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Abstract 

Fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been 

associated with public health concerns due to short and long-term exposure. Chemical transport 

models (CMTs) are frequently used for developing air quality and emissions control policies that 

protect public health. To evaluate these policies, Chemical transport models (CTMs) must simulate 

PM2.5 concentrations and their response to changes in emissions accurately. At high resolutions, 

the geographical distribution of PM2.5 concentrations can have sharp gradients. During the last 

decades, regulations by the U.S. Environmental Protection Agency have led to significant 

reductions of the emissions of atmospheric pollutants including PM2.5. 

The CTM PMCAMx is used here to assess the impact of increasing model resolution on 

the model’s ability to predict the variability, sources and population exposure of PM2.5 

concentrations at 36 x 36, 12 x 12, 4 x 4 and 1 x 1 km resolutions over the city of Pittsburgh; to 

evaluate the PMCAMx predictions at various grid resolutions against measurements of PM2.5 

concentration and composition; and to estimate the concentration, composition and sources of 

PM2.5 over 20 years in the U.S. 

At the finest resolution, the model successfully resolved intra-urban variations and 

individual roadways. Pollutants with significant local emissions such as elemental and organic 

carbon have gradients that can only be resolved at the finest resolution. PMCAMx predicts sulfate, 

elemental carbon and organic aerosol concentrations well with fractional biases below 10%. 

Agreement with total PM2.5 measurements is also encouraging with a fractional bias of 3%. 

Prediction performance improves with increasing resolution reducing the average fractional error 

from 16% at 36 x 36 km to 12% at 1 x 1 km. 
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EC concentrations reduced by 23% due to a 37% reduction on emissions from 1990 to 

2010. SO2 emissions were reduced by 63% causing a large reduction of sulfate concentrations in 

the northeast of the U.S. A comparison between the predicted and observed reductions of EC, 

sulfate, and PM2.5 showed excellent correlations. 
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Chapter 1. Introduction 

Fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) contributes to 

poor air quality throughout large parts of the United States, which has been associated with public 

health concerns due to short and long-term exposure. Some of the health effects of PM2.5 include 

premature death due to cardiovascular disease, increased chance of heart attacks and strokes, 

reduced lung development and function in children and people with lung diseases such as asthma 

and increases in hospital admissions due to heart and lung disease (Dockery and Pope, 1994; US 

EPA, 2012). Chemical transport models (CMTs) are frequently used for developing air quality and 

emissions control policies that protect public health. To evaluate these policies, CTMs must 

simulate PM2.5 concentrations and their response to changes in emissions accurately. 

At high resolutions, local sources such as commercial cooking, on-road traffic, residential 

wood combustion, and industrial activities can have sharp gradients that influence the geographical 

distribution of PM2.5 concentrations. High-resolution measurements of PM1 have found gradients 

of up to ~2 µg m-3 between urban background sites and those with high local emissions (Gu et al., 

2018; Robinson et al., 2018). 

During the last decades, regulations by the U.S. Environmental Protection Agency (EPA) 

have led to significant reductions of the emissions of SO2, NOx, CO, volatile organic compounds 

(VOCs), and primary PM2.5 from electrical utilities and other industrial sources, transportation, 

and other sources. Xing et al., (2013) estimated emissions reductions from 1990 to 2010 primary 

PM2.5 by 34%. At the same time, there have been significant reductions of the PM2.5 levels in 

practically all areas of the US (Meng et al., 2019). 



2 
 

The demographic characteristics of the population can have large variations at the 

neighborhood scale and it is important to assess the exposure of different sub-populations to air 

pollutants and the resulting health effects, a concept known as Environmental Justice (Anand, 

2002). These demographic characteristics have also changed in time, as the social and economic 

characteristics of the country have evolved. CTMs can be useful tools to address environmental 

justice issues associated with particulate matter since they simulate all the major processes that 

impact PM2.5 concentrations and transport. CTMs can also assess the contribution of different 

sources and how those vary in space and time. In this work, the Particulate Matter Comprehensive 

Air quality Model with Extensions (PMCAMx) (Karydis et al., 2010; Murphy and Pandis, 2010; 

Tsimpidi et al., 2009) is used to predict PM2.5 concentrations at high resolutions in the city of 

Pittsburgh and from 1990 to 2010 in the U.S. 

Chapter 2 addresses the impact of increasing model resolution on the model’s ability to 

predict the variability, sources and population exposure of PM2.5 concentrations at 36 x 36, 12 x 

12, 4 x 4 and 1 x 1 km resolutions over the city of Pittsburgh. Emissions were calculated using the 

EPA’s Emission Modeling Platform (v6.3) for the National Emissions Inventory for 2011 (NEI11) 

(Eyth and Vukovich, 2016) using the default 2017 projected values. New spatial surrogates for 

commercial cooking and on-road traffic were also created for the finest grid. 

The impact of increasing model resolution on the model’s ability to predict PM2.5 variations 

on the urban scale in Pittsburgh is examined in Chapter 3. We evaluate the PMCAMx predictions 

at various grid resolutions against regulatory measurements of PM2.5 concentration and 

composition, research measurements by an Aerosol Mass Spectrometer (Gu et al., 2018), and 

measurements from a network of low-cost sensors (Zimmerman et al., 2018). 
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In Chapter 4 we use the source resolved, historic emission inventories of Xing et al. (2013) 

with biogenic emissions calculated using MEGAN3 (Jiang et al., 2018) to estimate the 

concentration, composition, and sources of PM2.5 over 20 years in the U.S. The model predictions 

are compared with the available measurements. The sources responsible for the PM2.5 reductions 

in various areas of the country are identified and their contribution to the reductions is quantified. 

The results and conclusions of this work are summarized in Chapter 5 along with 

recommendations for future work. 
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Chapter 2. Source-Resolved Variability of Fine Particulate Matter in an 

Urban Area 

2.1 Introduction 

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) contributes to poor 

air quality throughout large parts of the United States. These particles directly affect visibility 

(Seinfeld and Pandis, 2006) and have been associated with long and short-term health effects such 

as premature death due to cardiovascular disease, increased chance of heart attacks and strokes, 

reduced lung development and function in children and people with lung diseases such as asthma 

and increases in hospital admissions due to heart and lung disease (Dockery and Pope, 1994; US 

EPA, 2012). 

At high resolutions, local sources such as commercial cooking, on-road traffic, residential 

wood combustion, and industrial activities can have sharp gradients that influence the geographical 

distribution of PM2.5 concentrations. High-resolution measurements of PM1 have found gradients 

of up to ~2 µg m-3 between urban background sites and those with high local emissions (Gu et al., 

2018; Robinson et al., 2018). 

A key limiting factor on the modeling of particulate matter at high resolutions is the 

geographical distribution of emissions. Previous studies have found that coarse grid emissions 

interpolated to higher resolutions have small to modest improvements in model predictive ability 

for ozone (Arunachalam et al., 2006; Kumar and Russell, 1996), secondary organic aerosol 

(Fountoukis et al., 2013; Stroud et al., 2011) and nitrate (Zakoura and Pandis, 2019, 2018). Pan et 

al., (2017) used the default approach from the U.S. Environmental Protection Agency (EPA) 

National Emissions Inventory (NEI) to allocate county-based emissions to model grid cells at 4 x 
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4 and 1 x 1 km and found only small changes to model performance for NOx and O3, while the 1 

x 1 km case showed more detailed features of emissions and concentrations in heavily polluted 

areas. 

Improvements in the resolution of emission inventories have been focused on traffic as this 

source exhibits significant variability at high resolutions. Recent approaches to building high-

resolution traffic inventories include origin-destination by vehicle class (Ma et al., 2019), synthetic 

population mobility (Elessa Etuman and Coll, 2018) and fuel sales combined with traffic counts 

(McDonald and McBride, 2014). Other sectors such as biomass burning for residential heating and 

commercial cooking have been identified as very uncertain in current inventories (Day et al., 

2019). Recent versions of the NEI have made progress addressing the total emissions and temporal 

distributions of biomass burning and commercial cooking (Eyth and Vukovich, 2016) but there is 

still significant uncertainty on their geographical location at a sub-county scale. Robinson et al., 

(2018) found greatly elevated organic aerosol concentrations (10s of µg m-3) in the vicinity of 

numerous individual restaurants and commercial districts containing multiple restaurants 

indicating that commercial cooking is a source of large gradients on the urban scale. 

Population density and the socio-economic indicators of that population, such as income 

or access to healthcare, show large gradients in the urban scale. It is important to assess the 

exposure of different sub-populations to air pollutants and the resulting health effects, a concept 

known as Environmental Justice (Anand, 2002). 

We use the Particulate Matter Comprehensive Air quality Model with Extensions 

(PMCAMx) to study the impact of increasing model resolution on the model’s ability to predict 

the variability, sources and population exposure of PM2.5 concentrations on the urban scale in 

Pittsburgh. We compare predicted variability at 36 x 36, 12 x 12, 4 x 4 and 1 x 1 km resolutions 
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over the city of Pittsburgh during one typical summer and one typical winter month of 2017. 

Additional sensitivity simulations were performed to determine contributions from selected 

sources to concentrations. The results of the winter simulations are used to estimate exposure to 

PM2.5 at all resolutions and from the selected sources. 

2.2 PMCAMx Description 

The Particulate Matter Comprehensive Air quality Model with Extensions (PMCAMx)  

(Karydis et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2009), uses the framework of the 

CAMx model (Environ, 2006) to describe horizontal and vertical advection and diffusion, 

emissions, wet and dry deposition, gas, aqueous and aerosol-phase chemistry. A 10-size section 

aerosol sectional approach is used to dynamically track the evolution of the aerosol mass 

distribution. The aerosol species modeled include sulfate, nitrate, ammonium, sodium, chloride, 

elemental carbon, water, primary and secondary organics, and other non-volatile aerosol 

components. The SAPRC99 (Statewide Air Pollution Research Center) photochemical mechanism 

(Carter, 1999) is used for the simulation of gas-phase chemistry. The version of SAPRC used here 

includes 237 reactions and 91 individual and surrogate species. For inorganic growth, a bulk 

equilibrium approach was used, assuming equilibrium between the bulk inorganic aerosol and gas 

phases (Pandis et al., 1993). The partition of the various semivolatile inorganic aerosol components 

and aerosol water is determined using the ISORROPIA aerosol thermodynamics model (Nenes et 

al., 1998). The primary and secondary organic aerosol components are described using the 

volatility basis set approach (Donahue et al., 2006). For primary organic aerosol (POA) ten 

volatility bins, with effective saturation concentrations ranging from 10-3 to 106 µg m-3 at 298 K 

are used. Anthropogenic (aSOA) and biogenic (aSOA) are modeled with 4 volatility bins (1, 10, 

102, 103 µg m-3) (Murphy and Pandis, 2009) using NOx dependent yields (Lane et al., 2008). More 
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detailed descriptions of PMCAMx can be found in Fountoukis et al., (2011) and Zakoura and 

Pandis, (2018). 

2.3 Model Application 

PMCAMx was used to simulate air quality over the metropolitan area of Pittsburgh during 

February and July 2017. For the base-case simulation we used a one-way nested structure with a 

36 x 36 km master grid covering the continental United States, with nested grids of 12 x 12 km, 4 

x 4 km in South Western Pennsylvania and a 1 x 1 km grid covering the city of Pittsburgh, most 

of Allegheny County and the upper Ohio River valley (Figure 2-1A). The 1 x 1 km grid covers a 

72 x 72 km area (Figure 2-2B). 

The surface concentrations at the boundaries of the 36 x 36 km grid are shown in Table 

2-1. These values were applied to all upper air layers assuming a constant mixing ratio. Horizontal 

wind components, vertical diffusivity, temperature, pressure, water vapor, clouds, and rainfall 

were generated using the Weather Research and Forecasting (WRF v3.6.1) model over the whole 

modeling domain with horizontal resolution of 12 km. The data was interpolated to higher 

resolutions when needed. Initial and boundary meteorological conditions for the WRF simulations 

were generated from the ERA-Interim global climate re-analysis database, together with the 

terrestrial data sets for terrain height, land-use, soil categories, etc. from the United States 

Geological Survey (USGS) database. The WRF modeling system is prepared and configured in a 

similar way as described by Gilliam and Pleim, (2010). This configuration is recommended for air 

quality simulations (Hogrefe et al., 2015; Rogers et al., 2013). 

Emissions were calculated using the EPA’s Emission Modeling Platform (v6.3) for the 

National Emissions Inventory for 2011 (NEI11) (Eyth and Vukovich, 2016) using the default 2017 

projected values. Base emissions were calculated first at a 12 km resolution for the full modeling 
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domain using the Sparse Matrix Operator Kernel Emissions (SMOKE) model and our WRF 

meteorological data. For the higher resolution grids, the spatial surrogates provided with Platform 

v6.3 (Adelman, 2015) were used for all sectors except commercial cooking and on-road traffic for 

which custom surrogates were developed. The emissions by all sources together with the chemical 

composition are summarized in Table 2-2. 

 

Figure 2-1. Modeling domain used for the PMCAMx simulations. (A) 36 x 36 km continental 
U.S. grid. (B) 12 x 12 and 4 x 4 km South Western Pennsylvania grids, and 1 x 1 km Pittsburgh 
nested grids. 

Table 2-1. Outer (CONUS) boundary condition concentrations of major aerosol species. 

Component Concentration (µg m-3) 
West East South North 

Nitrate 0.01 0.01 0.03 0.03 
Ammonium 0.14 0.25 0.24 0.16 
Sulfate 0.64 1.12 0.81 0.68 
Elemental Carbon 0.04 0.05 0.09 0.03 
Organic Aerosol 0.20 0.16 0.58 0.13 

 

In this work, we used normalized restaurant count to distribute the commercial cooking 

emissions in space in the 1x1 km inner domain. Geographical information was collected for all 

locations labeled as “restaurant” from the freely accessible Google Places Application 
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Programming Interface (API) for the western Pennsylvania area, eastern Ohio and northern West 

Virginia. Using this new spatial surrogate, PM2.5 emissions from commercial cooking are 

enhanced primarily in the Pittsburgh urban core with a maximum increase of 1200 kg g-1 km-2 

(Figure 2-2A). 

A B  
Figure 2-2. Percentage of PM2.5 emissions in each 1x1 km computational cell for: (A) commercial 
cooking and (B) on road traffic. 

Table 2-2. PM2.5 emissions by source for the 1 x 1 km Pittsburgh domain (February 2017). 

Source Type Emissions (kg d-1 km-2) 

  PM2.5 OA EC Chl. Na Amm. Nitrate Sulfate Other 

Agricultural dust 68.7 9.7 0.4 0.2 0.1 0.1 0.1 0.7 57.2 

River barges 19.0 4.2 14.7 0.0 0.0 0.0 0.0 0.1 0.1 

Cooking 242 223 8.3 2.2 0.8 0.0 1.1 0.6 6.0 

Misc. area sources 683 445 56.7 30.5 3.0 5.6 1.7 42 97.8 

Off-road 147 56.2 73.1 0.3 0.1 0.0 0.3 1.1 16.1 

Oil-gas (Area) 35.3 1.7 0.0 0.0 0.0 0.0 0.1 8.3 23.2 

On-road traffic 188 84.6 75.2 0.3 0.1 1.8 0.6 8.3 16.4 

Rail 40.7 8.9 31.4 0.0 0.0 0.0 0.0 0.1 0.2 

Biomass burning 1,869 1,696 105 5.6 1.8 2.8 3.6 7.7 46.3 

Power generation 3,517 201 194 2.8 0.0 15.7 2.6 460 2,641 

Industrial 1,106 192 134 79.4 65.3 10.1 21.1 173 428 

Oil-gas (point) 2.8 1.0 1.1 0.0 0.0 0.0 0.1 0.2 0.5 
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To accurately capture spatial patterns of on-road traffic, we use the output of a link-level, 

origin-destination by vehicle class traffic model of Pittsburgh (Ma et al., 2019). This traffic model 

simulates traffic counts and speed by hour-of-day using observations from Pennsylvania 

Department of Transportation sites throughout Pittsburgh. As expected, emissions in areas with 

major highways are quite high (Figure 2-2B). Changes in on-road emissions are smaller with an 

enhancement of 210 kg d-1 km-2 at a major highway intersection near downtown. 

2.4 PM2.5 concentrations and sources during winter 

2.4.1 Effect of grid resolution 

The results of the simulations with the four resolutions are shown in Figures Figure 2-3 

and Figure 2-4. For the area of interest, the simulations at 36 x 36 km resolves concentration fields 

at the county scale. The urban-rural gradient is resolved in the 12 x 12 km simulations. Increasing 

the resolution to 4 x 4 km, large stationary sources such as power plants and large industrial 

installations are resolved. Finally, the resolution increase to 1 x 1 km resolves the intra-urban 

variations in Pittsburgh and medium-sized industrial installations. 

The predicted maximum PM2.5 concentration in the inner domain increases from 10.5 µg 

m-3 at 36x36 km, to 11.7 µg m-3 at 12x12, to 12.8 µg m-3 at 4x4, and finally to 14.2 µg m-3 at 1x1 

km (Figure 2-3), a 35% increase. On the other end, the predicted minimum PM2.5 concentration 

changes from 8.2 µg m-3 at 36 x 36 km to 6.9 µg m-3 at 12 x 12 and remains practically the same 

at even higher resolutions. This corresponds to the “background” concentration level for the area 

during the simulation period, so further resolution enhancements do not change this value. The 

standard deviation of the predicted concentration can be used as a measure of the concentration 

variability in the area. This standard deviation changes from 0.84 µg m-3 at 36x36, to 1.26 µg m-3 

at 12x12, to 1.48 µg m-3 at 4x4 and to 1.32 µg m-3 at 1x1 km. These results indicate an increase of 
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the PM2.5 variability by 58% when one moves from the coarse to the finest resolution. However, 

most of this change in variability (51% out of the 58%) appears when one moves from 36x36 to 

12x12 km. 

Elemental carbon is a primary aerosol component with sources that are quite variable in 

space. The predicted maximum PM2.5 EC increased by a factor of 2.9, from 0.6 µg m-3 at the 36 x 

36 km resolution to 1.6 µg m-3 at 1 x 1 km (Figure 2-3). The predicted maximum EC is, as expected 

in the Pittsburgh downtown area. On the other hand, the predicted minimum of EC is reduced by 

only 0.1 µg m-3, from 0.34 µg m-3 at 36x36 km to 0.24 at resolutions lower or equal than 4x4 km. 

The standard deviation of the predicted EC doubles from 0.09 µg m-3 at 36 x 36 km to 0.18 µg m-

3 at 1 x 1 km. Approximately 66% of this increase in variability appears in the transition from the 

coarse to the intermediate resolution of 12 x 12 km. The fine and the finest resolutions are needed 

to resolve the other half of the predicted variability. 

During this winter period a significant fraction (79%) of the OA in the Pittsburgh area is 

primary and therefore the higher resolution results in increases of the predicted maximum 

concentrations in space from 3 µg m-3 at the coarse resolution to 4.2 µg m-3 at the intermediate to 

5.5 µg m-3 at the finest resolution (Figure 2-3). This corresponds to an increase by a factor of 1.8, 

more than the total PM2.5, but much less than the EC. The predicted maximum is located in 

downtown Pittsburgh, with additional hotspots in neighboring counties that are resolved at the fine 

and finest resolution. The predicted minimum changes from 2.1 µg m-3 at 36x36 to 1.6 µg m-3 at 

12x12 with small reductions at higher resolutions. The variability (standard deviation) of the OA 

concentration field of the predicted concentration increases by a factor of approximately 1.6 from 

0.39 µg m-3 at 36 x 36, to 0.65 µg m-3 at 12 x 12 km. The increase is small at even higher resolutions 
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with the standard deviation of OA reaching 0.68 µg m-3 at 1 x 1 km (an increase by a factor of 

1.7). 
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Figure 2-3 Average predicted ground-level concentration of total PM2.5, EC, and OA at 36 x 36, 
12 x 12, 4 x 4 and 1 x 1 km resolutions during February 2017. 

The predicted fine nitrate levels are relatively high ranging from 2.07 to 2.63 µg m-3 in the 

coarse-resolution simulation. This is expected in this wintertime period due to the partitioning of 

nitric acid and ammonium in the particulate phase. This predicted concentration range increases 

to 1.64-2.40 µg m-3 in the finest scale simulation with higher levels in the northeast of the domain. 

The standard deviation of the predicted concentration does not show any significant trend changing 

from 0.201 µg m-3 at 36 x 36 to 0.109 µg m-3 at 1 x 1 km. 
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For PM2.5 ammonium, changes with increasing resolution are modest with the predicted 

minimum being reduced from 1.3 µg m-3 at 36x36 to approximately 1.1 µg m-3 at all other higher 

resolutions. The predicted maximum also decreases from 1.5 µg m-3 at 36x36 km to 1.4 µg m-3 at 

all other higher resolutions. As with nitrate, the standard deviation does not show any significant 

trend changing from 0.08 µg m-3 at 36 x 36, to 0.1 µg m-3 at 12 x 12, to 0.07 µg m-3 at 4 x 4 and to 

0.09 µg m-3 at 1 x 1 km. 
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Figure 2-4. Average predicted ground-level concentration of PM2.5 sulfate, nitrate and ammonium 
at a 36 x 36, 12 x 12, 4 x 4 and 1 x 1 km resolution during February 2017. 
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2.4.2 Source Apportionment 

We performed zero-out simulations just in the 1x1 km Pittsburgh grid to determine the 

contributions of eight source categories to the total PM2.5. The local sources quantified included: 

commercial cooking, industrial, biomass burning, on-road traffic, power generation, and 

miscellaneous area sources. The miscellaneous area sources sector includes a large variety of 

emission sources that are not classified in any of the sources in Table 2-2. These include chemical 

manufacturing, solvent utilization for surface coatings, degreasing and dry cleaning, storage and 

transport of petroleum products, waste disposal and incineration, and cremation of human remains. 

The emissions from the agricultural dust, river barges, off-road equipment, oil-gas activities, and 

rail were grouped on the “others” source. All emissions (particulate and gas-phase) from each 

source were set to zero, and the results of the zero-out simulation were subtracted from those of 

the baseline simulation to estimate the corresponding source contribution. The contribution of 

long-range transport from outside the inner domain was also estimated by setting all local sources 

to zero. 

On average, commercial cooking emissions contribute 0.9% of the PM2.5 mass in the 

modeling domain with a maximum contribution of 2.43 µg m-3 in downtown Pittsburgh, with 

smaller contributions in the surrounding urban area. This contribution accounts for 18% of the 

PM2.5 mass in downtown Pittsburgh. The contribution from commercial cooking is localized 

around downtown Pittsburgh and shows very little variability outside of the urban core with a 

standard deviation of 0.12 µg m-3. On-road traffic emissions are most important in major highway 

intersections and river crossings surrounding downtown Pittsburgh with a maximum contribution 

of 1.72 µg m-3 accounting for 11%. On average, on-road traffic contributes 1.4% of the PM2.5 

mass. The contribution from on-road traffic shows higher variability (standard deviation: 0.12 µg 
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m-3) since this sector contributes significantly to areas adjacent to the network of highways that 

radiates from the Pittsburgh downtown. Biomass burning is used during the winter for residential 

heating and recreation. This source contributes a maximum of 3.85 µg m-3 in Cranberry, a northern 

suburb of Pittsburgh located in the neighboring Butler county. In the downtown Pittsburgh area, 

the contribution from biomass burning accounts for 10% of the PM2.5. This source shows the 

highest variability with a standard deviation of 0.61 µg m-3. The miscellaneous area source sector 

contributes 6% of the PM2.5 on average. Since this sector encompasses a variety of sources and 

activities, its contribution shows significant variability with a standard deviation of 0.32 µg m-3 

and an average contribution of 5.9%. The maximum contribution is located in the Pittsburgh urban 

core with 1.52 µg m-3, accounting for 10.0% of the PM2.5. 

The maximum contribution of 5.67 µg m-3 from industrial sources is a cluster of industrial 

facilities in the town of Butler, 37 km northwest of Pittsburgh. The maximum PM2.5 concentration 

of the modeling domain is located here. In this location long-range transport contributes 43% of 

the PM2.5 followed by industrial sources with 40% and biomass burning with 10%. On average, 

the contribution from industrial sources is low with 2.8%. In downtown Pittsburgh, the 

contribution is lower still with 2%. The power generation sector contributes a maximum of 0.43 

µg m-3 in the plume of the Bruce Mansfield power plant northwest of Pittsburgh. This sector shows 

the smallest variability with 0.06 µg m-3. 

Long-range transport from outside the inner modeling domain is the major source of PM2.5 

during this period contributing an average of 74%. This contribution varies from 7.1 µg m-3 in the 

southeast corner of the domain decreasing in the direction of the Pittsburgh urban core where the 

contribution is reduced to 6 µg m-3. In areas where there are significant local emissions such as the 

Pittsburgh downtown, the contribution from long-range transport decreases to 45%. 
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Figure 2-5. Contribution of each source to total PM2.5 during February 2017. Two different scales 
are used. 

Contributions for all remaining sources are largest in the Pittsburgh downtown with 0.88 

µg m-3, accounting for 5% of the PM2.5. This sector also significantly contributes on the Ohio and 

Monongahela river valleys, where there is important rail and river traffic. On average, these 

sources contribute 3% of the PM2.5 and show a moderate variability with a standard deviation of 

0.14 µg m-3. 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg m-3) and 

is located at the southwestern corner of the domain, near the Ohio – West Virginia border. 

2.5 PM2.5 concentrations and sources during summer 

2.5.1 Effect of grid resolution 

The predicted PM2.5 concentrations in the simulated summer period are lower than during 

the winter period and more uniform, however, the qualitative behavior of the model at the different 
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scales remains the same (Figure 2-6). The spatial variability of the average PM2.5 concentrations is 

approximately 0.73 µg m-3 less than during the winter.  The standard deviation of the PM2.5 

increases from 0.21 µg m-3 at 36 x 36, to 0.37 µg m-3 at 12 x 12, to 0.51 µg m-3 at 4 x 4 and to 0.59 

µg m-3 at 1 x 1 km. At the finest scale, the variability in the summer is 45% of that in the winter. 

The behavior of the predicted extremes in the PM2.5 concentration field is noteworthy. While the 

predicted maximum increases moderately from 6.4 µg m-3 at the coarse to 7.8 µg m-3 at the fine 

resolution, the finest scale resolves better the concentration field in the cluster of industrial 

installations 37 km northwest of Pittsburgh where the concentration is 12.1 µg m-3 at 1 x 1 km. 

The minimum PM2.5 drops from 5.8 µg m-3 at 36 x 36 to 4.7 µg m-3 at 12 x 12, and then only to 

4.5 µg m-3 at 1 x 1 km. So once more the moderate resolution appears to capture the low end of 

the concentrations within 5%. 

The average EC is lower during the summer with 0.29 µg m-3 versus 0.43 µg m-3 in the 

winter. The standard deviation of the predicted average EC increases from 0.05 µg m-3 at 36 x 36, 

to 0.09 µg m-3 at 12 x 12, to 0.10 µg m-3 at 4 x 4 km, and to 0.13 µg m-3 at 1 x 1 km. The peak 

average EC is located in downtown Pittsburgh and increases by a factor of 3.7 (from 0.35 to 1.3 

µg m-3) moving from the coarse to the finest resolution. 

It is noteworthy that the peak is 39% less than that of the winter when the coarse resolution 

is used, but only 20% when the finest resolution is used. The concentration range (difference 

between the maximum and the minimum) increases from 0.13 µg m-3 to 1.14 µg m-3 moving from 

the coarse to the finest resolution. This increase by a factor of 9 shows the importance of the local 

variations of a primary species like EC in an urban area in both summer and winter. 

The OA concentration field is quite uniform at the coarse-scale varying from by only 0.2 

µg m-3 (from 1.5 to 1.7 µg m-3) with a standard deviation of 0.08 µg m-3 (Figure 2-6). There is only 
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a moderate increase in the variability even when one moves to the fine-scale, with the range 

increasing to 0.8 µg m-3. The significant change in OA predictions occurs at the finest scale with 

an increase of the predicted maximum in downtown Pittsburgh to 3.8 µg m-3 increasing the 

predicted concentration range to 2.6 µg m-3 and the standard deviation of the OA field to 0.2 µg 

m-3. The use of the finest scale appears to be needed for the resolution of the OA high concentration 

areas in the summer more than in the winter. 
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Figure 2-6 Average predicted concentration at the ground level of total PM2.5, EC and OA at a 
36x36, 12x12, 4x4 and 1x1 km during July 2017. 

The PM2.5 sulfate levels during the summer period are on average 15% higher during the 

summertime period. At the coarse and intermediate scales, the predicted average concentration 

fields have relatively little structure (Figure 2-7). The corresponding concentration ranges are 
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relatively narrow (0.1 µg m-3 at 36 x 36 km and 0.5 µg m-3 at 12x12 km). However, a different 

picture emerges at the fine and especially the finest scales. In contrast to the winter results, the 

plumes from the major power plants can be clearly seen at these higher resolutions. The increase 

of the maximum is just 0.26 µg m-3 moving from the coarse to the fine-scale (from 1.9 to 2.1 µg 

m-3) and becomes important only at the finest scale (a maximum of 2.7 µg m-3 is predicted for 

downtown Pittsburgh). The predicted minimum is reduced from 1.8 µg m-3 at 36 x 36 to 1.4 µg m-

3 at 12 x 12, to 1.3 µg m-3 at 4 x 4 and 1 x 1 km.  The standard deviation of the predicted sulfate 

concentration field at the coarse resolution is low and the same as in the winter, 0.03 µg m-3 at the 

coarse resolution. However, the variability at the finest scale is twice in the summer (0.15 µg m-3 

at 1x1 km) than in the winter. 

The summertime nitrate concentrations are quite low in the area (average 0.53 µg m-3 in 

the coarse and 0.46 µg m-3 in the finest resolution). Most of the reduction of the predicted minimum 

happens moving from the coarsest to the intermediate resolution (0.45 µg m-3 to 0.38 µg m-3) with 

a further reduction to 0.36 µg m-3 to the finest scale. The concentration field is quite uniform with 

a standard deviation of 0.06 µg m-3 for all grids. However, due to the reduction in the predicted 

minimum the concentration range increases from 0.1 µg m-3 at the coarse resolution to 0.3 µg m-3 

at the fine and finest resolutions. 

The PM2.5 ammonium concentration field is quite uniform at all resolutions (Figure 2-7). 

The concentration range increases from 0.1 to 0.3 µg m-3 moving from the coarse to the finest 

resolution and the standard deviation increases from 0.01 to 0.04 µg m-3. 

2.5.2 Source Apportionment 

Commercial cooking emissions contribute a maximum of 1.97 µg m-3 to the total PM2.5 in 

downtown Pittsburgh, a decrease of 19% compared with the winter. This accounts for 20% of the 
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PM2.5 mass in the city, with smaller contributions in the urban core. The contribution from 

commercial cooking shows little variability outside of the city center with a standard deviation of 

0.09 µg m-3. As in the winter period, on-road traffic emissions have the largest contribution to the 

PM2.5 in the downtown Pittsburgh area where 4 large highways intersect. In this location on-road 

traffic contributes 13% of the PM2.5. with 1.21 µg m-3. On average, on-road traffic contributes less 

than 1% of the PM2.5 mass. During the summer period, the variability of the on-road traffic 

contribution is slightly higher with 0.14 µg m-3
 compared with 0.12 µg m-3 during winter. 
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Figure 2-7 Average predicted concentration of PM2.5 sulfate, nitrate, and ammonium at a 36x36, 
12x 12, 4x4 and 1x1 km during July 2017. 

During summer, residential biomass burning is minimal. This source contributes a 

maximum of 0.1 µg m-3 and its contribution to the average PM2.5 is negligible. On average, the 
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miscellaneous area sources sector contributes 1.21 µg m-3 accounting for 2.6% of the PM2.5. In 

downtown Pittsburgh, where the contribution is highest, this source contributes 6% of the PM2.5. 

Unlike in the winter period, in the summer, the plumes from major powerplants in the Ohio 

river valley can be clearly resolved. The power generation sector contributes a maximum of 1.6 

µg m-3 in the plume of the Bruce Mansfield power plant northwest of Pittsburgh. On average, the 

8.8% contribution from this sector to the PM2.5 is much larger than in the winter where it only 

contributed 1.6%. The plume from the Mitchell power plant in the southwest corner of the 

modeling domain is clearly resolved and reaches all the way to the city. This increases the 

contribution from power generation to the PM2.5 in the downtown core from 0.16 µg m-3 to 0.61 

µg m-3, a 73% increase. The maximum contribution of 6.2 µg m-3 from industrial sources is a 

cluster of industrial facilities in the town of Butler, northwest of Pittsburgh. As in winter, the 

maximum PM2.5 concentration on the modeling domain is located here. During summer, industrial 

sources account for 51% of the PM2.5 followed by long-range transport with 36% and power 

generation with 8%. On-average industrial sources account for 5.1% of the PM2.5. Additional 

sources such as the Edgar Thompson and Clairton Works can be resolved during summer, causing 

the variability to increase to 0.23 µg m-3 from 0.06 µg m-3 in the winter. 

Long-range transport from sources outside the region contributes a maximum of 5 µg m-3 

in the southeast corner of the domain decreasing in the direction of the Pittsburgh northern suburbs 

where the contribution is minimal with 4.1 µg m-3. On average, long-range transport accounts for 

79% of the PM2.5 mass. In downtown Pittsburgh, long-range transport contributes 4.19 µg m-3 

accounting for 43% of the PM2.5. 
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On average, the contribution from all remaining sources is 4.4% and shows a moderate 

variability of 0.11 µg m-3. The contribution from these sources is maximal in downtown Pittsburgh 

with 0.67 µg m-3 accounting for 7% of the PM2.5. 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg m-3) and 

is located at the northwestern corner of the domain, near the Ohio – Pennsylvania border. 

Commercial 

Cooking 
Industrial Biomass Burning 

Long-Range 

Transport 
 

    
 

On-road Power Generation Misc. Area Other  

    
 

Figure 2-8 Contribution of each source to total PM2.5 during July 2017. Two different scales are 
used. 

2.6 Exposure to PM2.5 

The population data in the inner domain from the 2010 U.S. census was used to estimate 

the exposure of the population in the Pittsburgh area to model predictions of PM2.5 during winter 

of 2017 at the different grid resolutions. We ranked the average PM2.5 concentrations from all the 

cells in the modeling domain and created bins of 0.2 µg m-3. A sum of the population from all the 

grid cells that fall within each concentration bin was calculated and divided by the total population 

of the inner grid to construct population exposure histograms. 
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Figure 2-9 shows the population exposure histograms for each simulation grid. At the 

coarse resolution, there are only 4 PM2.5 values so very little of the exposure distribution can be 

observed. 46% of the population is exposed to a concentration of 10.6 µg m-3 with decreasing 

exposure with PM2.5 concentration. At a 12 km resolution, the low concentration side of the 

distribution is better resolved but gaps can still be observed at higher levels. At this intermediate 

resolution, the largest fraction of the population (21%) is exposed to PM2.5 concentrations of 10.2 

µg m-3 with 15% exposed to the maximum of 11.8 µg m-3. 

A B 

C D 
Figure 2-9 Population exposure histograms at (A) 36x36, (B) 12x 12, (C) 4x4 and (D) 1x1 km 
during February 2017. 

When the resolution is increased to 4 km the biggest improvements on the model ability to 

resolve the exposure distribution happen at concentrations higher than 9.4 µg m-3. At the fine 
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resolution, no gaps appear in the distribution. A maximum of 9% of the population is exposed to 

PM2.5 concentrations of 11.8 µg m-3 while at the highest concentration of 12.8 µg m-3 3% are 

exposed. At the 1 km resolution, the distribution is much smoother due to the ability of this finest 

grid to capture local gradients. The largest fraction of the population (7%) is exposed to PM2.5 

concentrations of 10.6 µg m-3. At the highest concentration of 14.2 µg m-3 the exposed population 

is less than 0.1% as this maximum point is located near industrial installations 37 km northwest of 

Pittsburgh where the population density is very low. 

A B 

C D 
Figure 2-10 Population exposure histograms of the contribution to PM2.5 concentrations from (A) 
commercial cooking, (B) industrial, (C) on-road traffic and (D) power generation sources during 
February 2017. 

Population exposure histograms were calculated for each source using the same procedure 

used for the grid resolution analysis. The contribution from commercial cooking is very small 
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outside the Pittsburgh downtown area with 78% of the population exposed to less than 0.4 µg m-3 

of PM2.5 from this source. The contribution from commercial cooking to the PM2.5 has a very 

localized maximum located in a single cell in downtown Pittsburgh where less than 0.1% of the 

population is exposed to 2.4 µg m-3. 34% of the population is exposed to less than 0.2 µg m-3 of 

PM2.5 from on-road traffic, as the contributions from traffic decrease rapidly with the distance to 

the roads. Unlike commercial cooking, the distribution from on-road traffic doesn’t have large, 

isolated maxima. Industrial sources contribute 0.4 µg m-3 to the PM2.5 exposure for 46% of the 

population. 

A B 

C D 
Figure 2-11 Population exposure histograms of the contribution to PM2.5 concentrations from (A) 
biomass burning, (B) miscellaneous area sources and (C) all other sources during February 2017. 
Contributions from long-range transport (D) are shown with a different concentration scale. 
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Industrial sources have highly localized maxima with contributions of up to 5.6 µg m-3, 

these contributions are located in areas with very small population density exposing a very small 

fraction of the total population to these concentrations. The contribution from power generation 

sources is very uniform across the domain producing a very sharp population exposure distribution 

with 82% of the population exposed to 0.2 µg m-3. 

The distribution for biomass burning shows a wide distribution with a maximum of 23% 

of the population exposed to 1.4 µg m-3 of PM2.5. This wide distribution reflects the large 

geographic variability of the biomass burning contribution to the PM2.5. The miscellaneous area 

sources sector also has significant geographical variability. At a concentration of 1.2 µg m-3 a 

maximum of 20% are exposed, at higher concentrations the exposure fraction decreases rapidly as 

this source does not have significant local maxima. 

Long-range transport contributions are higher on the domain boundaries where the 

population density is very small and decrease towards the city of Pittsburgh where most of the 

population is located. 48% of the population is exposed to the lowest contribution of 6 µg m-3. 

This fraction decreases with increasing concentration so that at the maximum contribution of 7 µg 

m-3 less than 1% of the population is exposed. The contribution from all remaining sources is low 

for most of the modeling domain with 84% of the population exposed to less than 0.4 µg m-3. 

2.7 Conclusions 

We applied the PMCAMx chemical transport model over the city of Pittsburgh during 

winter using a series of telescoping grids at 36 x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km. 

Emissions were calculated using 2017 projections from the 2011 NEI. Emissions were distributed 

geographically using the spatial surrogates provided with the NEI11 for all grids. For commercial 

cooking, a new 1 x 1 km spatial surrogate was developed using restaurant count data from the 



28 
 

Google Places API. Traffic model data was used to develop a 1 x 1 km spatial surrogate for on-

road traffic emissions. 

At the coarse resolution, county-level differences can be observed. Increasing the 

resolution to 12 x 12 km resolves the urban-rural gradient and further increasing to 4 x 4 resolves 

large stationary sources such as power plants. Only at the finest resolution intra-urban variations 

and individual roadways are resolved. Low variability, regional pollutants such as nitrate show 

limited improvement after increasing the resolution to 12 x 12 km while predominantly local 

pollutants such as elemental carbon and winter organic aerosol have gradients that can only be 

resolved at the finest resolution. 

Biomass burning shows the largest variability during the winter period with many local 

maxima and significant emissions within the city and in the suburbs. During the summer 

contributions from this source are negligible. In contrast with the winter period, during the summer 

the plumes from large power plants in the Ohio river valley can be resolved. These plumes are rich 

in sulfates and start being resolved at 4 x 4 km with significant detail added at 1 x 1 km. During 

both periods the largest contributing source to the PM2.5 is particles from outside the modeling 

domain. 

The model ability to resolve the exposure distribution increases at different rates according 

to the concentration. A significant improvement in the model ability to resolve exposure to 

concentrations below 9.6 g m-3 is achieved by increasing the resolution to 12 x 12 km. Only at the 

finest resolution is the exposure to concentrations above 9.6 g m-3 fully resolved as well as the 

impact of high concentration spots. Highly localized sources such as commercial cooking and 

industrial installations show exposure distributions clustered around very low values since large 

areas of the domain are not affected by these sources. During the winter, biomass burning is the 
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most important local contributor to PM2.5 exposure. Further details could be observed by restricting 

the area of analysis to only the urban area. 
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Chapter 3. High-Resolution Modeling of Fine Particulate Matter in an Urban 

Area 

3.1 Introduction 

Fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been 

associated with public health concerns due to short and long-term exposure. Some of the health 

effects of PM2.5 include premature death due to cardiovascular disease, increased chance of heart 

attacks and strokes, reduced lung development and function in children and people with lung 

diseases such as asthma and increases in hospital admissions due to heart and lung disease 

(Dockery and Pope, 1994; US EPA, 2012). Chemical transport models are frequently used for 

developing air quality and emissions control policies that protect public health. To evaluate these 

policies, CTMs must simulate PM2.5 concentrations and their response to changes in emissions 

accurately. 

Grid resolution is an important factor for CTM studies since on-road traffic, commercial 

cooking, and industrial activities can have sharp gradients at the urban scale. High spatial 

resolution measurement of PM1 in the city of Pittsburgh have observed gradients of ~2 µg m-3 

between high impact and urban background sites (Gu et al., 2018; Robinson et al., 2018). The 

demographic characteristics of the population can have large variations at the neighborhood scale 

and it is important to assess the exposure of different sub-populations to air pollutants and the 

resulting health effects, a concept known as Environmental Justice (Anand, 2002). The benefits of 

high-resolution modeling must be balanced with the increased complexity in the development of 

accurate, high-resolution emission inventories and increased computational cost and storage 

requirements. 
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Previous studies have found small to modest improvements on the predictive ability of 

regional CTMs for ozone (Arunachalam et al., 2006; Kumar and Russell, 1996), secondary organic 

aerosol (Fountoukis et al., 2013; Stroud et al., 2011) and nitrate (Zakoura and Pandis, 2019, 2018) 

with increasing resolutions. The effects were more pronounced for primary PM components and 

especially during the winter when the atmospheric mixing is often weaker. For example, 

Fountoukis et al., (2013) reported a reduction of the bias for black carbon (BC) concentrations in 

the northeastern US when the grid resolution was reduced from 36x36 km to 4x4 km.  

One of the weaknesses of several of the above studies has been that the area emissions used 

at the higher resolutions were the results of interpolation. It is not clear if the remaining 

discrepancies between model predictions and measurements were due to errors in the spatial 

distribution of the high-resolution emissions, errors in the overall magnitude of the emissions over 

an urban area or other modeling errors in the simulation of various processes (chemistry, transport, 

etc.). In this work, we will explore the first hypothesis, the role of the spatial distribution of 

emissions in the urban area. 

We use the Particulate Matter Comprehensive Air quality Model with Extensions 

(PMCAMx) to study the impact of increasing model resolution on the model’s ability to predict 

PM2.5 variations on the urban scale in Pittsburgh. We evaluate the PMCAMx predictions at various 

grid resolutions against regulatory measurements of PM2.5 concentration and composition, research 

measurements by an Aerosol Mass Spectrometer (Gu et al., 2018), but also measurements from a 

network of low-cost sensors (Zimmerman et al., 2018). The evaluation focuses on a winter period 

is simulated, because the gradients of PM2.5 levels in space inside the urban area are expected to 

be higher. The results during a summer period are briefly discussed. 
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3.2 PMCAMx Description 

PMCAMx (Karydis et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2009) uses the 

framework of the CAMx model (Environ, 2006) to describe horizontal and vertical advection and 

diffusion, emissions, wet and dry deposition, gas, aqueous and aerosol-phase chemistry. A 10-size 

section aerosol sectional approach is used to track dynamically the evolution of the aerosol mass 

and composition distribution. The aerosol species modeled include sulfate, nitrate, ammonium, 

sodium, chloride, elemental carbon, water, primary and secondary organics, and other non-volatile 

aerosol components. An extended version of the SAPRC (Statewide Air Pollution Research 

Center) photochemical mechanism (Carter, 1999) including the volatility basis set (VBS) is used 

for the simulation of gas-phase chemistry (Murphy and Pandis, 2010). The version of SAPRC used 

here includes 237 reactions and 91 individual and surrogate species. For phase partitioning of 

inorganic species and water, a bulk equilibrium approach was used (Pandis et al., 1993) based on 

the ISORROPIA aerosol thermodynamics model (Nenes et al., 1998). Both the primary and 

secondary organic aerosol components are described using the volatility basis set approach 

(Donahue et al., 2006). For primary organic aerosol (POA) ten volatility bins, with effective 

saturation concentrations ranging from 10-3 to 106 µg m-3 at 298 K are used. Anthropogenic 

(aSOA) and biogenic (aSOA) are modeled with 4 volatility bins (1, 10, 102, 103 µg m-3 at 298 K) 

(Murphy and Pandis, 2009) using NOx-dependent yields (Lane et al., 2008). More detailed 

descriptions of PMCAMx can be found in Fountoukis et al., (2011) and Zakoura and Pandis, 

(2018). 

3.3 Model Application 

PMCAMx was used to simulate air quality over the metropolitan area of Pittsburgh during 

February and July 2017. We used a one-way nested structure with a 36 x 36 km master grid 
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covering the continental United States; with nested grids of 12 x 12 km and 4 x 4 km in 

southwestern Pennsylvania; and a 1 x 1 km grid covering the city of Pittsburgh, most of Allegheny 

County and the upper Ohio River valley (Figure 3-1). The 1 x 1 km grid covers a 72 x 72 km area. 

Horizontal wind components, vertical diffusivity, temperature, pressure, water vapor, 

clouds, and rainfall were generated using the Weather Research and Forecasting (WRF v3.6.1) 

model over the whole modeling domain with horizontal resolution of 12 km. These data were 

interpolated to higher resolutions when needed. Initial and boundary meteorological conditions for 

the WRF simulations were generated from the ERA-Interim global climate re-analysis database, 

together with the terrestrial data sets for terrain height, land-use, soil categories, etc. from the 

United States Geological Survey (USGS) database. The WRF modeling system is prepared and 

configured in a similar way as described by Gilliam and Pleim (2010). This configuration is 

recommended for air quality simulations (Hogrefe et al., 2015; Rogers et al., 2013). 

 

Figure 3-1. Modeling domain used for the PMCAMx simulations: (A) 36x36 km continental U.S. 
domain and grid. (B) 12x12 and 4x4 km South Western Pennsylvania grids, and 1x1 km Pittsburgh 
nested grids. 

The surface concentrations at the boundaries of the 36 x 36 km grid are shown in Table 

3-1. These values were applied to all upper air layers assuming a constant mixing ratio. 
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Table 3-1. Outer (CONUS) boundary condition concentrations of major aerosol species. 

Component Concentration (µg m-3) 
West East South North 

Nitrate 0.01 0.01 0.03 0.03 
Ammonium 0.14 0.25 0.24 0.16 
Sulfate 0.64 1.12 0.81 0.68 
Elemental Carbon 0.04 0.05 0.09 0.03 
Organic Aerosol 0.20 0.16 0.58 0.13 

 

Emissions were calculated using the EPA’s Emission Modeling Platform (v6.3) for the 

National Emissions Inventory (NEI) projections for 2017 using the NEI for 2011 (Eyth and 

Vukovich, 2016). Base emissions were calculated first at a 12 km resolution for the full modeling 

domain using the Sparse Matrix Operator Kernel Emissions (SMOKE) model and our WRF 

meteorological data. For the higher resolution grids, the spatial surrogates provided with Platform 

v6.3 (Adelman, 2015) were used for all sectors. For commercial cooking and on-road traffic, 

custom surrogates were developed. These are described in the previous chapter of this thesis 

(CACES surrogates). Simulations with both the CACES and EPA surrogates were performed and 

their results are compared in a subsequent section. 

3.4 Measurements for model evaluation 

Model predictions of sulfate, nitrate, elemental carbon and organic aerosol were compared 

with measurements from 4 sites from the EPA Chemical Speciation Network (EPA-CSN) (U.S. 

EPA, 2006). The locations of these 4 sites are shown in Figure 3-2A. These sites include: 

Lawrenceville, an urban background site 4 km northeast of downtown Pittsburgh; Hillman State 

Park located in a state park in southwest Pennsylvania in a rural and remote location approximately 

40 km upwind of Pittsburgh; Steubenville in the Ohio River Valley close to industrial installations 

and coal-fired power plants, and the Liberty-Clairton monitor, which is located close to the 
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Clairton Coke Works in the Monongahela River Valley 14 km southeast of downtown Pittsburgh. 

Hourly data from Aerosol Mass Spectrometer (AMS) measurements taken at the Carnegie Mellon 

University campus during winter 2017 was also used along with Positive Matrix Factorization 

factors of organic aerosol (Gu et al., 2018). 

A B 
Figure 3-2. Monitoring sites. (A) Particulate matter speciation measurement sites from EPA-CSN. 
(B) PM2.5 measurement sites from EPA AirNow. 

Model predictions of PM2.5 were compared with measurements from 17 sites in the EPA 

AirData database (U.S. EPA, 2019). The locations of these sites are shown in Figure 3-2B. The 

available sites can be classified as: “Urban” sites, near the Pittsburgh downtown, corresponding to 

the EPA-CSN Lawrenceville site; “Suburban” located in suburban communities in the north-west 

and south-west of Pittsburgh; “Rural” measuring the remote background, corresponding to the 

EPA-CSN Hillman State Park site and “Industrial” sites located near the industrial installations 

and electricity generating units (EGUs) in the Ohio and Monongahela river valleys. 

The model performance is assessed in terms of the mean bias (BIAS), the mean error 

(ERROR), the fractional bias (FBIAS) and the fractional error (ERROR). 
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where N is the number of valid measurements, Pi is the predicted concentration and Oi is the 

corresponding observed concentration. 

3.5 Model performance evaluation during winter 

3.5.1 Evaluation using regulatory measurements 

Table 3-2 summarizes the prediction skill metrics of PMCAMx with the EPA-CSN data in 

the 1 km domain for the winter period. Predictions for sulfate have little fractional bias (7%) with 

some underestimation at higher measured concentrations in the industrial sites at Liberty / Clairton 

and Steubenville. Ammonium nitrate is over-predicted in all sites with a bias of 1.66 µg m-3. The 

errors are higher during days with lower ammonium nitrate levels with better performance on 

February 6, where concentrations were higher on all sites. 

Table 3-2. Comparison of PMCAMx predictions with daily averages from EPA-CSN during 
February 2017. 

 Sulfate Nitrate Ammon. Elemental 
Carbon 

Organic 
Aerosol 

Measured Avg. (µg m-3) 1.92 1.51 0.91 0.94 4.68 
Predicted Avg. (µg m-3) 1.90 3.17 1.80 0.85 3.70 
Error (µg m-3) 0.88 1.76 1.16 0.56 2.34 
Fractional Error 0.45 0.87 1.01 0.61 0.53 
Bias (µg m-3) -0.02 1.66 0.89 -0.08 -0.98 
Fractional Bias 0.07 0.85 0.90 -0.03 -0.10 

 

Previous PMCAMx modeling studies (Fountoukis et al., 2011; Trump et al., 2015) have 

found similar over-predictions on 4 European sites during May 2008. Part of this overprediction 

was due to the use of coarse-grid resolution (Zakoura and Pandis, 2018), but this cannot be the 
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cause here. The elemental carbon concentrations were reproduced with negligible fractional bias 

(-3%). However, predictions at the Lawrenceville are positively biased while in Steubenville and 

Liberty / Clairton are negatively biased. This may suggest errors in the spatial distribution of the 

EC emissions in the inventory. Organic aerosol predictions show a low average fractional bias of 

-10% with an increasing tendency towards under prediction at the higher concentrations measured 

at the industrial sites of Steubenville and Liberty / Clairton. 

A B 

C D 
Figure 3-3. Comparison of PMCAMx-predicted PM2.5 concentrations during February 2017 with 
24-hour averages from (A) 3 urban, (B) 1 rural, (C) 4 suburban and (D) 9 industrial AirNow sites. 

At the metropolitan area scale covered by the EPA AirNow PM2.5 measurements, 

PMCAMx predictions have a fractional bias of only 3% (Table 3-3 and Figure 3-3). In the urban 

and rural sites, the model slightly overpredicts concentrations with fractional biases of 8% and 
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10% respectively. The concentrations in suburban sites are well reproduced with an average bias 

of only -0.16 µg m-3. At the industrial sites, the fractional bias is also low at 1%, however, the 

average error is 1.37 µg m-3 as the model tends to overpredict at low concentrations and to 

underpredict at high concentrations. 

Table 3-3. Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 with 
24-hour averages from EPA AirNow sites. 

 Urban Suburban Rural Industrial All 
Measured Avg. (µg m-3) 11.04 10.59 6.73 11.30 10.72 
Predicted Avg. (µg m-3) 11.76 9.91 7.36 10.29 10.46 
Error (µg m-3) 0.88 0.67 0.14 1.37 3.07 
Fractional Error 0.25 0.28 0.30 0.36 0.30 
Bias (µg m-3) 0.23 -0.16 0.05 -0.37 -0.25 
Fractional Bias 0.08 -0.04 0.10 0.01 0.03 
R 0.71 0.68 0.68 0.58 0.63 

 

The overall performance of PMCAMx for PM2.5 in this period is quite encouraging for the 

urban, suburban, and rural locations (Figure 3-3), however, the model had difficulties reproducing 

some of the high concentrations (above 20 µg m-3) measured only in the sites affected by industrial 

emissions (Figure 3-3D). 

3.5.2 Evaluation using AMS measurements 

The absolute concentrations measured by the AMS were quite uncertain due to the 

uncertainty of the collection efficiency of the instrument during that sampling period. However, 

the measured composition of the aerosol can be still used for model evaluation purposes. 

Comparisons with AMS mass fractions show excellent agreement for sulfate, ammonium, 

and chlorine, while nitrates are underpredicted and organic aerosol is over predicted somewhat 

(Figure 3-4A). The underprediction of nitrate in the urban Carnegie Mellon site is not consistent 

with the tendency of the model to seriously overpredict the PM2.5 nitrate levels in the four sites. 
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Using positive matrix factorization, Gu et al., (2018) resolved total OA into five factors. 

Three of them corresponded to primary organic aerosol: hydrocarbon-like OA (HOA), cooking 

OA(COA) and biomass burning OA (BBOA) and two secondary OA factors: more-oxidized 

organic aerosol (MOOA) and less-oxidized organic aerosol (LOOA). To compare PMCAMx 

predictions with the primary PMF factors, two additional simulations were performed in which 

emissions from biomass burning and commercial cooking were set to zero. The predicted 

concentrations were then subtracted from the base case to estimate the contribution from each 

respective source. The remaining primary OA was assigned to HOA. The LOOA and MOOA 

factors were added together and compared with the PMCAMx SOA predictions. 

A B 
Figure 3-4. (A) Comparison of PMCAMx-predicted fractions of fine PM mass with the 
corresponding AMS measurements at the CMU Supersite and (B) organic aerosol composition 
based on the PMF analysis of the AMS measurements and predicted composition. The arrows 
show the sum of SOA+BBOA which is quite consistent in the AMS measurements and model 
predictions. 

The predicted COA in the CMU site is 20% of the total OA in excellent agreement with 

the PMF/AMS estimate of 22% (Figure 3-4B). This is encouraging given the small bias of the 

model for total OA levels. The predicted HOA is higher than measured and the BBOA is almost a 

factor of 5 more than estimated. The measurements indicate a surprisingly high contribution of 

OOA (55% of the total OA) during a period with little photochemical activity and low levels of 
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OH radicals. It is interesting that the model reproduces well the sum of BBOA plus OOA, which 

was 57% of the total OA compared to the measured 65%. Similar behavior of chemical transport 

models during winter has been observed in other studies. For example, Tsimpidi et al., (2016) 

compared the predictions of their global chemical transport model using the VBS with the 

measurements of 86 campaigns using an AMS. They concluded that while their model did a 

reasonable job during the three seasons in reproducing the OA levels and composition, it tended 

to seriously underpredict the OOA during the winter. They suggested that the model was missing 

an important oxidation process in periods of low photochemical activity.  

Our results also strongly suggest that the photochemical conversion of BBOA to OOA 

currently in PMCAMx cannot explain the rather rapid conversion that is suggested by the 

measurements. More research is clearly needed in this direction. 

3.5.3 Comparison with PM2.5 measurements of low-cost sensors 

PMCAMx predictions of PM2.5 were also compared with measurements taken with a 

network of Real-time Affordable Multi-Pollutant (RAMP) monitors (Zimmerman et al., 2018) 

distributed in the city of Pittsburgh. During the winter period measurements at 7 sites were 

available, all located within the boundaries of the city of Pittsburgh (Figure 3-5). One of the 

challenges in these comparisons is the significant uncertainty of the RAMP measurements even as 

daily measurements. However, this is an excellent opportunity to contrast the results of the 

comparisons of the PM2.5 predictions with the quite accurate regulatory measurements and the 

more uncertain measurements of the low-cost sensors. 

In the urban area covered by the low-cost sensor network, the model predictions are on 

average 23% higher than the measurements of the RAMPs (Figure 3-6). This bias is higher than 

the 8% determined from the comparison with urban sites of the EPA network. The average 
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predicted value was 12.4 μg m-3 compared to 9.9 μg m-3 for the RAMPs. The average fractional 

error for the comparison with the RAMPs was 31.7% while it was 25% compared to the regulatory 

monitors. While these results are encouraging as far as the usefulness of the low-cost sensor as a 

zeroth-order test of the model predictions, it appears that at least in this application that their 

measurements have larger discrepancies with the PMCAMx predictions compared to the more 

accurate measurements. 

 

Figure 3-5. PM2.5 measurement RAMP sites during February 2017. The CMU Supersite is shown 
with a star. 

 

Figure 3-6. Comparison of PMCAMx-predicted daily average PM2.5 concentrations with RAMP 
measurements in 7 sites (172 observations) during February 2017. 
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3.5.4 Effect of High-Resolution Emission Surrogates 

To evaluate the effect of the commercial cooking and traffic spatial surrogates developed 

for this study, an additional simulation at 1 km resolution was performed with the spatial surrogates 

provided by EPA with the NEI. In order to isolate and evaluate the model’s ability to predict the 

spatial distribution (as opposed to temporal variability), monthly average PM2.5 measurements 

from EPA AirNow were compared with PMCAMx predictions for the winter of 2017. The 

simulation with the CACES surrogates predicts higher PM2.5 by approximately 1 µg m-3 in the 

downtown area (Figure 3-7) and values that are 0.1-0.5 μg m-3 in much of the urban core and lower 

values in some of the suburbs. 

 

Figure 3-7. Time-averaged concentration differences between simulation with the CACES and 
EPA NEI default surrogates during February 2017. 

The prediction skill metrics for these two simulations are summarized in Table 3-4 where 

“CACES” denotes the surrogates developed in this study and “EPA” the defaults provided with 

NEI11. The model performance with both emission surrogates is excellent with very low errors 

and biases for these comparisons of monthly averages. The contributions of local traffic and 

cooking OA are modest (40% of the OA which is less than 50% of the PM2.5 in the CMU site, 
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(Figure 3-4) so the changes of the spatial distributions have a relatively small effect on the total 

PM2.5 predictions in most measurement sites.  

Table 3-4. Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 with 
monthly averages from EPA AirNow sites. 

 CACES EPA 
Error (µg m-3) 1.36 1.33 
Fractional Error 0.12 0.12 
Bias (µg m-3) 0.33 0.35 
Fractional Bias 0.04 0.04 
R 0.52 0.55 
Measured Avg. (µg m-3) 10.39 
Predicted Avg. (µg m-3) 10.73 10.74 
Measured Std. Dev. (µg m-3) 2.23 
Predicted Std. Dev. (µg m-3) 1.65 1.60 

 

This is expected as the “CACES” surrogates provide the largest change in emissions in the 

Pittsburgh downtown area causing only the Lawrenceville site to be significantly affected (Figure 

3-8). Measurements in the areas of the highest predicted differences between the two simulations 

(e.g. downtown area) are needed to better evaluate the effect of the CACES surrogates. Also, 

measurements of COA and HOA concentrations instead of just total PM2.5 would be quite useful.  

 

Figure 3-8. Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 with 
monthly averages from 17 EPA AirNow sites using the “CACES” and “EPA” surrogates. 
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3.6 Effect of Grid Resolution 

To determine the effect of grid resolution on the ability of the model to resolve 

geographical variations in PM2.5 concentrations, monthly average measurements from the 17 EPA 

regulatory sites were compared with PMCAMx predictions from simulations at 36 x 36 km, 12 x 

12 km, 4 x 4 km and 1 x 1 km. The PMCAMx prediction skill metrics are summarized in Table 

3-5. Increasing grid resolution reduces the average fractional error from 16% at 36 x 36 km to 12% 

at 1 x 1 km. The average fractional bias was low even at the 36 x 36 master grid at less than 2% 

so the higher resolution resulted in only a minor improvement.  

Examining the performance of the model for different sites, the fractional bias at the rural 

site at Hillman State Park was reduced from approximately 22% at 36 x 36 km to 7.4% at 12 x 12 

km with minimal change at higher resolutions (Figure 3-9). 

 

Figure 3-9. Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 for 
36 x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km with monthly averages from 17 EPA AirNow 
sites. 

Similar results were observed by Fountoukis et al. (2013) when comparing PMCAMx 

predictions with measurements from remote sites in the northeast U.S. during the winter of 2002. 

The industrial sites in Steubenville and Liberty /Clairton are associated with large point sources 



47 
 

and show small changes in the fractional bias with increasing resolution while the fractional error 

shows small improvement changing from 12.8% at 4 x 4 km to 11.5% at 1 x 1 km. Increasing the 

model resolution allows for the more accurate resolution of the plumes from these sources. 

Previous studies (Zakoura and Pandis, 2019, 2018) showed a similar tendency for nitrate 

predictions for the northeastern U.S. At suburban sites the fractional error decreases with every 

increase in resolution from 29% at 36 x 36 km to 18% at 1 x 1 km. 

Table 3-5. Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 with 
monthly averages from 17 EPA AirNow sites. 

 Urban Suburban Rural Industrial All 
36 x 36 km 

Error (µg m-3) 0.66 3.11 1.64 1.51 0.01 
Fractional Error 0.06 0.29 0.22 0.13 0.02 
Bias (µg m-3) -0.34 1.74 1.64 -0.30 0.07 
Fractional Bias -0.03 0.16 0.22 -0.01 0.02 
Measured Avg. (µg m-3) 11.23 9.64 6.73 10.86 10.39 
Predicted Avg. (µg m-3) 10.89 11.37 8.38 10.56 10.68 

12 x 12 km 
Error (µg m-3) 1.16 2.70 0.51 1.56 0.08 
Fractional Error 0.10 0.26 0.07 0.13 0.02 
Bias (µg m-3) -0.03 0.63 0.51 -0.45 -0.04 
Fractional Bias -0.01 0.05 0.07 0.04 0.02 
Measured Avg. (µg m-3) 11.23 9.64 6.73 10.86 10.39 
Predicted Avg. (µg m-3) 11.20 10.26 7.25 10.41 10.33 

4 x 4 km 
Error (µg m-3) 0.95 2.67 0.57 1.59 0.00 
Fractional Error 0.08 0.24 0.08 0.13 0.01 
Bias (µg m-3) 0.95 1.52 0.57 0.13 -0.01 
Fractional Bias 0.08 0.13 0.08 0.02 0.02 
Measured Avg. (µg m-3) 11.23 9.64 6.73 10.86 10.39 
Predicted Avg. (µg m-3) 12.18 11.16 7.30 10.99 11.02 

1 x 1 km 
Error (µg m-3) 0.85 1.92 0.62 1.37 0.03 
Fractional Error 0.08 0.18 0.09 0.11 0.01 
Bias (µg m-3) 0.39 1.01 0.62 -0.02 0.01 
Fractional Bias 0.03 0.10 0.09 0.01 0.01 
Measured Avg. (µg m-3) 11.23 9.64 6.73 10.86 10.39 
Predicted Avg. (µg m-3) 11.62 10.64 7.36 10.84 10.73 

 

The improvements in the ability of the model to reproduce the spatial distribution of the 

observations become evident when one examines the values of the correlation coefficient, R, 
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between the measurements and the predictions. This starts at 0.2 for the coarse 36x36 km 

resolution, improves to 0.43 for the intermediate 12x12 km grid, to 0.45 for the fine 4x4 km, and 

finally to 0.53 for the ultrafine 1x1 km resolution. Another useful metric is the concentration 

gradient between the urban and rural sites. The measured value is 4.5 µg m-3. The coarse resolution 

seriously underpredicts this gradient with a value of 2.5 μg m-3. The predicted gradient increases 

to 4 μg m-3 at the intermediate resolution and to 4.3 μg m-3 for the finest resolution in very good 

agreement with the measurements. 

Further improvements to model performance at high resolutions could potentially be 

achieved by modeling large point sources with the Plume in Grid methodology (Zakoura and 

Pandis, 2019) and by replacing interpolated meteorology with high-resolution data to drive both 

PMCAMx and the meteorology-dependent emission processors.  

3.7 Model performance evaluation during summer 

Table 3-6 summarizes the prediction skill metrics of PCMAMx with the EPA-CSN 

measurements in the 1x1 km domain for the summer period. Predictions of sulfate for the summer 

period show a similar behavior to winter with a small bias of -0.3 µg m-3. Measured nitrate levels 

in the summer were lower than for the winter period. The model still over-predicts nitrate at low 

concentrations buy by a smaller amount with a bias of approximately 0.3 µg m-3. Ammonium is 

also slightly overestimated with an average bias of around 0.3 µg m-3. Finally, PMCAMx 

underpredicts EC by approximately 0.2 µg m-3. While the biases in these predictions are low and 

expected, the OA is seriously underpredicted with a modeled value of approximately 1.7 µg m-3 

compared to a measured value of around 4.5 µg m-3.  
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As a result of the OA underprediction, the PM2.5 is also underpredicted. The average 

measured PM2.5 value in the regulatory network in the area was 11.4 µg m-3, while the average 

predicted value was 4.9 µg m-3 lower.  

Most of the OA during the summer in the modeling domain is secondary and a significant 

fraction of it is transported to the domain from other areas. Previous PMCAMx modeling studies 

at medium to high resolutions over the northeastern U.S. (Day and Pandis, 2015; Fountoukis et al., 

2013; Zakoura and Pandis, 2018) yielded much better performance for the OA and the PM2.5 for 

summer periods. These studies used larger values for the organic aerosol in the boundary 

conditions and used MEGAN (Guenther et al., 2006) to model biogenic secondary organic aerosol 

precursors instead of BEIS (Pierce et al., 1998) used here. Carlton and Baker (2011) found that 

MEGAN produced less negatively biased results during July of 1998. Improvement of the 

summertime OA predictions will be the topic of future work. 

Table 3-6. Comparison of 24 h average PMCAMx predictions with CSN measurements in July 
2017. 

 Sulfate Nitrate Ammon. Elemental 
Carbon 

Organic 
Aerosol 

Measured Avg. (µg m-3) 2.04 0.26 0.53 0.74 4.46 
Predicted Avg. (µg m-3) 1.77 0.59 0.88 0.56 1.69 
Error (µg m-3) 0.93 0.42 0.42 0.41 2.89 
Fractional Error 0.47 0.99 0.65 0.63 0.90 
Bias (µg m-3) -0.27 0.33 0.35 -0.18 -2.77 
Fractional Bias -0.10 0.39 0.57 -0.35 -0.86 

 

3.8 Conclusions 

We applied the PMCAMx chemical transport model over the city of Pittsburgh during 

winter using a series of telescoping grids at 36 x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km. 

Emissions were calculated for the relevant grids by using the spatial surrogates provided with 
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NEI11 for all sectors except commercial cooking and or-road traffic for which 1 x 1 km spatial 

surrogates were developed. 

PMCAMx predicts sulfate, elemental carbon and organic aerosol concentrations well with 

fractional biases below 10%. Nitrate concentrations are overpredicted following the trend of 

previous studies in both the US and Europe. Agreement with total PM2.5 measurements is also 

encouraging with a fractional bias of 3%. PMCAMx is also able to reproduce the PM1 composition 

as measured by the AMS well. While the cooking OA contribution to OA is reproduced well, the 

model appears to be missing a mechanism for the rapid conversion of the biomass burning OA to 

oxygenated OA during the low photochemical conditions of the wintertime. PMCAMx reproduces 

well the sum of biomass burning OA and oxygenated OA but predicts that most of it is primary 

while the measurements suggest that is has been oxidized and is secondary. 

The use of novel spatial surrogates for commercial cooking and on-road emissions has 

significant impacts primarily in the downtown Pittsburgh area where the predicted concentrations 

increase by approximately 1 μg m-3 compared to the predictions with the default NEI surrogates. 

The lack of regulatory measurements in this “hot spot” results in only small changes in the already 

good model ability to reproduce the monthly average concentrations of fine PM. 

Prediction performance improves with increasing resolution reducing the average 

fractional error from 16% at 36 x 36 km to 12% at 1 x 1 km. The correlation coefficient, R, between 

fine PM measurements and predictions increases from 0.2 for the coarse 36x36 km resolution to 

0.53 for the ultrafine 1x1 km resolution. The predicted concentration gradient between the urban 

and rural sites increases from 2.5 to 4.3 μg m-3 almost matching the measured value of 4.5 μg m-3 

as the model resolution increases. A lot of the improvement is realized moving from the coarse to 

the intermediate resolution. 
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The PMCAMx performance is weaker near the large industrial sites. Further improvements 

could be achieved by applying the Plume in Grid model to large point sources, increasing the 

resolution of meteorological data and by further refinements to spatial surrogates. 

During a simulated summer period, predictions of total PM2.5 are significantly negatively 

biased driven by the underprediction of organic aerosol. The reasons for this underprediction are 

under investigation. 
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Chapter 4. Changes of PM2.5 concentrations and their sources in the US from 

1990 to 2010 

4.1 Introduction 

During the last decades, regulations by the US Environmental Protection Agency (EPA) 

have led to significant reductions of the emissions of SO2, NOx, CO, volatile organic compounds 

(VOCs), and primary particulate matter (PM) from electrical utilities and other industrial sources, 

transportation, and other sources. Xing et al., (2013) estimated emissions reductions from 1990 to 

2010 of SO2 by 67%, NOx by 48%, CO by 60%, non-methane VOCs by 49%, primary PM2.5 by 

34%. Ammonia emissions have been estimated to increase by 11% during this twenty-year period. 

At the same time, there have been significant reductions of the PM2.5 levels in practically all areas 

of the US (Meng et al., 2019). However, our ability to link these changes in estimated emissions 

with the observed changes in PM2.5 is uncertain. The available measurements are sparse in space 

and are quite limited before 2000. Three-dimensional chemical transport models (CTMs) are well 

suited to help address this problem since they simulate all the major processes that impact PM2.5 

concentrations and transport. 

There have been several efforts to quantify historical changes in PM2.5 levels and 

composition. These rely heavily on measurements (both ground and satellite for the more recent 

changes) and a number of statistical techniques including land-use regression models to calculate 

the concentrations of PM2.5 over specific areas and periods (Beckerman et al., 2013; Eeftens et al., 

2012; Li et al., 2017; Ma et al., 2016). More recent studies include chemical transport models in 

this effort. For example, Meng et al., (2019) estimated historical PM2.5 concentrations over North 

America from 1981 to 2016 combining the predictions of GEOS-Chem, satellite remote sensing, 
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and ground-based measurements. They found a good correlation between the estimated PM2.5 

concentrations and the ground-based measurements. This study is focused on the estimation of 

total PM2.5 levels to assess long-term changes in exposure and associated health risks. The 

composition of PM2.5 and its sources were not analyzed in this work. 

Li et al., (2017) combined in-situ and satellite observations with the global CTM GEOS-

Chem to quantify global trends in the chemical composition of PM2.5 over 1989–2013. The 

emphasis of the study was on regional trends. They concluded that the predicted average trends 

for North America were consistent with the available measurements for PM2.5, secondary inorganic 

aerosols, organic aerosols, and black carbon. Nopmongcol et al., (2017) used CAMx with the 

Ozone Source Apportionment Technology (OSAT) and Particulate Source Apportionment 

Technology (PSAT) algorithms for six different years within five decades (1970-2020), to 

calculate the contributions from different emission sources to PM2.5 and O3 in the US. Constant 

meteorology and natural emissions (including wildfires) were used for all six simulated years. 

They concluded that the contribution of electrical generation units (EGUs) and on-road sources to 

fine PM has declined in most areas while the contributions of sources such as residential, 

commercial and fugitive dust emissions stand out as making large contributions to PM2.5 that are 

not declining. The use of constant meteorology did not allow the direct evaluation of these 

predictions. 

In this study we used more detailed inputs, such as period-specific meteorological data and 

source-resolved emissions for every year used, to estimate the concentration, composition, and 

sources of PM2.5 over 20 years in the US. The model predictions are compared with the available 

measurements. The sources responsible for the PM2.5 reductions in various areas of the country 

are identified and their contribution to the reductions is quantified. 



56 
 

4.2 Model Description 

4.2.1 PMCAMx 

The Particulate Matter Comprehensive Air Quality Model with Extensions (PMCAMx) 

(Karydis et al., 2010; Murphy and Pandis, 2010; Posner et al., 2019; Tsimpidi et al., 2009), uses 

the framework of the CAMx model (Environ, 2006) to describe horizontal and vertical advection 

and diffusion, wet and dry deposition, and gas and aqueous phase chemistry. A 10-size section (30 

nm to 40 µm) aerosol sectional approach is used to dynamically track the evolution of aerosol 

mass. The aerosol species modeled include sulfate, nitrate, ammonium, sodium, chloride, 

elemental carbon, mineral dust, and primary and secondary organics. The Carbon Bond 05 (CB5) 

mechanism (Yarwood et al., 2005) is used for molecularly lumped gas-phase chemistry 

calculations. The version of CB5 used here includes 190 reactions of 79 surrogate gas-phase 

species. Transfer of each species between the gas and aerosol phases is determined using the 

ISORROPIA aerosol thermodynamics model (Nenes et al., 1998) and is then distributed through 

the size sections using weighting factors based on each section surface area (Pandis et al., 1993). 

The volatility of organic aerosols is modeled using the volatility basis set approach (Donahue et 

al., 2006) using NOx dependent yields (Lane et al., 2008). For primary organic aerosols (POA) 10 

volatility bins, ranging from 10-3 to 106 µg m-3 saturation concentration are used. Secondary 

organic aerosols (SOA) are split between aerosol formed from anthropogenic sources (aSOA) and 

from biogenic ones (bSOA) and modeled with 4 volatility bins (1, 10, 102, 103 µg m-3) (Murphy 

and Pandis, 2009). 

4.2.2 Particulate Source Apportionment Technology (PSAT) 

The PSAT algorithm (Skyllakou et al., 2017, 2011; Wagstrom et al., 2008; Wagstrom and 

Pandis, 2011a, 2011b) is an efficient algorithm that can track and compute the contribution of 
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different sources to the concentrations of pollutant concentrations. The advantages of PSAT are 

that it runs in parallel with the CTM (PMCAMx), so there is no need to modify the CTM for 

different applications and that it is quite computationally efficient. PSAT takes advantage of the 

fact that the molecules of each pollutant at each location regardless of their source have the same 

probability of reacting, depositing or getting transported to avoid repeating the simulations of these 

processes. For secondary species, if follows the apportionment of their precursor vapors. For 

example, secondary organic aerosol is based on the apportionment of VOCs or IVOCs, sulfate on 

SO2, nitrate on NOx, and ammonium on NH3.  

In this study, we use the version of PSAT that is consistent with the Volatility Basis Set 

(Skyllakou et al., 2017) to calculate the contribution of each emission source to the concentration 

of PM2.5 and its components. 

4.3 Model Application 

PMCAMx-PSAT was applied over the continental United States (CONUS) for the years 

1990, 2001, and 2010 using a grid of 132 by 82 cells of 36 km by 36 km horizontally (covering an 

area of 4752 × 2952 km) and 14 layers of varying thickness up to an altitude of approximately 13 

km with a data reporting frequency of 1 hour. We selected this resolution as it has been shown to 

be a viable option for keeping computational and storage demands manageable while providing 

sufficient quality for long-term simulations and air quality planning applications (Gan et al., 2016). 

4.3.1 Meteorology 

Meteorological simulations were performed with WRF v3.6.1 over the CONUS area, with 

a horizontal resolution of 12 km and 36 vertical (sigma) levels up to a height of about 20 km. The 

simulations were executed using 3.5-day overlapping run segments. Initial and boundary 

conditions were generated from the ERA-Interim global climate re-analysis database, together 
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with the terrestrial datasets for terrain height, land-use, soil categories, etc. from the United States 

Geological Survey (USGS) database. Model output was recorded every hour. The WRF modeling 

system was prepared and configured in a similar way as described by Gilliam and Pleim (2010). 

For the model physical parameterization, the Pleim‐Xiu (PX) Land Surface Model (LSM) (Xiu 

and Pleim, 2002) was selected. Other important WRF physics options include the Rapid Radiative 

Transfer Model/Dudhia (RRTMG) radiation schemes (Iacono et al., 2008), the Asymmetric 

Convective Model version 2 (ACM2) for PBL (Pleim, 2007a, 2007b), the Morrison double‐

moment cloud microphysics scheme (Morrison et al., 2008), and version 2 of the Kain–Fritsch 

(KF2) cumulus parameterization (John S., 2004). The selected WRF configuration is 

recommended for air quality simulations (Hogrefe et al., 2015; Rogers et al., 2013). 

4.3.2 Emissions 

Emissions for the simulations were obtained from the internally consistent, historic 

emission inventories of Xing et al. (2013) that include source-resolved gas and primary particle 

emissions. Point source sectors include Electricity Generating Units (EGU), included in the EPA’s 

Integrated Planning Model (IPM); industrial sources not included in the IPM (non-EGU); and all 

other point sources in Canada and Mexico. Area sources include on-road emissions in the US, 

Canada, and Mexico; off-Road emissions for the entire domain; and all remaining non-biogenic 

sources. We used our WRF meteorology to drive MEGAN3 (Jiang et al., 2018) using the default 

emission factors for all years to generate biogenic emissions for the CONUS domain. 

In this application of PSAT we used 6 different emission categories based on those 

described above and initial and boundary conditions which can be tracked separately by the model 

as different sources. The emission sources used, are the following: ‘road’ which includes road 

emissions over US; ‘non-road’ which includes the off-road emissions of the entire domain; ‘EGU’; 
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‘non-EGU’ as described above; ‘other’ which includes the sum of the other point and area sources 

plus the ‘on-road’ emissions from Canada and Mexico and finally biogenic emissions. 

 

Figure 4-1. Annual emissions by each source for the whole domain for: a) elemental carbon, b) 
fresh POA, c) non-methane VOCs, d) SO2, e) NH3, and f) NOx. 

Figure 4-1 depicts the total annual emissions for each source and each year. For EC and 

fresh POA, biomass burning (included in the ‘other’ category) was the dominant source and remain 

relatively constant throughout the years. The second most important source of EC was road 
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transport, with the corresponding emissions having been reduced by almost 350% from 1990 to 

2010, due to the improvement of the corresponding control technologies. 

Emissions of VOCs by on-road sources were reduced by a factor of 3.5. On the other hand, 

the VOCs emitted by non-road transport and biogenic sources changed by less than 10%. The 

emissions of the most important SO2 source, EGUs, were reduced 33% from 1990 to 2001 and 

67% from 1990 to 2010. For NH3 the most important source was agriculture (included in the 

‘other’ category) and the corresponding emissions increased by 7% during these 20 years. Road 

transportation was one of the major NOx sources with the corresponding emissions getting 21% 

from 1990 to 2001 and 58% from 1990 to 2010. The second most important source for NOx in 

1990, the EGUs, emitted 25% less NOx in 2001 and 66% less in 2010 compared to 1990. 

4.4 Results 

4.4.1 Annual average concentrations and sources 

We examine here the source apportionment results of PMCAMx-PSAT for the major 

components of PM2.5, for the three simulated years. 

On-road transportation was a major source of EC was a significant source of EC especially 

in urban areas in 1990 (Figure 4-2). The concentrations of EC originating from this source were 

reduced by more than a factor of 3 from 1990 to 2010. The industrial sources (EGUs and non-

EGU) contributed less than 0.1 μg m-3 of EC in all areas during these years. The ‘other’ source 

which includes all types of biomass burning was the major source during all years. Long-range 

transport (LRT), which expresses the transport from areas from outside the domain, contributed 

approximately 0.1 μg m-3. 
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The concentrations of total OA are presented as the sum of POA and SOA in Figure 4-3. 

The OA originating from on-road transportation was about 1 μg m-3 during 1990 over the Eastern 

US, but it was reduced to less than 0.5 μg m-3 during 2010. 

‘Non-road’ transport and ‘non-EGU’ emission sources had smaller contributions to OA, 

contributing less than 0.2 μg m-3 in most areas. Biogenic SOA was almost 1 μg m-3 over the south-

east US both during 1990 and 2001, but during 2010 it had much higher concentrations in some 

areas due to the meteorological conditions in the south during that year. Also, high OA 

concentrations were predicted to originate from biomass burning during 1990. The contribution of 

long-range transport OA was approximately constant during the simulated years, at around 0.6 μg 

m-3. 

Sulfate was the dominant component of PM2.5 in the Eastern US in 1990 and the EGUs 

were the dominant source contributing more than 5 μg m-3 over wide areas of the Eastern US 

(Figure 4-4). The corresponding sulfate concentrations from EGUs were reduced to 3 μg m-3 in 

2001 and to 1.5 μg m-3 in 2010 due to the dramatic reduction of these SO2 emissions over these 20 

years. Sulfate concentrations originating from non-EGU and other emission sources were 1 μg m-

3 or less during all the years. Long-range transport contributed approximately 0.9 μg m-3 to the 

sulfate levels during the simulated period. 
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Figure 4-2. Predicted annual average ground level PM2.5 elemental carbon concentrations per 
source in µg m-3 for 1990, 2001, and 2010. 
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Figure 4-3. Predicted annual average ground level PM2.5 organic aerosol concentrations per source 
in μg m-3 for 1990, 2001, and 2010. 
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Figure 4-4. Predicted annual average ground level PM2.5 sulfate concentrations per source in μg 
m-3 for 1990, 2001, and 2010. 

4.4.2 Regional contributions of sources to PM2.5 components 

The US was separated into seven regions (Fig. 5) to facilitate the spatial analysis of the 

source contributions and their changes during the simulated period. The Northeast (NE) region 

includes major cities like New York, Boston, Philadelphia, Baltimore, and Pittsburgh, while the 

Mideast (ME) includes the Ohio-river area with a lot of the Electrical Generation Units. The 

Midwest (MW) has significant agricultural activities, while the West (WE) is relatively sparsely 

populated. California (CA) was kept separate from the other western regions. The south US was 
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split into a southeast region (SE) with significant biogenic emissions and the southwest (SW) with 

much less vegetation. 

 

Figure 4-5. Definition of the 7 US regions used in the analysis. 

Figure 4-6 shows the average concentrations of EC for each year in each region. The 

highest concentrations for 1990 were predicted in California, followed by the Mideast and the 

Northeast. Biomass burning was the dominant source of EC during all years and regions, with 

relatively constant concentration through the years, except from CA, where the contribution from 

wildfires in 1990 was much higher. There was a significant reduction of the EC levels in all regions 

with the exception of the West where the EC is mainly originating from biomass burning and long-

range transport. The higher reductions are predicted in the eastern US. 

The annual average concentrations of OA are depicted in Figure 4-7. The predicted 

concentrations of OA in 1990 in the eastern US (NE, SE and ME regions) and California were 

almost 2.5 μg m-3 and in the other regions less than 2 μg m-3. OA concentrations originating from 

biomass burning dominated the concentrations of OA during all the years and all regions. Biogenic 

SOA was the second most significant OA component in the Southeast. OA originating from on-
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road transport contributed, according to the model, almost 0.3 μg m-3 during 1990 and almost 0.1 

μg m-3 during 2010 in the eastern US. Significant reductions of OA are predicted for the Northeast, 

Mideast, and California while moderate reductions for the Midwest, West, and Southwest. The 

OA in the Southeast has more complex behavior due to the predicted increase of biogenic SOA in 

2010 that leads to an increase of the total OA compared to 2001. 

 

Figure 4-6. Average concentrations and sources of PM2.5 EC for the different regions during 1990, 
2001, and 2010. 

The highest concentrations of sulfate for 1990 are predicted in the Eastern US (NE, ME 

and SE) in regions downwind of the EGUs which are the major source in these areas. The dramatic 

reductions of the EGU emissions are predicted to lead to major reductions in the sulfate levels in 

these three regions. More modest, but significant reductions of sulfate are also predicted for the 

Midwest and the Southwest. The reductions in the West and in California are small given that the 

sulfate there even in the 1990s is predicted to be dominated on average by long-range transport. 
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Figure 4-7. Average concentrations and sources of PM2.5 OA for the different regions during 1990, 
2001, and 2010. 

 

Figure 4-8. Average concentrations and sources of PM2.5 sulfate for the different regions during 
1990, 2001, and 2010. 

4.4.3 Model Evaluation 

The model was evaluated against ground-level measurements from IMPROVE and CSN 

networks  (IMPROVE, 1995; U.S. EPA, 2006). The metrics used include the normalized mean 

bias (NMB), the normalized mean error (NME), the mean bias (MB), the mean absolute gross 

error (MAGE), the fractional bias (FBIAS), and the fractional error (FERROR), 
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where Pi represents the model predicted value for data point i, Oi is the corresponding observed 

value and n is the total number of data points. The results are summarized in Table 4-1. We have 

excluded the region of California from this analysis because the coarse resolution used in this 

application does not allow PMCAMx to capture the significant gradients and high concentrations 

observed in that area. During 1990 there were only 25 measurement sites available from the 

IMPROVE network available, but this number increased dramatically in 2001 and 2010. 
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Table 4-1. Evaluation metrics for each year and each major PM2.5 component. 

 MB 
(μg m-3) 

MAGE 
(μg m-3) 

NMB NME FBIAS FERROR Stations 

EC 
1990 -0.02 0.07 -0.07 0.25  0.02 0.26 25 
2001  0.12 0.17  0.35 0.49  0.26 0.37 126 
2010 -0.04 0.15 -0.09 0.03  0.06 0.37 270 

 
OA 

1990 -0.25 0.36 -0.14 0.20 -0.10 0.18 27 
2001 -0.69 0.85 -0.27 0.33 -0.17 0.30 122 
2010  0.04 0.39  0.02 0.19  0.01 0.20 270 

 
Sulfate 

1990 -0.02 0.07 -0.08 0.25 0.16 0.26 33 
2001  0.10 0.34  0.05 0.15 0.16 0.23 115 
2010  0.12 0.28  0.07 0.16 0.18 0.23 285 

 
Nitrate 

1990  0.02 0.19  0.09 0.67 -0.26 0.56 27 
2001 -0.06 0.32 -0.07 0.39 -0.10 0.53 114 
2010 -0.23 0.32 -0.25 0.33 -0.32 0.47 285 

 
Ammonium 

1990 -0.02 0.14 -0.04 0.21  0.09 0.24 26 
2001  0.07 0.21  0.07 0.21  0.13 0.26 134 
2010  0.11 0.17  0.14 0.21  0.21 0.28 290 

 
PM2.5 

1990  0.25 1.07 0.04 0.19 -0.01 0.15 33 
2001  1.31 2.70 0.11 0.22  0.07 0.23 976 
2010  0.88 1.96 0.09 0.21  0.07 0.23 869 

 

The model reproduces well the EC, OA, sulfate, and ammonium annual average 

concentrations with fractional bias and fractional error less than 0.3 for almost all years.  PMCAMx 

has a small tendency towards overprediction of the EC and underprediction of the OA. There is 

also a tendency towards overprediction of the sulfate and as a result of the ammonium too. The 

fractional error for nitrate is a little higher and closer to 0.5 with the model in general 

underpredicting the observed values. The predictions for PM2.5 concentrations, for which there are 
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almost a thousand measurements in 2001 and 2010, is reproduced with fractional bias less than 

10% and fractional error less than 25%. For 1990 there is little bias, while there is a small tendency 

towards overprediction in the later years. 

One of the important results of this evaluation is the relatively consistent performance of 

PMCAMx during the different years. The use of a consistent emission inventory, consistent 

meteorology and measurements have probably contributed to this outcome. 

4.4.4 Predicted spatial changes of concentrations 

We calculated the predicted changes in annual average concentrations between 1990 and 

2010 for the main PM2.5 components. Figure 4-9 shows the reductions in EC concentrations from 

1990 to 2001 and from 1990 to 2010, both absolute and as a percentage. EC concentrations were 

reduced by almost 0.5 μg m-3 in major cities from 1990 to 2001, which corresponds to a 25-30% 

reduction. The continuing reductions of the EC emissions in the next decade resulted in total 

reductions of around 50% in the twenty-year period in both large cities but also extended areas of 

the Northeastern and Mideastern US and California. Significant reductions are also predicted for 

the Southeast, Texas, Western coast, etc. 

From 1990 to 2001, sulfate was reduced about by 2.5 μg m-3 in southern Indiana and by 

about 2 μg m-3 in Ohio, Illinois, and Kentucky (Figure 4-11). The predicted reductions during this 

decade are in the 30-35% range for the Eastern US. These reductions continued during the second 

decade of the simulated period reaching 50-60% of the 1990 levels in the part of the country to the 

east of the Mississippi. The corresponding reductions in the middle of the country and in the 

western states from 1990 to 2010 were in the 20-30% range for the relatively low sulfate levels in 

these regions. 
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Figure 4-9. Reductions in PM2.5 elemental carbon: absolute (μg m-3) from 1990 to 2001 (a) and 
from 1990 to 2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 

These simulations suggest that the Eastern US has benefited more both in an absolute and 

in a relative sense from these reductions in SO2 emissions. 

4.4.5 Evaluation of the predicted PM reductions 

We calculated the changes from 1990 to 2001, from 1990 to 2010, and from 2001 to 2010 

and compared them to the corresponding observed changes. For the first two cases, there were 

only a few measurements available for 1990.  

For sulfate, the model reproduced very well the observed changes for the three comparison 

periods with Pearson’s correlation coefficient r = 0.91 (from 1990 to 2001); 0.97 (from 1990 to 

2010) and 0.95 (from 2001 to 2010). 
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Figure 4-10. Reductions in PM2.5 OA: absolute (μg m-3) from 1990 to 2001 (a) and from 1990 to 
2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 

For EC the performance was quite good between 1990 and 2010 (r = 0.77) and between 

2001 and 2010 (r=0.64) but weaker during the period from 1990 to 2001 (r=0.39). 

For OA the model responded reasonably for changes between 1990 and 2001 (r = 0.48) 

and between 1990 to 2010 (r = 0.31), but not so well for changes between 2001 and 2010 (r =0.1). 

There was a general tendency of the model to underpredict the reductions in OA in some areas. 

This issue needs to be examined in future work.   

Finally, for PM2.5 the model reproduces well the changes between 1990 and 2010 with r = 

0.83 and not as well the other changes (r = 0.26 from 1990 to 2001 and r = 0.31 from 2001 to 

2010). 
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Figure 4-11. Reductions in PM2.5 sulfate: absolute (μg m-3) from 1990 to 2001 (a) and from 1990 
to 2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 

4.5 Conclusions 

The CTM PMCAMx using consistent emissions and meteorology was used to simulate the 

changes in source contributions over two decades. The performance of the model was similar to 

those of its previous evaluation exercises in the same domain. PMCAMx reproduces the annual 

average concentrations of PM2.5 and its components from 1990 to 2010 with fractional errors of 

less than 30 %.  

Biomass burning the most important source for OA during this 20-year period with 

approximately constant average contribution. Biogenic SOA is the second most important OA 

component, while OA coming from on-road transport decreased almost 3 times from 1990 to 2010.  
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For EC, 37% average reduction in emissions from 1990 to 2010 caused a reduction of 23% 

in concentrations, while the average reduction of 63% in SO2 emissions due to the reduction of 

SO2 coming from EGUs caused an average reduction of almost 40% in sulfate and higher (60%) 

in specific areas like NE and SE part of the US.  

The predicted changes by the model seem reasonable compared with the observed changes 

giving perfect comparisons for changes between 1990 and 2010 for EC (r = 0.77), sulfate (r = 0.97) 

and PM2.5 (r = 0.83). 
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Chapter 5. Conclusions and future work 

5.1 Conclusions 

We applied the PMCAMx chemical transport model over the city of Pittsburgh using a 

series of telescoping grids at 36 x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km. Emissions were 

calculated with the EPA NEI11 using the provided 2017 projections (Eyth and Vukovich, 2016). 

The provided spatial surrogates were used for all grids and sectors (Adelman, 2015). For 

commercial cooking, a new spatial surrogate based on freely available restaurant location data was 

built for the finest grid, while for on-road traffic a traffic model was used (Ma et al., 2019). 

At the finest resolution, the model successfully resolved intra-urban variations and 

individual roadways. Pollutants with significant local emissions such as elemental and organic 

carbon have gradients that can only be resolved at the finest resolution. Biomass burning has 

significant emissions during the winter period as well as the largest variability while during the 

winter period its contribution is negligible. During both periods the most important source was 

long-range transport from outside the domain. 

Increasing the grid resolution from 36 x 36 to 12 x 12 km improves the model ability to 

resolve the PM2.5 exposure distribution for concentrations below 9.6 µg m-3. At 1 x 1 km the 

distribution for higher concentrations is resolved and the effect of hotspots can be observed. During 

winter, biomass burning is the most important local source for PM2.5 exposure. 

PMCAMx predictions at various grid resolutions were then compared with measurements 

of PM2.5 concentration and composition. PMCAMx predicts sulfate, elemental carbon and organic 

aerosol concentrations well with fractional biases below 10%. Nitrate concentrations are 

overpredicted following the trend of previous studies in both the US and Europe. Agreement with 
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total PM2.5 measurements is also encouraging with a fractional bias of 3%. PMCAMx is also able 

to reproduce the PM1 composition as measured by the AMS well. 

The novel spatial surrogates developed in this work for commercial cooking and on-road 

emissions have significant impacts in downtown Pittsburgh where the predicted concentration 

increases by ~1 µg m-3. As there are no regulatory monitors in this “hot spot” very little change in 

the model ability to predict the monthly average concentration is observed. Prediction performance 

improves with increasing resolution reducing the average fractional error from 16% at 36 x 36 km 

to 12% at 1 x 1 km. The predicted concentration gradient between the urban and rural sites 

increases from 2.5 to 4.3 μg m-3 almost matching the measured value of 4.5 μg m-3 as the model 

resolution increases. 

Lastly, PMCAMx was used to simulate the changes in source distributions from 1990 to 

2010 using consistent emissions and meteorology. Model performance was evaluated and found 

to be similar to previous modeling exercises in the same domain. PMCAMx reproduces the 

concentration of PM2.5 and its components during the period with a fractional error of less than 

30%. Biomass burning was identified as the main source for OA during this period, followed by 

biogenic SOA. Significant reductions in OA from on-road traffic were observed. 

EC concentrations reduced by 23% due to a 37% reduction on emissions from 1990 to 

2010. SO2 emissions were reduced by 63% causing a large reduction of sulfate concentrations in 

the northeast of the U.S. A comparison between the predicted and observed reductions of EC, 

sulfate, and PM2.5 showed excellent correlations. 

5.2 Future work 

For the simulations in Chapters 2 and 3, PMCAMx was used in a base configuration. One 

of the main advantages of PMCAMx is its modularity and extensibility. The use of PMCAMx 
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extensions comes at the cost of additional computational burden, data storage, and input 

complexity. 

To improve the prediction of the contribution of long-range transport aerosol in the PM2.5 

concentrations in the inner, high-resolution grids, a two-way nesting approach can be used 

(Fountoukis et al., 2013). In this approach, each grid can exchange pollutants with its parent grid 

at every time step. In this work, PMCAMx performance is weaker near the large industrial and 

power generation sites. Zakoura and Pandis, (2019) have shown improvements in PMCAMx 

predictive performance for nitrate by applying the Plume in Grid model to large point sources. 

In chapters 2 and 3 of this work, source contributions were calculated using a sensitivity 

simulation approach. In chapter 4 the PSAT algorithm (Skyllakou et al., 2017) was used to track 

the contribution of different sources to pollutant concentrations. Using the PSAT algorithm for 

future high-resolution simulations could improve the prediction of local source contributions. For 

the 1 x 1 km grid, long range transport is the largest source of PM2.5. Use of the PSAT approach 

for all grids would resolve the source distribution of the concentrations from outside the finest grid 

which then can be added to the local source contributions for comparison with AMS measurements 

of cooking and biomass burning organic aerosols. 

In this work, we use WRF metrology calculated at a resolution of 12 x 12 km. The use of 

metrology calculated higher resolutions could improve the model ability to predict local 

concentration gradients. In chapters 2 and 3 of this work biogenic emissions were calculated with 

the BEIS model as included in the NEI. Previous studies with PMCAMx have shown good 

performance in the prediction of secondary organic aerosols using the MEGAN model of biogenic 

emissions. This approach was followed for the historical simulations with good results. Further 

simulations at high resolutions would possibly benefit from the higher biogenic organic aerosol 
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precursor emissions generated by MEGAN. The effect of this change is expected to be more 

pronounced during the summer period where biogenic emissions are larger. 

The exposure distributions presented in this work use the residential population for 

exposure calculations. However, in urban areas like Pittsburg, there are significant amounts of 

commuter populations that are registered in the census as residing in suburban areas but spend 

much of their time exposed to the higher concentrations observed in the city center. Further 

estimations of exposure could be improved by calculating exposure distributions with estimations 

of the commuting population. The contribution to exposure of sources that are associated with 

large population densities like commercial cooking and on-road traffic could be better determined 

by limiting the exposure distribution analysis to areas above a population density threshold. 
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Appendix A. Additional Results from Chapter 3 

A B 

C D 

E 

 

Figure A-1. Comparison of PMCAMx predicted concentrations of (A) sulfate, (B) nitrate, (C) 
ammonium, (D) elemental carbon and (E) organic aerosol to 24-hour measurements from 4 EPA-
CSN sites during February 2017. 
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Table A-1. Comparison of PMCAMx sulfate predictions with daily averages of from EPA-CSN 
during February 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.70 0.87 0.92 1.13 0.88 
FERROR 45% 52% 43% 42% 45% 
BIAS (µg m-3) 0.55 0.42 -0.39 -0.95 -0.02 
FBIAS 37% 28% -16% -35% 7% 
R 0.18 -0.61 -0.50 -0.82 -0.03 
Meas. Avg. (µg m-3) 1.23 1.42 2.26 3.12 1.92 
Pred Avg. (µg m-3) 1.78 1.84 1.87 2.17 1.90 

 

Table A-2. Comparison of PMCAMx nitrate predictions with daily averages of from EPA-CSN 
during February 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 2.03 1.89 1.27 1.71 1.76 
FERROR 101% 104% 53% 83% 87% 
BIAS (µg m-3) 2.03 1.89 0.85 1.71 1.66 
FBIAS 101% 104% 44% 83% 85% 
R 0.61 0.61 0.62 0.60 0.57 
Meas. Avg. (µg m-3) 1.21 1.11 2.26 1.61 1.51 
Pred Avg. (µg m-3) 3.24 3.00 3.10 3.32 3.17 

 

Table A-3. Comparison of PMCAMx ammonium predictions with daily averages of from EPA-
CSN during February 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 1.30 1.23 1.00 1.05 1.16 
FERROR 123% 120% 94% 54% 101% 
BIAS (µg m-3) 1.30 1.23 0.90 -0.10 0.89 
FBIAS 123% 120% 89% 8% 90% 
R 0.26 0.94 0.84 -0.94 0.35 
Meas. Avg. (µg m-3) 0.47 0.48 0.86 2.06 0.91 
Pred Avg. (µg m-3) 1.78 1.72 1.77 1.96 1.80 
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Table A-4. Comparison of PMCAMx elemental carbon predictions with daily averages of from 
EPA-CSN during February 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.61 0.16 0.61 0.83 0.56 
FERROR 72% 35% 63% 62% 61% 
BIAS (µg m-3) 0.61 -0.16 -0.61 -0.83 -0.08 
FBIAS 72% -35% -63% -62% -3% 
R 0.91 0.73 -0.78 0.05 -0.02 
Meas. Avg. (µg m-3) 0.67 0.52 1.24 1.82 0.94 
Pred Avg. (µg m-3) 1.28 0.36 0.64 0.72 0.85 

 

Table A-5. Comparison of PMCAMx organic aerosol predictions with daily averages of from 
EPA-CSN during February 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 1.79 0.89 3.15 4.08 2.34 
FERROR 53% 26% 58% 75% 53% 
BIAS (µg m-3) 0.99 -0.71 -2.68 -3.49 -0.98 
FBIAS 39% -20% -48% -61% -10% 
R 0.45 -0.34 -0.74 -0.84 -0.16 
Meas. Avg. (µg m-3) 3.53 3.09 6.30 6.96 4.68 
Pred Avg. (µg m-3) 4.52 2.38 3.61 3.47 3.70 
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A B 

C D 

E 

 

Figure A-2 Comparison of PMCAMx predicted concentrations of (A) sulfate, (B) nitrate, (C) 
ammonium, (D) elemental carbon and (E) organic aerosol to 24-hour measurements from 4 EPA-
CSN sites during July 2017. 
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Table A-6. Comparison of PMCAMx sulfate predictions with daily averages of from EPA-CSN 
during July 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.95 0.61 0.64 1.36 0.93 
FERROR 44% 30% 49% 61% 47% 
BIAS (µg m-3) 0.16 -0.61 -0.36 -0.74 -0.27 
FBIAS 8% -30% -12% -30% -10% 
R 0.05 0.76 0.78 0.23 0.21 
Meas. Avg. (µg m-3) 1.95 2.14 1.62 2.56 2.04 
Pred Avg. (µg m-3) 2.11 1.53 1.26 1.81 1.77 

 

Table A-7. Comparison of PMCAMx nitrate predictions with daily averages of from EPA-CSN 
during July 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.49 0.45 0.25 0.44 0.42 
FERROR 96% 125% 88% 98% 99% 
BIAS (µg m-3) 0.40 0.45 0.14 0.32 0.33 
FBIAS 47% 125% 13% -4% 39% 
R -0.06 -0.82 0.29 0.55 0.27 
Meas. Avg. (µg m-3) 0.28 0.14 0.21 0.35 0.26 
Pred Avg. (µg m-3) 0.67 0.59 0.35 0.66 0.59 

 

Table A-8. Comparison of PMCAMx ammonium predictions with daily averages of from EPA-
CSN during July 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.43 0.50 0.28 0.50 0.42 
FERROR 64% 72% 70% 58% 65% 
BIAS (µg m-3) 0.42 0.50 0.28 0.18 0.35 
FBIAS 62% 72% 70% 25% 57% 
R 0.39 0.54 0.64 0.24 0.38 
Meas. Avg. (µg m-3) 0.54 0.44 0.38 0.71 0.53 
Pred Avg. (µg m-3) 0.97 0.94 0.66 0.89 0.88 
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Table A-9. Comparison of PMCAMx elemental carbon predictions with daily averages of from 
EPA-CSN during July 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 0.33 0.23 0.30 0.84 0.41 
FERROR 40% 81% 58% 93% 63% 
BIAS (µg m-3) 0.19 -0.23 -0.28 -0.71 -0.18 
FBIAS 17% -81% -54% -64% -35% 
R 0.15 -0.21 0.27 0.29 0.25 
Meas. Avg. (µg m-3) 0.74 0.39 0.63 1.23 0.74 
Pred Avg. (µg m-3) 0.93 0.16 0.34 0.51 0.56 

 

Table A-10. Comparison of PMCAMx organic aerosol predictions with daily averages of from 
EPA-CSN during July 2017. 

 Lawrenceville Hillman 
State Park 

Steubenville Liberty / 
Clairton 

All 

ERROR (µg m-3) 2.24 2.56 3.76 3.56 2.89 
FERROR 65% 104% 113% 99% 90% 
BIAS (µg m-3) -1.92 -2.56 -3.76 -3.56 -2.77 
FBIAS -52% -104% -113% -99% -86% 
R -0.59 -0.93 -0.89 -0.53 -0.41 
Meas. Avg. (µg m-3) 4.35 3.63 5.01 4.96 4.46 
Pred Avg. (µg m-3) 2.43 1.07 1.26 1.40 1.69 
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A B 

C D 
Figure A-3 Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 for 
(A) 36 x 36 km, (B) 12 x 12 km, (C) 4 x 4 km and (D) 1 x 1 km with monthly averages from 17 
EPA AirNow sites. 

 

A B 
Figure A-4 Comparison of PMCAMx predicted PM2.5 concentrations during February 2017 with 
monthly averages from 17 EPA AirNow sites using the (A) CACES and (B) EPA surrogates. 
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Appendix B. Additional Results from Chapter 4 

 

Figure B-5 Annual averaged predicted ground-level PM2.5 fresh POA concentrations per source in 
μg m-3 for simulations of three different years, 1990, 2001, 2010. 
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Figure B-6 Annual averaged predicted ground-level PM2.5 nitrate concentrations per source in μg 
m-3 for simulations of three different years, 1990, 2001, 2010. 
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Figure B-7 Annual averaged predicted ground-level PM2.5 ammonium concentrations per source 
in μg m-3 for simulations of three different years, 1990, 2001, 2010. 
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Figure B-8 Annual averaged predicted ground-level total PM2.5 concentrations per source in μg m-

3 for simulations of three different years, 1990, 2001, 2010. 
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Figure B-9 Annual source concentration of fresh POA for seven different regions in the US and 
for three different years, 1990, 2001, 2010. 

 

Figure B-10 Annual source concentration of nitrate for seven different regions in the US and for 
three different years, 1990, 2001, 2010. 

 

Figure B-11 Annual source concentration of ammonium for seven different regions in the US and 
for three different years, 1990, 2001, 2010. 
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Figure B-12 Annual source concentration of total PM2.5 for seven different regions in the US and 
for three different years, 1990, 2001, 2010. 

 

Figure B-13 Annual source percent contributions to the concentration of Elemental Carbon for 
seven different regions in the US and for three different years, 1990, 2001, 2010. 

 

Figure B-14 Annual source percent contributions to the concentration of OA for seven different 
regions in the US and for three different years, 1990, 2001, 2010. 
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Figure B-15 Annual source percent contributions to the concentration of PM2.5 sulfate for seven 
different regions in the US and for three different years, 1990, 2001, 2010. 

 

Figure B-16 Annual source percent contributions to the concentration of PM2.5 nitrate for seven 
different regions in the US and for three different years, 1990, 2001, 2010. 

 

Figure B-17 Annual source percent contributions to the concentration of total PM2.5 for seven 
different regions in the US and for three different years, 1990, 2001, 2010. 
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Figure B-18 Annual ground level predicted concentrations of PM2.5 Elemental Carbon for three 
different years, (a) 1990, (b) 2001 and (c) 2010. 

 

Figure B-19 Annual ground level predicted concentrations of PM2.5 OA for three different years, 
(a) 1990, (b) 2001 and (c) 2010. 
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Figure B-20 Annual ground level predicted concentrations of PM2.5 sulfate for three different 
years, (a) 1990, (b) 2001 and (c) 2010. 

 

Figure B-21 Annual ground level predicted concentrations of total PM2.5 for three different years, 
(a) 1990, (b) 2001 and (c) 2010. 
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Figure B-22 Reductions in total PM2.5: absolute (μg m-3) from 1990 to 2001 (a) and from 1990 to 
2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 

 

Figure B-23 Annual ground level predicted concentrations of PM2.5 nitrate for three different years, 
(a) 1990, (b) 2001 and (c) 2010. 
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Figure B-24 Differences in PM2.5 nitrate: absolute (μg m-3) from 1990 to 2001 (a) and from 1990 
to 2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 

 

Figure B-25 Annual ground level predicted concentrations of PM2.5 ammonium for three different 
years, (a) 1990, (b) 2001 and (c) 2010. 
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Figure B-26 Reductions in PM2.5 ammonium: absolute (μg m-3) from 1990 to 2001 (a) and from 
1990 to 2010 (c) and percent (%) from 1990 to 2001 (b) and from 1990 to 2010 (d). 
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