
Multiscale Modeling and Theoretical Design of Dielectric
Elastomers

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Computational Mechanics

Matthew Grasinger

B.S., Civil Engineering, University of Pittsburgh
M.S., Civil Engineering, University of Pittsburgh

Carnegie Mellon University
Pittsburgh, PA

December, 2019



© Matthew James Grasinger, 2019

All Rights Reserved



Acknowledgements

I would like to acknowledge the Dean’s fellowship, the Summer Journeyman fellowship, and the Neil

and Jo Bushnell fellowship for choosing to support me at different times throughout my PhD work.

In addition, this research was financially supported by National Science Foundation (Mechanics of

Materials program: 1635407, 1150002; Manufacturing Machines and Equipment program: 1635435;

XSEDE program: TG-DMR120046), Office of Naval Research (Applied and Computational Analysis

program: N00014-14-1-0715, N00014-18-1-2528; Directed Energy program: N00014-18-1-2856),

Air Force Office of Scientific Research (Computational Mathematics program: FA9550-12-1-0350),

and Army Research Office (Numerical Analysis program: W911NF-12-1-0156, W911NF-17-1-0084).

I would like to thank my committee members, Matteo Pozzi, M. Ravi Shankar (University of Pitts-

burgh), Jaroslaw Knap (Army Research Laboratory), and Carmel Majidi (MechE), for their time, pa-

tience, and their insightful feedback. Their influence has helped to, not only improve this thesis sig-

nificantly, but also to improve my abilities as a researcher. Also my heartfelt gratitude to my adviser,

Kaushik Dayal. Kaushik has gone above and beyond as an adviser to guide both my research, and the

start of my career. He has also taught me many things, but most importantly, he has taught me how to

work carefully.

I cannot thank my in-laws, my parents, and my wife enough. Your support has meant everything to

me. I imagine this thesis would be very blank without you.

Also,

To Shelby and Anthony.

iii



Abstract

Dielectric elastomers (DEs) are a promising material for use in robotic, biomedical, energy, aerospace

and automotive technologies. However, currently available DEs are limited by weak electromechan-

ical coupling and our general understanding of DEs could improve. In this work, a multiscale model

of dielectric elastomers is developed. At the molecular scale, an electrostatic response of a single DE

monomer is assumed and, using statistical mechanics, the thermodynamics of a DE chain is investi-

gated. This chain scale model leads to an important insight: the role of electrostatic torque on polymer

chains in the electromechanical coupling of dielectric elastomers. This chain torque occurs because

there is a connection between a chain’s end-to-end vector and its polarization. At the continuum-scale,

this macromolecular phenomena manifests itself in the form of a deformation dependent susceptibil-

ity. Not only are novel modes of electromechanical coupling discovered, but also lessons learned from

(standard) isotropic dielectric elastomers are then used to guide an in-depth analysis of the implica-

tions of designing and manufacturing anisotropic dielectric elastomers. The work in theoretical design

reveals how the deformation and usable work derived from (anisotropic) dielectric elastomer actuators

may be increased by as much as 75− 100% relative to standard, isotropic dielectric elastomers.

Keywords: Dielectric elastomers, Multiscale modeling, Statistical mechanics, Material design
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Dielectric elastomers (DEs) are a class of soft materials that deform and can provide actuation when

subject to electrical loads. A key characteristic to actuation with DEs is that, as opposed to more tradi-

tional types of actuation, one does not need gears, bearings, and other rigid, moving parts. Instead, the

type of actuation DEs provide are more closely related to that of muscles and other biological tissues.

For this reason, DEs could be an ideal material for biologically inspired robots and newer, more ad-

vanced prosthetics [BC04, CKSLA11, KT07]. In addition, DEs have many advantages for applications

in energy-harvesting devices, micropumps, and other, more general, types of actuation in aerospace

and automotive technologies. The key advantages of DEs are that they are generally inexpensive,

lightweight, easily shaped, pliable, and can undergo significant deformations [BC04]. However, de-

spite these advantages, DEs are limited by weak electromechanical coupling so that large voltages are

often required to achieve meaningful actuation [BC04]. A better understanding of these materials–in

particular, how molecular and macromolecular properties affect the bulk material response–would not

only aid in design with currently available DEs, but also potentially lead to the development of more

advanced DEs with stronger electromechanical coupling. Manufacturing technologies are rapidly im-

proving; thus, it is the overarching goal of this work to: (1.) develop a model which connects the

molecular- and macromolecular-properties of a given DE to its performance as an actuator and/or en-

ergy harvester and, importantly, (2.) use the multiscale model to develop insights and predictions into
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how novel DEs with enhanced electromechanical coupling may be designed and manufactured.

1.1 Statistical mechanics

The approach in developing the multiscale DE model is one that is familiar in the context of elastomers:

the free energy of the cross-linked polymer network is assumed to be approximately given by the sum

of the free energies for each of the chains in the network, as if they were in isolation from each other

(see [Tre75], Section 4). This assumption, namely that the interactions between chains in the network

are negligible, is one that has been successfully used in modeling the elasticity (and, subsequently,

electroelasticity) of elastomers [Tre75, AB93, CDd16, F+06, Wei12]. Roughly speaking, this assump-

tion is valid for many elastomers because the number of monomers per chain is large enough (e.g.

estimates are 100− 10000 [F+06]) and the density of elastomers is small enough such that monomers

from different chains tend to be far away enough from each other to not interact strongly. This simpli-

fies the problem considerably, as one only needs to know the free energy of a single chain for general

conditions as opposed to explicitly modeling the system as a whole.

There is a rich history of using statistical mechanics to study polymer elasticity; and the reason

why is a fundamental one: the elasticity of polymer chains is primarily due to entropy. Polymer

chains consist of monomers bonded end-to-end, and, in many cases, the energy required to deform a

monomer is much greater than the energy associated with rotating neighboring monomers about their

shared bond [Wei12, Tre75]. If the monomers are approximately rigid and the energy associated with

the rotation of bonds is negligible, then all possible chain configurations (i.e. microstates) have the

same energy. In this case, the microscopic state of the system does not spend most of its time in a deep

energy well, as it would in a crystalline material. Instead, it more readily explores phase space and a

statistical mechanics approach becomes quite necessary.

What is meant by entropic elasticity can perhaps best be seen through a simple example. First, we

define the end-to-end vector of a chain, which is the vector which connects the beginning of the chain

to its end. Then consider the two microstates of a chain, (a) and (b), shown in Figure 1.1. During the
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Figure 1.1: Example of what is meant by entropic elasticity. When thermal motion occurs, neighboring
monomers may vibrate out of sync such that they are moving in opposite directions (left). This motion
causes a rotation about their shared bond which then shortens the chain (right).

course of the thermal motion of the monomers in the chain, it will likely happen that two neighboring

monomers will, at some point, vibrate out of sync such that they are moving in different directions (see

Figure 1.1 (a)). Since the monomers are effectively rigid, their motion in different directions causes a

rotation about their shared bond–which then shortens the chain (Figure 1.1 (b)). We say that the shorter

chain has a higher entropy because there are a greater number of microstates (i.e. ways in which the

monomers may be arranged) which correspond to the end-to-end vector of the shorter chain than the

longer chain. While Figure 1.1 shows a single instance of a chain shortening due to thermal motion–

and thereby increasing its entropy–along a polymer chain, at temperatures of interest this is happening

many times per second, at different bonds along the chain, and in every chain in the network. In this

way, there is a deep connection between the temperature, the entropy, and the elasticity of both an

individual chain, and the polymer network which the chains make up. Notice that in Figure 1.1 an

increase in thermal motion (i.e. an increase in temperature) increases the stiffness of the chain. In fact,

for the same reason, polymers contract when heated, as opposed to many other materials (e.g. crystals,

liquids, gasses, etc.) which expand when heated. For a more detailed discussion, see [Tre75, Wei12].

Now imagine a situation similar to Figure 1.1, but the direction that the monomers are in at any given

moment are biased such that they prefer to be in some directions relative to others. Then there would

be a complex interplay between the strength of the biasing, the biased directions, and the effective
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elasticity of the chain. This is exactly what occurs in dielectric elastomer chains. When an electric

field is applied, bound charges (of opposite sign) in the monomers of a DE chain are stretched relative

to each other and an electric dipole forms. The direction of the dipole depends on the direction of the

monomer, and the dipole prefers to align with the electric field. This causes an energetic preference

for monomers to be in certain directions as opposed to others. Because the elasticity of the DE chain is

still deeply rooted in entropy, a statistical mechanics approach (especially in the context of multiscale

modeling) is still necessary. However, the monomer electrostatics (and the directional biasing that it

causes) makes the problem a much more difficult one to solve.

The problem of deriving the free energy of a dielectric elastomer chain for general electrical and me-

chanical conditions is addressed in Chapter 2. First, the theoretical details and a derivation of classical

polymer chain elasticity–without chain polarization or electrostatics–is given in Section 2.1. This is

followed by a discussion of how to introduce electrostatics into the formulation and the mathematical

difficulties that ensue (see Section 2.2). More specifically, since one of the goals of this work is to

connect molecular-scale properties to macroscopic behavior, the free energy is derived for chains that

consist of different types of monomers with different types of electrical responses. To accomplish this,

the Hamiltonian for a monomer is formulated in terms of its polarization properties; that is, how its

electric dipole forms in response to an applied electric field. Then, given the Hamiltonian, a statistical

mechanics theory for DE chains is developed.

1.2 Network theory

As mentioned previously, the free energy of the DE network is modeled by summing over the free

energies of individual chains in the network. As the end goal is a continuum-scale constitutive model,

one needs to establish a correspondence between kinematics at the continuum scale and kinematics at

the chain scale–at the very least. Classically, this is done using what is called a network model. Many

exist in the literature, such as the 3-chain [JG43], the 4-chain model [FR43], the 8-chain model [AB93],

and the full network [WVDG93]. An introduction to the basic concepts inherent in network modeling

4



CHAPTER 1. INTRODUCTION

is given in this section.

The basic idea is as follows: for each material point in the continuum body of the elastomer, we

devise a number of chains to represent, on average, the chains at that material point. First, let us

consider the lengths of these chains. Let b denote the length of each monomer in the chain and n

denote the number of monomers per chain. Since the monomer lengths are fixed and the neighboring

monomers are free to rotate about their bonds, a chain configuration is essentially a random walk

of step length b and n steps. Prior to the chains being joined together in a network (i.e. prior to

cross-linking), we imagine that they are free to take any configuration. If n is large, by the central

limit theorem, the most likely distance of the chain beginning to the chain end (i.e. the length of its

end-to-end vector) is given by b
√
n. What is more is that as n increases, the peak of the probability

density of the chain length–which is of course at b
√
n–grows larger and larger such that it becomes

more and more likely that chains will have length b
√
n. Typically, n is large enough such that the

error in the constitutive relationship is negligible if one makes the simplifying assumption that all

the representative chains (in the stress-free state) have length b
√
n [Tre75]. Thus, in this work, as is

standard [Tre75, JG43, FR43, AB93, WVDG93, MGL04], we assume the chain lengths in the stress-

free, reference configuration are given by b
√
n.

Next, having established the lengths of our representative chains, we consider their arrangement

within the network. It is important that the way in which these representative chains are chosen and

their arrangement does not introduce any artificial bias into the macroscopic response that we would

not expect otherwise. For instance, if we expect the material that we are modeling to be isotropic,

then likewise, our representative chains should not have any directional dependence. In other words,

we would prefer that the representative chains at each material point capture our knowledge–which, in

many cases, is more accurately put as “our ignorance”–regarding the chain stretches and orientations in

the stress-free, reference state of the elastomer. This is precisely the motivation for the so-called “full

network” model [WVDG93]. Since we (1.) are modeling a material which is mechanically isotropic

and (2.) we know nothing about the directions of stretch in its stress-free, reference state, we take

all chain stretch stretch directions as equally likely. Having established this collection of reference
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chains, one then takes the free energy density at a material point as the product of the average free

energy over the representative chains and the number of chains per unit volume. Deformation at the

continuum-scale is related to stretches at the chain-scale by what is often referred to as the affine

deformation assumption [Tre75]. Simply put: the affine deformation assumption is such that the end-

to-end vector of each chain is mapped into the current configuration by the deformation gradient (see

Section 4 of [Tre75] for a detailed discussion). However, averaging over all possible chain stretch

directions amounts to integrating the chain free energy function over the unit sphere. This is difficult

to do in closed-form since accurate approximations of the chain free energy (even in the absence of

electrostatics) have terms involving square roots and the inverse Langevin function of the integration

variables.

One can strike a compromise between performing exact integration of the chain free energy function

over the unit sphere and computational tractability by instead averaging over a discrete number of

chains which is a “good enough” approximation of the truly frame indifferent, isotropic nature of

the full network model. This apparent compromise is the motivation for the 3-chain, 4-chain, and

8-chain models, which are shown in Figure 1.2. In each case, the representative chains are arranged

in a representative volume element (RVE). The RVE is a cube in the reference configuration for the

3-chain and 8-chain models. For the 3-chain model, the representative chains consist of three chains,

each starting at a similar corner of the cube, and stretched along an edge of the cube; whereas, for the

8-chain model, the RVE consists of 8-chains emanating from the center of the cube to each of the eight

corners. It is easy to see that using either the 3-chain or 8-chain model with the affine deformation

assumption does not result in a frame indifferent constitutive model. Instead, for discrete network

models, it is generally assumed that the RVE deforms in the principal frame (i.e. the frame that consists

of the eigenvectors of the right Cauchy-Green tensor) and that each edge of the RVE deforms by its

respective principal stretch. The reason for this assumption is two-fold: (1.) it is sufficient, when used

with a discrete network model, to satisfy frame indifference (in the context of elasticity anyway) and

(2.) as Arruda and Boyce [AB93, BA00] justify it, this can be considered a proper way to model the

“cooperative behavior of the network”. By “cooperative”, we take [AB93, BA00] to mean that the
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Figure 1.2: Discrete network models in the reference configuration: 3-chain (left), 4-chain (center),
and 8-chain (right).

network rotates and adjusts itself, as a whole, in some sense, such that, at each material point, it is

allowed to stretch in what is assumed to be its preferred frame of stretch. In the remainder of this work

we refer to this as the cooperative network assumption. While the cooperative network assumption has

not, to the author’s knowledge, been observed in experiment directly, it is further motivated by the fact

that, at least in the context of elasticity, it produces a constitutive model which has excellent agreement

with experimental data [AB93, BA00].

To draw a comparison between the two kinematic assumptions (and two of their respective network

models), consider the following: imagine that the polymer chains in our network can be approximately

modeled as springs such that their energy is 1
2
kr2, where k is a constant related to the spring stiffness

(and is the same for all chains) and r = |r| is the length of the end-to-end vector of the chain. If the

deformation gradient, F, is diagonal, then the cooperative network assumption reduces to the affine

deformation assumption. Thus, let us consider a deformation which does not have a diagonal F–

namely, a simple shear deformation: F = I + se1⊗e3. For this F, it is easy to average the energy over

the representative chains for both the full network and 8-chain models using the affine deformation

assumption and cooperative network assumption, respectively. The interested reader can verify that

the network models agree, and that the average energy is given by 1
2
kb2n (1 + s2/3).

This begs the question then: when do the kinematic assumptions result in different average energies

and therefore predict different material behaviors? To probe this further, we visualize (Figure 1.3)

the representative chains in both the reference and deformed (simple shear) configurations for the full
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network and 8-chain models. Notice that the cooperative network assumption of the 8-chain model

results in a rotation of the chains in the deformed configuration relative to the reference configuration,

whereas the affine deformation assumption of the full network model simply shears the spherical dis-

tribution of chains. If we are only interested in an elastic response such as the one considered in the

proceeding paragraph, then the rotation of the 8-chain model makes no difference. This is because

the elastic energy of each of the individual chains is rotationally invariant. However, if there are some

other physics involved such that a chain’s energy also depends on its orientation (i.e. the energy is no

longer rotationally invariant), then there are some important differences between the network models

that arise. As a simple example, imagine that now the stiffness of the chains depends on their alignment

with the axis span (e3) such that
1

2
k (e3 · r̂)2 r2.

Interestingly, the average energy of the full network model and 8-chain model vary. In fact, the energy

of the full network model is invariant with respect to s, whereas for the 8-chain model the average

energy is
1

2
kb2n

(
1 +

s3

3

)
1− λ2 + λ4

1 + λ2 + λ4

where λ = 1
2

(√
4 + s2 + s

)
. The proceeding example was chosen because of its computational sim-

plicity, but the idea of an alignment based energy is pervasive in physical phenomena such as electro-

statics, magnetostatics, liquid crystals, as well as many others.

In Chapter 3, we use the single chain results obtained in Chapter 2 in confluence with the 8-chain

model [AB93] and investigate the electromechanical coupling of (isotropic) DE networks. Various

experiments are suggested and modeled which isolate some phenomena of interest, such as how chain

torque contributes to electrostriction and/or body couples in DEs. As expected (based on the previous

discussion), there are interesting implications associated with the cooperative network assumption such

as the prediction of a novel shear mode of actuation that is possible with dielectric elastomer actuators

(DEAs). In fact, an experiment involving this shear mode of actuation is suggested which would, if the

actuation mode is found to exist, strengthen the argument for the cooperative network assumption in
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Figure 1.3: The representative chains in both the reference (left) and deformed configurations (right)
for simple shear deformation with s = 0.2. The full network model (top)–which is depicted by a sur-
face since the representative chains consist of a continuous distribution–utilizes the affine deformation
assumption. The 8-chain model (bottom) utilizes the cooperative network assumption.
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DEs.

1.3 Material design

In Chapter 4, the multiscale model and physicals insights that are developed in Chapter 2 and Chap-

ter 3 are leveraged to make concrete suggestions and predictions about how novel, anisotropic DEs

with enhanced electromechanical coupling may be designed and manufactured. First, structural, and

potentially alterable, properties of the DE network are identified as design parameters: such as the den-

sity of the material (i.e. total monomers per unit volume), the density of cross-links in the network, the

fraction of monomers in a chain which make up side chains–so-called “loose-end” monomers–and the

orientation of chains in the network. Then equations are developed and trends are identified for how

the various design parameters affect properties of the DE such as its stiffness, its susceptibility, and its

deformation response and usable work output when used in a dielectric elastomer actuator (DEA). It

is found that (theoretically speaking), one can see an increase of 75 − 100% in the deformation and

usable work output of a DEA by carefully choosing and controlling the design parameters during the

manufacturing process. In particular, chain orientation is found to be important and a manufacturing

process–which is analogous to poling in piezoelectrics [SA08]–is proposed, which aligns chains such

as to maximize the desired electromechanical response of the material.
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Chapter 2

Electroelasticity and thermodynamics of

dielectric elastomer chains

The problem of the statistics of electrostatic interactions in macromolecules has been studied in [SW17].

However, the system of consideration was polyelectrolytes in solution which has two important dif-

ferences from our goal in this work. First, the macromolecules considered in [SW17] consist of fixed

charge distributions in the sense that the charge distributions are inseparable from the polymer and are

present even in the absence of an applied electric field; whereas, in this work, we focus on electro-

responsive materials. We emphasize responsive because the polarization vanishes in the absence of

an electric field for dielectric elastomers. The second difference is that we consider polymers that are

cross-linked in a network, as opposed to in solution. As a result, we need to consider ensembles with

a fixed end-to-end vector, because where the chain begins and ends is dependent on the configuration

of the entire network.

The electromechanical modeling of DEs can be grouped into two categories: (1) continuum based

approaches where the general form of the energy density (of either a polymer chain or polymer net-

work) as a function of mechanical and electrical loads is inferred by assuming a form of the equation,

which usually depends on electroelastic invariants, that leads to behavior observed in experiments (see

for example [Tou56, DO06, ZS08]) and (2) statistical mechanics based approaches that build from
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molecular-scale responses up to the levels of a single chain and eventually the continuum level re-

sponse. Statistical mechanics has a rich history in modeling and understanding rubber elasticity (see

for example [Tre75, KG42, Wei12]); however, its use in the modeling of DEs is only recent.

In [IKW18], an DE constitutive model was developed that started by considering the polarization

response of a single monomer and assumed the statistical density of monomer orientations in an DE

chain are governed by non-Gaussian chain statistics (derived in [KG42]). From these assumptions, ap-

proximate DE chain statistics and polarization were derived; then, [IKW18] used directional averaging

and network theory (for example [AB93, MGL04]) to arrive at a prediction of the macroscopic consti-

tutive response. The resulting constitutive model is limited, however. The assumption that the density

of monomer orientations in the chain are governed by classical (i.e. not informed by electrostatics),

non-Gaussian statistics, is only valid when either (1) the electrical energy of the system is much less

than the thermal energy (such that the Boltzmann factor is practically unity for all chain configura-

tions) or (2) the chain is near to its stretched limit (such that the limited range of possible monomer

orientations are all of nearly the same electrical energy).

In [CDd16], an DE constitutive model is developed using a similar approach. However, in contrast to

[IKW18], the authors do not assume the density of monomer orientations is governed by non-Gaussian

statistics, but instead derive the most likely density of monomer orientations; that is, the density of

monomer orientations that minimizes the entropy of the chain. Such a derivation naturally involves

optimization with respect to constraints; hence, the authors use the method of Lagrange multipliers.

The integrals and system of equations required to determine the unknown multipliers are difficult to

evaluate and solve; and so the authors assume that some of the unknown multipliers are small and use

Taylor expansions to simplify the calculations. This results in an approximate density of monomer

orientations that is exact when there is no stretch in the chain. However, the simplifying assumption

that is made corresponds, physically, to the assumption that the tension in the chain is small. This

assumption could prove inaccurate for finite, or even small, stretches for certain chain orientations with

respect to the applied electrical field, especially when the electric field strength is large. In addition, for

DEs used as actuators or for energy-harvesting, the chain tension is not guaranteed to be small. Lastly,
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note that an approximate chain free energy was not derived in either [IKW18, CDd16]–although such

a development could prove useful in understanding the physics of DEs and modeling their behavior

using Finite Elements.

In the present work, we employ the maximum-term approach [Hil86] to derive a most likely density

of monomer orientations and an approximation of the DE chain free energy. Although, as in [CDd16],

the Lagrange multipliers are not determined exactly, we investigate their character using numerics

(e.g. numerical integration, Newton-Raphson method, and numerical optimization); and then proceed

to derive closed-form approximations in the limits of (1) the electrical energy as small compared with

thermal energy and (2) the limit of small chain tension. Lastly, using physical intuition and the exactly

known solutions of the unstretched and fully stretched chain limits, we derive closed-form approxima-

tions that remain accurate for many different electrical inputs, chain orientations, and chain stretches.

Figure 2.1 shows a rough schematic of the limits in which closed-form approximations have been de-

veloped. The y-axis, labeled |κ|, represents the magnitude of the electrical energy with respect to the

thermal energy. The x-axis, labeled |τ |, represents the dimensionless tension in the DE chain. The

approximation labeled (1) corresponds to the monomer density function derived in [KG42] (also re-

visited in Section 2.1) and used in [IKW18] to model DE chains; (2) corresponds to the limit explored

in [CDd16] and subsequently in Section 2.5; (3) corresponds to the limit investigated in Section 2.4;

and Section 2.6 aims to develop an approximation that is valid at (4), (2), and in the space between.

2.1 Inverse Langevin chain statistics, revisited

In this section, we revisit the work of Kuhn and Grün [KG42] (see also: [Tre75], Ch. 7) regarding the

statistical mechanics of a polymer chain with the aim to later generalize it to the case of a dielectric

elastomer chain with combined mechanical and electrical loading. This section will be structured as

follows: definitions and assumptions for the model of a polymer chain will be explicitly stated; the

thermodynamics of polymers and the thermodynamic implications of the model assumptions will be

presented; the Helmholtz free energy of the chain will be derived; and finally, the force-length rela-
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Figure 2.1: Schematic of the limits for which closed-form approximations have been developed. The
axis labeled |κ| represents the magnitude of the electrical energy with respect to the thermal energy and
the axis labeled |τ | represents the dimensionless tension in the DE chain. The approximation labeled
(1) corresponds to the monomer density function derived in [KG42] (also revisited in Section 2.1)
and used in [IKW18] to model DE chains; (2) corresponds to the limit explored in [CDd16] and
subsequently in Section 2.5; (3) corresponds to the limit investigated in Section 2.4; and Section 2.6
aims to develop an approximation that is valid at (4), (2), and in the space between.

tionship that results from the chain model and its significance in the development of rubber elasticity

will be discussed.

A common model of a polymer chain in classical rubber elasticity, and one that will be focused on in

this work, is a linear chain (meaning monomers are bonded together, end-to-end, to its two neighboring

monomers). The monomer length is defined as the distance between neighboring bonds and will be

denoted by b, so that given the number of monomers in the chain, n, the length of the fully stretched

chain is nb. In addition, the end-to-end vector, r, is defined as the vector that connects the beginning of

the chain to the end of the chain. Its length is denoted by r = |r|. Last, we define the stretch as γ = r
nb

.

In real polymers, the energy required to deform an individual monomer (bend, stretch, compress,

etc.) is typically much greater than the energy required to rotate a monomer about either of its bonds.

More precisely, let the energy of a monomer be written as

u = ustrain + ubond
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where ustrain is the energy associated with deforming the monomer and ubond is the energy associated

with rotating about neighboring bonds. Then we claim that the energies scale like

ubond << kT << ustrain

so that, to a good approximation, ubond can be neglected and degrees of freedom associated with

monomer deformation are effectively “frozen out”. For this reason, the polymer chain model con-

sidered in this work is idealized such that the monomers are modeled as rigid bodies and are free to

rotate about their bonds. Monomer-monomer interactions, namely, excluded volume effects and van

der Waals interactions between neighboring side groups, are also neglected for simplicity. Note, an im-

portant consequence of the model assumptions is that all chain configurations have the same potential

energy.

We use equilibrium statistical mechanics, namely ensemble theory, to investigate the thermodynam-

ics of a polymer chain. Ensemble theory is generally constructed by assuming, as one its fundamental

postulates, that: in an ensemble representative of an isolated thermodynamic system (meaning the sys-

tem does not interact with its surroundings or exchange energy, particles, etc. with its surroundings),

the microstates of the ensemble are distributed uniformly, i.e. they are all equally likely [Hil86]. For

the system that consists of a polymer chain, each microstate corresponds to a different chain config-

uration. Because each configuration has the same energy, one concludes that all chain configurations

are equally likely.

We are ultimately interested in the elasticity of a polymer network, so we proceed by deriving

the force-deformation relationship for a single polymer chain where the force-length relationship is

described by a graph of the length of the chain end-to-end vector and the average force required to

stretch the chain to that length. The thermodynamic analysis of a polymer chain results in the following

expression

f =

(
∂A∗

∂r

)
T

=

(
∂U
∂r

)
T

− T
(
∂S
∂r

)
T

(2.1.0.1)

where A∗ is the Helmholtz free energy, r is the chain length, U is the internal energy, T is the tem-
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perature, and S is the entropy. It has already been pointed out that, as a consequence of the model

assumptions, the internal energy of a polymer chain is the same for all configurations; thus, the
(
∂U
∂r

)
T

term vanishes. To determine the force-length relation, it suffices to derive the entropy of a polymer

chain as a function of its chain length, r. To determine the entropy-length relation, one considers the

ensemble of microstates that correspond to a given chain length. It is a well-known result in statistical

mechanics that the entropy of an ensemble of systems with constant internal energy is given by

S = k lnΩ (2.1.0.2)

where k is Boltzmann’s constant and Ω is the number of microstates in the ensemble.

The space of all possible directions makes up the surface of the unit sphere. We parameterize the sur-

face of the unit sphere in the usual way, so that a unit direction is expressed as n̂ = (cosφ sin θ, sinφ sin θ, cos θ)

where φ is the azimuth angle and the coordinate system is chosen such that the polar angle, θ, is with

respect to the direction of the end-to-end vector (i.e. in the r/r direction). Next, we partition the

surface into N patches of area sin θi∆φi∆θi and define the occupation numbers, mi, as the number

of monomers oriented such that their unit direction lies in the ith patch; i.e. their azimuth angle, φ, is

between φi and φi + ∆φi, and their polar angle, θi, is between θi and θi + ∆θi. A polymer configura-

tion is specified by prescribing the direction of each of the n monomers in the chain. There are n!
ΠNi=1mi!

ways to assign the N directions to n monomers. Consequently,

Ω =
∑

{
mi

}′
n!

ΠNi=1mi!
(2.1.0.3)
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where the prime in
{
mi

}′
signifies that the sum is over all distributions that satisfy the constraints

n =
N∑
i=1

mi (2.1.0.4)

r

b
=

N∑
i=1

min̂i (2.1.0.5)

In general, determining each collection of occupation numbers such that (2.1.0.4) and (2.1.0.5) are

satisfied and evaluating the sum in (2.1.0.3) are both difficult. Additionally, recall from (2.1.0.2) that

the quantity of interest is ultimately lnΩ. Recognize that the logarithm is a monotonically increasing

function of its argument, and that its derivative goes as the inverse of its argument (i.e. when its

argument is large, small changes in the argument result in small changes the function value). If the

sum in (2.1.0.3) is dominated by one term, then lnΩ can be accurately approximated by maximizing

the logarithm of the combinatoric term in (2.1.0.3). This method of approximation is common in

statistical mechanics and is referred to as the maximum-term method in [Hil86] (see Appendix II). It is

valid in the present analysis as long as we restrict ourselves to cases in which the number of monomers

in a chain is large enough (≥ 100). (Loosely speaking, this approximation is often justified in statistical

mechanics–as it is in the current work–by the central limit theorem. For a more detailed discussion,

see any statistical mechanics reference, such as [Hil86, Wei12, Kra06]) To perform the maximization,

one can use the method of Lagrange multipliers. Thus, one searches for stationary points of

ln

(
n!∏N

i=1mi!

)
+ ν

(
n−

N∑
i=1

mi

)
+ τ ·

(
r

b
−
N∑
i=1

min̂i

)
(2.1.0.6)

Employing Sterling’s approximation, lnx! ≈ x lnx − x, and setting partials with respect to mj equal

to zero, one obtains mj = exp [τ · n̂j + ν + 1]. We proceed as follows: terms that do not depend

on the unit direction are absorbed into an unknown constant C, and we take the limit as N → ∞,

which results in the transition from a discrete collection of occupation numbers into a continuous

density. The emphasize the distinction, we denote the density by ρ (as opposed to m). The last step

is more subtle, but important: the unknown multipliers related to the kinematic constraint, (2.1.0.5),
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are related, physically, to the force required to stretch the polymer chain to a length of r. Two of the

multipliers vanish due to the following observation: in the absence of a kinematic constraint and at

finite temperature, the free energy of the chain is minimized when r = 0 (because this corresponds

to a maximum entropy). This means the force required to stretch the chain will be in the direction of

stretch. As our coordinate system is such that the polar axis is taken to be the direction of stretch, the

expression for the monomer density becomes

ρ(φ, θ) = C exp [λ cos θ] (2.1.0.7)

where λ is the component of τ in the direction of the polar axis. The number of monomers with

azimuth angle between φ and φ + dφ and polar angle between θ and θ + dθ is ρ(φ, θ) sin θ dφ dθ.

Although technically the number of monomers in a given direction should be of integer value, and the

previous expression is, in general, not of integer value, the distinction becomes less important when one

considers that in the limit of large n the decimal contribution is a negligible difference. Alternatively,

it is perhaps better to think of ρ(φ, θ) sin θ dφ dθ as the expectation of the number of monomers with a

given direction, where, by expectation, we mean in the ensemble average sense.

The next step is to determine the unknowns, C and λ. To do this, we consider the form of the

constraints, (2.1.0.4) and (2.1.0.5), in the continuum limit (i.e. N → ∞). The summations over

partitions of the unit sphere becomes integrals over the unit sphere

n =

∫ π

0

dθ

∫ 2π

0

dφ ρ (φ, θ) sin θ =
4πC

λ
sinhλ (2.1.0.8)

r

b
=

∫ π

0

dθ

∫ 2π

0

dφ ρ (φ, θ) cos θ sin θ =
∂

∂λ

(
4πC

λ
sinhλ

)
(2.1.0.9)

=
4πC

λ

(
coshλ− sinhλ

λ

)
(2.1.0.10)

Now the significance of choosing the coordinate system such that the polar axis is in the direction

of the chain stretch becomes apparent. It allows for ease of evaluating the integrals in (3.0.0.3) and
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(2.1.0.9). Dividing (2.1.0.10) by (3.0.0.3) results in the familiar relation

cothλ− 1/λ = γ (2.1.0.11)

The Langevin function appears in many physical problems and is defined as L (x) := coth x − 1/x.

Hence, C = nλ
4π

csch λ, λ = L−1 (γ) and

ρ (φ, θ) =
nL−1 (γ)

4π sinh (L−1 (γ))
exp

[
L−1 (γ) cos θ

]
. (2.1.0.12)

Although, a closed form expression of L−1 does not currently exist, many accurate approximations

have been developed (see for example, [Kro15, Jed17]). Taking (2.1.0.2) to the continuum limit and

again, using Stirling’s approximation,

S = k

(
n lnn−

∫ π

0

dθ

∫ 2π

0

dφ ρ ln ρ sin θ

)
(2.1.0.13)

Thus, remembering (2.1.0.11),

S = −kn
[
γL−1 (γ) + ln

(
L−1 (γ)

4π sinh (L−1 (γ))

)]
(2.1.0.14)

Differentiating (2.1.0.14) with respect to r and recognizing

coth
(
L−1 (γ)

)
− 1/

(
L−1 (γ)

)
= γ

results in

f =
kT

b
L−1 (γ) (2.1.0.15)

Notice that the force length relationship, that is, the stiffness of the chain, increases with increasing

temperature. This is because, in the idealized chain model that was considered, the internal energy of

the chain does not change when monomers rotate about their bonds (or, as a consequence, when the

chain is stretched). Therefore, the stiffness of the chain is entirely an effect of thermal fluctuations and
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entropy.

The chain statistics derived by Kuhn and Grun in [KG42] and revisited in the current section marked

an important development in the modeling of rubber elasticity. Although the expression for the chain

entropy, (2.1.0.14), was obtained by approximating the sum in (2.1.0.3) with its maximum-term, the

approximation proves to be quite accurate up to the full extension of the chain (i.e. γ → 1). In par-

ticular, as γ approaches unity, both the free energy and the force approach∞; hence, unlike Gaussian

chain statistics, (2.1.0.14) and (2.1.0.15) have the property that they capture the finite extensibility of

the chain.

Two key steps in the procedure that was outlined in this section were choosing the coordinate system

such that the polar axis was taken to be in the direction of chain stretch and recognizing that, as a result

of this choice, τ · n̂ simplified to λ cos θ. In the following sections, the procedure that was presented

in this section will be generalized to deriving the monomer density function and free energy of DE

chain subjected to an external electric field. The coordinate system and, in particular, the direction of

the polar axis, will again be chosen carefully in order to facilitate evaluating integrals involving the

density function.

2.2 DE chain model formulation

2.2.1 Energy scales and degrees of freedom in a DE chain

In this section, our thermodynamic system of interest consists of a dielectric elastomer chain which

is contained in some volume Ωc with boundary surface ∂Ωc and is surrounded by a heat bath. The

chain consists of n monomers, and for each microstate (i.e. chain configuration) of the ensemble the

direction, n̂i, and dipole vector, µi is specified for each monomer. An example microstate is shown in

Figure 2.2. Further, we assume the electric potential, ϕ, is specified for all x ∈ ∂Ωc. Let x denote a

position and xi denote the position of the ith monomer. Then the potential energy of a microstate is
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given by

U =
n∑
i=1

{
u
(i)
strain + u

(i)
bond + u

(i)
dipole strain − µ(i) · E

(
x(i)
)}

+

ε0
2

(∫
Ωc

E2 dV +

∫
∂Ωc

ϕE · n dA

) (2.2.1.1)

where in (2.2.1.1) we use the superscript, �(i), to mean the same thing as �i; that is, to denote the

index of a monomer quantity and E = − gradϕ. The meaning of the terms in (2.2.1.1) are as follows:

u
(i)
strain represents the energy associated with deforming the ith monomer, u(i)bond is the energy associated

with the ith monomer rotating about its neighboring bonds, u(i)dipole strain is the work required to take an

electrically neutral monomer and separate charges in order to form its dipole, −µ(i) · E
(
x(i)
)

is the

electrical potential energy of the ith monomer dipole, and the final term is the energy stored in the

electric field. Although the boundary conditions (i.e. ϕ (x) ,x ∈ ∂Ωc are assumed fixed, ϕ may vary

independently of {n̂i} and {µi} as long as it satisfies the boundary conditions. Therefore the partition

function for this ensemble is given by

Z =

∫
exp {−U [ϕ, {n̂i} , {µi}] /kT}Dϕ

n∏
i=1

{dµi dn̂i}

where by the above notation we mean a functional integral with respect to ϕ and integration with

respect to all possible dipole vectors and monomer directions for each of the monomers in the chain.

Such an approach would prove difficult for a number of reasons. Instead, we work toward simplifying

the formulation.

Consider the potential energy given by (2.2.1.1) in the context of the theoretical framework of sta-

tistical mechanics. First, similar to Section 2.1, we postulate that the energies scale like

u
(i)
bond << kT << u

(i)
strain for i = 1, 2, ..., n

so that, to a good approximation, ubond can be neglected and degrees of freedom associated with

monomer deformation are effectively frozen out. In addition, for simplicity, we assume the remaining
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Figure 2.2: Schematic of a microstate of a dielectric elastomer chain. Monomers are depicted as
cylinders. For each microstate, the monomer direction, n̂i, and dipole vector, µi, are specified. (The
direction and dipole are only shown for three monomers in the figure above in the interest of keeping
the figure clear and readable.) The chain is contained in some volume, Ωc, and associated boundary
surface, ∂Ωc.
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terms scale as follows: the monomer terms are an order of magnitude lesser than the energy of the

electric field; in other words, we write this as

U = β
n∑
i=1

{
u
(i)
dipole strain − µ(i) · E

(
x(i)
)}

+

ε0
2

(∫
Ωc

E2 dV +

∫
∂Ωc

ϕE · n dA

) (2.2.1.2)

where β << 1. Then we make a saddlepoint-like approximation. The argument is as follows: in the

canonical ensemble, the unnormalized probability of being in a microstate is given by the Boltzmann

factor exp [−U/kT ]. Thus, the thermodynamic system will spend most of its time, loosely speaking,

in those microstates which have the minimal potential energy. To find those microstates, we consider

the solution of the optimization problem

inf
ϕ,{n̂i},{µi}

U [ϕ, {n̂i}, {µi}]

subject to the boundary conditions on ϕ. Now, when optimizing a cost-function of the form given

by (2.2.1.1) an approximate solution can be found by optimizing in a step-wise manner; that is, first

optimizing over the O (1) terms and then plugging that solution into lower order terms and optimizing

over the remaining unknowns:

ϕ∗ = arg

{
inf
ϕ

ε0
2

(∫
Ωc

E2 dV +

∫
∂Ωc

ϕE · n dA

)}
(2.2.1.3)

{n̂i}∗, {µi}∗ = arg

{
inf

{n̂i},{µi}

n∑
i=1

[
u
(i)
dipole strain − µ(i) · E∗

(
x(i)
)]}

(2.2.1.4)

where E∗ = − gradϕ∗ and, again, ϕ∗ satisfies the given boundary conditions. This can be justified

by noticing that, by assumption, the O (1) terms will dominate relative to the O (β) terms. By similar

reasoning, the saddlepoint-like approximation is taken by fixing ϕ = ϕ∗ (whereby ϕ∗ is determined by

(2.2.1.3)) and considering the microstates with energy

U =
n∑
i=1

[
u
(i)
dipole strain − µ(i) · E∗

(
x(i)
)]
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Physically, this is equivalent to ϕ∗ being determined by Gauss’s law in the absence of the monomer

dipoles (i.e. div gradϕ∗ = 0) and then being applied to the chain as a kind of external electric field. A

consequence of this approximation is that E∗ = const and the monomers are effectively noninteracting.

Formally, this means we can simplify further

U =
n∑
i=1

[
u
(i)
dipole strain − µ(i) · E∗

]

so that U is no longer a function of monomer positions. From here on, we use the notation E0 = E∗ in

order to emphasize that the electric field is constant and is something that is externally supplied.

It remains to develop a model for u(i)dipole strain. We desire that (1) each dipole will vanish on average in

the absence of the external field (i.e. the DE is an electrically responsive material) and (2) the bulk ma-

terial behaves as a linear dielectric. In general, an ab initio expression could be quite complex. Instead

we can satisfy (1) and (2) through a simpler picture: imagine that the monomer dipole emerges as a

consequence of an external electric field separating two equal and opposite point charges of magnitude

q within the monomer; further, the charges are connected by two springs: one in the direction of n̂ with

stiffness k‖ and the other can rotate in the plane orthogonal to n̂ and has stiffness k⊥. This is shown in

Figure 2.3.

We now explore the consequences of this model. Let a local coordinate system be defined for a

monomer with the origin attached to one point charge and basis vectors n̂ and e3, where e3 is orthogo-

nal to n̂ and lies in the plane spanned by n̂ and Ê0. Then, let (x, z) denote the location of the opposite

charge so that

µ = q (xn̂ + ze3)

and the associated spring energy is

udipole strain =
1

2
k‖x

2 +
1

2
k⊥z

2
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Figure 2.3: Model of dipole formation within a monomer; two equal and opposite point charges of
magnitude q are connected by two springs: one in the direction of n̂ with stiffness k‖ and the other can
rotate in the plane orthogonal to n̂ and has stiffness k⊥.
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so that the total monomer energy is

u =
1

2
k‖x

2 +
1

2
k⊥z

2 − q (xE0 · n̂ + zE0 · e3)

For a given n̂ and E0, the minimum energy, u∗, occurs when

x = q/k‖ (E0 · n̂) := x∗

z = q/k⊥ (E0 · e3) := z∗

and is given by

u∗ (n̂,E0) = −1

2
q2 (E0 · n̂)2 − 1

2
q2 (E0 · e3)

2 = −1

2
µ∗ · E0 (2.2.1.5)

µ∗ (n̂,E0) = q2
(

E0 · n̂
k‖

n̂ +
E0 · e3

k⊥
e3

)
(2.2.1.6)

In general for a given microstate, µi are different than µ∗i for i = 1, 2, ..., n; that is, µi can vary

independently of n̂i because of thermal fluctuations in the system. However, we recognize that all

energy is quantized and postulate that the first excited state of udipole strain is much greater than kT . (We

justify this by recalling that this model is meant to approximate polarization on the molecular scale that

happens as a result of electron orbitals being displaced relative to nuclei. Since electrons are tightly

bound to their nuclei, it is not unreasonable to believe that it would take a significant amount of energy

for electron orbitals to be in an excited state which involves them vibrating about their ground state

configuration.) As a result, the excited states are frozen out of the system and the point charges and

springs are stuck in their ground state. In this case, µi = µ∗i and µi is uniquely determined by n̂i and

E0. Such an energy is considerably more tractable than the one outlined in (2.2.1.1).

Before proceeding, we take a moment to reformulate the monomer energy in more conventional

terms. It is common to express a material’s polarization response in terms of susceptibility, as opposed

to spring stiffness. The dipole response given by (2.2.1.6) can be expressed in terms of susceptibility
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by the following expressions:

µ = χµ (n̂) E0 (2.2.1.7)

χµ (n̂) = χ‖n̂⊗ n̂ + χ⊥ (I− n̂⊗ n̂) (2.2.1.8)

where χµ is the dipole susceptibility tensor; and χ‖ and χ⊥ depend on the type of monomer and

are a measure of the dipole susceptibility along the axis of the monomer direction and the dipole

susceptibility in plane transverse to the monomer direction. Following [CDd16], we refer to monomers

with χ‖ > χ⊥ as uniaxial and monomers with χ⊥ > χ‖ as transversely isotropic (TI). We will proceed

to use this more common notion of susceptibility throughout the remainder of the work. The energy of

a monomer in terms of susceptibility is

u (n̂) = −1

2
µ (n̂,E0) · E0

= −
χ‖
2

(E0 · n̂)2 − χ⊥
2

[
E2

0 − (E0 · n̂)2
]

=
∆χ

2
(E0 · n̂)2 − χ⊥

2
E2

0

(2.2.1.9)

where ∆χ = χ⊥ − χ‖. Note that if χ‖ > χ⊥ (or ∆χ > 0), that is, the monomer is of type uniaxial,

then the monomer minimizes its energy by aligning or anti-aligning with the electric field. When the

monomer direction is in the plane orthogonal to the electric field, then a uniaxial monomer’s energy is

maximized. When χ⊥ > χ‖ (or ∆χ < 0), that is, the monomer is of type TI, the situation is reverse;

namely, aligned or anti-aligned result in maximum energy and a direction in the plane orthogonal to

the electric field result in minimum energy. This is shown graphically in Figure 2.4 where the potential

energy of a monomer is plotted with respect to the angle between the electric field and the monomer

direction, ψm.
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Figure 2.4: Potential energy of a monomer as a function of the angle between the direction of the
electric field and the monomer direction. Note that when χ⊥ > χ‖, the energy minimum is at ψm =
π
2
, 3π

2
. When χ⊥ < χ‖, the energy minimum is at ψm = 0, π.
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2.2.2 Free energy of a single DE chain

We are interested in deriving the free energy of an DE chain as a function of the applied electric field, its

end-to-end vector, and its temperature. Note that, as a consequence of the dependence of a monomer’s

electrical potential energy on its orientation, not all chain configurations have the same energy. This

means that, in contrast to Section 2.1, not all microstates in the ensemble are equally likely. Instead,

we must weight each orientation by the Boltzmann factor, exp (−βU), where β = 1/kT and U is the

energy of the chain configuration. As in Section 2.1, we partition the surface of the unit sphere intoN

patches of area and define the occupation numbers, mi, as the number of monomers oriented such that

their unit direction, n̂i, lies in the ith patch. The analog of (2.1.0.3) is

Z =
∑

{
mi

}′ exp

[
−βU

({
mi

})]
n!

ΠNi=1mi!
(2.2.2.1)

where Z is generally referred to as the partition function and the chain energy is taken as the sum of

the individual monomer energies, i.e. U
({

mi

})
=
∑N

i=1miu (n̂i). The significance of the partition

function is that the free energy can be determined by taking its logarithm, A∗ = −kT lnZ . As in

Section 2.1, we notice that enumerating each of the terms in (2.2.2.1) and evaluating the sum proves

to be difficult, and that ultimately we are interested in lnZ . Thus, we approximate the sum by its

maximum term. For ease of calculation, and since the logarithm is monotonic, we can maximize

ln

[
exp

(
−β

N∑
i=1

miu (n̂i)

)
n!∏N

i=1mi!

]

subject to the constraints (2.1.0.4) and (2.1.0.5). Using Stirling’s approximation for the ln�! terms

and the method of Lagrange multipliers to enforce the constraints, the occupation numbers that result
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in the maximum term are

mj = C exp [−βu (n̂j) + τ · n̂j]

= C exp

[
−β

2
∆χ (E0 · n̂j)2 + τ · n̂j

]
= C exp

[
−κ
(
Ê0 · n̂j

)2
+ τ · n̂j

] (2.2.2.2)

where all of the terms in the argument of the exponential that did not have a directional dependence

were absorbed into the unknown C and the unknown multipliers, τ , are related to the kinematic con-

straint. The second step is a result of plugging (3.0.0.1) in for the monomer energy (again, absorb-

ing the constant term into C); and, in the last step we define the unit direction of the electric field,

Ê0 = E0/E0, and define the dimensionless quantity κ = βE2
0∆χ/2, which is a measure of monomer

potential energy with respect to thermal energy. In the limit ofN →∞, (2.2.2.2) becomes the contin-

uous monomer density function

ρ (n̂) = C exp

[
−κ
(
Ê0 · n̂

)2
+ τ · n̂

]
(2.2.2.3)

where the unknowns, C and τ , are determined by solving the system of equations that result from

taking the discrete constraints, (2.1.0.4) and (2.1.0.5), to the continuum limit

n =

∫
S2

dA ρ (n̂) (2.2.2.4)

r

b
=

∫
S2

dA ρ (n̂) n̂ (2.2.2.5)

and where S2 denotes the surface of the unit sphere. Once the monomer density function has been

approximately determined, one can return to (2.2.2.1) to derive the free energy. Approximating the sum

on the right-hand side by its maximum-term, taking the logarithm, and using Stirling’s approximation

lnZ ≈ −β
N∑
i=1

miu (n̂i) + n lnn−
N∑
i=1

mi lnmi (2.2.2.6)
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Multiplying both sides by −kT and taking the limit of N →∞

A∗ ≈
∫
S2

dA {ρ (n̂)u (n̂) + kTρ (n̂) ln (ρ (n̂))} − nkT lnn (2.2.2.7)

we arrive at an expression for an approximation of the free energy.

However, there are a few difficulties related to (2.2.2.4), (2.2.2.5) and (2.2.2.7). First, the integrals

in (2.2.2.4), (2.2.2.5) and (2.2.2.7) are difficult to evaluate. Second, the resulting system of equations

will, in general, be nonlinear. Recall that in Section 2.1 the first difficulty was addressed by choosing

the coordinate system such that the polar axis was in the direction of the chain end-to-end vector and

recognizing that the symmetry of the problem allows one to simplify the τ · n̂ term in (2.1.0.7) to

λ cos θ. However, for an DE chain this simplification cannot be made. For example, given r and

E0, the exact direction of τ cannot be determined a priori. In addition, although there are now two

directions, namely r̂ = r/r and Ê0, which have important physical and mathematical significance,

only one of them can be taken as the direction of the polar axis. As a result, at least to the authors’

knowledge, despite which coordinate system one chooses, (2.2.2.4) and (2.2.2.5) cannot be solved

exactly. Instead, in Section 2.3 we will use numerical methods; and in Section 2.4 and Section 2.5

we will assume smallness of some parameters, expand in terms of the small parameters, and derive

approximate solutions.

2.3 Numerical solution

2.3.1 Numerical methods

Both evaluating the integrals and solving the resulting nonlinear system of equations given by (2.2.2.4)

and (2.2.2.5) is difficult to do (exactly) in a closed-form. In addition to closed-form approximations,

another technique that one may use is that of numerical methods. There are certain advantages to

numerical methods that we will find useful. For instance, a numerical solution does not, in general,
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need to assume a physical parameter is small. Thus, we can obtain approximate solutions for instances

where both the electrical energy and τ are not small. Such solutions will provide us with a measure

of accuracy for our closed-form approximations; and, may potentially allow us to investigate material

responses over a broader range of environmental conditions (e.g. values of E0, γ, etc.).

For numerical integration, we used the p-adaptive algorithm from the cubature package [Joha]. The

p-adaptive algorithm is based on Clenshaw-Curtis quadrature rules [CC60] and is generally well-suited

for smooth integrands and integration in low-dimensional space. Hence, it is well-suited for (2.2.2.4)

and (2.2.2.5), as the integrands are infinitely differentiable and the space is two-dimensional. Newton’s

method was used to solve the nonlinear system of equations. The initial guess for Newton’s method

was the Kuhn and Grun solution from Section 2.1 (but in a rotated coordinate system where the polar

axis is in the direction Ê0), that is

x0 =


C0

λ0

α0

 =


nλ
4π

csch [L−1 (γ)]

r3
r
L−1 (γ)

r1
r
L−1 (γ)


when |κ| = 0, and

x′0 =


(n
√
κ) /

(
2π3/2 erf (

√
κ)
)

(2
√
πγ3κe

κ erf (
√
κ)) / (

√
πeκ erf (

√
κ)− 2

√
κ)

(4
√
πγ1κe

κ erf (
√
κ)) / (

√
π (2κ− 1) eκ erf (

√
κ) + 2

√
κ)


when |κ| > 1. When |κ| ∈ (0, 1) then the initial guess was taken as a linear relaxation between the

two guesses, that is |κ|x′0 + (1 − |κ|)x0. (The initial guess x′0 comes from the closed-form approx-

imation derived in Section 2.5. We leave the details of the derivation until that section.) A residual

tolerance of less than 10−10 was usually reached within 3-15 iterations. In instances when Newton’s

method did not convergence, a series of gradient-free, unconstrained optimization methods were used

to approximate a solution. The SBPLX (based on the Subplex algorithm) [Row90] and Principle Axis

(PRAXIS) [Bre72] algorithms from the NLopt package [Johb] were used, as was a simulated anneal-
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ing implementation (the implementation was based on [Kra06]). The cost function was taken to be the

square root of the sum of the squares of the residuals (equations (2.2.2.4) and (2.2.2.5)).

In Section 2.3.2, we present the numerical solution for different electric fields, monomer suscepti-

bilities, and chain stretches and aim to explain some of the physical behavior that is observed.

2.3.2 Results and discussion of DE chain physics

Free energy

It is well known (and was pointed out in Section 2.1) that the stiffness of a classical polymer chain (and,

eventually, a polymer network) is due to thermal fluctuations and the natural tendency of a (constant

energy) thermodynamic system to maximize entropy. When investigating the free energy and stiffness

of an DE chain, we expect both electrostatic energy and thermal fluctuations will play a role. We

aim to determine how each affects the free energy and force-length relationship of an DE chain, and

any possible trade-offs or interplay between their respective contributions. In order to probe these

relationships, we generate numerical solutions for different electric fields, monomer susceptibilities,

and chain stretches. Throughout this section the number of monomers, n, is taken to be 100 and the

monomer length, b, is set to unity. In addition, when κ is positive the monomer susceptibilities are

χ‖ = 0 and χ⊥ = 1; and when κ is negative the monomer susceptibilities are χ‖ = 1 and χ⊥ = 0

Consider the
(
Ê0 · n̂

)2
term in the monomer density function, (2.2.2.3). Clearly, it is not only the

magnitude of the electric field that is important, but also its direction relative to the direction of stretch.

Let ψr denote the angle between Ê0 and r̂. In addition, for the present section, let λ and α be the

components of τ in the direction of Ê0 and the direction orthogonal to Ê0 (in the plane spanned by Ê0

and r̂), respectively.

The residuals for (2.2.2.4) and (2.2.2.5) were calculated for all of the numerical results presented in

the current section. The numerical solutions often converged to a maximum absolute residual of 10−10

or less; however, in some cases the numerical scheme could not achieve a reasonable level of accuracy.

Those solution results that did not have a maximum absolute residual of most n ∗ 0.01 (or 1.0) are not
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included in the figures that follow. From here on, we shall refer to the polymer chain that behaves in

accordance with the Kuhn and Grün model (as opposed to say, an electroactive chain) as a classical

polymer chain. In regards to numerics, the numerical solutions are at times plotted along side the

Kuhn and Grün solution presented in Section 2.1. When such calculations require the (approximate)

evaluation of the inverse Langevin function, the following approximation is used [Kro15]:

L−1 (x) ≈
3x− x

5
(6x2 + x4 − 2x6)

1− x2

In Figure 2.5, we consider the free energy of chains as a function of stretch for increasing κ. The

Kuhn and Grün solution for the free energy of a classical chain is also presented for comparison and

is given by −TSKG where SKG denotes the entropy given by (2.1.0.14). Note that the κ = 0 and the

classical chains agree exactly. One would expect this to be the case as κ → 0 as E0 → 0. However,

not only should the agreement lend confidence to the numerical solutions; but also it reinforces the fact

that in the limit of T →∞, an DE chain behaves as a classical chain.

In Figure 2.5, note that the zero stretch free energy (per kT ) decreases as κ increases. The free

energy decreases because an increase in κ either corresponds to an increase in the magnitude of elec-

trical energy or a decrease in thermal energy. In the former case, the potential well of each monomer

increases its depth, decreasing the free energy; in the latter case, there is a reduction in thermal fluctu-

ations and hence the effect of monomers aligning to the configuration that corresponds to the deepest

part of their respective potential well. Note that in either case an important reason why there is a de-

crease in free energy is because, at zero stretch, the monomers in the chain have some freedom to their

alignment (i.e. they are not kinematically constrained to align at or near a particular direction) so that

as the well depth increases or the thermal fluctuations decrease, the monomers are able to attain their

minimum energy configurations. Further, we can quantify these considerations. If κ = γ = 0 then

one can expect |τ | = 0 and the monomers are uniformly distributed, that is ρ = n
4π

. For uniformly

distributed monomers, the entropy is nk ln (4π) and the free energy is −nk ln (4π), which agrees with

the κ = 0 free energy at γ = 0. When κ >> T , the electrostatic contribution to the free energy
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dominates the entropic one (i.e. the k
∫
S2 dA ρ ln ρ term). One can argue that, since physically we

know the equilibrium ρ (and hence, most-likely ρ) is the one which minimizes the free energy, that

ρ (ψm) → n
2π
δ
(
ψm − π

2

)
as κ → ∞. In this case the electrostatic contribution approaches nχ⊥E2

0

(= nkTκ, in this case) and the entropy decreases to some small but finite value. Hence, for κ positive,

the zero stretch free energy has a maximum of −nk ln (4π) and approaches nχ⊥E2
0 when T → 0.

Lastly, we consider the effect of chain stretch and, in particular, the effect of the direction of stretch

relative to the electric field. In Figure 2.5 the direction of stretch, r̂, is taken as the same direction as

the electric field, Ê0 (i.e. ψr = 0). Recall, that (1) κ is a measure of electrostatic energy with respect

to thermal energy; and (2) κ > 0 signifies monomers that have a higher susceptibility orthogonal to

the axis of their unit direction than along their axis of unit direction, that is, it signifies TI monomers.

Positive κ implies positive ∆χ. From (3.0.0.1) (or Figure 2.4), one can see that the electrostatic energy

of a TI monomer increases as its directional axis (i.e. span of n̂) aligns with the electric field. The

increase in free energy with respect to stretch is larger for chains with higher κ. The larger increase

in free energy as a function of stretch can be explained by the fact that, since r̂ = Ê0, as the chain is

stretched, monomers are forced by the kinematic constraint to align with the electric field. A larger κ

corresponds to a larger increase in electrostatic energy as monomers are forced to align. Since the E0 ·n̂

term in (3.0.0.1) is quadratic, the free energy curves in Figure 2.5 would look identical if r̂ = −Ê0.

Notice that as γ → 1, the curves converge. That is because at the fully stretched limit, the electrical

potential energy of each of the monomers is zero. In general, with regard to the statistics of an DE

chain, there are three competing factors: (1) electrical energy–which would induce monomer dipoles

and have monomers rotate to align their respective dipoles with the electric field (2) thermal energy–

which prefers monomers to be oriented in a uniform random manner and (3) the kinematic constraint.

The quantity |κ| is a measure of the influence of (1) versus (2). Whereas the quantity |τ | (and, in a

sense, γ) is a measure of the influence of (3). The fact that the free energy curves converge when the

chains approach fully stretched shows that the effect of satisfying the kinematic constraint supersedes

that of either (1) or (2), which should agree with intuition. That is, as the chain is fully stretched, the

monomers are forced to align more densely in the direction of stretch regardless of the external electric
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Figure 2.5: Chain free energy with respect to stretch for κ = 0.0, 1.0, 9.0 and 25.0; ψr = 0. The
free energy increases more rapidly with stretch for chains with larger κ because chain stretch forces
monomers to align with the electric field and the electrostatic energy increases more (when aligning
with Ê0) for monomers with larger κ.

field or temperature of the system because the constraint must be satisfied.

In Figure 2.6 and Figure 2.7, the free energy per kT with respect to stretch curves are shown for the

same values of κ but with ψ = π
4

and ψ = π
2
, respectively. The curves in Figure 2.6 are similar to that

of Figure 2.5 and the free energy of the κ = 9.0 and κ = 25.0 chains, again, are shifted downward

and increase more rapidly with stretch than the κ = 1.0 and classical chains. However, notice that in

the case of ψr = π
4

(Figure 2.6), the increase in free energy for the larger κ chains is less rapid than

when ψr = 0 (Figure 2.5). There is less of an increase in free energy with stretch for the ψr = π
4
, DE

chains than when ψr = 0 because as the chains stretch, the density of monomers with an orientation

of or near to ψr must increase. Put differently: at ψr = 0 the monomers in the chain are being forced

into an orientation in which they do not polarize and their electrical potential energy is zero; where as
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Figure 2.6: Chain free energy with respect to stretch for κ = 0.0, 1.0, 9.0 and 25.0; ψr = π
4
. The

free energy increases more rapidly with stretch for chains with larger κ because chain stretch forces
monomers to align with the electric field and the electrostatic energy increases more (when aligning
with Ê0) for monomers with larger κ.

at ψr = π
4

the monomers are forced to oriented in a direction where their polarization is nonzero and

the electrical potential energy is less than zero. The effect of the orientation of the chain stretch with

respect to the electric field can also be seen in Figure 2.7 (and Figure 2.8), where ψr = π
2
. Notice, in

particular, that in Figure 2.7 and Figure 2.8 the shape of curves for each value of κ are similar. We can

understand this as a consequence of the fact that DE monomers being forced into the direction of their

minimum energy orientation as the chain is stretched, which is also the orientation that is exponentially

favored due to electrostatics. Thus, the change in the potential energy term (i.e.
∫
S2 dA ρu) with respect

to stretch is negligible. Instead the increase in free energy is primarily entropy driven and increasing κ

merely has the effect of shifting the A∗/kT vs. γ curve downward.

Lastly, to further highlight the significance of ψr, we show (Figure 2.9) A∗/kT vs. γ for fixed κ

37



CHAPTER 2. ELECTROELASTICITY AND THERMODYNAMICS OF DIELECTRIC
ELASTOMER CHAINS

0.00 0.25 0.50 0.75 1.00
γ

-2500

-2000

-1500

-1000

-500

0

500

A/
kT

Numerical, κ = 0.0
Numerical, κ = 1.0
Numerical, κ = 9.0
Numerical, κ = 25.0
−TSKG

Figure 2.7: Chain free energy with respect to stretch for κ = 0.0, 1.0, 9.0 and 25.0; ψr = π
2
. The

change in A∗/kT vs γ curves are similar for all values of κ because the change is entropy driven.
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Figure 2.8: Chain free energy with respect to stretch for κ = 0.0, 0.25 and 1.0; ψr = π
2
. The change in

A∗/kT vs γ curves are similar for all values of κ because the change is entropy driven.
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Figure 2.9: Chain free energy with respect to stretch for κ = 0.0, 0.25 and 1.0; ψr = π
2
. The change in

A∗/kT vs γ curves are similar for all values of κ because the change is entropy driven.

and ψr = π
2
, π
3
, π
4
, and 0. As discussed previously, the increase in A∗/kT with respect to γ is greatest

when the chain is stretched in the direction of the maximum electrical potential energy of a monomer

(ψr = 0), and decreases as ψr transitions toward the direction of the minimum electrical potential

energy of a monomer (ψr = π
2
).

Next we present a similar analysis but for uniaxial monomers (κ < 0, for simplicity, χ⊥ = 0).

Figures 2.10-2.12 show A∗/kT vs γ for uniaxial monomers at ψr = 0, π
4

and π
2
, respectively. In

contrast to TI monomers, the increase in A∗/kT with respect to γ is greatest when the direction of

chain stretch and the direction of the applied electric field are orthogonal (as opposed to aligned or

ψr = 0). This is of course because the electrical potential energy of a uniaxial monomer attains its

maximum when its orthogonal to the electric field and its minimum when aligned with the field.

Before closing the discussion of how κ, chain stretch, and chain orientation with respect to Ê0 affect
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Figure 2.10: Chain free energy with respect to stretch for κ = 0.0,−1.0 and−9.0; ψr = 0. The change
in A∗/kT vs γ curves are similar for all values of κ because the change is entropy driven. Increasing
|κ| shifts the curve downward.
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Figure 2.11: Chain free energy with respect to stretch for κ = 0.0,−1.0,−9.0 and −25.0; ψr = π
4
.

The free energy increases more rapidly with stretch for chains with larger |κ| because chain stretch
forces monomers to prefer an orientation of or near to ψm = π

4
and a larger |κ| corresponds to a deeper

potential well at ψm = 0, π for uniaxial monomers.
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Figure 2.12: Chain free energy with respect to stretch for κ = 0.0,−1.0,−9.0 and−25.0; ψr = 0. The
free energy increases more rapidly with stretch for chains with larger |κ| because chain stretch forces
monomers to prefer an orientation of or near to ψm = π

2
(which is a maximum of the electrical energy)

and a larger |κ| corresponds to a deeper potential well at ψm = 0, π for uniaxial monomers.
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the free energy of an DE chain, we point out a subtle but important detail. Upon inspection of the

A∗/kT vs. γ curves (compare, for example, Figure 2.7 and Figure 2.10), one may be tempted to

conclude that a symmetry exists such that changing the sign of κ and rotating ψr by π
2

results in the

same DE chain statistics. However, the statistics are not the same. The A∗/kT - γ relation for TI

and uniaxial chains oriented at ψr = 0 and ψr = π
2

are shown in Figure 2.13. Despite the fact that

the depth of the electrical potential well is the same for TI and uniaxial monomers (Figure 2.4), the

zero stretch free energy of the TI chains are lower. This can be explained by considering that the

minimum energy orientation of a uniaxial monomer is when n̂ = ±Ê0 where as the minimum energy

orientation of a TI monomer occurs when n̂ ·E0 = 0. The uniaxial case is only two discrete directions

but the TI case describes a plane in which n̂ can rotate and the TI monomer still be at an energy

minimum. Thus, there is a larger space of directions in which TI monomers can be oriented which are

also energetically favored (at or near a potential well), meaning the entropy is able to be larger and the

entropic contribution to the free energy is able to more negative (compared with uniaxial monomers).

Also, in particular, notice that as the TI, ψr = 0 and uniaxial, ψr = π
2

chains stretch (e.g. γ → 1)

the curves begin to meet. This is because (1) the kinematic constraint is forcing the monomers of each

chain into or near their maximum energy state, which in this case is the same amount of energy, and

(2) regardless of the direction of stretch or type of monomer, the entropic term approaches infinite as

γ → 1.

Force-length relations

Notice in (2.1.0.15) that the right hand side is the product of a characteristic force scale (i.e. kT
b

) and

the unknown multiplier λ (which in this case is also equivalent to |τ |). This is because the unknown

multipliers, τ , represent a dimensionless measure of the force required to stretch the chain to its given

end-to-end vector. Since we do not, as of yet, have a closed form expression for A∗, we probe the

force-length relationships of the DE chains by considering τ (as opposed to ∂A∗
∂r

). Figure 2.14 shows

the component of τ in the direction of stretch for DE chains with TI monomers oriented such that

ψr = 0. Two important characteristics of the λ vs γ curves follow from the previous discussions
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Figure 2.13: Comparison of TI and uniaxial DE chains being stretched in the direction of their respec-
tive energy maximum orientations, ψr = π

2
and 0, respectively; and TI and uniaxial DE chains being

stretched in the direction of their respective energy minimum, ψr = 0 and π
2
, respectively. Notice

the subtle differences in behavior between the TI and uniaxial chains as a result of the fact that the
minimum energy orientation of a uniaxial monomer is when n̂ = ±Ê0, where as the minimum energy
orientation of a TI monomer occurs when n̂ ·E0 = 0. The uniaxial minimum is only two discrete direc-
tions but the TI minimum orientation describes a plane in which n̂ can rotate and the TI monomer still
be at an energy minimum. The differences in the electrostatic monomer responses lead to a difference
in the overall chain behaviors.
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Figure 2.14: Component of τ in the r̂ direction with respect to γ (ψr = 0). As κ increases, the change
in |τ | with respect to stretch increases because the TI monomers are being forced into or near their
maximum energy orientation. Notice: the curves appear linear for moderate stretch (γ ≤ 0.5) but are
super linear as γ → 1.

regarding the A∗/kT vs γ relationships. First, τ = 0 when γ = 0. This is a consequence of the fact

that A∗/kT is a minimum when the chain is unstretched. Physically, γ = 0 is a stable equilibrium for

all DE chains. Second, as κ increases, the force required to the stretch the chain increases. This is to

be expected in this case because λ is a measure of the force in the direction of the polar axis, which in

this case is also the direction of the electric field and a maximum energy orientation for TI monomers.

Thus, for larger κ the monomers must climb out of a larger potential well to align in the direction of

ψr; and consequently, a larger force. What is perhaps both more subtle and more interesting is that

there appears to be two regimes to each of the λ vs γ curves: the curves appear linear for moderate

stretch (γ ≤ 0.5) but are super linear as γ → 1.

Figure 2.15 shows α, that is, the component of τ in the x-direction, with respect to stretch for TI
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Figure 2.15: Component of τ in the r̂ direction with respect to γ (ψr = π
2
). As κ increases, the change

in |τ | with respect to stretch decreases because the TI monomers are being forced into or near their
minimum energy orientation. Notice: the curves appear linear for moderate stretch (γ ≤ 0.5) but are
super linear as γ → 1.

monomers. In contrast to Figure 2.14, the chains in Figure 2.15 are oriented such that ψr = π/2 so

that, again, the ordinate represents the component of τ in the direction of stretch. Notice that, again,

α vanishes when γ = 0 and there appears to be a linear regime and super linear regime for each of the

chains. In contrast, α decreases for increasing κ. This is because the monomers are being kinematically

constrained into a minimum energy orientation as the chain stretches. The force is working against

(increasing) entropy, however the zero stretch entropy is larger for larger κ (because monomers are

more heavily concentrated at their minimum energy orientations as κ increases). Hence, the increase

in entropy with stretch is more gradual when κ is larger and it requires less of a force to stretch the

chain.

Figure 2.16 and Figure 2.17 show the component of τ in the direction of stretch for uniaxial DE
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Figure 2.16: Component of τ in the r̂ direction with respect to γ (ψr = 0). As κ increases, the change
in |τ | with respect to stretch decreases because the uniaxial monomers are being forced into or near
their minimum energy orientation. Notice: the curves appear linear for moderate stretch (γ ≤ 0.5) but
are super linear as γ → 1.

chains with ψr = 0 and ψr = π/2, respectively. The force-stretch relationships have a similar charac-

ter; that is, the force vanishes at γ = 0 and there appears to be linear and super linear regimes. Also,

the slope of the force-stretch relationship depends on κ. As expected, the slope is larger for larger κ

when the chain is being stretched in a direction of maximum energy for uniaxial monomers; and the

slope is smaller for larger κ when the chain is being stretched in a direction of minimum energy.

Dipole statistics and chain polarization

Dielectric elastomers have many desirable qualities for applications in sensors (e.g. flexible, com-

pliant strain gauges) and power generation. As a result, the electrical properties of polymers, at the

macromolecular scale, are of interest. Having obtained the monomer density function, one can approx-
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Figure 2.17: Component of τ in the r̂ direction with respect to γ (ψr = π
2
). As κ increases, the change

in |τ | with respect to stretch increases because the uniaxial monomers are being forced into or near
their maximum energy orientation. Notice: the curves appear linear for moderate stretch (γ ≤ 0.5) but
are super linear as γ → 1.

49



CHAPTER 2. ELECTROELASTICITY AND THERMODYNAMICS OF DIELECTRIC
ELASTOMER CHAINS

imate the expected chain polarization, p, by integrating the dipole moment over the monomer density

function; i.e.

p ≈
∫
S2

dA µ (n̂) ρ (n̂) (2.3.2.1)

where µ is given by (2.2.1.7) and (2.2.1.8). The expression given by (2.3.2.1) is merely an approxima-

tion because in order to properly account for the contribution of each monomer dipole to the overall

chain polarization, it would be necessary to consider the positions of each of the dipoles as well.

Figure 2.18 shows the chain polarization for κ = 1.0 at different stretches and orientations. The x

and y coordinates of (the base of) each polarization vector represents the chain stretch in the direction

orthogonal to the electric field (i.e. γ⊥) and aligned with the electric field (i.e. γ‖), respectively; and

the chain polarization vectors are scaled such that each vector is given by p/
(

10n
√
|κ|kT

)
(where

the factor of 10 is included purely for the convenience of not having vectors overlap each other). At

small stretches (0.0 to 0.25) the polarization is in the direction of the electric field, as expected. As

the stretch increases toward its limit, monomers are forced to oriented in the direction of chain stretch

which influences the direction of magnitude of the chain polarization. Because χ‖ < χ⊥, the magnitude

of the polarization decreases with increasing γ‖ and increases with γ⊥.

Figure 2.19 shows the chain polarization for a chain of uniaxial monomers (κ = −1.0) at different

stretches and orientations. Similar to Figure 2.18: the chain polarization is in the direction of the

electric field at small stretches and is influenced by the chain end-to-end vector orientation at larger

stretches. Because χ‖ > χ⊥, the magnitude of the polarization increases with γ‖ and decreases with

increasing γ⊥. Lastly, note, comparing Figure 2.18 to Figure 2.19, the small stretch chain polarization

is (approximately) two times greater for κ = 1.0 than κ = −1.0. This difference can again be explained

by considering the fact that a TI monomer has a plane of directions in which it attains its maximum

|µ|, whereas a uniaxial monomer only has two discrete directions in which it attains its maximum

|µ|. Hence, in the balance between the internal energy and entropy terms in the chain free energy,

TI monomers are able attain a larger polarization because a chain with a larger density of monomers

oriented nearly orthogonal to the electric field will have a larger entropy. And since the difference in

|p| between κ = 1.0 and κ = −1.0 is due to entropy, one can see that it vanishes as the chain is nears
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Figure 2.18: Chain polarization for κ = 1.0 at different stretches and orientations. The x and y coordi-
nates of (the base of) each polarization vector represents the chain stretch in the direction orthogonal
to the electric field (i.e. γ⊥) and aligned with the electric field (i.e. γ‖), respectively. The chain polar-

ization vectors are scaled such that each vector is given by p/
(

10n
√
|κ|kT

)
. At small stretches (0.0

to 0.25) the polarization is in the direction of the electric field, as expected. As the stretch increases
toward its limit, monomers are forced to oriented in the direction of chain stretch which influences the
direction of magnitude of the chain polarization.
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Figure 2.19: Chain polarization for κ = −1.0 at different stretches and orientations. The x and
y coordinates of (the base of) each polarization vector represents the chain stretch in the direction
orthogonal to the electric field (i.e. γ⊥) and aligned with the electric field (i.e. γ‖), respectively. The

chain polarization vectors are scaled such that each vector is given by p/
(

10n
√
|κ|kT

)
.

its fully stretched limit.

Before moving on, we consider the effect of |κ| on the chain polarization. Figure 2.20 shows the

chain polarization vector fields for κ = 0.25 (top left), κ = −0.25 (top right), κ = 9.0 (bottom

left), and κ = −9.0 (bottom right). Recall that the vectors are scaled by 1/
√
|κ|kT ; as a result the

polarization vectors appear identical when
√
γ2‖ + γ2⊥ nears unity. However, in comparing κ = 0.25

and κ = 9.0 (or alternatively, κ = −0.25 and κ = −9.0) one can see that as |κ| increases the small

stretch magnitude of |p|/
(

10n
√
|κ|kT

)
increases. This effect can be explained by considering the

fact that equilibrium corresponds to a minimization of free energy. When γ → 0, the influence of chain

orientation (with respect to the electric field) vanishes and instead the density of monomer orientations

is determined by a balance between the electrostatic energy and entropy terms in the free energy; that

52



CHAPTER 2. ELECTROELASTICITY AND THERMODYNAMICS OF DIELECTRIC
ELASTOMER CHAINS

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Figure 2.20: Chain polarization for κ = 0.25 (top left), κ = −0.25 (top right), κ = 9.0 (bottom left),
and κ = −9.0 (bottom right) at different stretches and orientations. The chain polarization vectors are
scaled such that each vector is given by p/

(
10n
√
|κ|kT

)
.

is, the first and second terms in the integral of (2.2.2.7), respectively. The entropy term is minimal when

the monomer density function is uniform in all directions. The electrostatic energy term is minimal

when all the monomers are oriented such that the component of their dipoles in the direction of the

electric field are maximized. As |κ| increases, the influence of the electrostatic energy term increases

relative to the entropic term such that |p|/
(

10n
√
|κ|kT

)
increases.

2.3.3 Summary

In general, with regard to the statistics of an DE chain, there are three competing factors: (1) electri-

cal energy–which would induce monomer dipoles and have monomers rotate to align their respective

dipoles with the electric field (2) thermal energy–which prefers monomers to be oriented in a uniform

random manner and (3) the kinematic constraint. The quantity |κ| is a measure of the influence of (1)
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versus (2). Whereas the quantity |τ | (and, in a sense, γ) is a measure of the influence of (3). The

stiffness of a polymer chain is related to the slope of the free energy with respect to stretch curve.

For an DE chain, its stiffness depends on κ, the current stretch, and its orientation with respect to the

electric field. More specifically, TI chains exhibit a larger stiffness when stretched in or near the direc-

tion of the electric field, or opposite the direction of the electric field, than when stretched in or near

a direction orthogonal to the electric field. This is because the electrostatic energy minimum of a TI

monomer is in the plane orthogonal to the electric field. For a chain of uniaxial monomers, the larger

stiffness occurs when stretched in or near a direction orthogonal to Ê0 as opposed to in the direction

Ê0. The effect of orientation on chain stiffness increases with respect to |κ| and vanishes when κ→ 0.

There are two regimes to the chain polarization. When the chain stretch is small (< 0.25), the chain

polarization is in the direction of the electric field and its magnitude increases with n and E0. In ad-

dition, all other parameters equal, the small stretch polarization for χ‖ = 0, χ⊥ = 1 (TI monomers)

is twice that of χ‖ = 1, χ⊥ = 0 (uniaxial monomers). As the stretch increases, the chain polarization

approaches χµ (r̂) E0 where χµ is defined in (2.2.1.7) and depends on the monomer dipole suscepti-

bilities, χ‖ and χ⊥.

2.4 Closed-form approximation, high temperature limit

Let the coordinate system be defined such that

• the polar axis is taken to be in the direction of r̂,

• Ê0 lies in the plane spanned by e1 and e3 (i.e. E0 = (E1, 0, E3)).

Because r and E0 both lie in the e1, e3-plane, τ is also in the e1, e3-plane. Thus, let τ = (α, 0, λ).

Plugging (3.0.0.1) into (2.1.0.7) and expressing the result in terms of φ and θ, one obtains

ρ (φ, θ) = C exp [−fsκ (φ, θ) + α cosφ sin θ + λ cos θ] (2.4.0.1)
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where we let ∆χ = χ⊥ − χ‖ and define the dimensionless parameters

κ3 = βE2
3 (∆χ) /2

κ1 = βE2
1 (∆χ) /2

κ13 = βE1E3 (∆χ) /2 =
√
κ3κ1

that are a measure of the electrical energy per monomer with respect to thermal energy per monomer

(related to the e3 direction, e1 direction, and interaction of the E3 and E1 components of the electric

field, respectively), fsκ (φ, θ) = κ3 cos2 θ+ 2κ13 cosφ cos θ sin θ+κ1 cos2 φ sin2 θ, and where terms in

the argument of the exponential that were independent of φ and θ were absorbed into the unknown C.

We proceed by assuming that E2
0 (∆χ) << kT ; and, we note that as a result of this assumption and

the choice of coordinate system that α should also be small (regardless of the amount of chain stretch

because α is a component of the force orthogonal to the direction of stretch). Rewrite the exponential

as exp [−fsκ + α cosφ sin θ]× exp [λ cos θ], then Taylor expand the first exponential in the product up

to first order to obtain the approximate density function

ρ (φ, θ) ≈ C [1− fsκ (φ, θ) + α cosφ sin θ] exp (λ cos θ) . (2.4.0.2)

Plugging the approximate density function into (2.2.2.4) and (2.2.2.5) and integrating results in the

system of equations

n =
4πC

λ3
[
∆λ coshλ−

(
∆− ζλ2

)
sinhλ

]
(2.4.0.3)

r

b
= −4πC

λ4
[(

3∆− ζλ2
)
λ coshλ+

(
−3∆− (∆− ζ)λ2

)
sinhλ

]
(2.4.0.4)

0 = −4πC

λ4
[
− (αλ+ 6κ13)λ coshλ+

(
αλ+ 2

(
3 + λ2

)
κ13
)

sinhλ
]

(2.4.0.5)

where we define∆ = 2κ3−κ1 and ζ = 1−κ3 for brevity. Also, let I1, I2, and I3 be defined as the right

hand side of (2.4.0.3), (2.4.0.4), and (2.4.0.5), respectively. The system (2.4.0.3)–(2.4.0.5) is clearly

nonlinear. In principle, one could approximate a solution to (2.4.0.3)–(2.4.0.5) by perturbation methods
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(see for example, [BO13] Ch. 7 or [Hin91] Ch. 1). However, there are some concerns related to such

an approach. Power series expansions sometimes suffer from a slow rate of convergence and a limited

radius of convergence. In addition, for the case of the system (2.4.0.3)–(2.4.0.5), it is not immediately

obvious what one should take as a small parameter. The dimensionless parameters κ1, κ3, and κ13 are

all assumed small; however, they are not totally dependent (i.e. one cannot take κ1 = κ3 = κ13 = ε

because κ1 and κ3 can be varied independently of each other) nor are they totally independent. As a

result, how one chooses a small parameter and how that choice relates to κ1, κ3, and κ13 is not trivial.

Instead, we look to iterative methods that, while are typically used in numerical analysis, are well-

suited for the current problem. As in [DB81] (Section 2.6), we use Newton’s method to obtain an

approximate solution to (2.4.0.3)–(2.4.0.5). Recall that in Section 2.1 we effectively derived a solution

for C and λ in the absence of an electric field. Since we are interested in the limit E2
0∆χ << kT , we

can use the result of Section 2.1 as an initial guess and calculate a correction using a Newton iteration.

Two advantages of Newton’s method are that its rate of convergence is quadratic and that the resulting

approximation is rational instead of a power series. Although rational approximations can be obtained

by other means, such as Padé approximations (see [BO13] Ch. 8), they generally converge faster than

power series and better capture behavior near singularities (for example, in the context of a polymer

chain, a fully stretched chain).

Let x = (C, λ, α) be the vector of unknowns, f =
(
n− I1, rb − I2, I3

)
be the vector of residuals,

and Jij = ∂fi/∂xj be the Jacobian matrix. The initial guess will be denoted by x0 = (C0, λ0, α0) so

that f0 = f (x0) and J0 = J (x0) are the vector of residuals and Jacobian matrix evaluated at the initial

guess. Then

x ≈ x0 − J−10 f0 (2.4.0.6)

As mentioned previously, because we are interested in an approximation that is accurate in the limit

E2
0χ << kT , we take the exact solution for E2

0χ = 0 as the initial guess. Thus, λ0 = L−1 (γ) and C0

is set as the right-hand side of (2.1.0.8). To determine α0, we substitute C0 and λ0 into (2.4.0.5) and,
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remembering (cothL−1 (γ)− 1/L−1 (γ)) = γ, solve for α to obtain

α0 = −2κ13

(
3

L−1 (γ)
− 1

γ

)
(2.4.0.7)

Evaluating J and f at x0 and simplifying results in

J0 = λ−30


4πλ0a4 sinhλ0 nλ0 (a2 − a1) 0

4π (a2 − a1) sinhλ0 n (a4λ
2
0 + 4a1 − 2a2) 0

0 2na3κ13/γ nλ20γ

 (2.4.0.8)

and

f0 = n


a4/λ0 − 1

γ (ζ − 1)− a1/λ20

0

 (2.4.0.9)

respectively, where

a1 = (3γ∆−∆λ0)

a2 = γλ20ζ

a3 = γ2
(
λ20 + 3

)
+ 2γλ0 − λ20

a4 = λ0ζ + γ∆

have been defined, as they are terms that repeated throughout the derivation. Their exact physical

significance is not obvious; however, one should pause to notice that: a1, a2, and a4 consist of terms

involving products of dimensionless energy (e.g. ∆, ζ , etc.) and stretch terms (e.g. γ, λ0), and a3 is

a parameter that depends entirely on stretch. Substituting x0, J0, and f0 into (2.4.0.6) results in the
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approximation

C ≈ nb3 csch λ0
4πb1

(2.4.0.10)

λ ≈ λ0 (1− b2/b1) (2.4.0.11)

α ≈ −2 (a1b1γ + a3b2∆)κ13
b1γ2∆λ0

(2.4.0.12)

where

b1 = a21 + a22 + 2a2a4 − 2a1 (a2 + 2a4)− a24λ20 =
λ60 csch λ0

4πn2γ
|J0|

b2 = a2 (a4 − λ0) + λ0 (a1 + a4γλ0κ3)

b3 = a4λ
3
0 − a22 − a2λ0 (γλ0κ3 + 2) + a1 [a2λ0 (4 + γλ0κ3)]

Having obtained an approximate solution for the unknownsC and τ , we turn our attention to the free

energy. Plugging the approximate density function (2.4.0.2) into (2.2.2.6), using the Taylor expansion

ln (1 + fsκ + α sin θ cosφ) ≈ fsκ + α sin θ cosφ

and integrating results in

A∗ =
kT

λ4
[
−4πC sinh(λ)

(
α2λ+ 2α

(
λ2 + 3

)
κ13 + λ ln(C)

(
∆− λ2ζ

)
−

∆λ(κ⊥ + 3) + λ3(−(κ⊥ + 3)κ3 + κ⊥ + κ1 + 1)
)

+

4πCλ cosh(λ)
(
6ακ13 + λ

(
α2 + 2κ3 ln(C)− κ3

(
λ2 + 2κ⊥ + 6

)
+ λ2

)
+

λκ1(− ln(C) + κ⊥ + 3))− λ4n ln(n)
]

(2.4.0.13)

where κ⊥ = χ⊥E
2
0/2kT is the non-dimensional analog of the constant energy term in (3.0.0.1).

Next, we compare the closed-form approximate solution derived in this section to the numerical

solutions obtained in Section 2.3. Figure 2.21 shows such a comparison in approximating A∗/kT

with respect to stretch. The left plots in Figure 2.21 show TI DE chains while uniaxial chains are
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shown on the right. The parameter |κ3| is increasing from the top of the figure to bottom (|κ3| =

0.0625, 0.25, 1.0, 9.0, respectively; κ1 = κ13 = 0.0). Recall that |κ|, |κ3|, |κ1|, etc. are measures of

electrical energy with respect to thermal energy; that is, increasing |κ3| corresponds to an increase in

the electric field and/or a decrease in temperature. One can see that the approximation is accurate for

smaller values of |κ3| (e.g. 0.0625, 0.25), but that it can be very inaccurate for |κ3| = 1.0 (and larger).

In addition, even for moderate |κ3| (i.e. |κ3| ≥ 0.25), the small κ approximation for TI monomers

predicts phase transition(s) (i.e. the A∗/kT vs γ curve is not convex) that the numerical solution does

not. As discussed in Section 2.3, one would not expect such phase transitions to be physical since (1)

stretch can only cause an increase in entropy and (2) a decrease in the electrical energy term cannot be

greater than the increase in the entropy term since otherwise, before the stretch, the monomers would

have taken such a configuration (equilibrium corresponds to a minimization of free energy).

Figure 2.22 and Figure 2.23 show the A∗/kT -γ relationship–comparing the small κ approximation

to the numerical solutions–for increasing |κ1| (|κ1| = 0.0625, 0.25, 1.0) and |κ13| (|κ13| = |κ1| =

|κ3| = 0.0625, 0.25, 1.0), respectively. Similar to what was shown in Figure 2.21, the small κ agrees

well with the numerical solutions over the entire domain of stretch (i.e. γ ∈ [0, 1)) when |κ1| ≤ 0.25

and |κ13| ≤ 0.25. However, the small κ does not agree with the numerical solutions when |κ1| ≥ 1.0

and |κ13| ≥ 1.0 and often appear nonphysical.

In regards to electro-elasticity, we are also interested in predicting the correct force-length relation-

ship of DE chains. As a result, it is important to consider the accuracy of the small κ approximate

solution with respect to the numerical solutions in reproducing τ . In general, we find a similar rela-

tionship between accuracy of the small κ approximation in reproducing λ obtained from the numerical

solution (i.e. the component of τ in the direction of stretch) as was found in the closed-form ap-

proximation’s accuracy of reproducing A∗/kT ; that is, the small κ approximation agrees well for

|κ3|, |κ1|, |κ13| ≤ 0.25 but not for |κ3|, |κ1|, |κ13| ≥ 1.0. An example of this is shown in Figure 2.24,

where λ is plotted with respect to γ for TI (left) and uniaxial (right) chains with |κ3| = 0.625 (top), 0.25

(middle), and 1.0 (bottom). Lastly, note that, even when it is inaccurate, the small κ approximation

reproduces the qualitative behavior of the numerical solutions. Specifically, the small κ approximation
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Figure 2.21: Comparison of the predicted A∗/kT with γ relationship using the small κ approximation
and the numerical solutions. TI chains appear on the right and uniaxial chains on the left; |κ3| =
0.0625, 0.25, 1.0, 9.0 (top row, middle-top, middle-bottom, bottom); κ1 = κ13 = 0.0
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Figure 2.22: Comparison of the predicted A∗/kT with γ relationship using the small κ approximation
and the numerical solutions. TI chains appear on the right and uniaxial chains on the left; |κ1| =
0.0625, 0.25, 1.0 (top row, middle, bottom); κ3 = κ13 = 0.0
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Figure 2.23: Comparison of the predicted A∗/kT with γ relationship using the small κ approximation
and the numerical solutions. TI chains appear on the right and uniaxial chains on the left; |κ1| = |κ3| =
|κ13| = 0.0625, 0.25, 1.0 (top row, middle, bottom)
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also predicts a linear regime followed by a super linear regime.

2.4.1 Summary

In summary, the closed-form approximation derived in this section assumed that |κ| and |α| were

small. Physically, the small |κ| assumption corresponds to the magnitude of the electrical energy of

the system being less than the thermal energy; and the small |α| is likely justified since α is the com-

ponent of τ orthogonal to the direction of stretch. By assuming |κ| and |α| small, it allowed us to

Taylor expand the monomer density function such that κ and α were no longer in the argument of the

exponential and, hence, obtain an approximation of the monomer density function that allowed for a

straight forward evaluation of the integrals given by (2.2.2.4) and (2.2.2.5). However, the system of

equations that resulted from this approximate form were nonlinear in the unknowns C and τ . To ob-

tain an approximate solution to the nonlinear system of equations, we used the κ = 0 solution (derived

in Section 2.1) as an initial guess and performed a Newton iteration. The closed-form approximation

proved to accurately reproduce numerical solutions for |κ3|, |κ1|, |κ13| ≤ 0.25. However, the closed-

form approximation was not accurate for |κ3|, |κ1|, |κ13| ≥ 1.0 and, in fact, predicted nonphysical

phenomena such as phase transitions at different amounts of stretch. The inaccuracy of the approxima-

tion for |κ3|, |κ1|, |κ13| ≥ 1.0 was likely due to the a number of reasons. First: physically, we require

that ρ be strictly nonnegative (as it does not make sense to have a negative density of monomers in

a particular direction). However, there is no guarantee that, when κ3, κ1, κ13 ≥ 1.0, the approximate

density given by (2.4.0.2) is strictly nonnegative. Second, the error of the Taylor series approximation

in (2.4.0.2) grows with |κ|. And third, a Newton-Raphson iteration was used to approximate a solution

to the nonlinear system of equations given by (2.4.0.3)-(2.4.0.5). The convergence of Newton-Raphson

depends on how close the initial guess is to the exact solution. Since the initial guess was taken to be

the κ = 0 solution, the error of the Newton-Raphson iteration necessarily increases with |κ3|, |κ1|,

and |κ13|. The limitations of the approach taken in this section motivate the need for the asymptotic

matching approach taken in Section 2.6.
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Figure 2.24: Comparison of the predicted λ with γ relationship using the small κ approxima-
tion and the numerical solutions. TI chains appear on the right and uniaxial chains on the left;
|κ3| = 0.0625, 0.25, 1.0, 9.0 (top row, middle-top, middle-bottom, bottom); κ1 = κ13 = 0.0. Note
that the small κ approximation, like the numerical solutions, also predicts a linear regime followed by
a super linear regime
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2.5 Closed-form approximation, small stretch limit

To investigate the limit of |τ | << 1, we use a similar process to Section 2.4; that is, we (1) choose

the coordinate system such that the polar axis is in a direction of physical important and mathemati-

cal convenience, (2) we Taylor expand about the small quantity (|τ | in the present case) and (3) we

solve the approximate system of equations (for the unknowns C and τ ) that result from enforcing the

normalization and kinematic constraints.

We choose the coordinate system such that the polar axis is in the direction of the electric field,

that is e3 = E0/|E0| and r lies in the e1, e3-plane. This choice allows one to leave the dimension-

less energy term, κ cos2 θ, inside the argument of the exponential while integrating. Next, we write

exp [−κ cos2 θ + τ · n̂] as exp [−κ cos2 θ]× exp [τ · n̂], then Taylor expand the second exponential in

the product up to first order to obtain the approximate density function

ρ (φ, θ) = C (1 + λ cos θ + α sin θ cosφ) exp
[
κ cos2 θ

]
(2.5.0.1)

Plugging (2.5.0.1) into the constraint equations, namely (2.2.2.4) and (2.2.2.5), and integrating

n = 2π3/2C erf
(√

κ
)
/
√
κ (2.5.0.2)

r3
b

= πCλ

(√
π erf (

√
κ)

κ3/2
− 2e−κ

κ

)
(2.5.0.3)

r1
b

= πCα

(√
π (2κ− 1) erf (

√
κ)

2κ3/2
+
e−κ

κ

)
(2.5.0.4)

(With the understanding that κ can be negative, and in such cases

erf
(√

κ
)
/
√
κ = erf

(
i
√
|κ|
)
/i
√
|κ|

= − erfi
(√
|κ|
)
/i2
√
|κ|

= erfi
(√
|κ|
)
/
√
|κ|

where erfi is the imaginary error function. Hence, all the quantities on the left-hand side of (2.5.0.2)–

65



CHAPTER 2. ELECTROELASTICITY AND THERMODYNAMICS OF DIELECTRIC
ELASTOMER CHAINS

(2.5.0.4) are real, as desired.) Notice that (2.5.0.2)–(2.5.0.4) are linear in the unknowns. Thus, we can

solve the system directly to obtain

C =
(
n
√
κ
)
/
(
2π3/2 erf

(√
κ
))

(2.5.0.5)

λ =
(
2
√
πγ3κe

κ erf
(√

κ
))
/
(√

πeκ erf
(√

κ
)
− 2
√
κ
)

(2.5.0.6)

α =
(
4
√
πγ1κe

κ erf
(√

κ
))
/
(√

π (2κ− 1) eκ erf
(√

κ
)

+ 2
√
κ
)

(2.5.0.7)

where γ3 = r3
nb

and γ1 = r1
nb

.

2.5.1 Free energy

Having obtained an approximate solution for the unknowns C and τ , we turn our attention to the free

energy. Plugging the approximate density function (2.5.0.1) into (2.2.2.6), using the Taylor expansion

ln (1 + λ cos θ + α sin θ cosφ) ≈ λ cos θ + α sin θ cosφ

and integrating results in

A = kT

[
π3/2C erf (

√
κ)

2κ3/2
(
α2 (2κ− 1) + 2

(
λ2 − 2κ⊥κ

)
+ 4κ lnC

)
+

πC exp (−κ) (α2 − 2λ2)

κ
− n lnn

] (2.5.1.1)

Again, as in Section 2.4, having obtained an approximate solution for the unknowns C and τ and an

approximate expression for the free energy, we wish to test its accuracy by comparing it with numerical

solutions obtained in Section 2.3. Figure 2.25 shows the A∗/kT–γ relationship as approximated by

both the small |τ | approximate solution and the numerical solutions. The plots are shown for TI (right)

and uniaxial (left) DE chains, oriented at ψr = 0 (top), ψr = π
4

(middle) and ψr = π
2

(bottom). In all

cases, the zero and small stretch (γ ≤ 0.1) agree nearly exactly. In addition, in contrast to the small

|κ| closed-form approximation (derived in Section 2.4), all of the curves are convex–meaning there
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is no phase transition–as is desired, for physical reasons (discussed in more detail in Section 2.3 and

Section 2.4). However, none of the small |τ | curves have finite extensibility. In other words, A∗/kT

does not approach infinity as γ → 1. Lastly, note that the accuracy of the approximation in the regime

of moderate to large stretch (γ > 0.25) depends on |κ|, the type of monomers (TI or uniaxial) the chain

is composed of, and the orientation of the chain end-to-end vector with respect to the electric field (i.e.

ψr). More specifically, the TI chains with ψr = 0 and ψr = π
4

and the uniaxial chains with ψr = π
4

and

ψr = π
2

over predict A∗/kT (and hence, would result in predicting overly stiff chains) for γ in about

the interval (0.25, 0.99). Recall that these chain end-to-end vector orientations are such that monomers

are being kinematically constrained to high energy states as γ increases.

2.5.2 Force-length relation

In addition to investigating the accuracy of the A∗/kT approximation, we also consider the |τ |–γ

relationship. Figure 2.26 shows the component of τ in the direction of stretch for TI (left) and uniaxial

(right) chains oriented at ψr = 0 (top) and ψr = π
2
. As mentioned in Section 2.3, there are two regimes

in the force–stretch relationship: a linear regime (generally γ ∈ (0, 0.5)) and a super linear regime.

From (2.5.0.6) and (2.5.0.7), it can be seen that the small |τ | closed-form approximation predicts a

linear relationship and in Figure 2.26 we see that, with respect to the numerical solutions, the small

|τ | captures the linear regime almost exactly. The error with respect to the numerical solutions does

not occur until the super linear regime γ > 0.5. Thus, the error of the small |τ | approximation in the

A∗/kT curves over γ ∈ (0.25, 0.5) is likely due to error in the normalization constant, C. Indeed,

(2.5.0.5) shows that this approximation predicts a normalization constant that does not change with

stretch. Consequently, the normalization condition is only satisfied at γ = 0.
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Figure 2.25: Comparison of the predictedA∗/kT with γ relationship using the small |τ | approximation
and the numerical solutions. TI chains appear on the right and uniaxial chains on the left; ψr = 0, π

4
, π
2

(top row, middle, bottom).
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2.5.3 Chain polarization

Lastly, we consider the accuracy of the approximation of the chain polarization. Using (2.5.0.5)-

(2.5.0.6) in (2.3.2.1), we obtain px = py = 0 and

pz =
E0n

2κ

[
χ‖ + χ⊥ (2κ− 1)

]
+

e−κE0n∆χ√
πκ erf (

√
κ)

(2.5.3.1)

Note that the above expressions for the chain polarization do not have a dependence on the chain end-

to-end vector which, from Section 2.3.2, we know is incorrect. However, the above expressions are

exact when r = 0.

2.6 Asymptotic matching

Obtaining an approximate, closed-form solution that is both accurate for |κ| > 1 and moderate

stretches (γ > 0.25) has proved difficult. However, we can take a different approach. Instead of

assuming some parameter is small a priori, we can use what we have learned thus far to guide our

thinking in developing a new solution. For instance: although determining the monomer density func-

tion is difficult for general γ, we do know the exact function at γ = 0 (which is obtained by recognizing

that at γ = 0, τ = 0; and is ρ = C exp

(
κ
(
Ê0 · n̂

)2)
where C is given by (2.5.0.5)). In addition,

we know that at γ = 1, the kinematic constraint dictates that ρ = nδ (r̂− n̂). In principle, we expect

the actual density to transition from the γ = 0 density to the γ = 1 density as the chain is stretched. In

addition, we can extend this idea to consider densities that have the correct limiting behavior and are

accurate in the neighborhood of their respective limits. The small |τ | closed-form approximation (see

Section 2.5) is accurate in the neighborhood of γ = 0 and recovers the exact solution as γ → 0. Also,

we know a solution that, not only recovers the dirac delta density in the limit of γ → 1, but also is near

exact in the neighborhood of γ = 1–namely, the Kuhn and Grün solution (see Section 2.1). Although

the Kuhn and Grün solution is derived under the assumption that all chains have the same potential

energy, as γ → 1 all of the possible chain configurations have approximately the same energy since the
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individual monomers in each chain must be oriented near to r̂. A viable strategy then, is to synthesize

these two solutions to generate an approximation that is reasonably accurate for |κ| ≥ 1, over the entire

range of stretch. Ideally we would take this approach with the monomer density function; however,

this leads to a difficult in calculating the entropy term of (2.2.2.7) (i.e.
∫
S2 dA ρ ln ρ). Indeed, let ρsτ

and ρKG denote the small |τ | density and Kuhn and Grün density, respectively. Then ideally we would

make an approximation of the form

ρ ≈ wsτρsτ + wKGρKG

where wsτ and wKG are the weights of each respective monomer density; and in general, the weights

of each density are functions of the macroscopic parameters (i.e. wsτ = wsτ

(
κ, γ, Ê0, r̂

)
, wKG =

wKG

(
κ, γ, Ê0, r̂

)
). Since wsτ and wKG are weights, we require

wsτ + wKG = 1.0

0.0 ≤ wsτ ≤ 1.0

0.0 ≤ wKG ≤ 1.0

However, the integral in (2.2.2.7) would have a term that would be the logarithm of a sum of two

exponentials. Such a term would be difficult to evaluate or approximately evaluate.

2.6.1 Free energy

In this section we take a different approach and look to approximate A∗ directly. Let A∗sτ denote the

free energy approximation derived in Section 2.5, namely, (2.5.1.1). As mentioned previously, the

approximation is exact in the neighborhood of γ = 0. Additionally, plugging ρKG into (2.2.2.7) results
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in a free energy approximation that is exact in the limit γ → 1:

A∗KG = UKG − TSKG (2.6.1.1)

UKG =

∫
S2

dA ρKGu (2.6.1.2)

= nkT

[
κ3 − κ⊥ +

γ

L−1 (γ)
(κ1 − 2κ3)

]
(2.6.1.3)

and SKG was derived in Section 2.1 (see (2.1.0.14)). Finally, we make the approximation

A∗ ≈ A∗as

= A∗KG +
(
1− γ2

)(
lim
γ→0
A∗sτ − lim

γ→0
A∗KG

)
= nkT

{
−κ⊥ + γL−1 (γ) + ln

(
L−1 (γ) csch [L−1 (γ)]

4π

)
+

γκ

L−1 (γ)
+
(
1− γ2

) [
−κ

3
+ ln

(
2
√
κ√

π erf (
√
κ)

)]
+(

κ− 3
γκ

L−1 (γ)

)(
Ê · r̂

)2}
(2.6.1.4)

Notice that (2.6.1.4) (1) recovers the exact solution when κ = 0 and (2) is exact in the limits of zero

stretch and full stretch. In principle, the (stretch) limiting behavior would be recovered with any choice

of exponent on γ; however, the stretch term was chosen to be quadratic because of additional physical

considerations. It was discovered in Section 2.3 that there are generally two regimes to the force-length

relation of an DE chain: a linear regime at small to moderate stretches followed by a super linear

regime. By choosing the stretch term to be quadratic, we reproduce the linear regime while the A∗KG

term recovers the super linear regime. Figure 2.27 shows the predicted free energy-stretch relation

of the A∗as approximation compared to the numerical solution for κ = 1.0,−1.0, 9.0,−9.0, 25.0, and

−25.0, (top left to bottom right, respectively). The comparison is shown for chain orientations with

respect to the electric field of ψr = 0, π/6, π/4, π/3, and π/2. It can be seen from Figure 2.27 that the

approximation developed using asymptotic matching and physical intuition, A∗as, agrees well with the

numerical solutions for a wide range of chain stretch, chain orientation, and κ.
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Figure 2.27: Comparison of the predicted A∗/kT with γ relationship using the asymptotic matching
approximation and the numerical solutions. TI chains appear on the right and uniaxial chains on the
left; κ = 1.0,−1.0, 9.0,−9.0, 25.0, and −25.0, (top left to bottom right, respectively).
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2.6.2 Chain polarization

We now make a similar approximation to the chain polarization. Let psτ be the polarization derived

in Section 2.5.3 (see (2.5.3.1)). Next, let the coordinate system be such that the polar axis (i.e. e3) is

taken in the direction of chain stretch. The approximate chain polarization using ρKG is

pkg = n


E01 [χ⊥ −∆χγ/L−1 (γ)]

0

E03

[
χ‖ + 2∆χγ/L−1 (γ)

]
 (2.6.2.1)

Lastly, the asymptotic approximation is taken to be

pas = pkg +
(
1− γ2

)(
Rpsτ − lim

γ→0
pkg

)
(2.6.2.2)

where R is a proper orthogonal matrix that rotates the coordinate system used to derived psτ (i.e. polar

axis taken in the direction of the electric field) to the coordinate system in which pkg was derived. Fig-

ure 2.28 shows the predicted magnitude of the chain polarization of the pas approximation compared

to the numerical solution for κ = 1.0,−1.0, 9.0, and −9.0, (top left to bottom right, respectively). The

comparison is shown for chain orientations with respect to the electric field of ψr = 0, π/6, π/4, π/3,

and π/2. It can be seen from Figure 2.28 that, once again, the approximation developed using asymp-

totic matching and physical intuition agrees well with the numerical solutions for a wide range of chain

stretch, chain orientation, and κ.

2.7 Conclusion

The aim of this chapter was to investigate the electro-elasticity of DE chains using statistical mechan-

ics. In Section 2.1, we revisited the work of Kuhn and Grün in regards to classical rubber elasticity.

Following a similar approach, we derived equations for the most-likely monomer density function of

an DE chain. However, the equations proved difficult to solve exactly. In Section 2.3, we used nu-
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Figure 2.28: Comparison of the predicted |p|/
√
|κ|kT with γ relationship using the asymptotic match-

ing approximation and the numerical solutions. TI chains appear on the right and uniaxial chains on
the left; κ = 1.0,−1.0, 9.0, and −9.0, (top left to bottom right, respectively).
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merical integration, the Newton-Raphson method and, when necessary, gradient-free optimization to

approximate solutions to C, τ , ρ, A∗, and p of DE chains. We considered the physical implications of

the resulting solutions–emphasizing the interplay between the electrostatic energy, the thermal energy,

and the kinematic constraints of the chain. In Section 2.4 and Section 2.5, we derived closed-form

approximations by assuming |κ| and |τ | were small, respectively. These closed-form approximations

proved accurate when |κ| ≤ 0.25 and γ ≤ 0.25, respectively, but did not generalize well for larger |κ|

or γ. Finally in Section 2.6, we used knowledge about the exact monomer density function in certain

limits, such as γ → 0, γ → 1, and |κ| → 0, and knowledge gained previously in the paper to form a

closed-form approximation using asymptotic matching and physical intuition. The approximations for

the free energy and chain polarization that were developed using the asymptotic matching approach

agreed well with numerical solutions for various values of κ, γ, Ê0, and r̂.

In the context of the bigger picture of predicting the electromechanical constitutive response of DEs,

the next logical step is to take what has been learned and derived regarding the statistics of a single DE

chain and, in conjunction with polymer network theory (for example, [AB93, MGL04]), predict the

macroscopic response of an DE network. This will be examined in the next chapter.
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Chapter 3

Interaction between broken symmetries:

chain torque contributes to electromechanical

coupling in polarizable polymer chains

Dielectric elastomers (DEs) are soft materials that can be used to convert electrical energy into mechan-

ical energy, or vice versa. For this reason, DEs are promising for applications in biomedical devices

and biologically inspired robotics. The quintessential example of a DE actuator (DEA) is a thin DE

film sandwiched between two compliant electrodes–a soft parallel plate capacitor, in a sense. When a

voltage difference is applied across the electrodes, a positive charge density accumulates on one of the

electrodes and an equal and opposite charge density accumulates on the other. The DE film polarizes

and compresses across its thickness and, because DEs are incompressible, the DE film expands in the

plane of the electrodes.

Often this deformation has been explained as occurring because the electrodes are attracted to each

other and, as a result of that attraction, apply a pressure–called the Maxwell stress–to the top and

bottom of the DE film [PKK00, WM07, Kof08, KZSK12]. Although the Maxwell stress is obviously

a factor, it has been pointed out (both theoretically and experimentally) that if the permittivity of

the DE film is a function of deformation, then an additional stress develops in the DE film [ZS08,
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Suo10, Cd16]. In this work, we explain the cause of this stress at the macromolecular level. We then

proceed to show by example that this model predicts that the direction of polarization in DEs is not

only dependent on the electric field, but also the deformation of the material. This is more general

than having a permittivity that is deformation dependent and leads to new types of electromechanical

coupling. This is again explained through the lens of the electroelasticity of macromolecules and their

interaction with the surrounding network.

We review the core details of the DE model before proceeding to show the role of chain orientation

and torque in the electromechanical coupling of DEs. We start by considering the mechanics of DEs

at the monomer scale. Following [Tre75, KG42], we idealize the mechanics of a polymer chain such

that (1.) monomers are rigid, (2.) monomers are free to rotate about their neighboring bonds, and

(3.) we neglect excluded volume effects for simplicity. This means the maximum length of the chain

end-to-end vector, r, is nb, where n is the number of monomers in the chain and b is the monomer

length. Note that, in the absence of electrostatic energy, the elasticity of a polymer chain solely due to

entropy.

In the presence of an electric field, bound charges on an individual monomer can separate and an

electric dipole, µ, forms. Following [Sto67, CDd16], we make the assumption that the separation of

charges depends on the magnitude of the electric field and the orientation of the monomer with respect

to the direction of the electric field, Ê. Because, empirically speaking, we expect the DE to be a linear

dielectric, we assume the form

µ (n̂,E) =
[
χ‖n̂⊗ n̂ + χ⊥ (I− n̂⊗ n̂)

]
E

where n̂ is a unit vector describing the monomer orientation, χ‖ and χ⊥ are the dipole susceptibility

along n̂ and the susceptibility in plane orthogonal to n̂, respectively, and E is the local electric field.

Following [CDd16], we refer to monomers with χ‖ > χ⊥ as uniaxial and monomers with χ⊥ > χ‖ as

transversely isotropic (TI).

We continue to use the analogy of the dipole being like two point charges separated by the electric

78



CHAPTER 3. CHAIN TORQUE CONTRIBUTES TO ELECTROMECHANICAL COUPLING IN
POLARIZABLE POLYMER CHAINS

field. We expect that the polarization vanishes when the electric field vanishes. We can model this

behavior by connecting the two point charges by springs: one with a stiffness in the n̂ direction and

the other with a stiffness in the plane orthogonal to the n̂ direction. Then the potential energy of the

monomer is a sum of its dipole spring energy and the electrostatic potential energy of the dipole. This

potential energy is given by

u (n̂) =
1

2
µ · χ−1µ µ− µ · E =

∆χ

2
(E · n̂)2 − χ⊥

2
E2 (3.0.0.1)

where u denotes the energy, E = |E|, and ∆χ = χ⊥ − χ‖. Lastly, in general, dipoles interact with

each other. However, for simplicity, we assume that monomer-monomer interactions are negligible as

compared to the electric field, E. Thus, in the remainder of this work, we assume that the potential

energy of a DE chain is a summation of terms of the form (2.2.1.9) for each of the monomers in the

chain.

Having described the energy of a monomer, we wish to derive the free energy of a DE chain. To

this end, we derive a mean-field theory and determine that the density of monomers oriented in the

direction n̂ is given by

ρ (n̂) = C exp

[
−κ
(
Ê · n̂

)2
+ τ · n̂

]
(3.0.0.2)

where κ = E2∆χ/2kT , and the unknowns, C and τ , are determined by enforcing the constraints

n =

∫
S2

dA ρ (n̂) ,
r

b
=

∫
S2

dA ρ (n̂) n̂ (3.0.0.3)

where S2 denotes the surface of the unit sphere. In terms of the monomer density function, one can

show that the free energy is approximately:

A∗ ≈
∫
S2

dA {ρu+ kTρ ln ρ} − nkT lnn (3.0.0.4)

There are still two remaining difficulties in solving for C and τ : (1.) the integrals in (3.0.0.3) are

difficult to evaluate and (2.) the resulting systems of equations are nonlinear. However, there are two
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limits in which a solution is tenable. Let γ = r/nb denote the absolute chain stretch. Then, by Taylor

expanding in small parameters, we derive approximate solutions in the limit of small stretch, A∗sτ ,

and near the fully stretched limit, A∗KG (i.e. ρ ≈ C (1 + τ · n̂) exp [−u/kT ] and ρ ≈ C exp [τ · n̂],

respectively). Then, using what is known about the limiting behavior, we construct a free energy

approximation:

A∗ = A∗KG +
(
1− γ2

)(
lim
γ→0
A∗sτ − lim

γ→0
A∗KG

)
= nkT

{
f (γ, κ) + κ

(
1− 3γ

L−1 (γ)

)(
Ê · r̂

)2} (3.0.0.5)

where κ⊥ = E2χ⊥/2kT , L−1 is the inverse Langevin function, and terms which do not depend on Ê · r̂

have been grouped into f (γ, κ). Notice that (3.0.0.5) recovers the exact solution when κ = 0 and is

exact in the limits of zero stretch and full stretch. This approximation has been shown to agree well

with numerical experiments for a large variety of general chain conditions (e.g. stretches, orientations

with respect to the electric field, |κ|, etc.).

Having obtained an approximation of the free energy, one can obtain the chain polarization, p, by

differentiating the free energy with respect to the electric field, which is equivalent to integrating the

dipole moment over the monomer density function; i.e.

p = −∂A
∗

∂E
=

∫
S2

dA µ (n̂) ρ (n̂)

Before moving on, we note an important feature of the free energy-stretch relationship of DE chains:

numerical experiments suggest that theA∗/kT vs γ curve is convex and its minimum is at zero stretch.

This means that an individual chain will not spontaneously stretch under electrical excitation. There-

fore, the additional electrostriction that occurs in DEAs when the permittivity is deformation dependent

cannot be explained by the notion that chains spontaneously stretch or contract within the network due

the applied field (whereby additional electrostriction, we mean the contribution to electromechanical

coupling in DEAs that is not due to the Coulomb attraction between the electrodes). Physically, this

feature of the A∗/kT -γ relationship can be understood as a consequence of: (1.) the electrostatic
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energy of the monomers are quadratic in E · n̂ (see (2.2.1.9)) and (2.) the assumption that monomer-

monomer interactions are negligible. This means that if a monomer’s orientation is reversed (i.e.

n̂→ −n̂), its energy, and hence, its contribution to the Boltzmann factor is the same. And since there

is no energy penalty associated with large or small bond angles between neighboring monomers, the

chain is free to fold back on itself. So in terms of the Boltzmann factor, a longer end-to-end vector is

never any more favorable than a shorter end-to-end vector. However, in terms of entropy, the shorter

end-to-end vector is more favorable. For these reasons, the free energy versus stretch relationship for a

DE chain should be convex with its minimum at zero stretch. The correct explanation for the additional

stress will become clear shortly.

Now, in order to relate the continuum scale deformation to the electroelasticity of individual chains

in the network, we use the 8-chain model developed in [AB93]. The 8-chain model assumes a represen-

tative volume element (RVE) at each material point in the reference configuration consists of 8-chains

emanating from the center of a cube to each of the cube’s vertices, each with length |̃r| =
√
nb where

by r̃ we mean a chain end-to-end vector in the reference configuration. The RVE is assumed to ro-

tate such that it is stretched in the principal frame: let ci, i = 1, 2, 3 denote the principal directions

of the right stretch tensor (chosen and normalized such that ci · cj = δij), Φ =

(
c1 c2 c3

)
, and

Λ = diag (λ1, λ2, λ3). Then the free energy density is given by

W∗ (F,E) = N
〈
A∗
(
ΦTΛr̃,E

)〉
r̃

(3.0.0.6)

where N is the number of chains per unit volume and 〈·〉r̃ denotes an average over the distribution of

chains. For a detailed discussion of the 8-chain model, see [AB93, BA00].

Having touched upon the DE model, we now turn our attention to the electrostriction of DEAs. In

order to isolate the phenomena of interest, we consider a typical DEA, but with the pressure from

the electrodes removed. This could be done by applying a traction, t0, to the outside surfaces of the

electrodes that are equal and opposite to the Coulomb attraction and by ensuring the voltage difference

is adjusted to keep the electric field constant when the distance between the electrodes changes. This
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Figure 3.1: Thin film DEA but with a fixed bottom surface and an applied traction, t0, to the top
surface of the actuator that is equal and opposite to the Coulomb attraction: (a) undeformed reference
configuration; (b) a voltage difference is applied across the electrodes and by symmetry we assume a
biaxial homogeneous deformation.

is shown in Figure 3.1.

In this case, the change in energy stored in the electric field and the work of the applied traction will

cancel each other out; as a result, the equilibrium configuration will be the one that minimizes the free

energy of the DE film. By symmetry, we assume the DE body undergoes homogeneous deformation,

with deformation gradient, F, of the form: F = diag
(
1/
√
λe, 1/

√
λe, λe

)
Employing the 8-chain

model, we obtain (
Ê · r̂

)2
=
(
1 + 2/λ3e

)−1
, γ =

√
λ2e + 2/λe

3n
(3.0.0.7)

for each of the chains. Then, using (3.0.0.5), (3.0.0.6), and (3.0.0.7), we obtain the free energy density.

Since the deformation and electric field are homogeneous, the minimization can be carried out point

wise and amounts to a line search. We used Brent’s method [Bre72] for the line search to determine

the equilibrium λe [MR18]. The λe which minimizes the free energy density for various κ is shown in

Figure 3.2. Figure 3.2 shows that the model predicts a spontaneous deformation of the DE film, even

in the absence of pressure from the top and bottom electrodes. When κ > 0, that is, when the chain

is made up of TI monomers, the film is compressed in the direction of Ê (i.e. λe < 1). Alternatively,

82



CHAPTER 3. CHAIN TORQUE CONTRIBUTES TO ELECTROMECHANICAL COUPLING IN
POLARIZABLE POLYMER CHAINS

4 2 0 2 4

0.8

1.0

1.2

1.4

1.6

1.8

e

Figure 3.2: Stretch across the thickness of the DE film for various electrical inputs, κ. By free energy
minimization, one sees a spontaneous deformation occurs despite the fact that the Maxwell stress has
been counteracted.
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when κ < 0 (chain consists of uniaxial monomers), the film actually elongates in the Ê direction

(λe > 1). This is likely not observed in experiments because the material and experimental parameters

are such that the attractive force between the electrodes is always greater than stresses in the DE film

due to this effect.

Although it has been pointed out that, at the continuum scale, this additional contribution to elec-

trostriction can occur when the permittivity is a function of deformation [ZS08, Suo10, Cd16], the

exact nature of the cause of this electrostriction at the macromolecular scale has not been adequately

explained. The short explanation is that the deformation occurs because there is a net torque on each

DE chain in the network that is similar to the torque on a dipole in an electric field. In fact, let ψr

denote the angle between the electric field and the chain end-to-end vector; then it can be shown that

−∂ (A∗/kT )

∂ψr
= p× E

Due to empirical reasons, we assume the macroscopic deformation will be incompressible; and because

of this constraint on the form of F, chains can only rotate if the chains stretch as well. The confluence

of the DE chain torque and incompressible nature of the material leads to the deformation observed in

the above thought experiment. For a chain consisting of uniaxial monomers, for instance, some of its

polarization is in the direction of its end-to-end vector (i.e. p · r 6= 0). As a result, there is a torque

that is forcing the chain to either align or anti-align with Ê. It is clear that such rotations of the chains

would lead to an elongation in the Ê–which is exactly what is shown by Figure 3.2. The reasoning is

similar for chains consisting of TI monomers, but instead the torque forces these chains into the plane

orthogonal to Ê, which causes the film to compress in the Ê direction.

Interestingly, although the chain torque is nonzero for each individual chain, the average over the

eight chains vanishes (i.e. 〈p× E〉r̃ = 0). Thus, there is no net torque or “body couple” for this

scenario. However, in the next example, we will consider a case in which the average torque does not

vanish and a so-called body couple is present, which gives rise to a novel electromechanical coupling.

Again a thin DE film is considered with compliant electrodes on its top and bottom surfaces. How-
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Figure 3.3: DEA constrained such that it can only undergo shear deformation: (a) undeformed ref-
erence configuration; (b) a shear prestress, t0, is applied and held, and then a voltage difference is
applied across the top and bottom surfaces.

ever, in this example we assume the film is constrained such that it can only undergo homogeneous

simple shear deformation. (This could be implemented by bonding the top surface of the DE film to an

apparatus with rollers constraining its motion in the plane of shear). We also assume that the electric

field is fixed and across the thickness of the film–which, neglecting fringe effects, would be realized

by applying a voltage difference across the electrodes. The setup is shown in Figure 3.3.

For simple shear, the deformation gradient is of the form F = I+se1⊗e3. Let λs = 1
2

(√
4 + s2 + s

)
.

Then the principal directions are given by

c1 =

{
1 0 λs

}
/
√

1 + λ2s, c2 =

{
0 1 0

}
,

c3 =

{
−λs 0 1

}
/
√

1 + λ2s

Notice that Ê is no longer aligned with any of the principal directions.

The last term in the brackets of (3.0.0.5) contains all the information regarding chain orientations.

Since each of the chains stretches the same amount, this last term is the only one in which the averaging
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must be explicitly calculated. In particular,

〈(
Ê · r̂

)2〉
r̃

=
1− λ2s + λ4s
1 + λ2s + λ4s

(3.0.0.8)

which is an even function of s, as expected. We will also be interested in the DE polarization (i.e.

dipole moment per unit of volume in the current configuration).

P = −∂W
∗

∂E
= N

〈
∂A∗

∂E

〉
r̃

= N
〈
p
(
ΦTΛr̃,E

)〉
r̃

(3.0.0.9)

Having developed the kinematics, we now turn to the free energy. Let a traction, t0 =

{
t0 0 0

}
,

be applied to the top surface of the film. Then, the free energy is given by

∫
Ω0

(W∗ − σt0s) (3.0.0.10)

where, again, the energy density of the electric field is neglected because it does not do work on the

dielectric elastomer (another way to justify this is that the electric field is held constant and volume

is conserved–thus, the energy density of the electric field remains constant for any shear deformation)

and σt0 is the stress induced by the traction. Again, by homogeneity (of both the deformation and

electric field), we minimize (3.0.0.10) by minimizing the integrand.

Now we consider the following experiment: (1.) the traction is applied before any voltage difference

is applied and is held constant; (2.) the traction causes initial shear strain, s0; (3.) a voltage difference

is applied across the electrodes such that there is some electric field, E, in the DE film; (4.) for each E,

a shear strain s is observed such that a relationship s = s (E) is determined. The s = s (E) is shown

in Figure 3.4. Note however that the relationship is shown in terms of κ instead of E. This is because

s (E) = s (−E) and, hence, s can be expressed as a function of κ without loss of generality; also the

quantity κ is already nondimensionalized.

Figure 3.4 shows a shear electromechanical coupling. It can be seen that DEs with chains consisting

of uniaxial monomers (κ < 0) spontaneously increase deformation with respect to an increasing elec-
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Figure 3.4: Shear electromechanical coupling due to the affect of deformation on polarization. Nor-
malized shear strain, s

s0
, vs κ.
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tric field while DEs with TI chains stiffen with increasing electric field such that the shear deformation

decreases. This can be understood in terms of energy minimization by inspection of (3.0.0.8); that is,

when shear deformation increases, the average of the chain alignment or anti-alignment with the elec-

tric field increases (i.e.
〈(

Ê · r̂
)2〉

r̃

increases monotonically with |s|). It is energetically favorable

for uniaxial chains to align with the electric field; hence, the increase in shear deformation–vice versa

for TI chains.

Alternatively, we can think in terms of chain torque and so-called body couples. It is typical

to decompose the total stress tensor of dielectric materials into mechanical and electrical parts (i.e.

the Maxwell stress) [PKK00, Cd16, TM14, HZS09, HCB13, HLCF+12, BPK+12, KZSK12, Kof08,

WM07, ZHS07]. While conservation of angular momentum requires that the total stress tensor be

symmetric, the mechanical and electrical contributions need not be. The skew-symmetric parts of the

mechanical and electrical stresses must be equal and opposite and can be thought of in terms of a body

couple and a resistance to the said couple. As pointed out in [Coh18], when the electric field is not

aligned with the principal frame, the mechanical and electrical stresses become asymmetric and a body

couple is present. The reason why this occurs manifests itself at the macromolecular level. Just as in

the case of biaxial deformation, there is a torque on each of the eight chains individually. However in

the present case, the average torque does not vanish. And, in fact, the average torque over the 8-chains

is precisely the skew-symmetric part of the Maxwell stress tensor. Indeed, since the Maxwell stress is

the sum of a rank one tensor and a symmetric tensor, we can obtain its skew-part by the Levi-Civita

tensor, εijk, by εijk
(
PiEj + ε0

2
EmEm

)
= 〈p× E〉r̃ = ω where we let ω denote the chain torque. The

nonzero component of ω is the e2 component (the direction about which the torque occurs)

ω2 = nkTκ
(
3γ/L−1 (γ)− 1

) λs (λ2s − 1)

1 + λ2s + λ4s
(3.0.0.11)

Notice that the sign of the torque is determined by κ, as expected, so that the direction of the torque

depends only on whether the chains consist of uniaxial or TI monomers.

Finally, it is worth considering the difference between our model and some of those that exist in the
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literature to isolate what gives rise to this newly predicted behavior in the context of the continuum

picture. It is typical to, upon decomposing the stress into mechanical and electrical parts, model the

mechanical part through a hyperelastic model [TM14, HZS09, HCB13, HLCF+12, BPK+12, KZSK12,

Kof08, WM07, ZHS07]. The electrical part is captured through the Maxwell stress. Thus, one needs a

constitutive model for the polarization response of the DE:

σ = σmech + Σ = σmech + P (T,E,F, ...)⊗ E +
ε0
2
|E|2I

where, by the notation P = P (T,E,F, ...), we mean to emphasize that the polarization response may

be a function of T , E, F, and other state variables. Often, citing the isotropic nature of elastomers, it

is typically assumed: P (T,E) = X (T ) E, where X is a scalar quantity representing the polarization

susceptibility of the material [TM14, HZS09, HCB13, HLCF+12, BPK+12, KZSK12, Kof08, WM07,

ZHS07]. However, while this has a solid empirical basis, it results in the polarization always being

aligned with Ê; and yet it is clear from (3.0.0.11) that such a constitutive model would not result in

a body couple. What we have predicted is that, although DEs tend to behave isotropically in their

stress-free state, the symmetry of the material is broken when deformed. This can be understood by

considering that, while chain end-to-end vectors may be isotropically oriented in the stress free net-

work, they will, in general, not be isotropically oriented after deformation. This breaking of symmetry

means that the polarization is no longer restricted to be aligned with the local electric field.

What is more is that we have derived this anisotropic polarization constitutive response through

statistical mechanics and network theory; however, if, instead of using numerical methods or an ap-

proach like the asymptotic matching approach used in the current work, one used a Gaussian-like

approximation (i.e. small chain stretch approximation) and Taylor expanded the unknown multi-

plier related to the kinematic constraint, τ , out of the exponential (see [CDd16, Cd16])–for instance

ρ ≈ C
[
1 + τ · n̂ + 1

2
(τ · n̂)2 + ...

]
exp [−u/kT ] results in the prediction: P (T,E,F) = X (T,F) E,

where although X is a function of deformation, it is still a scalar quantity and results in an isotropic

response. So it is clear that the anisotropic susceptibility and the prediction of the type of shear elec-

tromechanical coupling discussed above, is a result of the nonlinear relationship between the chain
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end-to-end vector and polarization at the macromolecular level. For completeness, we remark that,

although we do not artificially decompose the total stress into mechanical and electrical parts, our

approach does result in a polarization response of the form: P (T,E,F) = X (T,F) E, where X is

a second-order tensor and the direction of the polarization can vary from being aligned with Ê. Of

course, we also recovered the limiting isotropic behavior in the absence of strain.

To recap, we have presented a multiscale theoretical model of dielectric elastomers which predicts

and explains new types of electromechanical couplings: (1.) a biaxial electromechanical coupling of

a thin film DE actuator–despite the Coulomb attraction between the electrodes being counteracted and

(2.) a shear electromechanical coupling where the electric field is orthogonal to the plane of shear.

Each of these electromechanical couplings is a continuum scale manifestation of chain torques in the

DE network due to their interaction with an electric field; the interaction is analogous to a dipole in

an electric field. Although chain torque is the driving factor in these couplings, it is balanced by the

incompressibility of the network and the entropic elasticity of the individual chains.
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Chapter 4

Design and optimization of the material

architecture of dielectric elastomers

4.1 Design parameters

Manufacturing technologies have been progressing at a rapid rate and provide a means for finer and

finer control of the structural details of materials. The goal of this work is to make useful sugges-

tions about how the properties of DEs may be controlled by altering its molecular and macromolecular

structure in specific ways–such that, manufacturers and other researchers may leverage advanced man-

ufacturing to produce novel DEs with enhanced material properties. If this goal is to be achieved, it is

important that the gap between what is suggested and what can be realized is not too great. With this

in mind, we aim to identify design parameters such that:

1. The parameters are readily understood in the sense of structure rather than response (e.g. it is

more useful to, when designing a structure against high speed winds, suggest that the structure

not exceed a certain height or aspect ratio than to describe an abstract, response-type property

such as “it would be desirable that it not sway much”. While the latter is true, it is much less

clear how to achieve “not sway much” than it is to achieve a geometric property.) Thus, we aim
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to identify direct, concrete properties, as opposed to abstractions.

2. There is some notion for how each of the parameters may be controlled. It would perhaps not

be all that useful to give a blueprint for the ideal molecular structure if the design cannot be

manufactured, even with modern technology, or if it can be manufactured but it is unlikely that

the benefits will outweigh the costs.

One design parameter that we will consider, in particular, is the architecture of the chains that make

up the cross-linked network–where by architecture we mean the geometrical features of the chain,

the types of monomers the chain consists of, and the various sequences that the monomer types are

arranged in. Figure 4.1 shows a few examples of polymer chain architectures. In architectures that

are not a linear sequence of monomers (examples of linear chains are (a), and (b); examples of non-

linear are (c) and (d)), we divide the monomers into two groups: (1.) those that make up the backbone

of the chain, nb, and (2.) those that make up the loose ends of the chain, nl. By backbone of the

chain, we mean those monomers that span from cross-link to cross-link and by loose ends, we mean

the remaining monomers in the chain. We make this distinction because it allows us to consider

monomers which interact through the end-to-end vector constraint separately from those that do not

need to satisfy such a constraint. Further, we take linear chains with some amount of loose ends as our

fundamental building block of the network. So in regards to a more complex architecture such as the

star polymer ((d) in Figure 4.1), if each appendage of the star has a cross-link at its end, we say that

this architecture actually consists of five separate (linear) chains and no loose end monomers.

4.1.1 Linear chains and the weakly interacting assumption

The importance of the above distinctions will become clear after the following definition. We say that

two systems A and B are in weak interaction with each other if |HA↔B| << |HA| |HB| where the

Hamiltonian of the two systems,H = HA+HB+HA↔B have been broken into the contributions: HA,

the Hamiltonian of system A as if it were in isolation; HB, the Hamiltonian of system B as if it were

in isolation; and HA↔B, a correction term due to interactions between system A and system B; that
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Figure 4.1: (a) Linear polymer chain (b) (linear) block copolymer chain (c) branched polymer (d) star
polymer

is, we say the systems are in weak interaction if the interaction term is negligible (see [TM11] section

7.3.3, for example). If one neglects the interaction term, then the free energy of the two systems is

simply a sum of their individual free energies (as if they were in isolation). When systems are in weak

interaction with each other then we can break up the whole system into simpler pieces and combine

their contributions later. Next, we make the assumption that loose end monomers are in weak inter-

action with the backbone monomers and that separate chains are in weak interaction with each other.

This is justified as follows: in regards to the electrical energy of the system, we made the assumption

that dipole-dipole interactions within a chain are negligible compared to dipole interactions with the

electric field; thus, to maintain consistency we should also neglect dipole-dipole interactions between

loose end monomers and between monomers of different chains. In regards to what might be consid-

ered the mechanical portion of the energy of the system, monomers within a chain interact through the

enforcement of the end-to-end vector constraint. However, loose end monomers, by definition, do not

take part in this constraint; and obviously monomers in separate chains do not interact through such
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a constraint. (Note that the assumption of weakly interacting chains is often used in rubber elasticity,

see [Tre75] Section 4.2. The weakly interacting assumption could be violated if chains are “too short”

such that a significant portion of monomers in the chain are neighboring another chain, if long range

potentials between monomers are present, and/or if excluded volume effects between chains becomes

relevant.)

In summary, we have reduced all chain architectures to collections of weakly interacting linear

chains with some fraction of loose ends, α = nl/n. However, the orientation of these chains (with

respect to local electric field) influence the electroelastic response of the network. As a result, in

contrast to explicitly analyzing different complex architectures such as the star polymer, we instead

think of all networks as weakly interacting linear chains and take the distribution of these linear chains

within the network as the design variable. More specifically, let P = P (r̃) denote a probability density

function which describes the fraction of chains with reference end-to-end vector r̃. Then P is one of

our design parameters.

4.1.2 Mass density and cross-linking properties

In addition, we will also consider the parameters: the density of chains per unit volume (in the reference

configuration), N0; the number of monomers per chain, n; and the fraction of loose end monomers–

together with the pdf P, we will say that these variables describe the microstructure of our elastomer.

As an aside, clearly χ‖ and χ⊥ will vary, in general, from monomer-type to monomer-type. However,

we do not consider these as design variables because it is not apparent how one might control these

properties, especially continuously, beyond measuring them for different molecules and cataloging

their various values. In regards to controlling the considered design variables: we envision P as being

controlled either by cross-linking while under an applied electric field (with the idea being that the

field will introduce preferred chain directions) or by some type of advanced 3D printing. And in terms

of controlling N0 and n, it is perhaps easier to think in terms of the product N0n and the ratio N0/n.

The former is related to the mass density of the material and the latter is a function of the density of
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cross-links (per unit volume) for a fixed mass density.

4.1.3 Chain pdf

Having established some parameters of interest, we now turn our attention to P. The purpose of a net-

work model is relate deformation at the continuum scale to chain deformations. Similarly, given a pdf,

P, we need to establish how chains map into the current configuration. Following [Tre75], we assume

that cross-links (so-called “junction points” in [Tre75]) are mapped under the local deformation gra-

dient, F. Treloar refers to this as the affine deformation assumption. The key difference between the

affine deformation assumption and the 8-chain model [AB93, BA00] is that it is assumed that the repre-

sentative volume element (or cell, as it is called in [AB93]) rotates such that its edges are stretched (by

the principal stretches) in the principal frame; that is, the basis that consists of the principals directions

of the right Cauchy-Green tensor. 1 We forego the nuanced differences between the affine deforma-

tion assumption and the principal frame assumption in this work by considering diagonal deformation

gradients only; in this case, the two competing assumptions are equivalent.

Let Ω0 denote the body of our DE in the reference configuration and Ω = Υ (Ω0) the body in the

current configuration, where Υ is the deformation mapping. The position of a material point in the

reference configuration, X, is mapped to a position in the current configuration by the deformation

1The argument in favor of rotation of the representative volume element such that it is stretched in the principal frame
is given in [BA00] as follows:

The 8-chain model was found to be predictive of the biaxial data and indeed to provide a better prediction
than the full network model. The full network model predicts a biaxial stress-stretch response that falls
between that predicted by the 8-chain and that predicted by the 3-chain model. The somewhat surprising
lack of success of the full network model lies in its assumption of affine deformation of all chains in the non-
Gaussian regime. In a real network, chains which lie along the maximum principal stretch direction would
begin to stretch less with continuing deformation once they begin to approach their limiting extensibility; at
that point, other chains in the network will stretch more than that predicted by affine deformation in order to
accommodate the total applied stretch. Therefore, the affineness of chain deformation will be lost. The full
network model assumes affine deformation of all chains and therefore, at large stretches, the contribution
to the stress-stretch behavior from chains along the principal stretch direction is overestimated. We note
that the 8-chain model does not assume affine deformation of all chains, but captures an effective network
response.

There was, at one time, some controversy regarding this, as Treloar was not convinced that this rotation had proper physical
justification [Tre75]. To the authors’ knowledge, this assumption has not been observed directly through experiments. It
seems the principal motivation for this assumption is the agreement of the 8-chain model with experimental data.
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mapping, i.e. x = Υ (X); and the deformation gradient is given by F = GradΥ .

Then given some boundary conditions, B, and some external work, W, the equilibrium configuration

of the DE body is given by the minimization of the Gibbs free energy such that the boundary conditions

are satisfied; that is:

Ψ
[
F, P̃

]
=

∫
Ω0

W
(
F, P̃

)
dV −W{

Feq, P̃eq
}

= arg min
F,P̃

Ψ
[
F, P̃

]
subject to B

(4.1.3.1)

Thus, the constitutive response of our design DE is encoded in the form of the Helmholtz free energy

density function,W . Because of the weakly interacting assumption,W is given by

W
(
F, P̃;T

)
=W∗ (F,E;T ) + J−1P̃ · E (4.1.3.2)

W∗ = N 〈A∗ (Fr̃,E;T )〉r̃ = N

∫
R3

d3r̃ P (r̃)A∗ (Fr̃,E;T ) (4.1.3.3)

where P̃ = JP is the pullback of the (continuum-scale) polarization andW∗ is the Legendre transform

of the Helmholtz free energy density (in the P̃ slot)–which we will call LTHP for short. (This claim is

justified in Appendix A.) Physically, the significance of the LTHP free energy is that it has a minimum

principle at constant temperature and constant electric field.

The design space of P is the space of all probability measures on R3; and hence, an infinite dimen-

sional space. However, there are rational ways in which to reduce our search. First, we assume that the

length of all chains depends only on n and b; specifically, we assume |̃r| = b
√
n, which is the expecta-

tion of the length of a random walk of n steps with step length b. This choice is obviously motivated by

probability theory but it will also be justified further later on in this section when we discuss residual

stresses.

Having reduced the support of P to the surface of a sphere of radius b
√
n, we next consider the

symmetries inherent in the physical problem. For instance, in regards to chain statistical mechanics:

A∗ (r, ...) = A∗ (−r, ...); or, in other words, although chains have well defined ends (cross-linking
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points), there is no difference between calling one end the start and the other the finish and vice versa.

This reduces the information needed to specify a P to values on a half sphere.

So far our thinking has been quite general, but now we consider specific applications of interest. Our

primary focus will be on a thin film dielectric elastomer actuator (DEA), where the voltage difference

is applied across the thickness of the film. Physically, there are three orthogonal directions that are

significant. We therefore restrict our attention to P = P (φ, θ) of the form

P (φ, θ) = Pφ (φ) Pθ (θ) (4.1.3.4)

where

Pφ (φ) = Pφ (π − φ)

Pθ (θ) = Pθ (π − θ)
(4.1.3.5)

and the polar axis is taken as the direction of the electric field, Ê, and φ is the angle relative to the e1

direction. The form given by (4.1.3.4) is consistent with the symmetry of the DEA while (4.1.3.5) is

consistent with the r → −r symmetry. For materials with the above symmetries and the BVP associ-

ated with a thin film DEA, we expect a homogeneous deformation of the form F = diag (λ1, λ2, λ3),

which is diagonal as desired.

That concludes the discussion regarding the symmetries of P. From a more practical perspective,

we will take the following as an ansatz of P:

P = C

{
exp

[
−(θ − θ0)2

2σ2
θ

]
+ exp

[
−(π − θ − θ0)2

2σ2
θ

]}
×{

exp

[
−(φ− φ0)

2

2σ2
φ

]
+ exp

[
−(π − φ− φ0)

2

2σ2
φ

]} (4.1.3.6)

where, when considering transversely isotropic materials, reduces to:

P (φ, θ) = Pθ (θ; θ0, σ) = C

{
exp

[
−(θ − θ0)2

2σ2

]
+ exp

[
−(π − θ − θ0)2

2σ2

]}
. (4.1.3.7)
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where C is a normalization constant such that
∫

P = 1. The reasons for this choice of ansatz are as

follows: the properties of Gaussian distributions are well understood; (2) ease of integration (e.g. when

evaluating (4.1.3.3)); (3) the symmetries given by (4.1.3.4) and (4.1.3.5) are satisfied; (4) it reduces

our search space from an infinite dimensional space to a finite dimensional space (specifically, four

dimensional: θ0, σθ, φ0, and σφ); and (5) it is consistent with some of the ideas that were previously

mentioned about how the direction of chains may be controlled. For instance, if some advanced form of

3D printing were indeed used, then it would be necessary to consider manufacturing error tolerances.

The error tolerances could be modeled by placing lower bounds on σθ and σφ. Alternatively, if chain

directions were controlled by an applied electric field, then the above ansatz is likely the only possible

form of P that could be manufactured.

Now, for the case of the uniform distribution (i.e. P = 1/4π) or the 8-chain model [AB93]:

P =
1

8
[δ (θiso − θ) + δ (π − θiso − θ)]×

[δ (π/4− φ) + δ (3π/4− φ) + δ (5π/4− φ) + δ (7π/4− φ)]

(4.1.3.8)

(where θiso = arctan
√

2)) and in the absence of external loads (E = 0, P1 = P2 = P3 = 0), then by

symmetry λ1 = λ2 = λ3. Elastomers are typically incompressible (or approximately so); this, together

with the symmetry of the chain distribution is enough to enforce that, in the absence of external loads,

Feq = I, as expected. What is interesting is that this is not true, in general, for anisotropic P (with

|̃r| = const.). Since the hypothetically manufactured P is not in mechanical equilibrium when F = I

and in the absence of external loads, this is analogous to residual stresses that are introduced during

the manufacturing process. The procedure we envision is as follows then:

1. Chose design variables: P; mass density (i.e. N0n); density of cross-links (i.e. n/N0); fraction

of loose-ends, α. Recall: χ‖ and χ⊥ are determined by the monomer-type and its chemical

composition.

2. The DE is manufactured to its design specifications.

3. The DE is allowed to relax to a stress-free, polarization-free deformation F = F?; that is, F?
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minimizes the Helmholtz free energy density of the DE in the absence of external loads; or, in

the language of our analogy, the residual stresses are relieved. Note: since the material is homo-

geneous, the minimization (in (4.1.3.1)) can be done point-wise. This results in some uniform

shape change that should be taken into account when manufacturing to specific dimensions.

4. Properties of interest, A, B, ..., etc., are measured in the stress-free, polarization-free state and

are denoted by: A?, B?, ..., etc. It will also be useful to develop expressions for these properties

as functions of deformation and polarization.

It is for this reason that we remarked earlier that assuming fixed |̃r| = b
√
n would be further justi-

fied. This justification lies in the fact that it is apparent that chain lengths and orientations cannot be

controlled independently of each other–they are related through the relaxation of the residual stresses.

In regards to the material properties of interest, we consider the Taylor expansion of the free energy

density about the relaxed configuration (i.e.
{

F = F?, P̃ = 0
}

):

W
(
F, P̃

)
=W (F?, 0) +

∂W
∂Fij

(F− F?)ij +
∂W
∂P̃k

P̃k

+
1

2

∂2W
∂Fij∂Fkl

(F− F?)ij (F− F?)kl +
∂2W

∂Fij∂P̃k
(F− F?)ij P̃k +

1

2

∂2W
∂P̃i∂P̃j

P̃iP̃j

+O
(
ε31
)

+O
(
ε21ε2
)

+O
(
ε1ε

2
2

)
+O

(
ε32
)

(4.1.3.9)

where ε1 = |F − F?| and ε2 = |P̃|. We assume W is convex in P̃ and its minimum is P̃ = 0 (this

is justified empirically for general DEs). This, along with the definition of F?, means that the linear

terms in (4.1.3.9) vanish. Since we are only interested in energy differences, in the neighborhood

of
{

F = F?, P̃ = 0
}

, the constitutive response of the DE is governed by ∂2W
∂F∂F

, ∂2W
∂P̃∂P̃

, and ∂2W
∂F∂P̃

.

These quantities correspond to the stiffness tensor, the inverse of the polarization susceptibility tensor

(i.e. X−1)–which is a measure of the bond stiffness between charges bound to the DE–and the cross

modulus tensor, respectively. The magnitude of the cross modulus signifies the electromechanical

coupling of the material itself; that is, the electromechanical coupling irrespective of external loads.
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Thus, we will be interested in how our design variables affect these three quantities. As a note: we

will not, strictly speaking, seek to optimize all of these properties. In particular, a desirable feature of

DEs is their compliance (i.e. inverse stiffness). So it will often be a goal to control the stiffness within

some operational range while optimizing the susceptibility and the cross modulus.

4.1.4 Incompressibility

As a final note to this section, we make a few remarks regarding the incompressibility of our hypothet-

ical, anisotropic DEs. It is true that most elastomers are incompressible to a very good approximation.

However, in terms of modeling these materials, their incompressibility is empirically motivated and

taken as an assumption in both statistical mechanics-based and continuum mechanics-based models.

Since we are proposing to design an anisotropic material–which may or may not be fundamentally dif-

ferent from existing elastomers–and since incompressibility has not, to the authors’ knowledge, been

connected to the molecular-scale or macromolecular-scale physics of elastomers, it is not obvious that

incompressibility will remain a very good, or even an adequate, approximation for our designed ma-

terials. For simplicity, we will continue to assume that the anisotropic DEs are incompressible. We

simply note that it may prove, upon the proper experimentation, that the model and results derived

herein need to be generalized in order to take differential changes in volume into account.

4.2 Design analysis

4.2.1 Mathematical prelude

One must evaluate the integral in (4.1.3.3) to determine the constitutive response associated with a pdf,

P. For this reason, it will be useful to develop approximations for the integral:

Ik [µ, σ] :=

∫ π

0

dx

(
exp

[
−(x− µ)2

2σ2

]
+ exp

[
−(π − x− µ)2

2σ2

])
sin (kx)
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where k ∈ N, µ ∈
[
0, π

2

]
, and σ ∈ [0,∞]. In the limit of σ << 1, we have that

Ik [µ, σ] ≈ I0k [µ, σ] = 2
√

2πσ exp

[
−k

2σ2

2

]
sin (kµ) (4.2.1.1)

This is derived by bringing the sine term into the exponential (by using sin (kx) = Im (eix)) and

changing the bounds of integration to −∞ and∞. In the limit of σ >> 1, we have that

Ik [µ, σ] ≈ I∞k [µ, σ] =
sin
(
kπ
2

)
k3σ2

{
2kπ cos

(
kπ

2

)
+
[
k2
(
π2 − 2πµ+ 2µ2 − 4σ2

)]
sin

(
kπ

2

)}
(4.2.1.2)

which is derived by Taylor expanding the exponential to linear order in its argument.

We will also use a result which can be derived by recognizing that (cos (x) + i sin (x))k = cos (kx)+

i sin (kx):

sin3 (x) =
3

4
sin (x)− 1

4
sin (3x) (4.2.1.3)

4.2.2 Elasticity

We begin by isolating and focusing on the mechanical behavior of a design DE. Let E (x) = 0 for all

x ∈ Ω. Then U = 0 and consequently:

A∗ = A = −TS = nkT

[
γL−1 (γ) + ln

(
L−1 (γ)

4π sinh (L−1 (γ))

)]

(where the final expression was first derived in [KG42], and subsequent derivations can be found

in [Tre75, D+72]). Since, in this work, our kinematic assumption is equivalent to r = Fr̃, the

Helmholtz free energy density is given by:

W = N

∫ π

0

dθ

∫ 2π

0

dφ P×

nkT
 |Fr̃|
nb
L−1

(
|Fr̃|
nb

)
+ ln

 L−1
(
|Fr̃|
nb

)
4π sinh

(
L−1

(
|Fr̃|
nb

))
 sin θ


(4.2.2.1)
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where r̃ = b
√
n (cosφ sin θ, sinφ sin θ, cos θ). This integral, however, is difficult to evaluate given

the inverse Langevin function and the square root terms implicit in |Fr̃|. The integrand simplifies

significantly if we Taylor expand L−1 (γ) in powers of γ:

W =
3

2
NkT

∫ π

0

dθ

∫ 2π

0

dφ P (φ, θ)
(
γ2r +O

(
γ4n
))

sin θ (4.2.2.2)

where γr = |r|/|̃r| = |r|/b
√
n. For the remainder of this section, we neglect higher order terms in

(4.2.2.2). As mentioned previously, we assume F of the form: F = diag (λ1, λ2, λ3); thus,

γ2r = λ21 cos2 φ sin2 θ + λ22 sin2 φ sin2 θ + λ23 cos2 θ.

First, let P = 1/4π or the 8-chain pdf (given explicitly in (4.1.3.8)). It is easy to show that in either

case,

W =
Giso

2

(
λ21 + λ22 + λ23

)
where Giso := NkT is the shear modulus that is predicted by the Gaussian chain approximation

in classical rubber elasticity [Tre75, BA00]. (Note: the above form of W is equivalent to the neo-

Hookean model.) This result is to be expected since we took a Taylor expansion of the Langevin chain

statistics (4.2.2.1) about zero stretch and because the chosen form of P is isotropic. Clearly then, for

isotropic elastomers, the stiffness–for a constant mass density,N0n–increases with the density of cross-

links; that is, increases with the ratio N0/n. Moreover, the slope of the inverse Langevin function is a

monotonically increasing function of its argument. Its argument in (4.2.2.1) is O (n−1), so increasing

the density of cross-links for fixed mass density–which effectively lowers n–also increases the stiffness

through higher order terms in (4.2.2.2). Physically, this is because the higher order terms account

for the finite extensibility of the chain and, as n decreases, so does the maximum length of a chain.

Similarly, the stiffness increases with the fraction of loose end monomers (for fixed n) because, as α

increases, the maximum length of the chain, nbb, decreases and finite extensibility effects are more

relevant for shorter stretches.

Next we consider a transversely isotropic elastomer. In this case, we take P to be uniform in φ
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such that it is given by the form (4.1.3.7). Using (4.2.1.3), the average square relative stretch and the

Helmholtz free energy density are

〈
γ2r
〉
r̃

=
1

4

{
λ21 + λ22

2

(
3− I3 [θ0, σ]

I1 [θ0, σ]

)
+ λ23

(
1 +

I3 [θ0, σ]

I1 [θ0, σ]

)}
(4.2.2.3)

W (λ1, λ2, λ3; θ0, σ) =
3

8
NkT

{
λ21 + λ22

2

(
3− I3 [θ0, σ]

I1 [θ0, σ]

)
+ λ23

(
1 +

I3 [θ0, σ]

I1 [θ0, σ]

)}
(4.2.2.4)

We can approximate the Helmholtz free energy density in the limits of σ << 1 and σ >> 1 by using

(4.2.1.1) and (4.2.1.2), respectively.

Incompressible materials

As mentioned previously, there does not appear to be a good theory which connects the molecular

structure of elastomers to their effective Poisson’s ratio. Instead, incompressibility is generally taken as

an assumption. In this section, we make the same assumption; that is, we assume that λ3 = 1/ (λ1λ2).

Further, let us consider a uniaxial stress-strain experiment. Specifically, we imagine loading our DE

in a hard device (i.e. strain controlled) in the direction of the axis of symmetry (i.e. in our coordinate

system, direction of the polar axis) and measuring the stress. Let the deformation, in this case, be given

by F = diag
(
1/
√
λ, 1/

√
λ, λ

)
. Given the stress-strain curve, the instantaneous slope of the curve at

any given point is a measure of its Young’s modulus in the direction of the axis of symmetry. We denote

this property as Y‖ (we adopt this notation, as opposed to the standard notation of E, so as not to be

confused with the electric field). Similarly, the Young’s modulus in the plane orthogonal to the axis of

symmetry is denoted by Y⊥. In the limit of σ << 1, our model predicts:

Y‖ =
∂2W
∂λ2

=
3

4
N0kT

{
1 + 3λ−3 + e−4σ

2 [
1− λ−3 + 2

(
1− λ−3

)
cos (2θ0)

]}
(4.2.2.5)

which shows a strain hardening in compression and a strain softening in tension–except when θ0 = 0

and σ = 0. Interestingly, (θ0, σ) = (0, 0) recovers the isotropic elastic modulus; as does any (θ0, σ) at

λ = 1. At first glance, this seems physically unreasonable and a possible indication that there has been
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something wrong with our approach, as one would expect changing the distribution of chain directions

in the network to affect the stiffness in various directions. However, recall from our discussion in

Section 4.1.3 that λ = 1 is no longer the equilibrium configuration in the absence of external loads.

Indeed, let λ? be such that ∂W
∂λ

∣∣∣
λ=λ?

= 0; then,

λ? =

(
3− [1 + 2 cos (2θ0)] e

−4σ2

2 + [2 + 4 cos (2θ0)] e−4σ
2

)1/3

. (4.2.2.6)

Equation (4.2.2.6) is shown in Figure 4.2 as a function of θ0 for σ = 0, π/32 and π/16. When θ0 < θiso,

λ? < 1. This is because there is simultaneously a higher density of chains that are oriented more

toward the direction of stretch (i.e. the axis of symmetry) and a lower density of chains oriented more

orthogonal to the direction of stretch. The elasticity of polymer chains, to a good approximation, is

due entirely to entropy; the effect of this is that chains are in tension, at any finite temperature, if their

end-to-end vector is finite. Put differently, the maximum chain entropy is given by a vanishing end-to-

end vector; thus, chains want to contract. Neglecting excluded volume effects, the reason why network

models in classical rubber elasticity do not predict a sudden and spontaneous collapse of the network

in on itself is because incompressibility is taken as an additional assumption. When incompressibility

is enforced, then for chains to contract in one direction there must be an expansion of the network in

another directions, causing other chains to stretch. Incompressibility, along with the balancing of chain

entropy differences when attempting to stretch in any particular direction, is why isotropic networks

have the property that λ? = 1. When θ0 < θiso, λ? < 1 and thus there is a contraction in the direction

of the axis of symmetry, because there are more chains oriented toward this direction and hence a

net increase in entropy can be gained from some λ? < 1. When θ0 > θiso, vice versa; that is, since

there are less chains in the direction of the axis of symmetry, a net increase in entropy can be gained

by contracting orthogonal to the axis and thereby stretching in the direction of the axis. Actually,

this effect leads to singularities at (θ0 = 0, σ = 0) and (θ0 = π/2, σ = 0); and the effect is of course

dampened by increasing σ, as can be seen in Figure 4.2.

We return our attention to the elastic modulus. In particular, we are interested in Y ?
‖ := Y‖ (λ = λ?);
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Figure 4.2: The load-free equilibrium stretch in the direction of the axis of symmetry for a transversely
isotropic, incompressible elastomer. The stretch, λ?, is shown as a function of the angle, θ0, that the
(upper) Gaussian is centered about.

that is, the stiffness of the material at its load-free, equilibrium state. Plugging (4.2.2.6) into (4.2.2.5),

we obtain:

Y ?
‖ (θ0, σ) =

9

4
NkT

{
1 + [1 + 2 cos (2θ0)] e

−4σ2
}

(4.2.2.7)

Similarly, let Y⊥ := 1
4

∂2W
∂(1/

√
λ)

2 , where the 1
4

is a material and geometric factor related to the number of

dimensions that are being stretched when F→ F + ε diag
(
1/
√
λ, 1/

√
λ, 0
)

(i.e. 2) and the Poisson’s

ratio, 1
2
. Then,

Y ?
⊥ (θ0, σ) =

9

8
NkT

{
3− [1 + 2 cos (2θ0)] e

−4σ2
}
. (4.2.2.8)

As expected, the maximum Y ?
‖ occurs at (θ0, σ) = (0, 0)–as this is the case which has the maximum

amount of chains oriented in the direction of the axis of symmetry for a given N0. Interestingly,

although, as previously mentioned, there is a singularity at (θ0, σ) = (0, 0) such that λ? = 0, the

Young’s modulus is finite. The maximum Y ?
‖ is given by 9NkT , which is the number of spatial

dimensions times the Young’s modulus for an isotropic network (Yiso = Y‖ (θiso, 0) = Y⊥ (θiso, 0) =

3Giso = 3NkT ). Once again, as expected, Y ?
‖ is a minimum and, more specifically, vanishes at
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Figure 4.3: The dimensionless Young’s moduli in the directions of the axis of symmetry, Y ?
‖ , and

orthogonal to the axis of symmetry, Y ?
⊥, as a function of the upper Gaussian center, θ0, when σ = 0.

The dashed, black line represents the Young’s modulus for an isotropic network, Yiso = 3Giso = 3NkT

(θ0, σ) = (π/2, 0). Similarly, Y ?
⊥ is a maximum at (θ0, σ) = (π/2, 0) and vanishes at its minimum

(θ0, σ) = (0, 0).

This analysis establishes theoretical upper bounds for Y ?
‖ and Y ?

⊥ as 9NkT and 9
4
NkT , respectively;

and shows that theoretically, zero stiffness can be achieved. However, as previously mentioned, there

are many applications, such as soft robotics, when it will be desirable to control the DE stiffness within

some bounds while optimizing over other properties. In this case, (4.2.2.7) and (4.2.2.8) can be used as

design tools in the limit when σ << 1; that is, when directionality in the network is highly controlled.

We now carry out a similar analysis in the limit of weak directional control (i.e. the limit of σ >> 1).
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In this case, Ik [θ0, σ] ≈ I∞k [θ0, σ], where I∞k [θ0, σ] is given in (4.2.1.2). In this case:

Y‖,∞ = NkT

[
(2 + λ3) f (θ0, σ)− 28λ3 − 80

λ3 (f (θ0, σ)− 36)

]
λ? =

[
f (θ0, σ)− 40

f (θ0, σ)− 28

]1/3
Y ?
‖,∞ = 3NkT

[
f (θ0, σ)− 28

f (θ0, σ)− 36

]
Y ?
⊥,∞ = 3NkT

[
f (θ0, σ)− 40

f (θ0, σ)− 36

]
f (θ0, σ) = 18σ2 − 18πσ − 36θ20 + 9π2

(4.2.2.9)

Approximations for the nondimensional Young’s moduli, Y‖/NkT and Y⊥/NkT , are shown in Fig-

ure 4.4 for σ = 4π/3 and 3π/2. Clearly, (4.2.2.9) recovers Y ?
‖,∞ = Y ?

⊥,∞ = Yiso in the limit of σ →∞,

as expected. The approximations in (4.2.2.9) share the same physical character as the σ << 1 approx-

imations in the sense that, when σ is large enough, Y ?
‖,∞ is at its maximum (on the interval [0, π/2])

at θ0 = 0 and minimum at θ0 = π/2 (this can also be seen in Figure 4.4). The situation is reversed

for Y ?
⊥,∞; that is, its maximum is at θ0 = π/2 and its minimum is at θ0 = 0. Again, this is due to

the fact that there is a greater stiffness in the directions of higher chain densities. Lastly, note that the

approximations in (4.2.2.9) predict a nonphysical singularity on the interval θ0 ∈ [0, π/2] when σ is

not large enough (σ / π). This can result in, incorrectly, predicting negative and/or diverging Y‖ or

Y⊥. Thus, one should take care that σ is large enough when using (4.2.2.9) for design of transversely

isotropic elastomers.

To recap: we derived theoretical approximations for how changing P would change the elastic prop-

erties of a polymer network. We did this analysis primarily in the context of transversely isotropic,

incompressible materials–although a similar analysis could be carried out for a general Poisson func-

tion and/or an anisotropic material with multiple special directions (as opposed to just one).
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Figure 4.4: The dimensionless Young’s moduli in the directions of the axis of symmetry, Y ?
‖ , and

orthogonal to the axis of symmetry, Y ?
⊥, as a function of the upper Gaussian center, θ0, for finite σ:

4π/3 and 3π/2. The dashed, black line represents the Young’s modulus for an isotropic network,
Yiso = 3Giso = 3NkT .

4.2.3 Susceptibility

Physical prelude

We will consider, in this section, the affect of the network architecture on the polarization response of

the DE. In Section 4.1.3 we made the claim that, for linear dielectric elastomers, the inverse suscepti-

bility tensor: X−1 := ∂2W
∂P∂P

. However, we have derivedW∗; that is, the Legendre transform ofW in

the polarization slot. Further, although it is clear thatW (F,P) =W∗ (F,E (P))+P ·E (P) where by

E (P) we mean the electric field as a function of polarization, it is not straightforward to write outW

in its explicit form givenW∗. This is because, while we have derived the polarization as a function of

the electric field in our approach, we are unable to invert this function, for general F and P, to obtain

E = E (P). While symmetries can often be exploited (e.g. in F, E, etc.) in order to invert P (E)

and formulateW explicitly fromW∗, we instead look for a correspondence between derivatives ofW

and of W∗ as such an approach would be much more readily generalized. The desired identity is as
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follows:

− ∂
2W∗

∂E∂E
=

(
∂2W
∂P∂P

)−1
= X

A short proof is given in Appendix B.

Again, by the weakly interacting assumption,W∗ = N 〈A∗〉r̃. However, upon inspection of (3.0.0.4),

we have a similar difficulty to the one faced in Section 4.2.2; that is, the integration involved in 〈A∗〉r̃

is difficult to evaluate exactly. Taylor expanding the inverse Langevin function about zero stretch (and

subsequently out of the denominator, γ/L−1 (γ) = 1
3
− 1

5
γ2r
n

+O (γ4)), we obtain the approximation:

W∗ (F,E) = NkT

{
n
[
w∗f (κ)− κ⊥

]
+

[
3

2
+

2κ

15
− w∗f (κ)

] 〈
γ2r
〉
r̃

+
3κ

5

〈
γ2r

(
Ê · r̂

)2〉
r̃

+
〈
O
(
γ4n
)〉

r̃

} (4.2.3.1)

where

w∗f (κ) = ln

(
2
√
κ√

π erf (
√
κ)

)
. (4.2.3.2)

The four terms in (4.2.3.1) can be understood as follows: (1.) the first term is the LTHP free energy

density of a collection of (Nn) monomers that are kinematically free; that is, monomers that are not

constrained to satisfy some end-to-end vector; (2.) a correction to the first term that is related to the

average magnitude of chain stretch; (3.) another correction that takes into account the average amount

that the chain is stretched parallel to the direction of the electric field; and (4.) higher order terms

related to the finite extensibility of the chain. Note that the first term is invariant when changing the

cross-linking density at fixed mass density. The second and third terms contribute to electromechanical

coupling, while only the third term captures the effect of chain torque. Interestingly, if one neglects

O (γ4n) terms in (4.2.3.1), then it is invariant under α. Therefore changing the fraction of loose

end monomers can only have an effect on higher order terms, terms which are related to the finite

extensibility of the chain.

We return our attention to the first term in (4.2.3.1)–the term that corresponds to a dielectric that

consists of monomers that are unconstrained. We call this the free polarization. The ratio of free
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Figure 4.5: The nondimensional lab susceptibility per monomer for a collection of kinematically free
monomers–or, in other words, the ratio of chain polarization to the characteristic scale, nχME, where
χM := max

(
χ‖, χ⊥

)
–shown as a function of

√
|κ|. The chains consist of TI (|∆χ| = χ⊥) and uniaxial

(|∆χ| = χ‖) monomers. In the limit of small electric field or large temperature (i.e.
√
|κ| → 0),

the nondimensional (lab) susceptibility per monomer is 2/3 for TI monomers and 1/3 for uniaxial
monomers. In the limit of large electric field or small temperature, the chain polarization approaches
its theoretical maximum: nχME.

chain polarization to its maximum theoretical value is shown in Figure 4.5 as a function of the applied

electric field. The quantity of polarization per applied electric field corresponds with what we typically

consider the susceptibility of the material. In this work, in order to reason in precise terms we make the

following definition: consider a series of experiments in which you apply three linearly independent

electric fields, E1,E2 and E3, and measure three corresponding polarizations: P1,P2 and P3; then we

say the lab susceptibility, X lab, is given by:

X lab = PmatE
−1
mat (4.2.3.3)

where Emat = (E1,E2,E3) and Pmat = (P1,P2,P3). But in general, as can be seen in Figure 4.5,

X lab is a function of E. Thus, to determine X lab for a specific E, the experiment in (4.2.3.3) should

be carried out in a limiting fashion until E1,E2 and E3 are arbitrarily close to each other.
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For the analysis considered in the remainder of this work, it will often be the case that P is propor-

tional to E. For instance, this is true when an electric field is applied in the direction of the axis of

symmetry for a transversely isotropic DE. When P is proportional to E, the lab susceptibility (for that

some direction Ê) simplifies to:

Xlab,Ê = P/E, (4.2.3.4)

which is conceptually similar to what is shown in Figure 4.5 for free polarization.

Clearly X lab 6= X = −∂2W∗
∂E∂E

in general; in fact, X = X lab + ∂X lab

∂E
E. It is only the case that the

two are equivalent for all applied electric fields when the dielectric is linear2; that is, when X lab is not

a function of E. Otherwise, X lab and X are only equivalent at relative extrema of X lab.

All of the dielectric nonlinearity in our DE materials is encoded in the function w∗f , which is a per

monomer contribution to the LTHP free energy for an unconstrained polymer chain (see (4.2.3.2)).

In fact, the LTHP free energy of an unconstrained polymer chain is, nkT
(
w∗f − κ⊥

)
. Negating the

derivative with respect to E and then dividing by E, we arrive at the result shown in Figure 4.5.

The y-axis corresponds to the lab susceptibility for a DE with a single free chain per unit volume

where the lab susceptibility is measured in units of nχM and χM := max
(
χ‖, χ⊥

)
. In regards to the

physical character of the lab susceptibility for the free chain, there are three regimes that can be seen

in Figure 4.5. When
√
|κ| → 0, then Xlab/n →

(
χ‖ + 2χ⊥

)
/3. In this limit (i.e. E → 0 and/or

kT → ∞), the pdf of monomer orientations is uniformly distributed over the unit sphere because the

electrostatic energy is vanishingly small as compared to the thermal energy. The factors of 1/3 for χ‖

and 2/3 for χ⊥ correspond to the dimensionality of each dipole susceptibility: the monomers are in

three dimension space while χ‖ is the dipole susceptibility along a line (i.e. span n̂) and χ⊥ is the dipole

susceptibility in the plane orthogonal to n̂. (In addition, note that Xlab does not vanish as kT → ∞.

2 It is well known that the concept of stored energy can be ill-defined for many nonlinear systems (for discussion of
this specific to dielectrics, see [Gri89] section 4.4.3). This is because the nonlinearity can result in a path dependence
for the work required to assemble the system. However, the work required to assemble the polarized nonlinear dielectrics
considered in this work is not path dependent and there is a clear understanding of how the energy is stored in the system. In
terms of electrostatics, it was establish in Section ?? that the energy is stored in (1.) the electrostatic potential of monomer
dipoles and (2.) in the bond energy associated with stretching bound charges in the monomer relative to each other in order
to form dipoles. The dielectric nonlinearity of our DE materials arises because the average alignment of the monomers
is determined by a balancing of electrostatic potential energy and the entropy, and because the dipole susceptibility of a
monomer depends on its alignment with respect to the applied electric field
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This is because χµ is quadratic in n̂. Even though n̂ is uniformly distributed, the polarization does not

cancel.) When
√
|κ| → ∞, then Xlab/n→ max

(
χ‖, χ⊥

)
. In this limit (i.e. E →∞ and/or kT → 0),

the monomers are frozen in their energy minimum orientation; that is, n̂ = ±Ê when χ‖ > χ⊥ and n̂

such that n̂ · Ê = 0 when χ⊥ > χ‖. In this case, the chain has reached its maximum theoretical lab

susceptibility. Finally, there is a transition regime between the limits of
√
|κ| → 0 and

√
|κ| → ∞.

There are two main takeaways that are relevant to this discussion: (1.) the dielectric nonlinearity of

our DE materials arises because the average alignment of the monomers is determined by a balancing

of electrostatic potential energy and the entropy, and because the dipole susceptibility of a monomer

depends on its alignment with respect to the applied electric field; and (2.) despite this nonlinearity,

we have X = Xlab in the limits of
√
|κ| → 0 and

√
|κ| → ∞. Moving forward, we will consider both

X and Xlab; as they will both prove useful. Specifically, X is particularly relevant to material stability

while Xlab is relevant to the capacitance–and hence, electromechanical coupling–for a given thin film

DEA geometry. Moreover, for convenience, we make the definitions:

X h := lim√
|κ|→0

X = lim√
|κ|→0

X lab

X c := lim√
|κ|→∞

X = lim√
|κ|→∞

X lab

We now consider what we have learned about free polarization in the context of the design of

anisotropic dielectric elastomers. When used for a DEA, it is desirable that the lab susceptibil-

ity of the DE be as large is possible. This is because the susceptibility serves to increase the ca-

pacitance of the DEA. The increased capacitance means a greater accumulation of charge on the

electrodes for a given voltage difference–which leads to a greater Coulomb attraction between the

electrodes and hence a greater electromechanical coupling of the DEA. Now, for illustrative pur-

poses, consider a single chain. If the chain is allowed to contract to zero stretch, then all the terms

in (4.2.3.1) vanish except the first one–which is consistent with our previous discussion. In this

case, it is also clear from the previous discussion, that the susceptibility is isotropic and is such that

X lab = XlabI,Xlab ∈ Nn
[
χ‖+2χ⊥

3
,max

(
χ‖, χ⊥

)]
. Recall (Figure 4.5) that the lab susceptibility is
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maximized at low temperature or large electric field (i.e.
√
|κ| >> 1). This is an issue, from a prac-

tical standpoint, because we would prefer not to need to operate our DEA under these conditions.

Controlling temperature is not always an option and at a minimum requires energy, while a large ap-

plied electric field requires larger and more expensive electromotive force devices.

Now consider this same chain, but in the reference, load-free state of an isotropic network such that

γr = 1. Then the second and third terms–the electromechanical terms–are O (1) while the first is of

O (n). This means, for a dielectric elastomer that consists of “long chains” (i.e. n >> 1, n & 1000),

that the electromechanical terms are negligible when the elastomer is in the load-free state (and in many

cases, they are even negligible at large macroscopic deformations). Thus, if we are to significantly

improve on the small
√
|κ| lab susceptibility in the load-free state, then one may first want to increase

the density of cross-links of the elastomer (i.e. increaseN0/n)–while keeping in mind that the stiffness

also scales with the density of cross-links. Before moving on, it is also worth recalling the discussion

on the “residual stresses” of our hypothetical anisotropic elastomers. Since the load-free state has

some initial deformation to “relieve” the “residual stresses”, γr 6= 1 in general. At first glance, one

may consider this as an opportunity to increase
(
X h
)?. However, it is easy to show that 〈γ2r 〉

?
r̃ ≤ 1 and

that equality only holds for an isotropic network. The key is that, in the absence of electrical loads,

the relaxed state should maximize the entropy of the elastomer and, by our approximation, the chain

entropy as proportional to−γ2r ; thus, for entropy to not decrease with respect to the manufactured state

(i.e. 〈−γ2r 〉r̃ = 1), we require 〈γ2r 〉
?
r̃ ≤ 1. Similarly, the lower bound on

〈
γ2r

(
Ê · r̂

)2〉?
r̃

is clearly zero

since it is strictly nonnegative and it vanishes when the elastomer is manufactured such that all of the

chains are orthogonal to the eventual direction of the applied electric field. The upper bound, however,

is much less clear and warrants further investigation. For the purposes of this investigation, we split

the susceptibility into two contributions: one associated with free monomers, Xfree, and a correction

term due to the electromechanical coupling of the material, X̌ ; that is:

X = XfreeI + X̌ .
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Taking derivatives of (4.2.3.1) with respect to E and taking the appropriate limits, we obtain:

X̌ h
‖ =

N (∆χ)

5

(〈
γ2r
〉
r̃
− 3

〈
γ2r

(
Ê · r̂

)2〉
r̃

)
, (4.2.3.5)

and

X̌ c
‖ = −N (∆χ)

15

(
2
〈
γ2r
〉
r̃

+ 9

〈
γ2r

(
Ê · r̂

)2〉
r̃

)
. (4.2.3.6)

Design for susceptibility

We again consider transversely isotropic materials such that we take (4.1.3.7) as our ansatz for P.

Using our ansatz, some basic trigonometry, and (4.2.1.3), we obtain the result:

〈
γ2r

(
Ê · r̂

)2〉
r̃

=
λ2

4

(
1 +

I3 [θ0, σ]

I1 [θ0, σ]

)
. (4.2.3.7)

In the limit of σ << 1, we have the approximation:

〈
γ2r

(
Ê · r̂

)2〉
r̃

≈ λ2

4

[
1 + e−4σ

2

(1 + 2 cos (2θ0))
]

We can then derive, using (4.2.3.7) and (4.2.2.3), W∗ for transversely isotropic DEs. Instead, we

turn our attention directly to X̌ h
‖ . In the limit of σ << 1, we have the approximation:

(
X̌ h
‖,0

)?
N (∆χ)

= 0

where again,�? denotes a quantity evaluated at λ = λ?. Interestingly, the electromechanical correction

term vanishes at λ? for all θ0 and σ when σ << 1; and hence, at least in the limit of the load-free state,

the DE effectively behaves as a collection of free monomers.

Similarly, by plugging (4.2.1.2) into (4.2.2.3) and (4.2.3.7), then subsequently (4.2.3.5) and (4.2.2.9),

we arrive at an approximation of
(
X̌ h
‖

)?
in the limit of weak directional control (i.e. σ >> 1). This
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Figure 4.6: Correction to the free monomer susceptibility in the load-free state in the limit of σ >> 1.
The correction to the free monomer susceptibility is much less in this limit than the σ << 1 limit, and
it vanishes as σ →∞.

approximation is:

− 16∆χ (θ0 − σ) [π − 3 (θ0 + σ)]

5 (2θ20 − 2πθ0 − 4σ2 + π2 − 4) [f (θ0, σ)− 40]1/3 [f (θ0, σ)− 28]2/3

where f was first defined in (4.2.2.9). The approximation is shown in Figure 4.6. Notice that, while

the electromechanical correction (at λ = λ?) does not vanish,
(

ˇX h
‖,∞

)?
/N∆χ is small compared to

1 in the limit of σ >> 1. Since the free monomer susceptibility is O (Nn), this correction term is

negligible; and, what is more, is that it vanishes as σ →∞.

The electromechanical correction to the susceptibility in the load-free state,
(
X̌ h
‖

)?
, vanishes in the

limit of σ << 1 and is negligible in the limit of σ >> 1. It would seem then that there is little hope

for increasing the initial susceptibility of our design DEs. However, it is clear from (4.2.3.5) that X̌ h
‖

is deformation dependent. It is worth considering whether or not X̌ h
‖,0, for instance, vanishes when

λ 6= λ?. To this end, we visualize X̌ h
‖,0 for σ = 0 and λ = 1 in Figure 4.7. Notice that, in this case, X̌ h

‖,0

does not vanish and is, in fact, has a positive contribution of O (N) when ∆χ > 0 and θ0 → π/2, and
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Figure 4.7: Approximate X̌ h
‖,0 for σ = 0 and λ = 1. In this case, X̌ h

‖,0 does not vanish and is O (N).

when ∆χ < 0 and θ0 → 0. Thus, to maximize
(
X̌ h
‖,0

)?
, one must find a way to alter the polarization

properties while simultaneously maintaining a (nearly) mechanically isotropic network.

Hybrid networks: maximizing the operating susceptibility

It was clear, particularly in Figure 4.7, that
(
X̌ h
‖

)?
could be made greater if somehow the initial, load-

free deformation, λ?, could be as close to unity as possible. For this reason, we propose the following

(rough) manufacturing process and design algorithm for optimizing
(
X̌ h
‖

)?
. First, imagine that we

have two types of polymer chains that are compatible with each other in the sense that they can be

cross-linked together in a network. Further, imagine that the monomers for the one type of chain are

such that ∆χ > 0 and the other are such that ∆χ < 0. Call these type A and type B, respectively.

Now, if an electric field is applied in a constant direction just prior to and during cross-linking, then the

density of A chains oriented orthogonal to the electric field direction will increase, as will the density

of B chains oriented parallel to the electric field. Let σA and σB be the design standard deviations for

chains of type A and type B, respectively. Then, clearly, σA and σB would depend on the magnitude

of the applied electric field; and, σA and σB would likely not be able to be controlled independently
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of each other–or rather, the envisioned manufacturing process would need to be specialized further in

order to control the two independently of each other. In this scenario, the monomer susceptibilities

χA⊥, χA‖ , χB⊥, and χB‖ are given; or at best, selected from a catalog of possible monomer types. Then

the design variables consist of NA
0 , nA, θA0 , σA, NB

0 , nB, θB0 , σB, where NA
0 is the number of chains of

type A per unit volume, nA is the number of monomers per chain in chains of type A, θ0 is the center

of the Gaussian in the upper half of the unit sphere for chains of type A, σA is the standard deviations

of the pdf for chains of type A, and the remaining quantities are the same but for chains of type B. The

LTHP free energy density for this hybrid DE is:

W∗ = J−1
(
NA

0 〈A∗〉
A
r̃ +NB

0 〈A∗〉
B
r̃

)

where

〈A∗〉�r̃ = C�
∫ π

0

dθ

∫ 2π

0

dφ

({
exp

[
−
(
θ − θ�0

)2
2σ2
�

]
+ exp

[
−
(
π − θ − θ�0

)2
2σ2
�

]}

×A∗
(
Fr̃,E;n�, χ�⊥, χ

�
‖
)

sin θ

)
.

The design space for this problem is of a higher dimension than those that we have considered

thus far. As a consequence, using the tools that we have employed through much of this work–basic

calculus and graphical methods–will prove difficult. Instead, we proceed by using some of the intuition

that we have gained thus far. By Figure 4.7, we reason that an optimal
(
X h
‖

)?
will result from taking

θA0 = π/2, θB0 = 0, and σA = σB = 0. Now let Nm
0 := NA

0 n
A + NB

0 n
B be the number of monomers

per unit volume in the reference configuration and Nm := J−1Nm
0 be the number of monomers per

unit volume in the current configuration. The free monomer susceptibility scales with the number of

monomers per unit volume; thus, assume thatNm
0 is already taken as large as possible or desired given

some range of acceptable DE mass density. Similarly, X̌ h
‖ scales with N0, but so does the stiffness.

Thus, one should take N0 as large as possible while still keeping the stiffness within some desired

range. Let ΞA := NA
0 /N0 so that NB

0 = ΞBN0 =
(
1− ΞA

)
N0. Again, considering Figure 4.7, we
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want to pick ΞA ∈ [0, 1] such that λ? = 1. In other words, we require that ΞA satisfies:

∂

∂λ

[(
ΞA 〈A∗〉Ar̃ +

(
1− ΞA

)
〈A∗〉Br̃

)]∣∣∣
λ=1

= 0,

which sets ΞA = 2/3.

Next, we need to pick nA and nB. We define the ratios ξA := N0n
A/Nm

0 and ξB := N0n
B/Nm

0 .

Since, by assumption, the total number of monomers is already given, by definition, we require:

Nm
0 = NA

0 n
A +NB

0 n
B.

Consequently: ξA ∈
[
0, 1/ΞA

]
and ξB =

(
1− ΞAξA

)
/
(
1− ΞA

)
. Because the only contribution

to X h
‖ that depends on Nm is the free monomer susceptibility, if

(
χA‖ + 2χA⊥

)
>
(
χB‖ + 2χB⊥

)
then

we try to reach the limit ξA → 1/ΞA. Where as, if
(
χA‖ + 2χA⊥

)
<
(
χB‖ + 2χB⊥

)
then we try to

reach the limit ξA → 0. Lastly, if
(
χA‖ + 2χA⊥

)
=
(
χB‖ + 2χB⊥

)
then, in our truncated theory, X h

free

is invariant with respect to ξA (in this case, it is likely best to let nA = nB = Nm/N0). Let M =

arg�max
[
χA‖ + 2χA⊥, χ

B
‖ + 2χB⊥

]
. If the limiting process is successfully carried out such that X h

free is

maximized, then:

(
X h
‖
)?

=
(
X h

free

)M
+
N

5

[
ΞA|∆χA|+ 2

(
1− ΞA

)
|∆χB|

]
,

=
Nm

3

(
χM‖ + 2χM⊥

)
+
N

5

[
ΞA|∆χA|+ 2

(
1− ΞA

)
|∆χB|

]
,

= N

{
nA + nB

3

(
χM‖ + 2χM⊥

)
+

2

15

[
|∆χA|+ |∆χB|

]}
.

(4.2.3.8)

In summary, the proposed design process for maximizing X h
‖ is as follows:

1. Choose a preferred mass density, Nm
0 .

2. Let θA0 = π/2 and θB0 = 0. Try to approach σ → 0.

3. Let ΞA = 2/3 and, consequently, ΞB = 1/3.
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4. Maximize N0/Nm
0 without exceeding the desired stiffness threshold(s). Note, when ΞA =

2/3, ΞB = 1/3:

Y‖ = NkT
(
1 + 2λ−3

)
Y⊥ = NkT

(
1

2
+

5

2
λ3
)

5. Choose ξA; let ξB =
(
1− ΞAξA

)
/
(
1− ΞA

)
:

(a) The target ξA should be determined by:

ξA =


1/ΞA χA‖ + 2χA⊥ > χB‖ + 2χB⊥

0 χA‖ + 2χA⊥ < χB‖ + 2χB⊥

Nm
0 /N0 χA‖ + χA⊥ u χB‖ + χB⊥

(b) However, approaching either the upper limit of ξA, which would result in chains of type

B to be “short” (i.e. nB small) or the lower limit of ξA, which would result in chains of

type A to be “short”, may affect the electromechanical response of the DE. This is because,

as chains become shorter, higher order terms in (4.2.3.1) become more relevant at even

moderate deformations. Specifically, these higher order terms would cause monomers to

be constrained toward the direction of chain stretch more quickly as the DE deforms. This

will lead to an increase in both strain hardening and electromechanical coupling. An ad-

ditional consideration is the effect of chain length on the validity of the weakly interacting

assumption; it could be that, as chain lengths become shorter, interactions between chains

become more important. Thus, either limit should be approached iteratively until it is de-

termined how closely the limit can be approached without affecting the desired stiffness

properties.

We have shown that
(
X h

free

)? can theoretically be improved upon by deliberately designing and man-

ufacturing the network architecture of a dielectric elastomer. However, practically speaking, it can be
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seen from (4.2.3.8) that, unless the network has a high density of cross-links and therefore consists of

“short chains” (i.e. Nm
0 /N0 ≤ 10) the increase is modest at best (e.g. . 1% forNm

0 /N0 & 100); and a

high density of cross-links may not be desirable because the stiffness per mass density scales linearly

with the density of cross-links. Not to mention: the theoretical improvement may be lost entirely once

manufacturing error inevitably occurs.

One may wonder then why we bothered spending so much time detailing and analyzing the proposed

manufacturing and design processes. The answer to this is two-fold: (1.) despite such modest gains,

it is still worth carefully exploring the theoretical limitations of what can be achieved through the

design of dielectric elastomer network architectures and (2.) although the gains have been modest for

improving
(
X h

free

)?, it is still to be determined whether the same can be said for the electromechanical

coupling of the designed network–which is, after all, the main goal of this work. Indeed, recall that

X h
free is also a function of deformation; so that larger increases in susceptibility may be realized at

deformations such that λ 6= λ?. This effect will be investigated in the next subsection.

Mechanically induced susceptibility

The susceptibility of dielectric elastomers is deformation dependent because deformation can cause

chains in the network to rotate, thereby changing the average monomer orientation in each of the

chains, and cause chains to stretch, thereby increasing the concentration of monomers oriented toward

the direction of stretch for a given chain. Using the results developed thus far, we consider a few

examples. First, as a baseline, we consider an isotropic dielectric elastomer such that P = 1/4π.

Using (4.2.2.3), (4.2.3.7), and (4.2.3.5):

X̌ h
‖
uni

=
2N

15
(∆χ)

(
λ−1 − λ2

)
(4.2.3.9)

Notice that when ∆χ > 0, X̌ h
‖
uni

increases (relative to the reference configuration) when the DE is

compressed in the direction of the axis of symmetry (λ < 1) and decreases when stretched; when

∆χ < 0, vice versa. (Also, θ0 = θiso, σ = 0 recovers the same correction term as (4.2.3.9).)
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For the hybrid network, where θA0 = π/2, θB0 = 0, σA = σB = 0, ΞA = 2/3, ΞB = 1/3, we have:

X̌ h
‖
hybrid

=
2N

15

(
|∆χA|λ−1 + |∆χB|λ2

)
(4.2.3.10)

Interestingly, since both coefficients are strictly nonnegative and physically we require λ > 0, it is

the case that X̌ h
‖
hybrid

is semi-convex in λ for the domain of admissible λ. Further, it is convex when

|∆χA| 6= 0 and |∆χB| 6= 0. This is significant because it means that when either compressing (i.e.

λ < 1) or stretching (i.e. λ > 1)–even though initially there may be a drop in X̌ h
‖ –eventually X̌ h

‖ will

begin increasing again and do so monotonically. The electromechanical increase of X h
‖ is bidirectional

for the hybrid network. If |∆χA| = 2|∆χB|, then X̌ h
‖ has its minimum at λ = 1 so that any deformation

increases X̌ h
‖ . Also, importantly, (4.2.3.9) and (4.2.3.10) show that, not only is mechanically induced

susceptibility unidirectional for a uniformly distributed network and bidirectional for the hybrid net-

work (by unidirectional, we mean that, depending on the sign of∆χ, the susceptibility is only increased

for either compression or stretching but not both), but, also, the mechanically induced susceptibility of

the hybrid network is greater than that of the uniform network for all admissible deformations, λ.

Next, in contrast to either a uniformly distributed network or the hybrid network, we consider a

network that consists of a single type of monomer and has been manufactured in the limit of high

control, i.e. σ << 1. In this case: using (4.2.1.1), (4.2.2.3), (4.2.3.7), and (4.2.3.5):

X̌ h
‖,0 = −N

20
(∆χ)

{ [
(1 + 2 cos (2θ0)) e

−4σ2 − 3
]
λ−1+[

2 (1 + 2 cos (2θ0)) e
−4σ2

+ 2
]
λ2
} (4.2.3.11)

As to be expected, when θ0 = 0 the coefficient of λ−1 vanishes and when θ0 = π/2 the coefficient of

λ2 vanishes. This is expected because the sign and coefficient of λ−1 and λ2 determine the effect of

compression and stretching, respectively, on X̌ h
‖ . The above equation could be used as a design tool

for anisotropic elastomers that consist of a single monomer type. For further physical insight, we let
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σ = 0. Then (4.2.3.11) simplifies to:

X̌ h
‖,0

∣∣∣
σ=0

= −N (∆χ)

10

{
[cos (2θ0)− 1]λ−1 + 2 [cos (2θ0) + 1]λ2

}
.

Importantly, the theoretical factor for mechanically induced susceptibility can be larger in this case

than it is for the uniform or hybrid networks. That is because, in this case, we can orient all of the

chains in their preferred electromechanical susceptibility direction instead of a portion. The maximum

factors occur at θ0 = 0 and θ0 = π/2, as expected. At θ0 = 0, the λ−1 factor (i.e. compression

factor) vanishes and the λ2 factor (i.e. expansion factor) is maximized–its value being 2N/5. And

at θ0 = π/2, the λ2 factor vanishes and the λ−1 factor is maximized–its value being N/5. These

factors are 3/2 and 2 times larger than the hybrid network factors, respectively. However, recall that

Y⊥ vanishes as θ0 → 0 and Y‖ vanishes as θ0 → π/2. Thus, while a greater mechanically induced

susceptibility can be achieved (over the uniform and hybrid networks), there is a trade-off in terms of

stiffness and mechanical stability. The implications of this in terms of the electromechanical coupling,

operation, and failure of DEAs will be explored in the next section.

4.2.4 Dielectric elastomer actuators

In this section, we explore the effect of our design parameters on the deformation and usable work

obtained from a dielectric elastomer actuator as a function of its electrical input. There are two main

goals associated with this design: (1.) we would like to maximize the deformation and/or usable work

that results from a fixed electrical input so that we maximize the efficiency of our DEAs and minimize

the size of the electrical generator (e.g. battery) required to operate the DEA; and (2.) we would prefer,

in many cases, to maximize the deformation and/or usable work that the DEA can produce before its

failure. Since we are interested in the mechanics, the usable work, and the failure of the DEA, we

will model its behavior using thermodynamics and free energy minimization. Since the pioneering

work of [Tou56], there has been a lot of work recently in variational methods and formulations for

electroelasticity [Tou56, SZG08, Suo10, BDO09, DO06, DO14, Liu13, Liu14]. Similarly, for the
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Figure 4.8: Dielectric elastomer actuator in the reference configuration (a) and deformed state (b). A
voltage difference is applied across the top and bottom surfaces, which are then attracted to each other
in accordance with Coulomb’s law. The attraction between the electrodes compresses the film across
its thickness. Additional stress develops as a result of the electromechanical coupling of the material
itself [Cd16, Suo10].

theory and analysis of the stability of DEAs, see [ZDDP17, YZS17, ZS07].

Let the dimensions of the DEA in the reference configuration be l × l × l3 where l3 << is the

thickness of the DE film. The top and bottom surfaces of the DE film are assumed to be covered

with compliant electrodes–compliant such that they have negligible stiffness. When operating the

DEA, a voltage difference, ∆ϕ, is applied across the top and bottom surfaces. Equal and opposite

net charges, ±Q, accumulate on the top and bottom surfaces, which are then attracted to each other

in accordance with Coulomb’s law. The attraction between the electrodes compresses the film across

its thickness. And an additional stress develops as a result of the electromechanical coupling of the

material itself [Cd16, Suo10]. The DEA setup is shown in Figure 4.8

Following [YZS17] and [ZS07], the free energy of a DEA undergoing homogeneous deformation,

F = diag
(
λ−1/2, λ−1/2, λ

)
, is:

Ψ = l2l3

(
W +

1

2
E2

)
− (∆ϕ)Q (4.2.4.1)

where the first term in the parentheses is the free energy density of the DE film and the second term

123



CHAPTER 4. DESIGN AND OPTIMIZATION OF THE MATERIAL ARCHITECTURE OF
DIELECTRIC ELASTOMERS

in the parentheses is the energy density of the electric field; and the last term in (4.2.4.1) is the work

of the battery. (Note: (4.2.4.1) is in Gaussian units, i.e. ε0 = 1.) However, (4.2.4.1) is in terms ofW

instead ofW∗. Recalling thatW =W∗ + P · E and using Gauss’s law:

Ψ = l2l3

(
W∗ − 1

2
E2

)
. (4.2.4.2)

We have already implicitly assumed that E is constant inside the DE film–which is a good approx-

imation when l3 << l and the DE film has homogeneous material properties. Further, to a good

approximation, E = − (∆ϕ) /λl3.

Now, as mentioned previously, there is an initial relaxation, in general, after manufacturing an

anisotropic dielectric elastomer. We do not want this initial deformation to bias our results in any

way. Therefore, we propose the following process:

1. The DE film is manufactured; it relaxes to some λ = λ?. In anticipation of this relaxation, its

initial, pre-relaxation thickness is l3/λ?.

2. A voltage difference, ∆ϕ, is applied across the electrodes.

3. The DE film deforms further by some amount λ′ such that λ = λ′λ?.

To model this process, we reformulate (4.2.4.2) as:

Ψ (λ′) = l2l3

[
W∗

(
λ?λ′, Ẽλ′

−1
)
− 1

2
Ẽ2λ′

−2
]

(4.2.4.3)

where Ẽ = ∆ϕ/l3. The stable equilibrium states of the DEA are given by dΨ
dλ′

= 0, d
2Ψ
dλ′2

> 0; the

DEA becomes unstable when dΨ
dλ′

= 0, d
2Ψ
dλ′2
≤ 0. The equation dΨ

dλ′
= 0, however, is a highly nonlinear

function of λ′. Even if one Taylor expands the w∗f
(
Ẽ2λ′−2 (∆χ) /2kT

)
terms (see (4.2.3.2)) (about

Ẽ = 0) and truncates higher order terms, the equilibrium equation still requires solving for the roots

of a 5th order polynomial. Instead, moving forward, we use Newton’s method with an initial guess of

λ′ = 1.
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DEA deformation

Let E := Ẽ
√
nX h

free/kT . This is a nondimensional measure of the electric field (similar to the dimen-

sionless electric field used in [ZHS07, ZDDP17]). Because we would like to emphasize optimization,

in this section, as opposed to control, we will focus on three types of networks: a uniform (isotropic)

network–as a baseline, network designs in the limit of σ = 0, and the aforeproposed hybrid network.

Similarly, because (for unitype networks) elastomers that consist of TI monomers will have an greater

electromechanically induced susceptibility than elastomers consisting of uniaxial monomers, we will

consider elastomers such that ∆χ = χ⊥ for the uniform and σ = 0 networks.

First, Figure 4.9 shows λ′ vs θ0 contours of constant E . It can be seen in Figure 4.9 that, for each

of the contours, θ0 = θiso has the least amount of deformation. In fact, the contours are symmetric

about θiso. However, while the deformation increases as θ0 has a larger deviation from θiso, the DEA

also fails at smaller E . Thus, there is a trade-off between the maximizing the deformation for a fixed E

and maximizing the operating E before failure–and, consequently, the maximum deformation possible.

Put differently, there is a trade-off between electromechanical efficiency and stability. Note that it can

be seen from numerical examples that θ0 = θiso has an equivalent electromechanical response to the

uniform network. Thus, θ0 = θiso represents our isotropic baseline.

Next, we consider the hybrid network within this context. Figure 4.10 compares the DEA defor-

mation of the hybrid network to the unitype networks with σ = 0. For a given E , the hybrid network

deforms more than the unitype isotropic network (i.e. θ0 = θiso). However, for E low enough, there is

always some θ0, σ = 0 for which the unitype network has a larger induced deformation than the hybrid

network.
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Figure 4.9: λ′ vs θ0 contours of constant E . For each of the contours, θ0 = θiso has the least amount
of deformation and the contours are symmetric about θiso. However, while the deformation increases
as θ0 has a larger deviation from θiso, the DEA also fails at smaller E . Note that θ0 = θiso has an
equivalent electromechanical response to the uniform network–so θ0 = θiso represents our isotropic
baseline.
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Figure 4.10: Comparison of the DEA deformation of the hybrid network to the unitype networks with
σ = 0. The unitype networks have varying θ0. Notice: for a given E , the hybrid network deforms more
than the unitype isotropic network (i.e. θ0 = θiso). However, for E low enough, there is always some
θ0, σ = 0 for which the unitype network has a large induced deformation than the hybrid network.
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Figure 4.11: −∆Ψ/N0kT vs θ0 contours of constant E . For each of the contours, θ0 = θiso has the least
amount of usable work and the contours are symmetric about θiso. However, while the deformation
increases as θ0 has a larger deviation from θiso, the DEA also fails at smaller E . Note that θ0 = θiso has
an equivalent electromechanical response to the uniform network–so θ0 = θiso represents our isotropic
baseline.

DEA usable work

Another performance metric for our DEAs is the amount of usable work that can be derived from the

system. We will use −∆Ψ as a measure of the usable work, where

∆Ψ = Ψ (λ?λ′, E)− Ψ (λ?, E) .

Figure 4.11 shows−∆Ψ/N0kT vs θ0 contours of constant E . Similar to the case of deformation, it can

be seen that, for a given E , the usable work can be maximized by picking the θ0 such that |θiso − θ0| is

maximized without an instability occurring.

Next, consider the usable work of the hybrid network compared to the unitype σ = 0 networks.

Figure 4.12 shows −∆Ψ/N0kT as a function of E for σ = 0; θ0 = π/6, π/4, θiso, π/3 and the hy-

brid network. Again, it can be seen that for a fixed E , a unitype network with properly chosen θ0
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Figure 4.12: Comparison of the DEA usable work of the hybrid network to the unitype networks with
σ = 0. While the most usable work can be derived from a unitype, σ = 0 network with properly
chosen θ0 for a given E , the hybrid network combines both stability and an enhanced usable work. In
fact, the hybrid network performs ≈ 75% better than the isotropic network.

can outperform the hybrid network. However, the hybrid network combines both a higher electrome-

chanical coupling (than the isotropic network) and maintains its stability at larger E . In particular, the

hybrid network shows ≈ 75% increase in usable work over the isotropic network for general E . While

σ = 0, θ0 = θiso can endure a larger E before failure, the maximum usable work before failure of

the hybrid network is still greater than that of the isotropic network. In summary the unitype, σ = 0

networks can be optimized for a specific electrical load more so than the hybrid network. However,

the hybrid network is more stable and would be much more preferable than the unitype network when

used in an application with a wider range of operating E .

4.3 Conclusion

The theoretical design and analysis of anisotropic dielectric elastomers for enhanced electromechanical

coupling was carried out. For this work, we proposed the following design parameters: the distribution
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of chain end-to-end vectors in the network, P; the mass density (i.e. N0n); the density of cross-links

(i.e. n/N0); and the fraction of loose-end monomers, α. It turned out that, to a good approximation, the

behavior of the network was invariant with respect to α. However, the stiffness of the material is pro-

portional to the density of cross-links. And, in addition, the electromechanically induced susceptibility

of the DE is proportional to the density of cross-links. Thus, as is analogous to many problems in soft

multifunctional composites, there is a trade-off between compliance and electromechanical coupling

in regards to the density of cross-links in a dielectric elastomer network. In addition to considering

the effect of P on Y‖ and Y⊥, we also considered its effect on the DE susceptibility and the electrome-

chanical coupling of the DEA. It was found that substantial gains in the deformation and usable work,

for fixed electrical input, can be obtained by designing and manufacturing an anisotropic DE material.

In addition, a so-called “hybrid network” was proposed which consisted of uniaxial chains oriented

with Ê and −Ê and TI chains oriented orthogonal to Ê. The hybrid network preserved the isotropic

stiffness and electromechanical stability of the DE, while increasing its usable work output by ≈ 75%.

These results suggest concrete ways in which novel DEs with enhanced electromechanical coupling

can be designed and manufactured for specific applications.
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Chapter 5

Conclusion

5.1 Summary

A statistical mechanics-based, multiscale model of dielectric elastomers was developed and presented.

The model showed some interesting physical phenomena such as: (1.) the interaction between elec-

trostatics, chain orientation, and chain stiffness in DE chains, (2.) the presence of electrostatic chain

torque in DE chains and its influence in the electromechanical coupling of DE networks, and (3.) the

interaction between chain stretch and polarizability, which, at the macroscopic-scale, manifests itself

as a deformation dependent susceptibility. The newly discovered phenomena inspired a comprehensive

investigation at how the architecture of DE networks may be designed and manufactured in order to

optimize their electromechanical coupling for different applications.
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5.2 Future work

5.2.1 Experimental measurement of dielectric elastomer paramters

The multiscale model for the electroelastic behavior of dielectric elastomers requires the input of four

molecular- and macromolecular-scale properties: the density of polymer chains per unit volume in

the reference configuration, N0; the number of monomers per chain, n; and the two susceptibility

parameters, χ‖ and χ⊥. An important feature of a model is that its various parameters can be isolated

and measured by simple, independent experiments. Therefore, we consider for a moment how one

may reliably isolate and measure the aforementioned parameters for dielectric elastomers.

Firstly, in the absence of an externally applied electric field, the multiscale model presented herein

recovers the Arruda-Boyce constitutive model for rubber elasticity [AB93]. The authors show that their

model can be fit to experimental stress-strain data well. So while N0 and n cannot be isolated from

each other, they can be isolated from the susceptibility parameters. Thus, N and n can be determined

by fitting stress-strain data in the absence of an applied electric field. While fitting two parameters at

once is not ideal, one could make the fit more robust by fitting different modes of strain. For instance,

one may choose to fit N and n by minimizing error for a uniaxial tension test and shear-strain test,

simultaneously.

Having obtained N0 and n separately, χ‖ and χ⊥ can then be determined. As mentioned previously,

in general, the (bulk) susceptibility of the elastomer is not only a function of its monomer susceptibility

parameters, but also a function of deformation. Therefore, one can run experiments where:

1. The DE specimen is put into a capacitor where it is loaded mechanically such that it deforms

like diag
(
λ−1/2, λ−1/2, λ

)
.

2. A voltage difference is applied across the capacitor plates such that a weak electric field is applied

in the dielectric elastomer (“weak” can be achieved in a limiting fashion).

3. The deformation, λ, and polarization, P , are measured. Let Xlab = P/E.
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4. Repeating this procedure, a function Xlab = Xlab (λ) is developed in the limit of weak electric

field.

5. Using the previously fitted parameters, N0 and n, and the measured curve, Xlab = Xlab (λ), fit

χ‖ and χ⊥.

5.2.2 Instability

The onset of instabilities and failure in DEAs has been studied recently [WZZ11, ZS07, ZDDP17,

YZS17]. However, all of the aforementioned works model the dielectric elastomer as ideal; that is,

they do not consider a deformation dependent susceptibility or an electrostatic dependent stiffness.

It may be that if one were to use a DE constitutive relationship that considers these effects, like the

one developed in this work, that one would predict novel modes of instabilities. Conducting such an

investigation could be an avenue of future research.

5.2.3 Two-scale energetics

It was seen in Chapter 2 that the symmetry breaking that occurs when a chain end-to-end vector is

not aligned with the electric field makes obtaining an exact solution of the chain free energy difficult.

However, one can perhaps circumvent this difficulty by investigating the regime in which the electro-

static energy of the chain dominates the elastic (i.e. entropic) contribution. If the two energy scales

can be separated, then the statistical mechanics of the electrostatics can be solved independently of

the elasticity; and then, a Gaussian chain-like elasticity may be assumed about the electrostatic solu-

tion. Since considering the electrostatic problem independently of the elasticity problem makes the

electrostatic statistics simpler, it may be possible to include dipole-dipole (i.e. monomer-monomer)

interactions into the Hamiltonian and still obtain a closed-form solution (or approximation). Mod-

eling molecular interactions is important for capturing phenomena such as phase transitions. Thus,

such an approach may potentially lead to some interesting predictions regarding phase transitions in

dielectric elastomer chains; and, subsequently, the phase transitions may be utilized to increase the
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electromechanical coupling of the material.

5.2.4 Visco-electro-elasticity of dielectric elastomers

Many of the applications of DEs such as robotics, prothetics, energy harvesting, etc., are a part of a

dynamic system. As a result, there has been some work in modeling the viscoelectroelastic consti-

tutive behavior of DEs [HLCF+12]. However, results have only matched experiments qualitatively

and not quantitatively. Again, as an alternative to phenomenological approaches, future work could

involve modeling the nonequilibrium behavior of DEs using statistical mechanics through closed-form

approximations and/or numerics. For closed-form solutions, Liouville’s theorem, through a system of

partial differential equations, describes how the density of (micro-) states of a thermodynamic system

evolves in time. The initial conditions for the partial differential equations can be derived from work

that has been proposed in previous sections. Specifically, the work which involves deriving the equi-

librium statistical mechanics of an DE, will, for each set of macroscopic initial conditions of interest

(e.g. electrical loading, mechanical loading, constraints, etc.), provide a corresponding set of initial

conditions on the density of states of the system. Although the differential equations can prove diffi-

cult to solve for certain systems, there are various methods of solution that have been developed. For

example, in [Pri17], it is pointed out that the Liouville operator is Hermitian. As a result, the partial

differential equations governing the evolution of the density of states in time resemble the time de-

pendent Schrödinger wave equation. A typical method for solving the evolution of a wave equation

in time is to expand it in a linear superposition of energy eigenstates and recognize that the change in

each eigenstate is determined by its corresponding eigenvalue. Similarly, the time dependent behavior

of the density of states can be expanded in a linear superposition of eigenfunctions of the Liouville

operator. If this approach proves to be infeasible, then there is also the so-called linear response the-

ory (see for example [KTH12, Maz08]) which relates the equilibrium fluctuations of the system to its

nonequilibrium behavior. Derivations using linear response theory are much simpler than the eigen-

function approach but rely on the assumption that the system is always near to equilibrium while it

transitions from one macroscopic state to another. For numeric solutions, one could in principle ap-

133



CHAPTER 5. CONCLUSION

proximate a solution to Liouville’s equations using Finite Elements or Finite Differences. However, the

dimensionality of the space (6n where n is the number of monomers in a chain) would make such an

approximation computationally expensive and scale poorly with mesh resolution. Instead, molecular

simulation methods such as nonequilibrium molecular dynamics (for example, Ch. 8 of [AT17]) and

kinetic Monte Carlo (e.g. [Vot07]) could prove more useful. Future work will include modeling the

time-dependent and dissipative behavior of EAPs. Similar to Chapter 2, it may prove fruitful to model

this behavior using closed-form approximations where possible and numerical methods as a way to

compliment and aid in the development of such closed-form approximations. Lastly, a multiscale anal-

ysis similar to that performed in [Cd14] could be used to relate chain-scale dynamics to macroscopic

dynamics.

5.2.5 Flexoelectricity

It has been pointed out that, soft materials may be designed and engineered in order to maximize their

flexoelectric and the transverse piezoelectric effects [RBS19]. This is important because many appli-

cations of soft multifunctional materials (e.g. sensing and actuation in soft robotics) require a flexural

electromechanical coupling. One reason, in particular, is that bending deformations typically have a

lower resonance frequency and higher attainable strain [RBS19]. Future work could include looking at

designing polarizable elastomers (with or without frozen in polarization) for optimal flexoelectric and

tranverse piezoelectric couplings.
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Appendix A

Polarization, ∂A
∗

∂E , and ∂W∗
∂E

We show that a consequence of assuming (2.1.0.7) as the form of the monomer density function and

enforcing the constraints given in (3.0.0.3), we arrive at the relationship: p = −∂A∗
∂E

.

Proof. Taking derivatives of both sides of (3.0.0.3) with respect to E, we obtain:

∂

∂E

∫
S2

dA ρ (n̂) =

∫
S2

dA
∂ρ

∂E
=
∂n

∂E
= 0

∂

∂E

∫
S2

dA ρ (n̂) n̂ =

∫
S2

dA
∂ρ

∂E
n̂ =

∂r/b

∂E
= 0

(A.0.0.1)

We are able to interchange the operations of derivation and integration because of the smoothness of

the integrands; and in the last equalities we use the fact that neither the number of the monomers in the

chain nor the end-to-end vector constraint depend on E.
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Now, we obtain the desired result by taking derivatives of both sides of (3.0.0.4):

−∂A
∗

∂E
= − ∂

∂E

∫
S2

dA (ρu+ kTρ ln ρ)

= −
∫
S2

dA

[
∂ρ

∂E
u+ ρ

∂u

∂E
+ kT

∂ρ

∂E
ln ρ+ ρ

(
∂ρ

∂E
/ρ

)]
= −

∫
S2

dA

[
∂ρ

∂E
u+ ρ

∂u

∂E
+ kT

∂ρ

∂E
(lnC − u/kT + τ · n̂) +

∂ρ

∂E

]
= −

∫
S2

dA

[
ρ
∂u

∂E
+ kT

∂ρ

∂E
(τ · n̂) + (kT lnC + 1)

∂ρ

∂E

]
= −

∫
S2

dA ρ
∂u

∂E
− kTτ ·

(∫
S2

dA
∂ρ

∂E
n̂

)
− (kT lnC + 1)

∫
S2

dA
∂ρ

∂E

By (A.0.0.1), the last two terms vanish. Thus, recalling (2.2.1.9) and (2.2.1.7):

−∂A
∗

∂E
= −

∫
S2

dA ρ
∂u

∂E

=

∫
S2

dA ρ
∂

∂E

(
1

2
E · χµE

)
=

∫
S2

dA ρ
1

2

(
χµE + χTµE

)
=

∫
S2

dA ρµ

= p

as desired.

It is obvious then that this is not true of all chains with polarizable monomers such that u includes

a dipole-electric field interaction term (i.e. −µ · E). Instead, this follows from the fact that the dipole

susceptibility tensor, χµ, is symmetric; and also from the fact that: the bond energy between bound

charges in the monomer is a linear, spring-like bond energy such that ubond = 1
2
µ · χ−1µ µ (again, note

that by χ−1µ we mean the generalized inverse of χµ).

Similarly, we show that

− ∂W∗

∂E
= P (A.0.0.2)
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∂E

This follows as a consequence of−∂A∗
∂E

= p and the assumption that chains in the network are in weak

interaction (see Section 4.1.1). By the weakly interacting assumption,W∗ = N 〈A∗〉r̃, where by 〈�〉r̃

we mean the average over the chain pdf. Hence, taking derivatives of both sides:

−∂W
∗

∂E
= − ∂

∂E
N 〈A∗〉r̃ = N

〈
−∂A

∗

∂E

〉
r̃

= N 〈p〉r̃ = J−1P̃

as desired. The significance of this result is that it–along with the statistical mechanical foundation of

howW∗ was derived–establishesW∗ (F,E) as the Legendre transform ofW
(
F, P̃

)
, the Helmholtz

free energy density.

As an aside, we mention that the proof of

∂A∗

∂r
=
kT

b
τ

follows from a similar series of arguments as the proof for −∂A∗
∂E

= p. Physically, this means that τ is

a nondimensional measure of the tension in the chain.
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Appendix B

Derivatives ofW andW∗

Let the following hold:

1. W (F,P) =W∗ (F,E (P)) + P · E (P),

2. ∂W
∂P

= E,

3. ∂W∗
∂E

= −P.

Assume E (P) invertible such that P = P (E), ∂P
∂E

is invertible, andW ,W∗, E (P) and P (E) are all

smooth functions.

Proof. By assumption, ∂W
∂P

= E (P). Taking derivatives of both sides:

∂2W
∂P∂P

=
∂E

∂P
.

Similarly, taking derivatives of both sides of ∂W∗
∂E

= −P:

∂2W∗

∂E∂E
= −∂P

∂E
.
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From the two above equations we can conclude that

− ∂
2W∗

∂E∂E
=

(
∂2W
∂P∂P

)−1

as desired.

The physical implication of the above result is that: −∂2W∗
∂E∂E

= X .
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