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Abstract

The discovery of cosmic acceleration implies that universe is dominated by some
form of “dark energy” that causes repulsive gravity. This accelerated expansion of
the universe can be probed by Baryon Acoustic Oscillations (BAO). BAO is a well
developed method to measure the expansion history and the structure growth of the
universe. Intensity mapping is a new observation technique that can probe BAO
and large scale structures. A new type of telescope, the Grism Spectrotomographic
Imager (GSTI), is described in the thesis. The GSTI is designed for Lyman Alpha
(Lyα) intensity mapping. A grism, the combination of grating and prism, is placed
in front of a camera to disperse the light of each point on the sky into a spectrum and
shift the spectrum back closer to the original image point. Images are taken as the
grism rotates about the optical axis, resulting in a set of grism-dispersed images with
different spectra orientations. A hyperspectral data cube is then reconstructed from
this set of grism-dispersed images through back projection and point spread function
(PSF) deconvolution. The Richardson-Lucy method is chosen as the deconvolution
algorithm in the thesis due to its speed and performance. In contrast to other wide
field spectroscopy techniques, Grism Spectrotomography collects all available photons
simultaneously and efficiently yields the spectrum of each sky pixel within the field
of view. It has high throughput and a multiplex advantage. A prototype GSTI
was built, and the data acquisition pipeline was developed for the telescope. GSTI
was tested in the lab and on the sky. Reconstruction results show that GSTI is
capable of simultaneously providing spectra of multiple sources in the field. The
star foreground was also carefully studied for intensity mapping. Masking of Milky
Way stars is required for cosmological Lyα intensity mapping because bright stars
can affect the detection and the power spectrum of Lyα sources. A masking and
filtering scheme is proposed to obtain a high signal-to-noise Lyα power spectrum
using intensity mapping.
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Chapter 1

Introduction

Cosmic acceleration is one of the most surprising discoveries in many decades, which
requires the existence of some form of “dark energy” with unusual physical prop-
erties and repulsive gravity. This “dark energy” is also known as the cosmological
constant problem in General Relativity. The profound implication of cosmic acceler-
ation leads to a wide range of experiments to measure the history of expansion and
growth of structure in the universe. There are four most well established methods for
such measurements: Type Ia supernovae, Baryon Acoustic Oscillations (BAO), weak
gravitational lensing, and the abundance of galaxy clusters [17].

Baryon Acoustic Oscillations (BAO) provide one of the features Lyα intensity
mapping is aiming at. In an initially dense region in the early universe, the baryon-
photon fluid is oscillating as sound waves due to the radiation pressure. The sound
waves propagate like spherical waves from the center of dense regions, leaving a spher-
ical structure that ceases propagation at recombination. Although it is difficult to
identify this structure by eye, it can be statistically detected because there is an
excess of probability that pairs of galaxies are separated by a comoving distance
100h−1Mpc [18]. This is the radius of the acoustic sphere, or sound horizon at recom-
bination.

The BAO scale is used as the standard ruler in the universe. Cosmic separations
can be measured by this ruler so that Hubble parameter H(z) and angular diame-
ter distance dA(z) can be determined at various redshifts z. The evolution of the
separation with z reveals evidence on cosmic acceleration. By comparing observa-
tions with theoretical models, people can further constrain cosmological constant and
equation-of-state parameter w.

1.1 Hyperspectral Imaging

Hyperspectral imaging collects the spectral information of every pixel in an image.
The final reconstruction result is presented as a hyperspectral data cube, where (x, y)
are the spatial coordinates on the image and λ is the spectral coordinate represent-
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ing wavelength. Spatial coordinates release information about shape, location, and
structure of the objects of interest. The spectral coordinate can provide chemical
composition and emission fingerprints of the objects. In astronomy, hyperspectral
imaging is used to analyze the density, velocity, and distance of the objects within a
field. In agriculture, hyperspectral imaging is used to detect the nutrient and water
status of wheat in irrigated systems [19]; in mineralogy, it helps to detect minerals in
silica, calcite, garnet groups that have strong spectral signature [20]; in food process-
ing industry, it is able to identify defects and foreign materials that are invisible to
traditional cameras [21].

In astronomy hyperspectral imaging is also called Integral Field Spectroscopy
(IFS), whose scientific goals include [9]: a) study of the distribution of star formation
in distant galaxies, b) kinematical studies of galaxies at intermediate redshift, c)
intermediate redshift distance estimation with Tully-Fisher relation d) reconstruction
of lensed galaxies. In keeping with these goals, IFS usually aims at providing high
angular resolution of a small field that includes an extended object, like a galaxy.
Expanding the plate scale of the hyperspectral imaging allows wide field spectroscopy
to examine large scale structure in the universe. This technique is usually called
intensity mapping in astronomy society.

1.2 Intensity Mapping

Intensity mapping is short for three dimensional mapping of the specific intensity due
to line emission. The technique assumes the flux due to a single emission is dominant
or can be selected out, and the emissivity of the line is linearly related to the source
mass density. Then, spectral information can be translated into cosmic density, by
converting wavelength to comoving distance and intensity to mass density. Measuring
large scale structure (LSS) is one of the key goals of intensity mapping, which reveals
important information about cosmological parameters, dark matter, and dark energy.
Galaxy surveys such as 2dF Galaxy Redshift Survey (2dFGRS) [22] and Sloan Digital
Sky Survey (SDSS) [23, 24, 25] are also used to map cosmic structure but do this
by detecting and mapping the coordinates of many individual galaxies. Although
the distribution of galaxies can be used to trace LSS, they are more easily detected
at low redshifts about z ≤ 1 because they become fainter at higher redshifts. For
higher redshifts, it is challenging to resolve or even detect small and faint objects with
galaxy surveys. Intensity mapping provides an alternative way to probe LSS without
resolving individual galaxies.

Intensity mapping has been described as a powerful tool to understand the Epoch
of Reionization (EoR), when the universe became completely ionized from the neutral
state. Further study on EoR will shed light on star formation, galaxy formation and
large scale structure (LSS). Intensity mapping has been proposed mostly on long
wavelength lines, but very few in visible regions. 21 cm intensity mapping has been
developed rapidly to probe this epoch [26, 27, 28, 29, 30], while there are a variety of
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potential lines that can be used for this purpose, such as CO [31, 32], C II [33, 34, 35],
H2 [36], and Lyα [37]. A short wavelength line He II (164nm) is proposed for intensity
mapping, although it is in the infrared region z = 10− 20 [38]. There is also a study
indicating that Lyα, Hα, O II, C II and the lowest rotational CO lines are the best
candidates for intensity mapping probes [39].

My focus in the thesis is on moderate redshift (z = 2 ∼ 4) Lyα line. The Lyα
line is emitted during the transition from the first excited state (n=2) to the ground
state (n=1) of the hydrogen atom. It has a rest wavelength of λLyα = 121.567nm.
Lyα emission mainly comes from hot young stars within massive dark matter halos,
but can be scattered by neutral gas in the surrounding intergalactic medium (IGM).
High energy photons emitted by star forming galaxies in halos ionize the hydrogen,
which then recombines to emit Lyα photons [40]. These photons then undergo thou-
sands of scattering in gas in the circumgalactic medium before escaping, making the
Lyα emission extended. In addition, the collisions and recombinations in IGM also
generate Lyα photons [37]. The UV photons that escape the galaxies can ionize the
low-density neutral gas in IGM, which then emits Lyα photons upon recombination.
The electrons due to ionization of the gas can also cause collisional excitations that
result in Lyα photons [41, 42]. Furthermore, Lyn photons emitted from galaxies can
also get scattered by neutral hydrogen and finally produce Lyα. The Lyα intensity
from IGM is determined by the thermal and ionization state of the gas which are
related to the UV and X-ray backgrounds. However, the Lyα emission from IGM is
about ten times lower than galaxy Lyα emission when considered as a contribution
to the power spectrum described in Section.3.3 [43]. In this thesis, I mainly focus on
the Lyα photons from galaxies that are extended by scattering.

Galaxies are receding from us due to the expansion of the universe. And wave-
length of light emitted from a receding object is stretched out so that the observed
wavelength is larger than the emitting wavelength. This effect can be characterized
by redshift z, which is defined as: [44]

1 + z =
λobs
λemit

(1.1)

where λobs is the observed wavelength, and λemit is the emitting wavelength. At
moderate redshift (z = 2 ∼ 4), the Lyα line is redshifted to wavelength 365nm ∼
608nm. This wavelength range overlaps with the u band and the g band of SDSS
filters. I choose to study this redshift and wavelength because the total night sky
brightness is relatively low in this band, as shown in Fig.1.1. Various brightness
components outside the lower terrestrial atmosphere are plotted as a function of
wavelength. They are discussed in details in Chapter.3. The airglow, zodiacal light,
and star light are all brighter as the wavelength increases in the visible light band.
Shorter wavelengths are unacceptable for the ground based telescope because they are
blocked by the upper atmosphere. Overall, the u band provides a low sky brightness
region that is preferable for ground based Lyα intensity mapping.
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Figure 1.1: Overview on the brightness of the sky outside the lower terrestrial atmo-
sphere and at high ecliptic and galactic latitudes. Various components are plotted
separately. Figure adapted from [1].
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A few existing theories have indicated the possible results of Lyα intensity map-
ping experiments. Quantitative models of Lyα emission from z = 2 − 11 give an
estimate of Lyα intensity and recommend to pursue intensity fluctuations [37, 45].
The power spectrum of the Lyα spatial fluctuations has also been predicted at redshift
z > 4 based on the Hubble Space Telescope (HST) legacy fields [46].

The mapping speed of an intensity mapping experiment is proportional to through-
put(etendue) AΩ, because the specific intensity is measured by intensity mapping is
the power per wavelength, per aperture and per solid angle Iλ = dP/(dλdAdΩ). An il-
lustration of throughput is shown in Fig.1.2. Some influential optical telescopes, such
as SDSS, have a large aperture A that delivers high flux sensitivity, to compensate
for the small Ω of a distant unresolved point source. But detecting individual faint
objects is not the goal of intensity mapping. For intensity mapping, a small aperture
A instrument can be sensitive if a wide instantaneous field of view Ω is observed.
Thus intensity mapping experiments can aim for a wider field of view and use coarser
pixels that still provide information on large scale structure. In many optics systems,
the throughput is determined by the area of the detector or slit aperture, along with
the solid angle subtended by the optics that feed the detector or slit. Holding a con-
stant throughput AΩ, an intensity mapping instrument with large aperture A spends
less integration time on a smaller field Ω. And the total time required for the entire
survey field is independent of collecting area A. As a result, intensity mapping speed
is independent of telescope aperture if throughput is limited at the detector. We can,
therefore, use short focal length along with small aperture optics while maintaining a
high throughput for intensity mapping. This will minimize the cost and complexity
at the same time.

Taking h = 0.7 and redshift z = 2, the BAO radius is converted to 4.6◦ on
the sky, which sets the relevant field size for the instrument. The hyperspectral data
cube should cover a field several times this radius. Intensity mapping does not require
high angular resolution for large scale structures since the nonlinear scale subtends
about 5 arcminutes at this redshift. Instead, the pixel scale is determined by masking
requirements, which are discussed in Chapter 3. Several techniques that are commonly
used in IFS and their suitability for Lyα intensity mapping are discussed in Chapter
2.

1.3 Instrument

The Wisconsin H-Alpha Mapper(WHAM) is an existing telescope most similar to
an intensity mapping instrument, which maps the interstellar medium in the Milky
Way [47]. WHAM is designed to obtain spectra of Hα emission from ionized hydro-
gen and conduct an all-sky survey. WHAM consists of a 0.6-meter telescope and a
Fabry-Perot spectrometer, which provides a 1◦ angular resolution and 0.026nm spec-
tral resolution within a 0.44nm spectral window. The large field of view of WHAM
increases the sensitivity of WHAM tremendously to faint emission and also illustrates
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Figure 1.2: An example of throughput AΩ. dS is an infinitesimal surface element
whose integral is A.dΩ is an infinitesimal solid angle element whose integral is Ω.
Figure adapted from [2].
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Figure 1.3: Schematic GALEX instrument design. The optical path is outlined in
blue. Figure adapted from [3].

the importance of brightness sensitivity when designing an intensity mapping instru-
ment. However, Fabry-Perot spectrometer can only obtain the spectrum within a
small wavelength range at a time, making it inefficient for intensity mapping.

The Galaxy Evolution Explorer (GALEX) satellite is similar to the telescope I
built [48]. It is designed to investigate how star formation in galaxies evolved from
the early Universe up to the present. GALEX can obtain direct images in the near-
UV band and the far-UV band, and obtain low resolution spectra using a grism. The
spectroscopic survey had a goal of covering 5 square degrees. The GALEX instrument
design is shown in Fig.1.3, where the grism can be placed in front of the detector [3].
Its CaF2 grism forms simultaneous spectra of all sources in the field on the detector.
Since many spectra may overlap, the GALEX rotates the grism to different position
angles and conduct repeat observations of the same field. These grism-dispersed
images are combined to eliminate confusion as shown in Fig.1.4 [4]. The best non-
overlapping spectrum for each source is then extracted from these images. Although
the GALEX and the GSTI telescope I built in the thesis both take advantage of grism,
GALEX only extracts spectra of isolated point sources based on the conventional idea
of grism spectroscopy. However, my GSTI is aiming at reconstructing the spectra of
every pixel in the field even for weak sources via grism spectrotomography.

The Spectro-Photometer for the History of the Universe, Epoch of Reionization,
and Ices Explorer (SPHEREx) is a proposed all-sky survey satellite that can map Lyα
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Figure 1.4: A combined image of GALEX grism spectra collected with multiple grism
position angles. Each spectrum spins around its own undeviated wavelength point as
the grism rotates. Figure adapted from [4].

8



line at high redshifts 5.2 < z < 8. Its sensitivity will enable the satellite to detect
Lyα fluctuations at S/N≈10 during reionization at z > 6 [49]. This next generation
telescope can investigate scientific issues such as cosmic inflation, interstellar and
circumstellar ices, and the extragalactic background light [50].

1.4 Spectrotomography

Spectrotomography is a class of techniques that applies tomographic principles to
obtaining the spectra of spatially extended objects. Several techniques and mathe-
matics are discussed in papers [51, 52, 53, 54, 55]. This thesis focuses on a telescope
I built, the Grism Spectrotomographic Imager (GSTI), using Grism Spectrotomog-
raphy (GST) technique to achieve our goal of high throughput intensity mapping.
GSTI has a rotating grism in front of the camera and takes a set of grism-dispersed
images as the grism rotates. This process is very similar to X-ray computed tomogra-
phy or Computerized Axial Tomography(CAT) scan, where source and sensor rotate
about the object to obtain a set of projected images. In GST, the grism rotates as if
sources and sensor rotate about the hyperspectral data cube to obtain the projected
images set. The object reconstructed in CAT is the organ or tissue of the patient,
while the object reconstructed in spectrotomography is the spectrum of every pixel.
The imaging process is described by Radon transform or X-ray transform mathemat-
ically [56, 57, 58]. Further studies and reconstruction algorithms are grounded on
these transforms.

Due to its close relations with the CAT scan, spectrotomography usually borrows
tomographic reconstruction techniques from medical imaging [59, 60, 61]. Reconstruc-
tion is either based on inverting the transform equations such as filtered back projec-
tion and direct Fourier method [62, 56], or on solving a system of linear equations that
lead to algebraic reconstruction techniques [63, 64]. I developed a new technique for
GSTI which implements the basic back projection along with PSF deconvolution. The
new technique borrows ideas from both direct inversion and algebraic reconstruction.
It is a special filtering in Fourier space after basic back projection.

1.5 Thesis Overview

The thesis is outlined as follows. In Chapter.2, I compare 5 most common types of
integral field units (IFU): fiber, lenslet array, image slicer, imaging Fourier transform
spectroscopy, grism spectrotomography. The grism spectrotomography is the tech-
nique I explored in the thesis. In Chapter.3, three major sources of foreground con-
tamination are discussed: continuum foreground, line contamination, and bright stars.
I propose a masking and filtering scheme to remove star foreground. In Chapter.4,
I describe the telescope Grism Spectrotomographic Imager (GSTI) I built, and show
sample images from the telescope. In Chapter.5, I describe the grism imaging process
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as the projection from hyperspectral data cube and propose a two-step reconstruc-
tion algorithm. The first step, back projection algorithm, is analyzed in details. In
Chapter.6, I discuss the second step of the reconstruction algorithm: point spread
function (PSF) deconvolution. Direct Fourier deconvolution and Richardson-Lucy
(RL) deconvolution are compared through simulations. In Chapter.7, I show three
experiment results using the GSTI. The targets are HeNe laser, LEDs and stars re-
spectively. In Chapter.8, I summarize the entire thesis and suggest some future work
based on the analysis.
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Chapter 2

Integral Field Spectroscopy
Overview

There are a few methods widely used in integral field spectroscopy (IFS), and they
are different mainly by the integral field units (IFU) that are used. I will compare
their advantages and disadvantages here, and then discuss their suitability for wide
field Lyα intensity mapping.

In this Chapter, I discuss five common types of IFU: fiber, lenslet array, image
slicer, imaging Fourier transform spectroscopy, and grism spectrotomography. I de-
scribe how they work and show examples of their application. I use the GSTI I built
to compare with other major telescopes. By comparing different IFS techniques, I
show that imaging Fourier transform spectroscopy and grism spectrotomography are
two techniques especially suitable for high throughput intensity mapping.

2.1 Fiber IFS

A bundle of optical fibers in the focal plane of a telescope covers the spatial region of
interest and transfers the incident light to the slit of a spectrograph. The flexibility
of fibers allows people to obtain the spectrum for all fibers simultaneously with one
or more slits [65]. A major problem with fiber optics is that the sampling is not con-
tiguous because there are gaps between each fiber on the focal plane. And focal ratio
degradation (FRD) due to inefficient fiber is another problem. FRD describes the
fact that incoming light cone is smaller than the outcoming light cone, as shown in
Fig.2.1 [5]. And the outcoming light is partially lost if the light cannot go through the
optics following the fiber. It is generally caused by waveguide scattering and mechan-
ical deformation due to bending and surface irregularities. These two disadvantages
can be overcome using lenslet arrays, which are discussed below.

The IFUs for SDSS-IV survey MaNGA (Mapping Nearby Galaxies at APO) are
examples of hexagonal dense packing of fibers [66], as shown in Fig.2.2. Their sizes
range from 19 to 127 fibers and reach a fill fraction of 56%. It achieves a high

11



Figure 2.1: Schematic illustration of focal ratio degradation. The top figure shows an
ideal fiber with no FRD losses, whereas the lower figure represents a real fiber with
a wider output cone than its input cone due to FRD losses. Figure adapted from [5].

Figure 2.2: Close-up of a MaNGA 127-fiber dense packing IFU (left) and ferrule
housing that holds the IFU (right). Figure adapted from [6].

transmission and low FRD by maintaining the fiber cladding and buffer layers intact,
polishing the surface, and adding a multilayer AR coating to the input and output
surfaces. The fiber they are using has 120µm core diameter, or 2′′ on sky, and reaches
the spectral resolution at R = λ/∆λ ∼ 2200 with BOSS spectrographs. The MaNGA
has a maximum etendue of 4.5× 10−4m2deg2 at wavelength λ = 500nm [67].
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Figure 2.3: Optics design of Sauron: Elements are listed from focal plane(left) to
detector plane(right). Figures shown from left to right are the image of a galaxy seen
at the entrance of MLA, at the exit of MLA and at the detector plane respectively.
Figure adapted from [7].

2.2 Lenslet Array IFS

The incident light is split up by microlens array (MLA) and focused into small dots.
These small dots are fed into spectrograph and dispersed into spectra. SAURON is
an integral field spectrograph that uses lenslet array with grism, and its optics design
is illustrated in Fig.2.3 [7]. The final spectra of each small dots are non-overlapping
vertical stripes in the rightmost pictures. Notice that the final spectra from different
dots are not overlapped, because the dispersion direction is not parallel with the lens
array alignment. This is achieved by rotating the MLA or the grism to a different
angle about the optical axis. MLA can achieve contiguous sampling because there
are no gaps between lenses. MLA also avoids FRD problem since light does not go
through the fiber. However, the length of spectra is restricted to be short enough
that they do not overlap with each other and a lot of pixels on the sensor are not
used, which indicates inefficient use of the sensor.

But MLA can be used together with fibers, which is demonstrated by the Gemini
Multi-Object Spectrographs (GMOS) IFU on the Gemini-North telescope [68], similar
to Fig.2.5. The fibers are fed to a spectrograph and allow the image area to be
distributed on the slit of a spectrograph. Microlenses also slow the telescope focal
beam so that FRD can be minimised.
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2.3 Image Slicer IFS

Image Slicer, as the name itself indicates, slices the image by using mirror segments
that are at slightly different angles. These slices of the image are then realigned into a
long slice by other mirrors and sent to the slit of a spectrograph. The spectra obtained
from the long slice of the image are rearranged to obtain the original hyperspectral
data cube. As an example, image slicer is proposed to Gemini telescope in both
the optical band and the infrared band [8]. Its optics design is shown in Fig.2.4.
Near-Infrared Integral Field Spectrometer (NIFS) is the Image Slicer commissioned
on Gemini North telescope [69].

Image slicer also has the advantage of contiguous sampling and avoiding FRD
caused by fibers. Since the reflecting mirrors are achromatic and can be cooled
down to cryogenic temperatures, it applies to infrared well. However, image slicer
requires the spectrograph to have a long slit and encounters engineering problems
during fabrication, such as a large number of carefully aligned mirrors required. A
comparison of the first three main methods is presented in Fig.2.5.

2.4 Imaging Fourier Transform Spectroscopy

Imaging Fourier Transform Spectrometer (IFTS) is essentially a Michelson interfer-
ometer with a moving mirror in one arm. The interferometer acts as an optical filter
with a transfer function that depends on the setting of the Optical Path Difference
(OPD) between two arms. Observations are made at evenly spaced OPD settings
by moving the mirror with equal distance steps, creating the raw data set called in-
terferogram as shown in Fig.2.6. The interferogram is then Fourier transformed to
yield the spectrum of each pixel. Several IFTS systems are used for ground based
telescopes [10], such as SpIOMM [70] and BEAR [71].

As the OPD step size of the IFTS system is selected manually, it is usually set to
half of the shortest wavelength of the band being observed according to the Nyquist
sampling theorem. The IFTS can be applied in the dual-port mode as the detector
accesses both output beams, which achieves the optimal efficiency by collecting every
photon from a telescope. SITELLE, the successor of BEAR and SpIOMM, is an
example of the dual-port design IFTS [72]. A potential downside of IFTS is the
difficulty in assembling a large IFTS with large detectors. Furthermore, the dead
periods during each reading could also slow down the observation due to multiple
readouts.

2.5 Grism Spectrotomography

Grism spectrotomography has the multiplex advantage that achieves high throughput
with minimum cost. A grism that can rotate about its optical axis is placed in front
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Figure 2.4: Schematic Image Slicer: Rays from telescopes are reflected to different
imaging mirrors according to different slices, and then sent to spectrograph. Figure
adapted from [8].
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Figure 2.5: Comparison of three major IFS techniques: Lenslets, Fibers with lenslets
and image slicer. Credit: M. Westmoquette, adapted from Allington-Smith et al.
1998 [9].
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Figure 2.6: Schematic IFTS: At each step of the Michelson interferometer OPD,
an image of the entrance field is recorded on the 2D-detector array, creating the
interferogram. Figure adapted from [10].
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Characteristic Fiber Lenslet Image Slicer IFTS GST
Simple optics X X

Contiguous sampling X X X X
Focal ratio degradation X

High throughput X X X X
Limited spectrum length X
Inefficient use of sensor X
Intrinsically achromatic X

Multiple exposure X X
Information loss X

Computationally intensive X
Multiplex advantage X X

Suitable for wide field
spectroscopy

X X

Table 2.1: Comparison between different IFS techniques

of the imaging camera. A set of grism-dispersed images are taken at each angular step
as the grism rotates. The set can be treated as the projection of a hyperspectral data
cube, which is then reconstructed via tomographic techniques to 3D hyperspectral
space. A schematic GST instrument is displayed in Fig.4.1. Unlike the traditional
grism spectroscopy that only resolves the spectra for multiple objects, GST is able
to yield the spectrum for every pixel within the field of view without isolation of
individual source.

Grism Spectrotomography utilizes all the photons within the hyperspectral cube
at every grism orientation, ensuring a large throughput and thereby a high sensitivity.
Another advantage of GST is its easy installation. It works on any existing telescopes
by inserting only one piece of grism and rotation stage. However, the reconstruction
is subject to loss of information and expensive computation as described below.

2.6 Suitable Techniques for Wide Field Lyα Inten-

sity Mapping

Table.2.1 provides a table comparison of advantages and disadvantages for each IFS
technique. Overall, the spectrograph must be able to map a large field of view to
perform wide field Lyα intensity mapping. This goal should be achieved at an afford-
able cost and a reasonable size of the instruments. The diameter of BAO ring is 9.3◦,
which gives the lower limit of our FOV in order to contain the whole ring.

The image slicer needs a large number of slicing mirrors and slits to slice a large
region and obtain the spectra. For example, given a spatial pixel size 5′′ × 5′′ and
5 × 5µm pixels, it requires a total slit length of 20.97m to achieve the FOV 2.8◦ ×
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2.8◦. The Wide Field Spectrograph (WiFeS) that is developed in Australian National
University achieves only a field of view 38′′ × 25′′ using image slicer technique and
two 4096 × 4096 pixel CCD detectors [73]. Thus it is unrealistic to use image slicer
for wide field spectroscopy.

Similar problems exist for fiber IFS, because we need the same number of fibers
as the number of pixels. Assuming the same pixel sizes 5 × 5µm in focal plane
as above, 4 million fibers and 20.97m long slits are required to achieve the FOV
2.8◦ × 2.8◦. Another example is Visible Integral-field Replicable Unit Spectrograph
(VIRUS) for Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). VIRUS
consists of 150 identical spectrographs and 33600 fibers, but only covers a field of
4.6× 10−3deg2 [74, 75].

For lenslet array, it faces the same problem of too many fibers if it is used together
with fiber. However, if it is applied independently of fibers, there are no requirements
for long slits and fibers. Instead, the bottleneck is the number of lenslet in microlens
array, which is equal to the number of pixels. This number is approximately 2 million
using the above assumption, and it is hard to realize. I also mentioned in Section
2.2 that MLA does not use all the pixels on the sensor and make thus requires more
sensors than other techniques.

Gratings and slits both suffer from requiring multiple pixels to resolve the spectra
from the sources in one pixel. In comparison, IFTS solves the problem through
interferometry and GST solves this problem through spectrotomography. In addition,
IFTS and GST can conveniently set its FOV by adjusting the focal length and sensor
size.

2.7 Conclusion

IFTS and GST are two most cost-effective and high-throughput techniques for wide
field Lyα intensity mapping. Their multiplex advantages enable them to observe a
large field without using multiple spectrographs simultaneously. In contrast, fibers,
lenslet arrays and image slicers all require extra spectrographs to perform wide field
intensity mapping. Furthermore, GST’s optics design is simpler than IFTS. I focused
on GST in my thesis. I built a prototype GSTI with the Nikon D800 camera with
200mm focal length and 30mm × 24mm sensor. It achieves an FOV of 3◦ diameter.
The details of the instrument are discussed in Chapter.4.
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Chapter 3

Foreground contamination in
Intensity Mapping

Lyα intensity mapping suffers from three major sources of foreground contamination:
continuum foreground, line contamination, and bright stars. I will discuss the effects
of these three sources of foreground contamination and methods to remove them.

In this Chapter, I first discuss the spatial continuum foreground components and
their contributions to the diffuse night sky brightness. Then I introduce some stan-
dard procedures to remove the continuum foreground and calibrate the telescope. I
also discuss line confusion for Lyα intensity mapping and the ways of dealing with
it. Finally, I focus on star foreground that can affect the mapping and power spec-
trum of Lyα sources. And I propose a masking and filtering scheme that can retrieve
Lyα fluctuations in large scale. It also provides insights on the design of an intensity
mapping instrument.

3.1 Continuum Foreground Components

For ultra-violet and optical bands, the continuum foreground refers to the night sky
brightness. The contribution to the diffuse night sky brightness can be formally
described as the following formula [1]:

Inightsky = (IA + IZL + IISL + IDGL + IEBL) · e−τ + ISCA (3.1)

where Inightsky is the total diffuse brightness of the sky, IA is the airglow, IZL is
the zodiacal light, IISL is the integrated starlight, IDGL is the diffuse galactic light,
IEBL is the extragalactic background light. These contributions are attenuated by at-
mospheric extinction with an extinction coefficient τ . Furthermore, the tropospheric
scattering of these sources adds another component ISCA to the total brightness. The
fraction of individual contribution to the total sky brightness in u band is given in
Fig. 3.1. The source of each component is shown in Fig. 3.2. Each component will
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Figure 3.1: Approximate brightness contribution from each source.

be specified in the following paragraphs.

3.1.1 Airglow

Airglow emission can appear in ionospheric E layer (∼90km), F region (∼180km), or
Lyα and Hα in the Geocorona. According to Broadfoot & Kendall [76], the average
airglow intensity is approximately 0.6R/Å = 2.6 × 10−9W m−2nm−1sr−1 in u band.
This result is based on the observation at Kitt Peak near zenith and within 30◦ of
the galactic pole. There are several features about airglow. First, airglow depends on
zenith angle z and is usually increased from the zenith to the horizon. This relation
is given by the van Rhijn function.

I(z)/I(zenith) =
1√

1− [R/(R + h)]2 sin2 z
(3.2)

where R is the radius of earth, h is the height of homogeneous emitting layer and z
is the zenith distance or the complement of altitude.
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Figure 3.2: Schematic source of night sky brightness.
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Second, Airglow can vary enormously with time due to atmospheric changes and
solar activity. Third, the upper atmosphere can interact with interstellar neutral
atoms, or low earth orbit artificial satellites, producing continuum emission.

3.1.2 Zodiacal Light

Zodiacal light is formed due to sunlight scattered by interplanetary dust particles
in ultraviolet, visual and near infrared region. Its brightness is usually a function
of wavelength, heliocentric distance, viewing direction and the position of the ob-
server relative to the interplanetary plane. It is shown in Table 19 of Leinert’s
paper [1] that zodiacal light brightness at elongation ε = 90◦ around 300nm is
0.53× 10−9W m−2nm−1sr−1.

3.1.3 Integrated Starlight

This is the light from unresolved stars contributing to the sky brightness. Usually, it
is dominated by hot stars and white dwarfs at the ultraviolet, main sequence stars
at visual wavelengths, and red giants in the infrared [77]. In the pie chart Fig.3.1,
the total starlight brightness IISL = 0.302 × 10−9W m−2nm−1sr−1 comes from the
brightness measurement at south galactic pole [1, 78, 79]. I choose south galactic
pole integrated starlight brightness as a lower bound and estimate for my intensity
mapping experiment, because it is intended for higher galactic latitude to avoid light
from stars.

3.1.4 Tropospheric Scattering

Tropospheric scattering is another crucial contribution to the night sky brightness,
whose scattering sources are mainly airglow, zodiacal light, and integrated starlight.
The model of scattering usually assumes first order Rayleigh scattering and Mie scat-
tering from a uniform and unpolarized source in the atmosphere. The intensity is a
function of zenith distance for various extinction values. Leinert [1] mentioned the
scattering is usually in the order of 10−100 S10 (0.14−1.4×10−9W m−2nm−1sr−1 in
U band), about 15% or more of the zodiacal light and 10- 30% integrated starlight.

3.1.5 Diffuse Galactic Light

Diffuse galactic light (DGL) is the diffuse component of the galactic background ra-
diation produced by scattering of stellar photons by dust grains in interstellar space.
Dust particles’ infrared thermal emission is known as “cirrus” due to IRAS observa-
tions. A comprehensive measurement of DGL in the visual band is conducted by Pi-
oneer 10 probe. It carried out an all-sky photometric mapping in two wavebands cen-
tered near 440 nm and 640 nm from beyond the asteroid belt, where the zodiacal light
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can be neglected. Based on the results of Leinert’s paper[1], the dark region at high
galactic latitude (> 50◦) has an intensity around 10 S10 = 0.14×10−9W m−2nm−1sr−1

centered at 440 nm.

3.1.6 Extragalactic Background Light

Extragalactic background light (EBL) in the visual band is believed to consist mainly
of redshifted starlight from unresolved galaxies, from stars or gas in the intergalactic
space, and from decaying elementary particles. Based on the results of Leinert’s paper
[1], the brightness from extragalactic background light is approximately 0.0057 ×
10−9W m−2nm−1sr−1 at 350 nm.

3.1.7 Remove Continuum Foreground

As can be seen from Fig.3.1, the estimated Lyα signal is dim compared to other
components of the sky brightness. Some bright and time-variant components must
be removed before we can effectively detect Lyα signal. Here are standard procedures
for imaging data reduction adopted by Dragonfly telescope [80], which can also be
applied to the GSTI.

• Dark frames are taken throughout each night due to slight variation and may
be subtracted from the source and sky measurements. They are taken using
the same ISO, exposure time, and temperature as the normal images, but with
the lens cap on. A large number of dark frames should be averaged together
with a median algorithm to reduce noise. Usually, all dark frames should have
the same duration as the source and sky measurements to which they will be
applied.

• Bias frames are complementary to dark frames, which have a charge integration
time but in darkness. They are taken using the same ISO and temperature as
the normal images, but with fastest shutter speed and lens cap on. Bias frames
contain electrical noises the camera generates.

• Flat-field calibration frames are necessary to remove pixel-to-pixel variations.
Ideally, the flat field should be illuminated in the same way as the image to
which it will be applied. A series of flat-field frames are taken at the beginning
of each night, slightly offset from one another. They will be combined using a
median filter or clipping algorithm to remove stars, which provides a very good
flat field. Sky-frames can also serve the purpose of flat-fielding.

• Dithering is a strategy to minimize the effects of undersampling and to reduce
the effects of hot pixels, by offsetting the telescope between exposures by either
integer or subpixel steps. Some resolution lost due to sampling by pixels that
are not small compared to the point spread function can be recovered through

25



independent exposures with sub-pixel offsets. Individual images taken with
subpixel offsets can be combined to form an image with higher spatial resolution
than that of the original images, where 2-4 dither positions are recommended
for this case. Dithering by an integer number of pixels can also reduce hot
pixels, while dithering on scales of several pixels can help to smooth out pixel-
to-pixel variations in detector sensitivity. Pixel-to-pixel errors in flat-fielding
average out, thus allowing a higher signal-to-noise by combining data taken with
integer pixel offsets. The algorithm for combining dithered images is Variable-
Pixel Linear Reconstruction, or informally “Drizzle”, which can weigh input
images according to the statistical significance of each pixel, and removes the
effects of geometric distortion on both image shape and photometry [81, 82].
Dithering can also be used to make the sky and target frames.

• After dark subtraction, flat-fielding, and dithering, Dragonfly also corrects each
image for foreground total sky brightness with a model. The model identifies
the brightness distribution across the entire field of view at the site due to light
pollution from nearby cities, foreground emission and scattering [83]. Since the
sky brightness is not uniform across the sky, it can be subtracted with a tilted
plane based on the theoretical model. Besides, Dragonfly identifies the large
scale background in the image determined with SExtractor. It is then fitted a
third-order polynomial and subtracted from the image.

Besides data reduction, there are several other techniques to remove continuum
foreground. Shaver et al. discussed ways of correcting for diffuse galactic and extra-
galactic foreground emissions by sufficient modeling and measurement [84]. There are
also discussions focusing on their smooth frequency structure in a narrow bandwidth,
higher spectral resolution and cross-correlation [85, 86, 87, 88, 89]. Continuum fore-
ground removal is a well-studied problem for 21 cm intensity mapping, and most of
the techniques can be adapted for Lyα intensity mapping.

3.2 Line Foreground

Line foregrounds are caused by spectral lines other than Lyα redshifted to the same
observing band, where it is hard to separate the signals. 21 cm intensity mapping is
not contaminated by this issue because there are few lines at such long wavelength.
But Lyα suffers from line foregrounds at various redshifts. For Lyα intensity mapping
at moderate redshift (z = 2 ∼ 4), some possible line foregrounds are O II (372.7nm),
O III (500.7nm) and Hα (656.3nm).

One method to remove the line foregrounds is to cross-correlate two intensity
maps at different wavelengths, or one intensity map with another LSS tracer [90].
This works because only the target signals in the two maps are correlated, while the
foregrounds in either map are uncorrelated. Comaschi et al. showed cross correlation
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between diffuse Lyα line emission and Subaru Hyper Suprime Cam Lyα emitters
could recover Lyα line intensity [91]. However, there are two disadvantages of this
method. The first is that observing two signals is expensive and not straightforward.
Second, it is not well studied how to reconstruct the auto power spectrum from the
cross correlation, indicating a possible loss of information during cross correlation [92].

Masking bright pixels is another method to remove foregrounds. Usually, the in-
tensity mapping signal becomes weaker with redshift, so that lower redshift lines are
more problematic than higher redshift lines. Since galaxy masses are larger at lower
redshift, foreground line sources tend to be brighter than target sources. This implies
that the brightest pixels are more likely to be foreground line sources. Therefore
masking the brightest pixels can effectively reduce the line foreground contamina-
tion. Visbal et al. demonstrated that this technique could bias the target power
spectrum [93]. Gong et al. demonstrated it is applicable to Lyα intensity mapping
and discussed the projection effect of the foreground power spectra [92]. Breysse et al.
showed that foreground contamination is effectively dropped below the Lyα signal in
their simulation after masking 3% of the pixels. They also stated that the shape of the
power spectrum is not affected much after masking, although the amplitudes of the
power spectrum are lowered. So after masking, much of the cosmological information
is preserved, while the astrophysics information is lost [94].

3.3 Star Foreground

3.3.1 Star Foreground Contamination

All the stars brighter than Lyα can interfere with the Lyα signal during the inten-
sity mapping experiment. The SDSS Data Release 13 catalog is used to estimate the
brightness and the distribution of stars [95]. A field centered at (RA=180◦, DEC=10◦)
with size 10◦× 10◦ is chosen for the simulation in this section. To compensate for the
incomplete detection of SDSS, I correct the number of stars in each bin with the com-
pleteness curve shown in Fig.3.4. The completeness curve is estimated by comparing
the number of stars found in Data Release 1 [96] to the number found in Classifying
Objects by Medium-Band Observations (COMBO-17) survey [97]. Although Fig.3.4
shows the fractional completeness of stars in r band, I assume u band completeness
curve has a similar shape because both bands have magnitude limits at 22. The mea-
sured star magnitude distributions before correction and after correction in u band
are shown in Fig.3.3.

The SDSS catalog in the selected field contains stars from magnitude 10 to mag-
nitude 30. On the bright side of the distribution, SDSS catalog is inaccurate because
the point source saturates at magnitude 13 in u band. On the dark side of the dis-
tribution, SDSS catalog is incomplete because u band has a 5σ detection limit at
magnitude 22.3 [23]. Fig.3.3 indicates that number corrections mainly apply to mag-
nitude 22-24, and the number of stars begins to decrease when they are fainter than
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Figure 3.3: Luminosity function of SDSS stars in u band magnitudes before correction
and after correction for completeness.
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Figure 3.4: Fractional Completeness of Stars in SDSS r magnitude. Data adapted
from [11].
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magnitude 24 in u band. However, there may be more faint stars in the field due to
detection limits. I will show later in this section that these extremely faint stars have
negligible effect on the Lyα signals. I will use the corrected magnitude distribution
as the best number estimate in the thesis.

The mean surface brightness of Lyα is 1.66× 10−12W m−2nm−1sr−1 [98], which is
comparable with the average flux density from stars of magnitude 19. Therefore on
average, stars brighter than magnitude 19 affect the direct mapping of Lyα signals.
Since stars are unresolved point sources, fainter stars may yield greater flux than Lyα
in their respective pixels depending on the pixel scale. For instance, the flux from
Lyα is comparable with a magnitude 27 star inside a pixel of size 5′′×5′′. For the 74′′

pixels we will use at the end of this section, such dim stars make negligible individual
contributions.

In addition to the detection of the Lyα signal, the Lyα power spectrum is also
affected by the bright stars. Power spectrum describes the variance in the density
field as a function of scale. It is the Fourier transform of the two point autocorrelation
function. The correlations and structures of the density field can be analyzed through
the power spectrum. The power spectrum from stars is calculated as if their spectra
resulted from Lyα emitters at redshift z=2, and is compared with theoretical Lyα
power spectrum. More specifically, a 3D flux density field was created and the SDSS
field was used for the star distribution in the first two dimensions x, y. Then we gen-
erated uniformly distributed stars for number corrections based on Fig.3.3, assuming
all stars are uniformly distributed on the 2D sky. For the third dimension, we used
the identical M-star spectrum template [15] for all stars because M-star is the most
common type. At a given redshift z, a tiny wavelength range ∆λstar is chosen around
the redshifted wavelength of Lyα λLyα(z). The range ∆λstar is then converted to the
physical distance along the line of sight based on the redshift of Lyα. So I create a
3D flux density field that can be used to calculate the star power spectrum. The flux
is in the unit of Iλλ[nW m−2sr−1]. The synthetic field is 10◦ × 10◦, which is turned
into angular diameter distance based on Eq.3.3:

dflatA =
χ

1 + z
(3.3)

where χ is the comoving distance out to an object at redshift z. Specifically, the
physical size of this box is 307Mpc× 307Mpc× 307Mpc at z = 2.

The box is described by flux density F (x), and the overdensity is:

δ(x) = F (x)− < F (x) > (3.4)

where < · > is the average operator. Then the Fourier transform of the overdensity
δ(x) is calculated by:

δ(k) =

∫
δ(x) exp(−ix · k)dx (3.5)
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And the power spectrum of the star flux density is [44]:

P (k) =
1

V
< |δ(k)|2 > (3.6)

where V is the volume of the box. The calculated power spectrum from corrected
SDSS catalog is plotted in Fig.3.5, together with the theoretical estimate of the Lyα
power spectrum [45]. The error bars are estimated using jackknife method. We used
flat sky approximation and ignored projection effect during the power spectrum calcu-
lation. Obviously, the power spectrum from stars is about three orders of magnitude
greater than Lyα power spectrum at redshift z = 2. Stars will dominate the power
spectrum if there are bright stars in the intensity map. There are also two curves
indicating the power spectra of star flux after masking masking all stars brighter
than m∗ = 12 and m∗ = 13 respectively. Although the power spectra after masking
are still greater than Lyα power spectrum, they can be improved by filtering in the
anisotropic power spectrum.

3.3.2 Masking Stars

Given the contamination on power spectrum, bright stars need to be masked for
intensity mapping to recover the signal power spectrum. The question is how many
stars should be masked? What magnitudes of stars should be masked? Can we use a
current catalog for masking? To answer these questions, we again used the synthetic
flux density field from the corrected SDSS catalog to simulate masking results.

Bright stars contribute more to the star power spectrum and affect the Lyα power
spectrum. Most current catalogs are complete at these bright magnitudes. Thus there
are no bright stars left in the sky when we mask stars according to these catalogs.
The masking scheme is then straightforward: A threshold magnitude m∗ is defined
for masking, where all stars bright than m∗ are masked in the field. Star power
spectra can be compared for various masking threshold magnitudes m∗. And the
best threshold magnitude can then be determined according to observation criteria.

Notice that stars are randomly located on the sky, while their spectra are not
random. Thus the star power spectrum is anisotropic. The power spectrum has
different shapes between modes perpendicular to line-of-sight k⊥ =

√
k2x + k2y, and

modes parallel to line-of-sight k‖ = kz. It is helpful to compare the power spectrum
in terms of P (k⊥, k‖). The anisotropic power spectra P (k⊥, k‖) for Lyα and stars are
shown in Fig.3.6. The same color scales are used for all four plots.

The Lyα power spectrum is shown in Fig.3.6a. It is isotropic and most of the
power is concentrated at lower left corner, which corresponds to low k. The other
three plots in Fig.3.6 are the power spectrum of stars when all the stars brighter than
threshold magnitude m∗ are masked. I use the same color scale for all four plots.
Fig.3.6b shows the star power spectrum if stars brighter than m∗ = 12 are masked. It
is anisotropic and has a stripe along the k⊥ direction for a given k‖. The power from
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Figure 3.5: Power spectrum of star flux from corrected SDSS catalog at redshift z = 2,
compared with theoretical Lyα power spectrum from Pullen et al. The power spectra
of star flux after masking all stars brighter than m∗ = 12 and m∗ = 13 are also shown
in the plot respectively.
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(a) (b)

(c) (d)

Figure 3.6: (a) Lyα power spectrum from Pullen et al. (b) Star power spectrum after
masking at m∗ = 12. (c) Star power spectrum after masking at m∗ = 13. (d) Star
power spectrum after masking at m∗ = 14

Fig.3.6b is greater than Lyα power at small k‖ in the plot where Lyα is concentrated.
So it is not enough to mask at m∗ = 12. Fig.3.6c and Fig.3.6d show the star power
spectrum if the masking threshold magnitudes are m∗ = 13 and m∗ = 14 respectively.
The power from Fig.3.6c is close to Lyα power, and is even fainter than Lyα at lower
left corner. And Fig.3.6d shows less star power at all scales. As a comparison, the
3D power spectrum P(k) of stars after masking is also shown in Fig.3.5, where stars
power is greater than Lyα even after masking. This is mainly because the power is
large at small k‖ modes for stars. So examining power spectrum in P (k⊥, k‖) is a
better way to extract Lyα power.

The comparisons of P (k⊥, k‖) indicate that masking at threshold magnitude m∗ =
13 is required to reveal Lyα power. Since Lyα power is concentrated at the corner, it
is better to use a filter that keeps only the lower left corner of the power spectrum.
The filter is aiming at further enhancing Lyα signal compared to star signal. The
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filter has a shape of a quarter circle in P (k⊥, k‖). A stripe along k⊥ at low k‖ is
removed from the quarter circle, because stars yield large power in this low k‖ stripe.
The shape of the filter is shown in Fig.3.7. A flat filter function is assumed, and
everything outside the filter region is thrown away.

H(k) =

{
1 if k is inside the filter

0 if k is outside the filter
(3.7)

Fig.3.7 shows the example filter in the range of 0.06 ≤ k⊥ ≥ 0.5, 0.06 ≤ k‖ ≥ 0.5. A
stripe at k‖=0.06 h/Mpc is removed and the quarter circle perimeter is zigzag due to
coarse pixels. The actual filter range can be determined by experiments and scales of
interest. Several filtering tests were made with various k ranges and various threshold
magnitudes.

To compare the results of various filtering and threshold magnitudes, we integrated
the total power in Fourier space after filtering. It is the total variance in the map
after filtering. The results are shown in Fig.3.8, where the ratio of Lyα power to star
power is plotted against various threshold magnitudes m∗. Five threshold magnitudes
m1/2 = 21, 22, 23, 24, 25 were used for masking respectively. Three different k ranges
were also tested in Fig.3.8, all starting from 0.06 h/Mpc. The ratio of power can be
treated as the square of ‘signal-to-noise’ ratio. If the ratio is much greater than 1, then
Lyα is dominating the power spectrum. Otherwise, the star foreground dominates
the power spectrum. Fig.3.8 tells that masking stars brighter than m∗ = 17 yields
a ratio greater than 100. A wider k range can improve the ratio. Since the y-axis
is in log scale, this ratio growth follows power law at bright magnitudes. At fainter
magnitudes, this ratio grows slower mainly because the great number of stars in these
magnitudes compensate for the drop in intensity. Overall, the ratio of Lyα power to
star power can achieve 1000 if the threshold magnitude m∗ = 18 is used.

To summarize, a threshold magnitude m∗ = 18 is required to obtain a high ‘signal-
to-noise’ Lyα power spectrum, where the star contamination is negligible. And a filter
with the shape of a quarter circle in Fourier space is used to select the modes with
high Lyα power.

The masking scheme also determines the angular resolution of the intensity map-
ping instrument. Since masking stars cause information loss in those pixels, we would
like to limit this loss to 10%. In the worst case, every star is in a different pixel, and
the number of masked pixels is equal to the number of stars. We estimated the max-
imum pixel scale that could retain 90% pixels after masking with SDSS catalog and
corresponding field. Specifically, the count of stars from the corrected SDSS catalog
is used to estimate how many stars are masked for different threshold magnitudes.
Then the field is divided into equal size pixels. Assuming every star is in a different
pixel, the maximum pixel scales are calculated from the 10% loss threshold. The
pixel scales for various masking schemes are shown in Fig.3.9. It provides an upper
bound for pixel scale when masking at different threshold magnitude m∗. Based on
previous analysis, the Lyα intensity mapping instrument should have a maximum
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Figure 3.7: The shape of the filter in (k⊥, k‖) space. The white region is inside the
filter, while the black region is thrown away.
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Figure 3.8: Ratio of total Lyα power and total star power at various masking threshold
magnitudes m∗. The three curves show the results of three different k ranges.
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Figure 3.9: Maximum pixel scales to ensure 90% pixels are retained after masking.
Different m∗ corresponds to different masking threshold magnitudes.

angular resolution of 74′′ if stars brighter than m∗ = 18 are masked.

3.3.3 Discussion

The ratio of Lyα power to star power can achieve 1000 if we mask all stars brighter
than magnitude m∗ = 18. Since SDSS catalog is almost complete around magnitude
18, its completeness curve does not need to be taken into account. However, if the
intensity mapping experiment is conducted in longer wavelength such as r band or
i band, the completeness curve may come into play. Fig.3.10 shows M1 and M3
star templates from SDSS data release 2 [12]. We can notice that i band (centered
at 765nm) intensity is about 40 times greater than u band (centered at 380nm)
intensity, which corresponds to 4 magnitudes brighter. As the number of bright stars
increases in i band, more stars need to be masked to reduce their contamination.
When the threshold magnitude m∗ is close to the detection limit, we need to estimate
the number of stars that are not detected by the catalog. That is because stars
around the threshold magnitude m∗ which are not masked according to the catalog

37



contribute most to the star power spectrum. And it is important to estimate the
number of stars remained on the sky at each magnitude to properly determine the
star power spectrum.

For actual masking, SDSS catalog is not enough alone because it is incomplete
for bright stars. One solution is to use catalogs that have bright stars. Yale Bright
Star Catalog consists of stars brighter than magnitude 6.5, which is roughly every star
visible to the naked eye from Earth [99]. The HIPPARCOS and TYCHO catalogs have
limiting magnitudes around V ≈ 12 [100]. Smithsonian Astrophysical Observatory
(SAO) Star Catalog is also more or less complete to magnitude V ≈ 12 [101]. These
catalogs can be used to mask bright stars along with SDSS catalog. Another solution
to find bright stars is to observe and locate them with the telescope. These stars
brighter than magnitude 13 can be detected using low sensitivity instruments with
short exposure time. For example, I can use my GSTI without the grism on to locate
these bright stars before intensity mapping experiments.

The pixel scales in Fig.3.9 provide us with important information to design a
new intensity mapping telescope. If we mask all stars brighter than m∗ = 18 using
the SDSS catalog, the pixel size of the instrument can not be larger than 74′′. The
Baryon Acoustic Oscillations (BAO) ring has a diameter of 9.2◦ at redshift 2, and
the telescope with an FOV of 10◦ × 10◦ must be designed to enclose the whole ring.
Taking both the pixel scale and the FOV into account, the sensor is required to have
approximately 500×500 pixels. These are many pixels for non-multiplex integral field
spectroscopy instruments, because they need more than one spectrometer to obtain
the spectrum for each pixel simultaneously. For example, if one column of the pixels
on the sensor are fed into one spectrometer with fibers, then 500 spectrometers are
required to obtain the spectrum of the entire field of the instrument described above.
500 spectrometers and fiber bundles are difficult tasks for any intensity mapping ex-
periment at this time. So an intensity mapping instrument with multiplex advantage
must be used, such as the GSTI.

3.4 Conclusion

In this chapter, I discussed three types of foreground contamination: continuum fore-
ground, line foreground, and star foreground. We can remove continuum foreground
by fitting and subtracting the components. For line foreground, we can remove it by
cross-correlation or by masking bright pixels. Finally, I studied star foreground con-
tamination and its removal techniques. I developed a masking and filtering scheme to
remove star foreground. We can use the SDSS catalog or any all-sky survey catalog
with a similar completeness to mask the bright stars in an intensity mapping exper-
iment. In addition, we also need to locate bright stars on the sky with either bright
stars catalog or direct observation. All stars brighter than magnitude 18 have to be
masked to make star power negligible. The masking is necessary because most stars
are bright enough to affect the power spectrum and the detection of Lyα sources.
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Figure 3.10: M1 star and M3 star template from SDSS data release 2. [12]
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A filter in (k⊥, k‖) Fourier space is used to keep the modes with large Lyα power.
The masking scheme also provides an upper bound for the pixel scale in an intensity
mapping experiment. The pixel scale cannot be larger than 74′′ if we want to retain
90% pixels after masking with the SDSS catalog. This pixel scale also implies instru-
ments which require multiple spectrographs are not feasible for wide field intensity
mapping. Only integral field units with multiplex advantages are suitable for inten-
sity mapping experiment, including Grism Spectrotomography and Imaging Fourier
Transform Spectroscopy.
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Chapter 4

Apparatus

In this Chapter, I describe in details the Grism Spectrotomographic Imager I built.
Specifically, I list the major components and the specification of my telescope. I also
describe the optics design and the operation of the telescope. Sample images from
the telescope are displayed as the raw data. An alternative design is also proposed
to implement pixel masking at the image plane.

4.1 Grism Spectrotomographic Imager

My telescope consists of a camera, a lens, a grism, and a field stop, as shown in
Fig.4.1. The body of the telescope is Nikon D800 camera with a CMOS sensor and
lens with focal length f = 200mm. The grism is the combination of a wedge prism
and a 100 lines/mm grating. A 5 feet 11 inches long, 4 inches diameter High-density
polyethylene(HDPE) corrugated tube serves as the field stop. My telescope can be
supported on a telescope equatorial mount as shown in Fig.4.2. The mount has a
tracking motor that allows tracking fields. The telescope parameters are listed below
in Table.4.1.

The spectral data is obtained by taking a set of images as the grism rotates.
Specifically, I set an angular step size α for each rotation and perform the grism
rotation of α clockwise using the stepper motor controller. Right after each rotation
α, the camera is commanded to take one picture of the current grism-dispersed image.
When the grism rotates back to its original location, our full dataset consists of Nproj

images of different angles, where Nproj = 360/α. I implemented this control system
with the driver from stepper motor controller and Nikon. I wrote the program in C
language to control the rotating stage and camera in sequence to acquire a complete
set of images.

I built a laboratory test target to test the GSTI. The target has 5 LEDs, of
which three are yellow and two are green. They are attached to white cardboard
and connected to direct current power supply in parallel with each other. The 5
LEDs are each mock stars on the sky and show what stars’ spectra look like in our
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Figure 4.1: Telescope Schematic: The light rays first go through the field stop which
can make sure all spectra lie in the range of our sensor. The next element is a grism
which consists of a wedge prism and a 100 lines/mm grating. Grism is fixed on 2
inches aperture Oriel rotation stage controlled by Phidget stepper motor controller
and can be rotated about the optical axis. Finally, the light is focused on the sensor
through the lens.
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Figure 4.2: Telescope setup in the lab. Top: Nikon camera and grism in the back,
preceded by a white tube as the field stop. Bottom: Phidget stepper motor controller
connected with the rotational stage. Grism is placed on the stage and is covered by
the 1-inch white aperture stop.
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Sensor CMOS (rgb filter)
Focal length(f) 200 mm

Aperture (d) 25 mm
f/d 8

grating 100 lines/mm blazed for 1st order
sensor FOV 8.6◦ × 6.9◦

Pixel scale 4.9”
Prism refractive index 1.5

Prism wedge angle 8◦

Prism deflection angle 4◦

Undeflected wavelength 706 nm
Field stop angle 3◦

Field stop length 5 feet 11 inches

Table 4.1: Telescope Specification

Figure 4.3: 5 LEDs and their spectra at different angles. The upper left images show
the locations, colors and brightness of all LEDs with the grism removed. The other
three images show spectra at three different orientations of the grism, which are 120◦

apart.
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Figure 4.4: Three diffraction orders can be seen in the grism-dispersed image. The
5 brightest stripes in the center are due to 1st order diffraction, which are used for
reconstruction. Only the circular region at the center of the image is retained for
reconstruction.
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telescope. Images for a sample data set are shown in Fig.4.3 and the diffraction orders
are explained in Fig.4.4.

Notice the spectra are aligned at various directions for different grism angles. The
brightest spectral stipes in Fig.4.3 are due to first order diffraction in the grism. Also
visible are occasionally zero order and second order images appearing on the sensor.
The rotation of the grism causes the spectra to rotate about the source, which provides
us with the way of reconstructing the three dimensional hyperspectral data cube.

My telescope, GSTI, operates based on the idea of Grism Spectrotomography.
Grism Spectrotomography is different from Grism Spectroscopy, which is the ordi-
nary technique that uses only one grism orientation and a direct image without grism.
Grism Spectroscopy usually aims at obtaining spectra for a few objects previously
isolated in the non-dispersed image. It uses a direct image to locate the sources and
determine the source sizes, and uses the dispersed image to extract the spectra di-
rectly. It is often difficult for Grism Spectroscopy to retrieve the spectral information
of overlapping spectra. In contrast, our technique GST aims at recovering the spec-
tral information of every object in a region simultaneously rather than a few objects.
Tomographic reconstructions need to be carried out to extract the spectrum of each
object.

4.2 General Design for Masking Pixels

In general, a GST telescope can follow the design in Fig.4.5. The field stop is placed
inside the optics at the image plane of the objective lens. So the long tube field stop
in front of the lens is no longer required and the length of telescope can be made
shorter. Another advantage of this design is that the mask can be placed together
with the field stop. Unwanted stars or line contamination are masked at the image
plane before being dispersed into spectra. Furthermore, this masking scheme can be
applied to any intensity mapping telescope besides the GST. This is the telescope I
refer to when I discuss masking star foregrounds. I did not implement this design in
the thesis due to its complexity.
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Figure 4.5: Telescope schematic with masking and field stop inside the optics. The
mask and field stop is placed at the image plane. The figure is adapted from a paper
by Kudenov et. al. [13].
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Chapter 5

Reconstruction – Back projection

In this Chapter, I describe the grism imaging process as the projection from the
hyperspectral data cube. Based on the imaging model, I discuss the spectral resolution
of my telescope. Then I explain the first part of my reconstruction algorithm: back
projection. I show examples of back projection using synthetic sources. Moreover, I
describe the back projection in Fourier space in terms of Fourier Slice Theorem, which
indicates the incomplete information problem for the grism technique. I choose the
projection angle to be 45◦ for the thesis.

5.1 Imaging Model

In X-ray computed tomography for medical imaging, an X-ray source rotates around
the object and the X-ray sensor is placed at the opposite side of the circle from
the X-ray source. The raw image acquired by the scanner is the projection of the
object being scanned, as the X-ray intensity is reduced by the tissue inside the object.
Regarding mathematics, the projection is described as the Radon transform(2D) or
X-ray transform(3D) of the object structure. Then the raw images are processed
using tomographic reconstruction.

In analogy, I treat each grism-dispersed image as the projection of the data cube
from parallel rays onto our sensor plane. After recording a set of grism-dispersed
images (projected images set), our next goal is to reconstruct the 3-D hyperspectral
data cube (x, y, λ) of a region on the sky. x, y corresponds to 2-D cartesian coordinates
on the sky and λ corresponds to the wavelength coordinate at each location. This
3-D data cube is a convenient way to show the spectral information of a region rather
than a point source.

This projection model is depicted in Fig.5.1, which shows the projection of three
point source with different wavelength and locations. These two projections corre-
spond to two different grism rotation angle α. The nature of grism shifts the first order
to the center and makes the longer wavelength closer to the source, which explains
why λ axis pointing downwards.
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Figure 5.1: Projection model: There are three monochromatic point sources in the
3-D hyperspectral data cube, with red being longer wavelength and blue being shorter
wavelength. The projection of this hyperspectral cube onto sensor is shown at two
different orientations, corresponding to two different grism rotation angles.
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Since the imaging processes of my GSTI and X-ray computed tomography are
similar, I designed a reconstruction technique closely related to filtered back projec-
tion used in medical imaging. I divide the reconstruction into a two step process:
1) simple back projection, 2) point spread function (PSF) deconvolution. I focus on
simple back projection in this Chapter and will discuss the PSF deconvolution in
Chapter.6.

5.2 Resolution of Grism Spectrotomography

Before I explain the back projection, I would like to discuss the resolution of my
telescope and how it is related to the back projection. The geometry of the grism
optics is described in Fig.5.2. Given the prism wedge angle A, the refractive index
of prism n and the grating constant dgrating, we can write equations for each relevant
angle. We only focus on the first order of diffraction.

λ = dgrating sin θ (5.1)

n =
sin(θ + A)

sinα
(5.2)

φ = α− A (5.3)

n =
sin γ

sinφ
(5.4)

Eq.5.1 is the basic grating equation for perpendicular incident light [102]. Eq.5.2 is
the snell’s law on the first surface, and Eq.5.4 describes the snell’s law at the second
surface when the light exits the prism [103]. Eq.5.3 gives the relation between wedge
angle and refraction angles. Combining Eq.5.2 - Eq.5.4, I derive the expression of
deflection angle γ in Eq.5.5 and its relation with λ by using approximate form of
Eq.5.1, λ = dgratingθ in Eq.5.6.

sin γ = sin(θ + A) cosA− n sinA

√
1− sin2(θ + A)

n2
(5.5)

sin γ = sin(
λ

dgrating
+ A) cosA− n sinA

√
1−

sin2( λ
dgrating

+ A)

n2
(5.6)

If we assume (θ+A) is sufficiently small, the approximation can be used is sin x ≈ x
and
√

1− x ≈ 1− x/2. The result after approximation is shown in Eq.5.7. It is then
a quadratic equation of θ.
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Figure 5.2: Schematic grism deflection. The diffraction angle when the light passes
grating is θ. Then the light will be refracted twice at two surfaces of the prism. The
final deflection angle due to the imaging system is γ.

sin γ ≈ (θ + A) cosA− n sinA(1− (θ + A)2

2n2
)

≈ sinA

2n
θ2 + θ(

A sinA

n
+ cosA) +

A2

2n
sinA+ A cosA− n sinA (5.7)

We can again substitute λ in with approximate form of Eq.5.1 to derive sin γ as a
function of λ. It has not only quadratic term λ2, but also λ-dependent index n(λ).
The linear term dominates the deflection angle in Eq.5.8.

sin γ ≈ sinA

2n(λ)

λ2

d2grating
+

λ

dgrating
(
A sinA

n(λ)
+ cosA)

+
A2

2n(λ)
sinA− n(λ) sinA+ A cosA (5.8)

We plot the diffraction angle γ using both Eq.5.6(accurate) and Eq.5.8(approximate)
in Fig.5.3. The deflection angle is plotted with the wavelength in the range 300nm <
λ < 700nm and a fixed refractive index n = 1.5 is considered. Both plots show
a significant linearity between two parameters. Although the formula indicates a
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Figure 5.3: Deflection angle γ as a function of λ at constant n = 1.5, for both the
precise formula Eq.5.6 and the approximate formula Eq.5.8

quadratic relation between γ and λ, our wavelength range is too small to show any
parabolic effect. But we still need to take into account the effect of the refractive
index varying with the wavelength n(λ).

The material of our prism is assumed to be Borosilicate glass BK7, whose refractive
index is given in Eq.5.9 for SCHOTT BK7 [104]. The change of n in the visible light
band is plotted in Fig.5.4. The larger slope at shorter wavelength implies a possible
deviation from linearity. As we can see from Fig.5.5, the resulting deflection angle
relation is more curved and deviates more from the original straight line at a shorter
wavelength.

n2 = 1 +
1.03961212λ2

λ2 − 0.00600069867
+

0.231792344λ2

λ2 − 0.0200179144

+
1.01046945λ2

λ2 − 103.560653
(5.9)

Since the model assumption is the parallel rays projection of the spectrum, the
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Figure 5.4: Refractive index of BK7 at various wavelengths
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Figure 5.5: Deflection angle γ as a function of λ for constant n and varying n of BK7
using the precise formula Eq.5.6
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underlying assumption also involves a linear relation between deflection angle γ and
wavelength λ. This assumed linearity fails to hold in reality due to grism imaging
system. We use the equations given above to find the accurate deflection angle for
each wavelength. Then its deviation from linearity can be obtained by linearly fitting
the curve and extracting the residuals, shown in Fig.5.6. Apparently, the accurate
deflection angle lies closely around the fitted line and has a concave shape in terms of
the residuals. According to the fitting results, the Nikon D800 sensor has a resolution
∆λpixel = 0.22nm over the entire wavelength range. And the effect of the curvature
on resolution can be adjusted according to Fig.5.7. The resolution from the grism,
along with the back projection, determines the true spectral resolution of the system.

I define the projection angle β used in the model as the angle between projection
direction and the normal direction of our sensor, as depicted in Fig.5.8. Although
β is geometrically related to the deflection angle γ(λ), we can take the liberty of
choosing an appropriate back projection angle β. Because spatial coordinates x, y
have different units from wavelength coordinates λ, and we can scale λ axis inde-
pendently of x, y. This choice of β affects the final resolution of the spectrum in
the hyperspectral data cube. This effect is shown in Fig.5.9. It shows the spectrum
shape of a synthetic monochromatic source reconstructed with different β, ranging
from 10 to 90. The spectral resolution is usually determined by the Full Width at
Half Maximum (FWHM) of the spectrum of a monochromatic source. Although the
spectrum becomes narrower as we increase the projection angle β, it does not simply
mean the resolution is improved. The scale of the voxel is also altered for different β,
as depicted in Fig.5.8. For a point source with uniform spectrum, it has a spectrum
width d on the grism-dispersed image(sensor), while it has a spectrum width L in the
back-projected cube. Given the β we choose, their relation is described by Eq.5.10.

L =
d

tan(β)
(5.10)

We notice the critical angle here is β = 45◦. When β < 45◦, it is the same as
L > d. This means one pixel on the sensor is mapped to more than one voxel in the
reconstructed cube. So a finer voxel scale can be achieved on the reconstructed cube
by interpolation. On the other hand, when β > 45◦, it is the same as L < d. More
than one pixel is mapped to one voxel in the reconstructed cube. Therefore the pixel
scale is finer on the sensor. The spectral resolution δλ in this case can be defined by
Eq.5.11.

δλ = FWHM× voxel scale in the reconstructed cube

= FWHM× d×∆λpixel
L

= FWHM× tan(β)×∆λpixel

(5.11)

where FWHM is Full Width at Half Maximum and ∆λpixel is the pixel scale on the
sensor as defined in Section 5.2. Since the pixel scale is determined by the system,
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Figure 5.6: Linear fit on deflection angle γ as a function of wavelength λ. Top:
Red line is the linear fit of the calculated deflection angle (blue dots). Bottom:
Residuals(blue) of the linear fit
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Figure 5.7: Resolution correction curve: the wavelength difference ∆λ between true
λ and linear fit λfit.
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Figure 5.8: The relation between spectrum width d of the projected image and spec-
trum width L of the reconstructed cube. Given a projection angle β, the spectrum
of width L from a point source in the cube is projected onto the sensor plane with a
spectrum width d. The back projection is the reverse process and can be interpreted
in the same way.

δλ depends only on FWHM and β. The combined information from Fig.5.8 and
Fig.5.9 shows a delicate trade-off between FWHM and β. As β increases, tan(β) also
increases while FWHM decreases, making the change of δλ uncertain. It is the same
situation when β decreases. Notice that FWHM is at least 1 and is limited by the
size of the reconstructed cube. So β cannot be too large nor too small. I will discuss
another important factor that affects the choice of β later in this Chapter.

5.3 Back Projection Algorithm

Back projection is a linear reconstruction method shown in Fig.5.10. The fundamental
idea is to project back along its path for every point on a projection image, which
will form a line in the reconstructed data cube. More lines will be added to the
reconstructed data cube as we continue to back-project all the projections. These
lines intersect at the location of actual object wavelength. In the simplest case of a
monochromatic source, the lines intersect to form a double cone in the reconstructed
hyperspectral cube after basic back projection, shown in Fig.5.10.

The double cone is the PSF for a point (monochromatic source) in the original
data cube. Based on the back projection algorithm, the double cone will have the
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Figure 5.9: Reconstructed spectrum of an one-pixel monochromatic point source using
different β (10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦)
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Figure 5.10: Back projection model: Back projection is the reverse process of pro-
jection. Monochromatic point source in the 3-D spectrum data cube is projected as
a point in projected images. The back projection from all these points in projected
images forms a double cone in real space, with the intersection being the point source.
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Figure 5.11: Double cone PSF Illustration: Slices of double cone at six different
wavelengths are shown for the reconstruction from a synthetic monochromatic point
source.

same amount of total flux at each wavelength slice λ. At any given wavelength λ∗,
the slice of a double cone (x, y, λ∗) has a ring with uniform intensity, except at the
wavelength λ0 of the source where it is a point on the slice. The double cone structure
is illustrated by reconstructing a synthetic monochromatic point source at the center
of a cube in Fig.5.11, in the form of hyperspectral cube slices at various λ. The slice
with only one bright spot is the true location of this point source. All slices come
from the reconstruction of a synthetic source. This double cone structure can be
removed by deconvolving the reconstructed data cube with this PSF. Specifically, in
computation, the PSF is modeled as a double cone whose vertex is located at the
center of a cube. The details of PSF deconvolution are discussed in Chapter 6.
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Figure 5.12: Central Slice Theorem schematic: Two slices correspond to two projec-
tions at different directions. The 2-D Fourier transform of the red image is equal to
the red slice through the origin of the 3-D Fourier transform of the data cube that is
also perpendicular to the projection direction. Same for blue image and blue slice.

The back projection can also be analyzed in Fourier space. According to Fourier
slice theorem (central slice theorem), the 2-D Fourier transform of each projection is
equal to a slice through the origin of the 3-D Fourier transform of the original data
cube. The slice in the Fourier space is perpendicular to the direction of projection,
as shown in Fig.5.12. Mathematically, we can show without loss of generality that
we can choose the Cartesian coordinates system in a way such that the projection is
along the z direction, and the projection can be described by Eq.5.12.

p(x, y) =

∫
I(x, y, z) dz (5.12)

I(x, y, z) is the original data cube, whose 3-D fourier transform is shown in Eq.5.13

F (kx, ky, kz) =

∫∫∫
I(x, y, z)e−2πi(xkx+yky+zkz) dxdydz (5.13)

Then the slice that is perpendicular to the projection and across the origin of
Fourier space is S(kx, ky)
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S(kx, ky) = F (kx, ky, 0)

=

∫∫∫
I(x, y, z)e−2πi(xkx+yky) dxdydz

=

∫∫
(

∫
I(x, y, z) dz)e−2πi(xkx+yky) dxdy

=

∫∫
p(x, y)e−2πi(xkx+yky) dxdy

= F2[p(x, y)]

(5.14)

where F2[p(x, y)] indicates the 2-D Fourier transform of the projection p(x, y).
Eq.5.14 gives a simple proof of the Fourier slice theorem for a particular choice of
coordinate systems. And general choices of coordinate systems can be thought of a
rotation of the data cube object or a change of basis, which is still subject to our
proof [105].

According to Fourier slice theorem, the back projection of a grism-dispersed image
is equivalent to adding a central slice in Fourier space. Since the projection angle β is
a constant for the projection and back projection process, all grism-dispersed images
will form slices in Fourier space with the same tilted angle, as shown in Fig.5.13. There
are only five slices in Fourier space in Fig.5.13 which corresponds to the reconstructed
cube from 5 projections. A lot of regions in the Fourier space are still missing, and the
information is incomplete. As we start to increase the number of projections Nproj,
the slices will gradually fill up the Fourier space except for two conical regions in
the center. These slices become the envelope of the missing conical regions in Fourier
space. A direct result is that there is an inevitable information loss due to the missing
conical regions in Fourier space no matter how many projections we use.

I want to clarify that the missing conical regions in Fourier space are different from
the double cone PSF mentioned earlier in this Chapter. First, the missing conical
regions are discussed in Fourier space, while the double cone PSF is discussed in
real space. Second, although both are double conical structures, the missing conical
regions are filled double cones, while the PSF is the surface of double cones.

The Fourier slice theorem also states in our case that, the missing conical regions
are larger if we choose a small projection angle β. By our definition, the missing cone
angle ψ and the projection angle β are complementary ψ + β = 90◦. A smaller β
and larger ψ results in a larger missing cone and more missing information, reducing
the FWHM as shown in Fig.5.14. The larger the missing cone angle ψ, the wider
the spectrum of a monochromatic point source. So we want a larger β to reduce the
missing information.
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Figure 5.13: Missing information due to Fourier Slice Theorem, with only five projec-
tion slices. Each slice in the Fourier space corresponds to a projection in real space.
The empty part in the Fourier space is the missing information. A missing double
cone will be built up as slice density increases.
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Figure 5.14: Spectrum of monochromatic point source spectrum with missing conical
regions in Fourier space. In the Fourier space of this synthetic one-voxel-large source,
a double cone of angle ψ = 15◦, 45◦, 55◦ and 75◦ is set to zero respectively. This
corresponds to projection angle β = 75◦, 45◦, 35◦ and 15◦.
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5.4 Conclusion

In this chapter, I discussed the imaging model of my GSTI and the back projection
algorithm. A grism-dispersed image can be modeled as the projection of the data
cube from parallel rays onto the sensor plane, which is closely related to tomography.
I proposed a two-step algorithm for the reconstruction: the back projection and the
PSF deconvolution. I focused on the back projection algorithm in this chapter, which
directly inverts the projection process and tries to put the source at the right location.
However, I explained using Fourier slice theorem that this grism technique suffers from
incomplete information during the image acquisition process. Finally, I calculated the
spectral resolution based on the model and the back projection algorithm. To combine
the argument of missing conical region and Eq.5.11, I choose β = 45◦ as the projection
angle for all the later analysis in this thesis. A better choice may be attained through
further analysis of FWHM and Fourier space.
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Chapter 6

Deconvolution Techniques

Two deconvolution techniques are discussed and analyzed in this Chapter, the direct
Fourier deconvolution and the Richardson-Lucy (RL) deconvolution. I also tried
other common deconvolution techniques including Wiener deconvolution, regularized
deconvolution, and blind deconvolution. Wiener deconvolution is the general case of
the Fourier method, and it does not yield good results in the experiments when there
is no noise present. Regularized deconvolution can impose sparsity on the solution and
achieves similar results as RL method, but it requires more computation resources.
Blind deconvolution usually works well when the PSF is not known, but the PSF is
modeled accurately using double cone in this Chapter. I chose RL deconvolution in
the thesis because it gives best results with fast computation, and it proves effective
when applied to Hubble Space Telescope images [106].

This chapter is outlined as follows:

• I describe the Fourier deconvolution and the Richardson-Lucy deconvolution.

• I test the deconvolution techniques with simulated monochromatic point sources.
There are three scenarios: 1) single point source with different intensities; 2)
single point source at different locations; 3) double point sources with different
intensity ratios.

• I define and calculate recovery factor and RMS scattered intensity after decon-
volution, based on deconvolution results at different locations in the cube.

• I define the truncation factor and show that it affects the recovery factor after
deconvolution. And calibration needs to be carried out to correctly recover the
intensity of the source.

• I test the deconvolution techniques with simulated Lyα emitters from MassiveBlack-
II(MBII) simulation and stars using a model M-star template. There are two
scenarios for stars: 1) only one star at the center of the cube with a range of
brightnesses; 2) stars using observed positions and brightness from SDSS.
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• I describe and test two star masking methods: 1) masking stars on grism-
dispersed images; 2) masking stars at the image plane.

A typical deconvolution problem can be described by the following equation:

O = P ∗ I + ε (6.1)

where P is the PSF, I is the underlying true image, ∗ stands for the convolution
operator, ε is the noise added to the image, and O is the image we observe. The
problem is to find I, given observed image O and an assumed PSF P . In this thesis,
O is obtained either by back-projecting the set of grism-dispersed images or simulated
based on the PSF, and P is the double-cone PSF described in Chapter 5.

For images or data cubes, Eq.6.1 can be discretized into the following form:

O(i) =
∑
j

P (i, j)I(j) + ε (6.2)

where O(i) is the ith pixel of the observed image O, I(j) is the jth pixel of true image
I, and the PSF P (i, j) can be viewed as the fraction of light at j being scattered into
pixel i.

6.1 Fourier Deconvolution

Fourier deconvolution is based on the fact that convolution in the real domain is
mathematically equivalent to multiplication in Fourier domain, which is stated as the
convolution theorem:

F(f ∗ g) = F(f)×F(g) (6.3)

where F stands for Fourier transform operator, so F(f) and F(g) are the Fourier
transform of f and g respectively. Applying the convolution theorem to Eq.6.1, the
solution can be written as:

I = F−1(F(O)−F(ε)

F(P )
) (6.4)

where F−1 is the inverse Fourier transform operator. Often, the noise term is not
known well and an estimate is usually made by ignoring the noise:

Ĩ = F−1(F(O)

F(P )
) (6.5)

This is the formula for Fourier deconvolution, which states the deconvolved data
cube Ĩ is obtained simply through dividing the back-projected data cube O by PSF P
in Fourier domain and then transforming it back to the real domain. A major problem
of this technique is, as can be seen from Eq.6.5, the noise is ignored, which results
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in many artifacts especially in low signal-to-noise images. Another common problem
of Fourier deconvolution is the ringing artifact that results from the sharp edges of
images. Thus Fourier deconvolution is not usually the best method for deconvolution,
but a benchmark for other techniques.

In general, if we do not ignore the noise term, we can derive Wiener deconvolution
by minimizing the mean square error between the actual image and estimate image.
The Wiener deconvolution is shown in Eq.6.6.

Ĩ = F−1(F(O)× 1

F(P )

[ |F(P )|2

|F(P )|2 + 1
F(SNR)

]
) (6.6)

where SNR stands for the signal-to-noise ratio. When the noise is zero, the signal-
to-noise ratio is infinite and the term inside the square brackets equals 1. Thus in
the noiseless case, Wiener deconvolution is just the inverse of the system depicted
in Eq.6.5. On the other hand, a nonzero signal-to-noise ratio indicates the signal
attenuation at that frequency.

6.2 Richardson-Lucy

Richardson-Lucy deconvolution is an iterative method for recovering a latent image
blurred by a known PSF, William Richardson and Leon Lucy [107, 108]. Richardson-
Lucy method maximizes iteratively the likelihood of the resulting image given the
observed convolved image and the PSF, converging to maximum likelihood estimate
only if the iteration converges [109].

Following the derivation of R. L. White [110], L.A Shepp and Y. Vardi [109], let’s
denote the noiseless image after convolution as N based on Eq.6.2:

N(i) =
∑
j

P (i, j)I(j) (6.7)

where N(i) is the ith pixel of the noiseless blurred image. If we assume the noise in
images follow Poisson distribution, the observed photon counts for each pixel have
the following conditional probability:

P (O(i)|N(i)) =
e−N(i)N(i)O(i)

O(i)!
(6.8)

So the joint likelihood and corresponding log-likelihood function of observed im-
ages given true images are:

L =
∏
i

P (O(i)|N(i)) =
∏
i

e−N(i)N(i)O(i)

O(i)!
(6.9)

lnL =
∑
i

[O(i) lnN(i)−N(i)− lnO(i)!] (6.10)

71



The likelihood function can be maximized through the Expectation Maximization
(EM) algorithm [111]:

Inew(j) = Iold(j)

∑
i P (i, j)O(i)

N(i)∑
i P (i, j)

= Iold(j)
1∑

i P (i, j)

∑
i

P (i, j)O(i)∑
j P (i, j)Iold(j)

(6.11)

It has been shown that EM algorithm under Poisson statistics is equivalent to
Richardson-Lucy algorithm [109], and the iterative algorithm converges to the max-
imum likelihood estimate (MLE) of Poisson distribution. This can also be seen from
the Eq.6.11, where the correction factor approaches unity as the iteration converges
to MLE.

Richardson-Lucy method has the advantage of forcing the reconstructed image
to be non-negative and conserving the total flux at each iteration. It also shows
robustness against small errors in PSF. Despite these advantages, RL has serious noise
amplification and numerical instability problems, because it attempts to reproduce
the data as closely as possible.

One solution to prevent noise amplification is to use a damped RL iteration [110].
The damped RL iteration chooses a threshold at which the damping turns on and
makes the likelihood function close to constant in the vicinity of a good estimate.
If the difference between the restored image and the observation is less than the
threshold, the correction is damped; otherwise the correction follows the standard
RL iteration described in Eq.6.11. It is essentially reducing the changes in regions
where the restored image fits the data well, while continuing to update the regions
where it fits badly. Acceleration techniques can also be applied to damped RL method
to speed up the iterations [112].

There are no automatic methods of choosing the damping threshold for damped
RL iteration, so several experiments are performed to determine this parameter. I
created a simulated back-projected data cube with only a double-cone truncated
by the edge of data volume for testing, which corresponds to the convolution of a
single-voxel point source with the PSF as shown in Fig.6.3. The data cube has
a size of 300*300*300 voxels, and the point source locates at (135,135,135) under
Cartesian coordinates with two cones extending along z directions. The test assumes
back projection angle β = 45◦, which is also the cone angle. The test also assumes
reconstruction from 100 discrete grism angles, i.e., 100 projections based on my back
projection model.

The source intensity against iterations for different damping thresholds are plotted
in Fig.6.1 and Fig.6.2. We notice that when the threshold is set large, the resulting
intensity does not converge or it converges to an incorrect value, because some nec-
essary updates are damped due to large thresholds. On the other hand, when the
threshold is small as 10−9, it does not help to slow down the updates and intensity
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Figure 6.1: The source intensity vs. iterations of RL method for different damp-
ing thresholds denoted by DAMPAR = 1, 0.1 respectively. The source is located at
(135,135,135) with initial intensity 1, and there are 50 iterations for each figure.

vanishes due to numerical instability. I choose the threshold to be 10−4 which shows
stable convergence. And all other RL deconvolutions performed later in this thesis
are set to stop at 10 iterations because of fast convergence.

6.3 Test with Simulated Point Sources

To better understand how the deconvolution techniques work for different sources,
such as galaxies, stars, and Lyman alpha emitters, I tested the techniques under
several basic scenarios. I start with a monochromatic point source and analyze the
deconvolution results for different initial locations and intensities. Back-projected
point sources are created from putting double-cones at source locations, which is
almost equivalent to the convolution of a single-voxel point source with the PSF
depicted in Fig.6.3. The difference is that double-cones are truncated by the edge of
data volume when the source is located closer to the edge of the data volume. As
we will see in the later analysis, this double-cone is the major issue for the whole
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Figure 6.2: The source intensity vs. iterations of RL method for different damping
thresholds denoted by DAMPAR = 10−4, 10−9 respectively. The source is located at
(135,135,135) with initial intensity 1, and there are 50 iterations for each figure.
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Figure 6.3: A double-cone PSF with source located at (150,150,150).

deconvolution problem. Since the back projection puts the same amount of intensity
at each z for any monochromatic point source, it brings (Lz−1) times more intensity
into the cube if the cube’s length in z direction is Lz. In other words, there are
(Lz − 1) units of intensity at wrong voxels, for each unit at the correct voxel. It
is extremely hard to remove or restore this extra amount of intensity. The steps of
testing with simulated point sources are:

1. Create simulated back-projected point sources by putting double-cones at source
locations.

2. Conduct deconvolution using both techniques on a single point source that has
various intensities.

3. Conduct deconvolution using both techniques on a single point source that is
at different locations.

4. Calculate calibration factors for intensity after deconvolution.

5. Conduct deconvolution using both techniques on two point sources that have
various intensity ratios.

Two metrics are used to measure the performance of the deconvolution: recovery
factor and Root-Mean-Square (RMS) value of scattered intensity.
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6.3.1 Recovery Factor

I define recovery factor as the ratio of point source intensity after deconvolution to
intensity before deconvolution:

recovery factor =
source intensity after deconvolution

source intensity before deconvolution
× 1

Lz
(6.12)

where Lz is the normalization factor defined as the length of the cube in z direction.
Back-projection places an equal amount of intensity at each z for a given monochro-
matic point source in the form of PSF, and deconvolution attempts to recover its
true intensity from the back-projected data. Ideally, deconvolution should put all
the intensity in the double cone back at the actual source location, and give rise to
the same recovery factor for all locations in the data cube. Thus the normalization
factor is Lz = 300, and the perfect deconvolution should have a recovery factor of 1
at all voxels, given the cube size 300 ∗ 300 ∗ 300. But the truncation of the double
cone and flaws in deconvolution techniques prevent this perfect recovery factor from
happening.

6.3.2 RMS Value of Scattered Intensity

RMS value of scattered intensity indicates the average intensity at locations other
than the source location due to scattering of our reconstruction techniques. It is
computed by taking the average of squared intensity in all voxels other than the
point source, and taking the square root of the average. In the case of a single point
source, it takes the average over 3003 − 1 voxels in our tests.

For simulated data, the scattered intensity comes from flaws in deconvolution
techniques, and shape mismatch between back-projected double cone and PSF due
to truncation. For observed data, there is also noise contribution to the scattered
intensity. I mainly focus on simulated data in this Chapter.

6.3.3 Truncation Factor

I define the truncation factor of a point source as the fraction of PSF intensity re-
mained in the cube due to truncation. An example of truncation is shown in Fig.6.4

truncation factor =
PSF intensity remained in the cube

source intensity× Lz
(6.13)

where Lz is the same normalization factor defined above, and PSF intensity means
the sum of the intensity over the double-cone PSF. The denominator is equivalent to
the intensity of a PSF that is not truncated in x, y dimension. When the source is
located closer to the sides of a cube, some parts of the PSF may be cut off by the
sides. The truncation factor is 1 if there is no truncation, and is less than 1 otherwise.
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Figure 6.4: A double-cone PSF with source located at (250,50,150). Parts of the PSF
are missing due to truncation
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Figure 6.5: The recovery factor of a single PSF after deconvolution with two tech-
niques, where various source locations are used. The recovery factor plot also includes
the truncation factor as a comparison.

6.3.4 Test Results

Results of a single point source are not surprising. The double cone located at
(150,150,150) results in a recovery factor of 0.99 and an RMS scattered intensity
of 0, which means both deconvolution techniques successfully put the scattered inten-
sity back to the actual location of the source and leave no more scattered intensity
elsewhere in the cube. The perfect number should be 1, and the difference is ac-
counted for by the numerical accuracy of fast Fourier transform (FFT) in MATLAB.
Increasing or decreasing the intensity does not affect the recovery factor and RMS
scattered intensity, implying both techniques are linear transforms for a single source.

Recovery factor and RMS scattered intensity start to change as the point source
is moving away from the center, shown in Fig.6.5 and Fig.6.6. This is because the
double cone is cut off by the boundaries of the cube as the double cone moves closer to
the sides of the cube. The cutoff of the double cone also leads to the shape mismatch
between the double cone and PSF, causing the deconvolution techniques to scatter
the intensity to other voxels while failing to place that intensity at the source location.

This cutoff issue of the double cone results in an intensity deficit which must
be corrected, for example, a source located at the center of the cube has a differ-
ent measured intensity from that same source located at the edge of the cube after
deconvolution. Fig.6.7 shows how the truncation factor of the double cone varies at
different locations assuming the source has intensity 1. The truncation factor is great-
est with a value 1 when the point source is at the center of the cube (150,150,150),
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Figure 6.6: The RMS value of the scattered intensity of a single PSF after decon-
volution with two techniques, where various source locations are used. The scat-
tered intensity before the deconvolution is also plotted. The 0 RMS value of scat-
tered intensity cannot be displayed on the plot for Fourier deconvolution at location
(150,150,150) because the y-axis is log scale.
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and decreases non-linearly as the source moves radially away from the center. A
calibration factor is required for intensities at every location. If the deconvolution
can recover all the scattered intensity in the cube under truncation situations, the
calibration can be easily achieved by calculating the remaining intensity of the double
cone for a point source at every location. But there is a significant difference between
truncation factor and the recovery factor for both deconvolution techniques, shown
in Fig.6.5. Calibration needs to be carried out separately for Fourier deconvolution
and Richardson-Lucy. It can also be noticed that RMS value of scattered intensity
after deconvolution does not vary a lot at different locations except center.

Recovery factor calibration results for Fourier method are shown in Fig.6.8, in a
similar fashion as the truncation factor plot in Fig.6.7. Recovery factor calibration
results for RL deconvolution are shown in Fig.6.9. Both recovery factors decrease
when moving away from the center of the cube, but at different slopes.

Location, rather than intensity, exerts significant influence on the deconvolution
performance for a monochromatic point source. However, multiple sources can affect
each other during deconvolution, and I test the deconvolution techniques with two
point sources located at symmetric locations: dim source at (151,151,140) and bright
source at (151,151,160). To test the effect of intensity ratio between two sources, I
fix the dim source at intensity 1 and vary the bright source intensity from 1 − 109.
The intensities for both dim source and bright source after deconvolution are shown
in Fig.6.10. We first notice that the scattered intensity is proportional to the bright
source intensity for both techniques, and RL method yields a smaller RMS scattered
intensity. For Fourier deconvolution, the intensity of dim source comes mainly from
scattered intensity when the bright source is brighter than 1000, which indicates the
dim source can not be discovered after this ratio. For the Richardson-Lucy method,
the dim source vanishes after the bright source becomes brighter than 1000, implying
that dim source is treated as random noise during the deconvolution. Further tests
show that results of two point sources experiments rely on their locations, and exhibit
a critical point at ratio 1000 on average. As a conclusion, if the intensity ratio of two
sources is greater than 1000, then the dim source does not have a high enough signal-
to-noise to be discovered or extracted.

6.4 Test with Simulated Lyα Sources

I then use the galaxy star formation rate (SFR) from the MassiveBlack-II (MBII)
simulation [113] to test deconvolution techniques with simulated Lyα sources. Ex-
periment steps are outlined as follows:

1. Select a volume in MBII simulation that has the same size as my simulated
cube.

2. Build simulated back-projected Lyα sources using SFRs and locations of sub-
haloes from MBII.
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Figure 6.7: The truncation factor due to the cutoff of the cube. The first figure shows
the truncation factor if the source locates on a plane where z = 150. The second
figure plots the truncation factor of the source sits at x = 150, y = 150 and along z.
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Figure 6.8: Recovery factor calibration result for Fourier method. The first figure
shows the recovery factor if the source locates on a plane where z = 150. The second
figure plots the recovery factor of the source sits at x = 150, y = 150 and along z.
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Figure 6.9: Recovery factor calibration result for RL method. The first figure shows
the recovery factor if the source locates on a plane where z = 150. The second figure
plots the recovery factor of the source sits at x = 150, y = 150 and along z.
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Figure 6.10: The dim source intensity and bright source intensity after deconvolu-
tion using Fourier deconvolution(Top) and Richardson-Lucy(Bottom), with different
bright source initial intensities. The RMS scattered intensity from bright source is
also considered as a comparison. In the bottom plot, dim source intensity vanishes
when the bright source intensity is greater than 1000. The 0 intensity cannot be seen
in the plot because y-axis is log scale.
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3. Conduct deconvolution using both techniques on simulated Lyα sources.

4. Intensity calibration is done after deconvolution.

MBII is a high-resolution hydrodynamical simulation that evolves a Λ cold dark
matter cosmology in a comoving volume Vbox = (100 Mpc h−1)3. The SFR is propor-
tional to Lyα emission and hence can be used to provide the Lyα intensity. If the
star-forming galaxies dominate Lyα emission, the estimated Lyα surface brightness

according to Croft et al. is µ = (3.9± 0.9)× 10−21ergs−1cm−2Å
−1

arcsec−2 and corre-
sponding to SFR density ρsfr = (0.28± 0.07)M�yr−1Mpc−3 [98]. I used the positions
of subhaloes and their corresponding star formation rates from the MBII to describe
the distribution of Lyα emitters on the sky as well as their brightness.

Based on the resolution of reconstructed images, I chose a cube of size 23 Mpc
from the MBII, which I scaled to a 300*300*300 cube described before. There are a
total of 26585 subhaloes in this volume, and a simulated back-projected data cube is
built from them. The average intensity of back-projected subhaloes is scaled to match
the result of Croft et al. results [98] in units of pW m−2nm−1sr−1. The distributions
and deconvolution results of these simulated Lyα sources are shown below in Fig.6.11-
Fig.6.13.

Fig.6.11 shows the simulated Lyα emitters in xy plane by projecting the data cube
in the z-direction. The bubble plot on the top comes from the true data cube we are
hoping to reconstruct, while the figure on the bottom is the simulated back-projected
data cube we reconstruct from. Most of the bright sources are located at the top
left of the image. The lines in the right figure of Fig.6.11 are from the double-cone
structures, which also make the regions surrounding Lyα emitters brighter.

The Fourier deconvolution results for this simulated Lyα emitters are shown in the
Fig.6.12. The figure at the top is again the projection of the deconvolved data cube in
the z-direction. The stripes in the images are the artifacts from the Fourier methods,
and only a few bright sources can be spotted with confidence. A majority of the
dim sources are confused with the scattered intensity in the cube, which can also be
shown by the plot at the bottom. A few brightest sources are properly reconstructed
and have intensity before deconvolution proportional to intensity after deconvolution.
The perfect deconvolution reference line describes the best deconvolution result of
any source, which is 300 times the intensity before deconvolution in this experiment.
Brightest sources lie close enough to this line, but they do not reach the perfect
deconvolution because of the scattered intensity from other sources. On the other
hand, Lyα emitters with intensity lower than 102 are around the RMS scattered
intensity, so that they can not be distinguished from the scattered intensity. The
strange shape at the left sides of the plot indicates most dim sources are dominated
by scattered intensity. Fourier deconvolution is an intensity conservation process that
cannot remove extra intensity, so the intensity from PSF is scattered to the wrong
locations. The scattered intensity mainly comes from a few brightest sources and are
1000 times dimmer than the brightest source, which is consistent with the results
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Figure 6.11: Simulated Lyα sources from MBII. Top: The bubble plot of true data
cube containing Lyα sources summed up in the z-direction. Area of the circle is
proportional to the brightness. Bottom: The simulated back-projected data cube
with Lyα sources is summed up in z-direction.
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about recovery factor and RMS value of scattered intensity in Section 6.3. There are
negative voxels in the resulting cube, which are not shown in the plots.

In Fig.6.13, I show the Richardson-Lucy deconvolution results which are much
better regarding scattered intensity. On the top plot, we can spot a lot of sources
that are present in the true data cube. Although the reconstructed data cube is less
blurred after deconvolution, there are still visible lines from double cone structures
remaining in the cube. These lines are the major components of scattered intensity
and also come from the brightest sources. The plot on the right indicates that RMS
value of scattered intensity is three orders of magnitude less than the results of Fourier
deconvolution. The Lyα sources form an overall linear shape in the plot, indicating the
final intensity is proportional to the initial intensity, and the scattered intensity does
not affect most of the sources. This shape is different from Fourier deconvolution
results because RL method does not conserve the total energy during the process.
Thus some extra intensity is removed from the data cube, and the scattered intensity
is smaller. The perfect deconvolution reference line is defined the same as above,
300 times the source intensity before deconvolution. And we can again spot the line
on the right, formed by a few brightest sources. The fact that these bright sources
are close to the perfect deconvolution line indicates they are properly reconstructed
despite the effect of scattered intensity. Lyα emitters with an intensity greater than
10 can be distinguished from the scattered intensity, again consistent with the result
from Section 6.3.

The deconvolution results of only simulated Lyα emitters imply that dim Lyα
emitters can not be detected even without the presence of other bright objects. Al-
though RL technique is more promising in removing scattered intensity and recovering
true intensities, it is not good enough to handle bright and dim sources together.

6.5 Test with Simulated Lyα Sources and Stars

One more step closer to the reality is to bring stars into my simulation. Since red dwarf
is the most common type of star in Milky Way, I use an M-star spectrum template [15]
to simulate the star in my experiments. The M-star spectrum is tailored to span
wavelength range 350nm − 614nm. The star appears as a line in the hyperspectral
data cube, where the intensity variation along the z-direction(λ-direction) corresponds
to its spectrum. In the simulated back-projected data cube, a double-cone is placed
at each λ of the star, and its intensity is converted to the same unit as Lyα emitters.
Without loss of generality, the simulated star is placed at the center of the cube, as
shown in Fig.6.14. Experiment steps are outlined as follows:

1. Select a volume in MBII simulation that has the same size as my simulated
cube.

2. Build simulated back-projected Lyα sources using SFRs and locations of sub-
haloes from MBII.
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Figure 6.12: Fourier deconvolution of simulated Lyα sources. Top: The deconvolved
data cube using Fourier method is shown as a summed image in the z-direction.
Brightest sources are overexposed to reveal the underlying structure. Bottom: The
scatter plot of Lyα intensity after deconvolution vs. Lyα intensity before deconvo-
lution for all sources. The horizontal red line indicates the RMS value of scattered
intensity in the cube. The black reference line corresponds to intensities after a perfect
deconvolution.
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Figure 6.13: Richardson-Lucy deconvolution of simulated Lyα sources. Top: The
deconvolved data cube using RL method is shown as a summed image in the z-
direction. Bottom: The scatter plot of Lyα intensity after deconvolution vs. Lyα
intensity before deconvolution for all sources. The horizontal red line indicates the
RMS value of scattered intensity in the cube. The black reference line corresponds
to intensities after a perfect deconvolution.
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3. Add simulated back-projected stars using M-star spectrum template

4. Conduct deconvolution using both techniques on simulated Lyα sources.

5. Calibration is done after deconvolution.

The deconvolution results of Lyα sources and M-star with different magnitude are
shown in Fig.6.15. The star is masked by setting the corresponding voxels to zero
after the deconvolution. Since the scattered intensity in the cube comes from both
Lyα sources and M-star, the RMS value of scattered intensity rises as I increase the
magnitude of M-star. We can observe from Fig.6.15 that fraction tends to converge as
the star becomes brighter than a certain magnitude. This fraction does not converge
to 1 under Fourier method, because scattered intensity is randomly distributed around
RMS and a certain portion of sources are brighter than RMS. For RL method, the
fraction converges to 1 because Lyα sources are removed as scattered intensity as
the star becomes brighter. It can also be noticed that the plateau due to a dim star
is formed by the RMS scattered intensity from Lyα sources. Even though a lot of
Lyα sources are dimmer than RMS value of scattered intensity, a few bright sources
accounting for most of the intensity are still brighter than RMS when the star is
dimmer than 15 magnitude.

The scattered intensity plots for Lyα emitters are displayed in Fig.6.16 and Fig.6.17.
For Fourier method, as the star increases its brightness, we can notice that the RMS
scattered intensity is also increasing and the few brightest sources cease to form a
linear relation in the plot. This is because the intensity of these brightest sources is
affected by the scattered intensity from the star. When the star magnitude is less
than 15, RMS scattered intensity is the same level as the brightest sources, and hence
none of the sources can be discovered. For RL method, the linear shape of the plot
starts to deform as the star increases its brightness. Even the brightest stars van-
ish when the star magnitude is less than 15, which again indicates the unsuccessful
reconstruction of this technique.

The results of simulated Lyα sources and stars show that Lyα sources can not be
properly reconstructed if there is one star in the field which is brighter than magnitude
15.

6.6 Masking Stars in Grism-dispersed Images

The above analysis indicates that bright sources in the fields are major problems
for the deconvolution. Although bright stars are masked after deconvolution, their
scattered intensity can not be perfectly removed and severely reduce the signal-to-
noise of Lyα sources. One possible solution is to remove bright stars before the
deconvolution.

In grism-dispersed images, light from sources is dispersed into a spectrum by a
grism. We can identify which spectra come from bright stars by locating the stars in
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Figure 6.14: Top: The simulated back-projected data cube with Lyα sources and a
single M-star at the center of the image is summed up in the z-direction. Bottom:
spectrum of M-star
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Figure 6.15: The fraction of total Lyα intensity that comes from Lyα emitters who
are dimmer than the RMS value of scattered intensity, at different magnitudes of
the simulated M-star. Top: Fourier method. Bottom: RL method
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Figure 6.16: The scatter plot of Lyα intensity after deconvolution vs. Lyα intensity
before deconvolution for all Lyα sources, using Fourier method. The simulated star
is set to magnitude 25, 20, 15 and 10 respectively. The clouds of points denote the
failure of deconvolution for faint sources.
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Figure 6.17: The scatter plot of Lyα intensity after deconvolution vs. Lyα intensity
before deconvolution for all sources, using RL method. The simulated star is set to
magnitude 25, 20, 15 and 10 respectively. The clouds of points denote the failure of
deconvolution for faint sources.
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our field. The next step is to remove these spectra from stars by completely masking
the pixels they fall onto. We hope to reconstruct the hyperspectral data cube using
these grism-dispersed images with missing pixels, which is possible if there are few
pixels missing. To summarize the idea, here are the steps of masking stars in grism-
dispersed images:

1. Locate bright stars and identify their spectra in grism-dispersed images.

2. Mask the spectra of bright stars by setting their pixel values to zero.

3. Conduct back-projection and deconvolution on these masked grism-dispersed
images.

Fig.6.18 shows the luminosity function and spatial distribution of stars from a
randomly picked SDSS field that has the same size as our 300*300*300 cube in x, y
dimension. There are 9169 stars in this field, which are too many to be masked
entirely. Because all pixels will be missing if we mask every star in the field. Therefore
it is possible to mask only a few brightest stars. Calculations must be done to estimate
the number of stars that can be masked before we lose half of the pixels.

Based on the discussion in Section 5.2 and our simulation, one pixel in the grism-
dispersed images corresponds to 0.44nm. The bandwidth of U band is usually 66nm,
so the length of the spectrum of a star is about Lspectrum ≈ 150 pixels on grism-
dispersed images. In fact, the spectrum could fall onto more than 150 pixels if it is
not aligned with x or y direction on the images. But it is reasonable to use 150 pixels
as a lower limit.

Fig.6.19 shows the relation between the fraction of pixels being masked and the
magnitude of brightest star remained in the image. The plot assumes no overlaps
among spectra of different stars. The fraction grows linearly after 15 magnitude,
which makes it hard to further lower the intensity in the images. We can only get
down to 17.5 magnitude when we mask 50% of the pixels. But stars of 18 magnitude
would fail the deconvolution according to previous analysis.

Overall, masking the spectra of bright stars in grism-dispersed images is not im-
proving the reconstruction of Lyα sources. We are not able to significantly lower the
scattered intensity in the reconstructed cube because the number of masked spectra
is limited. Meanwhile, we are also facing problems with missing pixels.

6.7 Masking Stars at the Image Plane

Instead of masking half of the pixels on grism-dispersed images, we can also mask the
stars on the focal plane. This is the main masking scheme I discussed in Chapter 3
and its relevant design is discussed in Chapter 4.

The masking can be done in following steps:
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Figure 6.18: Luminosity function and spatial distribution of stars from a randomly
picked SDSS field. Top: Luminosity function. Bottom: Spatial distribution, where
the value corresponds to the magnitude of star.
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Figure 6.19: The fraction of pixels that are masked against the magnitude of the
remaining brightest star that is not masked.
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1. Locate bright stars in the field of view either by taking a picture or using SDSS
catalog.

2. Make a mask at the image plane to block the light from the locations of these
stars.

3. Take the standard set of grism-dispersed images, which now get rid of star
spectra.

4. Conduct back-projection and deconvolution on these grism-dispersed images.

This masking idea can be tested with the randomly picked SDSS field and simulated
Lyα sources mentioned in the preceding sections. I created a back-projected cube
for these stars and Lyα sources using the double-cone PSF. Masking stars in the
simulation is carried out simply by creating a new back-projected cube without the
masked stars. I masked stars in the field using a cutoff magnitude, which means only
stars that are brighter than the cutoff magnitude are masked. Cutoff magnitude is
a threshold for masking stars and affects the tradeoff between the number of pixels
being masked and scattered intensity from stars.

The results are shown in Fig.6.20, which describes the fraction of the total inten-
sity contained in those Lyα sources that are brighter than RMS value of scattered
intensity, after I masked stars at each cutoff magnitude. It is calculated by first
locating Lyα sources that are brighter than RMS value of scattered intensity after
deconvolution, and then determining their percentage of total original intensity. I use
this fraction of intensity to roughly measure how much Lyα intensity can be identified
given the presence of stars. The upward trend in both plots indicates the scattered
intensity due to stars is effectively reduced as we continue masking stars. If all the
stars are masked, Fourier method can recover 70% Lyα intensity and RL method can
recover 85% Lyα intensity. The slope is greatest at 24 and 25 magnitude because
there is the most number of stars around these magnitudes. The curve is not smooth
and monotonic for RL method, mainly due to the overlap between stars and Lyα
sources. As can be observed in Fig.6.21, a great number of stars at 24-26 happen to
appear along the same line of sight as Lyα sources. When stars and Lyα emitters
appear in the same pixels, it is hard to distinguish them and their intensities are tied
together after deconvolution. These Lyα sources are either measured as bright stars,
or ignored due to masking stars, resulting in the bumpy curve for RL method.

Given the good performance of the simulation results, we also want to make sure
the missing information due to masking is limited to a reasonable range. In Fig.6.22,
the fraction of pixels not being masked is plotted against the cutoff star magnitude.
It is calculated through the SDSS data set and the 300*300 field of view consistent
with our preceding simulations. Only 10% of pixels are lost even when I masked every
star in the field.

As we look at the results from Fig.6.20 and Fig.6.22 together, it is obvious that
masking stars can recover more than 50% of intensity only after reaching 24 magni-
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Figure 6.20: The fraction of the total Lyα intensity contained in those Lyα sources
which are brighter than RMS value of scattered intensity, at various cutoff star
magnitudes. The blue line is the simulated data set that consists of both Lyα sources
and stars. Red line, as a comparison, shows the fraction of intensity when there are
only Lyα sources in the data set. Top: Fourier method. Bottom: RL method.
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Figure 6.21: Histogram of SDSS stars that overlap with Lyα sources in the synthetic
cube.
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Figure 6.22: Percentage of pixels remaining in the field of view for each cutoff star
magnitude

tude. And we can improve the Lyα recovery from 20% of intensity to 80% of intensity,
by sacrificing only 10% of pixel information. Thus masking stars at the focal plane
is necessary and effective for Lyα intensity mapping.

6.8 Conclusion

In this chapter, I discussed two deconvolution techniques and their performance un-
der several scenarios. The results indicate that deconvolution is strongly affected by
the bright sources in the field, which is a major problem due to stars observed in
SDSS. This dynamic range is 1000 for both methods. Fourier technique suffers from
location-dependent PSF and results in a great amount of scattered intensity in the
reconstructed cube. Richardson-Lucy technique is better at reducing the scattered
intensity and putting the intensity at the correct source location. A more fundamen-
tal problem with both techniques is that back-projection brings Lz − 1 times more
intensity into the data cube than the actually observed intensity, where Lz is the

101



length of the cube in the z-direction. In summary, both techniques cannot success-
fully reconstruct all Lyα sources given the stars present in the SDSS. Masking bright
stars is required to reconstruct the Lyα signal. According to my simulation, 50% of
the total Lyα intensity can be recovered using the RL method if we mask all stars
brighter than magnitude 20 from the SDSS catalog.
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Chapter 7

Experiments

I ran three different experiments to test my GSTI using real sources. First, I con-
ducted experiments with my telescope on a HeNe laser (λ = 632.8nm). Since lasers
are monochromatic light sources, they can demonstrate double cone structure in the
back-projected cube. Second, I tested the telescope with 5 LEDs in the lab for mul-
tiple sources conditions. Third, I pointed my telescope to a bright star in the sky to
obtain a real star spectrum. Experiment steps are outlined below:

1. Take 100 images of the source as the grism rotates, and each angle between
each grism orientation is α = 3.6◦.

2. Pre-process these 100 grism-dispersed images and feed them to the basic back
projection algorithm.

3. Conduct deconvolution using both Fourier and RL techniques on the back-
projected data cube.

4. Calibration is done after deconvolution.

5. Analyze the spectrum and compare with the spectrum from other sources.

7.1 HeNe Laser

The HeNe laser is pointed on a white cardboard on which the laser spot is taken as the
source. The angular step between each projection is α = 3.6◦. Our back projection
angle is chosen to be β = 45◦. To test the quality of optics, I ran this experiment
4 times with the laser spot at 4 different locations on the sensor plane. And I took
100 images at each of these locations, with 1/15 second exposure time and 100 ISO.
The 4 locations are shown in Fig.7.1 and their back-projected data cubes are shown
in Fig.7.2 respectively. When preprocessing the images, I also bin 4× 4 finest pixels
into one pixel because the size of the laser spot is about 10 pixels in diameter. I crop
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Figure 7.1: The 4 locations on sensor plane used in the experiments for HeNe laser.
The laser spot is on a white cardboard. They are left, up, right and down relative to
the center.

the images to use only the regions that have laser spots, which uses less memory of
the computer and speeds up the computation.

Before reconstruction, I would like to show the quality of my grism. Two sets
of the laser spots are compared in Fig.7.3 and Fig.7.4. They show eight laser spots
respectively with different grism orientations for HeNe laser at location 1 and location
4. I put the brightest pixel at the center of each image. Obviously, the brightest part
is not at the center of the laser spot and the profile is not Gaussian. In addition, the
spot shape changed inconsistently as the grism rotated about the axis, not along the
dispersion direction nor at a constant angle to that direction. The intensity in each
pixel of the spots is also inconsistent at different grism orientations. The plots show
the limited quality of the optics used on my instrument, which brings errors to the
final reconstruction results.

The poor quality of optics results in slightly different back-projected data cubes
in Fig.7.2. The back projection algorithm creates a double cone structure and the
vertex of this double cone is at the wavelength of the laser. Despite the X shape
for all 4 location, they have different intensities and shapes around the center of the
vertex. This inconsistency can be attributed to the differences between the 4 sets of
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Figure 7.2: The double cone structure of HeNe laser at 4 locations shown as a slice
along the λ(z) direction at the source location x. The X shape is the cross section of
the double-conical surface. The vertex of the double cone is the measured spectrum
of the laser.
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grism-dispersed images at 4 locations. The laser spot shapes and intensities are both
varying with different locations and different grism orientations. And intensities from
the strangely shaped laser spots do not intersect exactly at the pixels they come from
during the back projection. So finally the intensity profile of the double cone vertex
is different for the 4 locations.

The laser spectra before deconvolution are shown in Fig.7.5. Since the laser spot
is larger than 1 pixel spatially, I choose the spectrum across the brightest pixel as
the laser spectrum. These intermediate spectra display the results of basic back
projection. The peak is located at the right wavelength and curve is smooth. This
is already a good laser spectrum despite its large FWHM. Aside from spectrum, the
double cone structure also exists in the back-projected data cube and needs to be
corrected by the deconvolution.

The laser spectra after Fourier deconvolution are shown in Fig.7.6. The peak re-
mains the same shape without narrowing the FWHM. It becomes less smooth but
stays at the correct location. What becomes obvious is the scattered intensity and
artifacts due to Fourier transform. There are also negative intensities in some of
the voxels, because the deconvolution takes away more intensities from these voxels
than they started with. The result is that intensities are scattered all over the recon-
structed data cube. As I mentioned in Chapter 6, there are two reasons for this much
scattering. One is the truncation effect of the double cones, which indicates there is
a mismatch between the PSF and the actual double cone structures in the cube. The
other reason is that poor quality of optics creates a back-projected data cube that is
not described well by the model.

The laser spectra after RL deconvolution are shown in Fig.7.7. We can notice
that the peak FWHM is smaller compared to results before deconvolution. Thus
RL deconvolution improves the spectral resolution for the laser. And the scattered
intensity can not be seen on the plots because it is reduced by the algorithm.

As a conclusion, HeNe laser serves as a real monochromatic point source in the
hyperspectral data cube, and I use it as the basic scenario for my GSTI. Although
the laser spots do not have Gaussian profiles and are not consistent at different grism
orientations, the reconstruction results are still consistent with theory as well as
simulation. Back projection creates double cones from the grism-dispersed images and
forms a decent spectrum at the vertex. RL method outperforms Fourier deconvolution
in terms of peak FWHM and scattered intensity.

7.2 LEDs

I then run the experiments on 5 LEDs in the lab, using the same target as briefly
described in Chapter 4. The 5 LEDs with different colors and brightness are fixed
on a white cardboard in the Lab. Their positions and colors are shown in Fig.7.8.
I also mark the LEDs from 1 to 5 which are referred to later. In this experiment, I
took a set of 120 images at a grism rotation step size α = 3◦. The exposure time is
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Figure 7.3: Zoomed-in images of raw laser spot at different grism orientations of
location 1. The brightest pixel is centered for each image. Spot shapes are irregular
for different orientations rather than circular or elliptical.
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Figure 7.4: Zoomed-in images of raw laser spot at different grism orientations of
location 4. The brightest pixel is centered for each image. Spot shapes are irregular
for different orientations rather than circular or elliptical.
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Figure 7.5: Spectrum of the HeNe laser for the 4 locations after basic back projection,
but before deconvolution.

Figure 7.6: Spectrum of the HeNe for the 4 locations after Fourier deconvolution
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Figure 7.7: Spectrum of the HeNe for the 4 locations after Richardson-Lucy decon-
volution

110



Figure 7.8: Marked LED positions used in the experiment. The image is taken with
the same telescope but without the grism.

1/200 second, and ISO speed is 6400. I show in Fig.7.9 eight grism-dispersed images
obtained by the GSTI from the LED experiment. These eight images are separated
by a grism rotation angle 45◦. The spectra from different LEDs may overlap as the
grism rotates. 2nd order and 0th order diffraction also appear on the image at some
grism orientations.

For the reconstruction process, I choose the back projection angle β = 45◦. I also
bin 16 × 16 finest pixels together due to limited computational resources. Binning
pixels reduces spectral resolution because each voxel in the cube corresponds to a
larger wavelength range than the laser experiment. During the preprocessing, I mask
the 2nd order and 0th order diffractions and use only the center regions of the images
that contain the spectra.

The 5 LED spectra resulted from basic back projection are shown in Fig.7.10. The
LED spectra are all wider than the laser spectra in the above section. It indicates
that LEDs are not monochromatic sources, which is consistent with our observation
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Figure 7.9: Raw grism-dispersed images from LED experiments. From left to right,
from top to bottom, grism rotates 45◦ for each image.
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Figure 7.10: Spectra of 5 LEDs after basic back projection, but before deconvolution.

from the spectra on grism-dispersed images. The relative intensity and the width of
the spectrum also match the grism-dispersed images. LED 1 has the brightest and
longest spectrum, while LED 5 is the faintest. Besides spectral peaks, we can also
notice some smaller bumps, especially in those fainter LEDs. These are the artifacts
caused by double cone structures. These bumpy artifacts become more severe than
the plots shown if there are more sources or brighter sources. So deconvolution must
be carried out even if the spectra are good after back projection.

LED spectra after Fourier deconvolution are shown in Fig.7.11. The spectra shapes
have not changed much. Similar to the results of the laser, there are negative voxel val-
ues and scattered intensity due to Fourier transform. There are fewer high-frequency
components in the spectra compared to laser, mainly because LED experiments have
more grism-dispersed images. More grism-dispersed images signify there is more in-
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Figure 7.11: Spectra of 5 LEDs after fourier deconvolution.

formation in Fourier space, as explained by the Fourier slice theorem in Chapter 5.
And high-frequency noise is diminished during the reconstruction process.

LED spectra after RL deconvolution are shown in Fig.7.12. The shapes and
details of the peaks are unaffected during the deconvolution. The bumpy double cone
structures in the cube are also removed during the process. There is little scattered
intensity, and the resulting spectrum is decent.

Compared with some typical LED spectra shown in Fig.7.13, LED 1 has a com-
bined green and yellow spectrum. The rest 4 LEDs have spectra of yellow or orange.
The results match their original color, and their raw spectra on the grism-dispersed
images. In conclusion, back projection plus RL deconvolution yields good LED spec-
tra even with multiple sources in the field.
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Figure 7.12: Spectra of 5 LEDs after Richardson-Lucy deconvolution.
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Figure 7.13: Typical LED spectra from the websites. Figure adapted from [14].
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Figure 7.14: The sky image taken by my telescope without the grism. The brightest
star in the image is Capella. The image brightness is increased for better visibility.

7.3 Stars

The last experiment I did is to observe the sky. I installed the telescope on a MEADE
LXD55-Series Mount which can track the objects on the sky. The tracking is managed
by Autostar Computer Controller. I pointed the telescope mainly at bright stars
because the optics quality is poor and there is a maximum exposure time for the
camera. Here I use the data set tracking Capella as an example. The sky region I
pointed at is shown in Fig.7.14. I enhanced the image brightness to make the stars
more visible to readers. There is only light at the center circle of the image due to
the field stop. Capella is the brightest star in the image and there are a few fainter
stars.

I show 8 sample images from the set of the grism-dispersed images in Fig.7.15.
The images are taken with 10 seconds exposure time and ISO 100. I took 90 grism-
dispersed images in total, making the angular step size α = 3◦. The only long
spectrum visible in the figure is the spectrum of Capella. In the first three images,
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we can also find a short spectrum, which is the dispersion of zeroth order diffraction
by the prism. I again increase the brightness of the images and the dim circle around
the center is the spectrum from the background. More stars will show on the images
if I increase the exposure time. But the tracking system of the mount is not accurate
enough for long time exposure, where stars start to drift. Thus I only show the
reconstruction result of this single star in this section.

The back projection angle is chosen at β = 45◦, and I bin 16 × 16 finest pixels
together. For the grism-dispersed images, I use only the regions that contain the
spectrum for deconvolution and subtract the background from those images. The
spectrum of Capella after back projection is shown in Fig.7.16. We can see a broad
spectrum that matches the spectral length on the raw grism-dispersed images. Due to
the low spectral resolution, there are not many absorption features in the spectrum.

The spectrum after Fourier deconvolution and RL deconvolution is shown in
Fig.7.17 respectively. For the Fourier result, most features are kept the same ex-
cept that there appear negative values in the spectrum. The scattered intensity and
high-frequency noise also make the curve less smooth. For the RL result, features
on the curve become sharper and the scattered intensity is reduced. Both results are
consistent with the experiments on laser and LEDs.

As a comparison, I show the spectrum of a typical giant star G4III in Fig.7.18.
Since Capella is classified as a G3III star, its spectrum can be roughly described by
this plot. Although the features do not match exactly, the envelope of my recon-
structed spectrum has a similar shape. The range and intensity are different mainly
because of the RGB filter in the camera. I have not calibrated the spectral response
of my GSTI, and therefore I show the spectral response of a Nikon camera found on
the website in Fig.7.19. Comparing Fig.7.19 and Fig.7.17, we can observe that big
notch comes from the intersection between red curve and green curve. Other small
features on the reconstructed spectrum are also caused by converting the RGB image
to grayscale image. Overall, the GSTI is able to reconstruct the wide spectrum of
bright objects with the proposed algorithm.

7.4 Conclusion

In this chapter, I ran three experiments on the prototype GSTI with HeNe laser,
LEDs, and stars. I built a control system to instruct the GSTI to rotate the grism
and obtain a set of grism-dispersed images. It can effectively map the hyperspec-
tral data cube that contains multiple sources. The proposed simple back projection
plus RL deconvolution algorithm successfully reconstruct the spectra from the exper-
imental data set. The reconstructed spectra match the shape of the sample spectra.
However, higher quality optics would be required to proceed further with experimental
investigation of this technique.
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Figure 7.15: Raw grism-dispersed images from the sky shown above. The spectrum
of Capella is the only visible spectrum in the image. The long spectrum is the first
order diffraction, and the short spectrum in some of the images is the zeroth order
diffraction. The background spectrum is also visible in these images.
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Figure 7.16: Spectrum of Capella after basic back projection, but before deconvolu-
tion.
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Figure 7.17: Top: Spectrum of Capella after fourier deconvolution. Bottom: Spec-
trum of Capella after RL deconvolution.
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Figure 7.18: Model spectrum of a G4III star. Data from [15].
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Figure 7.19: Nikon D700 spectral response.Figure adapted from [16].
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Chapter 8

Conclusion

This thesis focuses on designing, analyzing, building, and testing a new telescope for
Lyα intensity mapping. This new telescope I built is called Grism Spectrotomographic
Imager (GSTI). It has a rotating grism in front of a Nikon D800 camera and takes
a set of grism-dispersed images as the grism rotates. This set of grism-dispersed
images is then processed to reconstruct the hyperspectral data cube based on grism
spectrotomograpy principles.

In Chapter 2, I gave a general review of various types of integral field spectroscopy.
By comparing their advantages and disadvantages, I concluded that Grism Spectro-
tomograph (GST) and Imaging Fourier Transform Spectrometer (IFTS) are two most
suitable techniques for intensity mapping. In particular, GST and IFTS have the mul-
tiplex advantages that offer high throughput and low cost. GST is also less complex
compared to IFTS.

In Chapter 3, I described three major sources of foreground contamination: con-
tinuum foreground, line foreground, and star foreground. The continuum foreground
is relatively low in u band for the ground-based telescope, so I focused on intensity
mapping in u band. Star foreground is a serious problem for intensity mapping in
the visible light band, and it has not been fully studied. Masking bright stars is
required to recover the Lyα power spectrum from the intensity mapping. I developed
a masking and filtering scheme. First, I masked all the stars brighter than magni-
tude 18 at the image plane. Second, I designed a quarter circle filter with a stripe
removed, which retains the modes of high Lyα power. The Lyα power dominates the
power spectrum, and the ratio of Lyα power to star power can achieve 1000 after this
masking and filtering. The results indicate that SDSS photometry catalog and bright
stars catalog can be used together to mask stars for intensity mapping experiments.
The masking scheme also provides an upper limit for the angular resolution, which
is 74′′ at the loss of 10% pixels. This pixel scale makes IFTS and GST more feasible
for intensity mapping.

In Chapter 4, I described the GSTI I built in the lab. It consists of a tube field
stop, a grism attached to a rotating stage, the Nikon D800 camera and the lens. I
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listed the relevant specifications and showed sample images from the GSTI. I also
demonstrated a more general design that puts the mask and the field stop at the
image plane.

In Chapter 5, I described the imaging model I used for the GSTI. Due to the
similarity between GST and CAT scan, the grism-dispersed images can be viewed as
the projection of hyperspectral data cube onto the sensor plane. Thus I developed
a two-step algorithm to reconstruct the hyperspectral data cube: the simple back
projection followed by the PSF deconvolution. The back projection was then carefully
explained and implemented. And I also explained using the Fourier slice theorem that
this grism technique suffers from incomplete information during the image acquisition
process. I also studied the resolution of the GSTI based on the back projection
algorithm and the Fourier slice theorem.

In Chapter 6, I explored direct Fourier deconvolution and the Richardson-Lucy
(RL) deconvolution under different scenarios. The Fourier deconvolution serves as a
baseline result, and the RL deconvolution works better and more efficiently than other
common deconvolution techniques. The difficulty of deconvolution comes from the
back projection, which places (Lz − 1) times more intensity into the hyperspectral
cube where Lz is the cube’s length in z-direction. The simulation results showed
that Fourier method leaves a large amount of scattered intensity in the cube. On
the other hand, RL method yields much less scattered intensity by eliminating faint
sources and imposing positivity in the cube. For both methods, the scattered intensity
is dominated by the few brightest sources. Both methods exhibited a dynamic range
of 1000, which means the dim source cannot be recovered when it is more than
1000 times dimmer than the bright source. I then demonstrated with simulated Lyα
sources and stars that masking stars is necessary for deconvolution. According to my
simulation, 50% of the total Lyα intensity can be recovered using RL method if we
mask all stars brighter than magnitude 20 from the SDSS.

In Chapter 7, I tested my GSTI with HeNe laser, LEDs and stars. For each
experiment, I first took the set of grism dispersed images with a control program I
wrote. Then I applied the two-step reconstruction algorithm to acquire the spectra
of the sources. Even though the quality of optics is limited, the RL method produces
the spectra of sources with low scattered noises. The results match the shapes of
their true spectra under the spectral response of the sensor. GSTI is able to recon-
struct the spectra of multiple bright sources in the field. Higher quality optics and
spectral response calibration would be required to proceed further with experimental
investigation of this technique.

8.1 Future Work

For star foreground, the power spectrum of stars at other filter bands can be cal-
culated for Lyα intensity mapping at higher redshifts. The completeness curve of a
catalog may be taken into account if stars are masked in other bands where they are
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brighter. Besides, I can consider large scale correction and projection effect to calcu-
late the power spectrum more accurately. The filter shape can be further optimized
to minimize the star contamination. Another thing I can do is to use different spectra
for different stars to better approximate the power spectrum from stars.

For the telescope, higher quality optics and better tracking can be used to further
investigate the GST technique. For example, I can reconstruct the spectra of a star
cluster with better grism and tracking mount. To compare with the actual spectrum,
it is necessary to calibrate the camera spectral response. I can also try the intensity
mapping on a small field with proper optics, and develop the data processing pipeline.
It is more thorough to test reconstruction algorithms on spatially extended sources
in contrast to point sources. The masking technique can be tested with SDSS catalog
and better instruments. Since GALEX used the grism at different angles, their spectra
images can potentially be used to analyze real Lyα intensity mapping with GST. It
is also important to describe the full practical requirements for the GSTI to perform
cosmological Lyα intensity mapping, such as integration time. Besides GST, it is
also important to test the other suitable technique for Lyα intensity mapping: IFTS.
The results of IFTS can then be compared with GST for future intensity mapping
telescopes.

For reconstruction, I can take into account that PSF depends on location in the
back projection case and use a larger cube to minimize this effect. The back projection
angle β may be better selected to further improve the spectral resolution and recon-
struction result. Improvements on RL method should be studied to enhance stability
and dynamic range, such as regularized RL method. More complicated reconstruc-
tion algorithms should also be explored given better computation resources. Other
than back projection, I can try several algebraic reconstruction techniques (ART)
or impose sparsity in wavelet space. Latest machine learning methods and image
processing algorithms may also be helpful to the reconstruction. The implication of
Fourier slice theorem on the power spectrum can also be studied.
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Allam, Scott F Anderson, James Annis, Neta A Bahcall, Ivan K Baldry, Steven
Bastian, Andreas Berlind, et al. The first data release of the sloan digital sky
survey. The Astronomical Journal, 126(4):2081, 2003.

137



[97] C Wolf, K Meisenheimer, H-W Rix, A Borch, S Dye, and M Kleinheinrich.
The combo-17 survey: Evolution of the galaxy luminosity function from 25 000
galaxies with 0.2 < z < 1.2. Astronomy & Astrophysics, 401(1):73–98, 2003.

[98] Rupert AC Croft, Jordi Miralda-Escudé, Zheng Zheng, Adam Bolton, Kyle S
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