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Abstract

Relativistic effects (spin-orbit coupling in particular), are the origin of a rich di-

versity of phenomena of great interest to technological applications, such as spin-Hall

effect, chiral spin texture, Rashba effect, and magnetocrystalline anisotropy. Multiple

scattering theory (MST), on the other hand, is a powerful first principles method that

is particularly useful for the investigation of complex condensed matter systems, such

as impurities, alloys, and nanostructures. In this thesis, combination of the two is

achieved with a state of the art single-site solver that directly solves the full-potential

Dirac equation, in which the relativistic effects and full potential effects are treated on

an equal footing. Compared to previous implementations of the full-potential relativis-

tic MST, the generalized variable phase (sine and cosine scattering matrices) approach

used here has the feature that all couplings of the solutions are retained and the so-

lutions are expressed in terms of the free-space solutions, with no matching procedure

required.

A persistent problem in previous implementation of the full-potential MST is that

the charge density calculated within a sizable fraction of the muffin-tin radius are nu-

merically unstable. In this thesis we present a new scheme to carry out the energy

integration of the Green function. By using an efficient pole-searching technique to

identify zeros of the well-behaved Jost matrices, we demonstrated that this scheme is

numerically stable and computationally efficient, with speed comparable to the conven-

tional contour energy integration method, while free of the pathology problem of the

charge density. As an application, this method is utilized to self-consistently calculate

the bulk properties of polonium, which is challenging for a conventional real-energy

scheme.

The last chapter of this thesis is devoted to the application of our method to study

magnetic anisotropy. This is in light of the rapid progress in recent years on the

technology of perpendicular magnetic anisotropy for magnetic tunnel junctions (MTJ).

As a preliminary study, the magnetic anisotropy energy of a free-standing Fe monolayer

is calculated and good agreement with other methods is obtained. This study lays

foundation for future research on large scale simulation of magnetic multilayer systems.



1

Acknowledgments

First, I wish to thank my advisor Yang Wang, without whom this work would

not have been possible. He is always patient with my questions, encouraging to my

research endeavors, and happy to share his expertise on multiple scattering theory and

high performance computing with me. I would like to thank my co-advisor Michael

Widom for always being available to help me. Many thanks to Bob Swendsen for all

the encouragement during the last five years. Thank you to Di Xiao for helping me to

improve my presentation skills. I am thankful to Manfred Paulini for all the helps and

for making my stay in the physics department a happy and fulfilling experience.

I would also like to thank my collaborators at Oak Ridge National Laboratory

(ORNL). In particular, thank you to G. Malcolm Stocks for the two rewarding summers

in ORNL, and for proofreading this thesis. Thank you to Markus Eisenbach for all the

helpful discussions on relativistic MST.

I am grateful for the support from my friends, including Rulin Chen, Will McGinley,

Jun Li, Mao-Sheng Liu, Menglei Sun, Sanxi Yao, and many more. Special thanks to

my girlfriend Fanli Zhou for being supportive and sweet. Finally, to my mom and dad,

thank you so much for supporting me, guiding me, encouraging me, and for everything.

This work was sponsored in part by the U.S. Department of Energy, Office of Sci-

ence, Basic Energy Sciences, Materials Science and Technology Division. This research

used the Extreme Science and Engineering Discovery Environment (XSEDE), which is

supported by National Science Foundation grant number OCI-1053575. Specifically, it

used the Bridges system, which is supported by NSF award number ACI-1445606, at

the Pittsburgh Supercomputing Center (PSC). This research also used the resources of

the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Department of Energy.



To my parents and grandparents



Contents

1 Introduction 9

1.1 First Principles Calculations . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 “More is Different” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Fully-Relativistic Full-Potential MST . . . . . . . . . . . . . . . . . . . 11

2 Density Functional Theory 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Electrons in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Kohn-Sham Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Relativistic DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 LDA, GGA, and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Multiple Scattering Theory 20

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Green Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Single-Site Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Multiple-Site Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 KKR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 LSMS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Relativistic Single-Site Green Function 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Krein’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Single-Site DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Single-Site Charge Density . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



Contents 4

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Relativistic MST: A Pathology-Free Scheme 48

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Pole-Searching Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Polonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Noble Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Spin-Polarized Calculations and Magnetic Anisotropy 66

6.1 Application of MST in Magnetism . . . . . . . . . . . . . . . . . . . . . 66

6.2 BCC Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 First Principles Calculation of the MAE . . . . . . . . . . . . . . . . . 71

6.5 Iron Monolayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Conventions and Units 75

B Derivation of the Regular Solution ψ(r) 77

C Derivation of the Green Function 80

D Solving the Dirac Equation in Muffin-Tin Potential 84



List of Figures

4.1 (Color online) Comparison of the DOS from Green’s function method

and the Krein’s theorem method. The blue solid lines show the Krein

DOS nK. The dashed lines show nin
K + nout

K calculated using the Green’s

function. Because of the good agreement the two lines actually overlap. 37

4.2 (Color online) Comparison of the relativistic and nonrelativistic single-

site DOS of noble metals. The blue solid lines are the DOS calculated

from the relativistic full potential Green’s function method. The red

dashed lines are the DOS calculated from the non-relativistic full poten-

tial Green’s function method, which solves the Schrödinger’s equation.

Note that the first peak of Au is not completely shown because it’s too

sharp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 The partial Krein IDOS of d electrons of copper corresponding to non-

relativistic muffin-tin (NRMT), non-relativistic full potential (NRFP),

relativistic muffin-tin (RMT) and relativistic full potential (RFP) calcu-

lations. There are 10 d channels in total and the number of degeneracy

is shown for each curve. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 The partial IDOS of d electrons of silver and gold in relativistic full

potential calculation. There are 10 d channels in total and the number

of degeneracy is shown for each curve. . . . . . . . . . . . . . . . . . . 44

4.5 The Krein IDOS components of the d electrons of group V elements.

There are 10 d channels in total and the number of degeneracy is shown

for each curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



List of Figures 6

4.6 (Color online) The l,m = (0, 0) component of the valence-band charge

density of tantalum calculated with relativistic (R) method, non-relativistic

(NR) Green’s function method that solves Schrödinger’s equation, and

relativistic method at non-relativistic limit (RNR). . . . . . . . . . . . 46

4.7 (Color online) The l,m = (4, 0) component of the valence-band charge

density of copper. Comparison of ρ4,0 and
√

14/5 ρ4,4 is made to test

the cubic symmetry in our results. . . . . . . . . . . . . . . . . . . . . 46

4.8 (Color online) Comparison of the relativistic (R) and nonrelativistic (NR)

charge density around the origin. The non-relativistic limit of our rela-

tivistic method (RNR) is also shown. . . . . . . . . . . . . . . . . . . 47

5.1 Energy integration of the Green function. The multiple scattering part

Gm is integrated along the upper semi-circle contour, while the single-

site part Gs is integrated on real axis. The shallow bound states are

integrated with a tiny circle and the resonance states are integrated using

weighted sampling technique. . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 (Color online) The relative error of the number of electrons calculated

from the single-site Green function Gs(E, r, r
′) for both Cu and Au.

Energy points are either obtained using weighted sampling or uniform

grid. 16, 32, 64, 128 and 256 energy points are used for each curve and

the trapezoidal rule is adoped in energy integration. . . . . . . . . . . . 54

5.3 (Color online) The spherical component of the charge density of polonium

corresponding to the shallow bound states. Note that a 4πr2 factor has

been included. The red dashed line corresponds to 6p1/2 electron and the

blue solid line corresponds to 6s1/2 electron. . . . . . . . . . . . . . . . 60

5.4 Comparison of the total DOS and the single-site DOS of polonium. To

show the DOS, the energy is shifted a little up on the real axis, with

imaginary part Im(E)=0.001 Ry. The dashed line is the single-site DOS

and the solid line is the total DOS. The vertical line is the Fermi energy.

The shallow bound states are not shown on the single-site DOS because

they are essentially a set of Dirac δ functions. 125000 k-points are used

to calculate the DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures 7

5.5 (Color online) The volume dependence of total energy plot of polonium.

The solid, dashed, dot-dashed lines correspond to the fitted equation of

state of simple cubic, BCC, and FCC structures and the shift of total

energy E0 = −41342 (Ry/atom). When solving the Dirac equations a

total of 1,500 radial mesh points are used within the muffin-tin radius to

ensure convergence of the single-site solutions. . . . . . . . . . . . . . . 62

5.6 (Color online) The total energy of Au calculated using different methods.

Different energy shifts are made for each curve so that the lowest point

of each line is always zero. In the solid line, the core, semicore, and

valence electrons are calculated by solving the Dirac equations. In the

dashed line, the nonrelativistic Schrödinger equations are used for all

the electrons. In the dot-dashed line the Dirac equations are solved for

valence electrons while the Schrödinger equations are solved for core and

semi-core electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 (Color online) Comparison of the relativistic and nonrelativistic DOS of

Cu, Ag, and Au. The red dashed lines are the nonrelativistic results and

blue solid lines are the relativistic results. Note that shift of the energy

by Ef has been applied, so zero on the x-axis corresponds to the Fermi

energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 The single-site DOS and total DOS of BCC Fe. Imaginary part of the

energys in the Green function are taken as 0.001 Ry to show the DOS.

The Fermi energy is marked by a vertical line. . . . . . . . . . . . . . 69

6.2 The l,m = (0, 0) and l,m = (2, 0) components of the charge density and

magnetization of BCC Fe. Calculations are made with relativistic MST. 70

6.3 Calculated MAE vs sin2(θ) for an Fe monolayer with a=4.83 a.u.. The

dots are the calculated values and the straight line is the fitted −0.005 +

0.282x curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D.1 nonzero matrix elements of fΛ′′Λ′ and gΛ′′Λ′ for l ≤ 2. The blue ones are

the diagonal elements, including contributions from l′′ = l′, l′′ = l′ ± 1

and l′′ = l′ ± 2. The green ones only have contribution from l′′ = l′ + 1

and the yellow ones only have l′′ = l′ + 2 element . . . . . . . . . . . . 88



List of Tables

5.1 The poles of the single-site Green function of Po . . . . . . . . . . . . 59

5.2 Comparison of the lattice constant (a) and bulk modulus (B0) calculated

with the experimental and theoretical data in the literature. . . . . . . 60

5.3 Comparison of calculated lattice constants and bulk moduli of noble met-

als with the experimental values. The LDA is employed in all calcula-

tions. Fully relativistic schemes are used except for the last two columns.

In column AuNR all electrons are calculated with nonrelativistic schemes,

and relativistic schemes are utilized only for valence electrons in column

AuR−Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 The MAE (meV/atom) of Fe monolayer calculated with different meth-

ods. Lattice constant a=4.83 in all cases. . . . . . . . . . . . . . . . . 72

8



Chapter 1

Introduction

1.1 First Principles Calculations

Materials are of fundamental importance to human beings, as vividly demonstrated

by the naming of the stages of human civilization, from the stone, bronze, to iron

ages. Nowadays we are in the digital age, and most electronic devices work by the

storage, manipulation, and transport of electron charges in semiconductors, mostly

silicon. For the development of next generation electronics, particularly the so called

“spintronics” [1], it is inevitable to work with materials at the nano-scale. Such small

systems are inherently governed by quantum mechanics and involve interactions of

many particles. To understand them from a theoretical point of view, simple models

are usually not enough, and calculations from first principles are necessary. The basic

idea of first principles methods is to calculate the physical properties of materials with

no input of empirical parameters. This is achieved by studying the underling quantum

physics of the system. Since all materials are made up of atoms, applications of first

principles calculations are very general compared to model methods built with empirical

parameters.

1.2 “More is Different”

From the point of view of elementary particles, among the four fundamental interac-

tions of nature, the electromagnetic force is essentially the only one responsible for

the physical and chemical properties of a material. In some sense, this is lucky for

9



Chapter 1. Introduction 10

condensed matter physicists because the coupling constant for electromagnetic force is

small, approximately 1/137, which means a perturbation technique can be applied to

calculate the properties of a single electron to very high accuracy. For example, by em-

ploying quantum electrodynamics (QED), the magnetic moment of electron calculated

agrees with experimental value to more than 10 significant digits [2]. For first principles

calculations, there is no need for such a high accuracy and most of the time solving the

Schrödinger or Dirac equation is good enough.

Although the underlying physics of electron interaction is well understood, direct

use of this knowledge to carry out calculations is still a formidable task. Most of the

difficulties originate from the large number of electrons in a material. To get around

this problem, some reasonable approximations must be used to make first principles

calculations practical while still free of empirical parameters. The first one is the Born-

Oppenheimer approximation, which decouples the degree of freedom of electrons from

that of the nuclei because the masses of electron and nucleus are different by a few orders

of magnitude. The second approximation is in solving the many-body problem. In the

Hartree-Fock method the many-body wave function is approximated by a determinant

of one-particle orbitals. In density functional theory the exact exchange-correlation

functional is replaced by approximations such as the local-density approximation (LDA)

[3,4] or generalized gradient approximation (GGA) [5].

Giving up part of the fundamentality of the theory is disturbing at first sight, es-

pecially for a method named with “first principles”, but this compromise turns out to

be worthwhile, as demonstrated by the success and popularity of first principle calcula-

tions. As pointed out by P. W. Anderson in the 1970s, the idea of reducing everything

to the fundamental laws is simply impractical as the system size increases, therefore

“more is different” [6], and the important thing is to make good approximations that

retain the physics of interest. For particle physics, the Standard Model is complete with

the discovery of Higgs boson, but in the field of condensed matter physics, there are

still a rich diversity of phenomena to explore. It is interesting to note that, elementary

excitations with names originated from particle physics, such Majorana fermion [7],

Wyle fermion [8], and skyrmion [9], are in the forefront of today’s condensed matter

physics research.
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1.3 Fully-Relativistic Full-Potential MST

A central step to determine the electronic structure of materials is to solve the Schrödinger

equations. Various methods exist, such as plane-waves, tight-binding, and augmented

plane waves. Most of these methods make use of the Bloch theorem and are mainly

used for crystals. For multiple scattering theory (MST), however, the Bloch theorem

is not necessary, therefore other than crystals, it can also be used to treat non-periodic

systems. Another feature of MST is that, instead of solving the eigenvalue problems, it

directly calculates the Green function of the system. With the Green function available,

a lot of numerical techniques can then be devised. For example, energy integration of

the Green function can be carried out on the complex plane, which greatly enhances

the numerical efficiency.

The originally formulated MST solves the Schrödinger equation with the muffin-tin

(MT) potential approximation, where the potential is assumed to be spherically sym-

metric within the muffin-tin spheres and constant in the interstitial region [10,11]. While

the muffin-tin approximation generally works well for systems dominated by metallic

bonding, it cannot properly describe a wide range of systems where the asymmetries

of the effective potential [12] play an important role, such as surfaces, two-dimensional

materials, and systems with directional covalent bonding. In addition, because the

Schrödinger equation is nonrelativistic, it cannot properly describe systems where rel-

ativistic effects are important. In particular, it doesn’t account for the spin-orbit cou-

pling (SOC), a subject currently of great interest due to its role in many technologically

important phenomena, such as magnetocrystalline anisotropy [13], Rashba effect [14],

and magnetic Skyrmions [9]. To take into account the relativistic effects, a common

practice is to treat the relativistic kinematic effects with the scalar-relativistic approx-

imation [15], and include the SOC in a perturbative second-variational way. However,

this strategy is problematic for heavy elements where SOC is not small compared to

full-potential effects. To take into account both relativity and the full shape dependence

of the crystal potential on an equal footing, the original MST formulation must be ex-

tended to a full-potential, Dirac equation, based theory, and indeed there are previous

works in this regard by a number of groups [16–21]. A persistent problem in previous

implementations of the full-potential MST is that the charge density calculated within

a sizable fraction of the muffin-tin radius has pathological behavior that originates from

the coupling of the matrix elements by full potential and the use of irregular solutions.
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Because of the difficulties associated with the full-potential implementation, the MST

method is primarily applied to close-packed metals [22].

In this work, we derived and implemented a different scheme, i.e., the sine and cosine

scattering matrices formalism, to directly solve the full-potential Dirac equation. The

solutions obtained are then used to construct the Green function of the whole system,

from which physical observables are calculated. Rigorous test of this method is made

by comparing the single-site density of states calculated from integration of the Green

function with the one obtained from Krein’s theorem. Using the code developed, we also

carried out self-consistent calculations to investigate the crystal structure of Polonium

and the relativistic effects in noble metal. The pathology around the origin is completely

eliminated by carrying out the energy integration of the single-site Green function on

real axis. By using an efficient pole-searching technique to identify zeros of the well-

behaved Jost matrices, we demonstrated that this scheme is numerically stable and

computationally efficient, with speed comparable to the conventional contour energy

integration method, while free of the pathology problem of the charge density. Finally,

as a further application of our method, we calculated the DOS of bulk Fe and the

magnetocrystalline anisotropy of a single layer of iron atoms, both as a test of our code

for magnetic system and a preliminary study of the multilayered system widely used in

memory devices.

This thesis is structured as follows. In chapter 2 and chapter 3, the density functional

theory and the multiple scattering method are introduced respectively. Chapter 4 is

based on reference [23], in which details of our approach to solve the full-potential Dirac

equation are presented. Comparison of the DOS calculated from two different methods

are made, with excellent agreement demonstrated. Chapter 5 is based on reference [24],

and is devoted to the self-consistent implementation of the MST method, in which the

pole-searching algorithm and the pathology-free energy integration scheme is explained.

Applications of our method to magnetic materials and the calculation of the magnetic

anisotropy energy, are presented in the last chapter.



Chapter 2

Density Functional Theory

2.1 Introduction

Density functional theory (DFT) is a first principles calculation method widely used

in a broad range of condensed matter systems [25]. The central idea of DFT is to use

the electron density as the basic variable instead of the electron wave functions, and

convert the complicated problem of interacting electrons into a much simpler problem

of free electrons moving in an auxiliary effective potential. In principle, DFT is an

exact theory for ground state, in practice, however, approximations are needed for

the exchange-correlation functionals because the exact expressions are unknown for

most systems. By adopting simple approximations such as local density approximation

(LDA), DFT methods can reach satisfactory accuracy with high efficiency for systems

ranging from metals, semiconductors, to insulators. Nowadays DFT has developed into

an indispensable tool in both academic and industrial research of materials, and its

fundamental role in condensed matter physics is compared to the standard model in

particle physics [26].

DFT was formulated by Hohenberg, Kohn and Sham in the 1960s [3, 27]. Because

of the importance of this method in the field of quantum chemistry, Walter Kohn was

awarded the Noble Prize in chemistry in 1998, along with John Pople, who is famous

for the development of the computational chemistry package Gaussian. Actually both

Walter Kohn and John Pople worked in Carnegie Mellon University, with Professor

Kohn in the Department of Physics from 1950 to 1960, and Professor Pople in the

Department of Chemistry from 1964 to 1993.

In this chapter I will first give a brief description of the density functional method

13



Chapter 2. Density Functional Theory 14

in the framework of non-relativistic theory. The Kohn-Sham theorem and Kohn-Sham

equations will be presented without detailed derivations and proofs, which can be found

in the book by Paul Strange [28] and an introductory overview by U. von Barth [29].

After that the relativistic DFT will be presented and topics such as 4-current DFT and

spin-polarized DFT will be discussed. Finally, limitations of LDA will be discussed and

beyond-LDA methods will be surveyed to give a general picture of DFT methods.

2.2 Electrons in Solids

One major obstacle for the ab-initio study of solid system is the huge numbers of

particles (electrons and nuclei) to be considered. For a practical electronic structure

calculation, some reasonable approximations must be made. The first one is the Born-

Oppenheimer approximation, which separates the motion of the nuclei from that of the

electrons, with the observation that in a solid, electrons move much faster than the

atomic nuclei. For non-relativistic calculations, the Hamiltonian of the electrons can

then be written as

H =
n∑
i

p̂2
i

2m
−

n∑
i

N∑
j

1

4πε0

Zje
2

|ri −Rj|
+

n∑
i<j

1

4πε0

e2

|ri − rj|
, (2.1)

where n refers to the number of electrons and N to the number of atomic nuclei;

R indicates the position of the nucleus; Z is the atomic number; ε0 signifies vacuum

permittivity; r,p,m and e are the electron’s position, momentum, mass, and electric

charge, respectively. The first term in Eq. (2.1) represents the kinetic energy of the

electrons; the second one represents the Coulomb attraction between the electrons and

the nuclei; The third term represents the Coulomb repulsion between the electrons.

Even with the use of the Born-Oppenheimer approximation, it is still impractical

to solve for the electron wave functions of the Hamiltonian in Eq. (2.1) because of the

large number of degrees of freedom coupled together by the electron-electron interaction

term. One method to simplify the problem is to replace this electron-electron interaction

with a mean field interaction due to all the other electrons. This term is known as the

Hartree energy and can be written out explicitly as

e2

2

∫
1

4πε0

n(r)n(r′)

|r− r′|
drdr′, (2.2)
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where n(r) is the electron density. This approximation alone, however, turns out to

be too crude for most applications because it ignores the exchange and correlation

effects. As a further step to include the exchange energy, in the Hartree-Fock method,

a single Slater determinant of one-electron orbitals is used to approximate the many-

electron wave function, while retaining the antisymmetry of the electron wave function.

As a result, other than the Hartree term in equation (2.2), an exchange term is also

introduced. The Hartree-Fock method is widely used in the calculation of atoms and

small molecules. However, because evaluation of the exchange term involves overlap

integrals, the Hartree-Fock method does not have a good computational scalability and

is less popular for large systems and solids. One major advantage of the Hartree-Fock

method is that electron exchange is fully incorporated, while a major limitation is that

correlation effects are completely ignored for electrons with opposite spin.

Compared to the Hartree-Fock method, DFT method incorporates both electron

exchange and correlation (although both two effects are treated approximately in prac-

tice). By adopting simple schemes of exchange-correlation functional, such as LDA

and GGA, DFT is already reliable and cost effective to calculate the ground state

properties of a wide range of solid state systems. The central idea of DFT is the two

Hohenberg–Kohn theorems [27]. The first one states that for a system of interacting

electrons, the external potential (hence the total ground state energy) is a unique func-

tional of the electron density. The second one states that the ground state correspond

to a given external potential can be obtained by finding the density minimizing the

total energy functional. Based on the two theorems, the Kohn-Sham equation can be

derived, and I will write it down without giving proof in the next section.

Another important tool to study electrons in a solid is quantum field theory (QFT).

In QFT the Hamiltonian is constructed with field operators that act on Fock space.

QFT is a powerful theoretical framework to treat many-electron systems, but seldom

used to directly calculate real materials because the corresponding Fock space (or the

many-body wave function) is generally unknown. However, QFT can be used to treat

simple model systems, such as homogeneous electron gas (HEG). This is particularly

important for DFT since many successful exchange-correlation functionals in LDA are

derived from HEG. Another application of QFT in condensed matter is the so called

“effective field theory”, which studys the effective Lagrangian of the quasiparticles at the

energy scale of interest. QFT is beyond the scope of this thesis, and for an interesting

introduction to QFT, one is referred to the book by A. Zee [30].
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2.3 Kohn-Sham Equation

By applying the Hohenberg–Kohn theorems, it can be shown (for example, see [28]) that

the complicated problem of solving the Schrödinger equation of N-interacting electrons

can be reduced to solving an auxiliary system of independent electrons moving in an

effective potential Veff(r). The wave functions ψ(E, r) obey the celebrated Kohn-Sham

equation (
− ~2

2m
∇2 + Veff(r)

)
ψ(E, r) = Eψ(E, r), (2.3)

where

Veff(r) = Vext(r) +
e2

4πε0

∫
dr′

n(r′)

|r− r′|
+
δExc

δn(r)
. (2.4)

The first term above, Vext(r), corresponds to external electric potential. The second

term arises from the Hartree energy in equation (2.2), which describes the mean-field

contribution of the Coulomb repulsion between the electrons. The last term contains

the many-body effects, which are not included by the first two terms, and Exc is defined

as the exchange-correlation functional. To initiate the calculation, a starting potential

is put into the Kohn-Sham equation, from which the charge density and the new effec-

tive potential can then be obtained. The calculation continues self-consistently until

convergence is reached. With the converged charge density available, the total energy

of the ground state Eg can be obtained with [28]

Eg =
N∑
i=1

Ei −
1

2

e2

4πε0

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
−
∫
dr
δExc
δn(r)

n(r) + Exc, (2.5)

and other physical observables can be extracted.

2.4 Relativistic DFT

The above formalism can be generalized to relativistic system straightforwardly. Instead

of the Schrödinger equation, the Dirac Kohn-Sham equations need to be solved

{cα (p̂− eAeff (r)) + βmc2 + Veff(r)}ψ(E, r) = Wψ(E, r), (2.6)
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where c is the speed of light, ψ(E, r) are four component Dirac spinors and α, β are

the Dirac matrices defined as

αi =

(
0 σi

σi 0

)
, β =

(
I2 0

0 −I2

)
, (2.7)

with i = x, y, z, σi are the usual Pauli matrices, and I2 is the two dimensional identity

matrix. W and E are the relativistic energy and relativistic kinetic energy, respectively.

W and E are related to momentum p by

W =
√
m2c4 + p2c2, (2.8)

E = W −mc2. (2.9)

Comparing equation 2.6 with equation 2.3, a major difference is that other than the

effective electric potential, there is another term that corresponds to the effective vector

potential, which is given by

Aeff (r) = Aext (r) +
e2

4πε0c2

∫
dr′

J(r′)

|r− r′|
+
δExc

δJ(r)
. (2.10)

The above formalism is called four current DFT. While the four current DFT provides

an excellent framework to describe both spin and orbital magnetic moments, it is rarely

used in practice because it is difficult to express the exchange-correlation functionals in

terms of the local four currents [n(r),J(r)]. One widely used approximation to the four

current theory is to replace the vector potential A(r) with the magnetization density

m(r). This is achieved by applying the Gordon decomposition to the currents and

discarding the terms corresponding to the diamagnetic effects [28], which are usually

very small due to quenching of orbital moments by the crystal field. The resulting Dirac

Kohn-Sham equations are

{cαp̂ + βmc2 + Veff(r)−m(r) ·Beff(r)}ψ(E, r) = Wψ(E, r), (2.11)

where

Beff(r) = Bext(r) +
δExc

δm(r)
. (2.12)
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2.5 LDA, GGA, and Beyond

The exchange-correlation (XC) functional Exc plays a crucial role in DFT. In the widely

used local density approximation (LDA), the XC-functional only depends on the local

density of the electrons. Since LDA is derived from homogeneous electron gas, it seems

that it should only be valid for systems with slowly varying electron densities, and

fail for rapidly changing densities. However, it turns that LDA gives a reasonable

description of a wide range of systems, most of which do have rapidly varying densities.

One reason for the robustness of LDA is that it satisfies the sum rule of the exchange-

correlation hole [4]. Despite the success of LDA, because XC-functional is intrinsically

non-local, it comes as no surprise that LDA falls down in some cases. For example,

electrons should not interact with themselves, so in principle the self-interactions in

equation 2.2 should be completely canceled out by the XC-functional, but this is not

true for LDA, where a small portion of the spurious self-interaction still exists. Another

problem is that, although LDA is a good description of delocalized electrons, it can not

properly describe correlations between the localized electrons. For example, LDA tends

to overbind the system, which gives rise to unrealistic metallic ground states for some

insulators.

To better describe the spatial variation of the electron density, the generalized gra-

dient approximation (GGA) is widely used. In this approximation the XC-functional

not only depends on the local density, but also depends on the gradient. By using

GGA, the lattice constants calculated are generally in better agreement with experi-

mental data. Following similar strategy, more complicated form of EX-functionals such

as “meta-GGA” and “hyper-GGA” are also developed, as described by the so called

“Jacob’s ladder” [31]. These more complicated XC functionals can describe intermolec-

ular forces such as hydrogen and van der Waals bonds, but implementation of such

functionals are usually more difficult because of their dependence on electron orbitals.

For solid systems, LDA and GGA are still the most popular ones.

A different strategy to improve LDA is to remove the spurious self-interaction. For

example, in the self-interaction correction (SIC) [4] scheme, this is done by directly

deducting the self-interaction energy of each atomic orbital from the XC-functional.

SIC is mainly used for the calculation of strongly correlated systems, such as transition

metal oxides and rare earth elements. A less aggressive method to correct the self-

interaction is to include part of the exact exchange energy into the so called hybrid
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functionals [32], which are widely used in the field of quantum chemistry.

Finally, another way to go beyond LDA is to improve the description of the cor-

relations of the localized electrons. Most of these methods are based on the Hubbard

model. For example, in LDA+U, a “Hubbard U” parameter is introduced to describe

the Coulomb repulsion between the localized electronic states. In practice, values of

the U parameters can be calculated from first principles, input from experimental data,

or simply taken as adjustable parameters. In LDA+U only the static electron corre-

lation effects are taken into consideration. As one step further, in dynamical mean

field theory (DMFT), the dynamical correlation effects are included as well. This is

achieved by converting the many-body lattice problem into a local impurity problem,

and then solving this impurity problem with various approximation schemes. LDA+U

and DMFT are important tools to treat strongly correlated materials, but are beyond

the scope of this work and LDA is used in all our calculations.



Chapter 3

Multiple Scattering Theory

3.1 Overview

Multiple-scattering theory (MST) underpins a number of widely used methods for solv-

ing the electronic structure problem in solids, all of which have their origins in the KKR

method originally introduced by Korringa [10] in 1947 and independently re-derived by

Kohn and Rostoker [11] in 1953. Three features of MST distinguish it from conven-

tional basis set methods. Firstly, it naturally yields a separation between the single-site

potential scattering and structural arrangement (positions) of the individual scatterers.

Secondly, in the framework of density functional theory (DFT), it provides an explicit

expression for the Green function of the system, which can then be used to calculate

the charge and spin densities without explicit calculation of the wave functions. Finally,

MST does not rely on the Rayleigh–Ritz variational method, which is crucial for other

band theory methods.

The availability of the Green function makes MST a versatile tool to investigate more

complex systems other than perfect crystals. For example, by applying the Dyson’s

series expansion to the Green function, defects and impurities in an otherwise perfect

crystal can be investigated [33]. Another example is the KKR-CPA method, which

is based on a combination of MST with the coherent potential approximation (CPA)

[34–36]. KKR-CPA is widely used to calculate the configurationally averaged properties

of disordered systems, such as random alloys [37, 38] and the disordered local moment

state of metallic magnets [39]. A more recent development is in studying of strongly

correlated systems, where the MST Green function can be readily used in conjunction

with the GW approximation [40] or the dynamical mean field theory (DMFT) [41].

20
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Moreover, the real space formulation of MST [42] has demonstrated essentially ideal

linear scalability on current supercomputing architecture [43], and, as a result, can be

employed to study solid state systems with tens of thousands of atoms.

The first half of this chapter is meant to provide a brief introduction to MST. Im-

portant concepts such as Green functions, single-site scattering, and multiple scattering

will be explained following a similar manner as in the textbook [28] by Paul Strange.

In the second half of this chapter, two different MST methods, the KKR method and

LSMS method, will be quickly introduced. For the sake of simplicity, the discussions

in this chapter are limited to the nonrelativistic case, so only the Schrödinger equation

needs to be solved.

3.2 Green Functions

A central quantity in MST is the Green function, from which all physical quantities

needed in self-consistent calculations are obtained. The formal definition of the Green

function G(r, r′, E) is

(E − Ĥ(r))G(r, r′, E) = δ(r− r′), (3.1)

where Ĥ(r) is the Hamiltonian in real space, E is the kinetic energy and δ(r − r′) is

the Dirac delta function. Using the normalization condition of orthonormal basis∑
n

ψ†n(r)ψn(r′) = δ(r− r′), (3.2)

it is easy to obtain the spectral representation of the Green function

G(r, r′, E) =
∑
n

ψn(r)ψ†n(r′)

E − En
. (3.3)

Equation (3.3) provides a method to construct the Green function using eigenvalues

and eigenfunctions of the Hamiltonian. In wave function based methods such as linear

muffin-tin orbital (LMTO) method, this is indeed how the Green function is calculated.

For MST, however, equation (3.3) is not very helpful because the philosophy of MST is

to obtain Green functions without directly solving the eigenvalue problem. Instead of

equation (3.3), in MST the Green function is obtained from Dyson’s equations with free
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electrons used as the reference system. The free-electron Green function G0(r, r′, E) is

given by

G0(r, r′, E) = − eip|r−r
′|

4π|r− r′|
. (3.4)

Since in MST the scattering problem will be solved by partial wave expansion, it is

convenient to write down the angular momentum expansion of the free particle Green

function

G0(r, r′, E) = −ip
∑
L

hl(pr>)jl(pr<)YL(r̂)Y ∗L (r̂′), (3.5)

where r< = min(r, r′) and r> = max(r, r′). L is the angular momentum index repre-

senting (l,m). jl(r) and hl(r) are the spherical Bessel functions and spherical Hankel

functions of the first kind. YL(r̂) are the spherical harmonics. Using the short-hand

notation that

JL(r) = jl(pr)YL(r̂), (3.6)

H+
L (r) = hl(pr)Y

∗(r̂), (3.7)

the free-space Green function can be written as

G0(r, r′, E) = −ip
∑
L

JL(r<)H+
L (r>). (3.8)

Note that the “+” superscript signifies the left-hand solutions. The relation between

left-hand and right-hand solutions is simply Hermitian conjugate for real energies, but

can be subtle for solutions of a general potential (see appendix C).

3.3 Single-Site Scattering

Before considering the scattering of electrons with the effective potential of the whole

system, it is useful to study the single-site scattering problem. In MST the whole space

is divided into non-overlapping polyhedrons Ωi (Wigner–Seitz cell, for example). The

single-site potentials Vi(r) are obtained by retaining the potential inside Ωi while setting
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the potential outside as zero, i.e.,

Vi(r) =

V (r) r ∈ Ωi,

0 r /∈ Ωi,
(3.9)

therefore the total potential V (r) can be written as sum of the space filling potentials

Vi(r) as

V (r) =
∑
i

Vi(r). (3.10)

Now let’s focus on the scattering of the electron with a single potential Vi(r). Using

Dyson equations, the single-site Green function Gs(r, r
′, E) described by the Hamilto-

nian Ĥ0(r) + Vi(r) can be written in terms of the free-space Green function as

Gs(r, r
′, E) = G0(r, r′, E) +

∫
G0(r, r′′, E)Vi(r

′′)Gs(r
′′, r′, E)dr′′. (3.11)

To solve the above integral equation, it is convenient to introduce the t-operator, as

defined by

Vi(r)Gs(r, r
′, E) =

∫
t(r, r′′, E)G0(r′′, r′, E)dr′′. (3.12)

Substituting it into equation (3.11), we have

Gs(r, r
′, E) = G0(r, r′, E) +

∫∫
G0(r, r′′, E)t(r′′, r′′′, E)G0(r′′′, r′, E)dr′′dr′′′. (3.13)

Note that now all the scattering information from Vi(r) has been absorbed into the

t-operator. Plugging equation (3.8) into equation (3.13), for r < r′, we have

Gs(r, r
′, E) =− ip

∑
L

JL(r)H+
L (r′)− p2

∑
L

∑
L′

HL(r)tLL′(E)H+
L′(r

′), (3.14)

where tLL′(E) is the single-site t-matrix defined as

tLL′(E) =

∫∫
J+
L (r′′)t(r′′, r′′′, E)JL′(r′′′)dr′′dr′′′. (3.15)
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The definition of the t-operator in equation (3.12) involves Gs(r, r
′, E), which is to

be determined, so we still do not know how to calculate tLL′(E). However, it can be

shown [28] that tLL′(E) is related to the phase shift and S-matrix in scattering theory,

which can be extracted from the regular solutions of the time-independent Schrödinger

equation

[
−∇2 + Vi (r)

]
ψ(E, r) = Eψ(E, r). (3.16)

Note that the solutions ψ(E, r) do not need to be eigenfunction of the Schrödinger

equation and E can take arbitrary values. This is quite different from other DFT

methods. Another important thing to note is that, strictly speaking, equation (3.14)

only holds true for r, r′ > rcs, where rcs is radius of the circumscribed sphere. Inside

the circumscribed sphere, the free-space solutions JL(r) and HL(r) should be matched

smoothly by solutions of equation (3.16). Combining the above discussions, we see

that in MST the single-site Green function can be calculated from solutions of the

single-site Schrödinger equation. Note that these smoothly-matched solutions are all

irregular solutions because they do not have a well-defined boundary conditions at the

origin. For the benefit of numerical stability, the regular solutions are preferred in the

expression of the Green function. The regular solutions can be introduced by using a

different expression of the single-site Green function [44],

Gs(r, r
′, E) =

∑
L

∑
L′

ZL(r)tLL′(E)Z+
L′(r

′)−
∑
L

ZL(r)J +
L (r′), (3.17)

where ZL(r) are the regular solutions given by

ZL(r) =
∑
L′

(tLL′ (E))−1 JL′(r)− ipHL(r), (3.18)

and JL(r) and HL(r) are the irregular solutions smoothly matched to JL(r) outside the

potential. To see that ZL(r) are indeed regular solutions, one can follow the derivations

for the relativistic case in appendix C.
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3.4 Multiple-Site Scattering

In analogy to the single-site t-operator, the multiple scattering T -operator can also be

defined. Using Dyson equation, it is easy to show that the T -operator can be formally

written as

T (E) = V + V G0T (E). (3.19)

The single-site t-operator also follows similar relation:

ti(E) = Vi + ViG0t
i(E), (3.20)

where the i index is used to signify different atomic sites. Combing the above two

expressions with the fact that V =
∑

i Vi, it can be shown [28] that we have

T (E) =
∑
ij

τ ij(E), (3.21)

where

τ ij(E) = ti(E)δij +
∑
k 6=i

ti(E)G0(E)τ kj(E) (3.22)

are the well-known scattering path operators that describe the propagation of the elec-

tron from site i to site j, along all possible paths in the system. The above discussions

are made in a simple operator form, eventually all the operators need to be projected

into the basis of spherical Bessel functions and spherical harmonics. Equation (3.22)

can then be written out explicitly as

τ ijLL′(E) = tiLL′(E)δij +
∑
k 6=i

∑
L′′L′′′

tiLL′′(E)G0
L′′L′′′(Ri −Rj)τ

kj
L′′′L′(E), (3.23)

where Ri are position vectors of atomic nuclei and G0
L′′L′′′(Ri −Rj) are the so called

structure constants. Note that the structure constants only have dependence on the

crystal structure, and is a two-site free-space Green function that can be written out
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explicitly as

G0
L′′L′′′(Ri −Rj) =

− (1− δRi,Rj
)4iπp

∑
L′′

il−l
′−l′′CL′′

LL′hl′′(p|Ri −Rj|YL′′(R̂i − R̂j)). (3.24)

From equation (3.23), the τ -matrix can then be solved as

τ ijLL′(E) =
[[
tiLL′(E)δij

]−1 −G0
L′′L′′′(Ri −Rj)

]−1

. (3.25)

The τ -matrix calculated above can then be used to construct the Green function of the

whole system by using equation (3.21) and the multiple-scattering analogy of equation

(3.13). It can be shown [44] that the following expression can be obtained

G(r, r′, E) =
∑
L

∑
L′

Zi
L(ri)τ

ij
LL′(E)Zj+

L′ (r′j)−
∑
L

Zi
L(ri)J j+

L (r′j)δ
ij, (3.26)

where ri = r − Ri. Note that in the above expression we imply that r and r′ can

be expanded at different cells, i.e., i 6= j, which is less common but actually valid as

explained in reference [44]. Equation (3.26) is in close resemblance to the single-site

Green function in equation (3.17), with the only major difference to be the replacement

of the t-matrix by the τ -matrix.

3.5 KKR Method

For solid systems, the above scheme of solving the the Schrödinger equation at each

atom is impractical because of the huge amounts of atoms involved. For crystals,

however, periodicity of the effective potentials can be used to simplify the problem

into solving the k-dependent Schrödinger equations within a representative unit cell,

in which case working on k-space is usually more efficient. For MST, this method of

calculating crystals is referred as the KKR method in our context, to distinguish it from

the real space implementation of MST.

In the KKR method, to obtain the k-space expression of the τ -matrix and structure

constants, the lattice Fourier transformations [28] are performed, and equation (3.25)
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is converted into

τLL′(q, E) =
[
t−1
LL′(E)−GLL′(q, E)

]−1
. (3.27)

Integrating τLL′(q, E) in the first Brillouin zone, we obtain τLL′(E). The Green function

in equation (3.26) becomes

G(r, r′, E) =
∑
L

∑
L′

Zm
L (rm)τmnLL′(E)Zn+

L′ (r′n)−
∑
L

Zm+
L (rm)J n

L (r′n)δmn. (3.28)

The above expression looks almost identical to equation (3.26), but note that m,n

here are the atom indices within the unit cell, instead of the atom indices of the whole

system, which are signified by i, j. Another thing to note is that, the scattering path

operator will be singular if

det
[
t−1
LL′(E)−GLL′(q, E)

]
= 0, (3.29)

for some given values of q and E. Because poles of the Green function correspond to

the eigenvalues of the Schrödinger equation, the above scheme provides an approach to

determine the band structure of crystals, as implemented in the linearized KKR [45]

method.

3.6 LSMS Method

The KKR method is efficient to calculate crystals, but to treat non-periodic systems

such as alloys, surfaces, and nanostructures, a large “supercell” is generally required,

which introduces unreal effects due to the artificial periodic boundary conditions. An-

other disadvantage of KKR method (like most other band theory methods), is that

even by using independent-particle approximation, the computational efforts will be

proportional to N3 as the number of atoms N increases, due to the need for matrix

manipulations (equation (3.27), for example). As a result, the KKR method is typ-

ically only used to calculate systems with less than a few hundred atoms. To treat

larger systems, Wang et al. [42] devised a real space implementation of MST called

locally self-consistent multiple scattering (LSMS) method that scales linearly with N .

As in most “order-N” method, this linear scaling is achieved by taking advantage of
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the “nearsightedness ” [46] of the system resulting from the destructive interference of

the wave functions.

Implementation of the LSMS method is very similar to the common real space MST

method, except that instead of considering scattering of electrons at all atomic sites, the

scattering effects are restricted within the local interaction zone (LIZ) surrounding each

atom (usually restricted to several neighboring shells). For each LIZ, the computational

efforts scale as N3
LIZ , but since NLIZ is a fixed number, the overall scaling is linear with

respect to the total number of atoms N . One important consideration in LSMS is to

determine the appropriate size of LIZ. Although “nearsightedness” is a very general

principle, there is no universal guidance on choosing the size of LIZ, which depends

on the element and the physical quantities of interest. For example, charge density

generally converges faster than the density of states, and the total energy of elemental

iron converges much more rapidly than that of molybdenum. Therefore in practice,

convergence of the result with respect to NLIZ has to be ensured before comparing it

with experiment.

In most other DFT methods, the calculation is carried out in k-space. For quantities

of local origin, k-space integration may not be the optimal approach and a real-space

method could be more advantageous. One good example is the calculation of magne-

tocrystalline anisotropy energy (MAE) of BCC Fe. Because of the cubic symmetry, the

MAE in BCC Fe is very small, with experimental value of −1.4 µeV/atom. In k-space

methods, determining the energy with such a high accuracy requires special numerical

methods such as the state tracking approach or the torque approach, and relatively

large number of k-points [47]. By using the LSMS method, however, the MAE can be

obtained quite easily [48,49], with about 59 atoms in the LIZ.
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Relativistic Single-Site Green

Function

4.1 Introduction

The multiple-scattering theory (MST) is a DFT based ab-initio method that is widely

applied to the calculation of the electronic structure of metals, alloys and impurities.

As demonstrated in the last chapter, a crucial step in MST calculation is to solve the

single-site scattering problem. Combined with the position information of the atoms,

solutions of the single-site scattering problem can be used to construct the Green’s

function of the whole system, from which most physical quantities can be extracted.

Because of the essential role played by the single-site scattering in MST, there have been

a constant effort to improve it in the last few decades [50]. The earliest MST solves the

Schrödinger’s equation and employs the muffin-tin potential approximation, i.e. the

potential is spherically symmetric within a bounding sphere and is constant outside.

Then the generalization to full potential (FP) [51] and relativistic cases [52–55], and

eventually combination of the two, i.e. relativistic full potential (RFP), were proposed

and implemented using various schemes [16–18,56]. Among them one widely used RFP

MST code is developed by Huhne et al. [19] to either solve the coupled integral equations

iteratively using Born’s series expansion or to directly solve the coupled differential

equations. In a recent paper [20], the coupled differential equations are also solved by

matching the regular solutions at the boundary of the Wigner–Seitz cell.

In this chapter we present an alternative formalism to tackle the RFP single-site

29
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scattering problem by directly solving the Dirac differential equation. This method is

a relativistic generalization of the non-relativistic FP MST method [57]. Compared to

other RFP methods, this new formalism has the feature that the differential equation,

the t matrix and the single-site Green’s function are all expressed in terms of the r

dependent sine and cosine matrices. We would like to point out that the sine and

cosine scattering matrices technique to obtain the solutions for relativistic scattering

theory was first proposed by X. D. Wang et al. [18], based on the variable phase tech-

nique [58,59], and later implemented by S. B. Kellen and A. J. Freeman [56]. The major

difference between our method and the Kellen & Freeman’s approach is in the calcula-

tion of observables. They find the observables by searching for energy eigenvalues and

eigenfunctions of the KKR secular equation, while in our case all physical quantities are

expressed in terms of the Green’s functions, without the compute-intensive eigenvalue

searching and the wave function orthonormalization procedures.

As a test of our code, the single-site DOS are calculated using both the Green’s

function method and Krein’s theorem and the two results are compared. To investigate

the relativistic effects and the full potential effects, we study the density of states of

noble metals and group V elements. Finally, the charge density of tantalum is calculated

and some interesting relativistic features are discussed.

4.2 Theory

Within the framework of spin polarized relativistic density functional theory [60], the

effective potential is written as

V (r) =

(
v(r) + σ ·B(r) 0

0 v(r)− σ ·B(r)

)
, (4.1)

where σ are the Pauli matrices and B are effective magnetic fields. In the following

discussion we will focus on nonmagnetic systems and discard the B terms (see Appendix

D for an example with magnetic field included). For r > Rc, where Rc is the radius of

the circumscribed sphere of the Wigner-Seitz cell, the effective potential V (r) vanishes,

and the solutions of the corresponding free-space Dirac equation are well known. The
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right-hand solutions are

JΛ(E, r) =

(
W/c2 +

1

2

)1/2
(

jl(pr)χΛ(r̂)
ipcSκ

W+c2/2
jl̄(pr)χΛ̄(r̂)

)
, (4.2)

NΛ(E, r) =

(
W/c2 +

1

2

)1/2
(

nl(pr)χΛ(r̂)
ipcSκ

W+c2/2
nl̄(pr)χΛ̄(r̂)

)
, (4.3)

where jl(pr) and nl(pr) are the usual spherical Bessel functions of the first kind and

the second kind, with angular momentum index l. Λ stands for the pair of relativistic

angular-momentum indices (κ, µ) and Sκ is the sign of κ index. Λ̄ = (−κ, µ) and

l̄ =

l + 1 if κ < 0

l − 1 if κ > 0
. (4.4)

χΛ and χΛ̄ are the spin-angular functions

χΛ(r̂) =
∑

ms=±1

C(l, j,
1

2
|µ−ms,ms)Yl,µ−ms(r̂)φms , (4.5)

χΛ̄(r̂) =
∑

ms=±1

C(l̄, j,
1

2
|µ−ms,ms)Yl̄,µ−ms(r̂)φms , (4.6)

where C(l, j, 1
2
|µ − ms,ms) are the Clebsch-Gordan coefficients, Yl,µ−ms are complex

spherical harmonics and φms are Pauli spinors

φ1/2 =

(
1

0

)
, φ−1/2 =

(
0

1

)
. (4.7)

In addition to the right-side solutions, we also need the left-hand solutions to construct

the Green’s function (see Appendix B and C). In free-space, the left-hand solutions are

given by

J+
Λ (E, r) =

(
W/c2 +

1

2

)1/2(
jl(pr)χ

†
Λ(r̂),

−ipcSκ
W + c2/2

jl̄(pr)χ
†
Λ̄
(r̂)

)
, (4.8)

N+
Λ (E, r) =

(
W/c2 +

1

2

)1/2(
nl(pr)χ

†
Λ(r̂),

−ipcSκ
W + c2/2

nl̄(pr)χ
†
Λ̄
(r̂)

)
. (4.9)
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For r < Rc, the Dirac equation solutions can only be obtained numerically. By using

the phase integral technique [59] , the solutions are written in terms of the free-space

solutions as (see Appendix B)

ψΛ(E, r) =
∑
Λ′

{SΛ′Λ(E, r)NΛ′(E, r)− CΛ′Λ(E, r)JΛ′(E, r)}, (4.10)

where the r dependent cosine matrix CΛ′Λ(E, r) and sine matrix SΛ′Λ(E, r) are defined

as

CΛ′Λ(E, r) = p

∫
0<r′<r

d3r′N+
Λ′(E, r

′)V (r′)ψΛ(E, r′)− δΛΛ′ , (4.11)

SΛ′Λ(E, r) = p

∫
0<r′<r

d3r′J+
Λ′(E, r

′)V (r′)ψΛ(E, r′). (4.12)

Note that this expression is also valid for r > Rc, because SΛ′Λ(E, r) and CΛ′Λ(E, r) will

become constants outside the circumscribed sphere. To distinguish these constants from

SΛ′Λ(E, r) and CΛ′Λ(E, r) we denote them as SΛ′Λ(E) and CΛ′Λ(E). Equations (4.10),

(4.11) and (4.12) form a set of coupled integral equations. CΛΛ′(E, r) and SΛΛ′(E, r)

can be obtained by solving the corresponding differential equations

d

dr
SΛ′Λ(E, r) = r2

∫
dr̂ pJ+

Λ′(E, r)V (r)ψΛ(E, r), (4.13)

d

dr
CΛ′Λ(E, r) = r2

∫
dr̂ pN+

Λ′(E, r)V (r)ψΛ(E, r). (4.14)

Note that the integral is only upon the angular part. For regular solutions, the boundary

conditions are

ψΛ(E, r)r→0 = JΛ(E, r). (4.15)

or equivalently

SΛ′Λ(E, 0) = 0, (4.16)

CΛ′Λ(E, 0) = −δΛΛ′ . (4.17)

To see the boundary conditions are well defined, we note the effective electric potential

has a spherically symmetric 1/r behavior at the origin. As a result the integrals on the
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right side of equation (4.11) and (4.12) vanish at the origin because spherical Bessel

functions with different l indices can not be coupled by spherical potential.

Next, we proceed to the discussion of technical details on solving the coupled differ-

ential equations. The explicit expressions of the differential equations (4.13) and (4.14)

are given by

d

dr
SΛ′Λ(E, r) =

∑
Λ′′

aΛ′′Λ′(E, r)SΛ′′Λ(E, r)−
∑
Λ′′

bΛ′′Λ′(E, r)CΛ′′Λ(E, r), (4.18)

where

aΛ′′Λ′(E, r) = r2

∫
dr̂ pJ+

Λ′(E, r)V (r)NΛ′′(E, r), (4.19)

bΛ′′Λ′(E, r) = r2

∫
dr̂ pJ+

Λ′(E, r)V (r)JΛ′′(E, r), (4.20)

and

d

dr
CΛ′Λ(E, r) =

∑
Λ′′

cΛ′′Λ′(E, r)SΛ′′Λ(E, r)−
∑
Λ′′

dΛ′′Λ′(E, r)CΛ′′Λ(E, r), (4.21)

where

cΛ′′Λ′(E, r) = r2

∫
dr̂ pN+

Λ′(E, r)V (r)NΛ′′(E, r), (4.22)

dΛ′′Λ′(E, r) = r2

∫
dr̂ pN+

Λ′(E, r)V (r)JΛ′′(E, r). (4.23)

For full potential calculations, the effective potential V (r) is expanded in terms of the

complex spherical harmonics

V (r) =
∑
Lv

VLv(r)YLv(r̂). (4.24)

The angular integral in equation (4.19),(4.20),(4.22) and (4.23) can be done analytically

and written in terms of the Gaunt coefficients

CL′′

L,L′ =

∫
dr̂ YL(r̂)Y ∗L′(r̂)YL′′(r̂). (4.25)

In practice, the differential equations are solved on exponential radial grid r = r0 exp(x),
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using the fourth-order Bashforth-Adams-Moulton predictor-corrector method. More

details on the numerical implementation is shown in Appendix D, with muffin-tin po-

tential as an example.

After we obtain the solutions of the Dirac equation, we can use them to construct

the single-site Green’s function, which has the following expression (see Appendix C)

for r′ > r

G(E, r, r′) =
∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r

′)−
∑

Λ

ZΛ(E, r)J +
Λ (E, r′). (4.26)

where J +
Λ′(E, r) are the irregular solutions of equation (2.6) with the boundary condition

that J +
Λ′(E, r) = J+

Λ′(E, r) outside the Wigner-Seitz cell. ZΛ(E, r) is another set of

regular solutions defined as

ZΛ(E, r) = p
∑
Λ′

ψΛ′(E, r)S−1
Λ′Λ(E). (4.27)

The t matrix is given by equation (C.14) in Appendix C and the explicit expression is

tΛΛ′(E) = −1

p

∑
Λ′′

SΛΛ′′(E) (CΛ′′Λ′ (E)− i SΛ′′Λ′ (E))−1 . (4.28)

From the Green’s function, it’s straightforward to calculate physical quantities of

the system. Here we focus on the charge density and the density of states. The first one

is necessary to calculate the new potential in a SCF cycle and the latter one is needed

to determine the Fermi energy of the system. The charge density is given by

ρ(r) = − 1

π
Im Tr

∫ EF

0

G(E, r, r)dE, (4.29)

where the Fermi energy EF is chosen to give the correct number of total electrons. The

density of states is given by

n(E) = − 1

π
Im Tr

∫
Ω

G(E, r, r)dr, (4.30)

where Ω denotes the wigner seitz cell. For real energy, the imaginary part of the ZJ +

term in equation (4.26) vanishes, so we can instead write the density of states n(E) and
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the charge density ρ(r) as

n(E) = − 1

π
Im Tr

∫
Ω

∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r)dr, (4.31)

ρ(r) = − 1

π
Im Tr

∫ EF

0

∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r)dE. (4.32)

The benefit of this expression is that it does not contain the irregular solutions JΛ(r),

which are difficult to evaluate precisely near the origin.

4.3 Krein’s Theorem

For single-site scattering, the density of states can be calculated from either the Green’s

function or the Krein’s theorem [61,62]. A comparison of the two results will be a good

test of our code. First we focus on the Krein’s theorem method. Details of the relation

between the Krein’s theorem and the Green’s function in the non-relativistic case has

been derived in a previous paper [63] and most of them can also be applied to the

relativistic case. Therefore, in this section we will just establish notation and quote

known results. By applying the Krein’s theorem to the scattering theory, it has been

proved that the integrated density of states (IDOS) is given by

NK(E) = −2ξ(E) = N(E)−N0(E) + nc, (4.33)

where N(E) is the integrated single-site density of states, N0(E) is the free electron

integrated density of states, nc is the total number of core states, which is irrelevant

here since we are only interested in valence electrons. ξ(E) is the Krein’s spectral shift

function [61] related to the standard unitary S-matrix S(E) by [64]

e−i2πξ(E) = detS(E). (4.34)

The S-matrix is obtained from the t matrix using the relation

SΛΛ′(E) = δΛΛ′(E)− 2iptΛΛ′(E). (4.35)
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The Krein DOS nK(E) is obtained by taking the derivative of NK,

nK(E) =
dNK(E)

dE
. (4.36)

Note that nK(E) is the Krein DOS for the entire space. To compare with the DOS

obtained from the Green’s function, we express nK(E) inside and outside the region

bounded by a sphere of radius Rc in terms of Green’s function as

nin
K(E) = − 1

π
Im

∫
0<r<Rc

Tr(G(E, r, r)−G0(E, r, r))dr, (4.37)

nout
K (E) = − 1

π
Im

∫
r>Rc

Tr(G(E, r, r)−G0(E, r, r))dr, (4.38)

and we should have nK(E) = nin
K(E) + nout

K (E). The G(E, r, r) term in equation (4.37)

is evaluated numerically while the G0(E, r, r) term is evaluated analytically using the

following expression of the free space Green’s function

Tr G0(E, r, r) = lim
r′→r

− 1

c2
Tr (α · p + βc2/2 +W )

eip(r−r
′)

4π(r− r′)
(4.39)

=− ipW

πc2
. (4.40)

Therefore, the contribution to the DOS from the inside integral is

nin
K(E) = − 1

π
Im

∫ Rc

0

Tr
∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r)dr− 4pW

3c2π
Rc

3. (4.41)

For r > Rc, using another expression of the Green’s function

G(E, r, r) = G0(E, r, r)− p2
∑
ΛΛ′

HΛ(E, r)tΛΛ′(E)H+
Λ′(E, r), (4.42)

where HΛ(E, r) = JΛ(E, r) + iNΛ(E, r), the outside contribution to the DOS is

nout
K (E) = Im

2p2W

πc2

∫ ∞
Rc

∑
l

hl(pr)tllhl(pr)r
2dr. (4.43)
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This double Hankel function integral also occurs in the non-relativistic case [63] and

can be done analytically using [65]∫ ∞
R

hl(pr)
2r2dr =

R3

2

(
hl−1(pr)hl+1(pr)− hl(pr)2

)
. (4.44)

To compare the Krein’s theorem method and the Green’s function method, the DOS

of copper and vanadium are calculated and shown in figure 4.1. The input potentials

are obtained from non-relativistic self-consistent full-potential KKR calculations. In

both calculations angular momentum cut-off lmax = 4 and 256 energy points are used.

In general the relative error is within the order of 10−4, which indicates an excellent

agreement between the two methods. Most of the errors are from the small number

of energy points and the relative primitive way to calculate nK from the numerical

derivative of NK. If lmax = 2 is used, we find the relative error is at the order of 10−2.
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Figure 4.1: (Color online) Comparison of the DOS from Green’s function method
and the Krein’s theorem method. The blue solid lines show the Krein DOS nK. The
dashed lines show nin

K +nout
K calculated using the Green’s function. Because of the good

agreement the two lines actually overlap.

4.4 Single-Site DOS

The full potential effects and the relativistic effects can be directly observed in the single-

site DOS. As the first example, the DOS of noble metals, i.e., copper, silver and gold

are calculated using both relativistic and nonrelativistic Green’s function methods. The

results are shown in figure 4.2. In all calculations the angular momentum expansion

cut-offs lmax are set to be 4 and the expansion cut-offs for potentials are set to be
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2 × lmax to satisfy the angular momentum triangular relation. Both the relativistic

effects and the full potential effects are well demonstrated by the three peaks in the

relativistic DOS plots of silver. The large energy differences between the leftmost peak

and the right two peaks are due to relativistic effects, mostly spin-orbit coupling. The

smaller difference between the right two peaks is due to full potential effect. The full

potential effects of copper and gold, however, do not cause any visible splitting of DOS

because their peaks on the right are relatively broad and merge into one single peak.

A better demonstration of the full potential effects and the relativistic effects is the

splitting of the IDOS components of the d electrons. According to Krein’s theorem, the

IDOS components are given by the generalized phase shifts divided by 2π, where the

generalized phase shifts are obtained by diagonalizing the S-matrix [66]. As an example

we calculated the Krein IDOS components of copper in different cases and the results

are shown in figure 4.3. For non-relativistic muffin-tin calculation, all the d electrons

degenerate. For relativistic muffin-tin calculation, even though the input potential is

spherically symmetric, the IDOS still splits into two parts due to spin-orbit coupling.

The introduction of asymmetric potential leads to further splitting in the relativistic

full potential calculation. Because of the cubic structure symmetry, the splitting is not

complete and the degeneracies still exist. Similar calculations are also performed for

silver and gold and the Krein IDOS for relativistic full-potential calculation are shown

in figure 4.4, where the splittings due to spin-orbit coupling are more significant. The

width of the spitting provides an estimate of the strength of the spin-orbit coupling or

full potential effect. For example, for copper, silver and gold the splittings caused by

spin-orbit coupling are 0.020 Ry, 0.042 Ry and 0.13 Ry, respectively. This agrees with

our expectation that the magnitude of spin-orbit coupling tend to increase for heavier

elements.

All the noble elements have face centered cubic structure, therefore the FP effects are

comparatively small. To better investigate the FP effects we also calculated the group

V elements, where the FP effects should be larger because of they are body centered

cubic crystals and are less closely packed. The Krein IDOS components of vanadium,

niobium and tantalum are shown in figure 4.5. For Ta the relativistic effect is almost

always dominant over the FP effect because of its large nuclear charge. For V and

Nb, however, it is easy to observe the competition between FP effects and relativistic

effects. At small energies, the FP effects are dominant over the relativistic effects. As

a result, the 10 d components evolve into two major branches. The upper branch has
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approximately 6 fold degeneracy, with angular momentum index l,m = 2, 0 or 2,±2 and

the lower branch has 4 fold degeneracy, with l,m = 2,±1. At high energies, however,

the relativistic effects will be dominant. Although there are still two branches, due to

spin orbit coupling, the good quantum number is the total angular momentum j. The

upper branch now is 4 fold degenerate, with j = 3/2 and the lower branch is 6 fold

degenerate, with j = 5/2. This is why in the intermediate region the two components

in the middle move from the lower branch to the upper branch as the energy increase.

At the end of this section we would like to discuss some general features in the plots:

The first one is that the resonance peak tends to be sharper when the center of the

peak is located at lower energy. This can be best understood by imagining the energy

of the d-resonance moves to negative, at that point, the resonance peak will become a

delta function and this corresponds to a bound state of the system. The second one

is that the resonance peak in the relativistic case tends to move toward lower energies

compared to the non-relativistic one. Taken to the extreme it means a resonance state

can become a bound state due to relativistic effects. This can be seen as a result

of relativistic contraction: the electrons move closer to the nucleus, which effectively

expands the size of the potential, therefore more bound states can be accommodated.

4.5 Single-Site Charge Density

In addition to the density of states, the electron charge density distribution is another

quantity that is essential for a self-consistent electronic structure calculation. Again we

focus our attention to single-site scattering and hence only show the single-site charge

densities here. Also by “charge density” we actually mean the valence electron charge

density. Using equation (4.29), the single-site charge density can be found by integrating

the Green’s function over energy. It’s convenient to expand the charge density in terms

of the spherical harmonics

ρ(r) =
2×lmax∑
l=0

l∑
m=−l

ρl,m(r)Yl,m(θ, φ). (4.45)

Because of the cubic symmetry in the elements we calculated, for 2× lmax = 8 the only

non-vanishing components are ρ0,0, ρ4,0, ρ4,±4, ρ6,0, ρ6,±4, ρ8,0, ρ8,±4 and ρ8,±8. Moreover,

not all of the charge density components are independent [57]. For example, we should



Chapter 4. Relativistic Single-Site Green Function 40

have ρ4,4 = ρ4,−4 =
√

5/14 ρ4,0 for all cubic crystal systems. Checking the symmetry

structure of the charge density also serves as a verification of our results.

As an example, we calculated the charge density components of tantalum, and the

proportional relationship of ρ4,0 and ρ4,4 is shown in figure 4.7, with relative error of

the ratio found to be within 10−7. We also studied the relativistic effects by comparing

the relativistic and nonrelativistic charge density components ρ0,0 as shown in figure

4.6. The non-relativistic limit of our method is also taken by setting 1/c = 0 and

compared with the non-relativistic Green’s function method to verify our results. From

figure 4.6 we see the relativistic charge density contracts towards the origin compared

to the non-relativistic one,1 which is a typical relativistic phenomenon [67]. Taking a

closer look, the relativistic contraction is best demonstrated by the asymptotic behavior

of the charge density near the origin, as shown in figure 4.8. The non-relativistic

ρ0,0 ≈ A(1 − αr) [57] near the origin, with α = 2Z; The relativistic ρ0,0, however,

demonstrates a weak singular behavior. This is no surprise since it’s well known that

when the nucleus is considered as a point charge, the relativistic S1/2 and P1/2 partial

waves will behave as r
√
κ2−ζ2−1 around the origin [18], where ζ = 2Z/c. Note that

this divergence is not pathological because when integrated around origin, ρ0,0 will be

multiplied by r2, which leads to a finite value. As a final check of our results, we

compared the magnitude of the charge density components and find the total charge

density is indeed positive everywhere.

4.6 Conclusions

We have demonstrated the construction of the RFP single-site Green’s function using

the scattering matrices and solutions obtained from directly solving the Dirac equations.

Compared to other approaches, our method employs the sine and cosine scattering

matrices formalism. As a result, no matching on the boundary is needed for solving the

Dirac equation.

This RFP method is successfully implemented to calculate the Green’s functions.

To test the code, the single-site DOS of noble metals and group V elements are cal-

culated using both the Krein’s theorem method and the Green’s function method and

1This is not necessarily true for self-consistent calculation, in which the relativistic contraction
applies first to inner electrons and the outer shell d-states can be shifted outwards as the nuclear
potential gets more screened
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an excellent agreement between the two is found. By studying the single-site DOS and

the scattering phase shifts, we thoroughly investigated the relativistic effects and the

full-potential effects in single-site scattering. Finally, using tantalum as an example,

we investigated the relativistic contraction of the charge density and the asymptotic

behavior of charge density near the origin.



Chapter 4. Relativistic Single-Site Green Function 42

R

NR

Cu

0.36 0.38 0.40 0.42 0.44 0.46 0.48
0

50

100

150

200

E !Ry"

Si
ng
le
!
Si
te
D
O
S

R

NR
Ag

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0

500

1000

1500

2000

2500

3000

E !Ry"

Si
ng
le
!
Si
te
D
O
S

R

NR

Au

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

200

400

600

800

1000

E !Ry"

Si
ng
le
!
Si
te
D
O
S

Figure 4.2: (Color online) Comparison of the relativistic and nonrelativistic single-site
DOS of noble metals. The blue solid lines are the DOS calculated from the relativis-
tic full potential Green’s function method. The red dashed lines are the DOS calcu-
lated from the non-relativistic full potential Green’s function method, which solves the
Schrödinger’s equation. Note that the first peak of Au is not completely shown because
it’s too sharp.
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Figure 4.3: The partial Krein IDOS of d electrons of copper corresponding to
non-relativistic muffin-tin (NRMT), non-relativistic full potential (NRFP), relativis-
tic muffin-tin (RMT) and relativistic full potential (RFP) calculations. There are 10 d
channels in total and the number of degeneracy is shown for each curve.
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Figure 4.4: The partial IDOS of d electrons of silver and gold in relativistic full
potential calculation. There are 10 d channels in total and the number of degeneracy
is shown for each curve.
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Figure 4.5: The Krein IDOS components of the d electrons of group V elements. There
are 10 d channels in total and the number of degeneracy is shown for each curve.
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Figure 4.6: (Color online) The l,m = (0, 0) component of the valence-band charge den-
sity of tantalum calculated with relativistic (R) method, non-relativistic (NR) Green’s
function method that solves Schrödinger’s equation, and relativistic method at non-
relativistic limit (RNR).
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Figure 4.7: (Color online) The l,m = (4, 0) component of the valence-band charge den-
sity of copper. Comparison of ρ4,0 and

√
14/5 ρ4,4 is made to test the cubic symmetry

in our results.
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Figure 4.8: (Color online) Comparison of the relativistic (R) and nonrelativistic (NR)
charge density around the origin. The non-relativistic limit of our relativistic method
(RNR) is also shown.



Chapter 5

Relativistic MST: A Pathology-Free

Scheme

5.1 Introduction

In MST the Green function is constructed from the regular and irregular solutions of

the Kohn-Sham equations. In contrast to the MT scheme, a persistent problem in

standard implementation of full-potential MST is that numerical errors in the irregular

solutions are very difficult to control near the origin [57]. As a result, the charge density

calculated from the Green function exhibits pathologies which can extend to a sizable

fraction of the muffin-tin radius. The practice employed by Huhne et al. [19] is to

drop the non-spherical components of the potential within a cutoff radius rns. While

this is a good approximation in general, unfortunately it also requires extrapolations of

the solutions and charge densities within rns. Therefore, near the nucleus, the charge

density of the valence electrons no longer has the correct undulations, which hinders the

accurate determination of the Hellmann-Feynman forces. As an improvement, a sub-

interval technique is proposed in Ref. [51] to systematically reduce the numerical error

by decreasing the step size when approaching the origin. This method still requires

spherical potential approximation within a small radius, and is less effective as lmax

(angular momentum cutoff of the solutions) increases. In Ref. [68], a modified single-

site Green function is proposed to avoid directly using the irregular solutions. However,

the volume integral of the irregular solutions are still needed to construct the modified

Green function.

48
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In all the above methods, the energy integration of the Green function is carried

out on the complex plane. A different strategy to overcome the pathology problem is

to split the Green function into the single-site part and the multiple scattering part,

and perform integration of the single-site Green function along the real axis, while inte-

grating the irregular solution free multiple scattering part on complex energy plane, as

demonstrated by Rusanu et al. [57]. The key observation is that on the real energy axis,

the irregular solutions make no contribution to the charge and spin densities, therefore

can simply be ignored when real energy integration is taken. Although this method

completely eliminates the pathology of charge density, it is not popular because the

real energy integration was considered to be computationally expensive in the presence

of sharp d-resonances, and completely fails when shallow bound states exist. However,

by making use of an efficient pole-searching algorithm proposed by Yang Wang, we find

the real axis energy integration can actually be accomplished reliably and efficiently,

with speed similar to the contour integration methods. Furthermore, unlike the un-

physical poles due to inverse of the sine matrix [57], the poles obtained in our method

directly correspond to the resonance and bound states of the single-atom potential,

therefore are essentially unaffected by other atoms and are numerically stable. Finally,

because our method explicitly identifies both bound and virtual bound electron states,

it provides an excellent framework for implementing schemes, such as LDA+U [69] and

self-interaction correction (SIC) [4,70], aimed at correcting local approximations to the

DFT for the effects of strong correlation.

In the following section we explain in detail how the poles of the single-site Green

function can be used to facilitate the energy integration of the shallow bound states and

the resonance states, with efficiency of this scheme demonstrated at the end. Details

of our pole-searching technique are presented in section 5.3. In section 5.4, polonium is

used as an example to demonstrate our method. The lattice constants, bulk modulus

and crystal structures of Po are calculated from ab initio and compared with results

from other methods. In section 5.5, the density of states and bulk properties of copper,

silver, and gold are calculated as a further test of our method and to quantify the

increasing impact of relativistic effects.
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5.2 Methods

The two physical quantities of most interest in the present context are the integrated

density of states N(E) and the charge density ρ(r). In a typical ab initio DFT calcula-

tion, these quantities need to be evaluated at each self-consistent loop to determine the

new Fermi energy and effective potential. Note that both N(E) and ρ(r) involve the

energy integral of the Green function. Unfortunately, for bulk materials a simple energy

integration on the real axis turns out to be infeasible due to the dense set of poles in

the multiple scattering Green function. One resolution of this problem is to carry out

the integration along a contour in the complex energy plane [71], with the observation

that the Green function is holomorphic except for poles at the bound states and a cut

on the real axis starting at Eb. Because the DOS becomes increasingly smooth the

further the contour is distorted into the complex plane, this method has been found

to be very efficient. Indeed, deploying Gaussian quadrature integration method, only

a few dozen energy points are needed to reach a high accuracy. In practice, however,

implementation is hindered by the presence of the irregular solutions in the expression

of the Green function, which is commonly written as [23]

G(E, r, r′) =
∑
ΛΛ′

ZΛ(E, r)τΛΛ′(E)Z+
Λ′(E, r

′)−
∑

Λ

ZΛ(E, r)J +
Λ (E, r′). (5.1)

Remember that Λ stands for the pair of relativistic angular-momentum indices (κ,µ),

ZΛ(E, r) and Z+
Λ (E, r) are the right-hand and left-hand regular solutions, respectively,

J +
Λ (E, r′) are the left-hand irregular solutions, and τΛΛ′(E) are the scattering-path ma-

trices. The irregular solutions are singular at the origin and are obtained by integrating

inward from outside of the bounding sphere. Unfortunately, using standard numerical

integration algorithms, the irregular solutions typically have unacceptable numerical

errors near the origin, which then results in the aforementioned pathology in the charge

density. The reason for this instability is as follows: In the full-potential scheme, the

non-spherical potential components couple solutions of the differential equation having

different l indices. Near the origin, the irregular solutions diverge as r−l−1, and the cou-

pling of this divergence to that of channels of higher l amplifies the numerical round-off

error in the irregular solutions; an effect that is further amplified as the lmax use in the

differential equation solver is increased.

In our approach, the elimination of this pathological behavior of the Green function
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is accomplished by splitting the Green function into the single-site scattering part Gs

and the remaining multiple scattering part Gm,

G(E, r, r′) =Gs(E, r, r
′) +Gm(E, r, r′). (5.2)

The explicit expression of the Gs(E, r, r
′) is

Gs(E, r, r
′) =

∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r

′)−
∑

Λ

ZΛ(E, r)J +
Λ (E, r′), (5.3)

where tΛΛ′(E) is the single-site t matrix. For simplicity of the discussion, we only

consider the case of one atom per unit cell. The explicit expression of Gm(E, r, r′) is

Gm(E, r, r′) =
∑
ΛΛ′

ZΛ(E, r) (τΛΛ′(E)− tΛΛ′)Z+
Λ′(E, r

′). (5.4)

Note that the ZJ term in Gs(E, r, r
′) is real for real energies. Because the single-site

DOS and charge density involve only the imaginary part of Gs(E, r, r
′) this term can be

ignored. As a result, carrying out the required integration over real energy axis obviates

the need to evaluate irregular solutions. As for the multiple scattering contribution,

because it is holomorphic on the upper half-plane and doesn’t have irregular solutions,

the integration then can be carried out along a semi-circle contour, as shown in Fig.

5.1. Note that other than a numerical technique, dividing of the Green function into

single-site part and multiple scattering part also provides a natural separation of local

and non-local physics. In particular, the single-site Green function obtained could be

of interest if one wish to study local physical quantities.

The above technique of avoiding using the irregular solutions is long known, but to

efficiently evaluate the energy integral of Gs(E, r, r
′), two obstacles must be overcome.

The first one is to properly account for the contribution from sharp resonance states,

examples of which are the d-state resonances in noble metals [23] and the p-state res-

onances of polonium, as shown in Fig. 5.4. In relativistic full potential schemes, these

resonance peaks usually get sharper and split into multiple peaks due to spin-orbit

coupling and crystal field splitting, and make a straightforward energy integration even

more prohibitive. The second difficulty is to carry out the energy integration of the

shallow bound states, which have poles right on real axis and make a direct numeri-

cal integration unfeasible. These shallow bound states show up, for example, in our
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calculation of polonium, as listed in Table 5.1.

The resonance peaks originate from the poles located at the forth quadrant in the

complex plane. As will be explained in the following, these peaks are well approximated

by Lorentzians, and the energy integration on the positive axis can be carried out

efficiently with a weighted sampling technique. To accomplish this, the single-site

Green function in the neighborhood of a scattering resonance is first approximated as

Gs(E, r, r)|E≈En ≈
ψn(E, r)ψ†n(E, r)

E − (En − iλn)
, (5.5)

where the complex resonance energy has be written in terms of the real and imaginary

part as En − i λn. By substitution of equation (5.5) into equation (4.30) and using the

normalization condition of the wave functions∫
Ω

ψn(r)ψ†n(r)dr = 1, (5.6)

then the density of states around En becomes

n(E)|E≈En ≈−
1

π
Im

(
1

E − En + iλn

)
=

1

π

λn
(E − En)2 + λ2

n

, (5.7)

which is exactly a Lorentzian function. The values of En and λn are determined using

the pole-searching technique detailed in section 5.3. Now that the approximate behavior

of the resonance peaks are known, we can construct a weighted energy mesh to carry

out the integration, i.e., an energy mesh that is densest at the resonance peaks. To use

this method, we need to find an appropriate cumulative distribution function F (E).

Here it is chosen to be

F (E) =
∑
n

(
1

π
arctan

(
E− En

λn

)
+

1

2

)
+

V

3π2
E3/2, (5.8)

where the first part is the integral of the Lorentzian function and the second part is

to account for the non-resonance (free-electron) states, with V being the volume of

the unit cell. The weighted energy mesh is obtained by uniformly choosing points Fi

between F (0) and F (EF ), then solving the inverse of F (E) with, for example, bisection

method. In practice, a uniform grid is more convenient to integrate, so a change of

variable from E to F is made and the integration is actually carried out on Fi points.
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For shallow bound states, the above weighted sampling technique no longer works

because what was a Lorentzian function at positive energy evolves into a Dirac delta

function at negative energies. We instead carry out the energy integration on small

contours that encircle the negative energy poles ( see Fig. 5.1). The reason that radius

of the contour must be small is to reduce the error caused by not carrying out the

integration strictly on real axis. In our experience, this method yields accurate results

when the radius of contour chosen to be 10−4 Ry.

At the end of this section we would like to discuss the computational efficiency of the

weighted sampling scheme. First we compare it with a simple uniform grid integration.

This is done by studying the number of energy points needed for the relative error of

the number of electrons to be less than 0.001. As shown in Fig. 5.2, for the uniform

grid integration, about 60 energy points are needed in copper and approximately 100

energy points are needed for gold. When the weighted sampling technique is used, the

numbers of energy points needed decrease to about 30 for both elements, despite the

fact that gold has much sharper peaks [23] than copper in the single-site DOS. This

demonstrates that the weighted sampling scheme is computationally more efficient and

reliable than the uniform grid scheme. Next we compare the weighted sampling scheme

with the conventional contour energy integration scheme. In the contour integration

method, although Gaussian quadrature method is generally efficient, about 30 energy

points are still routinely used due to structures of the Green function close to the real

energy axis. Therefore, the numbers of energy points are similar in the two methods.

Other than the number of energy points, another fact need to be considered is that, in

the conventional method only one energy integration of the Green function is required

at each self-consistent loop, while in the weighted sampling scheme both Gs(E, r, r
′)

and Gm(E, r, r′) need to be integrated. However, in the weighted sampling scheme

only the regular solutions need to be evaluated, as a result, the overall computational

efficiency of the two methods are actually very similar.

5.3 Pole-Searching Technique

The pole-searching technique used here is similar to the one used in the quadratic KKR

(QKKR) method [72] to calculate the electronic band structure. In scattering theory,

the bound states and resonance states correspond to the poles of the S-matrix S(E) in
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Figure 5.1: Energy integration of the Green function. The multiple scattering part
Gm is integrated along the upper semi-circle contour, while the single-site part Gs is
integrated on real axis. The shallow bound states are integrated with a tiny circle and
the resonance states are integrated using weighted sampling technique.
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Figure 5.2: (Color online) The relative error of the number of electrons calculated
from the single-site Green function Gs(E, r, r

′) for both Cu and Au. Energy points are
either obtained using weighted sampling or uniform grid. 16, 32, 64, 128 and 256 energy
points are used for each curve and the trapezoidal rule is adoped in energy integration.
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the complex energy plane, which can be written as

S(E) = [−iS(E)− C(E)] [iS(E)− C(E)]−1 , (5.9)

where S(E) and C(E) are the sine and cosine scattering matrices [23]. To find the poles

of S-matrix we only need to identify the zeros of the Jost matrix J(E), which is given

by

J(E) = iS(E)− C(E). (5.10)

In scattering theory, the Jost matrix is actually a more fundamental quantity than the

S matrix because it has no redundant zeros [73], therefore our pole-searching method

is numerically more stable than the one used by Rusanu et al. [57]. To efficiently

determine the zeros of the Jost matrix, a linear algebra method is used. Let us consider

a square matrix J(z) of size L× L (in relativistic case, L = 2(lmax + 1)2), and we need

to find its zeros, zp, such that

det [J(zp)] = 0. (5.11)

For the present purposes we are only interested in the poles, εp, that are close to the real

energy axis corresponding to either resonance states (εp > 0) in the valence band or the

shallow bound states (εp < 0). Accordingly, we choose an energy, in the neighborhood

of a pole and perform a quadratic expansion of the matrix around ε0 as follows,

J(z) = J(ε0 + λ) = J (0)(ε0) + J (1)(ε0)λ+ J (2)(ε0)λ2, (5.12)

where λ = z− ε0. In analogy with the terminology used in the quadratic KKR method,

we refer to ε0 as the pivot energy for the expansion of J(z). To find the zeros of this

quadratic equation, we consider an alternative matrix,

A(λ) =
[
J (2)(ε0)

]−1
J(ε0 + λ). (5.13)
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By multiplying
[
J (2)(ε0)

]−1

on both sides of equation (5.12), we get the following ex-

pansion,

A(λ) = λ2 −Bλ+ C, (5.14)

where

B = −
[
J (2)(ε0)

]−1

J (1)(ε); C =
[
J (2)(ε0)

]−1

J (0)(ε), (5.15)

Obviously, A(λ) has zeros at the same energies, λp = εp − ε0, as does J(ε0 + λ). We

now rewrite equation (5.14) as follows

A(λ) = λ2 −B(λ−D), (5.16)

where

D = B−1C = −
[
J (1)(ε0)

]−1

J (0)(ε). (5.17)

The zeros of A(λ) can now be found using the determinantal equation

det [A(λ)] = det
[
λ2 −B(λ−D)

]
= 0, (5.18)

or, equivalently,

det

[
λ−D −I
D2 λ−B +D

]
= 0. (5.19)

The eigenvalues λp (p = 1, 2,. . . 2L) that satisfy this secular equation can be quickly

found by diagonalizing the following matrix:[
D I

−D2 B −D

]
. (5.20)

The zeros of matrix S(z) are thus at zp = λp + ε0.

In practice, a simple way of computing the quadratic expansion coefficient matrices

in equation (5.12) is to calculate J(z) at three energy values: ε0−λ, ε0, ε+λ, with λ an

small value, then solve the quadratic expansion equations. To search the poles over the
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full interval Eb and EF , a set of panels on the real energy axis is set up and ε0 is chosen

at the center of each panel to obtain a first approximation to εp. In our experience,

a few panels are sufficient to determine the position of the resonance poles with an

accuracy of 10−3, which is generally much smaller than the width of the resonances. In

the presence of shallow bound states, more panels are needed since the radius of the

small contour is about 10−4, but then only 5 to 10 Guassian energy points are needed

on the contour since the analytic behavior close to a pole is simple. If desired, the

accuracy of the pole location can also be systematically improved through iteration by

progressively decreasing the energy window around the pivot energy used to set up the

pole location eigenvalue equation.

Finally, We would like to point out that our pole-searching scheme can also be ap-

plied to the core electrons, on an equal footing with the valence electrons, i.e., with

both bonding and non-spherical potential considered. In normal cases this is unneces-

sary because the non-bonding of core electrons is generally a very good approximation.

For very high pressure, however, it is possible for core electrons to also form bonds [74],

and our method should provide a good tool to investigate such problem.

5.4 Polonium

Polonium is an element that is extremely toxic and highly radioactive, and experimental

data on its physical properties is scarce. One distinctive property of Po is that it is

the only element to crystallize in the simple cubic (sc) structure at ambient conditions.

The simple cubic structure has a low atomic packing factor, and is generally considered

unstable, both from the point of views of elastic stability [75] and Peierls instability

[76]. In addition to the simple cubic phase Po (α-Po), a second, slightly distorted,

rhombohedral phase, Po (β−Po), is also found to exist at elevated temperatures. Both

the two crystal structures of Po are studied by Beamer and Maxwell [77] using X-ray

diffraction, and the lattice constants are reported to be a = 3.345(2) Å for α-Po and

a = 3.359(1) Å for β-Po. Later Sando and Lange [78] redetermined the lattice constants

using purer Po sample, with a = 3.359(1) Å for α-Po and a = 3.368(1) Å for β-Po.

With the development of electronic structure calculation methods, a number of the-

oretical studies have been carried out to explain why Po has a stable SC structure.

There are still debates on this question, but the general consensus is that relativis-

tic effects play an important role. Using the pseudopotential (PP) method, Kraig et
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al. [79] showed that SC structure has the lowest total energy among a number of lattice

configurations, including face-centered cubic structure (FCC) and body-centered cubic

structure (BCC). Min et al. [76, 80] ultilized the full-potential linearized augmented

plane wave (FLAPW) method implemented in the WIEN2K package and found the

SC structure is due to SOC. Also using FLAPW, Legut et al. [81, 82] investigated the

total energy profile of Po and analyzed contributions from different relativistic terms,

and concluded instead that it is the relativistic mass-velocity and Darwin terms that

stabilize the SC structure. This controversy is mainly due to the tiny total energy dif-

ference (especially for all-electron calculation) between the SC structure and trigonal

structure of Po, which is at the order of 0.1 mRy, and can be affected by factors such

as accuracy of exchange-correlation functional, convergence of the total energy with

respect to numerical parameters (for example, we found the convergence with respect

to radial grid is important because for different structures the grid generated can be

different.), or even which experimental value of the lattice constant to use in the band

and phonon dispersion calculations [83]. Compared to the second-variational implemen-

tation of SOC in WIEN2K, the fact that our method includes the SOC intrinsically

provides some advantage, but in this chapter we do not intend to address the ques-

tion on which relativistic effects contribute more to the stabilization of sc-Po, mainly

because of the aforementioned tiny total energy difference. Instead, we use Po as an

example to demonstrate our method, and compare the calculated physical quantities

with experiment and other calculation results. The angular momentum cut-off of the

wave function is chosen to be lmax = 4, and lpot = 8 for the potential cut-off, in all

calculations.

The electron configuration of Po is [Xe]4f 145d106s26p4. The core and semi-core

electrons are calculated by solving the Dirac equation for the spherical (l=0) component

of the potential. The valence electrons, i.e., 6s and 6p states, are calculated with the

FP-MST method. As described in section 5.2, the Green function is split into a single-

site part and a multiple scattering part. The poles of the single-site Green function

are computed and listed in Table 5.1, and the indices in the first column signify the

corresponding predominate angular momentum quantum numbers of each pole. The

first two s poles and the following two p poles have negative real part and negligible

imaginary part, which are the characteristics of bound states. The other four p poles

are in the forth quadrant of the complex plane and correspond to resonance states. The

splitting of the six p electrons into a doubly degenerate and weakly bound p1/2 core
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state and a p3/2 fourfold degenerate resonance state just above the energy zero is due

to SOC. Note that the cubic symmetry in the potential does not break the degeneracy

of either of these spin-orbit split manifolds. The spherical components of the charge

densities of the s1/2 and p1/2 bound states are shown in Fig. 5.3. Clearly, the charge

densities demonstrate correct number of nodes. Note that these nodes result from the

orthogonality of the valence states to the core states and occur for a radius as small as

0.1 a.u.. As in Ref. [57], this is a further example where the method of simple polynomial

extrapolation the charge density, over some significant fraction of the muffin-tin radius,

will miss the effects of these undulations.

The single-site DOS and the total DOS of the system are shown in Fig. 5.4; the

latter is in good agreement with the scalar relativistic + SO interaction calculation

result of Ref. [81]. The total energies and the fitted equation of state Po with SC, BCC

and FCC structures are shown in Fig. 5.5. The lattice constant for the SC phase is

found to be a = 3.327 Å, which, as can be seen in Table 5.2, is in good agreement with

the experimental value a = 3.359 Å. The bulk modulus is determined to be B0 = 55.1

GPa, but unfortunately no reliable experimental value of B0 is known. In Ref. [84], it

is claimed that the experimental bulk modulus of α-Po is 26 GPa, but no reference is

given. In Ref. [85] a more complete list of the theoretical results of α-Po is given, from

which we see all bulk moduli calculated theoretically are in the range of 40− 60 GPa,

which is much larger than the 26 GPa quotation. We therefore conclude that the bulk

modulus found here is reasonable and consistent with the values in the literature.

Table 5.1: The poles of the single-site Green function of Po

real part imaginary part

s1/2 -0.68202472D+00 0.16325374D-15
-0.68202472D+00 -0.21372993D-15

p1/2 -0.35205135D-01 -0.12391130D-13
-0.35205135D-01 0.11887440D-13

p3/2 0.66052385D-01 -0.37929455D-01
0.66052385D-01 -0.37929455D-01
0.66052385D-01 -0.37929455D-01
0.66052385D-01 -0.37929455D-01
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Table 5.2: Comparison of the lattice constant (a) and bulk modulus (B0) calculated
with the experimental and theoretical data in the literature.

a(Å) B0 (GPa) Ref.

Exp. 3.345(2) [77]
3.359(1) [78]

LDA, PP 3.28 56 [79]
GGA+SO, FLAPW 3.34 [76]
LDA+SO, FLAPW 3.334 42.3 [81]
LDA+SO, FLAPW 3.323 47.35 [85]
TB+SO 3.29 51 [84]
LDA+Dirac, MST 3.327 55.1 This work
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Figure 5.3: (Color online) The spherical component of the charge density of polonium
corresponding to the shallow bound states. Note that a 4πr2 factor has been included.
The red dashed line corresponds to 6p1/2 electron and the blue solid line corresponds to
6s1/2 electron.

5.5 Noble Metals

In contrast to polonium, the noble metals have been thoroughly investigated both

theoretically and experimentally. In this section, we use them as examples to further

test our method. The lattice constants and bulk moduli calculated here are shown in

table 5.3 together with experimentally measured values. The results are in excellent

agreement with the ones calculated with conventional KKR method [86]. Compared to

the experimental data, we underestimate the lattice constants and overestimate the bulk
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Figure 5.4: Comparison of the total DOS and the single-site DOS of polonium. To
show the DOS, the energy is shifted a little up on the real axis, with imaginary part
Im(E)=0.001 Ry. The dashed line is the single-site DOS and the solid line is the total
DOS. The vertical line is the Fermi energy. The shallow bound states are not shown
on the single-site DOS because they are essentially a set of Dirac δ functions. 125000
k-points are used to calculate the DOS.

Table 5.3: Comparison of calculated lattice constants and bulk moduli of noble metals
with the experimental values. The LDA is employed in all calculations. Fully relativistic
schemes are used except for the last two columns. In column AuNR all electrons are
calculated with nonrelativistic schemes, and relativistic schemes are utilized only for
valence electrons in column AuR−Core .

Cu Ag Au AuNR AuR−Core

Lattice constants (a.u.)
This work 6.65 7.55 7.60 8.03 8.17

Experiment 6.84 7.72 7.71

Bulk Modulus (GPa)
This work 191 141 208 112 124

Experiment 137 101 180

modulus, which is a well-known characteristic of LDA. As demonstrated in Ref. [86],

by employing GGA instead of the LDA functional, much better agreement with the

experimental data can be obtained for noble metals.

To demonstrate the impact of relativity, we calculated the bulk properties of Au
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Figure 5.5: (Color online) The volume dependence of total energy plot of polonium.
The solid, dashed, dot-dashed lines correspond to the fitted equation of state of simple
cubic, BCC, and FCC structures and the shift of total energy E0 = −41342 (Ry/atom).
When solving the Dirac equations a total of 1,500 radial mesh points are used within
the muffin-tin radius to ensure convergence of the single-site solutions.

with two other schemes. In the nonrelativistic (NR) scheme all relativistic effects are

ignored, and in the relativistic core (R-Core) scheme relativistic effects are included

only for the core and semi-core electrons. The lattice constants and bulk modulus are

shown in the last two columns of Table 5.3 and the total energy vs lattice constants

plot is shown in Fig. 5.6. Note that in the R-Core case the lattice constant increases

compared to the NR result. This is because when relativity only applies to the core

electrons, the nuclear charge of Au is screened better. From these results, it is clear

that relativistic effects need to be included for all the electrons, core and valence, when

calculating the ground state properties of elements as heavy as Au.

The impact of relativity is also evident in the DOS plots of Fig. 5.7. As a point of

reference, the fully relativistic DOS are in good agreement with the results in Ref. [87]

for the same set of systems. As can be seen, in all nonrelativistic calculations, the

DOS have five main peaks, which is a result of the crystal field symmetry. Under

the increasing influence of spin-orbit coupling, these peaks further split into multiple

sub-peaks. Overall, the differences between relativistic and nonrelativistic results also

grow as the atomic number increase. For silver and gold, the d-bands obtained in the

relativistic calculation broaden significantly with the result that the top of the d-band



Chapter 5. Relativistic MST: A Pathology-Free Scheme 63

is much closer to the Fermi energy than in copper. This effect is the result of the

relativistic contraction of the inner shell s electrons, whose relativistic effects are more

significant than the d-electrons. Actually, this is the well-known explanation of the color

of gold; namely, that relativistic effects, decrease the transition energy between 5d and

6s states which then absorb blue light making the reflected light appear golden to us.

The relativistic effects in silver are small compared to gold, therefore Ag still reflects all

the visible wavelengths and appears “silver”. Concerning the energy difference between

the top of the d−band and the Fermi energy in the relativistic plots, we find they are

small compared to those obtained from photoemission measurements [88, 89]. Again,

this is a typical feature of DFT calculations, and is shown to be largely corrected [90]

by using GW method to account for self-energy effects.
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Figure 5.6: (Color online) The total energy of Au calculated using different methods.
Different energy shifts are made for each curve so that the lowest point of each line is
always zero. In the solid line, the core, semicore, and valence electrons are calculated
by solving the Dirac equations. In the dashed line, the nonrelativistic Schrödinger
equations are used for all the electrons. In the dot-dashed line the Dirac equations
are solved for valence electrons while the Schrödinger equations are solved for core and
semi-core electrons.

5.6 Conclusions

We have implemented a new approach to full-potential relativistic MST. By splitting

the Green function into two parts and carrying out the energy integration along different
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contours, this method requires no evaluation of the irregular solutions and therefore is

free of any pathology of the charge density near the origin. By explicitly searching the

poles of the single-site Green function, we devised an efficient integration scheme to

solve the numerical problems caused by the shallow bound states and the resonance

states. The density of states and bulk modulus of polonium are calculated, with the

lattice constant found to be a = 3.327 Å, and the bulk modulus B = 55.1 GPa, which

yield excellent agreement with experimental data and results from other methods. As

a test of our code, we also calculated the DOS and bulk modulus of Cu, Ag, and Au,

and discussed the impact of relativistic effects.

The main concern about a real energy integration scheme is that it could be com-

putationally expensive and numerically unstable. As have been demonstrated, this is

not the case in our scheme. The weighted sampling technique can also be extended

to incorporate finite electronic temperature calculations by including the Matsubara

poles, which is important in the Jülich implementations of the KKR method [51,91].
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Figure 5.7: (Color online) Comparison of the relativistic and nonrelativistic DOS of
Cu, Ag, and Au. The red dashed lines are the nonrelativistic results and blue solid lines
are the relativistic results. Note that shift of the energy by Ef has been applied, so zero
on the x-axis corresponds to the Fermi energy.



Chapter 6

Spin-Polarized Calculations and

Magnetic Anisotropy

6.1 Application of MST in Magnetism

From the more traditional application of permanent magnets to the more recent spin-

tronics, magnetic materials play an important role in modern day technology. To help

us understand the rich diversity of magnetic phenomena, first principles methods must

be capable of treating magnetic systems. In the framework of DFT, a simple yet pow-

erful tool to describe magnetism is the spin-polarized approximation, as introduced in

chapter 2. Another commonly used approximation to describe magnetic material is

the atomic moment approximation, in which the magnetization within each atom is

assumed to be fixed along the same direction. This approximation is based on the

fact that most atoms have well-localized magnetization, with weak magnetization in

the interstitial region. For ferromagnetic (FM) materials, directions of the atomic mo-

ments are parallel, and for anti-ferromagnetic (AFM) materials are anti-parallel. Other

than FM and AFM, it is also possible for the atomic moments to be noncollinear, with

disordered moment directions or magnetic-spin textures. In MST method, direction of

the magnetization can be different at any point in the space [92]. However, to simplify

the calculation of effective potential in self-consistent loop, the atomic moment approx-

imation is still used in our calculations. Finally, one more approximation is to set the

direction of the magnetic field parallel to the spin magnetization. In a recent paper [93],

it is shown that this constraint can be lifted by adopting an exchange-correlation func-

66
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tional that has dependence on the transverse gradients of the spin magnetization.

Similar to LDA, the simplest exchange-correlation functional in spin-polarized DFT

is the local spin density approximation (LSDA) [94]. The major difference to LDA is

that instead of one, there are two effective potentials in LSDA, one corresponds to spin

up and the other one spin down. The effective electric and magnetic fields in section

2.4 are given by

Veff(r) =
1

2
(Vup (r) + Vdown (r)) , (6.1)

Beff(r) =
1

2
(Vup (r)− Vdown (r)) . (6.2)

In a self-consistent DFT calculation, starting from initial potentials of Vup(r) and

Vdown(r), the Kohn-Sham Dirac equation is solved to obtain the charge density using

equation (4.29). The magnetization is obtained with

m(r) = −µB
π

Im Tr

∫ EF

Eb

βσG(E, r, r)dE. (6.3)

From the charge density and magnetization, the new effective potentials can then be

calculated using LSDA functional. This process repeats until convergence is reached.

Compared to other DFT methods, MST has several advantages in treating mag-

netic materials. First, the availability of Green function makes it easy to apply the

embedding technique. This technique is particularly convenient to treat impurity [95]

or nano-structure [49] in an otherwise perfect crystal. Second, by combining coherent

potential approximation with MST, systems such as magnetic alloys [39] and dilute mag-

netic semiconductors [96] can be studied without the cumbersome supercells. Third, in

MST the t-matrices and τ -matrices are explicitly calculated. From these matrices, the

parameters of the magnetic-exchange interactions can be extracted using the technique

of infinitesimal rotation [97]. The mapped parameters can then be fed into the Laudau-

Lifshitz equation for multiscale simulations. In particular, by extending this technique

to the relativistic case, parameters of the Dzyaloshinskii-Moriya interaction can be ob-

tained for the investigation of magnetic skyrmions [98]. Finallly, the Green function in

MST can be used in the Kubo-Greenwood formalism to calculate transport properties,

such as Spin-dependent tunneling conductance [99], spin current density [100], Gilbert

damping constant [101], and spin-Hall coefficient [102].
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6.2 BCC Iron

As a test of our relativistic spin-polarized MST code, a self-consistent calculation of

BCC iron is made and the results are shown in this chapter. The angular momentum

cut-offs are lmax = 3 and lpot = 6. The single-site DOS and total DOS are shown

in figure 6.1 and the charge density and magnetization components corresponding to

l,m = (0, 0) and l,m = (2, 0) are shown in figure (6.2). Note that the l,m = (2, 0)

components should vanish for non-relativistic calculations due to the cubic symmetry in

BCC Fe. In the relativistic case, the spin-orbit coupling connects the spin space and the

real space, and time reversal symmetry breaking in spin space gives rise to breaking of

the cubic symmetry in real space, therefore there are nonzero l,m = (2, 0) components

in both charge density and magnetization. This effect can be observed experimentally,

and the electric field gradients induced by SOC have been calculated [103] by Ebert’s

group. The spin magnetic moment is found to be 2.18µB, which is in good agreement

with the experimental value of 2.13 µB.

6.3 Magnetic Anisotropy

Magnetic anisotropy is the dependence of a material’s total energy on the orientation

of the atomic magnetic moments. The primary cause of magnetic anisotropy is the

spin-orbit coupling (SOC). This interaction connects the spin and orbital degrees of

freedom, as a result, the non-spherical charge distribution in a material causes the

atomic spins have preferred orientations. The second source of magnetic anisotropy is

the magnetic dipole-dipole interaction. In bulk crystals this interaction is usually very

small, and vanishes for crystals with cubic symmetry. For finite size systems, however,

the dipole-dipole interaction can also be important.

The most important application of magnetic anisotropy is on information storage.

For example, in hard disk drives, materials with large magnetic anisotropy per volume,

K, are used for recording layers. For materials with uniaxial magnetic anisotropy,

expression of the magnetic anisotropy energy (MAE) can be approximately written as

EMA = KV sin2 θ, (6.4)

where V is the grain size and θ is the angle between the magnetization and the normal

axis. The two stable states can then be used to represent the “0” and “1” states in
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Figure 6.1: The single-site DOS and total DOS of BCC Fe. Imaginary part of the
energys in the Green function are taken as 0.001 Ry to show the DOS. The Fermi
energy is marked by a vertical line.

hard disks. When writing information into the disk, an energy barrier of KV need to

be overcome for each flipping operation. For the stored information to be stable against

thermal fluctuation for 10 years, this energy barrier generally need to be larger than

45kBT [13]. Therefore, to increase the storage density of the hard disk, materials with

high values of K are preferred.

Other than hard disk drive, another important application of magnetic anisotropy

is on magnetoresistive random access memory (MRAM). MRAM is a very promising
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Figure 6.2: The l,m = (0, 0) and l,m = (2, 0) components of the charge density and
magnetization of BCC Fe. Calculations are made with relativistic MST.

technology that has the potential of replacing the traditional dynamic random ac-

cess memory (DRAM). The storage component of MRAM is magnetic tunnel junction

(MTJ), which is made of two layers of magnetic metals and a layer of insulator in be-

tween. The tunneling current between the two ferromagnetic layers strongly depends

on their relative orientation of the magnetization, therefore the parallel and antiparallel

configurations can be used to store the two different states of binary data. Similar to a

hard disk drive, the MAE of the ferromagnetic layer in MRAM needs to be increased

for the size of the storage cell to decrease. By using a more recent technique called spin
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transfer torque (STT), flipping orientation of the magnetization will be easier and more

energy efficient than the traditional practice of using magnetic field. Together with the

high magnetic anisotropy, size of the storage cell in STT-MRAM can be scaled down

to less than 16 nm [13].

6.4 First Principles Calculation of the MAE

Because magnetic anisotropy is originated from the weak spin-orbit coupling, its mag-

nitude is usually very small. For bulk materials with cubic symmetry, such as BCC Fe

and FCC Ni, the MAE are in the order of µeV . For such a small quantity, the direct

method of taking the difference of the total energies with different spin orientations is

usually unfeasible. Instead, the difference of the much smaller band energies is almost

always taken to obtain the MAE, with the help of the magnetic force theorem. Even so,

for k-space methods such as FLAPW, calculating the MAE of BCC Fe [47] still requires

a large number of k-points or special numerical techniques, such as the state-tracking

method [104] or the torque method [105]. On the other hand, sometimes working in

the real space makes the calculation much easier, as demonstrated in reference [106]

and [107].

Compared to bulk materials, the ultrathin films exhibit larger MAE (in the order

of meV/atom) due to the reduced symmetry of charge distribution, therefore are of

greater interest to the development of the next-generation storage devices. Since the

SOC generally increases for element with larger atomic number, people first study mul-

tilayers with heavy elements, such as Pd, Au and Pt, to obtain materials with large

MAE. For example, in 2003, Gambardella et al. [108] found that single Co atoms on

Pt (111) surface have MAE as large as 9 meV/atom. However, an important prob-

lem for the Co/Pt base multilayers is that they have large Gilbert damping constant,

therefore require high switching current. This problem is avoided in the CoFeB–MgO

magnetic tunnel junction [109], which demonstrates attractive features including low

Gilbert damping constant, high tunnel magnetoresistance ratio and relatively large

perpendicular MAE. The perpendicular MAE is important because it allows for higher

storage densities than in-plane MAE. For the development of STT-MRAM beyond the

16 nm node, the perpendicular MAE CoFeB–MgO still needs to be increased. Possible

methods to achieve higher MAE including trying different materials for the capping

and buffer layers [13], or doping the Ta buffer layer with nitrogen [110].
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Even for ultrathin films, the MAE is still a small quantity and one must be very

careful with the approximations used in first principles calculation, such as choice of the

exchange-correlation functional, relaxation of the crystal structure, and treatment of the

substrate. Detailed assessment of all these factors has been given in reference [111,112].

6.5 Iron Monolayer

In this section, we use a free-standing Fe monolayer as an example to demonstrate the

calculation of MAE with relativistic MST. First principles calculations of the MAE of

Fe monolayer have been made with various methods in literature, therefore it is easy

for us to compare the results. At first sight, Fe monolayer seems not exist in nature

because electrons in metals are delocalized and usually can not support free-standing

two dimensional structure. However, in a recent study [113], it has been observed to

exist across the pores in a graphene sheet.

Table 6.1: The MAE (meV/atom) of Fe monolayer calculated with different methods.
Lattice constant a=4.83 in all cases.

Relativistic MST Torque method (Ref. [105]) State tracking (Ref. [105])

0.28 0.21 0.24

In our calculation, 4096 k-points are used and a unit cell made up of three layers

of vacuum and one layer of square lattice Fe atoms is adopted. The lattice constant is

4.83 a.u. and the distance between neighboring Fe layers is 9.66 a.u. (vacuum sites and

Fe sites forms BCC structure). To model realistic Fe monolayer, more vacuum layers

should be used, but as will be seen, our system is already good enough to reproduce

most of the magnetic properties of Fe monolayer. Using the magnetic force theorem,

the MAE is calculated by comparing the difference of the band energy

MAE = Eband(θ = π/2)− Eband(θ = 0), (6.5)

and the band energy Eband is given by

Eband =

∫ EF

Eb

E n(E)dE, (6.6)

where n(E) is the DOS of valence electrons. The MAE calculated with our method is
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0.28 meV/atom and comparison with the values from other methods are shown in table

6.1 and the agreement is good for such a small value. To demonstrate the θ dependence,

the MAE vs sin2(θ) curve is plotted as shown in figure 6.3. The smoothness of the data

points indicates that our calculation is reliable.
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Figure 6.3: Calculated MAE vs sin2(θ) for an Fe monolayer with a=4.83 a.u.. The
dots are the calculated values and the straight line is the fitted −0.005 + 0.282x curve.

6.6 Conclusion and Outlook

In this chapter, we calculated the DOS, charge density and magnetization of BCC

Fe using fully relativistic MST. Compared to the non-relativistic calculation, a major

difference of the relativistic result is that the charge density and magnetization have

non-vanishing l,m = (2, 0) components. Using the Fe monolayer as an example, we

demonstrated the calculation of magnetic anisotropy using fully relativistic MST. The

obtained energy vs θ data points fit excellently with a sin2(θ) curve.

Our calculation of the MAE is a preliminary study to investigate the MAE of real

MTJ systems. Previous first principles calculations of the MAE mainly focus on the
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Fe(Co)|MgO interfaces [114–116] because most commercial DFT packages can only

treat relatively small systems, especially for MAE calculations where large amounts of

k-points are required. By combining the fully-relativistic MST solver with the LSMS

code in our group, we will be able to study MTJ systems that are composed of thin films

with thickness of a few nanometers. This will not only give a more realistic description

of the multilayer system, but also allow for investigating factors such as concentration,

doping, capping and buffer layers, therefore shed light on the optimization of MTJ.



Appendix A

Conventions and Units

Throughout this thesis we use the atomic Rydberg units. This notation starts from the

definition that:

~ = 2m =
1

2

e2

4πε0
= 1, (A.1)

where m is the mass of electron and e is elementary charge, and

α =
e2

4πε0~c
≈ 1

137
. (A.2)

From the above definitions it is easy to see that

c =
2

α
≈ 274. (A.3)

In most chapters of this thesis, values of m, e, ~ are directly used to simplify the expres-

sion. For example, in non-relativistic case, momentum is written in terms of kinetic

energy as p =
√
E, instead of p =

√
2mE. The only exception is chapter 2, in which

the letters are retained for the sake of dimension analysis.

Other units can be derived from the above definitions. The Bohr radius is given by

a0 =
~2

me2
= 1, (A.4)
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therefore it is used as the unit of length. The Rydberg energy is given by

ERy =
1

2

e2

4πε0a0

= 1, (A.5)

and is used as the unit of energy.
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Derivation of the Regular Solution

ψ(r)

In this appendix we show how the expression in equation (4.10) is obtained. The free-

space Green’s function G0(E, r, r′) of the Dirac equation can be expressed in terms of

the free-space solutions,

G0(E, r, r′) =− ip
∑

Λ

JΛ(E, r)H+
Λ (E, r′)Θ(r′ − r)

− ip
∑

Λ

HΛ(E, r)J+
Λ (E, r′)Θ(r− r′). (B.1)

The solutions of the Dirac equation can be written in terms of the free-space Green’s

function G0(E, r, r′) and the free-space solutions φ(r):

ψ(E, r) = φ(E, r) +

∫
Ω

d3r′G0(E, r, r′)V (r′)ψ(E, r′). (B.2)

We have the freedom of choosing φ(r). Here our choice is:

φ(E, r) =
∑
Λ′

JΛ′(E, r){iSΛ′Λ(E)− CΛ′Λ(E)}, (B.3)
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where

CΛ′Λ(E) =p

∫
Ω

d3r′N+
Λ′(E, r

′)V (r′)ψΛ(E, r′)− δΛ′Λ (B.4)

SΛ′Λ(E) =p

∫
Ω

d3r′J+
Λ′(E, r

′)V (r′)ψΛ(E, r′). (B.5)

equation (B.2) becomes

ψΛ(E, r) =
∑
Λ′

{iSΛ′Λ(E)− CΛΛ′(E)}JΛ′(E, r)+∫
Ω

d3r′G0(E, r, r′)V (r′)ψΛ(E, r′). (B.6)

Next we plug the free-space Green’s function expression equation (B.1) back into equa-

tion (B.6) and split the integral region into two pieces according to r′ > r or r′ < r, we

have

Eq.(B.6) =
∑
Λ′

{iSΛ′Λ(E)− CΛΛ′(E)}JΛ′(E, r)

− i
∑
Λ′

SΛ′Λ(E, r){JΛ′(E, r) + iNΛ′(E, r)}

− iJΛ′(E, r)

∫
r<r′∈Ω

d3r′{J+
Λ′(E, r) + iN+

Λ′(E, r)}V (r′)ψΛ(E, r′). (B.7)

Using the short-hand notation that J = JΛ′(E, r), N = NΛ′(E, r),

C< =p

∫
0<r′<r

d3r′N+
Λ′(E, r

′)V (r′)ψΛ(E, r′),

C> =p

∫
r<r′∈Ω

d3r′N+
Λ′(E, r

′)V (r′)ψΛ(E, r′), (B.8)

and

C = C< + C> = CΛΛ′(E) + δΛΛ′ , (B.9)
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and similar notation for the sine matrices, we have

Eq.(B.7) =iJS − (JC − J)− i(J + iN)S< + JC> − iJS>
=NS< − (JC< − J), (B.10)

which is exactly equation (4.10). i.e.

ψΛ(E, r) =
∑
Λ′

{SΛ′Λ(E, r)NΛ′(E, r)− CΛ′Λ(E, r)JΛ′(E, r)}. (B.11)



Appendix C

Derivation of the Green Function

In this appendix we show how to derive the expression of Green’s function in equation

(5.4). The general expression of Green’s function can be written in terms of regular

solutions PΛ(E, r) and irregular solutions QΛ(E, r) as

G(E, r, r′) =− ip
∑

Λ

PΛ(E, r)Q+
Λ(E, r′)Θ(r′ − r)

− ip
∑

Λ

QΛ(E, r)P+
Λ (E, r′)Θ(r− r′). (C.1)

We have obtained regular solutions ψΛ(E, r). To find the appropriate irregular solutions

to construct the Green’s function, we start with the definition of the Green’s function

[
−cαi∇+ βmc2 + V (r)−W

]
G(E, r, r′) = −δ(r− r′). (C.2)

Simplifying the above expression, we find

(−i)
∮
r=R2

ds ·W[P+
Λ (E, r), QΛ′(E, r)] = δΛΛ′ , (C.3)

where W[· · · ] is the relativistic Wronskian

W[ψ+
1 (E, r), ψ2(E, r)] = icpψ+

1 (E, r)αψ2(E, r). (C.4)
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The following Wronskian relations satisfied by the free-space solutions can be verified

by pluging in equation (4.2), (4.3),(4.8) and (4.9),∮
r′=r

ds′W[J+
Λ (E, r′), NΛ′(E, r′)] = δΛΛ′ , (C.5)∮

r′=r

ds′W[J+
Λ (E, r′), JΛ′(E, r′)] = 0, (C.6)∮

r′=r

ds′W[N+
Λ (E, r′), NΛ′(E, r′)] = 0. (C.7)

For a given regular solution, equation (C.3) is the relation the irregular solution needs

to satisfy to construct the Green’s function in equation (C.1). To obtain an explicit

expression of QΛ(E, r), we make use of the integral equation satisfied by the Green’s

functions

G(E, r, r′) = G0(E, r, r′) +

∫
Ω

d3r′′G0(E, r, r′)V (r′′)G(E, r′′, r′). (C.8)

Plugging in equation (C.1) and equation (B.1) and using the Dirac equations, it can be

shown that the explicit expression of the irregular solution is given by

Q+
Λ(E, r) =

∑
Λ′

[
A−1

ΛΛ′(E)
]
H+

Λ′(E, r), (C.9)

whereH+
Λ(r′) have similar definition as J +

Λ (E, r′), with the boundary conditionsH+
Λ′(E, r) =

H+
Λ′(E, r) outside the Wigner-Seitz cell, and

AΛ′Λ(E) = −i
∮
BΩ

ds′′ ·W[H+
Λ(E, r′′), PΛ(E, r′′)]. (C.10)

If we plug in equation (4.10) and the relativistic Wronskian relations satisfied by the

free space solutions, we can find the corresponding irregular solution to construct the

Green’s function to be

Q+
Λ(E, r) =

∑
Λ′

[iSΛ′Λ(E)− CΛ′Λ(E)]−1H+
Λ′(E, r). (C.11)
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Therefore, for r′ > r the Green’s function is given by the expression

G(E, r, r′) = −ip
∑
ΛΛ′

ψΛ(E, r)[iSΛ′Λ(E)− CΛ′Λ(E)]−1H+
Λ′(E, r

′). (C.12)

To obtain a more familiar expression, we use the relation satisfied by the T -operator

〈J+
Λ (E, r)|V̂ |ψΛ′(E, r)〉 = 〈J+

Λ (E, r)|T̂ |φΛ′(E, r)〉. (C.13)

Plugging in equation (B.3) and (4.10), it’s easy to show that the t matrix is given by

tΛΛ′(E)−1 = p

(
iδΛΛ′ −

∑
Λ′′

CΛΛ′′(E)S−1
Λ′′Λ′(E)

)
. (C.14)

Using the definition of ZΛ(E, r) in equation (4.27), we obtain the useful expression

G(E, r, r′) = −ip
∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)H+
Λ′(E, r

′) (C.15)

=
∑
ΛΛ′

ZΛ(E, r)tΛΛ′(E)Z+
Λ′(E, r

′)−
∑

Λ

ZΛ(E, r)J +
Λ (E, r′). (C.16)

In the second line, we used the relation

Z+
Λ′(E, r) =

∑
Λ′′

[
tΛ′Λ′′(E)−1

]+ J +
Λ′′(E, r)− ipH+

Λ′(E, r), (C.17)

and the fact that

[tΛ′Λ′′(E)]+ = [tΛ′Λ′′(E)]T , (C.18)

which can be proved using relativistic Wronskians by analogy with the non-relativistic

case [57].

Because both the potential and the energies are real, from equation (4.18-4.23),

we see that for our calculation SΛ′Λ(E, r) and CΛ′Λ(E, r) are also real, from the Dirac

equation satisfied by the left-hand solutions, we have

ψ+
Λ (E, r) =

∑
Λ′

{N+
Λ′(E, r) [SΛ′Λ(E, r)]T − J+

Λ′(E, r) [CΛ′Λ(E, r)]T}, (C.19)
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and

Z+
Λ (E, r) = p

∑
Λ′

ψ+
Λ′(E, r)

[
S−1

Λ′Λ(E)
]T
. (C.20)

The “T” superscript indicates taking the transpose. Note that in general the left-hand

solutions and the right-hand solutions do not have such a simple relation, i.e., we cannot

obtain [SΛ′Λ(E, r)]+ by simply taking the transpose of SΛ′Λ(E, r). Particularly, when a

non-Hermitian self-energy Σ(z) term, or the y direction Pauli matrix, σy, is included in

the Hamiltonian, we may need to solve the left-hand and right-hand solutions individ-

ually. Details of the distinction between right-hand and left-hand solutions at a general

potential have been discussed in a recent paper [21].



Appendix D

Solving the Dirac Equation in

Muffin-Tin Potential

As an example to illustrate our approach of solving the Dirac equation, here we present

the numerical details in the simplified case of muffin-tin potential, with magnetic field

included. The electric potential part of aΛ′Λ will be reduced into

avΛ′(r) =p
(W + 1

2
c2)

c2
r2jl′(pr)nl′(pr)v(r) + p(W − 1

2
c2)r2jl̄′(pr)nl̄′(pr)v(r). (D.1)

The magnetic field part will be a little more complicated. Let’s assume that the mag-

netic filed is in the z direction. As will be explained below, for MT potential, aBΛ′′Λ′(r)

are nonzero in three cases. The expression of aBΛ′′Λ′(r) is given by:

aBΛ′′Λ′(r) =p
(W + 1

2
c2)

c2
r2jl′(pr)nl′′(pr)

∑
lB

BLB(r)〈χ†Λ′(r̂)|σzYLB(r̂)|χΛ′′(r̂)〉−

p
(W − 1

2
c2)

c2
r2jl̄′(pr)nl̄′′(pr)

∑
lB

BLB(r)〈χ†
Λ̄′(r̂)|σzYLB(r̂)|χΛ̄′′(r̂)〉. (D.2)

Note that for any term to survive, mj′ = mj′′ (or equivalently µ′ = µ′′) has to be true,

else there are either ml′ = ml′′ or ms′ = ms′′ , both render the inner product above

vanishing. The first nonvanishing case is κ′′ = κ′. In this case, both the two terms in
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Eq.(D.2) remain and we have

aB1 (r) =p
(W + 1

2
c2)

c2
r2jl′(pr)nl′(pr){C(l′, j′,

1

2
|µ′ − 1

2
,
1

2
)C(l′, j′,

1

2
|µ′ − 1

2
,
1

2
)−

C(l′, j′,
1

2
|µ′ + 1

2
,−1

2
)C(l′, j′,

1

2
|µ′ + 1

2
,−1

2
)},

− p
(W − 1

2
c2)

c2
r2jl̄′(pr)nl̄′′(pr){C(l̄′, j′,

1

2
|µ′ − 1

2
,
1

2
)C(l̄′, j′,

1

2
|µ′ − 1

2
,
1

2
)−

C(l̄′, j′,
1

2
|µ′ + 1

2
,−1

2
)C(l̄′, j′,

1

2
|µ′ + 1

2
,−1

2
)}. (D.3)

The second case is κ′′ = −κ′ − 1, now the second term in Eq.(D.2) vanishes and only

the first term survives,

aB2 (r) =p
(W + 1

2
c2)

c2
r2jl′(pr)nl′(pr){C(l′, j′,

1

2
|µ′ − 1

2
,
1

2
)C(l′, j′′,

1

2
|µ′ − 1

2
,
1

2
)−

C(l′, j′,
1

2
|µ′ + 1

2
,−1

2
)C(l′, j′′,

1

2
|µ′ + 1

2
,−1

2
)}. (D.4)

Note that in the above expression, if j′ = l − 1/2, then j′′ = l + 1/2, and vise versa.

The third case is κ′′ = −κ′, now the first term in Eq.(D.2) vanishes and only the second

one remains,

aB3 (r) =− p
(W − 1

2
c2)

c2
r2jl̄′(pr)nl̄′(pr){C(l̄′, j′,

1

2
|µ′ − 1

2
,
1

2
)C(l̄′, j′′,

1

2
|µ′ − 1

2
,
1

2
)−

C(l̄′, j′,
1

2
|µ′ + 1

2
,−1

2
)C(l̄′, j′′,

1

2
|µ′ + 1

2
,−1

2
)}. (D.5)

As in the second case, when j′ = l− 1/2, we have j′′ = l+ 1/2, and vise versa. For the

more general cases that the magnetic field has x and y components, similar expression

can be derived, but note that when the magnetic field has nonzero y component, extra-

caution must be paid to the difference of the left and right solutions, as mentioned in

Appendix C.

The differential equations are solved on exponential radial grid r = r0 exp(x), so

d

dx
=

d

dr
r. (D.6)

This introduced a r factor into the differential equations, but if we redefine the potential
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as

V new(r) = rV (r), (D.7)

then the differential equations with respect to x will be the same as Eq. (4.13,4.14)

except for the replacement of V (r) by V new(r). In practice, the first few points of the

differential equations are solved with Runge-Kutta method, then the predictor-correcor

method will be used. For simplicity, we can write the differential equations (4.13,4.14)

as

d

dx
sΛ′′Λ′(r) =fΛ′′Λ′(r, sΛ′′Λ′ , cΛ′′Λ′) (D.8)

d

dx
cΛ′′Λ′(r) =gΛ′′Λ′(r, sΛ′′Λ′ , cΛ′′Λ′), (D.9)

where r is implicitly a function of x. All the nonzero matrix elements of fΛ′′Λ′ or gΛ′′Λ′

for l ≤ 2 are shown in figure(D.1). To use the 4-th order Runge-Kutta method, we need

K1 = f(rn, snΛ′′Λ′ , cnΛ′′Λ′)∆x (D.10)

L1 = g(rn, snΛ′′Λ′ , cnΛ′′Λ′)∆x (D.11)

K2 = f(rn + ∆x/2, snΛ′′Λ′ +K1/2, c
n
Λ′′Λ′ + L1/2)∆x (D.12)

L2 = g(rn + ∆x/2, snΛ′′Λ′ +K1/2, c
n
Λ′′Λ′ + L1/2)∆x (D.13)

K3 = f(rn + ∆x/2, snΛ′′Λ′ +K2/2, c
n
Λ′′Λ′ + L2/2)∆x (D.14)

L3 = g(rn + ∆x/2, snΛ′′Λ′ +K2/2, c
n
Λ′′Λ′ + L2/2)∆x (D.15)

K4 = f(rn + ∆x, snΛ′′Λ′ +K3, c
n
Λ′′Λ′ + L3)∆x (D.16)

L4 = g(rn + ∆x, snΛ′′Λ′ +K3, c
n
Λ′′Λ′ + L3)∆x, (D.17)

and

sn+1
Λ′′Λ′ = snΛ′′Λ′ +

K1 + 2K+2K3 +K4

6
, (D.18)

cn+1
Λ′′Λ′ = cnΛ′′Λ′ +

L1 + 2L+2L3 + L4

6
. (D.19)

Once the first few points have been obtained with Runge-Kutta method, the predictor-

corrector method is used. For the predicator, the 4-th order Adams-Bashforth formula
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is used,

sΛ′′Λ′(rn) =sΛ′′Λ′(rn−1) +
∆x

24
[55fΛ′′Λ′(rn−1)− 59fΛ′′Λ′(rn−2)

+ 37fΛ′′Λ′(rn−3)− 9fΛ′′Λ′(rn−4)], (D.20)

cΛ′′Λ′(rn) =cΛ′′Λ′(rn−1) +
∆x

24
[55gΛ′′Λ′(rn−1)− 59gΛ′′Λ′(rn−2)

+ 37gΛ′′Λ′(rn−3)− 9gΛ′′Λ′(rn−4)] (D.21)

The 4-th order Adams-Moulton formula is used as corrector,

sΛ′′Λ′(rn) =sΛ′′Λ′(rn−1) +
∆x

24
[9fΛ′′Λ′(rn) + 19fΛ′′Λ′(rn−1)

− 5fΛ′′Λ′(rn−2) + fΛ′′Λ′(rn−3)], (D.22)

cΛ′′Λ′(rn) =cΛ′′Λ′(rn−1) +
∆x

24
[9gΛ′′Λ′(rn) + 19gΛ′′Λ′(rn−1)

− 5gΛ′′Λ′(rn−2) + gΛ′′Λ′(rn−3)]. (D.23)
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Figure D.1: nonzero matrix elements of fΛ′′Λ′ and gΛ′′Λ′ for l ≤ 2. The blue ones are
the diagonal elements, including contributions from l′′ = l′, l′′ = l′ ± 1 and l′′ = l′ ± 2.
The green ones only have contribution from l′′ = l′ + 1 and the yellow ones only have
l′′ = l′ + 2 element

.
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