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Abstract

Robot swarms are large multi-robot systems that use simple, local con-

trol laws to produce global emergent behaviors. They are able to self-

organize and coordinate without the use of a centralized mechanism to ac-

complish tasks otherwise unachievable by a single individual (e.g., in-situ

correlative atmospheric data collection). Due to their use of information

obtained only from their direct neighbors, these systems are robust to in-

dividual robot failures and insertions or removals of swarm members. As

a result, robot swarms are scalable.

Their inherent scalability and robustness makes robot swarms suitable

for many applications such as search and rescue and surveillance. The

work in this thesis focuses on applications known as Swarm Search and

Service (SSS) Missions. In SSS missions, which naturally arise from for-

aging tasks such as search and rescue, the swarm is required to simulta-

neously search an area while servicing jobs as they are encountered. Jobs

must be immediately serviced and can be one of several different job types

– each requiring a different service time and number of vehicles to com-

plete its service successfully. After jobs are serviced, vehicles are returned

to the swarm and become available for reallocation. As part of SSS mis-

sion planning, human operators must determine the number of vehicles

needed to achieve this balance. The complexities associated with balanc-

ing vehicle allocation to multiple as yet unknown tasks with returning ve-

hicles makes this extremely difficult for humans. Previous work assumes

that all system jobs are known ahead of time or that vehicles move inde-

pendently of each other in a multi-agent framework.

This thesis explores the topic of human-in-the-loop mission planning

and monitoring for SSS missions. Natural language-based interfaces are
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designed for intuitive mission definition. Two models are developed to

predict the performance of the swarm: the Queuing Model and the Hy-

brid Model. The Queuing Model is able to predict the performance of the

swarm for missions where the swarm movement is constrained (e.g., ur-

ban) and the coverage rate of the swarm remains constant while the Hybrid

Model builds upon principles in the Queuing Model to handle additional

open environments scenarios where the coverage rate dynamically changes

with the size of the swarm. These models, when given to human operators,

act as a planning tool aid. Operators can rapidly compare system perfor-

mance across different configurations, leading to more effective mission

plans and improved performance. In addition, the Hybrid Model is able to

aid operators in maintaining an accurate, real-time situational awareness

of the mission, thereby allowing operators to determine how well the mis-

sion is going and if/what errors are occurring. Lastly, to effectively carry

out SSS missions, this thesis presents a decentralized method for breaking

off robots to reach multiple job sites and rejoining them with the swarm

once service is completed.
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Chapter 1

Introduction

Through the advancement of mobile robot technology (e.g., perception, localization,

locomotion), the ability to perform multi-robot missions has increased. Complex mis-

sions, such as collecting correlative in-situ atmospheric data, searching for the sur-

vivors of a natural disaster, and containment of a toxic gas, would otherwise not be

achievable by an individual robot at all, or would be completed in an inefficient and

untimely manner. Typically, these multi-robot missions are achieved by defining spe-

cific goals and providing individual and/or group plans. Individuals and groups within

a multi-robot system can act independently or cooperatively as a team [69, 116, 147].

As civilian and non-civilian applications like search and rescue [44, 84, 102], disaster

relief [163, 167], intelligence, surveilllence and reconnaissance [36, 85, 101, 191] and

convoy protection [174] emerge, the need for large (hundreds or thousands of agents)

and scalable multi-robot systems becomes apparent.

The term ”robotic swarm” was coined in the late 1980s by Beni [18]. They were

inspired by studies of the coordination seen from large colonies of social insects such

as ants, termites, bees and wasps [14, 51] and swarm intelligence [27]. Additional

animal swarms such as fish, wolves and birds have also been studied [135]. These large

groups of social individuals are able to self-organize without a centralized mechanism

in order to accomplish a task not otherwise achievable by any one individual (e.g.,

1



maintain the health of the colony) [164, 168]. Unlike their biological counterparts

which rely on naturally occurring pheromones and close proximity communication for

coordination, robotic swarms use distributed algorithms. Simple, local control laws

result in emergent global behaviors over time [14, 164] such as flocking, dispersion,

and foraging [135, 148]. This class of multi-robot system is flexible to changes in the

environment, robust to individual robot failures, and able to adapt to changes in the

swarm size. The large number of agents in a robotic swarm provide redundant sensor

data, thereby improving the quality of tracking and monitoring in certain missions

[48, 177].

1.1 Swarm Search and Service (SSS) Missions

Many envisioned applications of robotic swarms require that jobs be immediately ser-

viced by swarm members. In forest fire applications, a swarm may be tasked with

searching a section of the forest during a wildfire for brush fires that have sparked due

to embers carried by the wind. Those discovering a new fire must act immediately to

put it out rather than waiting for assistance and risk losing the current wildfire con-

tainment level. Similarly, in military applications, a swarm on patrol may come across

a Scud missile preparing to launch, where any action not taken immediately has little

value. Less extreme examples, such as breaking small teams off to maintain surveil-

lance of a newly detected suspicious site, follow a similar pattern. We call this type

of application in which members of a searching swarm, upon detection of a job, are

immediately dispatched to service it a Swarm Search and Service (SSS) mission. Once

a job is serviced vehicles return to the swarm for reallocation elsewhere.

In SSS missions vehicles use local control laws (i.e., direct neighbor communica-

tion only) to search large areas and simultaneously service jobs. As the swarm moves

with some predefined search pattern jobs “arrive” as they enter the sensing range of a

2



Figure 1.1: Example SSS mission where the swarm is tasked with searching the city of
Charlotte after hurricane Florence. Two job types are highlighted with colored circles.
Blue indicates fires that have started due togas leaks or down powerlines and black
indicates locations where people are trapped on roofs. The swarm does not initially
know these locations but discovers them in the process of searching.

swarm member. Each job requires a vehicle or group of vehicles to break off from the

main swarm for a specified amount of time to successfully service it. Once the job is

serviced, vehicles return to the swarm and become available for reallocation. Multiple

job types (e.g., fire, trapped people, etc.) with varying vehicle requirements may be

present. If too many jobs arrive at or near the same time, not enough vehicles may be

present in the swarm to service all of them. Therefore, one or more may be dropped

without completing their service requirement.

Figure 1.1 shows an example mission where a swarm is tasked with surveying the

city of Charlotte, NC after hurricane Florence. The robots are tasked with completing

2 different job types: locating gas leaks or hazardous power lines and monitoring the

health of survivors. After a natural disaster such as a hurricane has occurred, damage

to pipelines and power lines can lead to gas leaks and exposed electrical lines. If left

untended, these gas leaks and exposed electrical lines can result to unexpected fires

breaking out. The lack of free emergency personnel to handle these additional fire

outbreaks requires the tracking and elimination of these leaks and exposed lines. In
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addition, injured survivors who are found trapped in locations like buildings, roofs,

etc. must be tended to and monitored until additional medical help can be dispatched.

Possible job sites are highlighted. The blue indicates possible gas leak or exposed

power line locations. Black locations show possible areas where injured survivors may

be.

1.2 Motivation

As part of SSS missions, human operators are tasked with defining the overall mission

and managing the given mission’s progress. These human operators are often not fa-

miliar with the low level architecture – both at the robot-level and swarm-level – and

control algorithms necessary to run the system autonomously or semi-autonomously.

Although operators may be experts in the desired mission domain, this limited working

knowledge of the system design and operational needs makes it difficult to generate

achievable missions (given the environment and vehicle constraints). As new appli-

cations continue to emerge, the successful use of these complex multi-robot systems

hinges on the system’s accessibility to non-expert operators. The gap between current

mission planning and monitoring interfaces – which assume a highly skilled operator

(e.g., roboticist) – and those that are intuitive and accessible to the average operator is

the first motivation for the work in this thesis.

When planning SSS missions, another challenge human operators face is balanc-

ing the trade-off between different mission objectives to meet the overall performance

goal. The complex relationship between mission parameters such as swarm size, the

expected number of dropped jobs, mission time, etc. must be considered. Knowing

only the expected numbers of jobs of each job type and the size of the search area,

predicting the number of vehicles needed to handle a variety of load conditions and

achieve an acceptable balance among the other parameters with multi-dimensional in-
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teractions is extremely difficult for humans. Intuitive mission planning analysis tools

will need to be developed to guide operators in effectively selecting the required swarm

size if robotic swarms are to be fielded for practical applications.

Lastly, in addition to the lack of planning tool aids, effective methods for deploying

sub-swarm robots and rejoining them with the main swarm must be developed. To be

truly autonomous these methods must be decentralized. They must also ensure that

connectivity is maintained between the sub-swarm robots at all times. More specifi-

cally, this necessitates that robots breaking off from the main swarm does not cause

graph disconnection between robots left in the main swarm or between the sub-swarm

team and the main swarm.

1.3 Thesis Statement

The utilization of predictive models as aids allows human operators to plan Swarm

Search and Service (SSS) missions that closely match mission objectives, as well

as, maintain an accurate situational awareness while monitoring missions.

For the purposes of the work shown in this thesis there are several things to note.

First, predictive models refers to models that predict the overall performance of the

swarm tasked with carrying out an SSS mission. Second, to determine if a mission

closely objectives, a cost function is used. Lastly, the accuracy of an operator’s situa-

tional awareness is evaluated by their ability to effectively evaluate the performance of

a swarm conducting an SSS mission.

1.4 Contributions

The system required to successfully complete Swarm Search and Service missions is

comprised of both a planning and an execution portion. Figure 1.2 provides a diagram
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Figure 1.2: System framework required to carry-out Swarm Search and Service mis-
sions.

of how the planning and execution portions are connected. Within mission planning,

human input is utilized for mission definition and flight path generation, as well as, for

determining how the resources are allocated (i.e., choosing the swarm size). Planning

tool aids such as performance prediction models can be employed to improve planning

effectiveness. Once the mission has been planned, the vehicles perform a search be-

havior to locate jobs of interest in the environment. When a job is found, a sub-swarm

break off and and rejoin behavior is initiated. During execution, human operators can

monitor the progress of the mission and the performance of the swarm. Although

not explored in this this thesis, should the operator think that the performance of the

swarm is poor, online replanning can be done to improve the performance (dashed

orange line).

This thesis makes the following contributions (represented by the green boxes in

the diagram above).

1. Natural language interface for flight path generation.

2. Queuing Model for predicting the performance of a swarm during constant cov-

erage rate SSS missions.

3. Hybrid Model for predicting the performance of a swarm during SSS missions

with dynamically changing coverage rates.

6



4. Effective human-in-the-loop SSS mission planning interface that allows opera-

tors to intuitively explore the complex relationship and trade-offs between mis-

sion parameters.

5. SSS mission monitoring interface that provides accurate situational awareness to

human operators.

6. Decentralized algorithm for sub-swarm break off and rejoin.

1.5 SSS Mission Environments

(a) Constrained Environment (e.g.,
Urban)

(b) Open Environment

Figure 1.3: Depiction of SSS missions in constrained and open environments. The
swarm robots are shown in blue, while their sensing range is given by the yellow re-
gion. The red dashed lines outline the total area covered by the swarm.

The remainder of this thesis will explore SSS missions in the context of two differ-

ent environments: a constrained environment (Figure 1.3a) and an open environment

(Figure 1.3b). In constrained environments, such as urban settings, the narrow pas-

sages limit the sensing range (yellow) of the vehicles (blue). As a result, the amount of
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new area searched by the swarm – coverage rate (red outlined area) – is independent

of the number of vehicles currently in the swarm and is constant. Therefore, the arrival

rate of jobs being sensed by the swarm also remains constant. Open environments, on

the other hand, allow the swarm to expand and contract as the vehicles move in and

out of the swarm. As a result, the coverage rate of the swarm dynamically changes

with swarm size, thereby making the arrival rate of jobs dependent upon the state of

the swarm.

1.6 Outline of Thesis

This thesis develops methods for improving the effectiveness of human-in-the-loop

planning and monitoring of complex Swarm Search and Service missions in several

steps. First, it explores the problem of mission definition. Next, it presents methods

to aid operators in making informed decisions. Finally, it provides a proof-of-concept

method for carrying out SSS missions on autonomous agent platforms.

In Chapter 2, we explore previous related work. First, various decentralized swarm

behaviors are described. Next, human-machine interaction schemes previously used

are discussed. We then give an overview of current multi-robot mission planning meth-

ods, common planning interfaces design principles, Markov chain-based analysis of

robot swarms, and supervisory control schemes for monitoring multi-agent missions.

Finally, the state-of-the-art in swarm movement and splitting is outlined.

In Chapter 3, both a single input and a multimodal input natural language-based

interfaces are developed for use in mission specification. The efficacy and ease-of-use

of both interfaces is tested in the context of flight path generation for a single unmanned

aerial vehicle (UAV). The work presented in this chapter has been published in [38] and

[39]. Related work and analysis was published in [40] and [37].

In Chapter 4 a Queuing Model is developed to predict the performance of a swarm
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during a Swarm Search and Service mission in the context of a constrained environ-

ment. The model is provided to human operators as an aid for improving planning

effectiveness in urban-like scenarios where the coverage rate of the swarm is con-

strained. Simulations are used to validate the results of the prediction model. A user

study was conducted to determine the ease-of-use and efficacy of using the Queuing

Model as a planning tool aid. The work presented in this chapter was published in [42]

and [41].

In Chapter 5, a more general open environment scenario for SSS missions is ex-

plored. A Hybrid Model is developed to predict the performance of the swarm in these

open environments where the coverage rate of the swarm increases and decreases as

vehicles are added and removed from the swarm to service jobs. The model is also ap-

plied to constrained environment scenarios. A user study was conducted to determine

the impact of using the Hybrid Model as a planning tool and monitoring aid.

In Chapter 6, a decentralized algorithm for breaking off sub-swarm teams and re-

joining them with the main swarm is presented. The algorithm is a proof-of-concept

method for deploying the necessary swarm vehicles to job sites for servicing. Single

job and multiple, simultaneous job site cases are examined. The algorithm is com-

pared with a full swarm movement algorithm. The work presented in the chapter was

published in [43].

Finally, Chapter 7 provides a summary of contributions made by this thesis and

discusses possible future directions.
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Chapter 2

Related Work

2.1 Swarm Behaviors

One of the most beneficial aspects of robot swarms is their ability to produce com-

plex, emergent behaviors from relatively simple local interactions among neighbor-

ing agents. Neighborhoods can be defined through straightforward distance measure-

ments or through more complex means such as the network connectivity graph of the

swarm. Following the original inspiration of robot swarms, many behavior primitives

are contrived from behaviors seen in biological swarms (e.g., flocking, dispersion, ren-

dezvous). In recent years, researchers have explored the benefit of artificial (or man-

made) behavior primitives such as formation generation and alignment. Behaviors can

be executed on the swarm level (meaning all available robots perform the behavior) or

sub-swarm level (where a small team of robots breaks off to perform the desired be-

havior). Complex behaviors can be achieved by combining several behavior primitives.

For example, the amalgamation of a flocking and homing behavior could be used to

produce a global herding behavior [127]. When planning swam missions such as the

SSS missions described in this thesis, behaviors are executed at both levels simulta-

neously to achieve the overall high-level swarm goal. There are two commonly used
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types of swarm behaviors: bio-inspired and man-made. Although this thesis primarily

focuses on man-made behaviors, both are discussed in more detail in Section 2.1.1 and

Section 2.1.2.

2.1.1 Bio-Inspired Behaviors

Due to their origin in biological systems and swarm intelligence, robot swarm litera-

ture uses biological metaphors as a foundation for the development of many spatially

grounded behavior primitives. These behaviors are well understood, making it easier to

assess the implementation of more complex behaviors seen in nature such as foraging.

Previous research shows emergent, collective global behavior can be produced with-

out hierarchical control, global information or group leadership [5][160][94][86][57]

[58][190][91]. Two main behavioral rules are used as a basis for bio-inspired swarm

behaviors: repulsion and attraction. When using repulsion individuals repel those

around them in order to maintain a constant distance [108]. When not using repul-

sion, individuals use attraction to align themselves with those around them in order

to avoid isolation [149, 150]. Couzin et al. model these behavioral rules using three

radii zones. As the width of these radii zones changes distinct collective behaviors are

generated [52]. Three common bio-inspired behaviors that make use of a variation of

these zones are discussed in more detail below: rendezvous, dispersion and flocking.

2.1.1.1 Rendezvous

Rendezvous, also known as aggregation, is one of the most commonly seen behaviors

in biological systems and is used extensively in robot swarm systems. The main goal

of this behavior is to gather all robots in order to maintain some desired distance. A

variation of rendezvous, called homing, asks all robots to not only gather, but to gather

at a particular location.

Cortés et al. explore the rendezvous problem from a control theoretic perspective
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and present a coordination algorithm for networks of mobile agents to achieve ren-

dezvous. Given an environment without obstacles neighboring robots transmit their

location within their local communication network. A Circumcenter Algorithm is

then used to move each robot towards the circumcenter of itself and its neighbors,

thereby moving the entire swarm towards its circumcenter. Theoretical guarantees for

the swarm to converge to the circumcenter are given for static and dynamic communi-

cation topologies [50].

In some applications, human operators may actually want the swarm to converge

on multiple locations. The principle of glowworm swarm optimization (GSO) has been

used extensively to solve the multi-location rendezvous problem [99, 109]. Krisnanand

and Ghose show that GSO allows the swarm to split into multiple groups which con-

verge to a peak location found by solving a multi-modal objective function [109].

2.1.1.2 Dispersion

Dispersion is the opposite of rendezvous. Instead of asking all robots to converge on

a location, they are tasked with fanning out from a single location in order to cover a

desired area. This can be applied to situations where a large area must be covered and

searched quickly such as finding a target of interest and tracking it. Robots swarms are

an ideal choice for the implementation of a dispersion behavior because they are able

to carry sensors that can aid in an effective search.

One method for dispersing a team in a distributed manner is an inversion agree-

ment control strategy. Both unbounded and circular bounded workspaces are explored.

Collision avoidance is also guaranteed between the robots [63, 64]. Howard et al. use

a physics inspired force metaphor to repel robots from each other and obstacles in

the environment [93]. Ganguli et al. provide a distributed algorithm for using disper-

sion to completely cover an area. Their approach provides some guarantees about the

convergence time given a sufficient number of agents available in a simply connected
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orthogonal environment [78].

2.1.1.3 Flocking

A flocking behavior is created through the consensus of direction and speed of neigh-

boring robots. Reynolds presents a distributed behavioral model for simulating the

aggregate motion of a flock. Although the model was originally developed for a com-

puter animation application, it has also been used as a foundation for flocking in robot

swarms. Reynolds gives three fundamental rules to achieving flocking: 1) avoid colli-

sions with nearby agents (separation), 2) match velocities with neighbors (alignment),

and 3) adhere to neighbors (cohesion), [160].

Vaughan et al. investigated generalized flocking control by using a mobile robot to

gather a group of ducks and steer them towards a goal position [184]. A motion control

method – magnitude-dependent motion control (MDMC) – for translating flocking

control rules into actual robot motion is described in [72]. MDMC does not require

the capability to detect orientation of neighboring robots and is shown to allow swarms

to travel longer distances in a desired direction than previous methods. Olfati-Saber

presents a universal definition of flocking in [145]. The definition consists of three

properties: 1) the graph remains connected, 2) the deviation energy remains small and

3) the velocity mismatch remains small.

2.1.2 Man-made Behaviors

With the rapidly increasing number of problem domains applicable to robot swarms the

need for behaviors not typically seen in biological systems is becoming more and more

apparent. Although these man-made behaviors tend to require more complex local con-

trol laws than their bio-inspired counterparts, they can still be deployed using decen-

tralized algorithms which run on each individual robot. As with bio-inspired behaviors,

man-made behaviors only require information provided by neighboring agents. There
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are two common man-made behaviors that will be discussed here: formation genera-

tion and path following. Both behaviors have been extensively studied from a control

theory perspective.

2.1.2.1 Formation Generation

Formation generation is the ability of a swarm to generate and maintain a complex

shape. One example is a convoy protection application where robots will need to form a

specific shape around certain vehicles. The shape can be dependent upon the convoy of

assets themselves and/or the capabilities of the swarm robots. There are many methods

of accomplishing formation generation in robotic swarms including (but not limited

to) potential fields [11], formation vectors [195] and leader-follower controllers [74].

Previous methods range in their scalability, network connectivity assumptions, and

knowledge about agents within the swarm (not necessarily neighboring agents).

Albayrak presented decentralized control algorithms for the creation of simple line

and circle patterns [2]. Suzuki and Yamashita provided algorithms for converging and

moving the robots to a single point in plane in a finite number of steps. This method

explores more general geometric patterns, but requires each robot to maintain an esti-

mation of all other robots in the swarm at all times [179]. Yamaguchi and Beni created

a formation vector method where each robot is assigned a formation vector. The pattern

of these formation vectors within the domain determines the overall formation of the

swarm. They apply their controller in the context of an open chain group that can gen-

erate various formations such as snake type formations [195]. Desai et al. developed

a decentralized leader-follower controller to generate robot formations. Several con-

trollers and set points are deployed on different agents, making this solution difficult

to scale up to large swarms [61]. Hsieh and Kumar generate 2D geometric patterns

while maintaining swarm connectivity. They also provide stability and convergence

properties for their controller [136].
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2.2 Human Machine Interaction

The methods by which operators provide information to the system have been the fo-

cus of much of second-wave human-computer interaction research. Available options

are as varied as they are ubiquitous, ranging from touch-interfaces on smart phones

to voice recognition on electronic assistants to simple point-and-click computer inter-

faces. Recent research suggests that using intuitive interfaces that make use of natural

communication techniques help to increase usability. Making an operator learn not

just how to use a system but how to interact with that system in order to use it adds

an additional barrier to use. Intuitive user interfaces often eschew the metaphorical in-

terfaces with which many users are now familiar, such as the point-and-click and even

the touch interfaces. Such interfaces provide a metaphorical extension of the finger or

hand into the metaphorical desktop/page/window structure of the computer. As com-

puting systems have evolved, this underlying metaphor has remained constant [28]. A

switch to intuitive methods of communication that rely on human-human interaction

models should relieve the user of extra training.

Most current research, however, focuses on natural language as a way of tapping

into intuitive human-human communication strategies. Verbal and even gestural inter-

faces are examined for their ability to allow operators to talk to systems in an intuitive

manner. Over the years many ”natural” interfaces have been developed, such as [26],

where users controlled a graphical user interface (GUI) via a combined speech and ges-

ture interface. Various interfaces allow users to directly define UAV flight paths, such

as a speech-based interface [156] and a 3D spatial interface [118]. Previous interfaces

analyze how various high level commands can communicate intent in human-robot

teaming without specifically defining how the robot should move [65][138]. Initial

human-UAV interaction research has explored interaction schemes in the context of a

collocated UAV. Ng and Sharlin developed a socially motivated gesture-based interac-
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tion scheme for collocated UAVs based on a falconry metaphor [142]. Cauchard et al.

show that humans naturally choose to interact with collocated drones as they would

another person or pet [35].

The most common speech-based natural language interfaces are currently found in

smartphones and other smart home devices. Recent research, such as Ruan et al.’s,

suggests that speech interfaces are not just novel or convenient but more efficient for

text entry and operation of smartphones [161]. Kojima et al.’s research indicates that

speech recognition interfaces in cars result in increased usability and satisfaction as

well [104]. Given the widespread use and success of such speech interfaces, they have

also been investigated for use in human-robot interaction. In a meta-analysis of speech

interfaces for swarm control, Hocraffer and Nam indicate that a speech interface can

help to reduce the workload of the human operator and increase situation awareness

[92]. Novitzky et al. examine how a speech interface can be utilized in a marine

robot to improve team dynamics and performance [144]. Some research has even

explicitly looked into using speech interfaces to control UAVs, including studies by

Peshkkova et al. [154], Ferreiros et al. [73], and Williamson et al. [193]. However,

these studies focus on how to replicate expert control systems that are currently in

use. Limited research has been carried out on utilizing simple speech-based natural

language interfaces to extend UAV usability beyond its traditional scope.

A variety of gesture-based human-robot input methods have been used in the past.

These methods often restricted the natural arm or hand movement of the user by ex-

pecting them to wear or hold a sensor [95][140]. Gesture-based interfaces eventually

implemented systems with unmounted sensors. Initially these systems relied on full

body movements [189]. Some systems used static hand poses to program by demon-

stration [16][111] or encode complex, indirect movement [157]. None of the previ-

ous methods focused on using a simplistic, unmounted sensor to build complex robot

movements with dynamic hand gestures.

17



More intuitive than single input verbal and gesture interfaces are multimodal inter-

faces that allow for a combination of different input types [130]. Combining different

input modalities allows a system to account for characteristics that are difficult to iden-

tify with only one modality – intonation, vehemence, sarcasm, etc. In the past, multi-

modal interfaces that make use of speech and gesture were limited to more traditional

graphical user interfaces [26]. More recently, flexible frameworks for direct control

of UAV movement allow users to choose a desired input modality/modalities based on

their specific application [178].

2.3 Multi-Robot Mission Planning

Multi-robot planning is composed of two planning parts: task and motion. The work

in task planning focuses on developing algorithms to assign a robot or group of robots

to given tasks. Motion planning algorithms are interested in defining the explicit paths

for each robot. Most work in multi-robot planning focuses on task planning which can

be further divided in to task decomposition and task allocation [198].

In Multi-Robot task decomposition, high level mission objectives are broken down

in to small sub-tasks that are accomplished by individual robots. These sub-tasks can

be given to robots based on the role they are assigned [176]. In other systems, the

sub-task division is determined by a human operator [181]. Other methods for task

decomposition include M+ [96], task trees [201], and topology based methods [196].

Multi-robot task allocation (MRTA) is defined as the optimal assignment problem,

where all known tasks must be performed by assigning one agent to each task. Any

robot can be assigned to any task. Each assignment is associated with a cost dependent

upon the agent-task pair. Robots are assigned so as to minimize total cost [198]. Past

work has modeled the assignment of vehicles to jobs as a multi-agent static vehicle

routing problem (SVR) where all system jobs are fixed and known ahead of time.
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Vehicles service jobs by visiting job locations. No new jobs appear and the locations

of all the jobs are known [7, 15]. This work aims to determine the assignment and

schedule of servicing jobs while minimizing cost. In these static assignment scenarios

the simplest version is known as the linear assignment problem, which can be solved

optimally in polynomial time using the Hungarian algorithm to find the maximum

weight perfect matching on a bipartite graph [110]. The matching can be done in

a centralized [31] or decentralized manner [20]. However, the decentralized method

requires a shared memory. Other centralized solutions utilize a multiple travelling

salesmen problem formulation [17]. Moore and Passino provide a distributed method

for solving the mobile agent task allocation problem [137]. More general cases of task

allocation consider robots that are able to do multiple tasks [21]. Consensus algorithms

are combined with the decentralized method in [20] to remove the shared memory

assumption [199]. This however assumes that payoffs are not history dependent for

robots who are assigned more than one task.

Online task allocation problems consider tasks that arrive dynamically. They are

generally NP-hard problems [82]. MRTA problems of this nature are iteratively solved

as the static assignment problem over time [198]. Contract net protocol is used to solve

the task assignment problem with distributed control through one of three main nego-

tiation methods [170]: (1) market-based [175], (2) auction-based [81] and (3) trade-

based [197]. In market-based approaches robots bid and negotiate with each other

to perform sub-tasks using cost and revenue functions. Auction-based methods like

MURDOCH [81] use bids based only estimated costs. As compared to market-based

approaches, auction-based approaches do not allow for task reassignment. Unlike the

previous two methods, which only allocate one task per iteration, task-based methods

allocate multiple tasks per iteration by using unsolicited bids. All three algorithms

are greedy and do not consider any realistic constraints between tasks. Luo et al.

present algorithms for solving multi-robot task allocation problems with realistic tasks
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for static and dynamic scenarios with performance guarantees [122][123].

Other work has considered the dynamic vehicle routing (DVR) framework, whose

solutions involve finding policies for selecting the best vehicle(s) to service an incom-

ing job to achieve desired objectives, such as minimizing waiting times and travel

distance, rather than finding explicit routes as in the SVR or CNP frameworks [30].

Traditionally, these policies break swarms up in to smaller sub-swarm teams and as-

sign them to a particular sub-region to monitor. When jobs arrive to the environment,

an omniscient observer notifies the sub-swarm. If possible, members of the sub-swarm

then leave the group to service the job. However, in SSS missions jobs are only seen

when they are sensed by vehicles in the swarm, therefore new policies for vehicle

allocation to job sites must be developed.

Bertsimas and Van Ryzin introduced queuing methods to solve DVR problems for

sub-swarm teams where vehicles move in straight lines to visit jobs whose locations

and arrivals are stochastic [23, 24, 25]. By analyzing a DVR problem from an algorith-

mic queuing theory perspective, traditional queuing techniques have been leveraged to

develop effective policies which account for system-level constraints to optimize sys-

tem performance in a general steady state case rather than tailoring performance to a

single set of system service demands. Various constraints have been studied: time con-

straints [151, 152], service priorities [172], vehicle dynamics [68, 166], limited sensing

range [67] and team formation [171]. The work in this thesis utilizes a DVR frame-

work to develop policies for vehicle deployment as jobs are sensed and performance

evaluation methods for SSS missions.

2.4 Markov Chains for Swarms

Current research has explored how Markov chains can be used to model the macro-

scopic behaviors of the swarm as a whole [115]. In such models, a single Markov
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chain state space and its corresponding transitions can represent the entire swarm, with

each state representing the average number of robots in a particular state [106][126].

Markov chain representations have also been used for the probabilistic guidance of

robots in a swarm in formation generation [1][9][10] and swarm splitting for task al-

location [19], as well as, for modeling the foraging task of a swarm [121]. To develop

the general prediction model for SSS missions presented in Chapter 5, this thesis draws

inspiration from methods that model the macroscopic behavior of swarms, as well as,

those that have utilized their state space to encode information about the number of

robots in the swarm.

2.5 Planning Interfaces

To effectively plan large scale multi-agent missions, human operators must define mis-

sion objectives and allocate the necessary resources to the mission. In addition, they

must determine how the vehicles will carry out the necessary tasks during execution.

Regardless of what the mission is, the system’s interface design determines how the

operator makes these decisions.

2.5.1 Interface Autonomy Levels

Multi-agent mission planning interfaces range in autonomy level from fully manual to

fully autonomous. Fully manual interfaces require operators to manually input mission

area of interest, targets and step-by-step vehicle maneuvers. However, they do abstract

away the controllers necessary to accomplish the desired maneuvers [6, 62]. Fully

autonomous interfaces use a variety of frameworks to autonomously plan the paths of

all the vehicles including Markov Decision Process frameworks [87], game theoretic

[7], and integer programming [22]. In addition, grammar-based planning [29], task-

based planning [71], behavior-based planning [125, 134] and Petri Net-based planning
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[200] have been used in autonomous multi-agent mission planning.

Many planning interfaces assume known job site parameters and locations. Addi-

tionally, traditional mission planning interfaces assume some predefined swarm size.

Typically, this size is the maximum number of vehicles available to operators [139]. In

contrast, during SSS missions the planning interface must be able to allow the opera-

tors to assign resources (i.e., vehicles) to match the expected mission workload without

needing to know the job locations as this information is unavailable a priori.

2.5.2 Ecological Interfaces

One of the most common types of mission planning interfaces used for multi-agent

systems is the ecological interface. They are derived from work in ecological visual

perception. Ecological interfaces allow operators to explore the relationship between

mission constraints through graphical representations. These relationships allow for

the domain to be represented as an abstract hierarchy without explicitly needing to

define the entire domain [83][186]. By using the abstract representation, operators are

able to understand the overall system through improved situational awareness without

needing to understand all the low-level details, thus reducing overall workload [100].

Ecological interfaces were originally developed for use in nuclear power generation

[97] and petro-chemical refinement [98], but were later extended for use in multi-robot

control interfaces [77, 120]. The interfaces developed in this thesis for the planning

and monitoring of SSS missions draw on principles from ecological interfaces.

2.6 Human Decision Making and Problem Solving

In general, human decision making difficulty arises from 4 main sources of task com-

plexity: multiple possible paths to a desired state, multiple desired states, conflicting

dependence among data, and uncertainty in the data itself [34] [141][173]. As the
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number of source of complexities increase so does the overall difficulty of the task

itself. 16 distinct task types result from the combination of the four sources of task

complexity. Campbell classified these task types in to four main categories: decision

tasks, judgement tasks, problem tasks and fuzzy tasks. Decision tasks include mul-

tiple desired states and are independent of multiple possible paths. Judgement tasks

include conflicting and probabilistic complexities while remaining independent of the

complexity associated with multiple desired states and multiple possible paths to reach

the desired state. Problem tasks all include the complexities given by having multiple

possible paths, but are independent of the desire for multiple simultaneous outcomes.

Lastly, fuzzy tasks include tasks that have multiple desired outcomes, as well as, mul-

tiple possible paths to reach those outcomes [33].

Difficulties in problem solving can also be attributed to the amount of knowledge

required to solve the problem, the representation of the problem and the size of the

search space [60][76][107]. Knowledge of the problem is seen as an understanding

and as a familiarity with the representation of the problem and its goals. When an in-

dividual is unfamiliar with the problem domain, the individual must allocate a higher

proportion of their mental capacity towards task representation rather than the actual

problem solving aspect of the task [76]. As the complexity of the problem representa-

tion increases, so does the difficulty of solving the problem [60]. Problems with repre-

sentations that require humans to consider future events impose higher memory loads,

thereby increasing difficulty [107]. A large number of constraints on the problem also

increases the representation complexity, making it difficult to find a feasible solution.

The size of the search space can be increased by problems such as those defined by

probabilistic relationships between parameters or those that have non-monotonic re-

lationships between parameters. Often the search space is so large that an exhaustive

search for the optimal solution cannot be done [132].

For a given task or problem, when making decisions humans rely on past experi-
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ences [90] and draw on skills they already possess [103]. They construct linear models

internally to make predictions and also use base rates to make decisions [90]. Most

difficult decisions are made in cases where there are negative correlations between

attributes across the viable alternatives. In cases where the decisions requires the con-

sideration of complex trade-offs, humans are unable to analyze all trade-offs simulta-

neously and must instead consider them sequentially [90]. Although this may lead to

a viable decision, the decision may not be the optimal one [169]. Vessey found that

people overall were willing to trade decision accuracy for ease of making the decision

[185].

When under a time constraint, it is possible that humans will reduce the quality of

the decisions, change the relative importance between information from sources, and

adjust their perception of the relative attractiveness between possible alternatives. In

general, even if time is limited, if a person believes that they have the required resources

to make their decision effectively, the limited time does not affect them [128].

Aids that assist the operator in developing an accurate mental model of the relation-

ship between problem characteristics and objectives improve operators’ ability to make

decisions [107]. Typically, this is done using interfaces that leverage visual represen-

tations of information [185][173]. Ecological interfaces take advantage of the impact

of visual representations to provide context to operators [186]. Visual aids have been

shown to improve users ability to more explicitly understand problem representations

[79] and even make inferences in relation to problems that include statistical infor-

mation [80]. Speier and Morris found that in low complexity situations people make

decisions more effectively with text based aids, but do better with visual aids in high

complexity situations. Visual aids reduce operator workload and provide operators

with a deeper understanding of the data. As a result, interfaces that leverage visuals

are generally effective at aiding operators to understand overall patterns in large data

sets, but not for looking at specific details or smaller sets of data. Less time is required
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for people to make decisions when using visual aids in lower complexity situations,

but more is required in more complex cases. Users with strong spatial skills are better

able to process the visual data, leading to higher accuracy [173].

2.7 Supervisory Control

The synthesis of data collected from each vehicle in a swarm can be challenging and

lead to high operator workload, thereby reducing overall situational awareness [92].

However, humans are currently more effective at integrating varying data and predict-

ing future actions, making them a necessary part of controlling swarms [54]. Human

cognitive limitations also directly impact the number of vehicles that can be effectively

controlled remotely by operators. Cummings et al. determined that operators could at

most control 4 independent robots remotely before mission performance was degraded

[53].

The level of input and task of the operator varies with the task of the swarm [92].

For swarms that are tasked with foraging or searching an area human operators are

required to give less direct input to the swarm, but must do the required analysis to

determine if the object(s) of interest were found [12]. On the other hand, if the swarm

is tasked with following a target, the operator must take a more active role as a leader

to guide the swarm [55][129].

To overcome human cognitive limitations, scheduling the attention of the operator

can improve the overall situational awareness of the operator and allows them to con-

trol a larger number of vehicles. In such systems, the operator is treated as the server in

a queuing system. Various scheduling strategies have been used: shortest job first [46],

multi-server load balancing to handle multiple operators [155], service level differen-

tiation [194], a game theoretic approach to match operator effort and ability [59], and

a dynamic queuing approach [165]. Although scheduling improves operators’ ability
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to control and manage more vehicles, Lewis found that switching vehicles or tasks too

quickly may actually decrease the overall situational awareness of the operator [116].

In supervisory control applications where the operator must split their attention

across the robots, increasing the level of automation increases the situational aware-

ness of the operator [75]. This allows operators to have better control over larger

swarms [131], leading to better overall high level decisions [12][54][105][146]. This

is contrary to results seen in applications like piloting and air traffic control where in-

creasing the level of automation can decrease situational awareness of each vehicle and

therefore reduce overall performance [66].

Miller et al. proposed a shared task model that allowed operators to communi-

cate tasks and goals to autonomous teammates from an established shared Playbook.

These plays allow the operator enough flexibility to handle varying levels of automa-

tion [133][134]. However, because of the predefined nature of the plays, the plays give

no guarantee on optimality, nor do they account for the probabilistic nature of tasks that

may be asked of the swarm. Kolling et al. found that swarms operating semi or fully

autonomously allow operators to treat them as single entity. They also found that pro-

viding forecasts and prediction information to the operator improved their intervention

accuracy and reduced the number of unnecessary interventions and the overall effect

of noise from individual vehicles. The addition of predictions improved the situational

awareness of operators, thereby allowing them to better understand if and when is-

sues arose more effectively [105]. Long term monitoring can be improved by attention

switching [56].

2.8 Swarm Movement and Splitting

Past research has focused on moving an entire swarm from one location to another.

Methods include both multi-robot path planning approaches, where each robot’s path
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Table 2.1: Current Swarm Movement and Splitting Work

Method Full Swarm Sub-swarm

Path Planning
Luo, 2016 X

Swaminathan, 2015 X

Flocking
Olfati-Saber, 2006 X

Tanner, 2007 X
Li, 2013 X

Algebraic Topology
Ramaithitima, 2015 X

Li, 2017 X
Swarm Splitting Chen, 2010 X

Break-off and Rejoin My Method X X

is explicitly defined [124][180], and swarm control approaches, where local control

laws such as flocking [145][182] and formation control [119] lead the group towards a

goal location.

In [158] and [117], a simplical complex from algebraic topology [4] is utilized

to incrementally move robots in the swarm through space, while maintaining swarm

connectivity. Ramaithitima et al. use the fence simplex to “push” robots into positions,

which results in triangular lattice packing positions so that complete sensor coverage

of an area is achieved [158]. The decentralized method presented by Li et al. in [117]

preserves connectivity by incrementally “pushing” robots forward by defining frontier

nodes based on the expansion of fence simplices in the direction of a goal to navigate

an entire swarm through a cluttered environment.

In [45], Chen et al. present a control law for splitting a swarm into multiple sub-

swarm teams. Although the number of sub-swarm teams can be controlled by parame-

ter selection, the explicit number of vehicles that end up in each sub-swarm team is not

defined. In addition, the overall connectivity of the swarm is not maintained, thereby

eliminating the swarm’s ability to reallocate robots to future jobs that arrive.

As shown in Table 2.1 current research has focused on either moving the full swarm

or splitting the swarm in to smaller sub-swarm groups. However, no work has been

done to explore how both a swarm and sub-swarm can be moved from one point to
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another. The method presented in this thesis utilizes algebraic topology to ensure con-

nectivity between the swarm and sub-swarm teams that are formed, while also still

enabling the full swarm to move between goal locations. To facilitate the necessary

break off and rejoin behavior for servicing jobs during SSS missions, this overlap be-

tween methods must be explored.
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Chapter 3

Effective Modalities for Mission Specification

Figure 3.1: Coordinated UAV search pattern for three vehicles within a predefined area
of interest (AOI) [3].

Continued advancement in radio and communication technology, as well as, con-

trollers and interfaces, has made equipment more affordable and easier to use then ever

before. As a result, new applications for unmanned aerial vehicles (UAVs) are rapidly

emerging in both the civilian and non-civilian sectors [188]. Traditionally, applications

like search and rescue (SAR) [44], disaster relief [163], and intelligence, surveillance

and reconnaissance (ISR) [191] missions are planned and executed by highly trained

pilots and engineering specialists. Autonomous systems allow specialists to prepro-

gram UAV coordination, flight paths, mission objectives and required parameters [40].

In SAR and ISR applications pilots and engineers develop intelligent strategies for

searching predetermined areas of interest (AOI). These strategies are adapted for the
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number of UAVs set to be deployed. Each UAV utilizes on-board sensors and naviga-

tion systems to find and track a given target or location. Figure 3.1 displays a sample

mission AOI where three UAVs are tasked with searching for the source of a pollu-

tant with a sweeping pattern (left) and replanning their trajectories to track the source

once it is located (right) [3]. Sensor data is fused throughout the mission to improve

efficiency.

More recently, applications like atmospheric data collection are expanding the core

of the UAV user base from solely trained specialists to include non-expert UAV users

like scientists. Scientists look to leverage autonomous UAV technology to replace

traditional data collection methods like air balloons, satellites and manned aircrafts,

whose usual aim is to measure trends over time in a set of predefined AOIs (Fig. 3.1).

These outdated technologies are costly, require an extended period of time to collect

samples, and often only operate with a single sensor, thereby making correlative data

collection laborious and troublesome [192]. The use of UAVs would give scientists

a method for taking correlative data – required for more comprehensive studies – in-

situ using multiple vehicles. Additionally, real-time replanning allows for data-driven

sampling.

With current interface and mission planning tools skilled pilots and engineers use

their domain knowledge in UAV systems and guidance, nagivation and control to de-

fine end-to-end UAV missions. Researchers in the area of autonomous aerial mission

planning utilize key insights and understanding of path planning schemes and vehicle

performance (gained over years of experience). In most instances, scientists do not

have the piloting and controls background required to understand the complex low-

level commands needed to run UAV systems. Currently, manned science missions are

planned and coordinated with a team of trained specialists. With scientists playing the

role of mission manager, route planning of complex flight paths are negotiated within

the team to achieve the desired goal of the mission while simultaneously maintaining
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safe and flyable trajectories (given the environment and known obstacles). In addi-

tion, missions are often generated and modified in extreme environments (e.g., cargo

plane) where common interfaces like mouse and keyboard systems face significant

challenges like vibration. Therefore, to realize robust and easy-to-use systems that re-

duce the dependency on specialists, future interaction schemes must move away from

traditional and arduous methods [44]. Specifically, they must provide more natural and

intuitive interfaces for defining coordination schemes and mission objectives, as well

as constructing desired flight paths. Interfaces that embrace natural and intuitive input

modalities increase system efficiency and are more easily usable by a broader user base

[153][159][187].

As with most missions, SSS missions require human operators to define mission

objectives and parameters. This begins with defining the flight path within the re-

gion of interest that the swarm will traverse to search for and service jobs. The work

below details natural language-based methods for defining flight paths. This work ex-

plores how natural language can be used to develop a more intuitive interface for UAV

mission management. We specifically examine the viability and efficacy of both a

gesture-based and a multimodal (gesture and speech) interface in the context of UAV

flight path generation. By leveraging natural language we can simulate common com-

munication schemes seen in human-human interactions. In addition, the single input

gesture-based interface is compared against a mouse-based baseline interface [37]. The

effects on performance and user workload are evaluated with respect to prior experi-

ence with UAVs, prior experience with natural language interfaces, hand dominance

(i.e., right handed or left handed), and a user’s choice to sit versus stand while using

the interface. Although the methods below were designed for generating trajectories

for single vehicle missions, the same principles can be applied to swarm missions. De-

centralized control laws are used to generate individual vehicle trajectories while the

swarm as a whole follows a given trajectory objective.
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Figure 3.2: Library of 12 trajectory segments developed in [40].

3.1 Single Input Interaction

The user study described and analyzed throughout the remainder of this section uti-

lizes an adaptation of our previously developed gesture-based natural language inter-

face [40] and a mouse-based interface [37]. Each interface gives a user the ability to

define a complex flight path by defining individual trajectory segments with a library

of twelve gesture primitives (Figure 3.2). After all the desired trajectory segments have

been defined, both interfaces automatically define any additional parameters (e.g., tran-

sition velocities) to combine the segments into a complete flight path. In both systems,

two assumptions are made in regards to the trajectory segment library: (1) the Circle

segment is defined in a clockwise direction parallel to the ground and (2) the Spiral

segment is defined in the upward, clockwise direction parallel to the ground.
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Figure 3.3: System setup for flight path generation. The user is currently using the
gesture interface.

3.1.1 Gesture-based Interface

In our previous work we implemented a complete end-to-end ground control system

which contained five modules: volume definition, gesture, trajectory generation, vali-

dation, and flight [40]. The gesture-based interface used in this work is a self-contained

variation which includes only the gesture, trajectory generation and validation mod-

ules. In the gesture-based interface a simplistic setup requires only two components:

(1) a computer for running the interface and displaying feedback to the user and (2)

a Leap Motion (Leap) controller (SDK v2.2.6) to track the gesture input of the user.

The Leap uses three infrared cameras to track hand gestures with sub-millimeter accu-

racy at 200 frames per second within an 8ft3 interactive volume above the controller

[13][112]. It provides an alternate input modality for users to naturally and intuitively

define each primitive by mimicking their shape. As part of the system setup the Leap

is placed on a surface in front of the user (Figure 3.3). The current instantiation of the

gesture interface assumes the user is right handed.
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3.1.1.1 Gesture Module

The first module in the gesture-based interface is the Gesture Module. As part of this

module the user’s hand gesture is characterized as one of the twelve classes seen in

the trajectory segment library (Figure 3.2) using a trained Support Vector Machine

(SVM) classifier. Once the gesture is classified, the system displays a picture of the

chosen trajectory segment as visual feedback. After each segment is defined, a message

window asks if they would like to define another segment. Performing a Right gesture

indicates they would like to add another segment, whereas a Left gesture means they

are finished and would like to see the complete flight path have have just built (Figure

3.4).

Figure 3.4: The Yes/No message window shown after defining each trajectory segment
with the gesture interface [37].

The SVM classifier was trained with a linear kernel using data collected from

eleven users. Each user provided ten samples per trajectory segment in the library

(total of 120 data samples per user). The hand direction movement during the gesture

and the eigenvalues of the hand position are used as features for classification.

3.1.1.2 Trajectory Generation Module

After the user has defined all desired trajectory segments the system automatically

combines them into a flyable path for the UAV. This is accomplished by first creating

a set of fifth order Bézier curves for each trajectory segment. Equation 3.1 shows the

general equation for a Bézier curve. They are polynomial over a finite interval, t, and
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expressed as a sum of Bernstein polynomials multiplied by a control point, where p

represents a control point, n represents the degree of the polynomial and 0 ≤ t ≤ 1

[47]. Each set is then connected in series, ensuring smoothed transition points.

p(t) =

(
n

i

) n∑
i=0

(1− t)n−itipi (3.1)

3.1.1.3 Validation Module

+

Figure 3.5: Sample combined flight path generated by the Validation Module. Individ-
ual trajectory segments (above) are combined into a flyable path (below).

In this gesture interface once the combined flight path is created using the Trajec-

tory Generation Module, the Validation Module displays a visual representation to the

user. This pictorial representation of the complete flight path gives a 3D view from

the viewpoint of the user. As this interface implementation is meant for evaluation

purposes only and no data is sent to a vehicle controller, no confirmation is needed

from the user. This module is used as a simple method for feedback to the user on the

accuracy of their trajectory segment definition. Figure 3.5 gives an example combined

flight path shown by the Validation Module. In this example, the user defines a Left

segment followed by a Spiral.
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3.1.2 Mouse-based Interface

The mouse-based interface consists of a drop-down menu (Figure 3.6) for choosing a

desired trajectory segment from the given library (Figure 3.2) [37]. A simple message

window with buttons is used for the Yes/No message window between building trajec-

tory segments (Figure 3.7). All user feedback seen in the gesture interface is mimicked

in the mouse-based interface. This interface assumes that a user will not define the

same shape twice.

Figure 3.6: Mouse interface drop-down menu for defining a desired trajectory segment.

Figure 3.7: Message window shown after defining each trajectory segment with the
mouse interface.
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3.1.3 Experimental Setup

As part of the user study conducted, 13 subjects were asked to use both the gesture-

based interface and a mouse-based interface. All subjects were allowed to sit or stand

while using an interface. Due to the current instantiation of the gesture-based inter-

face’s assumption that the user would be performing gestures with their right hand, all

subjects were asked their comfort level with using their right hand prior to the experi-

ment. Only subjects who were right handed or left handed and comfortable with using

their right hand were asked to participate. Subjects rated their right hand comfort level

as part of the background questionnaire.

The order of interface use was counterbalanced across all subjects. In each set of

trials, a subject was asked to build a set of three flight paths using both the gesture

and mouse interfaces (Figure 3.8). The flight path order was randomized and counter-

balanced, however each subject used the same order for both the gesture and mouse

interface runs. Each flight path included three trajectory segments. Although the flight

paths ranged in difficulty level to build, a Right segment was always included to avoid

biases in segment ordering.

For each user study the researcher used the following protocol order: (1) subject

reads and signs Privacy Act Notice and Informed Consent Form, (2) researcher(s) out-

line user study purpose and goals, (3) subject completes background questionnaire, (4)

subjects train on interface, (5) subject builds given flight paths, (6) subject completes

subjective questionnaire and NASA Task Load Index (TLX), and (7) steps 4-6 are re-

peated for second interface [89][32]. During training subjects were given a printout of

the trajectory segment library (Figure 3.2) and were allowed to keep the printout dur-

ing the test runs. Before each test run, the subject was given a printout of desired flight

path (one of the three shown in Figure 3.8). Subjects were able to study the printout for

only five seconds before the test run began. However, they were allowed to keep the
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Figure 3.8: The three flight paths subjects were asked to build. Subjects were given
individual printouts for each including numbered and labelled segments [37].

printout throughout the entire duration of the run. The printouts contained the three la-

belled and numbered (in desired order) trajectory segments to be defined (Figure 3.8).

In addition to the data collected from the background questionnaire, NASA TLX, and

subjective questionnaires for each interface, researchers collected the following: (1)

the time to complete each test run, (2) whether a subject chose to sit or stand while

using an interface, and (3) the correctness of each flight path. All three additional sets

of data were taken through observation.
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A flight path is considered correct if all three desired trajectory segments are de-

fined. The errors seen throughout the user study have been categorized as one of the

following five errors: (1) system misinterprets correct human input, (2) an extra seg-

ment was added (in addition to the three required in each flight path), (3) human error

– wrong or missing gesture input, (4) combination error – system misinterpretation

plus a human error (error type 1 plus error type 3), and (5) combination error – sys-

tem misinterpretation plus an extra segment was added (error type 1 plus error type 2).

By tracking common combined errors we can see which errors can lead to secondary

errors.

3.1.4 Results

All results shown here are taken from the data collected in the background question-

naire, two NASA TLX workload measures (one after using each interface), and two

subjective questionnaires (one after using each interface). An analysis of variance

(ANOVA) on the data was conducted using IBM SPSS version 24. The following in-

dependent variables were used to analyze between subject effects: (1) input interface

(mouse or gesture), (2) previous experience flying UAVs, (3) right handed vs. left

handed, (4) sit vs. stand and (5) flight path. In addition, the interaction between input

and the other independent variables was analyzed. The results will show the effect

of each variable on (1) the number of error segments, (2) overall flight path accuracy,

(3) type of errors, (4) the time taken to build the given flight paths, and (5) subjective

workload measures in the NASA TLX – mental, physical, temporal, performance, ef-

fort, and frustration. A Tukey HSD Post-Hoc test was run on flight path when it was

significant (p ≤ 0.05). Where appropriate, graphs are shown with error bars for the

standard error of mean.

Each NASA TLX asked a subject to rate their perceived workload measures on a

scale from 0 to 10. For mental demand, physical demand, temporal demand, effort, and
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frustration, level 0 indicated a low workload while 10 indicated a high workload. The 0

for (subject perceived) performance represented good performance and 10 meant poor

performance.

After using each interface subjects were asked to fill out a subjective questionnaire

which asked them to rate the following on a likert scale from 1 to 5: (1) overall dif-

ficulty in using each interface, (2) interface responsiveness, (3) liklihood of using the

interface again, (4) the amount of practice time given and (5) the amount of time given

to study each flight path before a trial run. A 1 in difficulty indicated the interface was

very easy to use, whereas a 5 indicated it was very difficult to use. The 5 in respon-

siveness meant that the interface was too fast, compared to a 1 which was too slow.

The 1 in liklihood expressed that the subject was not likely to use the interface again,

as compared to a 5 where they were very likely to use it again. For both the amount

of time given to practice and to study the flight path, a 5 indicated there was too much

time given and a 1 meant there wasn’t enough time given. Once each subject had used

both interfaces they were asked to rate their preference between the mouse and gesture

interface. A 1 meant that they preferred the mouse interface while a 5 indicated their

preference for the gesture interface.

From the background questionnaire we see that 76.92% of subjects were right hand

dominant. Although some subjects were left handed, all said they were comfortable

using the right hand. 23.08% had previous experience flying UAVs. For those who had

previously flown UAVs, an average of 170.67 flight hours were logged over an average

of 3.75 years. 7.69% of the subjects had previously used a gesture-based interface

other than a cell phone or tablet [37].

3.1.4.1 Overall Segment Definition Accuracy

Overall, subjects defined 97.44% of flight paths correct while using the mouse interface

and 41.03% correct when using the gesture interface. Excluding the error of adding an
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Figure 3.9: The average percentage of each flight path that was defined correctly per
subject with each interface.
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Figure 3.10: The average percentage of each flight path that was defined correctly.

extra trajectory segment, the accuracy of defining the three desired individual segments

with each interface was statistically significant with 100% of the trajectory segments

defined by the mouse interface correct and 74.36% of the segments correctly defined

with the gesture interface (F(1,30) = 79.510, p ≤ 0.01). Figure 3.9 displays the overall
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average percentage of flight paths that each subject correctly defined using the mouse

versus the gesture interface. All but 2 subjects were able to correctly define more than

50% of flight paths with a majority of subjects defining more than 75% of flight paths

correctly. Flight path C was the hardest to define at 82.05% correct, followed by flight

path B and then A at 85.90% and 93.59% respectively (Figure 3.10). This matched

the difficulty of the gestures required as the Spiral was the hardest gesture to perform

followed by the Circle.

3.1.4.2 Number of Error Segments

For each complete flight path defined, the number of error segments defined when

a subject used the mouse-based interface (M = 0, SE = 0) was statistically less

than when subjects used the gesture-based interface (M = 0.77, SE = 0.14) with

F(1,30) = 79.510, p ≤ 0.01. The number of error segments seen in flight path A

was significantly different than in flight path C. Right hand dominant subjects had a

statistically significant lower number of error segments than those who were left hand

dominant (F(1,30) = 10.294, p ≤ 0.01). The number of error segments seen from

subjects who stood during the trials was significantly higher than those who sat while

using the interfaces (F(1,30) = 8.750, p ≤ 0.01).

3.1.4.3 Error Types

Table 3.1 displays the percentage of correct and error types seen when defining trajec-

tory segments using each interface. A majority of errors seen from the gesture interface

are attributed to the system misinterpreting an input gesture from the subject. The least

number of errors seen when using the gesture interface came from human error – the

subject performing the wrong gesture or defining fewer than the desired number of

trajectory segments. All errors seen when using the mouse interface are a result of the

subject adding an extra segment to the end of the desired flight path.
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Table 3.1: Segment Definition Errors by Type

Mouse Gesture
Misinterpret 0% 41.03%

Extra Segment 2.56% 5.13%

Human Error 0% 2.56%

Human + Misinterpret 0% 5.13%

Extra + Misinterpret 0% 5.13%
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Figure 3.11: Count of error per type when subjects built each flight path using the
gesture interface.

Of the errors seen when subjects used the gesture interface, a majority resulted from

flight path C (Figure 3.11). When building flight path C subjects were more likely to

have the system misinterpret their hand gesture input. The least number of total errors

were seen when subjects were building flight path A. Figure 3.12a shows that subjects

who sat while using the gesture interface had more correct trajectory segments than

errors when building segments. No errors were seen from purely human error when

subjects stood. Subjects who had previous experience flying UAVs had no errors from

adding unwanted additional segments to the flight path, but had a higher number of

misinterpretations by the system (Figure 3.12b).
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Figure 3.12: Percentage of each error type and correct trajectory segments seen.

Mouse Gesture
0

10

20

30

40

50

M
ea

n 
Ti

m
e 

to
 In

pu
t F

lt 
Pa

th
 (s

ec
)

Figure 3.13: The average time subjects took to build flight paths using each interface.

3.1.4.4 Time to Build Flight Path

The average time to build a flight path when using the mouse-based interface versus

the gesture-based interface was statistically significant (F(1,30) = 80.474, p ≤ 0.01).

Although the average time was less when using the mouse interface, the difference

was less than 13 seconds (Figure 3.13). Figure 3.14 shows that flight path B took

longer to build than Flight paths A and C for both interfaces. The trend overall was
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Figure 3.14: The average time subjects took to build all three flight paths with each
input interface.
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Figure 3.15: The time (seconds) that subjects took on average to build the desired flight
paths using the gesture interface.

statistically significant (F(2,30) = 5.001, p = 0.013). Flight path A took the least

amount of time to build on average for both interfaces. The time to build flight path

A was statistically different than the time to build flight path B at the p = 0.05 level.

Figure 3.15a shows there was little difference seen in the time to build flight paths

for subjects who chose to sit versus stand (M = 32.37 seconds, SE = 1.65 and

M = 31.67 seconds, SE = 1.51 respectively). The difference in time required to
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build flight paths using the gesture interface given their prior experience flying UAVs

(Figure 3.15b) was statistically significant (F(2,15) = 5.118, p = 0.039).

3.1.4.5 Subjective Measures

Table 3.2: Avg. NASA TLX Measures (from 0-10)

Mouse Gesture
Mental 1.92 4.77

Physical 0.85 3.50
Temporal 2.27 2.92

Performance 1.54 5.62
Effort 1.42 4.23

Frustration 1.46 4.62

Table 3.2 gives the average NASA TLX workload measure ratings given by sub-

jects after using both the mouse and gesture-based interface. The ratings for mental de-

mand, physical demand, performance, effort, and frustration are statistically significant

(F(1,2) = 15.583, p ≤ 0.01; F(1,2) = 10.924, p ≤ 0.01; F(1,2) = 134.000, p ≤ 0.01;

F(1,2) = 15.044, p ≤ 0.01; and F(1,2) = 7.644, p = 0.02 respectively). Subjects

who were right hand dominant indicated a significantly lower effort (F(1,2) = 32.00,

p = 0.03).

Table 3.3: NASA TLX Measures for the Gesture Based Interface

No Exp. UAV Exp. Sit Stand Left Handed Right Handed
Mental 4.11 2.46 3.50 2.83 4.50 3.00

Physical 2.23 2.00 2.71 1.54 2.92 1.95
Temporal 2.73 2.12 3.25 1.83 3.67 2.23

Performance 3.63 3.42 3.86 3.25 3.58 3.56
Effort 3.05 2.08 2.93 2.71 4.00 2.48

Frustration 2.95 3.33 2.89 3.21 3.33 2.95

Table 3.3 displays the NASA TLX workload measures for the gesture interface

in more detail given prior experience flying UAVs, whether a subject chose to sit or
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stand, and their hand dominance. Subjects who had previous experience flying UAVs

and chose to stand felt they performed better and had a lower workload in all measures

except for Frustration than subjects who did not have previous UAV flight experience

or chose to sit. Right hand dominant subjects’ workload was lower for all measures.

They also perceived their performance to be better.

Overall subjects thought the mouse interface was pretty easy to use (M = 1.15)

as compared to an almost neutral difficulty level of the gesture interface (M = 3.31).

In general subjects thought both interfaces were on the slow side (Mmouse = 2.08 and

Mgesture = 2.69). Although subjects said they were more likely to use the mouse

interface again in the future than the gesture (Mmouse = 4.23 and Mgesture = 2.85 re-

spectively), their overall preference for the mouse interface was much closer to neutral

(M = 3.77). For both interfaces, subjects felt that the right amount of time was given

for training and studying the flight paths.

3.1.5 Discussion

Analysis shows that although subjects were able to define a larger percentage of flight

paths correctly using the mouse-based interface, a fairly high percentage of flight paths

were still defined correctly using the gesture-based interface. As most subjects had

no prior experience with gesture interfaces before the user study, this indicated that

even with a limited amount of training and guidance the implemented gesture-based

interface was relatively easy and intuitive to learn. In general subjects said they were

more likely to use the mouse interface in the future than the gesture interface. However,

given an almost neutral preference between the interfaces – albeit leaning towards the

mouse interface – there appears to be an underlying acceptance of the gesture interface

not reflected in the overall ratings.

The higher number of errors seen when building flight path C and the longer time

used to define trajectory segments in flight path B emphasized the higher difficulty in
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performing the Circle and Spiral gestures. The Spiral gesture was more difficult than

the Circle gesture as reflected in the reported accuracy of each flight path built. The

difficulty of each flight path compared to the others (Figure 3.11) did not correspond

to the time required to build each flight path (Figure 3.14).

When using the gesture interface, subjects with prior experience flying UAVs seemed

more deliberate when defining segments. This resulted in a lower number of human

errors (Figure 3.12b) and higher average time required to build flight paths (Figure

3.15a). However, subjects without prior UAV experience had a higher proportion of

correct segments to misinterpreted segments indicating their ability to learn the nu-

ances of the gesture system was faster than their experienced counterparts. Experi-

enced UAV subjects’ familiarity with other interfaces intended for the same purpose as

the gesture interface may account for this difference.

Some differences between subjects who chose to sit versus stand were seen in the

number of error segments defined when comparing the interfaces. However, upon

closer look of the gesture interface, neither condition lent itself to a significant differ-

ence in error types seen (Figure 3.12a) and an almost equal time was used to build

flight paths (Figure 3.15b).

Subjects seemed to have a more realistic impression of their skill when using the

mouse interface as compared to the gesture interface. These differences were high-

lighted in the NASA TLX results. Overall, subjects rated their workload higher when

using the gesture interface. They rated their perceived performance low to neutral more

often when using the gesture interface even when they had defined a higher number of

trajectory segments correctly. This suggests either (1) subjects are already familiar

with their error rate when using the mouse interface compared to the gesture interface

or (2) that subjects may be conflating the required additional training and difficulty

during training on the gesture interface with their ability to use it after training.

On closer inspection of the workload measures for the gesture interface, we see
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that although the average workload rating was higher than the mouse interface, these

differences may be attributed to certain factors. Specifically, we find that prior expe-

rience flying UAVs, the choice to sit or stand, and hand dominance had a clear effect

on workload ratings. As seen in Table 3.3 those with previous experience flying UAVs

gave lower workload ratings and a better perceived performance than those without

experience. Their familiarity with the intended use case most likely accounts for this

difference. Additional training sessions to increase understanding of the mission re-

quirements in the given use case may reduce the differences in the future.

Even though sitting versus standing had little significance to the overall difference

in performance between the interfaces, it did have a noticeable difference on the work-

load subjects felt when using the gesture interface (Table 3.3). Subjects who chose to

sit when using the gesture interface tended to feel a high overall workload than those

who stood. The difference suggests that people might find their hand less constrained

when standing as opposed to sitting, leading to more comfort and accuracy when per-

forming gestures. Since all subjects were required to use their right hand when using

the gesture interface, right hand dominant subjects unsurprisingly reported a lower

workload than left handed subjects. Right hand dominant subjects also produced a

fewer number of error segments. To increase the viability of the gesture interface,

future system independence from the input hand side will be needed to decrease the

highlighted workload differences.

Comments given in the questionnaires suggest that even with their better perfor-

mance using the mouse interface, subjects were open to using the alternate gesture

input modality. Several subjects noted that the current gesture interface may lead to

user fatigue over time. This issue can be mitigated by implementing a method for

users to define an entire flight path at once instead of piece-by-piece. It would also

reduce the need for users to read the list of possible trajectory segments each time they

wanted to define a new one. Subjects noted that the gestures themselves were intuitive
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and could be leveraged in the future to build complex flight paths that may otherwise

be tedious to implement using a traditional mouse interface. However, they would like

a method for modifying or correcting error segments. Although more practice would

lead to an improved overall accuracy, subjects said that the innate assumptions made

by the interface on the time each person would take to complete a gesture and when

they would perform the gesture was the most challenging aspect. In addition, more

feedback should be given to the user about when the system was expecting a gesture

input versus when it was analyzing the previous input.

3.2 Multimodal Interaction

In the past, multimodal interfaces that make use of speech and gesture were limited

to more traditional graphical user interfaces [26]. More recently, flexible frameworks

for direct control of UAV movement allow users to choose a desired input modal-

ity/modalities based on their specific application [70]. Despite recent research, the

usability of multimodal natural language interfaces for UAV mission planning remains

unexamined. This section presents a multimodal natural language interface that com-

bines speech and gesture input modalities. It examines the performance of the multi-

modal interface in the context of UAV flight path generation. The effect of (1) previous

experience with other single input natural language interfaces, (2) previous experience

flying a UAV and (3) a users choice to sit or stand on the overall accuracy and user

workload are explored.

3.2.1 Multimodal Interface

The experimental, multimodal interface combines speech and gesture inputs to allow

users to define trajectory segments in order to build complex UAV flight paths (Figure

3.16). Users are able to choose from one of the twelve trajectory segments given in the

library (Figure 3.2): right, left, forward, backward, left, right, up, down, forward-left,
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Figure 3.16: User study setup for the multimodal interface. The user speaks into the
headset while performing gestures over the Leap Motion controller.

forward-right, backward-left, backward-right, circle and spiral [40]. Each trajectory

segments general shape is defined with the gesture module of the interface. Further

geometric information distance, radius, and height are given using the speech module

of the interface. Neither module is individually calibrated for a subject. An interpreter

module fuses the speech and gesture inputs such that a fully defined flight path can be

generated. Once all desired trajectory segments have been defined each set of fused

data is automatically combined to generate a fully defined flight path for the UAV,

which is displayed to the user as visual feedback. The current system instantiation

does not allow for changes to be made to the flight path. As in gesture interface system

(Section 3.1.1), the multimodal interface makes two assumptions about the defined

trajectory segments: (1) the Circle and Spiral segments are defined in the clockwise

direction and (2) the Spiral segment is defined going upward height is always a positive

change.

3.2.1.1 Speech Module

The Speech Module makes use of CMU Sphinx speech recognition software [183].

CMU Sphinx provides a base English lexicon and mapping of speech sounds to English

phonemes that allows for spoken language to be interpreted as text. In order to improve
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processing time and accuracy, a limited dictionary and grammar were created for this

specific speech interface system. The system-specific dictionary contains roughly 100

words corresponding to the geometric information used to define the trajectory seg-

ments. The system-specific grammar specifies the order in which the information is

expected to appear. This grammar allows for fractional or decimal numbers and dif-

ferent units, and specifies various orders in which the information is expected to occur.

For example, units are expected to follow numbers, and directions (height, width, ra-

dius) are expected to follow number/unit pairs. As soon as a completed geometrical

specification is recognized by the dictionary and grammar, it is immediately sent to the

Interpreter Module. Users interact with the speech system using a microphone headset.

3.2.1.2 Gesture Module

The Gesture Module uses a Leap Motion (Leap) controller (SDK v2.2.6) to track and

capture gesture inputs using three infrared cameras. Users make use of 8ft3 of hemi-

spherical, interactive space centered on the sensor. During operation, the Leap is placed

on a flat surface in front of the user such that they could sit or stand depending on their

preference.

For each trajectory segment the user wishes to define, they mimics the shape of the

trajectory segment with their palm facing the Leap. The same classifier used for the

single input gesture-based interface is used to distinguish between the gesture input

shapes. The classified shape is then sent to an Interpreter Module. The current model

assumes all users are performing gestures with their right hand. After each gesture

input, an image of the classified segment is shown to the user as visual feedback. The

module then displays a message window which allows a user to either define another

trajectory segment by performing the Right gesture, or finish and see the total flight

path built by performing the Left gesture.
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3.2.1.3 Interpreter Module

The Interpreter Module fuses the shape and geometric parameters necessary to define a

given trajectory segment by first synchronizing the data given by the speech and gesture

modules. In order to fully define a trajectory segment, both the speech and gesture data

must be received. However, the different processing times often results in speech and

gesture data being received at varying frequencies and in a varying order. In addition,

the differences in data types collected must be parsed and integrated. These issues are

mitigated by maintaining an individual priority queue of data received from each input

module. By preserving the order of data received from each input module, shape and

geometric information can be paired based on their place in their respective queues.

3.2.2 Experimental Setup

12 researchers (some with UI design experience) participated in the user study. Of

these 12 subjects, 4 had previous experience using a gesture-based interface for UAV

flight path generation, 4 had previous experience using a speech-based interface for

UAV flight path generation, and 4 had no prior experience. All subjects were either

right handed or comfortable using their right hand. Each subject was asked to build

three flight paths, which ranged in difficulty level (Figure 3.17). The flight paths used

were those used in the gesture interface user study augmented with the geometric pa-

rameters needed to fully define the trajectory segments (i.e., distances, radii, and/or

heights). Each flight path contained three segments. A standard Right segment was

included at different places in the sequence of each flight path to mitigate any biases in

segment order.

Before starting the trials, subjects were asked to read and complete a Privacy Act

Notice and Informed Consent Form. Next, researchers gave an overview of the user

study goals and outlined the general requirements and procedure. Prior to being trained
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Figure 3.17: The three flight paths defined by each subject in the user study.

on the interface, subjects filled out a background questionnaire. All subjects were

trained on the gesture module first. Once they felt comfortable using the module,

the simultaneous input from the speech module was added (e.g., a Forward gesture

was supplemented with saying Fly forward 10 meters.). Subjects chose whether to

sit or stand. A printout of the trajectory segment library was given to each subject.

They could keep the printout during training and the trial runs. The total training

time was recorded. Subjects were then asked to build each of the three flight paths.

Before each trial a printout of the desired flight path with numbered and annotated
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segments was given to subjects. They were only allowed to study the flight path for

five seconds before starting the trial, but could keep the printout throughout the trial.

This reduced the need to memorize the desired flight path. The total time to build

the flight path and the correctness of the definition given by each input modality was

recorded. Six common types of errors occurred when defining trajectory segments with

each input module: (1) system misinterpretation human performed correct gesture, but

was incorrectly classified, (2) extra segment added human defined more than the three

required segments, (3) human error wrong segment or not enough segments defined,

(4) a system misinterpretation plus human error, (5) system misinterpretation plus extra

segment, and (6) extra segment plus human error. After all trials were completed, each

subject filled out a NASA TLX workload assessment survey [32][89].

3.2.3 Results

An analysis of variance (ANOVA) using IBM SPSS version 24 was performed on all

data collected during the user study. Overall subject performance is evaluated given

the following independent variables: (1) previous experience with natural language

based UAV interfaces, (2) previous experience flying UAVs, (3) flight path, and (4)

subjects choice to sit versus stand while using the multimodal interface. A Tukey

HSD Post-Hoc was run on the flight path. Results shown assume a significance level

of p 0.05. Graphs are shown with error bars for the standard error of the mean as

appropriate. All NASA TLX workload measure values given are between 0 and 10. For

measures of mental demand, physical demand, temporal demand, effort and frustration,

a 0 represented low workload, while 10 was high. In performance, a 0 indicated that

the subject felt they had performed well, while a 10 meant they had done poorly.

The background questionnaire shows that 83.33% of subjects were right hand dom-

inant. However, all subjects were comfortable using their right hand for the trials.

8.33% of subjects had previous experience flying UAVs (RC and/or professional).
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Their total experience produced an average of 40 hours of flight experience over a

4-year average period. As previously mentioned, one-third of subjects had previous ex-

perience with a gesture-based UAV interface, one-third had previous experience with

a speech-based UAV interface, and one-third had no prior experience with a natural

language based UAV interface.

3.2.3.1 Accuracy

(a) (b)

Figure 3.18: Overall accuracy of trajectory segments defined using the multimodal
interface.

Subjects with previous gesture interface experience were more accurate in defining

both the speech and gesture components (Figure 3.18a). Both components of flight

path A were more accurately defined (Figure 3.18b). For the speech components flight

path C was the hardest to define, while subjects had the most difficulty with defining the

gesture components of flight path B. The gesture component accuracy was statistically

significant (F (2, 24) = 3.586 and p = 0.043). The accuracy of the gesture component

of flight paths A and B were statistically different. Figure 3.19 shows that the gesture

component given by subjects was misinterpreted more often. A greater number of

human errors was seen when defining the speech component.
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Figure 3.19: Count of correct and error segments by type when subjects defined speech
and gesture components.

3.2.3.2 Input Time

Figure 3.20 shows that subjects who had no previous experience with a natural lan-

guage based UAV interface took the most amount of time to define the flight paths.

Those with previous speech interface experience took slightly less time than those

with prior gesture interface experience. The Figure 3.20 results were significant with

F (2, 24) = 3.702 and p = 0.04. Flight path C took the least amount of time on average

to build followed by flight A and then B (56.92sec, 67.00sec, and 68, 83sec, respec-

tively). Subjects with no previous UAV flight experience took longer to build flight

paths than those who did (58.00sec and 64.82sec respectively). Users who chose to

stand took less time to input flight paths than those who chose to sit (59.81sec and

70.47sec respectively). The input time was negatively correlated with training time for

subjects with previous gesture interface experience, but positively correlated for those

who had previous speech experience or none at all (Figure 3.21).
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Figure 3.20: The average time to define flight paths given subjects’ previous interface
experience.

Figure 3.21: Correlations between training time and average time to input flight paths
given subjects’ previous experience with interfaces.

3.2.3.3 Subjective Measures

Table 3.4 shows the average NASA TLX workload ratings given by subjects after us-

ing the multimodal interface. The results are separated by subjects previous experience
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using natural language interfaces. Those with previous experience with speech inter-

faces rated their workload the highest. In all measures except for mental and temporal

demand subjects with previous gesture interface experience had the lowest workload

ratings. Table 3.5 shows that subjects who had previous experience flying UAVs rated

their workload lower than those who did not for all measures except for physical and

temporal demand. The choice to sit versus stand had little effect on subjects tempo-

ral demand, performance, effort and frustration. Standing produced a lower mental

demand, but higher physical demand.

Table 3.4: Average NASA TLX workload measures given subjects’ previous experi-
ence with interfaces.

Mental Physical Temporal Performance Effort Frustration
None 3.88 3.13 3.13 6.13 5.13 4.88

Speech 6.88 4.25 5.25 7.25 6.25 6.25
Gesture 5.13 2.34 4.50 4.25 3.88 3.88

Table 3.5: Average NASA TLX workload measures given subjects’ previous experi-
ence flying UAVs and their choice to sit versus stand.

Mental Physical Temporal Performance Effort Frustration
UAV Exp. 4.00 4.00 5.00 5.00 4.00 2.00
No Exp. 5.41 3.18 4.23 5.96 5.18 5.27

Sit 6.10 2.50 4.30 5.90 4.90 5.00
Stand 4.71 3.79 4.29 5.86 5.21 5.00

3.2.4 Discussion

Although a small subject sample size was used for this initial evaluation, we observe

that the relatively high accuracy of subjects with no prior interface experience and less

than an hour of training time indicates that the multimodal interface was fairly intuitive

to learn (Figure 3.18a). The lower general workload measures for subjects with ges-

ture experience (Table 3.4) indicates that their prior experience with a similar highly
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spatial interface allowed them to learn the multimodal interface more effectively and

easily than other subjects. Therefore, subjects who had previous experience with a

gesture interface were able to define trajectory segments more accurately than subjects

who had previous speech interface experience or no experience at all (Figure 3.18a).

Surprisingly, these subjects were even able to define speech components better than

those with previous speech interface experience. This also resulted in a negative cor-

relation between input time and training time as compared to subjects without gesture

experience (Figure 3.21). Although subjects with no experience took longer to build

the flight paths (Figure 3.20), they felt less workload in general than subjects who

had experience with speech interfaces (Table 3.4). This suggests that the gesture input

module was easier to learn how to use when there was no expectation of how a similar

interface should work.

Different flight paths gave subjects difficulty when defining speech and gesture

components (Figure 3.18b). The speech component of flight path B was easier to define

than the gesture component and vice versa for flight path C. Since both flight paths

contained a straight and diagonal trajectory segment, the difference can be attributed

to the difference between defining a Circle and Spiral segment. Overall, with less than

an hour of training time, subjects had fairly good accuracies, indicating that it was

intuitive to learn.

The familiarity of UAV capabilities from previous flight experience resulted in a

lower mental demand, feeling of effort and frustration (Table 3.5). This is evident in

their overall lower average time to build flight paths. Standing also helped subjects

input flight paths faster. This resulted in a higher physical demand, but lower mental

demand. Sitting and standing were equally frustrating. This, along with the close

ratings for temporal demand, performance and effort, indicate that although there was

a difference seen in the time to input flight paths subjects did not feel the difference.
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Chapter 4

Swarm Performance Prediction in

Urban SSS Missions

Once the operator has defined the mission objectives, they must determine the neces-

sary number of vehicles required to effectively carry-out the mission. All mission pa-

rameters, expected job parameters and costs are considered by operators when making

these decisions. As a result of the complex relationship between the various mission

parameters human operators often have difficulty in balancing the trade-offs between

parameters necessary to handle the workload in the environment. Therefore, additional

tools must be developed to assist human operators in mission planning. This chapter

presents a prediction model – Queuing Model – for expected performance of a swarm

during SSS missions. This model is developed in the context of urban environment

missions where the coverage rate and arrival rate of jobs remains constant. The tool is

then explored as a planning tool aid. For illustration purposes all results shown here

are found assuming that the swarm traverses the environment in a lawn mower pattern.

However, the predictions given by the Queuing Model can be found for any choice of

swarm route.
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4.1 Multi-Job Type Mission Queuing Model

Research in robotic swarms typically concludes after a swarm has traversed a given

area or each robot has moved to its assigned monitoring location but takes full credit for

the subsequent activities that actually achieve the swarm’s objective. The aim of this

work is to develop a mission planning tool to assist human operators in more closely

matching mission objectives such as determining effective swarm sizes required to

successfully service a desired percentage of jobs. We adopt a dynamic vehicle routing

(DVR) framework that leverages connected swarm communication networks to pre-

scribe optimal policies for routing vehicle(s) to service dynamically arising jobs. We

then model the SSS system as a variant of the DVR problem with time constraints

presented by Bullo et al. in [30], which aims to determine the minimum number of

vehicles needed to service the jobs of all the job types in the system at a prescribed

steady state level of success. This problem adds the consideration of a patience time

– the amount of time after a job appears that it can wait to be serviced before it is

dropped. Jobs that are not serviced cannot re-enter the queue. In SSS missions rout-

ing is solved by setting patience time to the time for a vehicle to travel to the edge

of its sensing radius, thus dropping any job that cannot be serviced immediately. An

M/M/k/k queuing method is presented for determining the number of vehicles needed

to achieve a prescribed level of success, where we equate the probability of success-

fully servicing jobs within patience time to its complement, the probability of dropping

a job. An SSS mission is simulated and a numerical sensitivity analysis is presented.

4.1.1 DVR Framework for Swarms

The SSS problem can be framed as a variant of the DVR problem. Unlike the work

presented in [30], jobs are identified as they are sensed by a swarm member as opposed

to being sensed at the time they appear in the environment (whether vehicles can sense
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them or not) by an omniscient observer and relayed to the vehicles. We assume that the

communication range is much larger than the sensing range of the robots and therefore

robots are always able to communicate with each other, even if they are split off from

the main swarm. In addition, we assume that travel time between a job site and the

swarm is much smaller than the service time. Therefore, we only consider the service

time when discussing when the robots will be available for reallocation.

The arrival rate of jobs in an SSS mission corresponds to the time required for a

swarm to travel within sensing range of the next job. Since new jobs arrive as vehicles

sense them, the steady state performance can be analyzed using algorithmic queuing

theory. Let π ∈ S be a stable routing policy, Tπ be the system time of a policy, Dπ

be the total distance traveled for system, and Cπ be the total system cost for a given

policy. The SSS problem can then be defined as finding an optimal policy π∗ ∈ S such

that

C∗ := Cπ∗ = inf
π∈S

Cπ (4.1)

where C∗ is the optimal system performance cost.

Cπ∗(Tπ∗ , Dπ∗) = min
π

(Tπ +Dπ)

= min
π

∑
j∈J

∑
i∈I

tπ(j, α) + dπ(i)
(4.2)

where α is the job type, I is the set of all robots in the swarm, tπ(j, α) is the time

to service each job j of type α in the set J , and dπ(i) is the distance each robot i

travels. The optimal policy π∗ is one that minimizes the total system time required to

service each job as it arrives and minimizes the total distance traveled by the servicing

vehicle(s).

We assume a uniform spatial density function in which jobs are randomly and

uniformly distributed. A non-uniform spatial density would arise if some regions were
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more populated or job locations were imprecisely known ahead of time. We will not

consider this more complex situation at this time, although the base case we address

provides a lower bound on performance [30].

Lemma 1. Jobs that are randomly and uniformly distributed will approximate a Pois-

son arrival rate.

Proof. Let us assume that our environment can be decomposed into a uniform grid

where the probability of a job being present in any given grid cell is uniform, equal

and given by a binomial distribution P (X = k) =
(
n
k

)
pk(1 − p)n−k. If n → ∞ and

p→ 0, then λ = np remains constant [49] and

lim
n→∞

P (X = k) = lim
n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

n!

k! (n− k)!

(
λ

n

)k(
1− λ

n

)n−k
=
λke−λ

k!

(4.3)

Therefore, the limit reaches a Poisson distribution. The commonly used rule of thumb

for good approximation of large n (>20), number of jobs, and small p (<0.05), rate at

which jobs are dropped, is met by our application.

If we assume that the job detecting vehicle is always the nearest vehicle, the SSS

policy can be prescribed according to the geometric relationship between the new job

and the vehicle. By leveraging swarm communication networks the swarm can distin-

guish between free and allocated vehicles. We prove that assigning the job detecting

vehicle (or next nearest vehicle, if we stipulate the detecting vehicle cannot be as-

signed) to service the new job is an optimal policy with respect to wait time and travel

distance.

Consider m vehicles moving at speed v within R2. Jobs arrive within a bounded

convex setH according to a Poisson process with arrival rate λα, where α corresponds
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to a specific job type. Their locations are independent and identically distributed (i.i.d.)

according to a density whose support is H. A job’s location is only known (sensed) at

its arrival time. At each job location, we assume that vehicle(s) spend a given amount

of time so that the job can be completed. After vehicle(s) have completed the service

the job is removed from the queue and vehicles return to the swarm.

Let us assume that vehicles in our swarm are in one of two modes: navigation/search

mode or job servicing mode. Only vehicles that are in navigation/search mode (i.e., not

allocated to a job yet and are still part of the main swarm) are able to sense new jobs

that need to be serviced. In situations where jobs only require one vehicle to service

them, there are no conflicts and all vehicles are homogeneous, we define the following

policy:

Closest Vehicle Policy – The vehicle that sensed the new job is assigned to

service the job.

Lemma 2. The Closest Vehicle Policy is the optimal policy in all load conditions.

Proof. Since the sensing robot is the closest to the job when it arrives, ds < di for

i 6= s, i ∈ {1, ...,m}, s ∈ {1, ...,m} where ds is the distance between the sensing

robot and the job and di is the distance between another robot in the swarm and the

job. The time required to finish servicing a job can be written as tα = tr + µα, where

tr is the time required for the vehicle to reach the job and µα is the time required for

a vehicle to spend at the given job location to complete the job. µα is the same for all

vehicles. The time required to travel to the job location can be written as ds
v

and di
v

for the sensing vehicle and all other vehicles respectively. Therefore, the vehicle that

senses the job (and is therefore closest to it) will be able to service the job the quickest.

If cost is scaled based on the distance a vehicle is required to travel to complete the

service, the sensing vehicle also performs the service with the lowest cost.
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The Closest Vehicle Policy implies that vehicles that are left within the swarm are

the ones that should be assigned to service new jobs as they arrive. If the sensing

vehicle is chosen to service the job, both the time to service the job and the cost are

minimized.

In cases where a vehicle in the swarm has conflicts (i.e., senses two jobs simulta-

neously), then the following policy can be defined:

Next Closest Neighbor Vehicle Policy – A vehicle senses more than one job

simultaneously. The sensing vehicle services the closest job, or picks one

randomly if they are both equal distance away. For each additional job that

needs to be serviced, the sensing vehicle then asks their neighbor closest to

the job to perform the service.

In the case of a job that requires multiple vehicles simultaneously to service it

successfully, the Closest Group Policy can be defined:

Closest Group Policy – A vehicle senses a new job that requires multiple

vehicles to service it simultaneously. The sensing vehicle assigns itself as

group leader. If more than one job is sensed, the sensing vehicle chooses the

closest job to service (or picks one randomly in the case of equidistant jobs).

It assigns itself as group leader for that chosen job. For each remaining job,

the sensing vehicle asks a free neighbor that is closest to the job to be the

leader. Each group leader then gathers enough neighbors to service the job.

If the vehicle has fewer neighbors than the required number, its neighbors

ask their neighbors until enough vehicles have been assigned.

Similar to what is shown above, the Next Closest Neighbor Vehicle Policy and the

Closest Group Policy will service the job in the minimum time with the lowest cost.
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4.1.2 DVR with Time Constraints

We additionally consider the problem of DVR with time constraints. In this context we

exclude priorities and vehicle motion constraints. As defined by Bullo et al. in [30],

the aim is to: Find the minimum number of vehicles needed to ensure that the steady-

state probability that a job is successfully serviced is larger than a desired value. This

problem would be seen in swarm mission planning where human operators are tasked

with determining the number of vehicles to deploy given expected numbers of various

job types. This is represented by the following:

min
π
|π|, subject to lim

α→∞
Pπ[Wα < Gα] ≥ φd (4.4)

where α is a system job type, Wα is the wait time of job type α, Gα is the given

accepted patience time (amount of time a job can wait to be serviced) of job type α

and φd is the threshold for system performance. In general, patience times are job type

dependent, but in SSS we assume they are all the same and equal to the time for a

vehicle to travel to the edge of its sensing radius (i.e., jobs are serviced immediately).

Within the DVR framework, since many SSS missions require new jobs to be im-

mediately serviced, the steady state system performance can be modeled as an infinite

horizon M/M/k/k queue system where jobs enter the queue as they come within sens-

ing range of a swarm member. The length of the queue is dependent on whether there

are enough vehicles to service the new job at its time of arrival. If there are not enough

vehicles, the job is dropped. We equate the probability of a job being serviced within

its accepted patience time (Gα = time to travel to a vehicle’s sensing radius) to the

probability of a job being dropped:

min
π
|π|, subject to lim

α→∞
Rπ ≤ δ (4.5)
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where Rπ represents the probability of the system dropping a job upon its arrival due

to lack of available resources and δ is the accepted drop rate.

4.1.2.1 M/M/k/k Prediction Model

In an M/M/k/k queuing system jobs arrive according to a Poisson arrival rate and ser-

vice times are exponentially distributed. There are k servers (or N vehicles in the SSS

mission context) in the system that are able to service incoming jobs. Unlike more

traditional M/M/k systems where queues have an infinite size, M/M/k/k systems have

a limited size queue equal to the number of total servers in the system. Using the

M/M/k/k framework, the SSS system is one with k servers where arriving jobs are

parallel (i.e., they require the use of multiple servers simultaneously). Jobs arrive ac-

cording to a Poisson process with rate λα, where α is the job type. Type α jobs require

iα servers simultaneously (i.e., iα vehicles). Each job type is serviced for Exp(µα)

time, where µα is the service rate. After the job is completed, all used servers are free

once again.

Within computer applications M/M/k/k systems are used to model multiple users

competing for a limited number of shared resources. Let s = (n1, ..., nk) be the state

of the system where nα is the number of jobs in the system of type α. The probability

of a system being in a particular state (i.e., probability that a particular number of each

job type are present in the system) can be defined [8, 88]:

Pπ(s) =
k∏

α=1

ρnαα
nα!
· C (4.6)

C =
(∑
s∈S

k∏
α=1

ρnαα
nα!

)−1
(4.7)

ρα =
λα
µα

(4.8)
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where Pπ(s) is the probability the system is in a given state s, C is a normalizing

constant, and ρα is the utilization factor. S is the set of all possible system states. The

set of states, S, is composed of states where various combinations of job types lead to

the system being as fully utilized as possible. Since jobs in our queue are those that

are sensed as the swarm searches the given area, the limited number of resources (or

servers) are the vehicles in our swarm. If no jobs of type α exist in our system, all

states with nα > 0 are ignored and not included in S. Using the probability of the

system being in a certain fully utilized state s, we can determine the probability that

the system will not have enough vehicles to service a new job that arrives, resulting in

a dropped job.

The rate of dropping a job for each state is calculated by

rπ(s) = Pπ(s) ·
∑
d∈D

λd(s). (4.9)

where D is the set of job types for which the system will be forced to drop the job

given its current system state, s. λd is the arrival rate of a job type that would cause the

system to drop the job given the current system state, s. The total drop rate for a given

swarm size can be calculated as follows:

Rπ =
∑
s∈S

rπ(s). (4.10)

4.1.2.2 Grid World Example

For the remainder of the paper we will use a grid world example. In this example, a

swarm travels at a constant velocity through a 100 x 100 grid. For convenience we

will express time in terms of grid cells the swarm has traversed. The swarm traverses

the cells in a boustrophedon (i.e., lawn mower) pattern. If a job is located at the cell

the swarm has reached, the required number of vehicles to service it will be allocated

and designated as “busy.” They return to the swarm and are designated as “free” after
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Table 4.1: Grid World Job Service Rates

Job Type Required No. of Veh. µα (jobs/cell)
1 15 1/2500
2 5 1/5000
3 10 1/3000

Table 4.2: Grid World Configurations

Configuration Type 1 Veh. Type 2 Veh. Type 3 Veh.
1 5 5 5
2 5 10 15

a given number of cells have been traversed. If not enough vehicles are available to

service the new job, then the job is dropped. Jobs are spread across the grid randomly

from a uniform spatial distribution.

We assume there are three different job types. Type 1 requires 15 vehicles for

servicing, type 2 and 3 require 5 and 10 vehicles respectively. The service rates for

each job type, µα, are shown in Table 4.1. Two job configurations will be explored

(Table 4.2). In Configuration 1 there are 5 jobs of each job type. Configuration 2 has

5 jobs of type 1, 10 jobs of type 2 and 15 jobs of type 3 present. The remainder of this

section will use the M/M/k/k model to determine the minimum required swarm size to

achieve a desired drop rate in the context of the grid world example.

4.1.2.3 M/M/k/k Model Results

The arrival rate Λα of each of the three job types, α, in the grid world is assumed to be

the expected value of that job type over the grid:

Λα = E[λα] =
nα
|G|

(4.11)

where nα is the expected number of jobs that will be seen of job type α over the grid

and |G| is the total number of cells in the grid (10,000 in this example). The arrival
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Figure 4.1: Predicted drop rate versus swarm size.

Table 4.3: Arrival Rates for Each Configuration

Configuration Λ1 (jobs/cell) Λ2 (jobs/cell) Λ3 (jobs/cell)
1 0.0005 0.0005 0.0005
2 0.0005 0.0010 0.0015

rates for both, Configuration 1 and 2 are shown in Table 4.3. All values are expressed

in jobs/cell traversed.

Using the job type parameters and their associated arrival rates shown in Table 4.3,

both configurations were run with the M/M/k/k model. The results are shown in Figure

4.1. For both configurations, an exponential curve (red line) captures the data (blue *)

well. The goodness of fit measures are shown in Table 4.4. Overall, Configuration 1 –

where the number of expected jobs of each job type is the same – results in a lower drop

rate (Figure 4.1 (left)). Each exponential curve can be used to estimate the dropped job

rate for a particular swarm size given expected arrival rates for each job type.

Table 4.4: Goodness of Fit Measures

Measure Configuration 1 Configuration 2
SSE 6.5673 21.9382
R2 0.9682 0.9761

Adjusted R2 0.9637 0.9727
RMS 0.9686 1.7703
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Figure 4.2: Simulation results for both service rate distributions.

4.1.3 Simulation

A grid world SSS mission was simulated in MATLAB. The three job types shown in

Table 4.1 were used. Both configurations (Table 4.2) were simulated. In each sim-

ulated mission, the location of jobs was randomly distributed from a uniform spatial

distribution. No two job types were allowed to occupy the same grid cell. Service rates

for each job type were specified as either: 1) a fixed rate (expected arrival rates shown

in Table 4.1) or 2) a sampled value from an exponential distribution with mean λα.

Each configuration was run with a swarm size of 30, 50 and 70. For each swarm size,
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500 different missions were run.

The values shown in Figure 4.2 give the average mission drop rate across the 500

missions found from simulating both configurations. A fixed service rate and a service

rate sampled from an exponential distribution were simulated for each configuration.

In Figure 4.2, the mean drop rate (solid color line) is shown in terms of the entire size

of the grid. The standard deviation is shown by the corresponding solid colored region.

Fixed service rate results are shown in red, while exponential service rate results are

shown in blue.

4.1.4 Discussion

The grid world representation used to analyze the efficacy of the Queuing Model limits

the model to a discrete time representation of arrival rates and service rates. Although

real world scenarios operate in continuous time, the simplifying assumption produces

reasonable results that match simulated missions within one standard deviation. The

results shown in Figure 4.2 indicate that in both configurations the M/M/k/k model

is more effective at predicting the swarm’s behavior if service rates are sampled from

an exponential distribution as compared to being a fixed rate; however, this leads to

larger standard deviations. This can be attributed to the fact that the model was built

assuming exponentially distributed service rates. However, the model still does a fairly

good job of predicting performance in Configuration 1 given a fixed service rate. The

results demonstrate the appropriateness of our model for predicting the steady state

performance of job types with exponentially distributed service rates for missions of

similar scale and complexity. Future work should explore the trade-offs seen between

a discrete model and a continuous model.

The sensitivity analysis in Section 4.1.3 highlights the trade-off seen between the

dropped jobs and swarm size. If operators want to reduce the dropped job rate, they

must increase their swarm size exponentially. In Configuration 1, we see that increas-
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ing the swarm size from 30 to 70 vehicles decreases the drop rate from about 42% of

the total number of jobs to about 6%. When the total number of jobs doubles in Con-

figuration 2 (from 15 to 30) we see that the dropped job rate decreases from 56% to

14% as the swarm size increases from 30 to 70 vehicles. However, as the total number

of jobs (across all job types) increases, so does the overall number of dropped jobs.

4.2 Swarm Size Planning Tool

When planning SSS missions operators are often faced with balancing complex trade-

offs to achieve a variety of conflicting mission objectives. For example, an operator

may wish to increase swarm size to improve the swarm’s ability to service jobs. How-

ever, doing so not only increases overall system cost, but failure to understand the

resource requirements for the job types present may result in an inability actually com-

plete any additional jobs. This is due to the fact that each job requires a specified

number of vehicles to service it, and if that threshold is not met, then the vehicles will

simply be added to the swarm without providing any additional use.

Therefore, the question arises: can the developed Queuing Model predictions be

used as a planning tool aid to improve operators’ ability to meet mission objectives?

By incorporating the developed model into mission planning tools and interfaces, hu-

man operators will be able to quickly and easily compare system performance across

different mission configurations. In addition, by leveraging the presented predictive

model, swarm mission success will be less dependent upon highly skilled operators,

thereby making swarm systems more accessible to a broader user base.

To examine the effect of the human operator’s utilization of the swarm size pre-

diction model on mission performance, a user study was designed. The evaluation of

a missions efficacy provides metrics for trust and trustworthiness in multi-agent team

interactions, as well as, a basis for the certification of autonomous systems.
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Table 4.5: Job Type Parameters for Each Trial

Type 1 Type 2 Type 3
Trial n Vn µi (sec) n Vn µi(sec) n Vn µi(sec)

1 5 15 25 10 5 50 15 10 30
2 5 15 25 5 5 50 5 10 30
3 15 15 50 15 5 50 15 10 50
4 5 15 100 10 5 50 15 10 30
5 5 5 100 10 10 50 15 15 30
6 5 5 50 10 10 50 15 15 50
7 15 5 50 20 10 50 15 15 50
8 15 5 100 10 10 100 5 15 100
9 15 5 100 5 10 100 15 15 100

10 15 10 30 5 15 100 15 15 50

4.2.1 User Study Experimental Design

A total of 20 subjects took part in the user study. The subjects were evenly split be-

tween the control group and the experimental group. All 20 subjects participated in a

total of 10 trials. Subjects placed in the experimental group utilized the interface with

the additional predictive model data (Figure 4.3b), while those in the control group

used the interface without the model (Figure 4.3a).

Across the 10 trials the job parameters provided to subjects for each of the 3 types

varied. Table 4.5 shows the parameters for each trial. n is the expected number of

jobs for that type that will be present in the environment. Vn is the required number of

vehicles that will be needed to service the job for µi seconds. All subjects were given

the parameter sets in the same order. For subjects in the experimental group, the graph

displaying the relationship between the starting swarm size and the expected number of

dropped jobs varied with the job parameters. Using the information provided, subjects

were asked to specify a swarm size that they believed would result in 5 dropped jobs

or fewer such that the total cost for the mission was minimized.

For a given mission the total cost consisted of an individual cost for each vehicle

allocated to the swarm, as well as the cost associated with dropping a job. In addition,
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if all the vehicles are ever allocated at once and the swarm is empty and unable to con-

tinue searching, a cost for each grid cell that would have been searched if vehicles were

still present in the swarm is added to the total cost. This is meant to represent missions

where search time is limited and the swarm is unable to return to the unsearched area

at a later point. The total cost, C, is calculated using the following function:

C = (cveh ∗N) + (cdropJobs ∗RN) + (cmissedA ∗ Amissed), (4.12)

where cveh, cdropJobs and cmissedA are the costs for each vehicle, each dropped job, and

missed area respectively. N is the number of vehicles allocated to the swarm by the

operator. RN is the total number of dropped jobs seen in the mission resulting from

the chosen swarm size. Amissed is the amount of area missed by the swarm.

Cost values of 15, 20 and 10 were chosen for each vehicle’s cost, each drop job’s

cost and each grid cell missed respectively. These numbers were chosen to mimic the

possible trade-offs that an operator may be faced with when planning SSS missions.

However, in real mission applications the operator is tasks with balancing high-level

goals such as use as few vehicles as possible, drop as few jobs as possible, and search

the entire area. It may not be possible to explicitly model each operators own internal

model about the relative importance of each goal.

For each subject the following protocol is used. Before beginning the trials, sub-

jects were asked to sign a consent form and fill out a background questionnaire. Then,

they were shown a video which provided an overview of the SSS missions, as well as,

an explanation of the information they would be provided with and their task. Subjects

then completed the 10 trials. During each trial the following data was collected: (1)

time taken to input swarm size, (2) chosen swarm size, (3) number of dropped jobs,

(4) number of missed grid cells, and (5) the total mission cost. All data except for the

input time was generated from running the simulation with the chosen swarm size and

the given job type parameters.
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(a) Control Interface

(b) Experimental Interface

Figure 4.3: SSS mission planning interfaces utilized in user study.
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4.2.2 Mission Planning Interface

To test the efficacy and usefulness of the developed swarm size prediction model, two

user interfaces were developed (Figure 4.3). Both interfaces provide users with SSS

job type mission parameters for 3 different job types. These parameters include the

expected number of jobs of each type that will be present in the environment, as well

as, the required service times and number of vehicles needed to successfully service

jobs of each type. One of the interfaces provides an additional graph showing the

calculated relationship between the number of dropped jobs versus the starting size of

the swarm given by the predictive model (Figure 4.3b). The relationship varies with

the job type parameters provided. By using the planning tool aid, operators are able

perceive the expected performance of the system. The model can be used as a baseline

for operators choosing a swarm size given the mission cost parameters and the desired

overall performance. In both the real mission and the user study cost values provide a

metric for determining the relative importance between the parameters in the trade-off

space. The second interface provides only the job type parameters. In both interfaces

users are able to specify the size of a swarm for the given SSS mission parameters. In

addition to the job type parameters provided, each interface also provides users with

the cost values associated with each vehicle assigned to the swarm, as well as, the

number of dropped jobs and missed area seen during the mission.

Upon hitting submit, a grid world simulation of a mission with the given job type

parameters and the input swarm size is shown (Figure 4.4). Within the 50x50 world,

the swarm (pink) traverses 1x1 grid cells in a lawn mower pattern. The positions of

the job sites are uniformly and randomly distributed each time. Each job site is color

coded to indicate which of the 3 types it is. Job type 1 is green, type 2 is yellow

and type 3 is blue. Uncovered area is shown in white, while area that the swarm has

covered is shown in black. When the swarm reaches a job site, if enough vehicles are

78



Figure 4.4: Screen shot of the grid world simulation shown to a user as feedback after
choosing a swarm size.

available, they are allocated. The site remains active and colored until it is finished

being serviced. After this point the job disappears and the vehicles are added back to

the swarm. If not enough vehicles are available, the job site turns red, indicating that

it is a dropped job site. At any point, if all of the vehicles have been allocated and

the swarm is no longer able to search, gray grids are shown for locations that have

been missed and would have been searched by the swarm if vehicles were still present.

The simulation terminates when all the area has been covered. After the simulation is

complete the cost for the mission is displayed.

4.2.3 User Study Results

The results shown here are taken from the 10 trials conducted for each subject. The

swarm size values reported are the values input by the subject in each of their trials.

All remaining data is taken as a result of the simulation run with the given job type

parameters, the subject’s choice of swarm size and uniformly and randomly generated

job site locations. A one way ANOVA with repeated measures was conducted on the

data using IBM SPSS version 24. Subject’s assigned group (control or experimental)
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(a) Swarm Size (b) Cost

(c) Dropped Jobs (d) Missed Grid Cells

Figure 4.5: Comparison of results given the subject’s group (experimental vs. control).

were the independent variables. Input time, swarm size, number of missed grid cells,

number of dropped jobs and cost were used as dependent variables. Results are re-

ported using a significance level of p < 0.05. Error bars for the standard error of the

means are shown in all plots.

Figure 4.5 shows the comparison between the experimental group (those with use

of the predictive model graphs) and the control group. The results for subject chosen

swarm size, as well as, the simulation’s resulting number of missed grid cells, dropped

jobs and total cost are shown. Overall subjects who had use of the predictive model

chose a lower swarm size (Figure 4.5a) and maintained a lower total cost (Figure 4.5b).

Subjects in the control group maintained a lower number of dropped jobs (Figure 4.5c),
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Table 4.6: Significance Values

Measure df F Significance Partial η2
Swarm Size 1 16.253 0.001 0.474

Number of Missed Grid Cells 1 7.962 0.011 0.307
Number of Dropped Jobs 1 14.624 0.001 0.488

Cost 1 34.062 0.000 0.654

Table 4.7: Effects Seen in Interaction Between Trial and Group

Measure Partial η2
Swarm Size 0.144

Number of Missed Grid Cells 0.047
Number of Dropped Jobs 0.234

Cost 0.145

but had a higher missed area (Figure 4.5d). All results are statistically significant (Table

4.6). Differences in input time were not significant.

Table 4.7 shows an effect was seen in the interaction between trials and group

on subjects’ chosen swarm size, as well as, the trials’ resulting number of dropped

jobs and cost. No effect was seen on the amount of missed area. Figure 4.6 (left)

shows that this effect is a result of the experimental group learning to almost eliminate

any missed area, while the control group never learns a strategy for reducing their

amount of missed area. In addition, the average number of dropped jobs across trials

increases for the experimental group, whereas the control group’s number of dropped

jobs fluctuates around a range (Figure 4.6 right).

4.2.4 Discussion

Overall, the results show that when using the additional prediction model tool, sub-

jects were able to plan missions with better performance than their counterparts who

did so without the tool. Their consistently higher performance, even without a training

session, indicates that the tool was fairly intuitive and easy to use. Subjects were able

to effectively use the tool as a baseline for making their choice of swarm size given
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Figure 4.6: Average number of missed grid cells and dropped jobs across trials for both
groups.

the job type parameters and mission cost values. The cost values, job type parameters

and desired drop rate provided a metric for determining where along the curve sub-

jects should be when making their swarm size choice. The results were statistically

significant with partial η2 values indicating that the difference was in fact robust.

Analysis shows that subjects in the control group generally prioritized dropped jobs

over missed area, leading to fewer dropped jobs than those in the experimental group.

However, on average, control participants still had a larger extent of missed area and

overall cost. In part, this may be due to their choice of larger swarm sizes. This is also

an indication that subjects within the control group did not look at the parameters of the

job types closely enough to realize that by giving certain swarm sizes, they were still

likely to have a combination of jobs that would lead to all the robots being occupied.

In contrast, subjects in the experimental group realized that by adding an extra 1

or 2 vehicles (e.g., 57 instead of 55) they were able to ensure that no combination of

jobs would ever lead to all the robots being occupied (Figure 4.6 left), leading to 7x

less missed area on average. Subjects in this group also prioritized total cost over the

number of dropped jobs. Given the cost of vehicles was about the same as a dropped

82



job, they chose to allocate fewer vehicles to the swarm even though this meant that

more jobs would be dropped as a direct result (Figure 4.6 right). However, in doing so,

they were able to reduce their overall cost by 50% as compared to the subjects in the

control group.
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Chapter 5

A General Model for Swarm

Performance Prediction

In many SSS applications, the environment is open and the coverage rate of the swarm

dynamically varies with the number of vehicles actively searching. More specifically,

as the number of vehicles in the swarm decreases (because they are allocated to service

a job), the rate of coverage also decreases. This results in an increase in time between

arrivals of all job types and vice versa for an increase in swarm size. The work in

this chapter aims to develop a Hyrbid Model to predict a priori the performance of

a swarm (of a given size) deployed for an SSS mission with a given job distribution

and dynamically changing coverage and arrival rates. The model is then evaluated

as a mission planning tool and a monitoring aid for human operators. As with the

Queuing Model in the previous chapter, the Hybrid Model can be used to predict the

performance of the swarm for any choice of route through the environment.

5.1 Hybrid Model

For many applications, negative consequences can result from not immediately servic-

ing jobs. In forest fire missions, a job might require a group of vehicles to put out
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identified brush fires that have been started with embers carried by the wind. Failure

to do so immediately could result in the fire spreading more rapidly. Surveillance jobs

may require the tracking of suspicious targets within the search area. In military appli-

cations, suspicious targets left without surveillance could lead to unanticipated attacks.

Due to the costs associated with dropping a job and with deploying each vehicle, an

inherent trade-off exists between swarm size and mission performance.

We present a Hybrid Model that estimates the predicted performance of the swarm

a priori by combining aspects of queuing theory with a Markov chain state space rep-

resentation of the swarm. The Hybrid Model incorporates the following attributes: (1)

a state space representation that captures the dynamically changing coverage rate re-

sulting from vehicles moving in and out of the searching swarm to service jobs, (2) the

use of queuing theory to determine the transition probabilities between swarm states

and (3) the utilization of the stationary distribution to evaluate the average performance

of the swarm.

The Hybrid Model is an extension to the previously developed Queuing Model [42]

presented in Chapter 4, which only considered a special case of SSS missions where

the swarm coverage rate – and therefore the job arrival rate – of the swarm remained

constant. In applications where the costs of deploying robots and dropping jobs can

be explicitly defined, the Hybrid Model can be used as a prediction tool to determine

the optimal swarm size to deploy. In scenarios where humans are required for mission

planning (e.g, to make swarm deployment decisions or for making legal, moral, or

ethical decisions), the Hybrid Model can be used by human operators as a planning

tool aid. The Hybrid Model is compared against the previously developed Queuing

Model prediction in constant coverage rate scenarios (Section 5.1.4.1). In addition,

the predicted performance of the swarm given by the Hybrid Model is compared to

the results of simulated SSS missions in dynamically changing coverage rate scenarios

(Section 5.1.4.2).
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5.1.1 Related Work

In Chapter 4, we developed a simple policy of optimally allocating the nearest vehicles

as new jobs are detected while the swarm traverses the environment (as is the case in

SSS missions). A Queuing Model was then developed to predict the performance of a

swarm using these policies to service jobs by modeling the system as a variant of the

Dynamic Vehicle Routing (DVR) problem with time constraints. More specifically,

the Queuing Model was able to predict the relationship between swarm size and the

expected number of dropped jobs for SSS missions with a given job distribution.

The initial work concentrated on applications where the coverage rate of the swarm

remained constant, such as in urban environments where narrow streets could elimi-

nate the advantages of multiple robots searching abreast to cover greater area. As a

result, the arrival rate for all job types remained constant throughout the environment,

regardless of the number of vehicles currently in the swarm (i.e., the unallocated vehi-

cles). Analysis showed that the Queuing Model accurately modeled such SSS missions

[42]. The use of the predicted relationship between swarm size and dropped jobs as a

planning tool resulted in operators planning SSS missions that resulted in better overall

performance, fewer used vehicles, and a lower unsearched area than those who planned

the mission without the tool [41]. However, traditional queuing theory cannot be used

to model systems where arrival rates change dynamically according to an unknown

function. Therefore it is ill-suited for more realistic applications coverage rates vary

dynamically.

5.1.2 Method Overview

The Hybrid Model presented below is an extension to the previously developed Queu-

ing Model [42], which was used to estimate the predicted performance of an SSS mis-

sion a priori. In the Queuing model, a Poisson process is used to describe the arrival
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times of individual jobs, and the time required to complete each job are drawn from an

exponential distribution. In this model, the coverage rate (i.e., area searched per time

step) of the swarm remains constant, regardless of the size of the swarm.

The constant coverage rate assumption may be true in urban environments with

constrained streets. However, in more general scenarios, the coverage rate varies as

vehicles leave the swarm to service arriving jobs (i.e., the number of vehicles left in

the swarm). More specifically, as the number of vehicles in the swarm decreases, the

rate of coverage will also decrease. Thus, jobs arrive less frequently to the system (i.e.,

the arrival rate decreases). The dynamically changing arrival rates make the Queuing

Model an infeasible solution. For small environments, empirical studies can be used to

simulate SSS systems with dynamically changing arrival rates. However, as the size of

the environment grows, these simulations become computationally expensive. There-

fore, we propose the use of a Hybrid Model that captures the dynamically changing

coverage rate using a Markov chain state space representation. For each state, queuing

theory is utilized to calculate the transition probabilities between itself and all other

states using the information provided from the state representation about the distribu-

tion of robots over the jobs being serviced and the those free to search. The stationary

distribution is then used to determine the expected a priori mission performance of the

swarm.

5.1.2.1 Queuing Theory

Consider an environment of size A. There are M job types present in the environment.

Jobs are randomly distributed in the environment such that each location has an equal

probability of having a job (i.e., distributed randomly with a uniform spatial density

function). Their locations are i.i.d. and are not known a priori. Given the expected

distribution of jobs over the environment, the job density for each job type is given by

Φ = [φ1, ..., φM ], where φm is the job density for job type m. φi =
nmjob
A

, where nmjob is
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the number of expected jobs of type m in the environment.

In our formulation, the area covered by a swarm of n vehicles in a single time step ts

is given by F(n) and is referred to as the coverage rate. This function is assumed to be

known a priori and is used as an abstraction of the real-world attributes of the swarm,

such as swarm formation, sensing range, and vehicle velocities. As vehicles cover area,

jobs arrive to the system (i.e., jobs are dynamically sensed). As jobs are distributed

randomly and uniformly, their arrivals follow a Poisson distribution. As in the queuing

theory literature [88], for jobs that arrive according to a Poisson distribution with a

swarm of size n, the probability of k jobs of type m arriving is given by

pma (λm(n), k) = e−λm(n)λm(n)k

k!
, (5.1)

where λm(n) is the expected number of jobs of type m to arrive in a time step (the

arrival rate) as shown by

λm(n) = φm · F(n). (5.2)

Each arriving job requires a specified amount of resources. The resource require-

ments for each job type are defined by the tuple jm =< nmservice, µm >, where nmservice

and µm are the required number of service vehicles and the mean service time for a

job of type m, respectively. The set of all vehicle and service time requirements can

be defined as nservice = [n1
service, ..., n

M
service] and µ = [µ1, ..., µM ], respectively. When

jobs arrive and not enough vehicles are present in the swarm, the job is dropped (i.e.,

not serviced). Similar to other queuing formulations, the service times are assumed to

follow an exponential distribution [88]. Therefore, the probability of a job of type m

being completed in a single time step is

pmc = 1− e−µm . (5.3)
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All service times include the travel time between the job site and the swarm.

For a swarm of size N , vehicles are either allocated and servicing jobs or they are

in the swarm searching area

N = Nbusy +Nsearch, (5.4)

where Nbusy is the number of vehicles currently allocated to service jobs and Nsearch is

the number of free vehicles available to continue searching the environment. If Nsearch

were constant, thenF would be constant and the previously developed Queuing Model

could be used to predict the performance of the swarm. However, as jobs arrive and are

completed, vehicles dynamically move in and out of the swarm resulting in F being

state dependent.

5.1.2.2 State Space Representation

To represent the different system states that exist in SSS mission scenarios, a discrete

time Markov chain state space representation is used. Discrete time Markov chains are

a stochastic model that are used to describe the evolution of a finite number of states

over discrete time. Each state is assumed to be independent and memoryless. The

transition matrix, T , is an |S|×|S| matrix where |S| is the size of the state space S.

Each element, Tij defines the probability of transitioning from state i to another state j

in a time step [143].

To capture the dynamically changing swarm size that results from jobs arriving and

being completed in SSS missions, each state, si, is defined as si = [n1, ..., nM ], where

nm is the number of jobs of type m that are currently being serviced at state si. The

full state space is given by S = {s1, ..., sK |N−nservice ·si ≥ 0}, where i ∈ {1, ..., K}.

Therefore, the valid states are those in which there are enough vehicles in the swarm

to service the current jobs in the system. By using this state space representation each

state can encode both the number of vehicles currently allocated (busy vehicles) and
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Figure 5.1: Example of a 2 job SSS mission where there are currently 1 job of type 1
and 2 jobs of type 2 being serviced.

the number of vehicles left in the swarm to search the remaining area (search vehicles).

For each state, the number of search vehicles left in the swarm is used to determine the

coverage rate for that swarm in that state (i.e., F(Nsearch)).

As a simple example, Figure 5.1 shows a swarm of size N = 15 tasked with

servicing 2 different job types, where nservice = [3, 2]. These jobs could perhaps be

putting out small fires and monitoring people in need of medical attention. The current

state of the swarm is s = [1, 2], meaning there was currently 1 job of type 1 and 2 jobs

of type 2 being serviced. Therefore, Nbusy = 7 and Nsearch = 8.

5.1.2.3 Transition Dynamics

At each time step, the following can happen: jobs arrive, jobs are completed, or nothing

(i.e., the swarm stays in the same state). One or more things can happen within the

same time step. For each state, the transition probabilities are found by calculating the

state dependent arrival and completion probabilities. For each job type, m, the set of
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all arrival probabilities, Pm
a , is given by

Pma ={pma (λm(si), km = 0), ..., pma (λm(si), km = γm), pma (λm(si), km > γm)}, (5.5)

where km is the number of jobs that arrive of typem and γm is the maximum number of

jobs of typem that can appear at the same time without any of the jobs being dropped if

Nsearch(si) = N (i.e., no vehicles are already busy with other jobs). pma (λm(si), km >

γm) is found as follows

pma (λm(si), km > γm) = 1−
γm∑
km=0

pma (λm(si), km). (5.6)

For a state, si, a maximum of nm(si) jobs of type m can be completed in a time

step, where nm(si) is the number of jobs of type m currently being serviced at state si.

Therefore, the probability of χ jobs of type m being completed is

pmc (χ) =

(
nm(si)

χ

)
(pmc )χ(1− pmc )(nm(si)−χ). (5.7)

The set of all completion probability for each job type m in state si is

Pmc = {pmc (χ = 0), ..., pmc (χ = nm(si))}. (5.8)

The joint probability of α jobs arriving and χ jobs completing is calculated for each

combination of jobs arriving and completing. Each joint probability, Pj contributes to

the transition from state si to a new state, sj . If sj ∈ S, then the joint probability is

added to the appropriate column in the transition matrix. In cases where sj /∈ S too

many jobs have arrived to the system at once and not all of them can be serviced given

Nsearch(si). Therefore, a policy for determining the service priority of arriving jobs

must be defined. As a result of this policy, one or more jobs will be dropped. Once

the policy has determined which possible state the joint probability can transition the
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current state to, the joint probability can be added to the appropriate column in the

transition matrix. The total probability of dropping a job in state si is defined as:

Pdrop(si) =
∑
j∈D

Pj, (5.9)

where D denotes the set of joint probabilities that, if allowed, would cause the system

to transition to an impossible state (i.e., Nsearch(si) ≤ 0).

5.1.3 Steady State Distribution

Using the transition matrix, the steady state (or limiting) distribution, π, of the system

can then be found. The steady state distribution describes the probability of being in

each of the states at any given time. The limiting distribution, π, is defined as

π = lim
p→∞

T p · π0, (5.10)

where π0 is the initial distribution. In the case of SSS missions, the system always

starts off with zero jobs being serviced (i.e., π0 = [1, 0, ...0]
′). π is found by repeated

matrix multiplications. However, since the system is a finite state Markov chain with

a transition matrix that is irreducible and aperiodic because it is possible to move from

any state to any other state and there is a non-zero probability of staying in the same

state, the limiting probability is unique [88]. Therefore, it also satisfies the following

π = π · T and
∑
i

πi = 1. (5.11)

Thus, the steady state distribution can be found by solving the linear system above.

The steady state distribution can then be used to determine the expected number of

dropped jobs, d as follows:
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d = (Pdrop · π)Ts, (5.12)

where Pdrop · π is the dot product between the probability of dropping a job and the

stationary distribution (i.e., a weighted dropped job probability for one time step across

all states). Ts = t̄/ts is the total number of time steps required to complete the mission,

where t̄ is the weighted average mission time across all the states. The mission time,

ti, for each state, si, is the average time Nsearch(si) vehicles would take to cover the

search area, A (i.e., A/Nsearch(si)). t̄ is calculated as follows:

t̄ = ti · π. (5.13)

The steady state distribution can also be used to calculated additional parameters of

interest: average coverage rate, average utilization, and average power consumption.

The average coverage rate, F̄ , is given by:

F̄ = Fi · π, (5.14)

where Fi is the the coverage rate of the swarm for a state, si. The average utilization of

the swarm, ū, is defined as the average percentage of the swarm that is busy servicing

jobs and is given by:

ū = ui · π, (5.15)

where ui = Nbusy(si)/N . The average power consumption, p̄, is determined by:

p̄ = (vtask(si) · ptask) · (t̄ ∗ π), (5.16)

where vtask(si) = [n1, ..., nM , Nsearch] is a vector of the number of vehicles doing task

type (servicing jobs and searching the environment) and ptask = [pn1 , ..., pnM , psearch]
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is a vector describing the power required to do each job type and the searching task per

time step. Therefore, the average power consumption is the amount of power per time

step used in each state multiplied by the amount of time spent in each state.

5.1.3.1 Constant Coverage Rate Scenarios

Although the Hybrid Model was designed to model SSS missions with varying cover-

age rates, the state space representation can also model missions with constant cover-

age rates. In such scenarios, the coverage rate function which defines the relationship

between the real mission dynamics (e.g., vehicle formation, sensing speed, velocity,

etc.) is given by F = r, where r is a constant and is not dependent upon the number

of available search vehicles. An example is shown in Section 5.1.4.1. The results are

also compared against those given by the previously developed Queuing Model [42].

5.1.4 Experimental Results

The validation results shown in this section will consider a wildfire scenario where the

swarm is tasked with monitoring injured people who may be trapped due to the rapidly

expanding fire (job type 1) and putting out brush fires that have sparked (job type 2).

A grid-based environment 50x50 in size is used to simulate mission where the swarm

searches the area using a lawn-mower (boustrophedon) pattern. Jobs are spread across

the environment randomly from a uniform distribution. The environment is broken

down in to 1x1 cells. Only one job can be present in each cell. The Hybrid Model’s

ability to predict system performance is compared against the previously developed

Queuing Model in Section 5.1.4.1. The Hybrid Model is further evaluated in scenarios

with varying coverage rates in Section 5.1.4.2. For both scenarios, two test configu-

rations were simulated where the number of each job was varied, as summarized in

Table 5.1. Swarm sizes of 20, 25, 30 and 35 were tested.

The required resources for each job type is displayed in Table 5.2. Job Type 1
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Table 5.1: Test Configurations

Configuration Type 1 Jobs Type 2 Jobs
1 10 10
2 15 10

Table 5.2: Resource Requirements for Each Job Type

Job Type Required No. of Veh. µm (jobs/time unit)
1 10 1/10
2 15 1/2

requires 10 vehicles while job type 2 requires 15. Table 5.2 also shows the mean

service rate for each job type. The two different job configurations shown in Table

5.1 are explored for both the varying (Section 5.1.4.2) and constant (Section 5.1.4.1)

coverage rate validations. In Configuration 1 there are 10 jobs of each type present in

the environment. Configuration 2 has 15 jobs of type 1 present and 10 jobs of type 2

present.

5.1.4.1 Comparison to Queuing Model

Although the Hybrid Model’s state space was designed to capture the dynamically

changing coverage rate of the swarm as it transitions from one state to another, the

Hybrid Model can also be used to predict the performance of SSS missions where the

swarm’s coverage rate remains constant (e.g., urban settings) by setting the coverage

rate function F equal to a constant. To evaluate the Hybrid Model’s ability to model

constant coverage rate scenarios, it is compared with the previously developed Queu-

ing Model [42]. The Queuing Model assumed a constant coverage rate of 1 cell per

time step (i.e., F(n) = 1). Both models were used to predict the swarm performance

in the two environment configurations given by Table 5.1. The swarm size versus the

predicted number of dropped jobs, where the coverage rate was assumed to remain

constant through the mission, is shown in Figure 5.2. Figure 5.2a displays the com-

parison between the Hybrid Model and the Queuing Model for Configuration 1, while
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(a) Configuration 1 (b) Configuration 2

Figure 5.2: Comparison between the Hybrid Model and the previously implemented
Queuing Model [42].

Figure 5.2b shows the comparison between the two methods for Configuration 2. The

results of the Hybrid Model are shown with the black dashed line, while the Queuing

Model results are shown with the solid red line.

5.1.4.2 Simulation Validation

The grid world SSS mission was simulated in MATLAB. The two configurations in

Table 5.1 were simulated using the resource requirements for the two job types shown

in Table 4.1. The location of all jobs were randomly and uniformly distributed for each

simulated mission. Each cell could only be occupied by 1 job. The swarm was assumed

to travel in a line formation where every robot sensed 1 cell/time unit (F(n) = n). The

dropped job policy used prioritized servicing jobs that required fewer vehicles.

For each swarm size tested, the results for 100 simulated missions were averaged.

Figure 5.3 displays the swarm size versus the number of dropped jobs. The predicted

values from the Hybrid Model are shown with the black dashed line, the simulated

results are shown in blue. The solid color line represents the mean value, while the

standard deviation is shown with the surrounding colored region. Configuration 1 and

2 are shown in Figures 5.3a and 5.3b respectively.
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(a) Configuration 1 (b) Configuration 2

Figure 5.3: Comparison between the simulated performance of the swarm and the
predicted performance from the Hybrid Model.

5.1.5 Discussion

Figure 5.2 indicates that the Hybrid Model is able to effectively predict swarm perfor-

mance for cases where the swarm maintains a constant coverage rate. The predicted

values given by the Hybrid Model are very similar to those found using the Queuing

Model in both configurations. This illustrates the appropriateness of the Hybrid Model

for use in predicting the performance of swarms in previously considered constant

coverage rate scenarios.

The results in Figure 5.3 show that the Hybrid Model is also able to accurately

model SSS missions with dynamically changing coverage rates for configurations where

the relative arrival rates between the job types is the same (Figure 5.3a) and when they

differ (Figure 5.3b). For both configurations, the predicted values from the Hybrid

Model fall within one standard deviation around the mean of the simulated values. For

the same swarm size, the number of dropped jobs increases as the total job density in

the environment increases. In both the prediction and the empirical study, the number

of dropped jobs decreases as the swarm size increases. For configuration 1, increasing

the swarm size from 20 to 35 decreases the drop rate from 9% to 1%. In configuration

2, increasing the swarm size in a mission where there are 25% more jobs decreased
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the drop rate from 11% to 1%. The results further illustrate the appropriateness of the

Hybrid Model as a prediction tool for a broader variety of SSS missions, including

those with varying coverage rates.

For illustration purposes the results presented here were found using a dropped job

policy that prioritized servicing jobs with a lower vehicle requirement. However, the

Hybrid Model formulation is flexible enough to allow for any dropped job policy to be

used. The choice of policy affects the determination of which feasible state an iden-

tified dropped job transition leads to. In other words, it modifies the determination of

the leaf node transitions in the transition matrix. Other possible policies could include

jobs being serviced in a random order, jobs being serviced in order of their cost where

cost is defined as the product of the number of vehicles needed and their service time,

etc.

Furthermore, the formulation of the Hybrid Model gives the model the ability to

capture different real-world features and constraints on SSS missions, such as the

swarm’s formation, sensor coverage, vehicle velocity, etc. These real-world constraints

and their effect on the coverage rate of the swarm given the number of vehicles cur-

rently in the swarm, are mapped in to the functional relationship represented by F(n).

By including this direct bridge between the real world scenario and the formulation for

the arrival rates of each job type, the model is able to accurately describe the dynamics

of the real mission. The functional relationship represented byF(n) can be determined

for each unique SSS mission scenario, thus ensuring that the Hybrid Model is reflective

of the real world state dynamics of the swarm.

5.2 Hybrid Model in Planning and Monitoring

As in the constrained environments, complex trade-offs exist between different mission

objectives for operators tasked with assigning resources (i.e., vehicles) to the swarm
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Figure 5.4: Relationship between dropped jobs and swarm size in an open environment
mission with dynamically changing coverage rates.

for SSS missions in open environments. These complexities also extend to monitoring

tasks. One of the main challenges is that the dynamically changing coverage rate of

the swarm in open environments results non-monotonic relationships between mission

parameters. An example of the relationship between swarm size and dropped jobs

is shown in Figure 5.4. Counter to intuition, there are regions where the number of

dropped jobs increases as the swarm size increases. This is due to the fact that more

vehicles have been added to the swarm, therefore the swarm can search the environ-

ment faster, but until a certain threshold of additional vehicles is met, not enough extra

vehicles are present in the swarm to service additional jobs that arrive. In addition to

the non-monotonic relationship between parameters and the conflicting trade-offs seen

as a result of the various relationships between parameters, the causation between pa-

rameters is not bidirectional (i.e., one parameters may effect another, but that second

parameter may not effect the first).

Understanding these complex trade-offs between mission objectives more effec-

tively is required if operators are to plan and manage these SSS missions more effec-
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tively. Similar to the Queuing Model, can the Hybrid Model be used as a planning tool

aid to assist operators in making resource allocation decisions that more closely align

with objectives? Furthermore, can the Hybrid Model provide additional situational

awareness to operators such that they can understand the real-time performance of the

swarm? To answer these questions, a user study was conducted to evaluate the efficacy

of the Hybrid Model as a planning and monitoring aid for general SSS missions.

5.2.1 Experimental Design

24 subjects participated in the study (10 female, 14 male) and were split evenly across

two groups: experimental and control. Most of the subjects were students at a univer-

sity. All subjects participated in 5 trials. No training trials were provided. After all the

trials, subjects were asked to fill out a NASA TLX workload measure survey.

Table 5.3: Job Parameters for Each Trial

Job Type 1 Job Type 2
Trial n Vn µ n Vn µ

1 10 10 20 10 15 10
2 15 10 10 10 15 20
3 15 5 40 10 8 20
4 5 5 20 15 8 30
5 15 5 15 15 8 25

Each trial in the study consisted of two parts, (1) a planning task and (2) a moni-

toring task. All trials presented subjects with SSS missions comprised of 2 job types.

The job parameters (expected number of jobs, required number of service vehicles and

service time) varied across trials. Table 5.3 shows the job parameters for each of the

trials. The expected number of jobs (n), required number of service vehicles (Vn) and

service time (µ) are shown for both job types. In the planning portion, participants

were asked to determine the swarm size required to handle the expected workload of

jobs present in the environment.
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As was the case with the Queuing Model efficacy analysis (Chapter 4.2), to make

this decision, 3 cost values were provided for consideration: a vehicle cost, a dropped

job cost and a missed area cost. The total cost function to be minimized is:

C = (cveh ∗N) + (cdropJobs ∗RN) + (cmissedA ∗ Amissed), (5.17)

where cveh, cdropJobs and cmissedA are the costs for each vehicle in the swarm, each

dropped job, and missed area, N is the number of vehicles allocated to the swarm by

the operator, RN is the total number of dropped jobs seen in the mission resulting from

the chosen swarm size, and Amissed is the amount of area missed by the swarm. These

cost values were meant to simulate the relative importance between the commonly seen

high level mission goals of minimizing swarm size, servicing all jobs and searching all

given area. Although explicit numerical values for each cost may not be available in

real SSS missions, they were provided so that all subjects maintained the same notion

of relative importance between the performance metrics. The same cost values were

used across trials and were 10, 30 and 5 for the each vehicle, each dropped job and

each cell of missed area respectively.

The subjects in the experimental group were also given access to the predicted

relationships between various mission parameters determined by the Hybrid Model

(Section 5.1.2). They were able to explore the relationship between swarm size, ex-

pected number of dropped jobs, power consumption, coverage rate, swarm utilization

and mission time in 2D and 3D interactive plots (Figure 5.5a). Those in the control

group only had the job parameters and cost values (Figure 5.5b). All subjects were

also asked to ensure that vehicles used less than an allowed 40Wh of battery power

and were given the numerical values for the amount of power consumed in each time

step for a robot servicing each of the job type, as well as, if they were searching. For all

trials these values were 0.25, 0.3 and 0.2 for a type 1 job, a type 2 job and searching re-

spectively. Once subjects had chosen a swarm size that they believed would minimize
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cost, their cost was shown in comparison to the optimal cost. For each trial, the optimal

cost was found by running 100 missions comprised of the job types given for a variety

of swarm sizes. The cost value associated with each swarm size was the average cost

of the 100 missions run with that swarm size. In each mission, jobs were randomly

distributed in the environment. Similarly, 100 missions with the participants’ chosen

swarm size were run to determine their average cost value.

After completing the planning task, subjects moved on to the next portion of the

trial – the monitoring task. In the monitoring task, subjects were asked to watch a

simulated mission comprised of the job parameters that they planned for in the first

part. Their task was to determine if they thought the mission was running optimally

or if there was an issue. One of three issues was possible: there were more jobs in

the environment than was expected when the planning was done, there were too few

vehicles in the swarm to handle the workload of the jobs needing service, or there

were too many vehicles in the swarm (i.e., they were unnecessary to carry out the

mission effectively). If the subject thought one of these issues was occurring at any

time throughout the mission, they were asked to click one of the corresponding buttons

at the bottom of the interface. This would indicate that they believed the mission

needed to be replanned (i.e., adjusted online) and thus the mission would be paused and

the trial would then be over. If they though the mission was optimal (i.e., performing

such that the optimal cost would result from the mission), they simply let the mission

progress until the end. This portion of the study was conducted using a yoked design

to ensure that all subjects saw the same missions regardless of what swarm size they

chose in the planning part. Therefore, for each of the 5 monitoring trials, a swarm size

was chosen for them. The jobs were randomly distributed in the environment in each

trial, but the distribution remained the same across subjects.

Subjects in the experimental group had access to the Hybrid Model predictions

from the planning portion, allowing them to cross-reference the current mission with
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(a) Experimental Group Interface

(b) Control Group Interface

Figure 5.5: Planning interfaces used by the subjects in the user study.

the expected values (Figure 5.6a). The number of finished jobs, missed jobs, amount of

power consumed per vehicle, and swarm utilization were tracked graphically for users

during the mission. In addition, the percentage of the area covered by the swarm was

104



(a) Experimental Group Interface

(b) Control Group Interface

Figure 5.6: Monitoring interfaces used by the subjects in the user study.

also displayed as the mission progressed. Subjects in the control group were given a

tally of the number of jobs completed and missed, as well as, the percentage of area

covered (Figure 5.6b).

The three types of issues that could arise from suboptimal missions are further il-
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Figure 5.7: Suboptimal mission performance scenarios.

lustrated in Figure 5.7. The resulting mission performance for the suboptimal missions

is shown in Figure 5.8. For illustration purposes the performance is shown visually as

would be seen by the experimental group, however, the control group is still provided

the same information. In missions where extra jobs are present the jobs arrive more

quickly than anticipated and the swarm drops jobs while maintaining a fairly high uti-

lization. This is shown in Figure 5.8a where the Type 1 jobs by themselves appear to be

arriving fairly quickly. When too few vehicles are allocated and the expected number

of jobs is in fact in the environment, all of the jobs together appear to arrive at a rate

that matches the length of the mission, but jobs are still dropped and the swarm uti-

lization remains high (Figure 5.8b). For cases where too many vehicles are allocated,

the swarm see jobs at the expected rate, but the swarm appears to be underutilized

throughout the mission (Figure 5.8c).

5.2.2 Data Collected

In both the planning and monitoring portions of the trials, the time taken for subjects

to make their decisions was recorded. For the planning task, the swarm size chosen

by the subject, as well as, the associated cost was collected. During monitoring, the

subjects decision about the performance of the swarm was recorded. The workload

felt by users across 6 categories – mental, physical, temporal, performance, effort and
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(a) Extra Jobs

(b) Too Few Vehicles

(c) Too Many Vehicles

Figure 5.8: Resulting performance indicators from suboptimal missions.

frustration – were collected using the standard NASA TLX survey [89].

5.2.3 Results

The results shown here are compiled from the data collected from the 5 trials each

subject completed. The data for the planning and monitoring portions of the trials will

be reported separately. A one-way ANOVA with repeated measures was conducted

using IBM SPSS version 25. The subjects’ group (experimental or control) was used as
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the independent variable. Input time, swarm size and cost were used as the dependent

variables in the analysis of the planning portion data. The time to make a decision and

the number of correct decisions made were the dependent variables used in the data

analysis of the monitoring data. All results are reported with a significance level of

p < 0.05. The effects between subjects’ assigned group and the trials will be shown.

In addition, error bars will be shown on plots when appropriate.

5.2.3.1 Planning Task

(a) Experimental Group Interface (b) Control Group Interface

Figure 5.9: Comparison of planning results by group.

Figure 5.9 shows that the Hybrid Model allowed subjects in the experimental group

to plan missions with both a lower average swarm size and total overall cost. Both

results were statistically significant (Table 5.4). The results are consistent across job

parameter changes between trials (Figure 5.10). However, subjects in the control group

only took 111.82 sec to choose a swarm size on average while subjects in the experi-

mental group took longer and averaged 154.04 sec.

Table 5.4: Significance Values for Planning Measures

Measure df F Significance Partial η2
Swarm Size 1 5.70 0.026 0.206

Cost 1 10.03 0.004 0.313
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(a) Swarm Size (b) Cost

Figure 5.10: Comparison of planning results by group per trial.

5.2.3.2 Monitoring Task

(a) Correct number of identified monitoring
tasks.

(b) Total time subjects took to make decision
during monitoring (in seconds).

Figure 5.11: Comparison of monitoring results by group.

In the monitoring portion of the trials, subjects in the experimental group were able

to correctly determine the performance and identify any issues with the mission more

accurately than their counterparts in the control group (Figure 5.11a). However, they

took longer to make their decision (Figure 5.11b). The results were consistent across

trials (Figure 5.12) and statistically significant (Table 5.5). As seen in Table 5.6, the

group subjects were in had an effect on subjects’ ability to make monitoring decisions

and was robust across trials. There was a medium-level interaction seen between trial
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(a) Average Correctness (b) Decision Time

Figure 5.12: Comparison of monitoring results by group per trial.

Table 5.5: Significance Values for Monitoring Measures

Measure df F Significance Partial η2
Decision Time 1 26.46 0.000 0.546

Performance Decision 1 1.993 0.172 0.083

Table 5.6: Effects in Interaction Between Trial and Group

Measure Partial η2
Decision Time 0.143

Decision 0.113

and group for the performance decision subjects.

Figure 5.13 shows a tally of performance decisions across trials for both groups.

The ground truth decisions for the monitoring trials (in order) were: (1) optimal, (2)

too few vehicles, (3) too many jobs, (4) optimal, and (5) too many vehicles. They

are indicated in Figure 5.13 with the associated ground truth color next to the trial

number. As seen in Figure 5.13a, subjects in the experimental group were able to not

only determine if a mission was going well, but also distinguish between the possible

issues that could be occurring in the mission. In contrast, subjects in the control group

(Figure 5.13b) thought that all the missions presented had too few vehicles unless no

jobs were missed (Trial 5).
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(a) Experimental Group

(b) Control Group

Figure 5.13: Comparison of monitoring performance decision for all subjects in each
group. Ground truth decisions are shown with a colored box below each trial. Trials
are shown in order (left to right).

5.2.3.3 Workload Measures

Table 5.7 shows the average workload rating giving by subjects in both groups. Rat-

ings of mental demand, physical demand, temporal demand, performance, effort and

frustration are shown. Results show that subjects in the experimental group felt a lower

average workload in all measures except for physical demand. The performance values

were statistically significant (F = 7.65 and p = 0.011).
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Table 5.7: NASA TLX Workload Measures

Group Mental Physical Temporal Performance Effort Frustration
Exper. 53.75 14.58 18.33 33.33 54.58 22.92

Control 66.67 12.08 30.42 52.50 55.42 27.92

5.2.4 Discussion

The task given to human operators in charge of planning and monitoring SSS missions

is quite complex. The tasks possess 3 out of the 4 sources of complexity: multiple

desired states, conflicting dependence among data, and uncertainty in the data. The

multiple desired states are described by the various costs that the operators must mini-

mize. The complex interdependence between mission parameters results in conflicting

trade-offs that operators must balance. In addition, SSS missions have inherent uncer-

tainties associated with unknown locations of the jobs.

The analysis shows that in spite of the high task complexity and the lack of training

trials subjects in the experimental group were able to plan missions more effectively

than their counterparts in the control group. This was apparent in their ability to choose

smaller swarm sizes that produced lower overall missions costs. They were able to

overcome the difficulty associated with the negative correlations between attributes

across the possible swarm sizes. This implies that the way that the data from the

Hybrid Model predictions was displayed allowed the experimental group to not only

understand the overall patterns in the data, but to also interpret the data in detail to pick

a specific swarm size, unlike the visual aids given in the study conducted by Speier and

Morris [173]. The results were consistent across all trials. The control group weighed

the trade-off between cost parameters less, thereby producing a lower average time to

plan. The control group’s higher overall cost and lower time to plan indicates that they

developed a flawed mental model that may have been too simplistic to represent the

actual interaction between mission parameters.

When monitoring SSS missions, subjects in the experimental group were not only
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able to identify when a mission was progressing optimally, but also distinguish between

reasons for sub-optimal mission performance (Figure 5.13a) than subjects in the con-

trol group (Figure 5.13b). This indicates that subjects in the experimental group were

able to effectively cross-reference expected mission performance given by the Hybrid

Model with the real-time mission parameter tracking to maintain a better situational

awareness of the mission, leading to a better understanding of how the relationships

among mission parameters affect the performance of the swarm. These results sup-

port previous work by Speier and Morris who showed that visual interfaces allowed

operators to develop a deeper understanding of the data presented to them [173].

Subjects in the control group tended to make quicker decisions than those in the

experimental group during the monitoring tasks. As a result, they deemed missions

with any missed number of missed jobs as that of one that had too few vehicles in the

swarm. This once again indicates that the subjects in the control group were unable to

develop an accurate mental model of the relationship between mission parameters, as

well as, understand their effect on the overall cost of the mission.

In both the planning and monitoring tasks, the investigator noticed that subjects in

the experimental group rarely explored the prediction data given by the Hybrid Model

in 3D. For the most part subjects explored the trade-offs between parameters by com-

paring the performance of the swarm across multiple 2D relationships. As seen in the

literature, this occurs when humans are considering complex trade-offs between possi-

ble choices. They are unable to consider all facets of the decision simultaneously and

must instead do so sequentially [90]. In addition, during the monitoring task the inves-

tigator noticed that a fair number of subjects (across both groups) did not notice before

they made their decision that more jobs had been seen in the environment even though

it was explicitly shown on the tally/graph they were given. This indicates that subjects

were not cross-referencing the expected parameters with the real-time feedback from

the environment. Future monitoring interfaces may need to have additional alerts for
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deviations from expected mission parameters to help notify subjects of such issues.

Although the Hybrid Model itself is built upon complex principles, the resulting

low mental demand and effort for the experimental group indicate that the Hybrid

Model was fairly easy to interpret. In addition, even though the prediction model aid

required subjects to examine and interpret a lot of additional data in comparison with

the subjects in the control group, their frustration level still remained lower. This once

again reinforces the notion of ease-of-use for the Hybrid Model-based aid. Lastly, the

ease-of-use of the aid allowed subjects in the experimental group to accurately evaluate

their performance, leading to a lower performance measure.
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Chapter 6

Decentralized Sub-swarm Deployment

and Rejoin

Figure 6.1: Example scenario where multiple jobs need servicing.

In some SSS scenarios the communication range is not much larger than the sensing

range. Therefore, communication between the sub-swarm teams and the main swarm

must be maintained. The work presented here explores the problem of breaking off and

deploying a required number of robots from the swarm to the job site(s) (Figure 6.1)

for servicing, as well as, rejoining those robots with the swarm after the job is serviced.

This behavior is important if swarms are to service jobs as they appear in SSS mission

scenarios. We consider the additional constraint of maintaining connectivity. This

requires that 1) robots are broken off from the swarm without graph disconnection and

2) connectivity is maintained between sub-swarm robots and the original swarm as they

move towards the job site. Conventional swarm connectivity control laws consider the
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effect of connectivity constraints on the motion of the full swarm [162]. This can lead

to unnecessary motion changes for some robots. To reduce each job site’s effect on the

whole swarm, a framework requiring only a subset of robots to switch their motions

is needed for sub-swarm assignment and navigation. The framework must be flexible

enough to manage multiple job sites with overlapping service times.

The contributions of this work are as follows. First, we present a decentralized

method for selecting and breaking off robots to form a sub-swarm team at a given job

site without breaking the swarm’s connectivity. Second, we leverage the topology of

the communication graph to incrementally move the broken off robots towards the job

site while maintaining connectivity with the original swarm. Lastly, we present a way

to rejoin the sub-swarm with the swarm. The method is applied to both single job site

and multiple job site cases..

6.1 Preliminaries

Consider a robot swarm of N vehicles whose positions, pi ∈ Rm with m ∈ {2, 3},

form a triangular lattice with interagent distance defined as ‖pi − pj‖= Rc,∀j ∈ Ni,

whereRc is the communication range of every robot andNi is the set of all neighbors of

robot i (Figure 6.2). Triangular lattices are used to conveniently move swarms through

an environment [145][113]. Due to the limited number of neighboring robots, the

triangular lattice formation results in reduced computation and high scalability [114].

Each robot has 6 neighbors unless they are located on the boundary of the swarm,

which results in fewer neighbors. All robots maintain an equilateral triangle with their

neighbors. A controller similar to the one described in [113] can be used to form the

swarm’s initial triangular lattice.

Assume that every robot knows their position pi within a common reference frame.

Each robot in the swarm is assigned a unique identifier (UID). We assume the UIDs
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are i ∈ {1, 2, ..., N}. The swarm’s communication graph is given by G = (V , E).

Every node v ∈ V represents a robot. Each robot i communicates only with its direct

neighbors (i.e., {j : ‖pi − pj‖≤ Rc}). If robot j is a neighbor of robot i, then edge

(vi, vj) ∈ E . We assume the connectivity graph is undirected (i.e., (vi, vj) ∈ E ⇒

(vj, vi) ∈ E) and connected.

6.2 Method Overview

Each job site, k, is defined by a tuple: < pk, nk, tk >, where pk is the position of the

site, nk is the number of robots required to service it (i.e., size of the sub-swarm team)

and tk is the amount of time necessary to complete the service. The robot that sensed

the job site, referred to as the sensing robot, is assumed to be closest to the site. For

each job site k, the task is to break off robots and form a sub-swarm team of nk robots

at the job site’s location pk. After the job has been serviced, all robots must be rejoined

with the original swarm. Although intended as an element of SSS missions, for clarity,

the methods below are illustrated using a stationary swarm.

In each time step for each job site, k, the swarm uses decentralized algorithms to

break off a new robot and push it towards the job site location, pk. Each robot broken

off moves to fill the previous position of its predecessor, with the first removed robot

– or frontier robot – moving to fill a new unoccupied position (frontier node), which

lies between it and the job site (Section 6.2.1.1). Thus, a chain is formed between the

frontier robot and the swarm. As a robot is pulled out of the swarm, a chain of robots

behind it move forward to maintain connectivity. The number of robots in the chain is

given by the predefined hop radius, H . The last robot to move forward, known as the

tail robot, is the furthest robot from the frontier node (Section 6.2.1.2). A path from

the tail robot to the frontier node is then planned (Section 6.2.1.3).

As the frontier robot moves closer to the job site, the number of steps (and robots)
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Figure 6.2: Hole left in the swarm lattice (left) before the Algorithm 2 is used (right).
Lines depict connected robots.

that lay between it and the swarm increases. Every robot keeps track of how many

steps, s, have been taken since the job site was sensed. A robot who is exactly s hops

away from the frontier node considers itself the anchor node. By limiting the number

of hops between the tail robot and the anchor node, the probability of overlap between

chains for different job sites is decreased. This limits the possibility of robots being

needed for multiple chains resulting in them choosing one and finding a replacement

for the others. However, an empty position in the swarm, known as a hole, is left in the

tail robot’s original position (Figure 6.2). Continuing to leave the hole behind the tail

robot may disconnect the graph in the future. Therefore, the hole is filled by moving

a robot behind the tail robot forward to fill the open position. In doing so, the hole

is pushed back one spot. Thus a robot behind that one needs to move forward. This

continues until the hole is removed from the swarm’s graph (Section 6.2.1.4).

After a sub-swarm team (i.e., size equals nk) has formed at job site, k, and the

required tk service time has expired, a rejoin action is initiated. To rejoin, boundary

robots in the swarm are used to determine the frontier node (Section 6.2.2). The fur-

thest robot from the frontier node is deemed the tail robot. Like before, chain robots

then move forward.

6.2.1 Sub-swarm Break Off

The anchor node (Figure 6.2) is initialized as the sensing robot. At the end of each

time step, a robot who is s steps away from the frontier node assigns itself as the new
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anchor node. Each robot only maintains a belief of whether they themselves are the

anchor node, and not the status of the other robots in the swarm.

Figure 6.3: Sample sub-swarm robot distribution.

6.2.1.1 Frontier Node

When forming the sub-swarm team, the frontier node is chosen as the point F ∈ Rm

(m ∈ {2, 3}) that is Rc away from the frontier robot in the direction of the job site,

where Rc is the communication distance. Until the sensing robot is within range (dis-

tance less than Rc) of the job site, it is always chosen as the frontier robot.

As an example of a symmetric deployment, once a robot, i, reaches the job site, it

defines 4 directions equally spaced around the job site (Figure 6.3 red). Direction 1 is

defined as being 90◦ counterclockwise from the line between robot i’s neighbor and

robot i. The angle between directions is defined as θ = π/(m − 1) where m is equal

to the number of directions (i.e., 4). To build a sub-swarm team, the frontier node is

chosen as an unoccupied position along 1 of the 4 directions. Figure 6.3 shows an

example with nk = 5. Robots are distributed fully along a given direction in clockwise

order. This distribution method is illustrative and can be replaced with a job-type

specific distribution.

6.2.1.2 Tail Robot Selection

After finding the frontier node, Algorithm 1 is used to select the tail robot in a decen-

tralized manner. The swarm first constructs a spanning tree rooted at the anchor node

such that every robot in the tree is the fewest number of hops away from the root (lines
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Algorithm 1 Tail Robot Selection
1: procedure TAILSELECTION(i, pi,Ni, Ai, Si, G,H)
2: if Ai = 0 ∧ Si = 0 then
3: h←∞, m← i,mp ← pi
4: end if
5: for all j ∈ Ni do
6: SENDMSG(i, h, pi)
7: end for
8: while {i′, h′, pi′} ← RECEIVEMSG() do
9: if h > h′ + 1 then

10: h← h′ + 1,m← i′,mp ← pi′

11: for all j ∈ Ni do
12: SENDMSG(i, h, pi)
13: end for
14: end if
15: end while
16: tr ← i, th ← h, td ← ‖pk − pi‖
17: for all j ∈ Ni do
18: SENDMSG(tr, th, td)
19: end for
20: while {t′r, t′h, t′d}RECEIVEMSG() do
21: if ((th < t′h) ∧ (t′h ≤ H)) ∨ ((th > H) ∧ (t′h ≤ H)) then
22: tr ← t′r, th ← t′h, td ← t′d
23: for all j ∈ Ni do
24: SENDMSG(tr, th, td)
25: end for
26: else if (th = t′h) ∧ (th ≤ H) ∧ (tr 6= t′r) then
27: if td < t′d then
28: tr ← t′r, td ← t′d
29: for all j ∈ Ni do
30: SENDMSG(tr, th, td)
31: end for
32: else if (td = t′d) ∧ (tr > t′r) then
33: tr ← t′r, td ← t′d
34: for all j ∈ Ni do
35: SENDMSG(tr, th, td)
36: end for
37: end if
38: end if
39: end while
40: end procedure

2-15). This is known as a hop-optimal tree [124]. Only the hop values for robots that

are not the anchor node (Ai = 0) and are still left in the main swarm (Si = 0) are

updated. This forms a tree rooted at the frontier robot without needing to update the

hop values of robots in the chain or sub-swarm. Each robot is aware of only its hop

value (h), its master’s UID (m) and its master’s position (mp) and not the full structure
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of the spanning tree. “Master” refers to a robot’s parent node.

Once the spanning tree is created, the algorithm then finds the furthest robot (tail

robot) in the tree within the predefined hop radius, H . Each robot initially believes the

tail robot is itself and sets tr = i, th = h and td = ‖pk−pi‖. It then sends a message to

all its neighbors (lines 16-19). When a robot receives a message that indicates another

robot is deeper in the tree (i.e., has a higher hop number) than its current belief of the

tail robot and is less than the hop limit H , or if its current belief about the tail robot’s

hop value is greater than H and the other robot’s hop value is less than or equal to H

(lines 20-25), the robot updates its belief and sends a message to its neighbors (i.e.,

no longer considers itself the tail robot). Additionally, if a robot receives a message

where the other robot’s hop value and its current belief of the tail robot’s hop value is

the same, but the other robot is further away or is equally far away and has a lower

UID, then the robot also updates its belief values (lines 26-37). Messages are sent until

a consensus is reached and no new messages are created. Since the spanning tree is

constructed such that every robot is the fewest number of hops away from the root

node, the shortest path from the tail robot to the frontier node is the exact path in the

tree from the tail robot to the frontier node.

6.2.1.3 Movement Action

Once the frontier node and tail robot have been selected, if the tail robot is farther away

from the goal (job site) than the frontier node it initiates its new position as the position

of its master in the spanning tree. Before moving, it sends a message to its master.

When a robot receives a message, it sets its new position as its own master’s position

and sends a message to its own master. This continues until a robot is the frontier robot

and its “master” is the frontier node location. Through this chain of movements, the

full chain from tail robot to frontier robot moves forward. The remaining robots in

the swarm do not move, thereby preserving a majority of the original communication
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Algorithm 2 Fill Hole Left in Swarm
1: procedure FILLHOLE(i,m,Ni)
2: rmove ← 0
3: while RECEIVETOKEN() do
4: if m = m′ then
5: rmove ← i
6: for all j ∈ Ni do
7: SENDMSG(m, i)
8: end for
9: end if

10: end while
11: while {m′, i′}RECEIVEMSG() do
12: if (m = m′) ∧ (rmove > i′) then
13: rmove = i′

14: for all j ∈ Ni do
15: SENDMSG(m, i)
16: end for
17: end if
18: end while
19: end procedure

graph. When the tail robot is closer to the goal than the frontier node, the robots cease

to move.

6.2.1.4 Fill Hole Left in Swarm

Algorithm 2 mitigates this issue and fills in the hole by moving the robots behind the

tail robot in the spanning tree forward one by one. The algorithm is initiated when the

tail robot sends a token to all of its neighbors before moving forward, notifying them

that its position will be vacated. Its children must then come to a consensus on who

should take their master’s position. That chosen robot then sends a token indicating its

soon to be vacated position. The process repeats until the robot sending the token has

no children (i.e., when it is on the opposite edge of the swarm from the anchor node)

and thus no messages are sent.

Lines 3-10 show that when a robot in the swarm receives a token, it checks if the

sender is its master in the spanning tree. If so, the robot sets its belief of who should fill

its master’s place as itself and sends a message to its neighbors. When a robot receives

a message from its neighbor it checks if it has the same master node (line 12). If so,
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and its current belief has a higher UID, the robot updates its belief and sends a message

to its neighbors (lines 13-17). When no new messages have been sent, the robot whose

UID matches its own belief sends a token to its neighbors.

6.2.2 Sub-swarm Rejoin

To pull robots from the sub-swarm back in to the main swarm, each boundary robot

nominates a candidate frontier node. Boundary robots have fewer than 6 neighbors,

resulting in only a partial triangular lattice surrounding themselves. If a robot has less

than 6 neighbors, it considers itself a boundary robot and relays that information to

its neighbors. Messages are passed between robots until a consensus is reached on

the set of all boundary robots. A candidate frontier node is one that lays on a lattice

point equidistant from a given boundary robot and its neighboring boundary robot,

but is not located in the same place as a current robot (Figure 6.4). Since every robot

knows the boundary robot set and its neighbor’s positions, this is found without passing

messages. Boundary robots begin the final frontier node selection process by sending

their neighbors a message containing their candidate frontier node. Messages are sent

until the candidate node closest to the goal (swarm’s original centroid location) and

furthest away from the anchor node is chosen as the frontier node.

Figure 6.4: Acceptable and unacceptable frontier node examples.

A virtual communication graph, Gv = (Vv, Ev) is then defined, where Vv is the

set of all nodes in the initial communication graph plus the frontier node and Ev is

the set of all edges in the initial communication graph plus those between any robots

within Rc distance of the frontier node. The virtual communication graph is used to
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construct a hop-optimal spanning tree rooted at the frontier node. Robots connected to

the frontier node initialize h = 1, m = FUID, mp = F . Every other robot initializes

its hop value to infinity and its master node to be itself. A hop-optimal spanning tree

rooted at the frontier node is constructed using the same method shown in Algorithm

1 lines 8-15.

As opposed to limiting the depth of the tree search for selecting the tail robot when

moving robots in to the sub-swarm (Algorithm 1, lines 16-39), the full tree is used to

determine the tail robot. This results in the tail robot being the deepest leaf node. A

movement action is then used to push robots forward in a chain from the tail robot

position to the frontier node (Section 6.2.1.3). This process is repeated until the tail

robot is closer to the goal location than the frontier node. This results in a similar

rendezvous behavior to that seen at a goal location in [117]. This same procedure is

used to move the entire swarm to the final goal location once the sub-swarm robots

have rejoined the swarm.

6.2.3 Multiple Job Sites

In the multiple site case, one hole remains for each tail robot that moves. Algorithm

3 is used to determine which robots will move forward behind a given tail robot when

multiple holes exist in the swarm. Similar to the single hole case, a tail robot sends a

token to its neighbors. When a robot receives a token, it has not already been chosen

(Si = 0) and its master node is the same as the one in the message, then it sets its

belief of who should fill the vacant spot as itself and sends a message to its neighbors

(lines 4-10). If it has already been assigned to fill another hole in the swarm, it finds an

available replacement neighbor that is also connected to the robot who sent the token

(lines 11-13).

When an available robot receives a message, its master node is the vacant node in

the message and its UID is lower than the UID specified in the message, it updates
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Algorithm 3 Fill Multiple Holes in Swarm
1: procedure FILLMULTIPLEHOLES(i,m,mp,Ni, Si)
2: rmove ← 0
3: while {Si′}RECEIVETOKEN() do
4: if Si = 0 then
5: if m = m′ then
6: rmove ← i, Si ← Si′

7: for all j ∈ Ni do
8: SENDMSG(m, i, Si)
9: end for

10: end if
11: else
12: FINDREPLACEMENT(m,Si,mp)
13: end if
14: end while
15: while {m′, i′, Si′}RECEIVEMSG() do
16: if (Si = 0) ∨ (Si = Si′) then
17: if (m = m′) ∧ (rmove < i′) then
18: rmove = i′

19: for all j ∈ Ni do
20: SENDMSG(m, i)
21: end for
22: end if
23: else
24: FINDREPLACEMENT(m,Si,mp)
25: end if
26: end while
27: end procedure

its belief to be itself and sends a message to its neighbors (lines 15-22). If it is not

available, it finds a replacement robot (lines 23-25). As in Algorithm 2, when no more

messages have been sent, the algorithm terminates implicitly. The robot whose belief

is itself then sends a token to its neighbors to notify them that its current position will

be vacated. The process repeats until the robot who sends a token has no neighbor that

is its child.

Figure 6.5: 12 sites used for trials in the single job site case.
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6.3 Simulation

A 2D MATLAB simulation was used to compare the performance of our method to

that of a full swarm method where robots move sequentially to job sites using the

rejoin movement in Section 6.2.2 (comparable to [117]). For each trial in the single

job site condition, the swarm was tasked with moving the required nk robots to the

job site, rejoining with the swarm and then moving to a final goal location. The job

site was one of 12 positions equally spaced on a circle centered at the swarm’s starting

centroid at (5,5) with a radius of 8 units (Figure 6.5). Swarm sizes of 20, 35, and 50

were tested at each job site. Results were averaged over all locations. The average

number of messages sent in each step and the total distance traveled by the swarm are

shown. An ANOVA was conducted on the data using statistical analysis software IBM

SPSS v. 25. In the multiple job site conditions, both two and three simultaneous sites

were tested with 100 robots. A single set of job site locations (for both the two and

three site conditions) was tested. All job sites were simulated excluding service times.

Therefore, as soon as the sub-swarm team is formed the robots rejoin the swarm.

6.3.1 Single Job Site

An example single job site trial is shown in Figure 6.6. Robots begin to form the

chain between the job site and swarm in Figure 6.6a. When a sub-swarm team is

formed (Figure 6.6b) the rejoin behavior is triggered (Figure 6.6c). Once all robots

have rejoined the swarm it moves toward to final goal location at (20,20) (Figure 6.6d)

resulting in the swarm rendezvousing around the final goal (Figure 6.6e). For all single

job site trials, the sub-swarm size, nk, was 5. The results are compared to a full swarm

where the swarm moves toward the job site until nk robots are within range, moves

back to the initial centroid, and finally moves to the goal. All values are averaged over

the 12 job site locations. Error bars are shown for the standard deviation in each graph.

126



(a) 1 step (b) 10 steps (c) 14 steps (d) 49 steps (e) 92 steps

Figure 6.6: Simulation screenshots of 50 robots servicing one job site. The job site is
shown in blue and the final goal in red.

(a) Avg. number of Messages (b) Total Distance Travelled

Figure 6.7: Comparison of the sub-swarm method versus the full swarm method in the
single job site case.

Our method outperforms the full swarm method in both average number of mes-

sages sent in each time step and total distance traveled by the swarm. Figure 6.7a shows

the average number of messages sent versus the swarm size. The full swarm method

consistently sends ∼20 more messages. The total distance traveled by the swarm ver-

sus the swarm size is shown in Figure 6.7b. Our method travels slightly less distance

(blue) than that of the full swarm method (magenta).

The difference between the methods and swarm size is significant for the average

number of messages sent (p < 0.0001, η2 = 0.877 and p < 0.0001, η2 = 0.996 respec-

tively). Method and swarm size are also a significant factor in the differences seen in

the distance traveled (p < 0.0001, η2 = 0.923 and p = 0.05, η2 = 0.056 respectively).

No interaction is seen between the method and swarm size for the number of messages

and distance (η2 = 0.077, η2 = 0.001 respectively). The linear relationship between
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swarm size and both the average number of messages per robot and total distance trav-

eled by the swarm shows the scalability of our method. In addition, the results in Table

6.1 show that for a swarm size of 50 as the percentage of robots sent to the sub-swarm

increases, the average number of messages sent per robot decreases, reiterating the

scalability of our method.

Table 6.1: Avg. Number of Messages vs. Sub-swarm Size

% of Robots Sent to Sub-swarm Avg. Number of Messages Sent
10% 228.3424
20% 218.5217
30% 204.1177

6.3.2 Multiple Job Sites

(a) 1 step (b) 5 steps (c) 8 steps (d) 11 steps (e) 17 steps

Figure 6.8: Simulation screenshots of 100 robots servicing 3 job sites. For clarity, the
job sites are removed after they are serviced.

The main difference between the proposed sub-swarm break off method and the

full swarm method is their ability to handle multiple job sites. Figure 6.8 shows an ex-

ample where 3 job sites must be serviced. Only the sub-swarm break off and rejoining

portions of the trial are shown. Figure 6.8a depicts the chains between job sites and the

main swarm. Once robots are within range of the job sites sub-swarm teams are formed

(Figure 6.8b). As soon as the required number of robots is present in the sub-swarm

teams (Figure 6.8c) the rejoin behavior is triggered and robots begin to move back in

to the swarm (Figure 6.8d). As in the single job case, robots rendezvous around the

swarm’s original centroid before moving towards the final goal.
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Figure 6.9: Total distance traveled versus number of jobs sites.

As opposed to the full swarm method that requires the swarm to move robots to

the job site locations individually, our method can send robots to the multiple job sites

with overlapping service windows. To demonstrate the advantage of our method, a

swarm of 100 robots was given 1, 2 and 3 job sites to service. Figure 6.9 shows that

the overall distance traveled by our method (blue) is significantly less than that of the

full swarm method (magenta) for each of the job site cases. The distance increases

linearly with the number of job sites, with the full swarm method increasing more

rapidly (R2
sub = 0.9993 and R2

full = 1.000, p < 0.05). The difference in distance

traveled in the 3 job site case versus the 1 job site case is 4.13x higher for the full

swarm method.

6.4 Discussion

The work shown in this chapter presents a decentralized method for breaking off robots

to reach multiple job sites and rejoining them with the swarm once service is com-

pleted. The method utilizes the topology of the communication graph to push robots

towards the goal site while maintaining connectivity with the main swarm. The graph

topology is similarly used to incrementally pull the sub-swarm robots back into the
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swarm. The performance is compared against a full swarm method. Result show that

our method: (1) requires fewer messages and travels less distance in the single job

case, (2) scales linearly with the size of the swarm in terms of messages sent per robot

and distance traveled by the swarm, (3) results in fewer messages sent per robot as the

ratio of sub-swarm robots to swarm robots increases and (4) allows robots to travel

4.13x less distance than the full swarm method as the number of job sites increases.
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Chapter 7

Conclusion

7.1 Summary of Contributions

The work presented in this thesis focused on human-in-the-loop mission definition,

planning and monitoring of robot swarm applications known as Swarm Search and

Service missions. Although these operators may be domain experts, their knowledge

of the physical vehicle platforms is often limited. Therefore, it is necessary to bridge

the gap between current mission planning and monitoring interfaces, which assume

the operator is a highly trained roboticist, and those that will aid non-expert users ex-

ecute missions more effectively and intuitively. Our contributions include developing

intuitive methods for operators to define mission scope, effectively allocate resources

(i.e., vehicles) for missions, maintain an accurate situational awareness of the real-time

performance of a swarm during a mission and the design of a decentralized swarm be-

havior for carrying out SSS missions.

This thesis explored the differences between a single input gesture-based natural

language interface and a multimodal (speech and gesture) interface for flight path gen-

eration. Both interfaces used input modalities meant to mimic typical human-human

communication patterns. Using the interfaces, operators were able to build complex
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flight paths by combining trajectory segment primitives. Without much training, results

showed that operators were able to produce complete flight paths fairly accurately. The

multimodal interface allowed operators to define flight paths more explicitly by pro-

viding geometric information (e.g., length, height, radius) using the additional speech

portion of the interface, while those using the gesture interface were able to define

flight path shapes alone. User study results show that both interfaces were intuitive to

use.

To aid human operators in planning vehicle allocation to SSS missions, this thesis

began by defining dynamic vehicle routing policies to determine how vehicle should

be allocated throughout the mission. Using those policies and methods from queuing

theory, the Queuing Model was developed. The Queuing Model was able to predict

the performance of the swarm in environments where the motion of the swarm was

constrained (e.g., urban environments). The accuracy of the Queuing Model was vali-

dated against simulated SSS missions. The Queuing Model provided a way for human

operators to explore the relationship between swarm size and its performance in terms

of the number of jobs it was able to successfully service. This allowed them to more

effectively plan SSS missions.

The principles in used to develop the Queuing Model were then used as a founda-

tion for expanding the prediction model to scenarios where the swarm coverage was

dynamically changing with swarm size. The Hybrid Model used a Markov chain state

space representation to describe the swarm system during SSS missions. Queuing the-

ory was used to determine the transition probabilities between the various states. The

stationary distribution was then used to determine the expected mission performance

of the swarm across various mission parameters. The accuracy of the Hybrid Model,

like the Queuing Model, was validated against simulated SSS missions. User studies

showed that, although the relationship between mission parameters was complex, they

were able to use the predicted relationships to plan missions that resulted in a lower
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overall cost and swarm size. In addition, the predicted relationships given by the Hy-

brid Model provided a useful comparison with real-time mission progress, providing

operators with the ability to understand if and why the swarm was performing well or

poorly.

Finally, a decentralized sub-swarm break off and rejoin algorithm was designed.

The algorithm provided a method for the swarm to form and deploy sub-swarm teams

without loosing overall swarm connectivity. In addition, swarm connectivity is main-

tained with the sub-swarm team while it is separated from the swarm and servicing the

job. Both single and multiple job site cases were analyzed. The decentralized method

performed more efficiently than comparable full swarm methods.

7.2 Future Work

While the previously developed Queuing Model was restricted to dropping jobs when

resources were exceeded, future work could extend the Hybrid Model to substitute

pauses for the dropping of jobs by including additional pausing times. Instead of drop-

ping a job, the job would be delayed until sufficient vehicles returned to service it.

Pausing states are identified as states where the number of searching vehicles is zero.

The amount of time spent in each of those states is given by calculating the distribution

of total mission time across all the states in the system. The total pausing time for all

states can then be determined. Expected pausing times would then be reflected through

increased mission times making the model better suited to applications in which ser-

vicing of all jobs is crucial.

The flexibility of the Hybrid Model can also be explored further. By modeling the

real mission dynamics using the coverage rate function various formations, sensors and

vehicle spacing strategies can be represented. Therefore, the coverage rate function

can be used to model missions where there is a stochastic nature to sensing targets
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of interest. By incorporating sensors’ stochastic ability to sense objects of interest,

the Hybrid Model can be used to evaluate the probability of detecting a target for a

particular choice of formation and vehicle spacing.

In addition, this thesis developed a monitoring interface that was able to provide

human operators with real-time situational awareness to determine the performance of

the swarm. Future work will be needed to design and implement a replanning inter-

face that will continue to give operators real-time feedback about the mission while

simultaneously exploring a variety of mission modification strategies and their effect

on the overall swarm performance for the remainder of the mission. Possible mission

modification strategies include reducing the size of the remaining search area left to

be explored, increasing the swarm size, removing vehicles from the swarm for alloca-

tion to other missions, etc. This interface will need to incorporate similar prediction

methods as those used to develop the Hybrid Model.

The current Hybrid Model makes use of a discrete time Markov chain representa-

tion. Future work may seek to explore the trade-offs between a discrete model and a

continuous model. While a continuous model may be more accurate in general, there

may be cases where the discrete time approximation is very close to the exact solu-

tion, making its simplistic implementation a more appealing choice. The differences

between the models characterized so as to determine which model is most appropriate

for specific future missions.

Lastly, although the current planning and monitoring interfaces were effective, lit-

tle exploration was done with other graphical representation methods and interface lay-

outs. Future versions will need to explore additional methods for displaying complex

data to the human operator if they are to be used for SSS missions where additional

cost parameters must be considered.
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[57] András Czirók, H Eugene Stanley, and Tamás Vicsek. Spontaneously ordered
motion of self-propelled particles. Journal of Physics A: Mathematical and
General, 30(5):1375, 1997.
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[70] Ramon A Suárez Fernández, Jose Luis Sanchez-Lopez, Carlos Sampedro, Hri-
day Bavle, Martin Molina, and Pascual Campoy. Natural user interfaces for
human-drone multi-modal interaction. In Unmanned Aircraft Systems (ICUAS),
2016 International Conference on, pages 1013–1022. IEEE, 2016.

[71] Enrique Fernández Perdomo, Jorge Cabrera Gámez, Antonio Carlos
Domı́nguez Brito, and Daniel Hernández Sosa. Mission specification in un-
derwater robotics. 2010.

[72] Eliseo Ferrante, Ali Emre Turgut, Cristián Huepe, Alessandro Stranieri, Carlo
Pinciroli, and Marco Dorigo. Self-organized flocking with a mobile robot
swarm: a novel motion control method. Adaptive Behavior, 20(6):460–477,
2012.

[73] Javier Ferreiros, Rubén San-Segundo, Roberto Barra, and Vı́ctor Pérez. Increas-
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