
Jointly Forecasting and Controlling Behavior
by Learning from High-Dimensional Data

Nicholas Rhinehart
The Robotics Institute

Carnegie Mellon University
CMU-RI-TR-19-76

Doctoral committee:

Dr. Kris M. Kitani, Chair Carnegie Mellon University
Dr. Martial Hebert Carnegie Mellon University

Dr. Ruslan Salakhutdinov Carnegie Mellon University
Dr. Sergey Levine University of California, Berkeley
Dr. Paul Vernaza Aurora Innovation

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Robotics

Copyright © 2019 Nicholas Rhinehart

1

Abstract

Achieving a precise predictive understanding of the future is difficult, yet widely studied in
the natural sciences. Significant research activity has been dedicated to building testable models
of cause and effect. From a certain view, the ability to forecast the universe is the “holy grail”;
the ultimate goal of science. If we had it, we could anticipate, and therefore (at least implicitly)
understand all observable phenomena. The human capability to forecast offers complementary
motivation. Critical to our intelligence is our ability to plan behaviors by considering how our
actions are likely to result in future payoff, especially in the presence of other collaborative and
competitive agents. In this work, we seek to computationally model the future in the presence of agent
behavior given rich observations of the environment. The brunt of our focus is to reason about what
agents could do, instead of other sources of stochasticity. This focus on future agent behavior
allows us to tightly couple and jointly perform forecasting and control.

The field of Computer Vision (CV) is focused on designing algorithms to automatically
understand images, videos, and other perceptual data. However, the field’s effort to-date focuses
on non-interactive, present-focused tasks [79, 81, 158, 184]. Most CV contributions are algorithms to
answer questions like “what is that”, and “what happened”, rather than “what could happen”,
or “how could I achieve X”. Computer Vision has under-explored reasoning about the interactive
and decision-based nature of the world. In contrast, Reinforcement Learning (RL) prioritizes
modeling interactions and decisions by focusing on how to design algorithms to evoke behavior
that maximizes a scalar reward signal. The resulting learning agents, in order to perform well,
must have an understanding of how their current behaviors will affect their prospects of future
reward. However, in the dominant paradigm of model-free RL [218], agents reason implicitly
about the future. In contrast, model-based RL learns one-step dynamics to estimate “what
could happen in the near future”. Yet model-based RL primarily focuses on control, rather than
explicitly forecasting a single agent (let alone multiple agents).

In this thesis, we consider the problem of designing algorithms to enable computational
systems to (1) forecast future behavior of intelligent agents given rich observations of their
environments, as well as to (2) use this reasoning for control. We believe these two problems
should be tightly integrated and jointly considered, and use them to structure this thesis. We
define forecasting to be the problem of estimating the set of possible outcomes of a system, whereas
control is the problem of producing actions that generate a single outcome of a system. We often use
Imitation Learning and Reinforcement Learning to formulate and situate our work.

We contribute forecasting and control approaches to excel in diverse, realistic, single-agent,
and multi-agent domains. The first part of the thesis focuses on progressively designing more
capable forecasting models. We proceed through approaches to (1) forecast single actions of
daily behavior by developing matrix factorization models [169], (2) forecast goal-driven action
trajectories of daily behavior by developing Online Inverse Reinforcement Learning models [168,
170], (3) forecast motion trajectories of vehicles by developing a deep reversible generative models
[171, 174]. The second part of the thesis focuses on progressively designing more capable models
that tightly couple forecasting and control. We discuss (4) forecasting as auxiliary supervision for
implicitly-planned control [228], (5) forecasting and explicitly planning with the same model [176], and
(6) forecasting and planning future interactions of multiple agents [175].

2

With all of my love, I dedicate this dissertation to my parents and siblings.
You bring me to life, and
you make the world glow.

3

Acknowledgements

I am deeply grateful and forever indebted to a large cast of advisers, friends, collaborators, peers,
and family. I give thanks to their mentoring, friendship, dedication, camaraderie, and love that
has shaped me and my work. Without them, this thesis would not have been possible. Science is a
human endeavor – our work owes no small debt to the relationships that sustain and enrich us.

The dominant factor in my career success and growth has been my Ph.D. adviser, Kris Kitani. It
is difficult to imagine a better adviser than Kris. Kris has always done the right things for me, and,
plainly put, has never let me down – something that I wish all students could claim of their advisers.
Early in my studies, he would challenge me to improve my research justifications and expand my
knowledge. After those early years, he began to give me more latitude to explore bigger ideas,
while still remaining present to help me hone them. Kris has a remarkable sense of his students’s
needs. Kris is unshakably patient, kind, and wise. Because of Kris, I have come to be fearless in the
face of the unknowns in research and bold in my goals, among countless other improvements. I am
inexpressibly grateful for Kris.

I owe a large debt to my M.S. adviser, Drew Bagnell. I met Drew before my senior year of college.
I had not settled upon what I would pursue after I graduated. It was a research experience with
Drew and his student, Debadeepta Dey, that convinced me that I had to pursue research, ideally at
CMU. Despite my next-to-nothing knowledge at the time, Drew hired me as an M.S. researcher at
CMU. I am forever grateful for the faith he had in me. As Drew’s student, I was inspired to pursue
technical clarity, precision, and creativity in my work. Drew is another key factor in my career, one
without which I may not have pursued a research career at all.

I am very lucky and grateful to have worked with several fantastic collaborators and mentors I
had at internships, including Paul Vernaza, Sergey Levine, and Rowan McAllister. Paul’s love for
mathematics is infectious, and I was not spared. Sergey has stewarded my recent research through
his deep insights and unbounded knowledge. Rowan and I have collaborated closely for over a
year; it is an almost daily pleasure to hone, improve, and create with Rowan.

This research would also not have been possible without the many friendships and collaborations
I have had at CMU, including Bhav Ashok, Michelle Cedeño, Achal Dave, Allie Del Giorno,
Katie Lagree, Kumar Shaurya Shankar, Tanmay Shankar, Arjun Sharma, Mohit Sharma, Gunnar
Sigurdsson, Wen Sun, and Arun Venkataraman, among many, many others.

I dedicate this thesis to my family: Mom, Dad, Zach, Tessa, Erin, and Elliott. Your love and
support drives my heart, and through it, fuels the engine of science.

4

Contents

1 Introduction 8
1.1 Science Seeks To Forecast; Intelligence Requires Us To Forecast 8
1.2 Main Contributions and Organization . 9
1.3 Bibliographical Remarks . 11
1.4 Excluded Research . 11
1.5 Related Work . 11

I Activity and Motion Forecasting from High-Dimensional Observations 15

2 Forecasting Singular Actions with Action Maps 16
2.1 Introduction . 16
2.2 Constructing Action Maps . 19
2.3 Experiments . 22
2.4 Action Maps for Localization . 26
2.5 Conclusion . 27

3 Forecasting Action Trajectories with Online Inverse Reinforcement Learning 28
3.1 Introduction . 28
3.2 Related Work . 30
3.3 Online IRL with DARKO . 31
3.4 Generalized Activity Forecasting . 36
3.5 Experiments . 39
3.6 Visualizations . 48
3.7 Conclusion . 49

4 Forecasting Motion Trajectories with Deep Reversible Generative Models 50
4.1 Introduction . 50
4.2 Related Work . 52
4.3 Approach . 53
4.4 Experiments . 60
4.5 Discussion . 67
4.6 Improving The Reverse KL Approximation . 67
4.7 Symmetric KL Learning Approach . 70

5

4.8 Symmetric KL Experiments and Discussion . 72
4.9 Conclusion . 76

II Jointly Forecasting and Controlling from High-Dimensional Observations 77

5 Forecasting Observations as Auxiliary Supervision for Implicitly-Planned Control 78
5.1 Introduction . 78
5.2 Latent State Space Models . 80
5.3 Predictive-State Decoders . 82
5.4 Experiments . 84
5.5 Conclusion . 87

6 Forecasting Motion Trajectories for Explicitly-Planned Control 89
6.1 Introduction . 89
6.2 Deep Imitative Models . 91
6.3 Related Work . 99
6.4 Experiments . 100
6.5 Discussion . 108

7 Forecasting Multi-Agent Motion Trajectories for Explicitly-Planned Interactions 109
7.1 Introduction . 109
7.2 Related Work . 112
7.3 Deep Multi-Agent Forecasting . 113
7.4 Experiments . 119
7.5 Conclusions . 133

III Conclusion and Future Work 143
7.6 Conclusion and Future Work . 144

Bibliography 148

6

7

Chapter 1

Introduction

1.1 Science Seeks To Forecast; Intelligence Requires Us To Forecast

Prediction is difficult, especially
when it involves the future.

Niels Bohr, Yogi Berra

Achieving a precise predictive understanding of the future is difficult, yet widely studied in
the natural sciences. Significant research activity has been dedicated to building testable models of
cause and effect. From a certain view, a perfect predictive model of the universe is the “holy grail”;
the ultimate goal of science. If we had it, we could anticipate, and therefore (at least implicitly)
understand all observable phenomena. We approach the difficulty of modeling the future by
deferring as much of the modeling as possible to be computationally learned. In this work, we seek to
computationally model the future in the presence of agent behavior given rich observations of the environment.
The brunt of our focus is to reason about what agents will do, instead of other dynamic aspects of
the environment. Whereas many natural science theories offer human-crafted predictive models of
physical phenomena, we instead offer a paradigm of learned correlation-based predictive models of
behavior-based phenomena.

The human capability to forecast offers complementary motivation. Humans use rich environ-
ment observations to inform their understanding, and ultimately, their future behavior. Critical to
our intelligence is our ability to plan behaviors by considering how our actions are likely to result in
future payoff, especially in the presence of other collaborative and competitive agents. We argue
that a system cannot be intelligent if it cannot explicitly reason about the future of itself and other
meaningful entities. By this logic, explicitly reasoning about the future is a necessary component of
intelligence. Therefore, as scientists, we must design systems to explicitly forecast in order to have any hope
of building intelligent systems.

The field of Computer Vision (CV) is focused on designing algorithms to automatically under-
stand images, videos, and other perceptual data. However, the field’s effort to-date focuses on
non-interactive, present-focused tasks, like object detection [81], scene classification [184], geometric
understanding [79], and activity classification [158]. Most CV contributions are algorithms to answer
questions like “what is that”, and “what happened”, rather than “what will happen”, “what could
happen”, or “how could I achieve X”. Computer Vision has under-explored reasoning about the
interactive and decision-based nature of the world.

In contrast, Reinforcement Learning (RL) prioritizes modeling interactions and decisions by
focusing on how to design algorithms to evoke behavior that maximizes a scalar reward signal.
The resulting learning agents, in order to perform well, must have an understanding of how their

8

current behaviors will affect their prospects of future reward. However, in the dominant paradigm
of model-free RL [218], agents reason implicitly about the future. In contrast, model-based RL learns
one-step dynamics as P (s′|s, a; θ) or s′ = f(s, a; θ). One-step dynamics provide an explicit estimate
of “what could happen in the near future”. Combined with knowledge of how the agent will react
to any given situation as a policy π(s′|s, a) or s′ = π(s, a), these objects enable us to forecast the
distribution of future outcomes at arbitrarily-long time horizons. Unfortunately, in multi-agent
systems, these objects are insufficient to forecast the future. We must also estimate how all agents
will behave, in combination with the one-step world dynamics, in order to achieve a distribution of
future outcomes over multiple time-steps.

In this thesis, we consider the problem of designing algorithms to enable computational systems
to (1) forecast future behavior of intelligent agents given rich observations of their environments,
as well as to (2) use this reasoning for control. We believe these two problems should be tightly
integrated and jointly considered, and use them to structure this thesis. We define forecasting to
be the problem of estimating the set of possible outcomes of a system, whereas control is the problem
of producing actions that generate a single outcome of a system. We often use Imitation Learning and
Reinforcement Learning to formulate and situate our work.

We contribute forecasting and control approaches to excel in diverse, realistic, single-agent, and
multi-agent domains. The first part of the thesis focuses on progressively designing more capable
forecasting models. We proceed through approaches to (1) forecast single actions of daily behavior
by developing matrix factorization models [169], the(2) forecast goal-driven action trajectories of daily
behavior by developing Online Inverse Reinforcement Learning models [168, 170], (3) forecast
motion trajectories of vehicles by developing a deep reversible generative models [171, 174]. The
second part of the thesis focuses on progressively designing more capable models that tightly couple
forecasting and control. We discuss (4) forecasting as auxiliary supervision for implicitly-planned control
[228], (5) generating and executing forecasting and explicitly planning with the same model [176], and (6)
forecasting and planning future interactions of multiple agents [175].

1.2 Main Contributions and Organization

Our main contributions, and the remainder of the thesis, are presented in two parts as follows. We
will use Fig. 1.1 to visually situate each component of this work. We can also situate our work relative
to the learned computational model-outputs of the diagram shown in Fig. 1.2. We can then view the
goal of this thesis as towards designing the most general and flexible learned computational model.
We seek to 1) generate continuous-coordinate sequences of multi-agent sequences and 2) generate
interpetable plans and controls, steerable with high-level directions/goals, that are sequentially fed
into an environment that generates high-dimensional features that the computational model uses to
inform its predictions and decisions.

1.2.1 Part I: Activity and Motion Forecasting from High-Dimensional Observations

Part I consists of five chapters that present our work on forecasting activities of a first-person camera
wearer. Chapter 2 focuses on learning to forecast functionality of environments by observing
behaviors from a first-person camera. Chapter 3 focuses on learning to forecast future goals of a first-
person camera wearer and doing so online. The latter three chapters present our work on forecasting
motions of expert drivers in single- and multi-agent settings with advanced density estimation
techniques. Chapter 4 focuses on learning to forecast a vehicle’s distribution of future trajectories,
then turning its focus to improving the learning procedure of likelihood-based generative models.

9

Figure 1.1: Decomposition of this thesis into six primary chapters. Each is summarized by its
forecasting and control capabilities.

Figure 1.2: Visualization of the system we seek to build. This thesis can be views as progressively
improving the 1) forecasting and 2) control output capabilities of a learned computation model.

Chapter 7 focuses on learning to forecast a joint distribution over multi-agent motion of vehicles,
and using this distribution for intent-based reasoning about subsets of other vehicles.

1.2.2 Part II: Forecasting for Control from Rich Observations

Part II consists of two chapters that present our work on two techniques to integrate forecasting with
controlled behavior. Chapter 5 focuses on improving the learning procedure of sequential decision-
making models by encouraging their representations to be predictive of the future. Chapter 6
focuses on using a distribution over future expert vehicle trajectories as a prior for control that is

10

flexible to new tasks, and robust to noise in task specification.
We conclude by summarizing our contributions and offering promising directions of future

work.

1.3 Bibliographical Remarks

This thesis only contains works for which the author was a primary contributor. Chapters 2 and 3
are based on joint work with Kris Kitani [168–170]. Chapters 4 is based on joint work with Paul
Vernaza, Kris Kitani, Kihyuk Sohn, and Anqi Liu [174]. Chapter 5 is based on joint work with Arun
Venkatraman, Wen Sun, Drew Bagnell, Byron Boots, Kris Kitani, Martial Hebert, and Lerrel Pinto
[228]. Chapters 7 and 6 are based on joint work with Rowan McAllister, Sergey Levine, and Kris
Kitani [175, 176].

1.4 Excluded Research

I excluded a significant portion of research undertaken during my Ph.D. in order to reduce the
length of this document. Below are topics of work I have excluded:

1. Activity Forecasting: Generative Hybrid Activity Forecasting [73].

2. Imitation Learning: Directed Info-GAIL for Learning Hierarchical Policies [200], Learning
Neural Parsers [199], Human-Interactive Subgoal Supervision [146], and Learning Sequential
Object Detection [177].

3. Reinforcement Learning: Network-to-Network Compression [13].

1.5 Related Work

We now briefly summarize threads of related work, classified into two subsections: Forecasting
from Rich Observations (Section 1.5.1) and Decision-Theoretic Modeling (Section 1.5.2). We defer
extended related work discussion to each Chapter.

1.5.1 Forecasting from Rich Observations

We categorize related work in this section into four components: Activity Forecasting, Motion
Forecasting, Multi-agent Forecasting, and Pixel Forecasting.

1.5.1.1 Activity Forecasting

Data-driven: Activity forecasting methods typically treat the problem of predicting future behaviors
as a classification task. In [84, 186], the tasks are to recognize an unfinished event or activity. In [84],
the model predicts the onset for a single facial action primitive, e.g. the completion of a smile, which
may take less than a second. Similarly, [186] predicts the completion of short human to human
interactions. In [107], a hierarchical structured SVM is employed to forecast actions about a second
in the future, and [232] demonstrates a semi-supervised approach for forecasting human actions a
second into the future. Other works predict actions several seconds into the future [34, 104, 118]. In
[84, 107], future activities are predicted from a third-person view via classification-based approaches
In [185, 186], the future behavior of a person is predicted via activity classification of first-person

11

video.

Functional understanding: Human actions are deeply connected to the environment in which they are
performed. Different environments afford different functionalities. Fouhey et al.[59] used detection
of sitting, standing, and walking actions to obtain better estimates of 3D geometry for a single
densely explored room. Gupta et al.[76] addressed the inverse problem of inferring actions from
estimated 3D scene geometry using a single image of a room. Delaitre et al.[45] also used time lapse
video of human actions to learn the functional attributes of objects in a single scene. The work of
Savva et al.[192] obtains a dense 3D representation of small workspace (e.g.desk and chair space)
and learns the functional attributes of the scene by observing human interactions. Another flavor of
approaches reason in the joint space of activities and objects. In Moore et al.[134], human actions are
recognized by using information about objects in the scene. Gall et al.[63] uses human interaction
information to perform unsupervised categorization of objects. Other approaches have capitalized
on the interplay between actions and objects: Gupta et al.[75] demonstrate an approach to use object
information for pose detection, Yao et al.[247] jointly model objects and poses to perform recogni-
tion of both objects and actions, and [153] performs object recognition by observing human activities.

1.5.1.2 Motion Forecasting

Motion Forecasting applications span two primary input domains: third-person observations and
first-person observations. See [183] for a survey of methods that span both input domains applied
to the task of human motion forecasting.

Third-person observations: The method of [114] predicts future trajectories of wide-receivers from
surveillance video. In [16, 101, 128, 246] future pedestrian trajectories are predicted from surveil-
lance video. Deterministic vehicle predictions are produced in [93], and deterministic pedestrian
trajectories are produced in [8, 147, 178]. However, non-determinism is a key aspect of forecasting:
the future is generally uncertain, with many plausible outcomes. While several approaches forecast
distributions over trajectories [62, 113], they do not produce probability density functions.

First-person observations: Other trajectory forecasting approaches use demonstrations observed from
a bird’s-eye view; [246] infers latent goal locations and [9] employ LSTMs to jointly reason about
trajectories of multiple humans. In [206], the model forecasted short-term future trajectories of
a first-person camera wearer by retrieving the nearest neighbors from a dataset of first-person
trajectories under an obstacle-avoidance cost function, with each trajectory representing predictions
of where the user will move in view of the frame; in [209], a similar model with learned cost function
is extended to multiple users.

1.5.1.3 Multi-agent Forecasting

Game-theoretic: Traditionally, multi-agent planning and game theory approaches explicitly model
multiple agents’ policies or internal states, usually by generalizing Markov decision processes
(MDPs) to multiple decisions makers [39, 221]. These frameworks facilitate reasoning about collabo-
ration strategies, but suffer from “state space explosion" intractability except when interactions are
known to be sparse [131] or hierarchically decomposable [58].

Data-driven: Data-driven approaches have been applied to forecast complex interactions between
multiple pedestrians [8, 20, 55, 77, 128], vehicles [46, 113, 148], and athletes [54, 110, 114, 210,

12

248, 250]. These methods attempt to generalize from previously observed interactions to predict
multi-agent behavior in new situations. Generative models for multi-agent forecasting and control
have been proposed. In terms of multi-agent forecasting, our work is related to [193] which uses a
conditional VAE [99] encoding of the joint states of multiple agents together with recurrent cells to
predict future human actions.

1.5.1.4 Pixel Forecasting

Pixel Forecasting methods generate full image or video representations of predictions, endowing
their samples with interpretability. In [232–234], unsupervised model are learned to generate
sequences and representations of future images. In [235], surveillance image predictions of vehicles
are formed by smoothing a patch across the image. [236] and [231] also predict future video frames
with an intermediate pose prediction. In [57], video predictions are used to inform a robot’s behavior.
In [23], image boundaries are predicted. One drawback to image-based forecasting methods is the
difficulty in measuring the model’s quality, a drawback shared by many popular generative models.

1.5.2 Decision-Theoretic Modeling

We categorize related work in this section into two components: Imitation Learning and Model-
based Planning. Imitation Learning (IL) learns a model to mimic demonstrated behavior [3, 144].
Model-based Planning is the approach of using a learned dynamics model of how the world or a
system operates in order to control an agent.

1.5.2.1 Imitation Learning and Reinforcement Learning

Behavior Cloning: Behavior cloning [144, 157] is an IL approach that learns to mimic one-step be-
haviors of an expert by applying straightforward supervised learning without interacting with the
underlying environment until test-time. A body of previous work has explored BC for autonomous
driving in the CARLA simulator [41, 42, 122, 123, 191]. These approaches condition on scene images
and a discrete set of directives by a high-level planner. [123] is a BC+RL approach that collects
data online to bootstrap a policy learned from observations. In contrast to some Imitation Learning
methods, including BC [157], behavior forecasting models are not executed in the environment of
the observed agent – they are instead predictive models of the agent. In this sense, forecasting can
be considered non-interactive Imitation Learning without execution. One key difference is that in
forecasting, we are not required to actually execute our plans in the real world.

Inverse Reinforcement Learning: Inverse Reinforcement Learning (IRL) is a form of imitation learning
in which a reward function is learned to model demonstrated behavior. Other Inverse Reinforcement
Learning approaches have been used to predict pedestrian behavior and high-level taxi planning
[101, 256]. In the IRL method of [245], a cost map representation is used to plan vehicle trajectories.
However, no time-profile is represented in the predictions, preventing use of time-profiled metrics
and modeling. GAIL [83, 121] is also a form of IRL, yet its adversarial framework and policy
optimization are difficult to tune and lead to slow convergence.

13

1.5.2.2 Model-based planning

Imitative Planning: Related to Imitation Learning, several prior works [11, 208, 220] used imitation
learning to train policies that contain planning-like modules as part of the model architecture.
Englert et al.[52] propose a one-step model-based Imitation Learning approach.

Model-based Reinforcement Learning (MBRL) plans through a dynamics model in order to optimize
a reward function [15, 44]. Because the dynamics of MBRL captures only what is possible, rather
than what is expert-preferred, the task of evoking expert-like behavior is offloaded to the reward
function, which can be difficult and time-consuming to craft properly. Recent work has shown that
there exists settings in which MBRL requires exponentially less samples than model-free RL [213]

System Identification with Learned Models System identification focuses on designing models of
dynamical systems, primarily for control purposes, and is related to MBRL. Across ML and CV,
Recurrent Neural Networks (RNNs) are often employed to perform indirect system identification
[111, 216]. In lieu of ground truth access to latent states, RNNs employ internal states to summarize
previous data, serving as a learner’s memory. Internal states are modified towards minimizing
the target application’s loss, e.g., minimizing observation loss in filtering or cumulative reward
in reinforcement learning. The target application’s loss is not directly defined over the internal
states: they are updated via the chain rule (backpropagation) through the global loss. Although this
modeling is indirect, RNNs nonetheless can achieve state-of-the-art results on many robotics [51,
80], vision [140, 143], and natural language tasks [38, 68, 162] when training succeeds. However,
recurrent model optimization is hampered by two main difficulties: 1) non-convexity, and 2)
the loss does not directly encourage the internal state to model the latent state. A poor internal
state representation can yield poor task performance, but rarely does the task objective directly
measure the quality of the internal state. Predictive-State Representations (PSRs) [26, 82, 86] offer
an alternative internal state representation to that of RNNs in terms of the available observations.

14

Part I

Activity and Motion Forecasting from
High-Dimensional Observations

15

Chapter 2

Forecasting Singular Actions with Action
Maps

2.1 Introduction

Figure 2.1: This chapter focuses on building a one-step categorical forecasting approach.

The goal of this work is to endow intelligent systems with the ability to understand the functional
attributes of their environment. Such functional understanding of spaces is a crucial component
of holistic understanding and decision making by any agent, human or robotic. Functional under-
standing of a scene can range from the immediate environment to the distant. For example, at the
scale of a single room, a person can perceive the arrangement of tables, chairs, and computers in an
office environment, and reason that they could sit down and type at the computer. People can also
reason about the functionality about nearby rooms, for example, the presence of a kitchen down
the hall from the office is useful functional and spatial information for when the person decides to
prepare a meal. The goal of this work is to learn a computational model of the functionality of large
environments, called Action Maps (AMs), by observing human interactions and the visual context of
those action within a large environment. These can be thought of as forecasting a one-step future as

16

a discrete action, as shown in Fig. 2.1.

Figure 2.2: Action Map prediction for the sit activity by using our method to combine appearance
data and activity observations. Activity and appearance information from the top scene in combi-
nation with only appearance information (no activity observations) from the bottom scene is used
to model the relationship between activities, scene information, and object information to make
predictions for both scenes. Areas in the scenes where a person can sit are estimated by our method,
such as the chairs and couches in both views.

There has been significant work in the area of automating the functional understanding of an
environment, though much has focused on single scenes [45, 59, 63, 76, 94, 105]. In this work,
we aim to extend automated functional understanding to very large spaces (e.g., an entire office
building or home). This presents two key technical challenges:

• How can we capture observations of activity across large environments?

• How can we generalize functional understanding to handle the inevitable data sparsity of less
explored or new areas?

In order to address the first challenge of observing activity across large environments, we take
a departure from the fixed surveillance camera paradigm, and propose an approach that uses a
first-person point-of-view camera. By virtue of its placement, its view of the wearer’s interactions
with the environment is usually unobstructed by the wearer’s body and other elements in the
scene. An egocentric camera is portable across multiple rooms, whereas fixed cameras are not.
An egocentric camera allows for the observation of hand-based activities, such typing or opening
doors, as well as the observation of some ego-motion based activities, such as sitting down or
standing. The first-person paradigm is well suited for large-scale sensing and allows observation of
interactions with many environments.

Although we can capture a large number of observations of activity across large environments
with wearable cameras, it is still not practical to wait to observe all possible actions in all possible
locations. This leads to the second technical challenge of generalizing functional understanding
from a sparse set of action observations, which requires generalization to new locations. Our
method generalizes by using another source of visual observation – which we call side-information
– that encodes per-location cues relevant to activities. In particular, we propose to extract visual
side-information using scene classification [253] and object detection [66] techniques. With this
information, our method learns to model the relationship between actions, scenes, and objects. In a
scene with no actions, we use scene and object information, coupled with actions in a separate scene,

17

to infer possible actions. We propose to solve the problem of generalizing functional understanding
(i.e., generating dense AMs) by formulating the problem as matrix completion. Our method
constructs a matrix where each row represents a location and each column represents an action
type (e.g., read, sit, type, write, open, wash). The goal of matrix completion is to use the observed
entries to fill the missing entries. In this work, we make use of Regularized Weighted Non-Negative
Matrix Factorization (RWNMF) [72], allowing us to elegantly leverage side-information to model the
relationship between activities, scenes, and objects, and predict missing activity affordances.

Estimated opendoor Action MapEstimated sit Action Map Estimated typing Action Map Estimated wash Action Map

Figure 2.3: Projected Action Map examples learned by our method. With global estimates of
large Action Maps produced by our method, we use localized images within the scene to show
visualizations of the Action Maps by projecting them to the images.

2.1.1 Contributions

To the best of our knowledge, this is the first work to generate Action Maps, such as those in
Figures 2.2 and 2.3, over large spaces using a wearable camera. The first-person vision paradigm
is an essential tool for this problem, as it can capture a wide range of visual information across a
large environment. Our approach unifies scene functionality information via a regularized matrix
completion framework that appropriately addresses the issue of sparse observations and provides
a vehicle to leverage visual side information.

We demonstrate the efficacy of our proposed approach on five different multi-room scenes:
one home and four office environments. Our experiments in real large-scale environments show
how first-person sensing can be used to efficiently observe human activity along with visual
side-information across large spaces. 1) We show that our method can be used to model visual infor-
mation from both single and multiple scenes simultaneously, and makes efficient use of all available
activity information. 2) We show that our method’s power increases as the set of performed activity
increases. 3) Furthermore, we demonstrate how our proposed matrix factorization framework can
be used to leverage sparse observations of human actions along with visual side-information to
perform functionality estimation of large novel scenes in which no activities have been demonstrated.
We compare our proposed method against natural baselines such as object-detection-based Action
Maps and scene classification, and show that our approach outperforms them in nearly all of our
experiments. 4) Additionally, as a proof-of-concept application of the rich information in an Action
Map, we present an application of our Action Maps as priors for localization.

2.1.2 Background

Human actions are deeply connected to the scene. Scene context (e.g., a chair or common room)
can be a strong indicator of actions (e.g., sitting). Likewise, observing an action like sitting, is a
strong indicator that there must be a sittable surface in the scene. In the context of time lapse
video, Fouhey et al. [59] used detection of sitting, standing, and walking actions to obtain better
estimates of 3D geometry for a single densely explored room. Gupta et al. [76] addressed the inverse
problem of inferring actions from estimated 3D scene geometry using a single image of a room.
Their approach synthetically inserted skeleton models into the 3D scene to reason about possible

18

functional attributes of the scene. Delaitre et al. [45] also used time lapse video of human actions to
learn the functional attributes of objects in a single scene. The work of Savva et al.[192] obtains a
dense 3D representation of small workspace (e.g.desk and chair space) and learns the functional
attributes of the scene by observing human interactions. Similar to previous work, this work seeks to
understand the functionality of scenes. However, limitations of previous work include the reduced
size of the physical space and the presumed density of interactions. In contrast, our approach
attempts to infers the dense functionality over an entire building (e.g., office floor or house), and
reasons about multiple large scenes simultaneously by modeling the relationship between scene
information, object information, and sparse activities.

Another flavor of approaches reason in the joint space of activities and objects. In Moore et
al. [134], human actions are recognized by using information about objects in the scene. Gall et
al. [63] uses human interaction information to perform unsupervised categorization of objects.
Other approaches have capitalized on the interplay between actions and objects: Gupta et al. [75]
demonstrate an approach to use object information for pose detection, and Yao et al. [247] jointly
model objects and poses to perform recognition of both objects and actions. The approach of [153]
performs object recognition by observing human activities, and notes an important idea that our
approach also uses: whereas object information may sometimes be too small in detail, human
activities usually are not. We capitalize on this observation close-up observation capability of an
egocentric camera.

The egocentric paradigm is an excellent method for understanding human activities at close
range [53, 120, 155, 207]. Our work builds on such egocentric action recognition techniques by
associating actions with physical locations in a single holistic framework. By bringing together
ideas from single image functional scene understanding, object functionality understanding and
egocentric action analysis, we propose a computational model that enables cross-building level
functional understanding of scenes.

2.2 Constructing Action Maps

Our goal is to build Action Maps that associate possible actions for every spatial location on a map
over a large environment. We decompose the process into three steps. We first build a physical
map of the environment by using egocentric videos to obtain a 3D reconstruction of the scene using
structure from motion. Second, we use a collection of recorded human activity videos recorded with
an egocentric camera to detect and spatially localize actions. This collection of videos is also used to
learn the visual context of actions (i.e., scene appearance and object detections) which is later used
as a source of side information for modeling and inference. Third, we aggregate the localized action
detection and visual context data using a matrix completion framework to generate the final Action
Map. The focus of our method is the third step, which we describe next. We mention how we obtain
the visual context in Section 2.2.1.1, and describe the first two steps in detail in Section 2.3.2.

2.2.1 Action Map Prediction as Matrix Factorization

We now describe our method for integrating the sparse set of localized actions and visual side-
information to generate a dense Action Map (AM) using regularized matrix completion. Our goal is
to recover an AM in matrix form R ∈ RM×A+ , where M is the number of locations on the discretized
ground plane and A is the number of possible actions. Each row of the AM matrix R contains the
action scores rm, where m is a location index, and each entry rma describes the extent to which
an activity a can be performed at location m. To complete the missing entries of R, we design a

19

(a) Office Flr. A Features (b) Office Flr. B Features

Figure 2.4: Several Office Flr. A and Office Flr. B Features. The “office" and “corridor" layers
correspond to the features from the scene classification CNN, and the “sit" layer corresponds to
the object detection CNN features aggregated across all sit-able objects, which is also one of the
baselines as described in Section 2.3.2. This figure demonstrates our idea that object information
and scene information can be used to relate scenes to each other. This relationship is the basis for
transferring and sharing activity functionality between scenes. Heatmaps from several layers are
shown projected into localized images from the scene. Note that the “office" portion of Office Flr.
A also contains sittable regions, and that the much larger “office" area in Office Flr. B contains a
select few sittable regions. The corridors in both scenes are described well by the features, and these
areas strongly correlate with an an absence of functionality, as scene in Figure 2.2.

similarity metric for our side-information, enabling the method to model the relationship between
activities, scenes, and objects.

We impose structure on the rows and columns of the AM matrix by computing similarity scores
with the side-information. Examples of this side information are shown in Figure 2.4, where two
features from scene classification, plus one feature from object detection are shown in the same
physical space as the AM. Figure 2.4 serves to further motivate the idea of exploiting scene and
object information between two different scenes to relate the functionality of the scenes. We define
three kernel functions based on scene appearance, object detections and spatial continuity. This
structure is integrated as regularization in the RWNMF objective function (Equation (2.2)).

2.2.1.1 Integrating Side-Information

To integrate side-information into our formulation, we build two weighted graphs that describe
the cross-location (row) similarities, and cross-action (column) similarities. We are primarily
interested in the cross-location similarities, and discuss how we handle the cross-action similarities
in Section 2.2.2. To build the cross-location graph, we aggregate the spatial proximity, scene-
classification, and object detection information as a linear combination of kernel-based similarities,
as shown in Equation 2.1.

For every location a in the AM, we compute the scene classification score pa = [p1a . . . pCa] for
each image as the average of the C-dimensional outputs from the Places-CNN of images within a
small radius.

We use Structure-from-Motion (SFM) keypoints inside each detection to estimate the back-
projected 3D location of the detected object in the environment by taking the mean of their 3D
locations, which are then projected to the ground plane to form a set Df for each object category
f ∈ [1 . . . F]. The SFM reconstruction is also used to localize images and described further in
Section 2.3.2. We calculate the object detection scores oa = [o1a . . . oFa] for each location a as
the max score of object detection of the nearby back-projected object detections d ∈ Df within a

20

r =
√

2 grid-cell radius, exponentially weighted by its distance along the floor from the object zd:
ofa = maxd∈Df 1/

√
2r2π exp(− z2d/2r2).

We wish to enforce similarity of activities between nearby locations, as well as between locations
that have similar object detections and scene classification description. Between any two locations
a, b, and given associated scene classification scores pa,pb, object detection scores oa,ob, and 2D
grid locations xa,xb the kernel is of the form:

k(a, b) = (1− α)ks(xa,xb) +
α

2
kp(pa,pb) +

α

2
ko(oa,o

′
b), (2.1)

where ks is an RBF kernel between the spatial coordinates of each location, kp and ko as χ2 kernels
on scene classification scores and object detection scores, and ko has 0 similarity between locations
with no object score.

Thus, there is a tradeoff between the ks, kp and ko kernels, controlled by α. When α = 0,
only spatial smoothness is considered, and when α = 1, only scene classification and object
detection terms are considered, ignoring spatial smoothness. When a location in one scene is
compared to a location in a new scene or the same scene, k(·, ·) returns higher scores for locations
with similar objects and places, and as shown Section 2.2.2, places more regularization constraint
on the objective function, rewarding solutions that predict similar functionalities for both locations.

2.2.2 Completing the Action Map Matrix

To build our model, we seek to minimize the RWNMF objective function in Equation 2.2:

J(U,V) =
∥∥∥W ◦ (R−UVT)

∥∥∥2

F
+
λ

2

M∑
i,j

∥∥ui − uj
∥∥KU

ij +
µ

2

A∑
i,j

∥∥vi − vj
∥∥KV

ij (2.2)

where U ∈ RM×D+ , V ∈ RA×D+ , together form the decomposition, W ∈ RM×A+ is the weight
matrix with 0s for unexplored locations, and KU the kernel Gram matrix of the side information
defined by its elements: KU

ij = k(i, j). The squared-loss term penalizes decompositions with values
different from the observed values in R. The term involving KU penalizes decompositions in
which highly similar locations have different decompositions in the rows (uTi) of U. Roughly,
locations with high similarity in scene appearance, object presence, or position impose penalty
on the resulting decomposition for predicting different affordance values in the AM. The term
involving KV corresponds to the cross-action smoothing, which we take as the identity matrix,
enforcing no penalty for differences across per-location action labels.

To minimize the objective function, we use the regularized multiplicative update rules following
[72]. Multiplicative update schemes for NMF are generally constructed such that their iterative
application yields a non-increasing update to the objective function; [72] showed that these update
rules yield non-increasing updates to the objective function. Thus, after enough iterations, a local
minima in the objective function is found, and the resulting decomposition and its predictions are
returned.

Values in W are set to counteract class imbalance. The number of observed values for each
activity is computed as nc, and assigned to each nonempty location i’s corresponding entry as
wic = 1/nc, and the zeros from observed cameras associated with no activities as w = 1/nz .

21

Scene # GT locs. # Actions Length re ra

Office Flr. A 40 90 53.3 min. 0.59 0.03
Office Flr. D 15 44 32.8 min. 0.23 0.03
Office Flr. C 44 14 12.2 min. 0.16 0.01
Office Flr. B 50 13 3.3 min. 0.67 0.04
Home A 15 17 13.4 min. 0.75 0.04

Table 2.1: Scene stats. The number of GT locations is the number of distinct places a specific activity
can be performed. The number of activity demonstrations is the total number of demonstrations
collected in each environment. re =

#cells explored
#total cells , ra =

#cells with non-empty actions
#total cells .

Approach W. Max F1 W. Mean F1 Max F1 Mean F1 W. Max F1 W. Mean F1 Max F1 Mean F1

Office Flr. A Office Flr. C

S sng 0.73 0.72 ± 0.01 0.44 0.43 ± 0.02 0.74 0.66 ± 0.1 0.48 0.42 ± 0.06
SOPD sng 0.63 0.61 ± 0.01 0.34 0.32 ± 0.01 0.67 0.46 ± 0.08 0.41 0.29 ± 0.05
SOP sng 0.74 0.69 ± 0.04 0.56 0.5 ± 0.04 0.68 0.53 ± 0.1 0.53 0.44 ± 0.06
SOPD all 0.75 0.71 ± 0.02 0.44 0.43 ± 0.01 0.67 0.55 ± 0.06 0.45 0.38 ± 0.03
SOP all 0.76 0.73 ± 0.02 0.54 0.51 ± 0.02 0.77 0.58 ± 0.07 0.56 0.46 ± 0.04

Home A Office Flr. D

S sng 0.57 0.53 ± 0.04 0.35 0.34 ± 0.02 0.68 0.57 ± 0.11 0.57 0.45 ± 0.12
SOPD sng 0.5 0.48 ± 0.01 0.26 0.24 ± 0.02 0.56 0.49 ± 0.05 0.37 0.32 ± 0.04
SOP sng 0.62 0.6 ± 0.01 0.43 0.4 ± 0.02 0.69 0.55 ± 0.08 0.68 0.54 ± 0.07
SOPD all 0.52 0.49 ± 0.03 0.27 0.25 ± 0.02 0.81 0.68 ± 0.07 0.59 0.46 ± 0.08
SOP all 0.62 0.55 ± 0.03 0.45 0.4±0.02 0.82 0.73 ± 0.08 0.77 0.61 ± 0.09

Office Flr. B

S sng 0.56 0.55 ± 0.01 0.38 0.38 ± 0.01
SOP sng 0.56 0.55 ± 0.01 0.44 0.38 ± 0.03
SOPD all 0.58 0.56 ± 0.01 0.39 0.37 ± 0.03
SOP all 0.58 0.56 ± 0.01 0.53 0.44 ± 0.04

Table 2.2: Prediction results by using the activity observations for each scene (“sng"), and, as separate
results, by simultaneously fitting data from all scenes (“all"). By using observations from all scenes,
the performance of our method on each scene improves over using each scene’s observation data
alone. Additionally, our method is able to integrate activity detections without much performance
loss: a D suffix indicates activity detection predictions were used, otherwise, labelled activities were
used. “S" stands for spatial kernel only, and “SOP" stands for “Spatial+Object Detection+Scene
Classification" kernels. The spatial kernel only is useful yet outperformed by the full model. Side
information from multiple scenes generally improves the performance.

2.3 Experiments

Our dataset consists of 5 large, multi-room scenes from various locations. Three scenes, Office Flr. A,
Office Flr. D, and Office Flr. C, are taken from three distinct office buildings in the United States, and
another scene, Office Flr. B, comes from an office building in Japan. Each office scene has standard
office rooms, common rooms, and a small kitchen area. A final scene, Home A, consists a kitchen, a
living room, and a dining room. See Table 2.1 for scene activity and sparsity statistics. Our goal is to
predict dense Action Maps from sparse activity demonstrations.

The first experiments (Section 2.3.3) measure our method’s performance when supplied with
all observed action data that covers on average about half of all locations and some actions (See

22

(a) Office Flr. A Elapse (b) Office Flr. D Elapse (c) Home A Elapse (d) Legend

Figure 2.5: Performance improves a function of available data. For each parameter setting, we show
the F1 scores for each activity label, as well as the mean and weighted mean of the F1 scores across
all parameter settings and activity labels. Some variations in performance are observed as new
activities are introduced, as the correlations between an established activities and newly introduced
activities are initially sparse. As more data is collected, erroneous correlations are unlearnt, and
correct ones are reinforced.

Approach W. Max F1 W. Mean F1 Max F1 Mean F1 W. Max F1 W. Mean F1 Max F1 Mean F1

Office Flr. B Office Flr. D

RFC 0.38 0.38 0.62 0.62 0.27 0.27 0.41 0.41
Det. 0.59 0.59 0.33 0.33 0.44 0.44 0.28 0.28
NMF 0.35 0.35 0.24 0.24 0.65 0.65 0.40 0.40
SO 0.69 0.67 ± 0.02 0.44 0.42 ± 0.01 0.65 0.51 ± 0.12 0.46 0.36 ± 0.09
SP 0.74 0.69 ± 0.02 0.46 0.43 ± 0.02 0.68 0.55 ± 0.12 0.51 0.38 ± 0.09
SOP 0.57 0.54 ± 0.03 0.28 0.26 ± 0.02 0.42 0.36 ± 0.02 0.28 0.25 ± 0.01

Office Flr. C Home A

RFC 0.24 0.24 0.37 0.37 0.28 0.28 0.35 0.35
Det. 0.54 0.54 0.31 0.31 0.53 0.53 0.25 0.25
NMF 0.39 0.39 0.27 0.27 0.43 0.43 0.25 0.25
SO 0.67 0.55 ± 0.1 0.47 0.39 ± 0.07 0.59 0.51 ± 0.07 0.41 0.33
SP 0.61 0.56 ± 0.08 0.47 0.39 ± 0.06 0.61 0.58 ± 0.01 0.45 0.42 ± 0.03
SOP 0.74 0.63 ± 0.05 0.64 0.54 ± 0.05 0.54 0.45 ± 0.03 0.3 0.26 ± 0.01

Table 2.3: Performance of our algorithm by using activity observations from Office Flr. A to make
predictions in novel scenes. Each baseline method is run with a single parameter setting, and thus
their maxes and means are equivalent. The baseline methods “RFC", “Det.", and “NMF" correspond
to the Random Forest Classification, Object Detection AMs, and non-regularized NMF augmented
matrix approaches, respectively. Variants of our approach, SO, SP, and SOP correspond to using
“Spatial+Object Detection" kernels, “Spatial+Scene Classification" kernels, and “Spatial+Object
Detection+Scene Classification" kernels. Multiple metrics are considered to observe the effects of
ground-truth class imbalance, and means are used to quantify performance across a variety of
parameter settings.

Table 2.1 for the coverage statistics). Additionally, this experiments compares against performance of
the spatial kernel-only approach, which serves to illustrate the utility of including side-information.
However, as it takes some time to collect the observations of each scene, we demonstrate a second
set of experiments (Section 2.3.4), to showcase our method handling fractions of the already sparse
observation data while still maintaining reasonable performance. In Section 2.3.5, our third set of
experiments shows that if our method is presented with novel scenes for which there is zero activity

23

(a) Office Flr. A GT (b) Office Flr. B GT (c) Office Flr. D GT

(d) Office Flr. C GT (e) Home A GT (f) Legend

Figure 2.6: Ground truth labels and SFM points in each scene. Dotted lines indicate a doorway,
solid lines indicate walls.

demonstrations, our method can still make predictions in these new environments. This final set of
experiments also investigates which side-information is most helpful for our task.

2.3.1 Performance scoring

To evaluate an AM, we perform binary classification across all activities and compute mean F1
scores. We collect the ground truth activity classes for every image in the scene by retrieving them
from labelled grid cells, as shown in Figure 2.6, in a small triangle in front of each camera, which
represents the viewable space. We collect the predicted AM scores from the same grid cells and
average the scores to produce per-image AM scores. We used 100 evenly-spaced thresholds to
evaluate binary classification performance by averaging F1 scores across the thresholds. We report
F1 scores as opposed to the overall accuracy, as the overall accuracy of our method is very high
due to the large amount of space in each scene with no labelled functionality (a large amount of
“true negatives"). The activity classes we use are sit, type, open-door, read, write-whiteboard
and wash. This set of activities provides good coverage of common activities that a person can do
in an office or home setting. To summarize results, we compute the unweighted and weighted
averages of per-class F1 scores, where the weighted average is computed by using the normalized
counts of the GT classes in the images.

2.3.2 Preprocessing and parameters

The first step to build the AM is to build a physical map of the environment. We use Structure-
From-Motion (SFM) [242] with egocentric videos of a walk through of the environment to obtain a
3D reconstruction of the scene. Next, we consider two important categories of detectable actions: (1)
those that involve the user’s hands (gesture-based activities), and (2) those that involve significant
motion of the user’s head, or egomotion-based activities. We used the deep network architecture
inspired by [201] to perform activity detection, as the two stream network takes into account both
appearance (e.g., hands and objects) as well as motion (e.g., optical flow induced by ego-motion
and local hand-object manipulations). When actions are detected by our action recognition module,
we need a method for estimating the location of this action. We use the SFM model to compute the
3D camera pose of new images.

24

As we define an AM over a 2D ground plane (floor layout), we project the 3D camera pose
associated to an action to the ground plane. To obtain a ground plane estimate, we fit a plane to a
collection of localized cameras using SFM. We assume that the egocentric camera lies approximately
at eye level, thus this height plane is tangent to the top of the camera wearer’s head. We then translate
this plane along its normal, while iteratively refitting planes with RANSAC to points in the SFM
model. Once we have an estimate of the 2D ground plane in 3D space, we can use it to project the
localized actions onto the ground plane. When dealing with multiple scenes, distances must be
calibrated between them. We use prior knowledge of the user’s height to form estimates of the
absolute scale of each scene. Specifically, we use the distance between the ground plane and the
user height plane, along with a known user height, to convert distances in the reconstruction to
meters. Finally, we grid each scene with cells of size 0.25 meters. (we use a radius of 2 grid cells,
which is ∼ 0.5 meters after metric estimation).

Since actions are often strongly correlated with the surrounding area and objects, as shown in
Figure 2.4, we also extract the visual context of each action as a source of side-information. For every
image obtained with the wearable camera, we run scene classification and object detection with [253]
and [66]. We use the pre-trained “Places205-GoogLeNet" model for scene-classification, which yields
205 features per image, one per each scene type, and a radius of 2 grid cells inside which to average
the classification scores. For object detection, we use the pretrained “Bvlc_reference_rcnn_ilsvrc13"
model, which performs object detection for 205 different object categories, and use NMS with
overlap ratio 0.3, and min detection score 0.5.

We use a small grid of parameters for our method (α ∈ [0, .1, .3, .5, .7, .9, 1], λ ∈ [10−3, 10−2],
γ ∈ [100, 1000]), where each γ is used for the χ2 kernels, and evaluate performance of multiple runs
as the cross-run maximum and cross-run average of each of the various scores. In a scenario with
many additional test scenes, a single choice of parameters could be selected via cross-validation.
We also consider variations of our kernel that use different combinations of side-information:
Spatial+object detection (SO), Spatial+scene classification (SP), and Spatial+object detection+scene
classification (SOP). In the first two cases, the α

2 weight of Equation 2.1 becomes α for the object
detection or scene classification kernel that is on, and 0 for the other.

2.3.3 Full observation experiments

When all activity observations are available, our method is able to perform quite well. The dominant
source of error is that of camera localization, which reduces the spatial precision of the AM. In
Table 2.2, we evaluate the performance of our method run on each scene separately, as well as
running once with all of the scenes in a single matrix. When multiple scenes are used, side-
information is crucial: without it, there is no similarity enforced across scenes. In single scene
case, we find that using a spatial kernel only can perform well, yet is generally outperformed
by using all side information, especially when side information and activity demonstrations are
present from other scenes. By using the data from all scenes simultaneously in a global factorization,
performance increases globally over using each single scene’s data alone. This is expected and
desirable: simultaneous understanding of multiple scenes can improve as the set of available scenes
with observation data grows.

2.3.4 Partial observation experiments

We expose our algorithm to various fractions of the total activity demonstrations to simulate an
increasing amount of observed actions. We find that performance is high even with only a few
demonstrations and steadily increases as the amount of activity demonstrations increases. The
Office Flr. A, Office Flr. D, and Home A scenes have enough activity demonstration data to illustrate

25

the performance gains of our method as a function of the available data. We show quantitative
per-class results for these in Figure 2.5. Sharp increases can be observed in the per-class trends,
which correspond to the increase of coverage of each activity class. In Figure 2.7, we show the
overhead view of the AM for the sit and type labels for the Office Flr. A as a function of the
available data, where it can be seen how the AM qualitatively improves over time as observations
are collected.

2.3.5 Novel scene experiments

Another scenario is the task of predicting AMs for novel scenes containing zero activity observation
data. Our method leverages the appearance and activity observation data in one scene, and only
appearance data in the novel scene to make predictions. We now introduce three baselines we
consider. The first baseline is to perform per-image classification with the object detection and
scene classification features, which serves to estimate image-wise performance of using the object
detection and scene classification information. This baseline requires observations in a labelled
scene for training. We use Random Forests [30] as the classification method, trained on images
from the source scene. The second baseline we consider is non-regularized Weighted Nonnega-
tive Matrix Factorization by augmenting the target matrix R with the object detection and scene
classification features for each location. This baseline does not explicitly enforce the similarity that
the regularized framework does, thus, we expect it to not perform as well as our framework. The
third baseline we consider is to build AMs from the back-projected object detections by directly
associating each detection category with an activity category.

We use the Office Flr. A demonstration and appearance data as input and evaluate the perfor-
mance by applying the learned model to each of the other scenes. These results (Table 2.3) illustrate
that our method’s AM predictions outperform the baselines in 13

16 cases, and that the appearance
information is capitalized upon the most by our method. We find that scene classification is partic-
ularly beneficial to performance, a phenomenon for which we present two hypothesized factors:
1) as shown in [252] “object detectors emerge in deep scene CNNs", suggesting that the Scene
Classification features subsume the cues present in the object detector features, and 2) due to
localization noise, correlations between localized activities and localized objects are not as strong,
and can serve to introduce noise to the Spatial+Scene Classification kernel combination when this
object information is integrated.

Overall, we find that our model harnesses the power of activity observations in concert with the
availability of rich scene classification and object detection information to estimate the functionality
of environments both with and without activity observations. See the Supplementary Material for
additional novel scene experiments.

2.4 Action Maps for Localization

We demonstrate a proof-of-concept application of Action Maps to the task of localization. Intuitively,
by leveraging the “where an activity can be done" functional-spatial information from Action Maps,
along with “what activity has been done" functional information from activity detection, the user’s
spatial location is constrained to be in one of several areas. We localize activity sequences in each
2D map based on the combination of predicted action locations from the Action Map, and observed
actions in each frame. In Figure 2.8, we show the spatial discrepancy in grid cells between the
K-best AM location guesses decreases. Thus, an Action Map can be used to localize a person with
observations of their activity.

26

Figure 2.7: ’Sit’ (top row) and ’Type’ (bottom row) AMs as the amount of observed data increases
on Office Flr. A. The columns stand for 10%, 80%, and 100% of the data.

1 2 3 4 5 6 7
K

0

10

20

30

40

50

60

Av
er

ag
e

M
in

im
um

 D
is

ta
nc

e

Average Minimum Distance of WNMF Action Map Modes
 to Localized Sequence vs. Size of Query 'K'

sit
writing
opendoor
wash
typing
reading

Figure 2.8: Localizing with an Action Map and observed activities. Activities that are more
specialized are localized with less guesses.

2.5 Conclusion

We have demonstrated a novel method for generating functional maps of uninstrumented common
environments. Our model jointly considers scene appearance and functionality while consolidating
evidence from the natural vantage point of the user, and is able to learn from a user’s demonstrations
to make predictions of functionality of less explored and completely novel areas. Finally, our proof-
of-concept application hints at the breadth of future work that can exploit the rich spatial and
functional information present in Action Maps. These can be thought of as forecasting a one-step
future as a discrete action, as was shown in Fig. 2.1. Action maps are a fairly limited way to predict
behavior. They only modelled behavior as a one-off occurrence. The next step is to model sequences
of behavior.

27

Chapter 3

Forecasting Action Trajectories with
Online Inverse Reinforcement Learning

Figure 3.1: This chapter focuses on building a multi-step categorical forecasting approach.

3.1 Introduction

Our long-term aim is to develop an AI system that can learn about a person’s intent and goals
by continuously observing their behavior. Towards this goal, we propose an online Inverse Rein-
forcement Learning (IRL) technique to learn a decision-theoretic human activity model from video
captured by a wearable camera. The approach we will describe explicitly models discrete sequences
of behavior. Its situation within our framework is depicted in Fig. 3.1.

The use of a wearable camera is critical to our task, as human activities must be observed up
close and across large environments. Imagine a person’s daily activities—perhaps they are at home
today, moving about, completing tasks. Perhaps they are a scientist that conducts a long series of
experiments across various stations in a laboratory, or they work in an office building where they

28

Figure 3.2: Forecasting future behavior from first-person video. Overhead map shows likely
future goal states. si is user state at time i. Histogram insets display predictions of user’s long-term
semantic goal (inner right) and acquired objects (inner left).

Lab bench 1

Lab bench 2

Refrigerator

Cabinet Exit

Gel electrophoresis room

(a) Lab environment (b) Home 1 environment

Figure 3.3: Sparse SLAM points (3.3a) and offline dense reconstruction (3.3b) using [60] for two of
our dataset environments.

walk about their floor, get coffee, etc. As people tend to be very mobile, a wearable camera is ideal
for observing a person’s behavior.

Since our task is to continuously learn human behavior models from observed behavior captured
with a wearable camera, our task is best described as an online IRL problem. The problem is an
inverse Reinforcment Learning problem because the underlying reward or cost function of the
person is unknown. We must infer it along with the policy from the demonstrated behaviors. Our
task is also an online learning problem, because our algorithm must continuously learn as a part of a
life-long process. From this perspective, an online learning approach is required to learn effectively
over time.

29

We present an algorithm that incrementally learns spatial and semantic intentions (where you will
go and what you will do) of a first-person camera wearer. By tracking the goals a person achieves,
the algorithm builds a set of possible futures. At any time, the user’s future is predicted among this
set of goals. We term our algorithm “Discovering Agent Rewards for K-futures Online" (DARKO),
as it learns to associate rewards with semantic states and actions from demonstrations to predict
among K possible goals.

To the best of our knowledge, we present the first application of ideas from online learning
theory and inverse reinforcement learning to the task of continuously learning human behavior
models with a wearable camera. Our proposed algorithm is distinct from traditional IRL problems
as we jointly discover transitions, goals, and the reward function of the underlying Markov Decision
Process model. Our proposed human behavior model also goes beyond first-person trajectory
forecasting by predicting future human activities that can happen outside the immediate field of
view and far into the future.

3.2 Related Work

We extend a portfolio of visual sensing algorithms (SLAM, stop detection, scene classification, action
and object recognition) in concert with a decision-theoretic approach to model and forecast behavior
online. Several topics of related work cover components of our approach. We will summarize each
in the following and relate them to our approach.

3.2.1 First-person vision (FPV)

Wearable cameras have been used for various human behavior understanding tasks [53, 115, 119,
155, 187] because they give direct access to detailed visual information about a person’s actions.
Leveraging this feature of FPV, recent work has shown that it is possible to predict where people
will look during actions [119] and how people will use the environment [169]. Previous first-person
vision approaches are narrower in their scope of modeling relative to our approach: they are
batch models (learned once), and generally do not attempt to model predictions with respect to
information outside of the camera’s frame of view.

3.2.2 Decision-Theoretic Modeling

Given agent demonstrations, the task of inverse reinforcement learning (IRL) is to recover a reward
function of an underlying Markov Decision Process (MDP) [3]. IRL has been used to model taxi
driver behavior [257] and forecast pedestrian trajectories [101, 258]. In contrast to these approaches,
we go beyond physical trajectory forecasting by reasoning over future object interactions and both
uncovering and forecasting future goals in terms of scene types.

3.2.3 Online Learning Theory

The theory of learning to making optimal predictions from streaming data is well-studied [198], but
its fruits are seldom applied to computer vision (e.g. [33], [177]), compared to the more prevalent
application of supervised learning. However, we believe online learning theory and practice will
gain traction to confront the challenges of ever-increasing visual data. In the context of IRL, online
learning theory was used in [163], an imitation learning framework similar to IRL in its recovery of
costs, to analyze performance of a mobile robot path planner.

30

3.2.4 Forecasting

Our task fits in the broad category of forecasting with visual information. There are two primary
research thrusts in the forecasting category: trajectory and behavior forecasting. The former attempts
to predict an agent’s future behavior in 2D or 3D coordinates. The latter attempts to predict the
behavior of agents in terms of categories of low-level activities. However, the majority of the work
along these veins does not model or capitalize upon two key aspects of the problem: uncertainty in
the future behaviors (which requires predicting either a distribution or multiple samples), and the
goal-driven nature of agents. Agents generally take low-level motions and actions in order to achieve
goals. Our work explicitly forecasts and models goals with uncertainty.

3.2.4.1 Trajectory Forecasting

Physical trajectory forecasting has received much attention from the vision community. The task
is to predict the future spatial coordinates of an agent. Multiple human trajectory forecasting
from a surveillance camera was investigated by [127]. Other trajectory forecasting approaches use
demonstrations observed from a bird’s-eye view; [246] infers latent goal locations and [9] employ
LSTMs to jointly reason about trajectories of multiple humans. In [206], the model forecasted
short-term future trajectories of a first-person camera wearer by retrieving the nearest neighbors
from a dataset of first-person trajectories under an obstacle-avoidance cost function, with each
trajectory representing predictions of where the user will move in view of the frame; in [209], a
similar model with learned cost function is extended to multiple users.

A drawback of predicting future spatial coordinates of an agent is an interpetability gap. If a
person is tasked with predicting and communicating some agent’s future, they will not produce a
list of high-fidelity spatial coordinates — instead they will frame their prediction in the semantics of
activity. Methods that forecast interpretable futures grounded in categories of behavior are known
as activity forecasting.

3.2.4.2 Activity Forecasting

Activity forecasting methods typically treat the problem of predicting future behaviors as a clas-
sification task. In [84, 186], the tasks are to recognize an unfinished event or activity. In [84], the
model predicts the onset for a single facial action primitive, e.g. the completion of a smile, which
may take less than a second. Similarly, [186] predicts the completion of short human to human
interactions. In [107], a hierarchical structured SVM is employed to forecast actions about a second
in the future, and [232] demonstrates a semi-supervised approach for forecasting human actions a
second into the future. Other works predict actions several seconds into the future [34, 104, 118,
235]. In contrast, we focus on high-level transitions over a sequence of future actions that may occur
outside the frame of view, and take a longer time to complete (in our dataset, the mean time to
completion is 21.4 seconds).

3.3 Online IRL with DARKO

Our goal is to forecast the future behaviors of a person from a continuous stream of video captured
by a wearable camera. Given a continuous stream of FPV video, our approach extracts a sequence
of state variables {s1, s2, . . . } using a portfolio of visual sensing algorithms (e.g.., SLAM, stop
detection, scene classification, action and object recognition). In an online fashion, we segment
this state sequence into episodes (short trajectories) by discovering terminal goal states (e.g.., when
a person stops). Using the most recent episode, we adaptively solve the inverse reinforcement

31

learning problem using online updates. Solving the IRL problem in an online fashion means that
we incrementally learn the underlying decision process model.

3.3.1 First-Person Behavior Model

A Markov Decision Process (MDP) is commonly used to model the sequential decision process of a
rational agent. In our case, we use it to describe the activity of a person with a wearable camera.
In a typical reinforcement learning problem, all elements of the MDP are assumed to be known
and the task is to estimate an optimal policy π(a|s), that maps a state s to an action a, by observing
rewards. In our novel online inverse formulation, the transition function, reward function, policy,
and goal states are unknown and must be inferred as new video data arrives. Formally, our MDP is
defined as:

M = (S,A, T,Rθ).

3.3.2 States

S is the state space: the set of states an agent can visit. In our online formulation, S is initially empty,
and must be expanded as new states are discovered. We define a state s as a vector that includes the
location of the person (3D position), the last place the person stopped (a previous goal state), and
information about any object that the person might be holding. Formally, a state s ∈ S is denoted
as:

s = [x, y, z, o1 . . . , o|O|, h1, . . . h|K|].

The triplet [x, y, z] is a discrete 3D position. To obtain the position, we use a monocular visual
SLAM algorithm [135] to localize the agent in a continuously built map.

The vector o1 . . . , o|O| encodes any objects that the person is currently holding. We include this
information in the state vector because the objects a user acquires are strongly correlated to the
intended activity [53]. oj = 1 if the user has object j in their possession and zero otherwise. O is a
set of pre-defined objects available to the user. K is a set of pre-defined scene types available to the
user, which can be larger than the true number of scene types. The vector h1, . . . hK encodes the last
scene type the person stopped. Example scene types are kitchen and office. hi = 1 if the user last
arrived at scene type i and is zero otherwise.

3.3.3 Goals

We also define a special type of state called a goal state s ⊂ Sg, to denote states where the person has
achieved a goal. One of our methods assumes that when a person stops for a certain period of time,
their location in the environment is a goal. This method detect goal states by using a velocity-based
stop detector. Whenever a goal state is encountered, the sequence of states since the last goal state
to the current goal state is considered a completed episode ξ. The set of goals states Sg ⊂ S expands
with each detection. We explain later how Sg is used to perform goal forecasting.

3.3.4 Actions

A is the set of actions. A can be decomposed into two parts: A = Am ∪ Ac. The act of moving
from one location in the environment to another location is denoted as am ∈ Am. Like S , Am must
be built incrementally. The set Ac is the set of possible acquire and release actions of each object:
Ac = {acquire, release} × O. The act of releasing or picking up an object is denoted as ac ∈ Ac.
Each action ac must be detected. We do so with an image-based first-person action classifier. More
complex approaches could improve performance [126].

32

3.3.5 Transition Function

The transition function T : (s, a) 7→ s′ represents how actions move a person from one state to
the next state. T is constructed incrementally as new states are observed and new actions are
performed. In our work, T is built by keeping a table of observed (s, a, s′) triplets, which describes
the connectivity graph over the state space. More advanced methods could also be used to infer
more complex transition dynamics [214, 238].

3.3.6 Reward Function

R(s, a; θ) is an instantaneous reward function of action a at state s. The standard and simplest
parametric model of R is the inner product between a vector of features f(s, a) and a vector of
weights θ. We adopt this standard model, however, different representations could be employed
[244]. The reward function is essential in value-based reinforcement learning methods (in contrast
to policy search methods) as it is used to compute the policy π(a|s). In the maximum entropy
setting, the policy is given by π(a|s) ∝ eQ(s,a)−V (s), where the value functions V (s) and Q(s, a) are
computed from the reward function by solving the Bellman equations [257]. In our context, we
learn the reward function online.

Intuitively, we would like the features f of the reward function to incorporate information
such as the position in an environment or objects in possession, since it is reasonable to believe
that the goal of many activities is to reach a certain room or to retrieve a certain object. To this
end, we define the features of the reward to mirror the information already contained in the state
st: the position, previous scene type, and objects held. To be concrete, the feature vector f(s, a)
is the concatenation of the 3-d position coordinates [x, y, z], a K-dimensional indicator vector
over previous goal state type and a |O|-dimensional indicator vector over held objects. We also
concatenate a |Ac|-dimensional indicator vector over actions ac ∈ Ac.

3.3.7 The DARKO Algorithm

Algorithm 1 DARKO(SLAM, ACTDET, GOALDET)

1: s← 0, θ = 0,S = {} ,Sg = {}, T.INIT, ξ = []
2: while True do
3: frame← NEWFRAME

4: [x, y, z]← SLAM.TRACKframe
5: a← ACTDET[x, y, z], frame
6: ξ ← ξ ⊕ (s, a),S ← S ∪ {s}
7: T.EXPANDs, a, s← T (s, a)
8: I Goal forecasting, trajectory forecasting, . . .
9: is_goal← GOALDET(s, frame, Sg)

10: if is_goal then
11: Sg ← Sg ∪ {s}
12: π, θ ← ONLINEIRLθ, S, T , ξ, Sg
13: s← T (s, a = at_goal), ξ = []
14: end if
15: end while

We now describe our proposed algorithm for incrementally learning all MDP parameters, most
importantly the reward function, given a continuous stream of first-person video (see DARKO in

33

Algorithm 2 ONLINEIRL(θ, S , T , ξ, Sg; λ, B)

1: f i =
∑

(s,a)∈ξ f(s, a)
2: I Compute R(s, a; θ) ∀s ∈ S, a ∈ A
3: π ← SOFTVALUEITERATIONR, S,Sg, T
4: f̂i ← Eπ

[
f(s, a)

]
5: θ ← proj‖θ‖2≤B(θ − λ(f i − f̂i))
6: return π, θ

(a) Goal Posterior Before Mug Acquired (b) Goal Posterior After Mug Acquired

Figure 3.4: Goal Posterior Change Visualization: Goal posteriors for two frames are visualized in
the Home 1 environment. The person’s location is in green, images from the camera are inset at top
left, and goal posteriors are colored according to the above colormaps. Before grabbing the mug
(Figure 3.4a), DARKO forecasts roughly equivalent probability to bedroom and kitchen. After the
user grabs the mug (Figure 3.4b), DARKO correctly predicts the user is likeliest to go to the kitchen.

Algorithm 1). The procedure begins by initializing s, reward parameters θ, empty state space S,
goal space Sg, transition function T , and current episode ξ.

3.3.8 State Space Update

Image frames are obtained from a first-person camera (the NEWFRAME function), and SLAM is used
to track the user’s location (lines 3 and 4). An image-based action detection algorithm, ACTDET,
detects hand-object interactions ac and decides movements am as a function of current and previous
position. While we provide an effective method for ACTDET, our focus is to integrate (rather than
optimize) its outputs. Lines 6 and 7 show how the trajectory is updated and MDP parameters
of state space and transition function are expanded. Line 8 represents a collection of generalized
forecasting tasks (see Section 3.4.4), such as the computation of future goal posterior and trajectory
forecasting. An example of our primary forecasting task, goal forecasting, is illustrated in Figure 3.4.
Our method uses the current environment and policy models to forecast a distribution over the
person’s goals, described in more detail later. In the example, the distribution is initially uncertain
about the person’s goal, and then becomes confident the person will go to the goal in the kitchen,
given the evidence that they are in the office and recently acquired a mug.

34

3.3.9 Goal Detection

The GOALDET procedure denotes detecting new goals or recognizing previous goals. One of our
GOALDET implementations is a stop-detection algorithm. This uses the camera velocity computed
from SLAM (Line 9). If a goal state has been detected, that terminal state is added to the set of goal
states Sg. The detection of a terminal state also marks the end of an episode ξ. The previous goal
state type is also updated for the next episode. Again, while we provide two effective method for
GOALDET, our focus is to integrate (rather than optimize) its outputs.

3.3.10 Online Inverse Reinforcement Learning

With the termination of each episode ξ, the reward function R and corresponding policy π are up-
dated via the reward parameters θ (Line 12). The parameter update uses a sequence of demonstrated
behavior via the episode ξ, and the current parameters of the MDP. More specifically, ONLINEIRL
(Algorithm 2) performs online gradient descent on the likelihood under the maximum entropy
distribution by updating current parameters of the reward function. The gradient of the loss can be
shown to be the difference between the feature counts of the expert, f̄ , and feature counts of the
policy f̂ . Computing the gradient requires solving the soft value iteration algorithm of [255]. We
include a projection step to ensure ‖θ‖2 ≤ B.

To the best of our knowledge, this is the first work to propose an online algorithm for maximum
entropy IRL in the streaming data setting. Following the standard procedure for ensuring good
performance of an online algorithm, we analyze our algorithm in terms of the regret bound. The
regretRt of any online algorithm is defined as:

Rt({θi}ti=0) =
t∑
i=0

li(θi)−min
θ∗

t∑
i=0

l(θ∗).

The regret is the cumulative difference between the performance of the online model using current
parameter θ versus the best hindsight model using the best parameters θ∗. The loss lt is a function
of the t’th demonstrated trajectory, and measures how well the model explains the trajectory. In
our setup, the loss function is defined as li(θi; ξi) = − 1

|ξi|
∑|ξi|

j=0 log πθ(aj |sj). This loss function
must be convex wrt. θ for the following proof to hold. When the MDP dynamics are deterministic,
− logP (ξ|θ) is convex in θ [257] and − logP (ξ|θ) = − logP (s0) −

∑|ξi|
j=0 log πθ(aj |sj). Thus li is

convex in θ.

Theorem 1 (ONLINEIRL is no-regret). Let f̂ , f̄ ∈ [0, 1]d, ||θ||2 ≤ B. The regret of Algorithm 2 satisfies
Rt ≤ 2B

√
2td.

Proof. By Equation 2.5 of [198], the regret of online gradient descent on convex losses lt is bounded:

Rt ≤
1

2λ
‖θ‖22 + λ

t∑
i=1

‖∇θt‖22, (3.1)

where λ is the learning rate and ∇θt = ∂θlt. We will employ bounds on ‖θ‖22, ‖∇θt‖22, and a
minimizing choice of λ to prove the result. Writing the general gradient in terms of the expected
features (and omitting the subscript t):

‖∇θ‖22 = ‖f − f̂‖22 = f̄T f̄ + f̂T f̂ − 2f̄T f̂ (3.2)

35

Using:

0 ≤ ‖x− y‖22 = xTx+ yT y − 2xT y

2xT y ≤ xTx+ yT y

2(−x)T y ≤ (−x)T (−x) + yT y

−2xT y ≤ xTx+ yT y,

∴ −2f̄T f̂ ≤ f̄T f̄ + f̂T f̂ , (Setting x = f̄ , y = f̂)

then Equation 3.2 becomes:

‖∇θ‖22 ≤ f̄T f̄ + f̂T f̂ + f̄T f̄ + f̂T f̂ = 2f̄T f̄ + 2f̂T f̂

≤ 4d. (Since f̄ , f̂ ∈ [0, 1]d) (3.3)

Thus, using Equation 3.3 in Equation 3.1, and that the projection step of θ (constraining the set
of θ to be the convex ball with radius B) ensures ‖θ‖2 ≤ B:

Rt ≤
B2

2λ
+ λ

t∑
i=1

4d =
B2

2λ
+ 4λtd.

With the minimizing choice of λ = B
2
√

2td
,

Rt ≤ B
√

2td+
2Btd√

2td
= 2B

√
2td

Therefore, our algorithm is no-regret (limt→∞
Rt
t = 0), which guarantees the quality of our

continuous forecasting model with respect to one learned in batch. Our experiments also confirm
this property.

3.4 Generalized Activity Forecasting

Without Line 8, Algorithm 1 only describes our online IRL process to infer the reward function. In
order to make incremental predictions about the person’s future behaviors online, we can leverage
the current MDP and reward function. An important function which lays the basis for predicting
future behaviors is the state visitation function, denoted D. We now show how D can be modified
to perform generalized queries about future behavior.

3.4.1 State Visitation Function D

Using the current estimate of the MDP and the reward function, we can compute the policy of
the agent. Using the policy, we can forward simulate a distribution of all possible futures. This
distribution is called the state visitation distribution [255]. More formally, the posterior expected
count of future visitation to a state sx can be defined as

Dsx|ξ0→t , EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

I(sτ = sx)

 . (3.4)

36

This quantity represents the agent’s expectation to visit each state in the future given the partial
trajectory. ξ0→t indicates a partial trajectory starting at time 0 and ending at time t. The expectation is
taken under the maximum causal entropy distribution, P (ξt+1→T |ξ0→t), which gives the probability
of a future trajectory given the current trajectory. I is the indicator function, which counts agent
visits to sx. Equation 3.4 is estimated by sampling trajectories from πθ(a|s), and also is employed in
Algorithm 2, line 4 to compute f̂ .

3.4.2 Activity Forecasting with State Subsets

In this work, we extend the idea of state visitations to a single state sx to a more general subset
of states Sp. While a generalized prediction task was not particularly meaningful in the context
of trajectory prediction [101, 257], predictions over a subset of states now represents semantically
meaningful concepts in our proposed MDP. By using the state space representation of our first-
person behavior model, we can construct subsets of the state space that have interesting semantic
meaning, such as “having an object oi" or “all states closest to goal k with Oj set of objects."

Formally, we define the expected count of visitation to a subset of states Sp satisfying some
property p:

DSp|ξ0→t , EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

I(sτ ∈ Sp)

 (3.5)

=
∑
sx∈Sp

EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

I(sτ = sx)


=
∑
sx∈Sp

Dsx|ξ0→t . (3.6)

Equation 3.6 is essentially marginalizing over the state subspace of Equation 3.4.

3.4.3 Forecasting Trajectory Length

Leveraging Equation 3.6, we present a method to predict the length of the future trajectory. Formally,
we can denote the expected trajectory length:

τ̂ξt+1→T |ξ0→t , EP (ξt+1→T |ξ0→t) |ξt+1→T | (3.7)

Consider evaluating DSp|ξ0→t from Equation 3.6 by setting Sp = S, that is, by considering the
expected future visitation count to the entire state space. Then,

DS|ξ0→t = EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

I(sτ ∈ S)


= EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

1


= E |ξt+1→T | = τ̂ξt+1→T |ξ0→t (3.8)

where |ξ| indicates the number of states in trajectory ξ.

37

3.4.4 Future Goal Forecasting

As previously described, we wish to predict the final goal of a person’s action sequence. For
example, if I went to the study to pick up a cup, how likely am I to go to the kitchen versus the
living room? This problem can be posed as solving for the MAP estimate of P (g|ξ)∀g ∈ Sg, the
posterior over goals. It describes what goal the user seeks given their current trajectory, defined as:

P (g|ξ0→t) ∝ P (g)eVst (g)−Vs0 (g), (3.9)

where Vsi(g) is the value of g with respect to a partial trajectory that ends in si. The value function is
computed from the learned reward function, see [255] for details. Notice that the likelihood term is
exponentially proportional to the value difference between the start state s0 and the current state
st. In this way, the likelihood encodes the progress made towards a goal g in terms of the value
function. This progress is a function of the current spatial and activity trajectory, and encodes a
representation of how the person tends to behave. We illustrate that our model learns intuitive
values in Figure 3.4: the model becomes more certain in the person’s future goal after receiving
additional evidence (a detection that they acquired a mug).

3.4.5 Derivation of Other Forecasting Tasks

Our use of the Maximum Entropy Inverse Reinforcement Learning framework enables us to
construct additional meaningful inference tasks. While we do not evaluate these tasks, we provide
them to illustrate how our approach can be efficiently extended.

3.4.5.1 Action-Subspace Visitation

To derive the action-subspace visitation, we first use the posterior expected visitation count of
performing an action ay immediately after arriving at a state sx is given in Equation 3.10, from [255].

Day ,sx|ξ0→t , EP (ξt+1→T |ξ0→t)

 T∑
τ=t+1

I(sτ = sx, aτ = ay)

 (3.10)

Day ,sx|ξ0→t = π(ay|sx)Dsx|ξ0→t (3.11)

Our definition of the posterior expected action subspace visitation count is given in Equation 3.12.
This expresses the future expectation the user will perform an action ay while in a subspace Sp,
given their current trajectory ξ0→t. Hereafter, we denote E , EP (ξt+1→T |ξ0→t) for brevity.

Day ,Sp|ξ0→t , E

 T∑
τ=t+1

I(sτ ∈ Sp)I(aτ = ay)

 (3.12)

= E

 ∑
sx∈Sp

T∑
τ=t+1

I(sτ = sx, aτ = ay)


=
∑
sx∈Sp

E

 T∑
τ=t+1

I(sτ = sx, aτ = ay)


=
∑
sx∈Sp

Day ,sx|ξ0→t =
∑
sx∈Sp

π(ay|sx)Dsx|ξ0→t .

38

Thus, the posterior expected action subspace visitation is straightforward to compute with Dsx|ξ0→t .
Various inference tasks can be constructed by choosing ay and Sp appropriately.

3.4.5.2 Joint Action-State Subspace Visitation

We additionally derive the expected transition count from a subspace of states to a subspace of
actions. This expresses the expectation that the user will perform an ay ∈ Ay from a sx ∈ Sp. It is
defined as:

DAy ,Sp|ξ0→t , E

 T∑
τ=t+1

I(sτ ∈ Sp)I(aτ ∈ Ay)

 (3.13)

= E

 ∑
ay∈Ay
sx∈Sp

T∑
τ=t+1

I(sτ = sx, aτ = ay)


=
∑
ay∈Ay
sx∈Sp

E

 T∑
τ=t+1

I(sτ = sx, aτ = ay)


=
∑
ay∈Ay
sx∈Sp

Day ,sx|ξ0→t =
∑
ay∈Ay
sx∈Sp

π(ay|sx)Dsx|ξ0→t .

Again, computing this quantity is straightforward with Dsx|ξ0→t . By marginalizing Dsx|ξ0→ over
various action and state subspaces that have semantic meaning, different inference quantities can be
expressed and computed. The construction and evaluation of new and richer inference quantities is
a promising direction for future work.

3.5 Experiments

We first present the dataset we collected. Then, we discuss our methods for goal discovery and
action recognition. To reiterate, our focus is not to engineer these methods, but instead to make
intelligent use of their outputs in DARKO for the purpose of behavior modeling. We compare
DARKO’s performance versus several baselines on the task of goal forecasting, and show DARKO’s
performance is superior. Next, we analyze DARKO’s performance under less noisy conditions, to
illustrate how it improves when provided with more robust goal discovery and action detection
algorithms. Then, we illustrate DARKO ’s empirical no-regret performance, which further shows it
is an efficient online learning algorithm. Finally, we present trajectory length forecasting results,
and find that our length forecasts exhibit low median error.

3.5.1 First-Person Continuous Activity Dataset

We collected a dataset of sequential goal-seeking behavior in several different environments such as
home, office and laboratory. The users recorded a series of activities that naturally occur in each
scenario. Each user helped design the script they followed, which involved their prior assumptions
about what objects they will use and what goal they will seek. An example direction from a script is
“obtain a snack and plate in kitchen, eat at dining room table."

39

Table 3.1: Scene types available in each environment.

Environment Scene Type Set

Home 1 {bathroom, bedroom, exit, dining room,
kitchen, living room, office}

Home 2 {bathroom, bedroom, exit, dining room,
kitchen, living room, office, television stand}

Office 1 bathroom, exit, kitchen, lounge, office,
printer station, water fountain}

Office 2 {bathroom, exit, kitchen, lounge, office,
printer room, water fountain}

Lab 1 {cabinet stand, exit, gel room, lab bench 1,
lab bench 2, refrigeration room}

Table 3.2: Objects available in each environment.

Environment Object Set

Home 1 {bookbag, book, blanket, coat, laptop, mug,
plate, snack, towel}

Home 2 {bookbag, book, blanket, coat, guitar, laptop,
mug, plate, remote, snack, towel}

Office 1 {bookbag, textbook, bottle, coat, laptop, mug,
paper, plate, snack}

Office 2 {bookbag, textbook, bottle, coat, laptop, mug,
paper, plate, snack}

Lab 1 {beaker, coat, plate, pipette, tube}

Table 3.3: Labels example: A small snippet of ground truth labels for Home 1.

Frame Index 6750 6900 7200
Action/Arrival Release Coat Acquire Bookbag Arrive Office

Frame Index 7400 7630 7700
Action/Arrival Acquire Mug Arrive Kitchen Release Mug

Users wore a hat-mounted Go-Pro Hero camera with 94° vertical, 123° horizontal FOVs. Our
dataset is comprised of 5 user environments, and includes over 250 actions with 19 objects, 17
different scene types, at least 6 activity goals per environment, and about 200 high-level activities
(trajectories). In each environment, the user recorded 3–4 long sequences of high-level activities,
where each sequence represents a full day of behavior. Our dataset represents over 15 days of
recording. The scenes present in each environment are shown in Table 3.1, and the objects available
in each environment are shown in Table 3.2.

For evaluation, all ground truth labels of objects (e.g. cup, backpack), actions (i.e. acquire,
release) and goals (e.g. kitchen, bedroom) were first manually annotated. A goal label correspond to
when a high-level direction was completed, and in which scene it was completed, e.g. (dining room,
time=65s). An action label indicates when an activity was performed, e.g. (acquire, cup, time=25s).
A small example of labels is shown in Table 3.2.

40

Figure 3.5: Goal forecasting examples: A temporal sequence of goal forecasting results is shown in
each row from left to right, with the forecasted goal icons and sorted goal probabilities inset (green:
P (g∗|ξ), red: P (gi 6= g∗|ξ)). Top: the scientist acquires a sample to boil in the gel electrophoresis
room. Middle: the user gets a textbook and goes to the lounge. Bottom: the user leaves their
apartment.

3.5.2 Goal Discovery and Action Recognition

We describe two goal discovery methods and an action recognition method that we implemented to
serve as input to DARKO. With respect to Algorithm 1, these are GOALDET and ACTDET.

3.5.3 Scene-based Goal Discovery

This model assumes that if a scene classifier is very confident in the scene type for several images
frames, the camera wearer must be in a meaningful place in the environment (i.e.., kitchen, bedroom,

41

Table 3.4: Goal Discovery and Action Recognition. The per-scene goal discovery and action
recognition accuracies are shown for our methods. A 3-second window is used around every goal
discovery to compute accuracy.

Method Home 1 Home 2 Office 1 Office 2 Lab 1

Scene Discovery 0.93 0.24 0.62 0.49 0.32
Stop Discovery 0.62 0.68 0.67 0.69 0.73

Act. Recognition 0.64 0.63 0.66 0.56 0.71

office). We use the output of a scene classifier from [253] (GoogLeNet model) on every frame from
the wearable camera. If the mean scene classifier probability for a scene type is above a threshold
for 20 consecutive image frames, then we add the current state st to the set of goals Sg.

3.5.4 Stop-based Goal Discovery

This model assumes that when a person stops, they are at an important location. Using SLAM’s
3D camera positions, we apply a threshold on velocity to detect stops in motion. When a stop is
detected, we add the current state st to the set of goals Sg. In Table 3.4, temporal accuracies are
computed by counting detections within 3-second windows of ground truth labels as true positives;
for the scene-based method, a true positive also requires the scene type to match the ground truth
scene type. Stop-based discovery is more reliable across all environments, thus, we use it as our
primary goal discovery method.

3.5.5 Image-based Object Recognition

We designed an object recognition approach that classifies the object the user interacts with at
every temporally-labeled window. It overwrites the ground-truth object label with its detection.
The approach first detects regions of person in each frame with [165] to focus on objects near the
visible hands, which are cropped with context and fed into an image-classifier trained on ImageNet
[202]. The outputs are remapped to our object set, and a final classification is produced by taking
the maximum across objects. The per-action classification accuracies in Table 3.4 demonstrate the
method can produce reasonable action classifications across all scenes. While imperfect, these
detections serve as useful input to DARKO.

3.5.6 Goal Forecasting Performance

At every time step, our method predicts the user’s goal or final destination (e.g.., bedroom, exit) as
described in Section 3.4.4 and shown in Figure 3.5.

3.5.6.1 Baseline goal forecasting models

To understand the goal prediction reliability, we compare our approach to several baseline methods
for estimating the goal posterior P (g|ξ0→t), where g is a goal and ξ0→t is the observed state sequence
up to the current time step. Each baseline requires the state tracking and goal discovery components
of DARKO.

• Uniform Model (Uniform): This model returns a uniform posterior over possible goals
Pn(g) = 1/Kn known at the current episode n, defining worst case performance.

42

Table 3.5: Goal Forecasting Results (Visual Detections): Proposed goal posterior (Sec.3.4.4)
achieves best P g∗ (mean probability of true goal).

Method Home 1 Home 2 Office 1 Office 2 Lab 1

DARKO 0.524 0.378 0.667 0.392 0.473
MMED [84] 0.403 0.299 0.600 0.382 0.297
RNN 0.291 0.274 0.397 0.313 0.455
Logistic 0.458 0.297 0.569 0.323 0.348
Uniform 0.181 0.098 0.233 0.111 0.113

• Logistic Regression Model (Logistic): A logistic regression model Pn(g|st) is fit to map states
st to goals g. We used the implementation available in scikit-learn [151].

• Max-Margin Event Detection (MMED) [84]: A set of max-margin models Pn(g|φ(st:t−w)) are
trained to map features φ of a w-step history of state vectors st:t−w to a goal score. We found
the sumL1norm features provided with the publicly available code to perform the best, and
report those best results.

• RNN Classifier (RNN): An RNN is trained to predict Pn(g|ξ0→t). We experimented with a va-
riety of parameters and report the best results. After each goal is detected, the RNN is refit. The
settings we experimented with are cell ∈ {GRU, Basic}, learning rate∈ {0.1, 0.01, 0.001, 0.0001},
hidden dimension ∈ {8, 16, 32, 64}, epochs after each goal ∈ {5, 10, 50, 100}. We use the im-
plementations available in [1].

Since all methods above are online algorithms, each of the models Pn is updated after every
episode n. In order quantify performance with a single score, we use the mean probability assigned
to the ground truth goal type g∗ over all episodes {ξn}Nn=1:

P (g∗|{ξn}Nn=1) =
1

N

N∑
n=1

Tn∑
t=1

Pn(g∗|ξnt) (3.14)

We denote Equation 3.14 as P g∗ for brevity. The goal forecasting performance results are
summarized in Table 3.5 using P g∗ .

3.5.7 Goal Forecasting with Perfect Visual Detectors

The experimental results up to this point have exclusively used visual detectors as input (e.g.., SLAM,
scene classification, object recognition). While we have shown that our approach learns meaningful
human activity models from real computer vision input, we would also like to understand how our
online IRL method performs when decoupled from the noise of the vision-based input. We perform
the same experiments described in Section 3.5.6 but with idealized (ground truth) inputs for goal
discovery and action recognition. We still use SLAM for localization.

Table 3.6 summarizes the mean true goal probability for each of the dataset environments.
We observe a mean absolute performance improvement of 0.27 by using idealized inputs. Our
proposed model continues to outperform the baselines methods. This performance indicates that
as vision-based component technologies improve, we can expect significant improvements in the
ability to predict the goals of human activities.

We also measure performance when the action detection is built from ground truth and the goal
discovery is built from our described methods. Our expectation is that DARKO with stop-based

43

Table 3.6: Goal Forecasting Results (Labelled Detections): Proposed goal posterior achieves best
P g∗ (mean probability of true goal). Methods benefit from better detections.

Method Home 1 Home 2 Office 1 Office 2 Lab 1

DARKO 0.851 0.683 0.700 0.666 0.880
MMED [84] 0.648 0.563 0.589 0.624 0.683
RNN 0.441 0.322 0.504 0.454 0.651
Logistic 0.517 0.519 0.650 0.657 0.774
Uniform 0.153 0.128 0.154 0.151 0.167

Table 3.7: Visual goal discovery: Better goal discovery (cf. Table 3.4) yields better P g∗ . Here, action
detection labels are used to isolate performance differences.

Method Home 1 Home 2 Office 1 Office 2 Lab 1

Scene-based 0.438 0.346 0.560 0.238 0.426
Stop-based 0.614 0.395 0.644 0.625 0.709

Table 3.8: Feature Ablation Results: Full state and action features (Sec. 3.3.1) yield best goal
prediction results.

Feature Type Home 1 Home 2 Office 1 Office 2 Lab 1

State+Action 0.851 0.683 0.700 0.666 0.880
State only 0.735 0.574 0.581 0.549 0.892
Position only 0.674 0.597 0.605 0.622 0.886

discovery should outperform DARKO with scene-based based discovery, given the stop-detector’s
more reliable goal detection performance (Table 3.4). The results over the dataset are given in
Table 3.7, confirming our expectation.

3.5.8 Goal Forecasting Performance over Time

In additional to understanding the performance of goal prediction with a single score, we also plot
the performance of goal prediction over time. We evaluate the goal forecasting performance as a
function of the fraction of time until reaching the goal. In Figure 3.6, we plot the mean probability of
the true goal at each fractional time step P̂ (g∗|ξt) = 1

N

∑N
n=1 Pn(g∗|ξnt). Using fractional trajectory

length allows for a performance comparison across trajectories of different lengths.
As shown in Figure 3.6, DARKO exhibits the property of maintaining uncertainty early in the

trajectory and converging to the correct prediction as time elapses in most cases. In contrast, the
logistic regression, RNN, and MMED perform worse at most time steps. As it approaches the
goal, our method always produces a higher confidence in the correct goal with lower variance. We
tried argmax and Platt scaling [156] to perform multi-class prediction with MMED; argmax yielded
higher P g∗ , in addition to making P̂g∗ noisier. While the RNN sees many states, its trajectory-centric
hidden-state representation may not have enough data to generalize as well as the state-centric
baselines.

3.5.9 Reward Function Feature Ablation Analysis

In Table 3.8, we show the mean true goal probability when labels are used as detectors (to isolate
performance in the ideal case). While the purely positional representation of state performs well, it

44

Figure 3.6: Goal posterior forecasting over time: P̂g∗ vs. fraction of trajectory length, across all
trajectories. DARKO outperforms other methods and becomes more confident in the correct goal as
the trajectories elapse.

is almost always outperformed by the full representation of rewards that include features of both
the full state and action. In Lab 1, the simpler representations slightly outperform the full, due to the
relative simplicity of the high-level activities in Lab 1. Here, knowledge of the state and previous
goal alone is highly predictive of future goal. These results indicate that our method was able to (i)
make use of simple representations, and (ii) capitalize on more information present in the richer
representations without sacrificing performance where the representation is unnecessary.

3.5.10 Incorporating Detection Noise

Current paradigms in vision often yield noise in the action and goal detectors necessary for DARKO.
We hypothesize that judicious incorporation of these uncertainties can improve our method’s
performance. We first describe our method for incorporating uncertainty in each goal detection,
then conduct a performance analysis with synthetic noise. Then, we analyze the performance with
real, noisy goal detection. We find DARKO can still perform well with forms of noisy goal and
action detection. We find incorporating goal uncertainty significantly improves performance with
synthetic noise, and shows improvements in the real goal detector setting. These results show that
DARKO can tolerate the effects of noise, and further support the claim that it can enjoy the benefits
of better scene and activity detection algorithms.

45

Figure 3.7: Relative improvement from incorporating goal uncertainty. Per-scene violin plots,
means, and standard deviations are shown. Per-scene one-sided paired t-tests are performed,
testing the hypotheses that incorporating goal uncertainty improves goal prediction performance.
A * indicates p < 0.05, and ** indicates p < 0.005.

3.5.10.1 Harnessing goal detection confidence

In many scenarios, probability ρg ∈ [0, 1] may be associated with each goal detection. We designed
an effective method for handling real-world uncertainty. For known perfect goals, SOFTVALUEITER-
ATION uses V (g) = 0, ∀g ∈ Sg. Each goal is a maxima of the value function V (s) ∈ (−∞, 0],∀s ∈ S
and represents a reward of 1 in log space. We replace each goal value with its log-probability: V (g) =
ln ρg, which has the effect of biasing the policy towards goals with greater certainty. This results from
the value iteration assigning higher value to states and actions closer to more certain goals, which
makes the policy likelier to visit them. For example, if the goal detector yields a false positive of
bathroom in the same area as a true positive detection of kitchen, the goal prediction posteriors for
both goals will suffer, unless the false positive has an associated low ρg (high uncertainty), in which
case the policy is biased towards the correct goal of kitchen.

3.5.10.2 Noise analysis

To test the efficacy of the goal detection confidence weighting approach, we first analyze DARKO un-
der the effect of adding noise to the GT. We add incorrect goal detections with probabilities
ρg ∼ N (0.1, 0.05), under various amounts of noise inserted uniformly at random across time:
from 10%, 20%, . . . , 90% of the number of original goal detections. For every scene, at each noise
amount, we sample noise 5 times, and run DARKO with and without goal uncertainty for each
corrupted sample, resulting in 225 paired experiments that evaluate the average goal forecasting
probability. Per-scene results are shown in Figures 3.7. A one-sided Wilcoxon signed-rank test supports
the hypothesis that incorporating high goal uncertainty yields better goal posterior prediction performance
than not incorporating the uncertainty with p < 10−7.

3.5.11 Empirical Regret Analysis

We empirically show that our model has no-regret with respect to the best model computed in
hindsight under the MaxEntIRL loss function (negative log-loss). In particular, we compute the
regret (cumulative loss difference) between our online algorithm and the best hindsight model

46

Figure 3.8: Empirical regret. DARKO exhibits sublinear convergence in average regret. Initial noise
is overcome after DARKO adjusts to the user’s early behaviors.

Figure 3.9: Noisy Empirical Regret. DARKO’s online behavior model exhibits sublinear conver-
gence in average regret. Initial noise is overcome after DARKO adjusts to learning about the user’s
early behaviors.

using the batch MaxEntIOC algorithm [257] at the end of all episodes. We plot the average regret Rtt
for each environment in the dataset in Figure 3.8. The average regret of our algorithm approaches
zero over time, matching our analysis.

We additionally show the empirical regret when using our goal discovery and action detection
methods in Figure 3.9. We observe somewhat noisier regret behavior than in the original case, as
the underlying demonstrations are noisier. The number of trajectories in Office 2 is higher here due
to errors in the goal forecasting method, resulting in more goals being detected, which segments
the demonstrations into more trajectories.

3.5.12 Evaluation of Trajectory Length Estimates

Our model can also be used to estimate how long it will take a person to reach a predicted goal
state. We predict the expected trajectory length as derived in Section 3.4.1. For the n-th episode, we
use the normalized trajectory length prediction error defined as εn =

∑Tn
t=1

|τnt−τ̂nt|
τnt

, where τnt is
the true trajectory length and τ̂nt (Eq. 3.8) is the predicted trajectory length. Proper evaluation of
trajectory length towards a goal is challenging because our approach must learn valid goals in an
online fashion. When a person approaches a new goal, our approach cannot accurately predict the
goal because it has yet to learn that it is a valid goal state. As a result, our algorithm makes wrong
goal predictions during episodes that terminate in new goal states. If we simply evaluate the mean
performance, it will be dominated by the errors of the first episode terminating in a new goal state.

We evaluate median εn over all N episodes. The median is not dominated by the errors of the
first episode toward a new goal. We find most trajectory length forecasts are accurate, evidenced by

47

Table 3.9: Trajectory length forecasting results. Error is relative to the true length of each trajectory.
Most trajectory forecasts are fairly accurate.

Statistic Home 1 Home 2 Office 1 Office 2 Lab 1

Med. % Err. 30.0 34.8 17.3 18.4 6.3
Med. % Err. NN 29.0 33.5 42.9 36.0 35.4

Mean |ξ| 20.5 31.0 27.1 13.7 23.5

the median of the normalized prediction error in Table 3.9. We include a partial-trajectory nearest
neighbors baseline (NN). In Lab 1, the median trajectory length estimate is within 6.3% of the true
trajectory length.

3.6 Visualizations

We provide example 3D visualizations of (i) future state visitation and (ii) the value function. These
visualizations were produced in Mayavi [160], and include the SLAM points.

3.6.1 Future state visitation visualizations

See Figure 3.10 for example visualizations of the expected future visitation counts. In order to
visualize in 3 dimensions, we take the max visitation count across all states at each position. In rows
1, 2, and 3, a single demonstration is shown, which adapts to the agent’s trajectory (history). In row
4, the future state distribution drastically changes after each time the agent reaches a new goal.

Figure 3.10: Future state visitation predictions changing as the agent (blue sphere) follows their
trajectory. The state visitations are projected to 3D by taking the max over all states at each location.
The visualizations are, by row: Office 1, Home 1, Lab 1

48

Figure 3.11: Projections of the value function (V (s)) for environments as time elapses (left to right).
The state space expands as the user visits more locations. For each position, the maximum value
(across all states at that position) is displayed: maxs∈Sx V (s). From top to bottom, the environments
are Home 1, Office 1, Lab 1.

3.6.2 Value function visualizations

See Figure 3.11 for example visualizations of the value function over time. Note 1) the state space
size changes, and 2) that the value function changes over time, as the component of state that
indicates the previous goal affects the value function.

3.7 Conclusion

We proposed the first method for continuously modeling and forecasting a first-person camera
wearer’s future semantic behaviors at far-reaching spatial and temporal horizons. Our method
goes beyond predicting the physical trajectory of the user to predict their future semantic goals,
and models the user’s relationship to objects and their environment. We have proposed several
efficient and extensible methods for forecasting other semantic quantities of interest. Exciting
avenues for future work include building upon the semantic state representation to model more
aspects of the environment (which enables forecasting of more detailed futures), validation against
human forecasting performance, and further generalizing the notion of a “goal" and how goals are
discovered.

This model of sequential behavior extends the discrete single-behavior capability of Chapter 2
to discrete sequential behaviors. However, it cannot represent the continuous underlying mo-
tions of high-level activities. We seek this modeling capability in order to recover a finer-grained
understanding of the future.

49

Chapter 4

Forecasting Motion Trajectories with
Deep Reversible Generative Models

4.1 Introduction

Figure 4.1: This chapter focuses on building a multi-step continuous motion forecasting approach.

We consider forecasting a vehicle’s trajectory (i.e., predicting future paths). Forecasts can be
used to foresee and avoid dangerous scenarios, plan safe paths, and model driver behavior. Context
from the environment informs prediction, e.g. a map populated with features from imagery and
LIDAR. We would like to learn a context-conditioned distribution over spatiotemporal trajectories
to represent the many possible outcomes of the vehicle’s future. With this distribution, we can
perform inference tasks such as sampling a set of plausible paths, or assigning a likelihood to a
particular observed path. Sampling suggests routes and visualizes the model; assigning likelihood
helps measure the model’s quality. This approach’s capability to forecast motion as a sequence of
continuous points makes it more powerful than discrete sequence modeling. Its situation within
our contributions is depicted in Fig. 4.1.

Our key motivation is to learn a trajectory forecasting model that is simultaneously “diverse"—

50

Figure 4.2: Left: Natural image input. Middle: generated trajectories (red circles) and true, expert
future (blue squares) overlaid on LIDAR map. Right: Generated trajectories respect approximate
prior p̃, here a “cost function," overlaid as a heatmap. Making the expert paths likely corresponds
to minπH(p, qπ). Only producing likely paths corresponds to steering the trajectories away from
unlikely territory via minπH(qπ, p̃). Doing both, i.e. producing most of the likely paths while mostly
producing likely paths corresponds to minπH(p, qπ) + βH(qπ, p̃).

covering all the modes of the data distribution—and “precise" in the sense that it rarely generates
bad trajectories, such as trajectories that intersect obstacles. Fig. 4.2 contrasts a model trained to
cover modes, versus a model trained to cover modes and generate good samples, which generates
fewer samples hitting perceived obstacles.

To achieve these ends, we propose learning a distribution over trajectories qπ that minimizes a
symmetrized cross-entropy between qπ and the training data distribution, p. We represent qπ as a
trajectory distribution induced by rolling out (simulating) a stochastic one-step policy π for T steps
to produce a trajectory sample x. Denoting the scene context by φ, our objective can be written as

min
π

Ex∼p − log qπ(x|φ)︸ ︷︷ ︸
H(p,qπ)

+β Ex∼qπ − log p̃(x|φ)︸ ︷︷ ︸
H(qπ ,p̃)

(4.1)

The two cross-entropy terms serve complementary purposes, as illustrated in Fig. 4.3: H(p, qπ)
encourages qπ to cover the modes of p, but fails to adequately penalize generating “low-quality"
samples; H(qπ, p̃) encourages qπ to produce “high-quality" samples likely under an approximate
data density p̃, but is insensitive to mode loss.

We advocate using the symmetrized cross-entropy metrics for both training and evaluation of
trajectory forecasting methods. This is made feasible by viewing the distribution qπ as the push-
forward of a base distribution under the function gπ that rolls-out (simulates) a stochastic policy π
(see Fig. 4.4b). This idea (also known as the reparameterization trick, [47, 99]) enables optimization of
model-sample quality metrics such as H(qπ, p̃) with SGD. Our representation also admits efficient
accurate computation of H(p, qπ), even when the policy is a very complex function of context and
past state, such as a CNN.

Consider, for instance, the middle subfigure of Fig. 4.3: H(qπ, p) ≈ 1
2(M ′0 − log ε). We can derive

this by analyzing the relative supports of the good and bad versions of qπ. Suppose qπ is the good
reference model and q′π is the bad model illustrated in the middle figure. We assume q′π is a mixture
of qπ and a “rotated” version of qRπ that rotates the support of qπ into the pictured obstacles, such
that q′π(x) = 0.5qπ(x) + 0.5qRπ (x). Let A = support(qπ) and B = support(qRπ). Assume A and B are

51

Figure 4.3: Illustration of the complementarity of cross-entropies H(p, qπ) (top) and H(qπ, p) (bot-
tom). Dashed lines show past vehicle path. Light blue lines delineate samples from the data (expert)
distribution p. Samples from the model qπ are depicted as red lines. Green areas represent obstacles
(areas with low p). The left figure shows cross-entropy values for a reference model. Other figures
show poor models and their effects on each metric. ε is a very small nonnegative number. This
Figure is based on graphics created by Paul Vernaza.

approximately disjoint. We then have

H(q′π, p) = −
∫
q′π(x) log p(x)dx (4.2)

= −
∫
A∪B

(
1

2
qπ(x) +

1

2
qRπ (x)) log p(x) (4.3)

≈ −1

2

∫
A
qπ(x) log p(x) +−1

2

∫
B
qRπ (x) log p(x) (4.4)

Assuming log p(x) ≈ ε, ∀x ∈ B, we then have H(q′π, p) ≈ 1
2(M ′0 − log ε). The other terms can be

derived via similar analyses.
We present the following novel contributions: 1) recognize and address the diversity-precision

trade-off of generative forecasting models and formulating a symmetrized cross-entropy training
objective to address it; 2) propose to train a policy to induce a roll-out distribution minimizing this
objective; 3) use the pushforward parameterization to render inference and learning in this model
efficient; 4) refine an existing deep imitation learning method (GAIL) based on our parameterization;
5) illuminate deficiencies of previously-used trajectory forecasting metrics; 6) outperform state-
of-the-art forecasting and imitation learning methods, including our improvements to GAIL; 7)
present CALIFORECASTING, a novel large scale dataset designed specifically for vehicle ego-motion
forecasting.

4.2 Related Work

Trajectory Forecasting prior work spans two primary domains: trajectories of vehicles, and trajectories
of people. The method of [114] predicts future trajectories of wide-receivers from survellience
video. In [16, 101, 128, 246] future pedestrian trajectories are predicted from surveillence video.
Deterministic vehicle predictions are produced in [93], and deterministic pedestrian trajectories are
produced in [8, 147, 178]. However, non-determinism is a key aspect of forecasting: the future is
generally uncertain, with many plausible outcomes. While several approaches forecast distributions
over trajectories [62, 113], global sample quality and likelihood have not been considered or
measured, hindering performance evaluation.

52

Activity Forecasting is distinct from trajectory forecasting, as it predicts categorical activities. In
[84, 107, 185, 186], future activities are predicted via classification-based approaches. In [170], a
first-person camera wearer’s future goals are forecasted with Inverse Reinforcement Learning (IRL).
IRL has been applied to predict and control robot, taxi, and pedestrian behavior [101, 163, 256].

Imitation Learning can be used to frame our problem: learn a model to mimic an agent’s behavior
from a set of demonstrations [3]. One subtle difference is that in forecasting, we are not required
to actually execute our plans in the real world. IRL is a form of imitation learning in which a
reward function is learned to model demonstrated behavior. In the IRL method of [245], a cost map
representation is used to plan vehicle trajectories. However, no time-profile is represented in the
predictions, preventing use of time-profiled metrics and modeling. GAIL [83, 121] is also a form of
IRL, yet its adversarial framework and policy optimization are difficult to tune and lead to slow
convergence. By adding the assumption of model dynamics, we derive a new differentiable GAIL
training approach, supplanting the noisy, inefficient policy gradient search procedure. We show
this easier-to-train approach achieves better performance in our domain.

Image Forecasting methods generate full image or video representations of predictions, endowing
their samples with interpretability. In [232–234], unsupervised model are learned to generate
sequences and representations of future images. In [235], surveillance image predictions of vehicles
are formed by smoothing a patch across the image. [236] and [231] also predict future video frames
with an intermediate pose prediction. In [57], predictions inform a robot’s behavior, and in [228],
policy representations for imitation and reinforcement learning are guided by a future observation
forecasting objective. In [23], image boundaries are predicted. One drawback to image-based
forecasting methods is difficulty in measurement, a drawback shared by many popular generative
models.

Generative models have surged in popularity [47, 70, 74, 83, 113, 233, 254]. However, one major
difficulty is performance evaluation. Most popular models are quantified through heuristics that
attempt to measures the “quality" of model samples [113]. In image generation, the Inception
score is a popular heuristic [190]. These fail to measure the learned distribution’s likelihood, the
gold standard of evaluating probabilistic models. Notable exceptions include [47, 100], which also
leverage invertible pushforward models to perform exact likelihood inference.

4.3 Approach

We approach the forecasting problem from an imitation learning perspective, learning a policy (state-
to-action mapping) π that mimics the actions of an expert in varying contexts. We are given a set
of training episodes (a short car path trajectory) {(x, φ)n}Nn=1. Each episode (x, φ)n has x ∈ RT×2

as a sequence of T two-dimensional future vehicle locations and φ as an associated set of side
information. In our implementation, φ contains the past path of the car and a feature grid derived
from LIDAR and semantic segmentation class scores. The grid is centered on the vehicle’s position
at t = 0 and is aligned with its heading.

Repeatedly applying the policy π from a start state with the context φ results in a distribution
qπ(x|φ) over trajectories x, since our policy is stochastic. Similarly, the training set is drawn from a
data distribution p(x|φ). We therefore train π so as to minimize a divergence between qπ and p. This
divergence consists of a weighted combination of the cross-entropies H(p, qπ) and H(qπ, p̃). The
distribution p̃ is an approximation to p, which we assume cannot be evaluated. As discussed in
Sec. 4.3.1.3, we might choose p̃ to be approximately uniformly distributed over non-obstacle regions.
In the following, Φ denotes the distribution of ground-truth features:

min
π

Eφ∼Φ

[
−Ex∼p(·|φ) log qπ(x|φ)− βEx∼qπ(·|φ) log p̃(x|φ)

]
. (4.5)

53

(a) (b)

Figure 4.4: (a) Consider making trajectories inside the yellow region on the road likelier by increasing
log qπ(x) for the demonstration x ∼ p inside the region. This is achieved by making an infinitesimal
region around g−1

π (x) more likely under q0 by moving the region (yellow parallelogram, size
proportional to |detJgπ |−1) towards a mode of q0 (here, the center of a Gaussian), and making the
region bigger. Increasing log p̃(x) for some sample x ∼ qπ is equivalent to sampling a (red) point z
from q0 and adjusting π so as to increase log p̃(q0(z)). (b) Pushing forward a base distribution to a
trajectory distribution. Both Figures are based on graphics created by Paul Vernaza.

The motivation for this objective is illustrated in Fig. 4.3. The two factors are complementary.
H(p, qπ) is intuitively similar to recall in binary classification, in that it is very sensitive to the model’s
ability to produce all of the examples in the dataset, but is relatively insensitive to whether the
model produces examples that are unlikely under the data. H(qπ, p̃) is intuitively similar to precision
in that it is very sensitive to whether the model produces samples likely under p̃, but is insensitive
to qπ’s likelihood to produce all samples in the dataset.

4.3.1 Pushforward distribution modeling

Optimizing Eq equation 4.5 presents at least two challenges: we must be able to evaluate qπ(x|φ)
at arbitrary x in order to compute H(p, qπ), and we must be able to differentiate the expression
Ex∼qπ(·|φ) log p̃(x|φ). We address these issues by constructing a learnable bijection, gπ between
samples from qπ and samples from a simple noise distribution q0, as illustrated in Fig. 4.4b; in
our construction, the bijection is intepreted as a simulator mapping noise to simulated outcomes.
This assumption allows us to evaluate the required expressions and derivatives via the change-of-
variables formula and the reparameterization trick.

Specifically, let gπ(z;φ) : RT×2 → RT×2 be a simulator mapping noise sequences z ∼ q0 and
scene context φ to forecasted outcomes x. Then the distribution of forecasted outcomes qπ(x|φ) is
fully determined by q0 and gπ: this distribution is known as the pushforward of q0 under gπ, as we
are using gπ to “push forward” a distribution defined on the domain of gπ to one defined on its
codomain. If gπ is differentiable and invertible, then qπ can be derived from the change-of-variables
formula for multivariate integration:

qπ(x|φ) = q0

(
g−1
π (x;φ)

)∣∣det Jgπ(g−1
π (x;φ))

∣∣−1
, (4.6)

where Jgπ(g−1
π (x;φ)) is the Jacobian of gπ evaluated at g−1

π (x;φ). This resolves both of the aforemen-
tioned issues: we can evaluate qπ and we can rewrite Ex∼qπ log p̃(x) as Ez∼q0 log p̃(gπ(z;φ)), since
gπ(z;φ) ∼ qπ. The latter allows us to move derivatives wrt. π inside the expectation, as q0 does not

54

depend on π. Eq. equation 4.5 can then be rewritten as:

min
π
−Eφ∼ΦEx∼p(·|φ) log

q0(g−1
π (x;φ))∣∣det Jgπ(g−1

π (x;φ))
∣∣ − βEz∼q0 log p̃(gπ(z;φ)|φ) (4.7)

Fig. 4.4a illustrates how this representation aids learning.
We note ours is not the only way to represent qπ and optimize Eq. equation 4.5. As long as qπ

is analytically differentiable in the parameters, we may also apply REINFORCE [240] to obtain
the required parameter derivatives. However, empirical evidence and some theoretical analysis
suggests that the reparameterization-based gradient estimator typically yields lower-variance
gradient estimates than REINFORCE [61]. This is consistent with the results we obtained in Sec. 2.3.

4.3.1.1 An invertible, differentiable simulator.

In order to exploit the pushforward density formula equation 4.6, we must ensure gπ is invertible
and differentiable. Inspired by [47, 98], we define gπ as an autoregressive map, representing the
evolution of a controlled, discrete-time stochastic dynamical system with additive noise. Denoting
[x1, . . . , xt−1] as x1:t−1, and [x1:t−1, φ] as ψt, the system is:

xt , µπt (ψt; θ) + σπt (ψt; θ)zt, (4.8)

where µπt (ψt; θ) ∈ R2 and σπt (ψt; θ) ∈ R2×2 represent the stochastic one-step policy, and θ its
parameters. The context, φ, is given in the form of a past trajectory xpast = x−Hpast+1:0 ∈ R2Hpast ,
and overhead feature map M ∈ RHmap×Wmap×C : φ = (xpast,M). Note that the case σπ = 0 would
correspond to simply evolving the state by repeatedly applying µπ—though this case is not allowed,
as then gπ would not be invertible. However, as long as σπt is invertible for all x, then gπ is invertible,
and it is differentiable in x as long as µπ and σπ are differentiable in x. Since xτ1 is not a function
of xτ2 for τ1 < τ2, the determinant of the Jacobian of this map is easily computed, because it is
triangular (see supplement). Thus, we can easily compute terms in Eq. 4.7 via the following:

[g−1
π (x)]t = zt = σπt (ψt; θ)

−1(xt − µπt (ψt; θ)) (4.9)

log
∣∣det Jgπ(g−1

π (x;φ))
∣∣ =

∑
t

log
∣∣det

(
σπt (ψt; θ)

)∣∣ (4.10)

We note that qπ can also be computed via the chain rule of probability. For instance, if zt ∼ is
standard normal, then the marginal distributions are

qπ(xt|ψt) = N (xt;µ = µπt (ψt; θ),Σ = σπt (ψt; θ)σ
π
t (ψt; θ)

>). (4.11)

However, since it is still necessary to compute gπ in order to optimize H(qπ, p̃), we find it simplifies
the implementation to compute qπ in terms of gπ.

Our path distribution can be thought of being parameterized by a continuous action-space policy,
in the following way. The output of our stochastic policy is a distribution over continuous actions:
π(at−1|ψt−1; θ). The state-state transition dynamics in general continuous-action RL problems can
be written as:

p(xt|ψt−1) =

∫
p(xt|ψt−1, at−1)π(at−1|ψt−1; θ)dat−1

By taking p(xt|ψt−1, at−1) = δ(xt − at−1), i.e., assuming the policy can fully control the state
dynamics, in that it chooses an action, and the next state is the Dirac delta function about that chosen
action, we receive p(xt|ψt−1) = π(xt|ψt−1). This means that qπ(xt|ψt) = π(xt|ψt−1; θ). Therefore, we
can think of the policy as the one-step marginal qπ(xt|ψt) = N(xt;µ

π
t (ψt), σ

π
t (ψt)σ

π
t (ψt)

>).

55

4.3.1.2 Derivation of Jacobian and its determinant

Given the recursive rollout equation :

xt = 2xt−1 − xt−2 + µt(ψt) + σt(ψt)zt,

then

Jgπ(g−1
π (x)) =

dgπ

dg−1
π (x)

=


σπ1 (ψ1), 0 . . . 0

dx2
z1

σπ2 (ψt) . . . 0
...

. . . 0
dxT
z1

dxT
z2

. . . σπT (ψT)

 .
Therefore,

log

∣∣∣∣∣∣det

(
dgπ

dg−1
π (x)

)∣∣∣∣∣∣ = log

∣∣∣∣∣∣
T∏
t=1

det(σπt (ψt))

∣∣∣∣∣∣ =

T∑
t=1

log
∣∣det(σπt (ψt))

∣∣ .
4.3.1.3 Prior approximation of the data distribution.

Evaluating H(qπ, p) directly is unfortunately impossible, since we cannot evaluate the data distribu-
tion p’s PDF. We therefore propose approximating it with a very simple density estimator p̃ ≈ p
trained independently and then fixed while training qπ. Simplicity reduces sample-induced variance
in fitting p̃—crucial, because if p̃ severely underestimates p in some region R due to sampling error,
then H(qπ, p̃) will erroneously assign a disproportionate penalty to samples from qπ landing in R.

We consider two options for p̃—first, simply using a kernel density estimator with a relatively
large bandwidth. Since we have only one training sample per episode, this reduces to a single-kernel
model. Choosing an isotropic Gaussian kernel, H(qπ, p̃) becomes Ex̂∼qπ(·|φ)‖x− x̂‖2/γ2, where (x, φ)
constitutes an episode from the data. The net objective equation 4.5 in this case corresponds to
H(p, qπ) plus a mean squared distance penalty between model samples and data samples.

The second possibility is making an i.i.d. approximation; i.e., parameterizing p̃ as p̃(x | φ) =∏
t p̃c(xt | φ). We proceed by discretizing xt in a large finite region centered at the vehicle’s start

location; p̃c then corresponds to a categorical distribution with L classes representing the L possible
locations. Training the i.i.d. model can then be reduced to training p̃c via logistic regression:

min
p̃
−Ex∼p log p̃(x) = max

θ
Ex∼p

∑
t

−Cθ(xt, φ)− log
L∑
y=1

exp−Cθ(y, φ), (4.12)

where Cθ = − log p̃c can be thought of as a spatial cost function with parameters θ. We found it useful
to decompose Cθ(y) as a sum C0

θ (y) + C1
θ (y, φ), where C0

θ ∈ RL is thought of as a non-contextual
location prior, and C1

θ (y, φ) has the form of a convolutional neural network acting on the spatial
feature grid in φ and producing a grid of scores ∈ RL. Fig. 4.5 shows example learned C1

θ (·, φ).

4.3.2 Policy modeling

We turn to designing learnable functions µπt and σπt . Across our three models, we use the following
expansion: µπt (ψt) = 2xt − xt−1 + µ̂πt (ψt). The first terms correspond to a constant velocity step
(xt + (xt − xt−1)), and let us interpret µ̂πt as a deterministic acceleration. Altogether, the update
equation (Eq. 4.8) mimics Verlet integration [230], used to integrate Newton’s equations of motion.

56

(a) CALIFORECASTING Prior Examples (b) KITTI Prior Examples

Figure 4.5: The prior penalizes positions corresponding to obstacles (white: high cost, black: low
cost). The demonstrated expert trajectory is shown in each scene.

“Linear”: The simplest model uses µ̂πt , St linear in ψt:

µ̂πt (ψt) = Aht + b0, St(ψt) = Bht + b1, (4.13)

with A ∈ R2×2H , ht = xt−H:t−1 ∈ R2H , B ∈ R4×2H , bi ∈ R2H , and St(ψt) ∈ R2×2. To ensure
positive-definiteness of σπt , we use the matrix exponential [136]: σπt = expm(St + S>t), which
we found to optimize more efficiently than σπt = StS

>
t . Here, H is taken to be the maximum

past size of 20. To enhance numerical stability, we “soft-clipped” the input S of expm(S + S>) in
the following elementwise transformation, which prevents σπt from shrinking arbitrarily small.
softclip(S,L) = S

softmax(1,‖S‖F /L) . We used L = 5.
“Field”: The Linear model ignores M : it has no environment perception. We designed a CNN

model that takes in M and outputs O ∈ RHmap×Wmap×6. The 6 channels in O are used to form
the 6 components of µπt and St in the following way. To ensure differentiability, the values in O
are bilinearly interpolated at the current rollout position, xt in the spatial dimensions (Hmap and
Wmap) of O. and Tab. 4.1 for the parameters of each layer. The input H and W dimensions are
downsampled to 64× 64, and the output dimensions are upsampled back to 100× 100. In addition
to the LIDAR and semantic segmentation channels used in the input, we added an H ×W × 1
channel of grid (pixel) coordinates, an H ×W × 1 channel of pixel distances to the car origin in

57

Table 4.1: R2P2 Field Architecture. The input H and W dimensions are downsampled to 64× 64,
and the output dimensions are upsampled back to 100 × 100. s+ stands for the softplus layer:
s+(x) = log(1 + expx).

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13
Kernel Size 3 3 3 3 3 3 3 3 3 3 3 3 1

Dilation 1 1 1 1 2 4 8 4 2 1 1 1 1
Channels 32 32 32 32 32 32 32 32 32 32 32 32 6

Activation s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ tanh tanh Identity

Figure 4.6: RNN and CNN Policy models. The Field model produces a map of values to use for
producing µπ, σπ through interpolation. The RNN model uses the same base as the Field model
as well as information from the past trajectory to decode a featurized context representation and
previous state to next µπ, σπ.

pixel coordinates, (H/2, 0). Finally, a signed distance transform feature is added to the input, which
takes the road channel from the segmentation as input, and outputs the signed distance to the road
at each pixel. The final input array is of shape H ×W × (1 + Cs + 3), with H = W = 50, 1 layer for
the LIDAR map, Cs channels for the semantic segmentation, and Cs = 18 in the CALIFORECASTING

model, Cs = 12 for the KITTI model.
“RNN”: The Linear and Field models reason with different contextual inputs: Linear uses the past,
and CNN uses the feature map M . We developed a joint model to reason with both. M is passed
through a CNN similar to Field’s. The past is encoded with a GRU-RNN. Both featurizations inform
a GRU-RNN that produces µπt , St. See Figure 4.6 for a diagram of the architecture. The R2P2
RNN architecture builds upon the Field architecture, using the same CNN architecture settings
until the last layer. The past encoding used is produced by a GRU RNN over the past states with
150 units. The last layer from the CNN architecture is flattened and concatenated with the past
encoding to form the “static” contextual input, which is passed through a 2-layer MLP with 50
hidden and 50 output units, with softplus activations. The “dynamic” input, in the sense of its
dependence on t, is formed from a fixed-length zero-padded vector of flattened previous states
x1, . . . , xt−1. This input is passed into a GRU RNN cell to “decode” x1 . . . , xT to a 150 dimensional
vector, which is concatenated with the “static” output to form the “joint” feature, which is passed
through independent MLPs to form the µπt , σπt .

4.3.3 GAIL and Differentiable GAIL

As a deep generative approach to imitation learning, our method is comparable to Generative
Adversarial Imitation Learning (GAIL [83]). GAIL is model-free: it is agnostic to model dynamics.
However, this flexibility requires an expensive model-free policy gradient method, whereas the
approach we have proposed is fully differentiable. The model-free approach is significantly dis-
advantaged in sample complexity [96, 164] in theory and practice. By assuming the dynamics are

58

known and differentiable, as described in Sec. 4.3.1.1, we can also derive a version of GAIL that
does not require model-free RL, since we can apply the reparameterization trick to differentiate
the generator objective with respect to the policy parameters. A similar idea was explored for
general imitation learning in [17]. We refer to this method as R2P2 GAIL. As our experiments show,
R2P2 GAIL significantly outperforms standard GAIL, and our main model (R2P2) significantly
outperforms and is easier to train than both GAIL and R2P2 GAIL.

4.3.3.1 R2P2 GAIL derivation

Formally, the GAIL policy seeks to optimize the following expected γ-discounted log-discriminator
returns objective:

maxθEx∼qθJ(x) =

∫
dxqθJ(x) =

∫
dxqθ

T∑
t=1

γt−1 logDω(xt, at) (4.14)

In GAIL, qθ includes unknown model dynamics, thus∇θqθ cannot be computed. Optimization
of Eq. 4.14 is done through the policy gradient shown in Eq 4.15. R2P2 GAIL can compute ∇θqθ
through its use of differentiable dynamics inside qθ. The R2P2 GAIL gradient of Eq. 4.14 is shown
in Eq. 4.16.

Ex∼qθ
[
J(x)∇θ log πθ(at|x)

]
(4.15) Ez∼q0∇θJ(gθ(z)) (4.16)

Therefore, we can directly optimize the objective without relying on the indirect optimization
approach of policy gradients. We verify in our experiments that our approach is stabler and achieves
better performance.

The GAIL training objective may be expressed as follows [121]:

min
θ

max
ω

Eπθ logDω(s, a) + EπE log(1−Dω(s, a))− λH(π), (4.17)

where (s, a) are understood to be drawn from the marginal state-action distributions associated with
either the model policy πθ or the expert policy πE , as indicated by subscripts of E. The following
equivalent expression makes this more explicit:

min
θ

max
ω

 E
st∼(qπθ)t
at∼(πθ)t

t∼Unif({1,...,T})

logDω(st, at) + E
st∼(qπE)t
at∼(πE)t

t∼Unif({1,...,T})

log(1−Dω(st, at))

− λH(πθ),

where (qπ)t denotes the marginal distribution of states at time t induced by rolling-out policy π, (π)t
denotes the expected distribution of actions at time t, and Unif represents the uniform distribution.
From the perspective of the outer optimization (i.e., holding ω fixed), we observe that the objective
function has a form commonly treated in reinforcement learning: minθ Ex∼qπJπ(x), where Jπ(x) is
the interior expression. Using the pushforward reparameterization, the outer optimization may be
written as

min
θ

E
z∼qb

t∼Unif({1,...,T})

logD(gπθ(z)t, πθ(z)t)− λ logH(πθ(z)t), (4.18)

where gπθ(z)t denotes the roll-out of policy πθ with random noise sequence z, evaluated at time t;
and πθ(z)t denotes the policy evaluated with z at time t. Here, we regard πθ(z) as a deterministic

59

function that returns the action at given the random noise sequence z. Using the form of gπ, we
have

πθ(z)t := µθt (x1:t−1, φ) + σθt (x1:t−1)zt,

since we identify the states with the actions.
From Eq. equation 4.18, it is easy to see that the differentiability of gπθ wrt. θ trivially allows

us to obtain a stochastic gradient of Eq. equation 4.18 wrt. θ by moving the derivative inside the
integral.

4.4 Experiments

We implemented R2P2 and baselines with the primary aim of testing the following hypotheses.
1) The ability to exactly evaluate the model PDF should help R2P2 obtain better solutions than
methods that do not use exact PDF inference (which includes GAIL). 2) The optimization of H(p, qθ)
should be correlated with the model’s ability to cover the training data, in analogy to recall in
binary classification. 3) Including H(qθ, p̃) in our objective should improve sample quality relative
to methods without this term, as it serves a purpose analogous to precision in binary classification.
4) R2P2 GAIL will outperform GAIL through its more efficient optimization scheme.

4.4.1 The CALIFORECASTING Dataset

Current public datasets such as KITTI are suboptimal for the purpose of validating these hypotheses.
KITTI is relatively small and was not designed with forecasting in mind. It contains relatively
few episodes of subjectively interesting, nonlinear behavior. For this reason, we collected a novel
dataset specifically designed for the ego-motion forecasting task, which we make public. The data
is similar to KITTI in sensor modalities, but the data was collected so as to maximize the number
of intersections, turning, and other subjectively interesting episodes. The data was collected with
a sensor platform consisting of a Ford Transit Connect van with two Point Grey Flea3 cameras
mounted on the roof in a wide-baseline configuration, in addition to a roof-mounted Velodyne
VLP16 LIDAR unit and an IMU. The initial version of the dataset consists of three continuous driving
sequences, each about one hour long, collected in mostly suburban areas of northern California
(USA). The data was post-processed to produce a collection of episodes in the previously described
format. The overhead feature map was populated by pretraining a semantic segmentation network
[219], evaluating it on the sequences, correlating them with the LIDAR point cloud, and binning the
resulting semantic segmentation scores in addition to a height-above-ground plane feature. With a
subsampling scheme of 2Hz, CALIFORECASTING consists of over 10,000 training, 1,200 validation
and 1,200 testing examples. The KITTI splits, in comparison, are about 3,100 training, 140 validation,
and slightly less than 500 test examples with a subsampling scheme of 1Hz.

4.4.2 Metrics and Baselines

4.4.2.1 Metrics

Our primary metrics are the cross-entropy distribution metrics H(p, qθ) and H(qθ, p̃). Note that
H(p, qθ) is lower-bounded by the entropy of p, H(p), by Gibbs’ inequality. Subtracting this quantity
(computing KL) would be ideal; unfortunately, since H(p) is unknown, we simply report H(p, qθ).
We also note that cross-entropy is not coordinate-invariant: we use path coordinates in an ego-
centric frame that is a rotation and translation away from UTM coordinates (in meters) and report
cross-entropy values for path distributions in this frame.

60

Figure 4.7: Possible objectives and their attributes. minθH(p, qθ) encourages data coverage,
minθH(qθ, p̃) penalizes bad samples. Measuring mean squared error is misleading when the
data is multimodal, and measuring mean squared error of the best sample fails to measure quality
of samples far from the demonstrations. This Figure is based on graphics created by Paul Vernaza.

A subtle related issue is that H(p, qθ) may be unbounded below since H(p) may be arbitrarily
negative. This phenomenon arises when the support of p is restricted to a submanifold—for example,
if for x ∼ p and x1 − x2 = b, the distribution q(x) ∝ exp(−‖x1−x2−b‖2/ε2 + ‖x‖2/2) achieves arbitrarily
low values of H(p, qθ). We resolve this by slightly perturbing training and testing samples from p:
i.e. instead of computing H(p, qθ), we compute −Eη∼N (0,εI)Ex∼p log q(x+ η) for ε = 0.001. This is
lower-bounded by H(N (0, εI)), which resolves the issue.

4.4.2.2 Lower-bounding the perturbed cross-entropy

The naïve cross-entropy metric −Ex∼p log q(x) is unbounded below when the entropy of p is un-
bounded below. This happens in practice, for example, when the data deterministically satisfies
some linear or nonlinear constraint. To avoid this problem, we employ a perturbed version of the
cross-entropy metric for both training and evaluation. Specifically, we use the metric

− Eη∼µEx∼p log q(x− η). (4.19)

In practice, we choose the perturbation distribution µ to be Gaussian with zero mean and covariance
εI for simplicity.

We now show that the value of the perturbed cross-entropy is lower-bounded by the entropy of
the perturbation distribution, which eliminates singularity of the metric, as long as the perturbation
distribution has finite entropy. We first note that Eq. equation 4.19 can be written as H(p̃, q), where
p̃ is the convolution of p with µ: p̃(x) ,

∫
p(y)µ(x− y) dy = Ey∼pµ(x− y). Gibbs’ inequality implies

H(p̃, q) ≥ H(p̃), so it is sufficient to show that H(p̃) ≥ H(µ). Observe that

H(p̃) = −
∫

Ey∼pµ(x− y) logEy∼pµ(x− y) dx (4.20)

≥ −Ey∼p
∫
µ(x− y) logµ(x− y) dx (4.21)

= −Ey∼p
∫
µ(z) logµ(z) dz (4.22)

= H(µ), (4.23)

where the inequality results from applying Jensen’s inequality to the entropy function (which is
concave), and we subsequently applied the change of variables z = x − y. Note that we have

61

applied Jensen’s inequality in the following way:

Ey∼pH(µ(· − y)) ≤ H(Ey∼pµ(· − y)), (4.24)

where µ(· − y) denotes the distribution µ̃(x|y) := µ(x− y).

4.4.2.3 Cross-entropy is not coordinate-invariant

Some care must be taken when reporting cross-entropy values because cross-entropy is not
coordinate-invariant; this implies that the same model will achieve different cross-entropy values
depending on what units the data are expressed in, for example. Fortunately, it is fairly simple to
compute how the cross-entropy changes under coordinate transformations. Suppose p : X → R+

and q : X → R+ are distributions on X , and f : X → Z is a differentiable, invertible coordinate
transformation from X to Z. We wish to compute H(f∗p, f∗q) in terms of H(p, q), where f∗µ rep-
resents the pushforward measure of µ under the map f . Using the notation dfx to represent the
Jacobian of f evaluated at point x, direct computation shows:

H(f∗p, f∗q) = −
∫
p(f−1(z))|det dff−1(z)|−1 log

(
q(f−1(z))|det dff−1(z)|−1

)
dz (4.25)

= −
∫
p(x) log(q(x))|det dfx|−1 dx (4.26)

= H(p, q) + Ex∼p log |det dfx|, (4.27)

where the second line follows from using f to change variables in the integral from z to x. For
example, if z = f(x) = cx, and x ∈ Rd, then Ex∼p log |det dfx| = d log |c|. Therefore, we could make
H(f∗p, f∗q) arbitrarily negative by setting c to a very small positive number.

We include two commonly used sample metrics [8, 24, 77, 113, 188], despite the shortcomings
illustrated in Fig. 4.7. We measure the quality of the “best" sample from K samples from qθ: X̂ ,
relative to the demonstrated sample x via EX̂k∼qθ minx̂∈X̂k ‖x− x̂‖

2 (known as “minMSD"). This
metric fails to measure the quality of all of the samples, and thus can be exploited by an approach
that predicts samples that are mostly poor. Additionally, we measure the mean distance to the
demonstration of all samples in X̂ : 1

K

∑K
k=1 ‖x − x̂k‖2 (known as “meanMSD"). This metric is

misleading if the data is multimodal, as the metric rewards predicting the mean, as opposed to cov-
ering multiple outcomes. Due to the deficiencies of these common sample-based metrics for measuring the
quality of multimodal predictions, we advocate supplementing sample-based metrics with the complementary
cross-entropy metrics used in this work.

4.4.2.4 Baselines.

We construct a simple a unimodal baseline: given the context, the distribution of trajectories is given
as a sequence of Gaussian distributions. This is called the Gaussian Direct Cross-Entropy (DCE-G).
As discussed in Section 4.3.3, we apply Generative Adversarial Imitation Learning (GAIL), along
with our modified GAIL framework, R2P2 GAIL. We constructed several variants of GAIL: with
and without the (improved) Wasserstein-GAN [12, 74] parameterization, with and without our
novel R2P2 GAIL formulation, and using the standard MLP discriminator, versus a CNN-based
discriminator with a similar architecture to the Field model. Conditional Variational Autoencoders
(CVAEs) are a popular approach for modeling generative distributions conditioned on context. We
follow the CVAE construction of [113] in our implementation. One key distinguishing factor is that
CVAEs cannot perform exact inference by construction: given an arbitrary sample, a CVAE cannot

62

MLP Discriminator CNN MLP Discriminator

Layer 1 2 3 1 2
Units 100 100 1 128 1

Activation tanh tanh Identity or softmax tanh Identity or softmax

Table 4.2: GAIL Discriminators

Figure 4.8: CROSS Trimodal Evaluation. Top: Qualitative results. Bottom: Quantitative results. A ∗

indicates R2P2, and a † indicates using a WGAN Discriminator.

Approach DCE-G GAIL GAIL† CVAE [113] GAIL∗ GAIL∗† Linear∗ Field∗ RNN∗

Test −H(p, qθ) -0.005 14.10 16.71 – 40.79 36.53 59.20 98.99 120.7
Test minMSD 56.90 28.29 21.54 0.001 28.61 1.264 28.54 1.179 0.0006

produce a PDF value. Quantification of CVAE performance is thus required to be approximation-
based, or sample-based. Our approaches are implemented in Tensorflow [1]. Architectural details
of each approach are discussed below.

For the GAIL discriminator, we use the MLP form as depicted in Table 4.2. This is the original
form of the GAIL Discriminator [83]. The final activation is Softmax in the case of the original
formulation, and Identity in the case of the WGAN-variant.

In order to build a context-dependent discriminator (a function of the side information, φ), we
used the same CNN architecture for the R2P2 Field model, except the output layer has 32 final
channels. “State features" ft are extracted from this output layer by the same bilinear interpolation
process as in the Field model. These features are then passed into the MLP shown in Table 4.2. As
before, the final activation is Softmax in the case of the original formulation, and Identity in the case
of the WGAN-variant.

For DCE, we employ the same past-encoding technique as previously described. The past
encoding state is passed into a GRU RNN decoder that takes a one-hot vector that indicates the t of
the rollout. The decoder produces 5-dimensional vectors, with the first two components used to
parameterized µπt , and the latter three components used to parameterize the upper triangle of σπt .

4.4.3 CROSS Trimodal Experiments

Our first set of experiments is designed to test the multimodal modeling capability of each approach
in an easy domain. The contextual information is fixed – a single four-way intersection, along with
three demonstrated outcomes: turning left, turning right, and going straight. Figure 4.8 shows
qualitative and quantitative results. We see that several approaches fail to model multimodality
well in this scenario. RNN. The models that can perform exact inference (all except CVAE) cover the
modes with different success, as measured by Test −H(p, qθ). We observe the models minimizing
H(p, qθ) cover the data well, supporting hypothesis 2 (coverage hypothesis), and outperform both
GAIL approaches, supporting hypothesis 1 (exact inference hypothesis). We observe R2P2 GAIL
outperforms GAIL in this scenario, supporting hypothesis 4 (optimization hypothesis). We also note

63

Table 4.3: CALIFORECASTING and KITTI evaluation, K = 12

CALIFORECASTING Approach Test −H(p, qθ) Test minMSD Test meanMSD Test −H(qθ, p̃)

DCE-G −1.604± 0.02 4.953± 0.18 11.66± 0.27 −129.2± 0.43
GAIL-WG [83] 27.43± 0.03 9.117± 0.27 36.77± 2.50 −221.5± 2.40
CVAE [113] ≈ 10.1± 0.9 1.680± 0.12 9.961± 0.25 −122.2± 0.48

R2P2 GAIL-WG 45.55± 0.07 5.529± 0.33 25.12± 0.80 −152.1± 1.00
R2P2 GAIL-WG CNN 43.55± 0.08 4.937± 0.26 26.59± 0.96 −154.3± 1.20

R2P2 Linear 64.02± 0.11 2.339± 0.14 10.51± 0.39 −144.5± 1.00
R2P2 Linear β = 0.1 61.57± 0.10 2.387± 0.13 11.27± 0.44 −134.1± 0.76
R2P2 Field 54.56± 0.11 2.171± 0.13 11.59± 0.39 −142.5± 0.75
R2P2 Field β = 0.1 53.88± 0.11 2.162± 0.11 10.87± 0.39 −132.8± 0.54
R2P2 RNN 70.20± 0.11 1.530± 0.12 11.25± 0.29 −125.0± 0.53
R2P2 RNN β = 0.1 66.89± 0.12 1.860± 0.14 10.68± 0.30 −119.0± 0.44
R2P2 RNN γ = 1.0 65.12± 0.12 1.661± 0.11 8.542± 0.22 −124.8± 0.48

KITTI Approach Test −H(p, qθ) Test minMSD Test meanMSD Test −H(qθ, p̃)

DCE-G −1.884± 0.03 6.217± 0.30 15.20± 0.62 −137.0± 0.72
GAIL-WG [83] 39.53± 0.11 5.517± 0.34 20.08± 2.00 −188.8± 1.76
CVAE [113] ≈ 9.22± 0.9 1.436± 0.15 9.593± 0.52 −133.8± 1.21

R2P2 GAIL-WG 47.45± 0.16 4.062± 0.25 13.80± 1.10 −168.9± 1.50
R2P2 GAIL-WG CNN 42.49± 0.12 4.601± 0.30 19.87± 1.34 −164.2± 1.43

R2P2 Linear 62.39± 0.14 2.438± 0.16 16.16± 1.26 −163.4± 1.50
R2P2 Linear β = 0.1 63.82± 0.16 2.587± 0.15 28.33± 1.40 −151.1± 1.40
R2P2 Field 64.71± 0.18 1.717± 0.13 10.34± 0.59 −139.2± 1.10
R2P2 Field β = 0.1 62.79± 0.29 1.639± 0.13 10.92± 0.59 −126.9± 0.77
R2P2 RNN 67.70± 0.20 1.574± 0.15 10.46± 0.57 −131.6± 0.91
R2P2 RNN β = 0.3 65.80± 0.21 1.282± 0.09 9.352± 0.55 −130.8± 0.87

the failure of DCE-G: its unimodal model is too restrictive for covering the diverse demonstrated
behavior.

4.4.4 CALIFORECASTING Experiments and KITTI Experiments

We conducted larger-scale experiments designed to test our hypotheses. First, we trained p̃ on
each dataset by the procedure described in Sec. 4.3.1.3. As discussed, our goal was to develop a
simple model to minimize overfitting: we used a 3-layer Fully Convolutional NN. In the resulting
spatial “cost" maps, we observe the model’s ability to perceive obstacles in its assignment of low
cost to on-road regions, and high-cost to clearly visible obstacles (e.g Fig. 4.5). We performed
hyperparameter search for each method, and report the mean and its standard error of test set
metrics corresponding to each method’s best validation loss in Table 4.3. These results provide
us with a rich set of observations. Of the three baselines, none catastrophically failed, with CVAE
most often generating the cleanest samples. Across datasets and metrics, our approach achieves
performance superior to the three baselines and our improved GAIL approach. By minimizing
H(p, qθ), our approach results in higher Test −H(p, qθ) than all GAIL approaches, supporting the
coverage and optimization hypotheses. We find that by incorporating our prior with nonzero
β, hypothesis 3 is supported: our model architectures can improve the quality of its samples as
measured by the Test −H(qθ, p̃). We observe that our GAIL optimization approach yields higher
Test −H(p, qθ), supporting hypothesis 4. We plot means and its standard error of the minMSD
metrics as a function of K in Fig 4.12 for all 3 datasets.

We also find that qualitatively, our approach usually generates the best samples with diversity
along multiple paths and precision in its tendency to avoid obstacles. Fig. 4.10 illustrates results

64

Figure 4.10: CALIFORECASTING Results. Comparison of R2P2 RNN (middle-left), CVAE (middle-
right), and R2P2 GAIL (right). Trajectory samples are overlaid on overhead LIDAR map, colored by
height. Bottom two rows: Comparison of β = 0 (top) and β = 0.1 (bottom), overlaid on p̃ cost map.
The cost map improves sample quality.

65

Figure 4.11: Comparison of using β on CALIFORECASTING test data. Top row: With β = 0, some tra-
jectories are forecasted into obvious obstacles. Bottom row: With β 6= 0, many forecasted trajectories
do not hit obstacles.

Figure 4.12: Test mink MSD vs. K on CROSS, CALIFORECASTING, and KITTI.

66

on our dataset for our method, CVAE, and our improved GAIL approach. Fig. 4.11 illustrates
qualitative examples for how incorporating nonzero β can improve sample quality.

4.5 Discussion

This work has raised the previously under-appreciated issue of balancing diversity and precision
in probabilistic trajectory forecasting. We have proposed training a policy to induce a simulated-
outcome distribution that minimizes a symmetrized cross-entropy objective. The key technical step
that made this possible was a parameterizing the model distribution as the pushforward of a simple
base distribution under the simulation operator. The relationship of this method to deep generative
models was noted, and we showed that part of our full model enhances an existing deep imitation
learning method. Empirically, we demonstrated that the pushforward parameterization enables
reliable optimization of the objective, and that the optimized model has the desired characteristics
of both covering the training data and generating high-quality samples. Finally, we introduced a
novel large-scale, real-world dataset designed specifically for the vehicle ego-motion forecasting
problem.

With respect to Chapter 2 and Chapter 3, we now have an approach to model finer-grained
behavior than discrete actions. The ability to model high-dimensional sequences of continuous
behavior is more general than the ability to either model a singular discrete action or a trajectory of
discrete actions. Although discrete models can be made higher-dimensional with finer levels of
discretization and classification, this requires choosing the level of discretization and finer-grained
labels of behavior. It can be difficult to classify behaviors into discrete entities during labeling, as it
requires drawing subjective boundaries between types of behavior. In contrast, recording the pose or
the positions of the relevant entities is generally well-defined objectively. We believe that modeling
the future poses of relevant entities is a more general, and therefore useful, problem to solve than
modeling discrete sequences of behavior. Longer timescales at which it would make more sense to
model symbolic behaviors are outside the scope of this thesis (e.g. consider planning a trip from
one city to another).

One drawback of this work is that the approach for learning p̃ was somewhat heuristic. We now
turn towards a new approach that continuously updates its approximation of p, similar to the style
of other generative adversarial approaches.

4.6 Improving The Reverse KL Approximation

Although recent progress in GANs and variational methods have significantly advanced the
capabilities of generative models for high-dimensional data, many issues still limit the practical
application of such methods. In practice, GANs typically suffer from mode loss, whereas VAEs
suffer from poor sample quality compared to GANs [12, 88, 243]. Several factors may be identified as
contributing to these issues: first, the training loss may optimize for sample quality at the expense of
mode coverage or vice-versa; second, the variance of stochastic gradient estimates may be too high
to admit efficient stochastic optimization; finally, the models may not admit a good regularization
scheme via the imposition of appropriate inductive biases.

We advocate a novel approach to address these concerns, with a particular focus on the latter
issue of regularization. Let p : RN → R+ denote the PDF of a continuous data distribution and
q : RN → R+ denote the PDF of a learned model. Following recent work [172], we advocate training
a generative model to minimize the Jeffrey (symmetric KL) divergence minq KL(p, q) + KL(q, p),
representing q in a way that enables it to be efficiently evaluated at any point (i.e., by representing

67

q as a pushforward distribution induced by an invertible warp [47, 97, 166]). In this work, we
propose the key innovation of applying Fenchel-duality-based variational inference to KL(q, p),
which allows the latter to be optimized without having to explicitly evaluate p. This yields the
following variational approximation of the Jeffrey divergence, which constitutes the training loss
for our method:

min
q∈Q

Ex̂∼p log
p(x̂)

q(x̂)
+ sup

ν>0
−Ex̂∼p

q(x̂)

ν(x̂)
+ Ex∼q log

q(x)

ν(x)
, (4.28)

where the variational parameters consist of the function ν. We now assert and later elaborate the
following properties of the Jeffrey divergence and its variational approximation equation 4.28: first,
KL(p, q) essentially prevents mode loss, whereas KL(q, p) prevents the generation of any samples
unlikely under the data [25, 88]; second, an exactly unbiased stochastic gradient of KL(p, q) may
be obtained without variational inference; finally, the optimal value of ν is p. The second key
innovation of our work is to recognize that—in contrast to traditional GANs, which admit no
comparable regularization principle—this model may be effectively regularized by imposing any
domain-specific structure possessed by p on ν, which we thence interpret as a structured Gibbs
distribution.

These concepts are illustrated in Fig. 4.13. Figure 4.13a shows the result of training a model q to
optimize KL(p, q), where q is represented as the pushforward of a Gaussian base distribution under
an autoregressive warp in two dimensions [47, 97, 166]. We observe that the generated samples
effectively cover all the data modes, since a huge penalty is incurred if q(x) is low for any data point
x ∼ p; however, the generator additionally places mass outside the support of the data distribution
p, because shifting half of q’s mass onto the support of p decreases KL(p, q) by no more than log 2;
therefore, this objective effectively under-constrains q. We can resolve the ambiguity by adding the
variationally-approximated KL(q, p) term, which trains log ν to approximate log p while penalizing
the generation of samples where log ν is low, as shown in Fig. 4.13b-d. By choosing different forms
for log ν, we see that the ambiguity can be resolved in different ways: in Fig. 4.13b, log ν is chosen
to have contours roughly matching the support of p, whereas Fig. 4.13c-d show the cases where
log ν is represented as quadratic and as the output of a multi-layer perceptron, respectively. We see
that matching the shape of log ν to the shape of p produces qualitatively good samples, whereas
putting too little constraint on the shape of log ν (as in Fig. 4.13d) yields qualitatively worse results.
Estimated cross-entropy values are also shown for each model, which again demonstrates how
KL(p, q) is largely insensitive to the overall shape of the model q, as long as q covers the modes of p.

Our method may also be viewed as incorporating a kind of f-GAN [139] optimizing a particular
loss (Jeffrey divergence), using a (invertible) generator that admits exact PDF evaluation, and
reparameterizing the discriminator in a certain way. The Fenchel-variational view espoused in
[139] reveals the optimal discriminator T to be a function of the odds ratio: T ∗ = h(q/p) for some
function h determined by the particular f -divergence chosen. We observe that if q can be evaluated
analytically, then we might as well represent the discriminator in terms of q and some function
ν, where ν directly approximates p. This change of representation allows us to take any known
regularities of p and impose them on ν; e.g., if p is known to be translation-invariant, then we can
safely impose translational invariance on ν without imposing any undue constraints on our model.
Note that we cannot similarly impose p’s structure on T , which may be a complex function even if p
and q are simple: for example, even if p and q are both bounded above, T may be unbounded, since
it is a function of the ratio of the two.

Fig. 4.14 illustrates how ν is structured for our application domain of vehicle trajectory forecast-
ing: ν is represented as a sum of learned spatial rewards, which penalizes trajectories according to a

68

Red : generated (q)
Green : data (p)
Blue --: Gibbs dist. (v)

Figure 4.13: Different trained models for a 2D toy problem. The data distribution (samples shown as
green dots) consists of a mixture of isotropic Gaussian distributions, arranged in a square grid. Four
different trained models (generator samples shown as red dots) are shown: (a) result of training a
model to optimize KL(p,q), (b-d) result of training models with our method (fine-tuning result of
(a)), varying the form of the structured Gibbs distribution ν. Blue lines show contours of learned
structured Gibbs distributions ν. In (b-c), the learned parameters of ν are µ0, σ0, and β

.

Figure 4.14: Our method applied to forecast ego-vehicle trajectories, showing input image and
overhead views with the learned cost − log(ν) (overlaid on LIDAR map). Middle shows samples
from current q (red), and true future path (cyan). Note that ν has learned to penalize regions with
obstacles (V (x) = log ν(x), i.e. higher V (x) is lower traversal cost). Right: after incorporating the
learned ν, q and its samples are shifted to avoid high-cost regions, corresponding to suppression of
spurious modes.

69

learned function over spatial positions. Intuitively, this prevents trajectories from colliding with
obstacles, while simultaneously learning the concept of an obstacle.

4.7 Symmetric KL Learning Approach

Optimizing Eq. equation 4.28 is straightforward except for one subtle point: we must be able
to evaluate q pointwise and differentiate the expression Ex∼q log(q(x)/ν(x)) with respect to the
parameters of q. Inspired by prior work [47, 97, 166], we solve both these problems by representing
q as the pushforward of a simple distribution under an invertible warp (also known as a normalizing
flow). Suppose µ is a distribution over a set Z and g : Z → X is a function (the generator) with
domain Z. Then we can define a measure on X as the distribution of g(z) sampling z from µ—this
distribution, denoted here by g|µ, is referred to as the pushforward of µ under g.

Now suppose g is parameterized by θ and differentiable in x and θ. By representing q as
qθ = gθ|µ, for some simple distribution µ, we can move the derivative wrt. θ inside the expectation
by exploiting the property Ex∼gθ|µf(x) = Ez∼µf(gθ(z)) for all functions f :

d

dθ
Ex∼q log

q(x)

ν(x)
=

d

dθ
Ex∼qθ|µ log

q(x)

ν(x)
= Ex∼µ

d

dθ
log

qθ(gθ(x))

ν(gθ(x))
. (4.29)

This is well-known as the reparameterization trick; it allows us to obtain a low-variance, unbiased
estimate of the parameter derivatives for learning with SGD. However, one problem remains:
evaluating qθ(x) = (gθ|µ)(x), which appears in both the first and last terms of equation 4.28. This is
solved by assuming that gθ is invertible: ẑ := g−1

θ (x̂). Thus, we have an analytic formula for the
pushforward density:

qθ(gθ(z)) = (gθ|µ)(gθ(z)) = µ(z)
∣∣(dgθ)z∣∣−1

, (4.30)

where |(dgθ)z| represents the determinant of the Jacobian of gθ evaluated at the point z. This
finally allows us to rewrite Eq. equation 4.28 in the following explicit form, after performing some
simplifications:

−max
θ

inf
φ

Ex̂∼p log
µ(ẑ)

|(dgθ)ẑ|
+

µ(ẑ)

|(dgθ)ẑ|νφ(x̂)
+ Ez∼µ log

µ(z)

|(dgθ)z|νφ(gθ(z))
. (4.31)

A pseudocode summary of our method is given in Algorithm 3. X and Z denote batches
of observed and latent samples, respectively, while subscripts D and G denote either data or
generated samples. A few implementation issues are noted here. Applying the method to a
particular problem requires the implementation of the invertible generator G(·; θ), the structured
Gibbs energy log ν(·;φ), and the base distribution µ. In order to avoid numerical issues when
q is not absolutely continuous wrt. ν (i.e., when ν is 0 but q is not), we reparameterize ν as
ν ← αq+ν, where α is a small number. Given this assumption, the quantity q(x)/(αq(x)+ν(x)) can
be rewritten in terms of the sigmoid σ. Optimization proceeds by alternating between minimizing
the loss equation 4.28 in the generator parameters θ and maximizing it in the energy parameters φ.
However, as noted in Alg. 3, we may alternatively minimize a different objective for the generator:
namely, −Ex∼p log q(x) + Ex∼q log(q(x)/ν(x)). The rationale for the alternative objective is that, as
noted in Sec. 4.7.2, the inner minimization may be viewed as fitting ν to p—in which case, we may
approximate KL(q, p) as Ex∼q log(q(x)/ν(x)). The alternate generator objective was used for the
toy experiment in Fig. 4.13, whereas the original objective was used for the trajectory forecasting
experiments.

70

Algorithm 3 Pseudocode for C3PO implementation

Require: XD: a batch of training data, ZG: batch of generator noise samples from µ
1: ZD, det dg−1

XD
← G−1(XD; θ) {G−1(x) returns g−1

θ (x) and log det. of Jacobian of g−1
θ at x}

2: XG, det dgZG ← G(ZG; θ) {G(z) returns gθ(z) and log det. of Jacobian of gθ at z}
3: log q(XD)← logµ(ZD) + log | det dg−1

XD
| {Generator PDF at data samples}

4: log q(XG)← logµ(ZG) + log |det dgZG | {Generator PDF at generator samples}
5: log q/ν(XD)← logα+ log q(XD)− log ν(XD;φ)
6: log q/ν(XG)← logα+ log q(XG)− log ν(XG;φ)
7: L← BatchMean(− log q(XD)− α−1σ(log q/ν(XD)) + log σ(log q/ν(XG))− logα)
8: for i← 1 . . . N do
9: θ ← θ − β∇θL {Alternative generator loss: L := − log q(XD) + log σ(log q/ν(XG))}

10: for j ← 1 . . .M do
11: φ← φ+ β∇φL
12: end for
13: end for

4.7.1 Derivations and Interpretations

Equation equation 4.28 can be derived via a variational lower bound derived from Fenchel con-
jugacy, using a technique similar to [138, 139]. Our approach of pairing this convex conjugate
with the pushforward direct density estimation motivates our method’s name: Convex Conjugate
Coupled Pushforward Optimization (C3PO). Observe that the Jeffrey divergence can be written as
minq −Ex̂∼p log q(x̂)+Ex∼q log q(x)−Ex∼q log p(x). Since q can be sampled, evaluated, and differenti-
ated (Sec. 4.7), but p can only be sampled, our goal in this section is to convert−Ex∼q log p(x) to some-
thing expressable in terms of expectations wrt. p and q. This is achieved by applying the Fenchel-
Young inequality to the function f(p) := − log p, which yields − log p ≥ supλ<0 λp− (−1− log(−λ)).
Substituting this inequality in place of− log p(x) yields the following lower bound of−Ex∼q log p(x):∫

X
q(x)(sup

λ<0
λp(x) + log(−λ) + 1) dx = 1 + sup

λ<0

∫
X
q(x)

(
λ(x)p(x) + log(−λ(x))

)
dx, (4.32)

where the sup on the right-hand side is taken over all functions λ : X → R− mapping the domain
to a negative scalar. Observing that

∫
q(x)λ(x)p(x) dx can be written either as Ex∼qλ(x)p(x) or

Ex̂∼pλ(x̂)q(x̂), and making the substitution ν = −1/λ, we have the equivalent bound

− Ex∼q log p(x) ≥ 1 + sup
ν>0

Ex̂∼p −
q(x̂)

ν(x̂)
− Ex∼q log ν(x). (4.33)

Substituting this the Jeffrey divergence yields Eq. equation 4.28.

4.7.2 Interpretation as Learning a Gibbs Distribution

Although we have so far viewed our goal as primarily learning q, we now observe that our method
can also be interpreted primarily as a way of learning ν as a Gibbs distribution approximating p.
Learning a Gibbs distribution, or a more general energy-based model [112], is a very general and
effective way to impose strong domain-specific regularization on probability distributions over
high-dimensional data. Generally, this is achieved by structuring the energy function Vφ := log νφ
to assign similar energies to similar examples; for example, a convolutional neural network might
constitute a good energy for image generation, since the structure of a CNN encodes some degree

71

Figure 4.15: Comparison of methods on a test scene from the BEVWORLD1K dataset. Left column:
The input BEV map (roads in black), accompanied by 100 demonstrations of possible behavior (in
blue). Each method is visualized with 60 of each samples. For the methods that learn a cost map,
the learned cost map is blended with the input BEV feature map.

of translational invariance. Unfortunately, inference and learning with high-dimensional Gibbs
distributions is difficult.

Our method can be viewed as a way to train a Gibbs distribution that circumvents some of these
difficulties. In this view, the inner optimization in Eq. equation 4.28 is interpreted as minimizing a
weighted divergence between p and ν; the weights are exactly q. Specifically, we observe that the
inner optimization in Eq. equation 4.28 minimizes the following weighted Itakura-Saito divergence
[56, 90]:

min
φ

∫
q(x)

(
p(x)

νφ(x)
− log

p(x)

νφ(x)
− 1

)
dx (4.34)

It would seem reasonable to choose the weights q as q = p; since p cannot be evaluated directly,
alternating optimization is a sensible alternative. Minimizing Eq. equation 4.34 intuitively gives us
the best Gibbs approximation of p over the support of q.

Intuition for the learning rule of ν can be obtained by computing the functional gradient of
Eq. equation 4.28 with respect to ν (i.e., differentiating with respect to ν(x), ∀x. The functional
gradient δ/δν expresses the direction in which ν should be moved at each point x in order to optimally
decrease the objective. Observing that Ex∼pq(x)/ν(x) = Ex∼qp(x)/ν(x), we obtain the following for
the functional gradient of the objective wrt. log ν: δC/δ log ν(x) = q(x)

(
p(x)/ν(x)− 1

)
. We therefore see

that minimizing Eq. equation 4.28 in ν raises or lowers log ν at each point x according to whether it
exceeds p(x), with a learning rate given by q(x), and a unique fixed point (assuming q > 0) of p = ν.

4.8 Symmetric KL Experiments and Discussion

We conducted experiments on four datasets of vehicle trajectories, where the objective is to forecast
a distribution over the vehicle’s future locations x ∈ R20×2 given contextual information about
each scene. The contextual information includes 2 seconds of the vehicle’s previous position, as
well as a Bird’s Eye View (BEV) map of visual scene features. Our experiments are designed to
quantify two key aspects of generative modeling: the learned model’s likelihood of held-out test
data (i.e. the negative forward cross-entropy −H(p, q)), and the quality of samples from the learned
model (i.e. the negative reverse cross-entropy −H(q, p)). Our hypotheses are: 1) C3PO will achieve
superior sample-quality performance to other methods 2) C3PO will learn a high-quality q, partially due to
its ability to perform direct density evaluation and optimization of q 3) C3PO will learn an interpretable ν
that penalizes bad samples.

Two of the four datasets are synthetic (BEVWORLD 1 and BEVWORLD1K), with known roads,
enabling us to construct samples from a reasonable p distribution, approximate p via KDE, and
measure the reverse cross-entropy H(q, pKDE). We also calculate the percentage of trajectory points
on the road as another measure of sample quality. Details of how we generate BEVWORLD are

72

Table 4.4: Comparison of methods in two datasets. Left: Single BEVWorld Scene (identical train
and test), 300 experts, 1800 policy samples. Right: BEVWorld 100 training scenes, 1000 test scenes,
100 experts/scene, 12 policy samples/scene. Means and their standard errors are reported. Bold
indicates the best performing method among methods with nondegenerate −H(p, q) (i.e. fGAN
Jeffrey is degenerate). CVAE’s−H(p, q) is estimated via MC sampling 300 times per scene, see [204].

BEVWORLD 1 BEVWORLD1K

Method −H(p, q) −H(q, pKDE) Road % −H(p, q) −H(q, pKDE) Road %

R2P2 83.7± 0.2 −46.6± 0.5 0.988 96.0± 0.03 −61.6± 0.6 0.922
C3PO (ours) 82.6± 0.3 −44.8± 0.4 1.000 92.7± 0.1 −48.7± 0.3 0.989
R2P2 GAIL 64.6± 2.0 −55.6± 1.0 0.952 62.0± 0.6 −74.6± 0.8 0.886
CVAE∗ 18.6± 3.7 −45.3± 1.7 0.990 12.5± 0.3 −71.3± 0.8 0.865
fGAN KL 16.6± 0.6 −294.4± 22 0.568 18.6± 0.03 −303± 2.6 0.698
fGAN Reverse KL −17.3± 2.9 −171± 8.5 0.706 −11.6± 0.2 −235± 1.8 0.709
fGAN Jeffrey −7e4± 6e3 −42.0± 0.05 1.000 −5e3± 39 −46.1± 0.08 0.970

Table 4.5: Comparison of methods in two real-world datasets: KITTI and CALIFORECASTING. Means
and their standard errors are reported. Bold indicates the best performing method among methods
with nondegenerate −H(p, q) (i.e. fGAN Jeffrey is degenerate).

KITTI CALIFORECASTING

Method −H(p, q) V KITTI
φ (q) −H(p, q) V CALIF

φ (q)

R2P2 63.7± 0.8 −744± 20 74.1± 0.38 −6.50± 3.9
C3PO (ours) 61.5± 0.7 −457± 13 73.5± 0.4 57.3± 1.4
R2P2 GAIL 54.9± 0.7 −693± 17 46.9± 0.3 −61.1± 6.1
CVAE∗ 9.22± 0.9 −555± 9.9 10.1± 0.9 48.3± 1.5
fGAN KL 32.9± 1.3 −693± 10 9.55± 0.02 −568± 20
fGAN Reverse KL 12.8± 0.08 −1362± 33 −89.7± 3.1 21.8± 2.6
fGAN Jeffrey −2e4± 2e3 −195± 4.0 −2e4± 7e2 69.5± 0.1

in the supplement. We also experiment with two real-world datasets: the KITTI dataset, and the
CALIFORECASTING dataset [173].

4.8.1 Implementation and Baselines

Given our setting is that of forecasting future vehicle trajectories, we leverage ideas from Inverse
Reinforcement Learning [137, 244, 257], to structure our Gibbs energy V as a spatial cost map: where
log νφ = Vφ(x) =

∑T
t=1Rφ(xt0, xt1; BEV), and Rφ(a, b; BEV) is the output of a CNN that can be

interpolated at 2d positions of the form (a, b). This structure enables ν to penalize trajectories
that travel to locations it perceives to be bad, e.g. locations with obstacles, or locations far from a
perceived road.

We compare our method, C3PO, to several state-of-the-art approaches in imitation learning
and generative modeling: Generative Adversarial Imitation Learning (GAIL) [83], f-GAN [139], the
CVAE method of DESIRE [113], and R2P2[173]. In each baseline, we use architectures as similar
to our own method as possible: the policy (generator) architecture of GAIL and the generator
architecture of f-GAN are identical to the generator architecture of our own approach. The same
architecture used for Vφ in our method was also used for the discriminators in all baselines.

Our implementation of the q architecture is based on R2P2 [172]. One key difference between

73

our method, C3PO, and R2P2, is that R2P2 does not have an adversarial component; its main
focus is learning the forward KL term, the first component of C3PO’s objective function. R2P2
starts from a similar objective: the symmetric sum of cross-entropies. However, it relies on a
cruder approximation of H(q, p), because it learns an approximating p̃ for H(q, p̃) offline, with no
interaction from q.

4.8.2 Synthetic Experiments

BEVWORLD 1contains a single scene with 300 samples from p. This setting is unconditional: the
contextual information provided is identical, and not directly useful for modeling p. This setting
also provides a fairer comparison to fGAN methods, which left the extension of fGAN to contextual
settings as future work [139]. Table 4.4 shows the results of BEVWORLD 1 experiments. We observe
that R2P2 and C3PO achieve the best−H(p, q) scores, with C3PO outperforming all nondegenerate
methods in its sample quality. This evidence supports hypotheses 1) and 2): C3PO achieves superior
sample quality and high-quality data density. We also observed C3PO to be very stable throughout
training in terms of H(p, q): it was as easy to train it as R2P2 in all experiments.

We also observe that while fGAN KL indirectly learns a q with some support for p, its samples
are quite poor. This matches expectations, as the forward KL divergence fails to impose much
penalty on sample quality [88]. fGAN Jeffrey is the fGAN method most similar to our approach
because it uses the Jeffrey divergence. We observe it to suffer mode collapse in all of our experiments,
a similar result to [139], in which fGAN Jeffrey had the worse test-set likelihood.

Next, we consider BEVWORLD1K, in which 100 training scenes, each with 100 samples from p,
are used to learn conditional generative models. There are 1000 scenes in the test set. Table 4.4 shows
the result of these experiments. We observe results similar to BEVWORLD1K, again supporting
hypotheses 1) and 2). C3PO can learn in the conditional setting to produce high-quality samples
from a distribution with good support of p. We display example results in Fig. 4.15, and observe
several methods, including C3PO , learn a cost-map representation that penalizes samples not on
the road. This evidence of the learned intuitive perceptual measurement of ν supports hypothesis
3).

4.8.3 Real-world Experiments

We now experiment with real-world data, in which each method is provided with noisy contextual
information, and is evaluated by its ability to produce a generative model and high-quality samples.
Evaluation of sample quality is more difficult in this scenario: we have only one sample of p in
each scene, precluding construction of pKDE, and there are no labels of physical roads, precluding
computation of on-road statistics. Fortunately, evaluation of −H(p, q) is still possible.

After observing the learned Vφ of C3PO on both synthetic and real data, we found Vφ to be
generally interpretable and intuitively good: it assigns low cost to roads it learns to perceive and
it assigns high cost to obstacles it learns to perceive. We therefore employed our learned model
Vφ to quantitatively evaluate samples from all methods. Fig. 4.16 illustrates results from several
approaches visualized with V and point cloud features from the BEV, at various quantiles of
each method’s performance under V . Fig. 4.17 (left) illustrates each method on a set of randomly
sampled scenes. In both figures, V perceives and assigns penalty to regions around obstacles in the
point cloud data. Note that this energy is learned implicitly, because demonstrations from p avoid
obstacles. These results provide further support for hypothesis 3).

Quantitative results are shown in Table 4.5. We find that results are, overall, similar to results on
the other datasets. C3PO produces a high-performing q in terms of both its likelihood, −H(p, q), as
well as the quality of its samples, V . Additionally, we show evaluation of V for the top methods

74

Figure 4.16: Left: Comparison of methods under the learned V KITTI
φ (q) criterion. Each row corre-

sponds to a method, and each column corresponds to the method’s result on the item at a specific
level of performance, from worst (left) to best (right) of results on 100 scenes. Each image is com-
posed of the learned V KITTI

φ (q) blended with the input BEV features, sample trajectories from each
method (red), and the true future (blue). The learned V often penalizes samples that go off of
the road or into obstacles inferred from the features. C3PO usually produces the best samples
under this metric. Right: Evaluation of sample quality on test data from the KITTI dataset (a) and
CALIFORECASTING dataset (b). Each approach generated 12 trajectory samples per scene, and the
mean Vφ score was calculated for each scene. The results are displayed as a normalized cumulative
histogram, where the y-value at x is the percentage of scenes that received V ≤ x. At almost every
given V , C3PO is likelier to have more samples above the given V than other methods.

Figure 4.17: Comparison of methods on a set of random scenes from the CALIFORECASTING test set.
Scene indices were selected uniformly at random (once) from the possible test indices. Each image
shows the learned V CALIF

φ (q) blended with the input BEV features, 12 sample trajectories from each
method (red), and the true future (blue). V learns to penalize samples that go off of the road or into
obstacles.

75

in Fig. 4.16 (right). Together, these results further strengthen evidence in support of all of our
hypotheses.

The initial motivation for our work was the apparent dichotomy between sample quality and
mode coverage in existing deep generative models; this phenomenon has been noted and quantified
in work such as [19, 87, 88, 133, 243]. Our work synthesizes several techniques from prior work to
address these issues, including the Fenchel-variational principle from work such as [138, 139], the
well-known reparameterization trick [99, 194], and analytic pushforward-based density estimators
such as normalizing flows [97, 166], RealNVP [47], and related models [64, 125, 142, 167, 224]. Com-
paratively little work has explored combining these methods, with some exceptions. Combining
a RealNVP [47] density estimator with a GAN objective was considered in [71]; however, this is
susceptible to the problems inherent with GANs mentioned in the introduction. A pushforward-
based density estimator was employed in conjunction with variational inference to optimize the
classical Bayesian evidence lower bound in [97], but this cross-entropy objective suffers from the
previously-mentioned problems with optimizing KL(p ‖ q) alone, as do all methods based on this
objective, including [47, 64, 142, 224].

Our work is also comparable to the extensive literature on learning deep graphical models,
including variants of Boltzmann machines [6, 189] and various proposals for learning deep CRFs
and structured energy-based models [112] based on inference techniques including convex optimiza-
tion [10, 36, 161, 196], various forms of unrolled inference [182, 237, 251], pseudolikelihood [124],
and continuous relaxation [21], among other techniques [87]. Viewed as a way to learn a deep
graphical model, the most important distinguishing factor of our work is the fact that our method
does not need to perform inference directly, as discussed in Sec. equation 4.7.2. To the extent that
q is viewed as (indirectly) performing inference, our method and other deep generative models
bears some similarity to the wake-sleep algorithm, which also alternates between optimizing a
model distribution and an “inference” distribution using complementary divergences [87]. Score-
matching [89] also learns a Gibbs distribution without inference; however, unlike our method,
score-matching does not learn an inference distribution.

4.9 Conclusion

We have demonstrated how GANs may be effectively regularized by reparameterizing the dis-
criminator to be a function of the model density and a structured Gibbs density, showing how
this may be achieved by optimizing a Jeffrey divergence loss, assuming the generator is invertible,
and applying a variational bound based on Fenchel conjugacy. Applied to a trajectory forecasting
problem, we observed superior mode coverage and qualitative results compared to traditional
GANs. In contrast to the earlier part of this chapter, we developed a more-principled reverse KL
approximation approach.

While this chapter and the previous chapters have addressed many types of forecasting, our
motivation is to finally integrate forecasting with control. It is perhaps standard practice to consider
these problems as separate, e.g. many autonomous driving companies separate their research
efforts into “Perception/Prediction” module development (forecasting) and “Planning” model
development (control). We posit that this is a false dichotomy: one of the main purposes forecasting
is to inform control, therefore, forecasting and control should be tightly integrated. With a proper
forecasting model, we can anticipate likely outcomes, and use this capability to reason about how to
make good outcomes likely and bad outcomes unlikely. We want to design models to jointly forecast and
plan behaviors in the same framework. This brings us to Part II.

76

Part II

Jointly Forecasting and Controlling from
High-Dimensional Observations

77

Chapter 5

Forecasting Observations as Auxiliary
Supervision for Implicitly-Planned
Control

Figure 5.1: This chapter focuses on building a joint forecasting and control approach.

5.1 Introduction

Despite their wide success in a variety of domains, recurrent neural networks (RNNs) are often
inhibited by the difficulty of learning an internal state representation. Internal state is a unifying
characteristic of RNNs, as it serves as an RNN’s memory. Learning these internal states is chal-
lenging because optimization is guided by the indirect signal of the RNN’s target task, such as
maximizing the cost-to-go for reinforcement learning or maximizing the likelihood of a sequence of
words. These target tasks have a latent state sequence that characterizes the underlying sequential
data-generating process. Unfortunately, most settings do not afford a parametric model of latent
state that is available to the learner.

78

However, recent work has shown that in certain settings, latent states can be characterized
by observations alone [26, 82, 86] – which are almost always available to recurrent models. In
such partially-observable problems (e.g. Figure 5.2a), a single observation is not guaranteed to
contain enough information to fully represent the system’s latent state. For example, a single image
of a robot is insufficient to characterize its latent velocity and acceleration. While a latent state
parametrization may be known in some domains – e.g. a simple pendulum can be sufficiently
modeled by its angle and angular velocity (θ, θ̇) – data from most domains cannot be explicitly
parametrized.

In lieu of ground truth access to latent states, recurrent neural networks [111, 216] employ
internal states to summarize previous data, serving as a learner’s memory. We avoid the terminology
“hidden state" as it refers to the internal state in the RNN literature but refers to the latent state
in the HMM, PSR, and related literature. Internal states are modified towards minimizing the
target application’s loss, e.g., minimizing observation loss in filtering or cumulative reward in
reinforcement learning. The target application’s loss is not directly defined over the internal states:
they are updated via the chain rule (backpropagation) through the global loss. Although this
modeling is indirect, recurrent networks nonetheless can achieve state-of-the-art results on many
robotics [51, 80], vision [140, 143], and natural language tasks [38, 68, 162] when training succeeds.
However, recurrent model optimization is hampered by two main difficulties: 1) non-convexity, and
2) the loss does not directly encourage the internal state to model the latent state. A poor internal
state representation can yield poor task performance, but rarely does the task objective directly
measure the quality of the internal state.

Predictive-State Representations (PSRs) [26, 82, 86] offer an alternative internal state repre-
sentation to that of RNNs in terms of the available observations. Spectral learning methods for
PSRs provide theoretical guarantees on discovering the global optimum for the model and internal
state parameters under the assumptions of infinite training data and realizability. However, in
the non-realizable setting – i.e. model mismatch (e.g., using learned parameters of a linear system
model for a non-linear system) – these algorithms lose any performance guarantees on using the
learned model for the target inference tasks. Extensions to handle nonlinear systems rely on RKHS
embeddings [205], which themselves can be computationally infeasible to use with large datasets.
Nevertheless, when these models are trainable, they often achieve strong performance [82, 214]; the
structure they impose significantly simplifies the learning problem.

We leverage ideas from the both RNN and PSR paradigms, resulting in a marriage of two
orthogonal sequential modeling approaches. When training an RNN, PREDICTIVE-STATE DE-
CODERS (Figure 5.2b) provide direct supervision on the internal state, aiding the training problem.
The proposed method can be viewed as an instance of Multi-Task Learning (MTL) [35] and self-
supervision [92], using the inputs to the learner to form a secondary unsupervised objective. Our
contribution is a general method that improves performance of learning RNNs for sequential
prediction problems. The approach is easy to implement as a regularizer on traditional RNN loss
functions with little overhead and can thus be incorporated into a variety of existing recurrent
models. We situate this method with respect to our other contributions in Fig. 5.1. By learning a
policy whose representation predicts features of future observations, we develop an approach to
implicitly forecast and implicitly plan.

In our experiments, we examine three domains where recurrent models are used to model
temporal dependencies: probabilistic filtering, where we predict the future observation given past
observations; Imitation Learning, where the learner attempts to mimic an expert’s actions; and
Reinforcement Learning, where a policy is trained to maximize cumulative reward. We observe
that our method improves loss convergence rates and results in higher-quality final objectives in
these domains.

79

(a) The process generating sequential data has latent
state st which generates the next latent state st+1. st
is usually unknown but generates the observations
xt which are used to learn a model for the system.

(b) An overview of our approach for modelling the
process from Figure 5.2a. We attach a decoder to the
internal state of an RNN to predict statistics of future
observations xt to xt+k observed at training time.

Figure 5.2: Data generation process and proposed model

5.2 Latent State Space Models
To model sequential prediction problems, it is common to cast the problem into the Markov Process
framework. Predictive distributions in this framework satisfy the Markov property:

P (st+1|st, st−1, . . . , s0) = P (st+1|st) (5.1)

where st is the latent state of the system at timestep t. Intuitively, this property tells us that the
future st+1 is only dependent on the current state1 st and does not depend on any previous state
s0, . . . , st−1. As st is latent, the learner only has access to observations xt, which are produced by st.
For example, in robotics, xt may be joint angles from sensors or a scene observed as an image. A
common graphical model representation is shown in Figure 5.2a.

The machine learning problem is to find a model f that uses the latest observation xt to
recursively update an internal state, denoted ht, illustrated in Figure 5.3. Note that ht is distinct
from st. ht is the learner’s internal state, and st is the underlying configuration of the data-
generating Markov Process. For example, the internal state in the Bayesian filtering/POMDP
setup is represented as a belief state [222], a “memory" unit in neural networks, or as a distribution
over observations for PSRs.

Unlike traditional supervised machine learning problems, learning models for latent state
problems must be accomplished without ground-truth supervision of the internal states themselves.
Two distinct paradigms for latent state modeling exist. The first are discriminative approaches based
on RNNs, and the second is a set of theoretically well-studied approaches based on Predictive-State
Representations. In the following sections we provide a brief overview of each class of approach.

5.2.1 Recurrent Models and RNNs

A classical supervised machine learning approach for learning internal models involves choosing an
explicit parametrization for the internal states and assuming ground-truth access to these states and
observations at training time [43, 102, 117, 159]. These models focus on learning only the recursive
model f in Figure 5.3, assuming access to the st (Figure 5.2a) at training time. Another class of
approaches drop the assumption of access to ground truth but still assume a parametrization of the
internal state. These models set up a multi-step prediction error and use expectation maximization
to alternate between optimizing over the model’s parameters and the internal state values [5, 40,
65].

While imposing a fixed representation on the internal state adds structure to the learning
problem, it can limit performance. For many problems such as speech recognition [68] or text

1In Markov Decision Processes (MDPs), P (st+1|st) may depend on an action taken at st.

80

Figure 5.3: Learning recurrent models consists of learning a function f that updates the internal
state ht given the latest observation xt. The internal state may also be used to predict targets yt,
such as control actions for imitation and reinforcement learning. These are then inputs to a loss
function ` which accumulate as the multi-step loss L over all timesteps.

generation [217], it is difficult to fully represent a latent state inside the model’s internal state.
Instead, typical machine learning solutions rely on the Recurrent Neural Network architecture. The
RNN model (Figure 5.3) uses the internal state to make predictions yt = f(ht, xt) and is trained by
minimizing a series of loss functions `t over each prediction, as shown in the following optimization
problem:

min
f
L = min

f

∑
t

`t(f(ht, xt)) (5.2)

The loss functions `t are usually application- and domain-specific. For example, in a probabilistic
filtering problem, the objective may be to minimize the negative log-likelihood of the observations [2,
226] or the prediction of the next observation [140]. For imitation learning, this objective function
will penalize deviation of the prediction from the expert’s action [180], and for policy-gradient
reinforcement learning methods, the objective includes the log-likelihood of choosing actions
weighted by their observed returns. In general, the task objective optimized by the network does
not directly specify a loss directly over the values of the internal state ht.

The general difficulty with the objective in Equation (5.2) is that the recurrence with f results in
a highly non-convex and difficult optimization [5].

RNN models are thus often trained with backpropagation-through-time (BPTT) [239]. BPTT
allows future losses incurred at timestep t to be back-propogated and affect the parameter updates
to f . These updates to f then change the distribution of internal states computed during the next
forward pass through time. The difficulty is then that small updates to f can drastically change the
distribution of ht, sometimes resulting in error exponential in the time horizon [227]. This “diffusion
problem" can yield an unstable training procedure with exponentially exploding or vanishing
gradients [22]. While techniques such as truncated gradients [216] or gradient-clipping [150] can
alleviate some of these problems, each of these techniques yields stability by discarding information
about how future observations and predictions should backpropagate through the current internal
state. A significant innovation in training internal states with long-term dependence was the LSTM
[85]. Many variants on LSTMs exist (e.g. GRUs [37]), yet in the domains evaluated by [69], none
consistently exhibit statistically significant improvements over LSTMs.

In the next section, we discuss a different paradigm for learning temporal models. In contrast
with the open-ended internal-state learned by RNNs, Predictive-State methods do not parameterize
a specific representation of the internal state but use certain assumptions to construct a mathematical
structure in terms of the observations to find a globally optimal representation.

81

5.2.2 Predictive-State Models
Predictive-State Representations (PSRs) address the problem of finding an internal state by for-
mulating the representation directly in terms of observable quantities. Instead of targeting a
prediction loss as with RNNs, PSRs define a belief over the distribution of k future observations,
gt = [xTt , ..., x

T
t+k−1]T ∈ Rkn given all the past observations pt = [x0, . . . xt−1] [27]. In the case of

linear systems, this k is similar to the rank of the observability matrix [14]. The key assumption in
PSRs is that the definition of state is equivalent to having sufficient information to predict everything
about gt at time-step t [203], i.e. there is a bijective function that maps P (st|pt−1) – the distribution
of latent state given the past – to P (gt|pt−1) – the belief over future observations.

Spectral learning approaches were developed to find an globally optimal internal state represen-
tation and the transition model f for these Predictive-State models. In the controls literature, these
approaches were developed as subspace identification [225], and in the ML literature as spectral
approaches for partially-observed systems [26, 28, 86, 241]. A significant improvement in model
learning was developed by [27, 82], where sufficient feature functions φ (e.g., moments) map distri-
butions P (gt|pt) to points in feature space E

[
φ(gt)|pt

]
. For example, E

[
φ(gt)|pt

]
= E

[
gt, gtg

T
t |pt

]
are the sufficient statistics for a Gaussian distribution. With this representation, learning latent state
prediction models can be reduced to supervised learning.

[82] used this along with Instrumental Variable Regression [29] to develop a procedure that, in
the limit of infinite data, and under a linear-system realiziablity assumption, would converge to the
globally optimal solution. [214] extended this setup to create a practical algorithm, Predictive-State
Inference Machines (PSIMs) [212, 214, 229], based on the concept of inference machines [108, 182].
Unlike in [82], which attempted to find a generative observation model and transition model, PSIMs
directly learned the filter function, an operator f , that can deterministically pass the predictive states
forward in time conditioned on the latest observation, by minimizing the following loss over f :

`p =
∑
t

∥∥φ(gt+1)− f(ht, xt)
∥∥2
, ht+1 = f(ht, xt) (5.3)

This loss function, which we call the predictive-state loss, forms the basis of our PREDICTIVE-STATE

DECODERS . By minimizing this supervised loss function, PSIM assigns statistical meaning to
internal states: it forces the internal state ht to match sufficient statistics of future observations
E
[
φ(gt)|pt

]
at every timestep t. We observe an empirical sample of the future gt = [xt, . . . , xt+k]

at each timestep by looking into the future in the training dataset or by waiting for streaming
future observations. Whereas [214] primarily studied algorithms for minimizing the predictive-state
loss, we adapt it to augment general recurrent models such as LSTMs and for a wider variety of
applications such as imitation and reinforcement learning.

5.3 Predictive-State Decoders
Our PREDICTIVE-STATE DECODERS architecture extends the Predictive-State Representation idea to
general recurrent architectures. We hypothesize that by encouraging the internal states to encode
information sufficient for reconstructing the predictive state, the resulting internal states better
capture the underlying dynamics and learning can be improved. The result is a simple-to-implement
objective function which is coupled with the existing RNN loss. To represent arbitrary sizes and
values of PSRs with a fixed-size internal state in the recurrent network, we attach a decoding module
F (·) to the internal states to produce the resulting PSR estimates. Figure 5.4 illustrates our approach.

82

Figure 5.4: Predictive-State Decoders Architecture. We augment the RNN from Figure 5.3 with an
additional objective functionR which targets decoding of the internal state through F at each time
step to the predictive-state which is represented as statistics over the future observations.

Our PSD objectiveR is the predictive-state loss:

R =
∑
t

∥∥F (ht)− φ([xt+1, xt+2, . . .])
∥∥2

2
, ht = f(ht−1, xt−1), (5.4)

where F is a decoder that maps from the internal state ht to an empirical sample of the predictive-state,
computed from a sequence of observed future observations available at training. The network is
optimized by minimizing the weighted total loss function L + λR where λ is the weighting on
the predictive-state objectiveR. This penalty encourages the internal states to encode information
sufficient for directly predicting sufficient future observations. Unlike more standard regularization
techniques,R does not regularize the parameters of the network but instead regularizes the output
variables, the internal states predicted by the network.

Our method may be interpreted as an instance of Multi-Task Learning (MTL) [35]. MTL
has found use in recent deep neural networks [7, 92, 103]. The idea of MTL is to employ a
shared representation to perform complementary or similar tasks. When the learner exhibits good
performance on one task, some of its understanding can be transferred to a related task. In our
case, forcing RNNs to be able to more explicitly reason about the future they will encounter is an
intuitive and general method. Endowing RNNs with a theoretically-motivated representation of
the future better enables them to serve their purpose of making sequential predictions, resulting
in more effective learning. This difference is pronounced in applications such as imitation and
reinforcement learning (Sections 5.4.2 and 5.4.3) where the primary objective is to find a control
policy to maximize accumulated future reward while receiving only observations from the system.
MTL with PSDs supervises the network to predict the future and implicitly the consequences of the
learned policy. Finally, our PSD objective can be considered an instance of self-supervision [92] as it
uses the inputs to the learner to form a secondary unsupervised objective.

As discussed in Section 5.2.1, the purpose of the internal state in recurrent network models
(RNNs, LSTMs, deep, or otherwise) is to capture a quantity similar to that of state. Ideally, the
learner would be able to back-propagate through the primary objective function L and discover the
best representation of the latent state of the system towards minimizing the objective. However, as
this problem highly non-convex, BPTT often yields a locally-optimal solution in a basin determined
by the initialization of the parameters and the dataset. By introducing R, the space of feasible
models is reduced. We observe next how this objective leads our method to find better models.

83

5.4 Experiments
We present results on problems of increasing complexity for recurrent models: probabilistic filtering,
Imitation Learning (IL), and Reinforcement Learning (RL). The first is easiest, as the goal is to
predict the next future observation given the current observation and internal state. For imitation
learning, the recurrent model is given training-time expert guidance with the goal of choosing
actions to maximize the sequence of future rewards. Finally, we analyze the challenging domain
of reinforcement learning, where the goal is the same as imitation learning but expert guidance is
unavailable.

PREDICTIVE-STATE DECODERS require two hyperparameters: k, the number of observations
to characterize the predictive state and λ, the regularization trade-off factor. In most cases, we
primarily tune λ, and set k to one of {2, . . . , 10}. For each domain, for each k, there were λ values for
which the performance was worse than the baseline. However, for many sets of hyperparameters,
the performance exceeded the baselines. Most notably, for many experiments, the convergence rate
was significantly better using PSDs , implying that PSDs allows for more efficient data utilization
for learning recurrent models.

PSDs also require a specification of two other parameters in the architecture: the featurization
function φ and decoding module F . For simplicity, we use an affine function as the decoder F
in Equation (5.4). The results presented below use an identity featurization φ for the presented
results but include a short discussion of second order featurization. We find that in each domain,
we are able to improve the performance of the state-of-the-art baselines. We observe improvements
with both GRU and LSTM cells across a range of k and λ. In IL with PSDs , we come significantly
closer and occasionally eclipse the expert’s performance, whereas the baselines never do. In our RL
experiments, our method achieves statistically significant improvements over the state-of-the-art
approach of [51, 195] on the 5 different settings we tested.

5.4.1 Probabilistic Filtering

In the probabilistic filtering problem, the goal is to predict the future from the current internal state.
Recurrent models for filtering use a multi-step objective function that maximizes the likelihood
of the future observations over the internal states and dynamics model f ’s parameters. Under a
Gaussian assumption (e.g. like a Kalman filter [78]), the equivalent objective that minimizes the
negative log-likelihood is given as L =

∑
t

∥∥xt+1 − f(xt, ht)
∥∥2.

While traditional methods would explicitly solve for parametric internal states ht using an EM
style approach, we use BPTT to implicitly find an non-parametric internal state. We optimize the
end-to-end filtering performance through the PSD joint objective minf,F L+ λR. Our experimental
results are shown in Figure 5.5. The experiments were run with φ as the identity, capturing
statistics representing the first moment. We tested φ as second-order statistics and found while
the performance improved over the baseline, it was outperformed by the first moment. In all
environments, a dataset was collected using a preset control policy. In the Pendulum experiments,
we predict the pendulum’s angle θ. The LQR controlled Helicopter experiments [4] use a noisy state
as the observation, and the Hopper dataset was generated using the OpenAI simulation [31] with
robust policy optimization algorithm [154] as the controller.

We test each environment with Tensorflow’s built-in GRU and LSTM cells [1]. We sweep over
various k and λ hyperparameters and present the average results and standard deviations from
runs with different random seeds. Figure 5.5 baselines are recurrent models equivalent to PSDs
with λ = 0.

84

0 100 200 300 400 500
Iteration

100

101
O

bs
er

va
tio

n
Lo

ss

Pendulum GRU Network
Baseline
k=2, λ=1.0
k=2, λ=10.0
k=5, λ=1.0
k=5, λ=10.0

0 100 200 300 400 500
Iteration

101

8 × 100

9 × 100

O
bs

er
va

tio
n

Lo
ss

Helicopter GRU Network
Baseline
k=2, λ=1.0
k=2, λ=10.0
k=5, λ=1.0
k=5, λ=10.0

0 100 200 300 400 500
Iteration

2 × 101

3 × 101

4 × 101

6 × 101

O
bs

er
va

tio
n

Lo
ss

Hopper GRU Network
Baseline
k=2, λ=1.0
k=5, λ=5.0
k=5, λ=10.0
k=10, λ=5.0

0 100 200 300 400 500
Iteration

100

101

O
bs

er
va

tio
n

Lo
ss

Pendulum LSTM Network
Baseline
k=2, λ=1.0
k=2, λ=10.0
k=5, λ=1.0
k=5, λ=10.0

(a) Pendulum

0 100 200 300 400 500
Iteration

101

9 × 100

O
bs

er
va

tio
n

Lo
ss

Helicopter LSTM Network
Baseline
k=2, λ=1.0
k=2, λ=10.0
k=5, λ=1.0
k=5, λ=10.0

(b) Helicopter

0 100 200 300 400 500
Iteration

2 × 101

3 × 101

4 × 101

6 × 101

O
bs

er
va

tio
n

Lo
ss

Hopper LSTM Network
Baseline
k=2, λ=10.0
k=5, λ=0.5
k=5, λ=10.0
k=10, λ=10.0

(c) Hopper

Figure 5.5: Loss over predicting future observations during filtering. For both RNNs with GRU
cells (top) and with with LSTM cells (bottom), adding PSDs to the RNN networks can often improve
performance and convergence rate.

5.4.2 Imitation Learning

We experiment with the partially observable CartPole and Acrobot domains2 from OpenAI Gym
[31]. We applied the method of AggreVaTeD [215], a policy-gradient method, to train our expert
models. AggreVaTeD uses access to a cost-to-go oracle in order to train a policy that is sensitive to
the value of the expert’s actions, providing an advantage over behavior cloning IL approaches. The
experts have access to the full state of the robots, unlike the learned recurrent policies.

We tune the parameters of LSTM and GRU agents (e.g., learning rate, number of internal units)
and afterwards only tune λ for PSDs . In Figure 5.6, we observe that PSDs improve performance
for both GRU- and LSTM-based agents and increasing the predictive-state horizon k yields better
results. Notably, PSDs achieves 73% relative improvement over baseline LSTM and 42% over GRU
on Cartpole. Difference random seeds were used. The cumulative reward of the current best policy
is shown.

5.4.3 Reinforcement Learning

Reinforcement learning (RL) increases the problem complexity from imitation learning by removing
expert guidance. The latent state of the system is heavily influenced by the RL agent itself and
changes as the policy improves. We use [51]’s implementation of TRPO [195], a Natural Policy
Gradient method [95]. Although [195] defines a KL-constraint on policy parameters that affect
actions, our implementation of PSDs introduces parameters (those of the decoder) that are unaffected
by the constraint, as the decoder does not directly govern the agent’s actions.

In these experiments, results are highly stochastic due to both environment randomness and
nondeterministic parallelization of rllab [51]. We therefore repeat each experiment at least 15 times
with paired random seeds. We use k = 2 for most experiments (k = 4 for Hopper), the identity

2The observation function only provides positional information (including joint angles), excluding velocities.

85

Figure 5.6: Cumulative rewards for AggreVaTeD and AggreVaTeD+PREDICTIVE-STATE DECODERS

on partially observable Acrobot and CartPole with both LSTM cells and GRU cells averaged over
15 runs with different random seeds.

TRPO TRPO+PSD

Figure 5.7: Walker Cumulative Rewards and Sorted Percentiles. N = 15, 5e4 TRPO steps per
iteration.

featurization for φ, and vary λ in
{

101, 100, . . . , 10−6
}

, and employ the LSTM cell and other default
parameters of TRPO. We report the same metric as [51]: per-TRPO batch average return across
learning iterations. Additionally, we report per-run performance by plotting the sorted average
TRPO batch returns (each item is a number representing a method’s performance for a single seed).

Figures 5.7 and 5.8 demonstrate that our method generally produces higher-quality results
than the baseline. These results are further summarized by their means and stds. in Table 5.1. In
Figure 5.7, 40% of our method’s models are better than the best baseline model. In Figure 5.8c,
25% of our method’s models are better than the second-best (98th percentile) baseline model. We

86

Table 5.1: Top: Mean Average Returns ± one standard deviation, with N = 15 for Walker2d† and
N = 30 otherwise. Bottom: Relative improvement of on the means. ∗ indicates p < 0.05 and
∗∗ indicates p < 0.005 on Wilcoxon’s signed-rank test for significance of improvement. All runs
computed with 5e3 transitions per iteration, except Walker2d†, with 5e4.

Swimmer HalfCheetah Hopper Walker2d Walker2d†

[195] 91.3± 25.5 330± 158 1103± 264 383± 96 1396± 396

[195]+PSDs 97.0± 19.4 372± 143 1195± 272 416± 88 1611± 436

Rel. ∆ 6.30%∗ 13.0%∗ 9.06%∗ 8.59%∗ 15.4%∗∗

Table 5.2: Variations of RNN units. Mean Average Returns ± one standard deviation, with N = 20.
1e3 transitions per iteration are used. Our method can improve each recurrent unit we tested.

InvertedPendulum Swimmer

Basic GRU LSTM Basic GRU LSTM

[195] 820± 139 673± 268 640± 265 66.0± 21.4 64.6± 55.3 56.5± 23.8
[195]+PSDs 820± 118 782± 183 784± 215 71.4± 26.9 75.1± 28.8 61.0± 23.8

Rel. ∆ −0.08% 20.4% 22.6% 8.21% 16.1% 7.94%

compare various RNN cells in Table 5.2, and find our method can improve Basic (linear + tanh
nonlinearity), GRU, and LSTM RNNs, and usually reduces the performance variance. We used
Tensorflow [1] and passed both the “hidden" and “cell" components of an LSTM’s internal state to
the decoder. We also conducted preliminary additional experiments with second order featurization
(φ(x) = [x,vec(xxT)]). Corresponding to Tab. 5.2, column 1 for the inverted pendulum, second
order features yielded 861± 41, a 4.9% improvement in the mean and a large reduction in variance.

5.5 Conclusion
We introduced a theoretically-motivated method for improving the training of RNNs. Our method
stems from previous literature that assigns statistical meaning to a learner’s internal state for
modelling latent state of the data-generating processes. Our approach uses the objective in PSIMs
and applies it to more complicated recurrent models such as LSTMs and GRUs and to objectives
beyond probabilistic filtering such as imitation and reinforcement learning. We show that our
straightforward method improves performance across all domains with which we experimented.
In Part I of this thesis we focused on progressively designing more capable models to forecast. In
this chapter, we discussed a first attempt to jointly forecast and control. However, the two main
downsides to this approach are that its predictions of the future are generally not interpretable, and
that it is restricted to implicitly plan its future behavior. These two downsides make it difficult to
interrogate and validate the model’s understanding of the future. We instead seek to explicitly plan
controls and explicitly forecast behavior.

87

TRPO TRPO+PSD

(a) Swimmer, N=30 (b) HalfCheetah, N=30 (c) Hopper, N=40

Figure 5.8: Top: Per-iteration average returns for TRPO and TRPO+PREDICTIVE-STATE DECODERS

vs. batch iteration, with 5e3 steps per iteration. Bottom: Sorted per-run mean (across iterations)
average returns. Our method generally produces better models.

88

Chapter 6

Forecasting Motion Trajectories for
Explicitly-Planned Control

Figure 6.1: This chapter focuses on building a joint forecasting and control approach capable of
explicitly planning and interpretably forecasting.

6.1 Introduction

Imitation learning (IL) is a framework for learning a model to mimic behavior. At test-time, the
model pursues its best-guess of desirable behavior. By letting the model choose its own behavior, we
cannot direct it to achieve different goals. While work has augmented IL with goal conditioning [41,
49], it requires goals to be specified during training, explicit goal labels, and are simple (e.g., turning).
In contrast, we seek flexibility to achieve general goals for which we have no demonstrations.

In contrast to IL, planning-based algorithms like model-based reinforcement learning (MBRL)
methods do not require expert demonstrations. MBRL can adapt to new tasks specified through
reward functions [44, 106]. The “model” is a dynamics model, used to plan under the user-supplied
reward function. Planning enables these approaches to perform new tasks at test-time. The key

89

drawback is that these models learn dynamics of possible behavior rather than dynamics of desirable
behavior. This means that the responsibility of evoking desirable behavior is entirely deferred to
engineering the input reward function. Designing reward functions that cause MBRL to evoke
complex, desirable behavior is difficult when the space of possible undesirable behaviors is large.
In order to succeed, the rewards cannot lead the model astray towards observations significantly
different than those with which the model was trained.

Figure 6.2: Our method: deep imitative models. Top Center. We use demonstrations to learn a
probability density function q of future behavior and deploy it to accomplish various tasks. Left:
A region in the ground plane is input to a planning procedure that reasons about how the expert
would achieve that task. It coarsely specifies a destination, and guides the vehicle to turn left. Right:
Goal positions and potholes yield a plan that avoids potholes and achieves one of the goals on the
right.

Our goal is to devise an algorithm that combines the advantages of MBRL and IL by offering
MBRL’s flexibility to achieve new tasks at test-time and IL’s potential to learn desirable behavior
entirely from offline data. To accomplish this, we first train a model to forecast expert trajectories
with a density function, which can score trajectories and plans by how likely they are to come from
the expert. A probabilistic model is necessary because expert behavior is stochastic: e.g. at an
intersection, the expert could choose to turn left or right. Next, we derive a principled probabilistic
inference objective to create plans that incorporate both (1) the model and (2) arbitrary new tasks.
Finally, we derive families of tasks that we can provide to the inference framework. Our method
can accomplish new tasks specified as complex goals without having seen an expert complete these
tasks before.

We investigate properties of our method on a dynamic simulated autonomous driving task (see
Fig. 6.2). Videos are available at https://sites.google.com/view/imitative-models. Our contribu-
tions are as follows:

1. Interpretable expert-like plans without reward engineering. Our method outputs multi-step
expert-like plans, offering superior interpretability to one-step imitation learning models. In
contrast to MBRL, our method generates expert-like behaviors without reward function crafting.

90

https://sites.google.com/view/imitative-models

2. Flexibility to new tasks: In contrast to IL, our method flexibly incorporates and achieves goals
not seen during training, and performs complex tasks that were never demonstrated, such as
navigating to goal regions and avoiding test-time only potholes, as depicted in Fig. 6.2.

3. Robustness to goal specification noise: We show that our method is robust to noise in the goal
specification. In our application, we show that our agent can receive goals on the wrong side of
the road, yet still navigate towards them while staying on the correct side of the road.

4. State-of-the-art CARLA performance: Our method substantially outperforms MBRL, a custom
IL method, and all five prior CARLA IL methods known to us. It learned near-perfect driving
through dynamic and static CARLA environments from expert observations alone.

6.2 Deep Imitative Models

We begin by formalizing assumptions and notation. We model continuous-state, discrete-time,
partially-observed Markov processes. Our agent’s state at time t is st ∈ RD; t = 0 refers to the
current time step, and φ is the agent’s observations. Variables are bolded. Random variables are
capitalized. Absent subscripts denote all future time steps, e.g. S

.
= S1:T ∈ RT×D. We denote a

probability density function of a random variable S as p(S), and its value as p(s)
.
= p(S=s).

To learn agent dynamics that are possible and preferred, we construct a model of expert behavior.
We fit an “Imitative Model” q(S1:T |φ) =

∏T
t=1 q(St|S1:t−1, φ) to a dataset of expert trajectories

D = {(si, φi)}Ni=1 drawn from a (unknown) distribution of expert behavior si ∼ p(S|φi). By training
q(S|φ) to forecast expert trajectories with high likelihood, we model the scene-conditioned expert
dynamics, which can score trajectories by how likely they are to come from the expert.

6.2.1 Imitative Planning to Goals

After training, q(S|φ) can generate trajectories that resemble those that the expert might generate –
e.g. trajectories that navigate roads with expert-like maneuvers. However, these maneuvers will not
have a specific goal. Beyond generating human-like behaviors, we wish to direct our agent to goals
and have the agent automatically reason about the necessary mid-level details. We define general
tasks by a set of goal variables G. The probability of a plan s conditioned on the goal G is modelled
by a posterior p(s|G, φ). This posterior is implemented with q(s|φ) as a learned imitation prior and
p(G|s, φ) as a test-time goal likelihood. We give examples of p(G|s, φ) after deriving a maximum a
posteriori inference procedure to generate expert-like plans that achieve abstract goals:

s∗
.
= arg max

s
log p(s|G, φ) = arg max

s
log q(s|φ) + log p(G|s, φ)− log p(G|φ)

= arg max
s

log q(s|φ)︸ ︷︷ ︸
imitation prior

+ log p(G|s, φ)︸ ︷︷ ︸
goal likelihood

. (6.1)

We perform gradient-based optimization of Eq. 6.1, and defer this discussion to Section 6.2.6. Next,
we discuss several goal likelihoods, which direct the planning in different ways. They communicate
goals they desire the agent to achieve, but not how to achieve them. The planning procedure
determines how to achieve them by producing paths similar to those an expert would have taken to
reach the given goal. In contrast to black-box one-step IL that predicts controls, our method produces
interpretable multi-step plans accompanied by two scores. One estimates the plan’s “expertness”,
the second estimates its probability to achieve the goal. Their sum communicates the plan’s overall
quality.

91

6.2.2 Constructing Goal Likelihoods

Constraint-based planning to goal sets (hyperparameter-free): Consider the setting where we
have access to a set of desired final states, one of which the agent should achieve. We can model
this by applying a Dirac-delta distribution on the final state, to ensure it lands in a goal set G ⊂RD:

p(G|s, φ)← δsT (G), δsT (G) = 1 if sT ∈ G, δsT (G) = 0 if sT 6∈ G. (6.2)

δsT (G)’s partial support of sT ∈ G ⊂ RD constrains sT and introduces no hyperparameters into
p(G|s, φ). For each choice of G, we have a different way to provide high-level task information to
the agent. The simplest choice for G is a finite set of points: a (A) Final-State Indicator likelihood.
We applied (A) to a sequence of waypoints received from a standard A∗ planner (provided by the
CARLA simulator), and outperformed all prior dynamic-world CARLA methods known to us.
We can also consider providing an infinite number of points. Providing a set of line-segments as
G yields a (B) Line-Segment Final-State Indicator likelihood, which encourages the final state to
land along one of the segments. Finally, consider a (C) Region Final-State Indicator likelihood
in which G is a polygon (see Figs. 6.2 and 6.5). Solving Eq. 6.1 with (C) amounts to planning
the most expert-like trajectory that ends inside a goal region. We found these methods to work well
when G contains “expert-like” final position(s), as the prior strongly penalizes plans ending in
non-expert-like positions.
Unconstrained planning to goal sets (hyperparameter-based): Instead of constraining that the final
state of the trajectory reach a goal, we can use a goal likelihood with full support (sT ∈RD), centered
at a desired final state. This lets the goal likelihood encourage goals, rather than dictate them. If there is a
single desired goal (G= {gT }), the (D) Gaussian Final-State likelihood p(G|s, φ) ← N (gT ; sT , εI)
treats gT as a noisy observation of a final future state, and encourages the plan to arrive at a
final state. We can also plan to K successive states G = (gT−K+1, . . . ,gT) with a (E) Gaussian
State Sequence: p(G|s, φ)←

∏T
k=T−K+1N (gk; sk, εI) if a program wishes to specify a desired end

velocity or acceleration when reaching the final state gT (Fig. 6.3). Alternatively, a planner may
propose a set of states with the intention that the agent should reach any one of them. This is
possible by using a (F) Gaussian Final-State Mixture: p(G|s, φ)← 1

K

∑K
k=1N (gkT ; sT , εI) and is

useful if some of those final states are not reachable with an expert-like plan. Unlike A–C, D–F
introduce a hyperparameter “ε”. However, they are useful when no states in G correspond to observed
expert behavior, as they allow the imitation prior to be robust to poorly specified goals.

In order to tune the ε hyperparameter of the unconstrained likelihoods, we undertook the
following binary-search procedure. When the prior frequently overwhelmed the posterior, we
set ε ← 0.2ε, to yield tighter covariances, and thus more penalty for failing to satisfy the goals.
When the posterior frequently overwhelmed the prior, we set ε← 5ε, to yield looser covariances,
and thus less penalty for failing to satisfy the goals. We executed this process three times: once
for the “Gaussian Final-State Mixture” experiments (Section 6.4), once for the “Noise Robustness”
Experiments (Section 6.4.6), and once for the pothole-planning experiments (Section 6.4.7). Note
that for the Constrained-Goal Likelihoods introduced no hyperparameters to tune.
Costed planning: Our model has the additional flexibility to accept arbitrary user-specified costs c
at test-time. For example, we may have updated knowledge of new hazards at test-time, such as a
given map of potholes or a predicted cost map. Cost-based knowledge c(si|φ) can be incorporated
as an (G) Energy-based likelihood: p(G|s, φ) ∝

∏T
t=1 e

−c(st|φ) [116, 223]. This can be combined with
other goal-seeking objectives by simply multiplying the likelihoods together. Examples of combining
G (energy-based) with F (Gaussian mixture) were shown in Fig. 6.2 and are shown in Fig. 6.4. Next,
we describe instantiating q(S|φ) in CARLA [50].

92

Figure 6.3: Imitative planning with
the Gaussian State Sequence enables
fine-grained control of the plans.

Figure 6.4: Costs can be assigned to
“potholes” only seen at test-time. The
planner prefers routes avoiding pot-
holes.

Figure 6.5: Goal
regions can be
coarsely specified
to give directions.

6.2.3 Applying Deep Imitative Models to Autonomous Driving

Figure 6.6: Architecture of mθ and σθ, which parameterize qθ(S|φ={χ, s−τ :0,λ}). Inputs: LIDAR χ,
past-states s−τ :0, light-state λ, and latent noise Z1:T . Output: trajectory S1:T . Details in Table 6.1.

Table 6.1: Detailed Architecture that implements s1:T = f(z1:T , φ). Typically, T = 40, D = 2,H =
W = 200.

Component Input [dimensionality] Layer or Operation Output [dimensionality] Details

Static featurization of context: φ = {χ, s1:A
−τ :0}.

MapFeat χ [H,W, 2] 2D Convolution 1χ [H,W, 32] 3× 3 stride 1, ReLu
MapFeat i−1χ [H,W, 32] 2D Convolution iχ [H,W, 32] 3× 3 stride 1, ReLu, i ∈ [2, . . . , 8]
MapFeat 8χ [H,W, 32] 2D Convolution Γ [H,W, 8] 3× 3 stride 1, ReLu
PastRNN s−τ :0 [τ + 1, D] RNN α [32] GRU across time dimension

Dynamic generation via loop: for t ∈ {0, . . . , T − 1}.

MapFeat st [D] Interpolate γt = Γ(st) [8] Differentiable interpolation
JointFeat γt, s0,

2η, α,λ γt ⊕ s0 ⊕ 2η ⊕ α⊕ λ ρt [D + 50 + 32 + 1] Concatenate (⊕)
FutureRNN ρt [D + 50 + 32 + 1] RNN 1ρt [50] GRU
FutureMLP 1ρt [50] Affine (FC) 2ρt [200] Tanh activation
FutureMLP 2ρt[200] Affine (FC) mt [D], ξt [D,D] Identity activation
MatrixExp ξt [D,D] expm(ξt + ξa,transpose

t) σt [D,D] Differentiable Matrix Exponential [171]
VerletStep st, st−1,mt,σt, zt 2st − st−1 +mt + σtzt st+1 [D]

In our autonomous driving application, we model the agent’s state at time t as st ∈ RD with
D=2; st represents our agent’s location on the ground plane. The agent has access to environment
perception φ ← {s−τ :0,χ,λ}, where τ is the number of past positions we condition on, χ is a
high-dimensional observation of the scene, and λ is a low-dimensional traffic light signal. χ could

93

represent either LIDAR or camera images (or both), and is the agent’s observation of the world.
In our setting, we featurize LIDAR to χ = R200×200×2, with χij representing a 2-bin histogram of
points above and at ground level in a 0.5m2 cell at position (i, j). CARLA provides ground-truth
s−τ :0 and λ. Their availability is a realistic input assumption in perception-based autonomous
driving pipelines.
Model requirements: A deep imitative model forecasts future expert behavior. It must be able to
compute q(s|φ)∀s ∈ RT×D. The ability to compute∇sq(s|φ) enables gradient-based optimization
for planning. [183] provide a recent survey on forecasting agent behavior. As many forecasting
methods cannot compute trajectory probabilities, we must be judicious in choosing q(S|φ). A model
that can compute probabilities R2P2 [171] (presented in Chapter 4), a generative autoregressive flow
[141, 166]. We extend R2P2 to instantiate the deep imitative model q(S|φ). R2P2 was previously
used to forecast vehicle trajectories: it was not demonstrated or developed to plan or execute
controls. Although we used R2P2, other future-trajectory density estimation techniques could be
used – designing q(s|φ) is not the primary focus of this work. In R2P2, qθ(S|φ) is induced by an
invertible, differentiable function: S = fθ(Z;φ) : RT×2 7→ RT×2; fθ warps a latent sample from a
base distribution Z∼q0 =N (0, I) to S. θ is trained to maximize qθ(S|φ) of expert trajectories. fθ is
defined for 1..T as follows:

St = ft(Z1:t) = µθ(S1:t−1, φ) + σθ(S1:t−1, φ)Zt, (6.3)

where µθ(S1:t−1, φ) = 2St−1−St−2+mθ(S1:t−1, φ) encodes a constant-velocity inductive bias. The
mθ ∈ R2 and σθ ∈ R2×2 are computed by expressive neural networks. The resulting trajectory
distribution is complex and multimodal (Section 6.2.4). Because traffic light state was not included
in the φ of R2P2’s “RNN” model, it could not react to traffic lights. We created a new model that
includes λ. It fixed cases where q(S|φ) exhibited no forward-moving preference when the agent
was already stopped, and improved q(S|φ)’s stopping preference at red lights. We used T = 40
trajectories at 10Hz (4 seconds), and τ=3. Fig. 6.6 depicts the architecture of µθ and σθ.

6.2.4 Prior Visualization and Statistics

We show examples of the priors multimodality in Fig. 6.7

Figure 6.7: Left: Samples from the prior, q(S|φ), go left or right. Right: Samples go forward or right.

6.2.4.1 Statistics of Prior and Goal Likelihoods

Following are the values of the planning criterion onN ≈ 8·103 rounds from applying the “Gaussian
Final-State Mixture” to Town01 Dynamic. Mean of log q(s∗|φ) ≈ 104. Mean of log p(G|s∗, φ) = −4.

94

Figure 6.8: Illustration of our method applied to autonomous driving. Our method trains an
imitative model from a dataset of expert examples. After training, the model is repurposed as an
imitative planner. At test-time, a route planner provides waypoints to the imitative planner, which
computes expert-like paths to each goal. The best plan is chosen according to the planning objective
and provided to a low-level PID-controller in order to produce steering and throttle actions. This
procedure is also described with pseudocode in Section 6.2.6.

This illustrates that while the prior’s value mostly dominates the values of the final plans, the
Gaussian Final-State Goal Mixture likelihood has a moderate amount of influence on the value of
the final plan.

6.2.5 Imitative Driving

We now instantiate a complete autonomous driving framework based on imitative models to
study in our experiments, seen in Fig. 6.8. We use three layers of spatial abstraction to plan to a
faraway destination, common to autonomous vehicle setups: coarse route planning over a road map,
path planning within the observable space, and feedback control to follow the planned path [145,
197]. For instance, a route planner based on a conventional GPS-based navigation system might
output waypoints roughly in the lanes of the desired direction of travel, but not accounting for
environmental factors such as the positions of other vehicles. This roughly communicates possibilities
of where the vehicle could go, but not when or how it could get to them, or any environmental factors
like other vehicles. A goal likelihood from Sec. 6.2.2 is formed from the route and passed to the
planner, which generates a state-space plan according to the optimization in Eq. 6.1. The resulting
plan is fed to a simple PID controller on steering, throttle, and braking. In Fig. 6.8 we illustrate how
we use our model in our application.

6.2.6 Algorithms

Algorithm 4 IMITATIVEDRIVING(ROUTEPLAN, IMITATIVEPLAN, PIDCONTROLLER, qθ, H)

1: φ← ENVIRONMENT(∅) {Initialize the robot}
2: while not at destination do
3: G ← ROUTEPLAN(φ) {Generate goals from a route}
4: sG1:T ← IMITATIVEPLANR2P2(qθ,G, φ) {Plan path}
5: for h = 0 to H do
6: u← PIDCONTROLLER(φ, sG1:T , h,H)
7: φ← ENVIRONMENT(u) {Execute control}
8: end for
9: end while

95

In Algorithm 4, we provide pseudocode for receding-horizon control via our imitative model. In
Algorithm 5 we provide pesudocode that describes how we plan in the latent space of the trajectory.
Since s1:T = f(z1:T) in our implementation, and f is differentiable, we can perform gradient descent
of the same objective in terms of z1:T . Since q is trained with z1:T ∼ N (0, I), the latent space is
likelier to be better numerically conditioned than the space of s1:T , although we did not compare
the two approaches formally.

Algorithm 5 IMITATIVEPLANR2P2(qθ,G, φ, f)

1: Define MAP objective Lwith qθ according to Eq. 6.1 {Incorporate the Imitative Model}
2: Initialize z1:T ∼ q0

3: while not converged do
4: z1:T ← z1:T +∇z1:TL(s1:T = f(z1:T),G, φ)
5: end while
6: return s1:T = f(z1:T)

In Algorithm 6, we detail the speed-based throttle and position-based steering PID controllers.

Algorithm 6 PIDCONTROLLER(φ = {s0, s−1, . . . }, sG1:T , h,H;K ṡ
p ,K

α
p)

1: i← T −H + h {Compute the index of the target position}
2: ṡprocess-speed ← (s0,x − s−1,x) {Compute the current forward speed from the observations}
3: ssetpoint-position ← sGi,x {Retrieve the target position x-coordinate from the plan}
4: ṡsetpoint-speed ← ssetpoint-position/i {Compute the forward target speed}
5: eṡ ← ṡsetpoint-speed − ṡprocess-speed {Compute the forward speed error}
6: uṡ ← K ṡ

peṡ {Compute the accelerator control with a nonzero proportional term}
7: throttle← 1(e > 0) · u+ 1(e ≤ 0) · 0 {Use the control as throttle if the speed error is positive}
8: brake← 1(e > 0) · 0 + 1(e ≤ 0) · u {Use the control as brake if the speed error is negative}
9: αprocess ← arctan(s0,y − s−1,y, s0,x − s−1,x) {Compute current heading}

10: αsetpoint ← arctan(sGi,y − s0,y, |sGi,x − s0,x|) {Compute target forward heading}
11: eα ← αsetpoint − αprocess {Compute the heading error}
12: steering← Kα

p eα {Compute the steering with a nonzero proportional term}
13: u←

[
throttle, steering, brake

]
14: return u

6.2.7 Optimizing Goal Likelihoods with Set Constraints

We now derive an approach to optimize our main objective with set constraints. Although we
could apply a constrained optimizer, we find that we are able to exploit properties of the model
and constraints to derive differentiable objectives that enable approximate optimization of the
corresponding closed-form optimization problems. These enable us to use the same straightforward
gradient-descent-based optimization approach described in Algorithm 5.
Shorthand notation: In this section we omit dependencies on φ for brevity, and use short hand
µt

.
= µθ(s1:t−1) and Σt

.
= Σθ(s1:t−1). For example, q(st|s1:t−1) = N (st;µt,Σt).

Let us begin by defining a useful delta function:

δsT (G)
.
=

{
1 if sT ∈ G
0 if sT 6∈ G,

(6.4)

96

which serves as our goal likelihood when using goal with set constraints: p(G|s1:T)← δST (G). We
now derive the corresponding maximum a posteriori optimization problem:

s∗1:T
.
= arg max

s1:T∈R2T

p(s1:T |G)

= arg max
s1:T∈R2T

p(G|s1:T) · q(s1:T) · p−1(G)

= arg max
s1:T∈R2T

p(G|s1:T)︸ ︷︷ ︸
goal likelihood

· q(s1:T)︸ ︷︷ ︸
imitation prior

= arg max
s1:T∈R2T

δST (G)︸ ︷︷ ︸
set constraint

· q(s1:T)︸ ︷︷ ︸
imitation prior

= arg max
s1:T∈R2T

{
q(s1:T) if sT ∈ G
0 if sT 6∈ G

= arg max
s1:T−1∈R2(T−1),sT∈G

q(s1:T)

= arg max
s1:T−1∈R2(T−1)

arg max
sT∈G

q(sT |s1:T−1)
T−1∏
t=1

q(st|s1:t−1)

= arg max
s1:T−1∈R2(T−1)

arg max
sT∈G

N (sT ;µT ,ΣT)
T−1∏
t=1

N (st;µt,Σt). (6.5)

By exploiting the fact that q(sT |s1:T−1) = N (sT ;µT ,ΣT), we can derive closed-form solutions
for

s∗T = arg max
sT∈G

N (sT ;µT ,ΣT) (6.6)

when G has special structure, which enables us to apply gradient descent to solve this constrained-
optimization problem (examples below). With a closed form solution to equation 6.6, we can easily
compute equation 6.5 using unconstrained-optimization as follows:

s∗1:T = arg max
s1:T−1∈R2(T−1)

arg max
sT∈Gline-segment

q(sT |s1:T−1)
T−1∏
t=1

q(st|s1:t−1) (6.7)

s∗1:T−1 = arg max
s1:T−1∈R2(T−1)︸ ︷︷ ︸

unconstrained optimization

q(s∗T |s1:t−1)
T−1∏
t=1

q(st|s1:t−1).︸ ︷︷ ︸
objective function of s1:T−1

(6.8)

Note that equation 6.8 only helps solve equation 6.5 if equation 6.6 has a closed-form solution.
We detail example of goal sets with such closed-form solutions in the following subsections.

6.2.7.1 Point Goal Set

The solution to equation 6.6 in the case of a single desired goal g ∈ RD is simply:

Gpoint
.
= {gT }, (6.9)

s∗T,point
.
= arg max

sT∈Gpoint

N (sT ;µT ,ΣT)

= gT . (6.10)

97

More generally, multiple point goals help define optional end points for planning: where the agent
only need reach one valid end point (see Fig. 6.9 for examples), formulated as:

Gpoints
.
= {gkT }Kk=1, (6.11)

s∗T,points
.
= arg max

gkT∈Gpoints

N
(
gkT ;µT ,ΣT

)
. (6.12)

6.2.7.2 Line Segment Goal Set

We can form a goal set as a finite-length line segment, connecting point a ∈ RD to point b ∈ RD:

gline(u)
.
= a + u · (b− a), u ∈ R, (6.13)

Ga→b
line-segment

.
= {gline(u) : u ∈ [0, 1]}. (6.14)

The solution to equation 6.6 in the case of line-segment goals is:

s∗T,line-segment
.
= arg max

sT∈Ga→b
line-segment

N (sT ;µT ,ΣT) (6.15)

= a + min

1, max

(
0,

(b− a)>Σ−1
T (µT − a)

(b− a)>Σ−1
T (b− a)

) · (b− a). (6.16)

Proof:
To solve equation 6.15 is to find which point along the line gline(u) maximizes N (·;µT ,ΣT)

subject to the constraint 0 ≤ u ≤ 1:

u∗
.
= arg max

u∈[0,1]
N
(
gline(u);µT ,ΣT

)
)

= arg min
u∈[0,1]

(gline(u)− µT)>Σ−1
T (gline(u)− µT)︸ ︷︷ ︸

Lu(u)

. (6.17)

Since Lu is convex, the optimal value u∗ is value closest to the unconstrained arg max of Lu(u),
subject to 0 ≤ u ≤ 1:

u∗R
.
= arg max

u∈R
Lu(u), (6.18)

u∗ = arg min
u∈[0,1]

Lu(u)

= min
(

1, max
(
0, u∗R

))
. (6.19)

We now solve for u∗R:

u∗R = u : 0 =
dL(u)

du
=

d
(

(gline(u)− µT)>Σ−1
T (gline(u)− µT)

)
du

= 2 · d(gline(u)− µT)>

du
Σ−1
T (gline(u)− µT)

= 2 · d(a + u · (b− a)− µT)>

du
Σ−1
T (a + u · (b− a)− µT)

= 2 · (b− a)>Σ−1
T (a + u · (b− a)− µT),

u∗R =
(b− a)>Σ−1

T (µT − a)

(b− a)>Σ−1
T (b− a)

, (6.20)

98

which gives us:

s∗T,line-segment = gline(u∗)

= a + u∗ · (b− a)

= a + min
(

1, max
(
0, u∗R

))
· (b− a)

= a + min

1, max

(
0,

(b− a)>Σ−1
T (µT − a)

(b− a)>Σ−1
T (b− a)

) · (b− a). (6.21)

6.2.7.3 Multiple Line Segment Goal Set:

More generally, we can combine multiple line-segments to form piecewise linear “paths” we wish
to follow. By defining a path that connects points (p0,p1, ...,pN), we can evaluate Liu for each
Gpi→pi+1

line-segment, select the optimal segment i∗ = arg maxi Liu, and use the segment i∗’s solution to u∗ to
compute s∗T . Examples shown in Fig. 6.10.

6.2.7.4 Polygon Goal Set

Instead of a route or path, a user (or program) may wish to provide a general region the agent should
go to, and state within that region being equally valid. Polygon regions (including both boundary
and interior) offer closed form solution to equation 6.6 and are simple to specify. A polygon can
be specified by an ordered sequence of vertices (p0,p1, ...,pN) ∈ RN×2. Edges are then defined as
the sequence of line-segments between successive vertices (and a final edge between first and last
vertex):

(
(p0,p1), ..., (pN−1,pN), (pN ,p0)

)
. Examples shown in Fig. 6.11 and 6.12.

Solving equation 6.6 with a polygon has two cases: depending whether µT is inside the polygon,
or outside. If µT lies inside the polygon, then the optimal value for s∗T that maximizes N (s∗T ;µT ,ΣT)
is simply µT : the mode of the Gaussian distribution. Otherwise, if µT lies outside the polygon, then
the optimal value s∗T will lie on one of the polygon’s edges, solved using 6.2.7.3. Having introduced
and discussed the goal likelihoods, we next turn to describing related work.

6.3 Related Work

A body of previous work has explored offline IL (Behavior Cloning – BC) in the CARLA simulator
[41, 42, 122, 123, 191]. These BC approaches condition on goals drawn from a small discrete set of
directives. Despite BC’s theoretical drift shortcomings [181], these methods still perform empirically
well. These approaches and ours share the same high-level routing algorithm: an A∗ planner on route
nodes that generates waypoints. In contrast to our approach, these approaches use the waypoints in
a Waypoint Classifier, which reasons about the map and the geometry of the route to classify the
waypoints into one of several directives: {Turn left, Turn right, Follow Lane, Go Straight}. One
of the original motivations for these type of controls was to enable a human to direct the robot
[41]. However, in scenarios where there is no human in the loop (i.e. autonomous driving),
we advocate for approaches to make use of the detailed spatial information inherent in these
waypoints. Our approach and several others we designed make use of this spatial information. One
of these is CIL-States (CILS): whereas the approach in [41] uses images to directly generate controls,
CILS uses identical inputs and PID controllers as our method. With respect to prior conditional IL
methods, our main approach has more flexibility to handle more complex directives post-training,
the ability to learn without goal labels, and the ability to generate interpretable planned and
unplanned trajectories. These contrasting capabilities are illustrated in Table 6.2.

99

Table 6.2: Desirable attributes of each approach. A green check denotes that a method has a
desirable attribute, whereas a red cross denotes the opposite. A “†” indicates an approach we
implemented.

Approach Flexible to New Goals Trains without goal labels Outputs Plans Trains Offline Has Expert P.D.F.

CIRL∗ [123] 7 7 7 7 7

CAL∗ [191] 7 7 7 3 7

MT∗ [122] 7 7 7 3 7

CIL∗ [41] 7 7 7 3 7

CILRS∗ [42] 7 7 7 3 7

CILS† 7 3 7 3 7

MBRL† 3 3 3 7 7

Imitative Models (Ours)† 3 3 3 3 3

Table 6.3: Algorithmic components of each approach. A “†” indicates an approach we implemented.
Approach Control Algorithm ← Learning Algorithm ← Goal-Generation Algorithm ← Routing Algorithm High-Dim. Obs.

CIRL∗ [123] Policy Behavior Cloning+RL Waypoint Classifier A∗ Waypointer Image
CAL∗ [191] PID Affordance Learning Waypoint Classifier A∗ Waypointer Image

MT∗ [122] Policy Behavior Cloning Waypoint Classifier A∗ Waypointer Image
CIL∗ [41] Policy Behavior Cloning Waypoint Classifier A∗ Waypointer Image

CILRS∗ [42] Policy Behavior Cloning Waypoint Classifier A∗ Waypointer Image
CILS† PID Trajectory Regressor Waypoint Classifier A∗ Waypointer LIDAR

MBRL† Reachability Tree State Regressor Waypoint Selector A∗ Waypointer LIDAR
Imitative Models (Ours)† Imitative Plan+PID Traj. Density Est. Goal Likelihoods A∗ Waypointer LIDAR

Our approach is also related to MBRL. MBRL can also plan, but with a one-step predictive model
of possible dynamics. The task of evoking expert-like behavior is offloaded to the reward function,
which can be difficult and time-consuming to craft properly. We know of no MBRL approach
previously applied to CARLA, so we devised one for comparison. This MBRL approach also uses
identical inputs to our method, instead to plan a reachability tree [109] over an dynamic obstacle-based
reward function.

Several prior works [11, 208, 220] used imitation learning to train policies that contain planning-
like modules as part of the model architecture. While our work also combines planning and
imitation learning, ours captures a distribution over possible trajectories, and then plan trajectories
at test-time that accomplish a variety of given goals with high probability under this distribution.
Our approach is suited to offline-learning settings where interactively collecting data is costly
(time-consuming or dangerous). However, there exists online IL approaches that seek to be safe [132,
211, 249].

6.4 Experiments

We evaluate our method using the CARLA driving simulator [50]. We seek to answer four pri-
mary questions: (1) Can we generate interpretable, expert-like plans with offline learning and
no reward engineering? Neither IL nor MBRL can do so. It is straightforward to interpret the
trajectories by visualizing them on the ground plane; we thus seek to validate whether these plans
are expert-like by equating expert-like behavior with high performance on the CARLA benchmark.
(2) Can we achieve state-of-the-art CARLA performance using resources commonly available in
real autonomous vehicle settings? There are several differences between the approaches, as discussed in
Sec 6.3 and shown in Tables 6.2 and 6.3. Our approach uses the CARLA toolkit’s resources that are commonly
available in real autonomous vehicle settings: waypoint-based routes (all prior approaches use these) and
LIDAR (CARLA-provided, but only the approaches we implemented use it). Furthermore, the two additional
methods of comparison we implemented (CILS and MBRL) use the exact same inputs as our algorithm. These
reasons justify an overall performance comparison to answer (2): whether we can achieve state-of-the-art
performance using commonly available resources. We advocate that other approaches also make use of such

100

resources. (3) How flexible is our approach to new tasks? We investigate (3) by applying each of
the goal likelihoods we derived and observing the resulting performance. (4) How robust is our
approach to error in the provided goals? We do so by injecting two different types of error into the
waypoints and observing the resulting performance.

6.4.1 Instantiating Goal Likelihoods for Autonomous Driving

The waypointer uses the CARLA planner’s provided route to generate waypoints. In the constrained-
based planning goal likelihoods, we use this route to generate waypoints without interpolating
between them. In the relaxed goal likelihoods, we interpolate this route to every 2 meters, and use
the first 20 waypoints.

Given the in-lane waypoints generated by CARLA’s route planner, we use these to create Point
goal sets, Line-Segment goal sets, and Polygon goal sets, which respectively correspond to the (A)
Final-State Indicator, (B) Line-Segment Final-State Indicator, and (C) Final-State Region Indicator
described in Section 6.2.2. For (A), we simply feed the waypoints directly into the Final-State
Indicator, which results in a constrained optimization to ensure that ST ∈ G = {gkT }Kk=1. We also
included the vehicle’s current position in the goal set, in order to allow it to stop. The gradient-
descent based optimization is then formed from combining Eq. 6.8 with Eq. 6.12. The gradient to the
nearest goal of the final state of the partially-optimized plan encourage the optimization to move
the plan closer to that goal. We used K = 10. We applied the same procedure to generate the goal
set for the (B) Line Segment indicator, as the waypoints returned by the planner are ordered. Finally,
for the (C) Final-State Region Indicator (polygon), we used the ordered waypoints as the “skeleton”
of a polygon that surrounds. It was created by adding a two vertices for each point vt in the skeleton
at a distance 1 meter from vt perpendicular to the segment connecting the surrounding points
(vt−1,vt+1). This resulted in a goal set Gpolygon ⊃ Gline-segment, as it surrounds the line segments.
The (F) Gaussian Final-State Mixture goal set was constructed in the same way as (A), and also used
when the pothole costs were added.

For the methods we implemented, the task is to drive the furthest road location from the vehicle’s
initial position. Note that this protocol more difficult than the one used in prior work [41, 42, 122,
123, 191], which has no distance guarantees between start positions and goals, and often results in
shorter paths.

6.4.2 Planning Visualizations

Visualizations of examples of our method deployed with different goal likelihoods are shown in
Fig. 6.9, Fig. 6.10, Fig. 6.11, and Fig. 6.12.

6.4.3 Dataset and Metrics

Before training q(S|φ), we ran CARLA’s expert in the dynamic world setting of Town01 to collect
a dataset of examples. We ran the autopilot in Town01 for over 900 episodes of 100 seconds
each in the presence of 100 other vehicles, and recorded the trajectory of every vehicle and the
autopilot’s LIDAR observation. We randomized episodes to either train, validation, or test sets. We
created sets of 60,701 train, 7586 validation, and 7567 test scenes, each with 2 seconds of past and 4
seconds of future position information at 10Hz. The dataset also includes 100 episodes obtained by
following the same procedure in Town02. We then train q(S|φ) on this dataset. Following existing
protocol, each test episode begins with the vehicle randomly positioned on a road in the Town01 or
Town02 maps in one of two settings: static-world (no other vehicles) or dynamic-world (with other
vehicles). We construct the goal set G for the Final-State Indicator (A) directly from the route output

101

Figure 6.9: Planning with the Final State Indicator yields plans that end at one of the provided
locations. The orange diamonds indicate the locations in the goal set. The red circles indicate the
chosen plan.

Figure 6.10: Planning with the Line Segment Final State Indicator yields plans that end along one of
the segments. The orange diamonds indicate the endpoints of each line segment. The red circles
indicate the chosen plan.

102

Figure 6.11: Planning with the Region Final State Indicator yields plans that end inside the region.
The orange polygon indicates the region. The red circles indicate the chosen plan.

Figure 6.12: Planning with the Region Final State Indicator yields plans that end inside the region.
The orange polygon indicates the region. The red circles indicate the chosen plan. Note even with a
wider goal region than Fig. 6.11, the vehicle remains in its lane, due to the imitation prior. Despite
their coarseness, these wide goal regions still provide useful guidance to the vehicle.

103

by CARLA’s waypointer. B’s line segments are formed by connecting the waypoints to form a
piecewise linear set of segments. C’s regions are created a polygonal goal region around the segments
of (B). Each represents an increasing level of coarseness of direction. Coarser directions are easier to
specify when there is ambiguity in positions (both the position of the vehicle and the position of the
goals). We use three metrics: (a) success rate in driving to the destination without any collisions
(which all prior work reports); (b) red-light violations; and (c) proportion of time spent driving in
the wrong lane and off road. With the exception of metric (a), lower numbers are better.

6.4.4 Baseline Details

Conditional Imitation Learning of States (CILS): We designed a conditional imitation learning
baselines that predicts the setpoint for the PID-controller. Each receives the same scene observations
(LIDAR) and is trained with the same set of trajectories as our main method. It uses nearly
the same architecture as that of the original CIL, except it outputs setpoints instead of controls,
and also observes the traffic light information. We found it very effective for stable control on
straightaways. When the model encounters corners, however, prediction is more difficult, as in
order to successfully avoid the curbs, the model must implicitly plan a safe path. We found that
using the traffic light information allowed it to stop more frequently. Model-Based Reinforcement
Learning: To compare against a purely model-based reinforcement learning algorithm, we propose
a model-based reinforcement learning baseline. This baseline first learns a forwards dynamics model
st+1 = f(st−3:t,at) given observed expert data (at are recorded vehicle actions). We use an MLP
with two hidden layers, each 100 units. Note that our forwards dynamics model does not imitate
the expert preferred actions, but only models what is physically possible. Together with the same
LIDAR map χ our method uses to locate obstacles, this baseline uses its dynamics model to plan a
reachability tree [109] through the free-space to the waypoint while avoiding obstacles. The planner
opts for the lowest-cost path that ends near the goal C(s1:T ; gT) = ||sT − gT ||2 +

∑T
t=1 c(st), where

cost of a position is determined by c(st) = 1.51(st < 1 meters from any obstacle) + 0.751(1 <=
st < 2 meters from any obstacle) +

...
st.

We plan forwards over 20 time steps using a breadth-first search search over CARLA steering
angle {−0.3,−0.1, 0., 0.1, 0.3}, noting valid steering angles are normalized to [−1, 1], with constant
throttle at 0.5, noting the valid throttle range is [0, 1]. Our search expands each state node by the
available actions and retains the 50 closest nodes to the waypoint. The planned trajectory efficiently
reaches the waypoint, and can successfully plan around perceived obstacles to avoid getting stuck.
To convert the LIDAR images into obstacle maps, we expanded all obstacles by the approximate
radius of the car, 1.5 meters.

For Dynamic-MBRL, we use the same setup as the Static-MBRL method, except we add a
discrete temporal dimension to the search space (one R2 spatial dimension per T time steps into the
future). All static obstacles remain static, however all LIDAR points that were known to collide
with a vehicle are now removed: and replaced at every time step using a constant velocity model
of that vehicle. We found that the main failure mode was due to both to inaccuracy in constant
velocity prediction as well as the model’s inability to perceive lanes in the LIDAR. The vehicle
would sometimes wander into the opposing traffic’s lane, having failed to anticipate an oncoming
vehicle blocking its path.

6.4.5 CARLA Benchmark Results

: Towards questions (1) and (3) (expert-like plans and flexibility), we apply our approach with a
variety of goal likelihoods to the CARLA simulator. Towards question (2), we compare our methods
against CILS, MBRL, and prior work. These results are shown in Table 6.4. The metrics for the

104

methods we did not implement are from the aggregation reported in [42]. We observe our method
to outperform all other approaches in all settings: static world, dynamic world, training conditions,
and test conditions. We observe the Goal Indicator methods are able to perform well, despite having no
hyperparameters to tune. We found that we could further improve our approach’s performance if we
use the light state to define different goal sets, which defines a “smart” waypointer. This waypointer
simply removes nearby waypoints closer than 5 meters from the vehicle when a green light is
observed in the measurements provided by CARLA, to encourage the agent to move forward,
and removes far waypoints beyond 5 meters from the vehicle when a red light is observed in
the measurements provided by CARLA. The settings where we use this are suffixed with “S.” in
the Tables. We observed the planner prefers closer goals when obstructed, when the vehicle was
already stopped, and when a red light was detected; we observed the planner prefers farther goals
when unobstructed and when green lights or no lights were observed. Examples of these and
other interesting behaviors are best seen in the videos on the website (https://sites.google.com/view/
imitative-models). These behaviors follow from the method leveraging q(S|φ)’s internalization of
aspects of expert behavior in order to reproduce them in new situations. Altogether, these results
provide affirmative answers to questions (1) and (2). Towards question (3), these results show that
our approach is flexible to different directions defined by these goal likelihoods.

Table 6.4: We evaluate different autonomous driving methods on CARLA’s Dynamic Navigation task.
A “†” indicates methods we have implemented (each observes the same waypoints and LIDAR
as input). A “∗” indicates results reported in [42]. A “–” indicates an unreported statistic. A “‡”
indicates an optimistic estimate in transferring a result from the static setting to the dynamic setting.
“S.” denotes a “smart” waypointer reactive to light state.

Town01 (training conditions) Town02 (test conditions)

Dynamic Nav. Method Success Ran Red Light Wrong lane Off road Success Ran Red Light Wrong lane Off road

CIRL∗ [123] 82% – – – 41% – – –
CAL∗ [191] 83% – – – 64% – – –
MT∗ [122] 81% – – – 53% – – –
CIL∗ [41] 83% 83%‡ – – 38% 82%‡ – –
CILRS∗ [42] 92% 27%‡ – – 66% 64%‡ – –
CILS, Waypoint Input† 17% 0.0% 0.20% 12.1% 36% 0.0% 1.11% 11.70%
MBRL, Waypoint Input† 64% 72% 11.1% 2.96% 48% 54% 20.6% 13.3 %
Our method, Final-State Indicator† 92% 26% 0.05% 0.012% 84% 35% 0.13% 0.38%
Our method, Line Segment Final-St. Indicator† 84% 42% 0.03% 0.295% 88% 33% 0.12% 0.14%
Our method, Region Final-St. Indicator† 84% 56% 0.03% 0.131% 88% 54% 0.13% 0.22%
Our method, Gaussian Final-St. Mix.† 92% 6.3% 0.04% 0.005% 100% 12% 0.11% 0.04%
Our method, Region Final-St. Indicator S.† 92% 2.8% 0.021% 0.099% 92% 4.0% 0.11% 1.85%
Our method, Gaussian Final-St. Mix. S.† 100% 1.7% 0.03% 0.005% 92% 0.0% 0.05% 0.15%

Town01 (training conditions) Town02 (test conditions)

Static Nav. Method Success Ran Red Light Wrong lane Off road Success Ran Red Light Wrong lane Off road

CIRL∗ [123] 93% – – – 68% – – –
CAL∗ [191] 92% – – – 68% – – –
MT∗ [122] 81% – – – 78% – – –
CIL∗ [41] 86% 83% – – 44% 82% – –
CILRS∗ [42] 95% 27% – – 90% 64% – –
CILS, Waypoint Input† 28% 0.0% 0.38% 10.23% 36% 0.0% 1.69% 16.82%
MBRL, Waypoint Input† 96% 78% 14.3% 1.94% 96% 73% 19.6 % 0.75%
Our method, Final-State Indicator† 100% 48% 0.05% 0.002% 100% 52% 0.10% 0.13%
Our method, Gaussian Final-St. Mixture† 96% 0.83% 0.01% 0.08% 96% 0.0% 0.03% 0.14%
Our method, Gaussian Final-St. Mix. S.† 96% 0.0% 0.04% 0.07% 92% 0.0% 0.18% 0.27%

105

https://sites.google.com/view/imitative-models
https://sites.google.com/view/imitative-models

6.4.6 Robustness to Errors in Goal-Specification

Towards questions (3) (flexibility) and (4) (noise-robustness), we analyze the performance of our
method when the path planner is heavily degraded, to understand its stability and reliability. We
use the Gaussian Final-State Mixture goal likelihood.

Figure 6.13: Tolerating bad goals. The planner prefers goals in the distribution
of expert behavior (on the road at a reasonable distance). Left: Planning with
1/2 decoy goals. Right: Planning with all goals on the wrong side of the road.

Figure 6.14: Test-
time plans steer-
ing around pot-
holes.

Navigating with high-variance waypoints. As a test of our model’s capability to stay in the
distribution of demonstrated behavior, we designed a “decoy waypoints” experiment, in which
half of the waypoints are highly perturbed versions of the other half, serving as distractions for our
Gaussian Final-State Mixture imitative planner. The perturbation distribution isN (0, σ = 8m); each
waypoint is perturbed with a standard deviation of 8 meters. We observed surprising robustness to
decoy waypoints. Examples of this robustness are shown in Fig. 6.13. In Table 6.5, we report the
success rate and the mean number of planning rounds for failed episodes in the “1/2 distractors”
row. These numbers indicate our method can execute dozens of planning rounds without decoy
waypoints causing a catastrophic failure, and often it can execute the hundreds necessary to achieve
the goal. One failure mode of this approach is when decoy waypoints lie on a valid off-route path
at intersections, which temporarily confuses the planner.
Navigating with waypoints on the wrong side of the road. We also designed an experiment to
test our method under systemic bias in the route planner. Our method is provided waypoints on
the wrong side of the road (in CARLA, the left side), and tasked with following the directions of
these waypoints while staying on the correct side of the road (the right side). In order for the value
of q(s|φ) to outweigh the influence of these waypoints, we increased the ε hyperparameter. We
found our method to still be very effective at navigating, and report results in Table 6.5. We also
investigated providing very coarse 8-meter wide regions to the Region Final-State likelihood; these
always include space in the wrong lane and off-road (Fig. 6.12). Nonetheless, on Town01 Dynamic,
this approach still achieved an overall success rate of 48%. Taken together towards question (4), our
results indicate that our method is fairly robust to errors in goal-specification.

6.4.7 Producing Unobserved Behaviors to Avoid Novel Obstacles

To further investigate our model’s flexibility to test-time objectives (question 3), we designed a
pothole avoidance experiment. We simulated potholes in the environment by randomly inserting
them in the cost map near waypoints. We ran our method with a test-time-only cost map of the
simulated potholes by combining goal likelihoods (F) and (G), and compared to our method that
did not incorporate the cost map (using (F) only, and thus had no incentive to avoid potholes). We
recorded the number of collisions with potholes. In Table 6.5, our method with cost incorporated
avoided most potholes while avoiding collisions with the environment. To do so, it drove closer

106

Table 6.5: Robustness to waypoint noise and test-time pothole adaptation. Our method is robust
to waypoints on the wrong side of the road and fairly robust to decoy waypoints. Our method is
flexible enough to safely produce behavior not demonstrated (pothole avoidance) by incorporating
a test-time cost. Ten episodes are collected in each Town.

Town01 (training conditions) Town02 (test conditions)
Waypointer Extra Cost Success Wrong lane Potholes hit Success Wrong lane Potholes hit

Noiseless waypointer 100% 0.00% 177/230 100% 0.41% 82/154
Waypoints wrong lane 100% 0.34% – 70% 3.16% –

1/2 waypoints distracting 70% – 50% – –
Noiseless waypointer Pothole 90% 1.53% 10/230 70% 1.53% 35/154

to the centerline, and occasionally entered the opposite lane. Our model internalized obstacle
avoidance by staying on the road and demonstrated its flexibility to obstacles not observed during
training. Fig. 6.14 shows an example of this behavior.
Pothole details: We simulated potholes in the environment by randomly inserting them in the
cost map near each waypoint i with offsets distributed Ni(µ=[−15m, 0m],Σ = diag([1, 0.01])), (i.e.
mean-centered on the right side of the lane 15m before each waypoint). We inserted pixels of root
cost −1e3 in the cost map at a single sample of each Ni, binary-dilated the cost map by 1/3 of the
lane-width (spreading the cost to neighboring pixels), and then blurred the cost map by convolving
with a normalized truncated Gaussian filter of σ = 1 and truncation width 1.

6.4.8 Plan Reliability Estimation

Besides using our model to make a best-effort attempt to reach a user-specified goal, the fact that our
model produces explicit likelihoods can also be leveraged to test the reliability of a plan by evaluating
whether reaching particular waypoints will result in human-like behavior or not. This capability can
be quite important for real-world safety-critical applications, such as autonomous driving, and can
be used to build a degree of fault tolerance into the system. We designed a classification experiment
to evaluate how well our model can recognize safe and unsafe plans. We planned our model to
known good waypoints (where the expert actually went) and known bad waypoints (off-road) on
1650 held-out test scenes. We used the planning criterion to classify these as good and bad plans
and found that we can detect these bad plans with 97.5% recall and 90.2% precision. This result
indicates imitative models could be effective in estimating the reliability of plans.

We determined a threshold on the planning criterion by single-goal planning to the expert’s final
location on offline validation data and setting it to the criterion’s mean minus one stddev. Although
a more intelligent calibration could be performed by analyzing the information retrieval statistics
on the offline validation, we found this simple calibration to yield reasonably good performance.
We used 1650 test scenes to perform classification of plans to three different types of waypoints
1) where the expert actually arrived at time T (89.4% reliable), 2) waypoints 20m ahead along the
waypointer-provided route, which are often near where the expert arrives (73.8% reliable) 3) the
same waypoints from 2), shifted 2.5m off of the road (2.5% reliable). This shows that our learned
model exhibits a strong preference for valid waypoints. Therefore, a waypointer that provides
expert waypoints via 1) half of the time, and slightly out-of-distribution waypoints via 3) in the
other half, an “unreliable” plan classifier achieves 97.5% recall and 90.2% precision.

107

6.5 Discussion

We proposed “Imitative Models” to combine the benefits of IL and MBRL. Imitative Models are
probabilistic predictive models able to plan interpretable expert-like trajectories to achieve new
goals. Inference with an Imitative Model resembles trajectory optimization in MBRL, enabling it to
both incorporate new goals and plan to them at test-time, which IL cannot. Learning an Imitative Model
resembles offline IL, enabling it to circumvent the difficult reward-engineering and costly online
data collection necessities of MBRL. We derived families of flexible goal objectives and showed our
model can successfully incorporate them without additional training. Our method substantially
outperformed six IL approaches and an MBRL approach in a dynamic simulated autonomous
driving task. We showed our approach is robust to poorly specified goals, such as goals on the
wrong side of the road. We believe our method is broadly applicable in settings where expert
demonstrations are available, flexibility to new situations is demanded, and safety is paramount.

108

Chapter 7

Forecasting Multi-Agent Motion
Trajectories for Explicitly-Planned
Interactions

Figure 7.1: This chapter focuses on building a joint forecasting and control approach capable of
explicitly planning and interpretably forecasting multiple agents.

7.1 Introduction

This Chapter’s situation within the Thesis is depicted in Fig. 7.1. In many situations, the behaviors
of other uncontrolled agents is the dominant source of uncertainty in the environment. We build
upon our prior work on explicitly forecasting and explicitly planning by expanding the space of
both to reason over multiple agents. This will enable approaches to jointly reason over the future
behaviors of other agents in order to explicitly plan controls.

For autonomous vehicles (AVs) to behave appropriately on roads populated by human-driven
vehicles, they must be able to reason about the uncertain intentions and decisions of other drivers

109

from rich perceptual information. Towards these capabilities, we present a probabilistic forecasting
model of future interactions of a variable number of multiple agents. We perform both standard
forecasting and the novel task of conditional forecasting, which reasons about how all agents will
likely respond to the goal of a controlled agent (here, the AV). We train models on real and simulated
data to forecast vehicle trajectories given past positions and LIDAR. Our evaluation shows that
our model is substantially more accurate in multi-agent driving scenarios compared to existing
state-of-the-art. Beyond its general ability to perform conditional forecasting queries, we show that
our model’s predictions of all agents improve when conditioned on knowledge of the AV’s goal,
further illustrating its capability to model agent interactions.

Autonomous driving requires reasoning about the future behaviors of agents in a variety of
situations: at stop signs, roundabouts, crosswalks, when parking, when merging etc. In multi-agent
settings, each agent’s behavior affects the behavior of others. Motivated by people’s ability to
reason in these settings, we present a method to forecast multi-agent interactions from perceptual
data, such as images and LIDAR. Beyond forecasting the behavior of all agents, we want our
model to conditionally forecast how other agents are likely to respond to different decisions each
agent could make. We want to forecast what other agents would likely do in response to a robot’s
intention to achieve a goal. This reasoning is essential for agents to make good decisions in
multi-agent environments: they must reason how their future decisions could affect the multi-
agent system around them. Examples of forecasting and conditioning forecasts on robot goals
are shown in Fig. 7.2 and Fig. 7.3. Videos of the outputs of our approach are available at https:
//sites.google.com/view/precog.

Left Front Right

Figure 7.2: Forecasting on nuScenes [32]. The input to our model is a high-dimensional LIDAR observation,
which informs a distribution over all agents’ future trajectories.

Throughout the paper, we use goal to mean a future states that an agent desires. Planning means
the algorithmic process of producing a sequence of future decisions (in our model, choices of latent
values) likely to satisfy a goal. Forecasting means the prediction of a sequence of likely future states;
forecasts can either be single-agent or multi-agent. Finally, conditional forecasting means forecasting

110

https://sites.google.com/view/precog
https://sites.google.com/view/precog

Forecasting

Conditional Forecast: Set Car 1 Goal=Ahead

Conditional Forecast: Set Car 1 Goal=Stop

Goal=Ahead

Goal=Stop

Car 1

Car 1

Car 1

Car 2

Car 3

Car 3

Car 3

Figure 7.3: Conditioning the model on different Car 1 goals produces different predictions: here it forecasts
Car 3 to move if Car 1 yields space, or stay stopped if Car 1 stays stopped.

by conditioning on one or more agent goals. By planning an agent’s decisions to a goal and sampling
from the other agents’s stochastic decisions, we perform multi-agent conditional forecasting. Although
we plan future decisions in order to perform conditional forecasting, executing these plans on the
robot is outside the scope of this work.

Towards conditional forecasting, we propose a factorized flow-based generative model that
forecasts the joint state of all agents. Our model reasons probabilistically about plausible future
interactions between agents given rich observations of their environment. It uses latent variables to
capture the uncertainty in other agents’ decisions. Our key idea is the use of factorized latent variables
to model decoupled agent decisions even though agent dynamics are coupled. Factorization across
agents and time enable us to query the effects of changing an arbitrary agent’s decision at an arbitrary
time step. Our contributions are:

1. State-of-the-art multi-agent vehicle forecasting: We develop a multi-agent forecasting model
called Estimating Social-forecast Probabilities (ESP) that uses exact likelihood inference (unlike

111

VAEs or GANs) to outperform three state-of-the-art methods on real and simulated vehicle
datasets [32, 50].

2. Goal-conditioned multi-agent forecasting: We present the first generative multi-agent fore-
casting method able to condition on agent goals, called PREdiction Conditioned on Goals
(PRECOG). After modelling agent interactions, conditioning on one agent’s goal alters the
predictions of other agents.

3. Multi-agent imitative planning objective: We derive a data-driven objective for motion
planning in multi-agent environments. It balances the likelihood of reaching a goal with the
probability that expert demonstrators would execute the same plan. We use this objective for
offline planning to known goals, which improves forecasting performance.

7.2 Related Work

Multi-agent modeling and forecasting is a challenging problem for control applications in which
agents react to each other concurrently. Safe control requires faithful models of reality to anticipate
dangerous situations before they occur. Modeling dependencies between agents is especially critical
in tightly-coupled scenarios such as intersections.
Game-theoretic planning: Traditionally, multi-agent planning and game theory approaches explic-
itly model multiple agents’ policies or internal states, usually by generalizing Markov decision
processes (MDPs) to multiple decisions makers [39, 221]. These frameworks facilitate reasoning
about collaboration strategies, but suffer from “state space explosion" intractability except when
interactions are known to be sparse [131] or hierarchically decomposable [58].
Multi-agent forecasting: Data-driven approaches have been applied to forecast complex interac-
tions between multiple pedestrians [8, 20, 55, 77, 128], vehicles [46, 113, 148], and athletes [54, 110,
114, 210, 248, 250]. These methods attempt to generalize from previously observed interactions to
predict multi-agent behavior in new situations. Forecasting is related to Imitation Learning [144],
which learns a model to mimic demonstrated behavior. In contrast to some Imitation Learning
methods, e.g. behavior cloning [157], behavior forecasting models are not executed in the envi-
ronment of the observed agent – they are instead predictive models of the agent. In this sense,
forecasting can be considered non-interactive Imitation Learning without execution.
Forecasting for control and planning: Generative models for multi-agent forecasting and control
have been proposed. In terms of multi-agent forecasting, our work is related to [193] which uses a
conditional VAE [99] encoding of the joint states of multiple agents together with recurrent cells to
predict future human actions. However, our work differs in three crucial ways. First, we model
continual co-influence between agents, versus “robot-only" influence, where an agent’s responses
to the human are not modeled. Second, our method uses contextual visual information useful for
generalization to many new scenes. Third, we model interactions between more than two vehicles
jointly. While [91] assumes conditional independencies for computational reasons, we do not, as
they impose minimal overhead.

We consider scenarios in which the model may control one of the agents (a “robot"). In terms of
planned control, our method generalizes imitative models [176]. In [176], single-agent forecasting
models are used for deterministic single-agent planning. Our work instead considers multi-agent
forecasting, and therefore must plan over a distribution of possible paths: from our robot’s per-
spective, the future actions of other human drivers are uncertain. By modeling co-influence, our
robot’s trajectory are conditional on the (uncertain) future human trajectories, and therefore future
robots states are necessarily uncertain. Thus, our work proposes a nontrivial extension for imitative
models: we consider future path planning uncertainty induced by the uncertain actions of other

112

agents in a multi-agent setting. While [176] could implicitly model other agents through its visual
conditioning, we show explicit modeling of other agents yields better forecasting results, in addition
to giving us the tools to predict responses to agent’s plans.

7.3 Deep Multi-Agent Forecasting

In this section, we will describe our likelihood-based model for multi-agent forecasting, and then
describe how we use it to perform planning and multi-agent conditional forecasting. First, we define
our notation and terminology. We treat our multi-agent system as a continuous-space, discrete-time,
partially-observed Markov process, composed of A agents (vehicles) that interact over T time steps.
We model all agent positions at time t as St ∈ RA×D, where D= 2. Sat represents agent a’s (x, y)
coordinates on the ground plane. We assume there is one “robot agent” (e.g. the AV) and A−1
“human agents” (e.g. human drivers that our model cannot control). We define Srt

.
= S1

t ∈ RD to
index the robot state, and Sht

.
= S2:A

t ∈ R(A−1)×D to index the human states. Bold font distinguishes
variables from functions. Capital English letters denote random variables. We define t=0 to be the
current time. Subscript absence denotes all future time steps, and superscript absence denotes all
agents, e.g. S

.
= S1:A

1:T ∈ RT×A×D.
Each agent has access to environment perception φ .

= {s−τ :0,χ}, where τ is the number of past
multi-agent positions we condition on and χ is a high-dimensional observation of the scene. χ
might represent LIDAR or camera images, and is the robot’s observation of the world. In our setting,
LIDAR is provided as χ = R200×200×2, with χij representing a 2-bin histogram of points above and
at ground level in 0.5m2 cells. Although our perception is robot-centric, each agent is modeled to
have access to χ.

7.3.1 Estimating Social-forecast Probability (ESP)

We propose a data-driven likelihood-based generative model of multi-agent interaction to prob-
abilistically predict T -step dynamics of a multi-agent system: S∼ q(S|φ;D), where D is training
data of observed multi-agent state trajectories. Our model learns to map latent variables Z via an
invertible function f to multi-agent trajectories S conditioned on φ. f ’s invertibility induces q(S|φ),
a pushforward distribution [130], also known as an invertible generative model [48, 67, 73, 100, 171].
Invertible generative models can efficiently and exactly compute probabilities of samples. Here,
it means we can compute the probability of joint multi-agent trajectories, critical to our goal of
planning with the model. We name the model “Estimating Social-forecast Probabilities” (ESP). S is
sampled from q as follows:

Z ∼ N (0, I); S = f(Z;φ); S,Z ∈ RT×A×D. (7.1)

Our latent variables Z
.
= Z1:A

1:T factorize across agents and time, which allows us to decide agent a’s
reaction at time t by setting Zat ← zat , discussed later. Our model is related to the R2P2 single-agent
generative model [171], which constructs a deep likelihood-based generative model for single-agent
vehicle forecasting. For multi-step prediction, we generalize R2P2’s autoregressive one-step single-
agent prediction for the multi-agent setting, and assume a one-step time delay for agents to react to
each other:

Sat = µaθ(S1:t−1, φ) + σaθ (S1:t−1, φ) · Zat ∈ RD, (7.2)

where µaθ(·) and σaθ (·) are neural network functions (with trainable weights θ) outputting a one-step
mean prediction µat ∈ RD and standard-deviation matrix σat ∈ RD×D of agent a, defining the

113

system’s transition function q as

q(St|S1:t−1, φ) =
∏A
a=1N (Sat ;µ

a
t ,Σ

a
t), (7.3)

where Σa
t = σat σ

a>
t . Note that equation 7.2 predicts the ath agent’s state Sat given the previous

multi-agent states S1:t−1. We can see that given S1:t−1, the one-step prediction in equation 7.2 is
unimodal Gaussian. However, multi-step predictions are generally multimodal given the recursive
nonlinear conditioning of neural network outputs µat and σat on previous predictions. The final
joint of this model can be written as

q(S|φ) =
∏T
t=1q(St|S1:t−1, φ). (7.4)

7.3.2 Model Implementation

To implement our model q(S|φ), we design neural networks that output µat and σat . Similar to
[171], we expand µaθ(·) to represent a “Verlet" step, which predicts a constant-velocity mean when
ma
t = ma

θ(S1:t−1,φ) = 0:

Sat = 2Sat−1−Sat−2+m
a
θ(S1:t−1,φ)︸ ︷︷ ︸

µat

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σat

·Zat . (7.5)

A high-level diagram of our implementation shown in Fig. 6.6. Recall φ={s−τ :0,χ}: the context
contains the past positions of all agents, s−τ :0, and a feature map χ, implemented as LIDAR
observed by the robot. We encode s−τ :0 with a GRU. A CNN processes χ to Γ at the same spatial
resolution as χ. Features for each agent’s predicted position Sat are computed by interpolating into
Γ as Γ(Sat). Positional “social features" for agent a are computed: Sat −Sbt ∀ b∈A\{a}, as well as
visual “social features" γat = Γ(s1

t) ⊕ · · · ⊕ Γ(sAt). The social features, past encoding, and CNN
features are fed to a per-agent GRU, which produces ma

t and σat in equation 7.5. We train with
observations of expert multi-agent interaction S∗ ∼ p(S∗|φ) by maximizing likelihood with respect
to our model parameters θ. We use shared parameters to produce Γ and the past encoding.
Flexible-count implementation: While the implementation described so far is limited to predict
for a fixed-count of agents in a scene, we also implemented a flexible-count version. There are two
flavors of a model that is flexible in practice. (1) A fully-flexible model applicable to any scene
with agent count Atest ∈ N. (2) A partially-flexible model applicable to any scene with agent count
Atest ∈ {1..Atrain}, controlled by a hyperparameter upper-bound Atrain set at training time. To
implement (1), the count of model parameters must be independent of Atest in order for the same
architecture to apply to scenes with different counts of agents. To implement (2), “missing agents”
must not affect the joint distribution over the existing agents, equivalent to ensuring ∂Sexisting/∂Zmissing =0
in our framework. We implemented (2) by using a mask M ∈{0, 1}Atrain to mask features of missing
agents. In this model, we shared parameters across agents, and trained it on data with varying
counts of agents.

Both past and future trajectories for each agent are represented in each agent’s own local
coordinate frame at t = 0, with agent’s forward axis pointing along the agent’s yaw at t = 0. Each
agent a observes positions of the other agents in the coordinate frame of agent a. We use a 9-layer
fully-convolutional network with stride 1 and 32 channels per layer, and kernel sizes of 3× 3, to
process χ into a feature grid Γ at the same spatial resolution as χ. The LIDAR is mounted on the
first agent, thus it is generally more informative about nearby agents. This enables the prediction to
be learned relative to the agent, with global context obtained by feature map interpolation. At each
time step, each agent’s predicted future position sat is bilinearly-interpolated into Γ: Γ(sat), which

114

ensures dΓ(sat)/dsat exists. The “SocialMapFeat" component performs this interpolation by converting
the positions (in meters) to feature grid coordinates (in 0.5 meters/cell), and bilinearly-interpolating
each into the feature map Γ. The interpolation is performed by retrieving the features at the corners
of the nearest unit square to the current continuous position.

We also employed an additional featurization scheme, termed “whiskers”. Instead of inter-
polating only at sat , we interpolated at nearby positions subsampled from arcs relative to sat at
various radii. By letting sat − sat−1 define the predicted orientation, the arcs were generated by evenly
sampling 7 points along arcs of length 5π/4 at radii [1, 2, 4, 8, 16, 32] meters, which loosely simulates
the forecasted agent’s future field-of-view. The midpoint of each arc lied along the ray from sat−1

through sat . After interpolating at points {ωn}42
n=1, the resulting feature is of size 8 · 7 · 6 (8 is the size

of the last dimension of Γ, 7 is the number of points per arc, and 6 is the number of arcs). We found
this approach to yield superior performance and employed it in the R2P2-MA baseline, as well as
all of our methods. The full details of the architecture are provided in Tab. 7.1.

Finally, we performed additional featurization in the nuScenes setting by replacing χ with a
signed-distance transform, similar to [171]. It provides a spatially-smoother input to the convolutional
network, which we found augmented performance. The signed distance transform (SDT) of
χc ∈ RH×W can be computed by first binarizing to χc ∈ {0, 1}H×W and using the Euclidean
distance transform (DT), which is commonly provided (e.g. in scipy). We compute it by binarizing
with threshold τ : SDT(χc, τ) = DT(χc ≥ τ)−DT(χc < τ), then clipping the result to [−10, 1], and
finally normalizing to [0, 1]. For LIDAR channels, we use τ = 5. When we use the already-binarized
road prior, binarization is unnecessary.

We trained our model with stochastic gradient descent using the Adam optimizer with learning
rate 1 · 10−4, with minibatch size 10, until validation-set performance (of ê, as discussed in the main
paper) showed no improvement for a period of 10 epochs.

Table 7.1: Detailed ESP Architecture that implements s1:A
1:T = f(z1:A

1:T , φ). Typically, T = 20, A = 5,
D = 2. In CARLA, H = W = 100. In nuScenes, H = W = 200. An asterisk (∗) denotes a
component whose output is masked in the flexible-count version of ESP by using the agent-presence
mask M ∈{0, 1}Atrain , discussed in Sec. 7.3.2.

Component Input [dimensionality] Layer or Operation Output [dimensionality] Details

Static featurization of context: φ = {χ, s1:A
−τ :0}. Shared parameters for each agent.

MapFeat χ [H,W, 2] 2D Convolution 1χ [H,W, 32] 3× 3 stride 1, ReLu
MapFeat i−1χ [H,W, 32] 2D Convolution iχ [H,W, 32] 3× 3 stride 1, ReLu, i ∈ [2, . . . , 8]
MapFeat 8χ [H,W, 32] 2D Convolution Γ [H,W, 8] 3× 3 stride 1, ReLu
PastRNN∗ s1:A

−τ :0 [τ + 1, A,D] RNN 1α1:A [A, 128] GRU across time dimension
PastRNN α [A, 128] 1αa ⊕

∑
b∈{1..A}\a

1αb 2αa [256] Index, Concat, & Sum for agent-a context

Dynamic generation via double loop: for t ∈ {0, . . . , T − 1}, for a ∈ {1, . . . , A}. Shared or separate parameters for each agent.

SocialFeat∗ s1:A
t [AD] sat − sbt , b ∈ {1..A} \ a 0ηat [AD −D] Agent displacements

SocialFeatMLP 0ηat [AD −D] Affine (FC) 1ηat [200] Tanh activation
SocialFeatMLP 1ηat [200] Affine (FC) 2ηat [50] Identity activation
WhiskerMapFeat ω1 . . . ωN [42, D] Interpolate wat = Γ(ω1)⊕ · · · ⊕ Γ(ωN) [8 · 42] Interpolate ahead of the sample’s P.O.V.
SocialMapFeat∗ s1:A

t [AD] Interpolate γat = Γ(s1
t)⊕ · · · ⊕ Γ(sAt) [8A] Differentiable interpolation, concat. (⊕)

JointFeat γat , s
1:A
0 , 2ηa,

2αa, wat γat ⊕ s1:A
0 ⊕ 2ηa ⊕ 2αa ⊕ wat ρat [8A+AD + 50 + 256 + 336] Concatenate (⊕)

FutureRNN ρat [8A+AD + 50 + 256] RNN 1ρat [50] GRU
FutureMLP 1ρat [50] Affine (FC) 2ρat [200] Tanh activation
FutureMLP 2ρat [200] Affine (FC) ma

t [D], ξat [D,D] Identity activation
MatrixExp ξat [D,D] expm(ξat + ξa,transpose

t) σat [D,D] Differentiable Matrix Exponential [171]
VerletStep st, st−1,m

a
t ,σ

a
t , z

a
t 2st − st−1 +ma

t + σat z
a
t sat+1 [D] (Eq. 7.5)

115

7.3.3 Alternate Joint PDF forms

The original joint can be expanded over each agent:

q(S|φ) =
T∏
t=1

q(St|S1:t−1, φ) =
T∏
t=1

A∏
a=1

N (Sat ;µ
a
t,Σ

a
t).

Additionally, the change-of-variables rule yields an equivalent density [48, 67, 100, 171]:

q(S|φ) = N (f−1(S;φ); 0, I)

∣∣∣∣det
df

dZ
|Z=f−1(S;φ)

∣∣∣∣−1

,

We can derive expressions via the rollout equation equation 7.5, reproduced here as equation 7.6,
which implicitly defines f :

Sat = 2Sat−1−Sat−2+m
a
θ(S1:t−1,φ)︸ ︷︷ ︸

µat

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σat

·Zat . (7.6)

The full Jacobian is given as:

df
dZ =


∂S1
∂Z1

0 . . . 0
∂S2
∂Z1

∂S2
∂Z2

. . . 0
...

...
. . . 0

∂ST
∂Z1

∂ST
∂Z2

. . . ∂ST
∂ZT

 ,
where

∂St
∂Zt

=


σ1
t 0 . . . 0

∂S2
t

∂Z1
t

σ2
t . . . 0

...
...

. . . 0
∂SAt
∂Z1

t

∂SAt
∂Z2

t
. . . σAt

=


σ1
t 0 . . . 0

0 σ2
t . . . 0

...
...

. . . 0
0 0 . . . σAt


Due to the block triangular nature of the Jacobian and applying Laplace expansion along the

diagonal:

det df
dZ =

∏
t

det
∂St
∂Zt

=

T∏
t=1

A∏
a=1

det σat (S1:t−1, φ).

Z=f−1(S;φ) is given by computing each Zat =
(
σat (S1:t−1, φ)

)−1 (
Sat − µat (S1:t−1, φ)

)
. Algorith-

mically, the functions f and f−1 are implemented separately, each with a double for-loop over agents
and time. Note that since we use RNNs to produce µt and σt, the forward f and its inverse must be
computed in the same direction by stepping the RNN’s forward in time over the input S. To aid
implementation, we use the following checks to ensure f is a bijection: ||Z− f−1(f(Z, φ), φ)||∞ < ε,
||S− f(f−1(S, φ), φ)||∞ < ε.

116

7.3.4 PREdiction Conditioned On Goals (PRECOG)

A distinguishing feature of our generative model for multi-step, multi-agent prediction is its latent
variables Z

.
= Z1:A

1:T that factorizes over agents and time. Factorization makes it possible to use
the model for highly flexible conditional forecasts. Conditional forecasts predict how other agents
would likely respond to different robot decisions at different moments in time. Since robots are not
merely passive observers, but one of potentially many agents, the ability to anticipate how they
affect others is critical to their ability to plan useful, safe, and effective actions, critical to their utility
within a planning and control framework [129].

Human drivers can appear to take highly stochastic actions in part because we cannot observe
their goals. In our model, the source of this uncertainty comes from the latent variables Z∼N (0, I).
In practical scenarios, the robot knows its own goals, can choose its own actions, and can plan a
course of action to achieve a desired goal. Recall from equation 7.2 that one-step agent predictions are
conditionally independent from each other give the previous multi-agent states. Therefore, certainty
in the latent state Zat corresponds to certainty of the ath agent’s reaction to the multi-agent system
at time t. Different values of Zat correspond to different ways of reacting to the same information.
Deciding values of Zat corresponds to controlling the agent a. We can therefore implement control
of the robot via assigning values to its latent variables Zr ← zr. In contrast, human reactions Zht
cannot be decided by the robot, and so remain uncertain from the robot’s perspective and can
only be influenced by their conditioning on the robot’s previous states in S1:t−1, as seen Fig. 7.4b.
Therefore, to generate conditional-forecasts, we decide zr, sample Zh, concat. Z=zr⊕Zh, and warp
S=f(Z, φ). This factorization of latent variables easily facilitates conditional forecasting. To forecast
S, we can fix zr while sampling the human agents’ reactions from their distribution p(Zh)=N (0, I),
which are warped via equation 7.1.

7.3.5 Multi-Agent Planning

We discussed how forecasting can condition on some value of zr, but not yet how to find desirable
values of zr, e.g. values that would safely direct the robot towards its goal location. We perform
multi-agent planning by optimizing an objective L w.r.t.the control variables zr, which allows us to
produce the “best" forecasts under L.

While many valid objectives can be adopted, we use imitative models (IM), which estimate the
likeliest state trajectory an expert driver “would have taken" to satisfy a goal, based on prior expert
demonstrations [176]. IM modeled single-agent environments where robot trajectories are planned
without consideration of other agents. Multi-agent planning is different, because future robot states
are uncertain (states Srt>1 in Fig. 7.4b), even when conditioned on control variables zr, because of
the uncertainty in surrounding human drivers Zh.

We generalize IM to multi-agent environments, and plan w.r.t.the uncertainty of human drivers
close by. First, we chose a “goal likelihood” function that represents the likelihood that a robot
reaches its goal G given state trajectory S. For instance, the likelihood could be a waypoint w∈RD
the robot should approach: p(G|S, φ) = N (w; SrT , εI). Second, we combine the goal likelihood
with a “prior probability” model of safe multi-agent state trajectories q(S|φ), learned from expert
demonstrations. Note that unlike many other generative multi-agent models, we can compute the
probability of generating S from q(S|φ) exactly, which is critical to our planning approach. This
results in a “posterior” p(S|G, φ). Finally, we plan a goal-seeking path in the learned distribution of

117

demonstrated multi-agent behavior under the log-posterior probability derived as:

logEZh [p(S|G, φ)] ≥ EZh [log p(S|G, φ)] (7.7)
= EZh [log q(S|φ) · p(G|S, φ)]− log p(G|φ) (7.8)

L(zr,G) = EZh [log q(f(Z)|φ)︸ ︷︷ ︸
multi-agent prior

+ log p(G|f(Z), φ)︸ ︷︷ ︸
goal likelihood

], (7.9)

where equation 7.7 follows by Jensen’s inequality, which we use to avoid the numerical issue of
a single sampled Zh dominating the batch. equation 7.8 follows from Bayes’ rule and uses our
learned model q as the prior. In equation 7.9, we drop p(G|φ) because it is constant w.r.t.zr. Recall
Z = zr ⊕ Zh is the concatenation of robot and human control variables. The robot can plan using
our ESP model by optimizing equation 7.9:

zr∗ = arg maxzr L(zr,G). (7.10)

Other objectives might be used instead, e.g. maximizing the posterior probability of the robot
trajectories only. This may place human agents in unusual, precarious driving situations, outside
the prior distribution of “usual driving interaction". equation 7.10 encourages the robot to avoid
actions likely to put the joint system in an unexpected situation.

7.3.6 Planning and Forecasting Algorithms

To execute planning, we perform gradient ascent to approximately solve the optimization problem
equation 7.10. Recall the latent joint behavior is Z

.
= Z1:A

1:T , the latent human behavior is Zh
.
= Z2:A

1:T ,
and the robot behavior is zr

.
= z1

1:T . We approximate the expectation in equation 7.9 with a sample
expectation over K samples from p(Zh) = N (0, I), denoted 1:Kzh, where the kth sample is kzh. Each
of these samples for the latent human behavior is combined with the single latent robot plan, each
denoted kz = [zr, kzh]. This batch is denoted 1:Kz. The approximation of equation 7.9 is then given
as

L̂(1:Kz,G,φ)=
1

K

K∑
k=1

log(q(f(kz)|φ)p(G|f(kz), φ)), (7.11)

with L̂ parameterized by (q, f, p), and f ’s dependence on φ dropped for notational brevity. The
1:Kzh is redrawn before each gradient ascent step on equation 7.11. This procedure is illustrated in
Alg. 7.

Algorithm 7 MULTIIMITATIVEPLAN(q, f, p, φ,K)

1: Define L̂ with q, f, p
2: Initialize zr1:T ∼ N (0, I)
3: while not converged do

4: 1:Kzh
iid∼ N(0, I)

5: zr1:T ← zr1:T +∇zr1:T
L̂(1:Kz,G, φ)

6: end while
7: return zr1:T

In our implementation, we use K=12, track the zr1:T that achieved the best L̂ score, terminate
the ascent if the best zr1:T has not improved in 10 steps, and return the corresponding best zr1:T . To

118

initialize zr1:T more robustly, we sample a full 1:Kz multiple times (15), and use the zr corresponding
to the best L̂. We can also run the planning over multiple initial samples of zr1:T .

Now, we further detail how we can use this planning to perform goal-conditioned forecasting.
As described in Sec. 7.4.4, we model goals in our experiments by defining our goal-likelihood
p(G|S1:T , φ) = N (SrT ; S∗rT , 0.1·I), i.e. a normal distribution at the controlled agent’s last true future
position, S∗rT . In general, we can pass any final desired robot position, s†rT as the mean of this
distribution. Then, we perform goal-conditioned forecasting on a specific scene φ to a specific robot
goal s†rT , with our trained multi-agent density q, defined by f . This forecasting is performed by
first planning zr according to Alg. 7, then sampling Zh again to generate stochastic joint outcomes,
conditioned on the robot’s plan. This procedure is illustrated in Algs. 8 and 9.

Algorithm 8 PRECOG(q, f, p, s†rT , φ,K)

1: zr ←MULTIIMITATIVEPLAN(q, f, p, φ,K)

2: Sample 1:Kzh1:T
iid∼ N(0, I)

3: Forecast 1:Ks1:A
1:T ← f(1:Kz1:A

1:T , φ)
4: return 1:Ks1:A

1:T

Algorithm 9 POSPRECOG(q, f, s†rT , φ,K)

1: Define p(G|S1:T , φ) = N (SrT ; s†rT , 0.1·I)

2: return PRECOG(q, f, p, s†rT , φ,K)

In Fig. 7.5, we illustrate various forms of the probabilistic graphical models corresponding to
our main model (ESP), a baseline model (R2P2-MA), and how the assignment of latent variables
(Z) in these models affects the production of the states (S). In Fig. 7.6, we illustrate the graphical
models of ESP and PRECOG for A = 3.

7.4 Experiments

We first compare our forecasting model against existing state-of-the-art multi-agent forecasting
methods, including SocialGAN [77], DESIRE [113]. We also include a baseline model: R2P2-MA
(adapted from R2P2 [171] to instead handle multiple agent inputs), which does not model how
agents will react to each others’ future decisions. Second, we investigate the novel problem of
conditional forecasting. To quantify forecasting performance, we study scenarios where we have
pairs of the robot’s true goal and the sequence of joint states. Knowledge of goals should enable
our model to better predict what the robot and each agent could do. Third, we ablate the high-
dimensional contextual input χ from our model to determine its relevance to forecasting.
nuScenes dataset: We used the recently-released full nuScenes dataset [32], a real-world dataset for
multi-agent trajectory forecasting, in which 850 episodes of 20 seconds of driving were recorded and
labelled at 2Hz with the positions of all agents, and synced with many sensors, including LIDAR.
We processed each of the examples to train, val, and test splits. Each example has 2 seconds of past
and 4 seconds of future positions at 5Hz and is accompanied by a LIDAR map composited from 1
second of previous scans. We also experimented concatenating a binary road mask to χ, indicated
as “Road" in our evaluation.
CARLA dataset: We generated a realistic dataset for multi-agent trajectory forecasting and planning
with the CARLA simulator [50]. We ran the autopilot in Town01 for over 900 episodes of 100 seconds

119

each in the presence of 100 other vehicles, and recorded the trajectory of every vehicle and the
autopilot’s LIDAR observation. We randomized episodes to either train, validation, or test sets. We
created sets of 60,701 train, 7586 validation, and 7567 test examples, each with 2 seconds of past
and 2 seconds of future positions at 10Hz. See https://sites.google.com/view/precog for data.

The dataset also includes 100 episodes obtained by following the same procedure in Town02. We
used this data to further evaluate our ESP model. We applied our saved models (the same models
used to report results in the paper) to this data. We generated the CARLA data using version 0.8.4.
We used the default vehicle. We used a LIDAR position of (0.0, 0.0, 2.5), with 32 channels, a range
of 50, 100,000 points per second, a rotation frequency of 10, an upper FOV limit of 10, and a lower
FOV limit of −30. We will release the 100GB of collected data.

7.4.1 Metrics

Log-likelihood: As our models can perform exact likelihood inference (unlike GANs or VAEs),
we can precisely evaluate how likely held-out samples are under each model. Test log-likelihood
is given by the forward cross-entropy H(p, q)=−ES∗∼p(S∗|φ) log q(S∗|φ), which is unbounded for
general p and q. However, by perturbing samples from p(S∗|φ) with noise drawn from a known
distribution η (e.g. a Gaussian) to produce a perturbed distribution p′, we can enforce a lower
bound [171]. The lower bound is given by H(p′, q) ≥ H(p′) ≥ H(η). We use η=N (0, 0.01 · I) (n.b.
H(η) is known analytically). Our likelihood statistic is:

ê
.
=
[
H(p′, q)−H(η)

]
/(TAD) ≥ 0, (7.12)

which has nats/dim. units. We call ê “extra nats" because it represents the (normalized) extra nats
above the lower bound of 0. Normalization enables comparison across models of different dimen-
sionalities.
Sample quality: For sample metrics, we must take care not to penalize the distribution when it
generates plausible samples different than the expert trajectory. We extend the “minMSD" metric
[113, 148, 171] to measure quality of joint trajectory samples. The “minMSD" metric samples a model
and computes the error of the best sample in terms of MSD. In contrast to the commonly-used
average displacement error (ADE) and final displacement error (FDE) metrics that computes the
mean Euclidean error from a batch of samples to a single ground-truth sample [8, 46, 55, 77, 152],
minMSD has the desirable property of not penalizing plausible samples that correspond to decisions
the agents could have made, but did not. This prevents erroneously penalizing models that make diverse
behavior predictions. We hope other multimodal prediction methods will also measure the quality of
joint samples with minMSD, given by:

m̂K
.
= ES∗ min

k∈{1..K}
||S∗ − S(k)||2/(TA), (7.13)

where S∗∼p(S∗|φ),S(k) iid∼ q(S|φ). We denote the per-agent error of the best joint trajectory with

m̂a
K
.
= ES∗∼p(S∗|φ)||S∗a − Sa,(k

†)||2/T ,
k†

.
= arg mink∈{1..K} ||S∗ − S(k)||2.

(7.14)

7.4.2 Baselines

KDE [149, 179] serves as a useful performance bound on all methods; it can compute both m̂ and ê.
We selected a bandwidth using the validation data. Note KDE ignores φ.

120

https://sites.google.com/view/precog

Table 7.2: CARLA and nuScenes multi-agent forecasting evaluation. All CARLA-trained models
use Town01 Train only, and are tested on Town02 Test. No training data is collected from Town02.
Means and their standard errors are reported. The en-dash (–) indicates an approach unable to
compute ê. The R2P2-MA model generalizes [171] to multi-agent. Variants of our ESP method
(gray) outperform prior work.

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê

CARLA Town02 Test 2 agents 3 agents 4 agents 5 agents

KDE 4.488± 0.145 8.179± 1.523 5.964± 0.099 6.029± 0.394 7.846± 0.087 5.181± 0.172 9.610± 0.078 5.116± 0.097
DESIRE [113] 1.159± 0.027 – 1.099± 0.018 – 1.410± 0.018 – 1.697± 0.017 –
SocialGAN [77] 0.902± 0.022 – 0.756± 0.015 – 0.932± 0.014 – 0.979± 0.015 –
R2P2-MA [171] 0.454± 0.014 0.577± 0.004 0.516± 0.012 0.640± 0.022 0.575± 0.011 0.598± 0.010 0.632± 0.011 0.620± 0.010
Ours: ESP, no LIDAR 0.633± 0.017 0.579± 0.006 0.582± 0.014 0.620± 0.013 0.655± 0.013 0.591± 0.006 0.784± 0.013 0.584± 0.004
Ours: ESP 0.393 ± 0.014 0.550± 0.004 0.377 ± 0.011 0.529± 0.004 0.438± 0.010 0.540± 0.004 0.565± 0.009 0.592± 0.004
Ours: ESP, flex. count 0.488± 0.017 0.537 ± 0.002 0.412± 0.012 0.508 ± 0.001 0.398 ± 0.010 0.499 ± 0.001 0.435 ± 0.011 0.496 ± 0.001

nuScenes Test 2 agents 3 agents 4 agents 5 agents

KDE 19.375± 0.798 3.760± 0.015 31.663± 0.894 4.102± 0.023 41.289± 1.170 4.369± 0.026 52.071± 1.449 4.615± 0.028
DESIRE [113] 3.473± 0.102 – 4.421± 0.130 – 5.957± 0.162 – 6.575± 0.198 –
SocialGAN [77] 2.119± 0.087 – 3.033± 0.110 – 3.484± 0.129 – 3.871± 0.148 –
R2P2-MA [171] 1.336± 0.062 0.951± 0.007 2.055± 0.093 0.989± 0.008 2.695± 0.100 1.020± 0.011 3.311± 0.166 1.050± 0.012
Ours: ESP, no LIDAR 1.496± 0.069 0.920 ± 0.008 2.240± 0.084 0.955 ± 0.008 3.201± 0.113 1.033± 0.012 3.442± 0.139 1.107± 0.018
Ours: ESP 1.325± 0.065 0.933± 0.008 1.705± 0.089 1.018± 0.011 2.547± 0.095 1.053± 0.015 3.266± 0.155 1.082± 0.013
Ours: ESP, Road 1.081 ± 0.053 0.929± 0.008 1.505 ± 0.070 1.016± 0.011 2.360 ± 0.093 1.013 ± 0.012 2.892 ± 0.162 1.114± 0.024
Ours: ESP, Road, flex. 1.464± 0.067 0.980± 0.003 2.029± 0.079 1.001± 0.003 2.525± 0.099 1.015± 0.002 2.933± 0.129 1.029 ± 0.002

DESIRE [113] proposed a conditional VAE model that observes past trajectories and visual context.
We re-implemented DESIRE following the authors’ description in the paper and supplement, as
there is no open-source version available. In our domain, χ is purely LIDAR-based, whereas their
model combines image-based semantic segmentation features into the same coordinate frame. We
found most provided parameters to work well, except those related to the re-ranking component.
The re-ranking often did not improve the trajectories. The best results were obtained with 1 re-
ranking step. Whereas DESIRE is trained with a single-agent evidence lower bound (ELBO), our
model jointly models multiple agents with an exact likelihood. As DESIRE does not compute
multi-agent likelihoods, we cannot compute its ê, nor use it for planning in a multi-agent setting.
SocialGAN [77] proposed a conditional GAN multi-agent forecasting model that observes the
past trajectories of all modeled agents, but not χ. We used the authors’ public implementation
https://github.com/agrimgupta92/sgan. We found the default train.py parameters yielded poor
performance. We achieved significantly better SocialGAN performance by using the network
parameters in the run_traj.sh script. In contrast to SocialGAN, we model joint trajectories, and can
compute likelihoods for planning (and for ê).
R2P2 [171] proposed a likelihood-based conditional generative forecasting model for single-agents.
We extend R2P2 to the multi-agent setting and use it as our R2P2-MA model; R2P2 does not
jointly model agents. We re-implemented R2P2 following the authors’ description in the paper and
supplement, as there is no open-source version currently available. We trained it and our model
with the forward-cross entropy loss. R2P2-MA’s likelihood is given by q(S|φ) =

∏A
a=1 q

a(Sa|φ). We
extended R2P2 to the multi-agent setting and use it as our R2P2-MA model; R2P2 does not jointly
model agents. We can compute R2P2’s likelihood, and therefore ê, by assuming independence
across agents: q(S|φ) =

∏A
a=1 q

a(Sa|φ). Note that since this joint likelihood does not model agent’s
future actions to influence each other, R2P2 cannot be used for planning in a multi-agent setting.
Fig. 7.5 compares the R2P2 baseline to our ESP model.

121

https://github.com/agrimgupta92/sgan

7.4.3 Multi-Agent Forecasting Experiments

Didactic Example: In the didactic example, a robot (blue) and a human (orange) both navigate
in an intersection, the human has a stochastic goal: with 0.5 probability they will turn left, and
otherwise they will drive straight. The human always travels straight for 4 time steps, and then
reveals its intention by either going straight or left. The robot attempts to drive straight, but will
acquiesce to the human if the human turns in front of the robot. We trained our models and evaluate
them in Fig. 7.8. Each trajectory has length T =20. While both models closely match the training
distribution in terms of likelihood, their sample qualities are significantly different. The R2P2-MA
model generates samples that crash 50% of the time, because it does not condition future positions
for the robot on future positions of the human, and vice-versa. In the ESP model, the robot is able to
react to the human’s decision during the generation process by choosing to turn when the human
turns.
CARLA and nuScenes: We build 10 datasets from CARLA and nuScenes data, corresponding to
modeling different numbers of agents {2..5}. Agents are sorted by their distances to the autopilot,
at t=0. When 1 agent is included, only the autopilot is modeled; for A agents, the autopilot and the
A−1 closest vehicles are modeled.

For each method, we report its best test-set score at the best val-set score. In R2P2 and our
method, the val-set score is ê. In DESIRE and SocialGAN, the val-set score is m̂, as they cannot
compute ê. Tab. 7.2 shows the multi-agent forecasting results. Across all 10 settings, our model
achieves the best m̂ and ê scores. We also ablated our model’s access to χ (“ESP, no LIDAR"),
which puts it on equal footing with SocialGAN, in terms of model inputs. Visual context provides a
uniform improvement in every case.

Qualitative examples of our forecasts are shown in Fig. 7.9. We observe three important types of
multimodality: 1) multimodality in speed along a common specific direction, 2) the model properly
predicts diverse plausible paths at intersections, and 3) when the agents are stopped, the model
predicts sometimes the agents will stay still, and sometimes they will accelerate forward. The model
also captures qualitative social behaviors, such as predicting that one car will wait for another
before accelerating. See Sec. 7.4.6 for additional visualizations.

7.4.4 PRECOG Experiments

Now we perform our second set of evaluations. We investigate if our planning approach enables us
to sample more plausible joint futures of all agents. Unlike the previous unconditional forecasting
scenario, when the robot is using the ESP model for planning, it knows its own goal. We can
simulate planning offline by assuming the goal was the state that the robot actually reached at t=T ,
and then planning a path from the current time step to this goal position. We can then evaluate the
quality of the agent’s path and the stochastic paths of other agents under this plan. While this does
not test our model in a full control scenario, it does allow us to evaluate whether conditioning on
the goal provides more accurate and higher-confidence predictions. We use our model’s multi-agent
prior equation 7.4 in the stochastic latent multi-agent planning objective equation 7.9, and define
the goal-likelihood p(G|S, φ)=N (SrT ; S∗rT , 0.1·I), i.e. a normal distribution at the controlled agent’s
last true future position, S∗rT . As discussed, this knowledge might be available in control scenarios
where we are confident we can achieve this positional goal. Other goal-likelihoods could be applied
to relax this assumption, but this setup allows us to easily measure the quality of the resulting
joint samples. We use gradient-descent on equation 7.9 to approximate zr∗. The resulting latent
plan yields highly likely joint trajectories under the uncertainty of other agents and approximately
maximizes the goal-likelihood. Note that since we planned in latent space, the resulting robot
trajectory is not fully determined – it can evolve differently depending on the stochasticity of the

122

other agents. We next illustrate a scenario where joint modeling is critical to accurate forecasting
and planning. Then, we conduct planning experiments on the CARLA and nuScenes datasets.

Table 7.4: CARLA multi-agent forecasting evaluation. All CARLA-trained models use Town01
Train only, and are tested on Town01 Test. Mean scores (and their standard errors) of sample
quality m̂ equation 7.13, and log likelihood ê equation 7.12, are shown. The en-dash (–) indicates if
an approach cannot compute likelihoods. The R2P2-MA generalizes the single-agent forecasting
approach of [171]. Variants of our ESP method (highlighted gray) mostly outperform prior work in
the multi-agent CARLA setting. For single agent evaluations, see Tab. 7.5.

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê
(minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats)

CARLA Town01 Test 2 agents 3 agents 4 agents 5 agents

DESIRE [113] 1.943± 0.033 – 1.587± 0.020 – 2.234± 0.023 – 2.422± 0.017 –
SocialGAN [77] 0.977± 0.016 – 0.812± 0.013 – 1.098± 0.014 – 1.141± 0.015 –
R2P2-MA [171] 0.540± 0.009 0.625± 0.002 0.387± 0.008 0.645± 0.002 0.690± 0.009 0.621± 0.002 0.770± 0.008 0.618± 0.002
Ours: ESP, no LIDAR 0.724± 0.013 0.688± 0.003 0.719± 0.011 0.640± 0.002 0.919± 0.011 0.650± 0.002 1.102± 0.011 0.652± 0.002
Ours: ESP 0.311 ± 0.008 0.615± 0.002 0.385 ± 0.007 0.585± 0.002 0.509± 0.007 0.599± 0.002 0.675± 0.007 0.630± 0.001
Ours: ESP, flex. count 0.415± 0.014 0.531 ± 0.002 0.398± 0.011 0.513 ± 0.001 0.411 ± 0.010 0.507 ± 0.001 0.447 ± 0.009 0.509 ± 0.001

Table 7.5: Performance in CARLA A = 1 (N.B. here the model is identical to R2PA-MA (denoted by
∗)).

Approach Test m̂K=12 Test ê
(minMSD) (extra nats)

CARLA Town01 Test 1 agent

DESIRE [113] 1.067± 0.040 –
SocialGAN [77] 0.921± 0.031 –
R2P2-MA [171] ∗ ∗

Ours: ESP, no LIDAR 0.496± 0.024 0.699± 0.006
Ours: ESP 0.136 ± 0.010 0.634 ± 0.006

7.4.5 Additional CARLA and nuScenes Evaluations.

We show additional evaluations on CARLA in Tab. 7.4. Table 7.4 shows the Town01 of the models
trained on Town01 (on separate episodes). We show single-agent CARLA forecasting results in
Tab. 7.5. We show histograms of m̂ in Fig. 7.11, Fig. 7.12, and Fig. 7.15. We show a comparison to
longer time-horizon forecasting in Tab. 7.6. We show a plot of means and their standard errors of
m̂K vs. K in Fig. 7.13.

7.4.5.1 CARLA and nuScenes PRECOG

DESIRE planning baseline: We developed a straightforward planning baseline by feeding an
input goal state and past encoding to a two-layer 200-unit ReLU MLP trained to predict the latent
state of the robot given training tuples (x=(HX ,SrT ∼qDESIRE(S|φ, zr)T)), y = zr). The latents for
the other agents are samples from their DESIRE priors.
Experiments: We use the trained ESP models to run PRECOG on the test-sets in CARLA and
nuScenes. Here, we use both m̂K and m̂a

K to quantify joint sample quality in terms of all agents and
each agent individually. In Tab. 7.3 and Fig. 7.10, we report results of our planning experiments. We
observe that our planning approach significantly improves the quality of the joint trajectories. As
expected, the forecasting performance improves the most for the planned agent (m̂1

K). Notably, the

123

Table 7.6: Performance on CARLA Town01 Test with T = 40 at 10Hz (4 seconds of future). This data
has larger dimensionality than CARLA T = 20, 10Hz (2 seconds) data and the nuScenes T = 20,
5Hz (4 seconds) data.

Approach Test m̂K=12 Test ê
(minMSD) (extra nats)

Town01 Test, T = 20, 10Hz (2s) 5 agent

ESP, flex. count 0.447± 0.009 0.509± 0.001

Town02 Test, T = 20, 10Hz (2s) 5 agent

ESP, flex. count 0.435± 0.011 0.496± 0.001

Town01 Test, T = 40, 10Hz (4s) 5 agent

ESP, flex. count 2.500± 0.077 0.492± 0.001

nuScenes Test, T = 20, 5Hz (4s) 5 agent

ESP, flex. count 2.933± 0.129 1.029± 0.002

forecasting performance of the other agents improves across all datasets and all agents. We see the
non-planned-agent improvements are usually greatest for Car 2 (m̂2

K). This result conforms to our
intuitions: Car 2 is the closest agent to the planned agent, and thus, it the agent that Car 1 influences
the most. Qualitative examples of this planning are shown in Fig. 7.10. We observe trends similar to
the CARLA planning experiments – the forecasting performance improves the most for the planned
agent, with the forecasting performance of the unplanned agent improving in response to the latent
plans. See Sec. 7.4.6 for additional visualizations.

We report some remaining results (i.e. for A = {3, 4}) in Tab. 7.7. We observe similar trends in
these results as in A = 2 and A = 5: PRECOG improves predictions of all agents’ future trajectories,
and that knowledge of the ego-agent’s goal provides improves predictions for closer agents more
than farther agents.

7.4.5.2 Robustness to Agent Localization Errors

In real-world data, there may be error in the localization of the other agents (s−τ :0). We can simulate
this error in our test-set by perturbing sa−τ :0 with a random vector va∼N (0,εID×D). We also train a
model by injecting noise generated similarly. In Fig. 7.14 we compare nuScenes A = 2 ESP models
trained without (Mε=0.0) and with (Mε=0.1) noise injection. We observe that Mε=0.0 is much more
sensitive to test-time noise than Mε=0.1 at all perturbation scales, which shows noise injection is
an effective strategy to mitigate the effects of localization error. We also note Mε=0.1 improves
performance even when the test-data is not perturbed.

7.4.6 Additional Visualizations

We display additional visualization of our results in Figures 7.17, 7.18, 7.19, 7.20, and 7.23. In
Fig. 7.17, we show additional forecasting results on the nuScenes dataset. In Fig. 7.18, we show
additional forecasting results on the CARLA dataset. In Fig. 7.19, we show additional planning
results on the CARLA dataset. In Fig. 7.20, we show additional planning results on the nuScenes
dataset. In Fig. 7.21, we show qualitative results of high, medium, and low quality on the CARLA
A = 5 dataset (ordered by m̂), paired with their corresponding m̂ scores. In Fig. 7.22, we show
qualitative results of high, medium, and low quality on the nuScenes A = 5 dataset (ordered by m̂),
paired with their corresponding m̂ scores. In Fig. 7.23, we visualize the planning criterion (L̂) across

124

many different spatio-temporal goal positions in CARLA, which gives a qualitative interpretation
of where the model prefers goal. In Fig. 7.24, we visualize the same posterior on nuScenes.

Figure 7.15: Histogram of m̂K=12 of forecasts made by the ESP flexible-count model on CARLA
Town01 Test A = 5, T = 40 at 10Hz (4 seconds of future). The median m̂K=12 is 0.38.

(a) Plot of m̂K vs. K of the ESP flexible-count model on CARLA Town01 Test A = 5, T = 40 at 10Hz (4s).

125

Zr
1 Zr

2 · · · Zr
T

φ Sr
1 Sr

2 · · · Sr
T

Sh
1 Sh

2 · · · Sr
T

Zh
1 Zh

2 · · · Zh
T

(a) ESP forecasting

zr1 zr2 · · · zrT

φ sr1 Sr
2 · · · Sr

T

Sh
1 Sh

2 · · · Sr
T

Zh
1 Zh

2 · · · Zh
T

(b) PRECOG planning

(c) ESP model implementation

Figure 7.4: Our factorized latent variable model of forecasting and planning shown for 2 agents.
In Fig. 7.4a our model uses latent variable Zat+1 to represent variation in agent a’s plausible scene-
conditioned reactions to all agents St, causing uncertainty in every agents’ future states S. Variation
exists because of unknown driver goals and different driving styles observed in the training data.
Beyond forecasting, our model admits planning robot decisions by deciding Zr = zr (Fig. 7.4b).
Shaded nodes represent observed or determined variables, and square nodes represent robot
decisions [18]. Thick arrows represent grouped dependencies of non-Makovian St “carried forward”
(a regular edge exists between any pair of nodes linked by a chain of thick edges). Note Z factorizes
across agents, isolating the robot’s reaction variable zr. Human reactions remain uncertain (Zh is
unobserved) and uncontrollable (the robot cannot decide Zh), and yet the robot’s decisions zr will
still influence human drivers Sh2:T (and vice-versa). Fig. 6.6 shows our implementation.

126

Zr
1 Zr

2

φ Sr
1 Sr

2

(a) R2P2 forecast [171]

zr1 zr2

φ sr1 sr2

(b) DIM planning [176]

Zr
1 Zr

2

φ Sr
1 Sr

2

Sh
1 Sh

2

Zh
1 Zh

2

(c) R2P2-MA forecast

Zr
1 Zr

2

φ Sr
1 Sr

2

Sh
1 Sh

2

Zh
1 Zh

2

(d) ESP forecast

zr1 zr2

φ sr1 Sr
2

Sh
1 Sh

2

Zh
1 Zh

2

(e) PRECOG planning

Figure 7.5: Graphical model comparison between prior work (Fig. 7.5a, Fig. 7.5b); a baseline we
used (Fig. 7.5c); and our proposed methods (Fig. 7.5d, Fig. 7.5e). All figures show A = 2 and two
steps of the true T -step horizon. Shaded nodes represent observed variables, and square nodes
represent robot decisions. Thick arrows represent non-Makovian “carry-forward” dependencies (i.e.
a state can depend on multiple previous states): add a thin arrow for every two nodes connected by
a chain of thick arrows. Future reactions are always unknown in the case of the human drivers (“h”
superscript), but can be decided in the case of robot (“r” superscipt) planning. How vehicles react
affects—and induces uncertianty into—the multi-agent system state S.

127

Z1
1 Z1

2 · · · Z1
T−1 Z1

T

S1
1 S1

2 · · · S1
T−1 S1

T

Z2
1 Z2

2 · · · Z2
T−1 Z2

T

φ S2
1 S2

2 · · · S2
T−1 S2

T

Z3
1 Z3

2 · · · Z3
T−1 Z3

T

S3
1 S3

2 · · · S3
T−1 S3

T

(a) ESP forecast

z11 z12 · · · z1T−1 z1T

s11 S1
2 · · · S1

T−1 S1
T

Z2
1 Z2

2 · · · Z2
T−1 Z2

T

φ S2
1 S2

2 · · · S2
T−1 S2

T

Z3
1 Z3

2 · · · Z3
T−1 Z3

T

S3
1 S3

2 · · · S3
T−1 S3

T

(b) PRECOG planning

Figure 7.6: Graphical models of ESP and PRECOG for A = 3. See Fig. 7.5’s caption for notation.

Figure 7.7: Images from the CARLA simulator [50]. Left: frontal view. Right: overhead view.

R2P2-MA R2P2-MA ESP ESP

Model Test m̂K=12 Test ê Forecasting crashes Planning crashes

R2P2-MA 0.331 0.085 50.8% 49.5%
ESP 0.000 0.031 1.17% 0.00%

Figure 7.8: Didactic evaluation. Left plots: R2P2-MA cannot model agent interaction, and generates
joint behaviors not present in the data. Right plots: ESP allows agents to influence each other, and
does not generate undesirable joint behaviors.

128

Left Front Right Left Front Right

Figure 7.9: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12
joint samples are shown, and LIDAR colors are discretized to near-ground and above-ground. Left:
(CARLA) the model predicts Car 1 could either turn left or right, while the other agents’ future
maintain multimodality in their speeds. Center-left: The model predicts Car 2 will likely wait (it is
blocked by Cars 3 and 5), and that Cars 3 and 5 sometimes move forward together, and sometimes
stay stationary. Center-right: Car 2 is predicted to overtake Car 1, which itself is forecasted to
continue to wait for pedestrians and Car 2. Right: Car 4 is predicted to wait for the other cars to
clear the intersection, and Car 5 is predicted to either start turning or continue straight.

Table 7.3: Forecasting evaluation of our model on CARLA Town01 Test and nuScenes Test data.
Planning the robot to a goal position (PRECOG) generates better predictions for all agents. Means
and their standard errors are reported.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12 Test m̂a=4

K=12 Test m̂a=5
K=12

CARLA 2

DESIRE [113] 1.837± 0.048 1.991± 0.066 1.683± 0.050 – – –
DESIRE-plan 1.858± 0.046 0.918± 0.044 2.798± 0.073 – – –
ESP 0.337± 0.013 0.196± 0.009 0.478± 0.024 – – –
PRECOG 0.241± 0.012 0.055± 0.003 0.426± 0.024 – – –

CARLA 5

DESIRE [113] 2.622± 0.030 2.621± 0.045 2.422± 0.048 2.710± 0.066 2.969± 0.057 2.391± 0.049
DESIRE-plan 2.329± 0.038 0.194± 0.004 2.239± 0.057 3.119± 0.098 3.332± 0.090 2.758± 0.083
ESP 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025 0.851± 0.023 0.828± 0.024
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024 0.804± 0.022 0.801± 0.024

nuScenes 2

DESIRE [113] 3.307± 0.093 3.002± 0.088 3.613± 0.140 – – –
DESIRE-plan 4.528± 0.151 0.456± 0.015 8.600± 0.298 – – –
ESP 1.094± 0.053 0.955± 0.057 1.233± 0.078 – – –
PRECOG 0.514 ± 0.037 0.158 ± 0.016 0.871 ± 0.070 – – –

nuScenes 5

DESIRE [113] 6.830± 0.204 4.999± 0.219 6.415± 0.294 7.027± 0.360 7.418± 0.324 8.290± 0.532
DESIRE-plan 6.562± 0.207 2.261± 0.100 6.644± 0.314 6.184± 0.325 9.203± 0.448 8.520± 0.514
ESP 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188 3.201± 0.254 4.363± 0.652
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190 3.157 ± 0.273 4.254 ± 0.586

129

(a) CARLA, ESP (b) CARLA, PRECOG (c) nuScenes, ESP (d) nuScenes, PRECOG

Figure 7.10: Examples of planned multi-agent forecasting (PRECOG) with our learned model in
CARLA and nuScenes. By using our planning approach and conditioning the robot on its true final
position, our predictions of the other agents change, our predictions for the robot become more
accurate, and sometimes our predictions of the other agent become more accurate.

Figure 7.11: Histogram of m̂K=12 of forecasts made by the ESP flexible-count model on CARLA
Town02 Test A = 5, T = 20 at 10Hz (2 seconds of future). The median m̂K=12 is 0.09.

Figure 7.12: Histogram of m̂K=12 of forecasts made by the ESP flexible-count model on nuScenes
Test A = 5, T = 20 at 5Hz (4 seconds of future). The median m̂K=12 is 1.31.

130

(a) Plot of m̂K vs. K of the ESP flexible-count
model on CARLA Town02 Test A = 5, T = 20 at
10Hz (2s).

(b) Plot of m̂K vs. K of the ESP flexible-count
model on nuScenes Test A = 5, T = 20 at 5Hz
(4s).

Figure 7.13: Mean m̂K and its standard error vs. K in two settings.

Table 7.7: Forecasting evaluation of our model on CARLA Town01 Test and nuScenes Test data.
Planning the robot to a goal position (PRECOG) generates better predictions for all agents. Means
and their standard errors are reported. The en-dash (–) represents statistics of agents that are not
present in a dataset.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12 Test m̂a=4

K=12 Test m̂a=5
K=12

CARLA A=2

DESIRE 1.837± 0.048 1.991± 0.066 1.683± 0.050 – – –
DESIRE-plan 1.858± 0.046 0.918± 0.044 2.798± 0.073 – – –
ESP 0.337± 0.013 0.196± 0.009 0.478± 0.024 – – –
PRECOG 0.241± 0.012 0.055± 0.003 0.426± 0.024 – – –

CARLA A=3

DESIRE 1.699± 0.032 1.570± 0.037 1.661± 0.047 1.865± 0.047 – –
DESIRE-plan 2.343± 0.047 0.232± 0.009 3.130± 0.078 3.667± 0.096 – –
ESP 0.426± 0.013 0.204± 0.009 0.556± 0.027 0.519± 0.021 – –
PRECOG 0.355± 0.012 0.052± 0.003 0.519± 0.025 0.493± 0.020 – –

CARLA A=4

DESIRE 2.402± 0.038 2.422± 0.054 2.065± 0.044 2.531± 0.071 2.589± 0.064 –
DESIRE-plan 1.828± 0.035 0.149± 0.004 2.480± 0.062 1.256± 0.047 3.426± 0.098 –
ESP 0.537± 0.011 0.236± 0.009 0.615± 0.021 0.656± 0.023 0.643± 0.023 –
PRECOG 0.478± 0.011 0.054± 0.003 0.583± 0.021 0.637± 0.022 0.638± 0.023 –

CARLA A=5

DESIRE 2.622± 0.030 2.621± 0.045 2.422± 0.048 2.710± 0.066 2.969± 0.057 2.391± 0.049
DESIRE-plan 2.329± 0.038 0.194± 0.004 2.239± 0.057 3.119± 0.098 3.332± 0.090 2.758± 0.083
ESP 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025 0.851± 0.023 0.828± 0.024
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024 0.804± 0.022 0.801± 0.024

nuScenes A=2

DESIRE 3.307± 0.093 3.002± 0.088 3.613± 0.140 – – –
DESIRE-plan 4.528± 0.151 0.456± 0.015 8.600± 0.298 – – –
ESP 1.094± 0.053 0.955± 0.057 1.233± 0.078 – – –
PRECOG 0.514 ± 0.037 0.158 ± 0.016 0.871 ± 0.070 – – –

nuScenes A=3

DESIRE 4.840± 0.135 3.931± 0.127 4.984± 0.207 5.606± 0.234 – –
DESIRE-plan 5.887± 0.187 0.409± 0.015 7.731± 0.337 9.521± 0.399 – –
ESP 1.511± 0.077 1.128± 0.061 1.543± 0.118 1.862± 0.147 – –
PRECOG 1.016 ± 0.062 0.121 ± 0.005 1.320 ± 0.105 1.606 ± 0.122 – –

nuScenes A=4

DESIRE 5.771± 0.151 4.195± 0.159 5.854± 0.243 6.138± 0.280 6.896± 0.324 –
DESIRE-plan 5.045± 0.158 0.471± 0.019 5.567± 0.245 5.492± 0.257 8.652± 0.407 –
ESP 2.200± 0.090 1.604± 0.099 1.940± 0.123 2.405± 0.149 2.851± 0.213 –
PRECOG 1.755 ± 0.083 0.133 ± 0.006 1.804 ± 0.126 2.319 ± 0.141 2.764 ± 0.231 –

nuScenes A=5

DESIRE 6.830± 0.204 4.999± 0.219 6.415± 0.294 7.027± 0.360 7.418± 0.324 8.290± 0.532
DESIRE-plan 6.562± 0.207 2.261± 0.100 6.644± 0.314 6.184± 0.325 9.203± 0.448 8.520± 0.514
ESP 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188 3.201± 0.254 4.363± 0.652
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190 3.157 ± 0.273 4.254 ± 0.586

131

Figure 7.14: Evaluating the effects of noisy localization on nuScenes A = 2.

132

7.5 Conclusions

We presented a multi-agent forecasting method, ESP, that outperforms state-of-the-art multi-agent
forecasting methods on real (nuScenes) and simulated (CARLA) driving data. We also developeded
a novel algorithm, PRECOG, to condition forecasts on agent goals. We showed conditional forecasts
improve joint-agent and per-agent predictions, compared to unconditional forecasts used in prior
work. Conditional forecasting can be used for planning, which we demonstrated with a novel multi-
agent imitative planning objective. Future directions include conditional forecasting w.r.t.multiple
agent goals, useful for multi-AV coordination via communicated intent.

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Figure 7.17: Example forecasting results on held-out nuScenes data with our learned ESP model.
In each scene, 12 joint samples are shown, and LIDAR colors are discretized to near-ground and
above-ground

Figure 7.18: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12
joint samples are shown, and LIDAR colors are discretized to near-ground and above-ground.

(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

Figure 7.19: Additional examples of planned multi-agent forecasting (PRECOG) with our learned
model in CARLA. By using our planning approach and conditioning the robot on its true final
position, our predictions for the robot become more accurate, and often our predictions of the other
agent become more accurate.

(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

Figure 7.20: Additional examples of planned multi-agent forecasting (PRECOG) with our learned
model in nuScenes. By using our planning approach and conditioning the robot on its true final
position, our predictions for the robot become more accurate, and often our predictions of the other
agent become more accurate.

(a) Best (> 99%). m̂K=12 =
3.9× 10−4

(b) Best (> 99%). m̂K=12 =
4.0× 10−4

(c) Best (> 99%). m̂K=12 =
5.4× 10−4

(d) Median (≈ 50%). m̂K=12 =
0.38

(e) Median (≈ 50%). m̂K=12 =
0.38

(f) Median (≈ 50%). m̂K=12 =
0.37

(g) Worst (<0.2%). m̂K=12 =64.7 (h) Worst (< 0.2%). m̂K=12 = 41.3 (i) Worst (< 0.2%). m̂K=12 = 41.2

Figure 7.21: Various qualities (Row 1: ≈ 100%, Row 2: ≈ 50%, and Row 3: ≈ 0%) of qualitative
results of the ESP flex. count model on Town01 Test, A = 5, T = 40 at 10Hz (4 seconds of future),
ordered by m̂K=12. Recall since m̂ is a joint-agent statistic, per-agent trajectory sample coverage is
insufficient for a good m̂ score. Also, recall m̂ measures the error of the closest joint trajectory to
the true future, as opposed to the error of all joint trajectories, which is key to its property of not
penalizing otherwise-plausible trajectories.

(a) Best (≈ 99%). m̂K=12 =
3.1× 10−4

(b) Best (≈ 94%). m̂K=12 =
2.3× 10−2

(c) Best (≈ 93%). m̂K=12 =
2.9× 10−2

(d) Median (≈ 50%). m̂K=12 =1.3 (e) Median (≈ 50%). m̂K=12 =1.3 (f) Median (≈ 50%). m̂K=12 =1.3

(g) Worst (<3%). m̂K=12 =15.6 (h) Worst (<3%). m̂K=12 =13.4 (i) Worst (<3%). m̂K=12 =11.5

Figure 7.22: Various qualities (Row 1: ≈ 100%, Row 2: ≈ 50%, and Row 3: ≈ 0%) of qualitative
results of the ESP flex. count model on nuScenes Test, A = 5, T = 20 at 5Hz (4 seconds of future),
ordered by m̂K=12. Recall since m̂ is a joint-agent statistic, per-agent trajectory sample coverage is
insufficient for a good m̂ score. Also, recall m̂ measures the error of the closest joint trajectory to
the true future, as opposed to the error of all joint trajectories, which is key to its property of not
penalizing otherwise-plausible trajectories.

Figure 7.23: Plotting the planning criterion, L̂, after planning to various positions (small circular
dots in each plot) input to Alg. 9, with values interpolated between each position, in CARLA. The
planning criterion input corresponds to a spatio-temporal goal at T = 20 in the future (4 seconds).
The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of
turning. When the vehicle was stationary in the past, the planning criterion is highest at positions
at or close in front of the vehicle.

Figure 7.24: Plotting the planning criterion, L̂, after planning to various positions (small circular
dots in each plot) input to Alg. 9, with values interpolated between each position, in nuScenes. The
planning criterion input corresponds to a spatio-temporal goal at T = 20 in the future (4 seconds).
The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of
turning. When the vehicle was stationary in the past, the planning criterion is highest at positions
at or close in front of the vehicle.

Part III

Conclusion and Future Work

143

7.6 Conclusion and Future Work

Mirroring the structure of this thesis, we restate our contributions and speculate on promising
directions of future work.

7.6.1 Part I: Activity and Motion Forecasting from High-Dimensional Observations

We contributed several approaches to perform activity and motion forecasting from high-dimensional
observations.

7.6.1.1 Chapter 2: Forecasting Singular Actions with Action Maps

The first approach constructs “Action Maps” by observing behavior from a first-person camera
and relating the actions to the visual characteristics of the surrounding environment. Through this
relation, a matrix factorization approach is applied to generate functionality predictions: estimations
of what could be done in various locations. There are two main limitations of this approach: the cat-
egories of activities are limited to those that can be reliably detected, and the visual representations
of scenes were limited to objects and rooms that could be reliably classified.

7.6.1.2 Chapter 3: Forecasting Action Trajectories with Online Inverse Reinforcement
Learning

Our second approach was specifically focused on predicting the future goals of a user: what high-
level activity is likely to be done , which roughly estimates a person’s intention across arbitrary
horizons of space and time. Our algorithm used a first-person camera to observe behaviors, which
is used to inform the states and actions (including localization, activity, and object detection) of an
Inverse Reinforcement Learning approach. By estimating the reward function via the Maximum
Entropy Inverse Reinforcement Learning approach, the approach recovers a mechanism for straight-
forwardly forecasting a distribution over possible future goals. The approach learns online from
behavior by discovering the goals, or terminal states, of a person’s behavior. We employed several
heuristics to obtain these goal states (scene-specific goals and stop-based goals), however, these
mechanisms are insufficient – they neither achieve perfect recall nor precision for the true goals.
An interesting avenue of future work would be to improve the goal discovery component of the
algorithm. Furthermore, although the algorithm enjoys some benefits by learning from scratch for
each user, learning for a new users could be accelerated by employing a reward prior estimation
across the set of existing users.

7.6.1.3 Chapter 4: Forecasting Motion Trajectories with Deep Reversible Generative Models

we contributed several approaches to forecast precise motion of agents. Our first approach, R2P2,
estimates a conditional density function over future trajectories, which receives rich observations
in the form of LIDAR. We extended recent techniques to learn likelihood-based deep generative
models. We used the observation of the duality of trade-offs between forward and reverse KL,
and employ a symmetric reverse KL (less the model entropy) as a training objective. Our model
is both reparameterized, enabling efficient optimization of reverse KL, and can compute the density
function exactly, enabling efficient optimization of the forward KL. In R2P2, we first learned a simple
secondary model to use to penalize the full model in the reverse KL term. In C3PO, we focused on
continually learning this secondary model in tandem with learning our model, which is similar to

other adversarial generative modeling approaches, but retains the desirable properties of efficient
exact model density evaluation. One downside to this approach was that it reasoned about other
agents implicitly through its observations of them in the LIDAR. A direction of future work that we
pursued (PRECOG) was to explicitly reason about all agents present in a scene. Furthermore, one
of the challenges in motion forecasting is proper evaluation of models. In R2P2, we pointed out the
serious deficiency in the most popular metric for motion forecasting (mean-squared error from a
batch of model samples to the single sample of the future). However, alternative metrics still have
some flaws, and thus the proper evaluation of generative forecasting models is still an open area
of research. We speculate two promising paradigms: a metrics suite that attempts to accommodate
the drawbacks of each metric, and combining budget-based metrics. The latter specifies “given K
samples, produce a diversity of plausible outcomes”, where the definitions of plausible and diverse
are problem-specific. When models are evaluated across many budgets K1 . . .KN , the evaluation
provides information about the models at various regimes.

7.6.2 Part II: Jointly Forecasting and Controlling from High-Dimensional
Observations

We contributed several approaches that marry aspects of forecasting with the task of control, with
the goal of joining them together into a single framework.

7.6.2.1 Chapter 5: Forecasting Observations as Auxiliary Supervision for Implicitly-Planned
Control

Our first contribution towards joint forecasting in control leverages theoretical insights about 1)
the difficulty of training the internal state of RNNs 2) the learnability of dynamic systems through
Predictive State Representations. Our resulting Predictive-State Decoders technique is straightfor-
ward in practice: augment the RNN training loss with a term that penalizes the internal RNN state
for failing to be predictive of sufficient statistics of future observations. We found that this simple,
well-motivated approach yielded performance gains across control tasks in filtering, Imitation
Learning, and Reinforcement Learning. The main drawback of this approach is that, in the case of
rich observations, it is very difficult to design featurization functions for the sufficient statistics of
this future observation distribution. An alternative would be to learn this representation beforehand
(e.g. using a VAE), and then predict the latent state of the VAE in order to generate observations.

7.6.2.2 Chapter 6: Forecasting Motion Trajectories for Explicitly-Planned Control

Leveraging the idea of directly estimating the (undirected) distribution over future expert trajectories
from R2P2, we consider directing this distribution with test-time distributions that encourage
trajectories to achieve abstract goals. These goals can be designed to cause trajectories to arrive
near a specific position at a specific point in time, avoid areas or obstacles, et cetera. The key
idea is that the resulting planned trajectories strike a balance between being likely under the
expert prior of future trajectories, as well as achieving the specified goals at test-time. Using this
simple paradigm, we demonstrated state-of-the-art performance on the CARLA static and dynamic
navigation benchmarks, in comparison to behavior-cloning approaches and a dynamics model-
based planning approach that did not internalize a prior. We showed that even when the goals are
poorly specified, such as on the wrong side of the road or very noisy, the prior helps the model
stay on the correct side of the road, and the goal likelihood still provides sufficient information for

directing the vehicle. When multiple goals are provided, the prior effectively enables the planned
trajectories to “choose” the goal it prefers the most, which corresponds to the goal it estimates that
the expert would prefer the most. One drawback of this approach is that if the goal likelihoods are
improperly specified, it requires some interaction (on-policy) data from the learned model in order
to tune the goal likelihoods. This tuning procedure took only a few steps for each likelihood, but
it would be ideal to formalize it as a hyperparameter or model-selection procedure. Additionally,
we demonstrated this procedure in simulation – however, a more impressive display would be
to demonstrate it on an embodied robot, e.g. an autonomous car. Finally, this approach could
be extended to control multiple agents in the presence of other uncontrolled agents to perform
cooperative control tasks. Drawing again on the example domain of autonomous driving, this
approach could be used to coordinate a fleet of robot vehicles in the presence of other human-driven
vehicles. Theoretically, it is straightforward to do so using the multi-agent planning procedure
developed in PRECOG.

7.6.2.3 Chapter 7: Forecasting Multi-Agent Motion Trajectories for Explicitly-Planned
Interactions

Finally, we contributed a multi-agent forecasting approach, ESP, that uses rich observations of one of
the agent’s surrounding environments. By extending R2P2 to a multi-agent model and leveraging its
existing factorization over time, we recover the ability to perform additional probabilistic inference
queries that involve reasoning about the per-agent, per-time step behaviors. We showed how we
can use this property to condition on additional knowledge of one of the agent’s goal, and found
that conditioning on this knowledge improves predictions of the other agent’s behaviors (PREdiction
Conditioned On Goals). The ESP model (unconditional forecasting) achieved state-of-the-art
performance on real data. The PRECOG approach is applicable across a spectrum of forecasting
problems spanning “no prior information of intentions” to “full prior information of intentions”. It
introduces the notion of reasoning about a controlled agent’s intentions affect the behaviors of other
uncontrolled agents. We intend to further explore this approach’s connections to causal inference.

7.6.3 Publication List

Publications Covered

1. Rhinehart, Kitani, CVPR 2016 [169] (Chapter 2)

2. Rhinehart, Kitani, ICCV 2017, [170] (Chapter 3)

3. Rhinehart, Kitani, TPAMI 2018 [168] (Chapter 3)

4. Rhinehart et al., ECCV 2018 [171] (Chapter 4)

5. Rhinehart et al., OpenReview 2018 [174] (Chapter 4)

6. Rhinehart∗, Venkatraman∗, et al. NeuRIPS 2017 [228] (Chapter 5)

7. Rhinehart et al., arXiv 2018 [176] (Chapter 6)

8. Rhinehart et al., ICCV 2019 [175] (Chapter 7)

Publications Uncovered

9. Rhinehart et al., ICRA 2015 [177]

10. Ashok et al., ICLR 2018 [13]

11. Pan et al., AAMAS 2018 [146]

12. Shankar et al., CORL 2018 [199]

13. Sharma et al., ICLR 2019 [200]

14. Guan et al., arXiv 2019 [73]

7.6.4 Concluding Summary

We motivated the problem of computational forecasting through the dual motivation of its con-
nection to core goals in the natural sciences and the human ability to forecast. The brunt of our
focus was to reason about what agents could do in order to plan controls. This focus on future
agent behavior allowed us to tightly couple and jointly perform forecasting and control. In pursuit
of this goal, our contributions widen the focus of Computer Vision and Reinforcement Learning.
We hope to see Computer Vision approaches (1) pay more attention to the forecasting problem
and (2) consider how the forecasting model will be used to evoke useful behavior. We hope to see more
Reinforcement and Imitation Learning approaches (1) pay more attention to the problem of explicitly
forecasting the future and (2) design approaches to incorporate forecasting as a fundamental component of
intelligent systems that evoke useful behavior. The better we can forecast intelligent behavior, the better
we can understand and produce it. Improving forecasting provides a clear path to building systems
of greater behavioral capabilities.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., “Tensorflow: A system for large-scale machine learning.,” in OSDI, vol. 16,
2016, pp. 265–283.

[2] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Discriminative training of
kalman filters.,” in Robotics: Science and Systems (RSS), 2005.

[3] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in
Proceedings of the twenty-first international conference on Machine learning, ACM, 2004, p. 1.

[4] ——, “Exploration and apprenticeship learning in reinforcement learning,” in ICML, ACM,
2005, pp. 1–8.

[5] ——, “Learning first-order markov models for control,” in NIPS, 2005, pp. 1–8.

[6] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for boltzmann
machines,” in Readings in Computer Vision, Elsevier, 1987, pp. 522–533.

[7] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke by poking:
Experiential learning of intuitive physics,” in Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds., Curran
Associates, Inc., 2016, pp. 5074–5082.

[8] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM:
Human trajectory prediction in crowded spaces,” in Computer Vision and Pattern Recognition
(CVPR), Jun. 2016.

[9] ——, “Social lstm: Human trajectory prediction in crowded spaces,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.

[10] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in neural networks,”
arXiv preprint arXiv:1703.00443, 2017.

[11] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and Z. Kolter., “Differentiable MPC for
end-to-end planning and control.,” 2018.

[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875,
2017.

[13] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning: Network to network
compression via policy gradient reinforcement learning,” in International Conference on
Learning Representations, 2018. [Online]. Available: https://openreview.net/forum?id=
B1hcZZ-AW.

[14] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and engineers.
Princeton university press, 2010.

148

https://openreview.net/forum?id=B1hcZZ-AW
https://openreview.net/forum?id=B1hcZZ-AW

[15] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and model-based reinforcement
learning,” in Proceedings of International Conference on Robotics and Automation, IEEE, vol. 4,
1997, pp. 3557–3564.

[16] L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese, “Knowledge transfer for
scene-specific motion prediction,” in European Conference on Computer Vision, Springer, 2016,
pp. 697–713.

[17] N. Baram, O. Anschel, I. Caspi, and S. Mannor, “End-to-end differentiable adversarial
imitation learning,” in International Conference on Machine Learning, 2017, pp. 390–399.

[18] D. Barber, Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[19] S. Barratt and R. Sharma, “A Note on the Inception Score,” ArXiv e-prints, Jan. 2018. arXiv:
1801.01973 [stat.ML].

[20] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware trajectory prediction,”
arXiv preprint arXiv:1705.02503, 2017.

[21] D. Belanger and A. McCallum, “Structured prediction energy networks,” in International
Conference on Machine Learning, 2016, pp. 983–992.

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

[23] A. Bhattacharyya, M. Malinowski, B. Schiele, and M. Fritz, “Long-term image boundary
prediction,” in Thirty-Second AAAI Conference on Artificial Intelligence, AAAI, 2017.

[24] A. Bhattacharyya, B. Schiele, and M. Fritz, “Accurate and diverse sampling of sequences
based on a “best of many” sample objective,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8485–8493.

[25] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[26] B. Boots, “Spectral approaches to learning predictive representations,” PhD thesis, Carnegie
Mellon University, Dec. 2012.

[27] B. Boots, A. Gretton, and G. J. Gordon, “Hilbert space embeddings of predictive state
representations,” in UAI-2013, 2013.

[28] B. Boots, S. M. Siddiqi, and G. J. Gordon, “Closing the learning-planning loop with predictive
state representations,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 954–966,
2011.

[29] R. J. Bowden and D. A. Turkington, Instrumental variables, 8. Cambridge University Press,
1990.

[30] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[32] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous driving,” arXiv preprint
arXiv:1903.11027, 2019.

[33] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity search,” in The IEEE International
Conference on Computer Vision (ICCV), Dec. 2015.

[34] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu, A. Michaux, Y. Lin, S. Dickinson,
J. Mark Siskind, and S. Wang, “Recognize human activities from partially observed videos,”
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2013.

http://arxiv.org/abs/1801.01973

[35] R. Caruana, “Multitask learning,” in Learning to learn, Springer, 1998, pp. 95–133.

[36] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep structured models,” in
International Conference on Machine Learning, 2015, pp. 1785–1794.

[37] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.
Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[38] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent latent
variable model for sequential data,” in Advances in neural information processing systems, 2015,
pp. 2980–2988.

[39] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent
systems,” AAAI/IAAI, vol. 1998, pp. 746–752, 1998.

[40] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple demonstrations,” in
ICML, New York, NY, USA: ACM, 2008, pp. 144–151.

[41] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via
conditional imitation learning,” in International Conference on Robotics and Automation (ICRA),
IEEE, 2018, pp. 1–9.

[42] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the limitations of behavior
cloning for autonomous driving,” arXiv preprint arXiv:1904.08980, 2019.

[43] M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck, “Analytic moment-based gaussian
process filtering,” in International Conference on Machine Learning, ACM, 2009, pp. 225–232.

[44] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient approach to
policy search,” in International Conference on Machine Learning (ICML), 2011, pp. 465–472.

[45] V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, and A. A. Efros, “Scene semantics from
long-term observation of people,” in Computer Vision–ECCV 2012, Springer, 2012, pp. 284–
298.

[46] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of surrounding vehicles with
maneuver based LSTMs,” arXiv preprint arXiv:1805.05499, 2018.

[47] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real NVP,” arXiv preprint
arXiv:1605.08803, 2016.

[48] ——, “Density estimation using Real NVP,” arXiv preprint arXiv:1605.08803, 2016.

[49] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” arXiv preprint
arXiv:1611.01779, 2016.

[50] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban
driving simulator,” in Conference on Robot Learning (CoRL), 2017, pp. 1–16.

[51] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforce-
ment learning for continuous control,” in Proceedings of the 33rd International Conference on
Machine Learning (ICML), 2016.

[52] P. Englert, A. Paraschos, M. P. Deisenroth, and J. Peters, “Probabilistic model-based imitation
learning,” Adaptive Behavior, vol. 21, no. 5, pp. 388–403, 2013.

[53] A. Fathi, A. Farhadi, and J. M. Rehg, “Understanding egocentric activities,” in Computer
Vision (ICCV), 2011 IEEE International Conference on, IEEE, 2011, pp. 407–414.

[54] P. Felsen, P. Lucey, and S. Ganguly, “Where will they go? Predicting fine-grained adversarial
multi-agent motion using conditional variational autoencoders,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 732–747.

[55] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft + hardwired attention: An LSTM
framework for human trajectory prediction and abnormal event detection,” Neural networks,
vol. 108, pp. 466–478, 2018.

[56] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the itakura-
saito divergence: With application to music analysis,” Neural computation, vol. 21, no. 3,
pp. 793–830, 2009.

[57] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on, IEEE, 2017, pp. 2786–2793.

[58] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and A. D. Dragan, “Hierarchical
game-theoretic planning for autonomous vehicles,” arXiv preprint arXiv:1810.05766, 2018.

[59] D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev, and J. Sivic, “People watching:
Human actions as a cue for single-view geometry,” in Proc. 12th European Conference on
Computer Vision, 2012.

[60] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards internet-scale multi-view
stereo,” in CVPR, 2010.

[61] Y. Gal, “Uncertainty in deep learning,” PhD thesis, University of Cambridge, 2016.

[62] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipolicy decision-making
for autonomous driving via changepoint-based behavior prediction,” in Robotics: Science and
Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015. [Online]. Available:
http://www.roboticsproceedings.org/rss11/p43.html.

[63] J. Gall, A. Fossati, and L. Van Gool, “Functional categorization of objects using real-time
markerless motion capture,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, IEEE, 2011, pp. 1969–1976.

[64] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “Made: Masked autoencoder for
distribution estimation,” in International Conference on Machine Learning, 2015, pp. 881–889.

[65] Z. Ghahramani and S. T. Roweis, “Learning nonlinear dynamical systems using an EM
algorithm,” pp. 431–437, 1999.

[66] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in Computer Vision and Pattern Recognition, 2014.

[67] W. Grathwohl, R. T. Chen, J. Betterncourt, I. Sutskever, and D. Duvenaud, “FFJORD:
Free-form continuous dynamics for scalable reversible generative models,” arXiv preprint
arXiv:1810.01367, 2018.

[68] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks.,” in ICML, vol. 14, 2014, pp. 1764–1772.

[69] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “Lstm: A search
space odyssey,” IEEE transactions on neural networks and learning systems, 2016.

[70] A. Grover, M. Dhar, and S. Ermon, “Flow-gan: Bridging implicit and prescribed learning in
generative models,” arXiv preprint arXiv:1705.08868, 2017.

http://www.roboticsproceedings.org/rss11/p43.html

[71] ——, “Flow-gan: Combining maximum likelihood and adversarial learning in generative
models,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New
Orleans, Louisiana, USA, February 2-7, 2018, 2018. [Online]. Available: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17409.

[72] Q. Gu, J. Zhou, and C. H. Ding, “Collaborative filtering: Weighted nonnegative matrix
factorization incorporating user and item graphs.,” in SDM, SIAM, 2010, pp. 199–210.

[73] J. Guan, Y. Yuan, K. M. Kitani, and N. Rhinehart, “Generative hybrid representations for
activity forecasting with no-regret learning,” arXiv preprint arXiv:1904.06250, 2019.

[74] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training
of wasserstein gans,” in Advances in Neural Information Processing Systems, 2017, pp. 5769–
5779.

[75] A. Gupta, T. Chen, F. Chen, D. Kimber, and L. S. Davis, “Context and observation driven
latent variable model for human pose estimation,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.

[76] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert, “From 3d scene geometry to human
workspace,” in Computer Vision and Pattern Recognition(CVPR), 2011.

[77] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially acceptable
trajectories with generative adversarial networks,” in Computer Vision and Pattern Recognition
(CVPR), 2018.

[78] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop kf: Learning discriminative
deterministic state estimators,” NIPS, 2016.

[79] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university
press, 2003.

[80] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable mdps,”
arXiv preprint arXiv:1507.06527, 2015.

[81] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2961–2969.

[82] A. Hefny, C. Downey, and G. J. Gordon, “Supervised learning for dynamical system learn-
ing,” in NIPS, 2015.

[83] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in Neural
Information Processing Systems, 2016, pp. 4565–4573.

[84] M. Hoai and F. De la Torre, “Max-margin early event detectors,” International Journal of
Computer Vision, vol. 107, no. 2, pp. 191–202, 2014.

[85] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[86] D. Hsu, S. M. Kakade, and T. Zhang, “A spectral algorithm for learning hidden markov
models,” in COLT, 2009.

[87] Z. Hu, Z. Yang, R. Salakhutdinov, and E. P. Xing, “On unifying deep generative models,”
in International Conference on Learning Representations, 2018. [Online]. Available: https://
openreview.net/forum?id=rylSzl-R-.

[88] F. Huszár, “How (not) to train your generative model: Scheduled sampling, likelihood,
adversary?” arXiv preprint arXiv:1511.05101, 2015.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17409
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17409
https://openreview.net/forum?id=rylSzl-R-
https://openreview.net/forum?id=rylSzl-R-

[89] A. Hyvärinen, “Estimation of non-normalized statistical models by score matching,” Journal
of Machine Learning Research, vol. 6, no. Apr, pp. 695–709, 2005.

[90] F. Itakura, “Analysis synthesis telephony based on the maximum likelihood method,” in The
6th international congress on acoustics, 1968, 1968, pp. 280–292.

[91] B. Ivanovic, E. Schmerling, K. Leung, and M. Pavone, “Generative modeling of multimodal
multi-human behavior,” arXiv preprint arXiv:1803.02015, 2018.

[92] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu,
“Reinforcement learning with unsupervised auxiliary tasks,” CoRR, vol. abs/1611.05397,
2016. [Online]. Available: http://arxiv.org/abs/1611.05397.

[93] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent neural networks for driver
activity anticipation via sensory-fusion architecture,” in Robotics and Automation (ICRA), 2016
IEEE International Conference on, IEEE, 2016, pp. 3118–3125.

[94] Y. Jiang, H. Koppula, and A. Saxena, “Hallucinated humans as the hidden context for
labeling 3d scenes,” in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on, IEEE, 2013, pp. 2993–3000.

[95] S. Kakade, “A natural policy gradient,” Advances in neural information processing systems,
vol. 2, pp. 1531–1538, 2002.

[96] S. M. Kakade et al., “On the sample complexity of reinforcement learning,” PhD thesis, 2003.

[97] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Improved
variational inference with inverse autoregressive flow,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds., Curran Associates, Inc., 2016, pp. 4743–4751. [Online]. Available: http://papers.nips.
cc/paper/6581- improved- variational- inference- with- inverse- autoregressive-
flow.pdf.

[98] ——, “Improved variational inference with inverse autoregressive flow,” in Advances in
Neural Information Processing Systems, 2016, pp. 4743–4751.

[99] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[100] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,” in
Advances in Neural Information Processing Systems, 2018, pp. 10 236–10 245.

[101] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecasting,” in European
Conference on Computer Vision, Springer, 2012, pp. 201–214.

[102] J. Ko, D. J. Klein, D. Fox, and D. Haehnel, “GP-UKF: Unscented kalman filters with Gaussian
process prediction and observation models,” pp. 1901–1907, 2007.

[103] I. Kokkinos, “Ubernet: Training a ’universal’ convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory,” CoRR, vol. abs/1609.02132,
2016.

[104] H. S. Koppula and A. Saxena, “Anticipating human activities using object affordances for
reactive robotic response,” IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 1, pp. 14–29, 2016.

[105] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities and object affordances
from rgb-d videos,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 951–970,
2013.

http://arxiv.org/abs/1611.05397
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf

[106] L. Kuvayev and R. S. Sutton, “Model-based reinforcement learning with an approximate,
learned model,” in Yale Workshop on Adaptive and Learning Systems, 1996, pp. 101–105.

[107] T. Lan, T.-C. Chen, and S. Savarese, “A hierarchical representation for future action predic-
tion,” in European Conference on Computer Vision, Springer, 2014, pp. 689–704.

[108] J. Langford, R. Salakhutdinov, and T. Zhang, “Learning nonlinear dynamic models,” in
ICML, ACM, 2009, pp. 593–600.

[109] S. M. LaValle, “Planning algorithms,” in, Cambridge University Press, 2006, ch. 14, pp. 802–
805.

[110] H. M. Le, Y. Yue, P. Carr, and P. Lucey, “Coordinated multi-agent imitation learning,” in
International Conference on Machine Learning, 2017, pp. 1995–2003.

[111] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.

[112] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-based
learning,” Predicting structured data, vol. 1, no. 0, 2006.

[113] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “Desire: Distant
future prediction in dynamic scenes with interacting agents,” 2017.

[114] N. Lee and K. M. Kitani, “Predicting wide receiver trajectories in american football,” in 2016
IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2016, pp. 1–9.

[115] Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important people and objects for egocentric
video summarization.,” in CVPR, vol. 2, 2012, p. 7.

[116] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and
review,” arXiv preprint arXiv:1805.00909, 2018.

[117] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, 2016.

[118] K. Li and Y. Fu, “Prediction of human activity by discovering temporal sequence patterns,”
IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 8, pp. 1644–1657, 2014.

[119] Y. Li, Z. Ye, and J. M. Rehg, “Delving into egocentric actions,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2015.

[120] Y. Li, Z. Ye, and J. M. Rehg, “Delving into egocentric actions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 287–295.

[121] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning from visual demon-
strations,” in Advances in Neural Information Processing Systems, 2017, pp. 3815–3825.

[122] Z. Li, T. Motoyoshi, K. Sasaki, T. Ogata, and S. Sugano, “Rethinking self-driving: Multi-
task knowledge for better generalization and accident explanation ability,” arXiv preprint
arXiv:1809.11100, 2018.

[123] X. Liang, T. Wang, L. Yang, and E. Xing, “CIRL: Controllable imitative reinforcement learning
for vision-based self-driving,” arXiv preprint arXiv:1807.03776, 2018.

[124] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Exploring context with deep structured
models for semantic segmentation,” IEEE transactions on pattern analysis and machine intelli-
gence, 2017.

[125] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian
inference algorithm,” in Advances In Neural Information Processing Systems, 2016, pp. 2378–
2386.

[126] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1894–
1903.

[127] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani, “A game-theoretic approach to multi-
pedestrian activity forecasting,” arXiv preprint arXiv:1604.01431, 2016.

[128] ——, “Forecasting interactive dynamics of pedestrians with fictitious play,” in Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, IEEE, 2017, pp. 4636–4644.

[129] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla, and A. V. Weller,
“Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning,”
International Joint Conferences on Artificial Intelligence (IJCAI), 2017.

[130] R. J. McCann et al., “Existence and uniqueness of monotone measure-preserving maps,”
1995.

[131] F. S. Melo and M. Veloso, “Decentralized MDPs with sparse interactions,” Artificial Intelli-
gence, vol. 175, no. 11, pp. 1757–1789, 2011.

[132] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer, “DropoutDAgger: A Bayesian
approach to safe imitation learning,” arXiv preprint arXiv:1709.06166, 2017.

[133] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial networks,”
CoRR, vol. abs/1611.02163, 2016. arXiv: 1611.02163. [Online]. Available: http://arxiv.
org/abs/1611.02163.

[134] D. J. Moore, I. Essa, M. H. Hayes III, et al., “Exploiting human actions and object context for
recognition tasks,” in Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, IEEE, vol. 1, 1999, pp. 80–86.

[135] R. Mur-Artal, J. Montiel, and J. D. Tardós, “Orb-slam: A versatile and accurate monocular
slam system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[136] I. Najfeld and T. F. Havel, “Derivatives of the matrix exponential and their computation,”
Advances in applied mathematics, vol. 16, no. 3, pp. 321–375, 1995.

[137] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.,” in Icml, 2000,
pp. 663–670.

[138] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Estimating divergence functionals and
the likelihood ratio by convex risk minimization,” IEEE Transactions on Information Theory,
vol. 56, no. 11, pp. 5847–5861, 2010.

[139] S. Nowozin, B. Cseke, and R. Tomioka, “F-gan: Training generative neural samplers using
variational divergence minimization,” in Advances in Neural Information Processing Systems,
2016, pp. 271–279.

[140] P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing using recurrent neural
networks,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[141] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. v. d.
Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, et al., “Parallel WaveNet: Fast high-fidelity
speech synthesis,” arXiv preprint arXiv:1711.10433, 2017.

[142] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al., “Conditional
image generation with pixelcnn decoders,” in Advances in Neural Information Processing
Systems, 2016, pp. 4790–4798.

http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1611.02163

[143] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,”
arXiv preprint arXiv:1601.06759, 2016.

[144] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al., “An algorithmic
perspective on imitation learning,” Foundations and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–
179, 2018.

[145] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and
control techniques for self-driving urban vehicles,” Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[146] X. Pan, E. Ohn-Bar, N. Rhinehart, Y. Xu, Y. Shen, and K. M. Kitani, “Human-interactive
subgoal supervision for efficient inverse reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

[147] H. S. Park, J.-J. Hwang, Y. Niu, and J. Shi, “Egocentric future localization.,” in CVPR, vol. 2,
2016, p. 4.

[148] S. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, “Sequence-to-sequence prediction
of vehicle trajectory via LSTM encoder-decoder architecture,” arXiv preprint arXiv:1802.06338,
2018.

[149] E. Parzen, “On estimation of a probability density function and mode,” The annals of mathe-
matical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[150] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural net-
works.,” ICML, vol. 28, pp. 1310–1318, 2013.

[151] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” Journal
of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[152] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling
social behavior for multi-target tracking,” in Computer Vision, 2009 IEEE 12th International
Conference on, IEEE, 2009, pp. 261–268.

[153] P. Peursum, G. West, and S. Venkatesh, “Combining image regions and human activity for
indirect object recognition in indoor wide-angle views,” in Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on, IEEE, vol. 1, 2005, pp. 82–89.

[154] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforcement
learning,” arXiv preprint arXiv:1703.02702, 2017.

[155] H. Pirsiavash and D. Ramanan, “Detecting activities of daily living in first-person camera
views,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE,
2012, pp. 2847–2854.

[156] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons to reg-
ularized likelihood methods,” Advances in large margin classifiers, vol. 10, no. 3, pp. 61–74,
1999.

[157] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Advances in
Neural Information Processing Systems (NIPS), 1989, pp. 305–313.

[158] R. Poppe, “A survey on vision-based human action recognition,” Image and vision computing,
vol. 28, no. 6, pp. 976–990, 2010.

[159] L. Ralaivola and F. D’Alche-Buc, “Dynamical modeling with kernels for nonlinear time series
prediction,” NIPS, 2004.

[160] P. Ramachandran and G. Varoquaux, “Mayavi: 3D Visualization of Scientific Data,” Comput-
ing in Science & Engineering, vol. 13, no. 2, pp. 40–51, 2011, ISSN: 1521-9615.

[161] R. Ranftl and T. Pock, “A deep variational model for image segmentation,” in German
Conference on Pattern Recognition, Springer, 2014, pp. 107–118.

[162] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with recurrent
neural networks,” ICLR, 2016.

[163] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin planning,” in Proceedings
of the 23rd international conference on Machine learning, ACM, 2006, pp. 729–736.

[164] B. Recht, The policy of truth, http://www.argmin.net/2018/02/20/reinforce/, Blog, 2018.

[165] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 779–788.

[166] D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,” arXiv
preprint arXiv:1505.05770, 2015.

[167] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate
inference in deep generative models,” arXiv preprint arXiv:1401.4082, 2014.

[168] N. Rhinehart and K. Kitani, “First-person activity forecasting from video with online inverse
reinforcement learning,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[169] N. Rhinehart and K. M. Kitani, “Learning action maps of large environments via first-person
vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 580–588.

[170] N. Rhinehart and K. M. Kitani, “First-person activity forecasting with online inverse rein-
forcement learning,” in The IEEE International Conference on Computer Vision (ICCV), Oct.
2017.

[171] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2P2: A reparameterized pushforward policy
for diverse, precise generative path forecasting,” in European Conference on Computer Vision
(ECCV), Sep. 2018.

[172] ——, “R2p2: A reparameterized pushforward policy for diverse, precise generative path
forecasting,” in The European Conference on Computer Vision (ECCV), Sep. 2018.

[173] ——, “R2p2: A reparameterized pushforward policy for diverse, precise generative path
forecasting,” in The European Conference on Computer Vision (ECCV), Sep. 2018.

[174] N. Rhinehart, A. Liu, K. Sohn, and P. Vernaza, Learning gibbs-regularized GANs with variational
discriminator reparameterization, 2019. [Online]. Available: https://openreview.net/forum?
id=BJlpCsC5Km.

[175] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog: Prediction conditioned on
goals in visual multi-agent settings,” arXiv preprint arXiv:1905.01296, 2019.

[176] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative models for flexible inference,
planning, and control,” arXiv preprint arXiv:1810.06544, 2018.

[177] N. Rhinehart, J. Zhou, M. Hebert, and J. A. Bagnell, “Visual chunking: A list prediction
framework for region-based object detection,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on, IEEE, 2015, pp. 5448–5454.

http://www.argmin.net/2018/02/20/reinforce/
https://openreview.net/forum?id=BJlpCsC5Km
https://openreview.net/forum?id=BJlpCsC5Km

[178] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette: Human
trajectory understanding in crowded scenes,” in European conference on computer vision,
Springer, 2016, pp. 549–565.

[179] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” The Annals
of Mathematical Statistics, pp. 832–837, 1956.

[180] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international conference
on artificial intelligence and statistics, 2011, pp. 627–635.

[181] ——, “A reduction of imitation learning and structured prediction to no-regret online
learning,” in International Conference on Artificial Intelligence and Statistics, 2011, pp. 627–635.

[182] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell, “Learning message-passing inference
machines for structured prediction,” in CVPR, IEEE, 2011.

[183] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human
motion trajectory prediction: A survey,” arXiv preprint arXiv:1905.06113, 2019.

[184] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” International
journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[185] M. S. Ryoo, T. J. Fuchs, L. Xia, J. K. Aggarwal, and L. H. Matthies, “Robot-centric activity
prediction from first-person videos: What will they do to me’,” in Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2015, Portland,
OR, USA, March 2-5, 2015, 2015, pp. 295–302. DOI: 10.1145/2696454.2696462. [Online].
Available: http://doi.acm.org/10.1145/2696454.2696462.

[186] M. S. Ryoo, “Human activity prediction: Early recognition of ongoing activities from stream-
ing videos,” in Computer Vision (ICCV), 2011 IEEE International Conference on, 2011.

[187] M. S. Ryoo and L. Matthies, “First-person activity recognition: What are they doing to
me?” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 2730–2737.

[188] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi, “Trajnet: Towards a bench-
mark for human trajectory prediction,” arXiv preprint, 2018.

[189] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collaborative
filtering,” in Proceedings of the 24th international conference on Machine learning, ACM, 2007,
pp. 791–798.

[190] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” in Advances in Neural Information Processing Systems, 2016,
pp. 2234–2242.

[191] A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning for driving in urban
environments,” arXiv preprint arXiv:1806.06498, 2018.

[192] M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, and M. Nießner, “Scenegrok: Inferring action
maps in 3d environments,” ACM Transactions on Graphics (TOG), vol. 33, no. 6, 2014.

[193] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal probabilistic model-
based planning for human-robot interaction,” in International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 1–9.

https://doi.org/10.1145/2696454.2696462
http://doi.acm.org/10.1145/2696454.2696462

[194] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation using stochastic
computation graphs,” in Advances in Neural Information Processing Systems, 2015, pp. 3528–
3536.

[195] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimiza-
tion,” in Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2015,
pp. 1889–1897.

[196] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network flow for multi-object
tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6951–6960.

[197] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for autonomous
vehicles,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 187–210,
2018.

[198] S. Shalev-Shwartz et al., “Online learning and online convex optimization,” Foundations and
Trends® in Machine Learning, vol. 4, no. 2, pp. 107–194, 2012.

[199] T. Shankar, N. Rhinehart, K. Muelling, and K. M. Kitani, “Learning neural parsers with
deterministic differentiable imitation learning,” in Proceedings of The 2nd Conference on Robot
Learning, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., ser. Proceedings of Machine
Learning Research, vol. 87, PMLR, 29–31 Oct 2018, pp. 592–604. [Online]. Available: http:
//proceedings.mlr.press/v87/shankar18a.html.

[200] M. Sharma, A. Sharma, N. Rhinehart, and K. M. Kitani, “Directed-info GAIL: Learning
hierarchical policies from unsegmented demonstrations using directed information,” in
International Conference on Learning Representations, 2019. [Online]. Available: https://
openreview.net/forum?id=BJeWUs05KQ.

[201] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition
in videos,” in Advances in Neural Information Processing Systems, 2014, pp. 568–576.

[202] ——, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[203] S. Singh, M. R. James, and M. R. Rudary, “Predictive state representations: A new theory for
modeling dynamical systems,” in UAI, 2004.

[204] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep con-
ditional generative models,” in Advances in Neural Information Processing Systems 28, C.
Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., Curran Associates,
Inc., 2015, pp. 3483–3491. [Online]. Available: http://papers.nips.cc/paper/5775-
learning-structured-output-representation-using-deep-conditional-generative-
models.pdf.

[205] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola, “Hilbert space embeddings of
hidden markov models,” in ICML, 2010, pp. 991–998.

[206] H. Soo Park, J.-J. Hwang, Y. Niu, and J. Shi, “Egocentric future localization,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.

[207] E. H. Spriggs, F. De la Torre Frade, and M. Hebert, “Temporal segmentation and activity
classification from first-person sensing,” in IEEE Workshop on Egocentric Vision, CVPR 2009,
Jun. 2009.

http://proceedings.mlr.press/v87/shankar18a.html
http://proceedings.mlr.press/v87/shankar18a.html
https://openreview.net/forum?id=BJeWUs05KQ
https://openreview.net/forum?id=BJeWUs05KQ
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf

[208] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal planning networks:
Learning generalizable representations for visuomotor control,” in International Conference
on Machine Learning, 2018, pp. 4739–4748.

[209] S. Su, J. P. Hong, J. Shi, and H. S. Park, “Social behavior prediction from first person videos,”
arXiv preprint arXiv:1611.09464, 2016.

[210] C. Sun, P. Karlsson, J. Wu, J. B. Tenenbaum, and K. Murphy, “Stochastic prediction of
multi-agent interactions from partial observations,” arXiv preprint arXiv:1902.09641, 2019.

[211] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A fast integrated planning and control
framework for autonomous driving via imitation learning,” arXiv preprint arXiv:1707.02515,
2017.

[212] W. Sun, R. Capobianco, G. J. Gordon, J. A. Bagnell, and B. Boots, “Learning to smooth
with bidirectional predictive state inference machines,” in Proceedings of The International
Conference on Uncertainty in Artificial Intelligence (UAI), 2016.

[213] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford, “Model-based rl in
contextual decision processes: Pac bounds and exponential improvements over model-free
approaches,” in Proceedings of the Thirty-Second Conference on Learning Theory, A. Beygelzimer
and D. Hsu, Eds., ser. Proceedings of Machine Learning Research, vol. 99, Phoenix, USA:
PMLR, 25–28 Jun 2019, pp. 2898–2933. [Online]. Available: http://proceedings.mlr.press/
v99/sun19a.html.

[214] W. Sun, A. Venkatraman, B. Boots, and J. A. Bagnell, “Learning to filter with predictive state
inference machines,” in Proceedings of The 33rd International Conference on Machine Learning,
2016, pp. 1197–1205.

[215] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell, “Deeply aggrevated:
Differentiable imitation learning for sequential prediction,” in ICML, 2017.

[216] I. Sutskever, “Training recurrent neural networks,” PhD thesis, University of Toronto, 2013.

[217] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent neural net-
works,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011,
pp. 1017–1024.

[218] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[219] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich, et al., “Going deeper with convolutions,” Cvpr, 2015.

[220] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 2154–2162.

[221] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Pro-
ceedings of the tenth international conference on machine learning, 1993, pp. 330–337.

[222] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[223] E. Todorov, “Linearly-solvable Markov decision problems,” in Advances in neural information
processing systems (NIPS), 2007, pp. 1369–1376.

[224] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle, “Neural autoregressive distri-
bution estimation,” Journal of Machine Learning Research, vol. 17, no. 205, pp. 1–37, 2016.

[225] P. Van Overschee and B. De Moor, Subspace identification for linear systems: Theory-Implementation-
Applications. Springer Science & Business Media, 2012.

http://proceedings.mlr.press/v99/sun19a.html
http://proceedings.mlr.press/v99/sun19a.html

[226] W. Vega-Brown and N. Roy, “Cello-em: Adaptive sensor models without ground truth,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 1907–
1914.

[227] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving multi-step prediction of learned
time series models.,” in AAAI, 2015, pp. 3024–3030.

[228] A. Venkatraman*, N. Rhinehart*, W. Sun, L. Pinto, M. Hebert, B. Boots, K. Kitani, and
J. Bagnell, “Predictive-state decoders: Encoding the future into recurrent networks,” in
Advances in Neural Information Processing Systems, 2017, pp. 1172–1183.

[229] A. Venkatraman, W. Sun, M. Hebert, B. Boots, and J. A. (Bagnell, “Inference machines for
nonparametric filter learning,” in 25th International Joint Conference on Artificial Intelligence
(IJCAI-16), Jun. 2016.

[230] L. Verlet, “Computer" experiments" on classical fluids. i. thermodynamical properties of
lennard-jones molecules,” Physical review, vol. 159, no. 1, p. 98, 1967.

[231] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee, “Learning to generate long-term
future via hierarchical prediction,” in Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 3560–3569. [Online].
Available: http://proceedings.mlr.press/v70/villegas17a.html.

[232] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating visual representations from unla-
beled video,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 98–106.

[233] ——, “Generating videos with scene dynamics,” in Advances In Neural Information Processing
Systems, 2016, pp. 613–621.

[234] C. Vondrick and A. Torralba, “Generating the future with adversarial transformers,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, 2017, pp. 2992–3000. DOI: 10.1109/CVPR.2017.319. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.319.

[235] J. Walker, A. Gupta, and M. Hebert, “Patch to the future: Unsupervised visual prediction,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 3302–3309.

[236] J. Walker, K. Marino, A. Gupta, and M. Hebert, “The pose knows: Video forecasting by
generating pose futures,” in 2017 IEEE International Conference on Computer Vision (ICCV),
IEEE, 2017, pp. 3352–3361.

[237] S. Wang, S. Fidler, and R. Urtasun, “Proximal deep structured models,” in Advances in Neural
Information Processing Systems, 2016, pp. 865–873.

[238] W. W.-S. Wei, Time series analysis. Addison-Wesley publ Reading, 1994.

[239] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proceedings of
the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[240] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” in Reinforcement Learning, Springer, 1992, pp. 5–32.

[241] D. Wingate and S. Singh, “Kernel predictive linear gaussian models for nonlinear stochastic
dynamical systems,” in International Conference on Machine Learning, ACM, 2006, pp. 1017–
1024.

[242] C. Wu, “Towards linear-time incremental structure from motion,” in 3D Vision-3DV 2013,
2013 International Conference on, IEEE, 2013, pp. 127–134.

http://proceedings.mlr.press/v70/villegas17a.html
https://doi.org/10.1109/CVPR.2017.319
https://doi.org/10.1109/CVPR.2017.319

[243] Y. Wu, Y. Burda, R. Salakhutdinov, and R. B. Grosse, “On the quantitative analysis of decoder-
based generative models,” CoRR, vol. abs/1611.04273, 2016. arXiv: 1611.04273. [Online].
Available: http://arxiv.org/abs/1611.04273.

[244] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse reinforcement
learning,” arXiv preprint arXiv:1507.04888, 2015.

[245] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-scale cost function
learning for path planning using deep inverse reinforcement learning,” The International
Journal of Robotics Research, vol. 36, no. 10, pp. 1073–1087, 2017.

[246] D. Xie, S. Todorovic, and S.-C. Zhu, “Inferring “dark matter" and “dark energy" from videos,”
in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2224–2231.

[247] B. Yao and L. Fei-Fei, “Modeling mutual context of object and human pose in human-
object interaction activities,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, IEEE, 2010, pp. 17–24.

[248] E. Zhan, S. Zheng, Y. Yue, and P. Lucey, “Generative multi-agent behavioral cloning,” arXiv
preprint arXiv:1803.07612, 2018.

[249] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end simulated driving,”
in AAAI, 2017, pp. 2891–2897.

[250] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and Y. N. Wu, “Multi-agent
tensor fusion for contextual trajectory prediction,” arXiv preprint arXiv:1904.04776, 2019.

[251] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H.
Torr, “Conditional random fields as recurrent neural networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1529–1537.

[252] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors emerge in
deep scene cnns,” arXiv preprint arXiv:1412.6856, 2014.

[253] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features for scene
recognition using places database,” in Advances in neural information processing systems, 2014,
pp. 487–495.

[254] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, 2017, pp. 2242–2251. DOI: 10.1109/ICCV.2017.244.
[Online]. Available: https://doi.org/10.1109/ICCV.2017.244.

[255] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle of maximum
causal entropy,” PhD thesis, Carnegie Mellon University, 2010.

[256] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforce-
ment learning,” in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, 2008, pp. 1433–1438. [Online]. Available:
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php.

[257] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforce-
ment learning,” in AAAI, Chicago, IL, USA, vol. 8, 2008, pp. 1433–1438.

[258] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert,
A. K. Dey, and S. Srinivasa, “Planning-based prediction for pedestrians,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 3931–3936.

http://arxiv.org/abs/1611.04273
http://arxiv.org/abs/1611.04273
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php

	Introduction
	Science Seeks To Forecast; Intelligence Requires Us To Forecast
	Main Contributions and Organization
	Bibliographical Remarks
	Excluded Research
	Related Work

	Activity and Motion Forecasting from High-Dimensional Observations
	Forecasting Singular Actions with Action Maps
	Introduction
	Constructing Action Maps
	Experiments
	Action Maps for Localization
	Conclusion

	Forecasting Action Trajectories with Online Inverse Reinforcement Learning
	Introduction
	Related Work
	Online IRL with DARKO
	Generalized Activity Forecasting
	Experiments
	Visualizations
	Conclusion

	Forecasting Motion Trajectories with Deep Reversible Generative Models
	Introduction
	Related Work
	Approach
	Experiments
	Discussion
	Improving The Reverse KL Approximation
	Symmetric KL Learning Approach
	Symmetric KL Experiments and Discussion
	Conclusion

	Jointly Forecasting and Controlling from High-Dimensional Observations
	Forecasting Observations as Auxiliary Supervision for Implicitly-Planned Control
	Introduction
	Latent State Space Models
	Predictive-State Decoders
	Experiments
	Conclusion

	Forecasting Motion Trajectories for Explicitly-Planned Control
	Introduction
	Deep Imitative Models
	Related Work
	Experiments
	Discussion

	Forecasting Multi-Agent Motion Trajectories for Explicitly-Planned Interactions
	Introduction
	Related Work
	Deep Multi-Agent Forecasting
	Experiments
	Conclusions

	Conclusion and Future Work
	Conclusion and Future Work
	Bibliography

