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Abstract
Introduction: How do multiple sources of information interact to form mental rep‐
resentations of object categories? It is commonly held that object categories reflect 
the integration of perceptual features and semantic/knowledge‐based features. To 
explore the relative contributions of these two sources of information, we used func‐
tional magnetic resonance imaging (fMRI) to identify regions involved in the repre‐
sentation object categories with shared visual and/or semantic features.
Methods: Participants (N = 20) viewed a series of objects that varied in their degree 
of visual and semantic overlap in the MRI scanner. We used a blocked adaptation de‐
sign to identify sensitivity to visual and semantic features in a priori visual processing 
regions and in a distributed network of object processing regions with an exploratory 
whole‐brain analysis.
Results: Somewhat surprisingly, within higher‐order visual processing regions—spe‐
cifically lateral occipital cortex (LOC)—we did not obtain any difference in neural ad‐
aptation for shared visual versus semantic category membership. More broadly, both 
visual and semantic information affected a distributed network of independently 
identified category‐selective regions. Adaptation was seen a whole‐brain network 
of processing regions in response to visual similarity and semantic similarity; specifi‐
cally, the angular gyrus (AnG) adapted to visual similarity and the dorsomedial pre‐
frontal cortex (DMPFC) adapted to both visual and semantic similarity.
Conclusions: Our findings suggest that perceptual features help organize mental 
categories throughout the object processing hierarchy. Most notably, visual similar‐
ity also influenced adaptation in nonvisual brain regions (i.e., AnG and DMPFC). We 
conclude that category‐relevant visual features are maintained in higher‐order con‐
ceptual representations and visual information plays an important role in both the 
acquisition and neural representation of conceptual object categories.
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1  | INTRODUC TION

Object categories form the core of how we think and reason about 
the world, and understanding the neural basis of object category 
representations is fundamental to the study of human cognition. 
One thread running through this domain of research is consis‐
tent disagreement over the degree to which mental categories are 
formed on the basis of visual features versus semantic features (Keil, 
Smith, Simons, & Levin, 1998; Sloutsky, 2010). A critical challenge in 
empirically addressing this question is dissociating the relative con‐
tributions of visual and semantic sources of information.

This study focuses on how the brain integrates visual informa‐
tion (i.e., higher‐order processing of perceptual features and unified 
object form) and semantic information (i.e., conceptual knowledge of 
how objects are associated with each other) to define and maintain 
object categories. Both sources of information play a combined role 
in the representation of object category boundaries and are typically 
correlated, as function closely follows form (e.g., birds have wings, 
and tools have handles; Tang et al., 2018). However, the organization 
of visual and semantic representations within the broad network of 
category‐selective brain regions remains unspecified.

Our decision to interrogate category‐selective brain regions is 
based on previous research that implicates such areas as important in 
the processing of object categories. With respect to object categories, 
visual features are processed and encoded along a neural pathway that 
begins in early visual cortex and extends dorsally and ventrally through 
the occipital and temporal lobes (Freud, Culham, Plaut, & Behrmann, 
2017; Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999). This visual 
pathway is organized in a hierarchical fashion, with basic pixel‐level vi‐
sual features (e.g., edges, contrast, size) being processed in early visual 
cortex and increasingly higher‐order perceptual features (e.g., unified 
global shape, animacy, category membership) being processed more 
anteriorly along the dorsal and ventral visual cortex (Grill‐Spector & 
Malach, 2001; Grill‐Spector & Weiner, 2014).

It is well established that the ventral visual cortex is critical for 
higher‐order object processing and unified object representations. 
Within this ventral “stream,” the lateral occipital cortex (LOC) is the 
neural substrate most often associated with visual category represen‐
tations (Coggan, Liu, Baker, & Andrews, 2016; Kravitz, Saleem, Baker, 
Ungerleider, & Mishkin, 2013; Malach et al., 1995). Here, we focused 
on the LOC as an a priori region of interest because of its role in 
integrating individual features into coherent perceptions represen‐
tations of objects at a global level, which may be particularly rele‐
vant for defining associations among object category members at 
the visual level. A functional role for the LOC in object perception is 
supported by the presence of an adaptation response that presents 
as a decrease in neural activity across the LOC in conjunction with 
repeated viewings of identical stimuli or visually similar stimuli (Kim, 
Biederman, Lescroart & Hayworth, 2009; Sayres & Grill‐Spector, 
2006). This pattern of attenuated activation within LOC is assumed 
to occur in response to shared visual features at some intermediate 
or high levels of visual representation.

To the extent that different object categories are based on dif‐
ferent sets of informative features (in other words, the features that 
provide the most relevant information in defining complex associa‐
tions among object category members; e.g., balls are round and roll, 
sweaters have sleeves and cover our arms), distinct functional neural 
circuits supporting the processing of each particular feature domain 
will become associated with categories (Bi, Wang, & Caramazza, 
2016; Mahon & Caramazza, 2011). Therefore, semantic category rep‐
resentations—assumed to incorporate conceptual, knowledge‐based 
features—are likely to be associated with a wider network of regions 
distributed across the brain (Huth, Nishimoto, Vu, & Gallant, 2012; 
Martin, 2007; Ralph, Jefferies, Patterson, & Rogers, 2017).

With respect to evidence for a distributed semantic network, 
regions of the prefrontal cortex are often implicated in semantic 
processing tasks. The prefrontal cortex is associated with memory 
processes, the hypothesis being that they play an important role in 
the acquisition, storage, and retrieval of knowledge that forms the 
conceptual basis of object categories (Martin & Chao, 2001; Wagner, 
Koutstaal, Maril, Schacter, & Buckner, 2000). More precisely, the 
prefrontal cortex may support the maintenance of conceptual cat‐
egory boundaries in working memory, contributing to goal‐directed 
behavior and efficient processing of task‐relevant stimulus dimen‐
sions (Lee & Baker, 2016). Other key brain areas that appear to be 
recruited for semantic category representation include motor re‐
gions, particularly precentral gyrus (PrG), which closely borders 
premotor planning regions and integrates motor information for the 
functional‐based processing of objects being used in an action con‐
text (Liljeström et al., 2008; Martínez et al., 2014). These regions are 
crucial for the maintenance of conceptual object category bound‐
aries arising from common functional properties among associated 
objects, and, as such, enable efficient interaction with novel objects 
and the application of similar actions to all objects from within the 
same category (Matheson, Buxbaum, & Thompson‐Schill, 2017).

To further our understanding of the neural representation of 
higher‐order semantic features, we chose to focus on a superordi‐
nate object category distinction that has been found to elicit neural 
activation in category‐selective regions widely across the brain: liv‐
ing versus nonliving objects. While this distinction has been widely 
studied in the past (e.g., Caramazza & Mahon, 2003; Fuggetta, Rizzo, 
Pobric, Lavidor, & Walsh, 2008; Martin & Chao, 2001; McRae, Cree, 
Seidenberg, & McNorgan, 2005), and it is only one of many possi‐
ble superordinate category distinctions we could have focused on, 
the difference between living and nonliving objects is particularly 
relevant to the present research. Most saliently, the inclusion of liv‐
ing and nonliving objects in the present study will allow us to ex‐
amine the role of perceptual similarity in determining conceptual 
object category boundaries. While living versus nonliving categories 
are associated with distinct neural substrates, previous research 
indicates that increased perceptual similarity and statistical regu‐
larities among living objects may drive this neural division (Farah & 
McClelland, 1991; Sadeghi, McClelland, & Hoffman, 2015; Torralba 
& Oliva, 2003). By controlling for the extent to which visual features 
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are shared (or not shared) among our living versus nonliving category 
members, we may also determine the extent to which this concep‐
tual category boundary is defined by visual feature representations 
in the brain.

We aimed to investigate the degree of overlap versus the dis‐
tinctiveness of the neural representations of visual and semantic 
information by systematically manipulating both sources of informa‐
tion within our object stimulus set. In theory, one could design novel 
visual stimuli that dissociate perceptual features from semantic fea‐
tures, crossing visual similarity (or dissimilarity) with semantic cate‐
gory overlap (or lack thereof). In practice, this dissociation is difficult 
to realize; novel objects that look similar are typically treated, by de‐
fault, as members of the same semantic category (Farhadi, Endres, 
Hoiem, & Forsyth, 2009; Frome et al., 2013; Landau, Smith, & Jones, 
1988; O'Reilly, Wyatte, Herd, Mingus, & Jilk, 2013). Therefore, we 
adopted a design in which we identified familiar, everyday objects 
that were similar or dissimilar in shape, but belonged to the same se‐
mantic category, toward the goal of better understanding the con‐
tribution of visual information to the formation and organization of 
semantic object categories. This design allowed us to examine the 
extent to which regions throughout the brain are sensitive to dif‐
fering combinations of both visual and semantic features. Inherent 
in adopting this design was our difficulty in satisfactorily identifying 
objects that were similar in shape but belonged to different semantic 
categories, as similarly shaped objects cannot help but share at least 
some semantic features.

Two recent papers adopted a similar approach but included a 
condition of perceptual similarity crossed with semantic dissimilar‐
ity (Bracci & de Beeck, 2016; Martin, Douglas, Newsome, Man, & 
Barense, 2018). Prima facie, both of these studies managed to over‐
come our concerns with this condition. However, we suggest that 
while nominally semantically dissimilar, perceptually similar objects 
continue to share many functional semantic features. Martin et al. 
(2018) posit that hairdryers, electric drills, and handguns share sim‐
ilar shapes, but are conceptually distinct. However, these objects 
have many semantic properties in common: they are graspable, have 
handles, and are commonly held in a similar orientation, etc. Bracci 
and de Beeck (2016) likewise include a condition in which percep‐
tually overlapping shapes nominally differ in conceptual category. 
Again, these nominally semantically dissimilar objects still share 
functionally based semantic properties (e.g., a paintbrush and a ping 
pong paddle are both gripped by their handles).

In light of the complexities and potential confounds inherent in 
a similar shape/ different categories condition, we chose to con‐
trol our stimulus manipulations as much as possible and focus our 
study exclusively on familiar, object categories comprised of se‐
mantically related exemplars with overlapping or nonoverlapping 
visual shapes; thus, our object categories shared the same degree 
of semantic similarity but varied in their degree of visual similarity. 
This design was used in conjunction with functional magnetic res‐
onance imaging (fMRI) to investigate whether category‐selective 
brain regions are sensitive to the following: (a) semantic overlap 
irrespective of visual similarity, (b) visual overlap irrespective of 

semantic similarity, or (c) are not differentially sensitive to visual 
versus semantic overlap and thus process a mix of visual and se‐
mantic features. Therefore, to investigate the degree to which 
shared visual features contribute to category selectivity across 
the broad set of brain regions associated with category repre‐
sentation, we varied the degree of visual feature overlap among 
category members while holding semantic category membership 
consistent across blocks of objects, thereby allowing us to assess 
the contribution of perceptual similarity in defining category‐se‐
lective neural representations. We used a whole‐brain analysis 
approach to identify a network of regions that are critical for the 
maintenance of semantic category boundaries in the absence of 
visual similarity. The inclusion of objects from the same semantic 
categories that were either visually similar or dissimilar allowed us 
to separate those brain regions sensitive to shared perceptual fea‐
tures from those regions sensitive purely to semantic information.

We predicted we would observe neural adaptation in response 
to visual similarity throughout the visual processing hierarchy, be‐
ginning in early visual cortex, and extending into the ventral visual 
pathway. LOC was expected to demonstrate greater adaptation 
for visually similar categories with higher degree of perceptual 
feature overlap and to exhibit less sensitivity semantic informa‐
tion, with little difference in adaptation between living and non‐
living category boundaries. Further, we predicted that a wider 
network of processing regions extending in an anterior direction in 
the brain would demonstrate adaptation in response to conceptual 
category boundaries processing in the absence of visual similar‐
ity. Specifically, greater adaptation was expected in prefrontal and 
premotor regions for categories based predominantly on semantic 
features (e.g., living vs. nonliving). To the extent that these regions 
are sensitive to semantic information, differential adaptation ef‐
fects for visually similar and dissimilar category members were not 
expected.

2  | MATERIAL S AND METHODS

2.1 | Participants

Participants were 20 undergraduate and graduate students from 
Carnegie Mellon University, aged 18–30 (M = 21.6 years). Participants 
were right‐handed native English speakers with normal or corrected‐
to‐normal vision. Participants gave written informed consent as 
approved by the Carnegie Mellon University Institutional Review 
Board and received monetary compensation for their participation.

2.2 | Stimuli

Stimuli consisted of 496 images of single objects. Objects and cor‐
responding images were initially selected by the experimenters and 
were behaviorally piloted in a picture‐naming task to confirm that 
participants assigned correct object names (e.g., the word “apple” 
to a picture of an apple) with 98% accuracy. Two hundred eighty 
of the objects were visually similar or dissimilar objects grouped 
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into subsets drawn from the same semantic categories. Stimuli 
were grouped in subsets of ten objects: 16 groups were semanti‐
cally associated objects with a high degree of visual feature overlap 
between objects, and 16 groups were semantically associated ob‐
jects that were visually distinct from one another. An additional 16 
objects were used in blocks comprised of identical repetitions, and 
160 visually and semantically unrelated objects were used in blocks 
comprised of random objects (i.e., a mix of living and nonliving ob‐
jects with no repetitions and no overlap with objects in semantically 
associated categories). The identical and random conditions were in‐
cluded as they were expected to elicit maximum adaptation effects 
(due to entirely overlapping visual and semantic features for identi‐
cal objects) and minimum adaptation effects (due to nonoverlapping 
visual and semantic features for random objects).

The visually similar and dissimilar groups were further divided 
into eight groups of living objects and eight groups of nonliving 
objects (Figure 1). Table 1 lists all object categories for the visually 
similar versus dissimilar conditions and the living versus nonliving 
conditions.

We quantified perceptual similarity in the visually similar and 
dissimilar object categories with a Gabor filter analysis, which mea‐
sured the overlap in frequency for our stimulus images on a pixel‐
by‐pixel level. We used the Gabor filter approach because it is a 
mathematically useful way of quantifying spatial frequency infor‐
mation and it considers multiple levels of low‐ and high‐level image 
features that were of interest in our study, including image texture 
(Idrissa & Acheroy, 2002), orientation (Kong, 2008; Sagi, 1990), and 
edge detection (Jiang, Lam, & Shen, 2009; Mehrotra, Namuduri, & 
Ranganathan, 1992).

The mean Gabor distance between all objects in each object 
group was analyzed as a function of condition. Visually similar ob‐
jects were closer in Gabor distance (M = 0.31, SD = 0.03) than vi‐
sually dissimilar objects (M = 0.41, SD = 0.03) and random objects 
(M = 0.49, SD = 0.04). The difference in Gabor distance was signifi‐
cant for similar versus dissimilar objects (t(15) = −3.37, p < .005) and 

similar versus random objects (t(15)  =  −5.80, p  <  .001), but there 
was no significant difference between visually dissimilar objects and 
random objects (t(15) = −1.93, p = .07). Further, the Gabor distance 
between living objects (M = 0.34, SD = 0.02) and nonliving objects 
(M = 0.39, SD = 0.03) was not significant (t(15) = −1.41, p = .18).

To control for semantic similarity across all conditions, word 
association norms were calculated for all object groups (USF 
Free Association Norms; Nelson, McEvoy, & Schreiber, 1998). 
Semantic similarity is defined as participants’ preexisting knowl‐
edge of shared conceptual category membership among stimulus 
objects (e.g., balls, bats, and gloves are used to play baseball; gui‐
tars, drums, and trumpets are used to make music). This construct 

F I G U R E  1  Examples of the stimuli from each block condition in the fMRI paradigm. (a) Visually similar objects from the same living 
category. (b) Visually similar objects from the same nonliving category. (c) Visually dissimilar objects from the same living category. (d) 
Visually distinct objects from the same nonliving category

TA B L E  1  List of object categories included in fMRI‐adaptation 
paradigm as a function of visual similarity and living/ nonliving 
category membership

  Living Nonliving

Visually similar Animals (Furry) Clothes

Animals (Hooved) Food/Snacks

Birds Furniture

Fish/Ocean Instruments

Flowers Office Supplies

Fruits Shoes

Reptiles Sports

Vegetables Vehicles

Visually dissimilar Animals (Jungle) Clothes

Animals (Forrest) Food/Snacks

Birds Instruments

Fish/Ocean Kitchen Gadgets

Fruits Office Supplies

Insects Sports

House plants Tools

Vegetables Vehicles
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was quantified by a word association norm score representing the 
likelihood of one object label calling to mind another object label 
(Nelson, McEvoy, & Dennis, 2000; Nelson, McEvoy, & Schreiber, 
2004). Norms were calculated for both within‐category associa‐
tions (e.g., apple to cherry and orange) and higher‐order category 
member associations (e.g., apple to fruit and chair to furniture). 
This analysis indicated that visually similar (M  =  0.09, SD  =  0.07) 
and dissimilar objects (M  =  0.10, SD  =  0.05) did not differ from 
one another in semantic relatedness for within‐category associ‐
ations (t(27) = −0.45, p  =  .65). There was a marginally significant 
difference in category member associations, with visually similar 
(M = 0.22, SD = 0.18) objects being more associated than dissimilar 
objects (M = 0.13, SD = 0.07) with their higher‐order category label 
(t(29) = 1.96, p = .06). While we acknowledge that this trend toward 
a difference in category membership as a function of visual simi‐
larity may have some role in defining category boundaries, we do 
not expect it to impact the results of this study as we are primarily 
focused on within‐category representations of individual objects, 
as opposed to higher‐to‐lower order linkages. Finally, semantic 
relatedness did not differ as a function of living versus nonliving 
category membership for the within‐category associations (Living: 
M = 0.09, SD = 0.06; Nonliving: M = 0.10, SD = 0.06, t(27) = −0.56, 
p  =  .58) or the category member associations (Living: M  =  0.21, 
SD = 0.16; Nonliving: M = 0.14, SD = 0.11, t(29) = 1.40, p = .17). We 
did not examine semantic similarity among objects in the identical 
and random control conditions because these conditions were not 
included in the analysis of differences in adaptation across object 
categories within semantic processing regions.

2.3 | Procedure

2.3.1 | fMRI‐adaptation paradigm

We adopted a block adaptation design to identify those brain re‐
gions associated with the processing of specific stimulus attributes 
(Grill‐Spector & Malach, 2001). The canonical signature of an adap‐
tation design is a reduction in neural signal upon repeated viewings 

of images overlapping along some low‐ or high‐level feature dimen‐
sion. For example, adaptation across stimulus repetitions has been 
found for objects with shared visual features (Sayres & Grill‐Spector, 
2006), objects with shared category membership (Weiner, Sayres, 
Vinberg, & Grill‐Spector, 2010), objects with similar dynamic move‐
ments (Pyles & Grossman, 2009), or scenes from the same location 
(Epstein & Morgan, 2012).

In our study, stimulus blocks were composed of groups of 10 ob‐
jects. There were six different block conditions: identical blocks of 
the same object image viewed 10 times (expected to elicit maximum 
ventral visual cortex adaptation), random blocks of 10 distinct and 
unrelated objects (expected to elicit minimum ventral visual cor‐
tex adaptation), and blocks of categorically related object groups 
(Figure 2). These groups were divided into four conditions: living/
similar, nonliving/similar, living/dissimilar, and nonliving/dissimilar. 
The order of the objects presented within each block and the order 
of the blocks themselves were randomized for each participant, each 
object was only viewed once per scan, and the same condition was 
never viewed twice in a row.

Stimuli were presented in MATLAB (MathWorks, Inc.) using 
the Psychophysics Toolbox (Brainard, 1997) on an MR‐compatible 
LCD display (BOLDscreen dimensions: 51.8 × 32.3  cm, resolution: 
1,920 × 1,200 pixels) controlled by a MacBook Pro laptop. All of the 
stimulus images were displayed at the center of the screen in gray‐
scale against a light gray background (20% gray). The images were 
presented in grayscale to eliminate color‐based perceptual pro‐
cessing and increase focus on form‐based object representations. 
The images were 400 × 400 pixels (subtending 4.9° × 4.9° of visual 
angle). Stimuli were adjusted to fit in the 400‐pixel square and not 
scaled for real‐world size differences between objects.

Each stimulus image was presented for 850 ms with a 350 ms 
fixation cross between each image presentation, for a total block 
length of 1,200 ms. Blocks were interleaved with an 8,000 ms pas‐
sive fixation period to allow the signal to return to baseline before 
the next block began. Within each block, two or three of the fixation 
crosses were red (randomized number and order), and the remainder 
of the crosses were black. Participants were instructed to press the 

F I G U R E  2   Examples of the block 
conditions and stimulus presentation 
order in the fMRI paradigm
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right index finger button of the MR‐compatible button glove when 
they detected a red fixation cross. 

Each experimental scanning session consisted of four runs of the 
fMRI‐adaptation task, two localizer runs, and high‐resolution ana‐
tomical image acquisition. The fMRI‐adaptation task runs each con‐
tained 16 blocks (four identical, four random blocks, and two of each 
of the categorical object blocks), and the initial and final 1,200 ms of 
each run was a passive fixation period. Participants also completed 
two runs of the objects versus scrambled object functional local‐
izer runs to identify LOC as a region of interest (ROI) (Grill‐Spector, 
2003). The order of each scanning session was as follows: three 
fMRI‐adaptation task runs, anatomical acquisition, one fMRI‐adap‐
tation run, and two localizer runs.

2.3.2 | MRI acquisition

Neuroimaging data were acquired with a 3‐Tesla Siemens Verio 
scanner equipped with a 32‐channel phased array headcoil lo‐
cated at the Carnegie Mellon University Scientific Imaging & 
Brain Research Center. High‐resolution anatomical images were 
acquired for each participant and were used for the coregistra‐
tion of the functional data (T1‐weighted MPRAGE, 1 mm isovoxel, 
TR =  2,300 ms, TE =  1.97 ms, flip angle  =  9°). Each experiment 
included two types of functional scans: fMRI‐adaptation scans 
and localizer scans that were used to identify LOC as an ROI (T2‐
weighted gradient EPI, anterior to posterior phase encoding, 3 mm 
isovoxel, TR  =  2,000 ms, TE  =  29 ms, flip angle  =  79°, 36 axial 
slices, GRAPPA factor = 2).

2.3.3 | fMRI analysis

All neuroimaging data were preprocessed using BrainVoyager (v2.6, 
Brain Innovations, Inc.). Preprocessing steps included slice‐tim‐
ing correction, motion correction, and linear trend removal with a 
temporal high‐pass filter (two cycles per scan). Functional data were 
manually coregistered to the individual participant's high‐resolution 
anatomical images.

Lateral occipital cortex was established as an ROI for each par‐
ticipant using the results of the functional localizer runs. LOC was 
identified as the region of ventral temporal cortex showing more 
activation for objects relative to scrambled objects using a boxcar 

model convolved with a hemodynamic response function contrasted 
using a general linear model (GLM; FDR < 0.01). To assess adaptation 
effects within this ROI, an event‐related average (ERA) was calcu‐
lated for all voxels within the ROI, and the timecourse of the ERA 
was compared separately for each condition. Early visual cortex 
(EVC), located posteriorly along the calcarine sulcus, was anatomi‐
cally selected as an exploratory ROI (FDR < 0.05), given its estab‐
lished pattern of adaptation in response to purely visual information 
(Gardner et al., 2005). Adaptation effects within EVC were also as‐
sessed using an ERA analysis to compare timecourse as a function of 
block condition.

A whole‐brain analysis investigated the wider network of re‐
gions that were predicted to show differences in adaptation across 
both visual and semantic feature processing. GLM contrasts were 
run between the four semantically related conditions and the ran‐
dom condition (i.e., living/similar, living/dissimilar, nonliving/similar, 
and nonliving/dissimilar conditions collapsed and contrasted with 
the random control condition) to establish those regions where 
the adaptation effect was larger for objects with shared category 
associations (irrespective of the degree of visual similarity). These 
regions were thresholded at a t‐value greater than two (p  <  .05). 
Significant activation was found in the angular gyrus (AnG), the pre‐
central gyrus (PrG), and the dorsomedial portion of the prefrontal 
cortex (DMPFC). Adaptation within these regions was assessed with 
the ERA timecourse, and the average percent signal change within a 
block was calculated for each region.

The ROI and whole‐brain analyses were run separately for the 
right and left hemispheres, and adaptation across regions did not 
differ as a function of hemisphere. Therefore, results explicating 
adaptation effects in the a priori visual cortex ROIs (EVC and LOC) 
and the wider whole‐brain network (AnG, PrG, and DMPFC) are pre‐
sented bilaterally. Figure 3 illustrates the locations of these regions.

Segmentation was performed for cortex‐based alignment (Goebel, 
Esposito, & Formisano, 2006) and group analysis. Gray matter was 
manually segmented from white matter for each participant. White 
matter meshes were then smoothed and inflated. To provide the most 
accurate alignment of cortical surfaces across participants, a cortex‐
based alignment approach was used where white matter meshes were 
first inflated and morphed onto a standardized sphere for all partici‐
pants, and, subsequently, patterns of gyri and sulci were aligned be‐
tween participants to create a group reference coordinate space.

F I G U R E  3   Regions included in the 
fMRI analysis: lateral occipital cortex 
(LOC) and early visual cortex (EVC) and 
semantic regions of activation in angular 
gyrus (AnG), precentral gyrus (PrG), and 
dorsomedial prefrontal cortex (DMPFC). 
Location of the regions is depicted 
on the inflated cortical surface of one 
representative participant. (a) Posterior 
view. (b) Lateral view. (c) Medial view
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3  | RESULTS

3.1 | ROI‐based analysis

Adaptation was calculated for each ROI by averaging the overall 
BOLD percent signal change within a block relative to baseline as 
a function of condition. Baseline was calculated as the average sig‐
nal during the three TRs before the block onset. The within‐block 
calculation was lagged by two TRs to account for the delay of the 
hemodynamic response. Within‐block percent signal change was 
then compared across conditions with paired‐samples t tests.

Within LOC, blocks of identical objects elicited more adaptation 
than all other conditions (p < .001 for all contrasts; Figure 4). There 
was no main effect of visual similarity, with visually similar objects 
eliciting the same level of adaptation as visually dissimilar objects 
within LOC (t(19) = −1.15, p =  .26). There was also no main effect 
of living/nonliving category membership within LOC (t(19) = −1.73, 
p  =  .10). Among the four categorically related conditions, a re‐
peated‐measures ANOVA did not reveal a significant interaction 
between visual similarity and living/nonliving category membership 
(F(3,19) = 1.73, p = .17).

Within EVC, blocks of identical objects elicited more adaptation 
than all other conditions (p < .05 for all contrasts; Figure 5). Random 
objects adapted less overall than visually similar objects (p < .05), but 
there was no difference in adaptation effects between random and 
visually dissimilar objects within EVC (p = .77). There was a main ef‐
fect of visual similarity within EVC, with visually similar objects hav‐
ing significantly greater adaptation as compared to visually dissimilar 
objects (t(19) = −3.23, p < .005). The main effect of living/nonliving 
category membership was not significant when collapsed across vi‐
sual similarity (t(19) = −0.96, p =  .35). Among the four categorically 

related conditions, a repeated‐measures ANOVA revealed a signifi‐
cant interaction between visual similarity and living/nonliving cate‐
gory membership (F(3,19) = 3.73, p < .05). Post hoc analyses indicated 
the largest adaptation effect in the living/similar condition, with these 
objects showing a significantly smaller percent signal change as com‐
pared to both the living/dissimilar condition (t(19) = −3.38, p < .005) 
and the nonliving/dissimilar condition (t(19) = −2.78, p < .05).

3.2 | Whole‐brain analysis

Within‐block adaptation was calculated for each region by averag‐
ing the overall percent signal change within a block as a function of 
condition, lagged by two TRs to account for the delay of the hemo‐
dynamic response. Since the selection of brain regions showing ad‐
aptation was based on a contrast with the random condition, the 
random condition is dropped from the present results. The identical 
condition is also excluded from these analyses, as this analysis was 
designed to only consider different patterns in adaptation between 
the four categorical conditions (Figure 6).

Within AnG, there was a main effect of visual similarity within 
AnG, with visually similar objects having greater adaptation as com‐
pared to visually dissimilar objects (t(19) = −2.37, p < .05). However, 
there was no main effect of adaptation for living versus nonliving 
category membership (t(19) = −0.13, p = .90). The interaction of vi‐
sual similarity and living/nonliving category membership was not 
significant (F(3,19) = 1.26, p = .30).

Within PrG, there was no main effect of visual similarity 
(t(19) = 0.04, p = .97), no main effect of living versus nonliving cate‐
gory membership in the PrG (t(19) = 0.91, p = .38). The interaction of 
visual similarity and living/nonliving category membership was also 
not significant (F(3,19) = 0.71, p = .55).

F I G U R E  4   fMRI‐adaptation results (mean ± standard error of the mean) for lateral occipital cortex (LOC). (a) Percent signal change within 
a block as a function of block condition. (b) ERA timecourses for each condition. The zero point marks the block onset; the plot extends for 
three TRs beyond the end of the block to show the return to baseline
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Within DMPFC, the main effect of living/nonliving category 
membership was significant, with living objects showing greater 
adaptation as compared to nonliving objects (t(19) = −2.10, p < .05). 
There was no main effect of visual similarity (t(19) = −0.75, p = .46). 
There was a significant interaction between visual similarity and liv‐
ing/nonliving category membership (F(3,19) = 3.26, p < .05). Post hoc 
analyses indicated that the largest adaptation effect was observed 
between the living and nonliving visually similar conditions, but with 
living objects adapting significantly more (t(19)  =  −2.92, p  <  .01). 
There was no difference in adaptation between the living and 
nonliving visually dissimilar categories (t(19) = −0.69, p =  .50). The 
greater difference in adaptation within the visually similar condition 

indicates that both visual and semantic features may contribute to 
the maintenance of object category boundaries within DMPFC.

4  | DISCUSSION

The principle finding of our study is that shared visual features appear 
to contribute to category‐selective responses within a distributed, 
whole‐brain object processing network. Within the visual cortex, we 
observed expected effects of visual similarity in EVC, but we did not 
observe differential sensitivity to visual or semantic features within 
the LOC (part of the ventral visual stream). Looking more broadly, an 

F I G U R E  5   fMRI‐adaptation results (mean ± standard error of the mean) for early visual cortex (EVC). (a) Percent signal change within a 
block as a function of block condition. (b) ERA timecourses for each condition. The zero point marks the block onset; the plot extends for 
three TRs beyond the end of the block to show the return to baseline. *p < .05; ***p < .005
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F I G U R E  6   fMRI‐adaptation results (mean ± standard error of the mean) for the semantic network. Plots show percent signal change 
within a block as a function of block condition in (a) angular gyrus (AnG), (b) precentral gyrus (PrG), and (c) dorsomedial prefrontal cortex 
(DMPFC). *p < .05; **p < .01
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extensive network of regions associated with object category pro‐
cessing, including AnG, PrG, and DMPFC, were found to adapt more 
in response to shared semantic category membership (i.e., living vs. 
nonliving compared with random), irrespective of the degree of visual 
similarity. However, visual similarity also contributed to category rep‐
resentations within these nonvisual regions. AnG showed increased 
adaptation for visually and semantically similar objects, while the 
DMPFC had different patterns of adaptation for living versus non‐
living object categories, with the most adaptation for living objects 
that were also visually similar, indicating integration of both forms of 
information within this frontal processing region. Overall, our find‐
ings support a neural architecture for category representation that 
is distributed across a network of brain regions sensitive to differing 
combinations of visual and semantic features.

We predicted that LOC would be sensitive to perceptual feature 
overlap and exhibit increased neural adaptation for visually similar 
relative to visually dissimilar object categories. However, we did not 
observe this effect, with this critical object processing region of the 
ventral visual cortex instead demonstrating no significant difference 
in its adaptation responses across these conditions. However, we 
did observe that identical objects gave rise to the largest adaptation 
effects in LOC—unsurprising in that LOC is typically associated with 
the processing of object form (Grill‐Spector, Kourtzi, & Kanwisher, 
2001). However, the unexpected finding of no significant category 
differences in LOC suggests that this region may not be differen‐
tially sensitive to visual versus semantic features. Rather, the LOC 
may play a role in object identification and/or generalization across 
categories (Grill‐Spector et al., 2001; Grill‐Spector & Weiner, 2014), 
as opposed to maintaining divisions between category boundaries 
(Eger, Ashburner, Haynes, Dolan, & Rees, 2008). As such, the LOC 
may encode higher‐order object properties, including both visual 
form and semantic category membership and, consequently, may 
not differentiate between the unique elements that are bound to 
both perceptual and semantic object identity (e.g., tables have legs, 
and birds have beaks). In the context of object recognition, this kind 
of information (as opposed to collapsing across shared features) may 
be more effective for identifying individual objects within and across 
categories.

Additional evidence for a lack of a clear distinction between 
visual and semantic categorization in ventral visual cortex comes 
from neuroimaging of the visual processes supporting both basic 
and subordinate‐level recognition across both perceptual and con‐
ceptual tasks (Gauthier, Anderson, Tarr, Skudlarski, & Gore, 1997). 
Consistent with previous findings indicating that visual regions en‐
code features related to object category, both perceptual and con‐
ceptual tasks recruited parts of the fusiform and inferior temporal 
gyri within the ventral visual cortex (Gauthier et al., 1997; see also 
Gauthier et al., 2000). Gauthier, Curran, Curby, and Collins (2003) 
manipulated perceptual and semantic category knowledge more 
directly by using novel objects to examine the organization of cat‐
egories without the confound of known object names or prior con‐
ceptual knowledge of the test categories. Novel objects that were 
assigned to the same novel semantic category were subsequently 

perceived as being more visually similar. This finding demonstrates 
knowledge of shared conceptual category membership can influ‐
ence high‐level visual representations, a point that is consistent with 
our finding of no differential adaptation effect for visually similar 
versus visually dissimilar categories in LOC.

We should note that the pattern of responses we observed in the 
LOC differ from those reported in previous research. In particular, 
earlier studies have found that the ventral visual cortex appears to 
be organized into category‐selective regions that respond preferen‐
tially to a particular object category or categories (e.g., Bi et al., 2016; 
Caramazza & Mahon, 2003; Hutchison, Culham, Everling, Flanagan, 
& Gallivan, 2014; Peelen & Downing, 2017). However, the finding of 
category selectivity in visual areas does not, in and of itself, estab‐
lish that semantics play any role in this level of organization. Instead, 
our results suggest that those visual processes characterized as 
“category‐selective” may arise solely due to the differential repre‐
sentation of individual object features that ultimately help to define 
object categories (e.g., Cutzu & Tarr, 1997; Grill‐Spector, 2003; Lee 
& Baker, 2016; O'Reilly et al., 2013; Quinn, Eimas, & Tarr, 2001; Rice, 
Watson, Hartley, & Andrews, 2014).

The overall pattern of adaptation within EVC was consistent with 
our predictions. In particular, we observed a higher level of adap‐
tation for visually similar objects relative to visually dissimilar ob‐
jects. Unexpectedly, we also observed greater adaptation for living 
objects relative to nonliving objects within EVC. This latter finding 
hints that some aspects of higher‐order conceptual knowledge may 
be reflected in earlier visual processing or that there exist relatively 
low‐level perceptual differences sufficient to separate these two 
categories. However, supporting the former possibility, we note that 
EVC receives feedback from higher‐order visual processing regions 
(e.g., Gilbert & Sigman, 2007) and motor planning regions (Gutteling 
et al., 2015). One possibility is that the higher adaptation level we 
observed for living things in EVC is grounded in the category‐rel‐
evant informativeness of perceptual and conceptual features pro‐
cessed in more anterior brain regions.

Our results also explicate some of the possible roles for different 
regions within a distributed, whole‐brain network associated with 
the representation of object categories. First, we unexpectedly ob‐
served adaptation in AnG, a region that is held to be an association 
area that integrates information across multiple stimulus modalities 
(Bonnici, Richter, Yazar, & Simons, 2016; Ramanan, Piguet, & Irish, 
2017). The sensitivity of AnG to both visual and semantic features 
suggests that this region may be influenced by distinct brain regions 
that process perceptual and conceptual knowledge. As such, AnG 
may be an early point in the hierarchy of object category integration, 
mechanistically passing visual information forward to higher‐order 
conceptual processing regions (Binder, Desai, Graves, & Conant, 
2009). Supporting this view, Diaz & McCarthy (2007) reported that 
AnG responds in a consistent manner across a range of word cate‐
gories, with similar responses for content words (e.g., bear, hat, and 
ship) as compared to function words that have a lexical meaning 
but that have low conceptual complexity (e.g., circa, nowhere, and 
thine). The consistent response we observed for living and nonliving 
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objects, paired with the larger adaptation effect we observed for vi‐
sually similar objects, reinforces the idea that AnG may be less sensi‐
tive than previously thought to higher‐order conceptual knowledge.

Consistent with the overall view of a neural object processing hi‐
erarchy in the brain, we observed that moving in an anterior direction 
reveals a shift from perceptually based adaptation to semantically 
based adaptation. In particular, PrG was identified as a conceptual 
processing region in our whole‐brain analysis, as it adapted more in 
response to objects that shared living or nonliving category mem‐
bership compared to random objects with no conceptual association. 
This adaptation effect is in accord with previous literature; PrG has 
been shown to be involved in the integration of object identity and 
its associated actions, with increased responses in PrG when an ob‐
ject is viewed in the context of being used (Liljeström et al., 2008; 
Thioux & Keysers, 2015). However, although PrG has been construed 
as a conceptual area, we did not observe the predicted main effect 
of living versus nonliving category membership within this region.

Finally, we observed semantic category adaptation in DMPFC, 
with greater adaptation for living then nonliving objects. Note that 
the largest adaptation effect was seen for the living/similar category 
of objects, indicating that information about visual similarity may also 
be projected to this frontal, conceptual processing region. DMPFC is 
adjacent to regions important for attention, such as anterior cingu‐
late cortex, leading some researchers to suggest that DMPFC may 
play a role in shorter‐term sustained semantic adaptation across the 
duration of a block (Binder et al., 2009). Our finding of category‐
based adaptation in DMPFC differs from previous research that has 
alternatively linked the ventrolateral prefrontal cortex (VLPFC) with 
semantic retrieval and top‐down control of longer‐term memory 
representations (Martin & Chao, 2001; Nozari & Thompson‐Schill, 
2016; Thompson‐Schill, 2003). However, the blocked design used 
in our experiment does not require long‐term maintenance or top‐
down control as may be recruited by the more memory‐based tasks 
used in these earlier studies.

Taken together, the network of visual and semantic processing 
regions explicated in our present study point to the importance of 
more frontal brain regions in maintaining knowledge‐based rep‐
resentations of semantic features, while also demonstrating the 
influence of visual similarity in defining category boundaries. This 
organization is consistent with a large body of literature that closely 
links to the sensory/functional theory of object processing (e.g., 
Warrington & McCarthy, 1987). Our results indicating an interac‐
tion of visual and semantic features in the EVC and DMPFC are also 
consistent with the idea that living things are more commonly classi‐
fied based on their shared visual features, while nonliving things are 
more commonly classified based on their shared functional proper‐
ties (e.g., Thompson‐Schill, 2003).

An alternative way of framing this division of labor is in terms of 
the complementary functional roles for these distinct object pro‐
cessing regions. More specifically, sensory‐associated regions in 
posterior portions of the brain may be crucial for individual feature 
extraction, while memory‐associated frontal regions in more ante‐
rior portions of the brain may be linked to semantic knowledge and 

category boundaries (Binder et al., 2009). This characterization is 
consistent with our observation that AnG shows greater adaptation 
for visually similar objects with shared features regardless of the 
living/nonliving distinction. In contrast, DMPFC had differential ad‐
aptation effects for the living versus nonliving distinction, a finding 
that places semantic category boundaries in these frontal regions.

While there were no significant differences in Gabor distance be‐
tween living and nonliving categories (collapsed across visual similar‐
ity), it is important to note that the observed adaptation effects for 
the living/similar condition in particular may be driven by the fact that 
stimuli in this condition have the highest degree of pixel overlap (i.e., 
least Gabor distance), which is a limitation of the current study de‐
sign. We cannot rule out the influence of low‐level visual features in 
the processing of stimuli in this category and may only conclude that 
adaptation in response to living/similar objects represents combined 
processing of visual and semantic features. Another limitation of our 
present study was that the network of brain regions sensitive to both 
visual and semantic similarity was identified by collapsing across the 
four semantically associated conditions. Given this design, we are able 
to identify the relative contributions of both visual and semantic fea‐
tures across the brain, but we were not able to draw any binary distinc‐
tions between purely visual versus purely semantic processing regions. 
In particular, increased adaptation for living/dissimilar objects relative 
to nonliving/dissimilar objects provides some evidence in support of a 
category‐selective representation, given that these object categories 
did not significantly differ in their degree of shared visual features or 
pixel overlap. These methodological details do not detract from our 
main finding, which is that visual similarity was found to influence cat‐
egory representations in frontal brain regions typically considered to 
be “nonvisual” (e.g., DMPFC).

In summary, our results suggest that a distributed network of pro‐
cessing regions is responsible for the integration of a wide range of 
object features. Greater neural adaptation for visually similar objects 
within a category relative to their dissimilar counterparts throughout a 
distributed network suggests that visual features influence category‐
selective processing in nonvisual regions. In particular, we observed 
that perceptual feature overlap between objects modulated responses 
in anteriorly located processing regions, including premotor and pre‐
frontal cortices. Overall, we posit that 1) this network for category rep‐
resentation reflects distinct brain regions that efficiently extract the 
most relevant features for category membership; and 2) the transfer 
of visual information among these regions is fundamental to the neural 
representation of object categories.
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