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Abstract 

 Since the discovery of graphene in 2004, there has been a great interest in two-

dimensional (2D) materials from both the academic community and the semiconductor 

industry. In this work, we study various 2D materials and 2D heterostructures, aimed 

towards large-area device fabrication. Through detailed experimental work and extensive 

first-principle calculations, we determined the lowest energy structure for the interface of 

graphene formation on the C-face of SiC. The lowest energy structure contains > 1 

monolayer of Si at the interface, forming an adatom-on-adlayer structure. Low-energy 

electron microscopy (LEEM) was employed to study properties of 2D heterostructures 

such as graphene–WSe2 and graphene–MoS2. Work function differences from the layers 

were extracted and band alignments were obtained, from which the nature of the contact 

at the interface was revealed. The electrical contact was found to be dependent on the 

constituent 2D layers of the heterostructures, as well as on the doping of the 2D layers. 

Finally, we consider simulation of devices made with 2D materials. We focus on 

interlayer tunneling field-effect transistors (TFETs) using 2D materials as the drain and 

source electrodes. By employing the first-principles density-functional-theory (DFT) 

wavefunctions, in the Bardeen tunneling formalism, we develop a “DFT-Bardeen” 

method that permits the computation of current-voltage characteristics in interlayer 

TFETs with reliable values for the magnitude of the currents. This method allows 

incorporation of differing materials into the source and drain electrodes, i.e. with 

different crystal structure, lattice constants, and/or band structure. Large variations in 

tunneling current were found, depending on the 2D materials being used. It is shown that 

the DFT-Bardeen method takes into account effects that are beyond simple lateral-

momentum conservation, including the detailed symmetry and form of the wavefunctions. 

Predicted values for the tunneling current, including the subthreshold swing and the ON 

current, are compared with benchmark values for low-power digital applications. 
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1 Introduction 

Two-dimensional (2D) materials are defined as layered materials that consist of one (or a 

few) monolayers of atoms. Prior to the isolation of graphene, a single-layer of graphite, in 

2004,
1
 2D materials were considered for a long time as a class of purely academic 

materials that could not exist in a freestanding, atomically thin form.
2,3,4

 For example, 

Mermin argued that materials in two-dimensional form would be unstable in reality, due 

to thermal fluctuations that prevent long-range crystalline order at finite temperature.
4
 

Within this context, the first demonstration of a stable, freestanding 2D material, 

graphene, was a monumental discovery. 

 

Figure 1.1 Representative 2D materials 

Some representative 2D materials: (a) semi-metallic graphene; (b) insulating 

h-BN; (c) semi-conducting MoS2. A 2D material is a material consists of one 

or a few such atomic monolayers. Generally these materials have a strong 

bonding in the plane but a weak (van der Waals) bonding between planes. 

 

 Since the discovery of graphene, many other 2D materials have been discovered 

and studied. Extensive research has been done to study the physical, chemical, and 

electrical properties of these materials. While graphene is semi-metallic, other 2D 

materials have been found to be insulating (e.g. hexagonal boron nitride, h-BN), or 
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semiconducting (e.g. molybdenum disulfide, MoS2), or metallic (e.g. tungsten ditelluride, 

WTe2), or superconducting (e.g. niobium diselenide, NbSe2). Research efforts world-

wide in 2D materials have been wide ranging, including topics such as (i) studying basic 

properties such as electron mobility, (ii) exploring novel quantum phenomena such as 

anomalous quantum Hall effect, (iii) isolating single or few layers from the bulk through 

mechanical exfoliation for researching their physics, (iv) synthesizing the 2D material 

directly on a desired substrate via various growth methods, for intended device 

application. While there are limitations in the properties that an individual 2D material 

can provide, combining various 2D materials into heterostructures, so called van der 

Waals heterostructures (Figure 1.2), offers a wealth of possibilities, leading to new 

physics and interesting phenomena, with potential device applications.
5
 

 

Figure 1.2 van der Waals heterostructures 

Illustration of constructing a van der Waals heterostructure, using diverse 2D 

materials as building blocks. From Ref. 5. 

 

 In this thesis, I focus on growth and characterization of 2D materials and 

heterostructures. I also study performance, specifically tunneling characteristics, of 

devices based on these materials. The thesis consists of a mix of experimental work and 
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theoretical computations and simulations. This first Chapter provides a general 

introduction to representative 2D materials that are the theme of my research. Chapter 2 

covers a few of the major experimental techniques that are routinely employed in our 

experiments. Chapter 3 studies graphene formation on the C-face of SiC, with new and 

significant experimental and theoretical results. Here I want to thank Prof. Mike Widom 

again for his immense work in this project. Prof. Widom did all the first-principles 

computations using the Vienna Ab initio Simulation Package (VASP) for results 

presented in Chapter 3 (and also including many more results not shown in this thesis). 

Chapter 4 presents a few examples of experimental studies of 2D materials and 

heterostructures using the methods covered in Chapter 2. The results there show that our 

measurements provide valuable information regarding crystallinity and interface 

properties of synthesized 2D materials, which is critical for device fabrication and 

application. Chapter 5 covers theoretical treatment and computations of tunneling 

characteristics in 2D heterostructures. There we discuss limitations in the past theoretical 

treatment of the problem and present our own approach to it. By direct comparison with 

experimental results, recent work demonstrates that our method provide a more reliable 

estimate of the magnitude of current in 2D tunneling devices. To this point, portions of 

the thesis have appeared in Refs. 6–13. , as noted in each relevant section. 

1.1 Graphene 

Graphene is the name given to one (or a few) monolayers of hexagonally-arranged 

carbon atoms, as pictured in Figure 1.3(a). A carbon atom has four valence electrons with 

a ground-state electronic shell configuration of 2s
2
2p

2
. When carbon atoms form solids, 

the total energy decreases due to overlap of the electron wavefunctions and formation of 

energy bands. In graphene, the 2s, 2px, 2py orbitals of a C atom hybridize and form three 

sp
2
 hybrid orbitals in a plane, each containing an unpaired electron. With these hybrids, 

each C atom forms energetically stable and localized σ–bonds with its three nearest-

neighbor C atoms, in a honeycomb lattice. The remaining 2pz orbital, which contains a 

single electron, then extends out of the plane. Overlapping 2pz orbitals form the π band of 

electronic states, and the energy reduction associated with that band is then said to 

produce π-bonding in the material.  
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 This overlap of 2pz orbital states between neighboring C atoms plays a dominant 

role in the electronic properties of graphene near the Fermi energy. For this reason, the 

electronic band structure of graphene can be well described by the nearest-neighbors tight 

binding approximation.
14,15

 

 

Figure 1.3 Graphene and its reciprocal lattice 

(a) Atomic structure of a graphene monolayer viewed from the out-of-plane 

direction. Carbon atoms are represented by solid circles (black and gray). The 

unit cell of graphene is indicated, and it contains two carbon atoms, each 

belonging to a sublattice (black or gray). (a) Reciprocal lattice of graphene, 

showing the first Brillouin zone (BZ) and reciprocal basis vectors. High-

symmetry points are labeled: center of the BZ by Γ, midpoint of the BZ edge 

by M, corner of the BZ by K (K’). Neighboring BZ corners, K and K’, are not 

equivalent as they are not connected by a reciprocal lattice vector.  

 

 The unit cell of graphene contains two C atoms, as pictured in Figure 1.3(a). Each 

of them belongs to a separate triangular sublattice (black or gray). Figure 1.3(b) shows 

the reciprocal lattice and first Brillouin zone (BZ) of graphene. High-symmetry points of 

the BZ are labeled. Of particular importance is the six corners of the BZ (K or K’), also 

known as Dirac points. Electronic bands close to these points demonstrate a linear 

dispersion, as pictured in Figure 1.4(b). 

 Figure 1.4 shows the computed band structure of graphene using the tight binding 

approximation.
15

 For any C atom, interactions with neighboring C atoms up to second-

nearest neighbor are considered: the three nearest neighboring C atoms of a different 
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sublattice and the three second-nearest neighboring C atoms of the same lattice (see 

Figure 1.3). From the results shown in Figure 1.4 we see that the conduction and valence 

bands of graphene touch at the six Dirac points (and only at these points). Since the 

Fermi surface of graphene is composed of a finite set of six points on its BZ, graphene is 

usually termed a zero overlap semimetal, or a zero-gap semiconductor.
16

 

 

Figure 1.4 Band structure of graphene 

(a) Band structure of monolayer graphene computed by the tight-binding 

method. The conduction and valence bands touch at the six corners of the first 

Brillouin zone (BZ), leading to semi-metallic behavior. (b) Zoom in of the 

energy bands close to a corner of the BZ (K or K’), demonstrating a linear 

dispersion relation. From Ref. 15. 

 

 The band structure close to the Dirac points (K and K’) can be described by the 

Dirac-like Hamiltonian. For electronic bands close to K and K’, 

 
𝐻̂K(q) = ℏ𝑣F (

0 𝑞𝑥 − 𝑖𝑞𝑦

𝑞𝑥 + 𝑖𝑞𝑦 0
) = ℏ𝑣F𝛔 ⋅ 𝐪, 

𝐻̂K'(q) = ℏ𝑣F (
0 𝑞𝑥 + 𝑖𝑞𝑦

𝑞𝑥 − 𝑖𝑞𝑦 0
) = ℏ𝑣F𝛔∗ ⋅ 𝐪 

(1) 

where ( , )x y σ  and * ( , )x y  σ  are the Pauli matrices,  q k K  is wavevector 

close to the Dirac points, and 𝑣F ≈ 𝑐/300 (𝑐 is the speed of light) is the wavevector-

independent Fermi velocity. 
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 Solving the eigenvalue problem of (1) gives (for both K and K’) 

 FE v q  . (2) 

where 𝑞 = ‖𝐪‖ = ‖𝐤 − 𝐊‖. 

 A consequence of this linear dispersion is that the effective mass of the electrons 

is zero near the Fermi level (𝐸k = 0 in Figure 1.4). From (2) we can deduce the density of 

state of graphene, ( )E : 

 

2
F

2
( )

( )

Edn
E

dE v



  , (3) 

a fact that will be used when we discuss the charge transfer in 2D heterostructures 

Section 4.2. 

 The linear spectrum (2) is not the only essential feature of the band structure near 

the Dirac points. The Dirac-like Hamiltonian (1) suggests that, by analogy with quantum 

electrodynamics (QED), we can introduce a quantity called chirality that is a projection 

of the pseudospin σ  on the direction of wavevector q  and is positive (negative) for 

electrons (holes).
17

 This chirality means an electron hopping from K to K’ is not allowed 

since the pseudospin is not conserved. This conservation rule explains many electronic 

processes observed in graphene such as the ballistic transport.
18

 

1.2 Hexagonal Boron Nitride 

Hexagonal boron nitride (h-BN) is one of the three crystalline forms of boron nitride. 

Due to strong, in-plane covalent bonds and weak van der Waals interlayer interactions, h-

BN is a layered material, similar to graphite, and highly stable in thickness down to a 

single layer. Monolayer h-BN has the same hexagonal lattice structure as graphene 

(Figure 1.1), but with two atoms of different species (boron and nitrogen) in a unit cell. 

Unlike the semi-metallic graphene, h-BN is a wide-band-gap insulator, with a band gap 

energy near 6 eV. 

 H-BN has been used as a substrate to other 2D materials, due to its atomically 

smooth surface that is free of dangling bonds and charge traps.
19

 STM studies of 
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graphene supported on h-BN show electron-hole fluctuations are significantly reduced 

compared to graphene supported by more conventional substrate silicon oxide.
20

 Due to 

its flatness and inertness, h-BN has also been used as an encapsulation layer for either 

improving electronic properties of the encapsulated material or protecting other less-

stable 2D materials. In the scope of this analysis, h-BN will be primarily viewed as a 

convenient insulating material. Specifically, we consider h-BN as tunneling barrier for 

devices made of 2D heterostructures, a point that will be discussed in Chapter 5. 

 

 

Figure 1.5 Using h-BN as atomically smooth substrate 

An example of using h-BN as atomically smooth substrate. (a) Schematic of a 

device that has exfoliated monolayer graphene on an h-BN substrate, with 

gold electrodes as contacts. The wiring of the STM tip is indicated. (b) STM 

topographic image of monolayer graphene on h-BN showing surface 

corrugations. (c) STM image of monolayer graphene on SiO2 showing 

significantly increased corrugations. (d) Histograms of the height distributions 

for graphene on SiO2 (blue) and graphene on h-BN (red) along with Gaussian 

fits. From Ref. 20. 
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1.3 Transition Metal Dichalcogenides 

Transition metal dichalcogenides (TMDs) are a family of materials of type MX2, where 

M is a transition metal element (Mo, W, Zr, Nb, etc.) and X is a chalcogen (S, Se, or Te). 

Similar to graphene and h-BN, TMD is a layered material with strong in-plane bonding 

and weak (van der Waals) out-of-plane interactions. A TMD monolayer has a sandwich-

like structure (see Figure 1.1(c)), with the chalcogen atoms in two hexagonal planes 

separated by a plane of transition metal atoms. Although TMDs have been studied for 

decades, there is at present a resurgence of scientific and engineering interest in their 

atomic thin 2D forms because of recent advances in sample preparation, optical detection, 

transfer and manipulation of 2D materials, and physical understanding of 2D materials 

learned from graphene.
21

 

 TMDs show a wide range of electronic, optical, mechanical, and thermal 

properties, partly due to the multiple options of transition metal atoms and chalcogen 

atoms for composition. For example, MoS2 and WSe2 are semiconducting, while NbS2 

and TaSe2 are metallic, and NbSe2 and TaS2 have demonstrated superconducting 

behavior. What is more interesting is that many semiconducting TMDs show band gaps 

that are dependent on the number of atomic layers the TMDs consist of. For instance, the 

bulk MoS2 has an indirect band gap of 1.3 eV.
22

 As the MoS2 crystal become atomically 

thin, its band gap energy increases.
23

 In its single-layer form, the MoS2 has a direct band 

gap of 1.9 eV.
24

 The direct band gap results in photoluminescence from monolayer MoS2, 

opening the possibility of optoelectronic applications. 

 The sizeable band gap of semiconducting TMDs with band gap energy in the 

range of 1 – 2 eV makes them particularly appealing for device applications. Extensive 

research efforts have been undergoing to utilize these atomically thin semiconductors to 

make high performance, low power field effect transistors (FETs). For FETs, desirable 

properties include high carrier mobilities for fast operation, a high on/off ratio for 

effective switching, high on-state current for high performance, and low off-state current 

for low power consumption.
21

 While graphene has demonstrated exceptionally high 

carrier mobilities, the lack of band gap means it cannot achieve a low off-state current. In 

comparison, the 1 – 2 eV band gap in TMD monolayers can result in high on/off ratios. 
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Compared with classical 3D electronic materials, the extreme thinness of these 2D 

semiconductors allows more efficient control over switching
25

 and can help to reduce 

short-channel effects and power dissipation, the main limiting factor of current 

transistors.
26

 

 

Figure 1.6 Band gaps of various TMDs 

Band alignment diagram of TMDs in bulk form and monolayer (ML) form, 

showing conduction band (CB) and valence band (VB) of each material. The 

energy gap between the CB and the VB is the band gap of each material. From 

Ref. 27. 

 

1.4 Tunneling field-effect transistors 

A very appealing perspective of 2D materials is to use them to make high speed, low 

power tunneling field-effect transistors (TFETs).
6,28–33,126–138

 TFET devices can switch 

between “ON” and “OFF” states by modulation of a current that tunnels through a 

barrier.
30

 This is fundamentally different from metal-oxide-semiconductor field-effect 

transistors (MOSFETs), which switch by modulating thermionic injection of electrons 

over a barrier.
34,35

 As a result, TEFTs are not limited by the thermal Maxwell-Boltzmann 

tail of carriers, which limits MOSFET current subthreshold swing to about 60 mV/decade 
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at room temperature.
36

 The subthreshold swing (SS) is defined as the inverse of 

subthreshold slope, and is a measure of the steepness of the turn on slope in the drain 

current (ID) versus gate voltage (VG) characteristics, 

 

10log( )

G

D

d V

d
S

I
S    (4) 

i.e. the gate voltage required to change the drain current by one order of magnitude when 

the transistor is operated in the subthreshold region (Figure 1.7(c)). 

 

Figure 1.7 Principle of operation of a conventional TFET 

(a) Schematic cross-section of p-type TFET with applied source (VS), gate 

(VG) and drain (VD) voltages. (b) Energy band profile for the ON state (red 

lines) and the OFF state (dashed blue lines) of the TFET. In the OFF state, the 

conduction band (CB) of source is aligned with the band gap of the channel 

and no empty states are available for the electrons to tunnel to, so the current 

is very low. In the ON state, the valence band (VB) of the channel is moved 

above the CB of the source through applied VG so that band-to-band tunneling 

can occur. The grey triangular shade approximates the tunneling barrier. (c) 

Schematic of the drain current – gate voltage characteristics on a logarithmic 

scale. The black dashed line denotes a subthreshold swing (SS) of 60 

mV/decade. Adapted from Ref. 29. 

 

 For TFETs, SS can be much lower than 60 mV/decade since tunnel current flows 

only once the valence band edge of one electrode rises above conduction band edge of 
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the other (band-to-band tunneling). The low SS (i.e. sharp turn-on) allows TFETs to be 

operated at reduced voltages, hence yielding digital devices that require relatively low 

amounts of energy to switch between ON and OFF states. Although there have been 

many TFETs fabricated in different material systems, none has been adopted for 

mainstream applications.
29,30

 The major challenge is to obtain a sufficiently large ON 

current while maintaining a low SS. 

 More recently, the interest in the TFETs has intensified due to the development of 

2D materials.
8,126–138

 Compared to usual three-dimensional (3D) materials, 2D materials 

offer more possibilities due to their unique properties. For example, instead of using the 

conventional TFET design as in Figure 1.7(a), we can stack atomically thin 2D layers to 

form a vertical tunneling device,
8,126,127 

as shown in Figure 1.8. 

 

Figure 1.8 Interlayer TFET made with 2D heterostructure 

Schematic of a 2D interlayer TFET and its operation modes. (a) Schematic 

cross-section of 2D interlayer TFET. Source and drain electrodes are TMD 

monolayers, with zero, one, or few layers of h-BN as tunneling barrier. (b) 

Tunneling between unlike bands, similar to the band-to-band tunneling in 3D 

TFETs in Figure 1.7: electrons tunnel between valence band (VB) of one 

electrode and conduction band (CB) of the other. (c) Tunneling between like 

bands; electrons tunnel between VB of one electrode and VB of the other, or 

between CB of one electrode and CB of the other. 
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 The 2D interlayer TFET in Figure 1.8(a) has two operation modes: electrons 

tunneling between valence band (VB) of one electrode and conduction band (CB) of the 

other (unlike-band tunneling); electrons tunneling between VB of one electrode and VB 

of the other, or CB of one electrode and CB of the other (like-band tunneling). The 

unlike-band tunneling is similar to the band-to-band tunneling in conventional 3D TFETs, 

giving rise to a steep turn on (low SS) when the VB edge of one electrode rises above the 

CB edge of the other. However, instead of tunneling across the bandgap of a 

semiconductor depletion region (Figure 1.7(b) shaded area), electrons in 2D interlayer 

TFETs tunnel across a thin insulating layer. The depletion region in 3D TEFT is 

characterized by the screen tunneling length λ which is typically a few nanometers thick, 

and requires substantial doping and/or electrical gating.
30

 In contrast, due to weak out-of-

plane interactions, the tunneling barrier in 2D interlayer TFET can be made sub-

nanometer thin, by using one or zero (also known as a vdW gap in this case) layer of h-

BN.
6,126,127

 This is important because the magnitude of tunneling current depends strongly 

on the barrier thickness and potentially large ON current may be achieved with 2D 

interlayer TFET. Additionally, the doping requirement can be avoided or relaxed by 

choosing the appropriate 2D materials for the device.
6,126,127

 

 In addition to the steep turn-on in the unlike-band tunneling mode, another 

intriguing property of 2D tunneling device is the resonant tunneling in the like-band 

tunneling mode,
132–138

 as shown in Figure 1.9. The resonant tunneling behavior has been 

observed for graphene-hBN-graphene tunneling devices.
133,136

 This phenomenon can be 

explained by the lateral momentum (or wavevector) conservation. For 2D materials, the 

eigenstates are confined to the 2D plane, causing them to have well-defined momentum 

in the lateral directions, but decaying character in the out-of-plane direction. At some 

particular applied voltage, the source and drain 2D layers have their VBs (and/or CBs) in 

complete alignment with each other in the momentum space (Figure 1.9, band alignment 

corresponding the peak current), and resonant tunneling occurs.
132

 At other voltages, 

either there are no empty states for electrons to tunnel to, or the tunneling is constrained 

by the lateral wavevector conservation, leading to reduced currents.   
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Figure 1.9 Resonant tunneling and lateral momentum conservation 

Resonant tunneling in like-band tunneling mode of 2D interlayer TFET. Left: 

schematic of drain current – gate voltage characteristics, showing the resonant 

tunneling peak. Right: band alignment in the momentum space, horizontal 

axis is the lateral wavevector and vertical axis is the energy. The band 

alignments for selected points on the current characteristics show resonant 

tunneling (both energy and lateral wavevector are aligned, so a large current 

occurs) and off-resonant tunneling (unequal lateral wavevectors, resulting in a 

small current). 

 

1.5 Theme 

To this point, I have briefly described the 2D materials that are the main topic of my 

research. Although my work has focused on different aspects (growth, characterization, 

and simulation) of various 2D materials (e.g. graphene, TMDs), the studies all serve one 

goal — scalable device fabrication (for tunneling devices in particular), meaning that our 

emphasis is on materials prepared over large areas by epitaxial deposition. 

 Many of the 2D materials discussed above can be and have been produced 

through mechanical exfoliation, inspired by the first isolation of graphene.
1
 While many 

interesting properties and phenomena have been discovered through studying such 

exfoliated materials, producing 2D materials via exfoliation is not suitable for device 

application due to major issues such as scalability and reproducibility.
18

 For this reason, 

we focus our studies on epitaxially grown 2D materials. For example, in Chapter 3, we 

study the interface structure of graphene formation on silicon carbide (SiC) in order to 



23 

 

better improve the quality (e.g. grain size and uniformity) of grown graphene on the 

surface.
7
 This direct formation graphene on SiC has the additional advantage of being 

directly compatible with established scalable device fabrication techniques as SiC is a 

monocrystalline semiconducting substrate (which can be produced with high resistivity, 

i.e. semi-insulating).
37,38

 In Chapter 4, we characterize epitaxially grown 2D materials 

and 2D heterostructures with our experimental tools, obtaining information such as work 

function differences and band alignments that are critical for device design.
9,10,11

  

 Finally, in Chapter 5 we study tunneling characteristics in devices made with 2D 

materials. We focus on 2D interlayers TFETs introduced in the previous section. The 

primary motivation for this work is the large discrepancy between the previous simulated 

current magnitudes and the experimental results.
133,135,138

 Since a major challenge of 

using TFETs for mainstream application is to obtain sufficiently high ON current,
29,30

 a 

reliable estimate of the current magnitude is important in deciding what materials and 

electrostatic parameters may be used for fabricating the device. By employing 

wavefunctions obtained by first-principles density-functional-theory (DFT), in the 

Bardeen tunneling formalism, we develop a “DFT-Bardeen” method that permits 

computation of current-voltage characteristics in interlayer TFETs with reliable values 

for the magnitude of the current.
6
 This method has been shown to include effects that are 

beyond those included in the previous simulation, and hence produce current magnitudes 

that are in much better agreement with the experiment.
8
 Tunneling currents for interlayer 

TFETs made from various 2D materials are computed using this method.
6
 The results 

should be useful in choosing appropriate materials from which to fabricate device. 
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2 Experimental Methods 

2.1 Graphene Preparation and Characterization 

We prepare epitaxial graphene by annealing SiC at high temperatures (>1000 °C) under 

different environments, such as vacuum, 1 atm argon, 1 atom neon, or 5×10
-5

 Torr of 

disilane. Graphene samples are produced in a custom-built ultra-high-vacuum (UHV) 

system. Figure 2.1 shows a picture of the system. It consists of two parts: a preparation 

chamber on the right that is used for annealing SiC samples to form graphene; and a 

connected, low-energy electron diffraction (LEED) characterization chamber on the left. 

There is a valve between the preparation chamber and the LEED chamber. The valve is 

open when transferring a sample between the two chambers (using transfer rods) and 

closed otherwise. The preparation chamber is pumped by a scroll pump, two levels of 

turbomolecular pumps and has a base pressure of 1×10
-9

 Torr. The LEED chamber is 

pumped by a scroll pump, two levels of turbomolecular pumps, and an ion pump, and is 

normally kept at a pressure of 1×10
-10

 Torr. 

 The major advantage of this system is that is allows in-situ LEED measurements. 

With this capability, we can study surface reconstructions at every stage of graphitization. 

Each time we do an annealing of a sample in the preparation chamber, we transfer it to 

the LEED chamber to perform LEED measurements, and then transport it back for 

further annealing if desired. Since all the steps are carried out inside the vacuum system, 

contamination from air is avoided. Another advantage of the system is that, since the 

preparation chamber is a double walled chamber, we can flow liquid N2 between the 

walls to cryogenically purify inert gas such neon filled into the chamber. This system has 

been extensively used in our group by past and current students (including the author, JL). 

All the LEED results presented in this thesis, most of them in Chapter 3, were obtained 

using this system. 
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Figure 2.1 Graphene formation system 

Photograph of graphene preparation and LEED measurement system. 

 

 Annealing of samples is accomplished by using a bow-tie shaped graphite strip 

heater, as pictured in Figure 2.2. The sample is placed in the center of the graphite heater 

by a dedicated XYZ-manipulator. No measurable contamination of the sample surface 

from the heater is found when annealing SiC to form graphene. The strip heater is 

mounted on two large copper clamps and two thick water-cooled copper feedthroughs are 

used to transmit current. The current is supplied by a transformer that at it maximum can 

generate a current of about 270 A. This allows a sample to be annealed at temperatures 

up to 1900 °C. 

 Most of our experiments are performed using nominally on-axis 6H SiC or 4H 

SiC wafers, with no apparent differences between results for the two types of wafers. The 

wafers are polished on either the (0001) surface or the (0001̅) surface. After receiving 

the wafers from a supplier, they are cut into 1×1 cm
2
 pieces that we normally work with. 

To prepare graphene, we first etch the sample surface by annealing in hydrogen or 

disilane to remove polishing damage. Hydrogen etching is performed by flowing 99.9995% 

pure hydrogen in the preparation chamber at a rate of 105 lpm and heating the sample at 
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1600 °C for 3 min.
39

 Etching by disilane is performed by heating the sample in 5×10
-5

 

Torr disilane at 850 °C for 5 min. The disilane is flowed into the preparation chamber 

through a leak-valve that can be used to accurately control the pressure of disilane in the 

chamber. The sample is then annealed either in vacuum or in 1 atm argon or in 5×10
-5

 

Torr disilane to form graphene. The temperature of the sample during the annealing is 

monitored by a disappearing filament pyrometer. We note that for making graphene in 

vacuum, the preparation chamber is constantly being pumped during annealing. This is 

also true for preparing graphene in the disilane environment, except that we control the 

supply of disilane through the leak-valve to maintain a pressure of 5×10
-5

 Torr in the 

chamber. For graphitization in argon, we first close all the valves connected to the 

preparation chamber to isolate the chamber, immediately after which we fill the chamber 

with argon. When the pressure of argon in the chamber is slightly higher than 1 atm, we 

open a vent valve and keep the flow rate of argon at 45 lpm by adjusting the regulator on 

argon gas cylinder. The sample is then annealed to form graphene. It is clear that during 

this process the preparation chamber is not being pumped. 

 

 

Figure 2.2 Bow-tie shaped graphite strip heater 

Top view of preparation chamber. A bow-tie shaped strip heater is fixed in the 

middle of the chamber. The sample is placed on the center of the heater. 
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2.2 Low-energy Electron Diffraction 

Low-energy electron diffraction (LEED) is a technique to study symmetry and structure 

of the surface of a crystalline sample or thin film.
40

 In LEED measurements, a beam of 

low-energy electrons in the range of 20 eV – 500 eV is incident on the sample surface. 

The elastically backscattered electrons give rise to diffraction spots on a fluorescent 

screen. 

 Figure 2.3 is a diagram of a LEED apparatus. In the electron gun, monochromatic 

electrons are emitted by a cathode filament (e.g. LaB6 crystal) which is at a negative 

potential, typically 100 – 600 V. After leaving the filament, the electrons are accelerated 

by the large voltage difference between the filament and the screen which is typically 

held at a voltage between 5 and 6 kV. During this process, the electrons then are focused 

into a beam of about 0.2 – 0.5 mm wide, by a series of electrodes serving as electron lens. 

After interacting with the first few layers of atoms on the surface, the electrons are 

diffracted, both elastically and inelastically. Some energy-filtering grids are placed in 

front of the phosphor screen to screen out the inelastically scattered electrons. The 

elastically backscattered electrons are accelerated and hit the phosphor screen which 

emits photons that can be detected by a camera. 

 The LEED measurements are performed in ultra-high vacuum (UHV) to keep the 

sample surface clean. To be able to observe distinguishable spots in the diffraction 

pattern, sufficient structural order must exist on the surface. This typically requires a 

region of single crystal surface as wide as the electron beam. 

 



28 

 

 

Figure 2.3 Diagram of a LEED apparatus 

Diagram of a low-energy electron diffraction (LEED) apparatus, from Ref. 40. 

The apparatus is kept in vacuum to keep the sample surface clean. Electrons 

are emitted from an electron gun and then accelerated and focused into a beam 

by a series of electrodes. After interacting with the sample, some electrons are 

diffracted back. The grids in front of the florescent screen filter out 

inelastically scattered electrons so that only elastically backscattered electrons 

will reach the screen and form diffraction patterns. 

 

 The LEED may be used in one of two ways: 

(1) Qualitatively, where the diffraction pattern is recorded and analysis of the spot 

positions (e.g. distance and angle) gives information on the symmetry of the surface. In 

the presence of a superlattice (e.g. due to adsorbates and/or surface reconstruction), the 

qualitative analysis may reveal information about the size and rotational alignment of the 

unit cell of the superlattice with respect to the substrate unit cell. 

(2) Quantitatively, where the intensities of diffracted beams are recorded as a function of 

incident electron beam energy to generate the so-called I-V curves. By comparison with 

theoretical curves, quantitative LEED I-V may be used for structure determination and/or 

providing accurate information on atomic positions on the surface at hand. 



29 

 

2.2.1 LEED patterns: size, shape, and symmetry 

Due to the low-energy scale of electrons used in LEED (20 – 500 eV), the electrons 

generally penetrate only a few Angstroms into the sample and interact “strongly” with 

atoms and electrons close to the surface. Upon penetrating a crystal, the intensity of the 

primary beam decays exponentially. This effective attenuation means that only the top 

few atomic layers are sampled by the electron beam and as a result the contribution of 

deeper atoms to the diffraction progressively decreases.
41

 

 In general, multiple scattering-events must be taken into account for theoretical 

description of the LEED. Nevertheless, a simple treatment of the surface scattering 

process within the framework of single scattering events can yield insights into important 

features of scattering on the surface.
42

 This approach is called the kinematic theory. It is 

frequently used for qualitative explanation of the LEED patterns and may provide 

information such as size, shape, and symmetry of the unit cell of the surface structure. 

 For an incident beam of electrons with wave vector k  and elastically scattered 

electrons with wave vector k  ( | | | | 2 /   k k ), the conditions for constructive 

inference are given by the Laue equations, 

   k k G ,  (5) 

 where G  is a reciprocal lattice vector. 

 Since only the first few atomic layers contribute to the diffraction, the problem 

can be approximated as 2D diffraction, in which case the Laue equations may be written 

as 

 
|| || || ||

  K k k G ,  (6) 

i.e. the scattering vector component parallel to the surface must equal a vector of the 2D 

surface reciprocal lattice. 
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Figure 2.4 Ewald construction for 2D scattering 

Ewald construction for elastic scattering on a 2D surface lattice, from Ref. 42. 

The 2D reciprocal lattice points (hk) are plotted on a cut along kx. The Laue 

equations in 2D are satisfied by points that are intersections of the rod and the 

Ewald sphere 

 

 In order to extend the Ewald construction for the 3D diffraction to the 2D problem, 

we must relax the restriction of the third Laue equation (perpendicular to the surface).
42

 

This is done by attributing to every 2D reciprocal lattice point ( , )h k  a rod normal to 

surface (Figure 2.4). This is because for a 2D lattice, the periodicity along the 

perpendicular direction is infinity. Correspondingly, the periodicity the reciprocal lattice 

in the z direction is zero, i.e. infinitely-densely packed. In the 3D problem we have 

discrete reciprocal lattice points in the third dimension instead of rods. 

 As shown in Figure 2.4, the possible elastically scattered beams k  can be 

obtained by the following construction. The wave vector k  of the primary beam is 

positioned with its end at the (0, 0) reciprocal lattice point and its orientation is 

determined by the experimental geometry. The Ewald’s sphere with radius | |k  is then 

drawn with its center at the beginning of the incident wave vector k . The condition 
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  k k G is fulfilled for every point at which the sphere crosses a reciprocal-lattice 

rod. By constructing every wave vector beginning at the center of the sphere and ending 

at the intersection of a rod and sphere, we obtain the diffraction pattern for the surface. 

  

 

Figure 2.5 A LEED pattern example 

LEED pattern for SiC (0001) surface after hydrogen etching at 1600 °C for 3 

min, taken at beam energy 100 eV. The labeled (1, 0) and (0, 1) are the 

primary SiC spots. Fractional order spot (1/3, 1/3) indicates a superlattice. The 

orientation of the fractional order spot indicates that the unit cell of the super 

lattice is rotated 30° relative to the primitive cell of the substrate. The standard 

notation for the superlattice is 3 3 R30  .  

  

 Figure 2.5 shows an example of a LEED pattern taken for a sample. The sample is 

a 6H SiC sample with the (0001) face as the surface. After hydrogen etching at 1600 °C 

for 3 min, the surface was studied with an in-situ LEED. The LEED pattern shows the 

primary spots of SiC (labeled as (1, 0) and (0, 1) in the figure) as well as fractional 

ordered spots (e.g. (1/3, 1/3) in the figure). The fractional order spots are due to a 

superlattice on the surface. Based on the distance of spot to the pattern center and 
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orientation with respect to the primary spots, we can determine the unit cell of the 

superlattice to be √3 × √3 −R30°, where √3 × √3 denote size of the unit cell in terms of 

the primitive cell of the substrate and R30° indicates that it is rotated 30° relative to the 

primitive cell. 

2.2.2 LEED I-V 

Let us first revisit the Ewald construction in Figure 2.4 of the previous section. Now we 

gradually increase the energy of the incident electron beam. The radius of the Ewald’s 

sphere will vary correspondingly. As a consequence, more (higher order) rods intersect 

the sphere. In this process, one would expect the intensity of a diffraction spot will 

depend weakly on the incident beam energy, i.e. constant before a new rod intersect the 

sphere and decreases when it starts to intersect. However, experimentally this is barely 

the case. While it is observed that higher order spots emerge as incident beam energy 

increases, the intensity of a certain diffraction spot often varies drastically and non-

monotonically. This is because the Ewald construction in Figure 2.4 is exact only in the 

limit of scattering from a true 2D layer of atoms. In a real LEED experiment, however, 

the primary electrons penetrate a few atomic layers into the solid. The deeper they 

penetrate, the more scattering events in the z direction perpendicular to surface contribute 

to the final LEED pattern.
42

 

 To take into account scattering from a few additional layers of atoms, we can 

modify the simple rod representation of the z direction of the 2D reciprocal lattice to rods 

with non-uniform weights, as shown in Figure 2.6. The “thicker” regions of the rods arise 

from the Laue equation in the third dimension, which cannot be completely neglected as 

in the pure 2D case. If the Ewald sphere intersects a rod at a thick region, a diffraction 

spot of strong intensity is expected, while if it intersects at a thin region, weak diffraction 

will occur. 
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Figure 2.6 Ewald construction for scattering in quasi-2D lattice 

Ewald construction for elastic scattering in a quasi-2D lattice, as in Figure 2.4, 

but now not only the topmost layer, but also a few underlying layers are 

considered. The “thicker” regions of the rods arise from the third Laue 

condition, which cannot be completely neglected as in the pure 2D case. From 

Ref. 42. 

 

 If we gradually increase the energy of the incident electron beam, the Ewald 

sphere will intersect thick and thin regions of a rod alternately, and the intensity of the 

corresponding diffraction spot will be oscillatory. The measurement of the intensity of a 

particular diffraction spot in dependence on the beam energy of incident electrons is 

known as LEED I-V measurement where I refers to intensity and V acceleration voltage 

of electrons. The oscillatory behavior of a LEED I-V curve is indeed observed in many 

experiments.
41,42,43 

However, there are many additional features in the I-V curves that 

cannot be explained by the simple picture developed so far. These are beyond the single 

scattering approximation and multiple scattering processes must be taken into account. 

 On the other hand, the rich features of the I-V curves can provide detailed 

crystallographic information about a given surface.
44

 Since multiple scattering effects in 

LEED are strong, general methods to extract the desired structural information directly 

from the I-V curves do not exist.
41,44

 Instead, the structure and atomic configurations of 
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the surface are determined by a trial and error procedure, where theoretical I-V spectra 

are computed for many plausible models of the surface and then compared to 

experimental I-V curves to find the best match. From an initial reference structure, a set 

of trial structures can be created by vary the model parameters such as geometry, 

stoichiometry and thermal vibrations. The parameters are changed routinely and the 

comparisons keep going until an optimal agreement between the computed and the 

experimental I-V curves is achieved. 

 The agreement between the computed and the experimental I-V curves is 

characterized by a reliability factor (R-factor). A commonly used reliability factor is the 

one proposed by Pendry.
45

 It is expressed in terms of the logarithmic derivative of the 

intensity, 

 1 ( )
( ) ,

( )

dI E
L E

I E dE
   (7) 

where intensity I  is expressed a sum of a series of Lorentzian peaks, 
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j
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

 
 ,  (8) 

where oiV  is the imaginary part of the electron self-energy.
45

 

 The Pendry R-factor is then calculated as 

 2 2 2( ) ( )( ) / ( )gth gexpt gth gexpt
g g

R Y Y dE Y Y dE      , (9) 

where 1 2 2
oi( ) / ( )Y E L L V   . In general, 0.2R   indicates a good fit between 

computed and experimental I-V, 0.35R   is considered mediocre and 0.5R   is 

considered as a poor agreement. 

 I-V curves are typically computed by dynamical LEED calculations, with a muffin 

tin potential model.
41

 The time to compute the electron wave diffracted from a surface by 

dynamical LEED scales essentially as 3N  with N  the number of independent scattering 

centers in the unit cell.
44

 Hence the computational effort to calculate a single LEED 

spectrum rises rapidly with growing complexity of the surface under consideration. For a 
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complex surface model, the number of parameters is large so is the number of trial 

structures. It is computationally impractical to do a full dynamical LEED calculation for 

every trial structure. 

 To resolve this complexity, the Tensor LEED approximation was proposed. 

Tensor LEED is a perturbative approach to the calculation of LEED I-V spectra.
46,47,48

 It 

is based on the idea that while low-energy electron diffraction from a surface is governed 

by multiple scattering, a small distortion of a given reference structure will only cause a 

small change in the diffracted wave field and may be treated by the perturbation method. 

Once the full dynamic scattering from the reference surface is known, the wave functions 

of structurally similar surfaces can be deduced with computing time scaling only linearly 

with the number of atoms involved. 

 The procedure of LEED I-V calculations for surface crystallography can be 

summarized in the following steps: 

(1) Perform LEED measurements on the desired surface and record intensity of 

diffraction spots as a function of the beam voltage, i.e. experimental I-V. 

(2) Select an appropriate reference model using all available information (e.g. 

symmetry of the surface based on LEED patterns in (1)) and do a full dynamic 

LEED calculation for the reference model. 

(3) Generate a set of trial structures by varying parameters such as atomic 

displacements and thermal vibrations on the reference model and obtain LEED I-

V for each trial structure. 

(4) Compute Pendry R-factor between the experimental I-V spectra and the computed 

ones for each trial structure. 

Steps (2) – (4) are repeated until a satisfactory R-factor, i.e. a good fit between 

experimental and computed I-V, is obtained. In our work, we use the Erlangen Tensor 

LEED package
44

 to perform the LEED I-V calculations. 
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2.3 Low-energy Electron Microscopy 

Our lab utilizes a Low-energy Electron Microscope (LEEM) to study two-dimensional 

(2D) materials including graphene, hexagonal boron nitride (h-BN), transition metal 

dichalcogenides (TMDs) such as MoS2 and others. The LEEM uses elastically 

backscattered electrons to image atomically clean surfaces and thin films. It is a true 

imaging technique imaging technique as opposed to scanning techniques, and has a 

resolution down to 10 nm. Our LEEM is a commercial LEEM III apparatus designed and 

built by Elmitec. Figure 2.7 is a diagram of the instrument. 

 Electrons are generated from a thermionic LaB6 filament in an electron gun (top 

right of Figure 2.7). The electron gun is biased typically at −20 kV.  Once the electrons 

have left the filament, they are accelerated to high energy by a grounded extractor into 

the illumination column. The illumination column contains sets of electromagnetic 

focusing lens and deflectors that make the electrons into a thin, collimated beam and 

deflect it towards the magnetic beam separator. The beam is then curved through the 

magnetic beam and directed at the surface of a sample. Passing through the grounded 

objective lens, the beam is rapidly decelerated to low energy due to the large potential 

difference between the objective lens and the sample, which is also held at close to −20 

kV. A potential difference (known as start voltage or sample voltage) can be applied 

between the sample surface and the gun filament, to alter the incident electron energy. 

Typically incident energies of 0 – 50 eV are employed. The electrons are then reflected or 

diffracted from the sample surface. These electrons pass back through the objective lens 

and are curved away from the incident beam by the magnetic beam separator before 

entering the imaging column. The imaging column used another set of lenses and 

deflectors to image the electrons on the micro-channel plate. Depending on the currents 

applied to the lenses, the image can either be a diffraction pattern or a real-space image. 

Due to low energies relative to the sample surface, the incident electrons only interact 

with the top few atomic layers of the sample. Hence LEEM is a very surface sensitive 

technique. In the following section, we describe commonly used operation modes in 

LEEM. 
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Figure 2.7 Diagram of the LEEM instrument 

Diagram of the low-energy electron microscope (LEEM). Electrons are 

generated from an electron gun (top right) and accelerated by a large potential 

difference (20 kV) before being focused into a collimated beam by a set of 

electromagnetic lenses. The electron beam is then deflected towards the 

sample surface by a magnetic beam separator and decelerated by a large 

potential difference between the sample and objective lens (−20 kV + Vs), 

where Vs is a small, variable voltage (sample voltage) that controls the energy 

of electrons incident on the sample. After interacting with the sample, some of 

the incident electrons are scattered back. These electrons pass back through 

the objective lens and are curved away from the illumination beam by the 

magnetic beam separator into image column. The image column contains 

another set of electromagnetic lenses that focus the reflected electrons into a 

magnified image on a phosphor screen. 

 

2.3.1 Imaging 

For crystalline samples, in addition to being 180° backscattered to the opposite direction, 

some of the incident electrons are diffracted to off-normal directions, meaning that they 

pick up some finite in-plane momentum component through interacting with the periodic 
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potential of the crystal. In imaging mode, only the normally-reflected (i.e. (0,0) 

diffraction) electrons are used to form final images. This is achieved by centering the 

contrast aperture (Figure 2.7) on the (0,0) diffraction spot formed on the back focal plane 

of the objective lens. The aperture blocks electrons with in-plane momentum, allowing 

images to be formed using only the normally-reflected electrons. 

 

Figure 2.8 LEEM imaging mode 

Left: Schematic of LEEM imaging. The normally reflected electrons are used 

to form images. Right: example LEEM images for the same surface taken at 

different sample voltages, from Ref. 49 , showing clear contrast between 

different domains on the surface and dependence on the sample voltage. 

 

 Figure 2.8 shows schematic of the imaging mode and a few examples of LEEM 

images. The images are taken for the same surface taken at different sample voltages. The 

contrasts arise from different domains on the surface and thus reveal straightforwardly 

morphological information of the surface. We can pick any point on the surface (e.g. A 

(or B, C, D) on image (d)) and look in detail at how its imaged intensity varies with the 

start voltage and obtain spectroscopic information (more in Section 2.3.3). 
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2.3.2 Diffraction 

The principle of diffraction mode in LEEM is the same as the standalone LEED system 

discussed in Section 2.2, but with some unique advantages. The primary advantage of the 

diffraction in LEEM is that we can select an area (of micrometer size) of the sample 

surface to be illuminated by the electron beam by inserting an aperture (illumination 

aperture in Figure 2.7) and obtain diffraction patterns exclusively for that area. This is 

known as selected-area LEED or µLEED as it allows examination of crystallinity on the 

micrometer scale. The selected-area LEED (µLEED) has been frequently used to study 

the quality of grown 2D materials such as crystallinity, grain size, and alignment in 

presence of vertical 2D heterostructures. 

 The crystallinity and grain size are often checked by examining the corresponding 

diffraction spots in the pattern. A bright, sharp diffraction spot is an indication of good 

crystallinity with a grain size comparable to the size of the illumination aperture inserted. 

In our LEEM, illumination apertures of three different sizes (8 µm, 5 µm, and 2 µm) are 

available. Faint, broadened diffraction spots or diffraction streaks or rings are indications 

of mediocre crystallinity with a grain size often considerably smaller than size of the 

aperture. The streaks or rings are a result of diffraction from rotationally disordered 

domains on the illuminated area. Diffraction patterns that only show a diffused bright 

background suggest bad crystallinity. Figure 2.9 shows an example of µLEED patterns 

for molybdenum disulfide – epitaxial graphene (MoS2−EG) heterostructures synthesized 

by two different methods. The MoS2 in (b) is grown via powder vaporization (PV), while 

it is synthesized via by metal oxide chemical vapor deposition (MOCVD) in (c). The 

diffraction patterns in Figure 2.9 give a direct measure of the quality of the grown MoS2 

crystals by the two methods. 
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Figure 2.9 LEEM diffraction mode (µLEED) 

Illustration of diffraction mode (a), a sample voltage in 20 – 100 V is typically 

employed, and diffracted beams in all directions (defined by the Ewald sphere 

construction discussed in Section 2.2) are used to produce the diffraction 

pattern. Selected-area LEED (µLEED) patterns (b) and (c) for molybdenum 

disulfide (MoS2) − graphene heterostructures synthesized with two different 

methods. (b) MoS2 is synthesized on epitaxial graphene (EG) by powder 

vaporization (PV). (c) MoS2 is synthesized on EG via metal organic chemical 

vapor deposition (MOCVD). The EG in both samples are prepared by 

preferential sublimation of Si from Si-face 6H SiC. The ring feature of MoS2 

in (a) arises from randomly-ordered MoS2 domains with grain size 

considerably smaller than the aperture size used (5 µm). The dominant spot 

feature of MoS2 in (b) indicates a MoS2 grain size comparable to the aperture 

size and the grown MoS2 is epitaxial aligned with the underlying graphene. 

Both µLEED patterns are acquired at 45 eV. 

 

2.3.3 Reflectivity 

Let us re-examine the LEEM images in Figure 2.8. Not only do we see that different 

locations (domains) on the surface show different contrast at a given sample voltage, the 

contrast (intensity) at a fixed location also varies with the sample voltage. Spectroscopic 

information for a point on the surface may be obtained by recording the intensity, i.e. 

pixel values, at that point when sweeping the sample voltage. Such spectroscopic 

information is called low-energy electron reflectivity (LEER), or reflectivity for brevity, 

as the intensity corresponds to the amount of reflected electrons. 
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 In our experiment, we record LEEM images for the whole field of view (FOV, 

selected from 2 – 150 µm) at a sequence of sample voltages in fine steps. A computer 

program is employed to automate this process and LEEM images are taken typically at 

each sample voltage from -5 V to 15 V or 20 V in increments of 0.1 V. The small 

negative sample voltages are used to obtain full reflectivity ( 1r  ), known as “mirror 

mode”, and is important for determining local vacuum levels of domains on the sample 

surface (more in the next section 2.3.4). The acquired sequential LEEM images are all 

saved as a single video file. LEER for a location on the surface is then obtained by 

processing this video file, i.e. extracting intensity value at that location as a function of 

the sample voltage. 

 

Figure 2.10 LEER example 

An example of LEER, for points labeled in Figure 2.8(d), where only data in 

the positive voltage range is shown here. From Ref. 49. 

 

 Figure 2.10 shows an example of LEER for locations labeled Figure 2.8(d). The 

LEER spectra of a point on the surface are characteristic of the electronic structure at that 

point. As in Figure 2.10, not only the spectra vary drastically from material to material, 

e.g. WSe2 and graphene, but detailed oscillations in the spectra for the same material are 
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dependent on the number of atomic layers. Reflectivity minima, e.g. located by grey 

dashed lines in Figure 2.10, in the oscillations originate from states that are localized 

between the monolayers of the 2D material, known as interlayer states. These 

characteristics have been studied both experimentally and theoretically,
50,51,49

 and they 

provide an unambiguous way to identify the 2D material on the surface and count the 

number of 2D layers. 

 

2.3.4 Work Function Difference 

In addition to characterizing the material and thickness (e.g. number of atomic layers) of 

domains on the surface, the LEER spectra can also be used to extract information 

regarding the electrostatic potential variations across the surface, allowing comparison of 

work functions between different domains. The development of this method is published 

in J. Mater. Res. (2016).
12

 

 From Figure 2.7 and the description, we can see that the sample voltage, sV  is 

equal to the potential difference between the sample and the electron gun (cathode, which 

is an emitter made of LaB6 crystal),  

 c s
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where s
FE  and c

FE  are Fermi levels of the sample and the emitter, respectively, s
VACE  

and c
VACE  are their vacuum levels, and VAC FE EW    is the definition of work 

function.  

 For a relatively ideal LEER spectrum such as in Figure 2.11(a), we see, as a 

function of decreasing voltage, a sharp onset (near 1.5 V) at with the reflectivity rises to 

unity. This signifies the transition to “mirror mode” of the LEEM;
52,53

 as pictured in 

Figure 2.12(a), for sample voltage lower than this onset, the incident electrons do not 

have sufficient energy to reach the surface. Rather, they are reflected back by the electric 
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field (typically 10
4
 V/mm) between the sample surface and the objective lens. For a 

sample voltage equal to the onset voltage, the vacuum levels of the sample and the 

emitter are aligned. Denoting the onset voltage by V0, we have 

 0eV W  .  (11) 

 

 

Figure 2.11 Typical LEER spectra with illustration of obtaining onset 

voltage through fit 

Typical LEER spectra, with (a) displaying a sharp transition to unit 

reflectivity (near 1.5 V sample voltage) and (b) showing more gradual 

transition. (c) and (d) Expanded views of the transition regions form (a) and 

(b), respectively. Black circles show a fit function, with the arrows indicating 

the onset voltage derived from the onset. The two components of the fits, for 

each spectrum, are indicated by the dashed lines. From Ref. 12. 

 

 For voltages greater than the onset, all electrons are reflected from the sample 

surface or absorbed into the sample, as pictured in Figure 2.12(b). Note that in Figure 

2.12, we have plotted the density of states of thermionically emitted electrons using the 

well-known energy distribution
54
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 2
c c) exp( / ) /(N      ,  (12) 

with c ckT   where k  is the Boltzmann constant and cT  temperature of the emitter 

(cathode), wand with   being the electron energy relative to c
VACE . This distribution is 

peaked at c   , so that the incident electrons have peak energy of c
c VACE  . 

 

Figure 2.12 Energy diagrams of electrons incident on the surface of a 

sample 

Energy diagrams of the distribution N(E) of electrons incident on the surface 

of a sample. In (a), the majority of electrons are reflected by the field 

extending out from the surface, whereas in (b) the electrons have sufficient 

energy to reach the surface, where they are partially reflected and partially 

absorbed. 

  

 Let us now consider find the onset voltage by fitting the LEER spectra in the 

transition region. In the transition region, the reflected electrons are composed of two 

parts: those do not have enough energy ( eV W  , or equivalently 0V V ) to reach the 

sample surface and are reflected by the field; those have enough energy ( 0V V ) and are 

partially reflected from the sample surface. For field-reflected (or mirror-reflected) 

electrons, we employ a fit function of the form
12
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where 0a  is a fit parameter. For the electrons reflected from the sample surface, we must 

assume some form for the reflectivity. We expand it as a 2
nd

 degree polynomial about an 

energy of 0)(e V V , yielding the fit function 

 
s 0 0 0

s
s 0

]exp[({1 [1 ( ]) / ) /

,

},V V VG V V V
g

G V V

   




 


 (14) 

 where 2
s 0 1 0 2 0( ) ( ) ,b b V V b V VG       with 0 1 2,  ,  and b b b  all being fit parameters. 

Figure 2.11(c) shows results of fitting the transition region of the LEER spectra in Figure 

2.11(a), with the blue dashed line representing the mirror-reflected component (13) and 

the orange dashed line the sample-reflected component (14). 

 In experiment, we also frequently obtain reflectivity spectra such as that of Figure 

2.11(b), which displays a much slower approach of the reflectivity to unity as the voltage 

is decreased. This type of behavior is a signature of lateral fields on the surface of the 

sample, arising from a work function difference between neighboring surface areas.
53

 A 

fit to the spectra in this situation can be made similarly as the above, although with a 

larger uncertainty error.
12,55
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3 Graphene Formation on C-face of SiC 

In this chapter, we study structure of the interface that forms between graphene and SiC 

when the graphene is formed on the C-face of SiC. In particular, we focus on determining 

the structure of the √43×√43-R7.6°  surface observed for graphene formed in an 

environment of 5×10
-5

 Torr disilane. The graphene formed in disilane has been shown to 

be of better quality, i.e. larger grain size and better uniformity, than graphene formed in 

vacuum.
66,76

 Therefore, studying the √43×√43-R7.6° structure is not only scientifically 

interesting, but also helps us better understand the growth mechanism so that further 

improvement of the graphene quality may be attainable. The work presented in this 

chapter is under preparation for publication.
7
 For these results, a prior graduate student, 

Guowei He, and the author (JL) did the experiments of annealing (i.e. heating) the C-face 

SiC to form graphene. The samples were annealed at varying temperatures in different 

pressures of disilane, and the surface phases both before and after graphene formation 

were studied with low-energy electron diffraction (LEED). The author also performed the 

quantitative LEED I-V analysis. Qingxiao Wang from the Moon group at University of 

Texas, Dallas did the scanning transmission electron microscopy (STEM) measurements. 

Prof. Michael Widom did first-principles calculations (using the Vienna Ab-initio 

Simulation Package, VASP) for surface structures without graphene coverage. Lydia 

Nemec from the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Germany did first-

principles calculations (using the FHI-aims all-electron code) for surface structures with 

graphene coverage. Prof. Randall Feenstra, Prof. Michael Widom and the author worked 

together in developing structural models of the surface and analyzing the computational 

results. 

3.1 Introduction 

Formation of graphene on SiC, by heating the SiC and producing preferential sublimation 

of Si compared to C, has been studied extensively for the past ten years.
18

 The (0001) 
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surface, known as the Si-face of the two types of {0001} surfaces, has been employed in 

most of those studies; graphene with good structural and electronic properties can be 

produced on that surface.
56,57,58

 It is known that between the graphene and the SiC there is 

an intermediate layer, a so-called buffer layer (Figure 3.1), consisting of a graphene-like 

structure but with some bonding to the underlying SiC, forming a 6√3×6√3-R30° unit 

cell.
59

 As additional Si is sublimated from the SiC, this buffer layer eventually converts to 

pristine graphene and a new buffer layer forms below it.
60,61,62

 Additionally, the buffer 

layer can be decoupled from the SiC by introduction of hydrogen or oxygen.
57,63,64

 

 For graphene formation on the ( 1000 ) surface of SiC, known as the C-face, the 

situation is found to be more complex than for the Si-face (Figure 3.1), for several 

reasons: (i) there exists more than one way to form graphene on the surface, i.e. more 

than one interface structure has been observed between the graphene and the SiC,
65,66

 (ii) 

the structural quality of the graphene on the C-face is generally much worse than for the 

Si-face,
67

 and (iii) employing an inert gas or a Si-rich environment to improve the quality 

of the graphene, as works well for the Si-face,
56,68,69

 is more problematic on the C-face. 

(One reason for the latter issue was found to be unintentional oxygen contamination of 

the inert gas,
67

 which led to the formation on the C-face of a very stable silicate structure, 

Si2O3,
70

 which inhibits graphene formation). However, despite these complexities, 

several research groups have actually achieved very good quality graphene on the C-face, 

better in certain respects than on the Si-face.
71,72,73,74

 Those growths are performed with 

the SiC sample in a confined space, so that a background Si pressure is formed near the 

surface (although the precise value of that pressure, as well as the possible presence of 

other elements, is not accurately known). 
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Figure 3.1 Graphene formation on {0001} surfaces of SiC 

Schematic of graphene formation on Si-face and C-face of SiC. The interface 

on the Si-face is the 6√3×6√3-R30° buffer layer and its structure is well 

understood. For the C-face, multiple interfaces have been reported and their 

structures are less well understood. 

 

 The goal of the present work is to understand what interface structures form 

between graphene and C-face SiC, in an effort to understand and optimize the C-face 

graphene quality. In a prior work, we have reported on the formation of graphene on the 

C-face under conditions of a surrounding disilane (Si2H6) pressure of Pd   10
-5

 Torr. We 

observed the first layer graphene to form with a new structure associated with it, a 

√43×√43-R7.6°  reconstruction as observed by low-energy electron diffraction 

(LEED).
66

 This graphene layer was found to form with a considerably larger grain size 

than for graphene typically formed on the C-face surface (5 μm vs. 50 nm grains).
66,75,76

 

 Our work is focused on the graphene formation on the C-face of SiC in the 

disilane environment. Specifically, we perform experimental and theoretical studies of 

surfaces both before and after graphene formation on the C-face. In experiment, LEED 

patterns and intensity profiles of diffraction spots are obtained for diverse surfaces at 

different heating temperatures and disilane pressures. Cross-sectional scanning 

transmission electron microscopy (STEM) along with energy dispersive spectroscopy 

(EDS) and electron energy loss spectroscopy (EELS) is carried out for the graphitized 

sample after air exposure. In theory, we do an extensive structure search and first-
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principles computations, along with quantitative LEED I-V analysis of the diffraction 

patterns, to identify the surface before and after graphene formation. 

 The most important conclusion of this work is an “adatom-on-adlayer” model that 

is found to describe surface structures both before and after graphene formation. In more 

detail, we conclude that the surfaces prior to graphene formation consist of Si adatoms on 

top of a Si adlayer structure, and this adatom on adlayer structure persists even after the 

graphene has been formed. The formation of such a Si-rich surface in a C-rich 

environment may at first appear surprising. However, similar situations have been 

previously known for the N-face of GaN.
77

 Essentially, in a compound semiconductor, 

when atoms of different types have different sizes and most importantly, the smaller atom 

is relatively stable in its elemental form, then the adatom-on-adlayer structure can be 

energetically stable. In the case of N-face of GaN, N2 is a stable molecule, and the 

surface is terminated by Ga even in N-rich conditions. In our case of C-face of SiC, 

graphite is relatively stable, and it makes sense that the surface is terminated by Si (aside 

from possible graphite formation) even in C-rich conditions. 

3.2 Background 

Figure 3.2 shows LEED patterns for graphene formation on Si face and C face of SiC 

respectively. The LEED pattern for Si face (Figure 3.2(a)) indicates a 6√3 × 6√3-R30° 

superstructure. This superstructure is understood as a corrugated, graphene-like buffer 

layer that is partially bonded to the Si atoms of the SiC substrate.
59,78

 For the graphene 

formation on C face, a √43×√43-R±7.6° diffraction pattern is observed (Figure 3.2(b)). 

Unlike the 6√3×6√3-R30°  on the Si face, much less is understood for the 

√43×√43-R±7.6° on the C face. Previous work based on LEEM
76

 has shown that the 

graphene formed in this case has a grain size much larger than graphene formed in 

vacuum which typically shows a LEED pattern with graphene streaks and no spots. It 

was found that the √43×√43-R±7.6°  surface converts to an oxidized √3×√3-R30° 

surface after air exposure.
66

 Prior work by He et al [43] showed, on the basis of LEED I-

V analysis, the √3×√3-R30° pattern arises from a Si2O3 “silicate” interface structure. 

This structure is Si-rich, containing two-thirds of a monolayer of Si atoms terminating the 
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surface so the presence of this silicate (below the graphene) is broadly consistent with the 

conclusions of the present work. However, the conclusions of this prior study are 

somewhat uncertain due to a degassing procedure used in the LEEM observation (after 

the surface/interface structures were formed), during which the samples were heated to 

1000 °C for a minute or longer;
43

 in principle this procedure can cause significant 

structural changes to the surface or interface. In contrast, for the results reported here, no 

such post-formation annealing steps were performed. 

 

 

Figure 3.2 LEED patterns for graphene formation on {0001} surfaces of 

SiC 

LEED patterns for graphene formation on the Si face of SiC (a), showing 

diffraction spots corresponding to a superlattice of 6√3×6√3-R30°, sample 

prepared by heating SiC in 1 atm of argon at 1470 °C for 15 min; for graphene 

formation on the C face of SiC (b), showing diffraction spots corresponding to 

a superlattice of √43×√43-R ± 7.6° , sample prepared by heating SiC in 

5×10
-5

 Torr of disilane at 1270 °C for 15 min. Adapted from Refs. 66,76. 

 

 In this work, we study the surface structure both before and after the graphene 

forms on the C-face of SiC in a disilane environment, both experimentally and 

theoretically. We summarize our results as the following: 
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1) the surface prior to graphene formation on the C-face (in disilane) consists of a Si-

rich adatom-on-adlayer structure. 

2) previously reported 2×2 and 3×3 structures for graphene formation on the C-face 

in vacuum are kinetically limited, i.e. not equilibrium surface structures. 

3) the Si-rich adatom-on-adlayer structure persists (albeit with rearrangement of the 

adatoms) after the graphene forms. The √43×√43-R±7.6° diffraction spots are 

primarily from this adatom-on-adlayer interface, rather than from the graphene. 

4) the graphene layer itself probably follows a different periodicity, namely 6×6 SiC 

unit cells (which fits to √57×√57-R±6.5° graphene unit cells). 

3.3 Experimental and Theoretical Methods 

The experiments are performed on nominally on-axis 6H-SiC or 4H-SiC wafers, with no 

apparent differences found between results for the two types of wafers. The wafers are 

cut into 1×1 cm
2
 samples and the samples are chemically cleaned in acetone and 

methanol before putting them into our custom-built preparation chamber (base pressure 

110
-9

 Torr) which uses a graphite strip heater for heating the samples and a leak valve 

for introducing disilane.
79

 To remove polishing damage, the samples are heated in either 

1 atm of hydrogen at ~1600 °C for 3 min or 5×10
-5

 Torr of disilane (Si2H6) at 850 °C for 

5 min, after which the gas supply and sample heating is shut off. We then increase the 

sample temperature to some specific value between 1150 and 1350 °C, and we introduce 

disilane up to a pressure between 10
-6

 and 10
-4

 Torr (with most studies performed at 

5×10
-5

 Torr). Characterization by LEED is performed in situ in a connected ultra-high 

vacuum (UHV) chamber. LEED patterns from semiconducting 6H-SiC samples are 

recorded in steps of 2 eV in an energy range of 80 – 380 eV. Quantitative LEED intensity 

analysis of that data is used to provide auxiliary evidence of particular surface structures 

discussed below. 

 Ex situ cross-sectional STEM measurements were performed to study the 

interface structure of C-face SiC after graphene coverage, with a JEOL ARM200F 

microscope. Both high-angle annular dark-field (HAADF) imaging mode and annular 

bright-field (ABF) imaging mode are used to obtain cross-sectional views of the sample. 
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Energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) 

have been performed to analyze the chemical composition of the surface. 

 For first-principles density functional theory (DFT) calculations, we have used 

both the Vienna Ab-initio Simulation Package (VASP)
80,81

 with the projector augmented 

wave method and the FHI-aims all-electron code.
82 ,83 ,84

 Both types of computations 

employ the van der Waals (vdW) corrected
85

 Perdew-Burke-Enzerhof (PBE)
86

 

generalized gradient approximation (GGA) for a density functional, and dipole 

corrections are included according to the method of Neugebauer and Scheffler.
87

 Both 

computational methods utilize slabs consisting of six 3C-SiC bilayers with cubic lattice 

constant of 4.364 Å, and a graphene lattice constant of 2.463 Å
84

 We find in our 

computations that results from the two methods generally agree within a few meV. The 

bottom Si atoms in the slab are hydrogen terminated, and all the atoms in each structure 

considered are fully relaxed. The relative surface energy   of a structure is given as 

 
)(

1
HHCCSiSislabtot  NNNEE

A
  (15) 

where slabE  is energy of the bare SiC slab, and totE  is total energy of the structure after 

relaxation. SiN , CN  and HN  denote the number of Si, C and H adatoms on the surface, 

respectively, and Si , C  and H  refer to chemical potentials of Si, C and H. In thermal 

equilibrium we have bulk

Si C SiCE   , from which we eliminate Si  in Eq. (1). Limits on 

C  are determined by bulk phases, bulk bulk bulk

SiC Si C CE E E   . We use graphite as the 

carbon bulk phase, cubic (diamond) silicon as the silicon bulk, and cubic (zincblende) 

SiC as the silicon carbide bulk. As a reference point for H  we take 2/DFT

2HH EE  , 

where DFT

2HE is the DFT-computed energy of the H2 molecule.
88
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3.4 Results 

3.4.1 LEED study of surface reconstructions before and after graphene 

formation 

 

Figure 3.3 Overview of experimental results 

Overview of experimental results, showing the symmetry of observed LEED 

patterns. Each data point represents a surface prepared by 5 minutes of heating 

at the temperatures and disilane pressures indicated. LEED patterns to the 

right of the dashed line contain graphene spots (indicating the presence of 

graphene on the surface), while those to the left of the dashed line do not 

contain graphene spots. 

 

Figure 3.3 is an overview of our experimental results, showing the symmetry of observed 

LEED patterns on the C-face surface as a function of temperature and disilane pressure. 

Let us first consider the situation in the absence of any disilane, in which case we always 

observe the formation of a 33 pattern on our SiC surface after heating in UHV to a 

temperature of 1020 C. At higher temperatures, graphene forms on the C-face surface by 

the well-known mechanism of preferential sublimation of Si atoms.
89

 The 33 pattern 
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persists on the surface even when the graphene spots in the diffraction pattern are 

observed to start forming. We emphasize that this 33 pattern is by far the dominant one 

that we observe on our surface just prior to the formation of the graphene; this 

observation applies not only for the vacuum system used in the present studies but also 

for another set of studies that we performed in a separate chamber that has 110
-10

 Torr 

base pressure and includes a getter pump to reduce background levels of H. (This 

predominance of the 33 structure is consistent with most prior reports, although some 

authors also report substantial amounts of a 22 structure, a point that we discuss in 

Section 3.4.3).
65,66,67,76,90

 

 As seen in Figure 3.3, when disilane is introduced at pressure of about 5×10
-6

 

Torr or higher, the situation changes dramatically. We now reproducibly observe only 

2×2 or 4×4 surface reconstructions at temperature below where the graphene forms (this 

graphene formation temperature also increases substantially as the disilane pressure 

increases, as expected). Samples showing 2×2 patterns and those with 4×4 patterns were 

prepared using nominally the same procedures. At disilane pressure near 5×10
-5

 Torr, 

there appears to be some subtle (not well understood) difference in surface conditions 

that determines whether one or the other of these structures is obtained, while for lower 

pressures we uniformly observe the 2×2 patterns and at higher pressure ones we mainly 

observe 4×4. As we further increase the temperature to form graphene, we reproducibly 

observe the √43  reconstruction for disilane pressures near 5×10
-5

 Torr. In contrast, for 

disilane pressures of 5×10
-6

 Torr or 5×10
-4

 Torr, we obtain a “1×1SiC+graphene” pattern, 

which contains streaks at the graphene spot locations (located typically at 10-15° relative 

to the SiC (1,0) spots), along with the underlying SiC spots. 

 Figure 3.4 shows typical LEED patterns of some surfaces displayed in Figure 3.3. 

In Figs. 2(a) and 2(b) we show examples of the 22 and 44 LEED patterns, i.e. as 

observed for heating temperatures below that for which graphene forms. Again, these are 

the patterns that we generally observe in our experiments. However, in a single 

experiment (using nominally the same conditions) we observed a different pattern, shown 

in Fig. 2(c). This pattern has its main superstructure spots concentrated around the 

√3×√3-R30° positions, and it has a multiplicity of spots indicative of a disordered 
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surface arrangement, i.e. reminiscent of the LEED pattern of Ge(111)c(2×8) observed by 

Vitali et al.
91

 Hence, we refer to it as a disordered √3×√3-R30° arrangement. The LEED 

pattern of Fig. 2(c) was obtained with nominally the same surface preparation treatment 

(heating in 5×10
-5

 Torr disilane at 1180 °C for 5 min) as those of Figs. 2(a) and 2(b). 

Subsequent additional heating was performed on the surface of Fig. 2(c): two cycles of 

heating under nominally the same conditions as before (5×10
-5

 Torr disilane, 1180 °C, 5 

min). Following the first cycle the LEED pattern changed to a pattern showing both 4×4 

peaks and disordered √3×√3-R30° features, and following the second it changed to an 

almost purely 4×4 pattern (i.e. like Fig. 2(b)). We measured LEED I-V characteristics of 

the surface following each cycle of heating, and we have compared those to I-V data from 

surfaces displaying 2×2 (Fig. 2(a)) or 4×4 (Fig. 2(b)). It turns out that the I-V curves of 

integer-order spots from all these surfaces closely resemble each other. We therefore 

conclude that all of these surfaces have related structures. Hence, it appears that the 

structure of the 44 surface is not some monolithic one that cannot be broken down into 

smaller subunits, but rather, it contains subunits which, when differently arranged (and/or 

slightly modified), constitute the 22 surface of Fig. 2(a) and/or the disordered surface of 

Fig. 2(c). For comparison to these the 22, 44, and related LEED patterns, in Fig. 2(d) 

we show a typical 33 pattern obtained in the absence of any disilane, emphasizing the 

dramatic change that occurs on the surface when the disilane is present during the heating. 

Further heating leads to graphene formation. Depending on the pressure of disilane used, 

either the √43×√43-R±7.6° pattern or the 1×1SiC+graphene is observed. 
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Figure 3.4 LEED patterns of surfaces in Figure 3.3 

LEED patterns of (a) 2×2, (b) 4×4, (c) disordered √3×√3-R30°, (d) 33, (e) 

√43×√43-R±7.6°, (f) 1×1SiC+graphene, all acquired at 100 eV. Patterns (a) 

– (c) were obtained from samples prepared under nominally identical 

conditions: heating in 5×10
-5

 Torr disilane at 1180 °C for 5 min. Pattern (d) 

was obtained from a sample heated at 1070 °C for 10 min in vacuum (without 

any disilane). 

 

3.4.2 STEM study of the surface reconstructions after graphene 

formation 

Cross-sectional STEM measurements are performed by our collaborators, Prof. Moon 

Kim’s group in UT Dallas, on our graphitized C-face samples. The sample has been 

exposed to air before sending it to Dallas. The results show that the graphene coverage on 

these samples is typically 2 – 4 layers. Figure 3.5 shows HAADF imaging and ABF 

imaging of an area where there are four layers of graphene on the surface, for one of the 

samples. What is the most interesting about the result is the fact that there is a “thick” 

amorphous layer between the first layer of graphene and the top layer of the SiC. The 
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amorphous layer has a thickness of 1.0 nm. For comparison, the interlayer distance 

between graphene monolayers in few layer epitaxial graphene is 0.33 nm
59,92

 and the 

interlayer distance between SiC bilayers is 0.24 nm.
92

 The thickness of the amorphous 

layer is much greater than the distance (0.6 nm
59,92

) between the first layer of graphene 

and the top layer of the SiC on the Si face. This 0.6 nm distance include a graphene-like 

buffer layer between the SiC and the graphene.
59,92

 Therefore, the interfacial structure on 

the C-face appears to consist of more than a monolayer of atoms. This is consistent with 

the adatom-on-adlayer structure we will discuss below. The spectroscopic measurements 

in Figure 3.6 indicate the amorphous interfacial layer is a SiOx layer. The oxidization is 

not surprising as the sample has been exposed to air for a few months before being 

measured by the cross-sectional STEM.  

 

Figure 3.5 Cross-sectional STEM imaging of graphitized C-face SiC 

Cross-sectional scanning transmission electron microscopy (STEM) 

measurements of graphitized C-face SiC sample in (a) High-angular annular 

dark-field (HAADF) imaging mode, (b) Annular bright-field (ABF) imaging 

mode. Four layers of graphene are observed for this region of the sample 

surface. 

 

 Figure 3.6 shows results of EDS and EELS measurements along direction 

perpendicular to the surface. In this example, we used the same sample as in Figure 3.5 

but performed the measurements on a different region of the sample where there are three 
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layers of graphene on the surface. The HAADF image on the left again shows a thick 

interfacial layer between graphene and SiC. The EDS measurements in Figure 3.6(b) 

indicates the interfacial layer is silicon oxide since increases in the Si spectrum and in the 

O spectrum are observed as the scan enters the layer while the C signal decreases. Similar 

results are obtained by the EELS measurements as shown in Figure 3.6(c) (O spectrum 

not shown). The EELS line scan is more sensitive to graphene layers. The labeled three 

peaks in Figure 3.6(c) correspond to three graphene layers on the surface. 

 

 

Figure 3.6 EDS and EELS measurements of graphitized C-face SiC 

Energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy 

(EELS) line scan measurement along direction perpendicular to the surface of 

graphitized C-face SiC. (a) HAADF cross-sectional image showing a region 

where there are three layers of graphene, with scan direction indicated. (b) 

EDS line scan results, showing composition of the interfacial layer. (c) EELS 

line scan results, showing signals corresponding graphene. 

 

3.4.3 First-principles theory, without graphene coverage 

Before going into details, we briefly introduce notations used in the following discussion. 

We refer to atoms on the bulk SiC surface as adatoms. The adatoms can be bonded to 
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different sites on the surface. For example, h3 refers bonding on a hollow site, and t4 

denotes bonding atop the second layer of the top SiC bulk layer. Three adatoms that form 

a tetramer is abbreviated as tetra. We define ml (monolayer) = adlayer = 1 adatom per 

(1×1) SiC unit cell. 

 To understand the structure of the 2×2 and 4×4 surface found in the presence of 

disilane, we have performed an extensive set of first-principles calculations of surface 

energies. We have considered structures with adatoms of different species (C/Si/H or a 

mix of them), quantity and arrangements, with full or partial adlayers, with adatoms on 

adlayers. For all the structures considered, we compute their energies as a function of C 

chemical potential and H chemical potential. The structures with the lowest energy are 

then identified and displayed in Figure 3.7. 

 We see from the Figure 3.7(a) that when the chemical potential of H in the system 

is low (bottom), the lowest energy structures at the Si rich limit (leftmost) and at the C 

rich limit (rightmost) are the (3×3)-13Si(ml, tetra) structure and the (3×3)-5Si structure, 

reproducing the results in vacuum
84,93

. Our notation here refers to the fact that the (3×3)-

13Si(ml, tetra) consists a monolayer of Si and a tetramer of Si adatoms on top of the 

monolayer (Figure 3.7(d)).
84

 The (3×3)-5Si contains 5 Si adatoms arranged in such a way 

that they form a net of equilateral hexagons on the surface.
93

 Close to the C-rich limit, the 

(2×2)-5Si, becomes the lowest energy structure. This surface model consists of a Si 

monolayer and a Si adatom on top (at a t4 site relative to the top bilayer of the bulk SiC; 

see Figure 3.7(g) for a side view and Figure 3.8(a) for a top view).
93

 Interestingly, this 

model, after fully relaxing the surface to its energy minimum, has its Si adatoms arranged 

in positions slightly deviates away from high-symmetry sites. A new structure found by 

us, (4×2)-11Si(ml, h3, 2t4), containing a Si monolayer with additional three Si adatoms 

on top (one at a h3 site and two at t4 sites, Figure 3.8(b)), turns out be of the lowest 

energy, over a fairly wide range of C chemical potential in the intermediate region (from 

slightly Si rich to modestly C rich). Figure 3.7(h) shows a side view of this model. 

 As we move upwards along the H chemical potential in Figure 3.7(a), when 

H H2.41 eV E 2.15 eV     , we see that while (3×3)-13Si(ml, tetra), (4×2)-11Si(ml, 

h3, 2t4), (2×2)-5Si remain as the lowest energy structure in their corresponding C 
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chemical potential range, the (3×3)-5Si is replaced by (3×3)-5Si-HC as the lowest energy 

structure. The (3×3)-5Si-HC structure also gradually cut into the region represented by 

(2×2)-5Si and completely dominates when H HE 2.15 eV    . The (3×3)-5Si-HC 

surface model is structurally similar to the (3×3)-5Si, but with an H adatom terminating 

the surface C atom that is not bonded to any Si adatoms. As the H chemical potential 

continue to increase, the (3×3)-5Si-HC gradually overcomes (4×4)-11Si(ml, h3, 2t4) in 

some modestly C-rich region. When the H chemical potential is even higher (> -1.60 eV), 

the (1×1)-H structure, which simply has all the dangling bonds of the C-face terminated 

by H atoms, starts to dominate aforementioned structures and become the lowest energy 

structure. 

 

Figure 3.7 Phase diagram of lowest energy structures without graphene 

coverage 

Lowest energy structures at different domains of C and H chemical potential. 

(a) Phase diagram for the lowest energy structures on the SiC(0001̅) surface 

as a function of both the C and H chemical potential, among all structures 

considered. Two black dashed lines denote the C chemical potential at bulk Si 

rich limit (bulk Si) and C rich limit (graphite) respectively. (b) – (h) side 

views of the lowest energy structures shown in (a): (b) (1×1)-H, (c) (2×2)-Si-

h3, (d) (3×3)-13Si(ml,tetra), (e) (3×3)-5Si, (f) (3×3)-5Si-HC, (g) (2×2)-5Si, (h) 

(4×4)-11Si(ml,h3,2t4). 
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Figure 3.8 Top views of 2×2-5Si and 4×2-11Si 

Top views of 2×2-5Si (a) and 4×2-11Si (b). For clarity, we only include one 

SiC substrate bilayer rather than the six used in the computation. Additionally, 

we color atoms in the Si adlayer by green and the top Si adatom by red for 

ease of viewing. Symmetry sites (h3, t4) of the adatoms are labeled. The black 

lines denote the unit cells of the two structures. Hence, the 2×2-5Si has a Si 

adlayer and one Si adatom at a t4 site. The 4×2-11Si has a Si adlayer and three 

Si adatoms on top of the adlayer. Two of the adatoms are at t4 sites and the 

other one is at a h3 site. 

  

 From an experimental point of view, although we have always observed the 3×3 

diffraction pattern for graphene formation in vacuum, we never see such a pattern in 

presence of disilane. Nor do we see a 1×1 pattern right before graphene forms for the 

amount (pressure) of disilane we normally use (Figure 3.3). Instead, what is dominantly 

observed is the 2×2 and 4×4 patterns shown in Figure 3.4(a) and (b), under similar 

experimental conditions (Figure 3.3). Combing these facts with the theoretical results in 

Figure 3.7, we conclude that the (2×2)-5Si and (4×2)-11Si(ml, h3, 2t4) surface models 

are responsible for the LEED patterns obtained in presence of disilane. In other words, 

they are the surfaces we obtain prior to graphene formation in disilane. Specifically, the 

2×2 pattern originates from the (2×2)-5Si structure, while the 4×4 pattern arises from 

different domains of (4×2)-11Si(ml,h3,2t4). These different domains can give rise to 
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missing fractional spots along lines passing through the primary SiC spots
41

, consistent 

with the experimental pattern (the missing spots are seen for all  LEED patterns acquired 

at a range of energies, 90 – 114 eV, not only for the one at 100 eV shown in Figure 

3.4(b)). 

 Due to their particular importance, we show top views of the 2×2-5Si and 4×2-

11Si in Figure 3.8. We note that both of these models consist of a Si monolayer and 

additional Si adatoms on top of the monolayer. This adatom-on-adlayer structure is not a 

fundamentally new class of structures since, as mentioned in the Introduction, such 

structures have been previously known for the N-face of GaN.
76

 Nevertheless, these 

structures with a full adlayer of the “minority” species (e.g. Si for the SiC surface under 

C-rich conditions, or Ga for the GaN surface under N-rich conditions) are still quite 

noteworthy. The quantitative LEED I-V analysis in the next section further confirms the 

importance of the Si adlayer in these SiC surface structures. 

 We distinguish the 2×2 pattern in our experiment (with disilane) from another 

2×2 pattern observed by many other research groups for graphene formation on C-face of 

SiC in vacuum.
18,65,94,95

 The latter one is generally ascribed to the (2×2)C structure, which 

has a Si adatom at the h3 site per unit cell (Figure 3.7(c)). We have renamed the (2×2)C 

structure to (2×2)-Si-h3 in the present work, to explicitly state the type and position of 

the adatom. By examining Figure 3.7(a), the (2×2)-Si-h3 structure does not show up in 

any of the feasible regions of the phase diagram (delimited by the two black dashed lines) 

for the lowest energy structure (even after extending the H chemical potential to lower 

limit, i.e. vacuum). This is consistent with the recent theoretical results,
93

 indicating that 

the 2×2 surface prepared in vacuum is not of thermal equilibrium (kinetically limited). 

 We have also done a careful comparison between the LEED pattern of our 2×2 

surface (prepared in disilane) and that of the (2×2)C surface (prepared in vacuum) 

reported by other research groups, and found that the two 2×2 patterns are very different 

for spots of corresponding indices. Most notably, the (1/2, 1/2) and its symmetrically 

equivalent spots are absent in our pattern (Figure 3.4(a)) at the energy shown, whereas 

they are clearly seen for the (2×2)C surface in vacuum.
94,96

 In contrast to that result, we 

also find that, at the same energy, our 2×2 pattern is very similar to another 2×2 pattern 
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reported in Ref. 96. That 2×2 surface in Ref. 96 is prepared at 1150 °C under Si-flux, a 

condition that can be considered similar to ours. In a separate work by the same group,
94

 

they measured this surface to be significantly more Si-rich than the (2×2)C prepared in 

vacuum. Hence, it is quite possible that the surface they obtained has the same structure 

as ours, and are both of the (2×2)-5Si structure described above. 

 We point out that all the first-principles computations in this work are performed 

at a temperature of 0 K. However, our graphene is typically formed at 1500 K (Figure 

3.3). At such high temperature, additional effects such as entropy may have to be taken 

into account. In fact, we argue in Section 3.5 that the adatom-on-adlayer structure, (2×2)-

5Si / (4×2)-11Si, rather than the (3×3)-5Si or the (3×3)-5Si-H or the (1×1)-H in Figure 

3.7, is the lowest-energy structure immediately before graphene formation under our 

experimental conditions. 

3.4.4 LEED I-V Analysis 

 

Figure 3.9 LEED I-V for 2×2 and 4×4 

LEED I-V spectra of the 4×4 surface compared to that of the 2×2 surface. The 

two surfaces are prepared under nominally the same conditions, i.e. annealing 

in 5×10
-5

 Torr of disilane at 1160 °C for 5 min. 
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To gain further insights into the 2×2 and 4×4 surfaces in presence of disilane, we study 

the LEED I-V spectra of these two surfaces. Figure 3.9 shows the experimental I-V 

curves of the two surfaces (for integer spots, which they have in common). We note that 

the I-V curves for the 4×4 surface are very similar to those for the 2×2; hence, the 

structures of each appear to be nearly the same. 

 

Figure 3.10 Computed LEED I-V compared with experiment 

Computed LEED I-V (green dashed line) compared with experimental I-V 

(red line) for different orders of spots for (a) (2×2)-Si-h3 model, (b) (2×2)-5Si 

model. The R-factor computed is 0.64 for (a) and 0.34 for (b). 

 

 To confirm that the (2×2)-5Si model is the correct model for our 2×2 surface, we 

perform a quantitative LEED I-V computation. We take the coordinates of atoms 

computed by the first-principles theory (VASP) and input it into the LEED I-V 
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simulation package. Unlike what is commonly done with the simulation, we do not relax 

positions of the atoms after the initial I-V spectra are obtained. This is because the 

structure is already fully relaxed in the first-principles calculation, so that any further 

relaxation within the LEED I-V simulation package itself (i.e. to achieve a better match 

the experimental I-V) will just tend to produce unphysical arrangements of the atoms. 

Figure 3.10 shows that computed I-V compared with experiment, for the (2×2)-5Si model 

as well as the (2×2)-Si-h3 (commonly known as (2×2)C in the literature). By visually 

inspecting the spectra and comparing the R-factors, we see that the match between the 

computed I-Vs for (2×2)-Si-h3 and the experimental ones is very poor, effectively 

excluding the possibility of this model as the correct one for our surface. In comparison, 

for the (2×2)-5Si model, a much better agreement is achieved; the R-factor decreases 

from 0.64 for (2×2)-Si-h3 (poor agreement) to 0.34 for (2×2)-5Si (moderately good 

agreement). 

3.4.5 First-principles theory, with graphene coverage 

Let us now consider the energetics when a layer of graphene is included on the surface, 

for which we employ the FHI-aims package that permits computations for relatively large 

numbers of atoms in a unit cell. 

 The major conclusions from the studies in this section is that the √43 ×

√43-R±7.6°  LEED pattern observed for graphene formation on C-face SiC under 

disilane conditions cannot arise from the graphene layer itself. Rather, it must arise from 

the Si-rich adatom on adlayer structure discussed in the previous section, with possible 

rearrangement of the adatoms. This conclusion is significantly different from graphene 

formed on the Si-face of SiC, where the dominant 6√3×6√3-R30°  LEED pattern is 

known to arise from the graphene-like buffer layer. As shown in the following, by both 

first-principles calculation and close examination of the LEED pattern, we conclude the 

√43×√43-R±7.6° must arise from the Si-rich adatom on adlayer structure beneath the 

graphene. 

 Figure 3.11 shows the computed results for a subset of surface models we 

considered. For clarity, we adopt a new notation for describing these models, (𝑛 × 𝑛)–
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(𝑚 × 𝑚)–xxx, where (𝑛 × 𝑛) is the size of the entire surface unit cell, (𝑚 × 𝑚) is the size 

of the unit cell at the interface, and xxx denotes the numbers of Si adatoms and H atoms 

at the interface along with their bonding environments. Since graphene is formed on the 

surface, we fix the C chemical potential at that of graphite and look at the surface energy 

as a function of the H chemical potential. 

 

 

Figure 3.11 Surface energies for various C-face SiC surface models with 

graphene coverage 

Surface energies for various SiC(0001̅) surface structures including graphene. 

Energies relative to the bulk-terminated (1×1) phase are plotted as a function 

of the H chemical potential, for C-rich conditions (graphite). 

 

 To perform the first-principles computation for the graphene-on-SiC surface, a 

unit cell is specified such that the graphene lattice is commensurate with that of 

SiC(0001̅). For the models displayed in Figure 3.11, the (6√3 × 6√3)–(1×1)–H model 

has the well-known13 13  graphene unit cell being commensurate with 6√3×6√3-R30° 

SiC,
18,78

 while the √43– (1×1)–H model has a 8 8  graphene fit to √43×√43-R7.6° SiC, 
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as suggested by previous work.
66

 The (6 × 6)– (𝑚 × 𝑚)– 𝑥𝑥𝑥  models are for a low-

strain commensurate fit between √57×√57-R6.5° graphene and 6 × 6 SiC.
18

  

 The computed total energies for the √43×√43-R7.6° models all turn out to be 

relatively high (most of them, except the √43– (1×1)–H, are outside the energy scale of 

Figure 3.11, and thus not shown here). In particular, the total energy of a model that has 

graphene placed directly on bulk-terminated C-face surface (using 8 × 8 graphene that 

have the closest lattice match to the √43×√43-R7.6° cell
66

), is even higher than the bulk-

terminated 1 × 1 surface itself (whose energy is used as reference energy in e.g. Figure 

3.11). This is a bit surprising as the bonding between the bulk-terminated surface and the 

graphene would be expected to produce some energy lowering. The reason for the high 

energy of this model can be ascertained by comparing the energies of models 

√43– (1×1)–H and (6√3 × 6√3)–(1×1)–H (Figure 3.11). For (6√3 × 6√3)–(1×1)–H, 

there is relatively little strain in the graphene (discussed in more detail below), and the 

resulting energy is found be quite close (0.04 eV/SiC(1×1) higher) to that of a H-

terminated C-face surface. In contrast, model √43– (1×1)–H has an energy that is 0.13 

eV/SiC(1×1) higher than that of (6√3 × 6√3)–(1×1)–H. We attribute this difference 

primarily to strain of the graphene layer in √43– (1×1)–H. As listed in Table 1, using 

our theoretical lattice constants (4.364 Å for 3C-SiC and 2.463 Å for graphite, both of 

which happen to agree well with the experimental values at room temperature),
97,98

 the 

strain in the graphene for the 43  model is 𝜀 = 0.0270 , and employing a graphene 

elastic constants of 11 12 414CC    N/m and 111 222 112/ 3 /2 3 1026C C C     N/m, 
99

 

we obtain a biaxial strain energy change of  

 2 3
11 12 111 222 112) (2 / 3( 0.145/ 3 )C C C C C      eV/SiC(1×1), (16) 

which is reasonably close to the energy difference of models √43– (1×1)–H  and 

(6√3 × 6√3)–(1×1)–H. 

 This relatively large biaxial strain in a structure with 8 × 8 graphene unit cells 

matched to √43 × √43 SiC unit cells becomes even worse if we employ lattice constant 

appropriate to the preparation temperature of ~1500 K, as shown in the lower part of 
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Table 1 (the lattice parameter of graphite at 1500 K is not well known, but it appears to 

be little different than the room temperature value and hence we employ our theoretical 

value in this case).
100 , 101

 Indeed, re-examining the √43×√43-R±7.6°  experimental 

LEED patterns (Figure 3.2(b)), it is clear that the graphene does not have a 8 × 8 fit to 

the graphene, but rather its diffraction spot is a streak located at a wavevector that is 

2.00.5% larger than that of 43/8  times the (1,0) SiC spot, and it is spread over angles 

of about 5 – 8 relative to the (1,0) SiC spot. 

 To summarize the discussion above, the graphene lattice cannot form a 

commensurate fit with √43×√43-R±7.6° SiC without inducing significant strain in the 

graphene layer; diffraction spots (streaks, to be precise) are off (albeit by a small amount) 

from the location expected by a √43×√43-R±7.6° lattice. We therefore conclude that 

the observed √43×√43-R±7.6° LEED pattern must arise from the Si-rich adatom-on-

adlayer interface discussed in the previous section, with possible rearrangement of the 

adatoms. 

 To understand the graphene streaks in the diffraction pattern, we have examined 

models with 1313 graphene cells on a 6√3 × 6√3-R30°  SiC cell, as well as with a 

√57×√57-R6.5 graphene cell on a 66 SiC cell. Of course, both of these epitaxial fits 

will yield diffractions spots that are mostly missing in the diffraction pattern (Figure 

3.2(b)). Nevertheless, we examine them in an effort to obtain energetically favorable 

structures. Notably, the √57×√57-R6.5 graphene on 66 SiC yields a very low misfit 

as seen in Table 1, and additionally this model will yield diffraction spots for graphene 

that are close to experimental observations in terms of both the angle (≈ ±7°) relative to 

the principal SiC directions) and the radius, i.e. magnitude of the wavevector. 
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Table 1 Lattice misfit for various commensurate fits of graphene on SiC 

Lattice misfit f for various commensurate fits of graphene on SiC, as 

computed for given lattice parameters (Å) of the graphene and the SiC. 

Surface lattice parameter for SiC is 𝑎SiC/√2 where 𝑎SiC  is the cubic, bulk 

value. For unit cell side lengths of Cn  and SiCn  for the graphene and SiC, 

respectively, 𝑓 = (𝑛SiC𝑎SiC √2⁄  − 𝑛C𝑎C) 𝑛C𝑎C⁄  , and this value equals the in-

plane strains xx  and yy  in the graphene. 

 

 

 

 

 

 

 

 

                         a
 first-principles theory (this work) 

                         b
 estimated at 1500 K from theory and/or experiment (Refs. 97,98,100,101) 

3.5 Discussion 

We first note that the first-principles results in Section 3.4.3and 3.4.5 are all computed at 

a temperature of 0 K. However, our graphene is typically formed at 1500 K (Figure 3.3). 

At such high temperature, not only do the values of lattice parameters change (Table 1), 

but other effects such as entropy may play a significant role. In fact, we argue here that 

(2×2)-5Si and/or (4×2)-11Si are the true minimal energy surface structures for C rich 

conditions, immediately before graphene forms. That is to say, we argue that the right-

hand boundary of these phases in Figure 3.7 will expand further to the right, all the way 

to a C chemical potential close to that of graphite (at the applicable graphene formation 

temperature, ~1500 K). 

 The most important part of our argument comes from the observation that, in 

dozens of experiments, we have never observed a 3×3 LEED pattern for our graphene 

Ca  𝑎SiC/√2 Cn  SiCn  f 

2.463
a
 3.086

a
 13 36  0.0016 

  8 43  0.0270 

  57  6 -0.0043 

2.463
a,b

 3.097
b
 13 36  0.0052 

  8 43  0.0306 

  57  6 -0.0007 
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formation on C-face SiC in disilane, although 3×3 is by far the domain pattern we see for 

graphene formation in vacuum. Instead, under disilane conditions (>110
-6

 Torr) we 

routinely observe 2×2 and 4×4, as discussed in Section 3.4.1. The larger grain size and 

better uniformity of graphene formed in disilane compared to that in vacuum
76

 indicate 

that the former is carried out under better equilibrium conditions than the latter. In other 

words, the 3×3 (and the (2×2)C observed by other research groups,
18,65,94

 but not us) 

formed in vacuum are probably kinetically limited. In comparison with graphene 

formation in vacuum, at least three variables change when introducing the disilane, 

(1) additional supply of Si due to disilane (through decomposition), 

(2) additional supply of H due to disilane, 

(3) higher graphene formation temperature. 

The third change is a result of the first, i.e., the additional Si reducing the net sublimation 

rate of Si (due to conditions closer to equilibrium) and hence slowing the graphene 

formation rate.
18,71,73

 We have shown that the Si-rich adatom on adlayer models, (4×2)-

11Si and (2×2)-5Si, are the lowest-energy structures before graphene formation. The Si 

supply can be critical in achieving these non-kinetically-limited, Si-rich surface structures 

by offsetting the Si sublimation from the SiC. As the annealing temperature further 

increases, graphene starts to form. During this process, the adatom-on-adlayer structures 

are likely to persist as we only slightly increase the temperature (∆𝑇 ≤ 20 ℃, Figure 3.3), 

with possible rearrangement of the adatoms. The relatively thick SiOx interfacial layer 

seen in cross-sectional STEM images (Figure 3.5) for graphene covered surface after 

oxidization also favors this conclusion. The energy difference (0.04 – 0.06 eV/SiC(1×1)) 

between these structures ((4×2)-11Si and (2×2)-5Si) and the lowest-energy structure 

(3×3)-5Si (in appropriate range of H chemical potential) may be explained by an entropy 

argument. At such a high temperature (1500 K), entropy effect cannot be ignored. Due 

to abundant Si atoms present on the surface, entropy, both configurational and vibrational 

entropy is more significant for the adatom-on-adlayer structures, thus leading to a greater 

reduction in free energy. Additionally, rearrangement of the adatoms (e.g. into a 

√43×√43-R±7.6° periodicity), together with possible inclusion of H, may further reduce 

the energy of the adatom-on-adlayer interface structure. (An example of energy reduction 
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by including H, albeit for a simple adatom model without an adlayer, can be seen by 

comparing the energy of the (6×6)-(6×6)-9Si(h3)-9HC  with that of the 

(6×6)-(6×6)-9Si(h3) in Figure 3.11, for the range of H chemical potentials shown in 

the plot). Finally, one can consider effect of possible bonding between adatoms and the 

graphene on the energy. However, based on the discussion in Section 3.4.5, such effects 

are small (10 meV after excluding strains), and hence we do not consider them to be a 

significant factor for potentially changing the energy of the adatom-on-adlayer structure 

after graphene coverage. 

 We now consider the structure of the interface with graphene coverage. To avoid 

high strain of the graphene, while simultaneously maintaining the √43×√43-R7.6° 

supercell for the Si adatoms, we consider structures with larger unit cells. Following 

discussion in Section 3.4.5, the graphene has a supercell of √57×√57 in registry with 

6×6 cells of the SiC. It is straightforward to see that 6√43×6√43-R7.6°  SiC is 

commensurate with graphene overlayer. The overall symmetry for the entire structures 

(interface plus graphene) is then 6√43×6√43-R7.6°. The interface and graphene each 

follows a smaller periodicity of their own, i.e. √43×√43-R7.6° SiC for the interface, and 

(√57×√57)G for the graphene where the subscript “G” clarifies that the cell is in terms 

of graphene lattice. 

 For the √43×√43-R7.6° interface, we propose a model shown in Figure 3.12. In 

the figure we have shown four √43 unit cells, denoted by the green lines. Within each 

unit cell, we have 42 Si atoms in the adlayer (one less than a full monolayer with the 

missing one replaced by a H) and 14 Si adatoms on top of the adlayer. All the Si atoms in 

the adlayer are bonded by the Si adatoms on top through forming tetrahedron-like local 

structures. Although it is speculative, this model accounts for many features of the 

surface structure. First, it is consistent with the adatom-on-adlayer structure we have 

determined for the surface immediately prior to graphene formation. The arrangement of 

adatoms has been adapted to producing a √43×√43-R7.6°  periodicity while keeping 

some “footprint” of the surface before graphene formation, i.e. close to a 2×2 

arrangement. The model also has the advantage that all the dangling bonds of the SiC C-



72 

 

face and of the adlayer are passivated. Replacing one Si atom in the adlayer with H is in 

consideration that this arrangement is energetically more favorable than viable options 

such as keeping the Si atom (i.e. a full monolayer of Si as the adlayer). For instance, for 

an arrangement like Figure 3.12, if we keep the Si atom in the adlayer (i.e. replace the H 

in the figure with Si), that Si atom will have three dangling bonds. Even if these dangling 

bonds may be terminated H atoms, they will still be energetically less favorable than our 

current arrangement as we find, though our first principles computations, that the C—H 

bond is always much more stable than a Si—H bond.   

 

 

Figure 3.12 Model for the interface after graphene forms on C-face SiC 

(showing four unit cells) 

Proposed model for the interface structure after graphene forms on the C-face 

of SiC. For clarity, we have shown four unit cells of √43×√43-R7.6° , 

denoted by the green lines. Gray filled circles represent C atoms of the SiC 

bulk surface. Open orange circles on top of the gray dots represent Si atoms in 

the adlayer. There are 42 such atoms in a √43×√43 unit cell. For the one C 

atom of the SiC bulk surface that is not bonded to a Si atom, it is bonded 

(terminated) by a H atom (white dots at the corners of the unit cells shown). 

The orange filled circles are Si adatoms on top of the Si adlayer. There are 14 

such adatoms in a unit cell, each bonded to three Si atoms in the underlying 

adlayer. 
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Figure 3.13 Introducing additional hydrogen 

LEED patterns of C-face SiC surface when additional hydrogen is introduced 

(through external hydrogen). All are heated in 5×10
-5

 Torr disilane for 5 min 

with (a) hydrogen pressure p(H2) = 1×10
-4

 Torr, heating temperature T = 

1270 °C, acquired at 146 eV; (b) p(H2) = 1×10
-4

 Torr, T = 1295 °C, acquired 

at 116 eV; (c) p(H2) = 2×10
-3

 Torr, T = 1210 °C, acquired at 140 eV; (d) p(H2) 

= 2×10
-3

 Torr, T = 1290 °C, acquired at 100 eV. 

 

 The first-principles results in Figure 3.7 and Figure 3.11 indicate that for enough 

high chemical potential of H, a (11)-H interface structure is predicted. To 

experimentally explore these predictions, we have performed additional work in which 

we maintain a fixed disilane partial pressure of 5×10
-5

 Torr but we introduce additional 

H2 (i.e. through a second leak valve). We do indeed obtain 11 LEED patterns from such 

surfaces: when the partial pressure of the introduced H is less than ~10
-4

 Torr, then at 

temperatures below that at which graphene forms, 2×2 LEED patterns (identical to those 

without introducing H2, i.e. with disilane only) are obtained. However, when we increase 
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the introduced H2 partial pressure to 10
-3

 Torr, we predominantly observe 1×1 patterns 

(Figure 3.13(c)). We believe that this 1×1 pattern arising simply from the (11)-H 

structure, i.e. the H-terminated C-face surface. 

 Starting from these 11 surfaces obtained with the additional H2, we have heated 

the samples to higher temperature to form graphene. We again observe 43  patterns, i.e. 

similar to those produced when no external H2 is introduced. But we note that, as the H2 

pressure increased, intensity of the 6 3  diffraction spots increased significantly (Figure 

3.13(b) and (d)), indicating the lowest-energy structure (6√3×6√3)-(1×1)-H at high H 

chemical potential (Figure 3.11) has been obtained. 

 Finally, we discuss the difference between our C-face samples grown in the 

disilane environment and C-face monolayer graphene samples reported by de Heer and 

co-workers.
71

 Their samples produce LEED patterns with sharp 11 graphene spots 

positioned at 30° relative to directions of primary (1,0) SiC spots. Careful inspection of 

their pattern reveals additional, faint spots at 6√3×6√3-R30° positions, i.e. similar to 

what occurs for the Si-face. In contrast, LEED for our C-face samples reveal the 43  

pattern, having diffraction intensity most pronounced at about 7° with respect to the 

primary (1,0) directions.
66

 The differing results surely arise in part from the respective 

growth methods, since the confinement-controlled sublimation method of de Heer and 

coworkers
71

 is quite different than the disilane exposure (in an open vacuum chamber) 

employed in our work. However it is also important to note that these nearly 11 

graphene layers of de Heer et al.,
71

 as also observed by Camara et al.,
102

 do not occur 

homogeneously over the surface. Rather, they seem to form near specific step bunches 

and/or terraces on the surface. Thus, we suggest that these high-quality C-face graphene 

layers may arise from inhomogeneous nucleation on the surface, which would be quite 

different than for our work in which the graphene appears to be homogeneously 

nucleated. 
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3.6 Summary 

In summary, we have studied the graphene formation on the C-face of SiC in a disilane 

environment. The surface structures prior to graphene formation are found to consist of Si 

adatoms on a Si adlayer. Specifically, the 2×2 phase contains a Si monolayer with a Si 

adatom on top (at t4 site). The 4×4 diffraction patterns arise from different domains of 

(4×4)-11Si, which has three Si adatoms sitting on top of a Si monolayer (one at h3 site, 

two at t4 sites). For the √43×√43-R7.6°  LEED pattern observed after graphene 

formation, we propose a structure similar to those prior to graphene formation, i.e. Si-rich 

adatom-on-adlayer structure, but with rearrangement of the adatoms such that they have 

the 43  periodicity. From first-principles theory and strain argument, we find that the 

8×8 graphene, previously suggested as a closest match to √43×√43-R±7.6° SiC, cannot 

fit the 43  cell without inducing significant strain in the graphene. Re-examination of 

the diffraction pattern reveals that the graphene diffraction spots are not located at a 

radius (magnitude of wavevector) predicted by a √43×√43-R±7.6° cell. By looking at 

other fits between graphene and SiC, we find that √57×√57-R6.5° graphene and 6 × 6 

SiC is a good (low-strain) fit. This fit also explains the observed graphene diffraction 

spots in the LEED pattern. The overall symmetry of the entire surface (interface plus 

graphene) is then 6√43 × 6√43– 𝑅7.6°, with the interface and graphene each follows a 

smaller periodicity of their own.  
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4 Characterization of Two-dimensional 

Materials with LEED and LEEM 

In this chapter, we present experimental results of characterizing two-dimensional (2D) 

materials using the methods of LEED and LEEM, as introduced in the Experimental 

Methods section. The samples we have worked on cover a broad range of 2D materials, 

from graphene formed under various conditions to diverse kinds of transition metal 

dichalcogenides (TMDs). Some of these samples are ones that we prepared (mostly 

graphene), while others were grown by our collaborators (mostly TMDs). The LEED is 

employed as a routine, in-situ apparatus for checking crystallinity of as-grown samples. 

The LEEM is used to obtain the morphological information of the surface, check 

crystallinity and orientation on the micrometer scale, determine the number of atomic 2D 

layers, and to extract work function differences between different domains on the surface. 

In the rest of this chapter, we present and discuss results for some representative samples. 

4.1 Growth and Characterization of Quasi Freestanding 

Epitaxial Graphene 

Epitaxial graphene formed on the Si-face of SiC has a well-known 6√3×6√3-R30° 

interface structure.
59

 This interface is found to be a corrugated graphene-like layer (also 

known as the “buffer layer”) that is partially bonded to the Si atoms of the substrate,
59

 in 

contrast with a pristine graphene. The buffer layer is a poor conductor (with band gap of 

~0.1 eV) because of its covalent bonding to the substrate. The term “epitaxial graphene” 

refers to carbon layers on top of the buffer layer, forming a true hexagonal arrangement 

with only van der Waals bonding to the buffer layer below. Because of charge transfer 

from the interface density of states associated with the buffer layer and the SiC surface,
114

 

the carrier concentration is epitaxial graphene is quite high. Due to the high carrier 
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concentration, the carrier mobility of the epitaxial graphene is much lower than that of 

suspended graphene produced from mechanical exfoliation (3000 vs 200000 cm
2
V

-1
s

-

1
).

103,104,105
 One way to address the problem is through hydrogen intercalation.

57
 After 

graphene is formed on the SiC(0001) surface, we can anneal the sample in a hydrogen 

flux at moderately high temperature (750 – 1000 °C). The H atoms decouple the buffer 

layer from the underlying substrate by breaking the Si-C bonds between them. The 

decoupled buffer layer is known as quasi freestanding epitaxial graphene (QFEG) and 

becomes highly conducting. Additionally, the H atoms saturate the Si dangling bonds on 

the surface.
106

 As a result, the charge transfer to epitaxial graphene is suppressed; and the 

carrier mobility of the hydrogenated sample increases drastically, from 3000 to >11000 

cm
2
V

-1
s

-1
.
104

  

4.1.1 Sample preparation 

In this work, we form graphene on the Si face of SiC using our graphene preparation 

chamber and then hydrogenate the sample to obtain the QFEG within the same chamber. 

Figure 4.1 is a schematic showing steps in our experiment. In detail, a chemically cleaned 

(by acetone and methanol) Si-face SiC sample is introduced to the preparation chamber 

(Figure 2.1), after which it is hydrogen etched at 1600 °C for 3 min under a hydrogen 

flux of 105 lpm. The hydrogen etching removes polishing damage from the SiC surface. 

After pumping out the hydrogen, the sample is heated in 1 atm Ar at 1350 °C for 15 min 

to form epitaxial graphene. The sample is then cooled down to room temperature and 

studied by the connected in-situ LEED, after which it is transferred back to the 

preparation chamber and heated at 950 °C for 30 min. 
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Figure 4.1 Schematic of QFEG formation process 

Schematic showing steps and experimental conditions for forming the quasi 

freestanding epitaxial graphene (QFEG). (a) A chemically cleaned (by acetone 

and methanol) piece of Si-face SiC sample is introduced into the preparation 

chamber. (b) The sample is heated in 1 atm of Ar for 15 min at 1350 °C. (c) 

The buffer layer forms and graphene forms thereafter on top during the 

heating. (d) After the heating, the sample is left to cool down to room 

temperature and Ar is pumped out of the preparation chamber. The sample is 

then heated in 1 atm of H for 30 min at 950 °C to form the QFEG. 

 

4.1.2 LEED/LEEM measurements 

Through in-situ LEED and ex-situ LEEM measurements, we characterize the surface 

before and after hydrogenation. Results from both the LEED and LEEM measurements 

are in full agreement with that reported in Refs 57,107. Figure 4.2 shows LEED patterns 

obtained for the sample before and after hydrogenation. From the figure, it is clear that 

most satellite diffraction spots that are characteristic of the 6√3×6√3-R30°  interface 

structure are gone after hydrogenation. This is because, as already mentioned above, the 

buffer layer is decoupled from the underlying substrate by H atoms. It also confirms the 
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6√3×6√3-R30° LEED pattern is a result of diffraction from the buffer layer (which is 

more complicated for the case of graphene formed on C-face of SiC, as discussed in 

detail in the previous chapter). The increased brightness of graphene diffraction spots is a 

result of an additional graphene layer, indicating the buffer layer has converted to (quasi 

freestanding) graphene. 

 

Figure 4.2 LEED patterns for a graphene sample before and after H 

intercalation. 

LEED patterns for an epitaxial graphene sample before and after H 

intercalations, both acquired at 100 eV. (a) Before H intercalation, the 

diffraction pattern shows the characteristic satellite spots around the primary 

SiC spots and graphene spots, which corresponds to the 6√3×6√3-R30° 

buffer layer. (b) After H intercalation, most of the satellite diffraction spots 

are gone. The intensity of graphene spots relative to that of SiC has become 

much stronger. Both of these observations indicate that the buffer layer has 

been decoupled from the substrate and converts to quasi freestanding epitaxial 

graphene (QFEG). 

 

 We have also looked at the formed QFEG in the LEEM. Figure 4.3 shows the 

results for a typical area of the surface. The LEEM image in Figure 4.3(a) shows different 

domains on the surfaces, with typical domain size >5 µm. There domains corresponds to 

varying numbers of graphene layers formed, as indicated by the reflectivity spectra in 

Figure 4.3(b). Reflectivity minima close to the onset in the spectra (indicated by arrows) 
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are due to additional interlayer states introduced when the buffer layer is decoupled from 

the substrate, a signature of formation of the QFEG.
57,107

  

 From the reflectivity spectra, we can extract work function difference between 

different domains on the surface. We see that two layers (including the decoupled buffer 

layer) and three layers of graphene have similar work functions (difference in work 

function between sample surface and electron emitter in the LEEM of 0.03 eVW  ). In 

contrast, the bare (decoupled) buffer layer has a very different work function 

( 1.0 eVW  ). This indicates that the buffer layer, although decoupled from the 

substrate, is still quite different from the epitaxial graphene on top in terms of carrier 

concentrations. 

 

Figure 4.3 LEEM results for QFEG 

LEEM results for a typical area of the QFEG sample surface. (a) LEEM image 

acquired at sample voltage of 3.9 V with 25 µm field of view. The image 

clearly shows different domains with sizes >5 µm. (b) Reflectivity spectra and 

extracted work function differences for points labeled in (a). The points are 

selected to be representative of different domains. The minimum close to the 

onset of the reflectivity spectra (indicated by arrows) is due to additional 

interlayer states between the buffer layer and the substrate, a signature that the 

buffer layer has been decoupled form the substrate and become QFEG.   
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4.1.3 Summary 

In this experiment, we studied formation of QFEG by H intercalation of the SiC−C-

buffer layer interface. LEED patterns acquired for the sample surface before and after H 

intercalation reveal that the buffer layer is decoupled from the substrate, converting to a 

new graphene layer (QFEG) after H passivates the SiC surface. LEEM/LEER 

measurements show reflectivity spectra characteristic of decoupled buffer layer. It is 

found that domains covered only by the buffer layer have a relatively large work function 

difference from those covered by additional graphene layers, indicating that the buffer 

layer, even after H intercalation, still differs from other graphene layers in carrier 

concentrations. 

 The formed QFEG is useful not only because of improved carrier mobility as 

mentioned, but also can be used as a good contact to other 2D materials such as tungsten 

diselenide (WSe2), which we will discuss in the next section. 

4.2 Tuning Electronic Transport in Tungsten Diselenide – 

Graphene heterostructures 

This work is a collaborative work between the Robinson group at Penn State, our group 

here at CMU, and the Cho group at UT Dallas, published in Nanoscale (2016).
11

 For the 

results presented in this section, Yu-Chuan Lin and Sara Eichfeld prepared the samples. 

Yu-Chuan Lin carried out AFM and electrical measurements. Sergio de la Barrera and 

Patrick Mende performed LEEM/LEER. The author (JL) proposed the band alignment 

models and computed the charge transfer and carrier densities, by combining LEEM and 

electrical measurement data. 

 In this work, we demonstrate that the carrier type of the graphene is a critical 

parameter in controlling the charge transport at the TMD/graphene interface. By 

controlling the doping type and concentration of epitaxial graphene (EG) from n- to p- 

via in situ hydrogen intercalation
57,107

 during the tungsten diselenide (WSe2) synthesis, 

we demonstrate the origins of ohmic behavior (i.e. close to linear response of current to 

the voltage applied) in TMD/graphene structures, and obtain low resistance ohmic 
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transport between a WSe2 and graphene heterostructures. Two samples, monolayer WSe2 

on partially hydrogenated EG (WSe2-EGPH) and monolayer WSe2 on fully hydrogenated 

EG (WSe2-EGFH), are studied in this work. Measurements by LEEM, LEER, and 

conductive atomic force microscopy (CAFM) show that EGFH (p-type) is a better contact 

to WSe2 in that ohmic behavior is observed for the WSe2-EGFH diode. 

4.2.1 Sample Preparation 

WSe2 is synthesized on epitaxial graphene by metal-organic chemical vapor deposition 

(MOCVD), at different temperatures for the two samples, WSe2-EGPH and WSe2-EGFH. 

Figure 4.4(a) shows a schematic of the WSe2-EG growth. In detail, epitaxial graphene is 

first formed on the Si face of 6H SiC at 1625 °C in 200 Torr Ar inside a confined heating 

chamber made of pure graphite. The SiC substrate is pre-etched by 700 Torr H2/Ar 

mixtures (500 sccm) to remove polishing damage on the surface. The precursors chosen 

for MOCVD synthesis of WSe2 are tungsten hexacarbonyl (W(CO)6) and 

dimethylselenium ((CH3)2Se), which provide the W and Se, respectively. In order to 

eliminate carbon contamination from the precursor, a 100% H2 environment is utilized 

during the WSe2 synthesis.
108

 This necessity of 100% H2 significantly modulates the 

chemical environment of graphene, in comparison with a dilute H2 environment for WSe2 

growth. X-ray photoemission spectroscopy (XPS) performed for a WSe2-EG sample 

prepared by this process (MOCVD, 100% H2, 800 °C) and for a WSe2-EG sample grown 

via power vaporization (PV) using 5% H2 at 900 °C shows that, the C 1s core level of the 

sample via MOCVD shifts towards a lower binding energy by 0.4 eV compared to that of 

the sample via PV. This shift of C 1s core level in EG has been associated with hydrogen 

intercalation.
61,109

 Evident from the XPS, the 100% H2 environment leads to complete 

hydrogen interaction at the EG/SiC interface, fully decoupling the C-rich buffer layer at 

900 °C. 

 The growth of WSe2 on EG proceeds by vdW epitaxy, mediating the lattice 

mismatch between WSe2 and graphene.
110

 WSe2 atomic layers are grown via MOCVD on 

EG-SiC substrates employing H2 as carrier gas
108

 at 800 °C and 930 °C to study how 

hydrogen intercalation impacts the electrical transport between graphene and WSe2, for 

different growth temperatures (Figure 4.4(b)). After 30 min growth, the as-grown atomic 
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layers are confirmed to be monolayer, 1 µm wide and 0.7 nm thick with atomic force 

microscopy (AFM) (Figure 4.4(c)).  

 

Figure 4.4 WSe2-EG synthesized via MOCVD 

WSe2-EG synthesized via metal-organic chemical vapor deposition 

(MOCVD). (a) Illustration of MOCVD process of monolayer WSe2 on EG-

SiC, showing precursors for W (W(CO)6) and Se ((CH3)2Se), and growth 

conditions (100% H2, 700 Torr, heating temperature 750 – 930 °C). (b) When 

the process of WSe2 synthesis is carried out at a lower temperature the buffer 

layer decoupling is incomplete (top). A higher synthesis temperature can 

effectively convert the buffer layer into graphene via hydrogen intercalation 

(bottom). (c) AFM image of grown WSe2-EG heterostructures. Triangular 

domains are mostly monolayer WSe2, indicated by height measurements (0.7 

nm). 

 

4.2.2 LEEM/LEER Measurements and Analysis 

In order to locally study the surface and electronic structure of the WSe2-EG samples, 

LEEM with electron energies of 0 – 20 eV is employed. In addition, low-energy electron 

reflectivity (LEER) spectra provides an accurate means of determining the number of 

graphene layers, identifying WSe2 and graphene domains, and extracting the work 

function differences between domains.
12,49,51

 The LEEM images of WSe2-EGPH from 

800 °C WSe2 growth show triangular islands of WSe2 with a characteristic size of 1 µm, 

nucleating preferentially near SiC step edge on the EG surface (Figure 4.5(a)). The 

graphene is found predominantly in monolayer + buffer layer form, but small bi- and tri-

layer graphene domain are also found on the surface. This indicates that the buffer layer 
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is nearly intact as as-grown EG, or only a negligible portion of it has been decoupled 

during the 800 °C WSe2 growth. 

 

 

Figure 4.5 LEEM/LEER measurements of WSe2-EGPH and WSe2-EGFH 

LEEM/LEER measurements of WSe2-EGPH (WSe2 grown at 800 °C) and 

WSe2-EGFH (WSe2 grown at 930 °C). (a) LEEM image of WSe2-EGPH 

acquired at sample voltage of 4.8 V. Labeled points indicate locations of 

reflectivity spectra in (b), which are used to identify the materials in the 

image. Bright triangles are WSe2 islands, dark regions are mono- to multi-

layer graphene on carbon-rich buffer layer. The values specified to the left of 

each spectrum quantify the electrostatic potential and hence the vacuum level 

variation of the surface. (c) LEEM image of WSe2-EGFH at 4.1 V. (d) 

Reflectivity spectra of the points labeled in (c); characteristic of a decoupled 

buffer layer. 
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 The LEER spectra show characteristic oscillations for graphene and WSe2 for the 

respective regions of the surface and allow material identification in the LEEM images, 

as shown in Figure 4.5(b) for the WSe2-EGPH sample.
111

 Such LEER curves also permit 

determination of the work function differences between varying domains on the surface, 

as discussed in the Section 2.3.4 of the Experimental Methods chapter. A difference of 

Δ𝑊 ≈ 0.31 ± 0.03 eV is found between the work functions of monolayer graphene and 

WSe2 (uncertainty from a combination of uncertainties in the measurement, analysis, and 

variations of the sample surface). It should be noted that this observed work function 

difference between WSe2 in contact with underlying graphene (G in Figure 4.5(a)) and a 

bare graphene region without WSe2 covering the top (A or B in Figure 4.5(a)). The 

presence of interface dipoles and a change in local work function implies charge transfer 

between the WSe2 and the graphene below. Consistent with this interpretation, it is noted 

that the LEER curves measured on the WSe2 islands from WSe2-EGPH (Figure 4.5(b)) 

display a broad, sloping feature for low voltages (in the range of “mirror mode” discussed 

in Section 2.3.4). This feature also indicates the presence of charge, or more specifically, 

electric dipoles on the edges of the triangular crystals which displace the incident and 

reflected electron beam during measurement, thus reducing the reflected intensity.
12

 

 The WSe2-EGFH from the 930 °C WSe2 growth shows similar 1µm triangle 

islands of WSe2 on an EG surface in LEEM (Figure 4.5(c)). However, the sloping 

features in reflectivity associated with charge accumulations are much smaller than in 

WSe2-EGPH. In addition, the extracted work function differences between uncovered 

bilayer graphene and WSe2 (in contact) in the WSe2-EGFH are negligible (0.03 ± 0.03 eV) 

compared to the WSe2-EGPH sample, suggesting limited charge transfer between WSe2 

and EG (Figure 4.5(d)). These observations, along with the presence of an additional, 

small minimum valley near 0 eV in the reflectivity spectra, are attributed to full 

hydrogenation of the SiC surface, which passivates bonds between the carbon-rich buffer 

layer and the underlying SiC. This has the effect of releasing the buffer layer and 

increasing the count of graphene layers in the hydrogenated regions by 1.
57

 Together with 

the Raman spectroscopy measurements (not shown), we conclude the WSe2 growth at 

high temperatures (>900 °C) leads to fully hydrogenated EG (EGFH) compared to those 

partially hydrogenated EG (EGPH) formed at lower temperatures (750 – 800 °C). 
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Concurrently, the electrical properties of the WSe2-EG interface appear to have changed 

significantly. 

4.2.3 Conductive AFM I–V characteristics and band alignment model 

The hydrogenation process is known to have a significant impact on the electrical 

properties of graphene on SiC. EG residing on top of the buffer layer on 6H-SiC (0001) is 

n-type doped
109,112,113

 due to the combination of bulk and interface donor states
114,115

 and 

has a Fermi energy ≈0.45 eV above the Dirac point.
114

 In contrast, QFEG is known to be 

p-type doped.
57,114

 This change has been explained by the presence of the spontaneous 

polarization of the hexagonal 6H-SiC substrate, which lowers the Fermi energy to a 

position 0.28 – 0.30 eV below the Dirac point for complete hydrogenation.
114,116

 This 

modification in the doping of graphene can thereby influence the electrical transport 

properties across the WSe2–graphene interface on SiC. In order to elucidate the transport 

properties, vertical current versus voltage (I–V) measurements were performed on the 

800 °C and 930 °C WSe2 growth (labeled as WSe2–EGPH and WSe2–EGFH, respectively) 

in Conductive AFM (CAFM). 

 A CAFM tip with PtIr coating, and the graphene, serves as source and drain, 

respectively. While the WSe2–EGPH diode exhibits an I–V with turn-on current at bias of 

≥ 1 V; however, the WSe2–EGFH diode turns on near zero bias (Figure 4.6(a)). The main 

component of the CAFM current near zero bias for WSe2–EGPH is due to tunneling from 

the CAFM tip to graphene through the WSe2 gap. On the other hand, For WSe2–EGFH, 

the WSe2 layer acts as a short between the CAFM tip and the EGFH (Figure 4.6(b)). 
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Figure 4.6 CAFM  I-V measurements and Band alignments 

(a) Conductive AFM (CAFM) I-V measurements of WSe2-EGPH and WSe2-

EGFH, with additional results for EGPH and EGFH for reference. Band 

alignment and vacuum energy diagrams for the two heterostructures, WSe2–

EGPH (c) and WSe2–EGFH (d), at zero bias, showing variations of vacuum 

energy of the surface due to partial WSe2 coverage. The band alignment 

diagram for WSe2-EGPH (c) shows that the Fermi level in equilibrium is inside 

the bandgap, leading to a relatively high Schottky barrier, while for WSe2–

EGFH it shows that the Fermi level of the heterostructure is close to valence 

band maximum of WSe2, resulting in an ohmic contact. The values indicated 

(0.31 eV and 0.03 eV) are work function differences measurement from 

LEEM (Figure 4.5). (b) Illustration of electronic transport in WSe2-EGPH and 

WSe2-EGFH close to zero bias. In the former case, transport is limited by the 

high Schottky barrier in WSe2–EGPH while this is not the case for WSe2–

EGFH. 

 

 Our LEEM measurements and analysis above indicate a work function difference 

of 0.31 eV between the WSe2 (in contact with EGPH) and the uncovered monolayer EGPH, 

while the work function difference between the WSe2 (in contact with EGFH) and the 

uncovered bilayer EGFH is near zero. The measured work function difference is a 

combination effect of intrinsic interface dipole and extrinsic interface dipole. The 
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extrinsic dipole is due to doping caused by charge transfer between WSe2 and graphene. 

The intrinsic dipole results from redistribution of charge within the WSe2 or graphene 

itself upon contact. In other words, it is the difference between vacuum level of undoped 

WSe2 and that of undoped graphene when they are put in contact. Density functional 

theory (DFT) calculations of this intrinsic dipole are performed using the Vienna ab initio 

simulation package (VASP)
81

 with the projector-augmented wave (PAW) method.
117

 The 

local density approximation (LDA)
118

 is used to describe the exchange–correlation 

functional with the partial core correction included. More DFT calculation details can be 

found in the Supplementary Information of Ref. 11. The computed vacuum energy level 

above WSe2 is 0.17 eV higher than that above graphene, indicating an (intrinsic) dipole 

from graphene towards the WSe2. 

 Using this intrinsic dipole, along with the measured work function differences, we 

propose a model in which the WSe2 has some unintentional p-type doping, and transfer of 

charge between the EGPH or EGFH and the WSe2 (combined with the intrinsic dipole) 

produces the observed variation in work function. With knowledge of the doping density 

of EGPH and EGFH ((4 ± 1) × 10
12

 cm
−2

 n-type and (1.5 ± 0.2) × 10
13

 cm
−2

 p-type, 

respectively, from our previous electrical studies on EGPH and EGFH),
109,119

 and using 

reported values of electron affinities of monolayer graphene (4.57 eV) and bilayer 

graphene (4.71 eV),
120

 we compute the transfer of charge between the WSe2 and the 

EGPH or EGFH. This charge transfer, for a given (unintentional) doping density of the 

WSe2, yields theoretical values for the work function differences; the doping density is 

determined by matching these differences to experiment. Our model is illustrated in 

Figure 4.6(c) and (d). The dependence of the results on the electron affinities of graphene 

is discussed in the Appendix at the end of this section. 

 For the charge transfer computation, we employ the standard linear band structure 

around the K point for the monolayer graphene from EGPH, and hyperbolic bands near the 

band extrema for bilayer graphene from EGFH and for WSe2 around K points, based on 

tight-binding models.
121,122

 The method to compute the electrostatics is similar to that 

described by Li et al.
126

 Figure 4.6(c) and (d) show band diagrams of the WSe2–EGPH and 

WSe2–EGFH surfaces, which are graphene partially covered by WSe2. Both the intrinsic 
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interface dipole and the charge transfer are taken into account and equilibrium is reached 

when the Fermi levels are aligned. The difference between the vacuum energy of WSe2 

(in contact with graphene) and the underlying graphene (e.g. ΔW0 in Figure 4.6(c)) is 

thus a sum of the intrinsic interface dipole effect and the charge transfer effect. 

 In order to match the theoretical work function difference between the WSe2 (in 

contact) and the uncovered graphene with the experimental values (0.31 eV and 0.03 eV 

for WSe2–EGPH and WSe2–EGFH respectively), we employ an unintentional p-type 

doping of 1.3 × 10
12

 cm
-2

 for the WSe2 before charge transfer between the WSe2 and the 

underlying graphene. When the WSe2 is put in contact with EGPH (n-type), electrons 

transfer from the EGPH to the WSe2, leading to nearly complete compensation of the p-

type doping in the WSe2 and a negligible carrier density in the WSe2. The Fermi level 

ends up well inside the bandgap of the WSe2 and near the charge neutrality point in the 

graphene (Figure 4.6(c)). For the case of the WSe2 in contact with the EGFH (p-type), 

electrons transfer from the WSe2 to the EGFH, making the WSe2 more p-type (carrier 

density 2.9 × 10
12

 cm
−2

). The resulting Fermi level of the WSe2–EGFH remains near the 

top of the valence band of its WSe2. In other words, the WSe2 on the EGPH forms a 

Schottky barrier (i.e. relatively low conductivity), whereas the WSe2 on the EGFH forms 

as ohmic contact (i.e. high conductivity), and leading to a ∼10
3
× increase in current drive 

(Figure 4.6(a)). 

 An additional output of our charge transfer computations is the sum of the 

bandgap plus electron affinity of the WSe2, ΧWSe2
+ 𝐸g (only the sum enters, since the 

electron density in the WSe2 conduction band is negligible). In order to match the 

observed work function variations, we deduce an unintentional doping density in the 

WSe2 of 1.3 × 10
12

 cm
−2

, and the value of ΧWSe2
+ 𝐸g is determined to be 5.1 eV. This 

value is consistent with a recently reported electron affinity of ∼3.1 eV for WSe2 using 

first-principles GW calculation,
123

 together with a bandgap of ∼2 eV, which is in 

agreement with several recently reported experimental values.
124 , 125

 Variation of our 

deduced values due to uncertainty in the other parameters in the problem is discussed in 

the Appendix. 
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4.2.4 Summary 

By varying the temperatures for growth of WSe2 on EG in a pure H2 environment, the 

transport across WSe2-graphene heterostructures is controllable. The investigation 

combing LEEM/LEER, Raman spectroscopy, and electrical measurements on the 

heterostructures confirmed the transport across the interface is controlled by the doping 

the EG, which in turn is tuned by hydrogenation of the SiC-buffer layer interface. The 

band alignment diagrams of two different heterostructures, WSe2-EGPH and WSe2-EGFH 

were constructed with the measured work function differences between the WSe2 and the 

graphene from LEER. Taking into account their intrinsic interface dipoles and charge 

transfer, the diagrams show the presence of the Schottky barrier in WSe2-EGPH and a 

reduced barrier in WSe2-EGFH, which are in agreement with measured I-V characteristics. 

 The work described here is foundational for understanding vertical transport in 

graphene-based 2D heterostructures, demonstrating that doping of the graphene plays a critical 

role in these novel structures. Epitaxial graphene is unique because it can be made n- or p-type 

based on the TMD growth conditions, allowing one to readily engineer the transport between 

graphene and n- or p-type TMDs with a truly pristine interface. 

Appendix 

Computation of WSe2 doping density and charge densities, and dependence on 

parameters 

For the computation of charge transfer and band alignment, we take the doping densities 

of EGPH and EGFH from our experimental values, as discussed in the main text. 

Parameters in the computation are the electron affinities for monolayer and bilayer 

graphene, with nominal values of 4.57 eV and 4.71 eV, respectively, as known from prior 

experiments.
10

 We take the sum of the electron affinity plus band gap of the WSe2, 

ΧWSe2
+ 𝐸g , to be an unknown in the computation, since a value for this sum is not 

accurately known from prior work (only the sum is considered here since the electron 

occupation in the conduction band of the WSe2 is negligible). A second unknown is the 

unintentional doping density of WSe2. Then, using the two measured work function 

differences for WSe2 on both EGPH and EGFH compared to the bare EGPH and EGFH, we 
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can determine values for the two unknown parameters. The carrier densities for the WSe2 

on both EGPH and EGFH after charge transfer are then a byproduct of the computation. 

Table 2 shows dependence of these quantities on the input parameter values. In all cases, 

the carrier densities of WSe2 in WSe2-EGPH are very much greater than those of WSe2 in 

WSe2–EGFH, consistent with the observed differences in the CAFM I-V results.   

Table 2 Computed dependence of valence band maximum and carrier 

densities on electron affinities of graphene 

Computed dependence of electron affinity plus bandgap of WSe2 (ΧWSe2
+

𝐸g), unintentional doping of WSe2 (𝑁A
), carrier density of WSe2 after charge 

transfer between WSe2 and EGPH (𝑁C,WSe2–EGPH
), and carrier density of WSe2 

after charge transfer between WSe2 and EGFH (𝑁C,WSe2–EGFH
) on electron 

affinities of  EGPH (ΧEGPH
) and EGFH (ΧEGFH

), respectively. An error range of 

 0.1eV for the input parameters is considered. 

ΧEGPH
 ΧEGFH

 ΧWSe2
+ 𝐸g 𝑁

A 𝑁C,WSe2−EGPH
 𝑁C,WSe2−EGFH

 

4.57 4.71 5.09 1.3×10
12 

4.1×10
5 

2.9×10
12 

4.47 4.71 5.09 1.3×10
12 

0.9×10
4 

2.9×10
12 

4.67 4.71 5.09 1.3×10
12 

2.0×10
7 

2.9×10
12 

4.57 4.61 4.99 1.3×10
12 

2.0×10
7 

2.9×10
12 

4.57 4.81 5.19 1.3×10
12 

0.9×10
4 

2.9×10
12 

 

 We note that the doping density values in Table 2 are all the same, reflecting a 

tight constraint on this value. This constraint arises from charge transfer between the 

WSe2 and the EGPH. As pictured in Figure 4.7(a) and (b), since the Fermi energies of  the 

EGPH and WSe2 are relatively far apart prior to charge transfer, and hence the Fermi 

energy of the WSe2 ends up well within its band gap after the transfer, then the p-type 

doping density in the WSe2 is directly determined by the doping density of the EG 

together with the difference between the electron affinity of the EGPH and the ΧWSe2
+ 𝐸g 

value of the WSe2.  The resulting carrier densities for the WSe2 on EGPH are negligible, 

again since the resulting WSe2 Fermi energy is well within the gap. On the other hand, 

for the WSe2 on EGFH, their Fermi energies are relatively close prior to charge transfer, as 
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pictured in Figure 4.7(c) and (d). The resulting Fermi energy for the WSe2 on EGFH ends 

up near or within the valence band even after the charge transfer, with concomitant large 

carrier density, and the value of the WSe2 doping density is not so tightly constrained in 

this part of the problem. 

 

Figure 4.7 Band alignment of WSe2–EG before and after contact 

Band alignment of WSe2 and EGPH (a) before charge transfer (including 

computed intrinsic dipole 0.17 eV), and (b) after charge transfer. Band 

alignment of WSe2 and EGFH (c) before charge transfer (including the intrinsic 

dipole), and (d) after charge transfer. Monolayer and bilayer graphene models 

are employed for EGPH and EGFH respectively, based on LEEM observations. 

Green shades in (c) and (d) represent conduction/valence subbands of bilayer 

graphene. The numerical values show various vacuum level differences, in 

units of eV. 

 

 We have also considered the effect on the computed carrier densities of variation 

in the EGPH and EGFH doping density values, as well as variation of the measured work 

functions differences within their experimental error ranges. Doping densities of (4  1) × 

10
12

 cm
-2

 for EGPH and (1.5  0.2) × 10
13

 cm
-2

 for EGFH are typical measured in our 

samples. Considering the variations of these doping densities, the carrier density of WSe2 

on EGFH after charge transfer is computed to range from 2.5 – 3.0 × 10
12

 cm
-2 

while the 

carrier density of WSe2 on EGPH after transfer is always less than 10
7
 cm

-2
, i.e. its Fermi 

is well within the bandgap. For the measured error ranges (0.03 eV) on the work 

function differences, performing computations at the bounds of these values produces 
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carrier densities in the WSe2 on EGFH compared to WSe2 on EGPH that continue to differ 

by more than a factor of 10
4
, for all cases. 

 

4.3 Properties of synthetic epitaxial graphene/molybdenum 

disulfide lateral heterostructures 

The samples we study in this section are synthesized molybdenum disulfide (MoS2) films 

that may or may not be contacted by epitaxial graphene (EG) on the sides. This is a 

collaborative work between the Robinson group at Penn State, the Fullerton group at 

University of Pittsburgh, and our group here at CMU. The main conclusion is that when 

epitaxial graphene is used to as a contact to MoS2 (forming a MoS2–EG heterostructure), 

both the contact resistance and sheet resistance is reduced significantly compared to 

MoS2 contacted directly by conventional titanium/gold (Ti/Au). Part of the results 

presented here is published in Carbon (2017).
10

 For the results presented in this section, 

Shruti Subramanian prepared the samples and did the cross-sectional TEM measurements. 

The author (JL) carried out the LEEM/LEER measurements and band alignment analysis. 

 In this section, we focus on LEEM measurements on these samples, with a brief 

introduction to the sample preparation process. The LEEM results reveal crystallinity and 

grain size information of grown MoS2. From the reflectivity spectra (LEER), work 

function variations between different domains on the surface are extracted, from which 

band alignments may be deduced. The band alignments results are in agreement with 

electrical transport measurements done by the Fullerton group at Univ. Pittsburgh. 

4.3.1 Sample preparation 

The samples are prepared by the Robinson group at Penn State. Here we describe the 

process briefly. The EG is formed via Si sublimation from the Si-face of 6H SiC in a 

confined furnace made of graphite. The SiC is first cleaned using acetone and isopropyl 

alcohol, and subsequently annealed in 10% hydrogen (balance argon) at 1500 °C for 30 

min to remove polishing damage. The hydrogen is then pumped out of the system, and 

the temperature is increased to 1800 °C for 10 min at 500 Torr to form graphene. 
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Figure 4.8 MoS2 device fabrication process 

Illustration of fabrication process for MoS2 devices with a MoS2-only channel 

(j) or with a MoS2-EG channel (k). From Ref. 10. 

 

 The formed graphene is then patterned on the substrate using standard ultraviolet 

(UV) photolithography. A pattern consisting of varied channel spacing is produced using 

a photoresist. A subsequent mixture of oxygen and argon is used for react ion etch to 

remove the EG outside of the patterns, leaving behind a series of periodically spaced 

graphene rectangles of fixed width, that ultimately constitute the contacts to the MoS2 

channel. In addition to removing EG, this etch recipe also oxides the SiC substrate based 

on TEM and x-ray photoelectron spectroscopy (XPS). The lithographic mask is designed 

so that EG is completely removed in specific regions on the SiC substrate to provide 

areas where MoS2-only (without the graphene contacts) is grown. 

 Following graphene growth and patterning, MoS2 is synthesized using powder 

vaporization. The patterned graphene substrate is placed on top of a rectangular crucible 

containing 2-3 mg of molybdenum trioxide (MoO3) powder and into the hot zone of a 

quartz tube furnace. Subsequently, 300 mg of sulfur (S) powder was placed 

approximately 27 cm upstream from the hot zone. The system is purged with argon prior 

to growth, and sulfur is independently heated to 130 °C once the hot zone reaches 500 °C 

to provide a continuous sulfur flow during the MoS2 growth, which occurs at 800 °C for 

20 min. 
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 After formation of the MoS2, the heterostructures are lithographically patterned 

into isolated channels. Then contact regions are lithographically patterned and Ti/Au is 

deposited via electron-beam evaporations, followed by lift off of the photoresist. Two 

structures are produced: 1) a traditional MoS2-based structure that is directly contacted by 

the Ti/Au, and 2) an EG/MoS2/EG lateral heterostructure with the Ti/Au contacting the 

EG. Additionally, we have formed a HEG/MoS2/HEG lateral heterostructure with Ti/Au 

contacts, where HEG stands for hydrogenated EG. The procedure is identical to that in 

Figure 4.8, except after formation of EG (between (b) and (c)), the EG sample is annealed 

in hydrogen to release the buffer layer.
57

 This is intended to study the effect of doping (as 

hydrogenation converts n-type EG to p-type HEG) on the transport properties of 

graphene/MoS2 heterostructures. 

 

Figure 4.9 Cross-sectional TEM of the MoS2/EG interface 

Cross-sectional transmission electron micrograph (TEM) of the MoS2/EG 

interface and schematic of the heterostructure. MoS2 grows on silicon oxide as 

well as on edges of the graphene. 

 

 A cross-sectional transmission electron micrograph (TEM) of a MoS2/EG sample 

is shown in Figure 4.9, focusing on the interface area. The result shows that MoS2 grows 

on silicon oxide as well as on edges of the graphene. 
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4.3.2 LEEM/LEER measurements and band alignments 

 

Figure 4.10 Selected-area LEED for the three MoS2 samples. 

Selected-area LEED for (a) the overlap region of MoS2/EG sample (Figure 

4.9); (b) overlap region of MoS2/HEG; (c) MoS2 only, i.e. MoS2 on silicon 

oxide. All patterns are acquired at 45 eV, using a 5 µm aperture. 
 

 

Figure 4.10 shows the selected-area LEED patterns obtained for samples EG/MoS2/EG, 

HEG/MoS2/HEG, and MoS2 (on silicon oxide), respectively. For the first two samples, 

the aperture is centered on a MoS2-graphene overlap area. It is clear from the diffraction 

patterns that crystallinity of the grown MoS2 is dependent on the substrate. For MoS2 on 

EG, the ring of diffraction from the MoS2 demonstrates random orientations of MoS2 

grains, with sizes considerably smaller than the area illuminated by the electron beam (5 

µm). For MoS2 on HEG, while its diffraction pattern still demonstrates a ring of 

diffraction, it also shows MoS2 diffraction spots that are oriented in the same direction as 

the graphene spots, indicating improved epitaxy. The diffused MoS2 spots in Figure 

4.10(c) suggest the polycrystalline nature of MoS2 grown on silicon oxide, with grain 

sizes much smaller than 5 µm. 

 We have also performed LEER measurements for these samples and extracted the 

work function differences between varying domains on the surface.
12

 Figure 4.11 shows 

results of such measurements for the EG/MoS2/EG sample. From the LEEM image 

Figure 4.11(a), we see clear strips corresponding to MoS2 and EG repseticvely. From the 

LEER spectra shown in Figure 4.11(b), we extract a work function difference of 0.47 eV 

between EG and MoS2, using the method introduced in Section 2.3.4. We have done 
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similar measurements and analyses for the other two samples, and obtained a work 

function difference of 0.05 eV between HEG and MoS2, and a work function difference 

of 0.13 eV between MoS2 and Ti/Au (contact). 

 

Figure 4.11 LEEM/LEER measurements of EG/MoS2/EG 

LEEM/LEER measurements of the EG/MoS2/EG sample. (a) LEEM image 

acquired at a sample voltage of 13.6 V, showing clear strips corresponding to 

EG and MoS2 respectively. The points from which LEER spectra are extracted 

are labeled. (b) The LEER spectra corresponding to the locations labeled in 

(a). The value specified on the left of each spectrum quantifies the 

electrostatic surface potential and hence the variation of vacuum level. 

 

 Using these extracted work function differences, together with reported values of 

work functions for EG and HEG, electron affinity of MoS2 and work function of Ti and 

Au, we can derive the band alignments for these junctions, shown in Figure 4.12. 

 Based on the band alignments, we deduce the Schottky barrier for each of the 

junctions (denoted in red in Figure 4.12). We find that the Schottky barrier of 

EG/MoS2/EG is smaller than that of HEG/MoS2/EG which in turn is smaller than that 

between MoS2 and Ti/Au contact. This relationship is consistent with the transport 

measurements done on the same samples by the Fullerton group at Univ. Pittsburgh. 
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Figure 4.12 Band alignments for different junctions 

Derived band alignments based on the vacuum level differences measured via 

LEEM, for different junctions: (a) EG/MoS2/EG; (b) HEG/MoS2/HEG; (c) 

MoS2 with Ti/Au contacts on the sides. The values in green signify the 

measured vacuum level differences, and the values in red denote values of 

estimated Schottky barrier. Since Au is on top of Ti in the Ti/Au contact, the 

measured vacuum level variation on the surface is between Au and MoS2, as 

shown in (c). 

 

4.3.3 Conclusions 

The results for the work in this section show that the Schottky barrier is reduced when 

epitaxial graphene is introduced to form the MoS2/EG heterostructure, compared to MoS2 

contacted directly by metal contacts. In addition, it is found that EG is a better contact to 

the MoS2 than HEG (this latter conclusion is in contrast to the case of WSe2 synthesized 

on graphene as discussed in Section 4.2, where fully hydrogenated epitaxial graphene 

(HEG) forms a better contact to the WSe2 than does EG). 

4.4 Summary 

Through the examples in this section it should be clear that LEEM is a very useful tool 

for characterizing various 2D materials, or generally surfaces. The imaging mode allows 

straightforward visualization of different domains on the surface. The selected-area 

LEED can be routinely used to check crystallinity, grain size, and orientation of grown 

materials. The LEER provides an unambiguous way to characterize the material and to 

count the number of atomic layers in the case of 2D materials. The capability to extract 

work function differences between varying domains provides valuable information 
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regarding contact and interface of heterostructures, as we have demonstrated in our works 

above
11,10

 , as well as in our more recent LEEM measurements
9
. 
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5 Computation of Current 

Characteristics in Interlayer TFETs 

In this chapter, we discuss theory for computing tunneling currents in two-dimensional 

(2D) heterostructures. We will focus on vertical transport in such heterostructures. 

Previous theoretical work for graphene-based device such as graphene-insulator-graphene 

has made predictions that agree well with the experiment in terms of shape and position 

of the current peak in I-V characteristics. However, the magnitude of the current 

predicted by the theory is about 10
4
 times larger than that of experiment. The goal of this 

work is two-fold: to explore limitations in the current theory and propose improvements 

that allow more accurate, reliable computations of the current magnitude; to extend the 

theory to be applicable to tunneling in general 2D heterostructures. A large portion of the 

results presented here is published in J. Electron. Mater. (2017).
6
 For this work, Prof. 

Randall Feenstra conceived the idea. Prof. Feenstra and the author (JL) worked together 

to develop the theory to compute the tunneling current. Yifan Nie from the Cho group at 

University of Texas, Dallas performed density-functional-theory (DFT) calculations for 

the various 2D materials. The author computed current characteristics for devices 

constructed with different 2D materials. 

5.1 Introduction 

Owing to their very low off-state currents, and steep subthreshold swing when 

approaching the on state, tunneling field-effect transistors (TFETs) are very attractive 

devices for low-power electronic applications.
29

 In recent years, two-dimensional (2D) 

layered materials have been studied both theoretically and experimentally for such 

devices.
126-131

 We focus in this work on vertical, interlayer devices in which the tunneling 

occurs between 2D layers (rather than within a layer). Such devices consist of two 

electrodes (source and drain), surrounded by one or two gates, as pictured in Figure 

5.1(a).  The source and drain may be separated by one or more layers of insulating 
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material forming the tunnel barrier (such as hexagonal boron nitride, h-BN), or in 

principle the tunneling can occur simply between the van der Waals (vdW) gap that 

separates the source and drain. Following Li et al.,
126,127

 we refer to such devices as two-

dimensional heterojunction interlayer tunneling field-effect transistors (Thin-TFETs). 

 

Figure 5.1 Schematic and tunneling modes of Thin-TFET. 

(a) Schematic view of Thin-TFET. Source and drain electrodes are typically 

made of transition metal dichalcogenide monolayers, with zero, one or more 

layers of h-BN as the tunneling barrier. (b) and (c) Unlike-band and like-band 

tunneling, respectively, showing the valence band (VB) and conduction band 

(CB) of the source (S) and drain (D) electrodes. Dashed lines represent the 

Fermi levels of the electrodes. A source/drain overlap length of 15 nm is 

assumed, as indicated. 

 

There are two fundamentally different modes of operation for a Thin-TFET: 

tunneling between unlike bands, or tunneling between like bands, as schematically 

illustrated in Figure 5.1(b) and (c).
6
 For unlike-band tunneling, electrons flow from the 

valence band (VB) of one electrode to the conduction band (CB) of the other. This is the 

usual mode for TFETs, providing a steep turn-on of the current when the bands overlap 

(this mode is also known as band-to-band, Zener, or reverse-bias tunneling). In contrast, 
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for like-band tunneling, the electrons flow from VB to VB or CB to CB, i.e. depending 

on the Fermi-level positions in the source and drain. For the case of 2D materials in 

particular, this mode yields negative differential resistance (NDR) due to the 

phenomenon of “lateral momentum conservation” during the tunneling (hence, this mode 

is sometimes referred to as 2D-2D tunneling).
132-138

  

 

Figure 5.2 Examples of two tunneling modes of interlayer TFETs 

Examples of computed current characteristics of unlike-band tunneling on 

linear scale (a) and log scale (b), and like-band tunneling on linear scale (c) 

and log scale (d). The red circles in (b) and (d) show voltage ranges where the 

subthreshold swing (SS) is lower than 60 mV/dec. 

 

 In Figure 5.2 we show examples of computed current characteristics of the two 

tunneling modes. Figure 5.2(c) shows characteristic NDR for like-band tunneling. By 

comparing Figure 5.2(c) and (d) (note that their y-scales are different), we see that the 

subthreshold slope for unlike-band tunneling is much steeper than that for like-band 
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tunneling. This is due to the aforementioned different tunneling mechanisms: sharp turn 

on when the bands start to overlap for unlike band tunneling, and NDR due to 

conservation of the lateral momentum for like band tunneling. 

5.2 Electrostatics 

We deal with electrostatics for the Thin-TFET (Figure 5.1) by solving one dimensional 

Poisson’s equation. Assuming the capacitances of the top oxide, back oxide, and the 

insulating h-BN layer are TOXC , BOXC  and IOXC  are respectively. Then by the Gauss 

law, we have
126
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where TOXV , BOXV , and IOXV  are the voltage drops across the top oxide, back oxide, 

and the insulating h-BN layer. DN  and AN  are n-doping of top electrode and p-doping 

of bottom electrode respectively. 
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are carrier densities of electrons and holes respectively. The density of states ( )dos E  can 

be computed analytically assuming a parabolic effective mass approximation
126,132

 or 

numerically using the density functional theory (DFT) calculated density of states
6
. 

) 1/ (1 exp{( / })( ), F FE E Tf E E k    is the Fermi-Dirac distribution for the occupation 

factor of electrons. 

 The voltage drops in (17) can be related to external voltages applied and electron 

affinities of the electrodes, 
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where TGV , BGV  and DSV  are applied top gate voltage, bottom gate voltage and source 

drain bias as shown in Figure 5.1. ,M T  and ,M B  are work functions of top and 

bottom gates. 2 ,D T  and 2 ,D B  are electron affinities of top and bottom (2D) electrodes.

GBE  is band gap of bottom electrode. ,n Te  is energy difference between Fermi level 

and conduction band minimum of the top electrode and ,p Be  difference between 

valence band maximum and Fermi level of the bottom electrode. 

5.3 Single Plane Wave Treatment 

Before touching on the details of the methodology, we take a look at why the Bardeen 

approach is more desirable compared to some other methods for our problem. Essentially 

we have the following 2D tunneling problem (Figure 5.3(a)). Electrons flow from the left 

of source electrode towards right, as they approach the overlap region of the source and 

drain, the wavefunction spreads out. Part of it transmits through the gap into the drain 

electrode while the rest is reflected back. It is difficult to solve this problem exactly using 

the first-principles method because one needs to consider a supercell that is not only large 

on the z direction (tunneling direction), but also macroscopically large on the x direction 

due to in-plane heterogeneity, let alone other difficulties such as lattice mismatch when 

the source and the drain are made of different 2D materials. 

 One way to solve the problem approximately is to use the tight-binding model, 

although few such results exist in the literature. One major difficulty of using the tight-

binding for this problem is obtaining reliable, accurate estimates of the hopping 

parameters. The Bardeen approach avoids all these problems at the price of reduced (but 

still reasonable, detailed in section 5.4.5) accuracy. It assumes that we have the 

wavefunctions of the source and the drain in absence of the other, i.e. for source and 

drain separately. Once we have the wavefunctions, the Bardeen formalism involves 

evaluation of the overlap integral of the wavefunctions from the two electrodes.
132,139

 For 

the wavefunctions of the 2D electrodes, researchers have either assumed some simple 

analytic form, like the single plane wave treatment discussed below,
126,127

 or have 

computed them using the first-principles density functional theory.
6
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Figure 5.3 Schematic of 2D tunneling and Bardeen approach 

(a) Schematic of 2D tunneling, showing incoming wavefunction k , 

transmitted wavefunction k   and reflected wavefunction k  . (b) Schematic 

of the Bardeen approach to the problem, which involves evaluation of the 

integral of the overlap of source and drain wavefunctions. 

 

 Earlier works that apply the Bardeen formalism to the interlayer tunneling of 2D 

materials have employed a “single plane wave” treatment.
126,127,132,135

 In that treatment, 

the conduction (or valence) band of a 2D material is approximated by a single effective-

mass band (Figure 5.4(a)). This approximation allows derivation of an analytic form for 

the density of states to be used in the electrostatics.
126,127

 Additionally, the wavefunctions 

are assumed to decay exponentially into the barrier (or vacuum) between the two 2D 

materials and be plane-wave characteristic in the lateral direction in the overlap region 

(Figure 5.4(b)). Under these assumptions, the prior theory has made predictions about the 

current characteristics in graphene tunneling device that agree with the experiment in 

terms of shape and position of the NDR peaks.
132,133,135

 However, despite that agreement, 

there was a large discrepancy between the magnitude of the computed current compared 

to experiment. This motivates our work in the next section, using wavefunctions 

computed from first-principles density-functional theory and with currents computed 

using the Bardeen formalism. 
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Figure 5.4 Single plane wave treatment of 2D Bardeen tunneling 

(a) Single effective mass band approximation to the conduction and valence 

band of monolayer WSe2. (b) Plane wave characteristics assumed for the 

lateral part of wavefunctions of the two 2D materials in the overlap region 

(e.g. middle of the barrier). The atomic planes are pictured as grids of dots, in 

the xy plane. Plane wave character in the xy direction for the wavefunctions 

exists both on the atomic planes and extending out into the space between the 

planes, as pictured. 

 

5.4 DFT-Bardeen Method 

In this section we consider unlike-band tunneling in Thin-TFETs, focusing on the 

magnitudes of the currents that are attainable in such devices. We employ the Bardeen 

tunneling approach,
139,140

 with wavefunctions from density-functional theory (DFT). The 

tunneling currents that we obtain differ, by as much as an order of magnitude, from those 

obtained in some prior theoretical approaches to this problem.
126,127,131-135,137,138

 The main 

goal of this work is to obtain reliable estimates of the magnitude of the tunnel current, for 

comparison with benchmark values that are needed for low-power digital applications. 
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We discuss the differences between the details of the various theoretical approaches, and 

argue that our present method provides reasonably reliable estimates for the magnitude of 

the current (while at the same time recognizing that certain aspects of the problem are not 

well treated in the present computations). 

5.4.1 Theoretical Method 

We employ the Bardeen method for tunneling,
139-141

 as described in detail in our previous 

work which dealt with graphene-based devices.
132

 This method is a first-order 

perturbative approach, which does not permit inclusion of interactions between the 

electrodes (other than those that produce tunneling). Rather, it treats the electronic 

structure each electrode in the absence of the other, and hence electrodes of differing 

materials can be easily handled (i.e. without explicitly considering the large unit cells that 

constitute an epitaxial match between the two materials). However, when the tunneling 

barrier consists simply of a vdW gap between source and drain (i.e. with no h-BN or 

other insulator in the barrier) then certainly the interactions between electrodes will not 

be negligible. Nevertheless, the goal of our work is to evaluate how the magnitude of the 

tunnel current will vary depending on the material used for the source and drain 

electrodes, i.e. depending on the overlap of the wavefunctions between the two electrodes. 

In this regard our computations employing the Bardeen method provide useful 

information, since we find orders-of-magnitude variations in the tunneling current 

depending on the materials. We also note that even though the tunnel barriers formed in 

the vdW gap between 2D electrodes are relatively small, we find that the Bardeen method 

still works fairly well (accuracy of a factor of 2 – 3, with the currents being 

underestimated by this amount) for the cases we consider, as demonstrated in the 

Appendix. 

 In contrast to prior work which employed only a very approximate form of the 

wavefunction (i.e. just a single plane-wave, SPW),
132,133

 in the present work we employ 

the full form of the wavefunctions as given by the Vienna Ab Initio Simulation Package 

(VASP),
81

 with the projector-augmented wave method. The Perdew-Burke-Ernzerhof 

form of the generalized-gradient approximation (GGA) for the density functional is 

used.
142

 The wavefunctions are expanded in plane waves with a kinetic energy cutoff of 
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500 eV, and the convergence criterion for the electronic relaxation is 10
-4

 eV. The 

computation of states over the Brillouin zone (BZ) needed to compute the tunnel current 

is performed typically with a 32321 or 40401 Monkhorst-Pack k-point mesh.
143

 The 

structure of the transition metal dichalcogenide (TMD) monolayers follows a prior 

theoretical study.
144

 The TFET electrodes are modeled simply as single monolayers (MLs) 

of the 2D materials (e.g. adjacent planes of Se-W-Se for the case of WSe2, where we 

refer to that assembly as a ML). Each supercell includes a vacuum region with width of 

about 20 Å, to minimize the interaction between adjacent supercells. 

 Energy bands for monolayer (ML) WSe2 and ML SnSe2 are pictured in Figure 

5.5(a) and (b), respectively, using their hexagonal Brillouin zones (BZs). WSe2 has its 

VB maximum at the K-point, and it has two CB minima, one at the K-point and the other 

at a slightly lower energy located at a Q-point between Γ and K. SnSe2 has its VB 

maximum located between Γ and M, and its CB minimum at the M-point. Energy bands 

for phosphorene are pictured in Figure 5.5(c).
145

 The BZ is rectangular in this case, with 

CB minimum at the Γ-point and a VB maximum that is relatively broad and extends from 

the Γ-point to a point between Γ and X. 

 

Figure 5.5 Energy bands for 2D materials computed by DFT. 

Energy bands for (a) ML WSe2, (b) ML SnSe2, and (c) Phosphorene from 

DFT computations. For the plots, the zero energy level has been taken to be 

that of VB maximum for each of the materials. 

 

The wavefunctions that we employ from VASP take the form of plane-wave 

expansions, 
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where , ,C k G  are the expansion coefficients for band  , wavevector ( , , )x y zk k kk , 

and reciprocal lattice vector of the simulation cell ( , , )x y zG G GG . CV  is the volume of 

the cell, to which the VASP wavefunctions are normalized. We find it more convenient to 

employ an area 2A L  for the lateral part of the wavefunction, rather than the area of the 

unit cell CA , and hence we multiply the wavefunctions by a factor of /CA A . 

Including a factor of 2 for spin degeneracy, tunnel currents are obtained from
139,140
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with matrix element given by 

 *2
*

2

d d
M dS

m dz dz

 
  

 
 
 

  
 
 

  (22) 

where ( , )   k  and ( , )   k  label the states of the two electrodes, having 

energies E  and E , respectively, and where m is the free electron mass. We choose the 

normalization length in the z direction to be the supercell period, in which case we need 

only include the standing wave states with 0zk   in this computation of the current; thus 

we henceforth take ( , )x yk kk  for both electrodes. In Eq. (2), f  and f  are Fermi 

occupation factor for the electrodes,   
1

( ) 1 exp ( ) / Bf E E k T 


   and 

 
1

( ) 1 exp ( ) / Bf E E k T 


     , where   and   are the chemical potentials in 

the two electrodes, eV     , where V is the applied bias on the -electrode 

relative to the -electrode.  

 Utilizing Eq. (20) for the wavefunctions, we evaluate the integrand of Eq. (22) to 

be 
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with ( , )x yρ and where ( , )x yG G G  for both electrodes. The integrand is evaluated 

at the point z, which is half of the barrier width from the atomic planes of the 2D layers of 

each electrode. The barrier width is determined by the experimental separation between 

the electrode materials, if known, or if not then by the average of the layer-separations of 

the individual electrode materials in bulk form. Considering now the surface integral over 

the plane separating the electrodes, the only term in Eq. (23) that has any (x,y) 

dependence is the final exponential term. We have argued previously that a useful model 

for evaluating the surface integral is to consider a phase coherent area for the 

wavefunctions in the respective electrodes, given by 2A L  where L is denoted as the 

coherence length (we have utilized the same L above for the wavefunction normalization). 

The surface integral of the final exponential in Eq. (23) is then easily evaluated, yielding  

 
2 sinc sinc

2 2

yx
L qL q

L
  
  

   
 (24) 

where 
, , , ,x x x x xq k G k G       , 

, , , ,y y y y yq k G k G       , and sinc( ) sin( ) /u u u . 

As previously discussed,
135

 a somewhat better model is to utilize a distribution of phase 

coherence lengths, in which case the expression of Eq. (24) can be replaced by 

 2

2 3/2[1 ( / ) ]c

L

q q
 (25) 

with 2 /cq L , 2 2| | x yq q q  q .  

 Combining Eqs. (21), (22), (23) and (25), a formal expression for the tunnel 

current is easily obtained. However, this expression still contains the energy -functions 

of Eq. (21). One could simply broaden those -function (e.g. as done in Ref. 131), but 

since we are interested in evaluating the steepness of the turn-on for unlike band 

tunneling, we wish to avoid such broadening. Hence we convert the sum in Eq. (21) for 
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one of the electrodes, say the -electrode, into an integral over k  (two-dimensional 

wavevector), and then into an integral over energy according to 

 2

2 2(2 ) (2 )

k

k

dA A
d k dE

E 
 


   
k

, (26) 

where kd is a line integral in k-space along a constant-energy contour. In this way the 

energy -function can be used to evaluate the energy integral, with the line integral and 

the gradient term evaluated at the specific energy of the state of the -electrode. Hence, 

the expression for the tunnel current becomes 
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with f  and f  defined following Eq. (22), q  and cq  defined following Eq. (25), and 

where, again, the line integral along the constant-energy contour in the -electrode is 

evaluated at the specific energy of each state of the -electrode. Equation (27) as written 

provides the current over an L L  area, so that current density is given by /I A. For our 

results in the following section, we consider an overlap length between source and drain 

of 15 nm, so the current per unit electrode width is /I A  times 15 nm. 

 To evaluate the -electrode line integrals, a small area around each k-point that is 

exclusive to that point is defined (i.e. a “mini BZ”, with same shape as the BZ but smaller 

in area by a factor of 2n  for a n n  mesh). This area is split up into a series of triangles 

utilizing the lines joining the particular k-point with its neighbors. Using linear 

interpolation of the energies between neighboring k-points, the constant-energy contour 

is defined within each triangle and hence in a piecewise linear fashion across the entire 

BZ, and similarly the magnitude of the gradient k E  is evaluated along the contour. 
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The magnitude of 
2

M  varies along the line integral, in accordance with both the q 

values and the values of the 
, ,

C
  G k

coefficients; the former are accurately known,  

and the latter are evaluated depending on which particular k-point is nearest the specific 

point on the contour. We perform linear interpolation of the 
2

M  values from 

neighboring k-points when we evaluate the line integral. 

 

Figure 5.6 Section of reciprocal space for ML WSe2 

Section of reciprocal space for ML WSe2, showing the k-points (x-marks) in 

the irreducible wedge of a 3232 Monkhorst-Pack mesh in the BZ. Orange 

dashed lines show the edge of the BZ, with reciprocal vectors 1b  and 2b  

indicated. Constant-energy contours are represented by blue ovals, for an 

energy of 0.06 eV above the conduction band minimum at the K-point; 

contours around the K-points and Q-points are apparent. 
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For these evaluations, in the -electrode, all states must be fully defined across 

the entire BZ (i.e. not just the irreducible wedge of the BZ). For this purpose, we 

transform both the energies (as scalar quantities) and the plane-wave coefficients (as 

vector quantities) from the irreducible wedge to all other parts of the BZ. For the 

coefficients, transformation to negative k values is accomplished by time reversal, in 

which the complex conjugates of the wavefunctions are computed, since the real-space 

unit cells of the materials lack inversion symmetry in some cases. As an example of 

intermediate quantities in our computation, we display in Figure 5.6 the constant-energy 

contours of the WSe2 conduction band, evaluated at an energy of 0.06 eV above the 

conduction band minimum at the K-point. The contours are shown in a repeated-zone 

scheme, with each zone representing one of the G  terms from the summation of Eq. 

(28). (Note that for the particular 3232 mesh used here, there is not a k-point directly at 

the K corner of the BZ; nevertheless in our computations we add that point from a 

separate VASP run, e.g. using a 1212 mesh, to permit a reasonably good description of 

the contours even very near the K-point). 

Concerning the states of the -electrode, in principle we should also extend those 

over the entire BZ in a similar manner as for the β-electrode. However, in many cases 

(e.g. for the same symmetry of both electrodes and no angular misorientation between 

them) it suffices to simply multiply the current obtained from a particular state associated 

with a k-point within the irreducible wedge of the BZ by a suitable factor (e.g. multiplier 

of 12 for a general point in the irreducible wedge of a hexagonal BZ). Additionally, it is 

important to realize that since we have normalized the wavefunctions to the volume 

CC AAV /  then we have, formally speaking, CAA /  k-points in the sum over k  in Eq. 

(27). Hence, for the nn  mesh of k-points that we actually use in the computation, the 

total current must be multiplied by )/( 2
, nAA C  . As just described, it is clear that the 

treatment of the two electrodes is quite different in our methodology. Of course, it is 

possible to swap the sense of the electrodes (together with changing the sign of the 

applied bias voltage), so that we can choose which electrode to be the - or the -one. 
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Generally, it is advantageous to place the electrode with the flattest band as the -one, so 

that the spacing of the constant-energy contours in the -electrode is as small as possible. 

To model the electrostatics of the Thin-TFET, we employ the method described in 

Ref. 126, which solves a one-dimensional (1D) Poisson equation in the z direction. In this 

model, the difference of Fermi levels of source and drain is determined by the applied 

source-drain voltage. The source-drain band alignment is determined by that voltage 

together with the electron affinities and band gaps of the electrodes and the detailed 

parameters associated with the gates (dielectric constants, work functions, gates voltages). 

One gate is held at a fixed potential, and a voltage applied to the other gate then acts to 

tune the band alignment. In this 1D model, the current density is uniform over the 15 nm 

overlap area of the electrodes (this assumption of uniform current density over the 

overlap region is consistent with results from other reports,
146,147,148

 discussed in more 

detail below, which include the possibility of in-plane variation in the potentials and 

current densities over the electrodes). We also mention that our electrostatic computation 

uses the DFT-generated density of states, which includes multiple bands (important e.g. 

for the CB of WSe2), whereas the model of Ref. [126] employs only a single-band 

effective-mass treatment. 

5.4.2 Results 

We focus on results for 2D materials that have band gaps, for which unlike-band 

tunneling will produce a steep slope at the onset of the current. In particular, we consider 

chalcogenide materials (i.e. containing S, Se or Te) as well as phosphorene (Phos). For 

heterojunction devices, an important criterion in choosing the respective materials of the 

source and drain is the energy offset between the CB edge of one material (material 2) 

relative to the VB edge of the other (material 1), i.e. ∆ECV = EC
(2)

 – EV
(1)

. Ideally this 

energy difference will be relatively small, so that the appropriate band edges are 

approximately aligned (relative to the vacuum level) without application of large gate 

voltages. One such heterojunction that has been previously proposed in this regard is 

WSe2-SnSe2, with ∆ECV = 0.2 eV.
127

 We examine this case in detail here, and compare it 

to a Phos-Phos TFET (which does not have a small ∆ECV value, but nonetheless is 

interesting for comparison purposes since the resulting tunnel currents are larger). 
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 For all computed current results presented in this work, we consider a coherence 

length of 10 nm, a source/drain overlap length of 15 nm, equivalent oxide thickness (EOT) 

in the gate dielectrics of 1 nm for both gates, and drain source bias (VDS) of − 0.2 V. A 

vdW gap, i.e. zero layers of h-BN in the tunnel barrier, is assumed. We also choose 

different gate work functions (within realistic range) for different devices in order to 

better align the bands of the source and drain electrodes and thusly maximize the current. 

 

Figure 5.7 Tunneling current characteristics computed for Thin-TFET 

Current flowing from source to drain, ID, as a function of bottom gate voltage, 

VBG, for (a) a WSe2-SnSe2 device with their lattice being aligned (b) a WSe2-

SnSe2 device with 30° rotational misalignment between their lattices and (c) a 

Phos-Phos device with their lattices aligned. Values are listed for top gate 

voltage (VTG) and work functions of top gate (WTG) and bottom gate (WBG). 

 

 Figure 5.7(a) shows the computed ID vs. VBG characteristic for a WSe2-SnSe2 

TFET, with the lattices of WSe2 and SnSe2 being aligned. The current is caused by 

tunneling of electrons from the VB maximum of WSe2 to the CB minimum of SnSe2. 

Note that there is a wavevector mismatch between the tunneling states. Figure 5.7(b) 
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shows the result still for a WSe2-SnSe2 TEFT, but with 30° rotation between their lattices 

in order to better align the wavevectors of the SnSe2 CB minimum with those of the 

WSe2 VB maximum. An obvious increase in the magnitude of the current is observed. 

Figure 5.7(c) shows the result for the Phos-Phos device, where we see that the tunneling 

currents are much larger than those of the WSe2-SnSe2 (either 0° or 30°) device. This 

difference originates from the overlap matrix elements of the two cases, i.e. Eq. (1), 

which for WSe2-SnSe2 are relatively small due to the detailed nature (symmetry) of the 

wavefunctions, whereas for Phos-Phos the values are much larger. 

 From the ID-VTG characteristic shown in Figure 5.7, we can extract values that are 

useful for benchmarking of the device performance. Specifically, the current at which the 

subthreshold swing (SS) changes from <60 mV/dec to >60 mV/dec is denoted by I60. In 

addition, an ON current for the device, ION, can be characterized by taking the current at a 

gate voltage that is +0.2 V greater than the onset voltage of the characteristic. We 

multiply the current densities from the computations by the overlap length in order to 

obtain currents per unit width of the device, µA/µm. In Figure 5.8 we display these two 

quantities, I60 and ION, for the WSe2-SnSe2 (0° and 30°) and Phos-Phos devices jut 

discussed as well as for a variety of other Thin-TFETs. Structures of most of the 

materials in Figure 5.8 follow a prior theoretical study.
144

 Additionally we considered 

other 2D materials such as GaSe.
149

 Again, we only consider cases where the energy 

difference ∆ECV = EC
(2)

 – EV
(1)

 is relatively small, with ∆ECV deduced from the DFT 

computations (We note that DFT is well known to underestimate experimental band gap 

values.
150

 An approximate correction to the band gaps will cause a right-shift of our 

results in Figure 5.8 by a quarter of the sum of the DFT band gap values of the source and 

drain electrodes.
144

). On this plot we also include typical desired values for these 

quantities for low-power digital applications, I60 = 1 µA/µm and ION = 200 

µA/µm.
151,152,153

 We see that the WSe2-SnSe2 (30°) device satisfies these benchmark 

values, while the WSe2-SnSe2 (0°) TFET falls below the desired values. 

 The Phos-Phos device shows a relatively large current, with I60 = 1.50×10
4
 

µA/µm and ION = 9.39×10
4
 µA/µm. We emphasize that our theory ignores any 

modifications to the band structure of such a device due to interactions between the 
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electrodes, and indeed these have been shown to be large for the case of Phos-Phos 

tunneling devices by Constantinescu et al.
131

 Those authors argued that a tunnel barrier 

consisting of one or few layers of h-BN is desirable in order to reduce the interactions 

between the Phos electrodes. To roughly estimate the inclusion of h-BN in the barrier, we 

can reduce our current by a factor of 50 for each layer of h-BN added (this factor of 50 

arises from explicit computations for graphene/h-BN/graphene tunnel junctions, 

discussed elsewhere,
8
 and is in very good agreement with experimental measurements for 

this system
154

). For the Phos-Phos TFET, including a single layer of h-BN then yields an 

ON current ION = 1.9×10
3
 µA/µm, still well above the desired values. 

 

Figure 5.8 ION and I60 computed for diverse Thin-TFETs 

Results for I60 (open symbols) and ION (closed symbols), for Thin-TFET 

devices made from the materials shown. Electrons flow from the VB of the 

upper material (denoted 1) to the CB of the lower material (denoted 2), with 

the difference between these band edges given by ∆ECV = EC
(2)

 – EV
(1)

. The 

difference ∆ECV is deduced from the DFT computation. Desired values for ION 

and I60 are indicated by solid and dashed lines, respectively. 
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Figure 5.9 Tunneling current of Thin-TFETs with contact resistance 

Same caption as for Figure 5.8, but now with contact resistance of 80 Ω•µm to 

both source and drain. 

 

 Thus far we have not included any contact resistance in the simulation. To 

investigate the effect of the contact resistance on tunneling currents, we add contact 

resistance of 80 Ω·µm to both source and drain based on the recommendation of the 2011 

edition of the International Technology Roadmap for Semiconductors (ITRS) and its 

2018 node.
155,31

 Computations of the tunnel current then proceed iteratively, adjusting the 

voltage drop across the device based on the current from the prior iteration. The resulting 

ION and I60 are plotted in Figure 5.9. Compared with Figure 5.8, it is clear that the 

tunneling currents with larger magnitude are more affected by the contact resistance, 

since the maximum possible ION is now 1250 µA/µm = (0.2 V)/(160 Ω·µm). The ON 

currents for TFETs such as Phos-Phos, Phos-ZrS2, and WTe2-MoS2 closely approach this 

limit. For the case of a Phos-Phos device with one layer of h-BN as the tunnel barrier, as 

discussed in the previous paragraph, we have estimated the ON current to be 1.9×10
3
 

µA/µm which is considerably greater than the limiting value of 1250 µA/µm. Hence we 
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expect the ON current of such a device to also exceed the desired value of 200 µA/µm 

even in presence of the contact resistance. 

5.4.3 Discussion 

Generally, Figure 5.7 predicts that Thin-TFETs using different 2D materials as electrodes 

produce ION and I60 values that vary across several orders of magnitude. In particular, 

devices using Phos as one or both electrodes have currents that are much larger than for 

devices using TMD as both of the electrodes. There are two reasons for this difference. 

First, as shown in Figure 5.5(c), the VB maximum of Phos is at the Γ-point. States at the 

Γ point experience a lower tunneling barrier in the vdW gap than do states with finite 

parallel wavevector k , such as the K-point band-edge states in WSe2. 

 To illustrate this dependence, let us consider tunneling between two electrodes of 

ML WSe2, as shown in Figure 5.10. Figure 5.10(a) shows the potential (ionic plus 

Hartree plus exchange-correlation) for both 1 ML and 2 ML WSe2. Within the Bardeen 

approximation we can consider the two electrodes independently, i.e. using the potential 

and wavefunctions for the 1ML case and taking the product of the tails of the 

wavefunctions for the two electrodes at the midpoint of the barrier that separates them. 

Hence, to understand the magnitude of the tunnel currents it suffices to examine the states 

of the individual ML electrodes, and in Figure 5.10(b) we show two states of ML WSe2, 

one from the VB maximum at the K point of the BZ and the other from the highest lying 

VB band at the  point (energy of eV44.0  relative to the VB maximum). These 

wavefunctions are evaluated at a general (x,y) point (i.e. without special symmetry) in the 

unit cell. As seen in Figure 5.10(b), the K-point state has a significantly faster decay in 

the vacuum than the -point state, due to the nonzero lateral momentum, 289.1k Å
-1

, 

of the former state. In general, a state with energy E and nonzero value of k  will have a 

decay constant in the vacuum given by 
22/)(2 k EEm VAC , where VACE  is 

the vacuum level and m is the free-electron mass.
156,157

 Such states decay in the vacuum 

as if they experience an effective barrier that is larger than the nominal one by an amount 

m2/
22

k . For the lateral wavevector of 1.289 Å
-1

 we have 33.62/
22 mk eV, a 



120 

 

substantial increase in the effective barrier, and indeed the decay constants deduced from 

the slopes of the wavefunction tails in Figure 5.10(b) are in good agreement with values 

obtained from this formula for  . Thus, states with nonzero lateral momentum 

experience a much faster decay in the barrier (even for the case of only a van der Waals 

barrier), and hence the tunnel current that occurs between K-point states will be much 

less than that which occurs between -point states. 

 

 

Figure 5.10 Potential and wavefunction of WSe2 

(a) Potential, averaged over (x,y), for 2 ML WSe2 (orange circles) and 1 ML 

WSe2 (solid and green dashed lines, for two separate MLs). The energy of the 

VB maximum is indicated, VE  (solid red horizontal line, at 5.38 eV below the 

vacuum level, which is at 0 eV on the plot), along with energy of a state at 

eV44.0VE (dashed blue horizontal line). (b) Wavefunctions for 1 ML 

WSe2 for a K-point state at the VB maximum (solid red line) and a -point 

state at eV44.0VE (dashed blue line). 
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 The second effect that gives rise to the variation in tunnel current depending on 

the electrode material, as seen in Figure 5.8, has to do with the specific form of the 

wavefunction that occurs at zone-edge states, producing in certain cases orthogonality (in 

the overlap matrix element of Eq. (28)) between the states of the source and drain 

electrodes. This effect can be explained by reference to a two-band nearly free electron 

model, in which states of the two bands are mixed. According to this model, 

wavefunctions for states at the BZ edge are very different from those elsewhere in the BZ. 

An energy gap opens at the BZ edge, with states on either side of the gap having standing 

wave type wavefunctions of the form )cos()( ρk zf
 
and )sin()( ρk zg , respectively, 

where )(zf
 
and )(zg  are general functions describing the z part of the wavefunctions. 

Many TMD monolayers have their VB maximum and/or CB minimum at the K point, 

which is at the BZ edge. When we consider unlike-band tunneling and compute the 

overlap matrix element, then because of the orthogonality between the )cos( ρk   and 

)sin( ρk 
 
parts of the wavefunctions (i.e. even with the two states being centered at 

different z values), we find in certain cases a result of zero. 

 Comparing our results with those of prior theories, we find that there are 

significant discrepancies between the various treatments. One of these arises from the use 

of a different form from Eq. (22) for evaluating the matrix element:
131,133

 

 
   )(*

rr VdM , (29) 

where )(rV  is a “scattering potential” of the tunnel barrier, and  ,   are 

wavefunctions of the source and drain electrodes respectively as in Eq. (22). The integral 

is evaluated over the entire tunnel barrier volume. Equations (22) and (29) will, in general, 

yield quite different results. There is however some similarity between them, since both 

equations depend on the difference, q, between the lateral wavevectors for the states in 

the two electrodes. All authors dealing with 2D tunneling devices evaluate this part of 

Eqs. (3) or (10) in a similar way, yielding some sort of Gaussian or Lorentzian form that 

falls off for q  values above some critical value (which is inversely proportional to the 

coherence length L). This is the “wavevector conserving” part of the overlap matrix 
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element, and there is general agreement on this part. However, aside from that 

wavevector-conserving part, the remainder of the matrix element depends on the detailed 

nature of the wavefunctions as well on the different forms of Eqs. (22) and (29). These 

portions of the matrix elements from Eq. (22) compared to (29) will, in general, yield 

quite different results. 

 For example, a recent report considering a Phos-Phos TFET with one layer of h- 

BN as the tunnel barrier has employed Eq. (29) for their current computations.
131

 In 

Section III, we have estimated an ON current (with no contact resistance) for such a 

device to be 1.9×10
3
 µA/µm. This current is about an order of magnitude smaller than 

that in Ref. 131. We believe that this discrepancy arises from the use in that work of Eq. 

(29) for the tunneling matrix element (with the potential V  taken to be the full potential 

of the h-BN barrier), whereas we have employed Eq. (22). We emphasize that we are in 

full agreement with nearly all of the results of Ref. 131, including their voltage-

dependence of the current for both like-band and unlike-band tunneling. We have 

disagreement only on the issue of the absolute magnitude of the tunnel current. (We also 

note that Ref. 131 explicitly includes the h-BN barrier layer in the wavefunction 

evaluation, whereas we have only estimated the influence of the h-BN, but it seems 

unlikely that this difference will lead to a significant increase in the current). 

 Apart from the discrepancy resulting from which form to use for evaluating the 

tunneling matrix element, a second discrepancy arises from the use of wavefunctions that 

consist of a single plane-wave (SPW), rather than the full form as in Eq. (20). The SPW 

wavefunctions lead to a matrix element that, aside from the “wavevector conserving” part 

discussed above, is essentially independent of the particular states involved in the 

tunneling. As discussed above in connection with the two-band nearly free electron 

model, we find in the VASP wavefunctions a large dependence of the matrix elements on 

the particular states; for all states the magnitude of the matrix element is much different 

than that obtained from the SPW theory. Theories using essentially the SPW 

wavefunctions for TMD devices have been employed in several recent works,
126,127,138

 

employing a constant matrix element value of 0.02 eV (for 0q ), obtained by matching 

to experiment employing an argument involving interlayer charge transfer time.
127

 From 
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our DFT results, we find the value of the matrix element for the WSe2-SnSe2 (30°) device 

to be 0.06 eV, i.e. 3× larger than that in Ref. 127. Our current (which is proportional to 

the square of the matrix element) is therefore about an order of magnitude larger, as 

shown in Figure 5.7(b). As revealed by our results of Figure 5.7, 5.8 and 5.9, the matrix 

element (and hence the tunnel current) is very dependent on what 2D materials being 

used for the Thin-TFETs. 

 Finally, we note that several computations using a theory other than the Bardeen 

formalism for interlayer TFETs have been reported.
146,147,148

 In these works, detailed 

device simulations are performed using the non-equilibrium Green’s function (NEGF) 

formalism. In Ref. 146, the authors consider a MoS2-WTe2 TFET with 1 nm thick h-BN 

as the tunnel barrier, with a coupling term between electrodes set by reference to 

experimental results for graphene/h-BN.
158

 To compare with their results, we perform 

computations using their choice of parameters (VDS = 0.3 V, overlap length of 20 nm, 

etc.), except with a vdW gap (zero layers of h-BN, corresponding to separation between 

chalcogen planes of opposing TMD electrodes of about 0.33 nm). We then roughly 

estimate the current with the h-BN included by dividing the result by 2500, 

corresponding to two layers of h-BN (0.66 nm) plus our vdW interlayer thickness of 0.33 

nm. In this way, we obtain an ON current of 4.0 µA/µm for a coherence length of 5 nm or 

10 nm, or of 5.4 µA/µm for the coherence length of 20 nm. These values are in good 

agreement with those reported in Ref. 146. 

 In both Refs. 147 and 148, the authors consider a Thin-TFET with only a vdW 

gap (i.e. no hBN). The first of these reports studies a MoTe2-SnS2 TFET and assumes 

equal and opposite voltages applied to the two gates. As a result, relatively low tunnel 

currents are obtained, since the overlap of their VB of MoTe2 with the CB of SnS2 is not 

maximized (in order to maximize the current at ON state, the overlap of the VB of one 

electrode with the CB of the other should be maximized subject to constraints by their 

Fermi levels, i.e. the overlap of tunneling bands should be made close to the difference 

between Fermi levels of the two electrodes). In Ref. 148, a MoS2-WTe2 TFET is 

considered and a better electrostatic arrangement was used (with one gate held at fixed 

potential and a varying voltage applied to the other, i.e. the same as what we employ in 



124 

 

the present study). Currents as high as 1000 µA/µm is obtained, for a gate voltage of   

VTG = − 0.3 V. We have applied our method to their arrangement (VDS = − 0.3 V, overlap 

length of 30 nm, EOT = 0.5 nm and VBG = 0.5 V), and we find an ON current that is 

about 6× larger than their result. This difference might arise from the tight-binding 

approximation used in Ref. 148, or the Bardeen approximation of our work. However, 

since the electrostatics model used in Ref. 148 is considerably more sophisticated than 

our 1D model, we feel that further investigation of this aspect of the problem is warranted, 

in order to better compare the theories. 

 It is important to remark that the results presented here should be viewed as only 

approximate estimates of the tunnel currents. The Bardeen method is based on the first-

order perturbation theory (hence only requiring knowledge of only the eigenstates of each 

electrode in the absence of the other), and as such it is a convenient method for obtaining 

estimates of the tunneling current. However, modifications to the band structure of total 

system due to interaction between the electrodes are ignored, which is expected to be 

quite a significant approximation for the case of zero layers of h-BN between the 

electrodes. Additionally, our computations do not include effects of h-BN interlayers, 

except for graphene/h-BN/graphene devices where we have included the h-BN.
8
 We find 

in that case the presence of the h-BN (aligned with the graphene) produces about a 50× 

reduction in the current for each layer of h-BN. However, misalignment of the h-BN and 

graphene could well produce additional reductions in the current. Similarly, for electrode 

materials other than graphene, it is possible that reductions to the current (beyond 50× per 

layer) due to lattice mismatch between the h-BN and the electrodes could well occur. 

5.4.4 Conclusions 

The goal of our work is to provide reliable estimates of the magnitude of the tunneling 

current in Thin-TFETs, which can be benchmarked against values that are appropriate for 

low-power digital applications. We find a considerable spread in the results depending on 

the materials used for the electrodes (due to the overlap matrix elements, i.e. considering 

effects that go beyond those due to wavevector conservation alone). As such, we feel that 

this work will be useful in choosing among the various materials with which to fabricate 

Thin-TFETs. The considerations described here regarding the detailed form of the 
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wavefunctions, i.e. their symmetry and momentum-dependent decay constant, would also 

apply to TFETs made from three-dimensional (3D) materials.
29

 However, the Thin-

TFETs have the potential advantage that the tunneling can occur across a thin insulating 

layer (e.g. an h-BN layer, or in principle just a vdW gap), as opposed to the tunneling 

across the bandgap of a semiconductor depletion layer that is generally utilized in a 3D 

TFET. This depletion layer requires substantial doping and/or electrostatic gating, such 

that the distance across it is sufficiently small to enable large current. For the Thin-

TFETS considered here, the predicted ON currents are found to be relatively large, 

resulting from the very thin tunnel barrier (i.e. the vdW gap) that is assumed in the 

simulations. 

5.4.5 Appendix 

In the main body of this work we consider interlayer tunneling between two 2D 

electrodes, i.e. with electrodes extending in the (x,y) directions and tunneling in the z 

direction through a barrier. An exact solution for this problem using DFT wavefunctions 

does not exist, and we have employed the Bardeen method to solve this problem. In order 

to gain some insight into the accuracy of the Bardeen method, we considered a model 

problem in one dimension (1D), for which both the exact and the Bardeen solutions are 

readily available. 

 Our model problem is constructed by employing the plane-averaged potential for 

WSe2 (as shown in Figure 5.10), using the 2-ML potential for our “exact solution” and 

the 1-ML potentials of two opposing electrodes for the “Bardeen solution”. For both 

situations we truncate the potentials such that they are a constant within the electrodes; 

specifically, we take the value of the potential at its local minimum that occurs near the 

Se atoms, and use that for all locations deeper into the electrode. The resulting model 

potentials are shown in Figure 5.11. By taking the potentials to be a constant within the 

electrodes, we are able to easily obtain both the exact and the Bardeen solutions. (For 

ease of language we are referring to the locations where the potential is a constant as the 

“electrode” and elsewhere as the “barrier”, although in reality no such division between 

these two regions is made in our solutions since we employ a completely general solution 

of the Schrödinger equation in 1D). We consider electrodes of thickness D for both 
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problems, as indicated in Figure 5.11. We solve the problem for a general D value, and 

then consider small D values of 3 – 5 Å, as applicable to actual ML TMD or phosphorene 

electrodes. 

 

Figure 5.11 Model potentials to investigate accuracy of Bardeen method 

Model potentials (thick green solid and dashed lines) for two one-dimensional 

problems that are solved in order to investigate the accuracy of the Bardeen 

method. Wavefunctions (solid blue and dashed red lines) are shown for a state 

with energy 5.38 eV below the vacuum level (shown at 0 eV in the plots). (a) 

Potential from 2-ML WSe2, truncated in the electrodes. The wavefunction is 

shown, with real part as solid blue line and imaginary part as dashed red line. 

(b) Potential from 1-ML WSe2, truncated in the electrodes and shown for two 

separate electrodes on the left- and right-hand sides. Wavefunctions (purely 

real) for each electrode are shown. 

 

 First we consider the exact solution to this one-dimensional problem. For a state 

with some energy E relative to the potential within the electrode, starting with an 
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outgoing plane wave in the right-hand electrode of the form ikzCe  with 
2/2 mEk  , 

we integrate Schrödinger’s equation back through the barrier region and into the left-hand 

electrode.
159

 We then normalize the wavefunction over the entire space of the two 

electrodes plus the barrier, and hence we determine 
2

C . The tunneling current 

associated with this state is then given by mCekjz /
2exact  . 

 

 

Figure 5.12 Ratio of Bardeen solution to exact solution 

Ratio of tunnel current from a Bardeen solution to that from an exact solution, 

for the model potentials shown in Figure 5.11, as a function of the energy of 

the one-dimensional state relative to the vacuum level. Results are shown for 

three electrode thicknesses, D. 

 

 Now we turn to a Bardeen solution for the problem, employing two electrodes 

each with potential obtained from the truncated 1-ML WSe2 potentials. For a state of 

energy E in each electrode, starting with a decaying exponential in the vacuum region 

with decay constant 
2/)(2 EEm VAC  for each electrode, the full wavefunctions 

are obtained by integrating Schrödinger’s equation back through the barrier and into the 
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electrode, and normalizing. The current for this state in one electrode is obtained by 

summing over a continuum of free-electron type states in the opposing electrode, 
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where   denotes the wavefunction from one electrode and    is the wavefunction from 

the other, and the matrix-element M  is evaluated at the midpoint of the barrier. In the 

second line of Eq. (30) we have inserted into the integrand the density-of-states for the 

continuum of free-electron type states, having wavevectors jk  and energies jE . 

 Figure 5.12 shows the ratio of the Bardeen to the exact solution, as a function of 

the energy of the state and for electrode thickness values of 3 – 5 Å. This thickness enters 

both the exact and the Bardeen solutions through the normalization of the wavefunctions. 

We emphasize that we have not applied any specific boundary conditions on the far left 

of the left-hand electrode nor the far right of the right-hand one. Rather, our goal here is 

simply to compare the Bardeen to exact solutions as they pertain to the relatively small 

tunneling barriers that occur between the WSe2 layers, i.e. arising from the potential 

within the van der Waals gap separating the electrodes. We find that for D values of 3 – 5 

Å, the current obtained from Bardeen solution is typically a factor of 2 – 3 times smaller 

than that from the exact current. The energies displayed in Figure 5.12 cover the full 

range of values applicable to computations in the main body of this work: These energies 

within our one-dimensional model correspond to the perpendicular component of the 

energy, mEE D 2/
22

3 k , for an energy DE3  of a state in a three-dimensional 

computation. Typical VB edges for the TMD materials lie at about 5  eV below the 
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vacuum level, which for tunneling from -point states then have the same values for E . 

However, for tunneling through a zone-edge (e.g. K-point state), we have 

eV63  DEE , as discussed above in connection with Figure 5.10. For CB edge 

states at the -point, they will lie as high as about 4 eV below the vacuum level, i.e. at 

the upper end of the plotted curves of Figure 5.12, and zone-edge CB states will lie about 

6 eV below that. Certain special states can lie even lower on this energy scale, e.g. if the 

amplitude of their Fourier component within the first BZ is zero, so that their k value to 

be used in computing  E  lies outside the first BZ (such states then decay 

correspondingly faster in the vacuum). 
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6 Conclusions 

In this work, centering on the idea of employing epitaxial 2D materials for scalable 

device fabrication over large areas, we studied growth, characterization, and simulation 

of some representative 2D materials. Specifically, we studied the surface structure of 

graphene formation on C-face of SiC, both experimentally and theoretically. In 

experiment, we investigated the sample surface phase as a function of annealing 

temperature and disilane pressure. LEED and STEM measurements were performed to 

study the sample surfaces. In theory, we carried out first-principles computations for an 

extensive set of surface structures and looked at surface energies as a function of C 

chemical potential and H chemical potential. Through these studies, we determine that 

with zero or low hydrogen coverage, the lowest energy surface/interface structures in C-

rich conditions contain > 1 monolayer of Si, forming adatom-on-adlayer structures. We 

also conclude that the observed √43×√43-R7.6°  LEED pattern arises from the 

arrangement of Si adatoms on the adlayer, whereas the ±7° LEED streaks of graphene 

likely arise from a low-strain fit between 6×6  SiC and √57×√57-R6.5°  unit cell of 

graphene. 

 We also studied band alignment and charge transfer in grown 2D heterostructures 

such as WSe2–graphene and MoS2–graphene using LEEM. The reflectivity spectra 

obtained from LEEM measurements allows extraction of work function differences 

between different domains on the sample surface and hence determination of band 

alignment and Schottky barrier at the interface of the heterostructures. In this way, the 

nature of electrical contact at the interface is revealed; the results are found to agree with 

those obtained from transport measurements. 

 Finally, we developed a DFT-Bardeen method to compute current-voltage 

characteristics of interlayer tunnel field effect transistors (interlayer TFETs). 2D 

materials are employed as the drain and source of this vertical tunneling device. 
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Compared with a previous method that employs a single plane wave in the Bardeen 

formalism, the DFT-Bardeen uses the full wavefunction computed from first-principles. 

This method was shown to take into account effects that are beyond simple lateral-

momentum-conservation, including the detailed symmetry and form of the wavefunctions. 

Our recent work of a comprehensive comparison between our theoretical results using the 

DFT-Bardeen method and the experimental results by the Manchester group 

demonstrates that the current magnitude obtained by the DFT-Bardeen is reliable. This is 

important because, as mentioned in the Introduction of this thesis, one major challenge of 

using TFETs for mainstream applications is to achieve sufficiently high ON current. 

Hence, only a reliable estimate of the current magnitude can provide useful instructions 

regarding what 2D materials to choose from to make the TFETs. In this work, we have 

computed the current characteristics for interlayer TFETs using a variety of 2D materials 

as the source and drain electrodes and find a considerable spread in the resulting currents 

depending on the 2D materials being used. As such, we feel that the work will be useful 

in choosing appropriate 2D materials with which to fabricate interlayer TFETs.  
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