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A B S T R A C T

Ongoing developments in the synthesis of nanostructured materials have led to a boom

in the number of fabricatable nanomaterials. However, while there is a large body of

work on how to fabricate increasingly complex nanostructures, there are relatively few

systematic approaches for selecting which structures to fabricate so as to optimize for a

particular functionality. In this thesis, we present a generic framework for modeling the

design of nanostructured materials as mathematical optimization problems. Our work

takes advantage of results from computationally demanding models (e.g. energies from

quantum chemical calculations or kinetics from Monte Carlo simulations) from which

it regresses simplified structure-function relationships that can be used in conjunction

with a supervisory optimization algorithm to guide the design of highly functional

nanostructures. We develop detailed mathematical optimization models for extended

heterogeneous catalyst surfaces, doped perovskite oxygen carriers, and Wigner crystals

while highlighting the ability of our approach to address a wide range of other material

systems. In addition to detailed models, we have developed a general purpose Python

package called MatOpt for streamlining the process of specifying optimizing materials

and for lowering the barriers for applying mathematical optimization to materials

problems. Our work provides systematic approaches for managing the combinatorial

complexity of the nanomaterials design space and demonstrates the value of process

systems engineering principles applied in new contexts.
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1
I N T R O D U C T I O N

The field of process systems engineering has long recognized the importance of improv-

ing decision-making across all length scales of chemical engineering, from enterprise-

wide optimization down to molecular design [73, 207]. In this thesis, we show how

the same principles that can be used to design chemical plants and supply chains can

be applied at the nanoscale for the design of nanostructured materials. Importantly,

we show how expertise in mathematical optimization can be applied to improve and

systematically guide decision processes in the fields of materials science and catalysis.

1.1 nanostructured materials synthesis

Advances in nanotechnology have enabled the fabrication of materials with near-atomic

scale precision. Specifically in the case of transition metals, there are a multitude of

examples of particles synthesized with controlled sizes, shapes, and chemical order-

ings [14, 158, 238]. At the smallest scale, there are several approaches for synthesizing

and manipulating atomically-precise clusters typically smaller than 50 atoms by intro-

ducing specially-designed protective ligands [55, 96, 133, 134]. At slightly larger length

scales of ∼10 nm to 500 nm, there are a plethora of controllable nanoparticle geometries

including all types of convex polyhedra [237, 238], concave polyhedra [111, 239, 246,

247], cages [57, 77, 143, 170], stars [232, 243], dumbbells [138], and rings [101], among

many others. These shape-controlled nanoparticles are typically created in solution but

examples of detailed structures can also be found for supported nanoparticles [90, 211]

or on annealed, nanofaceted surfaces [27, 39, 242]. Furthermore, at the micron scale there

exist many methods for constructing, transferring, and replicating patterns on surfaces

in a scalable way [63, 213].
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1.2 nanomaterials properties & applications

As technological advances continue, our ability to tailor the properties of resulting

nanostructures will only continue to grow. It is already possible to combine individual

nanoparticles in sophisticated, hierarchically-assembled structures [91, 142, 244, 253].

Techniques for achieving these complex nanoscale assemblies include using functional-

ized facets [150, 187], templated surfaces [22, 115, 186, 213], and DNA [10, 174, 249, 254]

to direct material organization via processes known as directed self-assembly [17, 74].

In conjunction with advances in synthesis techniques, it is becoming easier to interpret

the structures of nanoparticles via advances in microscopy and image analysis [128, 135,

185, 196]. Interestingly, the same scanning tunneling microscopes for probing surfaces

can also be used to individually manipulate atoms, leading to precise control of atom

placement in some model systems [152]. While the approach of lining up atoms via

a microscope is useful for investigative experiments, it is clear that more practical

technologies are necessary to achieve scalable production of nanostructures.

1.2 nanomaterials properties & applications

Nano- and micro-structured materials typically have properties which are wildly different

from their bulk properties, enhancing useful functionalities in a number of application

contexts. For metallic nanoparticles in particular, recent work has highlighted enhanced

catalytic activities [160, 222], unique optical properties [78, 237], and the potential for use

in drug delivery [28, 41], among other exploitable properties. Motivated by the promise

of exciting new material properties, developments in nanofabrication have benefited

not only metallic nanoparticles [27, 238] but also a variety of material types including

zeolites [35, 60], metal-organic frameworks [56, 130], and carbon allotropes [135] to name

but a few.

In this thesis, we will typically focus on example applications related to catalysis due to

the abundance of structure-function relationships linking catalytic turnover to nanostruc-

ture. However, we note that the general approaches developed in this work can similarly

be applied to design the magnetic, optical, and structural properties of nanostructured

materials. In the domain of heterogeneous catalysis, there are several example appli-

cations where nanostructures show significant potential for surpassing the capabilities

of unstructured materials. Reactions on nanoparticulate catalyst surfaces have long

been known to exhibit “structural sensitivity,” whereby the size and shape of catalytic

nanoparticles can have significant impact on the exhibited catalyst turnover [27, 118, 129].

One such case, the anodes and cathodes for polymer electrolyte fuel cells, has received
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considerable attention due to its importance in sustainable energy conversion [53, 75,

228]. The possible turnover of the oxygen reduction reaction (a key limiting step) has

been iteratively improved by controlling the size of supported Pt nanoparticles [62],

introducing alloyed nanoframes [34], and by introducing structural defects [31, 36, 37].

1.3 computational materials evaluation

In parallel to synthesis efforts, theoretical and computational advances in the area of

density functional theory (DFT) are enabling the design of materials from first princi-

ples [4, 51, 61, 81, 148, 163]. Specifically, DFT enables calculation of energy for chemical

configurations via quantum mechanical models. The energies calculated by DFT provide

a wealth of insight into the reactivity of catalytic systems.

For example, in the case of heterogeneous catalysis, the activation energy of reactions

on the catalyst surface can typically be linearly correlated to differences in adsorption

energies of reactive intermediates, which in turn can be correlated to the adsorption

energies of simpler adsorbates [24, 162, 164]. Furthermore, the adsorption energies

of small adsorbates have been demonstrated to correlate to geometric descriptors of

sites on the surface, allowing predictions of catalytic activity from purely geometric

considerations [30, 32, 154]. We defer detailed discussions about the structure-function

relationships enabled by DFT to the relevant content chapters. In Chapter 2, we explain

the linkage of DFT-calculated adsorption energies to turnover on a heterogeneous catalyst

surface. In Chapter 4, we explain the linkage between DFT-calculated oxygen excess

energy and the oxygen carrying capacity of perovskites.

The ubiquity of computational chemistry tools has enabled a wide variety of material

material evaluations in silico. Standardized approaches have been demonstrated for

simulating reactions and rearrangements of materials at the atomic via kinetic Monte-

Carlo methods [105, 190, 204], molecular dynamics [117, 251], and microkinetic models

such as the degree of rate control [206, 235].

1.4 heuristic material screening

With this growing capability to manufacture metallic crystals to an ever-increasing preci-

sion comes the need to know which exact microstructures exhibit the best performance

for their intended functionality. However, due to the combinatorially many ways with
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which matter can arrange itself, the best structures are unintuitive and likely impossible

to identify without a systematic decision-making approach.

Several databases have been established to support screening of highly functional mate-

rials by comparing and interpolating data from both experimental and computational

studies [45, 99, 126, 189]. Recently, high-throughput computational approaches [50, 71],

chemical informatics [217, 229], and machine learning [69, 139, 218–220] have been used

to massively increase the pace of calculations and to smartly sample the combinatorial

material design space.

A key approach in materials screening has been to develop simplified structure-function

relationships for the purpose of predicting catalyst activity as a function of simple

geometric descriptors. Descriptors such as coordination number [154, 181, 226, 241],

generalized coordination number [30, 32], orbitalwise coordination number [144, 227],

surface angles [154], and effective coordination number [9, 65] have been demonstrated

in the literature.

In addition to screening methods, there are several approaches that seek to optimize

materials by applying numerical algorithms. These can be broadly classified as topology

optimization algorithms and metaheuristic optimization algorithms [100]. Topology

optimization involves solving a very specific form of optimization model over continuous

material domains, typically with the goal of maximizing a function for an integral of

the material properties over the domain [18, 94, 200]. These approaches are particularly

useful for optimizing the shape of continuous, microscale material domains, but they

can not be generically used to represent complex logical relationships that are prominent

in discrete materials.

Several more approaches have utilized metaheuristic algorithms in conjunction with

detailed material simulations to guide the design of some parameterized materials [151].

In Khaira et al. [109], the authors use an evolutionary algorithm to optimize a few

parameters relevant to the design of block copolymer patterns. In Ruck et al. [183], the

authors use a simple coordination-based structure-function relationship in conjunction

with particle swarm optimization to design reactive, symmetric nanoparticles and rods.

In Núñez and Vlachos [166], the authors used active learning in conjunction with a

Monte-Carlo method for exploring the design space of bifunctional patchy catalyst

surface. Similarly, in Núñez, Lansford, and Vlachos [165], the authors use a similar

coordination-based structure-function model in conjunction with simulated annealing to

design defects on nanostructured surfaces to increase surface reactivity. These approaches
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leverage metaheuristic optimization methods to find good solutions, but still lack rigorous

guarantees on the optimality of the identified designs.

1.5 mathematical optimization for nanomaterials design

In contrast to heuristic search procedures, exact mathematical optimization algorithms

provide rigorous guarantees on the quality of identified designs. At the termination

of exact optimization algorithms, the search procedure either provides guarantees that

no better solution can be enumerated or provides an optimistic bound on the quality

of designs not yet fully explored. In this way, exact optimization methods provide a

unique advantage over heuristic optimization algorithms at the expense of requiring

some mathematical structure for specifying the problem.

Mathematical optimization represents decision problems via variables, constraints, and

an objective function. In Eqns. 1.1–1.4, we write the search for novel materials as a

mathematical optimization model with generic notation. We denote a vector of variables

for the design as d within a design space D (Eqn. 1.4). As an objective function (Eqn. 1.1)

we generically write “Functionality,” which can represent catalyst turnover, energies,

desired site concentrations, or any other material property that can tractably encoded via

algebraic functions of the design variables. In Eqns. 1.2 and 1.3, we represent constraints

on the material via abstract functions for the “Stability” and “Fabricability” of designs.

These constraints on the design space can represent crystallinity, composition bounds,

geometric restrictions, thermodynamic relationships, reaction rates, or mass transport

limitations. Though they are written as a single line in our model, these expressions

typically require their own sub-models (i.e., structure-function relationships) for the

properties of the material as functions of the design variables. Since the ability to solve

the resulting optimization problem is closely tied to the number and complexity of

constraints, there is a clear need to make good simplifying approximations so as to

match chemical systems with suitable optimization model formulations.

max
d

Functionality(d) (1.1)

s.t. Stability(d) ≥ ε (1.2)

Fabricability(d) ≥ 0 (1.3)

d ∈ D (1.4)
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In this abstract notation, there are no restrictions on the type or scale of materials that can

be addressed; however, it is practically important to narrow down the scope of problems

to focus on cases that are both chemically relevant and that can be tractably modeled.

The common properties of nanostructured materials and chemistries of interest will

serve to guide our focus towards a subset of systems that fall within the scope of mate-

rials optimization. In Chapter 5, we formally identify the properties of nanostructured

materials optimization models that can be efficiently encoded via mixed integer linear

programming. As an alternate perspective, in Chapter 6, we present an example design

problem that takes the form of a nonlinear programming model and can be solved to

identify materials in a continuous domain.

1.6 aims and outline of the thesis

The overarching aim of this thesis is to demonstrate ways in which mathematical

optimization and other process systems engineering approaches can be applied to the

design of nanostructured materials. To that end, we develop mathematical optimization

models for several example systems and show how the principles identified therein can

generically be applied to many other material systems. More specifically, throughout the

thesis we aim to establish several key observations:

1. Mathematical optimization is well-suited to handle the combinatorial complexity

of the nanostructured material design space.

2. Both discrete- and continuous-space nanostructured material geometries can be

generically represented in optimization models.

3. A variety of simplified structure-function relationships can be encoded in mathe-

matical optimization formulations.

4. Trade-offs of material properties can be efficiently explored in optimization models.

5. Results from mathematical optimization can inform future material synthesis efforts

and accelerate the design of novel nanostructured materials.

The remainder of this thesis is organized as follows: In Chapter 2, we present the first

application of mathematical optimization to design nanostructured catalytic surfaces.

In Chapter 3, we build upon the surface design work by incorporating stability into

our optimization models. This work relaxes several assumptions that were made in the

earlier chapter and shows how a marginal increase in modeling complexity can result
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in a more realistic and practically-relevant design space. In Chapter 4, we show how

the same optimization principles can be applied to design of bulk materials, namely a

doped perovskite that is used as an oxygen carrier for chemical looping combustion. Im-

portantly, this application highlights the full design procedure starting from identifying

optimization opportunities, regressing structure-function relationships from available

computational data, and ending by solving relevant optimization models. In Chapter 5,

we formalize a generic approach for conceptualizing nanostructured optimization prob-

lems as well as present a software package for automatically casting and optimizing the

resulting models. In Chapter 6, we present an approach for optimizing the structure of

Wigner crystals via nonlinear programming. This presents a contrasting example from

our other work in that we relax the requirement that materials reside in discrete locations

and instead consider the optimization of coordinates in a continuous domain. Finally,

Chapter 7 summarizes the contributions of this work in addition to proposing several

future research directions.
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2
O P T I M I Z I N G N A N O S T R U C T U R E D C ATA LY S T S U R FA C E S

The recent explosion of capabilities to fabricate nanostructured materials to atomic

precision has opened many avenues for technological advances but has also posed

unique questions regarding the identification of structures that should serve as targets

for fabrication. One material class for which identifying such targets is challenging are

transition-metal crystalline surfaces, which enjoy wide application in heterogeneous

catalysis. The high combinatorial complexity with which patterns can form on such sur-

faces calls for a rigorous design approach. In this chapter, we formalize the identification

of the optimal periodic pattern of a metallic surface as an optimization problem, which

can be addressed via established algorithms. We conduct extensive computational stud-

ies involving an array of crystallographic lattices and structure-function relationships,

validating patterns that were previously known to be promising but also revealing a

number of new, nonintuitive designs.

2.1 introduction

The rational design of nanostructured metallic surfaces has recently received attention

due to the potential for improving the catalysis of many important reactions. In the case

of the oxygen evolution reaction in fuel cells [209, 228], for example, several studies have

indicated that slight changes in the structure of a metallic surface can lead to a dramatic

improvement in the achievable rate of reaction [116, 205]. Furthermore, a rigorously

nanopatterned surface can provide chemical sensing capability via surface-enhanced

Raman spectroscopy [15, 137, 234]. In this context, the shape and exact positioning of

defects or decorations on an metallic surface leads to a nonlinear enhancement of local

electric fields, referred to as “hot spots,” which can be tuned to enhance the signal from

Raman spectroscopy measurements [15, 114, 236]. The potential for such applications
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2.1 introduction

highlights the value of being able to control the structure of surfaces down to the

nanoscale.

Nanostructured designs for metallic surfaces can be plausibly fabricated by a variety

of techniques. Epitaxial methods [92] such as chemical layer deposition [177], atomic

layer deposition [64], and dip-pen lithography [49] can be used to grow features on

metallic surfaces. A combination of electron beam lithography and chemical etching [63]

can be used to make very small features. On the atomic scale, pits and grooves can be

formed from a metallic surface alloy via chemical dealloying of a metal or by galvanic

displacement [31, 52, 116]. As the state of the art in the patterning of surface alloys

improves, so will the capability to design nanostructured surfaces with controlled

features. Similarly, advances in directed self-assembly will increase our capability to

fabricate a variety of other material types with nano- or micro-structured features [17, 74,

201, 202].

In the context of heterogeneous catalysis on metallic crystalline surfaces several structure-

function relationships have been elucidated by a variety of tools [72, 118, 222]. More

specifically, techniques such as density functional theory [81, 199], linear scaling relation-

ships [2, 79, 223], and the degree of rate control approach [33, 206] have been employed

towards correlating the structural, electronic, and reactive properties for a variety of

material types and applications. These tools enable the prediction of adsorption energies,

and therefore of a variety of other properties, as a function of the local surface site char-

acteristics. Several site descriptors, such as the site’s coordination number [13, 32], the

number of available bonds [43], the d-band center [205], the average coordination number

among neighboring sites [30], as well as the local surface curvature (e.g., various surface

angles [154]) have been shown to correlate well with adsorption energies. Techniques for

systematically identifying site descriptors have also been proposed [6, 146, 176].

The application of these types of structure-function relationships have been demonstrated

for a variety of systems. For example, Zhang et al. [250] demonstrated an in-depth

investigation of adsorption of ions at a variety of rutile-water interfaces. Kitchin et al.

[112] described the potential to tailor the chemical properties of a platinum surface by

introducing a subsurface metal alloy, while Calle-Vallejo et al. [31] used generalized

coordination numbers to describe the reactivity of platinum surface sites for the oxygen

reduction reaction.

The rate for the limiting step(s) in the overall conversion process can ultimately be

correlated to the structure of the site, typically in the form of a volcano plot [163, 205].

Volcano plots arise due to Sabatier’s principle, which states that catalytic surfaces perform
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2.1 introduction

best when they absorb reactive species neither too strongly, nor too weakly [164]. Impor-

tantly, the activation energy of a chemical reaction can be predicted from the adsorption

energies of transition states [81]. Therefore, we can translate local site characteristics

to adsorption energies (e.g., as provided by density functional theory computations)

to activation energies. Using these demonstrated relationships, we can predict reaction

rates of metal surface sites and, thus, be in position to design periodic surface patterns

that maximize the total reactivity on a per area basis.

In this chapter, we intend to show how correlations that link performance (e.g., catalytic

activity) to site descriptors, such as commonly available volcano plots, can be used to

determine the optimal (i.e., of highest performance) periodic surface. As an illustration,

we will use the average neighbor coordination number (also known as the generalized

coordination number), denoted CN, as an example site descriptor. This site descriptor

has been chosen both due to its recent and emerging appearance in the literature [30,

31] as well as due to its interest from the mathematical modeling viewpoint. We should,

however, emphasize that our approach can be readily adapted to handle a variety of

other site descriptors as well.

In general, the collective performance of the catalytic surface can be attributed to a

weighted average of the contributions by each of the surface sites, appropriately weighted

via Boltzmann factors. In practice, however, it is typical to have volcano plots with steep

sides, implying that only the “ideal” sites, i.e., those exhibiting features that lie very close

to the peak of the volcano, contribute substantially to the overall reaction rate [31, 164].

With this observation in mind, the problem of designing the surface of highest reactivity

simplifies to that of designing the surface that packs the most ideal sites in the unit area,

essentially neglecting the contributions from the remaining, non-ideal sites.

In particular, when the material designs can be expressed via discrete variables, as is the

case with materials conforming to well-defined crystalline lattices, and when appropriate

site descriptors can be encoded via linear constraints and disjunctions, as is the case

of descriptors based on site coordination numbers, we can cast mixed-integer linear

programming (MILP) models and utilize well-developed MILP solvers [3, 76, 95] in

order to determine the optimal surface packings. An ancillary advantage of using MILP

solvers to address this design problem is that several optimal (or near-optimal) solutions

can be collected via a solution pool approach [46]. In this way, multiple distinct, yet

equivalent in terms of objective value, designs can be identified for comparison against

some secondary criteria for further consideration by experts. Additionally, if one desires

to maximize the selectivity of the surface for a particular reaction, an alternative objective
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that maximizes the ratio of desired sites against competing sites may be employed.

The resulting fractional objective function can then be linearized via well-established

methods [245].

Another important consideration when designing catalytically active surfaces is their

longer-term stability. In particular, we are concerned with the likelihood for rearrange-

ment of low-coordinated atoms given the available energy released from reactions or

from the process environment. At the interest of exposition, in this work we propose a

very simple approach to postulate “stable” designs, acknowledging that a more sophisti-

cated approach may be necessary to yield designs that are guaranteed to be stable under

realistic process conditions. We discuss our current approach pertaining to stability as

well as proposed alternatives later.

The remainder of this chapter is structured as follows. First, we formalize the design

problem as a mathematical optimization problem and cast a suitable model to that

purpose. We then highlight important algorithmic considerations, such as strategies for

breaking model symmetry, after which we present results from a comprehensive study

we conducted across a variety of crystallographic lattice types and a gamut of input

volcano performance plots. Finally, we end with some concluding remarks that synopsize

proposed next steps in this research.

2.2 methodology

The effort to design a transition metal surface that features as many as possible ideal (i.e.,

maximally performing) local metal sites can be decomposed into two steps. In the first

step, one needs to identify those target values for the site descriptors that would qualify

a site as an ideal site. In most cases, when the performance of a site is governed by a

volcano plot, the target value is the one that corresponds to the volcano’s tip. However,

as this value may not be exactly attainable by any physically realizable surface site, a

more involved calculation may be needed. In Section 2.6, we present a rigorous approach

that one can follow so as to identify target values for the site descriptors we consider

in this study. Once the target values have been identified, the second step of the design

process will be to determine the best feasible packing of surface sites that attain this

maximal level of performance into a periodic pattern. This task can be formally cast as an

MILP model and can, thus, be performed via use of well-established MILP optimization

techniques. Below we present the derivation of this optimization model.
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(a) FCC {100} (b) FCC {110} (c) FCC {111} (d) BCC {100} (e) HCP {0001}

Figure 2.1: Example tile shapes and lattice locations of a design canvas. Top: Top-down views
(shades of gray become darker as layer depth increases). Bottom: 3-D perspectives and
full set of lattice locations.

2.2.1 Mathematical Model

The proposed model depends on a suitably defined graph, which serves as a “design

canvas.” The nodes of this graph constitute the lattice locations present in a periodic,

space-filling tile of a horizontally-extending, thin crystal segment (see Fig. 2.1), while the

edges of the graph signify those locations that are considered neighbors for determining

a site’s coordination number. Such a tile can be replicated ad infinitum (in practice, as

many times as necessary) along the horizontal plane so as to form the complete design

surface. Note that the periodic nature of the graph implies that certain locations that fall

on the border of the tile will be equivalent to some other locations on the tile’s “opposite”

side. Figure 2.2 illustrates this property by depicting locations that are equivalent under

periodicity principles.

Consequently, the area of the design surface occupied by a single tile is an important

model consideration. This area can be parameterized by the integer number of lattice

locations along the tile’s horizontal edges, which we refer to as the tile’s size. It should

in fact be recognized that this parameter may induce limitations on the optimality of

a design and, in general, calculations should be performed for a large enough tile size

so that the results are not affected. We discuss the implication of finite tile size in more

detail in our computational results section. An additional important parameter is the

depth of the tile, which we define as the integer number of lattice location layers we

consider in the direction perpendicular to the design surface. This parameter must be

selected as follows. In cases where the thickness of the metallic surface is explicitly

limited by the application, such as when only a thin film of the catalytically active metal
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Figure 2.2: Periodicity of border locations in a hexagonal tile. Locations with the same number
(color) are equivalent and are represented via common variables.

can be deposited on an underlying inert, the depth of the tile should be limited to the

appropriate application-specific value. For applications where this is not the case, such

as when one designs the optimal surface of a larger piece of crystal, the number of lattice

location layers taken into account in the design computations should be allowed to be as

large as necessary so as again not to affect the optimality of the design. For reference,

the tiles depicted in Fig. 2.1 are all of size and depth equal to 5.

We denote the set of lattice locations as I, and we remark that only one index value is

reserved for each set of periodically-equivalent locations; that is, we handle these equiva-

lent locations as a single location and make use of common variables that correspond

to the whole set. For each location i ∈ I, the set Ni is defined to include the locations

that are neighboring to i; that is, locations that form an edge with node i. Note that, due

to the periodicity considerations, locations on (or near) the border of the tile may have

neighbors positioned on the tile’s opposite side. Furthermore, locations below the bottom

layer of the canvas graph are considered filled, i.e., always occupied by a metal atom (or

an atom of the surface’s support material, as appropriate), while locations above the top

layer are considered void, i.e, not occupied by any atom. In this way, every location in I
has every one of its neighbors well-defined, either being another location in I or being

an extra-canvas location whose occupancy state is prefixed to either filled or void. For

notational convenience, we denote with Nb
i the subset of location i’s neighbors that are

positioned in the layer below the layer of location i.
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The key decision variables in the model are a set of binary variables Yi, which are defined

for each i ∈ I so as to indicate the presence or absence of a metal atom in location i.1 In

addition to this set of variables, we define a number of auxiliary variables that enable us

to encode–and suitably restrict–various higher-level quantities while preserving linearity

of the overall model. The optimal values of all auxiliary variables can be uniquely

determined from the optimal values of variables Yi. Given the presence of a metal atom

in a lattice location i (i.e., Yi = 1), a variety of site descriptors can be encoded for this

location. For our example system, we encode the site’s coordination number, CNi, as well

as the average coordination number of all neighbors, CNi. We remark that these variables

are declared as continuous variables within appropriate bounds. We also introduce a new

set of binary variables, denoted as Zi, to indicate whether location i constitutes an ideal

site. These variables are meant to be activated whenever (a) the site is indeed occupied

by a metal atom, (b) this atom lies on the exposed surface of the crystal, and (c) the

site descriptors attain the target values. Given the above definitions for model variables

1 In the case of multi-metallic surfaces, this binary representation can be extended to a more general, discrete
encoding.
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and using logical propositions, we cast our surface patterning model in Eqns. 2.1–2.9. A

comprehensive list of our notation is provided in the end of this chapter (Section 2.5).

max
Yi ,Zi ,

CNi ,CNi

∑
i∈I

Zi (2.1)

s.t. {Yi = 1} ⇒
{

CNi = ∑
j∈Ni

Yj

}
∀ i ∈ I (2.2)

{Yi = 0} ⇒ {CNi = 0} ∀ i ∈ I (2.3)

CNi =
1

CNbulk
∑

j∈Ni

CNj ∀ i ∈ I (2.4)

{Zi = 1} ⇒


Yi = 1

CNsurf
min ≤ CNi ≤ CNsurf

max

|CNi − CN∗| ≤ ε

 ∀ i ∈ I (2.5)

{Yi = 1} ⇒

 ∧
j∈Nb

i

(
Yj = 1

) ∀ i ∈ I \ Ibottom (2.6)

0 ≤ CNi ≤ CNbulk ∀ i ∈ I (2.7)

0 ≤ CNi ≤ CNbulk ∀ i ∈ I (2.8)

Zi ∈ {0, 1} ∀ i ∈ I (2.9)

Yi ∈ {0, 1} ∀ i ∈ I (2.10)

In the above model, the objective 2.1 calls for maximizing the number of ideal sites present

in the graph, which essentially maximizes their density in the designed surface. Note

that only one copy of periodically-equivalent locations contributes to the objective, since

only one index in the set I is reserved for the set of equivalent locations. Equations 2.2

and 2.3 define a location’s coordination number, CNi, noting that this quantity is defined

to be equal to 0 for sites that are unoccupied. Given this definition for site descriptors

CNi, Eqns. 2.4 then define the site descriptors CNi, i.e., the average coordination number

among all neighbors of a given location i. Equations 2.5 constitute the definitions of

variables Zi.2 More specifically, these constraints ensure that the setting Zi = 1 implies

that all three criteria (a-c, see above) for the site i to be ideal are met. The first criterion

will be met as long as the corresponding variable Yi is activated. The second criterion will

be met as long as the atom’s coordination number falls inside an appropriate range that

2 In the case of Eqns. 2.5, the forward implication suffices to enforce the full equivalence. Given the fact that
the variable Zi has a positive contribution to the maximization objective, the optimizer will select Zi = 1
wherever possible; hence, we do not need to enforce the backward implication explicitly.
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depends on the type of lattice considered. For example, in the case of a face-centered-

cubic lattice, where the coordination number of a bulk atom is CNbulk = 12, an atom is

considered to be on the exposed crystal surface if it has coordination number between

CNsurf
min = 3 and CNsurf

max = 9, since having fewer than 3 neighbors would render the atom

too unstable, while having more than 9 neighbors would render the atom too covered by

other lattice atoms, prohibiting the site to receive significant adsorption. The third and

final criterion will be met if the variable CNi attains a value close enough (within some

small tolerance ε) to the target value, CN∗, signifying that the site is ideal.

Equations 2.6 correspond to a set of constraints that are related to the fabricability and

overall stability of the design. More specifically, these constraints mandate that, if location

i is occupied, then all neighbors below this location, j ∈ Nb
i , must also be occupied.

Consequently, we need not apply these constraints for locations i that are part of the

bottom-most layer of the canvas graph, as doing so would be redundant. We remark

that these simple constraints are in lieu of a more sophisticated approach to modeling

the stability of the optimal design. We recognize that neglecting this consideration may

result in optimal designs that are likely to rearrange under reaction conditions. However,

at the interest of the framework’s exposition, we have decided to not convolute our

approach for identifying optimal surface patterns with a detailed scheme for modeling

surface stability. As such, practitioners may apply their preferred structure-function

relationship for stability in order to limit their search to stable designs (by augmenting

constraints in a modular fashion). One can imagine encoding a requirement on stability

as an upper bound on the thermodynamic energy of a design, or alternatively, as a

constraint requiring at least some minimum energy barrier to move a given atom from

one configuration to a neighboring configuration.

Finally, Eqns. 2.7–2.10 provide applicable bounds for the continuous variables and

declare the binarity of the discrete variables. We remark that, although the variables CNi

are declared as continuous, the model constraints restrict them to only attain integer

values in any feasible solution. We also highlight that, in the above model, references

to quantities Yj for extra-canvas, neighboring locations j, such as locations above the

canvas’s top layer or locations below the canvas’s bottom layer, are to be interpreted

as constants 0 or 1, respectively, so as to account for the void or filled status of those

locations. Similarly, reference to quantities CNj for these extra-canvas locations should

be interpreted as either a constant 0, for the case of void locations above the canvas’s

top layer, or to an appropriate affine expression of variables Yi, for the case of filled
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2.2 methodology

locations below the bottom layer of the canvas graph.3 We finally note that, for the

sake of exposition, the above model was presented in a direct, conceptual form that

involves various disjunctions and implications. In order to be addressable by off-the-shelf

MILP optimization solvers, we would need to first apply some standard reformulation

techniques so as to convert the model in an algebraic, MILP form. We present the fully

reformulated model in Section 2.7.

2.2.2 Breaking Model Symmetry

We recognize that a surface patterning model like the one presented in Eqns. 2.1–2.10 is

likely to admit multiple equivalently-optimal solutions, as there will typically exist several

feasible combinations of values for the canvas occupancy variables, Yi, that correspond

to the same physical design. It is well-known that this kind of model symmetry, also

referred to as model isomorphism [147], acts detrimentally to the numerical tractability

of optimization processes that are based on branch-and-bound principles, such as the

ones implemented in standard MILP solvers. To alleviate isomorphism in our model, we

propose including a number of symmetry-breaking constraints, which we discuss in this

section.

A prominent source of symmetry in our context is the rotational symmetry with respect

to our (“two-dimensional”) design surface. To that end, Eqns. 2.11 can be added to break

this symmetry by requiring that more atoms be located in one half of the tile than the

other. The relevant halves of the tile, denoted as location sets I+k and I−k , are separated by

a plane of symmetry (indexed by k), along which additional canvas locations, I0
k , may lie.

Figure 2.3 illustrates the planes of symmetry for two example lattices and the associated

partitioning of the tile into location subsets. Note that, in each case, constraints can be

added for up to two linearly independent planes of symmetry.

∑
i∈I+k

piYi − ∑
i∈I−k

piYi ≥ 0 ∀ k ∈ {1, 2} (2.11)

In Eqns. 2.11, the parameters pi correspond to the inverse of the number of locations

that are periodically-equivalent to location i. In other words, the existence of an atom

in either side of the plane of symmetry must be weighted by the location’s effective

3 Since the layer below the bottom layer represented in the graph is fully occupied, all layers further below it
are also expected to be fully occupied. In fact, they are guaranteed to be bulk atoms or atoms of the support,
and they always contribute to the evaluation of their neighbor’s coordination number.
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Figure 2.3: Canvas graph partitioning for symmetry breaking. Locations with ‘+’ and ‘−’ labels
are in I+k and I−k , while locations that fall on the plane of symmetry are in I0

k . Top:
Symmetry planes for the FCC {111} lattice (only two may be used in conjunction).
Bottom: Symmetry planes for the BCC {100} lattice.

presence in the tile. For example, in the case of a tile such as in Fig. 2.2, atoms 1 and 4

should be attributed a weight of pi = 1/3, atoms 2, 3 and 5 a weight of pi = 1/2, while

all other (non-numbered) atoms should be given a full weight, pi = 1.

Additionally, Eqn. 2.12 can be used to break symmetry with respect to translations of

designs along the design surface. This works in conjunction with the above constraints

that break rotational symmetry by bounding the imbalance in the two halves of the

canvas by the sum of atoms directly along the symmetry plane. In practice, this reduces

the number of isomorphic feasible solutions to only include those that are approximately

balanced around the symmetry planes.

∑
i∈I+k

piYi − ∑
i∈I−k

piYi ≤ ∑
i∈I0

k

piYi ∀ k ∈ {1, 2} (2.12)

Finally, one may also eliminate symmetry in the direction perpendicular to the design

surface. It should be noted that this symmetry is already partially broken by the setup

of our optimization problem, as Eqn. 2.6 and the prefixing, respectively, of filled and

void layers below and above our canvas graph effectively remove the potential for a

design to flip along the perpendicular direction. However, there is still the possibility
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for designs to translate up and down. To that end, we propose also the use of Eqn. 2.13,

which requires the placement of at least one atom in the top-most layer of the canvas.

∑
i∈Itop

piYi ≥ 1 (2.13)

Alternatively, translation along the perpendicular direction can be broken via Eqn. 2.14,

which simply enforces the presence of an atom in the center of the top layer. Note that,

although this constraint fulfills the requirement of Eqn. 2.13, placing an atom in any

specific position may over-constrain the feasible space in view of Eqns. 2.12. Hence, using

Eqn. 2.14 comes at the expense of having to drop Eqns. 2.12 from the formulation.

Ycenter = 1, (2.14)

where i = center is an appropriate canvas location.

In conclusion, two variants of symmetry-breaking constraints are proposed. The first

utilizes Eqns. 2.11–2.13, while the second uses Eqns. 2.11 and 2.14. We remark that,

despite the fact that employing these symmetry-breaking constraints (either of the two

versions) may not entirely eliminate symmetry in certain cases, our experience suggests

that adding them in the model always improves the solver’s performance. We discuss

the numerical benefits in more detail in our computational results section.

2.3 computational studies

Our optimal surface patterning model of Eqns. 2.1–2.10 (in its MILP representation

presented in Section 2.7) was instantiated and solved for a number of benchmark cases.

These involved a total of five different combinations of crystallographic lattice types and

orientations of the design surface. More specifically, we considered three face-centered

cubic (FCC) lattices oriented such that the design surface is aligned with the {100}, {110}

and {111} crystallographic planes, respectively, one body-centered cubic (BCC) lattice

aligned with the {100} plane, and one hexagonal close-packed (HCP) lattice aligned with

the {0001} plane. Note that the FCC, BCC and HCP lattices account cumulatively for the

vast majority of transition metal-based, mono-metallic crystals, while the orientations

chosen constitute the most stable crystallographic planes exhibited by such crystals [238].

Figure 2.1 depicts the chosen lattices, including representative periodic tiles and the set

of lattice locations that the latter contain. Note that, in all five cases, the periodic tiles

constitute either square, rectangular or hexagonal prisms. Also note that the border of the
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2.3 computational studies

Table 2.1: Lattice-specific parameters.

FCC {100} FCC {110} FCC {111} BCC {100} HCP {0001}

CNbulk 12 12 12 8 12

CNsurf
min 4 4 3 4 3

CNsurf
max 9 9 9 6 9

CNsurf
min 2.3 3.3 1.5 2.5 1.5

CNsurf
max 8.16 8 8.5 5.5 8.5

tile is always drawn such that it aligns with certain lattice locations, ensuring that the tile

is space-filling and consistent in view of periodicity. Table 2.1 summarizes the applicable

values for model parameters that depend on the lattice type/orientation combination,

such as the coordination number of a bulk atom, CNbulk, as well as coordination number

limits for an atom to be considered as part of the crystal’s exposed surface, CNsurf
min and

CNsurf
max. In turn, these parameter choices give rise to attainable bounds on the site descrip-

tor CNi of an atom i on the crystal exposed surface. We denote those bounds as CNsurf
min

and CNsurf
max. Consequently, with regards to target values for the ideal site descriptor,

CN∗, we considered all half-integer values that span the range
[
CNsurf

min, CNsurf
max

]
that is

applicable in each lattice type/orientation combination. We remark that, for applications

where the target value is below the lower bound, the optimal result is the same as the

result for the case of CN∗ = CNsurf
min and, similarly, optimal solutions for the case of

CN∗ = CNsurf
max retain their status as optimal when the target value is above the upper

bound.

As already mentioned, a tile of limited size and/or depth may adversely affect our ability

to obtain the truly optimal design and, hence, one must choose a tile that is sufficiently

large. Unless otherwise noted, the results reported in this chapter correspond to those tile

sizes that yielded the best objective values attainable by a feasible design in light of the

applicable computational resource limits. We discuss the effects of finite tile size later in

this section. In each case, given a chosen tile size, the depth of the tile was selected such

that the tile was deep enough for Eqns. 2.6 to induce full metal occupancy of the canvas

graph’s bottom layer. Specific values are provided in Table 2.2. Adding layers beyond

this depth would have been meaningless, as all lattice positions in those extra layers

would be occupied by atoms of the bulk and the optimal solutions would remain the

same (as long as the tile sizes remain the same). We remark that our choice of tile depth
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corresponds to contexts where there does not apply any application-related restriction

on the thickness of the designed surface pattern. For cases where such restrictions must

be taken into account, the depth can be appropriately limited. At the interest of brevity,

we will refrain from studying this latter case. However, it should be noted that obtaining

optimal solutions for cases with smaller tile depths is easier, in principle, as the resulting

model sizes are smaller.

In all cases, the model was optimized using the MILP solver CPLEX 12.6.3 [95]. The

relative optimality tolerance was set to zero, while the absolute optimality tolerance

was set to the value 0.95, since our model’s objective attains purely integer values and,

hence, this setting guarantees the optimality of our solutions. A solution pool approach

was enabled so as to additionally identify all equivalently-optimal designs, whenever

these exist. All other solver settings were left at default values. All runs were conducted

using 4 threads of an Intel Xeon E5-2680 (2.80 GHz) processor with 16 GB of available

RAM. Finally, it should be mentioned that we used the value ε = 1
2CNbulk

, which is an

appropriate value for the small tolerance in Eqns. 2.5.

2.3.1 Optimal Designs

Figure 2.4 presents the optimal designs for the FCC {111} canvas graph across the full

spectrum of target values for the ideal site descriptor, CN∗, corresponding to a wide

range of catalysis applications. In general, the designs vary drastically as CN∗ values

vary, featuring many transitions in the types of patterns they exhibit. This observation

strengthens our motivation to devise a rigorous approach for determining optimal

surface patterns.

Some basic trends can be noted. For low CN∗ values, the ideal sites tend to exist in the

top layer of the designed surface. In some cases the optimal sites can be interpreted

as the tips of small and closely-packed pyramids (e.g., Fig. 2.4a), while in other cases

as lying on the ridge of parallel grooves (e.g., Fig. 2.4d). Conversely, for high CN∗

values, the ideal sites tend to appear in deeper layers, being located at the bottom of pits

(e.g., Fig. 2.4o). Intermediate values of CN∗ give rise to highly non-intuitive patterns,

with sharp transitions between them. These intermediate values also tend to exhibit

multiplicity of optimal solutions (only one representative design is presented in Fig. 2.4).

A notable case is that of CN∗ = 7.5, which is shown in Fig. 2.4m. Since the native CN
value of an unpatterned FCC {111} crystallographic plane is indeed equal to 7.5, the
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Table 2.2: Effect of tile dimensions on size of resulting model.

Tile Model size

Size Depth |I| # Bin. Vars. # Cont. Vars. # Constr.

FC
C

{1
0
0
}

3 4 48 33 96 594

4 6 144 115 288 1,802

5 8 320 273 640 4,034

6 10 600 531 1,200 7,602

FC
C

{1
1
0
}

5 3 112 93 224 1,330

7 4 324 115 648 3,926

9 5 704 273 1,408 4,034

11 6 1,300 531 2,600 7,602

FC
C

{1
1
1
}

3 4 48 64 96 542

4 7 216 256 432 2,513

5 10 480 627 960 5,618

6 13 1,050 1,248 2,100 12,377

BC
C

{1
0
0
} 5 4 64 93 128 770

6 5 150 181 300 1,852

7 6 288 311 576 3,602

8 7 490 491 980 6,176

H
C

P
{0

0
0
1
} 3 4 48 60 96 542

4 7 216 217 432 2,513

5 10 480 524 960 5,618

6 13 1,050 1,029 2,100 12,377

Note: The number of binary variables refers to those that remain free after variable
fixing due to symmetry-breaking constraints. Number of constraints does not
include variable bound constraints.
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(a) CN∗ = 1.5 (b) CN∗ = 2.0 (c) CN∗ = 2.5 (d) CN∗ = 3.0

(e) CN∗ = 3.5 (f) CN∗ = 4.0 (g) CN∗ = 4.5 (h) CN∗ = 5.0

(i) CN∗ = 5.5 (j) CN∗ = 6.0 (k) CN∗ = 6.5 (l) CN∗ = 7.0

(m) CN∗ = 7.5 (n) CN∗ = 8.0 (o) CN∗ = 8.5

Figure 2.4: Optimal FCC {111} surface patterns for various target site descriptor values. Black
spheres represent “ideal” sites, while gold spheres represent all other atoms.
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(a) (b)

(c) (d)

Figure 2.5: Comparison of results relevant to the oxygen reduction reaction: (a) Design proposed
in Calle-Vallejo et al. [31], (b) Best possible design on tile size 3, (c) Optimal design,
and (d) Alternative optimal design.

unmodified surface is itself optimal in this case and, thus, every site on the unmodified

surface is an ideal site. This is correctly identified by our model. Furthermore, the

result shown in Figure 2.4n is reminiscent of the pattern proposed by Calle-Vallejo et al.

[31] as to the optimal surface site for the oxygen reduction reaction with CN∗ ≈ 8.

For this reaction, an optimal catalyst must balance the energy of adsorption of the

reactant oxygen against the energy of adsorption of the product water. The authors argue

that introducing pits into the platinum FCC {111} surface results in an approximately

threefold higher activity than the unmodified {111} facet, and they propose a pattern

on a hexagonal tile of size 3. The periodic tiling of the pattern by Calle-Vallejo et al.

[31] results into the design depicted in Figure 2.5a, which features 0.096 ideal sites per

unit area. In comparison, our framework can identify a design that is similar to the

one proposed in the aforementioned publication, but with the additional efficiency of

packing as many as three ideal sites at the bottom of pits in the FCC {111} lattice. This

design, which constitutes the best possible solution on a tile of size 3, is depicted in

Figure 2.5b and features 0.289 ideal sites per unit area. However, even this design can be

further improved by extending the canvas to consider tiles of size 4, leading to the best

found design presented in Figure 2.5c with 0.385 ideal sites per unit area. Note that the

optimal design in this case is not unique, as there exists the equivalently-optimal design

shown in Figure 2.5d.
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Figure 2.6: Maximum density of packable ideal sites for various lattices and target site descriptor
values.

Our results further highlight the fact that there may be multiple different types of optimal

sites that can be considered ideal for a specific application. Figures 2.4f, 2.4h and 2.4i

exhibit patterns with two types of optimal sites, which both attain the same optimal site

descriptor value. This exposes another important advantage of our framework, namely

the ability to blend different optimal sites in a common design, as necessary. By doing so,

we can identify better designs than what would have been possible by just attempting to

replicate a single type of optimal site periodically.

The variety of optimal designs exhibited for the FCC {111} case is representative of the

variety exhibited in the other lattice types and orientation combinations we considered.

At the interest of conciseness, we report the full set of results in a more synopsized form

via Fig. 2.6, where we present the objective values of the best known solutions we have

encountered in each case we considered. More specifically, the plot reports the maximum

number of ideal sites, normalized per unit area, as a function of target values for the

ideal site descriptor, CN∗. The unit of area considered here is α2, where α is the lattice’s

inter-atomic distance, a constant that depends on the specific chemistry of interest (i.e.,

type of transition metal).

There are no clear trends in optimal packings across the spectrum of CN∗ values.

Intermediate values (CN∗ ≈ 4− 6) tend to have more feasible ways to pack together

and, therefore, higher values for the optimal density can be attained in these cases. The

overall maximal density that we found in our experiments, 1.154 ideal sites per α2 of
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area, was exhibited for the target value of CN∗ = 7.5 by the unmodified FCC {111} and

HCP {0001} crystallographic planes. This is a reasonable result, since both these planes

expose atoms with a CN value of exactly 7.5 and modifying such native–and already

very closely-packed–surfaces may only lead to a decrease of the number of ideal sites

per unit area. It is also noteworthy that the FCC {111} and the HCP {0001} planes exhibit

the same optimal densities in the majority of cases, an observation that can be attributed

to the similarly hexagonal nature of their corresponding canvas tiles.

2.3.2 Impact of Tile Size and its Periodicity

As demonstrated with the example of Figure 2.5, a larger tile size allows for the possibility

of a more densely-packable pattern to be identified. However, it is obvious that adopting

a larger tile size leads to an increase of the resulting MILP model’s size in terms of both

number of variables and constraints. A summary of tile and model sizes is given in

Table 2.2. Our experience suggests that the CPU time required to solve the problem was

highly dependent on the number of locations in the tile (i.e., the cardinality of set I).

Additionally, the lattice structure and orientation made some instances easier to solve

than others because of how prevalent the effects of variable dependency (via Eqns. 2.6)

and symmetry-breaking constraints (predominantly, Eqns. 2.14) were in each case.

Ideally, the design tile should be small enough for the model to remain tractable and be

optimized relatively quickly. At the same time, we would like to solve the optimization

model on a design tile that is as large as possible so that the optimal solution is not

adversely constrained by the finiteness of the canvas graph and its associated periodicity

considerations. However, in most cases, it is not known a-priori what is the minimum

size of the tile that admits the true optimal solution. Interestingly, it is not always clear

whether such a minimum size tile exists or whether increasing the size of the tile always

provides for a better design. To cope with this issue, we iteratively solved each benchmark

example with increasing tile sizes until the problem was unable to be solved to optimality

within a CPU time limit of 1 hour. Using this iterative approach, we identified as many

tractable solutions as were possible, while getting a sense for the best solution found

at the next larger scale. We can then use these results to infer whether or not a larger

canvas graph would have yielded better designs.

The most popular trend is when the number of optimal sites per area increases until

reaching a stable value at the limit of large tile size, at which point some negligible

oscillations may appear due to periodicity effects. This trend is illustrated in Fig. 2.7,
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which shows the increase of ideal site density as the tile size increases in the case of a

BCC {100} canvas graph with a CN∗ target value equal to 2.5. As the size of the tile was

increased from 4 to 5, the ability to pack ideal sites improved dramatically. However,

at the next larger size, the optimal packing included relatively more non-ideal sites

per area due to the fact that the true optimal design was not periodically-compatible

with that particular tile size. As the size further increased to 7, the optimal packing was

re-expressed, and this oscillation shall keep repeating as the size alternates between odd

and even integer values. The true optimal density of ideal sites corresponds in this case

to the value at odd tile sizes.

In contrast, we encountered some cases that did not stabilize around an optimal density

value and, instead, the density showed a monotonic upward trend that is expected to

continue as the tile size grows. Figure 2.8 illustrates the case of a BCC {100} canvas

graph with a CN∗ = 5 target value. Increasing the tile size manifests in this case the

possibility to grow zig-zag features that expose ideal sites on their slopes but not on their

ridges and valleys. Designs that exploit the canvas in this way suggest that orienting the

lattice along a different plane could serve as a better choice for that particular setting.

Cases like this one highlight the fact that designs identified with our framework will

generally be exogenously affected by the decision to align the surface with a particular

crystallographic plane. To that end, care should be taken to appropriately interpret

solutions and to possibly rethink the choice of inert support or base layer crystal cut that

is employed.

2.3.3 Impact of Symmetry-Breaking Constraints

In this section we discuss the numerical tractability benefits provided by the incorpo-

ration of symmetry-breaking constraints. As already discussed, two versions of such

constraints can be employed. Our computational experience determined that, although

both approaches improved tractability compared to the practice of not breaking sym-

metry at all, it was more beneficial to employ the second version, i.e., to use Eqns. 2.11

and 2.14. This can be attributed to the fact that the use of Eqn. 2.14 in conjunction with

Eqns. 2.6 leads the MILP presolver to determine that a large number of binary variables

Yi can be fixed (to the value of 1). More specifically, placing an atom at a location on the

top layer of the canvas leads to the placement of atoms at below positions, cascading all

the way to the bottom layer along a pyramid that accounts for approximately one-third

of all locations in the tile.
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Figure 2.7: Density of ideal sites in optimal designs across tile sizes. Case of BCC {100} lattice
with CN∗ = 2.5.
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Figure 2.8: Density of ideal sites in optimal designs across tile sizes. Case of BCC {100} lattice
with CN∗ = 5. Two equivalently-optimal designs are presented for each of the cases
(b) and (d).
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Table 2.3 summarizes the difference in the time it took the MILP solver to prove optimality

as well as the number of equivalently-optimal solutions found via the solution pool

technique. The FCC {111} lattice with a tile size of 4 locations on edge was selected as a

challenging problem size to compare computation times. For these cases, each instance

was solved with a single thread in order to make a fairer comparison of computation

times between models. Consequently, the CPU time limit was extended to eight hours.

For the runs without symmetry-breaking constraints, the optimizer typically found the

optimal solutions (as this was later shown by the run with symmetry-breaking enabled),

but ran out of memory before proving the optimality of a design. With the inclusion

of symmetry-breaking constraints, however, the framework’s numerical tractability was

significantly improved, and we were able to prove the optimal designs in all but two

cases. We were also able to achieve a significant reduction in the number of equivalently-

optimal solutions identified, which eventually reduces the burden for post-framework

examination, validation and qualification of the proposed designs by expert opinion.

It should be noted that not all isomorphically-equivalent solutions were excluded from

the feasible space when symmetry breaking was incorporated. In some cases, the design

was balanced such that there were two or more feasible orientations or translations that

satisfied Eqns. 2.11. For example, consider the case of CN∗ = 8, which yields a total of

7 optimal solutions after breaking symmetry. Out of these 7 solutions only 4 solutions

were non-isomorphic, two of which are presented in Figures 2.5c and 2.5d. The 3 of the

identified solutions were symmetric enough to not be disallowed by symmetry-breaking

constraints, differing among each other in the orientation of their triangular pits or

straight grooves. This opens the possibility for further strengthening the symmetry-

breaking scheme and, hence, the potential for further improvements in overall tractability.

It should of course be highlighted that the framework is inclusive in all cases, inasmuch

as it shall never exclude all isomorphic representatives of an optimal pattern, providing

guarantees that it shall always identify all of the non-isomorphic patterns qualified as

optimal under the proposed objective.

2.4 conclusions

In this chapter, we demonstrated a novel approach to designing microstructured surfaces

of transition metal crystals via use of mixed-integer linear optimization techniques. We

developed a surface patterning model, which incorporates the evaluation of appropriate

surface site descriptors at every lattice location, and which detects the presence of ideal

30



2.4 conclusions

Table 2.3: Effect of symmetry breaking on numerical tractability and solution multiplicity

Without Symmetry Breaking With Symmetry Breaking

CN∗ Opt. # Opt. topt tpool Gap Opt. # Opt. topt tpool Gap

Obj. Sol. (min) (min) (%) Obj. Sol. (min) (min) (%)

1.5 3 ≥99,999 1.08 ≥5 0 3 2,364 ≤0.01 0.04 0

2 6 1,431 24.0 58.4 0 6 24 0.214 0.162 0

2.5 9 21 68.9 238 0 9 1 0.652 1.31 0

3 ≥9 - ≥150 - 39 9 15 5.94 17.7 0

3.5 ≥13 - ≥185 - 32 13 34 1.81 9.34 0

4 ≥12 - ≥480 - 45 12 5 45.9 97.6 0

4.5 ≥10 - ≥134 - 150 10 ≥7 283 ≥197 0

5 ≥18 - ≥152 - 30 18 2 12.0 9.19 0

5.5 ≥12 - ≥480 - 94 ≥12 - ≥480 - 8

6 ≥12 - ≥480 - 96 ≥12 - ≥188 - 36

6.5 ≥9 - ≥83 - 240 12 ≥1 306 ≥174 0

7 ≥8 - ≥98 - 268 12 ≥1 405 ≥74.9 0

7.5 27 8 19.5 18.5 0 27 1 0.865 0.566 0

8 ≥9 - ≥118 - 134 9 7 24.7 16.4 0

8.5 3 ≥99,999 153 ≥56 0 3 2,444 1.14 0.864 0

Note: topt is the time spent proving the optimal design and tpool is the additional time spent so as to
identify all equivalently-optimal solutions. For cases when a time or memory limit was reached, we report
the best known feasible solution and optimality gap by that point.
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sites that perform optimally in view of some catalysis application. By packing such ideal

sites as densely as possible in a periodic crystal lattice, we can identify catalytic surfaces

that exhibit maximum activity.

A comprehensive suite of computational studies, conducted across an array of different

lattice types and definitions of ideal lattice sites, demonstrated the effectiveness of

the proposed approach in identifying optimal surface patterns. Our results revealed

a number of non-intuitive optimal designs but, most importantly, showcased that the

optimal surface patterns depend strongly on what type of site is considered to be ideal.

To that end, it can be argued that a rigorous approach to identify them—such as the one

proposed in this chapter—is necessary to unlock the full potential of the catalyst system.
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2.5 notation

Indices

i canvas location

j neighboring canvas location

k symmetry plane

v line of a volcano plot

Sets

I unique (not periodically-equivalent) canvas locations

Ni neighbors to location i

Nb
i neighbors in the layer below location i

K set of planes of symmetry for definition of symmetry-breaking constraints

I+k locations strictly to the one side of symmetry plane k

I−k locations strictly to the other side of symmetry plane k

I0
k locations laying directly on symmetry plane k

Itop locations in the top layer of the canvas

Ibottom locations in the bottom layer of the canvas

V set of lines constituting a volcano plot

Binary Variables

Yi presence of a metal atom at canvas location i

Zi presence of an ideal site at canvas location i

Continuous Variables

CNi coordination number of location i

CNi average coordination number among location i’s neighbors

F∗ performance level for an ideal site
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Parameters

CNbulk maximum possible coordination number (corresponding to crystal bulk)

CNsurf
min minimum coordination number of an atom in crystal’s outer surface

CNsurf
max maximum coordination number of an atom in crystal’s outer surface

CNsurf
min minimum average neighbor coordination number of an atom in crystal’s outer

surface

CNsurf
max maximum average neighbor coordination number of an atom in crystal’s outer

surface

CN∗ average coordination number among neighbors of ideal site (target value)

ε small positive number (tolerance)

pi inverse of the number of canvas locations that are periodically-equivalent to location
i

α inter-atomic distance in crystallographic lattice

av, bv parameters of volcano plot lines
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2.6 appendix : identification of ideal site descriptor value

In this section, we discuss the approach one can follow so as to identify the site descriptors

of the best realizable surface site (or sites). By realizable, we refer to the property that the

site be admitted as a feasible site by the surface patterning optimization model presented

in the Methodology Section. More specifically, given a volcano plot, f
(
CN
)
, that governs

performance in the context of a given application of interest, we seek to determine a

value for the site descriptor CN that would maximize function f and qualify a site as an

ideal site. The maximizer CN value can then serve as a target value in the main model.

The approach presented here involves the modification of a reduced version of the surface

patterning model itself. Let an ideal site i∗, which we consider to be occupied by an atom

that lies on the crystal’s exposed surface. In order to determine its site descriptor, CNi∗ ,

we need only consider up to the second-nearest neighbors of location i∗. Therefore, let

location set I include location i∗ as well as the latter’s first- and second-nearest neighbors.

The set I can be easily extracted from some applicable canvas graph (without applying

any location aliasing due to periodicity). As per the main model, we define occupancy

variables Yi for all i ∈ I, and we also define coordination number variables CNi for all

i ∈ Ni∗ . The following model applies.
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2.6 appendix : identification of ideal site descriptor value

max
F∗ ,Yi ,

CNi ,CNi∗

F∗ (2.15)

s.t. Yi∗ = 1 (2.16)

CNsurf
min ≤ ∑

j∈Ni

Yj ≤ CNsurf
max (2.17)

{Yi = 1} ⇒
{

CNi = ∑
j∈Ni

Yj

}
∀ i ∈ Ni∗ (2.18)

{Yi = 0} ⇒ {CNi = 0} ∀ i ∈ Ni∗ (2.19)

CNi∗ =
1

CNbulk
∑

j∈Ni∗

CNj (2.20)

{Yi = 1} ⇒

 ∧
j∈Nb

i

(
Yj = 1

) ∀ i ∈ I \ Ibottom (2.21)

F∗ ≤ avCNi∗ + bv ∀ v ∈ V (2.22)

CNsurf
min ≤ CNi∗ ≤ CNbulk (2.23)

0 ≤ CNi ≤ CNbulk ∀ i ∈ Ni∗ (2.24)

Yi ∈ {0, 1} ∀ i ∈ I (2.25)

In the above model, the objective (Eqn. 2.15) maximizes the auxiliary continuous vari-

able F∗, which represents the performance level of site i∗, essentially evaluating the

volcano plot at the value CN = CNi∗ ; that is, F∗ = f
(
CNi∗

)
in the optimal solution.

Equations 2.16 and 2.17 qualify location i∗ as a site occupied by a surface atom. Equa-

tions 2.18–2.20 apply variable definitions, as per the main model. Equations 2.21 are

added to mirror the original constraints (Eqns. 2.6) of the main model. This is so as to

guarantee that the ideal surface site remains feasible in the context of the main model

and, hence, that the maximum performance level is indeed realizable. Equations 2.22

then enforce the definition of a volcano plot as the piecewise maximum of a number of

linear functions, f
(
CN
)
= max

v∈V

{
avCN + bv

}
, where av and bv are the coefficients that

determine the vth linear piece.4 Note that, in conjunction with the sense of the objective to

maximize variable F∗, the inclusion of mere “≤” inequalities suffice to correctly evaluate

the volcano plot due to its concave nature. Finally, Eqns. 2.23–2.25 provide applicable

bounds for the continuous variables and declare the binarity of the discrete variables.

4 A volcano plot is typically composed of only two pieces; that is, |V| = 2.
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2.6 appendix : identification of ideal site descriptor value

The solution of the above model identifies the maximum attainable performance by a

physically-realizable site as well as the corresponding site descriptor value that exhibits

this performance. Furthermore, it yields the structure of one possible ideal surface site.

We must highlight, however, that we do not attempt to pack the occurrence of this

particular site in the subsequent, main step, where we solve the surface patterning model.

This is because we recognize that typically more than one ideal surface site structures

may exist and, thus, our intention in the main step is to maximize the cumulative

occurrence of all ideal structures and not the occurrence of any particular one of them.
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2.7 appendix : mixed integer linear programming formulation

Below we present the actual optimal surface patterning model that we used in this study.

This model implements the conceptual model of Eqns. 2.1–2.10 in an equivalent, yet fully

algebraic, MILP form that is compatible to be optimized by an off-the-shelf MILP solver.

max
Yi ,Zi ,

CNi ,CNi

∑
i∈I

Zi (2.26)

s.t. CNi ≤ ∑
j∈Ni

Yj ∀ i ∈ I (2.27)

CNi ≥ ∑
j∈Ni

Yj − CNbulk (1−Yi) ∀ i ∈ I (2.28)

CNi ≤ CNbulkYi ∀ i ∈ I (2.29)

CNi =
1

CNbulk
∑

j∈Ni

CNj ∀ i ∈ I (2.30)

Yi ≥ Zi ∀ i ∈ I (2.31)

CNi ≤ CNsurf
maxZi + CNbulk (1− Zi) ∀ i ∈ I (2.32)

CNi ≥ CNsurf
min Zi ∀ i ∈ I (2.33)

CNi − CN∗ ≤ +εZi +
(

CNbulk − CN∗
)
(1− Zi) ∀ i ∈ I (2.34)

CNi − CN∗ ≥ −εZi − CN∗ (1− Zi) ∀ i ∈ I (2.35)

Yj ≥ Yi ∀ j ∈ Nb
i ∀ i ∈ I \ Ibottom (2.36)

0 ≤ CNi ≤ CNbulk ∀ i ∈ I (2.37)

0 ≤ CNi ≤ CNbulk ∀ i ∈ I (2.38)

Zi ∈ {0, 1} ∀ i ∈ I (2.39)

Yi ∈ {0, 1} ∀ i ∈ I (2.40)

In the above model, Eqns. 2.27 and 2.28 implement the original constraint (Eqn. 2.2)

by setting the variable CNi to the value ∑j∈Ni
Yj only when the binary variable Yi is

activated. Equations 2.29 then implement constraints 2.3 by setting CNi to the value of 0

whenever Yi is not activated. The constant CNbulk serves here as a tight big-M coefficient.

Equations 2.31–2.35 implement the original constraints 2.5, namely they ensure that the

setting Zi = 1 implies all three constraints in the implication’s right-hand-side. Finally,

Eqns. 2.36 implements the implications of original constraints 2.6.
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3
O P T I M I Z AT I O N A C T I V E A N D S TA B L E N A N O S T R U C T U R E D

S U R FA C E S

Mathematical optimization is well-suited to search this design space with algorithms

that provide guarantees of optimality that are not possible with sampling algorithms.

In this work, we develop several formulations for catalytic activity and stability as part

of mathematical optimization models for designing nanostructured surfaces. Using the

oxygen reduction reaction as an example, we show how optimization-based design can

be used to efficiently explore the trade-off of activity against stability of surfaces. We

furthermore demonstrate how nanostructuring can be applied to increase the expected

activity of surfaces under various constraints on the coverage and over-binding of

adsorbates. Our approach can be generally applied to other chemistries of interest, and

is suitably parameterized such that a wide array of systems can be considered, enabling

evaluation of the sensitivity of different systems to constraints on the design space.

3.1 introduction

Advances in catalysis are enabling the development of technologies such as proton

exchange membrane fuel cells [197, 205, 228], solar-powered hydrogen conversion [124,

230], and catalytic conversion of CO2 [48, 102, 203]. In each of these cases, nanomate-

rials have been demonstrated as possible avenues for achieving more active catalysts,

with new and complex nanoparticles being synthesized by increasingly sophisticated

techniques [34, 77, 111, 139, 242, 248]. However, identifying which nanostructure is

optimal for a given application is not straightforward, due to the combinatorial number

of possible materials. Many approaches study the variation in nanoparticle reactivity by

scanning over simple nanoparticle geometries and correlating the number of exposed

sites to reactivity in a “top-down” approach [106, 179, 193, 214]. In a complimentary
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3.1 introduction

way, one can study reactions on specific sites of model crystalline surfaces [71, 163, 164]

and optimize surfaces in a “bottom-up” manner to exhibit favorable site characteristics.

In both cases, computational approaches have been developed to speed up materials

discovery and manage the combinatorial complexity of the resulting search space [26, 58,

103, 191, 218–221].

Previous works have demonstrated advantages when tailoring the nanostructure of

heterogeneous catalysts. In Calle-Vallejo et al. [31], for example, it was shown that the

introduction of pits formed by dealloying, galvanic displacement, or electrochemical

destruction on a platinum surface improved the observed reaction rate threefold over

the unmodified face-centered cubic (FCC) {111} surface. The authors highlighted the

importance of structure on the reactivity, demonstrating that the optimally reactive

surface may not be a simple crystal surface. Additionally, Kozlov and Neyman [120]

found significant differences in the activation energies of methane activation reactions

between nanocluster sites and their respective model crystal surfaces, while Tran and

Ulissi [217] identified dozens of non-ideal catalyst surfaces that are active for CO2

reduction and hydrogen evolution. More recently, Núñez, Lansford, and Vlachos [165]

studied the trade-offs between the expected performance of catalysis on perfect surfaces,

randomly defected surfaces, and engineered defected surfaces. Arguably, tuning the

activity of a surface via means of alloying, applying strain, or introducing defects is

viewed as a plausible practice.

While we can theoretically imagine manipulating individual atoms via a microscope [152],

the likelihood of industrial relevance will depend on scalable synthesis techniques.

In Solis, Barton, and Stephanopoulos [201] the authors formalize the mathematical

algorithms for systematically forming complex nanostructures via top-down directed

assembly methods such as electric fields. Scalable formation of simple patterns may

become practical as we gain more control over the formation of ordered near surface

alloys [29, 110]. Regardless of the possible advances in synthesis routes, there is a clear

need for systematic ways to search the potential material design space to narrow down

the focus on materials that are expected to be high-performing.

In the previous chapter, we showcased how a mathematical optimization approach could

address the design of nanostructured materials and how the resulting mixed-integer

linear programming (MILP) formulations could be solved for a variety of parameterized

example systems. This prior work constituted a first approach for rigorously solving

simple nanostructure optimization problems and was demonstrated under a relatively

idealistic set of simplifying assumptions. More specifically, the reactivity of catalyst
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surfaces was approximated by simply trying to pack “ideal” reactive sites, while also

assuming that all sites experienced adsorption, effectively ignoring the impact of site

coverage. It was also assumed that any designs could be fabricated and would be

stable over time scales of interest. Each of these assumptions served to simplify our

optimization models and generally led to optimistic nanostructure designs. While these

idealized structures are certainly of value as theoretical targets for material performance,

we can obtain progressively more realistic targets by making modular additions to our

framework. In this work, we demonstrate several approaches that can be used to relax

our original simplifying assumptions and obtain more realistic designs.

Firstly, we improve upon the modeling of reactivity by using Boltzmann factors for

reaction turnover on surface sites instead of simply counting “ideal” sites. Secondly, we

regress and incorporate a model for the surface energy of proposed designs, giving us the

capability to constrain the design space to only consider designs that satisfy a threshold

of stability. Thirdly, we adopt an approach that considers how over-binding sites may

interfere with active sites and thereby deactivate a surface. Using the developed models,

we first present a general overview of optimization results over the range of model

parameterizations. Finally, we present a case study on the oxygen reduction reaction

(ORR) to illustrate the potential insights from such a materials design approach.

3.2 modeling methodology

Many of the basic framework concepts introduced in Hanselman and Gounaris [82] are

particularly applicable to this work, and are therefore reiterated here. As a design space,

we considered the space of possible periodic patterns of defects in a base crystallographic

plane. We defined a “canvas” that consisted of several layers of lattice locations at the

surface of a simple crystallographic plane. The canvas was defined in a periodically

consistent way, producing infinitely tillable patterns. We then modeled surface atoms’

contributions to reactivity via simple structure-function relationships and optimized

the placement of atoms on the surface to expose sites with higher reactivity than the

unmodified surface. Figure 3.1 illustrates some example optimal nanostructured surfaces

that are attainable from this approach. The figure also highlights the fact that the space

of possible surface nanostructures is highly combinatorial, often leading to non-intuitive

patterns.
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(a) CN∗ = 3.5 (b) CN∗ = 4.5 (c) CN∗ = 5.5

Figure 3.1: Example optimal nanostructures obtainable from the approach in Hanselman and
Gounaris [82]. Target generalized coordination numbers for reactive sites are labeled
below each image (CN∗). Atoms colored in black correspond to sites attaining those
numbers exactly.

3.2.1 Modeling Reaction Turnover

Our approach to designing nanostructured surfaces relies on the presence of a rela-

tionship between atomic structure and activity. Typically, this relationship is built up

from a series of linear scaling relationships that link activity to reaction intermediate

adsorption energy and activation energy [80, 81, 164]. These important descriptors of

reactivity have also been shown to correlate well with geometric site descriptors, such as

the coordination number [32, 42, 180] and generalized coordination number [11, 30, 184,

252]. In simple cases, the series of structure-function relationships results in a volcano

plot that demonstrates the Sabatier principle.

In our previous work, we took advantage of the fact that volcano plots are often “steep,”

meaning that a relatively specific type of reactive site is expected to dominate the turnover

on the catalyst surface. An example FCC system is plotted below in Figure 3.2 for the

case where CN∗ = 8, demonstrating the fact that sites in a relatively narrow band of

descriptors contribute exclusively to reaction turnover. We therefore simplified the goal

of the nanostructure design problem to pack as many “ideal” reactive sites as possible.

In this work, we intend to lift this simplification. Instead of a single, most reactive type

of site at the tip, or sufficiently near the tip, of the volcano plot, we model an array of

types, even if they are to contribute to the overall reaction turnover to a lesser extent. To

this end, each type of site is associated with a parameter for its turnover relative to the

turnover on the most reactive site, effectively resulting in a Boltzmann factor for reaction

turnover. Given a volcano plot, we can enumerate the possible types of reactive sites that
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3.2 modeling methodology

exhibit relative turnover greater than a threshold (we used 0.01), and account for each

one’s contribution to the overall reactivity. Details on the implementation of this in the

context of the optimization model are discussed in Section 3.3. For now, it suffices to

highlight that, for the example volcano plot in Figure 3.2, the enumeration results in 15

types of contributing reactive sites.
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Figure 3.2: Example volcano plot parameterization and calculated turnover rates, demonstrated
for CN∗ = 8.

3.2.2 Modeling Stability

There typically exists a clear trade-off between the activity of metal surfaces and their

stability. Recently, in fact, Núñez, Lansford, and Vlachos [165] used metaheuristic op-

timization techniques coupled with simplified models of surface properties to design

defected surfaces that form a Pareto-optimal frontier of activity against stability. As a

metric for the latter, the authors used a simple model for surface energy of the defected

slabs, effectively assuming that surfaces with low surface energy are less likely to rear-

range compared to higher energy surfaces. In this work, we build upon this paradigm by

embedding surface energy predictions in an exact (as opposed to heuristic) optimization

approach.

Recognizing that the coordination number of metal atoms has been shown to be a

useful descriptor for the energy of nanostructured slabs and clusters [181], we regressed

surface energies as a function of surface atom coordination and developed a tailored

model for the surface energy of our designs that can be directly embedded in our

MILP formulation. As a database for exploring the impact of nanostructuring on surface

energy, we exhaustively enumerated the set of possible 3 atom × 3 atom slabs that
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3.2 modeling methodology

result from modifications to the FCC {111} surface. These slabs were formed by stacking

atoms layer-by-layer without forming hollow pockets below any atom, thereby leading

to plausible surfaces. This process resulted in over one hundred symmetrically-distinct

nanostructured slabs to consider. In order to calculate slab surface energies, we employed

the approach of Fiorentini and Methfessel [59]. The details of this calculation are deferred

to Section 3.7.

The slab formation energies were calculated using the Generalized Adsorption Simulator

for Python (GASpy) [216] with the Vienna Ab-initio Simulation Package (VASP) [122,

123], as implemented in the Atomic Simulation Environment (ASE) [93]. Calculations

were performed using the Perdew-Burke-Ernzerhof for solids (PBEsol) [173] functional

along with the default pseudopotential supplied by VASP version 5.4. Bulk relaxations

were performed with a k-point grid of 10× 10× 10, an energy cut off of 500 eV, and with

only isotropic relaxations allowed, while slab relaxations were performed with a k-point

grids of 4× 4× 1 and an energy cutoff of 350 eV. For slab relaxations, we fixed atoms

more than 3 Å from the top and bottom of the slabs in the scaled Z-direction. No spin

magnetism or dispersion corrections were included.

Stability Model Regression

Given the database of slab surface energy calculations, we were able to regress a simple

bond-counting model for predicting the surface energy of larger slabs. As descriptors, we

considered the count of atoms on the nanostructured surface with coordination between

3 and 11, normalized against the number of atoms in the FCC {111} plane (i.e., 9 for the

3× 3 slab). This linear predictor takes the form of Eqn. 3.1, where Dp are the counts

of atoms with coordination p, Ap are the coefficients for coordination p, and A0 is the

model intercept.

Esurf = A0 +
11

∑
p=3

ApDp (3.1)

In Figure 3.3 we summarize the regressed linear model for surface energy against surface

atom coordination, while we provide the exact coefficient values in the Supporting

Information.

Notably, two important features of the surface energy model allow us to more efficiently

encode Eqn. 3.1 in MILP models. First, the contributions to surface energy can be broken

down into a per-site basis. Secondly, the model contributions are roughly linear with

respect to coordination number. Using these features, we can reinterpret the model by
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Figure 3.3: Linear regression of surface energy against coordination

breaking up contributions to the surface energy on a per atom basis and using simpler

expressions based on coordination number. For this, we transform the model, from

variables Dp for the count of sites with a given coordination, to a model with variables

CNi for the coordination of each site i ∈ Isurf, where Isurf is the set of surface sites

in a given design. The rearranged model is given below in Eqn. 3.2 and, with minor

modification, can be embedded directly in our MILP surface design models, since the

latter already features the necessary variables to encode coordination numbers as part of

the structure-activity relationship. A summary of the identified coefficients is provided

in Section 3.8.

Esurf = A0 + ∑
i∈Isurf

(β CNi + γ) (3.2)

3.2.3 Modeling Coverage

Many density functional theory (DFT) adsorption studies include data from simple

planar or stepped surfaces of a single metal, displaying one or a few types of sites [72].

More precisely, these surfaces may display multiple potential binding sites (i.e., on top,

hollow, bridge), but the strongest binding site is typically dominant in low-coverage envi-

ronments due to relatively low barriers between binding configurations. In this way, the

metric of activation energy plotted on the traditional volcano plot is the activation energy

of particular binding configuration on a surface. In some cases, the adsorption energy

can be shown to be significantly dependent on surface coverage, and therefore, activation
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3.2 modeling methodology

energies should be evaluated for the expected coverage and surface configuration. [25,

113, 194]

When considering nanostructured materials, the volcano plot still serves to reflect the

dependence of activation energy on site descriptors; however, the reactivity of the

nanostructured surface may not be directly inferred from the volcano plot. With multiple

types of sites present on a surface, the overall surface reactivity should be a weighted

combination of the reactivity on each type of site. At the extreme of 100% coverage, all

sites should contribute to the turnover of the reaction according to their individual site

activation energies (i.e., overall reactivity is determined by equally weighting all sites).

At the extreme of low coverage, the presence of stronger-binding sites and the mobility

of adsorbates on the surface becomes important to model.

The impact of coverage on adsorption energies and associated chemical reaction pathways

is commonly studied for the case of planar surfaces, [108, 194, 240] but poorly described

on nanostructured or defected surfaces. In Bray, Smith, and Schneider [25], the authors

identify a wide range of adsorption configurations across different coverage levels for a

low-symmetry stepped surface. Notably, the authors highlight the increased complexity

of modeling coverage on low-symmetry surfaces as well as the sensitivity to adsorption

on surface kinks. In Xu and Kitchin [240], the authors identify some scaling relations

that hold for adsorption energies across a range of coverages, but the conclusions are

particular to specific similarities in geometries of adsorption sites.

In general, we would like to model the likelihood of adsorption and diffusion [70, 171] on

the catalyst surface but observe that this would become prohibitively complicated

to encode in MILP models. For our optimization models, we propose two simple

ways to approximately incorporate the effect of coverage. As a starting point, we can

formulate our MILP to prohibit adsorption sites that bind too strongly according to

the volcano relationships. This can be thought of as reducing the count of such sites to

fall below a budget. In this way, even if some adsorbates irreversibly bind to attractive

sites on the surface, some fraction of adsorbates may still be able to adsorb on more

reactive sites. A second, stricter approach is to require that the reactive sites also be

the strongest adsorbing sites on the surface. This pessimistic approximation is expected

to be particularly useful in modeling the situation at the limit of low coverage. The

implementation of these two approaches is described in more detail in Section 3.3.3

below.
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3.3 mathematical optimization formulation

Given a model for the activity and stability of catalyst surfaces, our approach calls

for formulating mathematical optimization models to identify optimal nanostructure

designs. We first present a base model that takes as input a function that predicts activity

from atom coordination. Then, we present several sets of modular constraints that encode

the effects of surface energy, surface deactivation from over-binding sites, and adsorbate

surface coverage. The model is generically parameterized such that optimal designs can

be found in a range of systems of interest and for a series of increasingly restrictive

constraints. In all cases, the models include discrete decisions and linear constraints,

leading to MILPs that we present here via implication logic. In several cases, there

are additional modeling efficiencies that can be employed. The more efficient MILP

formulation that we actually used in our computational studies is presented in detail in

the Supporting Information.

3.3.1 Packing Reactive Sites

The key decision variables, Yi, correspond to the choice of atoms at lattice sites i ∈ I,

where I represents the periodic slab locations used as the “canvas” for the design. From

the placement of atoms, the coordination number, CNi, can be counted via Eqns. 3.4

and 3.5. The generalized coordination number, CNi, is counted via Eqn. 3.6. The presence

of a reactive site in location i is indicated via a binary variable Zi and imposes several

requirements on the site (Eqn. 3.7) that can be generically expanded to match the

application of interest. Here, it requires that an atom be present in the specific location,

that this atom’s coordination be within reasonable bounds to be considered on the

surface, and that the generalized coordination number be within bounds to be considered

reactive. The identity of reactive sites is further refined by assigning a type of reactive

site, indicated by Xic for all sites i ∈ I as well as all types c ∈ C. In Eqns. 3.8 and 3.9,

we assign types of active sites based on their value of generalized coordination number

and link them to the broader definition of reactive sites. In Eqn. 3.10 we require that

atoms be stacked on top of each other, forming well-connected surfaces and disallowing

low-coordinated atoms. Finally, in Eqns. 3.11–3.15 we declare the type and place bounds

on this optimization model’s variables.
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As the objective function (Eqn. 3.3), we consider a general weighting of the variables

Xic, indicating the contribution of different conformations to the reactivity of the surface.

For example, one could choose αc weights as pure zeros and ones, aiming to only pack

“ideal” conformations on the surface, as we previously demonstrated in Hanselman and

Gounaris [82]. Alternatively, a set of weights for the relative turnover rate of sites can be

modeled, allowing for less than ideal contributions to reactivity.

Similar to our observation in Hanselman and Gounaris [82], we found that the high

degree of symmetry in our design space hindered our ability to optimize designs

on practically sized tiles. This symmetry is due to the fact that multiple equivalent

translations and rotations of fully-formed designs are feasible in the original design

space. This requires the optimization algorithm to search a branch and bound tree that

is several times larger than necessary, exponentially increasing the difficulty of solving

the optimization problem [147]. In this work, we broke symmetry by choosing to fix a

single atom in the top plane of the design canvas. This resulted in a pyramid of locations

below the fixed atom that were immediately also fixed as a result of Eqn. 3.10, anchoring

the design and reducing the number of possible equivalent translations and rotations.
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3.3 mathematical optimization formulation

While we tested several other approaches for breaking symmetry, none outperformed

this simple variable fixing, and therefore are not presented here.

max
Yi ,CNi ,CNi ,

Xic ,Zi

∑
c∈C

αc ∑
i∈I

Xic (3.3)

s.t. {Yi = 1} ⇒
{

CNi = ∑
j∈Ni

Yj

}
∀i ∈ I (3.4)

{Yi = 0} ⇒ {CNi = 0} ∀i ∈ I (3.5)

CNi =
1

CNbulk ∑
i∈I

CNi ∀i ∈ I (3.6)

{Zi = 1} ⇒


Yi = 1

CNsurf
LB ≤ CNi ≤ CNsurf

UB

CN∗LB ≤ CNi ≤ CN∗UB

 ∀i ∈ I (3.7)

{Xic = 1} ⇒
{

CNc
LB ≤ CNi ≤ CNc

UB

}
∀i ∈ I, ∀c ∈ C (3.8)

∑
c∈C

Xic = Zi ∀i ∈ I (3.9)

{Yi = 1} ⇒
{

Yj = 1
}

∀i ∈ I, ∀j ∈ Nbelow
i (3.10)

Yi ∈ {0, 1} ∀i ∈ I (3.11)

CNi ∈
[
0, CNbulk

]
∀i ∈ I (3.12)

CNi ∈
[
0, CNbulk

]
∀i ∈ I (3.13)

Zi ∈ {0, 1} ∀i ∈ I (3.14)

Xic ∈ {0, 1} ∀i ∈ I, ∀c ∈ C (3.15)

3.3.2 Encoding Surface Energy

Motivated by the surface energy model identified in Eqn. 3.2, we formulated a generic

block of constraints to encode the contribution from surface atoms via a logical im-

plication. In Eqn. 3.16 we break down the prediction of the surface energy, Esurf, into

contributions on a per site basis, denoted as Ei. In Eqns. 3.17 and 3.18, we require that

any placed atom have a contribution greater than a piecewise linear function and that

empty sites have zero contribution. The variable bounds of the two types of introduced

variables are given in Eqns. 3.19 and 3.20, respectively.
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3.3 mathematical optimization formulation

The upper bound on surface energy serves to constrain the design space to include only

lower energy–and therefore more stable–surfaces. Choosing a value for this bound is not

straightforward, but may be inferred from an analysis similar to the Wulff construction

for determining nanoparticle shape [16]. More specifically, the highest energy facet of a

nanoparticle that is exhibited in the application of interest is a plausible upper bound,

as we can imagine replacing that nanoparticle facet with our nanostructured surface.

Furthermore, we find that it is informative to parametrically optimize the resulting

optimization models and identify a hierarchy of optimal designs under increasingly tight

constraints on surface energy, establishing the trade-off (Pareto) frontier between activity

and stability.

Esurf = A0 + ∑
i∈I

Ei (3.16)

{Yi = 1} ⇒ {Ei ≥ βCNi + γ} ∀i ∈ I (3.17)

{Yi = 0} ⇒ {Ei = 0} ∀i ∈ I (3.18)

Ei ∈ [ELB, EUB] ∀i ∈ I (3.19)

Esurf ∈
[

Esurf
LB , Esurf

UB

]
(3.20)

3.3.3 Accounting for Adsorbate Coverage

In our models we assume that all surface sites can potentially experience adsorption

and are equally accounted for in the objective. However, at the limit of low coverage,

the sites with the strongest adsorption energies will be covered first and may modify

the adsorption energies of other nearby sites, thereby changing and possibly reducing

their contribution to activity. We have developed two approaches to better account for

reactivity at the low coverage regime. In the first approach, we attempt to mitigate the

effect of strongly-adsorbing sites by constraining the number of such sites to be below

a budget. In the second approach, we pessimistically assume that only the strongest

adsorbing sites contribute to the reactivity of the surface and appropriately modify the

constraints for indicating reactive sites.

Budgeting Over-binding Sites

In this approach, we seek nanostructured surface designs that avoid strongly-binding

sites, which are assumed to be relatively unreactive for reactions of interest. More
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3.3 mathematical optimization formulation

specifically, if a site falls below some tolerance, ∆CNob
, from the target generalized

coordination number, this can be indicated via an auxiliary binary variable Qi that we

introduce to the model for this purpose. The count of such sites can then be constrained

to be below an “allowable” budget. This corresponds to the assumption that adsorbates

will prefer to adsorb on strong-binding sites before spilling over to other adsorption sites.

By setting ∆CNob
to a large number, we are only prohibiting sites that very strongly

bind the reaction intermediates, whereas if we choose a small value, we can prohibit any

sites that are slightly more attractive than the ideal reaction sites.

In Eqn. 3.21, we define a simple cutoff in terms of generalized coordination number, but

our model can more generally support more complicated descriptions of over-binding

sites, as required. In Eqn. 3.22 we indicate the presence of an over-binding site with

binary variable Qi. In Eqn. 3.23 we limit the presence of such sites to be below a budget

Nob, effectively requiring most of the adsorption to take place on reactive sites.

CNob
= CN∗ + ∆CNob

(3.21){
CNi ≤ CNob

}
⇒ {Qi = 1} ∀i ∈ I (3.22)

∑
i∈I

Qi ≤ Nob (3.23)

Qi ∈ {0, 1} ∀i ∈ I (3.24)

Requiring Coverage of Reactive Sites

Using similar MILP logic, we can incorporate a more explicit model for the expected

adsorption on the nanostructured surface. As a first approximation, we can model

adsorption as only taking place on the lowest-coordinated sites, which tend to be the

stronger-binding sites. More specifically, we introduce a new binary variable Ci to encode

the fact that a location i is covered. Then, in Eqn. 3.25 we identify the lowest value of

the generalized coordination number for the sites with atoms present, CNcov
, while

in Eqn. 3.26 we require that sites considered as covered have coordination equal to
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3.4 results and discussion

CNcov
. Finally, in Eqn. 3.27, we require that reactive sites only be counted if they are also

expected to be covered.

{Yi = 1} ⇒
{

CNcov ≤ CNi

}
∀i ∈ I (3.25)

{Ci = 1} ⇒

 CNi ≤ CNcov

Yi = 1

 ∀i ∈ I (3.26)

{Zi = 1} ⇒ {Ci = 1} ∀i ∈ I (3.27)

CNcov ∈
[
0, CNbulk

]
∀i ∈ I (3.28)

Ci ∈ {0, 1} ∀i ∈ I (3.29)

3.4 results and discussion

The formulated MILP models were parameterized so that they can represent an array

of volcano plots, stability thresholds, number of over-binding sites, and coverage. Spe-

cific MILP formulations are provided in Section 3.9. Here, we present some general

observations for example systems, illustrating the flexibility of the modeling framework.

As an example of a design space, we chose to use a slab of size 4× 4 and 7 layers to

allow for any design that satisfies Eqn. 3.10. Regarding the use of a volcano plot to

govern activity, there are several parameters of interest that could be investigated. At

the interest of simplicity of the exposition, however, we shall adopt throughout our

computations the shape (i.e., the slopes and minimum activation energy value) of the

volcano plot for the oxygen reduction reaction presented in Calle-Vallejo et al. [31], while

sliding its tip horizontally to mimic a possible variety of application chemistries. Then,

for each target generalized coordination number of interest, we computed turnover rates

at room temperature for the activation energy defined in the corresponding volcano plot

by solving our optimization model.

We consider three general cases of models. First, we solved the base formulation

(Eqns. 3.3–3.15) with the additional constraints on surface energy (Eqns. 3.16–3.20).

Next, we solved models with the base formulation, stability constraints, and the block of

constraints on the number of over-binding sites given in Eqns. 3.21–3.24. Finally, as an

alternative to modeling over-binding sites, we solved models with the base formulation,

stability constraints, and coverage constraints defined in Eqns. 3.25–3.29.
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3.4 results and discussion

Our models were parameterized with a description of ideal reactive sites (CN∗), a

maximum allowable values for surface energy (Esurf
UB ), a definition of over-binding sites

(CNob
), and a corresponding budget of such sites (Nob), where applicable. In all cases,

the optimization solver CPLEX 12.8.0 was able to either identify optimal solutions or

prove infeasibility of the model within the one hour time limit on a standard desktop

computer.

Figure 3.4 summarizes some example results. On each plot, we show the objective value

(corresponding to multiples of turnover on ideal reactive site) for various levels of the

surface energy constraint. Lines that are lower on the plot have lower surface energy and

therefore are more stable but exhibit fewer reactive sites. In general, nanostructuring is

able to introduce additional ideal reactive sites that are unavailable in low surface energy

structures. Figure 3.5 demonstrates this trend for the case of CN∗ = 3.5. However, there

are some exceptions where the optimal design for the target application is both stable

and reactive. For example, in the cases of CN∗ = 7.5 and CN∗ = 6.5, the optimal design

is the base FCC {111} plane or a singly defected {111} plane, respectively.

Scanning across Figures 3.4a–3.4c, we notice a general decrease in the achievable re-

activity due to increasingly stringent constraints on over-binding sites and coverage.

By comparing Figure 3.4b and Figure 3.4c, we observe a drastic reduction in the ob-

jective values for cases with CN∗ = 6, 7, or 8 due to the constraints disallowing any

over-binding sites. Similarly, across Figure 3.4c and Figure 3.4d, most of the designs

remain the same or decrease in quality when coverage is explicitly modeled. However,

in one case, CN∗ = 8, the optimal design improves slightly because non-ideal sites that

were previously considered over-binding (and thus were forbidden) can serve as the

explicitly-modeled adsorption sites. Similar comparisons can be made in many cases,

providing hints about the sensitivity of each application to the various constraints on the

design space and allowing practitioners to determine the relative importance of off-target

reactivity, over-binding sites, coverage, and stability.

3.4.1 Case Study: Oxygen Reduction Reaction

As demonstrated in the previous section, our optimization framework is generically

able to address a variety of systems. In this section, we focus on a particular example

to demonstrate the possible insights that can be gained from the optimal solutions.

Specifically, we are considering the oxygen reduction reaction (ORR), a key limiting

reaction in proton exchange membrane fuel cells [195]. As identified in Calle-Vallejo et al.
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(d) Coverage on lowest CN sites

Figure 3.4: Trends in quality of designs for a range of descriptions of ideal reactive site and
constraints on the design space. Each line represents a different constraint on surface
energy. Parameters for constraints on over-binding sites and coverage are given below
each graph.

[31], the ideal reaction site has generalized coordination CN∗ = 8.0. The commonly used

baseline material for comparison is the platinum FCC {111} surface with generalized

coordination CN∗ = 7.5. Here, we aim to identify nanostructured surfaces that expose

sites with slightly higher generalized coordination number than the base FCC {111}

surface.

In the entirely unrestricted case (i.e., no constraints on surface energy, over-binding sites,

or coverage), we find a pitted surface with highly reactive sites around closely packed

pits on the surface (see Figure 3.6a). Upon adding a constraint on the number of allowed

over-binding sites (CNob
= 4.5, Nob = 0), we find a different structure with reactive

sites at the bottom of ridges in the surface (see Figure 3.6b). Note how, in the first case,

the design has 6 ideally reactive sites per 4× 4 tile, while the design in the second case
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(a) Esurf
UB = 0.170 eV/Å

2

Obj. Val.=8

(b) Esurf
UB = 0.160 eV/Å

2

Obj. Val.=6

(c) Esurf
UB = 0.150 eV/Å

2

Obj. Val.=4

Figure 3.5: Example optimal surfaces for CN∗ = 3.5 under increasingly restrictive surface energy
constraints. In each figure the sites that contribute to reactivity are colored black.

exhibits 4 ideal reactive sites per such tile. Furthermore, when we incorporate a constraint

on the surface energy, the optimal design changes to a pattern of adatoms on the FCC

{111} plane (see Figure 3.6c). In this case, there are no sites with ideal site descriptors,

but several sites that partially contribute, resulting in an objective value corresponding

to 1.22 ideally reactive sites per tile. If we instead choose to model coverage only on

the lowest coordinated sites, each of these solutions are sub-optimal, since they each

contain unreactive, low-coordinated sites. In this case, the optimal solution defaults to

the unmodified FCC {111} surface, with an objective value of 0.39 ideal reaction site

equivalents (see Figure 3.6d).

These results highlight a recurring theme arising from our optimization-based design

framework. In the most optimistic case, we have nanostructured surfaces that tend

to exhibit relatively complicated patterns and are high in energy. As more realistic

constraints are applied, the high-energy sites are prohibited and the optimal patterns

become simpler. Eventually, only simple crystal planes are stable enough to satisfy

the most stringent requirements. Importantly, the spectrum of optimal designs under

various restrictions should all be collected and analyzed via some secondary criteria.

Those nanostructured designs that pass further screening can serve as targets for future

material synthesis efforts, as they constitute non-intuitive solutions that may improve

upon the simple planar surfaces.

In general, one of the key benefits of the proposed mathematical optimization approach

is its ability to systematically search the design with guarantees that we shall find the

best design up to the level of detail with which the system is modeled. In particular,

we have shown how to encode in the model detailed considerations about the activity,

stability, and coverage, leading to better screening of candidate material structures.
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(a) Unrestricted (b) No stability constraint,
CNob

= 4.5,
Nob = 0

(c) Esurf
UB = 0.145 eV/Å2,

CNob
= 4.5,

Nob = 4

(d) Esurf
UB = 0.140 eV/Å2,

adsorption on lowest CN

Figure 3.6: Example optimal designs for the ORR case. In each figure, the sites that contribute to
reactivity are colored black.

Furthermore, when higher-fidelity comparisons are needed, the proposed approach

allows for the collection of sequences of high-performing designs (beyond the optimal

one) by employing the so-called “solution pool” feature of state-of-the-art optimization

solvers. Collecting such sequences enables additional screening against criteria that

might not have been explicitly accounted for in the optimization model.
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3.5 conclusions

3.5 conclusions

In this work, we demonstrated several techniques for designing nanostructured reactive

surfaces via mathematical optimization models. We considered the trade-off of activity

versus stability for defected surfaces and rigorously optimized to identify patterns that

are provably optimal. We showed how to model general contributions to surface reactiv-

ity by using indicators for multiple types of reactive sites. Additionally, we regressed a

simplified model for the surface energy of defected surfaces that was embedded directly

into the optimization formulation, while we proposed enhancements of the latter to ac-

count for the effects of adsorbate coverage. Our results for the oxygen reduction reaction

highlighted the variety of designs that can be reactive under different assumptions. Over-

all, the approach of designing nanostructures via mathematical optimization establishes

optimistic targets of material performance and can serve as a systematic guide for future

synthesis efforts.
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3.6 notation

Indices

p term in surface energy model

i, j canvas site

c type of active site

Sets

I canvas sites

Isurf surface sites in a given design

Ni canvas sites neighboring to site i

Nbelow
i canvas sites below site i

C types of active sites

Variables

Dp count of sites with coordination p

Yi presence of an atom at site i

CNi coordination number of site i

CNi generalized coordination number of site i

Zi presence of a reactive site at i

Xic presence of reactive site of type c at site i

Esurf surface energy of slab

Ei contribution of site i to slab surface energy

Qi presence of over-binding site at i

CNcov generalized coordination of covered sites

Ci presence of coverage at site i
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3.6 notation

Parameters

A0,Ap coefficients of regressed surface energy model

αc contribution to objective function of reactive site of type c

CNbulk coordination of bulk lattice

CNsurf
LB ,CNsurf

UB lower, upper bounds on coordination number for surface sites

CN∗LB,CN∗UB lower, upper bounds on generalized coordination for reactive sites

CNc
LB,CNc

UB lower, upper bounds on generalized coordination number for reactive sites of
type c

β,γ coefficients of per atom contributions to surface energy

ELB,EUB lower, upper bounds on per atom contribution to surface energy

Esurf
LB ,Esurf

UB lower,upper bounds on slab surface energy

CNob maximum generalized coordination number of over-binding sites

∆CNob offset in generalized coordination number between ideal
and over-binding site

Nob number of permitted over-binding sites
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3.7 appendix : surface energy calculation

In order to accurately calculate slab surface energy, we employed the approach of

Fiorentini and Methfessel [59]. Here, we briefly review the calculation steps. First, we

calculated the slab formation energies for a series of slabs with increasing number of

bulk layers. By fitting a linear regression between the DFT-calculated zero-point energies

and the number of atoms in the slab, we can identify the “zero-thickness” energy, which

is equivalent to the surface energy due to both sides of the slab. We then subtract out

the contribution to surface energy from the FCC {111} plane on the bottom of the slab

to obtain the surface energy to create the nanostructured surface. As the FCC {111}

energy, we use 0.128 eV/Å2. An example set of 3× 3 slabs with linear regression of

zero-thickness energy are shown below in Figure 3.7.

(a) Top-down (b) 1 extra layer (c) 2 extra layers (d) 3 extra layers
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Figure 3.7: Example extrapolation of DFT calculations to identify zero-thickness surface energy.
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3.8 appendix : surface energy model regression

Given a set of calculations for the surface energy of nanostructured slabs, we can

regress a model for the surface energy as a function of site coordination numbers. This

is conceptually similar to a simple bond-breaking model, where each bond is given

weighting according to the coordination atom of each atom.

In this regression, we first tabulated the number of sites with a given coordination

number. Because of the way that slabs were chosen, no sites with coordination number 1

or 2 were present in the dataset. Additionally, we exclude the sites with coordination 12,

as they are irrelevant to the formation of surfaces. The count of sites was then normalized

by the number of sites in the FCC{111} surface (9 for the 3× 3 slabs). The coefficients of

the resulting model are given in the below table.

Table 3.1: Surface energy model parameters

p Ap Units

0 1.01E-1 eV/Å2

3 2.74E-1 eV/Å2 per normalized count

4 2.47E-1 eV/Å2 per normalized count

5 2.03E-1 eV/Å2 per normalized count

6 1.73E-1 eV/Å2 per normalized count

7 1.17E-1 eV/Å2 per normalized count

8 6.63E-2 eV/Å2 per normalized count

9 2.55E-2 eV/Å2 per normalized count

10 -2.38E-2 eV/Å2 per normalized count

11 -5.18E-2 eV/Å2 per normalized count

Note how the values of the regressed coefficients of the slab surface energy model

were approximately linear with respect to coordination number (see also Figure 3.3b).

Although, in principle, a general piecewise linear model for the site contributions to

surface energy could be embedded in our MILP formulation, we decided to exploit

the fact that the trend was roughly linear and to instead embed a simpler set of linear
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Figure 3.8: Graphical interpretation of the simplified constraints for surface energy

constraints (Eqns. 3.49–3.51). The parameters for the the latter are given in the below

table, while the constraints themselves are graphically illustrated in the associated figure.

Table 3.2: Simplified surface energy model parameters

Term Value Units

A0 1.01E-1 eV/Å2

β1 -4.29E-2 eV/Å2 per CN per site

γ1
4.15E-1 eV/Å2 per site

β2
5.18E-2 eV/Å2 per CN per site

γ2 -6.21E-1 eV/Å2 per site
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3.9 appendix : detailed mixed integer linear program formulation

Base Model

max
Yi ,CNi ,CNi ,

Xic ,Zi

∑
c∈C

αc ∑
i∈I

Xic (3.30)

s.t. CNi ≤ ∑
j∈Ni

Yj ∀i ∈ I (3.31)

CNi ≥ ∑
j∈Ni

Yj − CNbulk (1−Yi) ∀i ∈ I (3.32)

CNi ≤ CNbulkYi ∀i ∈ I (3.33)

CNi =
1

CNbulk ∑
i∈I

CNi ∀i ∈ I (3.34)

Zi ≤ Yi ∀i ∈ I (3.35)

CNi ≥ ZiCNsurf
LB ∀i ∈ I (3.36)

CNi ≤ ZiCNsurf
UB + (1− Zi)CNbulk ∀i ∈ I (3.37)

CNi ≥ ZiCN∗LB ∀i ∈ I (3.38)

CNi ≤ ZiCN∗UB + (1− Zi)CNbulk ∀i ∈ I (3.39)

CNi ≥ XicCNc
LB ∀i ∈ I, ∀c ∈ C (3.40)

CNi ≤ XicCNc
UB + (1− Xic)CNbulk ∀i ∈ I, ∀c ∈ C (3.41)

∑
c∈C

Xic = Zi ∀i ∈ I (3.42)

Yi ≤ Yj ∀i ∈ I, ∀j ∈ Nbelow
i (3.43)

Yi ∈ {0, 1} ∀i ∈ I (3.44)

CNi ∈
[
0, CNbulk

]
∀i ∈ I (3.45)

CNi ∈
[
0, CNbulk

]
∀i ∈ I (3.46)

Zi ∈ {0, 1} ∀i ∈ I (3.47)

Xic ∈ {0, 1} ∀i ∈ I, ∀c ∈ C (3.48)
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3.9 appendix : detailed mixed integer linear program formulation

Encoding Surface Energy

Esurf = A0 + ∑
i∈I

Ei (3.49)

Ei ≥ β1CNi + γ1Yi ∀i ∈ I (3.50)

Ei ≥ β2CNi + γ2 ∀i ∈ I (3.51)

Ei ∈ [ELB, EUB] ∀i ∈ I (3.52)

Esurf ∈
[

Esurf
LB , Esurf

UB

]
(3.53)

Budgeting Over-binding Sites

CNi ≥ CNob
(1−Qi) ∀i ∈ I (3.54)

∑
i∈I

Qi ≤ Nob (3.55)

Qi ∈ {0, 1} ∀i ∈ I (3.56)

Requiring Coverage of Reactive Sites

CNcov − CNi ≤ CNbulk (1−Yi) ∀i ∈ I (3.57)

CNi − CNcov ≤ CNbulk (1− Ci) ∀i ∈ I (3.58)

Ci ≤ Yi ∀i ∈ I (3.59)

Zi ≤ Ci ∀i ∈ I (3.60)

CNcov ∈
[
0, CNbulk

]
∀i ∈ I (3.61)

Ci ∈ {0, 1} ∀i ∈ I (3.62)
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4
O P T I M I Z I N G O X Y G E N VA C A N C Y F O R M AT I O N I N D O P E D

P E R O V S K I T E S

Perovskite materials are being considered for a variety of applications due to their

demonstrated capacity to rapidly transport lattice oxygen. Importantly, controlling the

dopant concentration in the perovskite lattice has been shown to tune the oxygen vacancy

formation energy, an important descriptor for oxygen ion diffusivity. In this chapter, we

utilize BaFe1−xInxO3−δ as a model perovskite for investigating the role that atomic-scale

patterns of substitutional doping at the B-site has on the formation of oxygen vacancies.

Using this model material, we demonstrate a framework for evaluating the atomic-scale

properties of possible dopant motifs exhibited within a doped perovskite lattice. For each

relevant motif, we calculate via density functional theory the oxygen excess energy, which

is a robust descriptor for evaluating the bulk oxide ion diffusion. We then formulate and

solve a mathematical optimization model to identify patterns of dopant placement that

yield materials with desirable properties. These results provide optimistic targets for

material performance and may inform future material synthesis efforts.

4.1 introduction

Facile oxygen transport is of great importance in a variety of transformative energy

technologies. For example, oxygen carriers for transporting oxygen from air into chemical

reactors are of the utmost importance for chemical looping combustion and reforming

processes [89, 159, 188, 192]. In the context of fuel cells, mixed ion and electron conductors

for oxygen transport and reduction have received attention as they alleviate the need for

traditional precious-metal catalysts [178, 182, 210]. Similarly, novel oxygen-permeable

membranes are of interest in general for oxygen separation and purification [54, 140].
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4.1 introduction

Ceramic materials based on perovskites have been identified as excellent candidates for

each of these applications due to their superior stability and tunability.

Perovskites are a family of mixed oxides with the general formula ABO3, where the

“A-site” is typically an alkaline earth metal or lanthanide and the “B-site” is typically a

transition metal. Prior research has illustrated the introduction of dopant in either site

can have a dramatic impact on the material’s performance in various process contexts.

In general, it has been observed that the size of dopant in the A-site affects size and

distortion of the unit cell, while the choice of B-site dopant impacts the non-stoichiometry

available to the material, catalytic properties, and bulk oxide conductivity [157]. In the

context of ion conductors for fuel cells, Ishihara, Matsuda, and Takita [98] showed that

choices of dopant on both A-sites and B-sites could increase the concentration of oxygen

vacancies in the lattice, thereby improving the diffusion of oxygen through the material.

Taskin, Lavrov, and Ando [212] showed that introducing a second A-site metal could

form a layered structure that improved oxygen diffusion through the lattice significantly.

Motohashi et al. [153] demonstrated that double perovskite BaYMn2O5+δ was able to

release an equivalent of one oxygen atom per (double perovskite) unit cell, a remarkable

extent of reduction, in a rapid and reversible fashion.

In this chapter, we aim to consult very localized, atomic level information from traditional

computational chemistry tools, such as density functional theory (DFT), and use this

information to design “patterns” across much larger size scales. However, due to the vast,

combinatorially-complex design space that arises from the many choices for perovskite

composition and the possibility of patterned atomic placement of dopant in the lattice,

an exhaustive search becomes intractable. To circumvent this challenge and facilitate

the search for novel materials, we propose applying rigorous optimization frameworks

that are more commonly utilized in the field of process systems engineering research. In

order to translate the search for high-performing perovskites into a formal mathematical

optimization problem, we first need to establish the impact of dopant structure on the

performance of perovskites. Given such a structure-function relationship derived from

first-principles, the search for the design of a nanostructured perovskite material that

performs optimally in view of some application can then be cast as a mixed-integer

linear programming (MILP).

The use of MILP for the design of perovskites becomes possible due to the crystalline

nature of such materials, where the atomic placement is restricted to well-defined

locations on a lattice, and it is especially advantageous from a numerical perspective due

to the great advances in the ability of modern MILP solvers to address relatively large
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scale models. Such benefits have, for example, been demonstrated in Hanselman and

Gounaris [82], where the design of patterned nanostructured transition metal surfaces

was also cast as an MILP model, allowing the identification of non-intuitive designs out

of the myriad possible configurations for such crystalline materials.

Here, we consider a BaFe1−xInxO3−δ material that was selected based on previous

reports of interesting structure changes in this system [140]. Based on this report and

an initial experimental screening of substituted perovskites with the general formula

BaFe1−xMxO3−δ (M=Al, Co, Cu, In, Mn, Ni, Sr, Ti), indium substitution was found

to be the most promising avenue for continued research [132]. Experimental results

demonstrated that oxygen desorption could be tuned in the BaFe1−xInxO3−δ material

with increasing indium concentration resulting in more oxygen production from the

material at lower temperatures.

Because the performance of perovskite candidates is intimately related to facile oxygen

transport, higher oxygen diffusivity is desirable. The mechanism of diffusion occurs via

a hopping mechanism facilitated by vacancies through which the relatively large oxygen

anion may travel [66, 156]. The energetics of oxygen vacancy formation energy has been

strongly correlated to the ability of these materials to generate vacant sites within the

lattice that would allow for oxygen diffusion [12, 47]. This vacancy formation energy has

been shown to depend on the local dopant environment, but only relatively simple con-

figurations (i.e., variation in nearest B-sites) have been studied to date. Given the central

role played by this descriptor and its attendant effect on chemical looping combustion

and reforming efficiency, its precise estimation is required. Such calculations have been

previously done in perovskite using empirical interatomic potential based methods [40,

104]. These methods, however, rely on particular parametrization of the potential and

are therefore system-specific. In contrast, a first-principles quantum mechanics approach

based on DFT provides reliable predictions, as it incorporates the correct physics in

the underlying framework. The Hubbard DFT+U method, in particular, has been used

to calculate oxygen vacancy formation energies in bulk perovskites that are free from

self-interaction errors inherent in conventional electron-correlation functional for mid to

late transition metal oxides [136].

In this chapter, we first establish a first-principles understanding of the impact that dopant

structure has on the reducibility of our perovskite material. We perform DFT calculations

over a set of structural motifs spanning the space of possible dopant configurations

around a lattice oxygen. Then, we use the identified structure-function information to

formulate mathematical optimization models that identify structures of dopant that
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optimize the lattice properties. Finally, we compare our nanostructured results against

the expected performance of randomly doped perovskites.

4.2 computational methods

4.2.1 Predicting Oxygen Excess Energy

Periodic spin-polarized DFT calculations were performed with the Vienna Ab Initio

Simulation Package code, version 5.3.5 [121]. The generalized gradient approximation

(GGA) formulation of Perdew, Burke and Enzerhoff was employed [172]. The inner core

electrons of each atom were described by the projector-augmented wave method [107]

and Ba 5s2/5p6/6s2, Fe 4s2/3d6, O 2s2/2p4 and In 5s2/5p1 electrons were considered as

valence electrons. The Kohn-Sham one electron valence eigenstates were expanded in

terms of plane-wave basis sets with a cutoff energy of 520 eV using Monkhorst-Pack

k-point grid [169]. The drawback of GGA in treating localized partially filled d states

was adjusted by using the DFT+U method which uses a Hartree-Fock-type intra-atomic

electron-electron interaction, U, properly balanced by the so-called double counting

correction [136]. A U value of 4.0 eV was included for Fe derived from previous studies

of structural and electronic properties of Fe-based perovskite oxides [131]. To validate

the DFT model, we calculated the bulk properties of the parent cubic BaFeO3 material.

The predicted lattice constant is 4.02Å which compares well with the experimental

values of 3.97 – 3.99Å [88, 155]. Our calculations indicate that the ferromagnetic (FM)

ordering is the most stable with the A-type, C-type and G-type anti-ferromagnetic (AFM)

states strongly unfavorable by 2.69, 2.72 and 2.76 eV/formula unit, respectively. The

calculated total magnetization of 4.17 µB is in good agreement with 3.50 µB obtained

from experiments [88].

We employed cubic perovskite supercells (see Fig. 4.1) as the structural model, since

it was found experimentally that partial introduction of In in BaFeO3 leads to the

stabilization of the cubic phase [140]. To address the role of In substitution, the set of

rotationally-unique dopant motifs was enumerated. There are two B-sites that are nearest

neighbors to a perovskite lattice oxygen, 8 B-sites that are second-nearest, and 10 B-sites

that are third-nearest. In a compromise of complexity against accuracy, we chose to only

consider the first two of those B-site shells (i.e., 10 nearest B-sites) in our definition of a

motif. This choice has the advantage of keeping the number of possible conformations to

a manageable level, while at the same time, allowing motifs to be modeled by supercells
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Figure 4.1: Example perovskite cubic unit cell.

that are of a tractable size for DFT calculations. Experimental results suggest that we

are interested in materials that have between 10% and 30% dopant, a range which we

expand to consider motifs with between 0 and 5 dopant atoms out of the 10 B-sites in

the motif. From this space of possible dopant conformations, we enumerated all of the

possible ways to incorporate between 0 and 5 dopant atoms in a motif. This resulted in a

total of 74 symmetrically unique-configurations to consider.

The energy cost for oxygen removal can be quantified using the following equation:

∆Evac = Edefective − Eperfect −
1
2

EO2 , (4.1)

where Edefective, Eperfect and EO2 represent the energy of the supercell with an oxygen

vacancy, energy of the perfect supercell and the energy of the gas phase O2 molecule in

its triplet ground state. The simplest approximation to the vacancy formation energy is

the excess energy that only accounts for the first two terms and neglects the energy of

the oxygen:

Eexcess = Edefective − Eperfect. (4.2)

For each motif, the lattice parameter and the atomic positions were allowed to relax

below the maximum force threshold of 0.03 eV/Å. The free energy of oxygen vacancy

formation was computed according to:

∆Gvac = Gdefective − Gperfect −
1
2

GO2 . (4.3)

The Gibbs free energy for the gaseous species is obtained by adding zero-point energy

(Ezpe), thermal energy (Eth), PV work term, and entropic contributions (TS) to the

calculated DFT+U electronic energy (Eel): GO2 = Eel + Ezpe + Eth + PV − TS [23]. The Eth
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term is the sum of translational, rotational and vibrational contributions to the internal

energy. The PV term can be replaced by RT, assuming an ideal gas. The term Ezpe and the

vibrational component of the entropies of the defective and perfect solid were calculated

from the vibrational frequencies using standard methods [44]. The entropy contribution

(vibrational entropy) is given by:

S = kB

3N

∑
i

[
− ln

(
1− e−βεi

)
+

βε i

eβεi − 1

]
, (4.4)

where ε i = hνi. The vibrational frequencies are derived from the Hessian matrix using

finite difference methods. For the perovskite, the PV term is ignored due to its small

contribution as do the translational and rotational components of Eth and S. Therefore,

only the vibrational component of Eth and S are considered. For the defective lattice

case, the normal mode frequencies of the first neighbor atoms around the vacancy are

computed while the rest are fixed in their relaxed positions. For the perfect counterpart,

the retained oxygen atom was included in the normal mode calculations. A supercell

with a maximum periodicity of 4× 4× 4 containing 320 atoms was used for the energetic

calculations. The calculations were performed on the Joule Supercomputer of the National

Energy Technology Laboratory (NETL). Housed at NETL’s Simulation Based Engineering

User Center, the machine achieves 503 TFlops and enables DFT simulations requiring

extensive computational resources. Structural optimization, vacancy formation energy

evaluation, and vibrational frequency calculations required approximately 330 CPU hours

per motif on this computing resource. Overall, we find the numerical convergence of the

calculated excess energies to be very good, thus not affecting the physical conclusions

drawn (see Appendix 4.6).

4.2.2 Mathematical Optimization Model

Given evaluations of the free energy of oxygen release for each possible motif, we

formulated a mathematical optimization model that identifies dopant patterns that pack

as many sites with a target oxygen vacancy formation energy as possible. More generally,

this model can be used to design patterns of dopant that maximally pack oxygen sites

with desired motifs for a variety of energetic objectives. For a design space, we consider

a periodic supercell of the perovskite lattice with the placement of dopant in each B-site

j ∈ J as the key decision variable, Yj. From these variables for dopant placement, we can

indicate as variable Zic the presence of a target conformation c ∈ C around each oxygen

atom i ∈ I by imposing suitable constraints, Eqns. 4.6-4.7. Here, C is the set of feasible
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conformations we wish to consider, I is the set of oxygen sites in the lattice, and J is the

set of B-sites in the lattice. The parameter ξijc is 1, if conformation c features a dopant

atom in a B-site j around an oxygen atom i. The sets of B-sites neighboring to each

oxygen atom are denoted as Ni and appropriately account for periodically equivalent

locations across the boundary of the supercell. The objective function, Eqn. 4.5, is the

number of target oxygen conformations present in the lattice optionally weighted by

parameter αc. Constraints on the local (i.e., around each oxygen location) and global (i.e.,

across the entire material) dopant concentration can also be imposed through Eqns. 4.8

and 4.9, respectively. The values of Lloc, Uloc, Lglob, and Uglob can be adjusted to explore

different constrained designs, but the values chosen to best match our perovskite were

0 and 5 B-site substitutions per motif, and 10% to 30% B-site substitutions across the

whole lattice [132].

max
Yj,Zic

∑
i∈I

∑
c∈C

αcZic (4.5)

s.t. ∑
c∈C:
{ξijc=1}

Zic ≤ Yj ∀ i ∈ I, ∀ j ∈ Ni (4.6)

∑
c∈C:
{ξijc=0}

Zic ≤ 1−Yj ∀ i ∈ I, ∀ j ∈ Ni (4.7)

Lloc ≤ ∑
j∈Ni

Yj ≤ Uloc ∀ i ∈ I (4.8)

Lglob ≤∑
j∈J

Yj ≤ Uglob (4.9)

Zic ∈ {0, 1} ∀ i ∈ I, ∀ c ∈ C (4.10)

Yj ∈ {0, 1} ∀ j ∈ J (4.11)

If the set of conformations, C, includes all feasible conformations (i.e., the set is mutually

exclusive and collectively exhaustive), then we can additionally include Eqn. 4.12 to

tighten the model. This constraint requires exactly one conformation variable to be

indicated at each oxygen location.

∑
c∈C

Zic = 1 ∀ i ∈ I (4.12)

An important feature of this mathematical formulation is the ability to generically

represent a variety of target physical properties. For example, we can model the material

that packs as many motifs with lowest oxygen energy as possible, corresponding to
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Table 4.1: Formulation size for instances involving all conformations (|C| = 638)

# Binary Variables # Constraints

3× 3× 3 51,705 1,784

4× 4× 4 122,560 4,226

5× 5× 5 239,375 8,252

materials with the lowest temperature for the onset of reduction. Alternatively, we

can optimize for the material with the lowest average oxygen excess energy across all

oxygen sites, corresponding to the material with the lowest oxygen release temperature

overall. Finally, we can optimize for the material with a custom weighting, giving

preference for sites with low oxygen excess energy and decreasing preference for sites

with higher excess energies. We found that, for this application, encoding contributions

to material performance by indicating conformations generally resulted in more tractable

models than the approach of regressing simplified structure-function relationships from

geometric descriptors [83]. This approach of encoding conformation variables can be

thought of as an extreme case of using high-dimensional geometric descriptors, resulting

in unique descriptions for each material conformation. These descriptors result in tighter

logical implication constraints, improving the tractability of these models.

Because the model includes binary variables with linear constraints, this optimization

problem constitutes a mixed-integer linear program, which can be solved by standard

general-purpose solvers. More specifically, all optimization models were solved on a

desktop computer using the MILP optimization software CPLEX 12.8.0 under a time

limit of 1 hour [95]. We were able to solve instances to provable optimality for supercell

sizes of up to 4× 4× 4, noting that there was an extreme increase in difficulty with

increasing supercell size. Table 4.1 illustrates the cubic growth in both the number of

binary variables and constraints, resulting in an exponential growth in the number of

feasible solutions. Problems with supercells of size 3× 3× 3 or below could be solved

in seconds, while supercells of size 4× 4× 4 were solved in approximately an hour.

Supercells of size 5× 5× 5 displayed very slow progress in the upper bound of the

branch and bound tree, and were only able to achieve an approximately 30% relative

gap within reasonable time limits. In general, we observed that CPLEX was able to

quickly find good feasible solutions and that most of the computational effort was spent

subsequently to prove the optimality of those solutions.
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In order to clearly see the potential benefit of nanostructuring, we compared our optimal

identified designs against designs formed by randomly placed dopant in the lattice. We

predicted the probability of the presence of a particular oxygen conformation as the

joint probability of each neighboring location having the correct choice of dopant or

un-doped site. We assumed that the presence of dopant was independent of neighboring

sites, and thus the probability of neighboring dopant was simply given as the total

dopant fraction. Then, the prevalence of a given motif is simply the sum of probabilities

of the conformations (i.e., equivalent rotations) that contribute to a motif. Using these

probabilities, we developed distributions of several characteristics of oxygen sites in the

lattice to use as a baseline against which we compare the optimal nanostructured design.

4.3 results and discussion

Since there exists no experimental method to directly measure oxygen excess energy

for a target oxygen atom, we relied upon DFT calculations to approximate this quantity.

Several iterations of these calculations for different supercell sizes and k-point grids were

performed to ensure calculation convergence (see Appendix 4.6 for details). Inspecting

the results from the converged DFT calculations, we can rank the oxygen excess energy

of relevant motifs and make several observations (Fig. 4.2). First, the motifs with the

lowest oxygen excess energy tend to have dopant in the second shell of B-sites, and none

in the two nearest B-sites (Fig. 4.3). The motif with the highest oxygen excess energy

(and thus, the hardest oxygen to remove from the lattice) is the motif with both nearest

B-sites doped and without any other doping further away (Fig. 4.4). These observations

suggest that indium binds strongly to neighboring oxygen and weakens bonds to oxygen

in the lattice further away.

The evaluation of oxygen excess energy was extended to reflect process temperatures

by carrying out vibrational energy calculations and calculating the Gibbs free energy

(Fig. 4.5). A key observation was that the free energy of oxygen removal at 973K per

motif largely followed the same ordering as the energy at 0K. This observation is likely

to hold for a variety of other cubic perovskites, even if the impact of dopant structure on

excess energies is different. Because of this, we can use the 0K oxygen excess energy as a

robust ranking of free energy of oxygen removal when considering applications at any

temperature. For reference, the oxygen excess energy evaluations along with the relevant

dopant locations are tabulated in Appendix 4.7.
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Figure 4.2: Sorted evaluations of oxygen excess energy for all 74 motifs considered in this study.

# 46 # 11 # 27 # 64 # 73

Figure 4.3: Motifs with oxygen excess energy between 4.05 – 4.25 eV. See Table 4.2 of Appendix 4.7

# 17 # 10 # 14 # 2 # 38

Figure 4.4: Motifs with oxygen excess energy between 5.39 – 6.49 eV. See Table 4.2 of Appendix 4.7

Using the general model formulation presented in Eqns. 4.5–4.11, we were able to

optimize for several objectives targeting different energetic properties of the perovskite.

First, we targeted the three motifs with lowest oxygen excess energy as desirable, seeking

the material with the highest concentration of oxygen vacancies at low temperature.

Secondly, we chose to minimize the average excess energy across the lattice. Thirdly, we

chose weightings αc = exp(−(∆Evac− ∆Emin
vac )/(kBT)) to represent a Boltzmann factor at
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Figure 4.5: Comparison of free energy of oxygen removal at 0K and 973K.

973 K for the expected fraction of oxygen vacancies relative to the motif with the lowest

excess energy. We present each of these possible choices of objective function to highlight

the flexibility of mathematical optimization modeling. Using this approach, our model

can be generalized to a variety of systems and target material properties.

We solved each model over a range of increasing supercell sizes and were generally able

to prove optimality for supercells of size 4× 4× 4 and below, while solutions from larger

sizes can only be qualified as good solutions. In Fig. 4.6 we present the optimal periodic

cell across all investigated cell sizes for each of the example objectives.

4.3.1 Maximizing Number of Target Motifs

Since our goal is to identify materials with facile oxygen removal, we first considered

patterns that packed as many sites with low oxygen excess energy as possible. The objec-

tive function in this case corresponds to the collective count of “target” conformations,

where only target conformations are given a weight of one in the objective function. The
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optimal dopant pattern for packing oxygen sites with low excess energy is presented

in Fig 4.6a, demonstrating 50% of oxygen sites as one of the three motifs with lowest

oxygen excess energy. The optimal design consists of a repeating 2× 2× 2 cell, regularly

spacing dopant throughout the lattice. This result can be interpreted as maximizing the

number of oxygen sites that have two dopant sites in their second shell of neighbors,

while minimizing the number of sites that are immediately next to dopant. Additionally,

by solving a slightly relaxed version of the optimization model, we can prove that this

design is optimal over any even-sized supercell (i.e., 4× 4× 4, 6× 6× 6, etc.).

4.3.2 Minimizing Average Oxygen Excess Energy

We next considered minimizing the average oxygen excess energy across the lattice.

This particular objective function is generally of interest when considering macroscopic

material properties that are a simple combination across the available lattice sites. In the

domain of oxygen carriers, this corresponds to a material that releases oxygen over a

potentially broad range of temperatures, but the lowest range overall. With the goal of

minimizing the average excess energy, we identify the design in Fig. 4.6b with an average

oxygen excess energy of 4.45 eV. Importantly, this design clusters dopant in such a way

to avoid motifs of the highest oxygen excess energy.

4.3.3 Maximizing Sum of Boltzmann Factors

Our third objective function aims to maximize the sum of Boltzmann factors for the

oxygen excess energy of sites across the lattice. This is proportional to the likelihood

of forming the first oxygen vacancy, and furthermore, should be proportional to the

likelihood of forming subsequent vacancies. Overall, this represents the reducibility

of the material at a given temperature. Importantly, this objective function highlights

the capability to model more complex physical situations by simply changing model

coefficients. The optimal design presented in Fig. 4.6c has an objective value of 96.01 out

of a total of 192 oxygen sites. This corresponds to roughly 50% of the sites as performing

as a site with the lowest oxygen excess energy. In fact, this design places the best motif

in 50% of the sites and is also an optimal solution to our first example model. However,

the first example had no motivation to prefer one of the three motifs over another. In
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general, the choice to use Boltzmann weighting should serve to break those ties and lead

to more informative results.

(a) Maximizing the number of sites displaying one of the three motifs
with lowest oxygen excess energy.

(b) Minimizing the average oxygen excess energy of sites in the lattice.

(c) Maximizing a sum of Boltzmann factors.

Figure 4.6: Example optimal periodic doped perovskite dopant patterns.

The results from each of these optimization models can be used to suggest future direc-

tions for synthesis of precisely-structured perovskite nanoparticles, possibly fabricated

via a layer-by-layer approach [198]. To highlight the potential benefit that nanostructur-

ing can have, we predicted the performance of randomly doped perovskite lattices. We
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found that as dopant fraction increased from 10% to 30%, the prevalence of oxygen sites

with the lowest oxygen excess energy increased slightly, while the prevalence of motifs

of intermediate excess energy decreased (Fig. 4.7, see Appendix 4.8 for more details).

Importantly, these trends in the distribution of oxygen excess energy can be compared

against the distribution present in optimally-doped lattices. Our optimal design for

the objective of packing motifs with the lowest excess energy (Presented in Fig. 4.6a)

displays significantly more oxygen sites at lower oxygen excess energies (50% vs. approx.

5%), which is expected to correspond to a larger extent of reduction occurring at lower

temperatures. The differences in characteristics of randomly doped perovskites and our

optimal design highlight the impact that controlling not only dopant amount, but also

placement can potentially have on the achievable performance of doped perovskites.

4.4 conclusions

In this chapter, we investigated the impact that indium dopant can have on the release of

oxygen from a BaFeO3 perovskite. We identified motifs that capture all the possible ways

in which dopant can be presented to a particular oxygen atom within some reasonable

limits on the local dopant concentration. These limitations could be relaxed and more

motifs could be identified for further investigation, if desired.

For each identified motif, we embedded the particular arrangement of dopant in a

periodic supercell and evaluated the oxygen excess energy via density functional theory.

We demonstrate that our density functional theory results converge to an evaluation that

can be trusted to be free of artifacts from supercell size or algorithmic parameters.

The density functional theory calculations were used to identify dopant motifs that lead

to highly reducible material. In general, we observed that oxygen sites directly next to

indium tend to have higher oxygen excess energy, while oxygen sites further away have

slightly lowered oxygen excess energy. This supports the hypothesis that incorporation

of indium into the lattice leads to more reducible material by binding to nearby oxygen

and weakening bonds to oxygen further away in the lattice. We then formulated and

solved a set of mathematical optimization models that identify patterns of dopant that

result in materials with desirable distributions of easily removed oxygen. These results

were compared against the expected quality of designs from randomly doped lattices,

highlighting the benefits that nanostructuring can offer in this context. While these

precise patterns may be impractical to consider synthesizing today to sufficient atomic

precision, the optimal results are useful to elucidate trends in material structure and
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function, serve as theoretical bounds on the performance of the material class under

investigation as a whole, as well as guide the development of future synthesis methods.

This work demonstrates a generic framework that can be readily adapted to other

crystalline material design contexts. The procedure of defining a motif, enumerating

possible material conformations, and then calculating energetic properties of interest

from first principles can be generically used to identify structure-function relationships

for other materials. Given the appropriate material understanding in the form of a

suitable such relationship, it is then possible to cast a rigorous optimization model,

similar in terms of its mathematical structure to the one presented in this chapter, in

order to obtain promising material designs to serve as targets for synthesis and further

investigation. Mathematical optimization serves to formalize and guide the search for

novel materials in a way that identifies unintuitive results and provides strong guarantees

of optimality of resulting designs.
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(a) Maximizing the number of sites displaying one of the three motifs with lowest oxygen excess
energy.
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(b) Minimizing the average oxygen excess energy of sites in the lattice.
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(c) Maximizing a sum of Boltzmann factors at 973 K for the expected fraction of oxygen vacancies
relative to the motif with the lowest excess energy.

Figure 4.7: Comparison between distributions of oxygen excess energies in optimal and randomly
doped perovskites.
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4.5 notation

Indices

i oxygen site

j B-site

c conformation

Sets

I oxygen sites in canvas

J B-sites in canvas

Ni neighbor B-sites to oxygen site i

C oxygen conformations

Binary Variables

Yj presence of dopant at B-site j

Zic presence of conformation c at oxygen site i

Parameters

αc objective weighting parameter for oxygen conformation c

ξijc 1 if a dopant atom in B-site j if conformation c would be present at site i,
otherwise 0

Lloc, Uloc lower and upper bound on local (i.e., neighboring) dopant concentration

Lglob, Uglob lower and upper bound on global (i.e., canvas-wide) dopant concentration
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4.6 appendix : density functional theory convergence

We first compared the impact of embedding motifs in a supercells of size 3× 3× 3 unit

cells (135 atoms) versus supercells of size 4× 4× 4 unit cells (320 atoms) on the evaluation

of oxygen excess energy. This showed poor convergence, with a average absolute error of

0.73eV between the two approaches (Fig. 4.8a). These results suggested that the number

of k-points should also be increased to improve the reliability of calculations. Upon

increasing the number of k-points in the 135 atom supercells from 3× 3× 3 to 5× 5× 5,

the results were relatively unchanged while the 320 atom supercells exhibited a dramatic

difference going from 3× 3× 3 to 4× 4× 4 k-points. Using the higher numbers of k-

points, the difference between the two supercell sizes was significantly smaller, indicating

the satisfactory convergence of our computational results (Fig. 4.8b).
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Figure 4.8: Convergence of DFT results with respect to supercell size and k-points.
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4.7 appendix : oxygen excess energy evaluations

Figure 4.9: Reference B-site location numbering.

Table 4.2: Oxygen excess energy as a function of dopant placement.

Dopant presence in neighboring sites

Motif # 0 1 2 3 4 5 6 7 8 9 EE @ 0K

0 4.656

1 X 5.028

2 X X 5.797

3 X 4.267

4 X X 4.756

5 X X 5.219

6 X X X 5.377

7 X X 4.525

8 X X X 4.992

9 X X X 5.115

10 X X X X 5.494

11 X X 4.061

12 X X X 4.659

13 X X X 5.360

14 X X X X 5.553

15 X X X 4.366

16 X X X X 4.780
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Table 4.2: Oxygen excess energy as a function of dopant placement (cont.)

Dopant presence in neighboring sites

Motif # 0 1 2 3 4 5 6 7 8 9 EE @ 0K

17 X X X X 5.395

18 X X X X X 4.622

19 X X X X 4.941

20 X X X X X 4.727

21 X X X X X 5.079

22 X X 4.367

23 X X X 4.732

24 X X X X 4.462

25 X X 4.918

26 X X X 5.332

27 X X X X 4.135

28 X X X 4.888

29 X X X X 4.960

30 X X X X 4.988

31 X X X X X 4.413

32 X X 4.548

33 X X X 5.197

34 X X X X 5.362

35 X X X 4.477

36 X X X X 4.871

37 X X X X 4.991

38 X X X X X 6.488

39 X X X 4.826

40 X X X X 4.578

41 X X X X 5.035

42 X X X X X 5.065

43 X X X X 5.207

44 X X X X X 4.544

45 X X X X X 4.717

46 X X X 4.055
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Table 4.2: Oxygen excess energy as a function of dopant placement (cont.)

Dopant presence in neighboring sites

Motif # 0 1 2 3 4 5 6 7 8 9 EE @ 0K

47 X X X X 4.975

48 X X X X 5.114

49 X X X X X 5.174

50 X X X X 4.307

51 X X X X X 4.735

52 X X X X X 4.808

53 X X X X 4.867

54 X X X X X 4.553

55 X X X X X 4.739

56 X X X X X 4.832

57 X X X X 4.368

58 X X X X X 4.363

59 X X X X 4.807

60 X X X X X 4.299

61 X X X X X 4.997

62 X X X X 4.402

63 X X X X X 4.782

64 X X X X X 4.247

65 X X X X 4.944

66 X X X X X 4.588

67 X X X X X 4.361

68 X X X X 4.251

69 X X X X X 4.400

70 X X X X X 4.280

71 X X X X 4.293

72 X X X X 5.011

73 X X X X X 4.248
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4.8 appendix : randomly doped perovskite analysis

Currently, standard synthesis methods for doped perovskites are not able to precisely

control the placement of dopant in the lattice, but rather, lead to random arrangements

of dopant subject to a total dopant concentration. To predict the expected performance

of randomly doped lattices, we calculated the likelihood of each motif using a product of

Bernoulli distributions as a function of overall dopant concentration. The probability of

each of the 74 motifs considered in this study is plotted below in Figure 4.10a, with each

line corresponding to the distribution at various levels of dopant. Displayed as Motif #

74 is the cumulative probability of all other motifs (i.e., those containing more than 5

dopant atoms per 10 nearest-B-sites) for which we did not evaluate the oxygen excess

energy.

Given the prevalence of motifs and their evaluation of oxygen excess energy, we plot in

Figure 4.10a the cumulative probability density of motifs over a range of oxygen excess

energies.
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(a) Prevalence of motifs over various dopant levels. Motif #74 incorporates all
other motifs not listed in Appendix 4.7.
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Figure 4.10: Distribution of oxygen sites in randomly doped lattices
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5
M AT O P T: A P Y T H O N PA C K A G E F O R N A N O M AT E R I A L S D I S C R E T E

O P T I M I Z AT I O N

Novel nanostructured materials are being enabled by advances in synthesis techniques

that achieve ever better control over the atomic-scale structure of materials. The pace of

materials development has been further increased by high-throughput computational

experiments guided by informatics and machine learning. In the previous chapters,

we have demonstrated complimentary approaches using mathematical optimization

models to search through highly combinatorial design spaces of atomic arrangements,

guiding the design of materials. In this chapter, we formalize the common features of

materials optimization problems that can be efficiently modeled via mixed-integer linear

optimization models. To take advantage of these commonalities, we have produced

MatOpt, a Python package that formalizes the process of representing the materials

designs space and formulating optimization models. This tool serves to bridge the

gap between practitioners with expertise in nanostructured materials and those with

expertise in solving optimization models, effectively lowering the barriers for applying

mathematical optimization in nanostructured materials problems.

5.1 introduction

While there are many approaches obtaining better predictions of nanoparticle reactivity

and control over the nanostructure, there are relatively few systematic methods for

designing nanomaterials algorithmically. In Calle-Vallejo et al. [31], the authors used a

model for activity as a function of generalized coordination number to design defects on

nanostructured surfaces. However, this approach relies on chemist intuition to identify

reactive sites and does not provide any guarantees on the quality of identified surfaces. In

Ruck et al. [183], the authors use a similar coordination-based structure-function relation-
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5.2 commonalities among material geometries

ship in conjunction with particle swarm optimization to design symmetric nanoparticles

and rods. In Núñez, Lansford, and Vlachos [165], the authors use another coordination-

based structure-function model in conjunction with simulated annealing to design defects

on nanostructured surfaces. These approaches leverage metaheuristic optimization meth-

ods to find good solutions, but still lack rigorous guarantees on the optimality of the

identified designs.

We seek provably optimal designs by applying exact mathematical optimization algo-

rithms to arrange nanostructured materials from their fundamental building blocks.

Previously, we have developed mathematical optimization models for the design of

nanostructured surfaces [82, 85], doped perovskites [84], and metallic nanoclusters [97].

In each case, we showed how mathematical optimization was well-suited to search the

combinatorial design space of nanostructures by formulating appropriate models.

In this chapter, we first summarize the common elements of materials optimization

problems. Specifically, we describe the common features of material domains of interest

and show how these commonalities result in simple patterns for modeling materials

via mathematical optimization. Then, we describe the implementation of MatOpt, a

Python-based toolkit for specifying and solving these types of material optimization

problems. Finally, we provide two case studies to illustrate the use of MatOpt in a catalyst

optimization problem.

5.2 commonalities among material geometries

Nanostructured materials generally share a few characteristics that lead to the complexity

of the design space and thus, the combinatorial difficulty of finding optimal structures.

These common material characteristics provide a basis for defining the scope for our

optimization framework and result in simplifying assumptions for our framework to take

advantage of. Specifically, we benefit from the discrete nature of lattices, local descriptors

of functionality, and periodicity of designs.

5.2.1 Discrete Lattices

We generically denote the individual components of the design as “building blocks.” In

the example case of nanostructured transition metal catalyst surfaces, the building block
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5.2 commonalities among material geometries

can be thought of as an atom, while in larger systems such as metal organic frameworks

or supramolecular assemblies the building block can be a molecule.

Conceptually, one could optimize the design of materials by choosing the x, y, z coordi-

nates for the building blocks of interest. However, at the nanoscale, many solid materials

tend to form architectures with atoms placed on lattices with specific, discrete locations.

While exceptions to this observation are inevitable (i.e., lattice relaxations around defects,

atomic restructuring on nanoclusters), we note that this observation can serve as a good

first approximation in many systems of interest. We note that while we typically work

with regular crystalline lattices, our approaches can be applied to other design spaces

where the possible placement of matter is ordered but does not satisfy strict definitions

of a lattice (i.e., five-fold symmetry around icosahedral nanoclusters). The discrete nature

of nanomaterials can let us simplify the search space to only require “yes” or “no”

decisions on the choices of building blocks to place in the design. These binary decisions

tend to lead to simpler models since we can preprocess geometric information and

avoid encoding nonlinear constraints in our optimization models, generally formulating

mixed-integer linear programming (MILP) models that are significantly more efficient to

solve than their nonlinear counterparts.

5.2.2 Local Functionality Descriptors

Given a set of discrete points on which building blocks can be placed, there are also

a discrete number of interactions that can contribute to the functionality of a design.

In many cases, the desired functionality of the material can be broken down into

contributions from sites in the material. Furthermore, it is also typically the case that

the functionality of a site is dependent on the presence of building blocks in a small

subset of sites that can be thought of as “neighbors.” Strictly speaking, the definition of

neighbors does not need to be based on the physical distance between sites, though this

is typically a good first approximation of relevant sites. The combination of discrete sites

and neighborhoods leads to the basic data structure that we denote as a “canvas.”

The canvas data structure is generically composed of a list of site coordinates in con-

junction with a graph with nodes for each site and directed arcs for the neighbor

connections. The connections are considered directed because, in general, it is possible

for site functionality to depend on other sites asymmetrically. In addition to the standard

components of the graph data structure, the canvas specifies an ordering of neighbors

to represent specific types of connections. This is useful for the ability to represent the
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5.2 commonalities among material geometries

specific alignment of neighbors in the lattice, which is necessary when trying to indicate

a particular configuration of atoms in a design. In Figure 5.1, we present an example

canvas with the corresponding data structure for the neighborhoods.
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l=1
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0 1 2 3

0 4 1 None None

1 5 2 None 0

2 6 3 None 1

3 7 None None 2

4 8 5 0 None

5 9 6 1 4

6 10 7 2 5

7 11 None 3 6

8 12 9 4 None

9 13 10 5 8

10 14 11 6 9

11 15 None 7 10

12 None 13 8 None

13 None 14 9 12

14 None 15 10 13

15 None None 11 14

Figure 5.1: Example ordered neighbor connections for a simple canvas.

5.2.3 Material Periodicity

Nanostructured materials are typically modeled in simulation cells containing periodicity

between 0 to 3 dimensions, corresponding to clusters, wires, surfaces, and bulk materials,

respectively. From an implementation standpoint, the presence of periodicity can lead

to non-intuitive neighborhoods with connections that cross periodic boundaries. These

connections can be identified from the combination of the canvas sites with a set of

rules for transforming points that cross the tiling boundaries. Given a fixed canvas, these

connections can be tabulated prior to formulating a mathematical optimization model
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and care should be taken to ensure that the canvas neighborhoods are geometrically

consistent. In general, the same site can appear as a neighbor for multiple connections

when considering multiple periodic directions, especially for small tiles.

Figure 5.2 illustrates a simple two dimensional lattice with connections defined by the

periodicity of the canvas. In this example, the shape of the periodic tile is denoted with

the dashed red parallelogram and neighbors crossing the tile edge are shown with

directed arcs.
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Figure 5.2: Example neighbor connections across the boundary of a periodically-tiled canvas. The
red, dashed parallelogram represents the boundary of the periodic tile, slightly shifted
down and to the left to unambiguously distinguish between sites in and outside of
the tile.

The size of the canvas to be considered as the design space constrains the resulting

optimization model and may lead to the best design being missed if the canvas is

too small. However, in the case of periodic designs, a natural algorithm for quickly
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identifying good solutions is to iteratively expand the size of the periodic canvas and

re-solve until computational resources are expended or until a satisfactory design is

found. While we may not know the truly best solution a priori, a typical observation may

be to see the same (likely to be truly best) design repeated as the optimal solution at

multiple sizes that are consistent with the periodicity of the design (see Sec. 2.3.2).

5.3 modeling elements

Given the commonalities in the materials of interest, there are several optimization

modeling patterns that we can use to modularly formulate models. The discrete nature

of the design space leads to formulations that naturally employ binary variables and

implication logic. In cases where complex or nonlinear structure-function relationships

are of interest, there are several strategies to exactly encode the same information via

linear constraints and implication logic.

5.3.1 Basic Variables

The common features of nanostructured materials lead to a natural set of basic variables

from which mathematical optimization models can be formulated. Below, we present

four types of basic variables in addition to several more variables representing their

aggregation.

Presence of Building Blocks

The presence of a building block of a given type at a particular site is the most funda-

mental variable in the optimization model. In Eqn. 5.1, we denote as Yik the presence of

a building block of type k in site i. We write the set of sites in the canvas as I, and we

write the set of building blocks as K.

Yik ∈ {0, 1} ∀ i ∈ I, ∀ k ∈ K (5.1)

Presence of Bonds

Given the variables for the presence of specific building block types, we can encode

information about the connections between building blocks. For convenience, we refer to
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these variables as “bond” type variables, but in general, they do not have to correspond

to bonds in the chemical sense. In Eqns. 5.2–5.5, we denote as Xijkl the presence of a

bond between a building block of type k at site i and a building block of type l at site j.
To denote the set of neighboring sites to location i, we use Ni.

Xijkl ≤ Yik ∀ i ∈ I, ∀ j ∈ Ni, ∀ k ∈ K, ∀ l ∈ K (5.2)

Xijkl ≤ Yjl ∀ i ∈ I, ∀ j ∈ Ni, ∀ k ∈ K, ∀ l ∈ K (5.3)

Xijkl ≥ Yik + Yjl − 1 ∀ i ∈ I, ∀ j ∈ Ni, ∀ k ∈ K, ∀ l ∈ K (5.4)

Xijkl ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ Ni, ∀ k ∈ K, ∀ l ∈ K (5.5)

Neighbor Counts

Applications at the nanoscale often correlate functionality to counts of neighbors around

a particular type of site. In general, this functionality can also be broken down into

contributions from sites and neighbors of particular types. In Eqns. 5.6–5.7, we denote

as Cikl the count of bonds between a building block of type k at site i and neighboring

building blocks of type l. In this definition, if there is not a building block of type k at

site i, then all Cikl counts are set to zero.

Cikl = ∑
j∈Ni

Xijkl ∀ i ∈ I, ∀ k ∈ K, ∀ l ∈ K (5.6)

Cikl ∈ [0, |Ni|] ∀ i ∈ I, ∀ k ∈ K, ∀ l ∈ K (5.7)

Aggregate Variables

Variables with type-dependent information may not always be necessary or useful for

modeling. For example, many descriptors are expressed with conditionals such as the

presence of “any atom” or “any bond” being present in the material. For each of the

type-dependent variables previously discussed, we also present aggregated versions that

indicate the presence of any atom, bond, or count of neighbors. In Eqns. 5.8–5.17 we

denote as Yi the presence of any atom at site i, we denote as Xij the presence of any type

94



5.3 modeling elements

of bond between sites i and j, and we denote as Ci the count of any type of neighbor

next to any type of building block present at site i.

Yi ∈ {0, 1} ∀ i ∈ I (5.8)

Xij ≤ Yi ∀ i ∈ I, ∀ j ∈ Ni (5.9)

Xij ≤ Yj ∀ i ∈ I, ∀ j ∈ Ni (5.10)

Xij ≥ Yi + Yj − 1 ∀ i ∈ I, ∀ j ∈ Ni (5.11)

Xij ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ Ni (5.12)

Ci = ∑
j∈Ni

Xij ∀ i ∈ I (5.13)

Ci ∈ [0, |Ni|] ∀ i ∈ I (5.14)

Yi = ∑
k∈K

Yik ∀ k ∈ K (5.15)

Xij = ∑
k∈K

∑
l∈K

Xijkl ∀ i ∈ I, ∀ j ∈ Ni (5.16)

Ci = ∑
k∈K

∑
l∈K

Cikl ∀ i ∈ I (5.17)

Presence of Conformations

In addition to variables for indicating bonds and neighbor counts, we also encode

basic variables for indicating specific combinations of neighbors, or “conformations.” In

Eqns. 5.18–5.21, we denote Zic as the presence of a conformation of type c at site i. We

use the parameter ξicjl to indicate if a conformation of type c located at site i should have

a building block of type l in neighboring location j.

Zic ≤ Yjl
∀ i ∈ I, ∀ c ∈ C,

∀ j ∈ Ni, ∀ l ∈ K : ξicjl = 1
(5.18)

Zic ≤ 1−Yjl
∀ i ∈ I, ∀ c ∈ C,

∀ j ∈ Ni, ∀ l ∈ K : ξicjl = 0
(5.19)

Zic ≥ 1− ∑
j∈Ni

∑
l∈K

ξicjl=1

(
1−Yjl

)
− ∑

j∈Ni

∑
l∈K

ξicjl=0

Yjl ∀ i ∈ I, ∀ c ∈ C (5.20)

Zic ∈ {0, 1} ∀ i ∈ I, ∀ c ∈ C (5.21)
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5.3.2 Common Constraint Patterns

Given the set of basic variables, a wide variety of additional, application-specific descrip-

tors can be defined. In this section, we provide several basic patterns of constraints used

to define new descriptors and to implement restrictions on the design space. In each

case, we present a basic pattern, noting that there are a variety of ways to apply these

patterns for combinations of site and bond types.

Linear & Piecewise Linear Constraints

The most straightforward constraints to incorporate in MILP models are simple linear

equalities or inequalities. In our models, these often take the form of budget constraints

or summations. Similarly, we can incorporate piecewise linear expressions into the model

by introducing additional binary variables and implication logic.

Because the basic decision variables are discrete, all subsequent variables are also

discrete and we can conceptually use piecewise linear constraints to incorporate any

nonlinear function into material design models without introducing approximation error.

We achieve this by encoding breakpoints to coincide with the discrete feasible points,

illustrated in Figure 5.3. This can be used to exactly encode nonlinear functions without

sacrificing accuracy if the number of required breakpoints is not too large. In other

cases, it may still be necessary to estimate the original function to avoid a significant

increase in computational difficulty. In Eqns. 5.22–5.23 we present the general notation for

representing simple constraints, where g(x) and P(x) denote linear and piecewise linear

expressions, respectively. Here, x represents the variables and parameters used in the

expression. Although Eqns. 5.22–5.23 are written as ≤ 0 constraints, we generally model

any combination of =, ≥, and non-zero parameters by simple modeling techniques.

g(x) ≤ 0 (5.22)

P(x) ≤ 0 (5.23)

Site & Bond Descriptor Implications

Frequently, material descriptors are defined in terms of logical predicates or conclusions.

In such cases, we can use implication logic to conditionally apply constraints on the de-

sign space. We identify three general patterns of logical implications that are encountered

96



5.3 modeling elements

f(x)

P(x)

Feasible x domain

Figure 5.3: Example piecewise linear function to exactly encode a nonlinear function over a
discrete domain.

in material design optimization models. In each case, a linear expression is conditionally

set to zero if a binary indicator variable is active (i.e., equal to 1).

The first general type of logical constraint enforces a constraint only if a given condition

is true for the site. In Eqn. 5.24, gi(x) corresponds to a general linear expression that

is required to be equal to 0 if binary indicator Zi is equal to 1 at site i. The parameters

MLB and MUB are can be automatically calculated to correctly encode the design space

in the case that the binary indicator is inactive. An example of this pattern could be to

require a site’s generalized coordination number to be equal to a target value if the site

is considered a reactive site.

Similarly, logical implication constraints can be written for expressions and indicator

variables indexed by bonds in the canvas (Eqn. 5.26). An example of this pattern is

requiring the binding energy to be equal to an expression only if a bond is actually

present between two sites.

MLB (1− Zi) ≤ gi(x) ≤ MUB (1− Zi) ∀ i ∈ I (5.24)

Zi ∈ {0, 1} ∀ i ∈ I (5.25)

MLB (1− Zij
)
≤ gij(x) ≤ MUB (1− Zij

)
∀ i ∈ I, ∀ j ∈ Ni (5.26)

Zij ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ Ni (5.27)
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Site Combination Implications

The second pattern of logical implications involves combinations of neighboring sites. In

this case, we show how indicator variables can be indexed over the set of neighbor pairs

in a canvas to create individual constraints on each of the sites. This pattern is used to

encode the basic variables for the presence of bonds and can also be used in user-defined

descriptors for encoding neighboring pairs of conformations.

MLB (1− Zij
)
≤ gi(x) ≤ MUB (1− Zij

)
∀ i ∈ I, ∀ j ∈ Ni (5.28)

MLB (1− Zij
)
≤ gj(x) ≤ MUB (1− Zij

)
∀ i ∈ I, ∀ j ∈ Ni (5.29)

Zij ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ Ni (5.30)

Neighborhood Implications

The third pattern of logical implications introduces constraints on all neighboring sites

to a location in the canvas. This pattern is used to encode the basic variables for the

presence of conformations and is also generally useful for introducing more complicated

constraints on combinations of sites in the canvas.

MLB (1− Zi) ≤ gj(x) ≤ MUB (1− Zi) ∀ i ∈ I, ∀ j ∈ Ni (5.31)

Zi ∈ {0, 1} ∀ i ∈ I (5.32)

5.4 matopt toolkit implementation details

The developed toolkit formalizes and simplifies the process for carrying out nanos-

tructured materials optimization via two major contributions. First, we provide several

modeling tools for specifying the materials design space from simple input. Secondly, we

provide a framework for specifying simplified structure-function relationships without

needing a detailed understanding of the underlying mathematical optimization model.

5.4.1 Materials Representation Objects

Several existing tools provide interfaces for setting up and analyzing materials at the

atomic scale [127, 168, 175]. They typically include “optimization” routines that serve

to minimize the energy of atomic configurations by relaxing the atomic coordinates in
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the vicinity of lattice sites (not equivalent to the mathematical optimization of interest

in this chapter). These codes are tailored to work for more traditional workflows in

computational materials screening and therefore do not immediately adapt to the same

level of generality that we aspire to. As a first approach, we have created our own basic

data structures for representing the materials design space to the level of detail that we

require in our optimization modeling. In the future, it may be of interest to incorporate

connections between other open-source packages and our optimization modules.

The first major contribution of the toolkit is the ability to easily instantiate data structures

necessary to represent nanoscale materials from simple input. Figure 5.4 illustrates the

interactions between several objects and data structures to represent nanostructured

material designs. While the explanation given here is conceptual, we encourage the

interested reader to refer to the detailed documentation and open source code available

online as part of the Institute for the Design of Advanced Energy Systems (IDAES) code

distribution [161].

The basic data structure required to cast an optimization model is a Canvas, which

essentially is a list of Cartesian points coupled with a graph of nodes for sites and arcs

for bonds. This object establishes a mapping from the abstract, mathematical modeling of

materials as graphs to the geometry of the material lattice. The list of points and neighbor

connections necessary to create a Canvas object can be obtained from the combination of

Lattice, Shape, and Tiling objects.

The Lattice object encodes methods for determining which Cartesian coordinates to

consider as sites on an infinite crystal lattice. The Lattice can be constructed from

a point on the lattice (i.e., a shift from the origin), an alignment (i.e., rotation from a

nominal orientation), and appropriate scaling factors. With these attributes, we generally

support the translation, rotation, and rescaling of lattices. Additionally, Lattice objects

include a method for determining which sites should be considered neighbors. In the

simplest case, these rules for indicating neighbors can be simple cutoff distances, but we

also note cases where asymmetric definitions of neighbors can be useful for representing

materials. For example, in Chapter 4, we utilized an asymmetric definition of neighbors

to establish different definitions of neighbors around oxygen atoms compared to metallic

B-site atoms.

A collection of Shape objects are included in the toolkit. These objects include methods

for determining if a Cartesian coordinate lies in the interior or on the face of shapes. In

this way, we can identify the sites (out of an infinite lattice) that fall in the geometry

of interest. Shape objects also include methods for translation, rotation, and rescaling,
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Figure 5.4: Flow of information for creating objects when representing materials.

allowing for flexible representation of the geometries of nanoclusters. In conjunction with

Shape objects, we provide Tiling objects for identifying neighbors that are periodically-

consistent across Shape boundaries. Using Tiling objects, we can systematically identify

the transformation of coordinates outside of the tile shape to a coordinate inside the tile.

Additionally, we can use Tiling objects to replicate our designs periodically, facilitating

the visualization of patterns.

While a Canvas object holds topological and geometric information, a Design object is

composed of a Canvas in conjunction with a list of building blocks placed in the sites

of the material. The Design object provides methods for querying the distribution of

building blocks in a structure, including methods for counting neighbors of a site by

building block type, methods for identifying the count of building blocks over the whole

design, and methods for determining the equivalence of Design objects.

The necessary attributes of a building block are encoded in the BuildingBlock class, and

can in principle be extended to represent many materials. As a starting point, we have

implemented the Atom class that is of interest in our work. Additionally, we implement

several parsers for creating standard crystal structure files from Design objects filled

with Atom objects.

5.4.2 Algebraic Modeling Language Features

While the goal of MatOpt’s material modeling modules is to help organize and create

prerequisite data structures, the goal of the optimization modules is to enable users to

cast optimization models from minimal input. One of the key features of our modeling

approach is the automatic encoding of logical expressions into MILP models. Addi-

tionally, we automatically generate indexed expressions for a wide variety of patterns

encountered in material optimization models. To interface with optimization solvers,
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5.4 matopt toolkit implementation details

we take advantage of Pyomo [86, 87], an algebraic modeling language for representing

mathematical optimization models in Python. By specializing our modeling objects to

represent common materials optimization patterns, our tool can be used by practitioners

without a background in mathematical optimization.

Given a defined Canvas and a list of BuildingBlocks to place in the design, we start by

automatically generating the set of basic descriptors for the presence of building blocks,

bonds, neighbor counts, and conformations. Then, we enable users to specify additional

descriptors using a combination of Expression and Rule objects. The general flow of

information for specifying a model is presented in Figure 5.5.

Expression objects are generated from basic or user-defined descriptors via a set of

predefined patterns. Two examples include SumSites and SumBonds to allow simple

summations. A more complicated example is SiteCombination which creates expressions

indexed over bonds by adding contributions from descriptors at two neighboring sites.

Expression objects are used in conjunction with Rule objects to define descriptors and to

generate constraints on the design space without requiring the user to specify the details

of the underlying constraints or necessary reformulations. Then, when the user requests

to optimize the model, the code can automatically interpret Rule objects to generate a

Python Optimization Modeling Objects (Pyomo) optimization model. Several example

Rules include LessThan, EqualTo, GreaterThan, and Implies. A full list of available

expression, rule patterns, and example use cases is provided in Appendix 5.9, with the

expectation that additional patterns can be introduced as part of ongoing open-source

development.

Several rules (e.g., LessThan, EqualTo, GreaterThan) can be immediately interpreted

as linear constraints in the model. Other rules require reformulation to be used in

mathematical optimization models. The Implies rule creates implication constraints

that are enforced only if the site descriptor is true (e.g., if a site is present, if a bond is

present, etc.). The FixedTo rule is included to allow descriptors to be explicitly fixed to

a value. While, in principle, the same effect could be achieved by introducing equality

constraints into the model, the FixedTo routines have the additional efficiency of fixing

logically-implied basic variables when possible. The PiecewiseLinear rule allows the

user to specify the variable domain, values, and breakpoints to equate a descriptor

to a piecewise linear function. When generating constraints, the MatOpt framework

converts PiecewiseLinear rules to specialized objects in Pyomo. This generically leverage

advances in Pyomo and optimization solvers and enables interested users to quickly try

several alternate formulations provided by Pyomo.

101



5.4 matopt toolkit implementation details

Basic

Descriptors

Expressions

Rules

Bounds

User-Defined

Descriptors

Model

Objective

+

+

Figure 5.5: Flow of information for instantiating MatOpt optimization models.

One of the useful features of our modeling framework is the automatic handling of

expression and rule indexes. For example, if a user-defined variable is indexed over

a subset of sites in the canvas (e.g., over only the oxygen sites in a lattice), then the

derived expressions and constraints are likewise indexed over that subset. Alternatively,

if a variable indexed over canvas sites is multiplied by a parameter that is indexed

over site types, then the resulting expression is automatically indexed over the set

product of sites with site types. Figure 5.6 presents an example descriptor definition

and highlights the data structures for indexing that are maintained for each descriptor,

expression, and rule in the model. As an example descriptor, we present an abstract

structure-function relationship that assigns the bond energy (BEij, programmatically

m.BEij) to an expression formed from a weighted combination of the coordination

number (Ci, programmatically m.Ci) conditional on the type of bond that is present (Xijkl ,

programmatically m.Xijkl). The constraint includes bond-type-indexed parameters (Akl ,

programmatically m.Akl) that abstractly represent the weighting contributions. While this

example was artificially constructed to demonstrate a complex pattern, similar functions

involving weighted functions of coordination can be found in literature [42, 181, 241].

The last component necessary to specify an optimization model is a single expression

to minimize or maximize as an objective function. While optimization solvers typically

only accept a single objective, we note that it is possible to combine multiple objectives

via a weighted sum implemented as a LinearExpr object. One of our case study below

exemplifies this and illustrates how optimization models can be used to generate Pareto-

optimal frontiers.

As a demonstration of the MatOpt framework, we present two example case studies. In

the first example, we describe the simple syntax for creating a nanocluster optimization

model. This serves as an example of the minimal Python and mathematical optimization
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5.5 case study : nanocluster cohesive energy maximization

{
Xijkl

}
⇒
{

BEij = αklCi + αlkCj
}

sites: None

bonds: [(0,1)...]

site types: None

bond types: [(Pt-Pt)...]

sites: None

bonds: [(0,1)...]

site types: None

bond types: None

sites: None

bonds: None

site types: None

bond types: [(Pt-Pt)...]

sites: [0,1,...]

bonds: None

site types: None

bond types: None

sites: None

bonds: [(0,1)...]

site types: None

bond types: [(Pt-Pt)...]

∀ i ∈ I, ∀ j ∈ Ni

∀ k ∈ K, ∀ l ∈ K

m.Xijkl.rules.append(Implies((m.BEij,EqualTo(SiteCombination(m.Ci,m.Akl)))))

SiteCombination

EqualTo

Implies

Figure 5.6: Example creation of site descriptor rules. Example code is given in the top row and
the equivalent mathematical notation is given in the middle. Attributes implied by
automatic indexing are presented on the bottom row.

knowledge necessary to begin using the MatOpt tool. In the second example, we show

how the approach can be extended to model a bifunctional catalyst design problem

inspired by recent literature. This example demonstrates the flexibility of the tool to be

able to quickly model a more complex system with a marginal increase in programming

effort.

5.5 case study : nanocluster cohesive energy maximization

The recent work of Isenberg et al. [97] demonstrates the use of mathematical optimization

models to identify cohesive nanoclusters via a set of tailored algorithms. Here, we present

a simplified version of their models as an example system prior to applying the tailored

algorithms that they develop. As the structure-stability relationship, we consider a

normalized version of the Tománek model for cohesive energy [215], given below in

Eqn. 5.33. In this equation, Êcoh corresponds to the normalized cohesive energy of a

nanocluster (1 corresponding to bulk cohesive energy, 0 corresponding to isolated atoms)

and Ci corresponds to the coordination number of atom i.

Êcoh =
1

N
√

12
∑
i∈I

√
Ci (5.33)
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Import MatOpt

Create Lattice

Create Canvas

Create BuildingBlock list

Create MatOptModel

Define geometric descriptors

Define structure-function rel.

Maximize desired functionality

Write Design to file

Import

Specify

Materials

Specify

Optimization

Optimize

Output

Automated by
MatOpt

Loop over lattice sites

Identify neighbors

Define index sets

Define implication logic

Convert to MILP

Figure 5.7: Conceptual flowchart for MatOpt workflows.

Figure 5.7 presents the conceptual steps that we will be following for specifying this

nanocluster energy minimization problem. In the first steps, we import the MatOpt

module and provide input about the materials system of interest. Then, we specify

the relevant structure-function and constraint information for defining an optimization

problem. Finally, we invoke the optimizer and output the identified designs.

The following section, we present the minimal code necessary to setup and solve the

optimization problem. First, we import the MatOpt package and standard Python

modules.

1 from math import sqrt

2 from matopt import *

3 import numpy as np
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5.5 case study : nanocluster cohesive energy maximization

Next we define the objects necessary to represent the material information in the problem.

We create a Lattice object (scaled to the interatomic distance) which specifies the rules

for neighbor connections and sites to consider adding to the design space.

4 Lat = FCCLattice(IAD=2.77044437)

In lines 5–7 we build a Canvas object composed of three shells of face-centered cubic

(FCC) lattice locations around the origin. Note that since we are using a lattice defined

in three-dimensional space, the expected data type of a point is a NumPy [167] array

with floating point precision.

5 Canv = Canvas()

6 Canv.addLocation(np.array([0,0,0],dtype=float))

7 Canv.addShells(3,Lat.getNeighbors)

In the next lines, we define a parameter, N, to be the number of atoms to consider in

nanocluster. Additionally, we define the set of Atom objects to place in the design.

8 N = 20

9 Atoms = [Atom('Pt')]

Once the material information is specified, we can begin to generate a mathematical

optimization model via an object of class MatOptModel. The model object is initialized

from a Canvas and a list of Atom objects from which we can identify index sets for

sites, bonds, site types, and bond types. These index sets are automatically used as new

descriptors are defined.

10 m = MatOptModel(Canv,Atoms)

In the following steps, we introduce material descriptors to encode the structure-stability

relationship as well as to constrain the design space of interest. First, we introduce a

descriptor for the square root of the coordination number defined by a piecewise linear

rule. Note that since the input descriptor, the coordination number (m.Ci), is indexed

over all sites, the resulting rule and descriptor are also indexed over all sites.

11 m.addSitesDescriptor('CNRi',bounds=(0,sqrt(12)),integer=False,

12 rules=PiecewiseLinear(values=[sqrt(CN) for CN in range(0,13)],

13 breakpoints=[CN for CN in range(0,13)],

14 input_desc=m.Ci))

Next, we introduce the descriptor for the normalized cohesive energy (m.Ecoh). As a

normalizing coefficient, we take by the number of atoms in the cluster, N, and the square

root of the bulk coordination number, 12.
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5.6 case study : bifunctional catalyst design

15 m.addGlobalDescriptor('Ecoh',

16 rules=EqualTo(SumSites(desc=m.CNRi,

17 coefs=(1/(N*sqrt(12))))))

Finally, we introduce a a descriptor for the size of the nanocluster. By setting the bounds

on the descriptor to be equal, we constrain the nanocluster to be a specific size. This could

have been achieved by several approaches (e.g., by fixing the variable or by equating the

variable to a constant), but it is expected that each would be interpreted efficiently by

MILP solvers.

18 m.addGlobalDescriptor('Size',bounds=(N,N),

19 rules=EqualTo(SumSites(desc=m.Yi)))

At this point, the feasible space for the optimization model is fully specified. We finalize

the model and begin to solve it by specifying a maximizing objective. In this example,

the maximizing objective is a single material descriptor, m.Ecoh, but any Expression

object can be used in general.

20 D = m.maximize(m.Ecoh,tilim=60,keepfiles=False,tee=False,disp=True)

If the optimization solver is successful, a Design object is returned that can be written to

standard material file formats. Here, we create a Protein Data Bank (PDB) file [19], but

other parsers are implemented and can be used as necessary.

21 if(D is not None):

22 D.toPDB('result_{}.pdb'.format(N))

While the example presented above is intentionally terse, there are many ways to modify

the script to collect and analyze a variety of results. The most obvious extension is to

place the model generation and solution in a loop to generate designs for a range of

sizes. In Figure 5.8, we present a few example results from solving the simple model in a

loop. The code can be further tailored by changing the contributions to cohesive energy

to specially-regressed coefficients to better represent a metal of interest. Additionally, the

Canvas shape can by recreated and adapted across several optimizations, as presented in

Isenberg et al. [97].

5.6 case study : bifunctional catalyst design

In Núñez and Vlachos [166], the authors presented a machine-learned model for predict-

ing surface reactivity of ammonia decomposition on a patchy Ni-Pt bifunctional catalyst
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5.6 case study : bifunctional catalyst design

(a) N = 17 (b) N = 34 (c) N = 55

Figure 5.8: Example optimally cohesive nanoclusters.

and then designed a surface by applying a simulated annealing optimization algorithm.

While their approach is tailored to make accurate predictions of reactivity, there are no

guarantees that simulated annealing indeed produced the optimal design. In this case

study, we present our optimization model as a complimentary approach that can identify

provably optimal structures for a simplified version of the relevant chemistry.

The problem involves trying to identify the optimal patterning of a single layer of Ni

atoms on top of a Pt {111} surface. The placement of Ni atoms creates facet and edge

sites that contribute to the turnover of the ammonia decomposition reaction. As a first

order approximation of the microkinetic model presented in Núñez and Vlachos [166],

we simply assume that slab reactivity is proportional to the sum of pairs of edge sites

immediately next to a facet site. This simplified viewpoint neglects contributions to

reactivity from adsorbates that take a longer path diffusing across the catalyst surface

between sites further away than nearest neighbors. However, we remark that more

complicated contributions could be conceptually represented via additional variables,

constraints, and parameters for the turnover on the catalyst surface.

Figure 5.9: Relevant material conformations in bifunctional catalyst example.
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We employ basic variables for conformation indication (Eqns. 5.18–5.21), which are

automatically encoded by MatOpt to indicate the presence of facet or edge sites. In

Figure 5.9 we show the conformations including the facet site and the six orientations

of edge sites. To represent our simplified model of catalyst turnover, we define new

material descriptors to indicate the conjunction of a conformation of type “A” (i.e., a

facet site) next to conformation of type “B” (i.e., an edge site).

Additionally, we model the surface energy of the resulting patterns with the goal of

mapping the Pareto-optimal frontier of activity against stability in this design space.

As a model for the surface energy, we employ the square-root trend from the Tománek

model (Eqn. 5.33), only including sites in the top two layers of the canvas. The sum of

these contributions results in a normalized evaluation of cohesive energy which can in

turn serve as an approximation of surface energy after dividing by a unit area.

The MatOpt implementation of this model is available in Section 5.10 and the equivalent

mathematical optimization model is presented in Section 5.11. While the code is more

complex than the first case study, it illustrates several features that are commonly utilized

in models. For example, we create a canvas from a periodic tile, we introduce descriptors

over a subset of the sites in the canvas, and we fix part of the design to certain atoms. We

include a loop to solve the model for a range of constraints on the surface activity, we save

the results, and then we repeat for different sizes of the periodic tile to explore designs

with different periodicity. In this way, we can build a Pareto frontier of the activity

against the stability of the nanostructured surfaces, presented in Figure 5.10. A few

Pareto-optimal solutions identified on tiles of size 8 atoms × 8 atoms are plotted below

in Figure 5.11. We note that the maximally active design was equivalent to the design

proposed by Núñez and Vlachos [166], suggesting that, at least to a first approximation,

their identified design was in fact optimally active.

5.7 conclusions

In this chapter, we present a general-purpose approach to designing nanostructured

materials. We compile a set of shared features of nanomaterial design problems and

then develop modular variables and constraints to represent the basic features of the

their respective optimization models. From these general approaches, we have created

MatOpt, a Python module for casting mathematical optimization models in Pyomo from

simple material input. We describe the object-oriented classes for specifying material

information and for representing material optimization models. A detailed example of
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Figure 5.10: Pareto-optimal frontier for the bifunctional catalyst design example.
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Figure 5.11: Example Pareto-optimal results for the bifunctional catalyst example. Normalized
activity and surface energy values are given below each tile.
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5.7 conclusions

the module applied to a nanocluster cohesive energy minimization problem illustrates

the basic syntax and logic for creating models. An implementation of a bifunctional

catalyst surface problem illustrates several more complex features of the tool and

demonstrates an approach to generate Pareto-optimal results. The resulting MatOpt

tool is distributed as part of the IDAES software distribution and will enable rigorous

mathematical optimization in the domain of nanostructured material design.
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5.8 notation

Indices

i, j canvas location

k, l building block type

c conformation

Sets

I canvas locations

Ni neighbors to canvas location i

K building block types

C conformations

Binary Variables

Yik presence of a building block of type k at site i

Yi presence of any building block at site i

Xijkl presence of building blocks of type k and l at sites i and j, respectively

Xij presence of building blocks of any type at sites i and j

Zic presence of conformation c at site i

Zi, Zij indicator variables to represent a condition at site i or for a pair of sites (i, j)

Integer Variables

Cikl count of building blocks of type l next to a building block of type k at site i

Ci count of any type of building block next to site i

Expressions

P(x) piecewise linear function of input variable x

g(x), gi(x), gj(x), gij(x) linear expressions indexed over various combinations of sites or
bonds

Parameters

ξicjl 1 if a building block of type l is present at site j if a conformation
of type c would be present at site i, otherwise 0

ξicj 1 if a building block of any type is present at site j if a
conformation of type c would be present at site i, otherwise 0

MLB, MUB big-M values for the lower and upper bounds on implication
constraints, respectively
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5.9 appendix : key framework object classes

5.9.1 Expressions

Table 5.1: Explanation of MatOpt Expression objects.

Expression Name Definition & Example Use Case

Summation of contributions across...

LinearExpr ... multiple descriptors & coefficients plus an offset

Scaling and normalizing surface energy

SiteCombination ... an expression at site i and an expression at neighboring site j

Counting bond energy from function of coordination at neighbor sites

SumSites ... sites (per site type)

Counting number of Pt in nanocluster

SumBonds ... bonds (per bond type)

Counting contributions to energy by bonds

SumSiteTypes ... site types (per site)

Counting presence of any atom at a site

SumBondTypes ... bond types (per bond)

Counting bond type-dependent contributions to bond energy

SumSitesAndTypes ... sites and site types

Counting number of atoms in nanocluster

SumBondsAndTypes ... bonds and bond types

Counting multi-metallic bond contributions to cohesive energy

SumConfs ... conformation types (per site)

Counting presence of conformation of type “A”

SumSitesAndConfs ... sites and conformation types

Counting conformation-specific contributions to turnover

SumNeighborSites ... neighboring sites (per neighbor site type)

Counting local atom concentration

SumNeighborBonds ... bonds to neighboring sites (per bond type)

Counting number of bonds of specific types around a site
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5.9.2 Descriptor Rules

Table 5.2: Explanation of MatOpt Rule objects.

Rule Name Definition & Example Use Case

LessThan Descriptor less than or equal to an Expression

“surface energy should be less than a threshold”

EqualTo Descriptor equal to an Expression

“surface energy should be equal to a linear expression”

GreaterThan Descriptor greater than or equal to an Expression

“stability must be greater than a linear expression”

FixedTo Descriptor fixed to a scalar value

“subset of canvas sites should be fixed to specific atoms”

PiecewiseLinear Descriptor equal to the evaluation of a piecewise linear expression

“descriptor follows the square root of coordination number”

Implies Indicator (binary) descriptor that imposes other constraints if the
descriptor is one

“if an atom is placed on the surface, then there must be an atom
placed beneath it”

NegImplies Indicator (binary) descriptor that imposes other constraints if the
descriptor is zero

“if an atom is not present at a site, then then no bond can be
present”

ImpliesSiteCombination Indicator (binary) bond descriptor that imposes constraints on the two
sites in the bond

“this combination of reactive sites requires a conformation of
type A and a conformation of type B”

ImpliesNeighbors Indicator (binary) site descriptor that imposes constraints on all
neighbor sites

“if a conformation is present, then each neighboring site must
match the conformation pattern”
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5.10 appendix : bifunctional catalyst design code

1 import numpy as np
from matopt import *

IAD = 2.828
5 Lat = FCCLattice.alignedWith111(IAD)

nUnitCellsOnEdge = 4
nLayers = 4
a = b = nUnitCellsOnEdge*IAD
c = nLayers*Lat.FCC111LayerSpacing

10 alpha = beta = np.pi/2
gamma = np.pi/3
S = Parallelepiped.fromEdgesAndAngles(a,b,c,alpha,beta,gamma)
S.shift(np.array([-0.01*a,-0.01*b,-0.01*c]))
T = PlanarTiling(S)

15 Canv = Canvas.fromLatticeAndTilingScan(Lat,T)

iToSetNi = [[3,4,5,6,7,8],[3,4,5,6],[4,5,6,7],[5,6,7,8],[6,7,8,3],[7,8,3,4],[8,3,4,5]]
iToSetPt = [[9,10,11]]*7
Confs = [[(Atom('Ni') if i in iToSetNi[c] else (Atom('Pt') if i in iToSetPt[c] else None))

20 for i in range(12)] for c in range(7)]
I = range(len(Canv))
LocsToFixPt = [i for i in I if Canv.Points[i][2] < Lat.FCC111LayerSpacing*2.5]
LocsToExcludePt = [i for i in I if i not in LocsToFixPt]
CanvMinusTwoBotLayers = [i for i in I if Canv.Points[i][2] > Lat.FCC111LayerSpacing*1.5]

25 OneLocToFix = [min(LocsToExcludePt)]
maxNormSurfE = 999
Atoms = [Atom('Ni'),Atom('Pt')]

for SumActiveSitesLB in range(nUnitCellsOnEdge**2):
30 m = MatOptModel(Canv,Atoms,Confs)

m.Yik.rules.append(FixedTo(1,sites=LocsToFixPt,site_types=[Atom('Pt')]))
m.Yik.rules.append(FixedTo(0,sites=LocsToExcludePt,site_types=[Atom('Pt')]))
m.Zic.rules.append(FixedTo(1,sites=OneLocToFix,confs=[0]))
m.Zic.rules.append(Implies(concs=(m.Yik,EqualTo(1,site_types=[Atom('Ni')]))))

35 SumAConfs = SumConfs(m.Zic,confs_to_sum=[0])
SumBConfs = SumConfs(m.Zic,confs_to_sum=[1,2,3,4,5,6])
m.addBondsDescriptor('SiteCombinations',binary=True,

rules=ImpliesSiteCombination(Canv,
(SumAConfs,GreaterThan(1)),

40 (SumBConfs,GreaterThan(1))))
m.addGlobalDescriptor('SumActiveSites',bounds=(SumActiveSitesLB,None),

rules=EqualTo(SumBonds(m.SiteCombinations)))
m.addSitesDescriptor('Ei',rules=PiecewiseLinear(values=[1-sqrt(CN/12) for CN in range(13)],

breakpoints=[CN for CN in range(13)],
45 input_desc=m.Ci),

sites=CanvMinusTwoBotLayers)
m.addGlobalDescriptor('NormEsurf',

rules=EqualTo(SumSites(m.Ei,coefs=1/(nUnitCellsOnEdge**2))))

50 D = m.minimize(m.NormEsurf):
if(D is None):

break
D.toCFG('result_{}.cfg'.format(SumActiveSitesLB),BBox=S)
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5.11 appendix : bifunctional catalyst design model

As part of our example, we also show how to incorporate simple constraints for mod-

eling the stability of designs. These constraints are based on the Tománek model for

cohesive energy [215], recently exemplified in Núñez, Lansford, and Vlachos [165]. In

this model, each atom contributes to the cohesive energy by a square root dependence on

coordination number. In Eqn. 5.34 we present the descriptor for the total cohesive energy

of the slab Êstab as a function of coordination number Ci at site i. We have normalized

the values of surface energy and the per-atom contributions so that they all lie between 0

and 1, with a value of 0 corresponding to isolated atoms and a value of 1 corresponding

to the bulk cohesive energy.

Êstab =
1
|I|∑i∈I

(
1−

√
Ci

12

)
(5.34)

The resulting optimization model is presented below in Eqns. 5.35– 5.42, in conjunction

with the definitions for the basic variables in Eqns. 5.8–5.14. As the objective function

(Eqn. 5.35), we have taken a weighted sum of the terms for normalized catalyst activity

and the normalized cohesive energy. In Eqn. 5.36 we define the normalized catalyst

activity ˆAact as a normalized sum of reactive pairs of sites, each denoted as φij. In Eqn. 5.38

we define the normalized catalyst stability as a normalized sum of contributions from

sites, each denoted as Êi. To incorporate the square root function, we utilize the piecewise

linear rule in MatOpt, abstractly represented in Eqn. 5.39 as a function of coordination

number Ci, noting that additional variables and constraints will be modularly included

by Pyomo to correctly encode that function. The set of basic variables are automatically

added to satisfy the requirements of the user-specified constraints. In this example,

since there is only one type of atom being placed, the variables for building block type

(Yik, Xijkl , Cikl) can be preprocessed out so that only the type-agnostic variables remain

(Yi, Xij, Ci).
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5.11 appendix : bifunctional catalyst design model

max
ˆAact,φij ,Ê

stab,Êi ,
Zic ,Ci ,Xij ,Yi

wact ˆAact +
(
1− wact) Êstab (5.35)

s.t. ˆAact =
2

∑
i∈I
|Ni|

∑
i∈I

∑
j∈Ni

φij (5.36)

{
φij
}
⇒
{( ∨

c∈C1⊂C

Zic

)∧( ∨
c∈C2⊂C

Zjc

)}
∀ i ∈ I, ∀ j ∈ Ni (5.37)

Êstab =
1
|I|∑i∈I

Êi (5.38)

Êi ∈ f (Ci) ∀ i ∈ I (5.39)

ˆAact ∈ [0, 1] (5.40)

φij ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ Ni (5.41)

Êstab ∈ [0, 1] (5.42)

(5.8)− (5.14)
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6
O P T I M I Z I N G W I G N E R C RY S TA L B I L AY E R S

In this chapter, we present an alternative to the paradigm in the previous sections

by showing how mathematical optimization can also be used to identify patterns of

materials in a continuous space. Specifically, we consider the problem of identifying

minimum energy configurations for Wigner crystal bilayers. This involves optimizing

the precise placement of point charges on two periodic, infinite plates. For some simple

setups of the problem, the optimal patterns are well known, but for more complex

situations there are no guarantees that the best known patterns are indeed optimal. We

present a simplified mathematical optimization model that approximates the complex

equations for Coulomb interactions in the Wigner bilayer problem and that can be used

to quickly identify good solutions to the problem. However, we also identify cases where

the truncation error in the approximate model leads to spurious results, and therefore, we

also develop a numerical optimization approach that more closely encodes the complex

equations governing the energy of Wigner crystals. The approaches developed in this

work can be used to more systematically identify Wigner crystal patterns in situations

where intuition and heuristic algorithms fail.

6.1 introduction

Self-assembly of building blocks at the atomic scale has long been identified as an

important route for controlling the formation of useful nanostructures [208, 224, 231].

Often, the self-assembly process can be better controlled or scaled-up by applying ex-

ternal forces in a process known as directed self-assembly [74]. Currently, much effort

is spent developing robust techniques for arranging two-dimensional nanostructures,

with the goal of utilizing these advances to hierarchically assemble three-dimensional

nanostructures [253]. Example approaches for forming two-dimensional self-assemblies
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6.1 introduction

include the use of anisotropic interactions between colloidal particles [20, 21, 38], assem-

bly by DNA [5], and flow over templated surfaces [186]. One application of interest is

assembling nanoparticles for surface-enhanced Raman scattering [114].

In this chapter, we focus on a specific phenomenon that has potential applications in

the self-assembly at surfaces. Specifically, we will consider the assembly of charges

confined to conductive plates to form lattice structures known as Wigner crystals [233].

Wigner crystals have long been of interest in the physics community as a way to explain

observations of phenomena originating from the quantum nature of materials at extremes

of low temperature and small length scale [67]. Our interest in Wigner crystals is due to

the fact that they form a wide array of stable patterns which can be tuned by controlling

relatively simple parameters related to their confinement. Specifically, the parameters

of charge density and plate separation can be controlled at the microscale and used to

form patterns of charged particles which can in turn be transfered to more permanent

patterns in other nearby materials.

Similarly-charged particles interacting via a Coulomb potential will repel each other to

form an evenly-spaced, hexagonally-packed lattice on an infinite plate but will form

complex patterns under other conditions. When confined on other shapes (e.g., circular

disks), the minimal-energy lattice can be distorted to form other patterns [119]. Similarly,

when a second charged plate is brought parallel to the first plate, a series of patterns

form as a function of plate separation [68]. The key observation is that the optimal charge

pattern is no longer hexagonal (as in the case of a single, infinite plate), but instead

transitions through several stable lattices with rectangular and square patterns in the

intermediate plate separations. This setup is referred to as the symmetric Wigner bilayer,

since the two plates were studied with equal charges on the two plates.

More recently, optimal patters have been considered for unequal charges on the two

plates, in a setup referred to as asymmetric Wigner bilayers [7, 8, 141]. By introducing

another tunable parameter in the formation of Wigner crystals, the asymmetric bilayer

problem has created a significantly more complex space of nanoscale patterns. Ludwig

et al. [141] used a Monte Carlo approach to approximately identify the stable structures

while Antlanger et al. [7] used a variation of genetic algorithms to heuristically optimize

the crystal patterns.

In this chapter, we apply mathematical optimization to optimize the structure of Wigner

bilayers. We first define the problem of finding the minimum energy Wigner bilayer

crystal pattern and present the prerequisite expressions necessary to calculate the po-

tential energy. Then, we present a nonlinear programming (NLP) model to represent
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6.2 problem statement & preliminaries

the energy minimization of the Wigner bilayer system with truncation on the Coulomb

interactions considered. We characterize the results of the NLP model and highlight

the need for numerical optimization of the more rigorous expression for the potential

energy. We present preliminary results on the application of numerical optimization

algorithms and outline an algorithm for generally optimizing the Wigner crystal structure

via mathematical optimization.

6.2 problem statement & preliminaries

We consider a problem setup equivalent to the one presented in Antlanger et al. [8],

restated here for convenience. Let L1 and L2 represent two infinite parallel plates with

point charges of elementary charge −e at specified densities. We define a periodic tile to

distribute the charges with area A, such that the number of charges per tile on the two

plates, N1 and N2, and the density of charges, σ1 and σ2, are given by:

N1 = ∑
i∈L1

1 (6.1)

N2 = ∑
i∈L2

1 (6.2)

σ1 =
N1

A
(6.3)

σ2 =
N2

A
(6.4)

To satisfy electroneutrality, we assume that the two plates are also uniformly charged

with charge densities σ1e and σ2e. The two plates are separated by a distance d which

can be normalized to a dimensionless parameter η.

η = d
√
(σ1 + σ2) /2 (6.5)

The coordinates of the point charges can be generically represented by the position of

a charge in one “central” tile plus an offset for the periodic images of of the tile. We

denote the position of charges in the central tile as ri and the vector between two charges

in the central tile as rij. Both of these vectors are defined in three-dimensional space,

however, we can simplify the geometry by choosing to align the plates normal to the

z direction and fixing the bottom plate at z = 0 and the top plate at z = d. Then, we

define two-dimensional versions of the charge position as si and the difference vectors

as sij. The offset for periodic image n is given as Sk and defined by multiples of lattice
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6.2 problem statement & preliminaries

vectors A and B in the xy plane. Similarly, multiples of the reciprocal lattice vectors for

the periodic tile are written as Gk

Sk = ikA+ jkB (6.6)

Gk = ik
2πB × êz

A
+ jk

2πêz ×A

A
(6.7)

Finally, we denote the charge density as a function of position ρ(r) that simply represents

the sum of several Dirac delta functions for point charges and the background charge at a

specific position. Given this notation, we can define the energy of our system in Eqn. 6.8.

In the first line, we include the infinite summation of repulsive interactions between

point charges across the periodic images of the tile.1 In the second line, we include the

summation of favorable interactions between point charges and the neutralizing plate

charge by integrating over the surface of the plates. In the third line, we include integrals

for the energy of the neutralizing plate charges interacting unfavorably with each other.2

E =
e2

2 ∑
i∈L1

⋃
L2

∑
j∈L1

⋃
L2

∑
Sk

′ 1∥∥rij +Sk

∥∥
− e2

2 ∑
i∈L1

⋃
L2

∫
L1
⋃

L2

dr∑
Sk

ρ(r)

‖ri − r+Sk‖

+
e2

2

∫
L1
⋃

L2

dr′
∫

L1
⋃

L2

dr∑
Sk

ρ(r)ρ(r′)

‖r− r′ +Sk‖

(6.8)

6.2.1 Ewald Summation

The expression for energy defined in Eqn. 6.8 is problematic due to the infinite summation

of contributions across periodic tiles. In general, this would require a large series to

add up contributions from periodic images as the interaction terms tend towards zero.

However, for the Coulomb potential, the terms in the summation does not converge and

instead become dependent on the choice of boundary conditions for the summation.

Fortunately, we can utilize a technique called Ewald summation in conjunction with the

1 We denote the summation across all (infinite) periodic images by ∑
Sk

. For the central tile, k = 0, we should

not include an interaction for i = j. We denote this exclusion as ∑
Sk

′

2 We take the outer integral over all points on the plates except for the point considered in the inner integral.
We denote this as

∫
L1
⋃

L2
dr′
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6.2 problem statement & preliminaries

electroneutrality condition to break the summation into two parts, yielding a result that

is insensitive to the bounds on the summation [149].

Ewald summation breaks the potential energy into “real space” and “reciprocal space”

contributions with an arbitrary parameter, α, that dictates the relative weight to give

the reciprocal space contributions. The derivation of the contributions is explained in

Mazars [149], and here we just reiterate the resulting equations. In Eqn. 6.9 we denote

the total energy as the summation of real- and reciprocal-space interactions within the

same plate as well as interactions between the two plates. In Eqns. 6.10–6.14 we present

the four types of contributions as well as an auxiliary function. Note that i refers to the

imaginary number and Gk refers to multiples of the two-dimensional reciprocal lattice

vectors defined in Eqn. 6.7.

E = ∑
l=1,2

Ereal
intra,l + ∑

l=1,2
Erecip

intra,l + Ereal
inter + Erecip

inter (6.9)

Ereal
intra,l =

e2

2 ∑
i,j∈Ll

∑
Sk

′ erfc
(
α
∥∥sij +Sk

∥∥)∥∥sij +Sk

∥∥ (6.10)

Erecip
intra,l =

πe2

A ∑
Gk 6=0

erfc (‖Gk‖ /2α)

‖Gk‖

∥∥∥∥∥∑
j∈Ll

exp (iGk· sj)
∥∥∥∥∥

2

−
√

πN2
l e2

αA
− αNle2
√

π

(6.11)

Ereal
inter = e2 ∑

i∈L1

∑
j∈L2

∑
Sk

′
erfc

(
α
√∥∥sij +Sk

∥∥2
+ d2

)
√∥∥sij +Sk

∥∥2
+ d2

(6.12)

Erecip
inter =

πe2

A ∑
Gk 6=0

F (Gk, α, d)Re

[(
∑

j∈L1

exp (iGk· sj)
)(

∑
j∈L2

exp (−iGk· sj)
)]

− πN1N2e2

A

[
exp−α2d2

α
√

π
+ d erf(αd)

]
− πe2σ2d [σ1A− 2N1]− πe2σ1d [σ2A− 2N2] (6.13)

F (Gk, α, d) =
1
‖Gk‖

exp (‖Gk‖ d) erfc
(
‖Gk‖

2α
+ αd

)
+

1
‖Gk‖

exp (−‖Gk‖ d) erfc
(
‖Gk‖

2α
− αd

)
(6.14)

The introduction of the Ewald parameter α enables the potential energy of the system

to be robustly calculated by considering a finite set of periodic images, beyond which

each of the terms in the summation should have decayed to zero. For a chosen numerical
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6.2 problem statement & preliminaries
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(a) N = 2, Ntop = 1, η = 0.2,
θ = 10◦, χ = 0.3
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(b) N = 2, Ntop = 1, η = 0.2,
θ = 90◦, χ = 0.3
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(c) N = 4, Ntop = 2, η = 0.2,
θ = 10◦, χ = 0.3
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(d) N = 4, Ntop = 2, η = 0.2,
θ = 60◦, χ = 1.0

Figure 6.1: Example Ewald summation calculations as a function of parameter α. The problem
and tile parameters are given below each plot.

tolerance, the choice of a suitable Ewald parameter and the set of periodic images to

consider requires some tuning. In Figure 6.1 we present the trend in several example

calculations as a function of α for summations of periodic images up to 100 copies

away from the central tile. For choices of small α, energies are overestimated due to

non-converging contributions of real-space interactions while at large α the error is due

to nonzero reciprocal-space contributions at the limits of the summation. At intermediate

values of α (∼ 5–50), the results are relatively insensitive to this arbitrary parameter choice

and therefore provide best setting for avoiding truncation errors. For the remainder of

our calculations, we choose α = 10 in conjunction with summation bounds of ±100

periodic tiles away from the central tile.
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6.3 nonlinear programming model

6.3 nonlinear programming model

The Ewald summation for evaluating the potential energy of Wigner crystals converges

to a real number. However, the equations include complicated terms that can not be

encoded in typical NLP models. As an alternate approach, we choose to neglect the

interactions between the neutralizing plate and the point charges. Furthermore, we

truncate the summation of Coulomb interactions to only include a smaller subset of

periodic images with the hypothesis that even if energy evaluations fail to converge,

the truncation may form a good approximation of the true potential energy surface. In

Figure 6.2, we illustrate the set of charged particle-particle interactions considered across

tile images indexed by k out of the finite set of images K.

In general, we would like to co-optimize the placement of charges as well as tile parame-

ters. However, when considering a truncated set of contributions, the optimizer will be

motivated to skew the tile (e.g., by choosing small interior angle and aspect ratio ≤ 1)

to separate charges and take advantage of truncation errors. As an alternative, we can

optimize tile geometry by simply scanning over a collection of results from problems

with fixed tile parameters and then selecting the best. The tile geometry can be fully

specified by four parameters, Ax, Ay, Bx, and By illustrated in Figure 6.3. Without loss of

generality, we can choose to fix one of the vertices of the tile at the origin and choose one

lattice vector to be aligned with the x-axis (Eqn. 6.15). Then, we normalize the tile area

to 1 (Eqn. 6.16), we define an interior angle of the tile as θ (Eqn. 6.17), and we define the

aspect ratio of the tile as χ (Eqn. 6.18).

0 = Ay (6.15)

1 = AxBy (6.16)

tan θ =
By

Bx
(6.17)

χ =
‖A‖
‖B‖ (6.18)

With the goal of optimizing the placement of charged particles within this set of

periodically-consistent tiles, we define an NLP model in Eqns. 6.19–6.29. We use set I to

represent the set of point charges, and we use set K to represent the set of periodic tile

images. In Eqns. 6.20–6.21, we define the variables for periodic copies of charges as a

function of the central tile charge positions and offsets defined by combinations of lattice

vector parameters. We define integer combinations of tile directions as parameters νA
k and

νB
k for each periodic image k. From these basic variables, we define variables rijk for the
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6.3 nonlinear programming model

distance between charge i in the central tile to charge j in tile k via Eqn. 6.22. To represent

the displacement in the z direction, we utilize parameter dij which is equal to 0 if charge

i is on the same plate as charge j and equal to the plate separation d otherwise. The

objective function, Eqn. 6.19, minimizes a sum of inverse distances that is proportional

to the Coulomb potential energy from particle-particle interactions. In addition to the

definitions of variables, we include four sets of constraints (Eqns. 6.23–6.26) to represent

the boundaries of the periodic tile for the charges in the central image. Additionally, we

can generally choose to fix one electron in the system to the origin, breaking translational

symmetry of the point charges.

min
xik ,yik ,rijk

∑
i∈I

∑
j∈I
j 6=i

1
rij0

+ ∑
i∈I

∑
j∈I

∑
k∈K
k 6=0

1
rijk

(6.19)

s.t. xik = xi0 + νA
k Ax + νB

k Bx ∀i ∈ I, ∀k ∈ K : k 6= 0 (6.20)

yik = yi0 + νA
k Ay + νB

k By ∀i ∈ I, ∀k ∈ K : k 6= 0 (6.21)

r2
ijk = (xi0 − xjk)

2 + (yi0 − yjk)
2 + d2

ij ∀i ∈ I, ∀j ∈ I,

∀k ∈ K : i 6= j ∨ k 6= 0 (6.22)

yi0 ≥ 0 ∀i ∈ I (6.23)

yi0 ≤ By ∀i ∈ I (6.24)

yi0 ≤
By

Bx
xi0 ∀i ∈ I (6.25)

yi0 ≥
By

Bx
xi0 −

AxBy

Bx
∀i ∈ I (6.26)

rijk ∈
[
rLB

ijk , rUB
ijk

]
∀i ∈ I, ∀j ∈ I, ∀k ∈ K : k 6= 0 (6.27)

xik ∈
[

xLB
ik , xUB

ik

]
∀i ∈ I, ∀k ∈ K (6.28)

yik ∈
[
yLB

ik , yUB
ik

]
∀i ∈ I, ∀k ∈ K (6.29)

6.3.1 NLP Model Results

The model presented in Eqns. 6.19–6.29 constitutes a non-convex NLP that is expected

to have multiple local optima. In a preliminary investigation, we found that global

optimizers had significant difficulty in solving problems for relatively small systems (i.e.,

4 point charges or less). However, we found that the local optimizer IPOPT [225] coupled
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k = 0

k = 1 k = 2

k = 3

k = 4k = 5k = 6

k = 7

k = 8

x

y

Figure 6.2: Illustration of contributions to periodic tile energy. Each tile is labeled by an index, k.
Red circles represent charges on the bottom plate and blue circles represent charges
on the top plate. Black, double-headed arrows represent intra-tile interactions and
gray, single headed arrows represent example inter-tile interactions between tiles 0

and 7.

(0,0) (Ax,0)

(Bx,By) (Ax + Bx,By)

(Eqn. 6.23)

(Eqn. 6.24)

(Eqn. 6.25)

(Eqn. 6.26)

θ

~A

~B

x

y

Figure 6.3: Explanation of periodic tile boundary constraints. Constraints in the optimization
model are noted next to each boundary.
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6.4 black-box numerical optimization approach

with a grid multi-start algorithm could consistently find the global optimum confirmed

by inspecting the potential energy surface. A few cases of identified patterns are plotted

in Figure 6.4. In the first three cases (Figs. 6.4a–6.4c), the pattern roughly corresponds to

symmetric patterns expected by intuition, and the deviation from the expected patterns

could be used to quantify the quality of the truncation in the model. However, the fourth

case highlights the major limitation of the truncation approach.

The pattern plotted in Figure 6.4d shows that the optimum of the NLP model was at the

boundary of the tile when the true optimum of the problem on an infinite plate is at the

center of the tile. This discrepancy is due to the fact that the optimizer is motivated to

separate the charges as much as possible in the limited periodic images, and therefore,

places charges on the top plate (blue points) at the rightmost edge where some tile

images (e.g., the ∼ 8 on the edge of the truncation) lack neighbors. This “cheating” is

expected to impact all cases to some degree, but may contribute more when tiles have a

small aspect ratio (� 1). The potential energy surface of this case is further illustrated

in Figure 6.5, showing that the result identified by the NLP model was in fact a saddle

point of the true potential energy surface. We furthermore show that the gradient in the

x direction was relatively small for the true energy evaluation, explaining why truncation

error in the NLP could distort the landscape to lead to the optimum at the edge of the

tile.

Having identified specific cases that yield poor results with the NLP model, we further

quantify the parity between the simplified, truncated objective function and the full

Ewald summation evaluation (considered the “truth”). In Figure 6.6, we plot the Ewald

summation evaluations against the objective of the NLP model for 1080 cases (drawn

from 15 charge positions, 9 tile angles, 8 aspect ratios) of a simple 2-particle system.

From these results, it is clear that the simplified objective value is a weak predictor of

the true potential energy function.

6.4 black-box numerical optimization approach

While it is not possible to embed the exact equations for Ewald summation directly in

a mathematical optimization model, we can still use numerical optimization to guide

the placement of point charges in a “black box” approach. We accomplish this by using

potential energy function evaluations in conjunction with automatic differentiation tools

to calculate derivatives. Specifically, we utilize Autograd [145], an automatic differentia-

tion package in Python, and cyIPOPT [125], a Python interface to the IPOPT solver [225].
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6.4 black-box numerical optimization approach

(a) N = 2, Ntop = 1, η = 0.2, θ = 90◦, χ = 1.0

(b) N = 2, Ntop = 1, η = 0.2, θ = 60◦, χ = 1.0

(c) N = 3, Ntop = 1, η = 0.2, θ = 60◦, χ = 1.0

(d) N = 2, Ntop = 1, η = 0.2, θ = 90◦, χ = 0.5

Figure 6.4: Example solutions from the NLP optimization model. Red points correspond to
charges on the bottom plate, blue points correspond to the top plate. The number of
charges N, number of charges on the top plate Ntop, dimensionless plate separation
η, tile angle θ, and tile aspect ratio χ are given below each case.
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(a) Isometric view of scaled potential energy surface.
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(b) View perpendicular to the steepest gradients.
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(c) Close-up of the curvature in x.

Figure 6.5: Potential energy surface for the case: N = 2, Ntop = 1, η = 0.2, θ = 90◦, χ = 0.5. The
red dot indicates the solution of the NLP approximation model, while the black dot
indicates the optimum found by the numerical optimization approach.
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Figure 6.6: Comparison of NLP objective values to calculated potential energies for a range of
tile angles, tile aspect ratios, and charge positions.

While IPOPT is typically used to solve equation-oriented models (from which it auto-

matically calculates derivatives), it can also accept function and derivative evaluations

programmatically. In this way, we can optimize directly on the true potential energy

surface without surrogate models.

However, this approach has the drawback of being computationally intensive. For

small systems of 2 point charges, we found that the time to evaluate a derivative

(∼ minutes) was an order of magnitude more expensive than evaluating the function for

potential energy (∼ seconds). Additionally, the memory usage when using Autograd

was significant (∼ 4 GB), presumably due to the need to store the calling tree for

programmatically evaluating derivatives. These computational challenges were not

investigated in detail, but it is clear that even after tuning, numerical optimization

via function calls to the Ewald summation will be significantly more computationally

expensive than optimization of a truncated version of the model.

In Figure 6.7, we plot the potential energy of solutions identified by numerical optimiza-

tion given the NLP model solution as a starting point for tiles generated from 4 choices

of tile angle and 8 choices of tile aspect ratio. In all cases, the numerical optimization

approach was able to improve the solution identified by the NLP model. All together,

these solutions allow us to identify the energy minimum placement of point charges and

tile parameters for the specified plate separation and charge densities.
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Figure 6.7: Improvement in potential energy of designs optimized by the black-box numerical
optimization method given the NLP solution as a starting point. N = 2, Ntop=1,
η = 0.1.

We graphically analyze the results from several 2-electron systems by plotting the

potential energies as a function of tile parameters, shown in Figure 6.8. In general, the

trends of energy as a function of tile parameters are unintuitive and can exhibit optima

at extremes or intermediate values of tile parameters. Importantly, we recreate the trend

in optimal patterns of symmetric Wigner bilayers that are well-known in the literature [1,

68]. Specifically, at small (but nonzero) plate separation, we identify the rectangular tile

arrangement know as the II phase (Figure 6.8a). At intermediate plate separation, the

optimal pattern shifts to a square pattern known as the III phase (Figure 6.8b). And

finally, at larger separation the optimal patterns are hexagonal close-packed layers known

as the V phase (Figure 6.8c).

6.5 conclusions

In this chapter, we have presented an approach for systematically identifying low-energy

configurations of Wigner crystal bilayers. We first identified a nonlinear programming

model that approximates the potential energy of the crystals by considering a truncated

set of Coulomb interactions. We analyzed the results of this optimization model and

identified cases where the truncation error significantly changes the optimal solutions to
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Figure 6.8: Example optimal results of the 2-electron problem across tile parameters. The normal-
ized plate separation, η, is given below each plot and the tile aspect ratio that attained
the minimum energy is marked by a vertical arrow below the corresponding point.
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6.5 conclusions

the problem. To avoid such errors, we developed a numerical optimization approach to

directly optimize the complex equations of the physically accurate model. We recreated

some expected trends of stable crystalline phases, illustrating how the overall algorithm

could be repeated to identify optimal patterns and tilings for general instances of the

problem.
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7
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we have developed mathematical optimization approaches to guide the

design of nanostructured materials. Models were derived for several types of material

optimization problems, and in doing so, we identified common features that can be

generically encoded so as to make our approaches applicable to a wide range of material

applications. We have shown how materials science concepts like lattices, atoms, and

structure-function relationships can be systematically translated into mathematical op-

timization models. In this way, we have lowered the barrier for rigorous mathematical

optimization to be applied by material experts. In the following sections, we summarize

the key contributions of our work and then present several directions for future research.

7.1 contributions

In Chapter 2, we showed how mathematical optimization can be used to systematically

identify modifications to a transition metal heterogeneous catalyst surface to produce

highly active nanostructured surfaces.

• We showed how transition metal crystal systems exhibiting the Sabatier principle

and adhering to a discrete lattice can be modeled by implication logic via mixed

integer linear programming models.

• We demonstrated that the quality of optimization results on finite canvases tends

to be sensitive to the size of the canvas. Results tend to improve as canvas size

increases due to additional degrees of freedom, however, we identified a significant

increase in problem difficulty as the number of locations increased.
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7.1 contributions

• We identified translational and rotational symmetry in our design space that had

an adverse impact on the ability to solve optimization models. We also identi-

fied symmetry-breaking constraints that led to a significant improvement in the

tractability of the resulting optimization problems.

• In some cases, we confirmed intuitively optimal designs, but in many more cases

we identified non-intuitive designs that maximized the desired material reactivity

through complex nanostructure patterns. In the motivating case of the oxygen

reduction reaction, we identified a novel pattern that was significantly more reactive

than the design from recent literature which was identified via intuition.

In Chapter 3, we identified several sub-models for better representing heterogeneous

catalysts, lifting many of the simplifying assumptions that we had utilized previously.

• We showed how implication logic can be used to account for partial reactivity of

catalyst sites.

• We regressed a simplified structure-function relationship for the surface energy of

nanostructured tiles that was amenable to be embedded in mathematical optimiza-

tion models.

• We introduced additional constraints to indicate the formation of “over-binding”

sites in the material as an approach to approximately represent the coverage on

nanostructured surfaces. As a more restrictive approximation, we also introduced

formulations that model coverage only on the strongest-adsorbing sites.

• We showed how results from our optimization models can be parametrically

collected and analyzed to indicate the sensitivity of reaction turnover to the various

constraints on the material design space.

In Chapter 4, we demonstrated a complete workflow for materials design on a bulk

metallic oxide starting by first proposing computational chemistry experiments and

ending with analysis of optimization results.

• We demonstrated a general modeling strategy for attributing material functionality

in a doped perovskite to local neighborhoods of sites termed motifs.

• We showed how density functional theory evaluations can be incorporated into

mathematical optimization models via binary variables to indicate motifs in the

material.
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7.1 contributions

• We highlighted the flexibility of the conformation indication formulation by pre-

senting three related optimization models that could be interchanged by simply

modifying model coefficients.

• We compared our results to those expected from randomly synthesized materials,

quantifying both the value of controlling the material nanostructure and designing

via mathematical optimization.

In Chapter 5, we identified the common features of nanostructured material design

problems that can be efficiently modeled in mixed-integer linear programming models.

From these commonalities, we developed a Python package to streamline the specification

of the materials design space and automate the formulation of optimization models.

• We identified a set of basic variables that are common to many types of material

design problems and can be used to quickly build more complicated models.

• We developed a Python package, MatOpt, for streamlining the process of specifying

nanostructured materials optimization models.

– We defined several object classes for constructing and manipulating the mate-

rial information necessary to populate the optimization model data structures.

– We created another set of objects for specifying material descriptors and

structure-function relationships from simple input, automatically managing

the details of indexed constraints.

– We provided simple routines for automatically converting implication logic to

mixed-integer linear programming formulations and for solving the resulting

optimization problems.

• We demonstrated the effectiveness of using MatOpt in the context of two case

studies, illustrating both the simple syntax and flexibility of the module.

In Chapter 6, we demonstrated how mathematical optimization can be applied to

systematically identify patterns of point charges in Wigner crystal bilayers.

• We developed a simplified nonlinear programming model formulation to represent

a truncated summation of Coulomb interactions on infinite plates.

• We analyzed the results of the approximate model to identify errors stemming

from the truncation. In particular, we identified the fact that the truncated model

can not be reliably used to co-optimize the placement of point charges and tile

parameters in a single formulation.
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7.2 future directions

• We proposed a numerical optimization approach to optimize the placement of

point charges inside fixed, periodic tiles. By iterating over tile parameters, we

mapped out several minimum energy patterns and reproduced a series of optimal

patterns from the literature.

7.2 future directions

Several ideas can be generically explored that apply to each of the research areas

presented in this thesis.

• Decomposition methods and other algorithm development can be further explored

to improve the tractability of material optimization problems. We experimented

with a few decomposition techniques but were never able to outperform general-

purpose mixed-integer linear programming solvers.

• A systematic way to derive symmetry-breaking constraints would be valuable.

We manually identified several such constraints, but we recognize opportunities

for more systematic treatments that could improve the tractability of the model

formulations.

In the design of nanostructured transition metal slabs, there are several avenues to extend

the work to address more structure-function relationships.

• The developed models can be adapted to work in bimetallic materials. This will

involve finding relevant structure-function relationships (e.g., volcano plots) that

take into account a combination of coordination number and atom identity. This

may potentially involve regression if no such models currently exist.

• There is an opportunity to formally model with parametric uncertainty the inability

to reliably implement the optimal nanostructured solution (in addition to the

modeling of stability, covered in Chapter 3). While the optimal nanostructured

design may introduce the most active sites, a slightly less optimal design may be

less susceptible to deactivation by atomic rearrangements and better overall.

In the context of models for stability and coverage of nanostructured catalysts, there is

ample opportunity to model the relevant physics with higher fidelity.

• The model for stability demonstrated in Chapter 3 can be modified to take into

account corrective terms that are more complicated than coordination number. For

136



7.2 future directions

example, Roling, Li, and Abild-Pedersen [181] included a term for atoms in the

first subsurface layer of metal slabs.

• The models for over-binding and coverage can be replaced by a simplified represen-

tation a microkinetic modeling trends. We provided several ways to approximate

the relevant chemistry, but a tailored model for coverage would be useful to embed

in the mathematical optimization model.

In the design of doped perovskites, there are opportunities for additional model devel-

opment.

• There is an opportunity to model additional contributions to the vacancy formation

energy as a function of dopant placement, improving the predictions of the simpli-

fied structure-function relationship. We considered the removal of the first oxygen

atom, neglecting interactions between vacancies in the lattice. Additional modeling

would improve predictions of subsequent oxygen removals from the lattice.

• The implementation uncertainty when synthesizing perovskites can be modeled to

better represent the current synthesis capabilities. While the optimization model

we considered in Chapter 4 resulted in optimistic targets for material performance,

it would be useful to formulate a model that does not assume control over the

precise placement of dopant atoms.

There are several opportunities to continue improving the MatOpt interface for translating

nanostructured materials design problems into optimization models.

• We have provided several basic objects for modeling materials, but many more

such objects can be defined. For example, additional nanocluster shapes, lattices,

and building blocks can be created as new applications require them.

• The implementation of descriptor rules was limited by our current understanding

of possible structure-function relationships. Additional rules may be needed to

represent more complicated structure-function relationships that we have yet to

consider.

For the design of Wigner crystals, several key extensions will be needed to fully demon-

strate the advantages of applying mathematical optimization.

• We demonstrated several proof of concept results, but a much broader set of

optimization results would be valuable (i.e., by considering more tile angles, aspect

ratios, and point charges). This will likely require tuning the codes for Ewald

summation to speed up the computation of potential energy and its derivatives.
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7.2 future directions

• Our approach can be readily extended to obtain similar results for other types of po-

tentials. For example, the Yukawa potential (also referred to as a screened Coulomb

potential [149]) is of interest because it decreases faster than the Coulomb potential.

Importantly, this functional form may yield acceptable results from a truncated

nonlinear programming model, avoiding the need for numerical optimization of a

complex Ewald summation.

• We designed Wigner crystals subject to a common periodic boundary on the top

and bottom plate. While this is generically sufficient to represent any tiling, it may

be more computationally efficient to consider distinct tile boundaries for each plate,

enabling smaller tiles to represent the same periodic patterns.
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