

)
− o(1). Using (7.44), (7.45), (7.46), and

letting n go to infinity, we get

lim
n→∞

nE[xn,1(µµµ,ΘΘΘn)] =∞

whenever limn→∞ cn = c < 1.

Proposition 7.5.4. Consider a scaling K1, . . . , Kr, P : N0 → Nr+1
0 and a scaling ααα = {αij} :=

N0 → (0, 1)r×r such that (7.27) holds with limn→∞ cn = c > 0. Then, we have (7.42) if c < 1.

Proof. Consider fixed ΘΘΘ.

E [xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = E [111[v1 is isolated , v2 is isolated ∩ t1 = m, t2 = m]]

= µ2
mE
[
111[v1 is isolated , v2 is isolated]

∣∣∣ t1 = m, t2 = m
]

= µ2
mE

[
111[v1 � v2]

n∏
k=3

111[vk � v1, vk � v2]

∣∣∣∣∣ t1 = t2 = m

]

Now we condition on Σ1 and Σ2 and note that i) Σ1 and Σ2 determine t1 and t2; and ii) the

events [v1 � v2], {[vk � v1 ∩ vk � v2]}nk=3 are mutually independent given Σ1 and Σ2. Thus, we
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have

E [xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = µ2
mE

[
P
[
v1 � v2

∣∣∣ Σ1,Σ2

]
×

n∏
k=3

P
[
vk � v1 ∩ vk � v2

∣∣∣ Σ1,Σ2

] ∣∣∣∣ t1 = t2 = m

]
(7.47)

Define the {0, 1}-valued rv u(θθθ) by

u(θθθ) := 111[Σ1 ∩ Σ2 6= ∅]. (7.48)

Next, with ` = 1, 2, . . . , n− 1, define ν`,j(ααα) by

ν`,j(ααα) := {i = 1, 2, . . . , ` : Bij(ααα) = 1} (7.49)

for each j = `+ 1, . . . , n. Namely, ν`,j(ααα) is the set of nodes in {1, . . . , `} that are adjacent to

node j in G(n;µµµ,ααα). With these definitions in mind, (7.47) gives

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = µ2
mE

(1− αmm)u(θθθ)

n∏
k=3

(
P −

∣∣∪i∈ν2,k(ααα)Σi

∣∣
|Σk|

)
(
P

|Σk|

)
∣∣∣∣∣∣∣∣ t1 = t2 = m


Conditioned on u(θθθ) = 0 and v1, v2 being class-m, we have

∣∣∪i∈ν2,m(ααα)Σi

∣∣ = |ν2,k(ααα)|Km.

Also, we have

P[u(θnθnθn) = 0 | t1 = t2 = m] = 1− pmm.
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Thus, we get

E [xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ) 111[u(θθθ) = 0]]

= µ2
m(1− pmm)E


n∏
k=3

(
P − |ν2,k(ααα)Km|

|Σk|

)
(
P

|Σk|

) ∣∣∣∣∣ t1 = t2 = m



= µ2
m(1− pmm)E


(
P − |ν2,3(ααα)|Km

|Σ3|

)
(
P

|Σ3|

) ∣∣∣∣∣ t1 = t2 = m


n−2

(7.50)

= µ2
m(1− pmm)


r∑
j=1

µjE


(
P − |ν2,3(ααα)|Km

|Σ3|

)
(
P

|Σ3|

)
∣∣∣∣∣∣∣∣
t1 = t2 = m

t3 = j



n−2

≤ µ2
m(1− pmm)


r∑
j=1

µjE



(
P −Km

Kj

)
(
P

Kj

)

|ν2,3(ααα)| ∣∣∣∣∣∣∣∣

t1 = t2 = m

t3 = j



n−2

, (7.51)

where we use (7.6) in the last step. Note that conditioned on t1 = t2 = m, the random variables

{|ν2,k(ααα)|}nk=3 are independent and identically distributed, hence (7.50) follows. In particular

|ν2,k(ααα)|
∣∣∣ t1 = t2 = m ∼ Binomial (2, αmj) with probability µj, k = 3, 4, . . . , n

The above distributional equality could be explained as follows. We may write |ν2,k(ααα)| =

111 [v1 ∼G vk] + 111 [v2 ∼G vk]. Observe that conditioned on t1 = t2 = m, we know that nodes v1

and v2 belong to class-m in G (n;µµµ,ααα). If node vk is class-j (an event that has probability

µj), then 111 [v1 ∼G vk] and 111 [v2 ∼G vk] are each distributed as Bernoulli random variable with

parameter αmj.

Now, let

Zj =

(
P −Km

Kj

)
(
P

Kj

) = 1− pmj, j = 1, . . . , r. (7.52)
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Then,

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111 [u(θθθ) = 0]] ≤ µ2
m(1− pmm)

 r∑
j=1

µjE

Z |ν2,3(ααα)|
j

∣∣∣∣ t1 = t2 = m

t3 = j



n−2

(7.53)

Note that

|ν2,3(ααα)|
∣∣∣∣ t1 = t2 = m

t3 = j
∼ Binomial(2, αmj)

Hence,

E

Z |ν2,3(ααα)|
j

∣∣∣∣ t1 = t2 = m

t3 = j

 =
2∑
i=0

(
2

i

)
αimj(1− αmj)2−iZi

j

=
2∑
i=0

(
2

i

)
αimj(1− αmj)2−i (1− pmj)i

= 1− 2αmjpmj + (αmjpmj)
2 (7.54)

upon recalling (7.52). Next, let W be a rv that takes the value αmjpmj with probability µj. It

follows that

r∑
j=1

µjE

Z |ν2,3(ααα)|
j

∣∣∣∣ t1 = t2 = m

t3 = j

 = 1− 2Λm +
r∑
j=1

µj (αmjpmj)
2 = 1− 2Λm + E

[
W 2
]

Next, we recall (7.4) and let

k := arg min
j
αmjpmj
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Now, in view of Popoviciu’s inequality [74, pp. 9], we see that

var(W ) ≤ 1

4
(Wmax −Wmin)2

=
1

4
(αmspms − αmkpmk)2

≤ 1

4
(αmspms)

2 (7.55)

We also know from (7.1) that

αmspms ≤
1

µs
Λm (7.56)

From (7.55) and (7.56), we get

var(W ) ≤ 1

4µ2
s

Λ2
m (7.57)

It is now immediate that

E
[
W 2
]

= (E [W ])2 + var(W ) ≤
(

1 +
1

4µ2
s

)
Λ2
m (7.58)

by virtue of the fact that E [W ] = Λm. Using (7.58) into (7.53), we readily obtain

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111 [u(θθθ) = 0]] ≤ µ2
m(1− pmm)

(
1− 2Λm +

(
1 +

1

4µ2
s

)
Λ2
m

)n−2

(7.59)

Next, conditioning on u(θθθ) = 1 and t1 = t2 = m, we have

| ∪i∈ν2,k(ααα) Σi| =


0 if |ν2,k(ααα)| = 0

Km if |ν2,k(ααα)| = 1

2Km − |Σ1 ∩ Σ2| if |ν2,k(ααα)| = 2

and by a crude bounding argument, we have

| ∪i∈ν2,k(ααα) Σi| ≥ Km111[|ν2,k(ααα)| > 0] (7.60)
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Using (7.60) and recalling the analysis for E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111[u(θθθ) = 0]], we obtain

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111[u(θθθ) = 1]] ≤ µ2
m(1− αmm)pmm

(
r∑
j=1

µjE

[
Z

111[|ν2,3(ααα)|>0]
j

∣∣∣∣∣ t1 = t2 = m

t3 = j

])n−2

(7.61)

where

E

Z111[|ν2,3(ααα)|>0]
j

∣∣∣∣ t1 = t2 = m

t3 = j

 = (1− αmj)2 +
(
1− (1− αmj)2)Zj = 1− 2αmjpmj + α2

mjpmj

and it follows that

r∑
j=1

µjE

Z111[|ν2,3(ααα)|>0]
j

∣∣∣∣ t1 = t2 = m

t3 = j

 = 1− 2Λm +
r∑
j=1

µjα
2
mjpmj

≤ 1− 2Λm + αmd

r∑
j=1

µjαmjpmj

= 1− (2− αmd) Λm (7.62)

upon recalling (7.3). From (7.61) and (7.62), we readily obtain

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)111 [u(θθθ) = 1]] ≤ µ2
m(1− αmm)pmm (1− (2− αmd) Λm)n−2 (7.63)

Combining (7.59) and (7.63), we get

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)] = E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ) (111[u(θθθ) = 0] + 111[u(θθθ) = 1])]

≤ µ2
m(1− pmm)

(
1− 2Λm +

(
1 +

1

4µ2
s

)
Λ2
m

)n−2

+ µ2
m(1− αmm)pmm (1− (2− αmd) Λm)n−2 (7.64)
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It is also clear that

E[xn,1(µµµ,ΘΘΘ)] = µm (1− Λm)n−1 (7.65)

Combining (7.64) and (7.65), we get

E[xn,1(µµµ,ΘΘΘ)xn,2(µµµ,ΘΘΘ)]

E[xn,1(θθθ)]2
≤ (1− pmm)

(
1− 2Λm +

(
1 + 1

4µ2
s

)
Λ2
m

)n−2

(1− Λm)2(n−1)
+ pmm

(1− 2Λm + αmdΛm)n−2

(1− Λm)2(n−1)

:= A+B (7.66)

where we use the fact that 1− αmm ≤ 1.

We now consider a scaling ΘΘΘ : N0 → Nr+1
0 × (0, 1)r×r as stated in Proposition 7.5.4 and

bound the terms A and B in turn. Our goal is to show that

lim sup
n→∞

(A+B) ≤ 1. (7.67)

We have

A =
1− pmm

(1− Λm)2

(
1 +

1

4µ2
s

(
Λm

1− Λm

)2
)n−2

≤ 1− pmm
(1− Λm)2 e

ρn

where

ρn ≤
(
cn

2µs

)2

n

(
log n

n− cn log n

)2

= o(1)

and

(1− Λm(n))2 = 1− o(1) (7.68)

since Λm(n) = cn log n/n. Thus, we have

A ≤ (1− pmm)
(
(1 + o(1)) eo(1)

)
(7.69)
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We now consider the second term in (7.66). Recall (7.68), we have

B =
pmm

(1− Λm)2

(
1 +

Λm (αmd − Λm)

(1− Λm)2

)n−2

≤ pmm

(1− Λm)2 e
ψn

Now, recalling (7.32), we get

ψn ≤ n
Λm (αmd − Λm)

(1− Λm)2 =
cnαmd log n(
1− cn logn

n

)2 −
c2
n

(logn)2

n(
1− cn logn

n

)2 =
cnαmd log n(
1− cn logn

n

)2 − o(1)

Thus, we have

B ≤ pmm. exp

(
cnαmd log n(
1− cn logn

n

)2

)
.
(
(1 + o(1)) eo(1)

)
(7.70)

We will now establish the desired result (7.67) by using (7.69) and (7.70). Our approach is to

consider the cases i) limn→∞ αmd(n) log n = 0 and ii) limn→∞ αmm(n) log n ∈ (0,∞] separately.

Assume that limn→∞ αmd(n) log n = 0 . From (7.70) we get B ≤ (1 + o(1))pmm and upon

using (7.69) we see that A + B ≤ (1 + o(1)) establishing (7.67) along subsequences with

limn→∞ αmd(n) log n = 0.

Assume that limn→∞ αmm(n) log n ∈ (0,∞] . From (7.1), we have

Λm =
r∑
j=1

µjαmjpmj ≥ µmαmmpmm

Thus,

B ≤ 1

µm

Λm

αmm
. exp

(
cnαmd log n(
1− cn logn

n

)2

)
=

1

µm
Λm log n.

exp

(
cnαmd logn

(1−cn logn
n )

2

)
αmm log n

≤ 1

µm
cn (log n)2 n

−1+ cn

(1−cn
logn
n )

2

αmm log n

since αmd ≤ 1. We note that

lim
n→∞

−1 +
cn(

1− cn logn
n

)2 = −1 + c < 0
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for c < 1. Thus, it follows that B = o(1) upon noting that limn→∞ αmm log n = α∗ ∈ (0,∞].

From (7.69) and the fact that pmm ≤ 1, we have A+B ≤ 1 + o(1), and (7.67) follows.

Note that if the matrix ααα is designed in such a way that αii = maxj{αij}, i.e., two nodes of

the same type are more likely to be adjacent in G(n;µµµ,ααα), then we have αmd = αmm and the

above two cases collapse to i) limn→∞ αmm(n) log n = 0 or ii) limn→∞ αmm(n) log n ∈ (0,∞].

At this point, the zero-law follows even when the sequence αmm log n does not have a limit by

virtue of the subsubsequence principle [73, p. 12] (see also [43, Section 7.3]). In other words, if

αmd = αmm, then the zero-law follows without any conditions on the sequence αmm(n) log n.

7.5.7 Proof of Theorem 7.5.2

Let Cn(µµµ,ΘΘΘn) denote the event that the graph K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) is connected, and

with a slight abuse of notation, let In(µµµ,ΘΘΘn) denote the event that the graph K(n;µµµ,KKK,P ) ∩

G(n;µµµ,ααα) has no isolated nodes. It is clear that if a random graph is connected then it does

not have any isolated node, hence

Cn(µµµ,ΘΘΘn) ⊆ In(µµµ,ΘΘΘn)

and we get

P[Cn(µµµ,ΘΘΘn)] ≤ P[In(µµµ,ΘΘΘn)] (7.71)

and

P[Cn(µµµ,ΘΘΘn)c] = P[In(µµµ,ΘΘΘn)c] + P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)]. (7.72)

In view of (7.71), we obtain the zero-law for connectivity, i.e., that

lim
n→∞

P[K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected] = 0 if c < 1,

immediately from the zero-law part of Theorem 7.5.1, i.e., from that limn→∞ P[In(µµµ,ΘΘΘn)] = 0
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if c < 1 under the enforced assumptions. It remains to establish the one-law for connectivity.

In the remainder of this section, we assume that (7.27) holds for some c > 1. From Theorem

7.5.1 and (7.72), we see that the one-law for connectivity, i.e., that

lim
n→∞

P[K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) is connected] = 1 if c > 1,

will follow if we show that

lim
n→∞

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] = 0. (7.73)

Our approach will be to find a suitable upper bound for (7.73) and prove that it goes to zero

as n goes to infinity with c > 1.

We now work towards deriving an upper bound for (7.73); then in Section 7.5.8 we will

show that the bound goes to zero as n gets large. Define the event En(µµµ,θθθ,XXX) via

En(µµµ,θθθ,XXX) := ∪S⊆N :|S|≥1

[
| ∪i∈S Σi| ≤ X|S|

]
where N = {1, . . . , n} and XXX = [X1 · · · Xn] is an n-dimensional array of integers. Let

Ln := min

(⌊
P

K1

⌋
,
⌊n

2

⌋)
(7.74)

and

X` =


bβ`K1c ` = 1, . . . , Ln

bγP c ` = Ln + 1, . . . , n

(7.75)

for some β and γ in (0, 1
2
) that will be specified later. In words, En(µµµ,θθθ,XXX) denotes the event

that there exists ` = 1, . . . , n such that the number of unique keys stored by at least one subset
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of ` sensors is less than bβ`K1c111[` ≤ Ln] + bγP c111[` > Ln]. Using a crude bound, we get

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] ≤ P[En(µµµ,θθθn,XXXn)] + P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

(7.76)

Thus, (7.73) will be established by showing that

lim
n→∞

P[En(µµµ,θθθn,XXXn)] = 0, (7.77)

and

lim
n→∞

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0 (7.78)

The next proposition establishes (7.77).

Proposition 7.5.5. Consider scalings K1, . . . , Kr, P : N0 → Nr+1
0 such that (7.27) holds for

some c > 1, (7.10) , and (7.28) hold. Then, we have (7.77) where XXXn is as specified in (7.75),

β ∈ (0, 1
2
) and γ ∈ (0, 1

2
) are selected such that

max

(
2βσ, β

(
e2

σ

) β
1−2β

)
< 1 (7.79)

max

(
2

(
√
γ

(
e

γ

)γ)σ
,
√
γ

(
e

γ

)γ)
< 1 (7.80)

Proof. The proof is similar to [157, Proposition 7.2]. Results only require the conditions (7.28)

and (7.20) to hold. The latter condition is clearly established in Lemma 7.4.5.

The rest of the chapter is devoted to establishing (7.78) under the enforced assumptions

on the scalings and with XXXn as specified in (7.75), β ∈ (0, 1
2
) selected small enough such that

(7.79) holds, and γ ∈ (0, 1
2
) selected small enough such that (7.80) holds. We denote by KG(S)

a subgraph of K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα) whose vertices are restricted to the set S. Define the

events
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Cn(µµµ,ΘΘΘn, S) := [KG(S) is connected]

Bn(µµµ,ΘΘΘn, S) := [KG(S) is isolated]

An(µµµ,ΘΘΘn, S) := Cn(µµµ,ΘΘΘn, S) ∩Bn(µµµ,ΘΘΘn, S)

In other words, An(µµµ,ΘΘΘn, S) encodes the event that KG is a component, i.e., a connected

subgraph that is isolated from the rest of the graph. The key observation is that a graph is

not connected if and only if it has a component on vertices S with 1 ≤ |S| ≤
⌊
n
2

⌋
; note that if

vertices S form a component then so do vertices N − S. The event In(µµµ,ΘΘΘn) eliminates the

possibility of KG(S) containing a component of size one (i.e., an isolated node), whence we

have

Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ⊆ ∪S∈N :2≤|S|≤bn2 cAn(µµµ,ΘΘΘn, S)

and the conclusion

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn)] ≤
∑

S∈N :2≤|S|≤bn2 c
P[An(µµµ,ΘΘΘn, S)]

follows.

By exchangeability, we get

P[Cn(µµµ,ΘΘΘn)c ∩ In(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤
bn2 c∑
`=2

 ∑
S∈Nn,`

P[An(µµµ,ΘΘΘn, S) ∩ En(µµµ,θθθn,XXXn)c]


=

bn2 c∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] (7.81)

where Nn,` denotes the collection of all subsets of {1, . . . , n} with exactly ` elements, and

An,`(µµµ,ΘΘΘn) denotes the event that the set {1, . . . , `} of nodes form a component. As before

we have An,`(µµµ,ΘΘΘn) = C`(µµµ,ΘΘΘn)∩Bn,`(µµµ,ΘΘΘn), where C`(µµµ,ΘΘΘn) denotes the event that the set
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{1, . . . , `} of nodes is connected and Bn,`(µµµ,ΘΘΘn) denotes the event that the set {1, . . . , `} of

nodes is isolated from the rest of the graph.

It is now clear that (7.78) is established once we show that

lim
n→∞

bn2 c∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c = 0. (7.82)

We proceed by deriving bounds on the probabilities appearing in (7.82). Conditioning on

Σ1, . . . ,Σ` and {Bij(ααα), 1 ≤ i < j ≤ `}, we get

P [An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

= E
[
E
[
111 [C` (µµµ,ΘΘΘn) ∩Bn,` (µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

∣∣∣∣ Σ1, . . . ,Σ`

Bij(ααα), i, j = 1, . . . , `

]]

= E
[
111 [C` (µµµ,ΘΘΘn)] · P

[
Bn,` (µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣∣ Σ1, . . . ,Σ`

]]
(7.83)

since C`(µµµ,ΘΘΘn) is fully determined by Σ1, . . . ,Σ` and {Bij(αn), 1 ≤ i < j ≤ `}, and Bn,`(µµµ,ΘΘΘn)

and En(µµµ,θθθn,XXXn) are independent from {Bij(ααα), 1 ≤ i, j ≤ `}.

Next, we consider the probabilities appearing in (7.83). For each ` = 1, . . . , n− 1, we have

Bn,`(µµµ,ΘΘΘn) =
n⋂

k=`+1

[∣∣∪i∈ν`,k(ααα)Σi

∣∣ ∩ Σk = ∅
]

with ν`,k(ααα) as defined in (7.49). We have

P
[
Bn,`(µµµ,ΘΘΘn)

∣∣ Σ1, . . . ,Σ`

]
= E

[
E

111 [Bn,`(µµµ,ΘΘΘn)]

∣∣∣∣∣
Σ1, . . . ,Σn,

Bij(ααα) : i = 1, . . . , `,

j = `+ 1, . . . , n


∣∣∣∣∣ Σ1, . . . ,Σ`

]

= E


n∏

k=`+1

(
P − | ∪i∈ν`,k(ααα) Σi|

|Σk|

)
(
P

|Σk|

) ∣∣∣∣ Σ1, . . . ,Σ`


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Observe that on the event En(µµµ,θθθn,XXXn)c we have

∣∣∪i∈ν`,k(ααα)Σi

∣∣ ≥ (Xn,|ν`,k(ααα)| + 1
)

111[|ν`,k(ααα)| > 0]

Moreover, the crude bound

∣∣∪i∈ν`,k(ααα)Σi

∣∣ ≥ Ktmin,`
111[|ν`,k(ααα)| > 0]

always holds with tmin,` = min{t1, . . . , t`}. Hence, we can write

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]

≤ E


n∏

k=`+1

(
P −max

(
Ktmin,`

, Xn,|ν`,k(ααα)| + 1
)

111[|ν`,k(ααα)| > 0]

|Σk|

)
(
P

|Σk|

)
∣∣∣∣∣∣∣∣ Σ1, . . . ,Σ`


Note that conditioned on Σ1,Σ2, . . . ,Σ`, we can determine the class of each node in {1, . . . , `},

i.e., ti = 1 ·111 [|Σi| = K1]+2 ·111 [|Σi| = K2]+ . . .+r ·111 [|Σi| = Kr] for i = 1, . . . , `. Moreover, since

|ν`,k(ααα)| = 111 [v1 ∼G vk] +111 [v2 ∼G vk] + . . .+111 [v` ∼G vk], the random variables {|ν`,k(ααα)|}nk=`+1

are independent and identically distributed. In particular

|ν`,k(ααα)|
∣∣∣ Σ1, . . . ,Σ` ∼ Poisson-Binomial (`,ppp = (αt1j, αt2j, . . . , αt`j)) with probability µj

165



for k = `+ 1, 4, . . . , n. It follows that

P
[
Bn,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c

∣∣ Σ1, . . . ,Σ`

]

≤

E

(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

|Σk|

)
(
P

|Σk|

)
∣∣∣∣∣∣∣∣ Σ1, . . . ,Σ`



n−`

=


r∑
j=1

µjE


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j



n−`

(7.84)

by the law of total expectation. Reporting (7.84) into (7.83), we then get

P [An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤ E

111 [C` (µµµ,ΘΘΘn)] ·

·


r∑
j=1

µjE


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j



n−` 

(7.85)

The following lemma gives bounds on the terms appearing in (7.85). The proof is given in

Section 7.5.9.

Lemma 7.5.6. Consider a probability distribution µµµ = (µ1, µ2, . . . , µr), integers K1 ≤ · · · ≤

Kr ≤ P/2, and ααα = {αij} for i, j = 1, . . . , r with αij ∈ (0, 1). With XXXn as specified in (7.75),

β ∈ (0, 1
2
) and γ ∈ (0, 1

2
) as specified in (7.79) and (7.80) respectively, we have

P[C`(µµµ,ΘΘΘ)] ≤ min

{
1, ``−2

(
max
i,j
{αijpij}

)`−1
}

(7.86)

166



and


r∑
j=1

µjE


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j



n−`

≤
(
min

{
1− Λm,min

{
1− µr + µre

−αminp1rβ`, e−αminp11β`
}

+ e−γK1111 [` > Ln]
})n−`

(7.87)

Note that as we report (7.87) back into (7.85), we get

P [An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤ E

[
111 [C` (µµµ,ΘΘΘn)] ·

·
(
min

{
1− Λm,min

{
1− µr + µre

−αminp1rβ`, e−αminp11β`
}

+ e−γK1111 [` > Ln]
})n−` ]

= P[C`(µµµ,ΘΘΘ)] ·
(
min

{
1− Λm,min

{
1− µr + µre

−αminp1rβ`, e−αminp11β`
}

+ e−γK1111 [` > Ln]
})n−`
(7.88)

In addition, it holds that

max
i,j
{αijpij} ≤ αmaxprr (7.89)

Our proof of (7.78) will be completed (see (7.81)) upon establishing

lim
n→∞

bn2 c∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0 (7.90)

by means of (7.86), (7.87), and (7.88). These steps are taken in the next section.
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7.5.8 Establishing (7.90)

We will establish (7.90) in several steps with each step focusing on a specific range of the

summation over `. Throughout, we consider a scalings K1, . . . , Kr, P : N0 → Nr+1
0 and ααα :

N0 → (0, 1)r×r such that (7.27) holds with c > 1, (7.10), (7.29), (7.31), and (7.28) hold.

The case where 2 ≤ ` ≤ R

This range considers fixed values of `. Pick an integer R to be specified later at (7.96). Use

(7.27), (7.9), (7.21), (7.22), (7.86), the first bound in (7.87), and (7.89) to get

R∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

R∑
`=2

(en
`

)`
``−2 (αmax(n)prr(n))`−1 (1− Λm(n))n−`

≤
R∑
`=2

(en)`
(

(log n)τ+2

n

)`−1(
1− cn

log n

n

)n−`
≤

R∑
`=2

n
(
e(log n)τ+2

)`
e−cn lognn−`

n

=
R∑
`=2

(
e(log n)τ+2

)`
n1−cn n−`n

With c > 1, we have limn→∞
(
1− cn n−`n

)
= 1 − c < 0. Thus, for each ` = 2, 3, . . . , R and a

finite τ > 0, we have (
e(log n)τ+2

)`−1
n1−cn n−`n = o(1),

whence we get

lim
n→∞

R∑
`=2

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0.

The case where R + 1 ≤ ` ≤ min{Ln, b µrn
βcn logn

c}

Our goal in this and the next subsection is to cover the range R + 1 ≤ ` ≤ b µrn
βcn logn

c. Since

the bound given at (7.87) takes a different form when ` > Ln, we first consider the range

R+1 ≤ ` ≤ min{Ln, b µrn
βcn logn

c}. Using (7.9), (7.21), (7.22), (7.86), the second bound in (7.87),
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and (7.89) we get

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤
min{Ln,b µrn

βcn logn
c}∑

`=R+1

(en
`

)`
``−2

(
(log n)τ+2

n

)`−1

·

(
1− µr

(
1− e−αmin(n)β`p1r(n)

))n−`

(7.91)

From the upper bound in (7.8) and ` ≤ µrn
βcn logn

, we have

αmin(n)β`p1r(n) ≤ β
µrn

βcn log n

cn
µr

log n

n
= 1.

Using the fact that 1− e−x ≥ x
2

for all 0 ≤ x ≤ 1, we get

1− µr
(
1− e−αmin(n)β`p1r(n)

)
≤ 1− µrαmin(n)β`p1r(n)

2
≤ e−β`µrρ

logn
2n (7.92)

using the lower bound in (7.33). Reporting this last bound in to (7.91) and noting that

n− ` ≥ n

2
, ` = 2, 3, . . . ,

⌊n
2

⌋
, (7.93)

we get

min{Ln,b µrn
βcn lognc}∑

`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

min{Ln,b µrn
βcn logn

c}∑
`=R+1

n
(
e(log n)τ+2

)`
e−β`µrρ

logn
2n

n
2

≤ n

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
e (log n)τ+2 e−βρ

µr
4

logn
)`

≤ n

∞∑
`=R+1

(
e (log n)τ+2 e−βρ

µr
4

logn
)`

(7.94)
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Given that β, ρ, µr > 0 and τ is finite, we clearly have

e (log n)τ+2 e−βρ lognµr
4 = o(1). (7.95)

Thus, the geometric series in (7.94) is summable for n sufficiently large, and we have

min{Ln,b µrn
βcn logn

c}∑
`=R+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤ (1 + o(1))n

(
e (log n)τ+2 e−βρ lognµr

4

)R+1

= (1 + o(1))n1−(R+1)βρµr
4

(
e(log n)τ+2

)R+1

= o(1)

for any positive integer R with

R >
8

βρµr
. (7.96)

This choice is permissible given that ρ, β, µr > 0.

The case where min{b µrn
βcn logn

c,max(R,Ln)} < ` ≤ b µrn
βcn logn

c

Clearly, this range becomes obsolete if max(R,Ln) ≥ b µrn
βcn logn

c. Thus, it suffices to consider

the subsequences for which the range max(R,Ln) + 1 ≤ ` ≤ b µrn
βcn logn

c is non-empty. There, we

use (7.9), (7.21), (7.22), (7.86), the second bound in (7.87), and (7.89) to get

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] (7.97)

≤
b µrn
βcn lognc∑

`=max(R,Ln)+1

(en
`

)`
``−2

(
(log n)τ+2

n

)`−1

·
(
1− µr

(
1− e−β`αmin(n)p1r(n)

)
+ e−γK1,n

)n
2

≤
b µrn

2βc lognc∑
`=max(R,Ln)+1

n
(
e (log n)τ+2)` (e−β`ρµr logn

2n + e−γK1,n

)n
2

where in the last step we used (7.92) in view of ` ≤ µrn
βcn logn

.
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Next, we write

e−β`ρµr
logn
2n + e−γK1,n = e−β`ρµr

logn
2n

(
1 + e−γK1,n+β`ρµr

logn
2n

)
≤ exp

{
−β`ρµr

log n

2n
+ e−γK1,n+β`ρµr

logn
2n

}

≤ exp

−β`ρµr log n

2n

1− e−γK1,n+
ρµ2
r

2cn

β`ρµr
logn
2n

 (7.98)

where the last inequality is obtained from ` ≤ µrn
βcn logn

. Using the fact that ` > Ln =

min{b Pn
K1,n
c, bn

2
c} and (7.28) we have

e−γK1,n

β`ρµr
logn
2n

≤ max

{
K1,n

Pn
,

2

n

}
2n

e−γK1,n

βρµr log n
≤ max

{
2K1,ne

−γK1,n

βρµrσ log n
,

4e−γK1,n

βρµr log n

}
= o(1)

by virtue of (7.20) and the facts that β, µr, σ, ρ > 0. Reporting this into (7.98), we see that for

for any ε > 0, there exists a finite integer n∗(ε) such that

(
e−β`ρµr

logn
2n + e−γK1,n

)
≤ e−β`ρµr

logn
2n

(1−ε) (7.99)

for all n ≥ n∗(ε). Using (7.99) in (7.97), we get

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤ n

b µrn
βcn lognc∑

`=max(R,Ln)+1

(
e (log n)τ+2 e−βρµr

logn
2n

(1−ε)n
2

)`
≤ n

∞∑
`=max(R,Ln)+1

(
e (log n)τ+2 e−βρµr

logn
4

(1−ε)
)`

(7.100)

Similar to (7.95), we have
(
e (log n)τ+2 e−βρµr

logn
4

(1−ε)
)

= o(1) so that the sum in (7.100)

converges. Following a similar approach to that in Section 7.5.8, we then see that

lim
n→∞

b µrn
2βc lognc∑

`=max(R,Ln)+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0
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with R selected according to (7.96) and ε < 1/2.

The case where b µrn
βcn logn

c+ 1 ≤ ` ≤ bνnc

We consider b µrn
βcn logn

c + 1 ≤ ` ≤ bνnc for some ν ∈ (0, 1
2
) to be specified later. Recall (7.33),

(7.22), the first bound in (7.86), and the second bound in (7.87). Noting that

(
n

`

)
is monotone

increasing in ` when 0 ≤ ` ≤
⌊
n
2

⌋
and using (7.93) we get

bνnc∑
`=b µrn

βcn logn
c+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c]

≤
bνnc∑

`=b µrn
βcn logn

c+1

(
n

bνnc

)
·
(
1− µr + µre

−αmin(n)β`p1r(n) + e−γK1,n
)n

2

≤
bνnc∑

`=b µrn
βcn logn

c+1

( e
ν

)νn
·
(

1− µr + µre
−β µrn

βcn logn
ρ logn
n + e−γK1,n

)n
2

≤ n
( e
ν

)νn (
1− µr + µre

− ρµr
cn + e−γK1,n

)n
2

= n

(( e
ν

)2ν (
1− µr + µre

− ρµr
cn + e−γK1,n

))n
2

(7.101)

We have 1 − µr + µre
− ρµr
cn < 1 from µr, ρ, c > 0 and e−γK1,n = o(1) from (7.20). Also, it

holds that limν→0

(
e
ν

)2ν
= 1. Thus, if we pick ν small enough to ensure that

( e
ν

)2ν (
1− µr + µre

− ρµr
cn

)
< 1, (7.102)

then for any 0 < ε < 1 − (e/ν)2ν
(

1− µr + µre
− ρµr
cn

)
there exists a finite integer n?(ε) such

that ( e
ν

)2ν (
1− µr + µre

− ρµr
cn + e−γK1,n

)
≤ 1− ε, ∀n ≥ n?(ε).

Reporting this into (7.101), we get

lim
n→∞

bνnc∑
`=b µrn

2βc lognc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0
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since limn→∞ n(1− ε)n/2 = 0.

The case where bνnc+ 1 ≤ ` ≤ bn
2
c

In this range, we use (7.23), the first bound in (7.86), the last bound in (7.87), and (7.93) to

get

bn2 c∑
`=bνnc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] ≤

bn2 c∑
`=bνnc+1

(
n

`

)(
e−β`αmin(n)p11(n) + e−γK1,n

)n
2

≤

 bn2 c∑
`=bνnc+1

(
n

`

)(e−βνnαmin(n)p11(n) + e−γK1,n
)n

2

≤
(
4e−βνnαmin(n)p11(n) + 4e−γK1,n

)n
2

With β, ν, γ > 0 have e−βνnαmin(n)p11(n) = o(1) from (7.10) and e−γK1,n = o(1) from (7.20).

The conclusion

lim
n→∞

bn2 c∑
`=bνnc+1

(
n

`

)
P[An,`(µµµ,ΘΘΘn) ∩ En(µµµ,θθθn,XXXn)c] = 0

immediately follows and the proof of one-law is completed.

7.5.9 Establishing Lemma 7.5.6

The bounds given at Lemma 7.5.6 are valid irrespective of how the parameters involved scale

with n. Thus, we consider fixed ΘΘΘ with constraints given in the statement of Lemma 7.5.6.

Recall that conditioned on Σ1,Σ2, . . . ,Σ` and t`+1 = j, the rv |ν`,`+1(ααα)| is distributed as a

Poisson-Binomial rv with ` trials and success probability vector ppp = {αt1j, . . . , αt`j}. With a
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slight abuse of notation, let W`,j = 1− ptmin,`j. Using a crude bound and then (7.6) we get

E


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j



≤ E


(
P −Ktmin,`

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j


≤ E

W111[|ν`,`+1(ααα)|>0]

`,j

∣∣∣∣ Σ1, . . . ,Σ`,

t`+1 = j


=
∏̀
k=1

(1− αtkj) +

(
1−

∏̀
k=1

(1− αtkj)

)
W`,j

=
∏̀
k=1

(1− αtkj) (1−W`,j) +W`,j

≤
(
1− αtmin,`j

)
(1−W`,j) +W`,j

= 1− αtmin,`jptmin,`j. (7.103)

upon noting that αtkj < 1 for k = 1, . . . , ` and j = 1, . . . , r. It is now immediate that

r∑
j=1

µj
(
1− αtmin,`jptmin,`j

)
= 1− Λtmin,`

≤ 1− Λm (7.104)

Next, consider range ` = 1, . . . , Ln, where we have

(
Xn,|ν`,`+1(ααα)| + 1

)
111[|ν`,`+1(ααα)| > 0] ≥ dβ |ν`,`+1(ααα)|K1e
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With a slight abuse of notation, let Zj = 1− p1j. Recalling (7.6), we get

E


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j



≤ E


(
P − dβ |ν`,`+1(ααα)|K1e

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j


≤ E

Zβ|ν`,`+1(ααα)|
j

∣∣∣∣ Σ1, . . . ,Σ`,

t`+1 = j

 (7.105)

Recall that

|ν`,`+1(ααα)| = 111 [v1 ∼G v`+1] + 111 [v2 ∼G v`+1] + . . .+ 111 [v` ∼G v`+1]

and note that conditioned on Σ1, . . . ,Σ` and that t`+1 = j, the indicator random variables

111 [vi ∼G v`+1] are each distributed as a Bernoulli random variable with parameter αtij for

i = 1, . . . , r, where ti denotes the class of node vi. Let αminj = min {α1j, α2j, . . . , αrj}. It

follows that

|ν`,`+1(ααα)| �
∣∣ν`,`+1(αminj)

∣∣
where

∣∣ν`,`+1(αminj)
∣∣ denotes a binomial rv with parameters ` and αminj , and the operator �
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denotes the usual stochastic ordering. It follows that

E


(
P −max(Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1)111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j


≤ E

Zβ|ν`,`+1(ααα)|
j

∣∣∣∣ Σ1, . . . ,Σ`

t`+1 = j

 ,
≤ E

Zβ|ν`,`+1(αminj
)|

j

∣∣∣∣ Σ1, . . . ,Σ`,

t`+1 = j


=
∑̀
k=0

(
`

k

)
αkminj

(1− αminj)
`−kZβk

j

=
(

1− αminj

(
1− Zβ

j

))`
≤
(
1− αminjβ (1− Zj)

)`
≤ e−αminj

(1−Zj)β`

= e−αminj
p1jβ` (7.106)

using the fact that 1 − Zβ
j ≥ β(1 − Zj) with Zj ≤ 1 and 0 ≤ β ≤ 1; a proof is available

at [156, Lemma 5.2]. On the range ` = Ln + 1, . . . ,
⌊
n
2

⌋
, |ν`,`+1(ααα)| can be less than or equal to

Ln or greater than Ln. In the latter case, we have

max(Ktmin,`
, Xn,|ν`,`+1(ααα)| + 1)111[|ν`,`+1(ααα)| > 0] ≥ bγP c+ 1

Using (7.105), (7.106), and the fact that (see [155, Lemma 5.4.1] for a proof)

(
P −K1

K2

)/(
P

K2

)
≤ e−

K2
P
K1
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for K1 +K2 ≤ P , we have

E


(
P −max

(
Ktmin,`

, Xn,|ν`,`+1(ααα)| + 1
)

111[|ν`,`+1(ααα)| > 0]

Kj

)
(
P

Kj

)
∣∣∣∣∣∣∣∣

Σ1, . . . ,Σ`,

t`+1 = j


≤ E

Zβ|ν`,`+1(ααα)|
j 111[|ν`,`+1(ααα)| ≤ Ln]

∣∣∣∣ Σ1, . . . ,Σ`,

t`+1 = j


+ E

e−KjP (bγP c+1)111[|ν`,`+1(ααα)| > Ln]

∣∣∣∣ Σ1, . . . ,Σ`,

t`+1 = j


≤ e−αminj

p1jβ` + e−γK1111[` > Ln] (7.107)

by virtue of the fact that Kj ≥ K1.

Finally, we note the bounds

r∑
j=1

µje
−αminj

p1jβ` ≤ (1− µr) + µre
−αminrp1rβ`

≤ (1− µr) + µre
−αminp1rβ`

and that

r∑
j=1

µje
−αminj

p1jβ` ≤ e−αminp11β` (7.108)

The last step used the fact that pij is monotone increasing in both i and j and αminj ≥ αmin.

Next, we establish (7.86). Let KG` denote the subgraph of K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα)

induced on the vertices {v1, . . . , v`}. KG` is connected if and only if it contains a spanning

tree; i.e., we have

C`(µµµ,ΘΘΘ) = ∪T∈T` [T ⊆ KG`]
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where T` denotes the collection of all spanning trees on the vertices {v1, . . . , v`}. Thus,

P[C`(µµµ,ΘΘΘ)] ≤
∑
T∈T`

P [T ⊆ KG`] . (7.109)

Observe that

P [T ⊆ KG`] = E
[
E
[
111 [T ⊆ KG`]

∣∣ Σ1, . . . ,Σ`

]]
= E

[
P
[
T ⊆ KG`

∣∣ Σ1, . . . ,Σ`

]]
≤
(

max
i,j
{αijpij}

)`−1

(7.110)

where the last inequality follows from the facts that i) a tree on ` vertices contain `− 1 edges,

and ii) conditioned on Σ1, . . . ,Σ`, edge assignments in KG` are independent and each edge

probability is upper bounded by (maxi,j {αijpij}). Note that as we use this upper bound, the

randomness (stemming from the random variables Σ1, Σ2, etc.) disappears and (7.110) follows.

We obtain (7.86) upon using (7.110) in (7.109) and noting by Cayley’s formula [93] that there

are ``−2 trees on ` vertices, i.e., |T`| = ``−2.

7.6 Conclusion

In this chapter, we investigated the secure connectivity of wireless sensor networks utiliz-

ing the heterogeneous random key predistribution scheme under a heterogeneous on-off chan-

nel model, where the channel between a class-i node and a class-j node is on (respectively,

off) with probability αij (respectively, 1 − αij) for i, j = 1, . . . , r inducing a channel proba-

bility matrix ααα = [αij]. We modeled the overall network using a composite random graph

obtained by the intersection of inhomogeneous random key graphs K(n;µµµ,KKK,P ) with inho-

mogeneous Erdős-Rényi graphs G(n;µµµ,ααα). The former graph is naturally induced by the

heterogeneous random key predistribution scheme, while the latter is induced by the heteroge-
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neous on-off channel model. We investigated the connectivity of the composite random graph

K(n;µµµ,KKK,P ) ∩ G(n;µµµ,ααα) and presented conditions (in the form of zero-one laws) on how to

scale its parameters so that it i) has no secure node which is isolated and ii) is securely con-

nected, both with high probability when the number of nodes gets large. We also presented

numerical results to support these zero-one laws in the finite-node regime.
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Chapter 8

Results on inhomogeneous random K-out graphs

8.1 Motivation

The previous discussion in Chapters 6 and 7 focuses on the secure connectivity of wireless sensor

networks secured by the heterogeneous random key predistribution scheme under a channel

model. In this chapter, we focus instead on random pairwise scheme of Chan, Perrig and Song

[24] which was proposed as an alternative to Eschenauer-Gligor scheme. The random pairwise

predistribution scheme has a number of advantages over the original scheme of Eschenauer and

Gligor: (i) It is perfectly resilient against node capture attacks [24]; (ii) Unlike earlier schemes,

this pairwise scheme enables both distributed node-to-node authentication and quorum-based

node revocation.

The random pairwise scheme is described as follows: Before deployment, each of the n

sensor nodes is paired (offline) with K distinct nodes which are randomly selected from among

all other nodes. If nodes i and j were paired during the node-pairing stage (i.e., which happens

if either node i gets paired with node j, node j gets paired with node i, or both), a unique

(pairwise) key is generated and stored in the memory modules of each of the paired sensors

together with both their IDs. After deployment, a secure link can be established between two

communicating nodes if they have at least one pairwise key in common. The random pairwise

scheme gives rise to a class of random graphs denoted by random K-out graphs [18, 55]. In

particular, Let H(n;K) denote the random graph on the vertex set {1, . . . , n} where each node

selects K other nodes uniformly at random (without replacement) to be paired to. Two distinct
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nodes i and j are adjacent if i selects j, j selects i, or both. This random graph models the

random pairwise key predistribution scheme under full visibility (whereby all nodes are within

wireless communication range of each other).

Consider a wireless sensor network secured by the random pairwise scheme. A natural

question to ask is: How should the value of K be selected so that the resulting network is securely

connected?, i.e., there exists a secure communication path between every pair of nodes. After

all, the randomness involved in the node-pairing process could give rise to isolated components

of nodes that are paired with each others but not to other nodes, rendering the network

disconnected. The connectivity of wireless sensor networks secured by the random pairwise

scheme was investigated in [152], where it was shown that

lim
n→∞

P [H(n;K) is connected] =


0 if K = 1

1 if K ≥ 2

(8.1)

In other words, it is sufficient to set K = 2 to obtain a network that is connected with

high probability as the network size tends to infinity. In fact, it was shown in [152] that the

probability of H(n; 2) being connected exceeds 0.99 with as little as n = 50 nodes.

Random K-out graphs provide an accurate modeling framework for a class of wireless

sensor network utilizing random pairwise key predistribution scheme. An inherent assumption,

however, is that all nodes are treated uniformly in a sense that each node selects the same

number K of other nodes to be paired to. Indeed, the heterogeneity of emerging wireless sensor

networks gives rise to the cases where nodes have dissimilar roles, or dissimilar connectivity,

centrality, or security requirements, hence different nodes could be paired to a different number

of other nodes. This induces the need for a broader modeling framework that generalizes Chan

et al. scheme [24] to heterogeneous networks.

In this chapter, we propose inhomogeneous random K-out graphs H(n;µµµ,KKKn), where each

of the n nodes is assigned to one of r classes independently with a probability distribution

µµµ = {µ1, . . . , µr}. In particular, each node is classified as class-i with probability µi > 0,
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independently. Each class-i node selects Ki,n distinct nodes uniformly at random from among

all other nodes. A pair of nodes are adjacent in H(n;µµµ,KKKn) if at least one selects the other.

Without loss of generality, we assume that K1,n ≤ K2,n ≤ . . . ≤ Kr,n. Inhomogeneous random

K-out graphs generalize standard random K-out graphs to heterogeneous setting where different

nodes make different number of selections depending on their corresponding classes. As a result,

it might be expected that inhomogeneous K-out graphs would serve as a more natural model

in many of the envisioned applications of K-out graphs including pairwise key predistribution

in sensor networks and anonymous transactions in cryptocurrency networks [54].

Earlier results on homogeneous random K-out graphs H(n;Kn), where all nodes select the

same number K of other nodes, reveal that H(n;Kn) is connected with high probability (whp)

if Kn ≥ 2 which implies that H(n;µµµ,KKKn) is connected whp if K1,n ≥ 2. In this chapter,

we investigate the connectivity of inhomogeneous random K-out graphs H(n;µµµ,KKKn) for the

special case when K1,n = 1, i.e., when each class-1 node selects only one other node. We show

that H (n;µµµ,KKKn) is connected whp if Kr,n is chosen such that limn→∞Kr,n = ∞. However,

any bounded choice of the sequence Kr,n gives a positive probability of H (n;µµµ,KKKn) being not

connected. Simulation results are provided to validate our results in the finite node regime.

8.2 Model definitions

The inhomogeneous random K-out graph, denoted H (n;µµµ,KKKn), is constructed on the vertex

set V = {1, 2, . . . , n} as follows. First, each node is assigned a class i ∈ {1, . . . , r} independently

according to a probability distribution µµµ = {µ1, . . . , µr}; i.e., µi denotes the probability that a

node is class-i and we have
∑r

i=1 µi = 1. We assume µi > 0 for all i = 1, 2, . . . , r and that r is a

fixed integer that does not scale with n. Each class-i node selects Ki,n distinct nodes uniformly

at random from V \ {v} and an undirected edge is assigned between a pair of nodes if at least

one selects the other. Formally, each node v is associated (independently from others) with a

subset Γn,v(µµµ,KKKn) (whose size depends on the class of node v) of nodes selected uniformly at
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random from V \ {v}. Specifically, for any A ⊆ V \ {v}, we have

P
[
Γn,v(µµµ,KKKn) = A

∣∣ tv = i
]

=


(
n−1
Ki

)−1
if |A| = Ki

0 otherwise

(8.2)

where tv denotes the class of node v. Then, vertices u and v are said to be adjacent in

H (n;µµµ,KKKn), written u ∼ v, if at least one selects the other; i.e., if

u ∼ v iff u ∈ Γn,v(µµµ,KKKn) ∨ v ∈ Γn,u(µµµ,KKKn). (8.3)

When r = 1, all vertices belong to the same class and thus select the same number (say,

K) of other nodes, leading to the homogeneous random K-out graph H(n;K) [18, 55,152].

Throughout, we set

Kavg,n =
r∑
i=1

µiKi,n (8.4)

For any distinct nodes u, v ∈ V , we have

P [u ∼ v] = 1− P [u 6∈ Γn,v(µµµ,KKKn) ∩ v 6∈ Γn,u(µµµ,KKKn)] = 1−

(
r∑
i=1

µi

(
n−2
Ki

)(
n−1
Ki

))2

= 1−
(

1− Kavg,n

n− 1

)2

8.3 Preliminaries

Throughout, we will make use of the following results.

Fact 8.3.1 ( [166, Fact 2]). For 0 ≤ x < 1, and y = 0, 1, 2, . . ., we have

1− xy ≤ (1− x)y ≤ 1− xy +
1

2
x2y2

Fact 8.3.2 ( [166, Fact 4]). Let integers x and y be both positive functions of n, where y ≥ 2x.
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For z = 0, 1, . . . , x, we have

(
y−z
x

)(
y
x

) ≥ 1− zx

y − z
, (8.5)

and

(
y−z
x

)(
y
x

) = 1− xz

y
±O

(
x4

y2

)
. (8.6)

Fact 8.3.3. For r = 1, . . . , bn
2
c and n = 1, 2, . . ., we have

(
n

r

)
≤
(n
r

)r ( n

n− r

)n−r
(8.7)

Proof. The following bound, established in [127], is valid for all x = 1, 2, . . .

√
2πxx+0.5e−xe

1
12x+1 < x! <

√
2πxx+0.5e−xe

1
12x . (8.8)

Observe that
√

2πe
1

12x ≤ e

for all x ≥ 2. and

e
1

12x+1 ≥ 1

Hence, (8.8) can be written as

√
2πxx+0.5e−x < x! < exx+0.5e−x (8.9)
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Using (8.9), we get

(
n

r

)
=

n!

r!(n− r)!

<
enn+0.5e−n√

2πrr+0.5e−r
√

2π(n− r)n−r+0.5e−(n−r)

=
e

2π

1
√
r
√

1− r
n

1(
r
n

)r (
1− r

n

)n−r
≤ e

2π
√

0.5

1(
r
n

)r (
1− r

n

)n−r
≤
(n
r

)r ( n

n− r

)n−r
(8.10)

as we use the crude bounds r ≥ 1 and r ≤ n/2.

For 0 ≤ K ≤ x ≤ y, we have

(
x
K

)(
y
K

) =
K−1∏
`=0

(
x− `
y − `

)
≤
(
x

y

)K
(8.11)

since x−`
y−` decreases as ` increases from ` = 0 to ` = K − 1.

Moreover, we have

1± x ≤ e±x, 0 ≤ x ≤ 1 (8.12)

and

1− e−x ≥ x

2
, 0 ≤ x ≤ 1 (8.13)

Throughout, we set (
x

y

)
= 0, (8.14)

whenever x < y.
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8.4 Connectivity results

We refer to any mapping KKK : N0 → Nr0 as a scaling provided it satisfies the condition.

K1,n ≤ K2,n ≤ . . . ≤ Kr,n < n, n = 2, 3, . . . . (8.15)

Our main technical results, given next, characterize the connectivity of inhomogeneous

random K-out graphs. Throughout, it will be convenient to use the notation

P (n;µµµ,KKKn) := P [H(n;µµµ,KKKn) is connected]

and

C(µµµ,KKKn) =
1

1 + 2
µ2

1
e2Kavg,n

(8.16)

and

Ψ(n,µµµ,KKKn) = max
{

exp

(
−2 (1− µ̃)

(
Kr,n − 1

4
− (0.5)Kr,n−1

µ̃

))
,

exp

(
− (1− µ̃)

n

2

(
1− e−1 − (0.5)Kr,n−1

µ̃

))}
(8.17)

with 0 < µ1 < 1, Kavg,n as defined in (8.4), and µ̃ =
∑r−1

i=1 µi.

The following result establishes an upper bound on the probability of connectivity of the

inhomogeneous random K-out graphs when the sequence Kr,n is bounded, i.e., Kr,n = O(1)

8.4.1 An upper bound on the probability of connectivity

Theorem 8.4.1. Consider a scaling KKK : N0 → Nr0 and a probability distribution µµµ =

{µ1, µ2, . . . , µr} with µi > 0. If Kr,n = O(1), then

lim sup
n→∞

P (n;µµµ,KKKn) < 1 (8.18)
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More precisely, we have

P (n;µµµ,KKKn) ≤ 1− C(µµµ,KKKn) + o(1) (8.19)

The following result establishes a one-law for connectivity for the inhomogeneous random

K-out graph.

8.4.2 A one-law for connectivity

Theorem 8.4.2. Consider a scaling KKK : N0 → Nr0 and a probability distribution µµµ =

{µ1, µ2, . . . , µr} with µi > 0. If Kr,n = ω(1), then

lim
n→∞

P (n;µµµ,KKKn) = 1

More precisely, we have

P (n;µµµ,KKKn) ≥ 1− µ̃2

1− µ̃
Ψ(n,µµµ,KKKn) (8.20)

for all Kr,n sufficiently large such that Kr,n ≥
⌈
4
(

(0.5)Kr,n−1

µ̃

)
+ 1
⌉
.

8.4.3 Discussion

Theorems 8.4.1 and 8.4.2 state that H (n;µµµ,KKKn) is connected with high probability if Kr,n is

chosen such that Kr,n = ω(1). On the other hand, if Kr,n = O(1), then the probability of

connectivity of H (n;µµµ,KKKn) is strictly less than one in the limit of large network size. In other

words, any bounded choice for Kr,n gives rise to a positive probability of H (n;µµµ,KKKn) being not

connected. Observe that (8.18) follows from (8.19) by virtue of the fact that Kavg,n = O(1)

when Kr,n = O(1).

Connectivity results in the literature of random graphs are usually presented in the form

of zero-one laws, where the probability of connectivity (in the limit as n → ∞) exhibits

a sharp transition between two different regimes. In the first (respectively, second) regime,
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the probability tends to zero (respectively, one) as n tends to infinity. One example of such

results is given by (8.1) where the probability that H(n;K) is connected tends to zero when

K = 1 and tends to one when K ≥ 2. Other examples include the connectivity results on

random key graphs [159], Erdős-Rényi graphs [52], and our results appearing in Chapters 6

and 7. Indeed, Theorem 8.4.1 states that the probability of connectivity is strictly less than

one whenever Kr,n = O(1) but it does not specify whether or not a zero-law exists in this case.

In other words, Theorem 8.4.1 does not reveal whether or not limn→∞ P (n;µµµ,KKKn) = 0 when

Kr,n = O(1). Such a zero-law, if exists, would complement the one-law given by Theorem 8.4.2.

A careful look at (8.20) reveals that P (n;µµµ,KKKn) exhibits a lower bound that could either

be trivial (negative) or non-trivial (positive). As a result, under the conditions that force the

bound to be non-trivial, the probability of connectivity is strictly larger than zero, hence a

zero-law does not exist in this case. In what follows, we let K?(µ̃) denote the smallest value of

Kr,n for which

µ̃2

1− µ̃
Ψ(n,µµµ,KKKn) < 1.

We present a result that utilizes (8.20) to show that under some conditions on µ̃ and Kr,n, the

probability of connectivity of H (n;µµµ,KKKn) is strictly larger than zero, hence, a zero-law does

not hold.

Corollary 8.4.3. Consider a scalingKKK : N0 → Nr0 and a probability distribution µµµ = {µ1, µ2, . . . , µr}

with µi > 0. For any µ̃, there exists K?(µ̃) such that

P (n;µµµ,KKKn) > 0

whenever Kr,n ≥ K?(µ̃).

In Table 8.1, we provide the values of K?(µ̃) corresponding to some values of µ̃. Note that

whether or not a zero-law holds for the case when 2 ≤ Kr,n < K?(µ̃) cannot by established

through (8.20) and is beyond the scope of this chapter.
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µ̃ K?(µ̃) µ̃ K?(µ̃)

0.1 5 0.6 3
0.2 4 0.7 5
0.3 4 0.8 13
0.4 4 0.9 43
0.5 3 0.95 117

Table 8.1: The values of K?(µ̃) corresponding to different values for µ̃. When Kr,n ≥ K?(µ̃),
the probability of connectivity of H (n;µµµ,KKKn) is strictly larger than zero by virtue of (8.20),
hence a zero-law does not hold in this case.

8.4.4 The effect of heterogeneity

Theorems 8.4.1 and 8.4.2 reveal a striking difference between inhomogeneous random K-out

graphs and their homogeneous counterpart. In the context of H(n;K), we see from (8.1) that

it is sufficient to set K = 2 to have a connected network with high probability in the limit of

large network size. When the network size n is fixed, Yağan and Makowski [152] showed that

P [H(n; 2) is connected] ≥ 1− 155

n3
, n ≥ 16

indicating that the probability of connectivity exceeds 0.99 for as little as n = 50 nodes (with

K = 2). As a result, random K-out graphs H(n;K) can be connected with orders of magnitude

fewer links, in total, as compared to most other random graph models such as Erdős-Rényi

graphs [52], random key graphs [159], and inhomogeneous random key graphs [157], where the

mean degree (respectively, the minimum mean degree in inhomogeneous random key graphs)

has to be on the order of log n to ensure connectivity. In contrast, the mean degree of H (n;K)

is of order 2K, i.e., a mean degree of 4 is sufficient to ensure connectivity of H(n;K).

Observe that inhomogeneous random K-out graphs (with K1,n = 1) require Kr,n to grow

unboundedly large as n → ∞ so that the probability of connectivity approaches one in the

same limit. In other words, the flexibility of arranging nodes into classes comes at the expense

of sparsity. In particular, the mean degree of H (n;µµµ,KKK) has to grow unboundedly large as
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n → ∞ to ensure the connectivity of the graph. Fortunately, Theorem 8.4.2 does not specify

a particular growth rate function for the sequence Kr,n, other than Kr,n = ω(1). Hence,

one can set Kr,n = log log . . . log n to meet the requirements of Theorem 8.4.2. As a result,

inhomogeneous random K-out graphs H(n;µµµ,KKK) can be connected with orders of magnitude

fewer links, in total, as compared to most other random graph models as mentioned above.

8.4.5 Numerical results

The objective of this subsection is to validate the upper bound given by Theorem 8.4.1 in

the finite-node regime using computer simulations. In Figure 8.1, we consider an inhomo-

geneous random K-out graph with three classes. Namely, we set µµµ = {0.9, 0.06, 0.04} and

KKK = (1, 2, K3), i.e., each node is classified as class-1 with probability 0.9, class-2 with proba-

bility 0.06, and class-3 with probability 0.04. Nodes belonging to class-1 (respectively, class-2)

select only one (respectively, two) other node(s) to be paired to. We vary K3 from 3 to 20

and observe how the empirical probability of connectivity varies in accordance. In particular,

for each value of K3, we run 105 independent experiments for each data point and count the

number of times (out of 105) when the resulting graph is connected. Dividing this number by

105 gives the empirical probability of connectivity.

Note that as K3 varies, Kavg varies as well according to (8.4). We can then use (8.16)

to plot the theoretical upper bound given by 1 − C(µµµ,KKK). The results given in Figure 8.1

confirm the validity of Theorem 8.4.1 but also reveals its shortcomings. Observe that the

bound appears to be loose for small values of K3, yet it becomes tighter as K3 increases. The

reasoning behind this phenomenon would become apparent in Section 8.5 as we outline our

approach in establishing Theorem 8.4.1. At a high level, our approach is based on bounding

the probability of connectivity by the probability of not observing isolated components of size

two, i.e., components formed by two class-1 nodes u and v such that u has selected v, v has

selected u, and none of the other n − 2 nodes has either selected u or v. When K3 is large,

the probability of observing isolated components of sizes larger than two (i.e., three, four, etc.)
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Figure 8.1: The empirical probability P (n;µµµ,KKKn) with µµµ = {0.9, 0.06, 0.04} andKKK = (1, 2, K3)
as a function ofK3 for n = 1000 along with the theoretical upper bound given by Theorem 8.4.1.
Empirical probabilities approach the upper bound as K3 increases. Empirical probabilities were
obtained by averaging over 105 independent experiments for each data point.

will be small. Hence, the probability of connectivity in this regime would be tightly bounded

by the probability of not observing isolated components of size two. However, in the regime

where K3 is small, isolated components of sizes other than two are more likely to be formed, as

compared to the case when K3 is large (see Figure 8.2). Since our approach does not consider

such components, our bound becomes slightly loose in this regime.

8.5 A proof of Theorem 8.4.1

In what follows, we establish (8.19) whenever Kn,r = O(1). In particular, with each class-1

node selecting only one other node, we will show that whenever each class-r node gets paired to

a bounded number of nodes, there will be a positive probability that the graph is not connected.

Note that if the sequence Kr,n is bounded, then so are the sequences Ki,n for i = 2, . . . , r − 1
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Figure 8.2: A realization of the inhomogeneous random K-out graph H(n;µµµ,KKKn) with r = 3,
KKK = (1, 2, 3). The graph is not connected as it contains two isolated components, highlighted
in red and green, respectively. The first isolated component consists of two nodes, while the
second isolated component consists of three nodes. We set n = 100 and µµµ = {0.9, 0.05, 0.05}.
The size of each node corresponds to its degree.

by virtue of (8.15). Put differently

Kr,n = O(1)⇒ Ki,n = O(1), i = 2, . . . , r − 1

Observe that when a positive fraction of the nodes, each, gets paired with only one node, the

graph may contain isolated components consisting of two class-1 nodes, say i and j, that were

paired with each other, i.e., Γn,i(µµµ,KKKn) = {j}, Γn,j(µµµ,KKKn) = {i}, and Γn,`(µµµ,KKKn) ⊆ N\{i, j, `}

for all ` ∈ N \ {i, j}. Indeed, these isolated components render the graph disconnected. A

graphical illustration is given in Figure 8.2. Our approach in establishing Theorem 8.4.1 relies

on the method of second moment applied to a variable that counts the number of isolated

components that contain two vertices of class-1.

Recall that ti denotes the class of node i. Let Uij(n;µµµ,KKKn) denote the event that nodes i
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and j are both class-1 and are forming an isolated component, i.e.,

Uij(n;µµµ,KKKn) (8.21)

=

 ⋂
`∈N\{i,j}

[Γn,`(µµµ,KKKn) ⊆ N \ {i, j, `}]

 ∩ [Γn,i(µµµ,KKKn) = {j}]

∩ [Γn,j(µµµ,KKKn) = {i}] ∩ [t1 = 1] ∩ [t2 = 1]

Next, let

χij(n;µµµ,KKKn) = 111 [Uij(n;µµµ,KKKn)]

and

Y (n;µµµ,KKKn) =
∑

1≤i<j≤n

χij(n;µµµ,KKKn)

Clearly, Y (n;µµµ,KKKn) gives the number of isolated components in H(n;µµµ,KKKn) that contain

two vertices of class-1. We will show that when Kr,n = O(1), we have

P [Y (n;µµµ,KKKn) = 0] ≤ 1− C(µµµ,KKKn) + o(1)

Recall that if H(n;µµµ,KKKn) is connected, then it does not contain any isolated component. In

particular, H(n;µµµ,KKKn) would consist of a single component of size n. However, the absence of

isolated components of size two does not necessarily mean that H(n;µµµ,KKKn) is connected, as it

may contain isolated components of other sizes (see Figure 8.2). It follows that,

P (n;µµµ,KKKn) ≤ P [Y (n;µµµ,KKKn) = 0]

Hence, establishing (8.19) is equivalent to establishing

P [Y (n;µµµ,KKKn) = 0] ≤ 1− C(µµµ,KKKn) + o(1) (8.22)
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where C(µµµ,KKKn) is given by (8.16).

By applying the method of second moments [73, Remark 3.1, p. 55] on Y (n;µµµ,KKKn), we get

P[Y (n;µµµ,KKKn) = 0] ≤ 1− (E[Y (n;µµµ,KKKn)])2

E[Y 2(n;µµµ,KKKn)]
(8.23)

where

E[Y (n;µµµ,KKKn)] =
∑

1≤i<j≤n

E [χij(n;µµµ,KKKn)] =

(
n

2

)
E[χ12(n;µµµ,KKKn)] (8.24)

and

E[Y 2(n;µµµ,KKKn)] = E

[ ∑
1≤i<j≤n

∑
1≤`<m≤n

χij(n;µµµ,KKKn)χ`m(n;µµµ,KKKn)

]

=

(
n

2

)
E [χ12(n;µµµ,KKKn)] + 2

(
n

2

)(
n− 2

1

)
E [χ12(n;µµµ,KKKn)χ13(n;µµµ,KKKn)]

+

(
n

2

)(
n− 2

2

)
E [χ12(n;µµµ,KKKn)χ34(n;µµµ,KKKn)]

by exchangeability and the binary nature of the random variables {χij(n;µµµ,KKKn)}1≤i<j≤n. Ob-

serve that

E [χ12(n;µµµ,KKKn)χ13(n;µµµ,KKKn)] = 0,

since [U12(n;µµµ,KKKn) ∩ U13(n;µµµ,KKKn)] = ∅ by definition. Hence,

E[Y 2(n;µµµ,KKKn)] =

(
n

2

)
E [χ12(n;µµµ,KKKn)] +

(
n

2

)(
n− 2

2

)
E [χ12(n;µµµ,KKKn)χ34(n;µµµ,KKKn)] (8.25)

Using (8.24) and (8.25), we get

E[Y 2(n;µµµ,KKKn)]

(E[Y (n;µµµ,KKKn)])2 =
1(

n
2

)
E[χ1,2(n;µµµ,KKKn)]

+

(
n
2

)(
n−2

2

)
E[χ1,2(n;µµµ,KKKn)χ3,4(n;µµµ,KKKn)]((
n
2

)
E[χ1,2(n;µµµ,KKKn)]

)2 (8.26)

The next two results will help establish (8.22).
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Proposition 8.5.1. Consider a scaling KKK : N0 → Nr0 and a probability distribution µµµ =

{µ1, µ2, . . . , µr} with µi > 0. If Kr,n = O(1), then

(
n

2

)
E [χ12(n;µµµ,KKKn)] = (1 + o(1))

µ2
1

2
exp (−2Kavg,n) (8.27)

Proof. Note that under U12(n;µµµ,KKKn), we have

Γn,1(µµµ,KKKn) = {2} and Γn,2(µµµ,KKKn) = {1}

Moreover, we have

Γn,i(µµµ,KKKn) ⊆ N \ {1, 2, i}, i = 3, 4, . . . , n

Recall that each of the other n − 2 nodes is class-i with probability µi and that the random

variables Γn,1(µµµ,KKKn),Γn,2(µµµ,KKKn), . . . ,Γn,n(µµµ,KKKn) are mutually independent. Hence, we have

E [χ12(n;µµµ,KKKn)] = P [U12(n;µµµ,KKKn)] = µ2
1

(
1

n− 1

)2
(

r∑
i=1

µi

(
n−3
Ki,n

)(
n−1
Ki,n

))n−2
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Then, we have

(
n

2

)
E [χ12(n;µµµ,KKKn)] =

µ2
1

2

(
n

n− 1

)( r∑
i=1

µi

(
n−3
Ki,n

)(
n−1
Ki,n

))n−2

=
µ2

1

2

(
n

n− 1

)
·

(
r∑
i=1

µi

(
(n− 1−Ki,n)

(n− 1)

(n− 2−Ki,n)

(n− 2)

))n−2

=
µ2

1

2

(
n

n− 1

)( r∑
i=1

µi

(
1− Ki,n

n− 1

)(
1− Ki,n

n− 2

))n−2

=
µ2

1

2

(
n

n− 1

)
·

(
1−

(
r∑
i=1

µi
2Ki,n(n− 1.5)

(n− 1)(n− 2)

)
+

(
r∑
i=1

µi
K2
i,n

(n− 1)(n− 2)

))n−2

=
µ2

1

2

(
n

n− 1

)
· exp

(
−2

(
n− 1.5

n− 1

) r∑
i=1

µiKi,n +
1

n− 1

r∑
i=1

µiK
2
i,n

)

= (1 + o(1))
µ2

1

2
e−2Kavg,n

where the last equality follows since Kr,n = O(1).

Proposition 8.5.2. Consider a scaling KKK : N0 → Nr0 and a probability distribution µµµ =

{µ1, µ2, . . . , µr} with µi > 0. If Kr,n = O(1), then

E [χ12(n;µµµ,KKKn)χ34(n;µµµ,KKKn)]

(E [χ12(n;µµµ,KKKn)])2 = 1 + o(1). (8.28)

Proof. Note that an immediate consequence of Fact 8.3.2 is that

(
n
2

)(
n−2

2

)(
n
2

)2 = 1 + o(1)
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Observe that under [U12(n;µµµ,KKKn) ∩ U34(n;µµµ,KKKn)], we have

Γn,1(µµµ,KKKn) = {2} and Γn,2(µµµ,KKKn) = {1}

Γn,3(µµµ,KKKn) = {4} and Γn,4(µµµ,KKKn) = {3}

Moreover, we have

Γn,i(µµµ,KKKn) ⊆ N \ {1, 2, 3, 4, i}, i = 5, 6, . . . , n

Recall that each of the other n − 4 nodes is class-i with probability µi and that the random

variables Γn,1(µµµ,KKKn),Γn,2(µµµ,KKKn), . . . ,Γn,n(µµµ,KKKn) are mutually independent. Hence, we have

E [χ12(n;µµµ,KKKn)χ34(n;µµµ,KKKn)] = P [U12(n;µµµ,KKKn) ∩ U34(n;µµµ,KKKn)] = µ4
1

(
1

n− 1

)4
(

r∑
i=1

µi

(
n−5
Ki,n

)(
n−1
Ki,n

))n−4

Invoking Fact 8.3.2, we get

(
n
2

)(
n−2

2

)
E [χ12(n;µµµ,KKKn)χ34(n;µµµ,KKKn)]((
n
2

)
E [χ12(n;µµµ,KKKn)]

)2 = (1 + o(1))

(∑r
i=1 µi

(n−5
Ki,n

)

(n−1
Ki,n

)

)n−4

(∑r
i=1 µi

(n−3
Ki,n

)

(n−1
Ki,n

)

)2n−4

= (1 + o(1)) ·

(∑r
i=1 µi

(
1− 4Ki,n

n−1
±O

(
K4
i,n

n2

)))n−4

(∑r
i=1 µi

(
1− 2Ki,n

n−1
±O

(
K4
i,n

n2

)))2n−4

= (1 + o(1)) ·

(
1− 4

∑r
i=1 µiKi,n
n−1

±O
(

1
n2

))n−4

(
1− 2

∑r
i=1 µiKi,n
n−1

±O
(

1
n2

))2n−4

= (1 + o(1)) ·

 1− 4Kavg,n

n−1
±O

(
1
n2

)(
1− 2Kavg,n

n−1
±O

(
1
n2

))2


n

= (1 + o(1)) ·

(
1− 4Kavg,n

n−1
±O

(
1
n2

)
1− 4Kavg,n

n−1
±O

(
1
n2

))n

= (1 + o(1)) ·
(

1±O
(

1

n2

))n
= 1 + o(1).
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The main result (8.19) now follows by virtue of (8.22) and (8.23) as we combine (8.26),

(8.27), and (8.28). Observe that (8.18) follows from (8.19) by virtue of the fact that Kavg,n =

O(1) when Kr,n = O(1).

8.6 A proof of Theorem 8.4.2

In what follows, we establish that

lim
n→∞

P (n;µµµ,KKKn) = 1 (8.29)

whenever Kr,n = ω(1).

Observe that for any non-empty subset S of nodes, i.e., S ⊆ N , we say that S is isolated

in H(n;µµµ,KKKn) if there are no edges in H(n;µµµ,KKKn) between the nodes in S and the nodes in

the complement Sc = N − S. This is characterized by the event Bn(µµµ,KKKn;S) given by

Bn(µµµ,KKKn;S) =
⋂
i∈S

⋂
j∈Sc

([i 6∈ Γn,j(µµµ,KKKn)] ∩ [j /∈ Γn,i(µµµ,KKKn)]) .

Note that if H(n;µµµ,KKKn) is not connected, then there must exist a non-empty subset S

of nodes which is isolated. Recall that each node in H(n;µµµ,KKKn) is class-i with probability

µi and that K1,n = 1. Thus, we may observe isolated sets in H(n;µµµ,KKKn) of cardinality1

` = 2, 3, . . . , bn
2
c. Thus, with Dn(µµµ,KKKn) denoting the event that H(n;µµµ,KKKn) is connected, we

have the inclusion

Dn(µµµ,KKKn)c ⊆ ∪S∈Pn: 2≤|S|≤bn
2
c Bn(µµµ,KKKn;S) (8.30)

where Pn stands for the collection of all non-empty subsets of N . A standard union bound

1Note that if vertices S form an isolated set then so do vertices N −S, hence the sum need to be taken only
until bn2 c.
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argument immediately gives

P [Dn(µµµ,KKKn)c] ≤
∑

S∈Pn:2≤|S|≤bn
2
c

P [Bn(µµµ,KKKn;S)] =

bn
2
c∑

`=2

 ∑
S∈Pn,`

P [Bn(µµµ,KKKn;S)]

 (8.31)

where Pn,` denotes the collection of all subsets of N with exactly ` elements.

For each ` = 1, . . . , n, we simplify the notation by writingBn,`(µµµ,KKKn) = Bn(µµµ,KKKn; {1, . . . , `}).

Under the enforced assumptions, exchangeability implies

P [Bn(µµµ,KKKn;S)] = P [Bn,`(µµµ,KKKn)] , S ∈ Pn,`

and the expression ∑
S∈Pn,`

P [Bn(µµµ,KKKn;S)] =

(
n

`

)
P [Bn,`(µµµ,KKKn)] (8.32)

follows since |Pn,`| =
(
n
`

)
. Substituting into (8.31) we obtain the bounds

P [Dn(µµµ,KKKn)c] ≤
bn

2
c∑

`=2

(
n

`

)
P [Bn,`(µµµ,KKKn)] . (8.33)

For each ` = 2, . . . , bn
2
c, it is easy to check that

P [Bn,`(µµµ,KKKn)] =

(
r∑
i=1

µi

(
`−1
Ki,n

)(
n−1
Ki,n

))`( r∑
i=1

µi

(
n−`−1
Ki,n

)(
n−1
Ki,n

) )n−`

(8.34)

To see why this last relation holds, recall that for nodes {1, . . . , `} to be isolated in

H(n;µµµ,KKKn), we need that (i) none of the sets Γn,1(µµµ,KKKn), . . . ,Γn,`(µµµ,KKKn) contains an element

from the set {`+ 1, . . . , n}; and (ii) none of the sets Γn,`+1(µµµ,KKKn), . . . ,Γn,n(µµµ,KKKn) contains an

element from {1, . . . , `}. More precisely, we must have

Γn,i(µµµ,KKKn) ⊆ {1, . . . , `} \ {i}, i = 1, . . . , `
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and

Γn,j(µµµ,KKKn) ⊆ {`+ 1, . . . , n} \ {j}, j = `+ 1, . . . , n.

Hence, the validity of (8.34) is now immediate from (8.2) and the mutual independence of the

rvs Γn,1(µµµ,KKKn), . . . ,Γn,n(µµµ,KKKn).

We now establish that under the enforced assumptions of Theorem 8.4.2, we have

lim
n→∞

bn
2
c∑

`=2

(
n

`

)
P [Bn,`(µµµ,KKKn)] = 0

which in turn establishes Theorem 8.4.2 by virtue of (8.33).

Note that the quantities (
`−1
Ki,n

)(
n−1
Ki,n

) and

(
n−`−1
Ki,n

)(
n−1
Ki,n

)
are monotonically decreasing in Ki,n. We use (8.11) and (8.34) to get

P [Bn,`(µµµ,KKKn)]

=

(
r−1∑
i=1

µi

(
`−1
Ki,n

)(
n−1
Ki,n

) + µr

(
`−1
Kr,n

)(
n−1
Kr,n

))`

·

(
r−1∑
i=1

µi

(
n−`−1
Ki,n

)(
n−1
Ki,n

) + µr

(
n−`−1
Kr,n

)(
n−1
Kr,n

) )n−`

≤

((
`−1
K1,n

)(
n−1
K1,n

) ( r−1∑
i=1

µi

)
+ µr

(
`−1
Kr,n

)(
n−1
Kr,n

))`

·

((
n−`−1
K1,n

)(
n−1
K1,n

) ( r−1∑
i=1

µi

)
+ µr

(
n−`−1
Kr,n

)(
n−1
Kr,n

) )n−`

≤

(
µ̃

(
`− 1

n− 1

)
+ (1− µ̃)

(
`− 1

n− 1

)Kr,n)`

·

(
µ̃

(
n− `− 1

n− 1

)
+ (1− µ̃)

(
n− `− 1

n− 1

)Kr,n)n−`

(8.35)

where µ̃ =
∑r−1

i=1 µi and 1− µ̃ = µr.

Observe that the bound appearing in (8.35) resembles the case where each node belongs to

one of two classes. Namely, a node could either be class-1 (with probability µ̃) or class r (with
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probability 1− µ̃). We further use (8.12) to get

P [Bn,`(µµµ,KKKn)]

≤

(
µ̃

(
`

n

)
+ (1− µ̃)

(
`

n

)Kr,n)`

·

(
µ̃

(
1− `

n

)
+ (1− µ̃)

(
1− `

n

)Kr,n)n−`

= µ̃`
(
`

n

)`(
1 +

1− µ̃
µ̃

(
`

n

)Kr,n−1
)`(

1− `

n

)n−`
·

(
1− (1− µ̃)

(
1−

(
1− `

n

)Kr,n−1
))n−`

≤ µ̃`
(
`

n

)`(
1− `

n

)n−`(
1 +

1− µ̃
µ̃

(
`

n

)Kr,n−1
)`

·
(

1− (1− µ̃)

(
1− e−`

(
Kr,n−1

n

)))n−`
≤ µ̃`

(
`

n

)`(
1− `

n

)n−`
exp

(
1− µ̃
µ̃

`

(
`

n

)Kr,n−1

− (1− µ̃) (n− `)
(

1− e−`
(
Kr,n−1

n

)))
(8.36)

Combining (8.7) with (8.36), we conclude that

P [Dn(µµµ,KKKn)c] ≤
bn

2
c∑

`=2

(
n

`

)
P [Bn,`(µµµ,KKKn)] ≤

bn
2
c∑

`=2

µ̃`An,` (8.37)

where we define

An,` := exp

(
1− µ̃
µ̃

`

(
`

n

)Kr,n−1

− (1− µ̃) (n− `)
(

1− e−`
(
Kr,n−1

n

)))
(8.38)

with 2 ≤ ` ≤ n/2.

Next, our goal is to derive an upper bound on An,` that is valid for all n sufficiently large

and ` = 2, . . . , bn
2
c, and show that this bound tends to zero as n gets large. Fix n = 2, 3,

sufficiently large. For each ` = 2, . . . , bn
2
c, either one of the following should hold

`(Kr,n − 1)

n
≤ 1 and

`(Kr,n − 1)

n
> 1.

If it holds that `(Kr,n−1)

n
≤ 1, then we use (8.13) to get 1 − e−`

(
Kr,n−1

n

)
≥ `(Kr,n−1)

2n
. Using this
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in (8.38) yields

An,` ≤ exp

(
1− µ̃
µ̃

`

(
`

n

)Kr,n−1

− (1− µ̃) (n− `)`(Kr,n − 1)

2n

)

≤ exp

(
1− µ̃
µ̃

`

(
1

2

)Kr,n−1

− (1− µ̃)
`(Kr,n − 1)

4

)
(8.39)

= exp

(
− (1− µ̃) `

(
(Kr,n − 1)

4
− (0.5)Kr,n−1

µ̃

))

≤ exp

(
−2 (1− µ̃)

(
(Kr,n − 1)

4
− (0.5)Kr,n−1

µ̃

))
(8.40)

where (8.39) follows from the facts that n− ` ≥ n/2 and `/n ≤ 0.5 on the specified range for

`, and (8.40) follows for all Kr,n sufficiently large such that Kr,n ≥
⌈
4
(

(0.5)Kr,n−1

µ̃

)
+ 1
⌉

upon

noting that ` ≥ 2.

If, on the other hand, it holds that `(Kr,n−1)

n
> 1, we see that 1 − e−`

(
Kr,n−1

n

)
≥ 1 − e−1.

Reporting this into (8.38) and using ` ≤ n/2, we get

An,` ≤ exp

(
1− µ̃
µ̃

`

(
`

n

)Kr,n−1

− (1− µ̃) (n− `)
(
1− e−1

))

≤ exp

(
1− µ̃
µ̃

(n
2

)
(0.5)Kr,n−1 − (1− µ̃)

n

2

(
1− e−1

))
= exp

(
− (1− µ̃)

n

2

(
1− e−1 − (0.5)Kr,n−1

µ̃

))
. (8.41)

Combining (8.40) and (8.41) we see that An,` ≤ Ψ(n,µµµ,KKKn) for all n sufficiently large and

all ` = 2, . . . , bn
2
c, where Ψ(n,µµµ,KKKn) is given by (8.17).

Observing that the bound derived on An,` is independent on `, we get from (8.17) and

(8.37)
bn

2
c∑

`=2

(
n

`

)
P [Bn,`(µµµ,KKKn)] ≤ Ψ(n,µµµ,KKKn)

∞∑
`=2

µ̃` =
µ̃2

1− µ̃
Ψ(n,µµµ,KKKn)

Letting n go to infinity, it is now easy to see that

lim
n→∞

Ψ(n,µµµ,KKKn) = 0, 2 ≤ ` ≤ n/2
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under the enforced assumption that limn→∞Kr,n =∞. Hence, the conclusion

lim
n→∞

bn
2
c∑

`=2

(
n

`

)
P [Bn,`(µµµ,KKKn)] = 0

immediately follows since 0 < µ̃ < 1. This establishes Theorem 8.4.2.

8.7 Conclusion

In this chapter, we have proposed inhomogeneous random K-out graphs H (n;µµµ,KKKn) where

nodes are arranged into r disjoint classes and the number of selections made by a node is

dependent on its class. In particular, we consider the case where each node is classified as class-

i with probability µi > 0 for i = 1, . . . , r. A class-i node selects Ki,n other nodes uniformly

at random to be paired to. Two nodes are deemed adjacent if at least one selects the other.

Without loss of generality, we assumed that K1,n ≤ K2,n ≤ . . . ≤ Kr,n.

Earlier results on homogeneous random K-out graphs (where all nodes select K other nodes)

suggest that the graph is connected whp if K ≥ 2. Hence, H (n;µµµ,KKKn) is trivially connected

whenever K1,n ≥ 2. We investigated the connectivity of H (n;µµµ,KKKn) in the particular case

when K1,n = 1. Our results revealed that when K1,n = 1, H (n;µµµ,KKKn) is connected with high

probability if and only if Kr,n = ω(1). Any bounded choice of Kr,n is shown to yield a positive

probability of H (n;µµµ,KKKn) being not connected, and an explicit lower bound on this probability

is provided.
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Part III

Application Area II: Modeling

real-world social networks
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Chapter 9

The multiple-strain model on random graphs

with arbitrary degree distribution

9.1 Motivation

What causes an outbreak of a disease? How can we predict its emergence and control its

progression? Over the past several decades, multidisciplinary research efforts were converging

to tackle the above questions, aiming for providing a better understanding of the intricate

dynamics of disease propagation and accurate predictions on its course [6, 12, 28, 56, 65, 89,

103, 104, 111, 120, 120, 145, 146]. At the heart of these research efforts is the development of

mathematical models that provide insights on predicting, assessing, and controlling potential

outbreaks [20, 34, 77, 135]. The early mathematical models relied on the homogeneous mixing

assumption, meaning that an infected individual is equally likely to infect any other individual

in the population, without regard to her location, age, or the people with whom she interacts.

Homogeneity allowed writing a set of differential equations that characterize the speed and scale

of propagation (in the limit of large population size), providing insights on how the parameters

of a disease, e.g., its basic reproductive number, indicate whether a disease will die out, or an

epidemic will emerge [6, 77].

In real-life, however, the spread of a disease is highly dependent on the contact patterns

between individuals. In particular, a person may only infect those with whom she interacts,

and the number of contacts people have, varies dramatically between individuals. These basic

205



observations render the homogeneous mixing models inaccurate, as they tend to underestimate

the epidemic size in the initial stages of the outbreak and overestimate it towards the end [11].

As a result of the these shortcomings, network epidemics has emerged as a mathematical

modeling approach that takes the underlying contact network into consideration [12, 76, 98,

111, 119]. Since then, a large body of research has looked into the delicate interplay between

the structural properties of the contact network and the dynamics of propagation, leading to

accurate predictions of the spatio-temporal progression of disease outbreaks. In addition to

diseases, opinions and information also propagate through networks in patterns similar to those

of epidemics [39]. Hence, research efforts on information propagation draw on the theory of

infectious diseases to model the dynamics of propagation [65, 71, 102, 160, 168]. Throughout,

we use the term spreading processes to denote a general class of processes that propagate in

contact networks, such as infectious diseases and information.

A common theme among the proposed models for network epidemics is the assumption

that the propagating object, i.e., a virus or a piece of information, is transferred across the

nodes without going through any modification or evolution [6,10,35,114,124,130,158,160,168].

However, in real-life spreading processes, pathogens often evolve in response to changing en-

vironments and medical interventions [3, 7, 86, 104, 123], and information is often modified by

individuals before being forwarded [1, 163]. In fact, 60% of the (approximately) 400 emerging

infectious diseases that have been identified since 1940 are zoonotic 1 [75,105]. A zoonotic dis-

ease is initially poorly adapted, poorly replicated, and inefficiently transmitted [118], hence its

ability to go from animal-to-human transmissions to human-to-human transmissions depends

on the pathogen evolving to a strain that is well-adapted to the human host.

Similar patterns of evolution are observed in the way information propagates among individ-

uals. Needless to say, one observes, on a daily basis, how information mutates unintentionally,

or perhaps intentionally by an adversary, on social media platforms [1]. At a high-level, an

individual may mutate the information by exaggeration, hoping for her variant to go viral.

1A zoonosis is any disease or infection that is naturally transmissible from vertebrate animals to humans
[117].
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Mutations may also occur unintentionally. In particular, Dawkins [29] argued that ideas and

information spread and evolve between individuals with patterns similar to genes, in a sense

that they self-replicate, mutate, and respond to selective pressure as they interact with their

host. Concluding, if we are to ignore evolution, we underestimate the severity of the epi-

demic and fail to understand the intricate interplay between the dynamics of propagation and

evolution.

In this chapter, we aim to bridge the disconnect between how spreading processes propagate

and evolve in real-life, and the current mathematical and simulation models that do not capture

evolution. In particular, we investigate the evolution of spreading processes with the aim of i)

revealing the role of evolutionary adaptations on the threshold, probability, and final size of

epidemics; and ii) understanding the interplay between the structural properties of the network

and the evolutionary adaptations of the process. Throughout, we use the term epidemics to

denote disease/information outbreaks that result in a positive fraction of infected individuals

in the limit of large network size and self-limited outbreaks to denote small disease/information

outbreaks for which the fraction of infected individuals tends to zero in the limit of large

network size. We also use the term strain to denote a pathogen strain in the context of infectious

disease propagation, or a particular variation of the information in the context of information

propagation. At a high level, strains represent homogeneous groups within species [9] and they

generally possess unique features such as virulence, infectivity, growth rate, etc.

In modeling the underlying contact network, we utilize random graphs with arbitrary degree

distribution generated by the configuration model [100,115]. The configuration model generates

random graphs with specified degree sequence (sampled from an arbitrary degree distribution),

but are otherwise random, by taking a uniformly random matching on the half-edges of the

specified degree sequence. The model provides a tractable mathematical framework that al-

lows the investigation of several key properties related to the spreading process and how it

interacts with the structure of the underlying graph, as specified by its degree distribution.

In addition, since the model could match the degree sequence of real-world social networks, it
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would essentially generate graphs that resemble such real-world networks to a great extent.

In modeling the evolutionary adaptations of spreading processes, we adopt the (inhomoge-

neous) multiple-strain model that was introduced by Alexander and Day in [3]. Their model

can be briefly outlined as follows (more details are given in Section 9.4). Consider a multiple-

strain spreading process that starts with an individual, i.e., the seed, receiving infection (from

an external reservoir) with strain-1 of a particular pathogen (respectively, information). The

seed infects each of her contacts independently with probability T1, called the transmissibility

of strain-1. Once a susceptible individual receives the infection from the seed, the pathogen

may evolve within that new host prior to any subsequent infections. In particular, the pathogen

may remain as strain-1 with probability µ11 or mutate to strain-2 (that has transmissibility T2)

with probability µ12 = 1 − µ11. If the pathogen remains as strain-1 (respectively, mutates to

strain-2) within a newly infected host, then that host infects each of her susceptible neighbors

in the subsequent stages independently with probability T1 (respectively, T2). As the process

continues to grow, if any susceptible individual receives strain-1, the pathogen may remain

as strain-1 with probability µ11 or mutate to strain-2 with probability µ12 = 1 − µ11 prior to

subsequent infections. Similarly, if any susceptible individual receives strain-2, the pathogen

may remain as strain-2 with probability µ22 or mutate to strain-1 with probability µ21 = 1−µ22

prior to subsequent infections. The process continues to grow until no additional infections

are possible. We remark that it is straightforward to extend the model to the general case,

where there are m possible strains for some finite integer m ≥ 2. More details are given in

Section 9.5.

Note that as multiple strains propagate throughout the population, a susceptible individual

may simultaneously get into infectious contact with neighbors infected with strain-1 as well as

neighbors infected with strain-2. This gives rise to the possibility of a susceptible individual be-

coming co-infected with multiple pathogen strains. Indeed, co-infection with multiple pathogen

strains is prevalent in disease-causing protozoa, helminths, bacteria, fungi, and viruses and is

known to cause significant implications [4,9,25,126,139]. However, from a mathematical stand-
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point, the possibility of co-infections creates phase discontinuities (see Section 9.8) that render

the process mathematically intractable.

We start by considering the case when co-infection is ignored, meaning that a susceptible

individual may only be infected with a single strain. In particular, a susceptible individual who

simultaneously receives x infections of strain-1 and y infections of strain-2 becomes infected

by strain-1 (respectively, strain-2) with probability x/(x + y) (respectively, y/(x + y)). In

this case, we develop a mathematical theory that draws on the tools developed for analyzing

the zero-temperature random-field Ising model on Bethe lattices [133] as well as on random

graphs [60,61]. Our theory fully characterizes the process and accurately predicts the epidemic

threshold, expected epidemic size and the expected fraction of individuals infected by each

strain (all at steady state). These metrics are computed as functions of the characteristics of

the spreading process (i.e., T1 and T2), evolutionary adaptations (i.e., µ11 and µ22), and the

structure of the underlying contact network (e.g., its degree distribution).

In addition to the mathematical theory, we perform extensive simulations on random graphs

with arbitrary degree distributions (generated by the configuration model [18,100,115]) as well

as with real-world networks (obtained from SNAP dataset [83] as well as [131] and [141])

to verify our theory and reveal the significant shortcomings of the classical mathematical

models that do not capture evolution. In particular, we show that the classical, single-type

bond-percolation models [5,96,101,111] may accurately predict the threshold and final size of

epidemics, but their predictions on the probability of emergence are significantly inaccurate

on both random and real-world networks. This inaccuracy sheds the light on a fundamental

disconnect between the classical single-type, bond-percolation models and real-life spreading

processes that entail evolution.

We then focus on the case where co-infection is possible. Although recent studies have

shown that co-infection with multiple pathogen strains is prevalent in nature [4, 9, 25, 126,

139], there has been a lack of models that explain its occurrence, reveal its implications, and

investigate its delicate interplay with the underlying contact network. Note that a considerable
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amount of literature has examined the case where co-infection with multiple diseases is possible

[8, 21, 27, 66], yet multiple-disease co-infection is fundamentally different from multiple-strain

co-infection (see Section 9.3). In this chapter, we use computer simulations to explore the case

where multiple-strain co-infection is possible. In particular, a susceptible individual who gets

infected with strain-1 and strain-2 simultaneously becomes co-infected, and starts to transmit

the co-infection, i.e., the mixture of the two strains, with a transmissibility Tco.

The transmissibility Tco could be larger than the maximum of T1 and T2 (e.g., modeling

a synergistic cooperation between the two resident strains) or smaller than their minimum

(e.g., modeling a negative competition among the two resident strains), and it may also fall

anywhere in between. We show that co-infection gives rise to a rich set of dynamics: it can

amplify or inhibit the spreading dynamics, and more remarkably lead the order of phase tran-

sition to change from second-order to first-order. We investigate the interplay between the

characteristics of co-infection, the structure of the underlying contact network, and evolution-

ary adaptations and reveal the cases where such interplay induces a first-order phase transition

for the expected epidemic size.

9.2 A roadmap

We consider the evolution of spreading processes in complex networks. We start with the case

where co-infection is ignored. In this case, we develop a mathematical theory that unravels the

relationship between the characteristics of the spreading process, the structure of the underlying

contact network, and the process of evolution, thereby, providing accurate predictions on the

epidemic threshold, expected epidemic size, and the expected fraction of individuals infected

by each strain at steady state. In addition to the mathematical theory, we perform extensive

simulations on random and real-world networks to verify our theory and reveal the significant

shortcomings of the classical mathematical models that do not capture evolution. Then, we

use computer simulations to explore the case where co-infection is possible and show that co-

infection could lead the order of phase transition to change from second-order to first-order.
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We investigate the interplay between the characteristics of co-infection, the structure of the

underlying contact network, and evolutionary adaptations and explain how such interplay

controls the order of phase transition for the expected epidemic size.

9.3 Related work

9.3.1 Evolution of infectious diseases

A large body of research has investigated the role of evolutionary adaptations in enabling

pathogen establishment in human populations [75, 104, 106, 123, 147]. A pronounced example

of such evolutionary adaptations is the emergence of zoonoses. In particular, zoonotic diseases

are poorly adapted and inefficiently transmitted at first [118], yet they may eventually (through

evolutionary adaptations) cross the species barrier and start to spread from human to human.

In fact, a key event that is thought to have caused the emergence of the 1918 H1N1 pandemic

is a recombination in the hemagglutinin gene that resulted in a novel virus with increased viru-

lence [79]. Other evolutionary adaptations include genetic changes (e.g., Salmonella enterica),

recombination or reassortment (e.g., H5N1 influenza), and hybridization (e.g., Phytophthora

alni) [147].

To date, most of the research studies on the evolution of infectious diseases either assume

a homogeneous-mixing host population, or focus entirely on the ecological or environmental

factors of pathogen evolution. Indeed, the recent advances in network epidemics pave the way

for exploring new depths and revealing new insights on the delicate interplay between the

structural properties of the host contact network and the process of evolution. In what follows,

we review the recent progress in creating a modeling framework that captures the spread and

evolution of infectious diseases on realistic host contact networks.

In [3], Alexander and Day proposed a network-based framework that characterizes the

spread and evolution of an introduced pathogen on a contact network. Their main objective

was to investigate the probability of emergence, and its relation to mutation probabilities,
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pathogens’ transmissibilities, and the structure of the underlying contact network. Using a

multi-type branching process [69,99], they derived recursive relations governing the probability

of emergence for a given initial strain of the pathogen. The initial strain was assumed to

have a poor transmissibility, hence, evolution to a strain with sufficient transmissibility was

necessary for emergence. Alexander and Day explored the potential risk factors that could

lead to such evolutionary emergence of the pathogen. In particular, they showed that for a

given transmissibility, heterogeneity in network structure can significantly increase the risk

of emergence. Moreover, certain mutational schemes (e.g., reverse mutation) have limited

impact on the probability of emergence, while others (e.g., simultaneous point mutations or

recombination) have a dramatic effect on the probability of emergence.

The framework proposed by Alexander and Day in [3] represents a crucial first step towards

understanding the role of evolutionary adaptations in driving the emergence of infectious dis-

eases, but it lacks any insights on the expected epidemic size (denoted by S) or, more precisely,

the expected fraction of individuals infected by each strain (denoted by S1 and S2, respectively).

Also, the multi-type branching formalism inherently assumes a tree structure of the underly-

ing graph, hence co-infection (which mainly occurs due to the existence of cycles) is essentially

ignored in their framework. Finally, the results presented in [3] were neither verified on the-

oretical, nor real-world contact networks. Our work addresses those limitations by means of

i) developing a mathematical theory that characterizes the epidemic threshold, expected epi-

demic size and the expected fraction of individuals infected by each strain; ii) validating our

results (as well as Alexander and Day’s results) on theoretical and real-world contact networks;

and iii) investigating the case when co-infection is possible.

When the timescale of evolution is much longer than the timescale of propagation, mutations

might occur after the original pathogen has invaded the population. In [86], Leventhal et al.

considered an SIS process that starts with a pathogen (of single-strain) invading the population.

As the disease reaches an endemic equilibrium, a second strain of the disease appears in a

random infected individual. Authors assumed that co-infection is not possible, i.e., an infected
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host carries either strain-1 or strain-2, but not both. Moreover, hosts infected by either strain

have perfect immunity against the other strain. Authors investigated the probability that

the second strain invades the population and drives the resident strain to extinction, i.e., the

fixation probability. Results from both theoretical and real-world networks suggested that the

heterogeneity in network structure (which facilitated the spread of the resident strain) lowers

the fixation probability, hence enhancing the resiliency of the resident strain to invasion by

new variants.

In contrast to [86], our work considers the case when the epidemiological and evolutionary

processes occur on a similar time scale. In particular, each new infection event entails an op-

portunity for mutation, leading to an entirely different model (with different scope) than the

one proposed by Leventhal et al. in [86]. The model considered in our work is reasonable for

pathogens with long infectious periods, e.g., HIV, or pathogens with short infectious periods but

high mutation rates, large population sizes, and short generation times, e.g., RNA viruses [67].

Furthermore, Leventhal et al. [86] ignore the case where co-infection is possible. However, re-

cent studies revealed the prevalence of multiple-strain co-infection in disease-causing protozoa,

bacteria, and viruses [4, 9, 25, 126,139].

Since humans, animals, plants, and other organisms may become co-infected with mul-

tiple diseases, a growing body of research has attempted to explore the emergence of this

phenomenon and its consequences on complex networks [8, 21, 27, 66]. However, most of the

research studies focus on the case where co-infection results from simultaneous exposure to

multiple diseases (or pathogen species), rather than multiple-strains of the same pathogen.

In [21], Cai et al. considered the case when two diseases are spreading on the same contact

network. A susceptible host that has not been exposed to either disease has probability p to get

infected by an infective neighbor. Note that the infection probabilities are the same for both

diseases. Infected hosts recover after exactly one time step, and gain immunity against the

disease that they were infected with, but not the other disease. A host that has been infected

by one disease (being still active or has already recovered) has a probability q (with q > p)
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(a) (b)

(c) (d)

Figure 9.1: Information mutation on Twitter. A collection of four tweets posted within
a 10-minute window during the 2011 Arab Spring in Cairo, Egypt. The tweets were posted
in response to the same underlying event, namely, the marching of protesters towards the
presidential palace in order to force the then president, Mubarak, to resign. Information
mutation gave rise to several variants with potentially different consequences. Observe that
(a) reports peaceful, traditional demonstrations while (d) suggests that the country is on a
brink of collapse. User names are hidden for anonymity and tweet ids are given instead.

to get infected by the other disease, i.e., an infection with one disease weakens the immune

system of the infected individual and makes her more susceptible to the second disease. Cai

et al. revealed that co-infection dynamics could give rise to a hybrid phase transition, where

the probability of emergence exhibits a second-order transition, while the fraction of doubly

infected nodes exhibits a first-order transition.

In Section 9.8, we consider the case where co-infection with multiple strains of the same

pathogen is possible, giving rise to a different class of epidemiological processes than those

considered in [8,21,27,66]. Our model is motivated by the recent research findings that revealed

the prevalence of multiple-strain co-infection in disease-causing protozoa, helminths, bacteria,

fungi, and viruses [4, 9, 25, 126, 139]. From a modeling standpoint, the key difference between

the two processes is that evolution is a perquisite for co-infection in our model. In particular,

the epidemic process in [21] i) does not entail any mutation events and ii) starts with a doubly
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infected seed, i.e., an infected host that initially carries both diseases. However, our epidemic

process starts with a host receiving infection with only one strain of the pathogen, e.g., strain-1,

hence the emergence of other strains (which is dictated by the underlying mutational scheme,

transmissibility, and network structure) is a perquisite for co-infection. Moreover, our co-

infection process differs fundamentally in the way a host becomes co-infected. Unlike the

model given in [21], we assume a perfect cross-immunity, i.e., a host that has recovered from

strain-1 develops immunity against both strain-1 and strain-2. Hence, the only pathway for

co-infection is when a susceptible host is exposed simultaneously to one or more infections of

strain-1 and one or more infections of strain-2.

9.3.2 Evolution of information

Evolution and co-infection are two key phenomena of significant relevance to epidemiological

processes. However, we are also beginning to observe their emergence and roles in the context

of information propagation. We notice on daily basis how news is mutated intentionally,

e.g., by adversaries, or unintentionally, e.g., by exaggeration, on social media platforms. A

single underlying event could be expressed very differently by different people, creating several

variants of information with different implications (see Figure 9.1).

A few research studies have recently explored information evolution on complex networks

[1,163]. In [163], Zhang et al. investigated the evolution of rumors on homogeneous and scale-

free social networks. In their model, each individual could be in one of three different states,

namely, ignorant, spreader, or stifler. These states resemble the susceptible, infected, and

recovered states that we have in our model. A fraction F of ignorant individuals are deemed as

forwarders, i.e., they forward the received rumor to their neighbors without any modifications.

The remaining 1 − F fraction is deemed as modifiers, i.e., they modify the received rumor

before forwarding it to their friends. Each modification increments the version number by one.

Note that as the process continues to grow, different individuals would receive different versions

of the rumor before they turn into stiflers. The main objective of [163] was to determine the
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average version number of a rumor as a function of time (and degree, for scale-free networks).

Although our work is essentially motivated by the same observation of information evolution

in social contexts, our approach and contributions are significantly different from those of

[1, 163]. From a modeling perspective, the model presented in [163] is a special case of the

multiple-strain model [3] that we utilize in our work. In particular, the model proposed by

Zhang et al. essentially assumes that i) Ti = 1 for all i = 1, 2, . . .; and ii) the evolutionary

pathways are only limited to one-step irreversible mutations. As for the contributions, we

focus on the final epidemic size and final fraction of individuals infected by each version of

information, in contrast to [163] where authors only focus on the average revision frequency.

Another weakness of [163] is that authors made no attempt to provide closed-form expressions

for the final epidemic size, the fraction of individuals infected by each version of the rumor, or

the average version number of the rumor (only the corresponding differential equations were

given). A closed-form expression of the average version number of the rumor at steady state

was given only for networks with homogeneous degree distributions.

In [1], Adamic et al. explored the propagation and evolution of memes on Facebook.

Authors considered a dataset of Facebook posts which were spread using a copy-and-paste

mechanism (prior to the introduction of the “Share” functionality in Facebook). The mutation

rate of a particular meme was defined as the proportion of copies which introduce new edits as

opposed to creating exact replicas. Authors revealed that individuals preferentially transmit

a specific variant of a meme that matches their beliefs or culture. Moreover, authors showed

that the distribution of variant popularity (the number of copies of that variant posted as

Facebook status update) behaves as a power-law distribution for low-mutation rates, yet it

deviates from the power-law behavior for high mutation rates. Theoretical predictions based

on Yule processes [162] (in the limits of very low and very large mutation rates) were shown

to have a close resemblance to the empirically observed distributions.

The scope of [1] was limited to one type of propagation, i.e., copy-paste mechanism, and

mutations were only characterized by the edit distance 2 between a given variant of the meme

2The edit distance was defined in [1] as the number of character additions and deletions that must be
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and its original version. Indeed, the copy-paste mechanism is no longer sensible in modern

social networks where individuals have the option to “Share” a post rather than copying and

pasting it. In addition, using the edit distance as the sole metric for mutation essentially ignores

the semantic differences between two different versions of the meme. The theoretical model

presented in [1] is technically different than the multiple-strain model [3], yet it resembles a very

special case of the latter when i) Ti = 1 for all i = 1, 2, . . .; and ii) the evolutionary pathways

are only limited to one-step irreversible mutations. Even then, Yule model was considered in [1]

only in the limit of very low and very high mutation rates. In contrast to [1], our work attempts

to explore information propagation and evolution from a mathematical modeling perspective

aiming to lay down the foundations for creating a universal model for information propagation

and evolution across a wide variety of social media and different possible evolutionary pathways.

9.4 Model definitions

9.4.1 Network model: Random graphs with arbitrary degree dis-

tribution

Let G denote the underlying contact network, defined on the node set N = {1, . . . , n}. We

define the structure of G through its degree distribution {pk}. In particular, {pk, k = 0, 1, . . .}

gives the probability that an arbitrary node in G has degree k. We generate the network G

according to the configuration model [18, 100], i.e., the degrees of nodes in G are all drawn

independently from the distribution {pk, k = 0, 1, . . .}. Furthermore, we assume that the

degree distribution is well-behaved in the sense that all moments of arbitrary order are finite.

Of particular importance in the context of the configuration model is the degree distribution

of a randomly chosen neighbor of a randomly chosen vertex, denoted by {p̂k, k = 1, 2, . . .}, and

given by

p̂k =
kpk
〈k〉

, k = 1, 2, . . .

performed in order to obtain one variant of the meme from another.
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where 〈k〉 denotes the mean degree, i.e., 〈k〉 =
∑

k kpk.

9.4.2 Spreading process model: A multiple-strain model for evolu-

tion

In [3], Alexander and Day proposed a multiple-strain model that accounts for evolution. Their

model is captured by two matrices, namely, the transmissibility matrix TTT and the mutation

matrix µµµ, both with dimensionsm×m for a finite integerm ≥ 2 denoting the number of possible

strains. The transmissibility matrix TTT is a m×m diagonal matrix, with [Ti] representing the

transmissibility of strain-i, i.e.,

TTT =



T1 0 . . . 0

0 T2 . . . 0

...
...

. . .
...

0 0 . . . Tm


.

The mutation matrix µµµ is a m ×m matrix with µij denoting the probability that strain-i

mutates to strain-j. Note that
∑

j µij = 1, hence µµµ is a row-stochastic matrix. One example

for the transmissibility and mutation matrices was given by Antia et al. in [7], where the fitness

landscape consisted of m strains, with strain-1 through m− 1 having identical transmissibility

such that R0,i < 1 for i = 1, . . . ,m − 1, with R0,i denoting the basic reproductive number

of strain-i. Strain-m has transmissibility Tm such that R0,m > 1, hence the emergence of the

pathogen requires evolution from strain-1 to strain-m. Antia et al. considered the the so-called

one-step irreversible mutation [3,7] where the pathogen must acquire m−1 mutations (in order
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and one at a time) to evolve to strain-m , i.e.,

TTT =



T1 0 0 . . . 0

0 T1 0 . . . 0

0 0 T1 . . . 0

...
...

...
. . .

...

0 0 . . . 0 Tm


and

µµµ =



1− µ µ 0 . . . 0 0 0

0 1− µ µ . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 1− µ µ

0 0 0 . . . 0 0 1


The (inhomogeneous) multiple-strain model proposed by Alexander and Day [3] works as

follows. Consider a spreading process that starts with an individual, i.e., the seed, receiving in-

fection with strain-1 from an external reservoir. Since strain-1 has transmissibility T1, the seed

infects each of her contacts independently with probability T1. Once a susceptible individual

receives the infection from the seed, the pathogen may evolve within that new host prior to

any subsequent infections. In particular, the pathogen may remain as strain-1 with probability

µ11 or mutate to strain-i (that has transmissibility Ti) with probability µ1i for i = 2, . . . ,m. If

the pathogen remains as strain-1 (respectively, mutates to strain-i), then the host infects each

of her susceptible neighbors in the subsequent stages independently with probability T1 (re-

spectively, Ti). Observe that as the process continues to grow, multiple strains may coexist in

the population as governed by the transmissibility matrix TTT and the mutation matrix µµµ. At an

intermediate stage, if any susceptible individual receives strain-j, the pathogen may remain as

strain-j with probability µjj or mutate to strain-` with probability µj` for ` ∈ {1, 2, . . . ,m}\{j}

prior to subsequent infections. The process terminates when no additional infections are possi-

219



(a) (b) (c) (d) (e)

Figure 9.2: The multiple-strain model for evolution. (a) The process starts with a single
individual, i.e., the seed, receiving infection with strain-1 (highlighted in orange) from an
external reservoir. (b) The seed infects each of her susceptible neighbors (highlighted in green)
independently with probability T1. (c) The pathogen mutates independently within hosts.
The pathogen remains as strain-1 with probability µ11 or mutates to strain-2 (highlighted in
blue) with probability µ12. (d) Individuals whose pathogen has mutated to strain-i infect their
neighbors independently with probability Ti. (e) The pathogen mutates independently within
hosts. The pathogen remains as strain-2 with probability µ22 or mutates to strain-1 with
probability µ21.

ble. A graphical illustration for the case when m = 2 is given in Figure 9.2. In this chapter, we

focus on the case where m = 2, however, it is straightforward to extend our theory to handle

the general case with m strains. More details are given in Section 9.5.

9.5 Theoretical results

9.5.1 The probability of emergence

The analysis of the probability of emergence was established by Alexander and Day in [3].

Below, we give a brief summary of their results for completeness. Their approach is based on

a multi-type branching process [69,99] that starts with an initial infective of a particular type,

e.g., type-1, and then proceeds by infecting each of her neighbors independently with some

probability that is characterized by the infecting strain. Each of the infected neighbors mutate

independently with a probability that is also characterized by the infecting strain. The process

proceeds similarly for subsequent stages. Clearly, the process differs from the standard Single-
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Type Branching Process in that individuals of different types may coexist in any generation

(other than generation 0), with different offspring distribution per each type, hence the notion

Multi-Type [69,99].

Next, we summarize the results given by Alexander and Day in [3]. Let γi (s1, s2, . . . , sm) be

the probability generating function (PGF) for the number of infections of each type transmitted

by an initial infective of type-i. It holds that

γi (s1, s2, . . . , sm) = g

(
1− Ti + Ti

m∑
j=1

µijsj

)
,

for i = 1, . . . ,m and with g (s) denoting the PGF of the degree distribution; i.e., g (s) =∑∞
k=0 pks

k. Moreover, with Γi (s1, s2, . . . , sm) denoting the PGF for the number of infections

of each type transmitted by a later-generation infective of type-i (i.e., a typical intermediate

host in the process); it holds that

Γi (s1, s2, . . . , sm) = G

(
1− Ti + Ti

m∑
j=1

µijsj

)
,

for i = 1, . . . ,m and with G (s) denoting the PGF of the excess degree distribution; i.e.,

G (s) =
∞∑
k=1

kpk
〈k〉

sk−1.

We remind that kpk/〈k〉 gives the probability that a randomly chosen neighbor of a randomly

chosen vertex has degree k, and note that the excess degree is k − 1 since one edge is already

traversed to reach the node.

The probability of extinction starting from one later-generation infective of type-i, de-

noted qi, is the smallest non-negative root of the equation qi = Γi (q1, . . . , qm) solved si-

multaneously for all i = 1, . . . ,m. Finally, the overall extinction probability is given by

g
(

1− Ti + Ti
∑m

j=1 µijqj

)
if the whole process starts with an initial infective of type-i. It

was shown in [3] that the above process resembles a multi-type branching process with mean
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matrix 3 given by

MMM =

(
〈k2〉 − 〈k〉
〈k〉

)
TTTµµµ (9.1)

The theory of multi-type branching processes states that if the dominant eigenvalue of MMM

is less than or equal to one, then the process goes extinct with probability 1. Otherwise, there

is a positive probability of non-extinction. Hence, the phase transition occurs when

ρ (MMM) > 1, (9.2)

where ρ (MMM) denotes the spectral radius, i.e., the largest eigenvalue (in absolute value) of MMM .

9.5.2 Expected epidemic size and epidemic threshold

Our objective is to derive the expected epidemic size S and the expected fraction of individuals

infected by each strain, i.e., S1, S2, . . . , Sm for m possible strains. Note that S =
∑m

i=1 Si.

Below, we provide analysis for the case of two strains, but we later show how to extend our

analysis to the general case with m strains, for some finite integer m ≥ 2. We apply a tree-based

approach that is based on the work by Gleeson [60, 61]. Their approach draws on the tools

developed for analyzing the zero-temperature random-field Ising model on Bethe lattices [133].

Note that as we build our network using the configuration model, the network structure is

locally tree-like with the fraction of cycles approaching zero in the limit of large network

size [18, 100,115].

Since G is locally tree-like, we can replace it by a tree and arrange the vertices in a hier-

archical structure, such that at the top level, there is a single node (the root) that has degree

k with probability pk. Note that {pk} is a proper degree distribution with
∑

k pk = 1. Each

of the k neighbors of the root has degree k′ with probability k′pk′/〈k〉, where 〈k〉 denotes the

mean degree of the network. Furthermore, we label the levels of the tree from level ` = 0 at

3The mean matrix MMM of a multi-type branching process is defined as MMM = [mij ], where mij is the mean

number of type-j offspring generated by a type-i parent. Note that mij = ∂Γi(sss)
∂sj

∣∣∣
sss=111

for the multiple-strain

model proposed in [3].
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the bottom to level ` =∞ at the top, i.e., the root.

We assume that nodes update their status starting from the bottom of the tree and pro-

ceeding towards the top. This gives rise to a delicate case, where a node at some level ` may

be exposed to simultaneous infections by both strain-1 and strain-2 from her neighbors at level

`−1. In the remainder of this section, we assume that co-infection is not possible, hence a node

that receives x infections of strain-1 and y infections of strain-2 becomes infected by strain-1

(respectively, strain-2) with probability x/(x+ y) (respectively, y/(x+ y)). In Section 9.8, we

empirically consider the case where co-infection is possible, i.e., a node that receives simulta-

neous infections by both strains becomes co-infected and starts to spread the co-infection in

the subsequent rounds. In this case, co-infection may be modeled as an additional strain that

has transmissibility Tco and never mutates back to strain-1 or strain-2.

Throughout, we say that a node is either inactive if it has not received any infection (i.e.,

still susceptible) or active and type-i if it has been infected and then mutated to strain-i, for

i = 1, 2. With a slight abuse of notations, let q`+1,i be the probability that a node at level `+1,

say node v, is active and type-i. Furthermore, let q`+1 = q`+1,1 + q`+1,2, i.e., q`+1 is the total

probability that a node at level ` + 1 is active. We start by an arbitrary initial distribution

for {q0,1, q0,2} satisfying q0,1 > 0, q0,2 > 0. Then, we update the distribution properly until we

reach the root. Note that if the degree of node v is k, then node v is using one edge to connect

to her parent at level ` + 2, and k − 1 edges to connect to her neighbors at level `. We can

condition on the excess degree (d̃) of node v to get

q`+1,i =
∞∑
k=1

kpk
〈k〉
P
[
node v becomes active and type-i

∣∣∣∣ d̃ = k − 1

]

Next, we further condition on the number of active neighbors of type-1 and type-2. Note

that we have a Multinomial distribution for the number of active neighbors of both types. In

particular, a neighbor at level ` may be active and type-1 with probability q`,1, active and

type-2 with probability q`,2, or inactive with probability 1− q` = 1− q`,1 − q`,2. Let Ii denote

the number of active neighbors of type-i. Thus,
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q`+1,i =
∞∑
k=1

kpk
〈k〉

k−1∑
k1=0

k−1−k1∑
k2=0

(
k − 1

k1

)(
k − 1− k1

k2

)
(q`,1)k1 (q`,2)k2 (1− q`,1 − q`,2)k−1−k1−k2

· P
[
node v becomes active and type-i

∣∣ I1 = k1, I2 = k2

]
Let X and Y denote the number of infections received from type-1 and type-2 neighbors,

respectively. Note that conditioned on having k1 and k2 active neighbors of type-1 and type-2,

respectively, we have

X ∼ Binomial(k1, T1)

Y ∼ Binomial(k2, T2)

where Ti denotes the transmissibility of strain-i. Let

A := P
[
node v becomes active and type-i

∣∣ I1 = k1, I2 = k2

]
Consider a particular realization (x, y) of the random variables (X, Y ). Observe that if

x > 0, y = 0, then node v becomes infected by strain-1 and eventually mutates to type-i

with probability µ1i. Similarly, if x = 0, y > 0, then node v becomes infected by strain-2

and eventually mutates to type-i with probability µ2i. Finally, if x > 0, y > 0, then node v

becomes infected by strain-1 (respectively, strain-2) with probability x/(x + y) (respectively,

y/(x+ y)) and eventually mutates to type-i with probability µ1i (respectively, µ2i). Hence, by
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conditioning on X and Y , we have

A =

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−yP

[
A
∣∣X = x, Y = y

]
=

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

·
(
µ1i111[x > 0, y = 0] + µ2i111[x = 0, y > 0] +

(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)

Note that

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y · µ1i111[x > 0, y = 0]

= µ1i(1− T2)k2 (1− P(X = 0))

= µ1ia2b1

where ai = (1− Ti)ki and bi = 1− ai. Similarly,

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−yµ2i111[x = 0, y > 0] = µ2ia1b2

Thus, we have

q`+1,i =
∞∑
k=1

kpk
〈k〉

k−1∑
k1=0

k−1−k1∑
k2=0

(
k − 1

k1

)(
k − 1− k1

k2

)
(q`,1)k1 (q`,2)k2 (1− q`,1 − q`,2)k−1−k1−k2 ·

·

(
b1a2µ1i + a1b2µ2i +

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

·
(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)
, (9.3)

for ` = 0, 1, . . . and i = 1, 2.

Observe that under the assumption that nodes do not become inactive once they turn

active, the quantities q`,i appearing in (9.3) are non-decreasing in `, and thus they converge to
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a limit q∞,i for i = 1, 2. Finally, the final fraction of nodes that are active and type-i is equal

(in expected value) to the probability that the root of the tree (at level `→∞) is active and

type-i. Note that if the tree root has degree k, then all of these k edges will be utilized to

connect with her neighbors at the lower level. Hence,

Qi =
∞∑
k=0

pk

k∑
k1=0

k−k1∑
k2=0

(
k

k1

)(
k − k1

k2

)
(q∞,1)k1 (q∞,2)k2 (1− q∞,1 − q∞,2)k−k1−k2 ·

·

(
b1a2µ1i + a1b2µ2i +

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

·
(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)
(9.4)

where Qi for i = 1, 2 denotes the probability that the tree root is active and type-i and q∞,i for

i = 1, 2 is the steady-state solution of the recursive equations (9.3). Note that Q = Q1 +Q2 is

the total probability that the tree root is active.

Observe that q∞,1 = q∞,2 = 0 gives a trivial fixed-point of the recursive equations (9.3).

Indeed, this trivial solution leads to Q = 0 by virtue of (9.4). Although the trivial fixed point

is a valid numerical solution for the recursive equations (9.3), we can show that this trivial

solution is unstable. Hence, another solution with q∞,1 > 0 and q∞,2 > 0 may exist. To test

whether or not the trivial fixed point is stable, we check the spectral radius of the Jacobian

matrix JJJ(q`,1, q`,2) corresponding to the linearization of (9.3) at q`,1 = q`,2 = 0. If the spectral

radius of the JJJ(q`,1, q`,2) at q`,1 = q`,2 = 0 is larger than one, then the trivial fixed-point is

unstable, indicating that there exists another solution with q∞,1 > 0 and q∞,2 > 0 implying
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the existence of a giant component. The Jacobian matrix is given by

JJJ(q`,1, q`,2)|q`,1=q`,2=0 =

∂q`+1,1

∂q`,1

∂q`+1,1

∂q`,2

∂q`+1,2

∂q`,1

∂q`+1,2

∂q`,2


q`,1=q`,2=0

=

(
〈k2〉 − 〈k〉
〈k〉

)T1µ11 T2µ21

T1µ12 T2µ22


=

(
〈k2〉 − 〈k〉
〈k〉

)
(TTTµµµ)T

Note that a square matrix and its transpose have the same set of eigenvalues. Hence, the phase

transition condition matches the one given in (9.2).

We remark that it is straightforward to extend our analysis to the general case with m

strains, for some finite integer m ≥ 2 as long as the underlying process is indecomposable

[3, 69, 99]. At a high level, indecomposable processes are those for which each pathogen strain

i eventually gives rise to strain-j at some generation nij ≥ 1 for i, j = 1, 2, . . . ,m. In other

words, if an indecomposable process starts with an infection with strain-i, then as the process

continues to grow, all other strains will eventually emerge. Such a property is established if,

for every pair of strains (i, j), there exists a positive integer nij such that MMMnij(i, j) > 0 [3].

If the underlying process is decomposable, then there exist classes of strain types such that

strain types belonging to the same class can eventually give rise to one another, but not to

other strain types. Indeed, the existence of multiple classes leads to multiple solutions for the

set of equations (9.4) depending on the initial distribution of {q0,1, q0,2, . . . , q0,m}. Hence, to

guarantee the uniqueness of the solution of (9.4) and for mathematical tractability, we limit

our formalism to the case when the underlying process is indecomposable.
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9.6 Numerical results

9.6.1 The structure of the contact network

In this section, we consider synthetic contact networks generated randomly by the configuration

model, while real-world networks are considered in Section 9.7. In particular, we consider

contact networks with Poisson degree distribution as well as Power-law degree distribution.

Poisson degree distribution

We start by considering contact networks with Poisson degree distribution. Namely, with λ

denoting the mean degree, i.e., λ = 〈k〉, we have

pk = e−λ
λk

k!
, k = 0, 1, . . .

In this case, condition (9.2) implies that phase transition occurs when

λ× ρ (TµTµTµ) = 1 (9.5)

where ρ (TµTµTµ) denotes the spectral radius of the matrix multiplication TµTµTµ. Observe that con-

dition (9.5) embodies the structure of the contact network (represented by λ for a contact

network with Poisson degree distribution), the characteristics of propagation (represented by

the matrix TTT ) and the process of evolution (represented by µµµ), hence it unravels how these

properties interact together to yield an epidemic.

Power-law degree distribution

Poisson degree distribution provides a formalism for homogeneous networks, where the degree

sequence of the graph is highly concentrated around the mean degree. However, degree se-

quences in real-world networks were observed to be heavily skewed to the right [12, 103, 111],
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meaning that the distribution is heterogeneous, or heavy-tailed. We consider Power-law de-

gree distribution with exponential cutoff since they are relevant to a variety of real-world

networks [82,111]. In particular, we set

pk =


0 if k = 0(
Liγ
(
e−1/Γ

))−1
k−γe−k/Γ if k = 1, 2, . . . .

where γ and Γ are positive constants and Lim(z) is the mth polylogarithm of z, i.e., Lim(z) =∑∞
k=1

zk

km
. Observe that condition (9.2) now translates to

(
Liγ−2

(
e−1/Γ

)
− Liγ−1

(
e−1/Γ

)
Liγ−1 (e−1/Γ)

)
× ρ (TµTµTµ) = 1 (9.6)

Similar to (9.5), condition (9.6) indicates how the structure of the underlying network, the

characteristics of propagation, and the process of evolution are intertwined together, and under

what conditions their relationship would induce an epidemic.

9.6.2 Notations and methods

Notations: In what follows, we use S, S1 and S2 to denote the total expected epidemic size, the

expected fraction of nodes infected with strain-1, and the expected fraction of nodes infected

with strain-2, respectively and all at the steady state, i.e., when the process terminates. We

use PBP
1 and PBP

2 to denote the probability of emergence on a single-strain bond-percolated

network with T1 and the probability of emergence on a single-strain bond-percolated network

with T2, respectively.

Methods: We use the configuration model to create random random graphs with particular

degree distributions. In particular, we sample a degree sequence from the corresponding dis-

tribution, then we use the configuration model to construct a random graph with that degree

sequence. We use igraph [26] on both C++ and Python for simulations. Our simulation codes
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Figure 9.3: Evolution on Poisson and Power-law contact networks. The network size n
is 2× 105 and the number of independent experiments for each data point is 500. Blue circles,
brown plus signs, and green triangles denote the empirical average epidemic size, average
fraction of nodes infected with strain-1, and average fraction of nodes infected with strain-2,
respectively. The red, blue, and yellow lines denote the theoretical average total epidemic size,
average fraction of nodes infected with strain-1, and average fraction of nodes infected with
strain-2, respectively. Theoretical results are obtained by solving the system of equations (9.4)
with the corresponding parameter set. (a)-(b) We set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75.
(c)-(d) We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3, and µ22 = 0.7 implying that an infected
node, regardless of what type of infection it has, mutates to strain-1 (respectively, strain-2)
with probability 0.3 (respectively, 0.7), independently. In all cases, we observe good agreement
with our theoretical results.

.

are available online 4. Unless otherwise stated, we start the process by selecting a node uni-

formly at random and infecting it with strain-1. The node infects each neighbor independently

with probability T1. Each of the infected neighbors mutate independently to strain-1 with prob-

4https://github.com/reletreby/evolution.git
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ability µ11, or to strain-2 with probability µ12. As the process continues to grow, both strains

might exist in the population. An intermediate node that becomes infected with strain-i would

mutate to strain-1 with probability µi1, or strain-2 with probability µi2, for i = 1, 2. When

cycles start to appear, a susceptible node could be exposed to multiple infections at once. If a

node is exposed to x infections of strain-1 and y infections of strain-2 simultaneously, the node

becomes infected with strain-1 (respectively, strain-2) with probability x/(x+ y) (respectively,

y/(x + y)) for any non-negative constants x and y. A node that receives infection at round i

mutate first (by the end of round i) before it attempts to infect her neighbors at round i+ 1.

The node is considered recovered at round i+ 2, i.e., a node is infective for only one round.

9.6.3 Epidemic size

We start by focusing on the total epidemic size and the expected fraction of nodes that were

infected with strain-1 and strain-2. The network size n is set to 2 × 105. We consider two

parameter sets that emphasize the correlations between a node’s eventual type (after mutation)

and the type of infection it has originally received. In particular, we have

- Parameter set 1: T1 = 0.2, T2 = 0.5, µ11 = 0.75, and µ22 = 0.75.

- Parameter set 2: T1 = 0.4, T2 = 0.8, µ11 = 0.3, and µ22 = 0.7.

Observe that we have µ11 = µ21 and µ22 = µ12 for the second parameter set. Hence, an infected

node, regardless of what type of infection it has, mutates to strain-1 (respectively, strain-2)

with probability 0.3 (respectively, 0.7), independently. This is a special case that can easily be

treated by our formalism given in Section 9.5.

In Figure 9.3a and Figure 9.3b, we use the first parameter set and run 500 independent

experiments for each data point. We demonstrate our results on contact networks with Poisson

degree distribution (Figure 9.3a) and Power-law degree distribution with exponential cutoff

(Figure 9.3b). For Figure 9.3b, we set Γ = 15, and vary γ with the mean degree. In particular,
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the mean degree λ is given by

λ =
Liγ−1

(
e−1/Γ

)
Liγ (e−1/Γ)

. (9.7)

Hence, we can numerically solve (9.7) to obtain the particular value of γ corresponding to a

given value of λ.

In order to establish the validity of our analytic results given in Section 9.5, we plot the

theoretical values of S, S1, and S2 obtained by solving the system of equations (9.4) with the

corresponding parameter set. We also plot a vertical line at the critical mean degree that

corresponds to a phase transition (see (9.5) and (9.6)). Clearly, our experimental results are

in perfect agreement with our theoretical results on both contact networks. In Figure 9.3c and

Figure 9.3d, we repeat the same procedure, but with the second parameter set. Similarly, we

observe perfect agreement with our theoretical results on both contact networks.

9.6.4 Probability of emergence

In [3], Alexander and Day investigated the probability of emergence for the multiple strain

model presented in Section 9.4. However, authors did not provide a comprehensive simulation

study to validate their formalism on random or real-world networks. Instead, in [3, Section 3],

authors only evaluated their equations numerically. In this subsection, we aim to establish

the validity of the results presented in [3] on random networks generated by the configuration

model. For brevity, we limit our scope to contact networks with Poisson degree distribution.

However, similar patterns are observed for contact networks with Power-law degree distribu-

tion.

In Figure 9.4, we set the network size n = 5 × 105 and run a computer simulation with

104 independent experiment for each data point. We use the two parameter sets given in

Section 9.5.C. Namely, we set

- T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75 for Figure 9.4.a, and

- T1 = 0.4, T2 = 0.8, µ11 = 0.3 and µ22 = 0.7 for Figure 9.4.b.
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Figure 9.4: The probability of emergence on contact networks with Poisson degree
distribution. The network size n is 5× 105 and the number of independent experiments for
data point is 104. Blue circles denote the empirical probability of emergence while the red
line denotes the theoretical probability of emergence according to [3]. (a) We set T1 = 0.2,
T2 = 0.5, µ11 = µ22 = 0.75. (b) We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3, and µ22 = 0.7. Our
experimental results prove the validity of the formalism presented by Alexander and Day in [3]

.

Note that in Figure 9.4, we plot the probability of emergence conditioned on the initial

node receiving infection with strain-1 5. We observe an agreement between our experimental

results and the theoretical results given in [3]. The reasoning behind this is intuitive; the

multi-type branching framework assumes that the underlying graph is tree-like, an assumption

that works best for networks with vanishingly small clustering coefficient, e.g., networks which

are generated by the configuration model.

9.6.5 Reduction to single-type bond-percolation

An important question to ask is whether the classical single-type bond percolation models

could predict the threshold, probability, and final size of epidemics that entail evolution, i.e.,

information or diseases that propagate according to the multiple-strain model given in Sec-

tion 9.4. In pursing an answer to this question, we start by establishing a matching condition

between single-strain models and multiple-strain models for epidemics.

5We remark that the formalism provided by Alexander and Day allows for computing the probability of
emergence given any arbitrary initial type.
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In [111], Newman proposed a stochastic SIR model for the propagation of a single-strain

pathogen on a contact network. Newman showed that, under some conditions, the SIR model is

isomorphic to a bond-percolation model on the underlying contact network. Specifically, with

the average transmissibility of the pathogen (denoted TBP) as the bond-percolation parameter,

if we are to occupy each edge of the network with probability TBP, then the probability of

emergence as well as the final size of the epidemic are precisely given by the fraction of nodes

in the giant component of the percolated graph. Finally, it was shown that a phase transition

occurs when (
〈k2〉 − 〈k〉
〈k〉

)
TBP = 1 (9.8)

In other words, if the left hand side of (9.8) is strictly larger than 1, a giant component emerges

indicating an epidemic. Otherwise, we have self-limited outbreaks.

Comparing (9.2) to (9.8) suggests the proposal of a matching that results in the same

condition for phase transition. More precisely, if we are to set

TBP = ρ (TTTµµµ) (9.9)

then, both (9.2) and (9.8) collapse to the same condition for a given contact network. In

what follows, we explore the extent to which classical, single-type bond-percolation models

(under the matching condition (9.9)) may predict the threshold, probability, and final size of

epidemics that entail evolution, i.e., information or diseases that propagate according to the

multiple-strain model given in Section 9.4. We focus on contact networks with Poisson degree

distribution, generated by the configuration model, while we devote Section 9.7 for real-world

networks.

In Figure 9.5, we extend Figure 9.4 by further adding the experimental results for the final

epidemic size as well as the corresponding theoretical values for the probability of emergence

on a bond-percolated network under the matching condition (9.9). Note that the probability

of emergence is equivalent to the final epidemic size for single-type, bond-percolated networks
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Figure 9.5: Reduction to single-type bond-percolation. The network size n is 5×105 and
the number of independent experiments for each data point is 104. Blue circles and brown plus
signs denote the empirical average epidemic size and the probability of emergence, respectively.
The navy blue line denotes the theoretical probability of emergence according to [3] while the
red line denotes the theoretical average epidemic size (as well as the probability of emergence)
predicted by the single-type bond-percolation framework under the matching condition (9.9).
(a) We set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75. (b) We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3,
and µ22 = 0.7. The classical, single-type bond percolation models may accurately predict the
threshold and final size of epidemics, but their predictions on the probability of emergence are
clearly inaccurate.

[111]. Observe that the classical single-type bond-percolation model accurately captures the

threshold and final size of epidemic but provides significantly inaccurate predictions when it

comes to the probability of emergence. Similar pattern will be observed in Section 9.7 for

real-world networks. This inaccuracy sheds the light on a fundamental disconnect between

the classical, single-type bond-percolation models and real-life spreading processes that entail

evolution. We explain the intuition behind our findings in Section 9.9

9.6.6 Effect of heterogeneity

The results given in Figure 9.5 reveal the significant shortcomings of the bond-percolation

model in predicting the probability of emergence for spreading processes governed by the

multiple-strain model, but also shed the light on the effect of the embedded heterogeneity of

the multiple-strain framework. Observe that a single-type spreading process with TBP = ρ (TTTµµµ)
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is much more likely to cause an epidemic outbreak, i.e., has a higher probability of emergence,

as compared to an inhomogeneous spreading process governed by the multiple-strain model,

when the initial infective is type-1. The above reasoning implies that one is better off (in

terms of maximizing the probability of emergence) allocating ρ (TTTµµµ) to a single-type spreading

process than to allocate TTT and µµµ to an inhomogeneous spreading process that starts with the

strain that has the lowest transmissibility.

9.6.7 Effect of mutation

When only a single evolutionary pathway is available, mutations have to occur in a particular

order [63]. In [7], Antia et al. considered the case where the fitness landscape consists of m

strains such that R0,i < 1 for i = 1, . . . ,m− 1, while R0,m > 1. Hence, an introduced pathogen

(with R0,1 < 1) must acquire m − 1 successive mutations in order for the disease to emerge.

Antia et al. derived a set of recursive equations whose solution characterizes the probability

of emergence under some conditions; see [7] for more details. To gain further insights on the

effect of mutation, Antia et al. proposed a theoretical approximation of the probability of

emergence as a product of the probability of mutation, i.e., the probability that the introduced

pathogen would eventually mutate to strain-m, and the probability of emergence of strain-m.

Indeed, the probability of mutation plays a key role in the overall extinction probability. After

all, if the introduced pathogen does not gain m − 1 successive mutations, the disease would

eventually die out.

Recall that the mathematical theory developed by Alexander and Day [3] defines the prob-

ability of emergence as a function of the evolutionary dynamics of the pathogen (i.e., the

mutation matrix µµµ), the characteristics of the spreading process (i.e., the transmissibility ma-

trix TTT ), and the structure of the underlying contact network (i.e., the degree distribution

{pk, k = 0, 1, . . .}). All of these factors are intertwined together in a way that makes it

difficult to predict how the probability of mutation influences the probability of emergence.

In what follows, we provide a theoretical approximation to the probability of emergence in a
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way that clearly distinguishes the role of mutation and shows how it strongly influences the

probability of emergence.

Consider the case when the fitness landscape consists of two strains with transmissibility

matrix TTT and mutation matrix µµµ given by

TTT =

T1 0

0 T2

 and µµµ =

1− µ µ

0 1

 .
Assume also that T1 < T2. Note that the process starts by picking a random individual

uniformly at random and infecting her with strain-1. Fix the mean degree of the underlying

network to λ. Let λ1 and λ2 denote the phase transition points (i.e., critical mean degrees) for a

single-strain, bond-percolated network with T1 and T2, respectively. Observe that ρ (TµTµTµ) = T2,

hence, in view of (9.2), the phase transition is entirely controlled by the parameters of strain-2,

i.e., the phase transition occurs at λ2. Indeed, we can conclude from (9.2) that for λ < λ2, the

probability of emergence is zero (in the limit of large network size). We can write

P [emergence] (9.10)

= P
[
emergence

∣∣ at least one mutation
]
× Pµ + P

[
emergence

∣∣ no mutation
]
× (1− Pµ)

where Pµ denotes the probability that at some point along the chain of infections (starting

from the type-1 seed), a node would be infected by strain-1, but then mutate to strain-2. In

other words, Pµ captures the probability that at some point during the propagation, a type-2

node would emerge.

Observe that for λ < λ1, we have P
[
emergence

∣∣ no mutation
]

= 0 in the limit of large

network size (since PBP
1 = 0 on this interval), while for λ ≥ λ1, we have Pµ = 1 in the limit

of large network size 6. Hence, the second term in (9.10) is always zero in the limit of large

6When λ ≥ λ1, a giant component of type-1 nodes emerges. Now, since µ > 0, and the number of nodes in
the giant component tends to infinity in the limit of large network size, the probability that none of the nodes
mutate to strain-2 is zero.
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network size, leading to

P [emergence] = P
[
emergence

∣∣ at least one mutation
]
× Pµ

Note that on the range λ2 ≤ λ < λ1, we have P
[
emergence

∣∣ at least one mutation
]

= PBP
2 .

However, on the range λ ≥ λ1, strain-1 nodes are able to form a giant component on their

own. Hence, in the cases where a strain-2 node emerges at some point, but fails to infect

any of her neighbors, strain-1 nodes could still trigger the emergence of the disease. It follows

that P
[
emergence

∣∣ at least one mutation
]
≥ PBP

2 on the range λ ≥ λ2. Note that the bound is

tight whenever T2 is significantly larger than T1. The reasoning behind this can be explained as

follows. Whenever T2 is significantly larger than T1, the average number of secondary infections

of strain-2 would be much larger than that of strain-1. Hence, infections with strain-2 would

propagate much faster and block potential pathways for strain-1 to propagate. In this case,

the overall probability of emergence becomes tightly controlled by PBP
2 . Next, we turn our

attention to deriving Pµ.

Consider a tree of infections that starts with a single node infected with strain-1. Let H be

the probability that strain-2 never appears throughout the tree, i.e., H is the probability that

the tree of infections starting from the seed does not give rise to strain-2 at any intermediate

point. Similarly, let h be the probability that a subtree of infections starting from a type-1 host

does not give rise to strain-2 at any intermediate point. Recall that G(.) gives the PGF of the

excess degree distribution while g(.) gives the PGF of the degree distribution. By conditioning

on the excess degree as well the number of secondary infections, we get

h =
∞∑
k=1

kpk
〈k〉

k−1∑
x=0

(
k − 1

x

)
(T1 (1− µ))x (1− T1)k−1−x hx

=
∞∑
k=1

kpk
〈k〉

(1− T1 + T1 (1− µ)h)k−1

= G (1− T1 + T1 (1− µ)h) (9.11)
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The validity of (9.11) can be explained as follows. Note that the root of any subtree, say

node v, has already used an edge to receive an infection with strain-1 from her parent. Hence, if

the degree of node v is k, then node v is only using k−1 edges to infect her offspring, leading us

to use the excess degree distribution. Furthermore, conditioned on the excess degree being k−1,

the number of secondary infections of each type generated by node v is given by a multinomial

distribution characterized by (k− 1, T1(1−µ), T1µ, 1−T1). In particular, conditioned on node

v being type-1 and having an excess degree of k− 1, the probability of generating x infections

of type-1 and y infections of type-2 is given by

(
k − 1

x

)(
k − 1− x

y

)
(T1 (1− µ))x (T1µ)y (1− T1)k−1−x−y

However, the only relevant term for the computation of h is the one with y = 0, as all other

terms with y > 0 are contributing with a zero probability to h by definition. Finally, hx denotes

the probability that the subtrees emanating from the current x offspring are themselves free

of any strain-2 node.

Recall that H denotes the probability that strain-2 never appears throughout the tree

(starting from the root) and note that if the tree root has degree k, then all of these k edges

will be utilized to connect with her neighbors at the lower level. Hence, in view of (9.11), we

can write

H = g (1− T1 + T1 (1− µ)h∞)

where h∞ denotes the steady-state solution of (9.11). It is now immediate that Pµ = 1 −H,

leading to

P [emergence] ≥ (1−H)PBP
2 (9.12)

To confirm the validity of (9.12), we run a computer simulation on random networks gen-

erated by the configuration model with Poisson degree distribution. In Figure 9.6, we set the

network size n = 2 × 105 and perform 104 independent experiments for each data point. In

Figure 9.6a, we set T1 = 0.1, T2 = 1, and µ = 0.01. Observe that the bound given by (9.12) is
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Figure 9.6: Approximating the probability of emergence: The network size n is 2× 105

and the number of independent experiments for each data point is 104. Blue circles denote the
empirical probability of emergence while the red line denotes the theoretical approximation
of the probability of emergence according to (9.12). The light blue dashed line denotes the
probability of emergence for a single-strain, bond-percolated network with T2. (a) We set
T1 = 0.1, T2 = 1, and µ = 0.01. (b) We set T1 = 0.2, T2 = 0.3, and µ = 0.01. We observe
good agreement between the experimental results and the theoretical approximation given by
(9.12) whenever λ2 ≤ λ < λ1 or whenever T2 is significantly larger than T1.

tight, as T2 is significantly larger than T1. In general, we would expect a tight bound whenever

λ2 ≤ λ < λ1, where λ1 and λ2 denote the phase transition points (i.e., critical mean degrees)

for a single-strain, bond-percolated network with T1 and T2, respectively, i.e., 1 ≤ λ < 10 for

the given parameter set. As λ increases beyond λ1, the tightness of the bound depends on

the ratio between T2 to T1. This is illustrated in Figure 9.6b for the case when T1 = 0.2 and

T2 = 0.3.

The availability of an explicit expression for the probability of mutation allows for exploring

the effects of mutation on the overall probability of emergence. Indeed, the way the probability

of emergence behaves with respect to changes in the mean degree resembles, to a great extent,

the way Pµ behaves, as illustrated in Figure 9.6. Hence, in what follows, we focus on the

behavior of Pµ with respect to changes in the mean degree. In Figure 9.7, we set T1 = 0.1 and

plot Pµ against the mean degree for a network with Poisson degree distribution. We observe

that different values for µ impacts the shape of Pµ (hence, the probability of emergence) in a

remarkable way. Firstly, for all values of µ ∈ (0, 1), the behavior of Pµ appears to be strikingly
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different than the universality class of percolation models, e.g., see the shape of the probability

of emergence (respectively, PB
2 ) in Figure 9.4 (respectively, Figure 9.6). Secondly, the effect

of mutation probabilities on Pµ appears to be significant as the mean degree increases from

small values, reaches its peak right before the critical mean degree corresponding to PBP
1 , then

decays as the mean degree increases further.

The reasoning behind the aforementioned observation is intuitive. Recall that the process

starts with a single infection with strain-1 and note that Pµ is influenced by the structure of

the underlying contact network, the transmissibility of strain-1, and the particular value of µ.

As the mean degree λ increases towards λ1, the length of the tree of infections starting from

the seed 7 also increases, however, no cycles appear and the epidemic propagates on a finite,

tree-like percolated network (since λ < λ1). Increasing the length of the tree increases the

probability that at least one intermediate node would mutate to strain-2, but the fact that

the tree is finite makes the particular value of µ very crucial to Pµ. Namely, a small value

of µ makes it less likely that a mutant emerges before the chain of infections is terminated,

while a relatively larger value could drive the emergence of strain-2 and lead the epidemic

to escape extinction. Put differently, the finiteness of the chain of infections when λ < λ1

creates a limited number of opportunities for mutation, causing the particular value of µ to

bear the burden of generating a mutant and driving the whole process to emergence. However,

as λ increases beyond λ1, cycles start to appear and a giant component of nodes infected with

strain-1 emerges. In this case, the chain of infections is no longer finite, and any positive value

of µ results in a mutation almost surely in the limit of large network size. Put differently, when

λ ≥ λ1, the structure of the underlying network starts to facilitate the emergence of strain-2,

hence reducing the dependence on µ.

7The length of the tree of infections can be interpreted as the size of the component (of a bond percolated
network with T1) that contains the seed.
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Figure 9.7: Effect of Mutation: We set T1 = 0.1 and plot the behavior of Pµ against the mean
degree for a network with Poisson degree distribution. Intuitively, different values of µ have
different impact on Pµ. The impact is pronounced before the critical mean degree corresponding
to a single-strain, bond-percolated network with T1. Inset: The difference between the value
of Pµ when µ = 0.4 and the value of Pµ when µ = 0.01 as a function of the mean degree of the
underlying contact network.

9.7 Evolution in real-world networks

In Section 9.6.F, we explored the validity of analyzing the multiple-strain model for evolution

with the available tools from the classical, single-type bond-percolation framework. We focused

on random networks generated by the configuration model and demonstrated that a reduction

to the classical, single-type bond percolation framework leads to accurate results with respect

to the threshold and final size of epidemics, but significantly inaccurate results with respect

to the probability of emergence. In this section, we aim to examine the universality of our

findings by analyzing the probability of emergence on real-world contact networks obtained

from SNAP data sets [83]. Our objective is twofold. Firstly, we would like to validate the multi-

type branching formalism of Alexander and Day (see Section 9.5.A) on real-world networks.

Secondly, we seek to highlight and confirm the limitations of the single-type bond-percolation

framework in predicting the probability of emergence on real-world networks.
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Network |N | |E| λoriginal Φoriginal Φ{λ=1} Φ{λ=10} Φrandom

Facebook 4, 039 88, 234 43.7 0.519 0.011 0.117 0.0107

Twitter 81, 306 1, 342, 296 33 0.170 0.005 0.051 0.0004

Slashdot 82, 168 504, 230 12.3 0.024 0.001 0.019 0.0001

Higgs 456, 626 12, 508, 413 54.8 0.008 0.0001 0.001 0.0001

School 773 6342 16.4 0.094 0.019 0.059 0.020

Hospital 73 543 14.87 0.446 0.090 0.296 0.183

Figure 9.8: Real-world contact networks. We consider four real-world contact networks
in the context of information propagation, namely, Facebook, Twitter, Slashdot, and Higgs
networks from SNAP [83] dataset. We also consider two real-world contact networks in the
context of infectious disease propagation, namely, a contact network among students, teachers,
and staff at a US high school [131] and a contact network among professional staff and patients
in a hospital in Lyon, France [141]. For each network, we indicate the number of nodes |N |,
the number of edges |E|, the mean degree of the original network λoriginal, and the clustering
coefficient of the original network Φoriginal. Φ{λ=1} (respectively, Φ{λ=10}) denotes the clustering
coefficient of the original network after removing a random subset of edges such that the
resulting mean degree is 1 (respectively, 10). Φrandom denotes the average clustering coefficient
(over 200 independent realizations) of a random network generated by the configuration model
with Poisson degree distribution. The random network has the same number of nodes and the
same (original) mean degree of the corresponding real-world network.

Dataset: In the context of information propagation, we consider four different contact

networks obtained from SNAP [83]. In particular, we consider the following contact networks:

- Facebook [83,85]: The contact network among the friends of 10 users (including those

10 users).

- Twitter [83,85]: The contact network among the friends of 1000 users (including those

1000 users).

- Slashdot [83,84]: The network contains friend/foe links between the users of Slashdot.

- Higgs [30, 83]: The Higgs data set has been collected upon monitoring the spreading

processes on Twitter before, during and after the announcement of the discovery of a new

particle with the features of the elusive Higgs boson on July 4, 2012. Nodes correspond to
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the authors of the collected tweets and edges represent the followee/follower relationships

between them.

In the context of infectious disease propagation, we consider the following two contact

networks:

- High school network [131]: The contact network observed at a US high school during a

typical school day. The dataset covers 762, 868 interactions between students, teachers,

and staff. Each interaction between two individuals is characterized by their identifi-

cation numbers as well as the duration of the interaction. Two individuals could have

multiple interactions throughout the day, and we sum the durations of these interactions

to calculate the total contact time between these two individuals over the whole day. We

proceed by sampling a static graph out of this dataset, by assigning an edge between

nodes u and v with probability tuv/tmax where tuv denotes the total contact time between

nodes u and v throughout the day and tmax denotes the maximum total contact time

observed in the dataset.

- Hospital network [141]: The contact network observed in a short stay geriatric unit of a

university hospital in Lyon, France. The dataset covers five days of interactions between

professional staff members and patients. Similar to the high school network, we compute

the total contact time between two individuals (over the span of five days), then we

sample a static graph out of the dataset, by assigning an edge between nodes u and v

with probability tuv/tmax.

More details on the networks, including their clustering coefficients are given in Figure 9.8.

We assume that all edges are unidirectional.

9.7.1 Methods

To conduct a fair comparison between the formalism given in Section 9.5.A and the single-type

bond percolation framework, we fix the parameters of the transmissibility matrix TTT and the
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mutation matrix µµµ, hence fixing ρ (TµTµTµ) and TBP (according to (9.9)). We vary the mean degree,

denoted λ, for each of the contact networks between 1 and 10. For each value of λ, we remove

a random subset of edges such that the resulting network is of mean degree λ (approximately).

Note that the random removal of edges would indeed lower the clustering coefficient of the

network, however, the resulting subgraph would remain highly clustered compared to random

networks with the same mean degree (see Figure 9.8). In other words, the sampled networks

still exhibit specific structural properties that distinguish them from synthetic contact networks

generated randomly by the configuration model (with Poisson degree distribution of the same

mean degree). After the mean degree is adjusted, the process proceeds similar to Section 9.6.B.

9.7.2 Results

In Figure 9.9, we plot the probability of emergence for the four contact networks shown in

Figure 9.8. We compare the results obtained by computer simulations with those obtained by

the multiple-strain formalism (Section 9.5.A) and the single-type bond-percolation framework.

We set T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. It follows that TBP = 0.4 according to (9.9).

Similar to our observations on random networks (Section 9.6.E), the single-type, bond-

percolation framework provides significantly inaccurate predictions on the probability of emer-

gence, should the underlying process entail evolution. The limitation is universal as it ap-

plies to both random and real-world networks. Section 9.9 explains the intuition behind our

observations. In contrast, the multiple-strain formalism provides remarkably accurate predic-

tions, especially on contact networks with low clustering coefficient. Note that the multi-type

branching framework assumes that the underlying graph is tree-like; an assumption that holds

for networks with small clustering coefficient. Hence, one could reasonably argue that the

multiple-strain formalism would provide high prediction accuracy on such networks.

245



9.8 Co-infection controls the order of phase transition

The preceding discussion considers the case when co-infection is not possible, hence each in-

fected host either carries strain-1 or strain-2, but not both. However, humans, animals, plants,

and other organisms may become co-infected with multiple pathogen strains, causing major

consequences for both within- and between-host disease dynamics [4,9,25,31,126,139]. For in-

stance, in the case of human malaria, the majority of infected adults are simultaneously infected

by more than five strains of Plasmodium falciparum [4, 90]. The competition and interaction

patterns between the resident strains trigger significant ramifications of the disease dynamics.

Also, the aggregate virulence experienced by the co-infected host could be higher than the most

virulent strain, or lower than the least virulent strain, or anywhere in between [4, 23, 81, 140].

Co-infection also applies in the context of information propagation. Observe that with the

growing number of news outlets, we may come across various variants of information on social

media platforms. Similar to the case of infectious diseases, these variants may reinforce or

weaken each other based on whether they share the same bias or not.

In this section, we seek to shed the light on the effects of co-infection on information/disease

propagation. In particular, we investigate the extent to which co-infection dynamics could

enhance or suppress the scale of epidemics. Of particular interest is whether co-infection could

change the order of phase transition from second-order (as it is the case with most epidemic

models) to first-order, leading to a phenomenon that is commonly described as avalanche

outbreaks [21]. To that end, we extend the multiple-strain model given in Section 9.4 to account

for co-infection. In particular, a susceptible individual who comes into infectious contacts

with type-1 and type-2 hosts simultaneously becomes co-infected and starts to spread the co-

infection. Henceforth, we consider the case when the co-infection has its own transmissibility

Tco and does not mutate back to either strain-1 or strain-2. In other words, a co-infected host

infects each of her neighbors independently with probability Tco, and infected neighbors are

deemed co-infected with probability 1.
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As with Section 9.6, we consider contact networks with Poisson degree distribution and

Power-law degree distribution with exponential cutoff, respectively. For both cases, we set

T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. Moreover, we set the network size to 2 × 106 and

the number of independent experiments for each data point to 5 × 103. To illustrate how co-

infection dynamics control the order of phase transition, we simulate and compare the process

for two values of Tco, namely Tco = 0.1 and Tco = 0.8. Finally, we plot the epidemic size,

denoted by sBPco , for a single-strain, bond-percolated network [111].

In all cases, co-infection emerges at the phase transition point that characterizes an epidemic

of strain-1 and strain-2, i.e., the mean degree for which ρ(MMM) = 1, where MMM is given by

MMM =

(
〈k2〉 − 〈k〉
〈k〉

)T1 0

0 T2


µ11 µ12

µ21 µ22


As seen in Figure 9.10, a first-order phase transition is observed on both contact networks

when Tco = 0.8 due to the corresponding first order transition of Sco. In particular, the value

of Sco jumps discontinuously from zero to (approximately) the corresponding value of SBPco for

a single-strain, bond-percolated network with Tco = 0.8. Hence, a first-order phase transition

is observed. In general, we conjecture that a first-order phase transition emerges whenever Tco

is large enough such that SBPco > 0 at the critical point ρ(MMM) = 1. If, however, Tco is small

such that SBPco = 0 when ρ(MMM) = 1, then a second-order phase transition is observed. This is

confirmed by our simulation results for the case when Tco = 0.1.

In order to validate the order of phase transition when Tco = 0.8, we conduct an extensive

simulation study around the phase transition point on both contact networks. In Figure 9.11,

we set the number of nodes n to 15 × 106 (to alleviate finite size effects) and the number

of experiments to 104 for each data point. We use the same parameters that were used to

generate Figure 9.10, i.e., T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. Our results confirm that

the phase-transition is indeed first order on both contact networks. In fact, the value of Sco

jumps discontinuously to (approximately) the corresponding value of SBPco with Tco = 0.8.
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9.9 Correlations of infection events

We have shown that the inability of the single-type bond-percolation framework to predict the

probability of emergence is universal; it is observed on both random and real-world contact net-

works. The universality of the behavior suggests that single-type bond-percolation framework

does not properly capture a fundamental property of spreading processes that entail evolution.

Below, we argue that this property is stemming from the underlying correlations between the

infection events of the multiple-strain model. For reasons that will become apparent soon, it is

useful to draw parallels between the multiple strain model proposed by Alexandar and Day [3]

and the single-strain model proposed by Newman in [111].

In [111], Newman proposed a stochastic SIR model where the probability that an infected

node i infects a susceptible node j is given by Tij = 1 − exp(−βijτi), where βij denotes the

rate of infectious contacts from node i to node j and τi denotes the infectious period of node

i, i.e., the period of time during which node i remains infective. The infectious period τi is

a random variable with a Cumulative Distribution Function (CDF) Fτ (u), and the infectious

contact rate βij is also a random variable with a CDF Fβ(v). Newman claimed that under

the assumptions that i) the infectious contact rates between individuals are independent and

identically distributed (i.i.d) and that ii) the infectious periods for all individuals are also i.i.d.,

the spread of a diseases on a contact network is isomorphic to a bond-percolation model on

the contact network with a bond percolation parameter given by

T = 〈Tij〉 = 1−
∫ ∞

0

e−βτdFβ(β)dFτ (τ)

where T was called the transmissibility of the disease. The isomorphism to a bond-percolation

problem allowed for the use of generating functions to derive the threshold, probability, and

final size of epidemics on a contact network with arbitrary degree distributions.

Later on, Kenah and Robins [78] proved that this isomorphism to a bond-percolation prob-

lem is valid only when the distribution of the infectious periods is degenerate, i.e., τi = τ0
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for all i = 1, 2, . . ., where τ0 is a constant. Kenah and Robins showed that when the distri-

bution of the infectious periods is non-degenerate, there is no bond-percolation probability

that will make the bond-percolation model isomorphic to the SIR model. The fundamental

reason behind their findings is the fact that the infection events across edges emanating from

node i are conditionally independent given τi, but marginally dependent unless τi = τ0 with

probability one. That said, Kenah and Robins showed that even when the distribution of the

infectious periods is non-degenerate, the mapping to a bond-percolation process can still be

used to accurately predict the epidemic threshold and epidemic size.

The multiple-strain model presented by Alexander and Day exhibits a similar form of corre-

lations between infection events. In particular, infection events are conditionally independent

given the type of the infective node. Namely, conditioned on node i being infected with strain-

`, node i infects each of her neighbors independently with probability T`. However, infection

events are marginally dependent, unless Ti = T0 for all i with probability one; a condition that

essentially reduces the dynamics to that of single-strain processes without evolution. To give

an example, consider a regular network, where each node has exactly 2 neighbors. Let T1 = 1

and µ11 = µ21 = µ. In this case, we have TBP = µ + T2 (1− µ). Now, we can easily compute

the probability that an infection of a randomly selected node results in an outbreak of size one.

Under the bond percolation framework, this is given by (1− TBP)2 = (1− µ− T2 (1− µ))2.

However the multiple-strain formalism predicts a zero probability for this event, should the

initial node be infected with strain-1. Indeed, the probability predicted by the bond percola-

tion framework will match the one predicted by the multiple-strain formalism only if T2 = 1

or µ = 1; a condition that diminishes the role of evolution and reduces the dynamics into that

of single-strain processes.

9.10 Conclusion

In this chapter, we have investigated the evolution of spreading processes on complex networks

and developed a mathematical theory that unravels the relationship between the characteristics
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of the spreading process, evolution, and the structure of the contact network on which the

process spreads. Our mathematical theory was complemented by an extensive simulation

study on both random and real-world contact networks. The simulation results proved the

validity of our theory and revealed the significant shortcomings of the classical mathematical

models that do not capture evolution. A matching condition between single- and multiple-

strain models was proposed and evaluated in the context of probability of emergence, epidemic

size, and epidemic threshold. Under the proposed matching condition, our results revealed

that the classical bond-percolation models may accurately predict the threshold and final size

of epidemics that entail evolution, but their predictions on the probability of emergence are

significantly inaccurate on both random and real-world networks. Hence, our formalism is

necessary to bridge the disconnect between how spreading processes propagate and evolve on

complex networks, and the current mathematical models that do not capture evolution.

We proceeded by deriving a lower bound on the probability of emergence to gain further

insights on the effects of mutation. The bound was derived for the special case of one-step

irreversible mutation. Our results revealed that the probability of mutation plays a key role in

determining the shape and behavior of the probability of emergence. Moreover, the way the

particular value of µ influences the probability of mutation varies according to the connectivity

of the underlying contact network. Finally, we considered the case when co-infection is possible

and showed that co-infection dynamics control the order of phase transition in an interesting

way. In particular, depending on co-infection dynamics, the order of phase transition of the

epidemic size could change from second-order to first-order, in contrast to the universality class

of percolation models that are typically second-order.
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Figure 9.9: The probability of emergence on real-world contact networks. In the
context of information propagation, we consider four contact networks sampled from SNAP
data sets [83]: (a) Facebook network, (b) Twitter network, (c) Slashdot network, and (d) Higgs
network. In the context of infectious disease propagation, we consider two contact networks:
(e) High school contact network and (f) Hospital contact network. We set T1 = 0.2, T2 = 0.5,
µ11 = µ22 = 0.75 (hence TBP = 0.4) and vary the mean degree, denoted λ, from 1 to 10. For
each value of λ, we remove a random subset of edges such that the resulting graph is of mean
degree λ (approximately). The sampled networks still exhibit higher clustering coefficient as
compared to random networks with the same mean degree. The single-type bond-percolation
framework provides inaccurate predictions on the probability of emergence, in contrast to the
multiple-strain formalism given by Alexander and Day [3].
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Figure 9.10: Co-infection dynamics determine the order of phase transition. We
set T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75 for all subfigures. The network size n is
2× 106 and the number of independent experiments for each data point is 5× 103. Blue circles
denote the average total epidemic size S and red stars denote the average total epidemic size
S conditioned on Sco being greater than zero, i.e., conditioned on the existence of a positive
fraction of co-infected nodes. Blue plus signs, orange triangles, and yellow squares denote
the fraction of nodes infected with strain-1, strain-2, and co-infection, respectively. The black
dashed-line denotes the epidemic size for a single-strain, bond-percolated network with Tco,
i.e., SBPco . (a) and (c): A first order phase transition is observed when Tco = 0.8 owing to the
corresponding first order transition of Sco. Co-infection emerges at the phase transition point
that characterizes an epidemic of strain-1 and strain-2. At this point, the value of Sco jumps
discontinuously to (approximately) the corresponding value of SBPco with Tco = 0.8. Observe
that SBPco > 0 at the transition point, hence, a first-order phase transition is observed. (b) and
(d): Co-infection still emerges right at the phase transition point. However, since Tco is small,
SBPco = 0 at the transition point. Hence, a second-order phase transition is observed.
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Figure 9.11: Validating the order of phase transition. We set the network size n to
15×106, the number of independent experiments for each data point to 104, T1 = 0.2, T2 = 0.5,
and µ11 = µ22 = 0.75. Our results confirm that the phase-transition is indeed first order on both
contact networks. The value of Sco jumps discontinuously to (approximately) the corresponding
value of SBPco with Tco = 0.8.
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Chapter 10

The multiple-strain model on random graphs

with clustering

10.1 Motivation

In Chapter 9, we considered the propagation of spreading processes entailing evolutionary

adaptations on contact networks modeled by random graphs with arbitrary degree distribu-

tion (generated by the configuration model [100, 115]). We started by considering the case

where co-infection with multiple pathogen strains is not possible. In this case, we developed a

mathematical theory that predicts the expected epidemic size and epidemic threshold point as

functions of the underlying network structure (as given by the degree distributions), the char-

acteristics of the spreading process (the transmissibility matrix), and evolutionary adaptations

(the mutation matrix). We then considered the case where co-infection is possible, and showed

via computer simulations that co-infection could lead the order of phase transition to change

from second-order (as with the universality of percolation models) to first-order.

Although random graphs generated by the configuration model could resemble the degree

sequences observed in real-world social networks, they have a vanishingly small clustering

coefficient that tends to zero in the limit of large network size. Hence, the random graphs

generated by the configuration model can not accurately capture some important aspects of

real-world social networks, most notably the property of high clustering [132, 144], which has

a significant impact on the behavior of various spreading processes [70, 72].
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To better model real-world social networks that are typically clustered, we utilize a model

that generates random networks with clustering as introduced by Miller [97] and Newman [109],

i.e., graphs are generated randomly from given distributions specifying the number of single

edges and triangles for any given node. Our objective is to investigate the characteristics of

spreading processes that entail evolutionary adaptations on such random graph models with

tunable clustering. We focus on the case where co-infection is not possible, and derive a

mathematical theory that predicts the epidemic threshold and the probability of emergence

as functions of the characteristics of the spreading object, the evolutionary pathways of the

pathogen/information, and the structure of the underlying network as given by the joint degree

distribution of single-edges and triangles.

10.2 A roadmap

We investigate the evolution of spreading processes, such as infectious diseases or information,

in clustered social networks, hence we extend our previous results for the case when the un-

derlying graph had a vanishingly small clustering coefficient. Our objectives are to i) reveal

the role of evolutionary adaptations on the threshold and probability of epidemics when the

network exhibits a non-vanishing clustering coefficient; as well as ii) identify the interplay be-

tween the structural properties of the network (as given by the the joint degree distribution of

single-edges and triangles) and evolutionary adaptations. Our results are given in the form of

a mathematical theory that accurately predicts the epidemic threshold and the probability of

emergence as functions of the characteristics of the spreading process, the evolutionary path-

ways of the pathogen (respectively, information), and the structure of the underlying contact

network (as given by its joint degree distribution of single-edges and triangles). Simulation

results on synthetic networks are also provided to verify our theory.
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10.3 Model definitions

We consider the propagation of spreading processes characterized by the (inhomogeneous)

multiple-strain model (see Chapter 9.4.2) on random graphs with clustering as proposed by

Miller [97] and Newman [109]. The model is considered as a generalization to the standard

configuration model [100,115] that generates random graphs with arbitrary degree distribution,

but a vanishing clustering coefficient. Note that the level of clustering associated with a network

could be quantified in different ways, but here we focus on the notion of global clustering

coefficient as defined in [112]. Namely, the global clustering coefficient is defined as

Cglobal =
3× number of triangles in the network

number of connected triples

where a connected triple means a single vertex connected by edges to two others.

The algorithm used to generate random graphs with clustering is defined as follows. Con-

sider a joint degree distribution {pst}∞s,t=0 that specifies the probability that an arbitrary node

has s single-edges and is part of t triangles. Note that if a node has s single-edges and is

part of t triangles, then its degree is s + 2t since each triangle adds two edges connecting the

node to the other end nodes of the triangle. Essentially, in this model, triangles are treated

separately from single-edges. Note that we can think of s as the number of single stubs and t

as the number of corners of triangles. In order to create the network, we choose pairs of single

stubs uniformly at random and join them to make a complete edge between two nodes, and

also choose trios of corners of triangles at random and join them to form a triangle. Indeed,

the total degree distribution in the network could be obtained through {pst}∞s,t=0 as follows.

pk =
∑
s,t

pstδk,s+2t

where pk denotes the probability that an arbitrary node is of degree k and δij is the Kronecker

delta function. In contrast to the standard configuration model, where Cglobal approaches
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zero in the limit of large network size, the quantity Cglobal is positive for networks generated

according to the above algorithm implying the existence of a non-trivial clustering in the

network.

One aspect of particular importance is the joint degree distribution of a node that we

arrive at by following a single-edge selected uniformly at random. Note that the joint degree

distribution of this node is not simply given by pst since the node under consideration is

known to have at least one single-edge that was traversed to reach it. In this case, the joint

distribution would be proportional to the number of single-edges assigned to this node (the

more single-edges it has, the more likely that we arrive at it when traversing a randomly

selected single-edge). Namely, the joint degree distribution in this case would be given by

sps,t/〈s〉, where 〈s〉 =
∑

s,t sps,t ensures proper normalization. Put differently, with probability

sps,t/〈s〉, the node has s− 1 remaining single-edges (because one single-edge was already used

to reach it) and t triangles. Similarly, we can show that the joint degree distribution of a node

that we arrive at by following a triangle selected uniformly at random is given by tps,t/〈t〉,

where 〈t〉 =
∑

s,t tps,t.

In the following section, we derive the probability of emergence and epidemic threshold for

spreading processes governed by the multiple-strain model on random graphs with clustering.

Our mathematical theory reveals the interplay between the structure of the underlying contact

network (as given by its joint degree distribution), the characteristics of the spreading process

(as given by the transmissibility matrix TTT ), and the evolutionary pathways (as given by the

mutation matrix µµµ).

10.4 Theoretical results

We consider a branching process that starts by selecting a node uniformly at random and

infecting it with a particular strain, then exploring all the neighbors that are reached and

infected due to this node. The process continues recursively until the branching terminates.

Our method relies on using the generating functions approach to characterize the distribution
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of the resulting number of nodes that received the infection due to the spreading process. In

what follows, we use the term type-i node to denote a node that is spreading strain-i, i.e., a

node that has received an infection with a strain that has eventually mutated to strain-i prior

to subsequent infections. We focus on the case where m = 2, i.e., there are only two strains

propagating in the population, yet it is straightforward to extend our theory to the general

case of m strains.

Let hi(x) (respectively, gi(x)) denote the probability generating function of the number of

finite nodes reached and infected by following a randomly selected single-edge (respectively,

triangle) emanating from a type-i node. In addition, let Qi(x) denote the probability generating

function of the number of finite nodes reached and infected by selecting a node uniformly at

random and making it type-i.

Observe that

Qi(x) = x
∑
s,t

ps,thi(x)sgi(t)
t (10.1)

where ps,t denotes the joint degree distribution of single-edges and triangles. The validity of

(10.1) could be seen as follows. The term x stands for the node that is selected randomly and

given the infection as the seed of the process. Note that this node has a joint degree (s, t)

with probability ps,t. Since this node is type-i, the number of nodes reached and infected by

each of its s single-edges (respectively, each of the t triangles) has a generating function hi(x)

(respectively, gi(x)). From the powers property of generating functions [115], the total number

of nodes reached and infected in this process when the initial node is type-i and has joint degree

(s, t) has a generating function hi(x)sgi(x)t. As we average over all possible joint degrees (s, t),

we obtain (10.1). In what follows, we obtain expressions for the terms h1(x), h2(x), g1(x), and

g2(x).
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10.4.1 Deriving h1(x) and h2(x)

We start by deriving an expression for h1(x). Note that h1(x) denotes the probability generating

function of the number of finite nodes reached and infected by following a randomly selected

single edge emanating from a type-1 node. Observe that if this edge is not occupied (an event

which happens with probability 1− T1), then no node whatsoever would receive the infection

following this edge (leading to a term (1− T1)x0 in the generating function for h1(x)). If this

edge is occupied (an event that happens with probability T1), then the current node must have

received an infection with strain-1, and it would either become type-1 if the pathogen does

not mutate (an event that happens with probability µ11) or type-2 if the pathogen mutates to

strain-2 (an event that happens with probability µ12). Averaging over all possible mutation

outcomes, we get

h1(x) = 1− T1 + T1x

(
µ11

∑
s,t

sps,t
〈s〉

h1(x)s−1g1(x)t + µ12

∑
s,t

sps,t
〈s〉

h2(x)s−1g2(x)t

)
(10.2)

The validity of (10.2) could be seen as follows. When the node under consideration receives

the infection (which happens when the edge is occupied), the number of nodes reached and

infected will be one plus all the nodes reached and infected due to the particular node under

consideration. This node could be type-1 with probability µ11 or type-2 with probability µ12.

In either case, the probability that this node has a joint degree (s, t) would be given by sps,t/〈s〉

since it is already known that this node has at least one single-edge. Since this node has already

utilized one of its single-edges to connect to its parent, it has s− 1 remaining single-edges and

t triangles that it could utilize to spread the infection. When the node is type-1 (respectively,

type-2), the powers property of generating functions readily implies that the number of nodes

reached and infected due to this node has a generating function h1(x)s−1g1(x)t (respectively,

h2(x)s−1g2(x)t). Averaging over all possible joint degrees and node types gives (10.2). Similarly,
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we derive an expression for h2(x) as follows.

h2(x) = 1− T2 + T2x

(
µ21

∑
s,t

sps,t
〈s〉

h1(x)s−1g1(x)t + µ22

∑
s,t

sps,t
〈s〉

h2(x)s−1g2(x)t

)
(10.3)

10.4.2 Deriving g1(x) and g2(x)

The situation becomes more challenging as we consider triangles since we need to jointly

consider the status of the two end nodes of a triangle. Note that a triangle emanating from

a type-i node could have several possible configurations. A graphical illustration of these

different configurations is given in Figure 10.1 for the case when the triangle is emanating from

a type-1 node. In general (when the parent node is of type-i), we have

1. C1 - Both end nodes were not infected. This configuration occurs when the parent

node fails to infect both end nodes, i.e., when both edges are not occupied, an event

happening with probability (1− Ti)2.

2. C2 - One end node was infected and has become type-1. This configuration

occurs when i) the parent node infects one of the end nodes which later becomes type-1,

and ii) neither the parent node nor the infected end node succeed in infecting the other

end node. Hence we have 2Tiµi1 (1− Ti) (1− T1) as the associated probability, where the

multiplication by 2 is due to symmetry, i.e., either of the two end nodes could be the

infected node.

3. C3 - Both end node were infected and have become type-1. The configuration

occurs when i) the parent node infects both end nodes and they later become type-1, or

the parent node infects one of the two end node (say the left node) but fails to infect

the other end node (say the right node) which later gets infected due to the left node.

Hence, the probability for this configuration is (Tiµi1)2 + 2Tiµi1 (1− Ti)T1µ11. Note that

the multiplication by 2 is due to symmetry.

4. C4 - One end node was infected and has become type-2. Similar to C2, the

probability of this configuration is 2Tiµi2 (1− Ti) (1− T2).
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(a) (b) (c) (d) (e) (f)

Figure 10.1: Different possible configurations for a triangle emanating from a type-1
node. Type-1 nodes are highlighted in blue, while type-2 nodes are highlighted in red. The
two ends nodes could be in one of several configurations. Namely, (a) both end nodes are not
infected, (b) one end node is type-1, (c) both end nodes are type-1, (d) one end node is type-2,
(e) both end nodes are type-2, and (f) one end node is type-1 while the other end node is
type-2.

5. C5 - Both end node were infected and have become type-2. Similar to C3, the

probability of this configuration is (Tiµi2)2 + 2Tiµi2 (1− Ti)T2µ22.

6. C6 - Both end node were infected, one of them has become type-1, and the

other has become type-2. This configuration occurs when i) the parent node infects

both end nodes, then one of them becomes type-1 and the other becomes type-2, or ii)

the parent node infects only one node that later becomes type-1 (or type-2) and infects

the other. Hence, the probability of this configuration is given by

2
(
T 2
i µi1µi2 + Tiµi1 (1− Ti)T1µ12 + Tiµi2 (1− Ti)T2µ21

)
where the multiplication by 2 is again due to symmetry.

Let cij denotes the probability of the jth configuration when the parent node is type-i for

i = 1, 2 and j = 1, . . . , 6. We then have

gi(x) = ci1 + ci2x
∑
s,t

tpst
〈t〉

h1(x)sg1(x)t−1 + ci3

(
x
∑
s,t

tpst
〈t〉

h1(x)sg1(x)t−1

)2

+ (10.4)

ci4x
∑
s,t

tpst
〈t〉

h2(x)sg2(x)t−1 + ci5

(
x
∑
s,t

tpst
〈t〉

h2(x)sg2(x)t−1

)2

+

ci6

(
x
∑
s,t

tpst
〈t〉

h1(x)sg1(x)t−1

)(
x
∑
s,t

tpst
〈t〉

h2(x)sg2(x)t−1

)
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for i = 1, 2, where the validity of (10.4) could be seen as follows. With probability ci1, the

triangle is in configuration C1, hence, both end nodes are not spreading any infection. This

leads to a term ci1x
0 in the generating function. Next, with probability ci2 (respectively, ci4),

the triangle is in configuration C2 (respectively, C4), in which case the degree distribution of

the infected node would be given by tpst/〈t〉 since it is already known that this node has at

least one triangle. Since this node has already utilized one triangle to connect to its parent, it

can only utilize the remaining t− 1 triangles and s single-edges to infect its neighbors. Using

the powers property of the generating functions, along with the fact that in this configuration

the node under consideration is type-1 (respectively, type-2), the generating function for the

number of subsequent infections would be given by h1(x)sg1(x)t−1 (respectively, h2(x)sg2(x)t−1).

For configuration C3, C5, and C6, the two end nodes are spreading the infection, yet to two

independent sets of other nodes, hence we could utilize the powers property of generating

functions to get the corresponding terms.

10.4.3 Threshold and probability of epidemics

Recall that Qi(x) gives the probability generating function for the number of finite nodes

reached and infected by selecting a node uniformly at random and making it type-i. By

conservation of probability and the definition of generating functions, we know that Qi(1) = 1

only if the final number of infected nodes is finite with probability one. Hence, when the

process starts with a type-i node, an outbreak would emerge only if Qi(1) < 1. Put differently,

the term 1 − Qi(1) gives the probability of emergence, i.e., the probability that the process

(starting with a type-i node) leads to an infinite component of infected nodes.

Note that in order to compute 1−Qi(1), we need to obtain the fixed point of the recursive

equations (10.2 - 10.4) at x = 1, then report the resulting values of h1(1), h2(1), g1(1), and

g2(1) back into (10.1). For notational simplicity, define h1 := h1(1), h2 := h2(1), g1 := g1(1),

and g2 := g2(1). Clearly, the set of equations (10.2 - 10.4) admit a trivial fixed point h1 =

h2 = g1 = g2 = 1. Substituting back into (10.1) gives 1 − Qi(1) = 0, i.e., all infected
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components are of finite size and no outbreak emerges. In order to check the stability of this

trivial solution, we linearize the set of equations (10.2 - 10.4) around x = 1, and compute the

corresponding Jacobian matrix JJJ = [Jij]. If the largest eigenvalue of the Jacobian matrix (in

absolute value), denoted σ(JJJ), is less than one, then the trivial solution is stable, leading to a

zero probability of emergence. However, if σ(JJJ) > 1, then there exists another stable solution

with h1, h2, g1, g2 < 1, leading to a positive probability of emergence, i.e., 1 − Qi(1) > 0. Put

differently, a phase transition occurs if

σ(JJJ) > 1

In what follows, we show the form of the Jacobian matrix JJJ . For notational simplicity, let

f1(h1, h2, g1, g2) := 1− T1 + T1x

(
µ11

∑
s,t

sps,t
〈s〉

hs−1
1 gt1 + µ12

∑
s,t

sps,t
〈s〉

hs−1
2 gt2

)

f2(h1, h2, g1, g2) := 1− T2 + T2x

(
µ21

∑
s,t

sps,t
〈s〉

hs−1
1 gt1 + µ22

∑
s,t

sps,t
〈s〉

hs−1
2 gt2

)

f3(h1, h2, g1, g2) := c11 + c12x
∑
s,t

tpst
〈t〉

hs1g
t−1
1 + c13

(
x
∑
s,t

tpst
〈t〉

hs1g
t−1
1

)2

+

c14x
∑
s,t

tpst
〈t〉

hs2g
t−1
2 + c15

(
x
∑
s,t

tpst
〈t〉

hs2g
t−1
2

)2

+

c16

(
x
∑
s,t

tpst
〈t〉

hs1g
t−1
1

)(
x
∑
s,t

tpst
〈t〉

hs2g
t−1
2

)

f4(h1, h2, g1, g2) := c21 + c22x
∑
s,t

tpst
〈t〉

hs1g
t−1
1 + c23

(
x
∑
s,t

tpst
〈t〉

hs1g
t−1
1

)2

+

c24x
∑
s,t

tpst
〈t〉

hs2g
t−1
2 + c25

(
x
∑
s,t

tpst
〈t〉

hs2g
t−1
2

)2

+

c26

(
x
∑
s,t

tpst
〈t〉

hs1g
t−1
1

)(
x
∑
s,t

tpst
〈t〉

hs2g
t−1
2

)
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We have

Ji1 =
∂

∂h1

fi(h1, h2, g1, g2)
∣∣∣
h1=h2=g1=g2=1

Ji2 =
∂

∂h2

fi(h1, h2, g1, g2)
∣∣∣
h1=h2=g1=g2=1

Ji3 =
∂

∂g1

fi(h1, h2, g1, g2)
∣∣∣
h1=h2=g1=g2=1

Ji4 =
∂

∂g2

fi(h1, h2, g1, g2)
∣∣∣
h1=h2=g1=g2=1

for i = 1, 2, 3, 4. It follows that

JJJ =



T1µ11
〈s2〉−〈s〉
〈s〉 T1µ12

〈s2〉−〈s〉
〈s〉 T1µ11

〈st〉
〈s〉 T1µ12

〈st〉
〈s〉

T2µ21
〈s2〉−〈s〉
〈s〉 T2µ22

〈s2〉−〈s〉
〈s〉 T2µ21

〈st〉
〈s〉 T2µ22

〈st〉
〈s〉

d1
〈st〉
〈t〉 d2

〈st〉
〈t〉 d1

〈t2〉−〈t〉
〈t〉 d2

〈t2〉−〈t〉
〈t〉

d3
〈st〉
〈t〉 d4

〈st〉
〈t〉 d3

〈t2〉−〈t〉
〈t〉 d4

〈t2〉−〈t〉
〈t〉


with

d1 = c12 + 2c13 + c16

d2 = c14 + 2c15 + c16

d3 = c22 + 2c23 + c26

d4 = c24 + 2c25 + c26

10.5 Numerical results

In this section, we aim to validate our theoretical results using computer simulations. We focus

on the case where m = 2, i.e., there are only two strains propagating in the population and
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consider the following parameters for the multiple-strain model:

TTT =

0.2 0

0 0.5

 and µµµ =

0.75 0.25

0.25 0.75


Unless otherwise stated, we start the process by selecting a node uniformly at random and

infecting it with strain-1. The node infects each neighbor independently with probability T1.

Each of the infected neighbors mutate independently to strain-1 with probability µ11, or to

strain-2 with probability µ12. As the process continues to grow, both strains might exist in the

population. An intermediate node that becomes infected with strain-i would mutate to strain-1

with probability µi1, or strain-2 with probability µi2, for i = 1, 2. When cycles start to appear,

a susceptible node could be exposed to multiple infections at once. If a node is exposed to

x infections of strain-1 and y infections of strain-2 simultaneously, the node becomes infected

with strain-1 (respectively, strain-2) with probability x/(x + y) (respectively, y/(x + y)) for

any non-negative constants x and y. A node that receives infection at round i mutate first

(by the end of round i) before it attempts to infect her neighbors at round i+ 1. The node is

considered recovered at round i+ 2, i.e., a node is infective for only one round.

The underlying contact network is modeled by random graphs with clustering, where the

joint degree sequence ps,t is given by the doubly Poisson distribution, i.e., the number of single-

edges and triangles are independent and they follow a Poisson distribution. Namely, we set

pst = e−λs
(λs)

s

s!
· e−λt (λt)

t

t!
, s, t = 1, . . .

with λs and λt denoting the mean number of single-edges and triangles, respectively. Note
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that in this case, the Jacobian matrix is given by

JJJ =



T1µ11λs T1µ12λs T1µ11λt T1µ12λt

T2µ21λs T2µ22λs T2µ21λt T2µ22λt

d1λs d2λs d1λt d2λt

d3λs d4λs d3λt d4λt


(10.5)

10.5.1 Threshold and probability of epidemics

In Figure 10.2, we consider the cases when i) λs = λt = λ while λ varies from 1 to 10 and ii)

λs = λ/2, λt = λ while λ varies from 1 to 10 . For each value of λ, we obtain the empirical

probability of emergence. In particular, we set the network size n to 2 × 105 and perform

15, 000 independent experiment per each data point. The empirical probability of emergence is

given by the fraction of experiments for which an outbreak emerges. In addition, we compute

the critical value of λ for which (10.5) has a spectral radius of one, i.e., σ(JJJ) = 1, to mark

the phase transition point. Our theoretical results on the probability of emergence and phase

transition point are in excellent agreement with simulation results. We also show the expected

epidemic size S obtained by the simulations.

10.5.2 Impact of clustering

In order to better understand the impact of clustering, we consider a joint degree distribution

that allows us to control the level of clustering, while keeping the mean total degree fixed.

In particular, we set the distribution of the number of single-edges as 2 Poi
(

4−c
2
λ
)

and the

distribution of the number of triangles to Poi
(
c
2
λ
)

where c ∈ [0, 4]. Note that in this case,

the degree distribution (singles-edges plus triangle-edges) is given by 2 Poi
(

4−c
2
λ
)

+2 Poi
(
c
2
λ
)
.

This ensures that as c varies, both the mean and the variance of the degree distribution remains

constant, allowing us to focus only on the effect of clustering.

Observe that when c = 0, there will be no triangles in the network and its clustering
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Figure 10.2: The probability of emergence on contact networks with doubly Poisson
distribution. The network size n is 2× 105 and the number of independent experiments for
data point is 15, 000. Blue plus signs denote the empirical probability of emergence while the
red line denotes the theoretical probability of emergence according to our analysis. The brown
circles denote the expected epidemic size. (a) We set λs = λt = λ and vary λ from 1 to 10. (b)
We set λ2 = λ/2 and λt = λ and vary λ from 1 to 10. Our experimental results are in excellent
agreement with our theoretical results.

coefficient will be close to zero, however, when c = 4, there will be no single-edges in the

network, hence it would consist only of triangles with a clustering coefficient close to one.

Put differently, the parameter c controls the level of clustering, as c increases, the clustering

coefficient of the network also increases. In Figure 10.3, we consider three different values for

the parameter c, namely, c = 0.01, c = 2.00, and c = 3.99, respectively to illustrate the impact

of the clustering coefficient on the probability of emergence and the epidemic threshold. Our

results reveal that high clustering i) increases the threshold of epidemics and ii) reduces the

probability of emergence around the transition point. These conclusions are in the same vein

with the ones given in [168] for clustered networks.

10.6 Conclusion

In this chapter, we investigated the propagation of spreading processes governed by the multiple-

strain model on random graphs with clustering. We presented a mathematical theory that ac-
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Figure 10.3: The impact of clustering. The network size n is 2 × 105 and the number of
independent experiments for data point is 104. Blue circles, red squares, and gray triangles
denote the empirical probability of emergence when c = 0.01, c = 2.00, and c = 3.99, respec-
tively. Our experimental results show that high clustering increases the threshold of epidemics
and reduces the probability of emergence around the transition point.

curately predicts the threshold and probability of epidemics as functions of i) the structure of

the underlying network (as given by the joint degree distribution of single edges and triangles),

the characteristics of the spreading process (as given by the matrix TTT ), and the evolutionary

pathways of the underlying pathogen/information (as given by µµµ). Our theoretical results were

complemented with numerical results on synthetic networks to confirm their validity and reveal

the impact of clustering on the threshold and probability of epidemics. It was shown that high

clustering increases the epidemic threshold and lowers the probability of emergence around the

phase transition point.
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Chapter 11

Concluding Remarks

In this thesis, we have focused on two specific application areas of random graph theory,

namely, i) modeling secure connectivity of large-scale wireless sensor networks utilizing ran-

dom predistribution of cryptographic keys, and ii) modeling real-world social networks. Since

each application area poses its unique research problems, we tackled each of them separately.

In the first part of the thesis, we focused on the former area and proposed several inhomoge-

neous random graphs to model the secure connectivity of large-scale wireless sensor networks.

In particular, we proposed a novel composite random graph obtained by the intersection of

inhomogeneous random key graphs with Erdős-Rényi graphs as a model for a large scale wire-

less sensor network secured by the heterogeneous random key predistribution scheme under a

uniform on-off channel model. We derived scaling conditions on the model parameters so that

with high probability i) the network has no isolated nodes, ii) is connected, iii) the minimum

node degree is no less than k, and iv) the network is k-connected. We then proceeded by con-

sidering a more realistic channel model, namely, the heterogeneous on-off channel model where

the wireless link availability between two nodes is determined based on their respective classes.

This led to a novel composite random graph model formed by the intersection of inhomogeneous

random key graphs with inhomogeneous Erdős-Rényi graphs. We derived scaling conditions

on the model parameters such that with high probability i) the network has no isolated nodes,

and ii) is connected. Finally, we proposed inhomogeneous random K-out graphs as a novel

modeling framework for secure connectivity of large-scale wireless sensor networks secured by a

heterogeneous variant of the random pairwise key predistribution scheme. We investigated the
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connectivity of the model and presented the conditions needed to make the graph connected.

In the second part of the thesis, we looked at random graphs as models for real-world

social networks. We utilized existing random graph models of social networks in order to

investigate the propagation of spreading processes that entail evolutionary adaptations in so-

cial contexts. We considered the propagation of inhomogeneous spreading processes, governed

by the multiple-strain model, on contact networks modeled by i) random graphs with arbi-

trary degree distributions (generated by the configuration model) and ii) random graphs with

clustering. In the context of the former model, we proposed a mathematical theory that char-

acterized the expected epidemic size and the epidemic threshold as functions of the structure of

the underlying contact network, the properties of the spreading process, and the evolutionary

pathways of the propagating object. Extensive simulation results on synthetic and real-world

contact networks were performed to validate our theory and reveal the significant shortcom-

ings of the classical epidemic models that do not capture evolutionary adaptations. In the

context of the latter model, we proposed a mathematical theory that accurately captures the

probability of emergence (the probability that the spreading process would eventually reach a

positive fraction of the nodes) and the epidemic threshold as functions of the structure of the

underlying contact network (which takes clustering into consideration), the properties of the

spreading process, and the evolutionary pathways of the propagating object. Our theoretical

results were validated by a simulation study that also revealed the impact of clustering on the

probability of emergence and the epidemic threshold.

A common takeaway from both parts of the thesis is that homogeneous models are

more resource-efficient than their inhomogeneous counterparts, despite the fact that

the latter facilitate a broader modeling framework that accurately captures real-world networks

and spreading processes.

271



Chapter 12

Future Work

There are many open directions for future work. In the context of the first application area,

namely, modeling secure connectivity of large-scale wireless sensor networks, it would be inter-

esting to analyze the minimum node degree and k-connectivity properties of inhomogeneous

random key graphs intersecting inhomogeneous Erdős-Rényi graphs. The k-connectivity prop-

erty provides reliability guarantees against the failure of some nodes and links and it also

implies that any k− 1 sensors are free to move around without causing the network to be dis-

connected. Indeed, such results would provide guidelines on how to dimension the parameters

of the heterogeneous random key predistribution scheme such that the resulting wireless sensor

networks is connected and reliable in the presence of the heterogeneous on-off channel model.

We have investigated the connectivity of inhomogeneous random K-out graphs under full-

visibility, yet the full-visibility assumption is too optimistic and is not likely to hold in real-world

where the wireless media is often unreliable. Hence, it would be interesting to investigate the

connectivity of inhomogeneous random K-out graphs under the uniform and heterogeneous on-

off channel models. The former would amount to the intersection of inhomogeneous random

K-out graphs with Erdős-Rényi graphs, while the latter would amount to the intersection of

inhomogeneous random K-out graphs with inhomogeneous Erdős-Rényi graphs. The overall

model would then provide accurate guidelines on how to design the parameters of the underlying

random pairwise scheme to achieve secure connectivity in the presence of unreliable wireless

media.

Another future direction is to investigate the minimum node degree and k-connectivity
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properties of inhomogeneous random K-out graphs. This would be essential in order to design

secure wireless sensor networks (in the context of random pairwise scheme) that are not only

connected but also reliable against the failure of some nodes and links. In fact, such a study

has already been carried out in [137]. Finally, it would be interesting to propose a variant of

inhomogeneous random K-out graphs where two nodes u and v are adjacent if u selects v and

v selects u. This model would be more realistic in social contexts where two individuals are

considered friends if they both choose to befriend one another.

In the context of the second application area, namely, the role of random graphs in modeling

real-world social networks, it would be interesting to obtain real-world data that captures

the actual progression of a pathogen/information and the evolutionary adaptations that have

occurred throughout the propagation. Such a dataset would allow us to investigate how far off

the predictions of the multiple- strain model are from the actual spreading phenomenon.

In order to accurately model real-world social networks, it would be useful to consider the

propagation of spreading processes governed by the multiple-strain model in clustered, multi-

layer networks. Since people interact with each other in multiple contexts, e.g., work, school,

neighborhood, etc., we could model each context as a layer in a multi-layer network that

captures the contact patterns among individuals in multiple contexts. Since social networks

are known to be highly clustered, we could also generate the layers in such a way that some

(or all) of the layers are clustered. Such a network model is indeed more realistic than the

single-layer model presented in this thesis. Hence, it would better resemble real-world social

networks.

273



Bibliography

[1] Lada A. Adamic, Thomas M. Lento, Eytan Adar, and Pauline C. Ng. Information

evolution in social networks. In ACM WSDM 2016, pages 473–482.

[2] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks. IEEE Communications Magazine, 40(8):102–114, Aug 2002.

[3] HK Alexander and T Day. Risk factors for the evolutionary emergence of pathogens.

Journal of The Royal Society Interface, 7(51):1455–1474, 2010.

[4] Samuel Alizon, Jacobus C de Roode, and Yannis Michalakis. Multiple infections and the

evolution of virulence. Ecology letters, 16(4):556–567, 2013.

[5] Linda JS Allen, Fred Brauer, Pauline Van den Driessche, and Jianhong Wu. Mathematical

epidemiology, volume 1945. Springer, 2008.

[6] Roy M Anderson, Robert M May, and B Anderson. Infectious diseases of humans:

dynamics and control, volume 28. Wiley Online Library, 1992.

[7] Rustom Antia, Roland R Regoes, Jacob C Koella, and Carl T Bergstrom. The role of

evolution in the emergence of infectious diseases. Nature, 426(6967):658, 2003.

[8] N. Azimi-Tafreshi. Cooperative epidemics on multiplex networks. Phys. Rev. E,

93:042303, Apr 2016.

[9] Oliver Balmer and Marcel Tanner. Prevalence and implications of multiple-strain infec-

tions. The Lancet infectious diseases, 11(11):868–878, 2011.

274



[10] Justin Balthrop, Stephanie Forrest, Mark EJ Newman, and Matthew M Williamson.

Technological networks and the spread of computer viruses. Science, 304(5670):527–529,

2004.

[11] Shweta Bansal, Bryan T Grenfell, and Lauren Ancel Meyers. When individual behaviour

matters: homogeneous and network models in epidemiology. Journal of the Royal Society

Interface, 4(16):879–891, 2007.
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[41] R. Eletreby and O. Yağan. Connectivity of inhomogeneous random key graphs intersect-
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[124] Dajun Qian, Osman Yağan, Lei Yang, and Junshan Zhang. Diffusion of real-time infor-

mation in social-physical networks. In IEEE GLOBECOM 2012, pages 2072–2077.

[125] C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors. Wireless Sensor

Networks. Kluwer Academic Publishers, 2004.

[126] Andrew F Read and Louise H Taylor. The ecology of genetically diverse infections.

Science, 292(5519):1099–1102, 2001.

[127] Herbert Robbins. A remark on stirling’s formula. The American mathematical monthly,

62(1):26–29, 1955.

286

http://www.who.int/topics/zoonoses/en/


[128] Katarzyna Rybarczyk. Diameter, connectivity, and phase transition of the uniform ran-

dom intersection graph. Discrete Mathematics, 311(17):1998–2019, 2011.

[129] Katarzyna Rybarczyk. Sharp threshold functions for random intersection graphs via a

coupling method. the electronic journal of combinatorics, 18(1):P36, 2011.

[130] Faryad Darabi Sahneh, Caterina Scoglio, and Piet Van Mieghem. Generalized epidemic

mean-field model for spreading processes over multilayer complex networks. IEEE/ACM

Transactions on Networking, 21(5):1609–1620, 2013.
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