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Abstract

I discuss the implications of spontaneously broken spacetime symmetries in context
of Condensed Matter Physics (CMP) and High Energy Physics (HEP). Starting
with a minimal set of assumptions, a lot can be learned about complicated many
body quantum systems using the ideas from Coset Construction and Effective Field
theories (EFT). The fact that any symmetry of the full theory must be realized,
linearly or non-linearly, in the infra red (IR) limit puts strong constraints on the
low energy dynamics of any EFT. In this work, I have mainly focused on the Fermi
liquid theory (FLT), which in some sense is the simplest CMP system. Even though
the phenomenology of FLT has been worked out extensively, its analysis from the
point of view of spacetime symmetry breaking has shed some new light on the
theory and led to the development of a novel idea the so-called Dynamical Inverse
Higgs Mechanism, which is a new way of non-linear realization of broken spacetime
symmetries. This technique is developed in this work in great detail.

I also worked on a different, yet more intuitive method of understanding broken
spacetime symmetries by using the spacetime symmetry algebra. This is related to
a well known concept in EFTs, called the Reparametrization Invariance (RPI). I
work out several examples of the constraints that arise in HEP EFTs from RPI and
how they can also be derived from the symmetry algebra. Lastly in the appendix,
I also provide some detailed calculations related to the main body of my thesis and
a few other applications of Coset Construction besides Fermi liquids.
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B.2 Poincaré algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



C Coset Construction for Spacetime Symmetry Breaking 50
C.1 Free Particle Action from Coset Construction . . . . . . . . . . . . 50
C.2 Lagrangian for Free HQET and SCET . . . . . . . . . . . . . . . . 52
C.3 Massive spinning particle coupled to Electromagnetism . . . . . . . 52
C.4 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.5 Superfluids at Unitarity . . . . . . . . . . . . . . . . . . . . . . . . 54

5



List of Figures

2.1 Allowed kinematic configuration for quasi-particle scattering. Di-
agram (a) is the BCS back to back configuration which leads to
Cooper pair condensation. (b) Forward scattering, in which the fi-
nal state momenta lie on top of the initial state momenta. . . . . . 22

2.2 Allowed kinematic configuration for framid-quasi-particle scattering.
Diagram (a) involves an off-shell framid, which can be integrated
out. (b) shows the interaction with a soft framid leading to near
forward scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Diagram a) could contribute to wave function renormalization whereas
both a) and b) could contribute to a mass. At zero external momen-
tum the two diagrams cancel as dictated by boost invariance. . . . . 26

A.1 Diagram (a) results in a shift in the chemical potential while (b) is
the first self-energy correction for quasi-particles. . . . . . . . . . . 45

A.2 Diagram (a) is the one loop correction to GB propagator resulting in
over-damped Goldstones which feedbacks into the lifetime of quasi-
particles through diagram (b) invalidating the Landau criterion. . . 47

6



List of Tables

2.1 Infinitesimal variation of Goldstones under broken charges . . . . . 33

7



Chapter 1

Introduction

Landau’s Fermi liquid theory (FLT) is a theory of interacting fermions which de-
scribes the normal state of metals [1, 2, 3]. In modern parlance the ubiquity of
Fermi liquid behavior is a consequence of the fact that under a certain set of generic
assumptions the long distance or low energy behavior is governed by a universal
fixed point. That is, the Fermi liquids fall into a universality class. The starting as-
sumption of the theory is that the interacting system can be reached by beginning
with a free theory and adiabatically turning on the interactions such that the free
fermion states evolve into interacting quasi-particles with same charge and spin as
an electron but not necessarily the same mass. Landau showed that, under these
assumptions, the width or inverse lifetime (Γ) of these quasi-particles is suppressed
due to Pauli blocking of the final states such that Γ(E) ∼ (E − EF )2, where E is
the energy of the quasi-particle and EF is the Fermi Energy or chemical potential.
This a posteriori justifies the notion of a quasi-particle. The signature of FLT
behavior in the normal phase of metals has generic features such as a resistivity
scaling as T 2, the existence of zero sound and long lived gapless excitations.

An Effective Field theory (EFT) description of the Fermi surfaces was devel-
oped in Ref. [4, 5, 6] which is based on an expansion around the Fermi surface and
becomes exact in the low energy or infra red (IR) limit where E/EF → 0. This
is the unique EFT that describes the universality class that is FLT. The founding
assumption of the EFT is the existence of long lived quasi-particles with the quan-
tum numbers of the electron. Once the theory has been defined, one shows that it
does predict a quasi-particle width, Γ(E) ∼ (E −EF )2, a self-consistency check of
the EFT.

As is the case for all EFT’s, the defining characteristics of the theory are the
relevant symmetries and the power counting parameter. In particular if any sym-
metry of the underlying microscopic theory are broken spontaneously then they
must be non-linearly realized in the IR. Naively, the spontaneous breaking of sym-
metry should, by Goldstone’s theorem [7, 8], lead to the existence of a massless
scalar bosons and hence, by understanding the symmetry breaking pattern we can
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identify the relevant degrees of freedom for the EFT.
The case of Fermi liquids in temperature range, TF >> T >> Tc

1, is very
interesting from the point view of symmetry breaking since the only spontaneously
broken symmetry is the Galilean boost due to a finite chemical potential and so in
addition to the quasi-particles, we should have a massless scalar boson called the
framon [9] in the IR.

It is well known that, when space-time symmetries are spontaneously broken
there need not be a one-to-one map between broken generators and Goldstone
bosons (GB). This is usually explained as being due to an “Inverse Higgs Con-
straint” (IHC) [10, 11, 12]. These constraints arise as a consequence of the fact
that it is often possible that only one GB is needed to assure invariance under multi-
ple symmetry transformations [13]. In most condensed matter systems, spacetime
translations are spontaneously broken due to the presence of an atomic lattice,
which results in the existence of phonons and due to an IHC, the Galilean boost
Ward identity can be satisfied without an independent framon. Another way of
saying this is that phonons are sufficient to non-linearly realize the boost invariance
in the IR and we don’t need an additional degree of freedom.

However in the case of Fermi liquids, like Helium-3 at low temperatures, we can
assume translational invariance is unbroken since we work with definite momentum
states and ignore the atomic lattice. Moreover we can also assume that the Fermi
surface is rotational symmetric.2. Under these assumptions, one should expect
that framon is a relevant degree of freedom since there are no IHC and we should
treat the low energy EFT of the normal state of metals as an interacting theory
of electron quasi-particles and framons. But it can be shown3 that existence of
massless scalar will violate the critical assumption of the FLT, which is that the
width of the quasi-particles goes as (E − EF )2. It seems that from the point of
view spacetime symmetry breaking FLT is inconsistent.

In Ref. [14] it has been shown that this in fact is not true and FLT does non-
linearly realize the Galilean boost symmetry, even without a framon. This happens
because of the so-called Dynamical Inverse Higgs Mechanism (DIHM) [14] where
the symmetry enforces an operator constraint, which results in a relation between
the Wilson coefficients of the theory. In the case of FLT, this operator constraint
is the famous Landau effective mass relation [1], which relates the bare mass of
an electron to its effective mass. DIHM can also help in resolving a long standing
problem about the normal state of a Unitary Fermi Liquid [15].

1TF is the Fermi temperature and Tc is the critical temperature for phase transition into a
generic superfluid state.

2The assumption of rotational invariance of Fermi surface can be relaxed and the theory of
such systems is discussed in later chapters.

3This result is derived in the appendix.
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Chapter 2

Dynamical Inverse Higgs
Mechanism

When symmetries are broken spontaneously they are manifested non-linearly in
the IR. The realization of the broken symmetry, in general, will include gapless
Goldstone bosons (GBs). When space-time symmetries are unbroken, Goldstone
bosons are derivatively coupled and are irrelevant in the IR. If there are other
gapless modes in the spectrum, not associated with symmetry breaking, the Gold-
stones may be ignored to first approximation. The canonical example of such a
scenario is the Fermi liquid theory of metals where phonons do not play a role at
leading order1. Of course, if there are no other gapless modes, or if the Goldstones
couple to sources, then they are of primary importance. An example of such a
scenario is the QCD chiral Lagrangian.

When space-time symmetries are broken, GBs can be non-derivatively coupled.
Two canonical examples being the relativistic dilaton and the Goldstone bosons of
broken rotational invariance in Fermi liquids. Such non-derivative couplings lead
to marginal or relevant interactions which can drastically affect the IR physics. For
instance, when rotational invariance is broken in a Fermi liquid and translations
are unbroken (nematic order), the quasi-particles decay into Goldstones [16, 17, 18]
leading to a width which scale as Γ ∼ Eα with α < 2. While relativistic dilatons can
generate long range forces and, as such, their couplings are highly constrained[19].
The necessary conditions for non-derivatively coupled Goldstones in non-relativistic
theories were discussed by Vishwanath and Watanabe in [20].

For relativistic theories the breaking of internal symmetries leads to a one to one
correspondence between Goldstone bosons and generators which shift the vacuum
[7, 8]. Moreover, the Goldstone boson is manifested as a delta function in the
spectral density. When space-time symmetries are broken[21] (this includes the

1Potential, off-shell phonons play an indirect role in that they contribute to the attractive
piece of the four Fermi coupling once they have been integrated out.
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aforementioned non-relativistic case) we are no longer assured about the existence
of a Goldstone boson associated with a broken generator X. Suppose we have a
order parameter φ such that

〈Ω | [X,φ] | Ω〉 6= 0, (2.1)

where

X =

∫
dd−1xjX0 (x). (2.2)

It follows that 2∑
n

δ(d−1)(~pn)
[
〈Ω | jX0 (0) | n〉〈n | φ(0) | Ω〉eiEnt − 〈Ω | φ(0) | n〉〈n | jX0 (0) | Ω〉e−iEnt

]
6= 0.

(2.3)
We assume that the system preserves a discrete translational invariance, so that
there exists some notion of a conserved momentum. Given that X is a conserved
charge, we see that symmetry breaking implies the existence of a zero energy state
when ~pn → 0. However, we can not say anything about the associated spectral
weight other than the fact that it has to non-zero. This state may be arbitrarily
wide. Thus if we are to count Goldstone bosons when space-time symmetries are
broken we must define what we mean by a Goldstone boson. For our purposes we
will define a Goldstone mode as having to satisfy the definition of a quasi-particle,
Γ ≤ E2

EF
in the limit of vanishing energy. Also note that (2.3) does not preclude the

possibility of having multiple gapless states.
For non-relativistic systems, there can be no symmetry breaking if the vacuum

is trivial since pair creation is disallowed. Thus a non-relativistic system which
manifests any symmetry breaking necessarily has a ground state which breaks at
least boost invariance and one can not separate space-time from internal symmetry
breaking. However, in the literature when internal symmetries are broken, the
breaking of boost symmetry is usually ignored. We will come back to this important
issue below.

Goldstone bosons may have various dispersion relations. Inequalities for count-
ing rules for the type I (E ∼ p) and type II (E ∼ p2) Goldstones3 associated with
internal symmetry breaking were first written down by Nielsen and Chadha [22].
Since then a series of papers ultimately led to the final result for the number of
Goldstones (N) [23, 24, 25, 26, 27, 28] when the group G is broken to H[29]

N = dim(G/H)− 1

2
rank[ρ] (2.4)

2We assume here that there are no long range forces so that surface terms may be dropped
and that generators have canonical translational properties. See [21] for a discussion.

3The dispersion relation need not be limited to these two choices. Higher order relations are
possible in some systems, e.g. the vibrations of a stiff rod. Non-analytic dispersion relations such
as those discussed in [29] are due to integrating out fields with analytic dispersion relations.
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where ρab = −i〈[Xa, j
a
b (0)]〉 and Xa are the broken charges of the full group G and

jb(0) are the associated charge densities. Furthermore counting rules for gapped
Goldstones (with both calculable and incalculable gaps) have been developed [37,
36].

The analysis leading to the result (2.4) does not hold when space-time symme-
tries are broken. Consider the case of a canonical superfluid. This system breaks
a U(1) symmetry corresponding to particle number and the rank of ρ vanishes
leading to a prediction of only one Goldstone boson. However, we must ask what
justifies ignoring the ersatz GB arising from the breaking of boost invariance? The
answer lies in whats known as the as the “Inverse Higgs Mechanism”(IHM) [10, 12]
(see also [13]).

The counting of (gapless) Goldstones still follows once we have established the
necessary criteria for the IHM. When two broken generators X,X ′ obey a relation
of the form

[P̄ , X] ∝ X ′ (2.5)

where P̄ are the unbroken translations and X and X ′ are not in the same H
multiplet, it may be possible to eliminate the Goldstone associated with X. As
emphasized in [37] the algebraic relation (2.5) may or may not be the signal of a
redundancy. That depends upon the nature of the order parameter. In particular,
given a set of broken generators Xa a redundancy exists when there is a non-trivial
solution to the equation

πa(x)Xa〈O(x)〉 = 0 (2.6)

where 〈O(x)〉 is the order parameter. As an example consider the symmetry break-
ing pattern for a metal. The lattice breaks rotations, translations and boosts. The
boost Goldstone ηi and rotation Goldstone θi can be easily seen to be redundant
since

Ki = P it−Mxi (2.7)

and
J i = εijkxjP k (2.8)

thus, assuming that the mass M is unbroken, i.e. no condensation, we have

(θk(x)εijkxi(i∂j) + ηi(x)(it∂i) + πa(x)(i∂a))〈O(x)〉 = 0 (2.9)

so that both rotations and boosts can be compensated for by a Goldstone dependent
translation [13].

In any case when condition (2.5) is satisfied, it is often possible to impose a
constraint on the fields which is consistent with the symmetries. This constraint
is called the Inverse Higgs Constraints (IHC) which is associated with the IHM.
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2.0.1 The Missing Goldstones

As was pointed out in [9] there are cases for which there is no inverse Higgs con-
straints and yet the Goldstones still do not appear. If particle number is spon-
taneously broken, then due to the fact that [P,K] ∝ M , there is an IHC which
allows one to eliminate the boost Goldstone. But if there is no IHM involving the
boost generator, one must include the boost Goldstone in the analysis. In [9] the
authors considered two such symmetry breaking patterns called type-I and type-II
“framids”. The former is a system in which the only broken symmetry is boost
invariance while the latter also breaks rotations. A cursory check of the Galilean
algebra shows that none of the broken generators satisfy (2.5) in these cases and
yet the Goldstones associated with boosts, dubbed the “framons”, are nowhere to
be seen in nature.

Another missing Goldstone boson arises in the case of non-relativistic dilatation
invariance. The authors of [30] point out that given that the dilaton σ transforms
under Galilean boosts as

σ(x, t)→ σ(x− vt, t) (2.10)

there is no way to write down a boost invariant kinetic term4 since the time deriva-
tive of the dilaton transforms non-trivially. As also pointed out in [30], if the U(1)
of particle number is broken then, as a consequence of the algebraic relation,

[Pi, Kj] = iδijM (2.11)

boost invariance is also broken (assuming translations are unbroken). As such,
there is an IHM at play and the Ward identities may be saturated without the
need for a dilaton. This begs the question, can one write down a sensible dilaton
kinetic term if there is no particle condensate? The answer, as will be discussed
below, is yes as long as the framon is included in the action. So we see that the
questions of the framon and the dilaton are intimately connected. Thus the puzzle
of the non-relativistic dilaton remains, and its resolution is tied to the fate of the
framon.

As will be discussed below a resolution of the framon puzzle is closely related
to the fact that when space-time symmetries are broken, Goldstone bosons need
not be derivatively coupled. To explore this possibility we utilize the coset con-
struction which will allow us to generalize the criteria for non-derivatively coupled
Goldstones given in [20]5 . Furthermore, we will use the coset methodology to
construct the theory of Fermi liquids with the symmetry breaking pattern of type

4Matter fields transform as projective representations under boosts which allow for the canon-
ical kinetic energy term.

5We generalize [20] in two ways. [20] states that there can be no Goldstone associated with
boost invariance due the non-vanishing commutator between boosts and the Hamiltonian. Here
we show the need for the boost Goldstone and show that it couples non-derivatively. The coset
methodology also allows us to consider relativistic generalizations.
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I/II framids as realized by a canonical Fermi liquid without/with nematic order.
We will see that the resolution of the framon issue follows from the dynamics of
the effective field theory. By treating the Goldstone boson as a Lagrange multiplier
we will generate a set of constraints, that are generalizations of the Landau condi-
tions in canonical Fermi liquids, which when imposed, lead to the proper symmetry
realization. We dub this the “Dynamical Inverse Higgs Mechanism” (DIHM), be-
cause the Goldstones are absent but not for algebraic reasons. We will then go
a step further and discuss a more general symmetry breaking pattern where both
boost invariance and Schrodinger invariance are spontaneously broken, which we
call a “type-III framid”. In this case one might expect both a framon and a non-
relativistic dilaton to arise. We will see that again, they do not, but their absence
greatly constrains the form of the effective field theory. This analysis was recently
used to prove that degenerate electrons interacting in the unitary limit can not
behave like a Fermi liquid [15] in the unbroken phase.

2.0.2 The Paths to Symmetry Realization

We see that there are three paths to space-time symmetry realization: No inverse
Higgs constraints are applied and the system retains one Goldstone for each broken
generator. Some or all of the constraints are applied and we have a reduced number
of Goldstones due to the existence of IHCs, or a Goldstone can be eliminated via
the DIHM with or without the application of other inverse Higgs constraints. In
this paper we will consider all three scenarios in the context of degenerate fermions.
We will show two examples of DIHMs, one for boosts and the other for dilatations.

2.1 Review Coset Construction

A powerful method for generating actions with the appropriate non-linearly real-
ized broken symmetries was developed for internal symmetries by CCWZ [31, 32]
and later generalized to space-time symmetries by Volkov and Ogievetsky [11, 12].
We refer the reader to original literature for details and here only rapidly review
the salient points of this coset construction. The method uses the fact that the
Goldstones coordinatize the coset space G/H where G is the symmetry group of
the microscopic action and H is the symmetry sub-group left unbroken by the
vacuum. The vacuum manifold is parameterized by

U = ei~π·
~X (2.12)

where ~π are the Goldstone fields and ~X the corresponding broken generators. The
unbroken generators will be denoted by ~T . This parameterization will be gener-
alized when we break space-time symmetries. As discussed below, we may use U

14



to write down the most-general action consistent with the symmetry breaking pat-
tern, including terms where the Goldstone couples to other gapless (non-Goldstone)
fields in the theory. Notice that the coset construction seems to imply that there
must be at least one Goldstone boson. However, this need not be the case, as
mentioned above. It could very well be that we can construct an invariant action
without the need for a Goldstone, even without an inverse Higgs constraint. We
will show that if this is indeed possible then the coset construction is a useful tool
in determining this non-Goldstone action.

Once space-time symmetries are broken, the symmetry group is no longer com-
pact. As such the structure constants can not necessarily be fully antisymmetric
6 and consistency requires that one generalize the vacuum parameterization to
include the unbroken translations (P̄ µ)7 such that

U = eiP̄ ·xeiπ·X . (2.13)

The number of unbroken translations may be enhanced if there exist internal
translational symmetries as in the case of solids or fluids [33]. In such cases the
direct product of the internal and space-time translations are broken to the diagonal
subgroup by the solid. In this work we will not be considering such cases as we are
interested in zero temperature ground states with delocalized particles.

The Maurer-Cartan (MC) form decomposes into a set of well defined geomet-
rical objects,

U−1∂µU = EA
µ (P̄A +∇Aπ

aXa + AbAT
b). (2.14)

The vierbein E relates the global frame to the transformed (acted upon by G/H)
frame. In this way, the covariant derivatives on the matter fields in the local frame
are written as

∇Aψ ≡ (Eµ
A∂µ + iT qAqA)ψ (2.15)

such that under a boost

∇Aψ → e
i
2
mv2t−im~v·~x∇Aψ. (2.16)

From (2.14) we can extract the vierbein, the covariant derivative of Goldstone
fields (∇π) and the Gauge fields (A) and use these objects to construct our action
which will be invariant under the full symmetry group G by forming H invariants.
For a complete discussion of the coset construction and its application to broken
spacetime symmetries in multiple contexts, we refer the reader to [34].

6A consequence of this fact is that it is not longer true that [T,X] = X.
7When translations are broken by localized semi-classical objects (i.e. defects) the coordinate

is lifted to the status of a dynamical variable; see for instance [34, 38, 39].
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2.2 Non-Derivatively Coupled (NDC) Goldstone

Bosons

In [20] the criteria necessary to generate theories with non-derivatively coupled
Goldstones is given by

[Xi, ~P ] 6= 0. (2.17)

where X i is a broken generator and ~P are the unbroken space-time translations.
The authors argue that the forward scattering matrix elements of broken generators
X formally diverge

lim
~k′→~k
〈~k | X | ~k′〉 → ∞. (2.18)

which compensates for the explicit factor of the Goldstone momentum in the cou-
pling. One may be concerned with the fact that X is not a well defined operator at
infinite volume, and that the limiting procedure is not well defined. However, we
will see below that the coset construction supports the authors claims and allows
us to, trivially, generalize their criteria to relativistic systems. (2.17) is a neces-
sary but not a sufficient criteria for the existence of a non-derivatively coupled
Goldstones since we must also ensure that it can not be removed via an IHM.

Within the coset formalism the search for non-derivative couplings starts with
understanding how the Goldstones couple to generic matter fields. As such, we
need to determine under what conditions a Goldstone arises in the vierbein or
connection without any derivatives acting upon it. Thus a necessary condition for
non-derivative coupling is the generalization of (2.17), i.e.

[P̄ µ, X] 6= 0. (2.19)

Note the distinction between this criteria and (2.17). First (2.19) only involves
the unbroken canonical spatial translations P̄ which can differ from P , not only
because of the zero component, but more generally if there are internal translational
symmetries. This is however, a distinction without a difference because internal and
space-time symmetries commute. But an important distinction between (2.17) and
(2.19) is the fact that (2.19) allows for the non-commutation with the Hamiltonian
as being a criteria for NDC Goldstones. As a matter of fact, this explains the NDC
nature of the dilaton (both relativistic as well as non-relativistic8). Also we will
see that whether or not G is the Poincare or Galilean group is of no consequence
as far the the criteria for non-derivative coupling is concerned.

To see that (2.19) is a sufficient criteria for NDC, assuming the Goldstone boson
associated with X is not removed by the inverse Higgs mechanism, we note that
the veirbein will contribute to the measure via

S =

∫
d4x
√
E2..... (2.20)

8The non-relativistic case being of particular importance below.

16



so that as long as the determinant of the vierbein contains a term linear in the
Goldstone9 , there will be a NDC to matter fields. From (2.14) we can see that if
[P̄ , X] ∼ P̄ then the Goldstone associated with X will arise in E. However, the
Goldstone will often be absent from the volume factor as in the case of broken
boosts or rotations. Thus the first NDC will come from the covariantization of the
derivatives Eµ

a (π)∂µ. Alternatively if [P̄ , X] ∼ T , then the Goldstone will show up
in the connection, in which case the NDC will arise from the covariant derivative
acting on the matter fields.

Finally, note that if G is the Galilean group then due to relation the Eq. (2.11) if
the U(1) particle number is unbroken, then the boost Goldstone will be associated
with the connection. Whereas if G is the Poincaré group then the boost will be in
the vierbein. But in either case framid will be non-derivatively coupled.

2.3 Framids

2.3.1 Non-Relativistic Framids

The type I framid as defined in [9] is a system where boost invariance is sponta-
neously broken, but all other space time symmetries are intact. The coset construc-
tion only cares about the symmetry breaking pattern and not the definite choice
of the order parameter. As was emphasized in [37] the choice of order parameters
can affect how the symmetry is realized if there exist gapped Goldstones (assum-
ing the gap size is hierarchically small compared to the cut-off). In particular the
representation of the order parameter(s) will determine whether or not the inverse
Higgs conditions (2.5) leads to a redundancy or a gap. However, here we are only
interested in the truly gapless modes, so in this respect the order parameter will
be irrelevant. Nonetheless, we are interested in a certain class of order parameter,
i.e. those whose commutator with boost generators have a non-vanishing vacuum
expectation value (e.g. the momentum density). This class of order parameters
yield Goldstones which are collective excitations. Whereby a “collective excitation”
we mean a quasi-particle pole (or resonance) which exists as a consequence of the
fact that the vacuum is not annihilated by some conserved charge. Put another
way, the modes are excitations of the material responsible for the breaking of boost
invariance. This definition sets apart say the pion in QCD from the plasmon in a
metal.

Cases where the framid are not collective modes correspond to speculative theo-
ries beyond the standard model of particle physics and Relativity, such as Einstein-
Aether theory [41], where a four vector gets a time-like expectation value.

〈Aµ〉 = nµ. (2.21)

9That E contains term linear in the Goldstone follows from the fact that the Goldstone acts
as the transformation parameter.
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The resulting theory contains three Goldstone modes corresponding to the framons
[42]. The lack of the evidence for a Goldstone arising in Einstein-Aether theory
allows us to place bounds on the couplings (see for instance [43]). However, we
know that condensed matter systems break boost, and if the symmetry breaking
pattern is such that there are no IHC around to eliminate the framids from the
spectrum it is incumbent upon us to determine their fate.

It is tempting to disregard boost Goldstones since the associated generator does
not commute with the Hamiltonian and hence there is no flat direction. However,
the existence of the relativistic dilaton immediately dispels this notion. Further-
more, the inclusion of the framid into the coset parameterization is necessary for
consistency. Moreover, according to the criteria for NDC (2.19) we should expect
the coupling to the framid to be at least marginal.

To manifest framids in the laboratory we need systems which break boosts yet
whose ground state does not break any symmetry which would lead to an inverse
Higgs constraint. Thus we may eliminate electrons moving in a crystal background
as well as superfluids/superconductors from the list of possibilities. It would seem
that we are relegated to degenerate electrons in the unbroken phase.

One might be concerned that the Kohn and Luttinger [2] effect ensures that all
Fermi liquids superconduct, even if the coupling function is repulsive in all channels
in the UV. However, all we really need to manifest a framon is for there to be a
temperature window between the boost symmetry breaking scale (EF ), and the
critical temperature Tc. For a Fermi liquid the critical temperature scales as

Tc ∼ Λ? � EF (2.22)

where Λ? is the strong coupling scale which is typically exponentially suppressed.
Thus there is a range of temperatures where the framid should contribute to the
heat capacity. This is as opposed to the bosonic case where the critical temperature
is set by the number density

TC ∼ n−1/3. (2.23)

and the boost symmetry breaking scale is of the same order.
Thus we have narrowed our search for framons to degenerate Fermi gases whose

phenomenology certainly shows no signs of non-derivatively coupled Goldstone.
One might be tempted to interpret zero sound as the boost Goldstone, however, the
interaction between electrons due to zero sound exchange vanishes in the forward
scattering limit.

2.3.2 Coset Construction of Fermi Liquid EFT with Rota-
tional Symmetry: Type I Framid

We begin our investigation by building the coset construction for type I framids
(i.e. systems with broken boosts but unbroken rotations). We consider the case of
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broken Galilean invariance, as the relativistic case will follow in a similar manner.
The vacuum manifold is parameterized by

U = eiP ·xe−i
~K·~η(x) (2.24)

Calculating the MC-form, we can extract the vierbein

E0
0 = 1 Ej

i = δji , Ei
0 = ηi, E0

i = 0. (2.25)

The gauge field is given by

Ai = −ηi, A0 = −1

2
~η2 (2.26)

and the covariant derivatives of the framids are (up to lowest order in fields and
derivatives )

∇0η
i = η̇i ∇iη

j = ∂iη
j. (2.27)

The free action for the Goldstone follows by writing down all terms which are
invariant under the linearly realized H symmetry

S =

∫
ddxdt

(1

2
η̇2
i −

1

2
u2
T (∂iηj)

2 − 1

2
u2
L(∂ · η)2

)
(2.28)

Following eq. (2.15), the coupling for the Goldstone to matter fields via the covari-
ant derivative is given by

S0 =

∫
ddxdt ψ†

[
i(∂0 + ηi∂i) +

1

2
m~η2 + ε(i∂i +mηi)

]
ψ (2.29)

where ε is the unknown dispersion relation that is fixed by the dynamics. Due to the
central extension of the Galilean algebra, the fermion under a boost transformation
with velocity ~v transforms as

ψ(x, t)→ e
i
2
m~v2t−im~v·~xψ(x, t). (2.30)

while the Goldstone field η undergoes a shift

~η → ~η + ~v. (2.31)

The η2 term will be sub-leading and not play role in the remainder of our discussion.
As in the standard EFT description of Fermi liquids [5, 6] the quasi-particle

self interaction is most conveniently written in momentum space

Sint =
∏
i,a

∫
ddkidt g(~ki +m~η)ψ†k1(t)ψk2(t)ψ

†
k3

(t)ψk4(t)δ
d

(∑
i

ki

)
(2.32)
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Higher order polynomials in the matter field ψ are technically irrelevant (see below).
g is the coupling function which now formally depends upon the framon. The
assumption of spherical symmetry implies g is a scalar. Notice that the η is non-
derivatively coupled, as expected from our considerations of the algebra, which can
lead to non Fermi liquid behavior. Given that He3, e.g., is well described by Fermi
liquid theory, the framid must somehow decouple, yet it must do so in such a way
that the theory remains boost invariant.

2.3.3 Multiple Realizations Of Broken Symmetry

Before moving onto further discussion about the framids in Fermi liquids, we want
to highlight a subtle point about non-linear realizations of broken symmetries,
which is that the same symmetry breaking pattern can lead to contrasting physical
theories with very different particle content. This usually happens when there are
two different order parameters. However, below we show that even with same order
parameter we can have two different realizations of the symmetry. An example of
this is the case of a massive complex scalar particle (φ) coupled to gauge fields. To
power count this theory it is useful to introduce the notion of a field label as was
introduced in Heavy Quark Effective Theory (HQET) where one is interested in
the dynamics of a massive source which interacts with light gauge fields carrying
momenta much less than the quark mass. The label is introduced by defining a
re-phased field

φ(x) =
∑
v

eimv·xhv(x), (2.33)

such that v defines a superselection sector[44]. Derivatives acting on hv(x) scale as
“residual momenta” (k) which obey k � m. The vacuum of the system, labeled
by v, breaks boost invariance and so we expect that framid should exist as an
independent degree of freedom. Typically, the Goldstone modes are associated
with collective excitations of a system which are clearly absent as the choice of
vacuum is not dynamical. Nonetheless the boost invariance must be non-linearly
realized.

Using the covariant derivatives derived in the previous section, we can write
down the most general action for φ which is invariant under translations and rota-
tions,

Lφ =
i

2

(
φ†(t, ~x)(∂t + ~η · ~∂ +

i

2
m~η2)φ(t, ~x)− [(∂t + ~η · ~∂ − i

2
m~η2)φ†(t, ~x)]φ(t, ~x)

)
+

c1

2m
((~∂ + im~η)φ†(t, ~x))(~∂ − im~η)φ(t, ~x). (2.34)

If we choose c1 = 1 then η decouples from φ and we get the standard non-
relativistic kinetic term for a free particle. Had we started with a theory without
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the η, then c1 can be fixed by requiring the theory to obey Galilean algebra, in
particular by satisfying the commutator [H,Ki] = iPi. c1 can equally well be fixed
by Reparametrization Invariance (RPI) [46], which is related to the freedom in
splitting the heavy quark momentum into a large and small piece (more on this
below). However we can leave c1 to be completely arbitrary and keep η in the
spectrum and the theory will still respect all the symmetries. The two theories
(with and without η) are completely different and we have no reason to believe
they will lead to same physics in the IR and yet they have the same symmetry
breaking pattern and the same order parameter (local momentum density). Thus
there are multiple ways of realizing the boost symmetry. While it would seem that
this is a rather trivial example, we note that only difference between the HQET
ground state and that of a Fermi liquid lies in the change in the number density
from one to Avogadro’s number.

2.3.4 Power Counting

To determine the possible symmetry realization in a Fermi liquid, we must first
discuss the systematics of the relevant EFT whose action is given by (2.29). The
matter fields (which we will call electrons from here on) are effectively expanded
around the Fermi surface, by removing the large energy and momentum compo-
nents via the redefinition

ψ(x) =
∑
θ

eiε(kF )te−i
~k(θ)·~xψ~k(θ)(x), (2.35)

the assumption of rotational invariance implying that the magnitude of |~k(θ) |= kF .

The field label ~k(θ) is the large momenta around which we expand. As opposed to
the HQET case, here the bins are dynamical and there is no super-selection rule.
This case is more akin to NRQCD [45] where the labels change due to Coulomb
exchange. Notice that there is a sum over the labels as opposed to an integral,
this illustrates the fact that we have effectively tessellated the Fermi surfaces into
“bins”. The size of each bin will scale as λ ∼ E/EF . The fact that theory should
not depend upon the bin size imposes constraints on the action. That is, we
should be able deform the momentum around any fixed value we wish, by an
amount scaling as λ, and the theory should be invariant. This re-parameterization
invariance (RPI) [46] implies that the action can only be a function of ~kF + ~∂.
In general RPI generates relations between leading order and sub-leading Wilson
coefficients. It is convenient for power counting purposes to introduce a label
operator P [47] such that

~Pψ~k(θ)(x) = ~k(θ)ψ~k(θ)(x). (2.36)

Full theory derivatives then decompose into the RPI invariant combination ~P +
i~∂. In this way we may drop the exponential factors as long as we assume label
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Figure 2.1: Allowed kinematic configuration for quasi-particle scattering. Diagram
(a) is the BCS back to back configuration which leads to Cooper pair condensation.
(b) Forward scattering, in which the final state momenta lie on top of the initial
state momenta.

momentum conservation at each vertex. The action becomes

S0 =
∑
~k(θ)

∫
ddxdt ψ†~k(θ)

(x)
(
i∂0 − ~η(x) · ( ~P + i~∂) + 1

2
m~η(x)2

)
ψ~k(θ)(x)

+
∫
ddxdt ψ†~k(θ)

(x)
(
ε( ~P + i~∂ +m~η(x)− µ)

)
ψ~k(θ)(x) (2.37)

Notice that the interaction with η does not change the quasi-particle label. The
reasons for this will be discussed below once we have fixed the power counting
systematics. Under a boost the labels are left invariant but the residual momentum
shifts. Furthermore under a boost the time derivative transforms as

i∂0 → i∂0 + ~v · ~P . (2.38)

Review of EFT of Fermi Liquids Scalings

We first review the EFT of Fermi liquids and its power counting (for details see
[4, 5, 6]). In the EFT, the power counting is such that the momenta perpendicular
to the Fermi surface (k⊥) scale as λ ∼ E/Λ, where the theories’ breakdown scale
is Λ ∼ EF . With this scaling, the most relevant terms in the action come from
expanding the energy and coupling function around the Fermi surface and keeping
the leading term in k⊥.

The scaling of the electron field

ψ(~k, t) ∼ λ−1/2, (2.39)
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Figure 2.2: Allowed kinematic configuration for framid-quasi-particle scattering.
Diagram (a) involves an off-shell framid, which can be integrated out. (b) shows
the interaction with a soft framid leading to near forward scattering.

follows from the equal time commutator

{ψ(~k, t = 0), ψ†(~p, t = 0)} ∼ δ(k⊥ − p⊥)δd−1(k‖ − p‖) ∼ 1/λ (2.40)

since k‖ does not scale. Thus ignoring the framon for the moment, the leading
order action is given by 10

SFL =
∑
~k

∫
ddldt ψ†~k(t, l)(i∂0 +~l⊥ · ~vF )ψ−~k(t,−l)

+
∑
~ki

∫
ddlidt

g(~ki)

2
ψ†k1

(t, l1)ψk2(t, l2)ψ†k3
(t, l3)ψk4(t, l4)δd(

∑
i

li)

(2.41)

The Fermi velocity defined as ~vF = ∂ε
∂ki⊥
|kF is constant on a spherically symmetric

Fermi surface. In the last term there is a Kronecker delta for the label momenta
that is implied. The residual momenta scale as l⊥ ∼ λ and l‖ ∼ 1. The latter
scaling might seem odd given that it is a residual momentum. However, l‖ scales
as the bin size, which does not play a role for Fermi surfaces which are featureless.
Another way of saying this is that the l‖ integral can be absorbed into the label
sum.

Naively the interaction terms looks irrelevant because the delta function scale
as λ0 for generic kinematic configurations so that, once the scaling of the measure
is taken into account (∼ λ3), the operator will scale like λ. However, there are

10We are ignoring spin as it will not play a role in our discussion.
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two configurations for which one of the delta function will scale as 1/λ: The BCS
configuration (back to back incoming momenta) and forward scattering. These two
configurations are shown in figure (1), where it can be seen that these are the only
two possible configurations that allow for momentum conservation that keep all
momentum within λ of the Fermi surface.

It is convenient to decompose the BCS coupling into partial waves gl. A one
loop calculation (which is exact) of the beta function shows that gl are either
marginally relevant/irrelevant for attractive/repulsive UV initial data. The forward
scattering coupling does not run, but plays an important role in the IR nonetheless.
Interestingly, below we will show that Galilean invariance is sufficient to prove that
the forward scattering and BCS kinematics are the only possible marginal/relevant
interactions. This result follows without the need to consider the effects of the
special kinematics on the power counting of the four Fermi operator.

Power Counting in the Coset Construction

Let us now derive the power counting from the coset construction.
We begin with the kinematics of the framid interactions. The two allowed

scattering configurations are shown in figure (2). Figure (a) shows the interaction
of a quasi-particle with a framid that is far off its mass shell in the sense that E � k,
in the EFT language this would be called a “potential framid” and can be integrated
out. Thus these interactions are swept, along with those of the phonon and screened
electromagnetic interactions, into a non-local coupling. Note that the potential is
effectively local because the labels on the incoming and outgoing quasiparticles can
not be the same and hence it is analytic in (the small) residual momenta11. Figure
(b) shows the interaction with an on-shell framon whose momentum is necessarily
soft k ∼ E � EF . If we define our power counting parameter as λ ∼ E/EF , then
we only know that k ∼ λn, where n is yet to be determined. However, symmetries
fix n as the covariant derivative must scale homogeneously in λ for the theory to be
boost invariant. That is, η must scale in the same way as the residual momentum
of order λ, so that η ∼ λ. Given that ∂ ∼ λn we can fix n by considering the
canonical commutator

[ηi(x), η̇j(0)] ∼ λn+2 ∼ δd(x)δij ∼ λdn (2.42)

thus n = 2
d−1

. Thus we see that in two spatial dimensions k ∼ λ2 and the framons
can not change the (residual) momentum of the quasi-particles and only their zero
mode is relevant. This however is not the case in three dimensions where the

11In this sense it is better to think of the 1/k2 in the interaction as a Wilson coefficient.
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framon carries off residual momentum k ∼ λ. Expanding the action (2.37)

S0 =
∑
~k(θ)

∫
ddxdt ψ†~k(θ)

(x)

[
i∂0 − ~η(x) · ~k(θ) + (i~∂ +m~η(x)) · ∂ε

∂k

]
ψ~k(θ)(x) + ...

=
∑
~k(θ)

∫
ddxdt ψ†~k(θ)

(x)
[
i∂0 − ~η(x) · ~vF (θ)(m−m?) + i~vF (θ) · ~∂

]
ψ~k(θ)(x) + ...

(2.43)

where m? is the effective mass defined by ∂ε

∂~k
= ~vF =

~kF
m?
. In two dimensions we

must multipole expand the framon field to preserve manifest power counting [48],
which leaves only the coupling to the framon zero mode. The leading order action
is given by

Sd=2
0 =

∑
~k(θ)

∫
d2xdt ψ†~k(θ)

(x)
[
i∂0 − ~η(0) · ~vF (θ)(m−m?) + i~vF (θ) · ~∂

]
ψ~k(θ)(x) + ...

(2.44)

From here on to simplify the notation we will be dropping the label sum and
the bold font for labels as all momenta unless stated otherwise will be labels.

Before we move on to determine the consequences of the multipole expansion
let us pause to clarify this unusual scaling. Typically in an EFT the scaling of
the fields follows from the scaling of the momenta not the other way around as in
this case. Indeed, it would be useful to understand what happens to loops with
momenta scaling as λ and not λ2. However, symmetries forbid such contributions
and it must be that if we do not multipole expand the framon interaction, that
power counting and boost invariance are incompatible.

Thus we see that in two spatial dimensions, the symmetries can not be realized
via a Goldstone as the framon equations of motion allow us to eliminate it from
the theory, as will be discussed below. In three spatial dimensions this conclusion
does not follow.

The Framid as Lagrange Multiplier and the Landau Relation

Let us consider the ramifications of the multipole expansion of the framon in two
dimensions.12 Since the kinetic piece of the framon action vanishes for the constant
zero mode η plays the role of a Lagrange multiplier.

Expanding the action for the four-Fermi interaction term leads to the coupling

Sint =
∏
i

∫
ddkidt

∑
j

m

2
~η · ∂g(kj)

∂~kj
ψ†k4(t)ψ

†
k3

(t)ψk2(t)ψk1(t)δ
d

(∑
i

ki

)
. (2.45)

12Even though our arguments in this section are strictly valid only for d=2, we keep d arbitrary
to generalize it latter to d=3.
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Figure 2.3: Diagram a) could contribute to wave function renormalization whereas
both a) and b) could contribute to a mass. At zero external momentum the two
diagrams cancel as dictated by boost invariance.

Using the equations of motion for η gives the operator constraint OB
i = 0 where

OB
i =

∫
ddp

(2π)d
ψ†p(t)

(
pi −m

∂εp
∂pi

)
ψp(t)

− m

2

∫ 4∏
a=1

ddpa
(2π)d

δ(d)

(∑
i

pi

)(∑
i

∂g(pa)

∂pi,a

)
ψ†p4(t)ψ

†
p3

(t)ψp2(t)ψp1(t).

(2.46)

This is a strong operator constraint both technically and colloquially. Notice that
the constraint is non-local in the sense that it is integrated. This is crucial, as the
constraint is a function of the Noether charges. Indeed, current algebra imposes
this same constraint OB

i = 0 as shown in the appendix where we also derive the
relativistic generalization of this constraint.

The power counting of the terms in this constraint deserve attention. The first
two terms scale as λ0 while the last term naively scales as λ2 since the measure
scales as λ4.

Recall that at this point we have not made any assumption about special kine-
matics so the delta function does not scale. We are trying to derive the fact that
the only relevant couplings have these special kinematics. Thus we might naively
think that we can drop the quartic term in the constraint. In general this is true,
but there is an exception as we now explain. We begin by noticing that the quar-
tic term is time dependent while the quadratic terms (being conserved charges)
are not. Thus it would seem that the last term must vanish (to the order we are
working). However, if we insert the quartic term in a two point function the time
dependence will cancel.
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Consider taking matrix of element of (2.46) in a 1-particle state with momentum
~k (|~k| = kF )

ki = m
∂ε(k)

∂ki
+

2m

(2π)d

∫
ddp
(∂g(k, p, p, k)

∂pi
+
∂g(k, p, p, k)

∂ki

)
θ(pF − p) (2.47)

We can now see why that the interaction term is enhanced because the radial
integral, naively scaling as λ is actuality scaling as order one. This is a consequence
of the power divergence of the integral. Such mixing of orders is commonplace in
effective field theories when a cut-off regulator is used. However, here the cut-off
(the radius of the Fermi surface) is physical13.

We re-write this result in the form

ki = m
∂εk
∂ki

+ 2m
∂

∂ki

∫
ddp

(2π)d
θ(pF − p)g(p, k) + 2m

∫
ddp

(2π)d
g(p, k)δ(εF − ε)

∂εp
∂pi

.

(2.48)
The second term on the RHS vanishes by spherical symmetry.

Next using the assumption of rotational invariance, and expanding the coupling
function in Legendre polynomials, g(θ) =

∑
l glPl(cos θ)14 we get

kF
m

= vF +
2pF

(2π)2

∫
dθ cos θ

∑
l

glPl(cos θ). (2.49)

Using this result we get the famous Landau relation [1] for a Fermi Liquid

m?

m
= 1 +

1

3

2m?

(2π)2
g1 (2.50)

Notice that at this point it is not clear that this result will hold to all orders in
perturbation theory.

It is interesting to ask whether or not more information can be extracted from
the constraint by considering a two body state. However, as is seen by inspection
the insertion of the constraint operator on external lines will will automatically be
satisfied once the Landau condition is imposed, and furthermore the insertion of
the quartic function into a four point amplitude will be suppressed since there is
no power divergence that can enhance its scaling.

We can glean more information from the Landau criteria by utilizing the fact
that the equation is RG invariant. Differentiating it with respect to the RG scale
implies that the beta function vanishes. For generic momenta the four point one
loop interaction diverges logarithmically. To avoid this conclusion we impose a

13In canonical EFT’s one uses dimensional regularization exactly to avoid this mixing issue
which complicates the power counting.

14We take d=2 for sake of simplicity but the results are valid for arbitrary d.
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kinematic constraint to suppress the one loop result. If we consider the forward
scattering interaction,

SF =

∫
ddxdt

∑
k(θi)

g(θ1, θ2)ψ†k(θ1)(x, t)ψk(θ1)(x, t)ψ
†
k(θ2)(x, t)ψk(θ2)(x, t) (2.51)

then the one loop result vanishes since the constraints imply that the loop involves
no sum over the large label bins leading to a power suppressed result.

It would seem that we have ruled out the possibility of a BCS interaction which
has a non-vanishing beta function at one loop. However, this is not the case as
such an interaction would not contribute to the Landau relation since the tadpole
diagram vanishes for the BCS interaction.

Thus we have reached the conclusion that the only allowed interactions are BCS
and forward scattering. We are not claiming that this is a rigorous proof since
we have assumed that the only sensible coupling with vanishing beta function is
forward scattering. Furthermore, our argument regarding the acceptability of the
BCS coupling is based on the fact that our arguments allow for any coupling which
leads to a vanishing tadpole (with no associated counter-term). It is possible that
there are other allowed kinematic configurations, however, assuming a featureless
Fermi surface15 we have not been able to find any sensible examples.

Recall at this point the result in the section only hold at one loop. However, now
that we have restricted our interactions to BCS and forward scattering we know
that that the Landau relation holds to all orders. This well known result follows
from the fact that tadpole corrections to the one loop insertion of the constraint
are pure counter-term and vanish.

Finally recall that this result assumed that the framon acts as a Lagrange
multiplier. However, this was only forced upon us in two dimensions. In three
dimensions, there is the logical possibility that the framon remains in the spectrum
and there is no DIHM at play. This will be discussed below when we list the possible
paths to symmetry realization in three dimensions.

2.4 Fermi Liquid with broken rotational invari-

ance

Let us now consider the case where the rotational symmetry is broken by the
Fermi surface (the typeII framid). We work in two spatial dimensions for the sake
of simplicity. Again, to avoid an algebraic inverse Higgs constraints, we assume
that the U(1) particle number is unbroken. The vacuum will be parameterized by

U(~η,Θ, x) = eiP ·xe−i
~K·~η(x)e−iLΘ(x) (2.52)

15In cases where the Fermi surface is singular there are other relevant interactions whose self
contractions would vanish [50] algebraically.
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The rotational Goldstone boson (Θ) is called the “angulon” has been studied in
the context of electronic systems [16] as well as in neutron stars [49], although to
our knowledge its non-linear self interactions have not been previously derived.

Calculating the MC-form we may extract the vierbein

E0
0 = 1 Ej

i = Rj
i (Θ), Ei

0 = Rij(Θ)ηj, E0
i = 0. (2.53)

where R(Θ) is the two dimensional rotation matrix. The gauge fields are

Ai = −Rij(Θ)ηj, A0 = −1

2
~η2. (2.54)

the covariant derivatives of the angulons are

∇0Θ = Θ̇i + ~η · ~∂Θ, ∇iΘ = Rij(Θ)∂jΘ = ∂iΘ + εijΘ∂jΘ + .... (2.55)

The quadratic piece of the quasiparticle action is given by

Sψ =

∫
ddxdt ψ†(~x, t)

[
i (∂0 +Rij(Θ)ηj∂i) +

1

2
m~η2 + ε (R(Θ)ij(i∂j +mηj))

]
ψ(~x, t)

(2.56)

The kinetic piece of the angulon Lagrangian consistent with time reversal and
parity invariance is given by

LKE = (Θ̇)2 +Dij(∇iΘ)(∇jΘ), (2.57)

so the angulon is a “type I” Goldstone, i.e. E ∼ p. Unlike the framid, the
angulon scaling is not fixed by symmetry and its momentum scaling is determined
by the maximum momentum transfer consistent with the effective theory i.e. the
scattering of an electron with an angulon should leave the electron near the Fermi
surface to within λ thus the angulon momentum scales as λ and following the same
arguments as above the field Θ(x) ∼ λ1/2 in two spatial dimensions and as λ in
three.

Expanding the action (2.56) and keeping on the leading order piece we have

Sψ =

∫
ddxdt ψ†

[
i∂0 + i~η · ~∂ + ~vF · (i~∂ +m~η) + iΘviF∂

jεij

]
ψ. (2.58)

We see that for d = 2, the interaction with the angulon is relevant and thus destroys
Fermi liquid behavior. In d = 3 it is classically marginal and the fate of Fermi liquid
behavior is determined by the sign of the beta function for this coupling.

Notice that the breaking of rotational symmetry does not effect the operator re-
lation (2.50) imposed by the non-linearly realization of boost invariance. However,
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at least in two spatial dimensions, the Landau relation (2.50) is no longer justified,
as the angulon coupling becomes strong in the IR and quasi-particle picture breaks
down. In three dimensions it is possible that a perturbative result for the Landau
relation could follow if the theory remains weakly coupled. In any case the oper-
ator constraint (2.46) must hold for the system to be boost invariant. However,
in strong coupling it is not easy to deduce the physical ramifications. It would
be interesting to utilize this constraint to generate new prediction in systems with
broken rotational symmetry. In particular it is interesting to ask whether or not
one can impose a DIHC to eliminate the angulon from the spectrum.

2.4.1 The Stability of Goldstone Boson Mass Under Renor-
malization

As can be seen from the actions (2.28) and (2.57), a Goldstone boson mass is for-
bidden despite the fact that the Goldstone boson need not be derivatively coupled.
There are no gapped Goldstones as a consequence of the fact that there is no in-
verse Higgs mechanism for our chosen symmetry breaking pattern. If there is no
anomaly then we should expect that this masslessness should persist to all orders
in perturbation theory, indeed it should hold non-perturbatively. Vishwanath and
Watanabe showed the cancellation of angulon mass correction at one loop [20] but
they did not consider the framon. Given that we have constructed the full action,
the all orders proof follows from the Ward identity. Nonetheless is it instructive
to study the one loop case in order to distinguish the framon from the angulon.
The Goldstone mass can be read off by considering the quadratic piece of the ef-
fective action generated by integrating out the electrons in a constant Goldstone
background. For the angulon we find

Γ[θ] = i

∫
dωddpLog [ω − ε(R(θ)~p)]∫
dωddpLog [ω − ε(~p)]

(2.59)

which is independent of θ as a consequence rotational invariance of the measure.
This result tells us that, at the level of the integrals, there must be an algebraic
cancellation between the two diagrams which contribute to the mass at one loop
shown in figure 3. Note this should NOT be expected for the framon, since boost
symmetry breaking is sensitive to the UV scale EF , whereas the angulon only knows
about the shape of the Fermi surface and not its depth. Of course, boost invariance
dictates the framon mass must vanish if we use a boost invariant regulator, i.e. not a
cut-off. The situation is analogous to the case of the dilaton whose mass corrections
vanish in dimensional regularization but necessitates counter-terms when using a
cut-off. Such counter-terms should not be considered fine tuning.
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2.5 Broken Conformal symmetry: Eliminating

the non-Relativistic Dilaton

As mentioned in the introduction, consequences of spontaneous breaking of confor-
mal invariance in non-relativistic systems is unique as the non-relativistic kinetic
term for the dilaton appears to be in tension with boost invariance [30]. As such,
we will study systems for which the broken symmetries are dilatations (D), special
conformal transformations (C) and boosts (Ki). The relevant commutators of the
Schrodinger group (the non-relativistic conformal group) are

[H,C] = iD (2.60)

[Pi, C] = −iKi (2.61)

as these relations imply a reduction in the naive number of Goldstones. Further-
more, note that (2.60) implies that if dilatations are broken then so are the special
conformal transformations. The vacuum is parameterized via

U = eiP ·xe−i
~K·~ηe−iCλe−iDφ. (2.62)

The algebra implies that both λ and φ are redundant degrees of freedom. The
ensuing vierbein is given by

E0
0 = e−2φ Ei

0 = ηie−φ Ej
i = δji e

−φ. (2.63)

The gauge fields are

A0 = −1

2
~η2e2φ ~A = −~ηeφ (2.64)

and the covariant derivatives are given by

∇jη
i = e2φ(λδij + ∂jη

i) (2.65)

∇0η
i = −e3φ(η̇i + ~η · ~∂ηi) (2.66)

∇0φ = −e2φ(λ+ φ̇+ ~η · ~∂φ) (2.67)

∇iφ = eφ∂iφ (2.68)

∇0λ = −e4φ(λ̇+ ~η · ~∂λ+ λ2) (2.69)

∇iλ = e3φ∂iλ (2.70)

The invariance of these objects under boosts, dilatations and special conformal
transformations follows by first determining the non-linear transformation proper-
ties of the Goldstones via the relation

gU(π) = U(π′, g)h(g, π), (2.71)
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where g ∈ G and h ∈ H. Table 2.1 gives the resulting transformation properties of
the Goldstones.

We see that there are two possible inverse Higgs constraints coming from setting
the covariant derivatives in (2.65) and (2.67) to zero. Linearizing yields the two
possible inverse Higgs relations from (2.65) and (2.67)

λ = −φ̇+ ...

λ =
1

3
~∂ · ~η + ..... (2.72)

Let us now address the question of the possible symmetry realizations. We will
see that no matter what path is chosen, the systems will not behave like a canonical
Fermi liquid [15]. We may choose not to eliminate any Goldstones, however note
that in this case, the λ gets gapped as (2.69) is time reversal invariant and thus an
allowed term in the action without squaring it. This realization includes two non-
derivatively coupled Goldstones which would invalidate a Fermi liquid description
[20]. If we use one IHC then again we will have the same spectrum and the same
conclusion is reached. Finally we may consider using both constraints such that
we equate

φ̇ = ∂ · η (2.73)

which would lead to a theory which appears non-local.16 Thus, although we have
two possible constraints we can only impose one while maintaining locality. This
is a consequence of the fact we have

[H,C] = iD [C,P ] = iK, (2.74)

so that the two constraints are linked establishing the fact that the criteria for
Goldstone elimination stated in (2.5) must be amended. If two of the relation
involve the same generator on the LHS then there is one fewer allowable constraint.
We know of no other cases where this happens. The final possibility is that we
eliminate both η and φ using DIHMs as discussed in the next section.

2.5.1 Consequence of Broken Conformal Symmetry via the
DIHM

To derive the relevant DIHCs we will again build the coset and treat both the
dilaton and the framon as Lagrange multipliers. As in the previous cases, in two
spatial dimensions this is not a choice as a consequence of power counting and
symmetry. Notice that λ will not play a role as it shows up neither in the vierbein
nor the connection. We have already written down the most general boost invariant

16This non-locality in EFT arises due to a poor choice of variables and is not in any sense
fundamental since the underlying theory is local.
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Table 2.1: Infinitesimal variation of Goldstones under broken charges
~K(~β) D(α) C(ρ)

~η −~β α~η −ρ~x+ tρ~η

φ 0 −α −ρt
λ 0 2αλ ρ− 2ρtλ

∂t -~β · ~∂ 2α∂t 2tρ∂t + ρ~x · ~∂
∂x 0 α∂x −tρ∂x

interaction in (2.37) and (2.45), which we now amend using the new version of the
vierbein and gauge field (2.63, 2.64). The invariant action for the quasi-particle is
given by

S0 =

∫
ddpdt

(2π)d
e2φ ψ†~p(t)

[
(ie−2φ∂0 − e−2φ~η · ~p + ε̃(e−φ(~p+m~η)) + µF

]
ψ~p(t),

(2.75)

Here the energy functional ε̃(p) is the energy of the quasi-particle measured
from the Fermi surface since we have explicitly included the chemical potential µF
in the action. For notational convenience, we will drop the explicit factor of µF
and redefine the energy functional as ε(p) = µF + ε̃(p). As far as the interactions
are concerned we have

Sint =
1

2

∫ 4∏
a=1

ddpa
(2π)d

dtδ(d)(p1 + p2 − p3 − p4)e(2−d)φ g(e−φ(~pi +m~ηi), e
−φµ)

ψ†~p1
(t)ψ~p2(t)ψ

†
~p3

(t)ψ~p4(t).

(2.76)

Here we have also introduced the renormalization scale µ in the coupling. The
Landau relation (2.46) which ensures boost invariance remains unchanged but we
generate a new constraint by setting η to zero and varying the action (2.75) and
(2.76) with respect to φ.

Expanding (2.75) and (2.76) to leading order in φ,

Sφ =
∑
~k

∫
ddpdt φ ψ†~p(t)

[
2ε(p)− pi ∂ε

∂pi

]
ψ~p(t)

+
1

2

4∏
a=1

∫
ddpadt φ

[
(2− d)g(~pi, µ)− ~pi ·

∂g(~pi, µ)

∂~pi
− µ∂g(~pi, µ)

∂µ

]
ψ†~p1

(t)ψ~p2(t)ψ
†
~p3

(t)ψ~p4(t)

(2.77)
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The constraint follows from imposing δSφ

δφ
= Oφ = 0.

Oφ =
∑
~k

∫
ddpdt ψ†~p(t)

[
2ε(p)− pi ∂ε

∂pi

]
ψ~p(t)

+
1

2

4∏
a=1

∫
ddpadt

[
(2− d)g(~pi, µ)− ~pi ·

∂g(~pi, µ)

∂~pi
− µ∂g(~pi, µ)

∂µ

]
ψ†~p1

(t)ψ~p2(t)ψ
†
~p3

(t)ψ~p4(t)

(2.78)

Let us now see if a Fermi liquid description is consistent with these constraints.
Given our assumption of rotational invariance and the notion of a well defined
Fermi surface, the marginal coupling is only a function of the angles which are scale
invariant. Thus the second term in the last line of (2.78) vanishes, and, as such, if
we take the one particle matrix element we see that the quadratic and quartic terms
must vanish separately since the quadratic term will depend upon the amplitude
of the incoming external momentum and the quartic will not. In three dimensions
we see that the coupling has power law running which is inconsistent with Fermi
liquid theory, and in two dimensions the theory is free. Thus we conclude that:
fermions at unitarity are not properly described by Fermi liquid theory.

We can also consider how these symmetry constraints can be utilized if we
assume that the microscopic theory is defined via the action (2.41) (i.e. its is
not an effective theory) as done in simulations. In this case since there is no
restriction to forward scattering there is no mechanism by which the quadratic
term can cancel with the quartic for all choices of states. Then taking the one
particle matrix element of (2.78) we have the constraints

ε =
p2

2m?
(2.79)

and

0 = (2− d)g(~pi, µ)− ~pi ·
∂g(~pi, µ)

∂~pi
− β(g). (2.80)

For S-wave scattering (g(p, µ)=g(µ)), m = m? due to the Landau condition in
(2.50) and (2 − d)g(µ) = β(g). For higher angular momentum channels, (2.80)
gives us the beta function to all orders.
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Chapter 3

Poincaré algebra and
Re-parametrization Invariance

3.1 Introduction

In EFTs like Soft-Collinear Effective Theory (SCET) [52] and Heavy Quark Ef-
fective Theory (HQET) [53], the Lorentz symmetry is broken by choice of the
directions n and n along which we quantize SCET or the choice of heavy quark
velocity v in HQET. A part of this symmetry breaking is natural since the choice of
n describes a collimated jet in SCET and the choice of v picks out a special frame
in HQET. However a part of the symmetry is restored by the freedom in choosing
n and v, which is known as Reparametrization Invariance (RPI) [46]. RPI is also
related to the freedom in splitting the momentum into a large and residual piece
as was discussed in Chapter 2. RPI connects operators at different order in power
counting by relating their Wilson coefficients.

An alternate way of reproducing the same constraints as RPI is by using
Poincaré algebra. We can write down the most general Lagrangian for SCET
and HQET consistent with Gauge invariance and power counting. Since this ac-
tion has to be invariant under Poincaré symmetry, it means that at every order in
the power counting, symmetry algebra must also be satisfied as the symmetry is
not explicitly broken but only non-linearly realized. If we construct the Noether
charges for Poincaré algebra using effective Lagrangians with arbitrary Wilson co-
efficients and impose the constraint that they must satisfy the algebra, we should
get the same results as from RPI.

In this chapter, I will elaborate in detail how this can be done not only for
free part of the theory but also for interaction terms. I will begin with SCET and
show how we can construct the Lagrangian for a collinear field by using Poincaré
algebra. Then as an example of interacting theory, I will discuss the constraints on
Heavy-Light decay currents in SCET and Heavy-Heavy decay currents in HQET.
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3.2 Constraints on Soft-Collinear Lagrangian

QCD in light-cone coordinates can be described by choice of two light-like vectors
n and n which satisfy

n2 = 0, n2 = 0, n · n = 2, (3.1)

where the last condition is a normalization choice. A standard choice for n and n
is,

nµ = (1, 0, 0, 1), nµ = (1, 0, 0,−1). (3.2)

The physical intuition behind this choice is that we want to use SCET to describe
jets produced in high energy collisions and this choice corresponds to production
of two back to back jets say in e+e− collisions. However any other choice will work
equally well. The quark momentum (p)1 can be expanded in this light-cone basis

pµ = nµ
n · p

2
+ nµ

n · p
2

+ pµ⊥, (3.3)

where ⊥ component is orthogonal to both n and n and we typically express p as

p = (p+, p−, ~p⊥). (3.4)

A similar expression can be written down for the position vector (x) as well.
If a quark is moving along say n direction then a large component of its energy

is concentrated along n direction with small momentum fluctuations in ⊥ and n
direction. If we assume p− ∼ Q where Q is the hard scale in the problem and define
λ << 12 as a power counting parameter describing small momentum fluctuations
in other directions, then the on-shell condition for quark p+p− = ~p2

⊥, requires us
to scale,

p+ ∼ Qλ2, p⊥ ∼ Qλ. (3.5)

This is the standard scaling for a collinear quark in SCET. We can also define two
projection operators,

Pn =
/n/n

4
, Pn =

/n/n

4
, (3.6)

where /n = nµγµ and /n = nµγµ. These operators also satisfy Pn + Pn = 1. Using
these two operators, we can write the QCD quark field ψ(x) as

ψ = Pnψ + Pnψ = ξn + φn. (3.7)

The fields ξn and φn satisfy the following spin relations,

/nξn = 0, Pnξn = ξn, /nφn = 0, Pnφn = φn. (3.8)

1We assume p2 = 0 i.e quarks are massless.
2We can take λ to be of the order of

ΛQCD

Q .
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Similar spin relations can be derived for quark spinors. Substituting Eq.(3.7) into
the massless QCD action, LQCD = ψ(x)i/∂ψ(x) and using Eq.(3.8), we get

LQCD = ξn
/n

2
in · ∂ξn + φni/∂⊥ξn + ξni/∂⊥φn + φn

/n

2
in · ∂φn. (3.9)

The field φn is sub-leading in power counting as compared to ξn [52] and can
integrated out by performing the path integral over quadratic terms in φn. This is
equivalent to using the leading order equations of motion of φn and substituting
it back in the Eq.(3.9). Doing so we get the Lagrangian for a collinear quark (ξn)
with momentum scaling pc = Q(λ2, 1, λ),

Lξn = ξn

(
i∂+ + /∂⊥

i

∂−
/∂⊥

) /n
2
ξn. (3.10)

Here the notation is ∂+ = n.∂ = ∂
∂x−

, n.∂ = ∂− = ∂
∂x+

and /∂⊥ = γµ∂µ,⊥ and we
have chosen x− as our time. For a more detailed discussion on construction of
SCET Lagrangian from QCD, see Ref.[52].

By requiring the leading order action to be O(1) in power counting, we see that
ξn ∼ λ since the measure d4x scales as λ−4 for a collinear particle. For canonical
quantization, we need the conjugate momenta to this field,

Πn =
∂L

∂(∂+ξn)
= ξni

/n

2
. (3.11)

The anti-commutation relation used to quantize the theory is,

{ξn(x), ξn(x′)} =
/n

2
δ2(x⊥ − x′⊥)δ(x+ − x′+). (3.12)

Since x− is being treated as time variable so the Hamiltonian is given by p+,
which can be calculated from the energy-momentum tensor (Θµν) constructed from
Eq.(3.10).

p+ =

∫
d2x⊥dx

+Θ−+ = −1

2

∫
ξn

(
/∂⊥

i

∂−
/∂⊥

) /n
2
ξn (3.13)

If there are additional operators in Lξn representing interactions of collinear quark
with say the SU(3) gauge field, then they just get added to this Hamiltonian.

The momentum operator along x⊥ is,

p⊥ =

∫
Θ−⊥ =

∫
ξn
/n

2
i∂⊥ξn. (3.14)

p⊥ does not change if no operators with x− derivatives are added to Lξn . The boost
operator in x⊥ direction is M−⊥,

M−⊥ =

∫
(x−Θ−⊥− x⊥Θ−−) =

∫
ξn

(
− 1

2
x⊥i∂−

/n

2
+ x−i∂⊥

/n

2
−
/n

2
S−⊥

)
ξn (3.15)
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where Sµν = i
2
[γµ, γν ]. However,

6 n
2
S⊥− = − i

4

6 n
2

[6 n, γ⊥] = 0 (3.16)

since /n/n = n2 = 0, /nγ⊥ = −γ⊥/n and /nξn = 0. So the spin dependent term in
M−⊥ can be ignored.

The Poincaré algebra condition in the light cone coordinates is

[p+,M−⊥] =
i

2
p⊥. (3.17)

From the operators calculated above, it can be shown that this condition is satisfied
to leading order in λ. Also M−⊥ does not receive extra contributions from Lξn
unless an operator with x− derivative is added at leading order. So operators like,

ξni∂
µ
⊥

1

i∂−
i∂µ,⊥

/n

2
ξn, (3.18)

cannot be added to Lξn , even though it is leading order in power counting because
it would give a contribution to p+ but won’t change p⊥ or M−⊥ and hence spoil the
algebra. This constraint is obtained in SCET by requiring the theory to be invariant
under RPI II [52]. This uniquely fixes the leading order SCET Lagrangian.

Now we split momentum into a label and ultra-soft piece with pus ∼ Q(λ2, λ2, λ2)
to describe small fluctuations in the collinear direction. To do this it is convenient
to re-define the collinear field (ξn) as,

ξn(x) =
∑
P 6=0

e−ix·P ξn,P (x). (3.19)

and define the derivative acting on ξn as,

i∂µ = Pµ + i∂us
µ , (3.20)

where Pµ is defined as the label operator. The label momentum now is just an
operator which gives a number (label momentum of fields) and not a derivative
with respect to x coordinates. The SCET Lagrangian after this separation of
momenta into a label and ultra-soft piece, to O(λ5) in power counting is,

Lλ5ξn = e−iP.xξn

(
i∂+ + /P⊥

1

P
/P⊥ + C1 /P⊥

1

P
i/∂⊥ + C2 i/∂⊥

1

P
/P⊥

) /n
2
ξn (3.21)

Making the substitution Eq.(3.19) into the Noether charges, we get3

p⊥ =

∫
ξn
/n

2

(
P⊥ + i∂⊥

)
ξn

M−⊥ =

∫
ξn
/n

2

(
x−(P⊥ + i∂⊥)− 1

2
x⊥(P + i∂−)

)
ξn (3.22)

3We ignore the exponential factor in label momentum by assuming conservation of label mo-
mentum but the measure for Noether charges (d2x⊥dx

+) still scales as λ−2.
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To satisfy the algebra, we need to consider a term of O(λ6) otherwise we will miss
the ultra-soft piece in p⊥. At this order there are two additional operators,

Lλ6ξn = ξn
/n

2

(
C3 i/∂⊥

i

P
/∂⊥ + C4 /P⊥

1

P
i∂−

1

P
/P⊥

)
ξn (3.23)

We can fix coefficients C1, C2 and C3 from the commutator [p+,M−⊥] = i
2
p⊥. The

commutator gives,

i

4

∫
ξn
/n

2

[(
C1γ

⊥ /P⊥+C2 /P⊥γ
⊥)(1+

i∂−

P

)
+C3

(
γ⊥/∂⊥+/∂⊥γ

⊥)(1+
i∂−

P

)]
ξn. (3.24)

To matching with i
2
p⊥ we should set 4,

C1 = C2 = C3 = 1. (3.25)

There is also a left over piece from the commutator,

i

2

∫
ξn
6 n
2

(P⊥ + i∂⊥)
i∂−

P
ξn. (3.26)

To cancel this contribution we need a higher dimensional operator in p+, which is
to say we need operators at O(λ7),

Lλ7ξn = ξn
/n

2

(
C5 /∂⊥

i

P
i∂−

1

P
/P⊥ + C6 /P⊥

1

P
i∂−

1

P
i/∂⊥

)
ξn. (3.27)

The additional contribution from Lλ7ξn to [p+,M−⊥] is,

i

4

∫
ξn
/n

2

[(
C5γ

⊥ /P⊥ + C6 /P⊥γ
⊥)i∂−

P
+ (

i∂−

P
)2
(
C5γ

⊥ /P⊥ + C6 /P⊥γ
⊥)]ξn. (3.28)

The first term has to cancel the term in Eq.(3.26),

C5 = C6 = −1. (3.29)

The only remaining Wilson Coefficient at this order which is yet to be fixed is C4.
It can be calculated by satisfying the commutator [p+,M−+] = i

2
p+.

M−+ =

∫
(x−Θ−+ − x+Θ−−) =

1

2

∫
ξn
/n

2
(x−i∂+ − ix+∂−)ξn −

1

2

∫
ξn
/n

2
ξn (3.30)

The first term in p+ which gives a non-zero contribution to this commutator is,

p+ = −C4

2

∫
ξn
/n

2

(
/P⊥

1

P
i∂−

1

P
/P⊥

)
ξn. (3.31)

4We have to use the identity Pµ,⊥
(
γµγ⊥ + γ⊥γµ

)
= 2Pµ,⊥g

µ⊥ = 2P⊥.
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The commutator of these two operators gives,

[p+,M−+] = i
C4

4

∫
ξn
/n

2

(
/P⊥

1

P
/P⊥

)
ξn +O(λ4), (3.32)

and matching with i
2
p+ requires,

C4 = −1. (3.33)

To O(λ7), the unique SCET Lagrangian is,

Lλ4ξn = ξn

(
i∂+ + /P⊥

1

P
/P⊥

) /n
2
ξn

Lλ5ξn = ξn

(
i/∂⊥

1

P
/P⊥ + /P⊥

1

P
i/∂⊥

) /n
2
ξn

Lλ6ξn = ξn

(
i/∂⊥

1

P
/∂⊥ − /P⊥

1

P
i∂−

1

P
/P⊥

) /n
2
ξn

Lλ7ξn = ξn

(
− i/∂⊥

1

P
i∂−

1

P
/P⊥ − /P⊥

1

P
i∂−

i

P
/∂⊥

) /n
2
ξn. (3.34)

3.3 Constraints on Heavy to Light Decay Cur-

rent Operators

To give an example for the application of Poincaré algebra constraints in an inter-
acting theory, I will now discuss the decay of a heavy quark moving with velocity
v and described by HQET field hv. The leading order HQET action is given by
[53],

LHQET = hv(x)iv · ∂hv(x), (3.35)

and the total quark momentum p is given by p = mv + k where k ∼ ΛQCD. The
residual momentum in the heavy quark can be considered to be of the same order
as an ultra-soft momentum (Qλ2) of a collinear quark ξn. Hence the decay process
will receive quantum corrections due to exchange of ultra-soft momentum between
heavy and light quark.

In full QCD this process is mediated by a weak decay but since we are consider-
ing momentum exchange of the O(ΛQCD) we can integrate out the weak boson and
its effects are encoded in the matching Wilson coefficients. The external current
operators will be considered up to Next to Leading order (NLO) in λ.

The QCD operator, which gives rise to this decay is,

JQCD = qΓb, (3.36)
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where q denotes the light quark, b is the heavy quark and Γ denotes a generic Dirac
matrix structure of the weak current. At leading order in SCET, this operator is
matched onto

J0
SCET = ξnΓhv. (3.37)

The sub-leading pieces are given by

J1
SCET = ξn

6 n
2
i 6
←−
∂c⊥

1

P
†Γhv (3.38)

The SCET current operator for heavy to light decay upto NLO in λ is,

J =
∑
i

CiξnΓihv +
∑
i

Biξn
/n

2

←−
/∂
c
⊥
i

P
†Γihv. (3.39)

Here Γi stands for all the allowed Dirac structures allowed for this current i.e.
{γµ, vµ, nµ} etc. The Wilson Coefficients are related by RPI-II [52],

Ci = Bi, (3.40)

for Γ = {γµ, vµ} to all order in perturbation theory. For Γ = nµ, there is an
additional piece in the sub-leading current whose coefficient is again related to
leading order current.

We can derive these same constraints on Wilson coefficients by considering the
transformation of the collinear field ξn under Lorentz group. However to get the
correct transformation for ξn under Lorentz group, in particular S+⊥, we first need
to consider full QCD, because the action of this generator on ξn vanishes if we
construct it using the leading order collinear Lagrangian in Eq.(3.10).

S+⊥ = − i
2

∫
Πnσ

+⊥ξn =
i

4

∫
ξn
/n

2
[/n, γ⊥]ξn =

∫
ξnγ

⊥ξn =

∫
ξnPnγ

⊥ξn = 0

(3.41)
Here we have used Pnξn = ξn, ξnPn = ξn and ξn/n = 0. However if we first
consider the full QCD operator, S+⊥ and then expand the Dirac field, we see that
[S+⊥, ξn] 6= 0. This is because from Dirac equation,

S+⊥ = − i
2

∫
ψγ0σ+⊥ψ. (3.42)

and if we expand ψ = ξn + φn, then we get

S+⊥ = i

∫
ξnγ

⊥φn. (3.43)

Here we have used γ0 = 6n+ 6n
2

to split the conjugate momentum into two parts

Πn = ξn
6n
2

and Πn = φn
6n
2
. The commutator of this Lorentz generator with ξn is

[S+⊥, ξn] = −i 6 n
2
γ⊥φn (3.44)
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Since,

φn =
i

P
6 ∂c⊥

n

2
ξn, (3.45)

which can be derived by using equations of motion for φn from Eq.(3.10), we
can see that Lorentz transformation of ξn under S+⊥ mixes the large (ξn) and
small components (φn) of the Dirac field and so every operator involving ξn should
also include this small sub-leading piece when we are concerned with sub-leading
operators in SCET. Replacing ξn by ξn + φn in Eq.(3.37) and comparing with
Eq.(3.39), we see that Bi = Ci

If we also include operators in the SCET current operator J , which are sub-
leading due to splitting the momentum into collinear and ultra-soft piece, then
Wilson coefficients of these operators can be fixed by requiring [M−⊥, J ] = 0 where
M−⊥ as was derived in the previous section.

Another way to see this is to define a new collinear quark field ξ̂n, which should
transform co-variantly under Lorentz transformations. So we require that this field
obeys,

σ+⊥ξ̂ 6= 0. (3.46)

In terms of the old collinear field ξn, we can a general form for the new field ξ̂n as,

ξ̂n = (1 + f(∂)Γ)ξn. (3.47)

where the only allowed Dirac matrix (Γ) which will give a non-vanishing result is
Γ = /n. Also since the extra piece should be sub-leading in λ,

f(∂) = A(i/∂⊥) + ... (3.48)

and to get the correct dimensions without spoiling the power counting, we should
set A = 1

P
. So our new Collinear field is

ξ̂n(x) =

(
1 +

1

P
i/∂⊥

/n

2

)
ξn(x) + .... (3.49)

where additional sub-leading terms will arise by expanding the momentum in
collinear and ultra-soft piece. This new field is just the full Dirac field with small
component expressed in terms of the ξ field. It is not surprising that Lorentz trans-
formation requires us to bring back the small piece of the Dirac field, which we had
integrated out at leading order in λ.

3.4 Constraints on Heavy to Heavy decay cur-

rents in HQET

Next we consider the Heavy to Heavy decay process (b → c) in HQET and de-
rive RPI constraints [53] using Poincaré algebra. From Dirac equation, the free
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Hamiltonian for this system is,

H0 =

∫
(mbbvbv +mccv′cv′ − bvi~γ · ~∂bv − cv′i~γ · ~∂cv′), (3.50)

where bv is a b-quark field of mass mb moving with velocity v and cv′ is the charm
quark field of mass mc with velocity v′. For a consistent power counting in m, we
have included the mass term in the Hamiltonian. The Lorentz boost operator ki
derived from this Hamiltonian is given by,

ki = tPi−
∫
xi

(
mbbvbv +mccvcv − bvi~γ · ~∂bv − cvi~γ · ~∂cv

)
− i

2

∫
(bvγibv + cvγicv),

(3.51)
where Pi is the sum of momentum operator for bv and cv′ . We quantize the theory
by using the following anti-commutation relation for fields,

{ψv(x), ψv′(x
′)}αβ = γ0

αβδ
3(x− x′)δvv′ . (3.52)

The external current operator for b→ ceνe decay adds a term V to the Hamiltonian,

V =

∫ (
C1cv′γ

µbv +
B1

2mb

cv′γ
µi/∂bv +

B8

2mc

cv′i
←−
/∂ γµbv

)
lµ + h.c (3.53)

Here lµ is just a four-vector independent of x representing the leptonic current
while C1, B1 and B8 are the unknown Wilson coefficients. A similar term can be
added to Hamiltonian for the axial part of the current. Due to the presence of this
additional term in the Hamiltonina, the boost operator gets a correction term Wi,

Wi =

∫
xi

(
C1cv′γ

µbv +
B1

2mb

cv′γ
µi/∂bv +

B8

2mc

cv′i
←−
/∂ γµbv

)
lµ + h.c (3.54)

This is because the Lorentz boost generator is given by Ki = tPi −
∫
xiT

00 where
T µν is the energy momentum tensor, and T 00 is the sum of free and the interacting
Hamiltonian density. So we should split the boost operator into Ki = ki + Wi,
where ki is from free part of the Hamiltonian density and Wi is due to interactions.
The Poincarè algebra condition now becomes

[H0, ki] + [H0,Wi] + [V, ki] + [V,Wi] = iPi (3.55)

Imposing the algebra constraint we get,

i

∫
lµcv′

[
γµ
(
B1γ

iγ0 + C1γ
0γi

2

)
+

(
C1γ

iγ0 −B8γ
0γi

2

)
γµ
]
bv = 0. (3.56)

And so by setting
C1 = B1 = −B8, (3.57)
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we can satisfy the algebra. Hence to O(1/m) in the quark masses, the external
current for b→ c decay in HQET can be written as,

Jµ = C1cv′
[
Γµ +

1

2mb

Γµi/∂ − 1

2mc

i
←−
/∂ Γµ

]
bv (3.58)

where Γµ = γµ(1− γ5).
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Appendix A

Lifetime of Quasi-Particles

Figure A.1: Diagram (a) results in a shift in the chemical potential while (b) is the
first self-energy correction for quasi-particles.

A.1 Without Goldstone Bosons

A critical assumption for the validity of FLT is the existence of well defined quasi-
particle states. This is a self-consistency check on the theory. To prove that the
width of the quasi-particles does indeed go as Γ(E) ∼ (E−EF )2 close to the fermi
surface, we consider the self energy diagrams shown in Fig. (A) which follow from
the FLT action in Eq.(2.41). Since the diagram (a) does not have an imaginary
part, the first correction to fermion self-energy comes from the two loop sunrise
diagram. Define the fermion bubble as iΠ and assume that the coupling function
of FLT g(pi) = g =constant,

iΠ(ω, ~q) = g2

∫
ddk

(2π)d

∫
dk0

2π
G(k0, ~k) G(k0 + ω,~k + ~q) (A.1)
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where,

G(k0, ~k) =
1

ω − ε(k) + iδ sgn(ε(k))
, (A.2)

is the free fermion propagator and sgn(x) = 1 or −1 for x > 0 and x < 0 respec-
tively. Performing the k0 integral by contours,

iΠ(ω, ~q) = ig2

∫
ddk

(2π)d
f(ε(~k + ~q))− f(ε(~k))

ω + ε(~k)− ε(~k + ~q) + iδ
(A.3)

where f(ε(~k + ~q)) = θ(ε(~k + ~q))θ(−ε(~k)). Expanding the function f in the limit
q << k, we can estimate the imaginary part of Π,

ImΠ(ω, ~q) = γ
ω

|~q|
(A.4)

where,

γ = −g
2π

vF

∫
dk kd−1δ(ε(~k))

∫
dΩd−1

(2π)d
. (A.5)

Now we can compute the imaginary part of the self-energy of the quasi-particle.

iΣ(p0, ~p) = ig2

∫
ddq

(2π)d

∫
dω

2π
ImΠ(ω, ~q)G(ω + p0, ~p+ ~q) (A.6)

Once again perform the energy integral by contours and using a cutoff regulator Λ
for the momentum integral,

ImΣ(p0, ~p) ∼ γ g2 Λd−2vF (Λ2 − p2
⊥) ∼ βp2

0 (A.7)

where β is a constant, the first term is a power divergence canceled by a counter
term and we used the on-shell condition for the quasi-particle p0 = vFp⊥. p0 is the
energy measured from the Fermi surface. Hence, we have shown that lifetime of
quasi-particle indeed satisfies the Landau criterion and they are well defined states
close to the Fermi surface.

A.2 With Goldstone Bosons

Using the calculation of previous section for the fermion bubble, we can immedi-
ately deduce that if at all any Goldstones are interacting with quasi-particles of
FLT, then they will be overdamped since the one-loop correction to boson prop-
agator in fig.(A.2) leads to an imaginary part resulting in a pole at ω ∼ −i|~q|3.
With this one-loop corrected boson propagator, now the quasi-particle self energy
is, (after performing the energy integral)

ImΣ(p0, ~p) ∼
∫
dd−1k||

∫
dk⊥

k||
|k|||3 + γ p0 − vFγ(p⊥ + k⊥)

(A.8)
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Figure A.2: Diagram (a) is the one loop correction to GB propagator resulting
in over-damped Goldstones which feedbacks into the lifetime of quasi-particles
through diagram (b) invalidating the Landau criterion.

where the momentum integral is split into parallel (k||) and perpendicular (k⊥)
components to Fermi surface and γ was defined in previous section. Performing
the k⊥ integral with a cut-off Λ and ignoring a log(Λ3) divergent term, we get

ImΣ(p0, ~p) ∼
∫
ddk|| ln(k3

|| + γ p0) (A.9)

Defining k|| = x(γ p0)1/3,

ImΣ(p0) ∼ α(p0)d/3
∫
dx ln(1 + x)xd−1 ∼ α′p

d/3
0 . (A.10)

So in d = 2 the quasi-particle lifetime goes to zero faster than its energy and hence
its not a well defined quantum state while in d = 3 we will get a Marginal Fermi
liquid.
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Appendix B

Landau Relation from Symmetry
algebra

B.1 Galilean algebra

The Landau relation can also be derived (similar to Landau’s original derivation)
by demanding that the Fermi Liquid action, without including the boost Goldstone,
should be Galilean boost invariant. This is equivalent to satisfying the Galilean
algebra by using the Noether charges constructed from the Fermi Liquid action.
The only commutator of the Galilean algebra we need to satisfy is [H,Gi] = iPi
where Gi is the generator of Galilean boost, H is the Hamiltonian and Pi is the
momentum operator. In terms of the quasi-particle fields, these operators are given
by

H =

∫
ddp ψ†pε(p)ψp +

∏
i

∫
ddki

g(ki)

2
ψ†k1ψ

†
k2
ψk3ψk4δ

(d)(k1 + k2 − k3 − k4)

Gi =t

∫
ddp ψ†ppiψp − im

∫
d3p ψ†p∂iψp

Pi =

∫
ddp ψ†ppiψp (B.1)

Using anti-commutation relation {ψp, ψ†p′} = δd(p− p′) and satisfying [H,Gi] =
iPi, we get back the operator relation in (2.46).

B.2 Poincaré algebra

Here we derive the Landau relation for a relativistic Fermi liquid from current
algebra. The derivation [3] is a little more involved in comparison to the Galilean
algebra case. The commutator we need to satisfy is still [H,Ki] = iPi where Ki
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is the generator of the Lorentz boost’s but the Noether charges are different from
their Galilean counterparts. Denoting H0 as the free Hamiltonian and V as the
interaction

H0 =

∫
ddp ψ†pε(p)ψp

V =
∏
i

∫
ddki

g(ki)

2
ψ†k1ψ

†
k2
ψk3ψk4δ

(d)(k1 + k2 − k3 − k4)

ki =t

∫
ddp ψ†ppiψp − i

∫
ddp∂iψ

†
pε(p)ψp

Wi =
∏
i

∫
ddki g(ki)∂iψ

†
k1
ψ†k2ψk3ψk4δ

(d)(k1 + k2 − k3 − k4)

Pi =

∫
ddp ψ†ppiψp (B.2)

Assuming weak interactions between quasi-particles and neglecting terms of
O(g2), (taking one particle matrix elements for a state with external momentum,
k)

ε(k)
∂

∂ki

(
ε(k) + ε(k)

∫
ddp〈0|ψ†pψp|0〉g(p, k)

)
+

∫
ddp〈0|ψ†pψp|0〉

∂

∂pi
(ε(p)g(p, k)) = ki

(B.3)

For forward scattering g(p, k) = g(cos θ) where θ is angle between ~p and ~k and
〈0|ψ†pψp|0〉 = Θ(pF − p) to leading order in g. Using ε(kF ) = µ, where µ is the
chemical potential and the definitions of effective mass, m∗ and the density of states
at the Fermi surface, D(µ),

m∗ = µ

(
1 +

1

3
G1

)
(B.4)

where we assumed d = 2 and expanded the coupling function g(θ) in Legendre
polynomials , g(θ) =

∑
l glPl(cos θ) and defined Gl = D(µ)gl.
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Appendix C

Coset Construction for Spacetime
Symmetry Breaking

C.1 Free Particle Action from Coset Construc-

tion

A simple application of coset construction for spontaneously broken spacetime
symmetries is illustrated in this section where we construct the action for a free
massive and massless relativistic particle [34]. It is also straightforward to include
gravity and gauge symmetries however here we will focus only on the free part
of the action. The little group for a massive particle in three dimensions is the
rotation group SO(3), so the coset space is given by G/H = ISO(3, 1)/SO(3)
where ISO(3, 1) is the Poincaré Group in 3+1 dimensions. A massive particle
spontaneously breaks three spatial translations (Pi) and three boosts(Ki) while
time translations (H) and rotations (Ji) are unbroken. We can use an Inverse
Higgs constraints, [H,Ki] = iPi, to remove the Goldstone modes for translations
(π) in favor of those associated with boosts (η). The Coset Element is,

Ω = e−iHtei~π·
~P ei~η·

~Ki = e−iHtei~π·
~P Ω̃, (C.1)

and the Maurer-Cartan 1-form can be calculated as,

Ω−1∂µΩ = i(Λν
µPν + Jαβ(Λ−1)γα∂µΛγβ). (C.2)

Here Ω̃−1PµΩ̃ = Λν
µPν acts a Lorentz boost on the momentum generator and Jαβ are

generators of Lorentz transformation. Projecting this onto the particle world-line,
we can calculate the Vierbein (E), gauge field (Aij) and the covariant derivatives
for the Goldstone fields,

ẋµΩ−1∂µΩ = iE(P0 +∇πiPi +∇ηiKi + AijJij), (C.3)
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where xµ = t, ~x are the spacetime coordinates of the particle and ẋµ = dxµ

dt
. Com-

paring the two sides we get,

E = ẋµΛ0
µ

∇πi = E−1ẋµΛi
µ

∇ηi = E−1(Λ−1)ν0Λ̇i
ν

Aij = E−1(Λ−1)νi Λ̇νj (C.4)

Using the Inverse Higgs constraint, we can set ∇πi = E−1ẋµΛi
µ = 0 which gives

ẋµ = Λµ
0 , (C.5)

due to orthogonality of Lorentz transformations Λi
µΛµ

0 = 0. We can express the

vierbein as, |E| =
√
E2 =

√
ẋµẋνΛγ

µΛγν . Since Λ is a Lorentz transformation, it
satisfies ηµν = Λα

µηαβΛβ
ν = Λα

µΛαν . The leading order action for a massive particle
is then given by,

S = −m
∫
dt|E| = −m

∫
dt
√
ηµν ẋµẋν = −m

∫
ds (C.6)

where m is the mass of the particle. Sub-leading terms in the action should be given
by ∇ηi but we can eliminate them by using leading order equation of motion. This
is because the velocity in co-moving frame of the particle is uµ = ẋµ = Λµ

0 . Hence,

E∇ηi = Λ̇i
νΛ

ν
0 = −Λi

νΛ̇
ν
0 = −Λi

ν u̇
ν , (C.7)

and by leading order equation of motion u̇ν = 0. 1 So Eq.(C.6) is the exact action
for a massive free particle to all orders. Notice that this action is invariant under
t → t′(t) since the Jacobian dt

dt′
is canceled by the transformation of term inside

the square-root, √
ηµν ẋµẋν →

dt′

dt

√
ηµν

dxµ

dt′
dxν

dt′
(C.8)

The free action for a massless particle can be derived from Eq.(C.6) but its not
obvious how to take the massless limit of this action. To do so we introduce an
auxiliary variable, e and rewrite Eq.(C.6) as,

S = −1

2

∫
dλ

(
ẋ2

e
+m2e

)
(C.9)

Here λ is an affine parameter and dot represents derivative wrt λ. Since e(λ) does
not have a kinetic term, it is a non-dynamical variable and we can always eliminate
it by using its equations of motion,

δS

δe
= − ẋ

2

e2
+m2 = 0 (C.10)

1Acceleration of the particle in absence of any external force vanishes.
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and get back Eq.(C.6). Hence adding this new variable does not change the physics.
Now we can take m→ 0 limit in Eq.(C.11), to find the action for a massless particle.

S = −
∫

dλ
ẋ2

2e
(C.11)

This is similar to the Polyakov action for strings with an induced metric on 1-
dimensional particle world line.

C.2 Lagrangian for Free HQET and SCET

Using Eq.(C.6) and Eq.(C.11), we can derive the classical free action for HQET and
SCET respectively. For HQET, we write the four velocity of the heavy quark as
uµ = vµ+ kµ

m
where v2 = 1 and kµ are fluctuations of the order ΛQCD. Substituting

this expression for uµ in Eq.(C.6) we get,

S = −m
∫

dt

(
1 +

2v · k
m

+
k2

m2

)1/2

= −
∫

dt

(
m+ v · k +

k2

2m
+ .....

)
(C.12)

Ignoring the first term, which is equivalent of integrating out the mass, gives the
Lagrangian for HQET

LHQET = v · k +
k2

2m
+O

(
1

m2

)
(C.13)

For SCET, it is convenient to use the light cone coordinates defined in chapter
3. In the massless limit, the appropriate action would be Eq.(C.11). Replacing m2

by p2 = p+p− − ~p2
⊥ in Eq.(C.10) and by choosing e = 2

P−
, we get

SSCET =

∫
dλ

(
p+ − ~p2

⊥
p−

)
(C.14)

This is the leading order action for a collinear particle in momentum space where
p− is much larger than other two momenta.

C.3 Massive spinning particle coupled to Elec-

tromagnetism

For a spinning particle coupled to electromagnetic (EM) vector potential Aµ, we
consider all the generators of Poincaré group to be broken except time translations.
We parametrize our Coset element as

Ω = eiHte−i~π(x)·~P eiα
µν(x)Jµν . (C.15)
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where π(x) and αµν(x) are Goldstone bosons. The Maurer-Cartan 1-form is similar
to that of the massive free particle without the gauge field Aij and we get the same
results for the covariant derivatives of GBs and vierbein as in that case except two
key differences. First we have to gauge EM so replace ∂µ → (∂µ+igAµ) = Dµ. Also
leading order equations of motion don’t vanish due to presence of an external force,
∇ηi = E−1Λν

0Λ̇i
ν 6= 0. However this term is sub-leading in derivative expansion so

can be ignored.
Also instead of separating Goldstone modes for boosts and rotations, we com-

bined them into αµν and the covariant derivative of αµν is given by

∇αµν = ẋ ·Dαµν = E−1Λµ
γ Λ̇γν = E−1ωµν , (C.16)

which we can think of as angular velocity of the particle. This is convenient since we
can easily include contributions of spin and orbital angular momentum in the same
parameter. Since ωµν = −ωνµ because Λµ

γ Λ̇γν = −Λ̇µ
γΛγν so it can also correspond

to σµν = i
2
[γµ, γν ] for a spin 1/2 fermion. However we are only interested in a

classical picture here so this term is not required.
The most general Lagrangian should be constructed with E, Dµ and ωµν . The

simplest terms involving ω, which can be written down are ω2 and ω · F where
Fµν = i

g
[Dµ, Dν ] is the EM field tensor. The ω2 will represent the rotational

kinetic energy of the particle but since we are interested in point particle we can
ignore it. Hence the lowest order non trivial term other than the standard kinetic
terms for a massive particle is ω · F .

LHQET = v ·D +
D2

2m
+ C

ωµνFµν
m

(C.17)

This can be easily generalized to non-abelian gauge theories. Here C is an unknown
Wilson coefficient which needs to be fixed at each order in perturbation theory by
a matching calculation to the UV theory.

C.4 Crystals

A crystal has a symmetry breaking pattern similar to a massive particle i.e the bro-
ken symmetries are spatial translations (~P ), boosts ( ~K) and rotations ( ~J). However
a crystal also has an internal symmetry group, in particular internal translations
( ~Q) and rotations (~S), which in combination with spacetime symmetries give rise

to a diagonal subgroup with unbroken translations (P = ~P + ~Q) and rotations

(J = ~J + ~S). The broken and unbroken generators are summarized below:

Unbroken H,M,P , J

Broken ~P , ~Q, ~J, ~S, ~K (C.18)
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Since P+Q and J+S is unbroken, we only need to include Goldstone bosons for one
set of translations and rotations i.e either of (P, J) or (Q,S). It is straightforward
to derive the vierbein (E), covariant derivatives of Goldstones and the Gauge field
(A) from the Maurer-Cartan 1-form. For calculation ease, we restrict ourselves to
two spatial dimensions and choose to include GBs for (Q,S).

E0
0 = 1, Ei

0 = ηi, E0
i = 0, Ej

i = δji

A0 = −1

2
~η2, Ai = −ηi

∇0η
i = −∂0η

i + ~η · ~∂ηi

∇0θ = −∂0θ + ~η · ~∂θ
∇0π

i = −Ri
j∂0π

j + ηjRk
j∂kπ

i + ηi

∇iη
j = ∂iη

j

∇iθ = ∂iθ

∇iπ
j = Rk

i (∂kπ
j + δjk)− δ

j
i

(C.19)

Here π is the phonon, η is the framon, θ is the angulon and Rj
i = Rj

i (θ) is the
two-dimensional rotation matrix. The inverse Higgs constraints arise because

[Ki, H] = iPi = i(P i −Qi), [S, P i] = iεijQj, (C.20)

so we can set ∇0π
i = 0 and εij∇iπ

j = 0. To leading order in the derivatives and
fields, these two conditions give an algebraic solution for framon and angulon in
terms of the phonon.

ηi = ∂0π
i + .....

θ =
1

2
εij∂iπ

j + ... (C.21)

Hence, the only relevant Goldstone boson at low energies for a crystal is the phonon.

C.5 Superfluids at Unitarity

In a normal superfluid phase U(1) particle number invariance (Q) is broken along
with Galilean boosts (K). If we consider superfluids at unitarity, we get two
additional broken generators namely the dilatations (D) and special conformal
transformations (C). We can assume that the spacetime translations are unbroken.
The Coset space for this symmetry breaking pattern can be parametrized as,

Ω = eiHte−i
~P ·~xe−i

~K·~ηe−iCλe−iDφe−iQπ. (C.22)

54



Here η is the framon, π is the superfluid phonon, φ is the dilaton and λ is the GB
for special conformal transformations. Again we can calculate the Maurer-Cartan
1-form and the extract covariant derivatives for the Goldstones and the vierbein
(E).

E0
0 = e2φ, Ei

0 = eφηi, E0
i = 0, Ej

i = eφδji

∇0π = −e−2φ(∂0π − ~η · ~∂π +
1

2
m~η2)

∇iπ = e−φ(∂iπ −mηi)
∇0φ = −e−2φ(∂0φ− ~η · ~∂φ− λ)

∇iφ = e−φ∂iφ

∇0λ = −e−4φ(∂0λ− ~η~∂λ− λ2)

∇iλ = e−3φ∂iλ

∇0η
i = −e−3φ(∂0η

i − ~η · ~∂ηi)
∇iη

j = e−2φ(∂iη
j − λδji ) (C.23)

We again impose Inverse Higgs constraints due to following commutation relation
between generators, which allow us to solve for η and λ in terms of π.

[Ki, Pj] = iδijmQ, [C,Pi] = iKi (C.24)

This allows us to set ∇iπ = 0 and ~∇ · ~η = 0 from which we get,

~η =
1

m
~∂π

λ =
1

3
~∂ · ~η =

1

3m
~∂2π. (C.25)

Substituting these in ∇0π and ∇0φ gives,

∇0π = −e−2φ

(
∂0π −

1

2m
(∂iπ)2

)
∇0φ = −e−2φ

(
∂0φ−

1

m
~∂π · ~∂φ− 1

3m
~∂2π

)
(C.26)

The first of these conditions is the Witten-Wilzcek relation for superfluids while
the second condition was derived in [30] as a way of writing down a boost invari-
ant action for the dilaton, which according to Ref.[30] was only possible in the
superfluid phase. However if the framon exists then a boost invariant action can
be written down for the dilaton with unbroken U(1) as well.
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