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Abstract

To fully understand the non-linear evolution of the large scale struc-

ture of the Universe and to extract useful information from the large

scale structure are key subjects of modern cosmology. In this disser-

tation, I am going to address the non-linearity of the Universe from

two new perspectives.

One way to study the non-linearity is to study filaments, which evolve

non-linearly from the initial density fluctuations produced in the pri-

mordial Universe. In the first part of the dissertation, I am going to

report the first detection of CMB (Cosmic Microwave Background)

lensing by filaments. We propose a phenomenological model to in-

terpret the detected signal, and we measure how filaments trace the

matter distribution on large scales through filament bias.

In the second part of the dissertation, I will present the deep learn-

ing method as a practical and accurate alternative to learning the

gravitational structure formation of the Universe. We build two deep

neural networks, the D3M model and the multi-scale deep sets model,

to predict the non-linear structure formation of the Universe. Our

extensive results have shown our models outperform the second-order

perturbation theory. I will also discuss our efforts in understanding

the robustness of the trained deep learning model.
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Chapter 1

Introduction

Observations have shown that galaxies are distributed in a web-like structure,

consisting of over-dense galaxy clusters, elongated filaments, flattened sheets,

and near-empty voids, which are also known as the cosmic web [2]. The first

extensive 3D survey of galaxies — the CfA redshift survey [3], has provided us

with the first glimpse of the large scale structure distribution of the galaxies,

while subsequent large redshift galaxy surveys, such as 2dF [4], SDSS [5], 6df

[6], GAMA [7], and VIPERS [8], have furnished critical information regarding

the spatial distribution of galaxies. The top and left slices of Fig. 1.1 illustrate

the CfA2 ‘Great Wall’ and Sloan Great Wall, respectively. The galaxy surveys

contain a wealth of information to learn about cosmology. Researchers are using

these surveys to study the initial conditions in the early universe, the matter and

energy contents of the cosmos, and the physics of galaxy formation.

1



Figure 1.1: This figure comes from [1]. The top and left slices illustrate the CfA2
‘Great Wall’ and Sloan Great Wall, respectively. The right and bottom slices of
fig. 1.1 illustrate the mock galaxy catalog from Millennium simulation. The large
scale structure could be clearly in both the galaxy surveys and the simulations.

2



1.1 Dynamics of structure formation

1.1 Dynamics of structure formation

The dynamics of structure formation is one of the key subjects of cosmology.

In the ΛCDM model, the large scale structures in the Universe formed from

a Gaussian initial condition. At the late time, gravity introduces the non-linear

collapse of dark matter, generating non-Gaussian features such as the Sloan Great

Wall[9]. Although the visible components of galaxies are made of baryonic matter

(mostly hydrogen and helium), the gravitational forces that drive the growth of

structure come mainly from dark matter[10]. The dark matter obeys the Vlasov

equation – the governing equation to solve the distribution function in phase

space, and the Vlasov equation is the master function in which all subsequent

calculations of gravitational instability are derived[11]. The Vlasov equation is

derived to be
df

dτ
=
∂f

∂τ
+

p

ma
· ∇f − am∇Φ · ∂f

∂p
(1.1)

where f is the particle number density in phase space, τ is conformal time, x is

the particle position, p is the particle momenta, a is the cale factor, Φ is the

gravitation potential and m is the particle mass. Needless to say, being a non-

linear partial differential equation involving seven variables, this Vlasov equation

is hard to solve.

1.1.1 Analytical Theories

To analytically understand the evolution of the density and velocity fields of

matter fluctuation in the Universe, many approximate theories have been pro-

posed. There are several branches of the approximate theories, including the

Eulerian perturbation theory[11], Lagrangian perturbation Theory[11], effective

field theory[12], etc. [13] has presented a direct comparison of several analytic

predictions for the clustering of matter on quasi-linear scales. In general, on very
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large scales, the matter distribution could be well modeled by the linear pertur-

bation theory. On quasi-linear scales, the performances of the analytical theories

begin to decrease, but there is still the possibility to model the matter distribu-

tion by extending the perturbation theories beyond the linear orders. But all the

analytical theories would fail on small scales – highly non-linear scales, so far.

Among all the analytical theories, in this dissertation, we will focus on the La-

grangian perturbation Theory. The Lagrangian perturbation theory focuses on

the trajectory of each particle. In the Lagrangian perturbation theory, the par-

ticles originally locate at coordinate q, and the dynamic of the particles can be

described by the Lagrangian displacement field Ψ

x(τ) = q + Ψ(q, τ) (1.2)

where τ is the comoving time and Ψ(q, 0) = 0.

The dynamics of the particles is governed by equation of emotion

d2x

dτ 2
+ H(τ)

dx

dτ
= −∇xΦ (1.3)

where Φ is the gravitation potential governed by the Poisson equation

∇2
xΦ = 4πGρ =

3

2
H3Ωmδ(x) (1.4)

where δ(x) is the density contrast, defined as δ(x) = ρ(x)/ρ̄ − 1. Due to the

conservation of mass, we get the relation between Lagrangian and Eulerian coor-

dinates

1 + δ(x, τ) = |d
3q

d3x
| = 1

J(q, τ)
(1.5)
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1.1 Dynamics of structure formation

where J(q, τ) is the Jacobian

J(q, τ) = det(δij + Ψi,j(q, τ)) (1.6)

By combinining eq. 1.3, eq. 1.4 and eq. 1.5, we get the master equation for

Largaragian perturbation theory

J(q, τ)
[
δij+Ψi,j(q, τ)

]−1[d2Ψi,j(q, τ)

dτ 2
+H(τ)

Ψi,j(q, τ)

dτ

]
= −3

2
H2Ωm(τ)[J(q, τ)−1]

(1.7)

Lagrangian perturbation theory finds the perturbative solution for the displace-

ment field Ψ

Ψ(q, τ) = Ψ(1)(q, τ) + Ψ(2)(q, τ) + Ψ(3)(q, τ) + ... (1.8)

By approximate eq. 1.7 to first order, we get the first order solution of the

displacement field

∇q ·Ψ(1) = −D1(τ)δ(q) (1.9)

where D1(τ) is the linear growth function

D
′′
1 (τ) + H(τ)D

′
1(τ) =

3

2
H2(τ)Ωm(τ)D1(τ) (1.10)

The first order solution of perturbation theory is also called Zel’dovich approximation[14].

The solution of the local density of Zel’dovich approximation can be simplified

as

1 + δ(q, τ) =
1

(1− λ1D1(τ))(1− λ2D2(τ))(1− λ3D3(τ))
(1.11)

where λi are the eigenvalues of the Ψi,j. Let us assume λ1 > λ2 > λ3. From this

expression we could see when the linear perturbation grows as D1(τ) reaches 1/λ1,

the Zel’dovich solution leads to planar collapse and the density field becomes in-
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1.1 Dynamics of structure formation

finite. This stage is called Zel’dovich pancake. Indeed, Zel’dovich approximation

breaks down before the density becomes infinite. Since for these small scales, we

need to take into consideration the pressure effect and shell crossing.

By approximate eq. 1.7 to second order, we get solution of second order per-

turbation theory:

∇ ·Ψ(2) =
1

2
D2(τ)

∑

i 6=j

{
ψ

(1)
i,i (q, τ)ψ

(1)
j,j (q, τ)− ψ(1)

i,j (q, τ)ψ
(1)
j,i (q, τ)

}
(1.12)

where the time evolution is governed by

D
′′
2 (τ) + H(τ)D

′
2(τ)− 3

2
H2(τ)Ωm(τ)D2(τ) =

3

2
H2(τ)Ωm(τ)

[
D1(τ)

]2
(1.13)

The second order perturbation theory adds a quadratic correction on top of

Zel’dovich approximation to make a better prediction on quasi-linear regimes.

It is also possible to extend the second order solution to higher orders. However,

it becomes more expensive to solve the equations as it goes to higher orders. In

addition, going to higher orders does not guarantee to give us better solutions,

leading one to question the convergence properties of such a series expansion of

the perturbation theory[13].

1.1.2 N-body dark matter only Simulations

As mentioned before, it is intractable for analytical theories on small non-linear

scales. To resolve the small scale clustering of the mass, we need to resort to

numerical N -body simulations[15]. The N -body simulations solve the equation of

motion (eq. 1.3) and Poisson equation (eq. 1.4) numerically. The idea of N -body
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1.1 Dynamics of structure formation

simulations is that the density-velocity field is represented by a set of particles.

The N -body simulations evolve the trajectory of particles as a function of time

with a numerical integration scheme. At every time step, the mass distribution

is used to compute the gravitational potential field, which in turn yields the

accelerations of particles.

One of the key aspects of N -body simulation is force evaluation. Because

gravity is a long-range force, we cannot ignore the force from distant particles, and

the force calculation can be time-consuming. Many different schemes have been

proposed to address the force evaluation, such as particle-mesh method[16; 17],

tree method[18; 19], P3M method[20; 21], etc.

In this dissertation, we are going to use FastPM scheme [22]. FastPM scheme

belongs to the big category of the particle-mesh method. For the particle-mesh

method, the Poisson equation can be solved efficiently via Fast Fourier transforms

(FFT), where the FFT mesh and the finite differentiation kernel acts as a force

smoothing that regularizes the small scale structure formation near the resolution

of the mesh. The acceleration is then fed into an integrator (e.g.Leap-frog) to

update velocity and position. Additional care shall be taken when the time steps

are sparse to conserve the growth of structures at large scales[23]. The FastPM

enforce the linear theory growth to be correct with sparse time steps by modifying

the traditional integrator in the particle-mesh scheme. FastPM scheme is shown

to approach a full N-body simulation with high accuracy quickly.

Numerical N -body simulations have wide applications in cosmology. They

are used to understand non-linear evolution of the Universe[24], to compute the

covariance for different observables[25; 26], to identify the best observable to

quantify the information content[27], etc.

Though N -body simulations are useful to study the structure formation, it is

also essential to know the limitations of the N -body simulations[15; 28]. The limi-

7



1.1 Dynamics of structure formation

tations include the miss long wave modes – wave modes larger than the simulation

box, two body relaxation, poor accuracy in force calculation and discreteness, etc.

One of the limitations we are going to talk more in this dissertation is that the

simulations are computationally challenging even though the available computing

power gets better.

1.1.3 Link between Mass Distribution and Galaxy Distri-

bution

N -body simulations follow the gravitationally dominant dark matter component

to simulate the large scale structure formation of the Universe. Another long-

standing issue is how to compare simulated mass distributions with observed

galaxy distributions. However, the relation between the galaxies and dark mat-

ter densities depends on the aspects of galaxy formation that are difficult to model

theoretically[10]. One way to generate Mock catalogs of simulated galaxies are

using friend-of-friends algorithms to find the dark matter halos from the dark

matter only N -body simulations and then using halo occupation distributions

to populate galaxies to halos based on halo mass[29]. Besides halo occupation

distribution, halo abundance matching is another efficient method where more

luminous galaxies are assigned to more massive halos[30]. An alternative way

for generating Mock galaxy catalogs is to use Semi-analytic models[31], where a

merger tree that represents the formation and growth of a dark matter halo is

used. Besides the analytical models to connect observed galaxies to simulated

dark matter halos, hydro-dynamical simulations can also be used. The hydro-

dynamical simulations directly account for the baryonic component (gas, stars,

supermassive black holes, etc.) in cosmological simulations as well as the dark

matter. However, the hydrodynamics simulations are known to be computation-

ally expensive. The right and bottom slices of fig. 1.1 illustrate the mock galaxy
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1.2 Measurements of the clustering of Large Scale Structure

catalog from Millennium simulation[24].

1.2 Measurements of the clustering of Large Scale

Structure

With the observations from the surveys, Mock galaxy catalogs and simulations,

quantitative measurements of the clustering of large scale structure are required to

extract useful information. There are several ways to measure the clustering[10],

including measurements of the correlation functions, angular clustering, galaxy

bias, etc. In this dissertation, we are going to focus on the correlation functions,

filaments as a way to extract higher order statistics, and deep learning methods.

1.2.1 Correlation Functions

The most widely used statistical method to study the galaxy clustering is the two-

point correlation function[32]. The two-point correlation function (ξ(r)) measures

the galaxy clustering as a function of scale. It is defined as the excess probability

(dP) compared with a random distribution of finding a pair of galaxies with the

separating distance r

dP = n̄2(1 + ξ(r12))dV1dV2 (1.14)

where n̄ is the mean number density of galaxies.

The two-point correlation function could be measured through counting of

galaxy pairs and comparing the counting with the Poisson distribution. Several
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1.2 Measurements of the clustering of Large Scale Structure

methods to measure the two-point correlation function have been proposed

ξ̂DP =
〈DD〉
〈DR〉 − 1

ξ̂HAM =
〈DD〉〈RR〉
〈DR〉2 − 1

ξ̂LS =
〈(D −R)2〉
〈RR〉 − 1

(1.15)

where D and R represent data and random point set, respectively.

The Fourier transfer of two-point correlation function is the power spectrum

(P(k)).

P (k) =
1

2π2

∫
dkk2P (k)

sin(kr)

kr
(1.16)

where k is the wavenumber, defined as k = 2π/λ.

The power spectrum is predicted directly by theory of the formation of the

large scale structure. The primordial power spectrum is assumed to follow a

power law P (k) ∼ kn. The growth of density perturbation on different scales is

determined by self-gravitation, pressure support and damping process, and so the

shape of the primordial power spectrum would be modified. The modifications

in primordial power spectrum are expressed by the tranfer function T(k)

P (k, z) = A(z)knT (k) (1.17)

where A(z) is the normalization factor determined by observations.

If the described field is Gaussian, all the information would be included by

the two-point statistics. But because the large scale structure of the Universe

is highly non-Gaussian, we expect higher order statistics to provide us further

information. Beyond the two-point statistics, researchers also measure the three-

point correlation function [33; 34], which is the lowest order statistical tool to

probe the non-Gaussianity. By studying the three-point statistics, we could put
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1.2 Measurements of the clustering of Large Scale Structure

strong constraints on models of structure formation [35].

The 3-point correlation function (ζ(r1, r2, θ)) expresses the correlation of the

field among 3 locations in the configuration space, which is equivalently defined

as bispectrum (B(k1, k2, k3)) in Fourier space.

ζ(r1, r2, θ) = 〈δ(x)δ(x + r1)δ(x + r2)〉.

B(k1, k2, k3)δD(k1 + k2 + k3) = 〈δ(k1)δ(k2)δ(k3)〉
(1.18)

1.2.2 Higher Order Statistics

By studying the summary statistics such as the two-point and three-point correla-

tion function, we are still losing non-Gaussian information of the large scale struc-

ture encoded beyond. Additional methods are needed to extract non-Gaussian

information from the large scale structure of the Universe.

1.2.2.1 Filaments

One of the methods to extract extra information is to study the properties fila-

ments. The filaments are the most prominent and highly non-linear structure of

the large scale structure of the Universe, which acts as the bridges between the

galaxy clusters. It is shown in the simulations that filaments occupy 10% of the

volume with 40% of mass at z=0[36].

Various methods have been proposed to identify and characterize the mor-

phologies and properties of filaments[37; 38; 39; 40]. A comparison of different

filament finders have been presented in [41; 42].

Filaments are of interest for several reasons. Detecting and characterizing

filaments at a range of redshifts could help us understand the evolution of the

structure formation of the Universe [2]. By studying the properties of filaments,

one could have a more thorough understanding of the environmental influence
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on the formation and evolution of galaxies[43; 44]. One active subject of the

investigation is to find the alignment between galaxies and filaments[45; 46; 47].

Filaments are tracers of the underlying dark matter, and several studies have

studied gravitational lensing of filaments to infer the mass distribution within

the filaments[42; 48; 49]. By studying filament using thermal Sunyaev-Zeldovich

effect might help reveal the properties of missing baryons, the vast majority of

the gas which resides in the intergalactic medium and has so far evaded most

observations[50].

1.3 Deep Learning Methods

Beyond the traditional methods, the fast-growing deep learning methods provide

another direction to extract useful information from the large scale structure of

the Universe. Deep learning is a fast-growing branch of machine learning. It is

based on neural networks and is composed of multiple layers to learn the data

representations. Deep learning has led many breakthroughs in multiple areas,

such as image recognition[51; 52; 53], speech recognition[54; 55]. Deep learning

is increasingly being adopted in cosmology researches too. It has applications in

large scale structure[56; 57], gravitational lensing[58; 59], weak lensing[60], cosmic

microwave background[61; 62; 63], cosmic reionization[64] supernova[65], etc.

Convolutional neural networks are a common class of deep learning methods[66],

which have recently obtained remarkable experimental results. The convolutional

neural networks are designed to process data in regular formats, such as 2D im-

ages or 3D volumetric data.

The typical architecture of the convolutional neural networks usually contains

several convolution layers and pooling layers. The convolution layers consist of

a set of learnable filters. These filters are connected to the local patches of
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the output of the previous layers and a weighted sum is calculated. Next, the

weighted sum is passed through non-linear activation, such as ReLU, tanh. All

the local patches share the same weight filters, which is known as the weight

sharing scheme. The idea of weight sharing is based on the assumption that local

groups of values are often highly correlated and the local statistics of images and

other signals are invariant to location. By using the weight sharing scheme, the

number of learnable parameters is largely reduced. The role of convolution layers

is to detect local conjunctions of features from the previous layer. The pooling

layers are used to reduce the spatial size of the representation so that the number

of parameters is reduced. A typical way to do the pooling is to calculate the

maximum value or the average of the local patches of the output of the previous

layer.

Other essential tricks widely used in building the convolution neural networks

and are used in this dissertation are padding and batch normalization. Paddings

are usually used before the convolution to control the spatial size of the output

volumes and to maintain features at borders. Usually, zero-padding – pad around

the borders with all 0, or reflective padding – pad around the borders with its

reflection, is used. Batch normalization is known to improve the speed, perfor-

mance, and stability of neural networks. The batch normalization is performed by

subtracting the output of the activation layer with the batch mean and dividing

by the batch standard deviation.

One of the limitations of the convolutional architectures is that they require

highly regular input data formats. However, with data represented as point set

– set of data points in space, the convolutional neural network is not an optimal

choice anymore. Though the point set data can be converted into meshes or

voxels representation, the information in scales smaller than the mesh or voxel

size would be lost. In addition, if the data points are sparse, converting the data
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to mesh or voxel representation would result in many empty regions, which makes

it hard for the convolutional neural networks to extract features. To deal with

the point set data, another recently developed class of deep learning methods,

the point cloud model, can be used. Extensive experiments have shown the point

cloud model performs well across several domains[67; 68]. In cosmology, the point

cloud model is used to predict the redshift from the galaxy clustering[68].

So far, deep learning is shown to be a powerful method to learn complex func-

tions and could have many applications in several domains in cosmology. But

there are also limitations of the deep learning methods. Firstly, the deep learning

model is a black box. Once a deep learning model is trained, it is not always clear

how its making its decisions. Many efforts have been made to interpret the deep

learning models. [69] gives an overview of techniques for interpreting complex

machine learning models, with a focus on deep neural networks. However, as also

mentioned in this paper, interpreting deep networks remains a young and emerg-

ing field of research. Secondly, Standard deep learning methods for regression

and classification do not capture model uncertainty. However, error estimation is

essential in cosmology; for example, to calculate the likelihood function. Though

some work has been proposed to predict the model uncertainty[61; 70; 71], this

field of research needs more investigations.

1.4 Organization of the Dissertation

The large scale structure of the Universe contains much information to constrain

the cosmology. It is essential to understand the formation of large scale structure

formation and to find statistical methods to extract useful information from large

scale structure of the Universe. As is shown, one of the biggest challenges faced

by studying large scale structure of the Universe is the non-linearity of small
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scales – the small scale non-linearity causes analytical theories to fall; large com-

putational power of simulations is needed to resolve the small scale clustering;

other statistical methods are required to extract information which is ignored by

the summary statistics. In this dissertation, we strive to find new techniques to

address the non-linearity of the large scale structure of the Universe.

In the first part of this dissertation, we use the new technique, the deep

learning methods, to address the non-linear evolution of large scale structure of

the Universe. The main goal is to provide a fast and robust method to simulate

the non-linear structure formation of the Universe.

In the second part of the dissertation, our goal is to find a new way to extract

information from the non-linear structure of the Universe. We directly work

on the highly non-linear structure of the large scale structure of the Universe –

filaments, to provide us additional information.

The dissertation is organized as follows.

In Chapter 2, we build a deep neural network, the Deep Density Displace-

ment Model, to predict the non-linear structure formation of the Universe from

simple linear perturbation theory. Our extensive analysis demonstrates that our

model outperforms the second order perturbation theory (hereafter 2LPT), the

commonly used fast approximate simulation method, in point-wise comparison,

2-point correlation, and 3-point correlation. We also show that D3M can accu-

rately extrapolate far beyond its training data, and predict structure formation

for significantly different cosmological parameters.

In chapter 3.1, we have interrogated the trained model in chapter 1 with

physics analysis, showing the trained neural networks have expected behaviors as

the physics prediction.

In chapter 3.2, we have developed a multi-scale deep set model, which directly

uses sets of particles as input, to predict the non-linear evolution of the Universe.
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Our objective is to show that our model is another efficient deep model that

can be used in solving complex cosmological problems with cosmological data

represented as point clouds.

In chapter 4, we report the first detection of CMB (Cosmic Microwave Back-

ground) lensing by filaments, and we apply a null test to confirm our detection.

Furthermore, we propose a phenomenological model to interpret the detected sig-

nal, and we measure how filaments trace the matter distribution on large scales

through filament bias. Our study provides a new scope to understand the envi-

ronmental dependence of galaxy formation.
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The following papers are discussed in this dissertation:
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in press
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In preparation.
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Multi-Scale Deep Sets to Learn Non-Linear Evolution of the Universe
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In preparation.
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The following papers are not discussed in this dissertation:

17



1.4 Organization of the Dissertation

HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks

Juan Zamudio-Fernandez, Atakan Okan, Francisco Villaescusa-Navarro, Seda Bi-

laloglu, Asena Derin Cengiz, Siyu He, Laurence Perreault Levasseur, Shirley Ho

preprint arXiv:1904.12846

From Dark Matter to Galaxies with Convolutional Networks

Xinyue Zhang, Yanfang Wang, Wei Zhang, Yueqiu Sun, Siyu He, Gabriella Con-

tardo, Francisco Villaescusa-Navarro, Shirley Ho

preprint arXiv:1902.05965

Analysis of Cosmic Microwave Background with Deep Learning

Siyu He, Siamak Ravanbakhsh, Shirley Ho

Workshop at International Conference on Learning Representations 2018

CosmoFlow: using deep learning to learn the universe at scale

Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James

Arnemann, Lei Shao, Siyu He, Tuomas Krn, Diana Moise, Simon J Pennycook,

Kristyn Maschhoff, Jason Sewall, Nalini Kumar, Shirley Ho, Michael F Ringen-

burg, Prabhat Prabhat, Victor Lee

SC18: International Conference for High Performance Computing, Networking,

Storage and Analysis

Detecting galaxyfilament alignments in the Sloan Digital Sky Survey III

Yen-Chi Chen, Shirley Ho, Jonathan Blazek, Siyu He, Rachel Mandelbaum, Pe-

ter Melchior, Sukhdeep Singh
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Chapter 2

Learning to Predict the

Cosmological Structure

Formation

2.1 Abstract

Matter evolved under influence of gravity from minuscule density fluctuations.

Non-perturbative structure formed hierarchically over all scales, and developed

non-Gaussian features in the Universe, known as the Cosmic Web. To fully

understand the structure formation of the Universe is one of the holy grails of

modern astrophysics. Astrophysicists survey large volumes of the Universe and

employ a large ensemble of computer simulations to compare with the observed

data in order to extract the full information of our own Universe. However, to

evolve billions of particles over billions of years even with the simplest physics is a

daunting task. We build a deep neural network, the Deep Density Displacement

Model (hereafter D3M), which learns from a set of pre-run numerical simulations,

to predict the non-linear large scale structure of the Universe with Zel’dovich Ap-
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proximation (hereafter ZA), an analytical approximation based on perturbation

theory, as the input. Our extensive analysis, demonstrates that D3M outperforms

the second order perturbation theory (hereafter 2LPT), the commonly used fast

approximate simulation method, in predicting cosmic structure in the non-linear

regime. We also show that D3M is able to accurately extrapolate far beyond its

training data, and predict structure formation for significantly different cosmo-

logical parameters. Our study proves, for the first time, that deep learning is a

practical and accurate alternative to approximate 3D simulations of the gravita-

tional structure formation of the Universe.

2.2 Introduction

Astrophysicists require a large amount of simulations to extract the information

from observations [4; 5; 6; 7; 8; 72; 73; 74]. At its core, modeling structure for-

mation of the Universe is a computationally challenging task; it involves evolving

billions of particles with the correct physical model over a large volume over bil-

lions of years [75; 76; 77]. To simplify this task, we either simulate a large volume

with simpler physics or a smaller volume with more complex physics. In order to

produce the cosmic web [78] in large volume, we select gravity, the most impor-

tant component of the theory, to simulate at large scales. A gravity-only N -body

simulation is the most popular; and effective numerical method to predict the full

6D phase space distribution of a large number of massive particles whose position

and velocity evolve over time in the Universe [79]. Nonetheless, N -body simu-

lations are relatively computationally expensive, thus making the comparison of

the N -body simulated large-scale structure (of different underlying cosmological

parameters) with the observed Universe a challenging task. We propose to use

a deep model that predicts the structure formation as an alternative to N -body
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Figure 2.1: (left) The displacement vector-field and (right) the resulting density
field produced by D3M. The vectors in the left figure are uniformly scaled down
for better visualization.

simulations.

Deep learning [80] is a fast growing branch of machine learning where recent

advances have lead to models that reach and sometimes exceed human perfor-

mance across diverse areas, from analysis and synthesis of images [51; 52; 53],

sound [54; 55], text [81; 82] and videos [83; 84] to complex control and plan-

ning tasks as they appear in robotics and game-play [85; 86; 87]. This new

paradigm is also significantly impacting a variety of domains in the sciences,

from biology [88; 89] to chemistry [90; 91] and physics [92; 93]. In particu-

lar, in astronomy and cosmology, a growing number of recent studies are using

deep learning for a variety of tasks, ranging from analysis of cosmic microwave

background [61; 62; 63], large-scale structure [56; 57], and gravitational lensing

effects [58; 59] to classification of different light sources [94; 95; 96].

The ability of these models to learn complex functions has motivated many

to use them to understand the physics of interacting objects leveraging image,

video and relational data [97; 98; 99; 100; 101; 102; 103; 104; 105; 106; 107].
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However, modeling the dynamics of billions of particles in N-body simulations

poses a distinct challenge.

In this paper we show that a variation on the architecture of a well-known

deep learning model [108], can efficiently transform the first order approximations

of the displacement field and approximate the exact solutions, thereby producing

accurate estimates of the large-scale structure. Our key objective is to prove that

this approach is an accurate and computationally efficient alternative to expensive

cosmological simulations, and to this end we provide an extensive analysis of the

results in the following section.

The outcome of a typical N-body simulation depends on both the initial con-

ditions and on cosmological parameters which affect the evolution equations. A

striking discovery is that D3M, trained using a single set of cosmological param-

eters generalizes to new sets of significantly different parameters, minimizing the

need for training data on diverse range of cosmological parameters.

2.3 Setup

We build a deep neural network, D3M, with similar input and output of an N -

body simulation. The input to our D3M is the displacement field from ZA [109].

A displacement vector is the difference of a particle position at target redshift z =

0, i.e., the present time, and its Lagrangian position on a uniform grid. ZA evolves

the particles on linear trajectories along their initial displacements. It is accurate

when the displacement is small, therefore ZA is frequently used to construct the

initial conditions of N -body simulations [14]. As for the ground truth, the target

displacement field is produced using FastPM [22], a recent approximate N-body

simulation scheme that is based on a particle-mesh (PM) solver. FastPM quickly

approaches a full N-body simulation with high accuracy and provides a viable
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alternative to direct N-body simulations for the purpose of our study.

A significantly faster approximation of N-body simulations is produced by

second-order Lagrangian perturbation theory (hereafter 2LPT), which bends each

particle’s trajectory with a quadratic correction [110]. 2LPT is used in many

cosmological analyses to generate a large number of cosmological simulations

for comparison of astronomical dataset against the physical model [111; 112] or

to compute the covariance of the dataset [113; 114; 115]. We regard 2LPT as

an effective way to efficiently generate a relatively accurate description of the

large-scale structure and therefore we select 2LPT as the reference model for

comparison with D3M.

We generate 10,000 pairs of ZA approximations as input and accurate FastPM

approximations as target. We use simulations of 323 N -body particles in a volume

of 128h−1Mpc (600 million light years, where h = 0.7 is the Hubble parameter).

The particles have a mean separation of 4h−1Mpc per dimension.

2.3.1 Displacement versus Density Field

An important choice in our approach is training with displacement field rather

than density field. Displacement field Ψ and density field ρ are two ways of

describing the same distribution of particles. And an equivalent way to describe

density field is the over-density field, defined as δ = ρ/ρ̄− 1, with ρ̄ denoting the

mean density. The displacement field and over-density field are related by eq. 2.1.

x = Ψ(q) + q

δ(x) =

∫
d3qδD(x− q−Ψ(q))− 1

(2.1)

When the displacement field is small and has zero curl, the choice of over-

24



2.3 Setup

0

50

100

(a) FastPM (b) ZA (c) 2LPT (d) D3M

0 50 100
x h/Mpc

0

50

100

y
h/

M
pc

0 50 100 0 50 100 0 50 100 0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2.2: The columns show 2-D slices of full particle distribution (top) and
displacement vector (bottom) by various models, from left to right:
(a) FastPM: the target ground truth, a recent approximate N-body simulation
scheme that is based on a particle-mesh (PM) solver ;
(b) Zel’dovich approximation (ZA): a simple linear model that evolves particle
along the initial velocity vector;
(c) Second order Lagrangian perturbation theory (2LPT): a commonly used an-
alytical approximatation;
(d) Deep learning model (D3M) as presented in this work.
While FastPM (a) served as our ground truth, the columns to its right in-
cludes color for the points or vectors. The color indicates the relative difference
(qmodel−qtarget)/qtarget between the target (a) location or displacement vector and
predicted distributions by various methods (b-d). The error-bar shows denser re-
gions have a higher error for all methods. which suggests that it is harder to
predict highly non-linear region correctly for all models: D3M, 2LPT and ZA.
Our model D3M has smallest differences between predictions and ground truth
among the above models (b)-(d).
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density vs displacement field for the output of the model is irrelevant, as there is

a bijective map between these two representations, described by the equation:

Ψ =

∫
d3k

(2π)3
eik·q

ik

k2
δ(k) (2.2)

However as the displacements grow into the non-linear regime of structure forma-

tion, different displacement fields can produce identical density fields [e.g. 116].

Therefore, providing the model with the target displacement field during the

training eliminates the ambiguity associated with the density field. Our inability

to produce comparable results when using the density field as our input and target

attests that relevant information resides in the displacement field (See Appendix,

Fig.2.6) .

2.4 Results and Analysis

Figure 2.1 shows the displacement vector field as predicted by D3M (left) and

the associated point-cloud representation of the structure formation (right). It is

possible to identify structures such as clusters, filaments and voids in this point-

cloud representation. We proceed to compare the accuracy of D3M and 2LPT

compared with ground truth.

2.4.1 Point-Wise Comparison

Let Ψ ∈ Rd×d×d×3 denote the displacement field, where d is the number of spatial

resolution elements in each dimension (d = 32). A natural measure of error is the

relative error |Ψ̂ −Ψt|/|Ψt|, where Ψt is the true displacement field (FastPM)

and Ψ̂ is the prediction from 2LPT or D3M. Figure 2.2 compares this error for

different approximations in a 2-D slice of a single simulation. We observe that
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2.4 Results and Analysis

D3M predictions are very close to the ground truth, with a maximum relative

error of 1.10 over all 1000 simulations. For 2LPT this number is significantly

higher at 4.23. In average, the result of D3M comes with a 2.8% relative error

while for 2LPT it equals 9.3%.

2.4.2 2-Point Correlation Comparison

As suggested by Figure 2.2 the denser regions seem to have a higher error for all

methods – that is, more non-linearity in structure formation creates larger errors

for both D3M and 2LPT. The dependence of error on scale is computed with

2-point and 3-point correlation analysis.

Cosmologists often employ compressed summary statistics of the density field

in their studies. The most widely used of these statistics are the 2-point correla-

tion function (2PCF) ξ(r) and its Fourier transform, the power spectrum Pδδ(k):

ξ(|r|) = 〈δA(r′)δB(r′ + r)〉,

Pδδ(|k|) =

∫
d3r ξ(r)eik·r,

(2.3)

where the ensemble average 〈 〉 is taken over all possible realizations of the Uni-

verse. Our Universe is observed to be both homogeneous and isotropic on large

scales, i.e. without any special location or direction. This allows one to drop the

dependencies on r′ and on the direction of r, leaving only the amplitude |r| in

the final definition of ξ(r). In the second equation, Pδδ(k) is simply the Fourier

transform of ξ(r), and captures the dispersion of the plane wave amplitudes at

different scales in the Fourier space. k is the 3D wavevector of the plane wave, and

its amplitude k (the wavenumber) is related to the wavelength λ by k = 2π/λ.

Due to isotropy of the Universe, we drop the vector form of r and k.
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2.4 Results and Analysis

Because FastPM, 2LPT and D3M take the displacement field as input and

output, we also study the two-point statistics for the displacement field. The

displacement power spectrum is defined as:

PΨΨ(k) = 〈Ψx(k)Ψ∗x(k)〉+ 〈Ψy(k)Ψ∗y(k)〉+ 〈Ψz(k)Ψ∗z(k)〉 (2.4)
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Figure 2.3: (a) From top to bottom: (top) displacement and density power-
spectrum of FastPM (orange), 2LPT (blue), and D3M (green); (middle) transfer
function – i.e., the square root of the ratio of the predicted power-spectrum to
the ground truth; (bottom) 1-r2 where r is the correlation coefficient between
the predicted fields and the true fields. Results are the averaged values of 1000
test simulations. The transfer function and correlation coefficient of the D3M
predictions is nearly perfect from large to intermediate scales and outperforms
our benchmark 2LPT significantly.
(b) The ratios of the multipole coefficients (ζl(r1, r2)) (to the target) of the two
3-point correlation functions for several triangle configurations. The results are
averaged over 10 test simulations. The error-bars (padded regions) are the stan-
dard deviations derived from 10 test simulations. The ratio shows the 3-point
correlation function of D3M is closer than 2LPT to our target FastPM with lower
variance.

We focus on the Fourier-space representation of the 2-point correlation. Be-

cause the matter and the displacement power spectrum take the same form, in
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what follows we drop the subscript for matter and displacement field and use

P (k) to stand for both matter and displacement power spectrum. We employ the

transfer function T (k) and the correlation coefficient r(k) as metrics to quantify

the model performance against the ground truth (FastPM) in the 2-point corre-

lation. We define the transfer function T (k) as the square root of the ratio of two

power spectra,

T (k) =

√
Ppred(k)

Ptrue(k)
, (2.5)

where Ppred(k) is the density or displacement power spectrum as predicted by

2LPT or D3M, and analogously Ptrue(k) is the ground truth predicted by FastPM.

The correlation coefficient r(k) is a form of normalized cross power spectrum,

r(k) =
Ppred×true(k)√
Ppred(k)Ptrue(k)

, (2.6)

where Ppred×true(k) is the cross power spectrum between 2LPT or D3M predictions

and the ground truth (FastPM) simulation result. The transfer function captures

the discrepancy between amplitudes, while the correlation coefficient can indicate

the discrepancy between phases as functions of scales. For a perfectly accurate

prediction, T (k) and r(k) are both 1. In particular, 1−r2 describes stochasticity,

the fraction of the variance in the prediction that cannot be explained by the true

model.

Figures 2.3(a) shows the average power spectrum, transfer function T (k) and

stochasticity 1 − r2(k) of the displacement field and the density field over 1000

simulations. The transfer function of density from 2LPT predictions is 2% smaller

than that of FastPM on large scales (k ≈ 0.05hMpc−1). This is expected since

2LPT performs accurately on very large scales (k < 0.01hMpc−1). The displace-

ment transfer function of 2LPT increases above 1 at k ≈ 0.35hMpc−1 and then

drops sharply. The increase of 2LPT displacement transfer function is because
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2.4 Results and Analysis

2LPT over-estimates the displacement power at small scales [see, e.g. 117]. There

is a sharp drop of power near the voxel scale because smoothing over voxel scales

in our predictions automatically erases power at scales smaller than the voxel

size.

Now we turn to the D3M predictions: both the density and displacement

transfer functions of the D3M differ from 1 by a mere 0.4% at scale k . 0.4hMpc−1,

and this discrepancy only increases to 2% and 4% for density field and dis-

placement field respectively, as k increases to the Nyquist frequency around

0.7hMpc−1. The stochasticity hovers at approximately 10−3 and 10−2 for most

scales. In other words, for both the density and displacement fields the corre-

lation coefficient between the D3M predictions and FastPM simulations, all the

way down to small scales of k = 0.7hMpc−1 is greater than 90%. The trans-

fer function and correlation coefficient of the D3M predictions shows that it can

reproduce the structure formation of the Universe from large to semi-non-linear

scales. D3M significantly outperforms our benchmark model 2LPT in the 2 point

function analysis. D3M only starts to deviate from the ground truth at fairly

small scales. This is not surprising as the deeply nonlinear evolution at these

scales is more difficult to simulate accurately and appears to be intractable by

current analytical theories[118].

2.4.3 3-Point Correlation Comparison

The 3-point correlation function (3PCF) expresses the correlation of the field

of interest among 3 locations in the configuration space, which is equivalently

defined as bispectrum in Fourier space. Here we concentrate on the 3PCF for

computational convenience:

ζ(r1, r2, θ) = 〈δ(x)δ(x + r1)δ(x + r2)〉. (2.7)
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Figure 2.4: We show the differences of particle distributions and displacement
fields when we change the cosmological parameters As and Ωm.
(a) The errorbar shows the difference of particle distribution (upper panel) and
displacement fields (lower panel) between As = A0 and the two extremes for
As = .2A0(left) and As = 1.8A0 (right).
(b) A similar comparison showing the difference of the particle distributions (up-
per panel) and displacement fields (lower panel) for smaller and larger values of
Ωm ∈ {.1, .5} with regard to Ωm = 0.3089, which was used for training.
While the difference for smaller value of As (Ωm) is larger, the displacement for
larger As (Ωm) is more non-linear. This non-linearity is due to concentration of
mass and makes the prediction more difficult.
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where r1=|r1| and r2=|r2|. Translation invariance guarantees that ζ is inde-

pendent of x. Rotational symmetry further eliminates all direction dependence

except dependence on θ, the angle between r1 and r2. The multipole moments

of ζ(r1, r2, θ), ζ`(r1, r2) = (2` + 1)
∫
dθP`(cos θ)ζ(r1, r2, θ) where P`(cos θ) is the

Legendre polynomial of degree `, can be efficiently estimated with pair counting

[34]. While the input (computed by ZA) do not contain significant correlations

beyond the second order (power spectrum level), we expect D3M to generate

densities with a 3PCF that mimics that of ground truth.

We compare the 3PCF calculated from FastPM, 2LPT and D3M by analyzing

the 3PCF through its multipole moments ζ`(r1, r2). Figure 2.3(b) shows the

ratio of the binned multipole coefficients of the two 3PCF for several triangle

configurations, ξ̄`(r1, r2)pred/ξ̄`(r1, r2)true, where ξ̄`(r1, r2)pred can be the 3PCF for

D3M or 2LPT and ξ̄`(r1, r2)true is the 3PCF for FastPM. We used 10 radial bins

with ∆r = 5h−1Mpc. The results are averaged over 10 test simulations and

the errorbars are the standard deviation. The ratio shows the 3PCF of D3M is

more close to FastPM than 2LPT with smaller errorbars. To further quantify our

comparison, we calculate the relative 3PCF residual defined by

3PCF relative residual

=
1

9×Nr

8∑

`=0

∑

r1,r2

|ζ`(r1, r2)pred − ζ`(r1, r2)true|
|ζ`(r1, r2)true|

(2.8)

where Nr is the number of (r1,r2) bins. The mean relative 3PCF residual of the

D3M and 2LPT predictions compared to FastPM are 0.79% and 7.82% respec-

tively. The D3M accuracy on 3PCF is also an order of magnitude better than

2LPT, which indicates that the D3M is far better at capturing the non-Gaussian

structure formation.
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2.5 Generalizing to New Cosmological Parameters

2.5 Generalizing to New Cosmological Parame-

ters

So far, we train our model using a “single” choice of cosmological parameters

As = 2.142 × 10−9 (hereafter A0 = 2.142 × 10−9) and Ωm = 0.3089 [119]. As

is the primordial amplitude of the scalar perturbation from cosmic inflation, and

Ωm is the fraction of the total energy density that is matter at the present time,

and we will call it matter density parameter for short. The true exact value of

these parameters are unknown and different choices of these parameters change

the large-scale structure of the Universe; see Figure 2.4.

Here, we report an interesting observation: the D3M trained on a single set of

parameters in conjunction with ZA (which depends on As and Ωm) as input, can

predict the structure formation for widely different choices of As and Ωm. From a

computational point of view this suggests a possibility of producing simulations

for a diverse range of parameters, with minimal training data.

2.5.1 Varying Primordial Amplitude of Scalar Perturba-

tions As

After training the D3M using As = A0, we change As in the input of our test set

by nearly one order of magnitude: As = 1.8A0 and As = 0.2A0. Again, we use

1000 simulations for analysis of each test case. The average relative displacement

error of D3M remains less than 4% per voxel (compared to < 3% when train and

test data have the same parameters). This is still well below the error for 2LPT,

which has relative errors of 15.5% and 6.3% for larger and smaller values of As

respectively.

Figure 2.5(a) shows the transfer function and correlation coefficient for both

D3M and 2LPT. The D3M performs much better than 2LPT for As = 1.8A0.
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For small As = 0.2A0, 2LPT does a better job than D3M predicting the density

transfer function and correlation coefficient at the largest scales, otherwise D3M

predictions are more accurate than 2LPT at scales larger than k = 0.08hMpc−1.

We observe a similar trend with 3PCF analysis: the 3PCF of D3M predictions

are notably better than 2LPT ones for larger As, compared to smaller As where it

is only slightly better. These results confirm our expectation that increasing As

increases the non-linearity of the structure formation process. While 2LPT can

predict fairly well in linear regimes, compared to D3M its performance deterio-

rates with increased non-linearity. It is interesting to note that D3M prediction

maintains its advantage despite being trained on data from more linear regimes.

2.5.2 Varying matter density parameter Ωm

We repeat the same experiments, this time changing Ωm to 0.5 and 0.1, while

the model is trained on Ωm = 0.3089, which is quite far from both of the test

sets. For Ωm = 0.5 the relative residual displacement errors of the D3M and

2LPT averaged over 1000 simulations are 3.8% and 15.2% and for Ωm = 0.1 they

are 2.5% and 4.3%. Figures 2.5(c)(d) show the two-point statistics for density

field predicted using different values of Ωm. For Ωm = 0.5, the results show

that the D3M outperforms 2LPT at all scales, while for smaller Ωm = 0.1, D3M

outperforms 2LPT on smaller scales (k > 0.1hMpc−1). As for the 3PCF of

simulations with different values of Ωm, the mean relative 3PCF residual of the

D3M for Ωm = 0.5 and Ωm = 0.1 are 1.7% and 1.2% respectively and for 2LPT

they are 7.6% and 1.7% respectively. The D3M prediction performs better at

Ωm = 0.5 than Ωm = 0.1. This is again because the Universe is much more

non-linear at Ωm = 0.5 than Ωm = 0.1. The D3M learns more non-linearity than

is encoded in the formalism of 2LPT.
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point-wise

T (k)

k = 0.11 †
r(k)

k = 0.11
T (k)

k = 0.50
r(k)

k = 0.50 3PCF
test phase

2 LPT Density N/A 0.96 1.00 0.74 0.94 0.0782
D3M Density N/A 1.00 1.00 0.99 1.00 0.0079

2 LPT Displacement 0.093 0.96 1.00 1.04 0.90 N/A
D3M Displacement 0.028 1.00 1.00 0.99 1.00 N/A

As = 1.8A0

2LPT Density N/A 0.93 1.00 0.49 0.78 0.243
D3M Density N/A 1.00 1.00 0.98 1.00 0.039

2LPT Displacement 0.155 0.97 1.00 1.07 0.73 N/A
D3M Displacement 0.039 1.00 1.00 0.97 0.99 N/A

As = 0.2A0

2LPT Density N/A 0.99 1.00 0.98 0.99 0.024
D3M Density N/A 1.00 1.00 1.03 1.00 0.022

2LPT Displacement 0.063 0.99 1.00 0.95 0.98 N/A
D3M Displacement 0.036 1.00 1.00 1.01 1.00 N/A

Ωm = 0.5
2LPT Density N/A 0.94 1.00 0.58 0.87 0.076
D3M Density N/A 1.00 1.00 1.00 1.00 0.017

2LPT Displacement 0.152 0.97 1.00 1.10 0.80 N/A
D3M Displacement 0.038 1.00 1.00 0.98 0.99 N/A

Ωm = 0.1
2LPT Density N/A 0.97 1.00 0.96 0.99 0.017
D3M Density N/A 0.99 1.00 1.04 1.00 0.012

2LPT Displacement 0.043 0.97 1.00 0.97 0.98 N/A
D3M Displacement 0.025 0.99 1.00 1.02 1.00 N/A

†The unit of k is hMpc−1.

Table 2.1: A summary of our analysis.
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Figure 2.5: Similar plots as in Figure. 3(a), except we test the 2 point statistics
when we vary the cosmological parameters without changing the training set
(which has differnet cosmological parameters) nor the trained model. We show
predictions from D3M and 2LPT when tested on different (a) As and, (b) Ωm.
We show (top) the transfer function – i.e., the square root of the ratio of the
predicted power-spectrum to the ground truth and (bottom) 1-r2 where r is the
correlation coefficient between the predicted fields and the true fields. D3M
prediction outperforms 2LPT prediction at all scales except in the largest scales
as the perturbation theory works well in linear regime (large scales).

2.6 Conclusions

To summarize, our deep model D3M can accurately predict the large-scale struc-

ture of the Universe as represented by FastPM simulations, at all scales as seen

in the summary table in Table. 2.1. Furthermore, D3M learns to predict cosmic

structure in the non-linear regime more accurately than our benchmark model

2LPT. Finally, our model generalizes well to test simulations with cosmological

parameters (As and Ωm) significantly different from the training set. This sug-

gests that our deep learning model can potentially be deployed for a ranges of

simulations beyond the parameter space covered by the training data (Table 2.1).

Our results demonstrate that the D3M successfully learns the nonlinear mapping

from first order perturbation theory to FastPM simulation beyond what higher

order perturbation theories currently achieve.

Looking forward, we expect replacing FastPM with exact N-body simulations
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would improve the performance of our method. As the complexity of our D3M

model is linear in the number of voxels, we expect to be able to further improve our

results if we replace the FastPM simulations with higher resolution simulations.

Our work suggests that deep learning is a practical and accurate alternative to the

traditional way of generating approximate simulations of the structure formation

of the Universe.

2.7 Materials and Methods

2.7.1 Dataset

The full simulation data consists of 10,000 simulations of boxes with ZA and

FastPM as input-output pairs, with an effective volume of 20 (Gpc/h)3 (190 ×
109ly3), comparable to the volume of a large spectroscopic sky survey like DESI

or EUCLID. We split the full simulation data set into 80%, 10% and 10% for

training, validation and test, respectively. We also generated 1000 simulations

for 2LPT for each set of tested cosmological parameters.

2.7.2 Model and Training

The D3M adopts the U-Net architecture [108] with 15 convolution or decon-

volution layers and approximately 8.4 × 106 trainable parameters. Our D3M

generalizes the standard U-Net architecture to work with three-dimensional data

[120; 121; 122]. The details of the architecture are described in the following

sections and a schematic figure of the architecture is shown in SI Appendix, Fig-

ure. 2.7. In the training phase, we employ the Adam Optimizer [123] with a

learning rate of 0.0001, and first and second moment exponential decay rates

equal to 0.9 and 0.999, respectively. We use the Mean-Squared Error as the loss
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function (See Loss Function) and L2 regularization with regularization coefficient

0.0001.

2.7.2.1 Details of the D3M Architecture

The contracting path follows the typical architecture of a convolution network.

It consists of two blocks, each of which consists of two successive convolutions of

stride 1 and a down-sampling convolution with stride 2. The convolution layers

use 3×3×3 filters with a periodic padding of size 1 (see Padding and Periodic

Boundary) on both sides of each dimension. Notice that at each of the two

down-sampling steps, we double the number of feature channels. At the bottom

of the D3M, another two successive convolutions with stride 1 and the same

periodic padding as above are applied. The expansive path of our D3M is an

inverted version of the contracting path of the network. (It includes two repeated

applications of the expansion block, each of which consists of one up-sampling

transposed convolution with stride 1/2 and two successive convolution of stride

1. The transposed convolution and the convolution are constructed with 3×3×3

filters.)

We take special care in the padding and cropping procedure to preserve the

shifting and rotation symmetry in the up-sampling layer in expansive path. Be-

fore the transposed convolution we apply a periodic padding of length 1 on the

right, down and back sides of the box (padding=(0,1,0,1,0,1) in pytorch),

and after the transposed convolution, we discard one column on the left, up

and front sides of the box and two columns on the right, down and back sides

(crop=(1,2,1,2,1,2)).

A special feature of the D3M is the concatenation procedure, where the up-

sampling layer halves the feature channels and then concatenates them with the

corresponding feature channels on the contracting path, doubling the number of
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feature channels.

The expansive building block then follows a 1×1×1 convolution without padding,

which converts the 64 features to the the final 3-D displacement field. All convo-

lutions in the network except the last one are followed by a rectified linear unit

(ReLU) activation and batch normalization (BN).

2.7.2.2 Padding and Periodic Boundary

It is common to use constant or reflective padding in deep models for image pro-

cessing. However, these approaches are not suitable for our setting. The physical

model we are learning is constructed on a spatial volume with a periodic bound-

ary condition. This is sometimes also referred to a torus geometry, where the

boundaries of the simulation box are topologically connected – that is xi+L = xi

where i is the index of the spatial location, and L is the periodicity (size of

box). Constant or reflective padding strategies break the connection between the

physically nearby points separated across the box, which not only loses informa-

tion but also introduces noise during the convolution, further aggravated with an

increased number of layers.

We find that the periodic padding strategy significantly improves the per-

formance and expedites the convergence of our model, comparing to the same

network using a constant padding strategy. This is not surprising, as one expects

it is easier to train a model that can explain the data than to train a model that

does not.

2.7.2.3 Loss Function

We train the D3M to minimize the mean square error on particle displacements

L =
1

N

∑

i

(Ψ̂i −Ψt,i)
2, (2.9)
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where i labels the particles and the N is the total number of particles. This

loss function is proportional to the integrated squared error, and using a Fourier

transform and Parsevals theorem it can be rewritten as

∫
(Ψ̂−Ψt)

2d3q =

∫ ∣∣Ψ̂−Ψt

∣∣2d3k =

∫
d3k

(
∣∣Ψt

∣∣2(1− T )2 + 2
∣∣Ψ̂
∣∣∣∣Ψt

∣∣(1− r)
)

(2.10)

where q is the Lagrangian space position, and k its corresponding wavevector.

T is the transfer function defined in Eq. 2.5, and r is the correlation coefficient

defined in Eq. 2.6, which characterize the similarity between the predicted and the

true fields, in amplitude and phase respectively. Eq. 2.10 shows that our simple

loss function jointly captures both of these measures: as T and r approach 1, the

loss function approaches 0.

2.8 appendix
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Figure 2.6: Same deep learning architecture with either density field or displace-
ment field as input. The loss with displacement field as input is smaller, and
this proves that displacement field contains information that is non-local in the
density, which helps model to learn.
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Figure 2.7: Each orange box corresponds to a multi-channel feature map. The
number of channels and the output size of each channel are denoted on top of the
box. Grey dashed boxes represent copied feature maps. The arrows denote the
different operations. The black, red and blue arrays represent 3× 3 convolution
with stride one, 3× 3 convolution with stride two, 3× 3 transposed convolution
with stride 1/2 respectively with periodic padding followed by ReLU activation
and batch normalization. The orange array represents 1 × 1 convolution with
stride one.
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2.9 Comparison with One-point remapping method

In addition, besides the benchmark method 2LPT, we have also compared our

result with another state-of-the-art method: a non-linear remapping method

[124]. The idea of this method is remapping the ZA/2LPT density to match

the smoothed N -body density (N -body density smoothed by ZA/2LPT trans-

fer function) probability density function, and then applying a reciprocal of the

transfer function of the remapping field to arrive at the final estimation of the

N -body simulation. All the computations for the one-point remapping method

are done after binning the density fields with a Cloud in Cell (CiC) method with

mesh size 4 Mpc/h. The transfer function and the remapping function are learned

from 8000 simulations – the same simulations used for training of D3M. And the

remapping method is tested on 1000 simulations – the same simulations used for

testing of D3M. In Fig. 2.8, we use the power spectrum to compare our result

and the remapping method. And it shows our result outperforms the remap-

ping method in both transfer function and correlation coefficient. In addition,

our method allows the prediction of displacement for each particle, so we predict

final positions of all the particles.

2.10 Test Time Comparison

For the D3M model, It takes 20s to generate 1000 simulations with a single gpu

(Tesla V100-SXM2). And for FastPM, it takes 115s to generate 1000 simulations

on a single Edison Haswell node, with 24 cores. The FastPM code is also fully

optimized. This suggests the Deep Learning model is faster than the fast N-Body

estimator.
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Figure 2.8: From top to bottom: (top) density power-spectrum of FastPM (or-
ange), 2LPT (blue), D3M (green) and ZARM/2LPTRM (red); (middle) transfer
function – i.e., the square root of the ratio of the predicted power-spectrum and
the ground truth; (bottom) 1-r2 where r is the correlation coefficient between the
predicted fields and the true fields. Results are the average values of 1000 test
simulations. It shows D3M result outperforms the remapping method in both
transfer function and correlation coefficient.
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Chapter 3

Beyond the D3M Model

In the last chapter, we have shown D3M model to perform well in predicting

the non-linear structure formation. However, there are limitations to the D3M

model. Firstly, the deep model is opaque – we don’t know what does the black box

learns. Secondly, the D3M model is one kind of convolutional neural networks,

which can only deal with the regular data format, such as images or 3D voxels.

In this chapter, we strive to address these two challenges.

3.1 Interrogation of the D3M model with physics

analysis

The deep learning model is usually known as a black box. Specifically, in our

problem, we don’t know if the model is learning the right representations that

are aligned with physics. However, the good part of the physics data is that it

is interpretable, and we could use our knowledge to interrogate the model. In

this section, we strive to probe the behavior of the trained D3M with our known

knowledge. The purpose of these tests is to gain some insights that our D3M

model is learning the underlying representations that are aligned with physics.
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3.1 Interrogation of the D3M model with physics analysis

Firstly, we put the deep learning model under specific scenarios that are phys-

ically motivated and benchmark the model performance by comparing model pre-

diction against the correct output data (from FastPM solutions). We consider

three physically motivated scenarios and one machine learning motivated sce-

nario: zero residual test, Zel’dovich Pancakes, and two-mode coupling test. We

input the trained model with test data that is drawn from a very different dis-

tribution than the training data, and the test data is analytically interpretable.

Secondly, we apply a popular machine learning visualization method to under-

stand where does the most critical information comes from.

3.1.1 Zero Residual Test

We first check the residual output of the trained D3M model by feeding the model

with all zeros as the input displacement field. In doing so, we test if the D3M

model learns the physical symmetries of homogeneity and isotropy inherented

in the training simulations. Given the uniform zero initial condition, we expect

D3M prediction to be homogeneous, isotropic, and close to zero in preserving the

symmetries. Fig. 3.1 shows the output displacement field of the model Ψi with

i = {x, y, z} averaged along the i-th axis. Periodic patterns show up as results of

the 3×3×3 filters of the up-sampling steps in the expansive path. There are very

small biases in x, y, and z directions: 0.07±0.007, −0.03±0.014 and 0.09±0.009,

respectively. Arising from the noise in the trained neural network, these biases

are negligible compared to either the standard deviation of displacement in the

simulation (7.7 Mpc/h) or the pixel size (4 Mpc/h), and thus have minimal impact

on the tests below. Overall, the residual test agrees with our expectation.
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Figure 3.1: Residual Test. We feed the trained D3M model with all zeros in the input
displacement fields. Periodic patterns show up in the D3M model prediction due to
the 3×3×3 filters. There is also a small bias in the x,y,z directions which might come
from the noise of the D3M model. But the D3M model prediction is close to 0 and
preserves homogeneity and isotropy with great significance as expected.

3.1.2 Pancake Test

The training data have the same cosmological parameters with different random

seeds, which means the power spectrum of training data is identical. From the

perspective of Fourier space, the training data is a combination of the information

from all scales. As a simple analysis, we want to check if the D3M model is

predicting well for information on a single scale, though the pattern of a single

scale is not given in the training phase. To achieve this, we decompose the input

into single modes (where the combination of all the orthogonal modes would form

the full power spectrum) and feed each single mode to the trained D3M model,

that is, to test if the deep learning model is grasping the evolution of a planar

perturbation. This test is well known in physics as Zel’dovich pancake test [125].

Mathematically, the input modes are of the following form

~Ψ(x̂) = Aik̂icos(~ki · ~x+ φ) (3.1)

47



3.1 Interrogation of the D3M model with physics analysis

where ~Ψ(x̂) is the 3D displacement field, Ai is the amplitude of the single mode

power which is of the same order of magnitude as the power spectrum at that

scale, k is the scale factor, and φ is the phase term. Ideally, we would expect

that if the D3M model is learning the correct representation that is aligned with

physics, it should predict precisely the evolution of a single mode.

Fig. 3.2 shows the result of pancake analysis. In all subplots, the red trian-

gle and the dashed line shows the scale and the amplitude of the single input

mode, which serves as one mode Zel’dovich approximation. The green crosses

and orange stars are the results of FastPM simulation and D3M model predic-

tion, respectively. The transfer function shows that the D3M model correctly

captures the scales of the FastPM modes but with a slight wrong estimation of

the amplitude of the modes. The D3M model predicts perfectly at the dominant

modes (where the input mode is) indicating that the D3M model can capture

information from different scales. The rest of the modes, whose amplitudes are

at least two orders smaller than the dominant mode, are indeed the numerical

artifacts of the FastPM (numerical noise from force resolution, cic window func-

tion, etc). But since FastPM simulations are the targets of the D3M model so

that it is expected that the D3M model captures the numerical artifacts of the

FastPM.

3.1.3 Two-Mode Coupling Test

Besides pancake test where a single mode is fed to the trained model, we also test

the trained model with two perpendicular fundamental modes as input. During

the evolution, the two waves will interact with each other and result in a coupling

mode on smaller scales. This is to test if the D3M model can also capture well

the interaction between modes.

The two input perpendicular plane waves we use have the same amplitude of
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3.1 Interrogation of the D3M model with physics analysis

wave number k = 2π/128 h/Mpc. Both of the modes are in linear regimes and

can be well solved by the Lagrangian theory. We also rotate the two plane waves

to test if the model could preserve the rotation symmetry.

Fig. 3.3 shows the result of two-mode coupling test, where the amplitude of

the displacement in the Fourier space is calculated. The grey rhombus, blue cross,

green plus, and orange dot show the initial input wave mode, FastPM prediction,

D3M prediction, and Lagrangian prediction respectively. The dominant mode is

the input and the mode with the second largest amplitude is the result of mode

coupling. The agreement among the D3M prediction and Lagrangian theory is

pretty good in the first two modes. The remaining noisy modes are the artifacts

of the FastPM simulations. The noisy modes predicted by D3M is also consistent

with that of FastPM – the amplitudes of D3M prediction are comparable to

that of the FastPM. By rotating the two input perpendicular modes, the D3M

model predicts correctly at the dominate and coupling mode, whereas the noisy

modes predicted vary slightly, which suggests the model has captured the rotation

symmetry.

3.1.4 Saliency Map

The saliency map is first proposed as a visualization method for the computer

vision classification task, and the purpose of the saliency map is to represent

saliency at every location by a scalar quantity, highlighting the areas of the given

image, discriminative with respect to the given class [126]. The idea is pretty

simple. It computes the gradient of output to the input image:

∂ output

∂ input
(3.2)
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3.1 Interrogation of the D3M model with physics analysis

And the result should tell us how output value changes with respect to a small

change in input image pixels.

We adopt the idea of the saliency map and define the saliency map for our

problem as

wi,j =

√∥∥∥∥
∂ΨD3M,i

∂ΨZA,j

∥∥∥∥
2

(3.3)

where i and j represents the i-th and j-th grids in the output and input respec-

tively. The derivatives are calculated over the whole input map. By calculating

the saliency map, we would know for each of the output grid, what are the areas

that contribute the most to correct ZA to the right non-linear structure repre-

sented by FastPM.

Fig. 3.4 shows 2D slices of the saliency maps, with the first row showing

the input ZA which is fed into the D3M model, the second row showing the

D3M prediction and the third row showing the saliency map. The blue arrow

points to where in the output map that the saliency map is calculated. Fig. 3.4

indicates most of the correcting effects for ZA come from local areas, which is

expected because ZA is correct on large scales, and the corrections for ZA should

mostly come from small scale local regions The first plot in Fig. 3.4 also shows

that the D3M model correctly captures the periodic boundary condition of the

simulations.

3.1.5 Conclusion

In this chapter, we have interrogated the D3M model with physics questions to

check if the model is learning some representations that are aligned with physics.

To achieve this, we do three physics analysis accordingly, which includes residual

test, pancake test, and two-mode coupling test and we have proved that the

D3M model has learned the physical symmetries of homogeneity and isotropy,
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3.1 Interrogation of the D3M model with physics analysis

the information of different scales, and the interaction between different modes,

respectively. Besides the physics checks, we have also applied the saliency map

method. The saliency map indicates that the most critical information to correct

the ZA for each particle comes from local regions.
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Figure 3.2: Pancake test. We decompose the input into single modes in Fourier
space and feed each mode (planar perturbation as shown in eq. 3.1) to the trained
D3M model. The red triangles show the power spectrum for the input mode while
the green crosses and orange stars show the power spectrum for FastPM and D3M
model predictions. The transfer function shows that the D3M model captures
quite well at the dominant scale of FastPM, which indicates the D3M model is
able to capture scale information. The D3M model also captures the other modes
of FastPM that are two orders smaller than the dominant mode and come from
the numerical artifact of FastPM simulations.
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Figure 3.3: Two-mode coupling check. We compare between FastPM, D3M, and
theory with 2 perpendicular fundamental modes as input. The agreement among
the D3M prediction, FastPM prediction and Lagrangian theory is pretty good on
the first two modes. The remaining noisy modes are the artifacts of the FastPM
simulations. And the D3M predictions are also consistent with FastPM on these
noisy modes.
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Figure 3.4: 2D slices of Saliency Map. The first row shows the input ZA which
is fed into the D3M model, the second row shows the D3M prediction, and the
third row shows the saliency map. The blue arrow points to where in the output
map that the saliency map is calculated. The saliency map indicates the most
crucial information to correct ZA for each particle comes from local regions. This
is expected because ZA is correct on large scales, and most of the non-linear
information should mostly come from small scale local regions. And the first
plot also shows that the D3M model correctly captures the periodic boundary
condition of the simulations.
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3.2 Multi-Scale Deep Sets to Learn Non-Linear

Evolution of the Universe

In the previous chapter, the D3M model, belonging to the big category of the

convolutional neural networks, is shown to be a powerful tool that can efficiently

learn complex functions. Typical convolutional neural networks require highly

regular data format, which can be represented as fixed dimensional image grids

or 3D voxels. However, many astronomical and cosmological data are represented

as point clouds – set of data points in space. For instance, dark matter and

galaxies are represented as a set of points in simulations. To apply convolutional

neural networks on these datasets, one needs to convert the point-cloud data to

voxel or mesh representation as a pre-processing step, resulting in smearing out

information smaller than the scale of the voxel or mesh size [127; 128]. Besides,

some point-cloud data are very sparse, making it hard for the convolutional neural

network to extract useful information [129]. So the direct application of deep

learning methods to point-cloud is highly desirable.

Recent progress in development of point-cloud models has made it possible

to directly work on the point-cloud data [67; 68; 130; 131]. In this chapter, we

design a multi-scale deep sets model – a point cloud model based on the deep

sets model [68], to predict the non-linear structure formation of the Universe, the

same task as in Chapter 2. Our objective is to show that the point-cloud model

is another efficient deep model that can be used in solving complex cosmological

problems with cosmological data represented as point clouds.

3.2.1 Related Work

The multi-scale deep sets model is built on top of deep sets [68]. Deep sets is a

pioneering work in dealing with sets as inputs. It is developed based on powerful
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permutation invariance and equivariance properties of sets, along with the theory

to support its performance.

The permutation invariance deep sets model transforms each instance xm into

some representations φ(xm). Then the representations are added up, and the

output is processed by another ρ network (ρ(
∑
φ(xm))), where ρ network can be

any operation in the deep network, such as the fully connected layer, non-linear

activation.

The requirement to preserve the permutation equivaraince in each layer fΘ((x)) =

δ(Θ(x)) is that the off-diagonal elements of Θ are tied together and all the diag-

onal elements are equal as well. Thus each layer of the permutation equivaraince

deep sets model can be briefly summarized by eq. 3.4

f(x) = σ(λIx + γmaxpool(x)1) (3.4)

where σ is the non-linear activation, λ and γ are learnable weights.

Extensive experiments across several domains have shown that deep sets

model has a strong generalization ability, and it outperforms other intuitive deep

networks, which are not backed by theory.

3.2.2 Data

The data we use is the same as in chapter 2 (see Setup in Chapter 2). The

only difference is that in chapter 2, the input and target data (ZA, FastPM

respectively) is represented as displacement field Ψ ∈ Rd×d×d×3. But for our

multi-scale deep set model, the data is represented as vectors x ∈ RN×C , where

N is the number of particles and C is the number of features for each particle.

More specifically, we have 10,000 pairs of ZA approximations as input and

accurate FastPM as the target. Each of the simulations has 323 N-body particles

56



3.2 Multi-Scale Deep Sets to Learn Non-Linear Evolution of the
Universe

in a volume of 128 Mpc/h. The input of our model are the positions and the

ZA displacements of the particles (input ∈ R323×6), and the target data are the

FastPM displacements (target data∈ R323×3).

3.2.3 Method

By direct applying the deep sets model, we are unable to achieve a decent predic-

tion comparable to the D3M model in Chapter 2. To achieve better performance,

we need a huge architecture because the deep sets model needs to learn the space

– it needs to learn the interaction between particles based on distances, which is

hard for the deep sets model especially with a large number of points.

However, we know that the interaction between particles depends on distance

– particles far away from a particle has less influence on that particle than the

particles near to that particle (scale as 1/r2 rule where r is the distance between

two particles). Thus we develop the multi-scale deep sets model to help the model

with more information on distances.

The basic idea multi-scale deep sets model is instead of calculating the mean-

pooling features across the whole points, we calculate the mean-pooing feature

for each point as a function of distance.

To achieve this, in each layer of the multi-scale deep sets model, we divide

the simulation box into k3 sub-boxes. Each particle is assigned a primary box.

At each resolution level we are going to expand this box with neighboring boxes

(e.g., 1 → 1+s → 1+2s → .. → k) where s is the step size. The features for each

box are mean-pooling over all particle-features in that box. We do this for boxes

at all resolution levels. The output feature for each point is calculated based on

its input features, the features of the primary box and features for all boxes in

which the primary box appears at the center.

However, implementation can be done more efficiently using convolution: In
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order the calculate the features for each box at level h, we perform convolution

with a choice of filter size that decides our number of levels. The convolution

filters are fixed to identity to perform sum-pooling. Besides, we have an identity

channel per particle that allows for counting of particles per level. Note that

primary boxes will be double-counted at higher levels, but as long as we divide

the features by the value we get for the identity channel the normalization is fine.

The model can adjust the weights to account for double-count. In summary, we

apply several convolution layers so that the final layer can see exactly all the

input boxes. Then we calculate the output features for each particle by assigning

a weight to each level as well as the features of the input particle.

3.2.4 Result

We use the same 2-Point Correlation statistics as in Chapter 2 (See 2-Point

Correlation Comparison in Chapter 2) to evaluate our result. Fig. 3.5 shows

the average power spectrum, transfer function T(k) and stochasticity 1 − r2 of

the displacement field and the density field over 1000 simulations. For the Multi-

Scale deep sets model, both the density and displacement transfer functions differ

from 1 by a 1% at scale k ∼ 0.2 h/Mpc, and this discrepancy increases to 14%

and 5% for density field and displacement field respectively, as k increases to the

Nyquist frequency around 0.7 h/Mpc. The stochasticity hovers between 104 and

102 for most scales. But for the displacement field, the stochasticity goes up to

10−1 at scale k > 0.62 h/Mpc. The performance of the multi-scale point cloud

model is consistently better than the benchmark 2LPT. Though the multi-scale

point cloud model is worse than the D3M model, it is not surprising, because the

problem is harder for the multi-scale point cloud model since it needs to learn the

space information but for the D3M model, while the same information is given

as known information.
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Figure 3.5: From top to bottom: (top) displacement and density power-spectrum
of FastPM (orange), 2LPT (blue), and multi-Scale deep sets (green); (middle)
transfer function – i.e., the square root of the ratio of the predicted power-
spectrum to the ground truth; (bottom) 1-r2 where r is the correlation coefficient
between the predicted fields and the true fields. Results are the averaged values
of 1000 test simulations. The results have shown that the multi-scale deep sets
model outperforms the 2LPT.

3.2.5 Conclusion

In this chapter, we have developed a multi-scale deep sets model to learn the non-

linear structure formation of the Universe. We have used the two-point statistics

to evaluate our results. While the multi-scale deep sets model outperforms the

benchmark 2LPT at all scales, its performance is worse than the D3M model.

This is within expectation because the multi-scale deep sets model needs to learn

the extra space information from the positions of the particles, which is not

trivial work. However, given the pretty good performance the multi-scale deep

sets model achieves, we believe that the multi-scale deep sets model can be applied

to other cosmological problems where standard convolution neural network is not

feasible.
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Chapter 4

The detection of the imprint of

filaments on Cosmic Microwave

Background (CMB) lensing

4.1 Introduction

Galaxy redshift surveys, such as 2dF [4], SDSS [5], 6df [6], GAMA [7] and

VIPERS [8], have shown that the spatial distribution of matter forms a rich web,

known as the cosmic web [2]. The majority of galaxy survey analyses measure

the amplitude of galaxy clustering as a function of scale, ignoring information

beyond a small number of summary statistics. Since the matter density field

becomes highly non-Gaussian as structure evolves under gravity, we expect other

statistical descriptions of the field to provide us with additional information. One

way to study the non-Gaussianity is to study filaments, which evolve non-linearly

from the initial density fluctuations produced in the primordial Universe. In our

study, we report the first detection of CMB (Cosmic Microwave Background)

lensing by filaments and we apply a null test to confirm our detection. Further-
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more, we propose a phenomenological model to interpret the detected signal and

we measure how filaments trace the matter distribution on large scales through

filament bias, which we measure to be around 1.5. Our study provides a new

scope to understand the environmental dependence of galaxy formation. In the

future, the joint analysis of lensing and Sunyaev-Zel’dovich observations might

reveal the properties of “missing baryons”, the vast majority of the gas which

resides in the intergalactic medium and has so far evaded most observations.

4.2 Main Result

The cross-correlations of CMB lensing with tracers of large-scale structure have

been widely studied[132; 133; 134; 135; 136; 137; 138; 139; 140; 141; 142]. In our

study, we detect the imprint of filaments on CMB lensing by cross-correlating

filaments with the CMB lensing convergence (κ) map. We use the filament inten-

sity map, which is derived from the Cosmic Web Reconstruction filament cata-

logue [143] (Public in https://sites.google.com/site/yenchicr/catalogue)

from the Sloan Digital Sky Survey (SDSS) [5] Baryon Oscillations Spectroscopic

Survey (BOSS) [113] Data Release 12 (DR 12) [144]. The filament finder (See

Filament Finder in the Method section) partitions the universe from z = 0.005

to z = 0.700 into slices with ∆z = 0.005. In our study, we use the filaments from

z = 0.450 to z =0.700, which are detected from CMASS galaxy survey (a galaxy

sample from SDSS which targets high redshift). Filaments are found in each

redshift bin as the density ridge of the smoothed galaxy density field [145] and

the filament uncertainty, which describes the uncertainty of filament position, is

also calculated (see Uncertainty of Filaments in Method section). The filament
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intensity, illustrated in Fig. 4.4, is defined as

I(n̂, z) =
1√

2πρf (n̂, z)2
exp

(
−‖n̂− Π̂f (n̂, z)‖2

2ρf (n̂, z)2

)
(4.1)

where n̂ is the angular position, Π̂f (n̂, z) is the angular position of the closest

point to n̂ on the nearest filament and ρf (n̂, z) is the uncertainty of the filament

at the projected position Π̂f (n̂, z). Using the intensity map at each redshift bin,

we construct the filament intensity overdensity map via

δf (n̂) =

∫
I(n̂, z)dz − Ī

Ī
, Ī =

∫
I(n̂, z) dΩn̂dz∫

dΩn̂

(4.2)

In this work we use the CMB lensing convergence map (Public in ) from the

Planck [146] satellite experiment. The Planck mission has reconstructed the

lensing potential of the CMB from a foreground-cleaned map synthesized from

the Planck 2015 full-mission frequency maps using the SMICA code [147]. The

lensing convergence κ is defined in terms of the lensing potential φ as

κ(n̂) =
1

2
∇2
n̂φ(n̂) (4.3)

We measure the cross angular power spectrum of CMB lensing convergence and

filaments Cκf
l using standard techniques (See Estimator in Method section). We

compute the error for each power spectrum by jackknife resampling the ob-

served area into 77 equally weighted regions (see Supplementary Information

and Fig. 4.5) that comprise the CMASS galaxy survey from where the filaments

are detected.

We construct a phenomenological model to describe the cross-correlation of

filaments and the CMB lensing convergence field. Instead of modeling the filament
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profile on small scales[148; 149; 150], our model studies how filaments trace matter

distribution on large scales through the use of the filament bias. We assume a

ΛCDM cosmology with Planck parameters from the 2013 release [151], where

Ωm = 0.315, h = 0.673, σ8 = 0.829, ns = 0.9603. In a spatially flat Friedmann-

Robertson-Walker universe described by general relativity, the convergence field

is

κ(n̂) = 4πGN ρ̄0

∫ χCMB

0

χ(χCMB − χ)

χCMB

(1 + z)δm(χ, n̂)dχ (4.4)

where χ is the comoving radial distance, z is the redshift observed at radial dis-

tance, GN is Newton’s gravitational constant, ρ̄0 is the present-day mean density

of the universe, and χCMB is the comoving distance to the CMB. On linear scale,

we assume that filaments trace the matter as δf = bfδm, where bf is defined as

the large-scale filament bias.

On large scale, we expect the filament overdensity δf to be related to the

matter fluctuations through a linear filament bias bf :

δf (n̂) =

∫
bff(z)δm(n̂, z)dz (4.5)

where f(z) is the mean filament intensity redshift distribution defined as

f(z) =
F (z)∫
F (z)dz

, F (z) =
1

∆z

∫
I(n̂, z)dΩn̂ (4.6)

where I(n̂, z) is the filament intensity defined in eq. (4.1) and ∆z is the width

of redshift slice. In cross-correlation, on scales smaller than the typical filament

length, using filaments introduces additional smoothing compared to the true

matter density. We model the smoothing as follows: the filaments have typi-

cal length and we lose all small-scale information about fluctuations along the

filament; therefore, we take the corresponding filament power spectrum to be
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exponentially suppressed below the filament scale k‖ ∼ 1/(filament length) in

Fourier space. Similarly, any matter in between filaments is either assigned to a

filament or eliminated from the catalog (in underdense regions) . For this reason

we also introduce a suppression in power in the direction perpendicular to the

filaments, with suppression scale k⊥. We use two ways to model k⊥. The detailed

models are shown later in the paper. Using the Limber approximation [152] and

the smoothing scale for small scales, the filament-convergence cross-correlation

can be written as

Cκf
l =

3H2
0 Ωm,0

2c2

∫ z2

z1

dzW (z)f(z)χ−2(z)(1 + z)Pmf

(
l

χ(z)
, z

)
(4.7)

where W (z) = χ(z)(1− χ(z)
χCMB

) is the CMB lensing kernel, and Pmf is modeled as

Pmf (k, z) =
1

2π

∫
dφ bfPmm(k, z)e−(k cos(φ)/k⊥(z))2−(k sin(φ)/k‖(z))2 (4.8)

where Pmm is the matter power spectrum. We use CAMB (Code for Anisotropies

in the Microwave Background) (http://www.camb.info/) to evaluate the the-

oretical matter power spectrum Pmm. The measurement of filament length is

shown in Fig. 1. The mean and median length of the filaments increases as a

function of redshift due to the combination of two factors. Firstly, the length

of filaments, acting as the mass bridges between galaxy clusters, will decrease.

Secondly, the number of filaments detected also depends on the number density

of galaxies, which, in the CMASS sample, is low and decreases as a function

of redshift (See Fig. 4.6). The large difference in the mean and median values

of filament length indicates that the distribution of the filament length in each

redshift bin is not Gaussian. We plot in the background the 2D histogram of

filament length distribution as a function of redshift and filament length.

To check the validity of our model, we also compare the results to simula-
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tions. The excellent agreement that we find in simulations provides an important

consistency check. The theoretical prediction for Cκf
l is shown in eq. (4.7). The

matter-filament correlation Cmf
l is defined as

Cmf
l =

∫ z2

z1

dz
H(z)

c
f(z)χ−2(z)Pmf

(
l

χ(z)
, z

)
(4.9)

By taking the parameters that are slowly varying compared to f 2(z), we get

Cκf
l =

3H2
0 Ωm,0W (z)(1 + z)

2cH(z)
Cmf
l (4.10)

For the filament catalogue, the effective redshift, defined as the weighted mean

redshift of filament intensity, is 0.56. This approximation is not perfect, leading

to a systematic bias in the prediction for Cκf
l . We propose an estimator for this

systematic bias in Supplementary Information [139]. As shown in Fig. 4.7, the

systematic bias is less than 5%. Thus, the approximation only causes a negligible

bias. In our analysis, we measure Cmf
l using 10 realizations of sky mocks of dark

matter and corresponding filaments (See sky mocks for dark matter and filament

in Method section).

Fig. 2a shows the cross angular power spectrum of filaments and the CMB

lensing convergence field. We bin our sample into 16 ` bins. Comparing simula-

tion with data, we get χ2/d.o.f. = 2.38 with all 16 data points and χ2/d.o.f. =

1.16 without the first data point. The deviation of the first data point from the

prediction is likely due to cosmic variance given the small sky area (fsky = 0.065)

covered by the simulations.

We fit the model of eq. 4.7 to the data with the filament bias bf as the fitting

parameter. We use two different smoothing methods to find k⊥. The first method

is to define the perpendicular smoothing scale as the filament spacing, since any

scale smaller than the filament spacing is smoothed out. The filament spacing is
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approximately the filament length. Thus, filament length is the overall smoothing

scale for the effective power spectrum in eq. (4.8). The result is shown by the red

line in Fig. 2. The best χ2 fit gives bf = 1.68 ± 0.334. Since filaments also have

width, filament spacing may be an overestimate of the smoothing perpendicular

to filaments. In the second model, we also fit for smoothing scale in the perpen-

dicular direction as a free parameter, where we assume 1/k⊥(z) ∼ α × 1/k‖(z).

We get α = 0.65 and bf = 1.47± 0.28. The result is shown as the orange line in

Fig. 2.

We measure the significance of the cross-correlation detection by measuring

the signal-to-noise ratio (SNR). Our SNR is defined as follows

S/N =
√
χ2
NULL − χ2

fit (4.11)

where

χ2
NULL =

∑

ij

dTi
(
C−1
ij

)
dj (4.12)

χ2
fit =

∑

ij

(di − ti)T
(
C−1
ij

)
(di − ti) (4.13)

where di is the cross angular signal in bin i, ti is the best-fit theoretical prediction

for the cross signal in bin i, and C is the covariance matrix estimated from

jackknife resampling. The final result is shown in Table 4.1. The SNR values

for both models show a significant detection of the cross-correlation. On large

scales, we find that the filaments trace the matter with the filament bias around

1.5, which is somewhat smaller than galaxy bias from the same sample.

In order to validate the detection of our cross power spectrum, we perform a

null test as follows. We rotate the CMB lensing convergence map by 90◦, 135◦

and 180
◦
, and then we cross correlate these rotated CMB convergence maps with
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the filament intensity map. Fig. 2b shows that the cross signal with the rotated

maps fluctuates around 0. χ2
NULL/d.o.f. for the three cross angular power spectra

is 0.79, 0.75 and 1.04, which means the cross-correlation between rotated CMB

maps and the filament intensity map is consistent with 0. In addition, in order to

test the impact of lensing generated by the clusters at the intersection of filaments

on our signal, we mask out the redMaPPer clusters [153] in the CMB lensing map,

finding a less than 4% difference in the cross angular power spectrum.

We define the cross-correlation coefficient between the filament and galaxy

maps as ρ = Cfg
l /
√
Cff
l Cgg

l , where Cfg
l is the cross angular power spectrum

of filaments and galaxies, Cff
l and Cgg

l are the auto angular power spectrum of

filaments and galaxies. The result is shown in the left panel of Fig. 3a. The

signal is highly correlated on large scales, since both galaxies and filaments trace

the large-scale structure of the matter. However, the correlation decreases on

small scales. Fig. 3b shows the cross-correlation of Cκf
l and Cκg

l , where Cκg
l

is the angular cross power spectrum of the CMB lensing convergence map and

the CMASS galaxy catalogue. These two figures show that the maps are not

totally correlated with large deviations at small scales. Establishing the amount

of extra cosmological information present in the filaments field would require a

joint analysis with galaxy clustering and lensing measurements; this is left to

future work.

In our work, we have detected the effect of filaments lensing on the CMB by

correlating filaments intensity map with CMB lensing convergence map. We mea-

sured filament bias, which is a quantitative description of how filaments trace the

underlying matter, to be around 1.5. We perform null tests by rotating the CMB

lensing map by more than its correlation length, obtaining results consistent with

the null hypothesis. By comparing filaments with galaxies (both at the map and

power spectrum level), we show an imperfect correlation, suggesting that there
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might be additional information in the structure of the cosmic web, of which fil-

aments provide an essential ingredient. In our study, the filament bias measured

is significantly different from the mean bias of the CMASS galaxies used to cre-

ate the filament catalog. This has important consequences for the environmental

dependence of galaxy formation and can be key in generating accurate mocks for

the next generations of surveys. In addition, the gas in filaments has been re-

cently detected through the thermal Sunyaev-Zel’dovich (tSZ) effect derived from

Planck maps [154] by measuring the gas pressure. A joint analysis of the mass

profile and gas pressure can shed light on the majority of the gas in the inter-

galactic medium that resides outside of halos and hasn’t been characterized so far.
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Figure 4.1: The filament length as a function of redshift. The orange (red) crosses
are the mean (median) of the filament length in each redshift bin, where the error
bars come from the standard error of the mean (median). The large difference in
the mean and the median values implies the filament length distribution is not
Gaussian. The background mesh plot shows the 2d histogram of the number of
filament length as a function of the redshift and the filament length.
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Figure 4.2: Cross angular power spectrum. (a) shows the cross angular power
spectrum of the filaments and the CMB convergence field. The blue crosses are
measured with error bars from jackknife resampling of the sky into 77 equally
weighted regions. The red and orange dashed lines are theoretical predictions
based on different smoothing models (red: filament length and spacing smoothing,
orange: filament length and statistical fit for perpendicular smoothing). The
corresponding filament bias for the two models are 1.68 and 1.47. The green
circles are from simulations. (b) a null test showing the cross angular power
spectrum of the filament catalogue and the rotated CMB lensing convergence
map. The cross signals fluctuate around 0. The χ2

NULL/d.o.f. for the three
scenarios are all ∼ 1.
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Figure 4.3: (a) The correlation coefficient of galaxy map and filament map and
b the correlation of Cκf

l and Cκg
l . Both plots show the filament and galaxy maps

are not totally correlated with large deviations on small scales.

model 1 model 2

bf 1.68±0.334 1.47±0.28
S/N 5.0 5.2
χ2
fit 25.77 24.39

d.o.f. 15 14

Table 4.1: The final result for the bias fitting. Model 1 uses filament length as
the overall smoothing scale. In model 2, the filament length is the smoothing
along filaments; we fit α for the smoothing in the perpendicular direction, where
1/k⊥(z) ∼ α × 1/k‖(z). We get α to be 0.65 as the best fit. The bias and the
error of bias come from χ2 fitting of theory model to data.

4.3 Method

4.3.1 Filament finder

We obtain filaments from the publicly available Cosmic Web Reconstruction fila-

ment catalogue [143]. It finds filaments by applying the ridges finding algorithm
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(filament detector) [145] to the galaxies in SDSS DR 12, ranging from z = 0.050 to

z = 0.700. The spectroscopic galaxies are used since they give a reliable redshift

estimate. Specifically, the catalogue is constructed using the following steps:

1. Partition the galaxies in redshift z = 0.050 − 0.700 into 130 redshift bins

such that the bin width is ∆z = 0.005. Galaxies within the same bin are

projected onto a 2D space.

2. For each bin:

(a) Reconstruct the (2D) galaxy probability density field by applying a

kernel density estimator (KDE) with smoothing bandwidth chosen by

the reference rule in [145].

(b) Compute the root mean square (RMS) of the density field (ρRMS)

within the area 150 deg < RA < 200 deg and 5 deg < DEC < 30

deg.

(c) Remove galaxies in the regions where the probability density field is

below a threshold density.

(d) Apply the ridges finding algorithm [145] to the remaining galaxies.

(e) Apply the galaxy mask to remove filaments outside the region of ob-

servations.

Here are some remarks on the construction of the catalogue.

• The 2D projection. The universe is sliced and galaxies are projected onto

2D space for several reasons. First, this enhances the stability of the fila-

ment detector. Second, this avoids the finger of god effect problem. Third,

it’s easy to compare filaments across different redshifts. More detailed dis-

cussion can be found in [143].
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• Choice of ∆z. The choice of ∆z = 0.005 is to balance the estimation

bias and the estimation random error. This is related to the so-called bias-

variance tradeoff in statistics [155]. If ∆z is very small, there will be a very

limited number of galaxies, so the filament detector will be unstable. On

the other hand, if ∆z is large, the bin contains a very wide range of the

universe so the filamentary structures may be washed away when projected

onto 2D angular space. ∆z = 0.005 is an empirical rule we discovered when

applying to the SDSS data.

• Area selection for calculating ρRMS. The specific angular space ([150, 200]×
[5, 30] deg2) is selected to compute the RMS of the density field. The region

is chosen because it is a wide region which is almost completely observed in

SDSS samples. The range is large enough so the RMS calculation is stable.

• Thresholding. Before applying the ridges finding algorithm, galaxies are

removed in the low density area. This thresholding stabilizes the ridges find-

ing algorithm because the algorithm is very sensitive to density fluctuations

in low density area.

The filament catalogue is shown to have strong agreement with the redMaPPer

Catalogue, since most clusters in the redMaPPer Catalogue lie at the intersec-

tion of the filaments in the Cosmic Web Reconstruction filament catalogue, which

is predicted by theory. The filament catalogue also has good consistency with

the Voronoi model [145]. Furthermore, the effects of filaments on nearby galaxy

properties (stellar mass, brightness, age, and orientation) are studied and it shows

there is strong correlation of galaxy properties with filament environment, which

satisfies theory prediction [156].

Uncertainty of filaments. The uncertainty of filaments is computed using the
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bootstrap method [145; 157]. The filament detector returns a collection of points

on filaments, which we call as filament points. For a given redshift bin, denote

F1, · · · , FN as filament points. The uncertainty of filament points is computed as

follows.

1. All galaxies (in one bin) are re-sampled with replacement to generate a new

set of galaxies with the same total number of galaxies. This new set of

galaxies is called a bootstrap sample.

2. Apply the same filament finding algorithm to the galaxies in the bootstrap

sample. This yields a new set of filaments, which are called as the bootstrap

filaments.

3. The distance of the filament point to the nearest filament point in the boot-

strap filaments is calculated. Denote ε1, · · · , εN as the distance for each fil-

ament point. This distance serves as an error measurement for F1, · · · , FN .

4. Repeat the above 3 steps 1000 times (1000 : the number of bootstrap repli-

cates). For each filament point, there will be 1000 error measurements. For

instance, the `-th filament point has 1000 error values:

ε
(1)
` , · · · , ε(1000)

` .

5. Compute the error (uncertainty) of each filament point by the RMS of the

1000 error measurements. Namely, for the `-th filament point, the error is

E` =

√√√√ 1

1000

1000∑

j=1

(
ε

(j)
`

)2

.

The bootstrap procedure measures the uncertainty due to the randomness of

sampling [157].
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4.3.2 Filament length measurement.

We get the filament intersections from Chen et al (Public in https://sites.google.com/site/yenchicr/catalogue)

[143]. For each redshift bin, we use the hierarchical clustering method [145] to

determine the number of branches at each intersection. The parameters in the

hierarchical clustering are chosen to be the same as [145]:

rin =
2ω

3
, rout = 2rin, rsep = (rin + rout)/2. (4.14)

where ω = ω(z) is the smoothing bandwidth. At each intersection, we find the

nearest point to the intersection point from each branch, and we group the near-

est point as the filament point belonging to that filament (See Fig. 4.8). Then

we keep finding the nearest point to the newly grouped filament to find the next

filament point belonging to that branch. We stop the loop if the distance between

filament points is less than rsep and the distance between a filament point and

the other intersection point is larger than rsep/2.

4.3.3 Estimator.

We construct the filament map using the HEALPix pixelization with Nside=512.

The CMB lensing convergence map is given directly by PLANCK using the

HEALPix pixelization with Nside= 2048. We downgrade the lensing convergence

map resolution to Nside=512 to cross-correlate with the filament map. The choice

of resolution is consistent with the smoothing applied by the filament finder and
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is large enough to fully resolve the scales relevant to our cross correlation.

We measure the cross angular power spectrum for the filament catalogue and

the CMB lensing convergence field using a pseudo-Cl estimator:

Ĉκf
l =

1

(2l + 1)fκfsky

l∑

m=−l

(δf )lmκ
∗
lm (4.15)

where fκfsky is the sky fraction observed by both the filament catalogue and the

CMB lensing convergence field, κlm is the spherical harmonic transform of the

lensing convergence field, and (δf )lm is the spherical harmonic transform of the

filament intensity overdensity. The spherical harmonic transform and Cl are com-

puted using HEALPY.

4.3.4 Sky mock for filaments and dark matter.

We use N -body simulation runs using the TreePM method [158; 159; 160]. We use

10 realizations of this simulation based on the ΛCDM model with Ωm = 0.292 and

h = 0.69. Although the parameters of the simulations are slightly different from

the Planck cosmological parameters, if we compare the matter power spectrum

with the cosmological parameters from the simulations and Planck, the difference

is within 2%. Given the current noise in the data, we believe that this small

difference is sub-dominant in our paper. These simulations are in a periodic box

of side length 1380h−1Mpc and 20483 particles. A friend-of-friend halo catalogue

is constructed at an effective redshift of z = 0.55. This is appropriate for our

measurement since the galaxy sample used has effective redshift of 0.57. We use a

Halo Occupation Distribution (HOD) [161; 162; 163; 164; 165; 166] to relate the

observed clustering of galaxies with halos measured in the N -body simulation.
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We have used the HOD model proposed in [167] to populate the halo catalogue

with galaxies.

〈Ncen〉(M) = 1
2

[
1 + erf

(
logM−logMmin

σlogM

)]

〈Nsat〉(M) = 〈Ncen〉M
(

M
Msat

)α
exp

(−Mcut

M

)
(4.16)

where 〈Ncen〉(M) is the average number of central galaxies for a given halo mass

M and 〈Nsat〉(M) is the average number of satellite galaxies. We use the HOD

parameter set (Mmin = 9.319 × 1013M�/h,Msat = 6.729 × 1013M�/h, σlogM =

0.2, α = 1.1,Mcut = 4.749 × 1013M�/h) from [167]. We have populated central

galaxies at the center of our halo. The satellite galaxies are populated with radius

(distance from central galaxy) distributed out to r200 as per the NFW profile; the

direction is chosen randomly with a uniform distribution.

The sky mocks of dark matter and galaxy are obtained from the simulation

box using the method described in [168]. We use publicly available “MAKE

SURVEY” (https://github.com/mockFactory/make survey) code to transform a

periodic box into the pattern of survey. The first step of this transformation

involves a volume remapping of the periodic box to sky coordinates preserving

the structure in the simulation. This is achieved by using the publicly available

package called “BoxRemap” (http://mwhite.berkeley.edu/BoxRemap) [169]. The

BoxRemap defines an efficient volume-preserving, structure-preserving and one-

to-one map to transform a periodic cubic box to non-cubical geometry. The

non-cubical box is then translated and rotated to cover certain parts of the sky.

We then convert the cartesian coordinate to the observed coordinate, which is

right ascension, declination and redshift. We down-sample the galaxies with red-

shift to match the mock redshift with the redshift distribution observed in data.

We request the reader refer to [168] for more details. We then apply the filament
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detection algorithm to these simulated mocks using the method described in Fil-

ament Finder.
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4.4 Supplementary information

4.4.1 Jackknife regions

To select the jackknife regions, we divide the observed sky in rectangular jackknife

regions such that each region has same effective observed area by demanding equal

number of randoms. We also tried to make a choice to keep the regions as close

to square as possible so we dont introduce extra scales. We found that 11 × 7

(RA,DEC) jackknife regions satisfy all the constraints. We show an illustration

of jackknife regions in Supplementary Figure 2.

4.4.2 Error calculation for Cκf
l from simulation

Cκf
l and Cmf

l are derived as

Cκf
l =

3H2
0 Ωm,0

2c2

∫ z2

z1

dzW (z)f(z)χ−2(z)(1 + z)

×Pmf
(

l

χ(z)
, z

) (4.17)

Cmf
l =

∫ z2

z1

dz
H(z)

c
f(z)χ−2(z)Pmf

(
l

χ(z)
, z

)
(4.18)

By removing the appropriate functions from the integrands, which are slowly

varying compared to f(z), the correct expression between Cκf
l and Cmf

l is

Cκf
l =

3H2
0 Ωm,0W (z)(1 + z)

2cH(z)
Cmf
l

However, the approximations required to produce this expression are not perfect,

causing the estimation of Cκf
l from simulation to slightly deviate from the true

value of Cκf
l . We estimate the deviation Γ by relating the theoretical prediction
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for Cκf
l and Cmf

l by the following equation

Γ =
2cH(z)Cκf

l

3H2
0 Ωm,0W (z)(1 + z)Cmf

l

(4.19)

The result is shown in Fig. 4.4. We see that the Γ is less than 5% from unity,

which is much smaller than ∆(Cκf
l )/Cκf

l , where ∆(Cκf
l ) is the error for Cκf

l .

Thus, the approximation for converting Cmf
l to Cκf

l only causes a negligible bias.

a b

Figure 4.4: A demonstration of filament intensity overdensity and corresponding
dark matter particle overdensity in simulation at redshift 0.57. (a) filament
intensity overdensity at redshift 0.57. (b) dark matter overdensity at redshift
0.57. The color bars show the amplitude of the overdensity field in linear scale.
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Figure 4.5: Visualization of jackknife regions. The jackknife regions are chosen
so that each region has same effective observed area and is close to square.
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Figure 4.6: Filament intensity distribution and galaxy redshift distribution as a
function of redshift. The blue curve shows the filament intensity distribution as
a function of redshift. The green curve shows the CMASS galaxy redshift distri-
bution, defined as the normalized distribution of the number density of galaxies
as a function of redshift. The decrease of the filament intensity distribution re-
sults from the decrease of CMASS galaxy redshift distribution, from where the
filaments in each redshift slice are detected.
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Figure 4.7: Quantification of the deviation between Cκf
l estimated from sim-

ulation and from theoretical Cκf
l . Since the approximations to get Cκf

l from

simulations are not perfect, the Cκf
l from simulation will slightly deviate from

the true value of Cκf
l . Γ quantifies the deviation. In theory, We use two mod-

els for the smoothing introduced by filaments. In model1, filament length is the
overall smoothing scale. In model2, filament length is the smoothing scale along
the filament and we fit α for the smoothing in the perpendicular direction, where
1/k⊥(z) ∼ α × 1/k‖(z) and k is the wavenumber in Fourier space. As shown in

the plot, the deviation of Cκf
l between simulation and theory is less than 5% from

unity for both theoretical models.
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Figure 4.8: Example of filament grouped in redshift bin 0.55. A line with the
same color is considered as belonging to the same filament.
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Chapter 5

Conclusions

In this dissertation, we have addressed the non-linearity of the large scale struc-

ture from two new perspectives.

To understand the evolution of the Universe requires a concerted effort of

accurate observation of the sky and fast prediction of structures in the Universe.

N-body simulation is an effective approach to predicting structure formation of

the Universe, though computationally expensive to resolve the small scale cluster-

ing. In the dissertation, we build a deep neural network (D3M model) to predict

the structure formation of the Universe. It outperforms the traditional fast an-

alytical approximation (2LPT) in pair-wise, two-point and three-point statistics,

and accurately extrapolates beyond its training data (Ωm and As). Our study

suggests that deep learning is an accurate alternative to the traditional way of

generating approximate cosmological simulations. Our study is also the first to

use deep learning to generate complex 3D simulations in cosmology, which sug-

gests deep learning can provide a powerful alternative to traditional numerical

simulations in cosmology. In the future, we could use the deep learning model to

learn more complex simulations, such as the full N -body simulations and hydro-

dynamic simulations.

Though the deep learning method is shown to be powerful, one of the chal-
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lenges of the deep model is that it’s opaque – we don’t know what the model

learns. To address this challenge, we have used several simple analyses to interro-

gate the model. For the interrogations, the test data is drawn from a very different

distribution than the training data and is analytically interpretable. Within the

interrogations, the deep learning model is shown to have learned the underlying

representations aligned with our expectations. However, our tests are minimal

and in the future, more tests, such as the spherical collapse, should be applied to

test the robustness of the model further.

The D3M model falls into the big category of convolutional neural networks.

However, one of the limitations of convolutional neural networks is that it requires

the input data in a regular format, which is not suitable for data represented by

point set. For the point set data, which is quite common in cosmology, we need

the point cloud model. In this dissertation, we have presented the multi-scale

deep sets model to learn the non-linear structure formation. The multi-scale

deep sets model is shown to outperform the second order perturbation theory in

two-point statistics. In the future, we expect the multi-scale deep sets could be

useful for BAO reconstruction problems and other cosmology problems with data

represented by a sparse point set.

Finally, in this dissertation, we have studied the cross correlation between

filaments and CMB lensing convergence field to provide us additional information

of our Universe. We report the first detection of the filaments lensing CMB. We

propse a model to interpret the signal detected and we measure how filaments

trace the matter distribution on large scales through filament bias. Our study

provides a new scope to understand the environmental dependence of galaxy

formation. In the future, the joint analysis of lensing and Sunyaev-Zeldovich

observations might reveal the properties of missing baryons, the vast majority

of the gas which resides in the intergalactic medium and has so far evaded most
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observations.
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[9] M. Einasto, L. J. Liivamägi, E. Tempel, E. Saar, E. Tago, P. Einasto,

I. Enkvist, J. Einasto, V. J. Mart́ınez, P. Heinämäki, and P. Nurmi, “The
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