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“Do the difficult things while they are easy and do the great things while they are

small. A journey of a thousand miles must begin with a single step.”

Lao zi
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Abstract

A comfortable indoor thermal environment plays a crucial role in preserving

occupant health and productivity. In most office building today, the indoor

thermal environment is regulated by heating, cooling, and air-conditioning

(HVAC) systems with static schedule-based rules. While prevalent, this con-

trol strategy has resulted in low thermal satisfaction rates and energy waste.

A growing number of researchers are focusing on occupant-centric building

controls and applying various advanced control methods to improve thermal

comfort and energy efficiency. However, it is still challenging to integrate oc-

cupants’ personalized requirements into a control system with a capability

of learning from the environment. This thesis has developed a bio-sensing

and reinforcement learning control system for continuously integrating occu-

pants’ bio-signals into the operation of different heating, cooling, and venti-

lation systems, learning through interaction to achieve personalized thermal

comfort and energy savings.

A bio-sensing and reinforcement learning control (Bio-REAL) system is

comprised of a bio-sensing network, multiple Bio-REAL agents, and a nego-

tiator. The bio-sensing network uses smart wristbands to measure occupants
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wrist temperature in real-time. The Bio-REAL agent initiates the best con-

trol actions on behalf of each occupant in response to the wrist temperature,

subjective feedback, and environmental conditions. The negotiator resolves

conflicts in the control actions initiated by different Bio-REAL agents to max-

imize collective thermal comfort and minimize energy consumption. A state-

of-art reinforcement learning algorithm, double Q learning with experiment

replay and neural network approximation, is applied to train the Bio-REAL

agents.

This thesis evaluates the Bio-REAL systems using three types of experi-

mental techniques: simulation experiments, preliminary field and simulation

experiments, and field experiments. The simulation experiment trains a Bio-

REAL system with three virtual occupants and an office room with a variable

air volume (VAV) system in a heating season. The three virtual occupants are

simulated using classic thermal comfort models. The room of a small-sized

office building is modeled by the EnergyPlus simulation tool. The prelim-

inary heating season field and simulation experiments gather data from six

occupants, providing inputs to create the personalized occupant models. The

experimental test space is a room with water-sourced radiators for heating

and modeled by the EnergyPlus tool. The co-simulation with personalized

occupant models and EnergyPlus model assesses the performance of the Bio-

REAL system. The cooling season field experiment evaluates the real-world

performance of the Bio-REAL systems with fourteen occupants in a tropical

climate, occupying a studio with ambient temperature controls and shared

controls of ceiling fans.
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The three types of experiments each demonstrated that the Bio-REAL sys-

tem has more advantages for improving thermal comfort and energy effi-

ciency compared to the conventional control systems based on thermal com-

fort models and static schedules. With the combinations of bio-sensing and

learning capability, the Bio-REAL system was able to derive dynamic and

adaptive control policies, mapping occupants’ personalized requests and the

changes of indoor and outdoor environmental conditions to optimum con-

trol actions.

The Bio-REAL system contributes an innovative approach for controlling

building conditioning systems, to deliver thermal comfort for each individ-

ual at the lowest energy possible, with benefits for occupant health and pro-

ductivity, as well as sustainability. The Bio-REAL research addresses indi-

vidual differences in thermal comfort for multi-occupant spaces with limited

individual controls. It also addresses a range of heating and cooling choices

from ambient to task systems. The structure and learning process of the Bio-

REAL system, the strategies for the simulations, and the real-world imple-

mentation offer creative solutions for building control systems, contributing

to the application of the Internet of Things and artificial intelligence in build-

ings.
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Chapter 1

Introduction

The importance of indoor comfort to human health, productivity, and well-

being have been emphasized in many studies (Samet and Spengler, 2003;

Parsons, 2014). Indoor comfort includes four primary aspects: thermal com-

fort, visual comfort, acoustic comfort, and air quality. Thermal comfort was

ranked by building occupants as the most important aspect of indoor comfort

(Frontczak and Wargocki, 2011). ASHRAE (2013) defined thermal comfort as

“the condition of mind that expresses satisfaction with the thermal environ-

ment”. Indoor thermal environment is regulated by building heating, cool-

ing, and ventilation systems, which are big energy consumers of buildings.

Buildings accounted for about 40% of total U.S. energy consumption in

2018 (EIA, 2019). About 48 % energy in office buildings was used by me-

chanical systems for space heating, cooling, and ventilation (Pérez-Lombard,

Ortiz, and Pout, 2008). Despite such a large amount of energy use for regulat-

ing the thermal environment, the thermal satisfaction rate was low according

to the survey results from office occupants. (Choi, Loftness, and Aziz, 2012;

Loftness et al., 2009 Huizenga et al., 2006; ). One primary causes for the
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low thermal satisfaction rate and the high energy consumption are improper

building controls.

Today, in most office buildings, the thermal environment is regulated only

by indoor temperature with static schedule-based rules. This control strat-

egy allows no variation of temperature setpoint and has no consideration of

occupants’ thermal requirements, resulting in energy waste and thermal dis-

comfort. (Hoyt et al., 2005). A growing number of researchers are focusing

on occupant-centric building control that integrates human’s requirement

into building control loop to improve thermal comfort and energy efficiency.

However, there are lots of practical challenges:

First, thermal comfort is a complex subjective response, requiring a broader

set of environmental, physiological, and psychological variables to be consid-

ered (Fanger, 1970). These variables are neither static nor consistent, there-

fore, infrequent data is not representative. The analysis of building energy

consumption also needs lots of information, such as external load, internal

load, and the conditions of building mechanical systems. Current informa-

tion only is not adequate. Future and past information are also necessary.

Second, the data for most of these variables is impractical to be obtained.

In most traditional office buildings, the only available information is room

temperature. In modern office buildings, environmental data and the con-

ditions of mechanical systems can be available in the building automation

system (BAS). However, the data from occupants is hardly accessible. Ad-

vanced sensing technology can be leveraged. However, the cost, intrusive-

ness, accuracy are the obstacles for these technologies to be implemented in
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practice.

Third, HVAC systems are the only building systems that support auto-

matic control in most office buildings. There are many building systems, such

as shading devices and windows, can be used for space heating, cooling, and

ventilation, yet often are ignored. Integrative control of these systems could

effectively improve thermal comfort and energy efficiency. However, these

systems have diverse working mechanisms and need to be controlled in dif-

ferent ways made the coordination of these systems non-trivial.

Last, mapping the data of thermal comfort and energy consumption to

the control actions for the building systems is another non-trivial task, es-

pecially for multi-objective controls. The control theory in engineering and

artificial intelligence has provided plenty of algorithms to develop control

models or systems for the mapping from the data to optimum control actions.

However, in shared multi-occupant spaces with limited individual controls,

building controls need to resolve the conflicts in different occupants’ thermal

requirements and balance the thermal comfort and energy efficiency. These

require a delicate design in control systems and proper selection in control

algorithms.

In the following chapters, the author will explain these challenges in de-

tail, propose a solution to resolve these challenges, and demonstrated the

feasibility and effectiveness of the solutions through three different experi-

ments.
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Chapter 2

Literature Review of Sensing,

Learning, and Controls for Thermal

Comfort and Energy Efficiency

This chapter first summarizes the significant variables for thermal comfort

and energy efficiency, then reviews conventional and state-of-art sensing tech-

nologies for measuring the variables. After that, the controllable system for

thermal environment regulation is summarized. Methods and algorithms for

building controls are compared. Last, the remaining gaps in building control

for thermal comfort and energy efficiency are concluded.

2.1 Variables Underlying Thermal Comfort and En-

ergy Efficiency

Thermal comfort can be estimated from a broad set of variables, including

environmental factors, personal factors, physiological responses, subjective
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responses, and behavior response, as shown in 2.1. The six primary thermal

comfort factors are air temperature, radiant temperature, humidity, airspeed,

clothing insulation, and activity level (Fanger, 1970). Outdoor weather stim-

ulation changes occupants’ preference by behavioral adjustment (e.g., chang-

ing clothing and opening windows), physiological adaptation (e.g., acclima-

tization) and psychological adaptation (e.g., temperature expectation). (De

Dear and Brager, 1998). Occupants’ physiological responses, including skin

temperature of different body parts, skin wetness or sweat rate, peripheral

blood flow, and heart rate, would be more effective estimator for thermal

comfort if they can be precisely detected (Kurz, 2008; Fanger, 1970; Gagge,

1986, Zhang et al., 2010b). Besides, occupants’ behavior, such as changing

clothes, operating windows, adjusting thermostats, and so forth indirectly

reflect their feeling to the environment. Occupants are often encouraged to

directly report their feedback, which is often regarded as the ground truth of

thermal comfort.
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FIGURE 2.1: Variables for thermal comfort

The variables affecting energy performance for space heating, cooling,

and ventilation in buildings are numerous and always intricately interrelated

(Zhao and Magoulès, 2012). The building mechanical systems consume en-

ergy to deliver a proper thermal environment by adding or removing heat

from space. The space heat gain depends on outdoor weather, internal heat

gain, and building structure and characteristics. For example, Because of

the transparent surfaces of the building envelope, the solar radiation entries

space and contributes to heat gain. Due to indoor and outdoor weather dif-

ferences, heat also transfers through exterior walls, roofs, and floors through

conduction, convection, or radiations (ASHRAE., 2017). Building occupants,

lights, appliances, and equipment generate heat, the density of which deter-

mines the internal heat gain. Some of these heat sources contribute to load

only after a time lag. Moreover, the behavior and efficiency of the building

mechanical systems also determines their energy performance.
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2.2 Sensing Technologies for Thermal Comfort and

Energy Efficiency

Today’s sensing technologies have created opportunities to measure or detect

all above-mentioned variables, although some of them are still immature. In

traditional office buildings, thermal comfort-related data is barely available.

The sensors or meters on thermostats are the only tools that provide indoor

environment information. It only measures the indoor temperature at zone

level and assumes that assuming that one thermal zone has a similar thermal

environment. Fortunately, there are usually abundant sensors deployed in

the building mechanical systems to monitor their working statuses, includ-

ing supply airflow, refrigerant temperature, and pressure sensors. Besides,

energy meters or sub-metering can provide building energy consumption

(Ahmad et al., 2016). The machinery and energy data are valuable sources

for energy-efficient controls.

With the availability of low-cost and high-performance sensors and net-

work infrastructure, wired and wireless indoor environmental sensor net-

works have been deployed in more and more modern office buildings. The

network has dense sensor nodes. One sensor node fuses a variety of sen-

sors, such as air temperature sensors, relative humidity sensors, and carbon

dioxide sensors, as shown in Figure 2.2. It enables more accurate and com-

prehensive evaluation of indoor thermal environment (Kojima, 2011).
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FIGURE 2.2: Aircuity sensor suite (left) and Aclima indoor en-
vironmental sensors (right)

Due to the pervasive and ubiquitous mobile devices nowadays, the in-

dustry tends to develop mobile applications for thermostats, as shown in

Figure. Occupants can report their thermal preferences through the applica-

tions, which communicate to the building automation systems. These sub-

ject feedback from occupants will be stored and processed for better con-

trols(Nouvel and Alessi, 2012; Yang and Newman, 2012; Jazizadeh et al.,

2011). This sensing strategy is named as participatory sensing by some re-

searchers (Jazizadeh et al., 2012; Jazizadeh, Marin, and Becerik-Gerber, 2013;

Lam, Yuan, and Wang, 2014). Sparse and none-continuous participation is

the limitation of participatory sensing.

FIGURE 2.3: Nest(left) and Comfy (right) mobile application

To achieve continuous assessment of thermal comfort, researchers are in-

vestigating the less-intrusive technologies, bio-sensing. Wearable devices,

such as smart wristbands and glasses, are getting popular for bio-sensing.
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The manufactured wrist bands, such as Fitbit Charge HRTM and Microsoft

Smart Band (Figure 2.4 left), can be applied in offices to monitor occupants’

physiological responses (Hasan, Alsaleem, and Rafaie, 2016; Chaudhuri et

al., 2018; Liu, 2018). There were also specially designed wristbands for ther-

mal comfort monitoring. For example, researchers designed wristbands to

measure the skin temperature of the radial artery, ulnar artery, and upper

wrist ((Sim et al., 2016)) and wrist sweat rate (Sim, Yoon, and Cho, 2018).

Besides wristbands, researchers (Ghahramani et al., 2016; Li, Menassa, and

Kamat, 2018) also developed glasses with infrared sensors to measure face

skin temperature (Figure 2.4 right). In addition to measure physiological re-

sponse, the presence or absence of an occupant can be detected by tracking

the location of the wearable devices (Zhao et al., 2014). However, not all oc-

cupants are willing to wear these devices. The low acceptability is potentially

the limitation of the wearable devices.

FIGURE 2.4: Microsoft smart band 2TM (left) and glasses de-
signed by Ghahramani et al. (right)

Researchers are then seeking for non-contact and non-intrusive approaches,

such as ambient intelligence and computer vision (CV). Ambient intelligence

aims to make our environment responsive and sensitive to our presences

based on data from ambient sensors, smart devices, appliances, and so forth

(Cook, Augusto, and Jakkula, 2009). Although still in its infancy, it could

estimate occupant behaviors and predict occupant’s preferences or desires



2.3. Controllable Systems for Thermal Comfort and Energy Efficiency 11

(Stavropoulos et al., 2012). Computer vision aims to gain a high-level under-

standing from digital images or videos (Szeliski, 2010). Recently, researchers

used RGB cameras and Photoplethysmography (PPG) techniques to capture

occupants’ thermoregulation state Jazizadeh and Jung, 2018. However, the

accuracy for CV to detect physiological conditions is not yet promising. The

cost-effective sensing technologies that provide accurate measurement will

have a higher priority to be selected.

2.3 Controllable Systems for Thermal Comfort and

Energy Efficiency

The controllable systems for thermal comfort and energy efficiency are building-

specific. In general, the author categorized them as centralized ambient sys-

tems, decentralized ambient systems, group task systems, and individual

task systems, as shown in Figure 2.5. These systems may control the thermal

environment at zone levels, group levels, or individual levels. Zone-level

controls affect all occupants in a thermal zone, while group-level controls in-

fluence a small portion of occupants in a thermal zone. Individual controls

change the thermal comfort of one occupant or local comfort of specific body

parts of an occupant.
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FIGURE 2.5: Controllable system for thermal comfort and en-
ergy efficiency

Among the four types of controllable systems, the centralized ambient

system is the most energy-intensive one and plays the most crucial role in

thermal environment regulation in office buildings. It serves multiple or

large spaces and can create a uniform and stable thermal environment. A

typical centralized ambient system is a centralized HVAC system. HVAC

is a complex system and has various components, including chiller, boiler,

cooling tower, air handling units (AHU), fan coil units (FCUs), variable air

volume boxes (VAVs) and so forth as shown in Figure 2.6. These components

are controlled to maintain temperature setpoints of thermal zones. In most

office buildings, the zone setpoint is static schedule-based. Some office build-

ings may allow manually manipulating the setpoints through a thermostat or

automatically adjust the setpoints by a virtual supervisor. The automatic con-

trol of HVAC setpoints is supervisory controls, while the automatic control

of HVAC components is local controls (Wang and Ma, 2008).
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FIGURE 2.6: Heating, ventilation, and air conditioning system
(HVAC) Example

The decentralized ambient systems typically serve a single or small space.

The terminal units of them can be individually controlled by occupants. They

usually create a less-uniform thermal environment. They are mostly the di-

rect expansion or DX types, such as packaged through-the-wall air condi-

tioner and commercial outdoor packaged systems Bhatia, 2011.

The group task systems refer to the task devices shared by a group of

people, such as ceiling fans, shading devices, and windows. They serve sin-

gle or small spaces and change the thermal environment at individual levels

or group levels that require negation among the group. The individual task

systems serve individuals in the task area, such as portable heaters, table fan,

foot warmer Zhang et al., 2010a, heated office chair.

The task systems and ambient systems can be integrated to task ambient

systems, which maintain an acceptable thermal environment in the ambient
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space, while the task components can be individually controlled by occu-

pants in their localized zones Bauman and Arens, 1996. The task ambient

systems can save energy consumption by allowing higher ambient setpoint

in summer and lower ambient setpoint in winter.

2.4 Building Controls for Thermal Comfort and En-

ergy Efficiency

In this section, the author reviews classic building controls and learning meth-

ods of building controls, including the methods for the HVAC supervisory

control, the HVAC local control, and the controls of other controllable sys-

tems.

2.4.1 Classic Building Controls

Conventionally, the HVAC supervisory control schema is static schedule-

based with no consideration of occupants’ requirements. There are usually

separate control schemes in heating seasons, cooling seasons, and swing sea-

sons. The occupied setpoint and unoccupied setpoint are also different. For

example, a weekday schema in a heating season can be that temperature set-

point is 21 ◦C from 7 AM to 5 PM and 16 ◦C other time of the weekday. The

The schedule-based controls have little flexibility that often leads to thermal

discomfort and energy waste (Hoyt et al., 2005).

The HVAC components work together with closed-loop control to main-

tain the scheduled temperature setpoint, as shown in Figure2.7. The most
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traditional controller for local HVAC controls is on/off controller or bang-

bang controller. With on/off controllers, the components of HVAC system

is turned off as soon as the process temperature rises above the setpoint and

turned on when the process temperature drops below the setpoint minus a

hysteresis (Johnson, 1999). The bang-bang control with dead-band can avoid

frequent changes caused by on/off controls because no change is made in the

dead zone (Dounis and Caraiscos, 2009). However, overshoots of the process

temperature are still exits and cause over-heating or over-cooling.

FIGURE 2.7: Closed-loop temperature control

The classic controller, PID (Proportional, integral, derivative), could re-

duce overshoots because its derivative term can lower the rate of error (the

difference between the process temperature and setpoint) and flatten the ac-

tion trajectory. Its integral term can force the PID controller to reach the

setpoint timely by summing instantaneous errors over time. However, if

the gains of P, I, and D terms are improperly selected, the PID controllers

alone could make the entire system unstable (Zhong, 2006). They also have

poor control performance for non-linear processes having responses delays

(Shaikh et al., 2014).
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2.4.2 Building Controls based on Thermal Comfort Models

Being aware of the weaknesses of the schedule-based controls, a growing

number of researchers are focusing on occupant-centric building controls

that place occupants’ requirements into building control loop. Occupants’ re-

quirements for the thermal environment can be quantified by different met-

rics, such as thermal sensation, satisfaction, acceptability, and preferences

(Kim, Schiavon, and Brager, 2018; 10551, 2019), as shown in Figure 2.8. Ther-

mal sensation is the most frequently used one. Thermal satisfaction is often

for post-occupancy evaluation. Thermal acceptability is for evaluating occu-

pants’ tolerance to the thermal environment. Thermal preferences is a good

metric if thermal comfort models will be used for controls because it directly

suggests a direction for control. This thesis uses sensation, satisfaction, and

preferences as thermal comfort metrics.

FIGURE 2.8: Thermal comfort metrics (Kim, Schiavon, and
Brager, 2018; 10551, 2019)

Since occupants’ direct requirements are often not available, research tends

to integrate thermal comfort models into building control loop, as shown in

Figure 2.9. A thermal comfort model is a mathematical model that can be a

regression, classification, or probability distribution. It predicts occupant’s
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thermal comfort requirement (e.g., sensation or preferences) based on dif-

ferent kinds of inputs mentioned in section 2.1. The controllers will act on

the heating, cooling, and ventilation systems if there current thermal comfort

levels predicted by the thermal comfort models don’t meet the comfort ob-

jective. Researchers have developed a variety of thermal comfort models to

ensure their prediction close to the occupants’ real thermal comfort feedback.

FIGURE 2.9: Closed-loop control to maintain thermal comfort

The most well know thermal comfort model is Fanger’s PMV (predicted

mean vote) model (Fanger, 1970). It relies on two theories: a necessary condi-

tion for thermal comfort is heat balance, for which the internal heat produc-

tion should be equal to the heat loss from a body; a sufficient condition for

thermal comfort is that the mean skin temperature and sweat secretion inside

narrow limits. It was developed using data from extensive chamber studies

with more than one thousand participants and links the PMV index for ther-

mal sensation with six factors, which are air temperature, mean radiant tem-

perature, relative humidity, air velocity, clothing insulation, and activity level

(i.e., metabolic rate). This model was proven to be accurate for building oc-

cupants in near-sedentary activity and steady-state conditions (Doherty and

Arens, 1988; De Dear and Brager, 1998). It was adapted by the ASHRAE
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(The American Society of Heating, Refrigerating and Air-Conditioning En-

gineers) thermal comfort standards (ASHRAE 55, 2013) to build standard

thermal comfort zones when air velocity is lower than 0.2 m/s. This the-

sis considers it as a valuable benchmark or initial model for determining a

comfort zone for the sealed, mechanically controlled office buildings.

Another widely used comfort model is the Pierce two-node model Gagge,

1986. It models the human body as two concentric cylinders to represent

body core and skin shell. Although both the PMV model and two-node

model use the heat balance equation as the means of deriving the physio-

logical parameters underlying thermal comfort, the PMV model doesn’t ex-

plicitly estimate the actual value of the physiological parameters, while the

two-node model estimates the skin temperature, core temperature, and skin

wetness. Although an evaluation study has shown that the two-node model

tended to underestimate skin wetness and core temperature and overesti-

mate skin temperature (Doherty and Arens, 1988), this thesis considers it as

a valuable initial model for bio-responses estimation.

To build a model that is more applicable to the actual workplace, espe-

cially for the naturally ventilated buildings, De Dear et al. (De Dear and

Brager, 1998) developed the adaptive model from 160 buildings worldwide.

The adaptive model for naturally conditioned spaces was adopted by ASHRAE-

55. It is given as a linear regression model describing the correlation between

optimum indoor temperature and outdoor temperature. The range of opti-

mum indoor temperature derived from this model was about twice larger

than that estimated by the PMV model (De Dear and Brager, 1998). The
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larger acceptable temperature range grants more flexibility for building con-

trols with the goal of energy saving. However, the biggest limitation of it is

ignoring the six important factors of thermal comfort (Fanger and Toftum,

2002).

A broad set of field studies have demonstrated individual differences in

thermal comfort due to the differences in gender, age, weight, height, his-

torical thermal experience, economic level, and so forth (Karjalainen, 2012;

Indraganti and Rao, 2010; Indraganti, Ooka, and Rijal, 2015). However, the

above-mentioned thermal comfort models are aggregated models and not

accurate if applying to individuals or a small group of occupants. Hence, re-

searchers have emphasized on personalized thermal comfort models predict-

ing individuals’ thermal comfort, which have diversities in input variables,

outputs, modeling algorithms, evaluation metrics, and continuous learning

methods, as summarized in Table 2.1.

There are mainly two approaches to personalized thermal comfort mod-

els. One approach is incorporating personal identifiers, such as age, gender,

weight, height, and race, into the thermal comfort model. This type of model

needs to be trained by data from many different occupants (Chaudhuri et al.,

2017; Hasan, Alsaleem, and Rafaie, 2016; Lam, Yuan, and Wang, 2014). The

personalization is credited to different input values. In contrast, another ap-

proach is creating a thermal comfort model for each occupant and training

the model using individual data. In this approach, the values of model pa-

rameters and even the model structure are different for different occupants,
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so the personalization is credited to the model itself. Since a small individ-

ual model requires fewer data to train, this approach is preferred by most

researchers.

The inputs used by the individual models are either environmental vari-

ables or biological variables. The prediction methods in existing research

include neural network, Gaussian distribution, and logistic regressions, sup-

port vector machine (SVM), K-nearest neighbors(KNN), linear discriminant

analysis (LDA), linear regression, and decision trees. Liu, Lian, and Zhao

(2007) built a neural network to classify thermal comfort levels based on in-

door air temperature, radiant temperature, air velocity, and relative humid-

ity. The neural network model was then imbedded in an air conditioner.Ghahramani,

Jazizadeh, and Becerik-Gerber (2014) created personalized thermal comfort

profiles to correlate the thermal discomfort and room temperature. The com-

fort profiles and the zone-level energy models profiles determined the HVAC

temperature setpoint. Ghahramani, Tang, and Becerik-Gerber (2015) and

Daum, Haldi, and Morel (2011) built a model for each comfort levels. Ghahra-

mani, Tang, and Becerik-Gerber (2015) created three Gaussian distributions

to predict the probabilities of being uncomfortably cool, comfortable, and

uncomfortable warm. Daum, Haldi, and Morel (2011) built three logistical

regressions separately for the three comfort levels. Among the biological in-

puts, skin temperature is the most extensively studied one. Different features

of the skin temperature have been investigated, including skin temperature

of different body parts (Zhang et al., 2010b), mean skin temperature (MST)
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(Höppe, 1999), the gradient of MST over time interval (Choi, 2010), the gra-

dient of skin temperature over different body locations (Sim et al., 2016; Dai

et al., 2017), the deviation of skin temperature and neutral skin temperature

(Zhang et al., 2010b), and heat loss estimated from MST (Liu et al., 2014).

Besides skin temperature, Höppe (1999) pointed out that airspeed is an im-

portant factor for thermal comfort at a high sweat rat. Heart rate and the

change in rates can be an effective indicator of activity level in warm condi-

tions (Choi and Loftness, 2012).

For personalized thermal comfort model development, the domain knowl-

edge, such as heat balance theory and the principle of thermoregulation in

humans, can be employed to determine not only the input variables but also

model structures. For instance, in Lam, Yuan, and Wang (2014)’s model,

thermal comfort is equal to heat generation plus heat loss. The heat genera-

tion has a linear relationship with the Estimated Energy Requirement (EER),

which is calculated based on the personal factors of age, gender, weight, and

height. The heat loss is a function of indoor and outdoor temperature. Auf-

fenberg, Stein, and Rogers (2015) designed a Bayesian network based on the

correlation among the input variables. The structure of the model explicitly

describes the relationship between inputs and outputs.

Although domain knowledge has been employed, all the thermal com-

fort models are data-driven. A large amount of data is required to train the

model so that the personalized thermal comfort models can have a good per-

formance. If long-term data is not available, an initial model can be valuable
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complementation. Online learning (Bauer, Koller, and Singer, 1997) tech-

niques should be applied to gradually adapt the initial model to a person-

alized model with more and more incoming data. Daum, Haldi, and Morel

(2011) built a group comfort profile using data from a group of occupants,

then adapt it to each occupant. Liu, Lian, and Zhao (2007) demonstrated that

a neural network trained by sample data from an occupant with one kind of

clothing and activity level can effectively adapt to the same occupant with

other kinds of clothing and activity level, and other occupants. Nouvel and

Alessi (2012) used the deviation between personal feedback and PMV calcu-

lated feedback to update the effect of metabolic rate and built personalized

PMV model.

2.4.3 Learning Methods for Building Controls

In addition to integrating comfort models in building controls, many re-

searchers implemented learning methods to build intelligent controllers and

overcome the drawback of the classic controllers. These researches have di-

versities in control objectives, controlled variables, and algorithms, as sum-

marized in Table 2.2.

Fuzzy control was popular in comfort controls because it has the strength

in handling the fuzzy inputs and comfort (e.g., warm) is a fuzzy input or

partial truth to control systems (Dounis and Manolakis, 2001). For example,

Jazizadeh et al. (2012) and Ghahramani, Jazizadeh, and Becerik-Gerber (2014)

applied the fuzzy logic to map thermal preferences to ambient temperature.

One major weakness of the fuzzy systems is that prior expert knowledge is
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required to build the fuzzy rule sets. If the prior knowledge is incomplete

or incorrect, the fuzzy system must be tuned. The tuning processes are time-

consuming and error-prone (Kruse, 2008). There were also Fuzzy P, PI, and

PID controller developed to employ fuzzy logic in closed-loop control. The

hybridization can offer the advantages of both controllers.

In complex HVAC controls, Genetic algorithm (GA) was extensively used

to tune the fuzzy system since it can take various HVAC constraints into

account (Alcalá et al., 2003). Besides, the fuzzy system and GA together can

also be used to perform optimal control where the GA calculates optimum

set points and the fuzzy system maps the setpoint to controlled variables

(Kolokotsa et al., 2002).

Like fuzzy systems, artificial neural networks (ANN) can also represent

a complex non-linear relationship. Most of the time, ANN are preferred to

fuzzy systems because ANN can be trained by observed data instead of prior

expert knowledge. Kanarachos and Geramanis (1998) developed an adaptive

controller using neural networks to handle the nonlinearities of the hydronic

heating system. However, ANN has two recognized limitations for building

controls. One is that a lot of observed data are required to make ANN come

into play. Another is that it is not straightforward to extract the comprehen-

sive rules in the neural network (Kruse, 2008).

The neural-fuzzy systems can combine the strength of both neural net-

work and fuzzy systems. In the case of cooperative neural-fuzzy systems,

ANN learns parameters from the fuzzy system either off-line or on-line. In

the case of a hybrid neural-fuzzy system, ANN and fuzzy system are fully
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fused. For example, Lu et al. (2005) implemented a hybrid neural-fuzzy sys-

tem to find variable pressure setpoints for fan and pump by giving the mass

flow rate of chilled water. In their study, the controller system was a neural

network and the fuzzy rules were the neurons.

Model predictive control (MPC) has been quite popular among researchers

and industry during the last decade because it provides valuable prospects

for dealing with system dynamics, time delays, and so forth. MPC uses dy-

namic models of process and prediction on disturbance (e.g., variation in

occupancy and outdoor weather) to determine the optimal open-loop con-

trol sequence over a short-time future horizon by minimizing an objective

function. A variety of simulation-based research has shown that MPC has

outer-performed other control methods for energy saving because it consid-

ers future disturbances and exploits system dynamics Shaikh et al., 2014. Its

major drawback is that the computational burden may prevent it from a real-

time implementation (Lamoudi, Alamir, and Béguery, 2011).

2.4.4 Reinforcement Learning and Controls

The reinforcement learning (RL) has drawn growing attention among build-

ing control researchers in recent years due to its successful in artificial in-

telligent fields. RL can be either model-based or model free. In a typical RL

problem, an agent aims to learn the best action in different situations through

interaction with an environment. As shown in Figure 2.10, the interaction is

that, at each time step t, an agent receives a state (St) that represents the sit-

uation of the environment, and on that basis selects an action (At) from an
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action set. In response to the action, the environment sends a reward (Rt+1)

to the agent and changes to a new state (St+1). One interaction is one learn-

ing episode. The agents usually needs to be trained by hundreds of episodes.

The mapping from states to actions is called the agent’s policy (πt). The goal

of the agent is to learn an optimal policy that maximizes the accumulated

rewards it receives in the long run. The detail description of RL learning can

be found in Sutton, Barto, and Bach (2018).

FIGURE 2.10: The agent and environment interaction interface
for reinforcement learning

RL can be either model-based or model free. Model-based RL relies on a

model of the environment, which is usually a Markov decision process. The

goal of model-based RL is to solve the Markov decision process. “Model-

free” reinforcement learning (RL) needs no model and trains learning agents

through interaction with a simulated or real environment. Q-learning is one

of the most popular “model-free” RL algorithm (Watkins and Dayan, 1992).

It estimates the expected reward, also called the Q-value, of a state-action

pair. Formally, the Q-value under a given policy π is shown in Equation

2.1, where γ is a discount rate that trades off the immediate reward and the
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k-time-steps later reward.

Qπ(s, a) = Eπ

[ ∞

∑
k=0

γkRt+k+1 | St = s, At = a
]

(2.1)

Ultimately, an optimal Q-value, Q∗(s, a) = max(Q(s, a)) , will be learned.

The Q-value quantifies the value of different actions in different states. The

optimal policy is the one that can achieve the maximum Q-value. Q-learning

is often combined with function approximation to save the time and data

needed for learning. With approximation, the Q-value in a tabular form is

approximated by a characterized function with parameter θ (i.e., Q(s, a, θ) ≈

Q(s, a)) so that Q-value can be generalized from the examples of them. Most

methods in supervised learning, including linear combinations of features,

decision trees, and neural network, can be used as function approximators.

Deep reinforcement learning combines deep learning architecture with

reinforcement learning algorithm (François-Lavet et al., 2018). Model-free

DRL can be value-based or policy-based. The value-based DRL estimates

the optimal value function, such as Q-value. The policy-based DRL directly

search for the optimal policy. DRL uses deep neural networks to represent

the value function or policy. It has been successful in complicated tasks

and achieved super-human-level performance in playing video games. The

most well-known application of deep RL is AlphaGo from Google DeepMind

Group (Silver et al., 2016). This research group has proposed a series of deep

RL algorithms. Some state-of-art algorithms are Double Q learning (Mnih et

al., 2013; Mnih et al., 2015), Double Deep Q learning (Van Hasselt, Guez, and
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Silver, 2016), dueling deep Q learning (Wang et al., 2015), and Asynchronous

advantage actor-critic (A3C) (Mnih et al., 2016). Deep RL had successful real-

world applications, such as robotics (Gandhi, Pinto, and Gupta, 2017) and

self-driving car (Pan et al., 2017)).

There were some applications of RL in building controls. Liu and Henze

(2006) implemented the tabular Q-learning to control zone air temperature

setpoint and thermal storage discharge rate for cost-saving. In which, the

state-action value function is a massive lookup table. The performance of the

tabular Q-learning will diminish with the increase of the state-action space’s

dimensionality. Dalamagkidis et al. (2007) used a linear function to approx-

imate action-value function to control heat pump, ventilation subsystems,

and windows. Their reward function synergized the objectives of energy

efficiency, thermal comfort, and air quality. Vázquez-Canteli, Kämpf, and

Nagy (2017)applied fitted Q-learning that approximate the Q-value with a

neural network to minimize energy consumption while maintaining a target

room temperature. Zhang et al. (2019) implemented A3C to adjust HVAC

supply water temperature. The A3C agents were first trained by a calibrated

building simulator then deployed in the real-world building. Zhang, Zhang,

and Loftness (2019) developed double deep Q learning agents for each occu-

pant to achieve personalized thermal comfort controls while saving energy

consumption.
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2.4.5 Control with Decomposition

Building controls have decomposability in nature because they require si-

multaneously complete many tasks and achieve multiple objectives (Lam-

oudi, Alamir, and Béguery, 2011). With increased requirement on comfort

and energy efficiency, it seems unwise to leave the burden of building con-

trols on a single central controller. Break a complex problem into several

sub-problems can split the burden of problem solvers. To split the computa-

tion load, Lamoudi, Alamir, and Béguery (2011) designed a distributed MPC

system, which has a zone layer and a coordination layer. In the zone layer,

one model predictive controller is responsible for temperature adjustment in

one zone. The coordination layer’s job is optimally dispatching resources

between zones. Other distributed MPC examples can be found in Moroşan

et al. (2010) and Ma, Anderson, and Borrelli (2011). Besides, the multi-agent

system (MAS) also divides one problem into several sub-problems, which are

solved by their representative agents. Boman et al. (1998) designed a MAS,

where agents represented different entities of a building, such as occupants,

rooms, and environmental parameters. In the MAS of Hagras et al. (2003),

one agent is tied to one objective. The objectives were the comfort, cost, and

safety. The researches have shown that decomposition can improve compu-

tational efficiency, system reliability, reconfigurability, and responsiveness, to

name a few.
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2.5 Summary of Literature Review

Building controls should make the best of the resources available in the build-

ing to improve thermal comfort and energy efficiency. In other words, the

control system designer should take full advantage of the data mentioned in

section 2.1, the sensing systems mentioned in section 2.2, and the heating,

cooling, ventilation systems mentioned in section 2.3. The learning and con-

trols systems play the role to bridge these systems, as shown in Figure 2.11.

A learning and control method mentioned in section 2.4 should be correctly

selected to mobilize the resources or systems and intelligently control them.

FIGURE 2.11: The role of learning and controls

Because of the practical constraints, previous researchers barely integrate

bio-responses into building control loop. They relied on environment data



32
Chapter 2. Literature Review of Sensing, Learning, and Controls for

Thermal Comfort and Energy Efficiency

and subjective feedback to gain thermal comfort information. However, en-

vironment data can not explain individual differences. Their methods of ob-

taining feedback are intrusive. Therefore, subjective feedback is usually non-

continuous. Since thermal comfort varies time by time, sparse feedback is not

representative and can be misleading. This thesis proposed a bio-sensing ap-

proach to continuously integrate personalized thermal comfort requirement

into building control loop.

Every building is different due to its location, geometry, building char-

acteristics, the types of heating, cooling, and ventilation systems, and so on.

For each building, the energy model mapping from energy consumption to

control actions is a complex non-linear function. It is non-trivial to build an

energy model that describes the behavior of a building accurately, not men-

tion for many buildings. Moreover, solving complex non-linear models in

the process of building controls is computationally expensive. Therefore, the

model-based building controls have less priority than the model-free ones.

The rule-based control, no matter its fuzzy rule or other static rules, can not

deal with the internal and external disturbance to buildings, such as weather

and occupancy variations. An adaptive approach is preferable. Model-free

deep reinforcement learning, a method of learning from interaction, can gen-

erate control actions adaptively.

This thesis proposed a bio-sensing and reinforcement learning control

(Bio-REAL) system to improve thermal comfort and energy efficiency. The

control framework has multiple control agents and a negotiator to take ad-

vantage of decomposition.
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Bio-sensing and Reinforcement

Learning Control System with

Multiple Agents and A Negotiator

Figure 3.1 shows the proposed bio-sensing and reinforcement learning con-

trol (Bio-REAL) system that has a wireless bio-sensing network and a rein-

forcement learning control system.

3.1 Wireless Bio-sensing Network

The responsibility of bio-sensing is continuously integrating occupants’ bio-

logical responses into building control loop. After comparing the intrusive-

ness, cost, detection accuracy of different bio-sensing technologies, this thesis

selected Microsoft Band 2TM for four reasons. First, although remote bio-

sensing, such as infrared cameras, can measure biological responses and less

intrusive, the wearable devices with contact to the skin can provide a more

accurate measurement. Second, wristbands are getting more pervasive and
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FIGURE 3.1: Bio-sensing and reinforcement learning control
system

are less intrusive compared to other wearable devices, such as smart clothes

or glasses. Third, researchers found that wrist temperature is closely corre-

lated with thermal sensation (Choi and Loftness, 2012). Last, the Microsoft

Band is one of the cheapest smart wristbands in the market that can measure

wrist temperature.

The Microsoft Band 2TM has abundant sensors. Besides the skin temper-

ature sensor, there are heart rate, RR interval, galvanic skin response, ultra-

violet radiation exposure intensity, light intensity, air pressure sensors, and

so forth. It provides SDK (software development kit) so that the third-party

application developers can access the sensors available on the band. Based

on the SDK, the thesis developed a bio-sensing network, as shown in Figure

3.2. A mobile application was developed and installed on each occupants’

cell phone. During the sensing process, the mobile app accesses the sensors

on the wristband through Bluetooth then sends the sensor data to the server
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through Wi-Fi or cellular data. On the server, the Flask, a web framework,

receives the data and saves the data into the InfluxDB, an open-source time-

series database.

FIGURE 3.2: The bio-sensing Network

3.2 Reinforcement Learning Control System

The reinforcement learning control (REAL) system comprises multiple Bio-

REAL agents and a negotiator. The REAL system decomposed the task of

satisfying all occupants in a shared thermal zone into the subtasks of pleas-

ing each occupant, energy-saving, and negotiating the conflict in occupants.

A Bio-REAL agent acts on behalf of an occupant. The negotiator is responsi-

ble for conflict negotiation. The multi-Agents structure is to ensure compu-

tational efficiency, flexibility, and reliability of the REAL system.

3.2.1 Bio-REAL Agents

The objective of a Bio-REAL agent is to optimize thermal comfort of an oc-

cupant it represents and energy efficiency. The design of state, action, and
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reward is the core to achieve the objectives. The algorithm training the agent

is also significant to the performance of the control system.

State. The state can be any information that are useful for the agent to

learn. It describes the current, historical, and future situation related to the

objectives. It can be any variables related to thermal comfort and energy con-

sumption, as mentioned in section 2.1. The more variables included in the

state, the more representative the state is. However, the state-space increases

with the number of variables. A high dimensional state-space requires more

data to train the agent and results in computational cost. Therefore, the most

relevant variables should be selected for the state to balance the represen-

tativeness and space dimension. In this thesis, occupant’s skin temperature

is the essential variables for the state. Indoor and outdoor environmental

variables are chosen as supplements.

Action. The action is building specific and depends on the controlled

variables of the controllable heating, cooling, and ventilation systems avail-

able in the building, as mentioned in section 2.3. For thermal controls, actions

can be any activities that change the thermal environment, including super-

visory controls, such as adjusting HVAC setpoint, and local-level controls,

such as turning off fan coil units. It even can be the changes to occupants’

behaviors. In this thesis, the actions varied in the three types of experiments

because of the different heating and cooling systems.

Reward. Since the technical objective of an RL agent is to maximize the

accumulated reward in the long run, the reward in this thesis was quanti-

fied personalized thermal comfort of each occupants and energy efficiency.
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The thermal comfort is quantified by thermal satisfaction levels, air accept-

ability levels, etc. The weighting on thermal comfort and energy efficiency

determines the priority in making control decisions.

Algorithm. Among the model-based, value-based, and policy-based rein-

forcement learning algorithms mentioned in section 2.3, the author selected

double Q learning with experience replay and neural network approxima-

tion (Van Hasselt, Guez, and Silver, 2016) to train the Bio-REAL agents. This

value-based RL algorithm was preferred to policy-based one because it esti-

mates Q-value that is valuable for the negotiation step. Moreover, this double

Q learning algorithm maintains two Q-networks (neural network approxi-

mating Q-value): online-network and target-network. The two Q-networks

have the same architecture but different parameters. For each update step,

the online-network is used to determine the action with the highest Q-value

and the target network is for Q-value determination. The online-network

is updated every step. The update equation is shown in Table 3.1 line 13.

Every τ step, the target-network copies the weight from the online-network

(Table 3.1 line 14). The decoupling of prediction and evaluation solves the

over-optimism in Q learning. The samples used in training, such as occu-

pants’ wrist temperature, is time-series data. Hence, the data samples are

highly correlated with each other, which leads to instability of RL (Mnih et

al., 2015). The thesis used the experience replay (Lin, 1993) to reduce the cor-

relation. For the experience replay, the experience (state, action, next state,

and reward) are stored in the agents’ memory bank for some time and sam-

pled uniformly to updated the Q-network, as shown in Table 3.1 line 10 and
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11. The algorithm is wrapped by Gym, an open-source interface for the RL

tasks (OpenAI, 2019).

3.2.2 Negotiator

A Negotiator is to resolve the conflict in the decisions made by each Bio-

REAL agent. A Bio-REAL agent selects an action or makes decisions accord-

ing to its Q-value. The action with the highest Q-value given the current

state is the best for the agent. The best actions for different agents can be dis-

parate. Therefore, the negotiator selects the action maximizing the weighted

sum of all agents’ Q-value, as shown in Table 3.1 line 7. This action is the best

one for the group in the shared thermal comfort zones. During the training

process, the negotiator usually selects ε -greedy action rather than the best

action. The ε - greedy method is a strategy of balancing exploration and ex-

ploitation. With ε - greedy, the agent has 1-ε probability to select the best

action and ε probability to select a random action. The exploration with ran-

dom action enables the agents to try new actions and visit new states, which

could be better than the already visited ones.



3.2. Reinforcement Learning Control System 39

TABLE 3.1: Algorithm: Double Q learning with experience re-
play and neural network approximation, and negotiation

1. Initialize action set A and the weight w for each agent

2. Initialize Memory D, and two Neutral Network Qθ and Q−θ for each agent

3. Initialize discount rate γ and learning rate α

4. Repeat forever:

5. For each agent i :

6. Observe state Si
t and predict the Q value Qi

θ(S
i
t, Ai)

7. Negotiation: select ε - greedy actions ai∗
t that can maximize ∑i wiQi

θ(S
i
t, Ai)

8. For each agent i:

9. Observe resultant reward Ri
t+1 and next state Si

t+1

10. Experience Replay: Append the transition (Si
t, Ai

t, Si
t+1, Ri

t+1) to D

11. Experience Replay: Uniformly sample a mini-batch from D

12. for each sample in the mini-batch:

13. Updating: update θ of the Q-network:

θ ← θ + α

(
Ri

t+1 + γQi
θ−
(
Si

t+1, argmaxai∈Ai Qi
θ(S

i
t+1, ai)−Qi

θ(S
i
t, Ai

t)

)
5θ Qi

θ(S
i
t+1, Ai

t)

14. Copy θ to θ− every τ step

Table 3.1 shows the general procedure of the algorithm. The specific

learning procedure is different for the three types of experiments.
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Research Hypotheses

The Bio-REAL control system will be evaluated by three experiments. The

first experiment is a simulation experiment, which is a proof of concept to

demonstrate that the Bio-REAL control system is feasible. The second is

a field and simulation experiment to evaluate the performance of the Bio-

REAL control system in a heating season. The third is a field experiment

conducted in a cooling season. The three experiments will address the fol-

lowing research hypotheses.

4.1 Main Hypothesis

The Bio-REAL system with a bio-sensing network, multiple personalized

Bio-REAL agents, and a negotiator, taking the inputs of occupant wrist tem-

perature and controlling different heating and cooling systems, will effec-

tively improve thermal comfort and save energy consumption.
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4.1.1 Hypothesis 1

An indoor environment regulated by a Bio-REAL system will guarantee a

higher thermal satisfaction rate as compared to static schedule-based sys-

tems.

4.1.2 Hypothesis 2

An indoor environment regulated by a Bio-REAL system can guarantee lower

energy consumption, without sacrificing thermal satisfaction, as compared to

static schedule-based systems.
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Chapter 5

Simulation Experiment: VAV with

Electric Reheat for Heating

5.1 Objective

This simulation experiment was designed to demonstrate the feasibility of

the Bio-REAL system. Moreover, the architecture and the hyper-parameters

of the Bio-REAL system were tuned to ensure reliable performance. More

specifically, the learning environment was simulated by three classic occu-

pant models and a building model. Three control agents and a negotiator of

the Bio-REAL control system were created. For the Q-network, the hidden-

layers, the nodes of each layer, and the activation function were determined.

The performance in thermal satisfaction and energy saving of the Bio-REAL

control system were quantified and compared to the standard and comfort-

oriented static schedule-based controls. The experiment also quantified the

learning speed of the Bio-REAL system.
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5.2 Simulation Setup

In the simulation experiments, three classic occupant models, a building model,

and the Bio-REAL system worked in an integrative way, as shown in Figure

5.1. The occupant models and the building model formed the learning envi-

ronment for the Bio-REAL control system. The classic occupant models were

to simulate occupants’ responses. The building model was built using the

EnergyPlus simulation tool (Crawley et al., 2001) to simulate indoor environ-

mental conditions and energy consumption.

FIGURE 5.1: The integration of the classic occupant models, the
building model, and the Bio-REAL control system.

Figure 5.1 also shows the data flow loop of the learning and control pro-

cess: the Bio-REAL system selects a temperature setpoint, the building model

simulates the air temperature (Ta), relative humidity (RH), and mean radiant

temperature (MRT) of the room and the energy consumption of the HVAC

system given the setpoint. Ta, RH, and MRT are the inputs for the occu-

pant models, which output thermal satisfaction levels and mean skin tem-

perature. The outputs from the occupant models, the indoor environmental
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conditions, the outdoor weather including outdoor temperature (Tout) and

solar radiation, the occupancy status, and the energy consumption from the

building model are the inputs pf the Bio-REAL control system.

5.3 Occupant Models: Fanger PMV and Pierce Tow-

Node

Three occupants are modeled using Fanger’s PMV (predicted mean vote)

model (Fanger, 1970) and Pierce two-node model (Doherty and Arens, 1988).

The PMV model was used to simulate occupants’ thermal satisfaction feed-

back. Although Fanger’s PMV model was designed to predict the mean

votes of a large group of occupants on thermal comfort, this experiment used

the PPD (predicted percentage dissatisfied) converted from PMV to quantify

the thermal satisfaction of individual occupants. Since the Pierce two-node

model can predict the mean skin temperature (MST) of a sedentary occupant

accurately (Doherty and Arens, 1988; Doherty and Arens, 1988), it is adopted

to simulate the skin responses of each occupants. The PMV-PPD model has

six inputs, as shown in Equation 5.3. The Pierce two-node model has eight

inputs, as shown in Equation 5.3.

PPD = Fanger(Ta, RH, MRT, Va, Clo, Met)

MST = PierceTwoNode(Ta, RH, MRT, Va, Clo, Met, Weight, Height)
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where Ta (◦C or ◦F) is air temperature, RH (%) is relative humidity, MRT

( ◦C or ◦F) is mean radiant temperature, Va (m/s) is air velocity, Clo (clo)

is clothing insulation level, Met (met) is metabolic rate, Weight (kg or lb) is

body weight, and Height (m or ft and in) is body height.

The experiment aimed to design three occupants that have different ther-

mal preferences. Hence, the individual differences are modeled by assum-

ing that the three occupants have different dress preferences, metabolic rate,

weight, and height, as summarized in Table 5.1.

TABLE 5.1: Clothing insulation, metabolic rate, weight and
height of the three occupants

Occupant A Occupant B Occupant C

Clothing

Insulation (clo)

0.67

(knee-length skirt +

long-sleeve shirt +

full slip )

0.89

(overalls trousers +

long-sleeve shirt +

T-shirt)

1.10

(ankle-length skirt +

long-sleeve shirt +

suit jacket)

Metabolic

Rate (Met)
1.0 (reading, seated) 1.0 (writing, seated) 1.1(typing, seated)

Weight 60 kg (132 lb) 100 kg (220 lb) 85 kg (187 lb)

Heigh 1.65 m (5 ft and 5 in) 1.81 m (5 ft and 11 in) 1.81 m (5 ft and 11 in)

Based on the settings in Table 5.1, the PPD, MST, and set-point prefer-

ences of the three occupants will be different even when they are in the same

thermal environment. For example, Figure 5.2 and Figure 5.3 show the rela-

tionships of MST and negatie PPD and the relationship of MST and Ta for

the three occupants when the thermal environment is that RH is 30 %, MRT
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FIGURE 5.2: The relationship of mean skin temperature and
negative PPD in the specific thermal condition

FIGURE 5.3: The relationship of air temperature and mean skin
temperature in the specific thermal condition

is 2 ◦C lower than Ta, and Va is 0.1 m/s. As indicated by the Figures, to

achieve the lowest PPD, the MST should be 34.57 ◦C for occupant A, 34.51

◦C for occupant B, and 34.81 ◦C for occupant C. The air temperature that can

achieve the lowest PPD should be 26.62 ◦C for occupant A, 25.40 ◦C for occu-

pant B, and 23.35 ◦C for occupant C. Based on the occupant models, the air

temperature that can achieve the lowest PPD averaged from three occupants

is around 25 ◦C.
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5.4 Building Model

The building model is modified from a DOE (department of energy) refer-

ence building. It is a one-story building with four exterior zones and one in-

terior conditioned zones. The building is located in Pittsburgh, PA, USA, so

the TMY3 (typical meteorological year) weather files of of Pittsburgh Airport

are used to simulate outdoor weather. The HVAC systems of the building are

single duct VAV (variable air volume) systems with electric reheat. The effi-

ciency of the electric heating coils is 100 %. The three occupants are assumed

in the Northern zone of the building from 8:00 AM to 6:00 PM. The size of

the Northern zone and the location of windows/doors are shown in Figure

5.4.

FIGURE 5.4: Building model for the simulation experiment

5.5 The Bio-REAL Control System

The Bio-REAL system in this experiment has three Bio-REAL agents. The

Bio-REAL agent adjusts the thermal environment on behalf of the three oc-

cupants. The three elements of RL, state, action, and reward for an agent to

learn is described below.
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5.5.1 Action, Reward, and State Design for the Three Bio-

REAL Agents

State. In this experiment, occupant’s mean skin temperature, outdoor air

temperature, and diffuse solar radiation are selected as the state. The mean

skin temperature is for the Bio-REAL agents to understand occupants’ cur-

rent thermal comfort status. The diffuse solar radiation and outdoor air tem-

perature can help the Bio-REAL agents to foresee the possible energy con-

sumption of different actions. Since the experiment room faces North, the

direct solar radiation was ignored.

Action. The control action of this experiment was adjusting temperature

setpoint. The action set A is shown in Equation 5.1:

A ≡ ∆Tsetpoint ∈ {−2,−1, 0, 1, 2} (5.1)

where ∆Tsetpoint is the desired ◦C changes from the current temperature

setpoint. Because the agents may take naive actions at the beginning of the

learning process, the temperature setpoint is restricted to the range of 20 ◦C

to 30 ◦C to avoid the risk of extreme over-cooling or over-heating. Moreover,

since the agent takes actions every 15 minutes, the highest setpoint variation

is no higher than 2 ◦C to avoid too heavy temperature fluctuation within a

short period.

Reward. The objective of the Bio-REAL agent is to maximize the ther-

mal satisfaction of the occupant it represents. The experiment quantified the

individual thermal satisfaction as the PPD and designed the reward as the
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negative PPD, as shown in Equation 5.3. In short, the agent will receive a

penalty if the occupant feels thermally uncomfortable.

Rt = −PPDt (5.2)

5.5.2 Negotiation

This thesis applied the double Q-learning with experience replay and neural

network approximation algorithm to train the Bio-REAL agents, as described

in Chapter 3. Besides negotiating the conflicts in occupants, the negotiator

in this experiment is also responsible for saving energy. This experiment

assumed that the temperature setpoint Tset closest to outdoor air temperature

Tout is the most energy-efficient. Therefore, the negotiation procedure in this

experiment was:

1. Select two actions Ai∗
t that can maximize ∑i wiQi

θ(S
i
t, Ai) using the ε -

greedy method

2. Select ai∗
t that can minimize | Tset − Tout | from Ai∗

t

3. Execute the action ai∗
t

In this experiment, the weight w for each occupant is 1.
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5.5.3 Architecture and Hyper-parameters of the Bio-REAL sys-

tem

After trying different architecture and hyper-parameters for the Bio-REAL

control system, the following Q-network and hyper-parameters were deter-

mined.

Q-network. The Q-network has two hidden-layers, each of them has 24

nodes. The activation function is rectifier for the input layer and the first

hidden layer and linear regression for the second hidden layer. Keras (Keras,

2019), a neural network API, is used to program the Q-networks. The loss

function is Huber loss. The optimizer is

Hyper-parameter. The discount rate is 0.99. The learning rate is 0.001. The

size of memory D is 1,000. The intervals for the target-network copying from

the online-network, τ, is 10,000. The exploration probability, ε, is 0.05.

5.6 Simulation Run

The run period of the simulation was one weekday, January 01 (Monday).

One simulation run is equivalent to one learning episode for the Bio-REAL

agents. The simulation timestep was 15 minutes, indicating that the control

system adjusts the temperature setpoint every 15 minutes. The Bio-REAL

system only worked from 8:00 AM to 6:00 PM when there are three occu-

pants, so the number of steps for each episode was 40. The temperature

setpoint for the unoccupied period (from 12:00 AM to 8:00 AM and from 6:00

PM to 11:45 PM) was 20 ◦C. The Bio-REAL system was evaluated by 200
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FIGURE 5.5: The learning speed and the control performance of
the Bio-REAL control system

episodes. The group PPD (PPD) averaged over the three occupants and 40

steps, as shown in Equation (5), was calculated every episode to analyze the

learning speed and control performance of the Bio-REAL system.

PPD =
1
3

3

∑
i=1

1
40

40

∑
t=1

PPDi
t (5.3)

5.7 Experiment results

The learning speed was quantified by the number of episodes needed for the

Bio-REAL systems to convergence to an optimum, where the reward (nega-

tive PPD) is maximized and sustained in the following episodes. The control

performance was quantified by the PPD and the HVAC daily electricity con-

sumption after the convergence. As shown in Figure 5.5, the learning effi-

ciency was 112 episode, indicating that the control system can perform opti-

mally after interacting with the same occupants 112 days. The sub-optimum

can be achieved after 25 episodes.
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The control performance of the Bio-REAL system was compared with the

comfort-orient the standard static schedule-based controls, as shown in Ta-

ble 5.2. Since 25 ◦C was the air temperature setpoint that can achieve the

lowest PPD for the three occupants, as mentioned in section 5.3, the comfort-

oriented schedule control selected 25 ◦C as the static setpoint. The comfort-

oriented schedule can also be considered as the optimum static schedule for

thermal comfort. 22 ◦C is a typical indoor temperature setpoint in winter, so

the standard static schedule-based controls selected 22 ◦C as the static set-

point.

TABLE 5.2: Comparison of the optimal control policy and static
schedule

Bio-REAL system
Comfort-oriented schedule Standard schedule

25 ◦C 22 ◦C

Group PPD 8.21 8.25 17.12

HVA Electricity

Consumption

207.62kWh

(708.40 kBTU)

207.31kWh

(707.34kBTU)

196.80kWh

(671.48kBTU)

Figure 5.6 shows the optimum dynamic control policy derived by the Bio-

REAL system. As the Figure presented, the optimum dynamic control policy

increased the setpoint by 2 ◦every timestep from 8:00 AM to 9:15 AM so that

the setpoint raised from 20 ◦C to 26 ◦C, then it maintained the setpoint as 25

◦C from 9:15 AM to 4:15 PM. From 4:15 PM to 6:00 PM, the setpoint varied

between 25 ◦C and 26 ◦C. The indoor air temperature varied the same as the

temperature setpoint. The mean radiant temperature (MST) was affected by

both temperature setpoint and solar radiation. The lower MST in the early
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FIGURE 5.6: The group reward PPD, indoor air temperature,
and mean radiant temperature using the optimum dynamic

control policy

morning and late afternoon was due to the decreases in solar radiation. Al-

though there was variation in the optimum dynamic temperature setpoints,

the group reward (PPD) can be maintained at its maximum, around -7.5,

from 9:00 AM to 6:00 PM. The lower reward from 8:00 AM to 9:00 AM was

just because of the experiment constraint that the maximum increment in set-

point was 2 ◦C. Furthermore, the Bio-REAL system was able to learn that the

setpoint should be higher (e.g., 26 ◦C) if there is a drop in solar radiation.

The results in Table 5.2 shows that the PPD of the Bio-REAL system with

the optimum dynamic control policy was 0.49% higher than that of occupant

model-based controls using 25 ◦C and 52% higher than that of standard static

schedule-based controls using 22 ◦C. However, the energy consumption of

the controls with the Bio-REAL system was the highest.
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5.8 Conclusion and Discussion

This experiment demonstrated the feasibility of the Bio-REAL system with a

simple simulated learning environment comprised classic occupant models

and the EnergyPlus model of a room with a VAV system. The classic occu-

pant models were the PMV model and Pierce two-node model. The room

was the Northern zone of a one-story DOE reference building. The sim-

ulation run was one weekdays(January 01). Three personalized Bio-REAL

agents and a negotiator was created for the control system. Besides, this ex-

periment tuned and determined the architecture and the hyper-parameters

of the Bio-REAL systems.

The experiment results showed that the Bio-REAL control system con-

verged to an optimum after learning with 112 episodes. The optimum dy-

namic control schedule created by the Bio-REAL system can achieve 0.49%

thermal comfort improvement, compared to the optimal static control sched-

ule (25 ◦C) generated based on the occupant models. The Bio-REAL system

had 52% better performance than the standard static control schedule (22 ◦C).

However, the Bio-REAL system fails to reduce energy consumption be-

cause it aims to maximize thermal satisfaction and, on that basis, minimize

energy consumption. Given the simulation setup in this experiment, the set-

points optimizing thermal comfort are always the energy-intensive ones. The

simulation setup in this experiment also has little randomness. Since the re-

sponse of real occupants and the dynamic of a real indoor environment can

be stochastic, the learning efficiency can be lower in practice.
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Moreover, occupants’ mean skin temperature is not readily accessible in

practice. Only the skin temperature of specific body parts can be obtained

non-intrusively using current bio-sensing technologies, such as smart wrist-

bands. The following experiments investigated other approaches of balanc-

ing group thermal comfort and energy efficiency, integrate bio-sensing tech-

nology, and tested the Bio-REAL system with real occupants in real office

buildings.
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Chapter 6

Preliminary Field and Simulation

Experiment at CMU: Water Sourced

Radiators for Heating

6.1 Objective

This field and simulation experiment was designed to evaluate the perfor-

mance of the Bio-REAL control system in a heating season with a more com-

plex and realistic learning environment, compared to the simulation experi-

ment in Chapter 5. More specifically, personalized occupant thermal comfort

models were created for each occupant to build individual thermal comfort

zones based on data collected from the preliminary field experiment. Six

control agents and a negotiator of the Bio-REAL control system were cre-

ated. The achievement in thermal satisfaction and the saving on energy con-

sumption of the Bio-REAL control system were quantified and compared

to the baseline control. Another objective of this experiment is to evaluate
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the generalizability of the Bio-REAL control system by training and testing

the system with different learning environments. Moreover, this experiment

demonstrated the flexibility of the Bio-REAL control system with the change

of occupancy and the objective function from comfort to energy.

6.2 Simulation Setup

In the simulation experiments, six personalized occupant models, a building

model, and the Bio-REAL control system worked in an integrative way, as

shown in Figure 6.1. The occupant models and the building models formed

the learning environment for the Bio-REAL control system. To make the sim-

ulated learning environment as close as the real environment, the author con-

ducted a human subject experiment to collect human’s subjective and biolog-

ical responses at indoor conditions with varied temperature and humidity.

Then, these responses were used to build personalized occupant models. Be-

sides, a building model was created by the EnergyPlus tool (Crawley et al.,

2001) to simulate the room conducted the human subject experiment.
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FIGURE 6.1: The integration of the personalized occupant mod-
els, the building model, and the Bio-REAL control system.

The data flow of the simulation process is also described in Figure 6.1.

During the simulation, the Bio-REAL control system decides a temperature

setpoint, based on which, the building model simulates the indoor conditions

of the room and the energy consumption of the HVAC system. The indoor

conditions, including air temperature and relative humidity, are the inputs

for the personalized occupant models, which output individual thermal sat-

isfaction levels and wrist skin temperature. These outputs are then the inputs

of the Bio-REAL control system. Besides, the indoor and outdoor conditions

(outdoor air temperature and solar radiation), the number of occupants, and

the energy consumption from the building model are also the inputs of the

Bio-REAL control system.
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6.3 Human Subject Experiment at CMU

6.3.1 Experiment Room

The human subject experiment was undertaken from February 19th, 2018 to

April 11th, 2018 in a room of Margaret Morrison Carnegie Hall (40◦26’31.5"N,

79◦56’29.5"W) at Carnegie Mellon University (CMU), Pittsburgh, Pennsylva-

nia, United States. The experiment room (6.6m × 7.5m × 3.0m) is on the

fourth floor, which is the top floor of the hall , as shown in Figure 6.2. Above

the room is a pitched roof. The experiment room has one exterior wall that

is facing North an has two windows. There are two water radiators in the

room for heating. Four 1500kw heaters were placed at the four corners of the

room to provide additional heat if necessary.

FIGURE 6.2: The room for the human subject experiment

6.3.2 Experiment Subjects

Six healthy graduate students at CMU participated in the experiment. They

are three female and three male. Their demographic information is listed in
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Table 6.1. The body mass index (BMI) was calculated based on their height

and weight.

TABLE 6.1: Demographic information of the experiment sub-
jects at CMU

Age BMI

Mean 26.17 21.39

Standard Deviation 3.25 3.11

Each subject has a fixed workspace with one chair and one desk. The

locations of the workspaces are illustrated in Figure 6.3. The six experiment

subjects were required to wear long pants, shoes, and a sweater or long sleeve

shirt (thick) during the experiment so that their clothing insulation is around

1.0 Clo. They were also asked to work on "office-type" work, such as reading,

typing, and web surfing, to make sure their metabolic rate is 1.0-1.1 met.

FIGURE 6.3: Locations of the six experiment subjects
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6.3.3 Experiment Design

The experiment was single-blinded and included repeated measures of ther-

mal comfort function and biological responses on the same subject. There

were 22 experiment sessions, most of which were conducted after 7 PM to

avoid the impact of solar radiation. Each session lasted 2-3 hours to elim-

inate the effect caused by long-time exposure. Each subject participated in

the 6-7 experiment session to obtain enough individual samples.

The experimentally controlled variable was air temperature, which was

varied slowly either from 18 ◦C to 30 ◦C or from 30 ◦C to 18 ◦C during each

session by turning on/off the two radiators and the four heaters. On aver-

age, the temperature increased or decreased by 1 ◦C every 10 minutes. The

change in air temperature caused the variation to mean radiant temperature

and relative humidity.

6.3.4 Measurement and Equipment

The variables measured in the experiment can be divided into three groups:

environment, biological, and subjective responses. The environment responses

measured were air temperature, relative humidity, and radiant temperature.

The air temperature and relative humidity were measured by self-constructed

wireless sensor kits. Each of them was placed on the desk of each workplace

during the experiment. The sensor kit is made up of a WiFi ESP8266 Micro-

controller, a DHT22 Temperature/Humidity Sensor, and an OLED (organic

light-emitting diode) Display. The radiant temperature was measured by



6.3. Human Subject Experiment at CMU 63

the REED instruments SD-2010 SD Series WBGT heat stress meter that has

a black globe and a data-logger. The biological responses, including wrist

temperature, heart rate, and RR interval, were measured by the bio-sensing

network described in Section 3.1. Each subject wore a wrist band on the same

hand during the experiment. Subjects were reminded to report their thermal

sensation and thermal satisfaction through a web survey every 5 minutes.

The variables measured, their measurement intervals, and equipment for the

measurement were summarized in Table 6.2. Except for the radiant temper-

ature, all the data collected were saved into a database through a wireless

sensor network as described in Section 3.1. The radiant temperature was

stored in the data-logger of the REED WBGT meter.

6.3.5 Data Analysis: Environmental Conditions

During the 22 experiment sessions, the air temperature was controlled no

higher than 29.78 ◦C and no lower than 17.85 ◦C. The fluctuations of the ra-

diant temperature were almost the same as that of the air temperature at dif-

ferent locations of the experiment room, hence the authors assumed that the

operative temperature of the experiment was equal to the air temperature.

Relative humidity was affected by both air temperature and indoor humid-

ity ratio. The statistics of the operative temperature and relative humidity

are summarized in Table 6.3.



64
Chapter 6. Preliminary Field and Simulation Experiment at CMU: Water

Sourced Radiators for Heating

TABLE 6.2: Variable and equipment of the CMU experiment

Variable Interval Equipment

Environmental

Air Temperature (◦C)
10 seconds

Relative Humidity (%)

Radiant Temperature (◦C) 5 seconds

Biological

Wrist Temperature (◦C) 30 seconds

Heart Rate (bpm)
0.1 seconds

RR-interval (seconds)

Subjective
Thermal Sensation

5 minutes Web Survey

Thermal Satisfaction

TABLE 6.3: Experimental condition during the 22 experiment
sessions

Operative Temperature Relative Humidity

Max 29.78 ◦C 40.67 %

Min 17.85 ◦C 9.17 %

Mean 24.38 ◦C 22.78 %
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6.3.6 Data Analysis: Biological Responses

Three types of biological responses were recorded: wrist temperature, heart

rate, and RR-interval. Their effectiveness was evaluated based on their statis-

tics and their correlation with operative temperature (CorTo) and thermal sen-

sation (Corsen). Table 6.4 shows the Pearson correlation and some statistics of

the bio-responses. As shown in the table, The mean of these bio-responses

was all in a reasonable range. The mean wrist temperature of the six subjects

was between 31 ◦C and 33 ◦C. The mean heart rate of them was around 72-74.

The mean RR-Interval was around 0.8. Besides, the wrist temperature had a

strong correlation with the operative temperature for all the six subjects. Its

correlations with thermal sensation were all above 0.5. However, the CorTo

and Corsen for both heart rate and RR-interval were low and not consistent

among subjects. For some subjects, they were positively correlated. For oth-

ers, they were negatively correlated. Therefore, only wrist temperature was

considered as the effective input for the Bio-REAL control system. Heart rate

and RR-interval were not used in the later simulation experiment.

6.3.7 Data Analysis: Thermal Satisfaction Variation

There was 1,348 thermal sensation and satisfaction feedback collected from

the six subjects. More than 200 for each of the them. Since thermal satis-

faction was an important input for the Bio-REAL control system in later ex-

periment, the author focused on analyzing satisfaction rather than sensation.
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TABLE 6.4: Biological responses of the six subjects during the
22 experiment sessions

S1 S2 S3 S4 S5 S6

Wrist Temperature

CorTo 0.83 0.85 0.90 0.89 0.83 0.91

Corsen 0.50 0.60 0.77 0.46 0.58 0.67

Mean 32.23 32.56 31.96 31.14 31.61 31.96

Max 35.25 35.48 35.87 35.88 36.06 36.14

Min 28.54 27.77 27.42 27.12 27.48 27.43

Heart Rate

CorTo 0.42 0.37 0.26 0.15 -0.05 -0.02

Corsen 0.19 0.43 0.27 0.02 -0.06 0.27

Mean 72.34 74.03 74.62 74.20 72.88 74.25

Max 83.80 90.28 85.96 92.85 103.67 105.00

Min 62.73 60.89 60.12 60.01 62.69 61.47

RR-Interval

CorTo -0.18 -0.25 -0.32 0.15 0.06 0.10

Corsen -0.06 0.33 0.23 0.04 -0.04 -0.22

Mean 0.80 0.79 0.78 0.83 0.80 0.78

Max 0.95 1.04 0.94 0.97 0.95 0.98

Min 0.57 0.61 0.54 0.56 0.63 0.54
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TABLE 6.5: Thermal satisfaction distribution of the six subject

S1 S2 S3 S4 S5 S6

Strongly Satisfied (3) 1 0 3 0 0 29

Satisfied (2) 55 51 55 40 27 92

Slightly Satisfied (1) 48 36 28 55 19 68

Neutral (0) 30 55 43 80 34 22

Slightly Dissatisfied (-1) 34 50 45 39 125 7

Dissatisfied (-2) 38 23 31 4 27 4

Strongly Dissatisfied (-3) 8 3 6 0 0 0

Total 214 218 211 218 232 222



68
Chapter 6. Preliminary Field and Simulation Experiment at CMU: Water

Sourced Radiators for Heating

The votes of the thermal satisfaction levels are not evenly distributed, as

shown in Table 6.9. The number of votes on strongly satisfied and strongly

dissatisfied are much less than others. Therefore, the 7-level thermal sat-

isfaction was grouped into a 4-level thermal satisfaction. Slightly satisfied,

satisfied, and strongly satisfied were all grouped as satisfied to treat satis-

fied levels the same. Neutral and slightly dissatisfied were in their original

groups. Dissatisfied and strongly dissatisfied were classified as the dissatis-

fied.

The relationship between the six subjects’ 4-level thermal satisfaction and

indoor environment (operative temperature and relative humidity) were vi-

sualized in Table 6.6. The visualization of the data discovers some charac-

teristics of the six subjects. For example, Subject 1 is more likely to be satis-

fied if the temperature is lower than 24 ◦C. Subject 6 has a relatively larger

thermal comfort zone, while Subject 5 has a relatively smaller comfort zone.

These experiment data demonstrated individual differences in thermal com-

fort. Clearer characteristics of the six subjects were identified by the person-

alized occupant models.

6.4 Occupant Models

6.4.1 Personalized Thermal Comfort Models

The personalized thermal comfort models were developed for the six sub-

jects to predict their thermal satisfaction levels at the operative temperature

between 18 ◦C and 28 ◦C and relative humidity between 10% and 40%. The
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TABLE 6.6: 4-level thermal satisfaction in different operative
temperature and relative humidity conditions for the six sub-

jects (1.0 Clo, 1.0-1.1 Met, 0.1 m/s).

Subject1 (n=214) Subject2 (n=218)

Subject3 (n=221) Subject4 (n=228)

Subject5 (n=232) Subject6 (n=222)
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existing methods for creating a personalized thermal comfort model were

developing machine learning models based on real data collected from oc-

cupants in the field. These methods only focused on the prediction accuracy

and not able to establish an individual thermal comfort zone for each occu-

pant because the data sample from the field experiment was usually not big

enough or representative. For example, as indicated by Table 6.6, from the

data sample of subjects 5, it is hard to tell the thermal satisfaction of this sub-

ject for relative humidity above 30%. Therefore, to overcome the limitations,

the author used a new approach to build the personalized thermal comfort

model: (1) generate 1,000 data samples from the PMV model; (2) develop a

initial neural network using these data samples; (3) update the neural net-

work using the individual data collected from the human subject experiment

to develop personalized thermal comfort models.

Among the six inputs of the PMV/PPD model, the author assumed that

the clothing insulation and metabolic rate are 1.0, air velocity is 0.1m/s. 1000

air and mean radiant temperature data were sampled from 18 ◦C to 28 ◦C.

1000 relative humidity data were sampled from 10% to 40%. These input

data was plugged into the PMV/PPD equation to output 1000 PPD data.

The heatmap of the 1000 PPD data is shown in Figure 6.4.
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FIGURE 6.4: PPD (Predicted Percent Dissatisfied) heatmap cre-
ated by 1000 data samples from the PMV/PPD model

Same as the real thermal satisfaction responses, the PPD value was also

grouped into four satisfaction levels. PPD less than 10% was considered as

satisfied because it is equal to PMV between -0.5 and 0.5. PPD between 10%

and 25% (0.5 < PMV < 1.0 and -1.0 < PMV < -0.5) was regarded as neutral.

PPD between 25% and 50% (1.0 < PMV < 1.5 and -1.5 < PMV < -1.0) was

slightly dissatisfied. PPD that greater than 50% (PMV > 1.5 and PMV < -1.5)

was dissatisfied.

The processed 1000 input and PPD data sample were used to train a neu-

ral network. The neural network has two hidden layers, each of which has

eight nodes. The activation of the input layer and hidden layers are a rectified

linear unit. The activation of the output layer is a softmax function. The loss

function is categorical cross entropy that can compare the distribution of the

predictions with the true distribution. Figure 6.5 visualizes the prediction

result of the neural network. The tool Keras (Keras, 2019) and scikit-learn

(learn, 2019) were used to build and train the neural network.
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FIGURE 6.5: Prediction results of the PPD based neural network

The neural network trained by the PPD data was updated by the indi-

vidual data collected from the six subjects to obtain six personalized ther-

mal comfort models. Table 6.7 visualized the prediction results of the six

personalized thermal comfort models. The results displayed the individual

thermal comfort zones, which are different from the thermal comfort zones

showed by the PMV/PPD model (Equation 6.5). The results also presented

clearer characteristics of the six subjects than the visualization in Table 6.6.

For example, subject 5 has the smallest thermal comfort zone, indicating that

he/she requires a more delicately controlled thermal environment. Subject

6 and Subject 2 have the first and the second largest thermal comfort zones,

suggesting that they have more flexibility in the thermal environment. The

thermal comfort zone of Subject 4 is warmer than that of Subject 1. Subject 3

dislikes high relative humidity. Only Subject 4 and Subject 5 will be dissatis-

fied if the operative temperature is lower than 19 ◦C.
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TABLE 6.7: Prediction result of the personalized thermal com-
fort mode

Subject1 (n=214) Subject2 (n=218)

Subject3 (n=221) Subject4 (n=228)

Subject5 (n=232) Subject6 (n=222)
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6.4.2 Personalized Skin Response Models

The personalized skin response models were developed for the six subjects

to predict their wrist temperature responses at the operative temperature be-

tween 18 ◦C and 28 ◦C and relative humidity between 10% and 40%. The

author applied a machine learning algorithm, support vector regression, to

build the models. Six support vector regressions were trained separately by

data samples (wrist temperature, operative temperature, relative humidity)

collected from each subject (scatter plot in Table 6.8). The heatmap in Table

6.8 presents the prediction results of the personalized skin response models.

As the heatmap showed, the wrist temperature increases with the increase

of operative temperature for all the six subjects. However, the relationship

between wrist temperature and relative humidity is not monotonic. For ex-

ample, with the rise of the relative humidity, Subject 1’s wrist temperature

decreased at the beginning but started to increase when relative humidity is

above 30%. This non-monotony may due to lacking data samples.

6.5 Building Model

The author used the EnergyPlus simulation tool to model the room con-

ducted the human subject experiment. The room size, window location, and

window size were modeled as same as the real room, as shown in Figure

6.6. Considering the room and its adjacent rooms have similar thermal con-

ditions during winter, the author assumed that heat is not transferred across
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TABLE 6.8: Prediction result of the personalized skin response
mode

Subject1 (n=1074) Subject2 (n=1145)

Subject3 (n=1157) Subject4 (n=1079)

Subject5 (n=1160) Subject6 (n=1130)
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FIGURE 6.6: EnergyPlus model for the experiment room at
CMU

in all the surfaces except for its wall facing North and roof. Therefore, adia-

batic surfaces were used in thermal modeling to represent the surfaces that

are between two zones at similar conditions. The HVAC system of the room

is modeled as a water radiator of the EnergyPlus. The hot water for the water

radiator is supplied by district heating.

For simplicity, the internal load of the model is the same every day during

the run period because their occupancy, lighting, and equipment schedules

are the same. These schedules assumed that every day from 8:30 AM to 5:30

PM, the room is fully occupied, all lights and equipment are on. The total

occupied time was 9 hours per day.

The external load of the model is different every day during the run pe-

riod, as shown in Figure 6.7. As mentioned before, to evaluate the generaliza-

tion capacity of the Bio-REAL control system, the training and testing envi-

ronment are different. The differences are the outdoor weather. The training

environment used Pittsburgh Typical Meteorological Year 3 (TMY3) weather

data, while the testing environment used the Pittsburgh 2017 Real Meteoro-

logical Year (RMY2017) weather data. As shown in Figure 6.7, outdoor air
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dry bulb temperature and air humidity ratio of RMY2017 is slightly higher

than those of TMY3 from Tuesday to Friday. Diffuse solar radiation per area

of RMY2017 is twice higher than that of TMY3 on Thursday and Friday.

6.6 Bio-REAL Agents

The key to the Bio-REAL control system is to build control agents that can

make optimum control decisions. In this simulation experiment, six Bio-

REAL agents were built, one for each subject. The objective of an agent is to

maximize thermal satisfaction while minimizing energy consumption. The

three elements of DRL, state, action, and reward for an agent to learn is de-

scribed below.

6.6.1 Action, Reward, and State Design for the Six Bio-REAL

Agents

State. The state was designed to provide enough information for the agent

to understand the current situation. In this experiment, the state involved

five variables: wrist temperature to represent the biological status, air tem-

perature, mean radiant temperature, and relative humidity to represent the

indoor conditions, outdoor air temperature, and diffuse solar radiation to

represent the outdoor conditions. The biological status and indoor condi-

tions provided information for the agent to understand the thermal state of

the subjects. The outdoor conditions were for understanding the HVAC sys-

tem’s energy consumption.
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FIGURE 6.7: The comparison of the TMY3 and RMY2017 Pitts-
burgh weather data
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Action. Same as Chapter 5, the control action of this experiment was also

adjusting temperature setpoint, as shown in Equation 5.1. The setpoint is

restricted to the range of 16 ◦C to 28 ◦C because it is not reasonable to set

temperature outside this range in a heating season.

Reward. The control objective is to maximize thermal satisfaction and en-

ergy efficiency in the long run. Thus, the reward to the agent is designed as

the penalty on thermal dissatisfaction and energy consumption, as shown in

equation 6.1.

reward = dissatis f action penalty 1(occupied) + λ ∗ energy penalty (6.1)

The symbol 1 is an indicator function, indicating that the thermal dissatis-

faction penalty is only considered during the occupied time. The hyper-

parameter λ (0- ∞) is designed to weight the importance of thermal satis-

faction and energy efficiency. λ’s value should be selected based on building

owner or facility manager’s preferences. If energy efficiency is considered

more important, λ should be higher. If occupant thermal satisfaction is more

important, λ should be lower. The personalized thermal comfort models es-

timate the six subjects’ thermal satisfaction as satisfied, neutral, slightly un-

satisfied, unsatisfied, which were quantified as penalty/reward, as shown in

Table 6.9.
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TABLE 6.9: Thermal satisfaction reward/penalty designed for
the Bio-REAL agent

Satisfied Neutral Slightly Unsatisfied Unsatisfied

0 -1 -2 -3

The author designed two forms of energy penalty: (1) negative energy

consumption and (2) negative temperature setpoint, to penalize energy con-

sumption in different ways.

energy penalty = −energy consumption (6.2)

energy penalty = −(temperature setpoint− 18) (6.3)

Equation 6.2 indicates that the higher the energy consumption, the higher

the penalty. This form of penalty is used by this experiment when energy

efficiency has a priority. Equation 6.3 indicate that a higher temperature set-

point has a higher penalty. This form is used when the objective is to drive

the temperature setpoint to a lower value for energy saving. The 18 ◦C is the

lower limit of the temperature setpoint range.

6.7 Simulation Run

Two different scenarios were considered in this simulation experiment. The

first scenario assumed that the six subjects always sit in the room and wear

clothes with 0.1 Clo during the occupied time of the five weekdays. In the
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second scenario, Subject 5, who has the narrowest individual comfort zone,

is absent. In each scenario, four cases were studied to evaluate the perfor-

mance of the Bio-REAl control system in different perspectives:

Case 1: Energy Efficient Oriented Static Baseline

Case 1 is a baseline that has a fixed setpoint used by DOE reference build-

ing for small offices in climate zone 5a in a heating season. The occupied

temperature setpoint used is 21 ◦C, as shown in Figure 6.8. The setback or

unoccupied temperature setpoint is 16 ◦C, that is rounded from the DOE

setback 15.6 ◦C. This baseline was regarded as energy efficient because the

occupied setpoint is relatively low for the six subjects.

Case 2: Thermal Satisfaction Oriented Static Baseline

Case 2 is also a baseline that has a fixed setpoint and setback (Figure 6.8),

but the setpoint is selected based on the individual thermal comfort zones of

the six subjects (Table 6.7) . These thermal comfort zones show that, when

relative humidity is from 10% to 40%, the operative 23 ◦C can satisfy the six

subjects most of the time. Therefore, 23 ◦is the best static setpoint for the six

subjects or the five subjects except subject 5. The setback of this case is also

16 ◦C.
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FIGURE 6.8: Case 1 and Case 2: Static Control Schedule with
Fixed Setpoint

Case 3: Thermal Satisfaction Oriented Dynamic Bio-REAL Control

In Case 3, the Bio-REAL control system with six trained agents and a ne-

gotiator was implemented to adjust the setpoint. The control emphasized

more on thermal satisfaction of the subjects. The energy penalty of the re-

ward function was Equation 6.3. The highest energy penalty of the case

was −1, calculated from -0.1 × (28 - 18), equal to the lowest dissatisfaction

penalty. Since the energy penalty was no higher than dissatisfaction penalty

all the time, the agent sought the control strategy that can meet thermal sat-

isfaction of the subject and, on that basis, lowered setpoint to save energy

consumption.

Case 4: Satisfaction and Energy Efficiency Balanced Dynamic Bio-REAL

Control

Case 4 also implemented the Bio-REAL control system, the objective of

which is to minimize thermal dissatisfaction and energy consumption simul-

taneously. The energy penalty of the reward function was Equation 6.2. The



6.8. Experiment results 83

weighting factor λ was tuned to weight energy consumption and thermal

dissatisfaction evenly. λ was 1
150000 for the first scenario. It was 1

130000 for the

second scenario.

For all the four cases, the run period of the simulation was five week-

days, from January 01 (Monday) to January 05 (Friday). One simulation run

was equivalent to one learning episode for the Bio-REAL agents. The simu-

lation timestep is 15 minutes, meaning that the control system updated the

temperature setpoint every 15 minutes. Each episode had 480 steps (5 days

× 24 hours × 4 times per hour). Case 1 and Case 2 were static-schedule

based control, so training was not needed. In Case 3, 4, and 5, the agents of

the Bio-REAL control system was trained by a training environment for 1000

episodes. Every two training episodes, the Bio-REAL control system was

evaluated by a testing environment. The performance of the control system

was evaluated 500 times during the training process.

6.8 Experiment results

The performance of the control strategies was determined by the achieve-

ment in thermal satisfaction and energy saving. The thermal satisfaction per-

formance was quantified by two metrics: percentage of dissatisfaction (PD)

(Equation 6.4) and total satisfaction level (SL) averaged from the five week-

days (Equation 6.5). SL has more information than PD because it describes
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not only the number of dissatisfied subjects but also the level of their dissat-

isfaction. The value 180 in the equations is the total number of satisfaction

feedback collected during the occupied hours (5 days× 9 occupied hours per

day × 4 times per hour). N of the equation is the number of subjects (6 for

the first scenario and 5 for the second scenario)

PD =
1

180

180

∑
i=1

number o f dissatis f ied subjects at time i
N

× 100% (6.4)

SL =
1

180

180

∑
i=1

N

∑
j=1
−thermal satis f action level o f subjects j at time i (6.5)

The performance in energy saving (E) was quantified by daily district heating

hot water energy averaged from the five weekdays (Equation 6.6). The value

480 was the number of steps in a simulation run.

E =
1
5

480

∑
i=1

ith 15minutes district heating hot water energy (6.6)

The PD, SL, and E of the five case studies obtained from the testing environ-

ment was listed in Table 6.10.

6.8.1 Result Analysis of Case 1

Case 1 with setpoint 21 ◦C during the occupied period resulted in a very

high percentage of dissatisfaction and low satisfaction level. A detailed look

at the 15 minutes percentage of dissatisfaction is shown in Figure 6.9. On

Monday and Friday, there were 100% dissatisfaction existed. More than 60 %

of subjects were not satisfied all the time for both Scenario 1 with six subjects
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TABLE 6.10: The evaluation results of the four cases with two
scenarios

PD SL Daily E

Six

Subjects

Case 1 Baseline 21 ◦C 74.81% -8.583 12.49 kWh (42,626 BTU)

Case 2 Baseline 23 ◦C 22.50% -1.467 15.03 kWh (51,293 BTU)

Case 3 Satisfaction 2.00% -0.200 41.08 kWh (140,160 BTU)

Case 4 Balanced 22.13% -1.380 15.00 kWh (51,167 BTU)

Five

Subjects

Case 1 Baseline 21 ◦C 69.78% -6.617 12.49 kWh (42,626 BTU)

Case 2 Baseline 23 ◦C 7.11% -0.4167 15.03 kWh (51,293 BTU)

Case 3 Satisfaction 2.44% -0.210 20.67 kWh (70,515 BTU)

Case 4 Balanced 6.56% -0.372 14.72 kWh (50,221 BTU)
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and Scenario 2 with five subjects. However, the energy consumption of this

case is the lowest among the five cases.

FIGURE 6.9: The comparison of the percentage of dissatisfac-
tion for the six subjects and the five subjects in Case1 (yellow

area indicates occupied time)

6.8.2 Result Analysis of Case 2

Although much lower than Case 1, Case 2’s percentage of dissatisfaction av-

eraged over time was still more than 20 % for the scenario with six subjects.

As shown in Figure 6.10, although the 15 minutes percentage of dissatisfac-

tion was higher at the beginning of the occupied period, it was lower than 20

% most of the time.

A detailed look at the indoor conditions created by this case is shown in

Figure 6.11 to further examine the causes of the high percentage of dissat-

isfaction. Figure 6.11 shows that the indoor air temperature was almost as

same as the temperature setpoint, which is 23 ◦C during the occupied pe-

riod. However, the mean radiant temperature (MRT) responded slowly to

the change of the setpoint. It took almost 8 hours for the MRT to reach its
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FIGURE 6.10: The comparison of the percentage of dissatisfac-
tion for the six subjects and the five subjects in Case 1 (yellow

area indicates occupied time)

FIGURE 6.11: Indoor conditions in Case 2 (yellow area indicates
occupied time)

highest point, 21 ◦C. The MRT also drops slowly after the setpoint reset to 16

◦C. The slow rise of the MRT was the principal cause to the high percentage

of dissatisfaction in Case 2. Besides, the energy consumption of Case 2 is 20%

higher than that of Case 1 due to the higher setpoint.

6.8.3 Result Analysis of Case 3

The Bio-REAL control system in Case 3 had good achievement in thermal

satisfaction. The percentage of dissatisfaction of case 3 is around 2% for both
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scenarios. As shown in Figure 6.12a and 6.12b, the Bio-REAL control system

was able to set the unoccupied temperature setpoint as 16 ◦C to save energy

consumption. It can also raise the temperature setpoint to 26 ◦C at the be-

ginning of the occupied period to compensate for the poor MRT for thermal

satisfaction. Furthermore, the Bio-REAL control system learned the advan-

tage of the thermal mass to save energy consumption and maintain thermal

satisfaction. For example, on Wednesday, the control system lowered the

temperature setpoint to 16 ◦C and still maintained a satisfactory indoor con-

dition between 3:00 PM and 5:30 PM, because the Bio-REAl system learned

the delayed drop of the MRT.

In Case 3, the thermal dissatisfaction occurred only at the beginning of the

occupied time, as shown in Figure 6.12c. One explanation of this is that the

highest setpoint variation is 2 ◦C. The Bio-REAL control system cannot raise

the setpoint more than 2 ◦C each step. Another reason is that the Bio-REAL

control was not able to raise the temperature setpoint before the occupied

time. Therefore, the occupied time was shifted to 7:00 AM in Case 4 to make

pre-heating possible.

Although with low thermal dissatisfaction, the energy consumption of

Case 3 is the highest one among the four cases. For Scenario 1 with six sub-

jects, the energy consumption of Case 3 is 2.7 times more than that of Case 2.

It can be concluded that, in this simulation setup, high thermal satisfaction is

at the cost of high energy consumption.

However, the energy consumption of Scenario 2 was two times less than

that of Scenario 1. Because Subject 5 who has narrow and water comfort zone
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in winter was absent in Scenario 2, the dynamic setpoint in Scenario 2 was

generally lower than that of Scenario 1, as shown in Figure 6.13.
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(A)

(B)

(C)

FIGURE 6.12: (A) The dynamic temperature setpoint schedule
learned and executed by the Bio-REAL control system in Case
3 for the first scenario, (B) indoor conditions, and (C) dissatis-
faction percentage created by the learned schedule.(yellow area

indicates occupied time)
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FIGURE 6.13: Comparison of the setpoint schedule in Scenario
1 and Scenario 2

6.8.4 Result Analysis of Case 4

The dynamic schedule in Case 4 achieved delicate improvement on both

thermal comfort and energy efficiency comparing to Case 2 baseline, even

though the Case 2 with occupied setpoint 23 ◦C was already the optimum

static schedule and has little potential to be improved. As shown in Figure

6.14a, the dynamic schedule had occupied setpoint as 23 ◦C most of the time

similar to Case 2. However, there were two significant differences between

Case 2 and Case 4 that contributed to the improvement. First, the Bio-REAL

control system started to increase the setpoint before 8:30 AM and raised the

setpoint to 24 ◦C or 23 ◦C so that the he percentage of dissatisfaction can be

lower at the beginnings of the occupied time. Moreover, similar to case 3,

it lowered the setpoint to 16 ◦C during the occupied time, so that the energy

consumption can drop to 0 (Figure 6.14b) and the thermal dissatisfaction per-

centage was still below 20% (Figure 6.14c).
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The reason that both energy consumption and percentage of dissatisfac-

tion were lower on Wednesday and Tuesday was the higher outdoor air tem-

perature at these days (Figure 6.7)

6.9 Conclusion and Discussion

This field and simulation experiment evaluated the performance of the Bio-

REAL control system with learning environments simulated reality. The

learning environments comprised occupant models developed using data

collected from a human subject experiment and an EnergyPlus model of the

experimental room with water radiators. The occupant models contained

personalized thermal comfort models and skin response models. The per-

sonalized thermal comfort models created six individual thermal comfort

zones, which were different from the PMV comfort zone. Six personalized

Bio-REAL agents was created for the control system.

The learning environment for training and testing was different in term

of their outdoor weather conditions. The experiment comprised four cases

with two different scenarios. Case1 and Case2 were the baselines with static

schedules. In Case3 and Case4, the Bio-REAL control system was trained and

evaluated. The objective function of the Bio-REAL control system in Case3

weighted more on thermal satisfaction. The weighting on thermal satisfac-

tion and energy efficiency in Case4 was balanced. There were six subjects

in Scenario 1 and five subjects in Scenario 2. The simulation run was five

weekdays from January 01 to 05. The Bio-REAL control system converged
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(A)

(B)

(C)

FIGURE 6.14: (A) The dynamic temperature setpoint schedule
learned and executed by the Bio-REAL control system in case
4 for the first scenario, (B) energy consumption, and (C) dissat-
isfaction percentage achieved by the learned schedule.(yellow

area indicates occupied time)
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less than 600 episodes (simulation run) for all cases. The time taken for one

simulation run on Windows 10 system with random access memory 16GB

and processor speed 3.4GHZ was around 1 minute. The total training time

was about 10 hours.

The experimental data showed that wrist temperature was strongly cor-

related with thermal sensation. The testing results showed that the dynamic

schedule generated by the Bio-REAL control system had more advantage in

improving thermal satisfaction and energy efficiency than static schedules. In

the case of balancing comfort and energy for five subjects, the Bio-REAL con-

trol can alleviate dissatisfaction by 8.4% and save energy consumption 2.1%

compared to the optimum static schedule (23 ◦C) generated based on person-

alized thermal comfort models. Moreover, the Bio-REAL control system was

able to exert the thermal mass to save energy consumption. Besides, with

the change of control objectives and occupancy, the Bio-REAL control system

had the flexibility to adjust the control schedules. Although the testing and

training environment was different, the good testing results demonstrated

the generalizability of the Bio-REAL control system.

However, the Bio-REAL control system in this experiment was not able to

pre-heat the room without assistance. The pre-heating in Case4 was because

the occupied time was moved up one and a half hours. This issue could be

solved if historical information and weather prediction are in the state of the

learning environments. Furthermore, the action designed in this experiment

only allowed setpoint to be varied two at maximum. The performance of the

Bio-REAL control system could be better if there is more flexibility in setpoint



6.9. Conclusion and Discussion 95

variation.

Nevertheless, this field and simulation experiment not only demonstrated

the advantage of the Bio-REAL control system but also provided guidance

for applying Deep Reinforcement Learning in building control. The exper-

iment showed a way of making multiple agents work together in practice

by introducing a negotiator. Moreover, this experiment proved that reward

functions significantly influenced the decision made by Bio-REAL agents.

Reward functions should be carefully designed to guide the Bio-REAL agents.

Straightforward reward signals can improve the performance of the agents.
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Chapter 7

Field Experiments at NUS: Smart

Ceiling Fans for Cooling

7.1 Objective

The previous experiments demonstrated the performance of the Bio-REAL

control system by simulation. The objective of the field experiments was to

present its real-world performance in a tropical climate with convective cool-

ing. The field experiments comprised a training experiment and an evalua-

tion experiment. The training experiment collected data from occupants and

buildings. 14 Bio-REAL control agents were trained using the experimental

data. The learning procedures were carefully designed to guarantee learning

stability. The evaluation experiment assessed the performance of the Bio-

REAL control system with well-trained Bio-REAL agents. The achievement

in thermal comfort improvement and the saving on energy consumption of

the Bio-REAL control system were quantified and compared to the baseline

control.
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7.2 Experiment Setup

7.2.1 The Net Zero Energy Building at NUS

The training and evaluation experiments were undertaken From December

17th, 2018 to January 11th, 2019 in the Net Zero Energy building (Figure 7.1)

at the National University of Singapore (NUS). The building has six floors

and houses a mix of research laboratories, design studios, and teaching and

common learning spaces. In a tropical country like Singapore, mechanical

cooling typically accounts for as much as 60 % of building energy consump-

tion. An innovative hybrid cooling system was designed for the Net Zero

Energy building to save energy. The hybrid cooling system incorporates typ-

ical variable air volume (VAV) systems and ceiling fans (SDE, 2018). With

boosted airspeed from ceiling fans, a higher temperature setpoint of the VAV

systems is possible without sacrificing thermal comfort. The higher temper-

ature setpoints in Singapore can reduce building energy consumption.

FIGURE 7.1: The Net Zero Energy building at NUS (Image from
School of Design and Environment)
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7.2.2 Experiment Room

The experiment room (10.6m× 8.0m× 4.2m) is on the west side of the fourth

floor of the Net Zero Energy building (the red box of Figure 7.2). Its eastern,

northern, and western wall are all window walls. It has 16 LED ceiling light,

four smart ceiling fans, and a VAV system, as shown in Figure 7.3.

FIGURE 7.2: The location of the experiment room at NUS

FIGURE 7.3: The experiment room at NUS
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The layout of the testing room is shown in Figure 7.4. There were four

tables under each fan. The horizontal distances from the four tables to the

center of the ceiling fan are all 0.6m.

FIGURE 7.4: The table layout of the experiment room at NUS

7.2.3 Facilities of the Experiment Room

The VAV system is all outdoor air system that has no return vent. There are

four supply vents installed on the ceiling of the experiment room. Figure

7.5 shows their locations. The supply vents are all 450 x 200 mm double

deflection grille.

FIGURE 7.5: The VAV system of the experiment room at NUS
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The VAV system’s cooling capacity was examined to design the Bio-REAL

control system. Since Singapore weather is very stable, without any mechan-

ical cooling, the indoor air temperature is around 28 ◦C every day. Figure 7.6

shows the time taking for the VAV system to cool the air temperature from 28

◦C to 25 ◦C. If the temperature setpoint was 27 ◦C, it took about 37 minutes

to lower the indoor air temperature from 28 ◦C to 27 ◦C. If set the setpoint

as 25 ◦C, the time consumed for the air temperature drops from 27 ◦C to 26

◦C is 25 minutes and 50 minutes from 26 ◦C to 25.5 ◦C. This cooling capacity

revealed a long delay for the indoor environment responding to the change

of VAV setpoint, which is a big challenge for the Bio-REAL agents to learn.

FIGURE 7.6: The capacity of the VAV system in the experiment
room at NUS

Although ceiling fan is a relatively simple cooling system, it creates an

asymmetric and dynamic indoor environment. The ceiling fan of the ex-

periment room supports seven adjustable fan speeds. The air velocities at

four different vertical locations (0.1m, 0.6m, table level, and 1.1m) and four
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different horizontal locations (centers of the four tables) were measured un-

der three different fan speeds (Speed2, Speed4, and Speed6) to understand

the unoccupied spatial patterns created by the ceiling fan in the experiment

room (Figure 7.7).

FIGURE 7.7: Four vertical locations for air velocity measure-
ment

As shown in Table 7.1, the increases in fan speeds led to the rises in air

velocity for all four locations. The air velocity was quite different at the four

vertical locations. The air velocity at 0.1m was the highest due to both the

rebounding air from the floor and Venturi effect. At table level, the air ve-

locity was also very high because of the rebounding air from the table. The

air velocity at 1.1m was the lowest one. Besides, since the air velocity at the

center of the four tables was similar to each other, the occupants sitting at the

four horizontal locations can experience similar air-movement.



7.2. Experiment Setup 103

TABLE 7.1: Air velocities at different vertical locations and fan
speeds

Fan Speed 2 Fan Speed 4 Fan Speed 6

1.1 m(Head level) 0.028 m/s 0.054 m/s 0.167 m/s

Table level 0.379 m/s 0.693 m/s 0.998 m/s

0.6 m (Waist level) 0.044 m/s 0.135 m/s 0.170 m/s

0.1 m (Foot level) 0.693 m/s 1.235 m/s 1.435 m/s

Figure 7.8 shows the unoccupied temporal pattern of the air velocity in

the experiment room. For each fan speed, the air velocity had a cyclical fluc-

tuation due to the turbulence. The higher the fan speed, the higher the tur-

bulence intensity (calculated as
√

vi−vmean
vmean

). The figure also indicates that the

airflow at the table level and 0.1m had higher turbulence intensities than that

at other locations.

FIGURE 7.8: Unoccupied temporal pattern of the air velocity in
the experiment room
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7.2.4 Experiment Subjects

Fourteen healthy graduate students and staffs at NUS participated in the ex-

periment. They are seven females and seven males. The statistics of their

demographic data are listed in Table 7.2. Their preferences to Singapore

weather and ceiling fans were also surveyed before the experiments. Six

of the experiment subjects like the Singapore weather, while eight of them

dislike it because it’s too hot or humid. Almost all of them like the ceiling

fan for cooling. Moreover, the time of their stay in Singapore is distinct. The

shortest time is one month, while the longest one is more than nine years.

During the experiment, the experiment subjects were required to always

sit at the same location with long pants, covered shoes, and short-sleeve T-

shirts, which are the typical office wear (around 0.6 clo) in Singapore, as

shown in Figure 7.9. They worked on "office-type" activities, such as reading,

typing, and web surfing so that their metabolic rate is 1.0-1.1 met. They al-

ways put their hands on the table while working. Because of their wear, their

uncovered areas are hands, wrist, forearm, and head. Also, since the airflow

at table level was stronger than that at head level, the subjects’ hands, wrist,

and forearm would be more sensitive to the cooling effect of the fans.
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TABLE 7.2: Demographic information of the experiment sub-
jects at NUS

Age BMI

Mean 28.64 21.97

Standard Deviation 3.98 3.04

FIGURE 7.9: Experiment subjects at NUS
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7.2.5 Measurement and Equipment

The variables measured in both experiments can be grouped into three cat-

egories: environment, biological, and subjective responses. The environ-

ment responses measured included air temperature, relative humidity, radi-

ant temperature, and air velocity. A Delta Ohm thermal microclimate analy-

sis tool was used to measure the environmental conditions. The microclimate

tool comprised HP3217R combined relative humidity and air temperature

probe and TP3275 globe temperature probe. The air velocity was measured

by a omnidirectional hotwire probe (an accuracy of ± 0.001 m/s). The Mi-

crosoft Band 2TM measured the bio-responses. Subjects were reminded to

report their subjective responses every 10 minutes through a web survey, as

shown in Figure 7.10. The survey had 14 questions, including the overall and

local thermal sensation, thermal comfort, thermal preference, air movement

acceptability, and air movement preference. The variables measured and the

measurement intervals and equipment were summarized in Table 7.3.
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TABLE 7.3: Variable and equipment of the NUS experiment

Variable Interval Equipment

Environmental

Air Temperature (◦C)

5 secondsRelative Humidity (%)

Radiant Temperature (◦C)

Air velocity (m/s) 6 seconds

Biological

Wrist Temperature (◦C) 30 seconds

Heart Rate (BPM)
0.1 seconds

RR-interval (seconds)

Subjective

Overall/Local Thermal Sensation

10 minutes Web Survey

Thermal Comfort

Thermal Preference

air movement acceptability

Air Preference
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FIGURE 7.10: Thermal comfort questionnaire for the experi-
ment at NUS
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7.3 The Bio-REAL Control System

In this filed experiment, the Bio-REAL control system directly interacted the

real occupants and building, learning from the experiences in the real world,

as shown in Figure 7.11.

FIGURE 7.11: The Bio-REAL control system at NUS learning
from the real experiences

During the interaction, the Bio-REAL control system decides a control

action and sends the control decision to the cooling system through Wi-Fi. A

data server collects the state and reward from the learning environment and

dispatches them to the Bio-REAL agents for them to learn. .

7.3.1 Bio-REAL agents

Fourteen Bio-REAL agents were built, one for each subject. The action, state,

and reward for an agent are described below.

Action. The analysis in Section 7.2.3 showed that there was a long delay

for the indoor environment responding to the change of the VAV setpoints.

Therefore, setpoint adjustment was not considered as the control action of
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the Bio-REAL control system. The air temperature was controlled as 27 ◦C

during the the two experiments because it is the expected room temperature

for the real operation. The action in this experiment is adjusting fan speeds.

The actions set is shown in Equation 7.1.

A ≡ Fan Speed ∈ {0, 2, 4, 6} (7.1)

This thesis didn’t incorporate the speed1, speed3, speed5, and speed7 into

the action set because a smaller action-space can improve the learning effi-

ciency. The Bio-REAL control system executes an action every 10 minutes.

The responsibility of the Bio-REAL control system in this experiment is to

learn the optimum dynamic fan speed schedules.

State. The options for the state can be indoor and outdoor environmen-

tal conditions, as well as occupants’ biological responses. Because Singa-

pore weather is very stable and the air temperature was maintained at 27

◦C during the experiments, except for air velocity, the indoor and outdoor

environment has little variation. Therefore, the state was only the biologi-

cal response, wrist temperature. More specifically, the state was the latest

wrist temperature 10 minutes after actuating an action. This one-dimensional

state-space can also improve learning efficiency.

Reward. Since ceiling fans are not energy-intensive, the control objective

was only thermal comfort optimization. Among the 14 subjective survey
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TABLE 7.4: air movement acceptability reward/penalty de-
signed for the Bio-REAL agent

Acceptable
Slightly

Unacceptable

Unacceptable
Very

Unacceptable

Reward 0 -1 -2 -3

questions, air movement acceptability best represents the condition of minds

to the air movement. Moreover, the air movement acceptability can repre-

sent thermal comfort feedback because the air movement is the only variable

for the indoor condition, other conditions, such as air temperature, radiant

temperature, and relative humidity are very stable. Hence, the reward was

the quantified air movement acceptability 10 minutes after actuating an ac-

tion. Table 7.4 shows the mapping from the air movement acceptability to

the reward.

7.3.2 Learning Process

One challenge of implementing deep reinforcement learning (DRL) in real-

world is overcoming the issues caused by limited learning samples. Espe-

cially at the beginning of the learning process, there are not enough data

samples to learn so that the performance of the DRL agent can be quite poor.

To overcome this challenge, the thesis divided the learning process of the

Bio-REAL control system into two phases: training and testing/evaluation
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phase. The two experiments were conducted respectively for training and

evaluation. There were three main modifications made to the training pro-

cess described in Section 3.2 for the real-world implementation.

First, the training process was split into data collection, Q-network updat-

ing, and agent examination to ensure learning stability, as shown in Figure

7.12. During the day, the agents collect data from the experiment subjects,

process the raw data into interaction experiences (state, action, next state, re-

ward), then save the data into agents’ memory bank. At night, the agents

replay the experiences and update their Q-networks. Fourteen agents were

trained individually by following the day and night process.

Second, the action sequences during the training phase were designed

by prior knowledge. The algorithm in section 3.2 encourages the agents to

explore randomly at the beginning of the learning so that the agents can visit

different state-action pairs enough times. Sufficient exploration is the key for

the agents to find the optimum state-action. However, random exploration is

time-consuming. To save training time, the author designed the sequences of

the actions to ensure the agent visit different state-action pairs at least once

in a shorter time, as shown in Table 7.5.

Last, the agents with updated Q-network won’t play a part in building

controls until they are examined. The examination was based on the Q-value

predicted by the Q-network. The Q-value represented the expected air move-

ment acceptability of fan speeds at a specific wrist temperature. The higher

Q-value, the better. The best fan speed at a given wrist temperature for each

subject is the one that has the highest Q-value. Therefore, a well-trained
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agent should meet the conditions that the Q-value of higher fan speeds is

higher at higher wist temperature, and vice versa. There could be some

agents won’t meet the conditions even with adequate training because the

occupants they represent have irregular preferences. The Bio-REAL control

agent only plays its role in the control system if it is well-trained and if the

occupant it represents is in the room, as indicated by Figure 7.12.

FIGURE 7.12: The training process in practice

7.4 Training Experiment

The objective of the training experiment was to collect data samples to train

the 14 Bio-REAL gents.



114 Chapter 7. Field Experiments at NUS: Smart Ceiling Fans for Cooling

7.4.1 Experiment Process

The experiment had 13 sessions. One session lasted around 2 hours to avoid

the effects caused by long-time exposure. There were 4-6 subjects partici-

pated in each session based on their own time schedules. Four different ac-

tion sequences were designed to investigate the possible differences in sub-

jects’ responses, physiological or psychologically, caused by the sequence

differences. Table 7.5 shows the action sequences and the duration of each

action. Each sequence was repeated several times so that each of the 14 sub-

jects can expose to all four sequences. Subject8 only participated in three

sequences due to his/her schedule. Before each session, subjects had 5 min-

utes to wear wristbands and adapt to the environment in the experiment

room. Each session had a 10-minute half-time break. All sessions started

with Fan speed 0. Each above-zero fan speed lasted 20-30 minutes to investi-

gate the possible effects caused by longer-time exposure to the air-movement

of a specific fan speed. During the sessions, the data mentioned in Table 7.3

were collected, processed, and saved in the memory bank of each agent.

7.4.2 Experimental Conditions

During the 13 sessions, the air temperature was maintained around 27 ◦C,

varied slightly between 27.2 ◦C and 26.8 ◦C. The radiant temperature was

the same as or 0.1 ◦C higher than the air temperature. The relative humidity

fluctuated between 63.5 % and 74.8%, the higher values of which were due
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TABLE 7.5: Action sequences of the experience collection exper-
iment at NUS

Sequence Fan Speed (Duration)

1 0 (10 min) 2 (30 min) 0 (20 min) 4 (30 min) 0 (10 min)

2 0 (10 min) 6 (30 min) 4 (30 min) 2 (30 min) 0 (10 min)

3 0 (10 min) 2 (20 min) 4 (20 min) 6 (20 min) 0 (20 min)

4 0 (20 min) 6 (20 min) 2 (20 min) 6 (10 min/20 min) 4 (10 min/20 min)

to the raining days. The statistics of the experimental conditions are summa-

rized in Table 7.6. Thus, the major contributor to the change in biological and

subjective responses was the variation in air velocity caused by fan speed

adjustment.

7.4.3 Experiment Data Analysis

There was 576 subjective feedback collected from the 14 experiment subjects,

each of whom had around 40 feedback, as shown in Table 7.7. The number of

wrist temperature samples collected from each subject was about 1,000. With

the fan speed varied among speed0, speed2, speed4, and speed6 at temper-

ature 27 ◦C, the 14 experiment subjects voted mostly "acceptable" (0) and

"slightly unacceptable"(-1) to the air movement. The "acceptable" voting was

more than the "slightly unacceptable" one for all subjects excepting for sub-

ject9 and subject10. Subject5 always voted "acceptable" regardless of the fan
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TABLE 7.6: Experimental condition during the experience col-
lection experiment

Air Temperature Radiant Temperature Relative Humidity

Max 27.2 ◦C 27.3 74.8 %

Min 26.8 ◦C 26.8 63.6 %

Mean 26.9 ◦C 27.0 70.1 %

speed.

The wrist temperature of the experiment subjects was very responsive to

the fan speeds. As shown in Figure 7.13, 7.14, 7.15 , and 7.16, it immediately

decreased when the fan was on and increased when the fan was off. Long-

time exposure to a fan speed resulted in continuous drops in wrist temper-

ature and sometime increased unacceptability in air movement. Moreover,

the variation of wrist temperature depends not only on the fan speed but

also on previous wrist temperature. For example, in Sequence1 of subject3

in Figure 7.13b, the wrist temperature dropped at fan speed2 because the ini-

tial temperature was high, while, in Sequence2, the wrist temperature raised

at speed2 because the previous wrist temperature was low. Besides, if the

initial wrist temperature is the same, the higher the fan speed, the larger the

decrease rate of the wrist temperature.

However, the causes of acceptability to the air-movement were distinct.

Some accepted high air-movement and disliked low air-movement, while

others favored high air-movement. The wrist temperature was correlated
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TABLE 7.7: air movement acceptability and wrist temperature
collected from the experiment

Subject air movement acceptability Wrist Temperature

Total 0 -1 -2 -3

1 41 31 10 0 0 987

2 40 28 12 0 0 909

3 39 33 5 1 0 1069

4 42 28 14 0 0 981

5 44 44 0 0 0 1055

6 41 26 14 1 0 966

7 43 36 7 0 0 1050

8 32 22 10 0 0 723

9 40 19 21 0 0 896

10 44 21 22 1 0 1049

11 41 23 8 4 6 927

12 44 27 15 2 0 982

13 44 28 16 0 0 1003

14 41 24 14 3 0 996
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with air movement acceptability, but the correlations were different for dif-

ferent subjects. Based on the correlation differences, the 14 subjects can be

grouped into five types.

The first type is neutral-preferred subjects, such as subject2, subject3, and

subject4. They preferred air movement neither too high nor too low. As

shown in Figure 7.13, most of the time, they felt air movement "slight un-

acceptable" or "unacceptable" when their wrist temperature was high or re-

markably low. There were occasional situations that the neutral-preferred

subjects were acceptable even when their wrist temperature was low, such as

sequence2 of subject3. These could be caused by the reasons that can not be

captured by the sensor data, like unknown psychological factors.

The second type is warm-preferred subjects, who preferred low fan speeds

or staying with a higher wrist temperature, such as subject9 and subject10.

As shown in Figure 7.14a, subject10 was always not acceptable with fan

speed greater than 2. Although subject9 disliked fan speed0 or high wrist

temperature in Sequence1, he/she disliked staying with a low skin tempera-

ture for the rest three sequences, as shown in Figure 7.14b. Therefore, there

was a higher probability that subject 9 was a warm-preferred subject.

The third type is cool-preferred subjects, such as subject6 and subject11,

as shown in Figure 7.15. They preferred high fan speeds or staying with

a lower wrist temperature. For example, subject6 and subject11 were not

pleasant as long as the fan speed was 0. Moreover, not every cool-preferred

subject dislikes the low air movement the same. Subject11 especially disliked

low fan speed since he/she reported "very unacceptable" for fan speed0.
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The fourth type is no preference subjects, who always feel acceptable re-

gardless of the fan speeds and wrist temperature. As shown in Figure 7.16,

although the wrist temperature of subject5 varied between 33 ◦C and 35 ◦C

with the change of fan speeds, the variation degree was not as high as other

subjects. Subject5 voted acceptable all the time, which could be explained by

his/her excellent thermoregulation mechanism.
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(A) Subject 2

(B) Subject 3

(C) Subject 4

FIGURE 7.13: air movement acceptability and wrist tempera-
ture variation of neutral-preferred subjects in the four action
sequences. Dotted line = wrist temperature at 27 ◦C and varia-
tions in fan speeds. Colors = acceptance to the air movement.
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(A) Subject 10

(B) Subject 9

FIGURE 7.14: air movement acceptability and wrist tempera-
ture variation of warm-preferred subjects in the four action se-

quences.
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(A) Subject 6

(B) Subject 11

FIGURE 7.15: air movement acceptability and wrist tempera-
ture variation of cool-preferred subjects in the four action se-

quences.
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FIGURE 7.16: air movement acceptability and wrist tempera-
ture variation of no preference subjects in the four action se-

quences.

The last type is irregular-preference subjects, whose preferences can not

be explained by their wrist temperature or the fan speed. As shown in Figure

7.17a, subject7 were not acceptable when his/her wrist temperature neither

too high nor too low, which seems not reasonable. Moreover, the subjects

whose wrist temperature varied irregularly was also grouped in the last type.

As shown in Figure 7.17b, it is odd that wrist temperature of subject8 raised

with the increased fan speed, although the relationship of wrist temperature

and air movement acceptability was sound.
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(A) Subject 7

(B) Subject 8

FIGURE 7.17: air movement acceptability and wrist tempera-
ture variation of irregular-preference subjects (e.g., subject 5) in

the four action sequences.

In addition to the relationships among fan speed, wrist temperature, and

air movement acceptability, the thesis also investigated the correlations be-

tween wrist temperature and age/BMI. Figure 7.18 shows that wrist temper-

ature distribution of the 14 subjects voted acceptable to air movement. As

shown in the box-plots, the interquartile range was quite different for dif-

ferent subjects, indicating different wrist temperature variation when voting
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acceptable. The mean, median, max, min, and quarterlies of the wrist tem-

perature didn’t have any observed correlation with both the age and BMI.

The subjects at age 27 and BMI 25.3 had the highest mean wrist temperature.

(A)

(B)

FIGURE 7.18: Wrist temperature distribution when voted ac-
ceptable to the air movement among the 14 subjects across dif-

ferent (A) age and (B) BMI
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7.4.4 The Results for Agent Training

14 Bio-REAL agents were trained by the collected data described in 7.4.3 ac-

cording to the process described in 7.3.2. The Q-networks of the 14 Bio-REAL

agents were updated individually. Whether the agents were well-trained or

not was visually examined based on the Q-value or the relationship between

predicted best fan speed and skin temperature.

As mentioned in 7.4.3, there were five types of subjects. The predicted Q-

value and best fan speed confirmed that, among the 14 experiment subjects,

there were five neutral-preferred subjects (subject1, subject2, subject3, sub-

ject4, and subject12), four warm-preferred subjects (subject9, subject10, sub-

ject13, and subject14), two cool-preferred subjects (subject6 and subject11),

one no preference subject (subject5), and two irregular-preference subjects

(subject7 and subject8).

For the neutral-preferred subjects, the lower fan speed at lower wrist tem-

perature had higher Q-value. With the increases in the wrist temperature,

the Q-value of lower fan speeds was decreased and that of higher fan speeds

was increased, as shown in Figure 7.19. Figure 7.20 shows the predicted pre-

ferred fan speeds in response to the wrist temperature for subject2, subject3,

and subject4. When the wrist temperature was greater than 33 ◦C, the three

subjects all preferred the higher fan speeds, either speed4 or speed6.
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(A) Subject 2

(B) Subject 3

(C) Subject 4

FIGURE 7.19: Q-value (expected air movement acceptability) of
fan speeds at different wrist temperature for neutral-preferred

subjects
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(A) Subject 2

(B) Subject 3

(C) Subject 4

FIGURE 7.20: Predicted best fan speed (action) at different wrist
temperature for neutral-preferred subjects

The predicted preferred fan speeds of the warm-preferred subjects were

mostly fan speed0 and speed2, as shown in Figure 7.21 and 7.22. For Sub-

ject10, the speed4 and speed6 had low Q-value regardless of the wrist tem-

perature. The speed0 had higher Q-value most of the time. Only when the

wrist temperature was higher than 34.2◦C, the Q-value of speed2 was higher

than speed0. Although the Q-value of speed4 and speed6 raised with the

increases in wrist temperature, it was always lower than that of speed2 for
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Subject9. Fan speed2 was preferable than speed0 for subject9 when the wrist

temperature was higher than 33.5 ◦C.

(A) Subject 10

(B) Subject 9

FIGURE 7.21: Q-value (expected air movement acceptability)
of fan speeds at different wrist temperature for the warm-

preferred subjects
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(A) Subject 10

(B) Subject 9

FIGURE 7.22: Predicted best fan speed at different wrist tem-
perature for the warm-preferred subjects

The predicted preferred fan speeds of the cool-preferred subjects were

always higher than fan speed0, as shown in Figure 7.23 and 7.24. The Q-

value of speed0 was lower than other fan speeds across the wrist temperature

range. Subject11 preferred a colder condition more than Subject6. He/she

preferred speed6 as soon as the wrist temperature was higher than 32.5 ◦C.
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(A) Subject 6

(B) Subject 11

FIGURE 7.23: Q-value (expected air movement acceptability) of
fan speeds at different wrist temperature for the cool-preferred

subjects
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(A) Subject 6

(B) Subject 11

FIGURE 7.24: Predicted best fan speed at different wrist tem-
perature for the cool-preferred subjects

FIGURE 7.25: Q-value (expected air movement acceptability) of
fan speeds at different wrist temperature for the no-preferences

subjects

The no-preference subject (Subject5) voted acceptable to all fan speeds,

which means his/her data collected from the experiment provided no useful

information. Therefore, the training result or the Q-value was meaningless,
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as shown in 7.25. During the control process, the predicted preferences of

Subject5 were not considered since he/she would be happy no matter which

fan speed is selected.

Both the Q-value and the predicted preferred fan speed of the irregular-

preference couldn’t present any patterns or characteristics, as shown in Fig-

ure 7.26 and 7.27. The preferred fan speeds and wrist temperature was not

positively correlated. The irregular patterns were possible due to lacking

data. If there could be more data collected from the subjects, the prediction

could show regular preferences.
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(A) Subject 7

(B) Subject 8

FIGURE 7.26: Q-value (expected air movement acceptability)
of different fan speeds at different wrist temperature for the

irregular-preference subjects
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(A) Subject 7

(B) Subject 8

FIGURE 7.27: Predicted best fan speed at different wrist tem-
perature for the irregular-preference subjects

7.4.5 Multi-agent Negotiation

As shown in the training results, the 14 subjects had 14 different predicted

preferences in fan speeds with regards to wrist temperature, so the negoti-

ation was inevitable in the office where occupants shared the ceiling fans.

As mention in Section 3.2, the Bio-REAL control system executes negotiation

according to the Q-value of all the agents. This experiment promoted the

negotiation method into two steps:

• If there are more than half occupants prefer one action, it will be the

negotiated action.

• Otherwise, the negotiated action (fan speed) is be the one that can max-

imum weighted sum Q-value. wi is the importance or weight assigned
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to each subject.

anegotiated = argmax
ai∈A

∑
i

wiQi(Si
t, A) (7.2)

Section 7.5.2 demonstrates an example of the multi-agent negotiation.

7.5 Evaluation Experiment

The evaluation experiment was to test the control performance of the Bio-

REAL control system with well-trained agents and compare it to the baseline.

7.5.1 Experiment Design

The 14 subjects were separated into three groups for the evaluation experi-

ment. There were five subjects in each group, as shown in Table 7.8. Since the

subject serial number was assigned at random, the subjects were randomly

assigned to the three groups. Subject10 was in both Group2 and Group3 to

ensure the number of subjects was equal for each group. During the experi-

ment, the five subjects sited on the right side of the experiment room. Three

sited underneath one ceiling fan and two underneath another ceiling fan, as

shown in Figure 7.9. The two ceiling fans behaved as a single ceiling fans as

they actuated the same fan speed every 10-minutes.

Six experiment sessions were undertaken to evaluate both baseline con-

trol and Bio-REAL control system. The baseline was the static fan speed2 (air

velocity ranged from 0.028 m/s to 0.693 m/s at different vertical locations)
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TABLE 7.8: The evaluation experiment at NUS

Session Subjects Group Control Strategy

1 Group1: Subject 1, 2, 3, 4, 5

Baseline control : static fan speed22 Group2: Subject 6, 7, 8, 9, 10

3 Group3: Subject 10, 11, 12, 13, 14

4 Group1: Subject 1, 2, 3, 4, 5

Bio-REAL control: dynamic fan speed5 Group2: Subject 6, 7, 8, 9, 10

6 Group3: Subject 10, 11, 12, 13, 14

at temperature 27 ◦C. It was determined based on the ASHRAE standard 55

ASHRAE 55, 2013. The standard declared that the airspeed should be in the

range of 0.1m/s to 0.7 m/s at operative temperature 27 ◦C to achieve thermal

comfort, as shown in Figure 7.28.

During the Session4-6, the Bio-REAL control system with trained agents

was deployed in the experiment room to automatically control the ceiling fan

based on subjects’ wrist temperature. Each session lasted around 3 hours.

There were two less than 10-minute breaks every 50 minutes.
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FIGURE 7.28: Acceptable range of operative temperature and
air speeds for the comfort zone at humidity ratio 0.010 in

ASHRAE standard 55 .

7.5.2 Negotiation Example

A snapshot of Session5 was presented to explain the process of negotiation

and control. At one point of Session5, the wrist temperature of the five sub-

jects was collected and read by the Bio-REAL agents. As shown in Table 7.9,

subject6, subject7, and subject8 had a higher wrist temperature, while sub-

ject9 and subject10 had a lower one. The Q-network of the Bio-REAL agents

for the five subjects predicted the Q-value of each of the four fan speeds given

the wrist temperature. The Q-value explained not only the expected accept-

ability but also the acceptability levels of each fan speed. For subject6 and

subject8, fan speed4 was the best since it had the highest Q-value. Subject7

preferred fan speed0 the most. The highest Q-value for subject9 and sub-

ject10 lied on fan speed 0.

Since there was no fan speed preferred by more than half occupants, the

weighted sum Q-value of the five subjects was computed and shown in Table
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TABLE 7.9: Wrist temperature and Q-value snapshot for the five
subjects in Session5

Subject Wrist temperature
Q-value

Fan Speed 0 Fan Speed 2 Fan Speed 4 Fan Speed 6

6 34.16 -1.306 -1.186 -0.230 -0.352

7 34.26 -0.093 0.135 -0.008 -0.787

8 34.46 -0.624 -0.005 0.055 -0.430

9 32.36 -0.043 -0.752 -1.015 -1.050

10 32.76 -0.280 -0.470 -0.787 -0.993

TABLE 7.10: Weighted sum Q-Value

Fan Speed 0 Fan Speed 2 Fan Speed 4 Fan Speed 6

-0.469 -0.456 -0.305 -0.722
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7.10. In this experiment, the weights of all occupants were the same. Since

fan speed4 had the highest weighted sum Q-value, it was the negotiated fan

speed that can maximize the air movement acceptability of Group5 give the

wrist temperature. Therefore, the two ceiling fans run on fan speed4.

7.5.3 Evaluation Result

The baseline sessions were operated by the static fan speed schedule (Figure

7.29a). During the Bio-REAL control sessions, the fan speed schedules were

dynamic and generated in response to occupants’ wrist temperature. Each

Bio-REAL control session had different fan speed schedules due to the differ-

ences in their participants, as shown in Figure 7.29b, 7.29c, and 7.29d. Since

Group1 had four neutral-preferred subjects and one no-preference subject,

the fan speed generated for them were mostly speed2. The two-times speed0

in the latter part of the Session4 is because the wrist temperature was slightly

low for some subjects after long-time exposure to speed2. Group2 had two

warm-preferred subjects, one cool-preferred subject, and two irregular-preference

subjects. The higher fan speed in the latter part of Session5 was due to

the irregular preferences of Subject8. There were three warm-preferred, one

neutral-preferred, and one cool-preferred subjects in Group3. Since this group

had more warm-preferred subjects, there were more times of speed0 in Ses-

sion6. Moreover, the high fan speed at the beginning of the Session5 and

Session6 was because the occupants just came from outside with a higher

wrist temperature. Besides, there was one subject left the room in the middle
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in Session5. The Bio-REAL control system can leave out the agent for the

absent subject and work well with the occupancy disturbance.

(A) Fan speed schedule of baseline sessions (session 1,2, and 3)

(B) Bio-REAL control session for Group1 (Session4)

(C) Bio-REAL control session for Group2 (Session5)

(D) Bio-REAL control session for Group3 (Session6)

FIGURE 7.29: Fan speed schedules for the evaluation experi-
ment
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The performance of the control strategies was quantified by the rate of

voting comfortable and acceptable. There were 219 subjective votes collected

from the baseline sessions and 223 from the Bio-REAL control sessions. The

rate was calculated using Equation 7.3. N is the number of votes of baseline

sessions or Bio-REAL control sessions. Figure 7.30 and 7.31 compared the

performance of the baseline and the Bio-REAL controls. The Baseline met the

ASHRAE’s goal of 80% comfort rate (ASHRAE 55, 2010) just right if speed2

setting is ensured with 27 ◦C. The Bio-REAL control system achieved 94%

of comfort rate, which was 14% higher than the Baseline. The air movement

acceptability of Bio-REAL control was 11 % higher than the Baseline with

fixed fan speed 2.

rate =
number o f votes f rom each com f ort (acceptability) level

N
× 100%

(7.3)

Besides, the Bio-REAL control also successfully saved the fan energy due

to the dynamic fan speeds. Figure 7.29b, 7.29c, and 7.29d show that, ex-

cept for speed2, there were speed0 seven times and speed4 five times in the

Bio-REAL control sessions. The power of different fan speed was different,

ranging from 1.9W to 26.8W. If Assuming the experiment room running the

four Haiku ceiling fan 7.5 hours per day, the estimated yearly fan energy con-

sumption of baseline control will be 66.5 kWh and that of Bio-REAL control

will be 63.3 kWh. The estimated yearly fan energy saving of the Bio-REAL

control will be 4.5 % as compared to the baseline control.
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FIGURE 7.30: Comparison in thermal comfort rate between
baseline and Bio-REAL control

FIGURE 7.31: Comparison in air movement acceptability rate
between baseline and Bio-REAL control

The result also demonstrated that, if convective cooling is provided with

ceiling fans, raising the indoor temperature in a tropical climate to 27 ◦C can

achieve comfort and save a huge amount of energy. As indicated by the en-

ergy temperature correlation model shown in Equation ?? (Yuan et al., 2013),
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the HVAC energy consumption is proportional to the difference between in-

door and outdoor temperature. In equation ??, λ is the conductivity of a

room, M is energy transformation ratio of an HVAC system, Ti is the indoor

temperature, and To is the average outdoor temperature. The Singapore av-

erage outdoor temperature is 28 ◦C. Based on the Equation refenergy-nus,

the HVAC energy at indoor temperature 27 ◦C is 5-times lower than that at

22 ◦C.

HVAC Energy =| λ

M
(Ti − To) | (7.4)

7.6 Conclusion and Discussion

The field experiments demonstrated the real-world performance of the Bio-

REAL control system with 14 subjects in the net-zero energy building at NUS.

There were 14 Bio-REAl agents trained by the data collected from the train-

ing experiment, including wrist temperature, fan speed, and air movement

acceptability. The training data showed that, although there were individ-

ual differences, the wrist temperature had a close correlation with air move-

ment acceptability. Using the training samples, the agents updated their Q-

networks daily rather than real-timely to ensure learning stability.

The testing results showed that the ASHRAE standard for fan speed2 (air

velocity ranged from 0.028 m/s to 0.693 m/s at different vertical locations) at

27 ◦C provided 80% comfortable rate across the diverse occupants, indicat-

ing that raising the temperature to 27 ◦C could achieve comfort if convective
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cooling is presented by ceiling fans. The Bio-REAL ceiling fan controls in

a 10-minute interval can achieve 14 % higher comfort rates than the base-

line with a static fan speed2 at 27 ◦C, with 4.5 % yearly fan energy saving

as compared to baseline with fan speed2 and 5 times less HVAC energy con-

sumption as compared to VAV with setpoint 22 ◦C.

One limitation of the Bio-REAL control system in this experiment is that

the Bio-REAL agents are examined manually to determine whether they are

well-trained or not. An automatic examination mechanism should be de-

signed to achieve a completely automated control. Moreover, the experi-

ments tested the Bio-REAL control system with ceiling fans, a promptly re-

sponsive cooling system. The real-world performance of the Bio-REAL con-

trol system working with the typical HVAC system was not investigated.

More training data and time will be needed for HVAC controls.

Nevertheless, to the author’s knowledge, the experiments were the first

example of implementing reinforcement learning in building thermal con-

trols without the pre-training by simulation. The Bio-REAL control system

is capable of being introduced in any building with shared controls of ther-

mal conditioning, requiring 5-10 days of training based on the frequency of

subjective responses and the type of controls (more responsive system take

fewer days).
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Chapter 8

Conclusion

This thesis developed a bio-sensing and reinforcement learning control (Bio-

REAL) system to personalzied improve thermal comfort and energy effi-

ciency. The Bio-REAL system comprises a bio-sensing network, multiple

personalized Bio-REAl agents, and a negotiator. The bio-sensing network

uses Microsoft smart band to measure occupants wrist temperature in real-

time. The Bio-REAl agents initiate control decisions in response to wrist tem-

perature, subjective feedback, and environmental conditions. The negotia-

tor resolves conflicts in the decisions initiated by different Bio-REAl agents.

The state-of-art RL algorithm, double Q learning with experiment replay and

neural network approximation, was applied to train the Bio-REAl agents.

The Bio-REAL system were trained and evaluated using three experiment

techniques: simulation experiments, preliminary field and simulation exper-

iments, and field experiments.
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8.1 Summary of Experimental Findings

8.1.1 Simulation Experiment:VAV with Electric Reheat for Heat-

ing

The simulation experiment tested the feasibility of the Bio-REAL system with

a simple simulated learning environment and determined the structure and

the hyper-parameters of the Bio-REAL systems. The simulated learning en-

vironment was comprised of classic occupant models, including the PMV

model and Pierce two-node model, and the EnergyPlus model of a room

heated by a VAV system with electric reheat, which was the Northern zone

of a one-story DOE reference building. Three personalized Bio-REAL agents

and a negotiator was created for the Bio-REAL system.

The results of the simulation experiment showed that the Bio-REAL sys-

tem converged to an optimum after learning with 112 episodes. The optimal

dynamic control policy created by the Bio-REAL system can achieve 0.49%

thermal comfort improvement as compared to classic thermal comfort model

based static control schedule (25 ◦C). The Bio-REAL system had 52% better

performance than the standard static control schedule (22 ◦C) in winter.

8.1.2 Preliminary Field and Simulation Experiment at CMU:

Water Sourced Radiators for Heating

The field and simulation experiment evaluated the performance of the Bio-

REAL control system with a learning environments simulated reality. The
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learning environment was comprised of occupant models developed using

data collected from a human subject experiment and an EnergyPlus model

of the experimental room with water sourced radiators. The occupant mod-

els contained personalized thermal comfort models and skin response mod-

els. The personalized thermal comfort models created six individual ther-

mal comfort zones, which were different from the classic PMV comfort zone.

Six personalized Bio-REAL agents and a negotiator was created for the Bio-

REAL system.

The learning environment for training and testing was different in term

of their outdoor weather conditions. The experiment included four cases

with two different scenarios. Case1 was baseline with standard static sched-

ule. Case2 was personalized thermal comfort mode based controls. In Case3

and Case4, the Bio-REAL system was deployed to control the temperature

setpoint. The objective function of the Bio-REAL control system in Case3

weighted more on thermal satisfaction. Case4 balanced the weighting on

thermal satisfaction and energy efficiency. There were six subjects in Sce-

nario 1 and five subjects in Scenario 2. The Bio-REAL system converged less

than 600 episodes (simulation run) for all cases. The time taken for train-

ing on Windows 10 system with random access memory 16GB and processor

speed 3.4GHZ was about 10 hours.

The testing results of the experiment showed that the dynamic control

policy derived by the Bio-REAL system had more advantage in improving

thermal satisfaction and energy efficiency than static schedules. In the case

of balancing comfort and energy for six subjects, the Bio-REAL controls can
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reduce dissatisfaction rate 0.37% and save energy consumption 2.1% as com-

pared to the personalized thermal comfort based controls (fixed 23 ◦C).

8.1.3 Field Experiment at NUS : Smart Ceiling Fans for Cool-

ing

The field experiments demonstrated the real-world performance of the Bio-

REAL control system with 14 subjects in a room of the Net-zero energy build-

ing at NUS. The room has four Haiku smart ceiling fans. During the exper-

iment, the indoor temperature was maintained at 27 ◦C, but the ceiling fan

speeds were varied. There were 14 Bio-REAl agents trained by the data col-

lected from the training experiment, including wrist temperature, fan speed,

and air movement acceptability. The objective of the Bio-REAL system is to

find an optimized ceiling fan schedule at room temperature 27 ◦C.

The testing results showed that the ASHRAE standard for fan speed2 (air

velocity ranged from 0.028 m/s to 0.693 m/s at different vertical locations) at

27 ◦C provided 80% comfortable rate across the diverse occupants, indicat-

ing that raising the temperature to 27 ◦C could achieve comfort if convective

cooling is presented by ceiling fans. The Bio-REAL ceiling fan controls in

a 10-minute interval can achieve 14 % higher comfort rates than the base-

line with a static fan speed2 at 27 ◦C, with 4.5 % yearly fan energy saving

as compared to baseline with fan speed2 and 5 times less HVAC energy con-

sumption as compared to VAV with setpoint 22 ◦C.



8.2. Contribution 151

8.2 Contribution

The Bio-REAL control system and the experimental findings contribute to

the domain of thermal comfort, building controls, the application of IoT and

artificial intelligence in buildings, as described below.

8.2.1 Comfort and Energy Benefit

The findings and results of the experiments demonstrated that the Bio-REAl

system can provide comfort for each individual with low energy consump-

tion, addressing individual differences in thermal comfort for multi-occupant

spaces with no individual controls. The Bio-REAl system also addresses a

range of heating and cooling choices from ambient to task systems. With the

achievement in comfort improvement and energy saving, the Bio-REAL sys-

tem contributes to occupant health and productivity, as well as sustainability.

8.2.2 The Application Of Internet of Things (IoT) in Build-

ings

The Bio-REAL system interrelated occupant, environment, digital devices,

and mechanical systems in buildings and contributes to the applications of

IoT in buildings, as shown in Figure . The Bio-REAL system uses Bio-sensing,

participatory sensing, and environmental sensing to interrelate occupant bi-

ological response, occupant subjective responses, environmental conditions.

The integration of Bio-sensing and RL control system connected occupant

and environment to mechanical systems in buildings.
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FIGURE 8.1: The Bio-REAL system contributes to the applica-
tion of IoT in buildings

Besides, The smart-bands adopted by this thesis advanced the bio-sensing

technology for its acceptability (none-intrusiveness) and affordability. The

smart-bands collect wrist temperature, which has been proved as the bio-

signal closely correlated with personalized thermal comfort. The experi-

ments data in this thesis verified the correlation by showing the relationship

between wrist temperature and thermal sensation and the relationship be-

tween wrist temperature and air movement acceptability.

Moreover, wrist temperature can be a substitution of the environmental

variables that are not easy to measure. The experiment at CMU presented

a strong correlation between wrist temperature and operative temperature.

The experiment at NUS showed that wrist temperature is very responsive to

the air moment. Since radiant temperature and air movement are not easy to
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measure in practice, wrist temperature can be their replacement. Replacing

the environmental variables that highly correlated with the wrist tempera-

ture can simplify the sensing network in buildings and reduce the imple-

mentation cost of the personalized thermal comfort controls.

8.2.3 The Application of Artificial Intelligence in Buildings

This thesis is a showcase of implementing reinforcement learning (RL) in

occupant centric thermal control. There were innovations in the design and

the learning process of the Bio-REAL system.

The recent approach of implementing RL in building controls is deploy-

ing the RL control systems in real buildings after sufficiently training them

with simulation. This approach was hard to be applied to personalized ther-

mal control because most existing physics-based simulation tools are not

supportive of personalized thermal comfort modeling. This thesis overcame

the issue by integrating personalized occupant thermal models with the build-

ing models in the co-simulation. The personalized thermal comfort models

were the synergy of the data simulated from the PMV model and the field

data. The model established an individual thermal comfort zone for each

occupant. The approaches of combining simulated data and field data for

thermal comfort model development and integrating physics-based simula-

tion tool and data-driven models contributes to the application of artificial

intelligence in buildings.
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The experiment at NUS further advanced the reinforcement learning im-

plementation in occupant-centric thermal controls by introducing the ap-

proaches of learning without simulation. The learning process was split

to experience collection, agent updating, and agent checking to guarantee

learning stability. Only the well-trained Bio-REAL agent plays a part in con-

trolling the building systems so that the control performance won’t be im-

paired by the RL exploration. This experiment is a brand-new example of

real-world RL application in building controls. The approaches of training

and testing RL agents with the real-world environment also contributes to

the application of artificial intelligence in buildings.

8.2.4 The application Of Digital Twin in Buildings

The idea of creating one agent for one occupant contributes the application of

Digital Twin in buildings. An Bio-REAL agent can be considered as a digital

replica of an occupant to control building systems. Besides, by introducing

the negotiator that resolves the conflicts in personal differences, the appli-

cation of the Bio-REAL system can be extended to the shared environment

with multiple occupants easily. The structure of the Bio-REAL system with

multiple agents and negotiation decomposes the tasks of thermal comfort

optimization, energy efficiency optimization, and conflict negotiation. The

decomposition saves computational resources and time.
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8.3 Limitation and Future Work

With the contributions made, the thesis still have several limitations. Future

work can focus on the following improvement to make the Bio-REAL control

system more intelligent and versatile.

8.3.1 Large-scale Application in Buildings

The thesis evaluated the performance of the Bio-REAL control system at a

zone level, e.g., adjusting zone temperature setpoint or ceiling fans in a zone,

but no at a building level. For a large-scale application in buildings with mul-

tiple zones, each zone may have one Bio-REAL control system to optimize

the thermal comfort of the zone occupants and save energy at a zone level.

For a building with a centralized HVAC system, different zones usually share

other components of the HVAC system, although the zone terminal units can

be controlled independently. Therefore, a building negotiator will be needed

for the large-scale application to coordinate the operation of HVAC compo-

nents. The building negotiator will communicate with the zone negotiators

back and forth to optimize whole-building energy efficiency. An example of

the architecture of the Bio-REAL control system for the large-scale applica-

tion is shown in Figure 8.2
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FIGURE 8.2: The Bio-REAL control system for large-scale appli-
cation

8.3.2 Multi-agent Communication Network

The thesis designed the multi-agent structure for the Bio-REAL control sys-

tem, but the agents learn independently without communicating with each

other. In the future, researchers could build a connected network so that the

agents can communicate, share information, and learning collaboratively, as

shown in Figure 8.3. With the connected network, a negotiator handling the

conflicts will not be needed in the control system. Via interaction, the agents

can asymptotically reach a consensus and establish a shared control policy

(Tan, 1993).
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FIGURE 8.3: Multi-agent communication network

8.3.3 The Ensemble of Multiple Learning Algorithms

The thesis selected the "model-free" reinforcement learning (RL) algorithms

due to its idea of learning through interaction. The results of this kind of

learning is not impaired by the bias of non-representative models or data

samples. In contrast, the performance of the "model-based" learning was de-

termined by the models. The results of supervise learning was depended

on the collected data samples. However, "model-free" RL is a trial and error

learning algorithm, indicating that a learning agent will make lots of errors

before being a mature agent. Further work can integrate different learning

algorithms to circumvent the weakness of different kinds of learning and

achieve better performance (sutton1991dyna ), as shown in Figure 8.4. By en-

sembling different learning methods, RL agents can still learn by interacting

with the environment. The interaction experiences can be used to update the

MDP (Markov Decision Process) models. The RL agents can solve the MDP

models for planning. The collected historical samples can be processed to

train neural network via supervised learning. The Q-networks of RL agents

and the neural networks of the supervised learning can work together to

generate the policy (Silver and Hassabis, 2016).
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FIGURE 8.4: The ensemble of multiple learning algorithms
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