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Abstract

Large-scale structure surveys allow us to constrain cosmology through the growth of structure and the
expansion history. TogetherwithCosmicMicrowaveBackground (CMB)measurements from the early
Universe, the standard ΛCDM with general relativity has become a concordance model that explains
the origin and evolution of our Universe for over thirteen billion years. However, recent analyses reveal
hints of tension between the early and late time Universe observables. The tension could point to new
physics beyond ΛCDM, but could also be due to unknown systematic biases. Improving the precision
and accuracy of cosmological measurements could be the key to a revolutionary new discovery about
gravity on cosmological scales or about the nature dark energy. The challenges of cosmology in this
era is to broadly explore and control possible systematics that could limit science from on going Stage
III and future Stage IV surveys.

In this thesis, we investigate astrophysical systematics of intrinsic alignment (IA) and the baryonic
physics that would contaminate the weak lensing observables.

Intrinsic alignment of galaxies arise under the effect of their local gravitational field. This effect
mimics the shear correlation and introduces a systematic bias in the measured weak lensing signal.
We carried out IA analyses using ∼ 8000 redMaPPer clusters. There are two types of alignment within
the one-halo scale: the alignment of the central galaxy with respect to the host halo shape and the
radial alignment of satellite galaxies toward the halo center. For the central galaxy alignment, the
mean misalignment angle between the central and cluster major axes is measured to be ∼ 35◦ (random
alignments give 45◦). The satellite galaxy alignment is a more subtle effect. We concluded that no net
radial alignment signal is detected across the entire sample based on the re-Gaussianization shapes
(the most conservative measurements). We also studied the dependence of IA signal on a total of 17
cluster and galaxy related properties in a concordant framework to properly account for parameter
degeneracies. With several predictors identified for central and satellite alignments inside galaxy
clusters, our results suggest that small-scale IA is a complicated phenomenon potentially involving
multiple relevant physical processes during galaxy and cluster formation and evolution history.

The modification of the matter distribution due to baryonic physics is a non-negligible source
of uncertainty for precision cosmology. Using various sets of hydrodynamical simulations, we
investigated the effect of baryons on the matter power spectrum as functions of wavenumber frequency
and redshift. We developed methodology to model the effect of baryons on weak lensing cosmic shear
observables through the principal component analysis (PCA). We constructed mock cosmic shear
observables with contamination from different hydrodynamical scenarios, and then performed PCA
on the contaminated mock observable vectors. The resulting principal component (PC) modes are
then form a set of efficient bases to span uncertainties of baryons in the observable data vector space.
Overall, our results suggest that the effects of baryonic physics on cosmic shear power spectra can be
efficiently captured and mitigated using a few linear combinations of PC modes.

Small-scale information in galaxy surveys has substantial statistical power to improve cosmological
constraints, but conventional cosmological analyses discard this information to avoid biased inference
on parameters due to lack of good astrophysical models for it. The continued developments on
astrophysical modeling techniques in advance with better statistical quality of data will be essential in
the new era of precision cosmology.
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1 Introduction

Modern Cosmology

1.1 Modern Cosmology

The modern picture of cosmology is established from several milestones in the past century. After
the completion of General Relativity (GR), Einstein derived the first mathematical model for the
Universe from the field equations, based upon the cosmological principle stating that the Universe
is spatially homogeneous and isotropic. He introduced the cosmological constant Λ, which provides
repulsive gravity in opposition to the attractive matter gravity, in order to create a static Universe
solution pivoted on his believe at that time. In 1922, Friedmann constructed GR-based cosmological
models, now known as Friedmann equations, exploring both static and expanding solutions. In 1929,
Hubble discovered that the recession velocities of galaxies are linearly related to their distances,
providing a direct evidence on the expanding Universe. This tremendous discovery made Einstein
declared that the idea of cosmological constant is the biggest blunder of his life, and proposed the
Einstein–de Sitter Universe model with a vanishing cosmological constant (Einstein & de Sitter,
1932). The begin and continuous expansion of the Universe to the present day implies it must have
been driven by some tremendous event in the past. This Hot Big Bang Theory was proven through
the discovery of the cosmic microwave background (CMB; Penzias & Wilson 1965) in 1965. In the
mid-1970s, the concept of dark matter caught people’s attention in order to explain the motions of
satellite galaxies (rotation curve) in our Milky Way and for other nearby spiral galaxies (Ostriker
et al., 1974; Einasto et al., 1974). Actually, the origin on the idea of dark matter can be traced
back to 1933. Zwicky studied the velocity dispersion of galaxies in the Coma cluster and proposed
that ∼400 times more mass compared with the ordinary matter in stars and gas (Zwicky, 1933) is
necessary in order to hold this giant cluster together. In 1981, Alan Guth invented the theory of cosmic
inflation which elegantly explain the two major problems in the standard cosmology at that time: the
flatness (fine-tuning) problem and the homogeneity (horizon) problem. After that, the Einstein–de
Sitter universe became particularly popular in the 1980s, with its zero spatial curvature assumption
(Ωκ = 0, Ωm = 1, ΩΛ = 0) being supported not only observationally from data, but also theoretically
via inflation. From the distance-redshift relation of Type Ia Supernovae, in 1988, with the original
goal of measuring the deceleration parameter predicted from a matter-dominated universe model, two
independent research teams surprisingly find that the expansion rate of our Universe is accelerating
(Riess et al., 1998; Perlmutter et al., 1999), revolutionized our understanding of the Universe. The
concept of cosmological constant Λ was then taken back as a mysterious dark energy to drive the
cosmic acceleration. The flat Λ–Cold Dark Matter (ΛCDM) model has become a widely accepted
model in modern cosmology.

Since the 2000s, the field of cosmology entered the precision era with the launch of several
cosmological experiments. Various cosmological probes from the larger sample size of supernova,
higher resolution CMB data from the Wilkinson Microwave Anisotropy Probe (WMAP), baryon
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Chapter 1. Introduction 1.1. Modern Cosmology

�2

Testing ΛCDM — from CMB to late time Universe

evolution of 
structure growth

20 Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0

Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018) with the same set of cosmological
parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB lensing (Planck
Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2017) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵ = 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800+0.029
�0.028 and ⌦m = 0.162+0.086

�0.044. Our HSC first-year cos-
mic shear analysis places a 3.6% fractional constraint on S8,

which is comparable to the results of DES (Troxel et al. 2017)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780+0.030

�0.033 for
↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018). Figure 6 compares the values of S8(↵ = 0.5) and
their 1-� errors among recent cosmic shear studies. We find
that there is no significant difference between the S8 values ob-
tained by these independent studies. Our result for S8 is smaller
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Figure 1.1: The current tension in the determination of H0. The H0 constraints as a function of
publication date. The blue squires represent values of H0 determined in the nearby Universe with a
calibration based on the Cepheid distance scale. The red triangles show the derived values of H0 based
on CMB. The gray circle is a recent constraint from the H0LiCOW quasar time delay measurement.
According toWong et al. (2019), a combination of quasar time delay and the distance ladder constraints
is in 5.3σ tension with the Planck CMB determinations of H0 in flatΛCDM. [Figure credit: Freedman
2017.]

acoustic oscillation (BAO), galaxy clustering and weak lensing from the CFHT Legacy Survey and
the Sloan Digital Sky Survey (SDSS), and massive clusters in X-ray surveys, have shown concordance
results within the ΛCDM framework, and have been pushing cosmological constraints to higher
precision.

Despite the success of ΛCDM, the recent highest-resolution CMB measurements from the Planck
satellite (Planck Collaboration et al., 2014, 2016, 2018) has revealed a tendency of tension with
other low redshift cosmological probes. The largest deviation to date is the H0 constraints between
local estimates from Type Ia Supernovae and Planck CMB, revealing a ∼ 3σ tension, as shown in
Fig. 1.1. Moreover, if combining the latest quasar time delay measurement with the local distance
ladder constraints, the H0 tension is reaching to 5.3σ (Wong et al., 2019) between late and early
Universe.

Besides the tendency of tension in the expansion rate, there is also a mild (< 3σ) tension for
the amplitudes of matter fluctuation (usually quantified as S8 = σ8(Ωm/0.3)α, α ≈ 0.5) between
the Planck CMB and several on-going Stage III weak lensing cosmic shear constraints. As shown
in Fig. 1.2, although within 3σ error bar the constraint from each cosmic shear experiment is in
agreement with the Planck CMB, the S8 constraints from all of the cosmic shear experiments are all
appearing lower.

The potential tension between early and late-time Universe has arisen broad discussions and
debates among different collaboration teams in the field of cosmology. Dose this imply new physics
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Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018b) with the same set of
cosmological parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB
lensing (Planck Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear are known to be degenerate in the ⌦m-�8 plane. Cosmic
shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2018a) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵ = 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800+0.029
�0.028 and ⌦m = 0.162+0.086

�0.044. Our HSC first-year cos-
mic shear analysis places a 3.6% fractional constraint on S8,
which is comparable to the results of DES (Troxel et al. 2018a)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780+0.030

�0.033 for
↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018b) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018b).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018b). We also note that there are also some differences

Figure 1.2: Marginalized posterior distributions for Ωm, σ8, and S8 from several current Stage III
cosmic shear constraints, overplotted with CMB results from the Planck2015 and WMAP9. HSC Y1
result is from Hikage et al. (2019), DES Y1 from Troxel et al. (2018), KiDS450 real space correlation
function (CF) result from Hildebrandt et al. (2017), and KiDS450 Fourier space quadratic estimators
(QE) from Köhlinger et al. (2017). [Figure credit: Hikage et al. 2019.]

beyondΛCDMor purely be due to unrecognized systematic effects? So far, no general consensus could
be reached given the statistical errors of current cosmological measurements. The next generation
Stage IV cosmological experiments, e.g. CMB–S4 (Abazajian et al., 2016), LSST (The LSST Dark
Energy Science Collaboration et al., 2018), DESI (DESI Collaboration et al., 2016), WFIRST (Doré
et al., 2018), will lower the statistical uncertainty to sub-percent level, potentially deliver a factor of 2∼4
improvement in the dark energy figure of merit compared to the current Stage III surveys (Weinberg
et al., 2013). The science output will become limited by our confidence on modeling systematic
effects. Exploring the impact of systematics and developing mitigation strategics is becoming ever
more important in preparation for future data sets.

In this dissertation, I focus on investigating astrophysical systematic effects associated with weak
gravitational lensing, one of the primary cosmological probes to understand the effects of dark matter
and dark energy through the growth of structure and global geometry of the Universe.

1.2 Weak Gravitational Lensing

Gravitational lensing is a fundamental phenomenon predicted from Einstein’s theory of general
relativity. The gravity from massive objects distorts the curvature of spacetime and causes light
rays to bend and refocus at somewhere else, just as common glass lenses do. Gravitational lensing
thus can be viewed as a “natural” telescope for us to observe dark masses in the Universe through their
gravitational field as revealed from amount of light bending.

In the strong lensing regime, when light rays are distorted intensely to form multiple images, arcs,
or Einstein rings, we can infer the lens mass, identify the existence of subhalos, or even reconstruct
detailed mass map of the whole lens structure from the observed image. In the microlensing regime,
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from the short-term magnification in the light curve of a distant star, we are capable of detecting
the star’s associated exoplanets. In the weak lensing regime, though with only tiny effect on the
distortion of passing light rays, we can statistically extract the overall coherence of shape distortions
from an ensemble source galaxies (or from the CMB map) to infer the global matter distribution in
our Universe. Here I provide a brief overview on the theoretical framework of gravitational lensing
with a special focus on weak lensing cosmic shear, the coherent galaxy shape distortions caused by
large-scale structure of Universe. For a broader scope of gravitation lensing, we refer readers to
Dodelson (2017) for detail.

1.2.1 The deflection of particles in General Relativity

Consider a particle passing by a compact object with mass M . The change of space-time geometry
induced by M can be described by the perturbed metric gµν:

g00 = c2(1 −
2MG
rc2 )

gi j = −δi j(1 +
2MG
rc2 ) for i, j = [1, 2, 3] .

(1.1)

The geodesic equation that governs the motion of particles in coordinate xi is:

d2xi

dλ2 = −Γ
i
αβ

dxα

dλ
dxβ

dλ
, (1.2)

where Γiαβ is the Christoffel symbol related to the metric as:

Γ
i
αβ =

gi j

2

⌊
∂gjα

∂xβ
+
∂gjβ

∂xα
−
∂gαβ

∂x j

⌋
.1 (1.3)

The dxα
dλ is the four-momentum vector:

pα =
dxα

dλ
= (

E
c
, p) . (1.4)

Transforming the derivative to be with respect to time t, with some algebra ( dxi
dλ =

dt
dλ

dxi
dλ =

E
c

dxi
dt ),

we have:
d2xi

dt2 = −(
c
E
)2 Γiαβpαpβ

= −(
c
E
)2

⌊
Γ
i
00p0p0 + Γijkpjpk

⌋
.

(1.5)

Under the Newtonian limit, for a non-relativistic particle (Ec >> |p|), the first term in Eq. (1.5) would
be way dominant, so

d2xi

dt2 = −
GM xi

r3 . (1.6)

For a photon, (Ec = |p|), the first and the second terms of Eq. (1.5) have equal contributions, leading
to a factor of 2 difference. The deflection equation of light from a point mass is:

d2xi

dt2 = −2
GM xi

r3 . (1.7)

1Since gi jgjk = δik , we have g
i j = (gi j )

−1 here.
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Figure 1.3: Gravitational lens system. [Left] Light from a source at distance DS would be observed
at θ, under the effect of lensing. The source would appear at angle β if not being deflected. The
difference between the two angles is α. [Right] Angular vectors in the x–y plane perpendicular to the
line of sight. The lens equation describes the relationship of angular positions: β = θ − α. Under the
choice of our convention, the distances DL, DS and DSL = DS−DL are the comoving angular-diameter
distances from the observer to the lens, from the observer to the source, and from the lens to the source,
respectively.

More generally, we can extend the format of Eq. (1.7) to a more complicated mass configuration,
under the description of gravitational potential φ(x):

φ(x) = −G
∫

d3x ′
ρ(x′)

|x − x′ |
.

φ(r) = −
MG

r
(for point mass) .

(1.8)

The deflection of light under the effect of gravitational potential φ is:

d2xi

dt2 = −2
∂φ

∂xi
. (1.9)

1.2.2 The Lens Equation

The lens equation relates the true position of the source (β) to its observed position (θ) on the sky, as
demonstrated in Fig. 1.3 for a sketch of gravitational lens system. From simple geometry, we have:

β = θ − α(θ) , (1.10)

where α is the deflection angle. Below we will try to derive α, for a given mass distribution along the
line of sight (LOS).

Setting z-axis to be the LOS direction, as shown in Fig. 1.3, and assuming a small deflection angle,
we can use the z position to label the photon trajectory with its relation with time t via z = c(t0 − t),
with t0 being the time we observed the light particle at our position z = 0. After the change of variable,
Eq. (1.9) becomes:

d2xi(z)
dz2 = −

2
c2
∂φ(xi, z)
∂xi

for i = [1,2], and x3 = z . (1.11)
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To derive the cumulated shift in the transverse direction (xi(i = 1, 2)) of a photon during its travel
history from z = DS to z = 0, we perform integration twice on Eq. (1.9):

dxi(z′)
dz′

= Ci −
2
c2

∫ z′

0
dz
∂φ(xi, z)
∂xi

(first integration from z = 0 to z′) , (1.12)

where Ci is an integration constant. Integrate Eq. (1.12) to derive xi:

xi(z′)
����z′=DS

z′=0
= C ′ i −

2
c2

∫ DS

0
dz′

∫ z′

0
dz
∂φ(xi, z)
∂xi

(Second integration from z′ = 0 to DS) . (1.13)

HereC ′ i is another integration constant. The integrals on theRHScan be switched from
∫ DS

0 dz′
∫ z′

0 dz →∫ DS
0 dz

∫ DS
z

dz′. For the LHS, use the fact that the true position of xi at DS is DSβ
i. Finally we get:

DSβ
i = DSθ

i −
2
c2

∫ DS

0
dz (DS − z)

∂φ(xi, z)
∂xi

(1.14)

where C ′ i is set to be DSθ
i using the fact that if there is no gravitational effect along LOS (φ(xi, z) =

0), we expect β = θ. Matching Eq. (1.10) with Eq. (1.14), the 2D deflection angle α is:

αi =
2

c2DS

∫ DS

0
dz (DS − z)

∂φ(xi, z)
∂xi

→
2

c2DS

∫ DS

0
dz (DS − z)

∂φ(zθi, z)
∂xi

(Born Approximation) .
(1.15)

Ideally, we should evaluate φ(xi, z) at position xi(z) = zθ̃i(z), with θ̃i(z) being the actual fluctuated
angular position along the photon trajectory reflecting the matter fluctuations along the LOS. But with
the expectation of small perturbations on the deflection angle for most of cases, we can apply Born
approximation, i.e. θ̃i(z) ≈ θi, and integrate along the LOS defined by this constant angular position.
The deflection vector α(θ) is then purely a function of θ. Since the derivative with respect to ∂

∂xi
in

Eq. (1.15) can be written as 1
z
∂
∂θ i

, people also write α as:

αi(θ) =
1
c2
∂Φ(θ)

∂θi
, (1.16)

with Φ being defined as the projected gravitational potential:

Φ(θ) = 2
∫ DS

0
dDL

DSL

DSDL
φ(DLθ,DL; t = t0 − DL/c) . (1.17)

Here we change the variable z to be DL in Eq. (1.15), and DSL = DS − DL. Under the choice of
our convention, the distances DL, DS and DSL are the comoving angular-diameter distances from the
observer to the lens, from the observer to the source, and from the lens to the source, respectively.

1.2.3 Magnification (Convergence) and Distortion (Shear)

The lens equation (β = θ − α) describes a mapping from the source position (β) to the observed
image position (θ). In the case of an extend source, each photon from the source plane travels through
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Figure 1.4: The effects of convergence and shear on an initially circular background object (green).

slightly different light path, ending up with a deformed shape on the image plane. The transformation
can be characterized in a Jacobian matrix:

∂βi
∂θ j
=

(
1 − ∂αx

∂θx
−
∂αx

∂θy

−
∂αy

∂θx
1 − ∂αy

∂θy

)
= δi j −

∂αi
∂θ j
= δi j −

1
c2

∂2Φ

∂θi∂θ j
(using Eq. (1.16))

≡

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
= (1 − κ)

(
1 − g1 −g2

−g2 1 − g1

)
.

(1.18)

Here we relate the convergence κ and the shear components γ1, γ2 to the projected gravitational
potential Φ as:

κ ≡
1

2c2

(
∂2Φ

∂θ2
x

+
∂2Φ

∂θ2
y

)
γ1 ≡

1
2c2

(
∂2Φ

∂θ2
x

−
∂2Φ

∂θ2
y

)
γ2 ≡

1
c2

∂2Φ

∂θx∂θy

gi ≡
γi

1 − κ
→≈ γi (when κ << 1, in the weak lensing regime) .

(1.19)

The convergence leads to a change in the angular size of an object, while the shear causes a
distortion on the source shape, as demonstrated in Fig. 1.4. Observationally, since the intrinsic size of
a galaxy is unknown, the only quantity we can measure is the reduced shear, gi. In the weak lensing
regime, when |κ | << 1, we have |gi | ≈ γi.

Substituting the projected gravitational potential in Eq. (1.17) into the κ shown in Eq. (1.19), we
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obtain:

κ(θ) =
1

c2DS
∇2
θ

∫ DS

0
dDL

DSL

DL
φ(xi = DLθ

i,DL)(
∇2
θ = D2

L∇
2
x

)
→ κ(θ) =

1
c2

∫ DS

0
d

DSLDL

DS
∇2
xφ(x

i = DLθ
i,DL)(

∇2
xφ(x, t) = 4πGρm(t)a

2(t)δ(x, t) ; ρm(t) = ρm(t0)a
−3 = Ωm

3H2
0

8πG
a−3

)
→

κ(θ) =

∫ DS

0
dDL

[3H2
0

2c2
Ωm

a(DL)

DSLDL

DS

]
δ(DLθ,DL) .

(1.20)

From the final format of Eq. (1.20), κ reflected as a measure of the over-density field integrated along
the LOS with the weighting of some combination of distance ratios. People term this weighting factor
as lensing kernel:

q(DL,DS) =
3H2

0
2c2

Ωm

a(DL)

DSLDL

DS
. (1.21)

1.2.4 Two Point Statistics for Cosmic Shear

To extract the mass distribution of foreground LSS from the coherence of background galaxy shapes,
two types of two point statistics are usually used to quantify the level of coherence: the cosmic shear
power spectrum, or its real-space equivalent, the cosmic shear correlation function.

Cosmic Shear Power Spectrum

To construct the power spectrum, we take the Fourier transform of the shear components:

γ̃1,2(`) =

∫
d2θγ1,2(θ)e−i` ·θ ↔ γ1,2(θ) =

∫
d2`

(2π)2
γ̃1,2(`)ei` ·θ . (1.22)

Using the replacement ∂
∂θi
→ i`i in Eq. 1.19, in Fourier space we have:

κ̃(`) = −
`2

2c2 Φ̃(`)

γ̃1(`) = −
`2
x − `

2
y

2c2 Φ̃(`) = −
`2

2c2 Φ̃(`)[cos2(φ`) − sin2(φ`)] = −
`2

2c2 Φ̃(`) cos(2φ`)

γ̃2(`) = −
`x`y

c2 Φ̃(`) = −
`2

2c2 Φ̃(`)[2 sin(φ`) cos(φ`)] = −
`2

2c2 Φ̃(`) sin(2φ`) .

(1.23)

with the angle φ` being defined such that tan(φ`) = `y/`x .
It is convenient to rotate the Fourier-space components to a basis aligned with the direction of the

wave vector `. The rotated components are called the E-mode and B-mode:(
γ̃E (`)

γ̃B(`)

)
=

(
cos(2φ`) sin(2φ`)
− sin(2φ`) cos(2φ`)

) (
γ̃1(`)

γ̃2(`)

)
=

(
κ̃(`)

0

)
. (1.24)
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After rotation, the E-mode is equal to κ̃(`), and therefore carries the main information of lensing. The
B-mode should vanish, and therefore can be used to check for residual systematic errors.

To derive the full expression of κ̃(`), we take Fourier transform of Eq. (1.20) as defined in
Eq. (1.22):

κ̃(`) =

∫
d2θe−i` ·θ

∫ DS

0
dDLq(DL,DS)δ(DLθ,DL)(

δ(DLθ,DL) =

∫
d3k
(2π)3

eik·(DLθx,DLθy,DL)δ̃(k) =
∫

dkz
2π

eikzDL

∫
d2k⊥
(2π)2

eik⊥ ·DLθ δ̃(k⊥, kz)
)
→

κ̃(`) =

∫ DS

0
dDLq(DL,DS)

∫
dkz
2π

eikzDL

∫
d2k⊥

[ ∫ d2θ

(2π)2
e−i(`−DLk⊥)·θ

]
δ̃(k⊥, kz)( ∫

d2θ

(2π)2
e−i(`−DLk⊥)·θ = δ2

D(DLk⊥ − `) =
1

D2
L
δ2

D(k⊥ −
`

DL
)

)
→

κ̃(`) =

∫ DS

0
dDL

q(DL,DS)

D2
L

∫
dkz
2π

eikzDL δ̃(
`

DL
, kz)

(1.25)
The 2D cosmic shear (convergence) power spectrum is defined as:〈

γ̃E (`)γ̃E (`
′)
〉
=

〈
κ̃(`)κ̃(`′)

〉
= (2π)2δ2

D(` + `
′)Cκκ(`) , (1.26)

and can be equivalently derived starting from

Cκκ(`) =
∫

d2`′

(2π)2
〈
κ̃(`)κ̃(`′)

〉
=

∫
d2`′

(2π)2

∫ DS

0
dDL

q(DL,DS)

D2
L

∫
dkz
2π

eikzDL

∫ DS

0
dD′L

q(D′L,DS)

D′2L

∫ dk ′z
2π

eik
′
zD
′
L

〈
δ̃(

`

DL
, kz)δ̃(

`′

D′L
, k ′z)

〉
.

(1.27)
Based on the definition of 3D matter power spectrum:〈

δ̃(k)δ̃(k′)
〉
= (2π)3δ3

D(k + k′)P(k) (1.28)

we can replace the
〈
δ̃δ̃

〉
term in Eq. (1.27) as:〈

δ̃(
`

DL
, kz)δ̃(

`′

D′L
, k ′z)

〉
= (2π)3δD(kz + k ′z)δ

2
D(

`

DL
+
`′

D′L
)P(

`

DL
, kz)

= (2π)3δD(kz + k ′z)D
′2
L δ

2
D(`
′ +

D′L
DL

`)P(
`

DL
, kz) .

(1.29)

Putting it back to continue Eq. (1.27), and with
∫ dkz

2π eikz (DL−D
′
L) = δD(DL − D′L), we have:

Cκκ(`) =
∫ DS

0
dDL

q2(DL,DS)

D2
L

P(
`

DL
, kz ; a(DL)) . (1.30)

Finally, for smaller angular power scales ` > 50, we usually apply Limber’s approximation (Limber,
1953) to relate the physical scale (k) of the 3D matter power spectrum to the angular scale (`) of the
projected 2D convergence power spectrum when taking integration in Eq. (1.30):

P(
`

DL
, kz ; a(DL)) ≈ P(

`

DL
; a(DL)) . (1.31)
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As revealed from Limber approximation, the (smaller scale) LOS modes (i.e. kzDL � 1) do
not contribute to the integral; for the transverse direction, the dominant contribution comes from
wavenumbers that satisfy k⊥DL ∼ `. This is because for perturbation scales that vary rapidly along
the LOS or along the transverse direction, we expect the fluctuations between under- and over-dense
regions end up cancelling their contributions with the integral. Also from the basic cosmological
principal of isotropy, we can change the vector ` to simply a scale ` in Eq. (1.30). The lensing kernel
term, as defined in Eq. (1.21) for a single source galaxy at certain distance DS can be generalized to
for an ensemble of source galaxies given their redshift distribution nS(z):

q(DL) =
3H2

0
2c2

Ωm

a(DL)

∫ χh

0
dz nS(z)

DSL(z)DL

DS(z)
Θ(DS(z) − DL) , (1.32)

where Θ is a step function with value of 1 if DS(z) > DL, and 0 otherwise. The upper integration
limit χh is the comoving horizon distance which represents the observable boundary of our Universe.

To gain more information from cosmological evolution at different epochs, we can split the source
galaxies into few redshift slices, and conduct tomographic analysis (Hu, 1999) by taking auto- and
cross correlations between two redshift slices of source samples:

Ci j
κκ(`) =

∫ χh

0
dDL

qi(DL)q j(DL)

D2
L

P(
`

DL
; a(DL)) , (1.33)

where i, j are indices for tomographic bins. The redshift evolution can then be extracted via different
weightings as absorbed in the lensing kernels. The tomographic technique also helps break parameter
degeneracies in some level through their different dependencies with redshift.

Cosmic Shear Correlation Function

The real space correlation function of cosmic shear is defined as:

ξ±(θ) = 〈γ1(θ0)γ1(θ0 + θ)〉θ0 ± 〈γ2(θ0)γ2(θ0 + θ)〉θ0

→ = 〈γ1(0)γ1(θ)〉 ± 〈γ2(0)γ2(θ)〉 ,
(1.34)

where the average is taken over every pair of shears considered as coordinated in θ0. Alternatively,
we can view θ as the pair separation vector, and simply set the reference point θ0 = 0 for every pair.
Using the Fourier expression of γ1,2 as defined in Eq. (1.22), we have:

ξ±(θ) =

∫
d`2

(2π)2

∫
d`′2

(2π)2
〈
γ̃1(`)γ̃1(`

′) ± γ̃2(`)γ̃2(`
′)
〉

ei` ·θ . (1.35)

We can use the 2D plane wave expansion to expand the ei` ·θ term in Eq. (1.35):

ei` ·θ = ei`θ cos(φ`−φθ ) =

∞∑
n=−∞

inJn(`θ)ein(φ`−φθ ) , (1.36)

with the angle φ` and φθ being defined such that tan(φ`) = `y/`x and tan(φθ) = θy/θx . Jn are spherical
Bessel functions.
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Based on Eq. (1.24), with the coordinate rotation, we can express γ̃1,2 in terms of γ̃E,B:

γ̃2
1 + γ̃

2
2 = γ̃

2
E + γ̃

2
B = γ̃

2
E

γ̃2
1 − γ̃

2
2 = cos4φ` γ̃2

E − cos4φ` γ̃2
B − 2 sin4φ` γ̃E γ̃B = cos4φ` γ̃2

E .
(1.37)

According to Eq. (1.24), we expect γ̃B = 0. Also based on the isotropy cosmological principal, we
have ξ±(θ) = ξ±(θ); there is no special direction for θ and thus we can set φθ = 0 without loss of
generation. Using the definition of Eq. (1.26), and applied these replacements back to Eq. (1.35), we
have:

ξ+(θ) =

∫
d`2

(2π)2
Cκκ(`)

∞∑
n=−∞

inJn(`θ)einφ`

ξ−(θ) =

∫
d`2

(2π)2
Cκκ(`) cos4φ`

∞∑
n=−∞

inJn(`θ)einφ` .

(1.38)

For ξ+ (ξ−), only the n = 0 (n = 4) term would contribute to the integral. With the replacement∫
d`2 →

∫
d` 2π`, and with the tomographic indices added, we reach the final expression of ξ± as:

ξ
i j

+/−
(θ) =

∫
d`
2π
`Ci j

κκ(`)J0/4(`θ) . (1.39)

Observationally, it is more straightforward to measure correlation function due to the discreteness
of galaxy distribution and the complex survey geometry. While from the modeling perspective, it
is easier to make theory prediction, to define scale cuts or to compute covariance matrix in power
spectrum, since data points are less correlated in Fourier space. In principal, the cosmic shear power
spectrum and correlation function carry the same amount of information when considering full range
of scales. In practice, cosmological analyses from correlation function or power spectrum would lead
to different parameter constrains (see Köhlinger et al. 2017; Hildebrandt et al. 2017 for KiDS-450 and
Hikage et al. 2019; Hamana et al. 2019 for HSC Y1 cosmic shear analyses). This is primary driven
by drawing information from different multipole ranges, with the analyses from correlation function
usually including more information from small scales.

1.3 Weak Lensing Systematic Effects

A great amount of progress have been accumulated in the past decade to overcome various challenges,
pushing weak lensing to be a precision cosmological probe. Here I briefly summarize a few most
notable systematic uncertainties for weak lensing, including the shear calibration and the photometric
redshift errors, the intrinsic alignment of galaxies, and the uncertainty of baryonic effects on the matter
power spectrum. For a more detailed review on the technical developments of weak lensing, from raw
images to scientific inferences, one can take Mandelbaum (2018) for reference.

1.3.1 Shape measurement

The success of weak lensing is based on high precision galaxy shape measurement technique, in
order to robustly extract the tiny coherent shear signal from the nearly random distribution of galaxy
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ellipticity. Measuring galaxy shapes has long been a tough task due to a variety of difficulties to
overcome:

• The clumpiness and asymmetric nature of galaxy light profile complicates the parametrization
on galaxy morphology.

• The observed images are blurred by perturbations in the atmosphere and instrument. This
blurring effect is characterized via the point spread function (PSF).

• Other detecter systematics that cannot be simply treated as a PSF convolution, such as the
brighter-fatter effect (Antilogus et al., 2014).

• Blending of light among nearby objects.
To the linear order, the systematic error in shear measurement is commonly parametrized with the

multiplicative and the additive components:

γ̂i = (1 + m)γi + ci . (1.40)

The multiplicative bias m depends on γ, contributing in making galaxies appear rounder or more
elliptical. The addictive bias ci leads to modifications on the sheared direction. Additive systematics
are easier to identify by designing null tests from data itself. For example through the non-zero B
mode detection or by cross-correlating the shapes of stars with the PSF-corrected galaxy shapes to
help identify modeling errors from PSF (Mandelbaum, 2018). In contrast, multiplicative bias is harder
to estimate, as it only causes a constant shift in the lensing shear correlations without special pattern
in terms of scale dependence. Typically, image simulations are required to understand the biases from
the adopted shear estimation algorithm. It is however challenging to simulate highly realistic images
as required for future surveys given our limited knowledge of galaxies. Recent development of the
metacalibration technique, a self-calibrationmethod to calibrate shear biases based onmanipulations of
the real images, would be a promising way to estimate calibration factors from real galaxy populations
of the data (Huff & Mandelbaum, 2017; Sheldon & Huff, 2017).

1.3.2 Photometric redshift

Photometric redshift (photo-z) is a technique of approximating a galaxy’s distance from the information
of its broad-band spectral energy distribution (SED). The cheap time requirement of photo-z allows
the weak lensing cosmological experiment possible in compromise with current technology. To derive
the weak lensing signal, a lot of source galaxies are required, and it would be too expensive to perform
spectroscopy follow up for every single galaxy.

The basic principal of photo-z is that the SED of galaxies are not too diversified, so with a set of
templates of galaxy SEDs, we can evolve the galaxy photometry as a function of redshift to match with
the observed photometry (Ilbert et al., 2006). There are also machine learning based methods, which
uses a representative spectroscopic training sample to learn the relationship between photometries and
redshifts (Firth et al., 2003).

Generally, the photo-z technique works specifically well for galaxy types with distinct spectral
feature across bands, like the red and dead galaxies with the 4000 Å break. However, with insufficient
number of photometric bands available, the photo-z estimation would sometimes yield a completely
wrong redshift. The catastrophic outliers would cause biases in cosmology constraints if their fraction
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is too large over the entire sample. Also, there is always an issue for our control on the diversity
of galaxy SEDs from the available training spectroscopic redshift samples, given the complexity in
galaxy formation physics (Newman et al., 2015). Developing other independent methods of photo-z
is thus important to increase the reliability of our estimation.

Another popular method of estimating photo-z is by taking cross correlation between the photo-
metric galaxy sample with a given spectroscopic sample (Newman, 2008). The clustering signal would
show up only when the two populations of galaxies are physically located in the same redshift interval,
because galaxies are only clustered over narrow range of cosmological scales. One major uncertainty
of this method is that the clustering signal is degenerate with the redshift evolution of galaxy bias.
Also to avoid the modeling challenge on non-linear galaxy bias, one would need to perform clustering
over large sky area, which would require large survey of spectroscopic sample. The other systematic
effect of clustering signal is the magnification bias originating from the lensing effect. The lensing
effect from the foreground (spectroscopic) object increases the brightness of its background sources,
leading to some extra clustering signal even when the two samples are not physically located in the
same redshift interval (see e.g. Singh et al. 2019).

Obtaining tight constrains on the redshift distribution of source galaxies help driving better
cosmological constraints due to the break of degeneracies among cosmology and other systematic
effects through the distinction in their redshift evolutions. However, current photo-z pipelines from
independent collaboration teams have not yet reached consistent agreements, which places potential
tensions on the cosmological constraint. For example, the photo-z constraints from the Dark Energy
Survey (DES) year one (Y1) are a combined results from two independent photo-z calibration methods
(Hoyle et al., 2018): the template-fitting method calibrated with the high-quality photometric redshift
catalog in theCOSMOSfield (Laigle et al., 2016), and the cross-correlationmethodwith the redMaGiC
galaxy sample. Recently, the Kilo Degree Survey (KiDs) survey team applied their photo-z pipeline,
which is calibrated based on several available spectroscopic surveys, on the DES-Y1 data, and derived
consistently higher mean redshifts across tomographic bins. Adopting the revised redshifts leads to a
0.8σ shift in the S8 constraint compared with the original DES-Y1 result (Joudaki et al., 2019). This
highlights the importance of developing accurate photo-z calibration methods for current and future
weak lensing surveys.

1.3.3 Intrinsic alignment

An underlying assumption of gravitational lensing is that in the absence of lensing, galaxies are
randomly oriented in the sky with their ellipticity averaged to zero, i.e. 〈ei〉 = 0; any net anisotropy
measured in an ensemble of galaxy shapes then can simply be resorted to the effect of lensing, linking
with the density fluctuations in the foreground. The effect of intrinsic alignment (IA) violates this
simple assumption. Galaxies are observed showing alignment patterns even in the linear regime
(Mandelbaum et al., 2006; Singh et al., 2015), at a significance level of that can not be ignored given
the current precision of cosmological survey.

In the presence of IA, the contaminated shear can be expressed as:

γ = γG + γI (1.41)

where γG is the lensing shear, and γI represents for the intrinsic alignment component. Propagating
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into the two-point statistics, we have:

〈γγ〉 = 〈γGγG + γGγI + γIγG + γIγI〉

Ci j
γγ(`) = Ci j

GG(`) + Ci j
GI(`) + Ci j

IG(`) + Ci j
II (`) .

(1.42)

TheGG term is the true cosmic shear signal of interest, with its full expression shown in Eq. (1.33). The
GI and II terms are for IA contamination. The II term is the intrinsic-intrinsic shape correlation induced
by local gravity on pairs of source galaxies, while the GI term stands for the lensing-intrinsic shape
correlations for pairs of galaxies with the foreground one being tidally torqued and the background one
being sheared under the effect of the same gravitational field. Mathematically, they can be expressed
as:

Ci j
II (`) =

∫ χh

0
dχs

nis(χs)n
j
s (χs)

χ2
s

PII(k =
`

χs
, χs)

Ci j
GI(`) + Ci j

IG(`) =

∫ χh

0
dχ

gi(χ)n j
s (χ) + nis(χ)g

j(χ)

χ2 PGI(k =
`

χ
, χ) .

(1.43)

The nis(χs) in the II term stands for the probability density function (pdf) for the redshift distribution
of source galaxies in tomographic bin i, with χs being the comoving angular diameter distance to the
source galaxy (which is the same as the DS convention in Chapter 1.2). As revealed in the equation,
Ci j

II (`)would only show values when there is an overlap in the source redshift pdf between tomographic
bins i and j. The gi(χ) function in the GI term is the lensing kernel for tomographic bin i as defined
in Eq. (1.32), below we rewrite it in the format of integration with respect to (comoving) distance χ
rather than to redshift:

gi(χ) =
3
2

H2
0Ωm

c2
χ

a(χ)

∫ χh

χ
dχsnis(χs)

χs − χ

χs
, (1.44)

with the effect of step function being absorbed in the lower limit of the integral. One can find that
gi(χ) only has a non-zero value when χ is less than the farthest distance χs that nis(χs) can reach.
Given this fact, the GI term would be zero when cross correlating lower redshift lensing shear in
tomographic bin j (g j(χ)) with higher redshift intrinsic shape tomographic bin i (ni(χ)). This can
be understood from the fact that the density fluctuations of and below the lower redshift bin j should
not be correlated with the local gravitational filed in the higher redshift tomographic bin i. However
this statement would not be true if there is an overlap in redshift between tomographic bins i and j, or
when there is an error in photometric redshift.

The PII and PGI terms in Eq. (1.43) are the IA power spectra, controlling the overall amplitude and
scale dependence of IA. There are several models of IA with varying levels of complexity. Assuming a
linear relationship between the strength of IA and the local tidal field, the tidal alignment paradigm has
been successfully applied to model the observed IA signal for elliptical galaxies on linear scales with
the linear alignment (LA) model (Catelan et al., 2001; Hirata & Seljak, 2004a), and to the quasi-linear
regime with the extension of non-linear alignment (NLA) model (Bridle & King, 2007). Under the
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tidal alignment paradigm:

PII(k, z) = A2(z)Pδ(k, z)

PGI(k, z) = A(z)Pδ(k, z)

A(z) = −AIAC1
3H2

0Ωm

8πG
1

D(z)
(

1 + z
1 + z0

)ηIA .

(1.45)

Here D(z) is the linear growth factor, normalized to unity at z = 0; C1 is the normalization constant
being set at 5 × 10−14 M−1

� h−2Mpc3 (Brown et al., 2002). In the original LA model, Pδ(k, z) is set
to be the linear matter power spectrum. The NLA model replaces this part with the non-linear power
spectrum to extend the model coverage to quasi-linear scales. The degrees of freedom for redshift
evolution is captured in ηIA, reflecting the combined effects on the evolution of IA amplitude and
the evolution of galaxy sample selection effect. The z0 is the pivot redshift. There are also other
variants of IA modeling with different parameterizations on the redshift evolution, or considering the
luminosity dependence of galaxy sample (see e.g. Krause et al. 2016).

Beyond the linear order, the quadratic alignment model (Lee & Pen, 2000) is proposed to describe
IA for spiral galaxies through tidal torquing. A more elaborate ‘mixed’ IA model developed by Blazek
et al. (2017) includes both linear and quartic orders of tidal effects into a unified prescription. In the
one-halo regime, an empirical fitting functional form of IA is provided by Schneider & Bridle (2010),
based on a phenomenological halo model assuming that central galaxies are aligned with the halo
shapes and the satellite galaxies are radially pointing toward halo centers.

The choices of IA modeling, the variant in ways of parametrizing IA redshift evolution, would
shift the cosmological parameter constraints, although currently the amount of shifts are considered
small given the size of error bars, as revealed from the DES Y1 results (Troxel et al., 2018; Samuroff
et al., 2018). Besides purely affected by tidal field, IA is also potentially depending on other physical
mechanisms like baryonic processes and the nonlinear gravitational evolution. The situation is further
complicated by the fact that the observed IA signal depends on the properties of tracer galaxies, and
is weighted by the galaxy density field (Blazek et al., 2015). Due to these challenges, IA is still an
active research area requiring inputs in preparation for future Stage IV survey.

1.3.4 Baryonic effects

To extract cosmological information from observables that are sensitive to the growth of structure,
building a precision library of matter power spectra as functions of cosmology, Pδ(k, z | cosmology),
is an essential piece of work. In the linear and quasi-linear regime, perturbation theory can be used
to predict the matter power spectra (Bernardeau et al., 2002). On smaller scales, N-body simulations
are required to capture the non-linear evolution of structure growth. Beyond pure gravity interaction
among dark matter particles, complex physical mechanisms involved with baryons, though with their
only∼5%occupancy on the energy density of Universe, places non-negligible effect on the distribution
of matter.

The two main effects of baryons are cooling and feedback. The cooling mechanisms allows gas to
densely accumulate so that galaxies can form at the centers of their dark matter halos. On the contrary,
the feedback mechanisms from exploding stars or from the active galactic nuclei (AGN) activities
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inject enormous amounts of energy, heating up surrounding gas or even blowing gas out of the galaxy
in terms of galactic winds or AGN jets, thereby suppress the effect of cooling. With the occupancy
of baryons, halo structure would be modified in the presence of their gravity. The magnitude of this
back-reaction effect depends on details of baryonic physics (see e.g. van Daalen et al. 2011, 2019).
However, besides knowing their important roles in providing explanations on observational results,
we are still far from understanding how exactly they operate in the whole process of galaxy formation
and evolution.

Over the past 10 years, several hydrodynamical simulations with varying subgrid modeling pre-
scriptions are run with parameters tuned to roughly reproduce some key observational results of our
Universe (e.g. stellar mass function, galaxy color-magnitude diagram, stellar mass–blackhole mass
relation...), but the level of uncertainties are far from the precision for cosmology, not to mention
the extensive demand on computational resources. Under this situation, developing baryon modeling
schemes based on the output of N-body simulation is becoming a promising avenue to account for
uncertainties of baryon for future surveys.

There are currently four types of strategies on modeling baryonic uncertainties. The first category
is to develop economic strategies on discarding data that are challenging to model. For example, the
most straightforward way is to define safe scale cuts on observables such that the cosmological results
would not be biased. Instead of applying cuts on summary statistics, the density peak clipping method
applies cuts on high density peaks in matter fluctuation maps to make the derived summary statistics
being less sensitive to the poorly-modeled non-linear regime, while allowing wider range of scales
to extract cosmological information (Simpson et al., 2011, 2013). The second category focuses on
modeling the discrepancy between hydrodynamical and N-body simulations. Empirical models are
build to model the ratio of power spectra between hydrodynamical and N-body simulations (Chisari
et al., 2018; Harnois-Déraps et al., 2015). Eifler et al. (2015) apply principal component analysis
(PCA) on the summary statistics of various baryonic scenarios, and use the resulting PC modes as
flexible bases to span the uncertainty range of baryonic effects. The third category is to resort on halo
model. Since baryonic effects are dominant on small scales, their effects can be modeled through
the change of halo density profiles (Mead et al., 2015; Copeland et al., 2018). The final category
is to paint baryons on N-body simulations. There is a gradient-based method to shift dark matter
particles in N-body simulations along the gradient of estimated thermal pressure to mimic the effect
of baryonic feedback (Dai et al., 2018). A more detail method includes adding galaxy stellar and gas
profiles as well as accounting for the back-reaction of dark matter particles (Schneider & Teyssier,
2015; Schneider et al., 2019). Machine learning methods may also be a promising tool to perform the
mapping between hydrodynamical and N-body simulations (Tröster et al., 2019).

1.4 Thesis Overview

The main result of this dissertation is comprised of four research projects. All together they provide
advancing measurements and improve our understanding of astrophysical systematics in the field
of weak gravitational lensing. In Chapters 2 and 3, we focus on intrinsic alignment of galaxies.
Chapters 4 and 5 concentrates on systematics of baryonic effects. Below I provide a brief summary
on what these projects are about.
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In Chapter 2, we present our investigation on the the alignment of the massive central galaxies
with respect to their host halo shapes. From the ∼ 8000 redMaPPer clusters constructed from SDSS,
the average misalignment angle between the central and cluster major axes is measured to be ∼ 35◦.
We conclude that central galaxy alignment is potentially a complicated physical effect with many
of the relevant predictors identified. We provide physical explanations on the identified correlations
between the alignment signal and parameters related to galaxies and clusters properties there. This
work is published in Huang et al. 2016, MNRAS, 463, 222.

Using the same set of redMaPPer cluster sample, in Chapter 3, we analyze the radial alignment
of satellite galaxies toward their belonging halo centers. We detect satellite alignment signal based
on different shape measurement method, and investigate the origin of the measurement discrepancy.
For the shape measurement that puts more weight in the inner light profile of galaxies, no net radial
alignment signal is detected across the entire sample. However, when limiting to a subsample of
satellites with certain threshold, we do observe significant radial alignment signal. We also discuss
the dependence of IA signal on several important galaxies properties. This work is originally published
in Huang et al. 2018, MNRAS, 474, 4.

Chapter 4 presents our investigation on modeling baryonic physics for weak lensing. Using
several hydrodynamical simulations, we investigate the effects of baryons on matter power spectrum
and on the cosmic shear observables for various baryonic scenarios. We validate two different baryon
mitigation schemes under an LSST-like experiment and discuss the performance and limitations of
these models. This work is published in Huang et al. 2019, MNRAS, 488, 1652.

In Chapter 5, we implement our baryon modeling scheme in the DES cosmological pipeline,
in order to include small scale cosmic shear data in the DES Y1 3 × 2 points analysis. We validate
our pipeline and determine our settings by running likelihood simulations. We also investigate the
interplay between our baryonic parameters with cosmology and with other nuisance parameters. We
expect to have ∼10% smaller error bar on S8 constraint by including small scale cosmic shear data
into analysis. This is currently an ongoing project which we expect to submit for publication in the
future.

Finally we conclude and provide future outlooks of the field in Chapter 6.
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Abstract

The shapes of cluster central galaxies are not randomly oriented, but rather exhibit
coherent alignmentswith the shapes of their parent clusters aswell aswith the surrounding
large-scale structures. In this work, we aim to identify the galaxy and cluster quantities
that most strongly predict the central galaxy alignment phenomenon among a large
parameter space with a sample of 8237 clusters and 94817 members within 0.1 < z <
0.35, based on the redMaPPer cluster catalog constructed from the Sloan Digital Sky
Survey. We first quantify the alignment between the projected central galaxy shapes
and the distribution of member satellites, to understand what central galaxy and cluster
properties most strongly correlate with these alignments. Next, we investigate the angular
segregation of satellites with respect to their central galaxy major axis directions, to
identify the satellite properties that most strongly predict their angular segregation.
We find that central galaxies are more aligned with their member galaxy distributions
in clusters that are more elongated and have higher richness, and for central galaxies
with larger physical size, higher luminosity and centering probability, and redder color.
Satellites with redder color, higher luminosity, located closer to the central galaxy,
and with smaller ellipticity show a stronger angular segregation toward their central
galaxy major axes. Finally, we provide physical explanations for some of the identified
correlations, and discuss the connection to theories of central galaxy alignments, the
impact of primordial alignments with tidal fields, and the importance of anisotropic
accretion.
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2.1 Introduction

In the framework of the standard cold dark matter (CDM)-dominated Universe, cosmic structures
grow hierarchically. Small galaxies form first, then merge and group together through channels of
the filamentary network to form clusters of galaxies (White & Rees, 1978; Blumenthal et al., 1984).
During the process of structure formation, the distribution and orientation of galaxies may be set by
the surrounding gravitational tidal fields, or be disturbed by activities such as mergers or feedback
processes due to supernova or active galactic nuclei. In this work, we refer to any net preferred
orientation toward some reference direction or any existing galaxy shape correlations caused by these
physically-induced events as intrinsic alignments (in contrast with the coherent alignments induced
by gravitational lensing). For recent reviews, see Joachimi et al. (2015), Kiessling et al. (2015) and
Kirk et al. (2015).

Intrinsic alignments occur on a variety of scales. On large scales, several Mpc and above, galaxies
show a net tendency to align radially towards overdensities (e.g., Mandelbaum et al., 2006; Hirata
et al., 2007; Okumura et al., 2009; Joachimi et al., 2011), and more detailed analysis of the cosmic
web indicates coherent alignments along the stretching direction of filaments (Tempel et al., 2015;
Chen et al., 2015; Rong et al., 2016). One of the leading theoretical models for intrinsic alignments at
large scales (& 6 Mpc) is the linear alignment model, which relates the alignment strength linearly to
the smoothed tidal field at the time of galaxy formation (Catelan et al., 2001; Hirata & Seljak, 2004b),
or variations of that model that include nonlinear evolution of the density field (Bridle & King, 2007;
Blazek et al., 2015). Based on a sample of luminous red galaxies (LRGs), Singh et al. (2015) adopted
the above alignment models to quantify the large-scale alignment amplitude as a function of several
LRG properties. They found that the alignment amplitude becomes stronger toward more luminous
LRGs residing in higher mass halos (see also Hirata et al., 2007; Joachimi et al., 2011).

On small scales, within galaxy clusters, there are two types of alignments. The first type is
the alignment of satellite major axes toward the center of their host dark matter (DM) halo, for
which the observational proxy usually is the brightest cluster galaxy (BCG). This is often called
satellite (or radial) alignment. Satellite alignment is believed to originate from the tidal torque
induced primarily from the gravitational field of the DM halo (Ciotti & Dutta, 1994; Kuhlen et al.,
2007; Pereira et al., 2008; Faltenbacher et al., 2008; Tenneti et al., 2015a). Observationally, the
existence of satellite alignment is still controversial, with Pereira & Kuhn (2005); Agustsson &
Brainerd (2006); Faltenbacher et al. (2007); Singh et al. (2015) reporting detections of the signal,
while Hung & Ebeling (2012); Schneider et al. (2013); Chisari et al. (2014); Sifón et al. (2015)
found no significant detection. Some of this tension may arise from selection effects, as discussed by
Singh et al. (2015). In addition, Hao et al. (2011) cautioned about the possibility of spurious satellite
alignment signals due to systematic errors (the contamination from the diffuse light from BCGs).
We will report our measurement of satellite alignment in red-sequence Matched-filter Probabilistic
Percolation (redMaPPer) clusters and present detailed systemic analysis in the upcoming Paper II. In
the current paper, we focus on the second type of alignment, called central galaxy alignment.

Central galaxy alignment refers to the tendency of the major axis of the central galaxy to align
with that of its host DM halo, for which the observational signature is that satellites (which we use as
a tracer of the DM halo shape) preferentially reside along the central’s major axis direction. This type
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of alignment is also termed “BCG alignment” in the literature, as it is often assumed that the brightest
galaxy within each cluster is the central galaxy (the central galaxy paradigm, see van den Bosch et al.
2005). However, Skibba et al. (2011) showed that 40%, and Hoshino et al. (2015) that 20-30%, of
BCGs are not the galaxies that are located closest to the center of the cluster potential well. The fact
that the redMaPPer algorithm identifies centrals not only based on their luminosity but also on their
color and local galaxy density enables us to select a more robust set of central galaxies for our intrinsic
alignment study. Therefore, through out this work, we will use the term “central galaxy alignment”
for our result, and keep the term “BCG alignment” when referring to previous works that utilize the
BCG as a proxy for the central galaxy.

Unlike satellite alignment, the observational evidence for central galaxy alignment is strong and
uncontroversial (e.g., Sastry, 1968; Binggeli, 1982; Niederste-Ostholt et al., 2010), and it can be
explained by two possible physical mechanisms. The first is the filamentary nature of matter accretion
(Dubinski, 1998), and the second is primordial alignment with the tidal field set by both the host
dark matter halo and large-scale structure (Faltenbacher et al., 2008). Since central galaxy alignment
is robustly detected with existing large datasets, many studies have investigated its dependence on
physical predictors such as central galaxy luminosity, color, host halo mass, redshift, and so on, in
order to better understand the physical origin of the effect (Brainerd, 2005; Yang et al., 2006; Azzaro
et al., 2007; Faltenbacher et al., 2007; Wang et al., 2008; Siverd et al., 2009; Agustsson & Brainerd,
2010; Niederste-Ostholt et al., 2010; Hao et al., 2011). There is general agreement that the central
galaxy alignment signal is stronger for red and luminous centrals, and shows higher significance
when using red satellites as tracers. However, some controversies still remain about the importance
of other predictors besides luminosity or color. Furthermore, some of the previous studies started
with the assumption that only a few predictors could be important in determining the central galaxy
alignments, and therefore performed an analysis based only on those predictors without considering
others, ignoring potential degeneracies among predictors when splitting and comparing subsamples.

In Paper I, our goal is to present a comprehensive analysis of the predictors of central galaxy
alignments. We include as many physical properties as possible, and properly account for potential
correlations among them with the help of a linear regression analysis. We also discuss potential
systematic effects based on signals obtained from various shape measurement methods. The two main
questions we aim to address are 1) what central and cluster properties are the strongest predictors of
the strength of central galaxy alignments? 2) What kinds of satellites are more likely to lie along
the major axis direction of their host centrals? We build corresponding linear regression models, use
variable selection techniques to select important predictors, and further quantify their significance.
Finally, we discuss possible physical origins for these selected predictors and compare our result with
the literature.

The paper is organized as follows. In Sec. 2.2, we describe our data and definitions of the
physical quantities used in the linear regression analysis. Details of the linear regression process are
described in Sec. 2.3. Sec. 2.4 presents our measurement of central galaxy alignment and results
of the variable selection process. Sec. 2.5 discusses the detected central galaxy alignment signal for
three different shape measurement methods, and the interpretation of those findings. The physical
origins of our identified featured predictors for central galaxy alignments with the cluster shape and
angular segregation of satellites with respect to the central galaxy major axis are discussed in detail
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in Secs. 2.6 and 2.7, respectively. We conclude and summarize our key findings in Sec. 2.8.
Throughout this paper, we adopt the standard flatΛCDMcosmologywithΩm = 0.3 andΩΛ = 0.7.

All the length and magnitude units are presented as if the Hubble constant were 100 km s−1 Mpc−1.
In addition, we use log as shorthand for the 10-based logarithm, and ln for the natural logarithm.

2.2 Data and measurements

In this section, we introduce the data that we analyze in this work, including the definitions of the
galaxy cluster and galaxy properties that we use. All data used in this paper came from the Sloan
Digital Sky Survey (SDSS) I/II surveys. The SDSS I (York et al., 2000) and II surveys imaged
roughly π steradians of the sky, and followed up approximately one million of the detected objects
spectroscopically (Eisenstein et al., 2001; Richards et al., 2002; Strauss et al., 2002). The imaging
was carried out by drift-scanning the sky in photometric conditions (Hogg et al., 2001; Ivezić et al.,
2004), in five bands (ugriz) (Fukugita et al., 1996; Smith et al., 2002) using a specially-designed
wide-field camera (Gunn et al., 1998). These imaging data were used to create the catalogs that we
use in this paper. All of the data were processed by completely automated pipelines that detect and
measure photometric properties of objects, and astrometrically calibrate the data (Lupton et al., 2001;
Pier et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were completed with a seventh
data release (Abazajian et al., 2009), but we use the processed data from an improved data reduction
pipeline that was part of the eighth data release, from SDSS-III (Aihara et al., 2011); and an improved
photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).

2.2.1 Galaxy cluster catalog

We use member galaxies in the redMaPPer v5.10 cluster catalog1 to study galaxy alignments in
galaxy clusters. The redMaPPer cluster catalog is constructed based on photometric galaxy samples
with a magnitude cut mi < 21.0 from the SDSS data release eight (DR8; Aihara et al. 2011) over
a total area of ∼10,000 deg2. Details of the redMaPPer cluster finding algorithm and properties of
the SDSS redMaPPer catalogs can be found in Rykoff et al. (2014); Rozo & Rykoff (2014); Rozo
et al. (2015a,b). Briefly, the redMaPPer algorithm has two stages: the red-sequence calibration, and
the cluster-finding stage. With a set of red spectroscopic galaxies as training sample, redMaPPer
first constructs a redshift-dependent evolutionary red-sequence model, including zero-point, tilt, and
scatter. The calibrated red-sequence model is then used to group red galaxies at similar redshifts into
clusters, assuming certain radial and luminosity filters.

One of the features of the redMaPPer algorithm is that it is probabilistic, which enables users to
select suitable samples to do statistics. For each cluster, it provides the central galaxy probability, Pcen,
for the top five potential BCGs, and all potential member galaxies are assigned with a membership
probability, pmem, according to their color, magnitude, and position information. The photometric
redshift z for each cluster is estimated from high-probability members; and the cluster richness, λ, is
defined by summing the membership probabilities over all cluster members.

1http://risa.stanford.edu/redmapper/
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In this work, we restrict our analysis to clusters with richness λ ≥ 20, corresponding to a halo
mass threshold of M200m & 1014 h−1M� (Rykoff et al., 2012), and photometric redshift in the range
0.1 ≤ z ≤ 0.35. The lower redshift limit is selected so as to minimize edge effects from the training
sample when doing calibration, while the upper redshift cutoff is set such that the sample of clusters
is volume-limited (Rykoff et al., 2014). All in all, there are 10702 clusters within this redshift and
richness range. To perform higher quality statistics, we only explore satellite galaxies withmembership
probability pmem ≥ 0.8when doing linear regression analysis, and restrict to satellites with pmem ≥ 0.2
when defining cluster shape (while weighting those satellites appropriately by their values of pmem).

2.2.2 Definitions and measurements of physical parameters

In this subsection, we describe many of the physical parameters that we will use to study central galaxy
alignments.

Galaxy ellipticity

The galaxy ellipticity used for the majority of this work is corrected for the effect of the PSF using the
re-Gaussianization shape measurement method (see Sec. 2.2.3 for detail). We use the components of
the distortion e1 and e2 (Bernstein & Jarvis, 2002) provided from the Reyes et al. (2012) (or R12) and
Mandelbaum et al. (2005) (or M05) catalogs by fitting the ’atlas images’ (Stoughton et al., 2002) in
both r and i bands. The distortion can be related to the axis ratio b/a as

(e1, e2) =
1 − (b/a)2

1 + (b/a)2
(cos 2α, sin 2α), (2.1)

where α is the position angle of the major axis. The total galaxy distortion e is calculated as

e =
√

e2
1 + e2

2 (2.2)

Galaxy alignment angles

Once the galaxy position angle is known, we can assign each satellite its central galaxy alignment
angle, θcen, and satellite alignment angle, φsat.

The central galaxy alignment angle θcen is defined as the angle between the major axis of the
central galaxy and the line connecting the central to the satellite galaxy, as illustrated in the left panel
of Fig. 2.1. Calculating θcen requires a viable shape measurement for the central galaxy (but not the
satellites). Within the redshift range 0.1 ≤ z ≤ 0.35, there are 8237 centrals with shape measurements
in the R12 catalog, resulting in 94817 central-satellite pairs with satellites that have pmem ≥ 0.8.

The satellite alignment angle φsat is defined as the angle between the major axis of the satellite
galaxy and the line connecting its center to the central, as shown in the right panel of Fig. 2.1.
Calculating φsat requires a shape measurement for the satellite galaxy. In this paper, we only consider
φsat as a potential predictor of central galaxy alignments; future work will include a detailed analysis
of satellite alignments.

We restrict both θcen and φsat to the range [0◦, 90◦] due to symmetry. By definition, θcen = 0◦/90◦

indicates a satellite located along the major/minor axis of the central. A satellite is radially/tangentially
aligned with the central if φsat = 0◦/90◦.
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Figure 2.1: Illustration of the galaxy alignment angles. The left panel shows the definition of central
alignment angle θcen, while the right panel shows the definition of satellite alignment angle φsat.

Cluster position angle and ellipticity

We follow the method used in Niederste-Ostholt et al. (2010) to define the orientation and ellipticity of
the redMaPPer clusters from their satellite distributions. In order to have enough member galaxies to
trace the shape of each cluster, we use all member galaxies with membership probability pmem ≥ 0.2.
We calculate the reduced second moments from the positions of member galaxies, weighted by pmem:

Mxx ≡

〈
x2

r2

〉
=

∑
i

pmem,i
x2
i

r2
i∑

i
pmem,i

(2.3)

and likewise for Myy and Mxy; by definition, Mxx+Myy = 1. Here xi is the distance of member galaxy
i from the cluster center. We can then define the cluster ellipticity as

(Q, U) =
1 − b/a
1 + b/a

(cos 2β, sin 2β) = (Mxx −Myy, 2Mxy), (2.4)

where b/a is the cluster projected minor-to-major axis ratio and β is the cluster position angle (P.A.).
The cluster ellipticity can then be calculated via

cluster e =
√

Q2 +U2. (2.5)

With the 1/r2 weighting (an explicitly spherically-symmetric weight function) in the reduced
second moments, the derived cluster ellipticity tends to be underestimated. We show later that this
does not change our conclusion regarding how cluster ellipticity affects the central galaxy alignment.

Central galaxy dominance

The central galaxy dominance parameter is defined as the difference in the r-band absolute magnitude
of the central galaxy and the mean magnitude of the first and second brightest satellites:

Central dominance ≡ Central 0.1Mr −
0.1Mr,1st +

0.1 Mr,2nd

2
. (2.6)
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We calculate the central galaxy dominance parameter using only pmem ≥ 0.8 members. For the
very few clusters (134 out of 8237) that have only one member satisfying the pmem ≥ 0.8 criterion,
we simply use the difference between the absolute magnitudes of central and that member galaxy to
define the central galaxy dominance. Smaller central dominance values correspond to more dominant
central galaxies.

Central galaxy probability

For each cluster, the redMaPPer catalog contains the five most likely central galaxy candidates, each
with centering probability Pcen. In this paper, we use the most probable central as our central galaxy,
and measure the central galaxy and satellite alignment angles of the associated central-satellite pairs.
Over 80% of our centrals have Pcen ≥ 0.7.

Galaxy absolute magnitude

We calculate the absolute magnitude for each galaxy using the luminous red galaxy (LRG) templates
in the kcorrect package (v4.2) distributed by Blanton & Roweis (2007). The kcorrect software
determines the best composite fit to the observed galaxy spectral energy distribution (SED) with
the Chabrier (2003) initial mass function (IMF) and a variety of Bruzual & Charlot (2003) stellar
population synthesis models differing in star formation histories and metallicities. We use extinction-
corrected SDSS model magnitudes and the photometric redshift z provided in redMaPPer as input,
and k-correct the magnitudes of all galaxies in our sample to z = 0.1.

Galaxy effective radius

The effective radius we report in this paper is the circularly-averaged half-light radius, defined as

Reff ≡

√
b
a

RdeV, (2.7)

where b/a is the semi-minor to semi-major axis ratio taken from the SDSS parameter deVAB_r, and
RdeV is the semi-major half-light radius, deVRad_r. Both parameters are estimated as part of the
SDSS DR8 pipeline by fitting de Vaucouleurs light profiles to galaxy r-band images. Here we convert
the value of RdeV from the provided angular units to physical units (h−1kpc), using the redshift z of
the host cluster.

Member distance from the cluster center

For each satellite galaxy, we compute its projected distance, r , to the central galaxy, to check for
radial dependence in the central galaxy alignment signal. To fairly compare among satellite galaxies
in clusters with different halo masses, we further normalize r by the estimated halo radius, R200m,
corresponding to the radius within which the average density of the enclosed mass is 200 times the
mean density, ρ. We first use the mass-richness relation provided in Eq. B4 of Rykoff et al. (2012),

ln

(
M200m

h−1
70 1014 M�

)
= 1.72 + 1.08 ln

λ

60
, (2.8)
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to estimate M200m. Then we compute R200m via the definition M200m = (4π/3) 200ρ R3
200m. Our

conclusions would not change even if applying different mass-richness relations recently calibrated
via weak lensing (Simet et al., 2017) or via clustering of clusters (Baxter et al., 2016).

Cluster member concentration ∆R

Recently, Miyatake et al. (2016) found that the average projected distance of member galaxies from
the cluster center, defined as

Rmem =

∑
i

pmem,iRi∑
i

pmem,i
, (2.9)

not only describes the concentration of the member galaxy distribution in the cluster, but also plays
a role in determining the large-scale clustering of redMaPPer clusters at fixed mass. Here pmem,i is
the membership probability of the i-th member galaxy, and Ri is the physical separation between that
galaxy and its corresponding cluster central galaxy.

To properly model the richness and redshift dependence in Rmem, we use another parameter, ∆R,
defined in Eq. 22 of Baxter et al. (2016) as an indicator of cluster member concentration at fixed λ
and z:

∆R =
Rmem −

〈
Rmem |λ, z

〉〈
Rmem |λ, z

〉 . (2.10)

Here
〈
Rmem |λ, z

〉
is the mean Rmem value at a particular λ and z bin, estimated by fitting a spline to the

average value of Rmem in ten bins of λ and five bins of z. By construction, negative ∆R value means
the cluster has a more compact member galaxy distribution than the average cluster at that richness
and redshift.

2.2.3 Galaxy shape data

In this work, we use 3 different galaxy shape measurement methods from 4 catalogs to determine
the galaxy position angle and ellipticity, to investigate systematics in the measured central galaxy
alignment signal. This section includes a description of all of these methods.

Re-Gaussianization shape measurement

The first shape measurement method is based on the re-Gaussianization technique (Hirata & Seljak,
2003), which not only corrects the effects of the point spread function (PSF) on the observed galaxy
shapes with a standard elliptical Gaussian profile, but also corrects for low-order deviations from
Gaussianity in both the galaxy and PSF profiles.

Two shape catalogs generated using the re-Gaussianization technique are used in this work; the
primary one is based on the SDSS DR8 photometric pipeline, and was presented in R12; however,
for systematics tests we also use the catalog from M05, which was based on the DR4 photometric
pipeline. The R12 catalog covers an area of 9432 deg2, with an average of 1.2 galaxies arcmin−2

with shape measurements; the M05 catalog covers an area of 7002 deg2. Both shape catalogs select
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galaxies down to the extinction-corrected r-band model magnitude mr < 21.8, and require galaxies to
be well resolved compared to the PSF size in both r and i bands. While there are minor differences in
galaxy selection criteria in the catalogs, the main difference is the version of the SDSS photometric
pipeline (photo) that they used. The M05 catalog relies on photo v5.4 (Adelman-McCarthy et al.,
2006) while the R12 is based on photo v5.6 (Aihara et al., 2011). The new version of photo has
a more sophisticated sky-subtraction algorithm that improves the photometry of large galaxies and
fainter ones near them. By comparing the central galaxy alignment measured using these catalogs,
we will estimate the impact of the sky-subtraction quality on the final results.

Isophotal shape measurement

Many previous central galaxy alignment studies used the SDSS isophotal position angle to define the
orientation of the BCG (Brainerd, 2005; Yang et al., 2006; Faltenbacher et al., 2007; Azzaro et al.,
2007; Wang et al., 2008; Siverd et al., 2009; Agustsson & Brainerd, 2010; Hao et al., 2011). To
compare with these studies, we also measure the central galaxy alignment using the isophotal shape
measurement. The SDSS pipeline measures the isophotal position angle of galaxies at the isophote
corresponding to 25 mag arcsec−2, which is fairly low surface brightness and generally encompasses
a much larger part of the galaxy light profile than the centrally-weighted re-Gaussianization shapes.

Isophotal shapes were not released in DR8, so we take the isophotal position angle in r band from
DR7 (using the previous version of photo) to compute central galaxy alignments.

De Vaucouleurs shape measurement

Some galaxy alignment studies use the shape measurement from the de Vaucouleurs model fit
(Niederste-Ostholt et al., 2010; Siverd et al., 2009; Hao et al., 2011), which is a good description of
the surface brightness profile for a typical elliptical galaxy, including most galaxies in redMaPPer
clusters. Here we use the de Vaucouleurs fit position angle provided in the SDSS DR7, which fits
galaxies through a two-dimensional fit to a PSF-convolved de Vaucouleurs profile. For more detail
about these SDSS shape measurements, we refer readers to Stoughton et al. (2002).

2.2.4 The central-satellite pair sample

We define three samples of central-satellite pairs for our analysis:
1. After applying the redshift cut and requiring that central galaxies have shape measurements

in the R12 catalog, we have 8237 centrals with DR8 re-Gaussianization shape measurement,
and 94817 satellites with pmem ≥ 0.8 in our parent sample. This parent sample is used for the
majority of our analysis, while the other subsamples are used primarily for systematics tests.

2. To investigate the effect of the sky-subtraction technique on the measured central galaxy align-
ment signal, we match our parent centrals with the M05 catalog, and construct another sub-
sample of centrals that have re-Gaussianization shape measurement based on both DR4 and
DR8 photometry. This subsample has 4316 centrals and 46370 central-satellite pairs within the
DR4 footprint.
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Figure 2.2: Distributions of the central (left panel) and satellite (right panel) 0.1Mr for the three sets
of central-satellite pairs defined in Sec. 2.2.4.

3. To compare the degree of central galaxy alignment signal using different shape measurement
methods, another subsample of central-satellite pairs is constructed. If we require centrals to
have a DR8 re-Gaussianization shape, along with both isophotal and de Vaucouleurs shape
measurements from DR7, we have 7488 centrals with 86350 satellites within the DR7 footprint.

Fig. 2.2 shows the distributions of the r-band absolute magnitude, 0.1Mr , of the centrals (left
panel) and satellites (right panel) in these three sets of central-satellite pairs. Both the central and
satellite 0.1Mr distributions for the subsample in the DR7 footprint (iii) are almost the same as for the
parent DR8 sample (i), while there are slight shifts for the subsamples in DR4 footprint (ii).

When measuring the central alignment angle, we only require satellite positions and central shape
measurements. However, in the linear regression analysis, we require all galaxies to have well-defined
physical parameters such as ellipticity, color, effective radius. . . ; these requirements eliminate some
satellites, mainly due to the requirement of an ellipticity measurement. Table 2.1 summarizes the
three sets of central-satellite pairs defined in this section, and also records the actual number of
central-satellite pairs used when doing linear regression analysis.

In Fig. 2.3, we compare the absolute magnitude distributions of the satellite subsamples actually
used in the linear regression analysis to that of the original set of satellites from which they were
drawn. The selected satellites used in linear regression are biased to brighter magnitudes, since we
rely on good quality photometry (higher S/N and/or more resolved light profile) to measure shapes.
For the reason, the derived significance levels for potential predictors that could possibly affect the
degree of central galaxy alignment in this work are lower limits, especially for predictors that strongly
correlate with satellite brightness. If the effect of a predictor on central galaxy alignment is strong
enough, then even if some faint satellites are excluded when doing linear regression, we could still
select the predictor out as a featured predictor.

36



Chapter 2. Central galaxy alignments 2.2. Data and measurements

−23 −22 −21 −20 −19
0.1Mr

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
er

of
S
at

el
li
te

s

DR8 Footprint

73146 pairs used in LR

94817 pairs

Figure 2.3: Distributions of the 0.1Mr for satellites in the DR8 footprint. The dark blue dashed line
indicates the total 94817 satellites, while the light blue line shows the selected subsample when doing
linear regression analysis.

Table 2.1: Numbers of clusters and central-satellite pairs used in this work. The first three rows are
the the three subsamples we used for the overall measurement of the central galaxy alignment angle
defined in Sec. 2.2.4. The last row is the subsamples used when doing linear regression analysis.

Sample Ncluster Npair

DR8 Footprint Sample 8237 94817
DR4 Footprint Sample 4316 46370
DR7 Footprint Sample 7488 86350
Linear Regression Sample 8233 73146
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2.3 Linear regression analysis

Regression is one of the most commonly used methods to study dependence. It is used to find optimal
values of the free parameters in a specified function Y = f (X) + ε . Here Y is the response variable,
which quantifies the physical effect one wants to study, X = (X1, ...Xi, ...XN ) is a set of potential
predictors that may affect the behavior of Y , and ε represents random observational error, usually
assumed to be drawn from a normal distribution. For the central galaxy alignment effect, as there is
no a priori-known functional form relating X to Y , we apply multiple linear regression, which allows
one to at least determine if the central galaxy alignment depends on X to first order.

The multiple linear regression model we apply is

Y = f (X) = β0 + β1X1 + . . . + βiXi + . . . + βN XN, (2.11)

where the intercept β0 and the slopes βi are the unknown regression coefficients to be estimated via
least squares. For each regression coefficient βi, we perform the two-sided t-value and p-value tests
for the dependence of Y on the Xi. These are tests of the hypothesis that βi = 0 against the alternative
hypothesis that βi , 0. The t-value is the ratio of βi to its standard error, which can be positive or
negative depending on the sign of βi. A larger |t | indicates a more significant statement that βi , 0,
which means it is more likely that there is a relationship between Y and Xi. Statistically, the t-value
and p-value are inextricably linked. Under the assumption of normally distributed errors, a p-value
of 0.05 corresponds to a 95% confidence that βi is not equal to zero. Thus we select out a regressor
Xi as a featured predictor if its p-value < 0.05 (e.g., Weisberg, 2013).

There are reasons not to use our predictors Pi defined in Sec. 2.2.2 (cluster ellipticity, central
galaxy dominance, etc.) directly as regressors Xi. Since there is a large variation in the range of each
predictor, if we simply regress by Y = β0 +

∑
i βi
′Pi, the fitted magnitude of βi ′would depend on that

range, i.e., for a given level of correlation between the parameters, βi ′would be small if its Pi tends to
be large. To make our results more directly illustrate how the relative change of a physical parameter
affects the value of Y , throughout we normalize our predictors Pi to obtain regressors as follows:

Xi =
Pi − 〈P〉i
σPi

. (2.12)

Here σPi is the sample standard deviation of the predictor Pi, reflecting the width of the intrinsic
distribution and measurement error. We will use the term “predictor” to correspond to the original
variables, and “regressor” to refer to variables that are transformed as in Eq. (2.12). We note, however,
that using the normalized predictors as our regressors does not affect the result of hypothesis tests to
select featured predictors.

In this work, we will build two multiple linear regression models with two different response
variables, and use a total of 16 potential predictors to analyze the central galaxy alignment and
the angular segregation of satellites. Details on the definitions and measurements of these physical
parameters were presented in Sec. 2.2.2.
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2.3.1 Response variables

The two response variables used to quantify the level of central alignment are: 1) the position angle
difference between the central galaxy and its host cluster

∆η = |P.A.cen − P.A.cluster |, (2.13)

and 2) the central galaxy alignment angle for each central-satellite pair, θcen. We use these in different
ways as described below.
∆η lies in the range [0◦, 90◦], where 0◦ indicates that the central galaxy is perfectly aligned with

the shape of the projected member galaxy distribution of the cluster. That distribution is believed to
trace the underlying DM halo shape with some scatter (Evans & Bridle, 2009; Oguri et al., 2010). The
quantity ∆η is thus an observable proxy for the level of central galaxy alignment with its DM halo.
We will regress it onto central galaxy- and cluster-related predictors to identify what central galaxy
properties and/or cluster properties most strongly predict the alignments of central galaxies with their
satellite galaxy distributions.

The definition of θcen is illustrated in the left panel of Fig. 2.1. It is a direct observable reflecting
a satellite’s angular position with respect to the major axis direction of it’s central galaxy. With
each satellite galaxy having its corresponding θcen as the response variable, we will regress it onto
individual satellite quantities to understand what kind of satellites are more preferentially located
along the major axis of the central galaxy.

2.3.2 Potential predictors

We classify the 16 predictors into three categories: central-related, cluster-related and satellite-related
quantities. Table 2.2 lists these predictors under each category.

Central GalaxyQuantities: Weuse six central galaxy related physical parameters: central galaxy
dominance, 0.1Mr , 0.1Mg-0.1Mr color, ellipticity, effective radius, and central probability. Since there
is a tight correlation between the size and luminosity of galaxies (e.g., Bernardi et al., 2014), in order
to investigate the effect of galaxy size on central galaxy alignments, we use the offsets in galaxy size
from the fitted size-magnitude relation, ∆log(cental Reff) ≡ measured log(cental Reff) − predicted
log(cental Reff), as our predictor when doing linear regression. The top panel of Fig. 2.4 shows the
log(central Reff)–central 0.1Mr correlations for the DR8 central galaxies. In the bottom panel, we
present the log(central Reff) residuals from the fitted log(central Reff)–central 0.1Mr relation, as a
function of central 0.1Mr .

Cluster Quantities: We have four cluster-related physical parameters: log(richness), redshift,
cluster ellipticity and cluster member concentration ∆R.

Satellite Quantities: The six satellite-related quantities are the cluster-centric distance of each
satellite normalized by its host R200m, 0.1Mr , 0.1Mg-0.1Mr color, ellipticity, effective radius, and
the satellite alignment angle φsat. As for the central galaxies, we use the residual effective radius,
∆log(Reff), for satellites as our physical parameter instead of the directly measured Reff , in attempt to
eliminate the contribution of luminosity on size. We fit the log(Reff)–0.1Mr correlations for the the
73146 satellites as shown in the top panel of Fig. 2.5 first, and then use ∆log(Reff) ≡measured log(Reff)
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Figure 2.4: The top panel shows the contour plot of log(central Reff) versus central 0.1Mr . The red
dash line shows the least-squares fitting of a linear relationship between log(central Reff) and central
0.1Mr , with the equation of the best fitted line shown on the plot. The bottom panel plots the residuals
versus central 0.1Mr .
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Figure 2.5: Similar to Fig. 2.4 but for cluster member galaxies instead of centrals.

− predicted log(Reff) as our new size predictor. The bottom panel of Fig. 2.5 shows the ∆log(Reff) as
function of 0.1Mr .

2.3.3 Variable selection

The goal of variable selection (e.g., Burnham & Anderson, 2003a; James et al., 2013) is to identify
the subset of predictors that are important within a large pool of potential predictors. There are
many statistical methods for subset selection; we adopt the “Forward-Stepwise Selection” approach
(See e.g., Sec. 3.3 of Friedman et al., 2001). Beginning with a model containing no predictor,
forward-stepwise selection involves fitting N models for the N predictors separately: Y = β0 + βiXi,
and selects the regressor Xp with the most significant hypothesis test on βp , 0, i.e., greatest absolute
t-value or smallest p-value. In the second cycle, N − 1 models for the remaining N − 1 predictors
are fit via Y = β0 + βpXp + βiXi, where i , p, and again we select the most significant regressor
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Table 2.2: The 16 potential predictors used to study the central galaxy alignment effect in this work.

Central Galaxy Quantities Cluster Quantities Satellite Quantities
central galaxy dominance log(richness) log(r/R200m)
central 0.1Mr redshift satellite 0.1Mr

central 0.1Mg −
0.1 Mr color cluster ellipticity satellite 0.1Mg −

0.1 Mr color
central ellipticity satellite ellipticity
∆log(central Reff) cluster member ∆log(satellite Reff)
Pcen concentration (∆R) φsat

Xq. At each stage, one predictor is selected to add to the model until the remaining regressors have
p-value > 0.05, which is a common stoping choice in many statistical packages. The forward stepwise
algorithm therefore considers at most N + (N − 1)+ . . . + 1 = N(N + 1)/2 models in the extreme case
when all N regressors have p-value < 0.05. We then fit a model using least squares on the reduced
set of variables, and determine the final t- and p-values of the selected featured predictors.

To ensure the robustness of our variable selection scheme, we compare our variable selection result
with another variable selection method – “Best-Subset Selection” – which considers all 2N possible
combinations of models from the N predictors, and selects the best one based on a model-selection
criterion, such as Mallow’s Cp (Mallows, 1973), Akaike information criterion (AIC, Akaike 1998),
Bayesian information criterion (BIC, Schwarz et al. 1978), or adjusted R2. (By contrast, forward-
stepwise selection is a so-called greedy algorithm – at each step, it selects only that one regressor that
best improves the overall fit – and thus it can fail to uncover the optimal model. However, it does
have the virtue of computational efficiency.) Different section criterion places different penalty on the
complexity of the model. BIC penalizes heavier on models with more variables and hence tends to
select smaller number of predictors, while adjusted R2 puts less penalty thus results in selecting more
predictors. In this work we use p-value < 0.05 as the criteria to pin down the total number of predictors
in the forward-stepwise selection process, and this result agrees with that from best-subset selection
under Mallow’s Cp and AIC, validating our use of forward-stepwise selection with our dataset.

Throughout this work, we use the statistical package StatsModels in Python to do forward
stepwise selection, and use the leaps package in R to perform best-subset selection.

In this work, we attempt to address two main questions: 1) What central galaxy and cluster
properties are the strongest predictors of the strength of central galaxy alignments? 2) What kinds
of satellites are more likely to lie along the major axis direction of their host central galaxy? To
address the first question, we regress ∆η against the central- and cluster-related quantities, and use
forward-stepwise selection to pick featured predictors. Once we have a goodmodel in terms of central-
and cluster-related quantities, we move to the second question by using θcen as a response for each
central-satellite pair, and regress θcen against the individual satellite quantities. To isolate the effects
of satellite properties, we must properly account for the overall effect from their host central galaxies
and clusters. Thus, we start with a model containing the selected central and cluster predictors from
the previous stage, and use the forward-stepwise procedure to see whether (with the presence of
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Figure 2.6: Distributions of the position angle difference between central galaxy and cluster, ∆η =
|P.A.cen − P.A.cluster |. The left panel shows the ∆η distribution of the parent 8237 centrals measured
by the re-Gaussianization method in DR8. The middle panel plots the ∆η distributions of the 4316
centrals which are bothmeasured by the re-Gaussianizationmethod in the DR4 footprint, with the light
(dark) green dots representing measurements based on the DR4 (DR8) photometry. The right panel
shows the ∆η distributions of the 7488 centrals in DR7 footprint measured by re-Gaussianization
(red dots), de Vaucouleurs (orange dots), and isophote (yellow dots) methods respectively. Points
are slightly shifted horizontally for clarity. Error bars indicate the standard error of the mean. The
horizontal black dashed line indicates the prediction for randomly-oriented central galaxies. The mean
position angle difference, 〈∆η〉, is shown in the bottom left corner of each panel.

these central and cluster quantities) there are also satellite quantities that are significant enough to be
selected as featured predictors.

2.4 Results

In this section, we report the results of an analysis of central galaxy alignments, including our linear
regression analysis.

2.4.1 Overall signal

Distribution of ∆η

We begin with a basic analysis of the properties of central galaxy alignments. Fig. 2.6 shows the
distributions of the position angle difference between the central galaxy and cluster shapes, ∆η, for
our three cluster samples tabulated in Table 2.1, defined for the purpose of investigating systemics in
various shape measurement techniques. The distributions show a highly significant degree of central
galaxy alignment with cluster orientations. The bottom left corner of each panel shows the average
∆η value, 〈∆η〉, for each sample; they are all 〈∆η〉 < 45◦ at high significance. Hence, if indeed the
satellite galaxy distributions trace the dark matter halo shapes, then centrals also tend to align with
their underlying halos.
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The left panel of Fig. 2.6 is the ∆η distribution of the 8237 centrals measured by the re-
Gaussianization method in DR8. The average ∆η for parent dataset is 〈∆η〉 = 35.07◦ ± 0.28◦;
this represents our primary result in this section, with the remaining results serving as systematics
tests.

To compare the effect of sky-subtraction algorithm on the signal, we use the sample of 4316
centrals in the DR4 footprint with re-Gaussianization shape measurements using both DR8 and DR4
photometry. The middle panel of Fig. 2.6 shows the ∆η distributions of this sample, with the light
(dark) green dots indicating measurements based on the DR4 (DR8) photometry. Within the error
bars, the two ∆η distributions and their mean 〈∆η〉 values are consistent with each other. We therefore
conclude that for the re-Gaussianization shapes, the effect of sky-subtraction does not substantially
influence the overall distribution of ∆η. However, this conclusion may not be applicable for other
shape measurement methods that trace different regions on the surface brightness profile of galaxies.
Re-Gaussianization shapes are weighted more toward the inner part of the light profile, which is less
sensitive to sky subtraction errors, while isophotal shapes are more sensitive to the outer part and
could have more systematics due to sky subtraction. However, due to the lack of isophotal shapes in
DR8, we cannot test this effect by comparing different data reductions.

To investigate the effect of shape measurement methods on the detection of central galaxy align-
ments, we use the sample of 7488 BCGs that have re-Gaussianization, de Vaucouleurs, and isophotal
shape measurements in DR7 footprint. The right panel of Fig. 2.6 shows the ∆η distributions of
these samples, with the red, orange, and yellow dots representing shape measurements based on
the re-Gaussianization method, de Vaucouleurs fit, and isophotal fit, respectively. Within the er-
ror bars, the second and third distributions agree, while the ∆η distribution measured using the
re-Gaussianization method differs systematically. The value of 〈∆η〉 using the re-Gaussianization
method (35.10◦±0.30◦) is significantly larger than that calculated by de Vaucouleurs (33.34◦±0.29◦)
and isophotal (32.86◦ ± 0.29◦) shape measurements. This could be due to a systematic or caused by
a true physical effect. We will discuss in detail in Sec. 2.5.

As further illustration of the alignment between the central and shape of member galaxy dis-
tribution, in Fig. 2.7 we compare the cluster and central galaxy position angles. With the overall
distribution peaking around the symmetric axis of the figure, we observe the preference for centrals
pointing toward the orientation directions of clusters.

Distribution of θcen

Fig. 2.8 shows the distributions of the central galaxy alignment angle, θcen, for our three sets of
central-satellite pairs. The preferential alignment of satellites along the central galaxy major axis is
quantified in the average central galaxy alignment angle, 〈θcen〉, in the bottom left corner of each panel.
The alignment signal looks less dramatic as revealed in 〈θcen〉 value compared with 〈∆η〉 shown in
Fig. 2.6. This is because θcen records the individual location of each satellite with respect to its central
galaxy major axis; these tend to be more randomized than simply considering the overall satellite
distribution as a whole.

The left panel of Fig. 2.8 shows the θcen distribution of the 94817 central-satellite pairs measured
by the re-Gaussianization method in DR8. The average central galaxy alignment angle for this dataset
is 〈θcen〉 = 41.42◦ ± 0.08◦.
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Figure 2.7: Comparison between the position angles of cluster and central galaxy. The blue dashed
line indicates the case where the position angle of the central is the same as that of its cluster. The two
blue dot-dashed lines delineate a region where the P.A. differences between the cluster and central
galaxy are less than 45◦.
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Figure 2.8: Distributions of the central galaxy alignment angle. The left panel shows the θcen

distribution of the 94817 central-satellite pairs measured by the re-Gaussianization method in DR8.
The middle panel shows the θcen distributions of the 46370 central-satellite pairs measured by re-
Gaussianization in both DR8 photometry (dark green) and DR4 photometry (light green), within the
DR4 footprint. The right panel shows the θcen distributions of the 86350 central-satellite pairs in
DR7 that are measured by re-Gaussianization (red dots), de Vaucouleurs (orange dots), and isophote
(yellow dots) methods respectively. Points are slightly shifted horizontally for clarity. Error bars are
represented by the standard error of the mean. The horizontal black dash line indicates the case if
satellites were isotropically distributed around centrals. The mean central galaxy alignment angle,
〈θcen〉, is shown at the bottom left corner of each panel.

45



2.4. Results Chapter 2. Central galaxy alignments

The middle panel shows the θcen distributions for the 46370 central-satellite pairs in the DR4
footprint, using DR8 (dark green) and DR4 (light green) photometry, constructed to compare the
effect of sky-subtraction technique on the measurement of θcen. Within the error bars, the two θcen

distributions and the derived 〈θcen〉 values are consistent with each other. As for ∆η, we conclude that
for the re-Gaussianization shapes, use of different SDSS photometry pipelines does not influence the
results, but caution that this argument may not hold for other shape measurement methods.

To fairly compare our θcen measurement with studies based on different shape measurement meth-
ods, the right panel of Fig. 2.8 shows θcen measured via re-Gaussianization (red dots), de Vaucouleurs
(orange dots), and isophote (yellow dots) shape measurements of the 86350 central-satellite pairs in
the DR7 footprint. Within the error bars, the histograms of θcen using de Vaucouleurs and isophotal
shapes are consistent with each other, but that for re-Gaussianization method is systematically differ-
ent, resulting in a systematically higher 〈θcen〉 (41.40◦ ± 0.09◦). We will discuss the measurement
difference in Sec. 2.5.

2.4.2 Linear regression: central galaxy alignments with satellite distributions

To investigate the alignment of the central galaxy with its dark matter Halo, we use our observational
proxy (the difference in central and cluster position angles, ∆η) as the response variable, and apply
forward-stepwise selection described in Sec. 2.3.3 to select featured predictors among the central- and
cluster-related quantities. The list of predictors is defined in Sec. 2.3.2, with the observational method
for determining them in Sec. 2.2.2.

Fig. 2.9 displays the scatterplot matrix between ∆η and all of the central- and cluster-related
predictors based on the re-Gaussianization shape measurement. The diagonal panels are histograms
of physical parameters, and the other panels are scatterplots between pairs of parameters, with the
corresponding correlation coefficient noted on each plot.

Several important results are evident in this scatterplot matrix. First, the top row summarizes
how ∆η is related to all ten predictors. The sign of the correlation coefficient reveals the direction
of the relationship between ∆η and the regressor , while the magnitude of the correlation coefficient
indicates the strength of this dependence. The overall impression is that ∆η is weakly related to most
of the predictors, with a maximum correlation coefficient of ∼ −0.2 with cluster ellipticity. Though
the correlations are weak, we can still judge whether these dependences are statistically significant
given our large sample size. Second, some of the predictors are highly correlated with each other,
such as central galaxy 0.1Mr , central galaxy dominance and Pcen. The forward-stepwise selection
procedure will help determine whether we should keep them all as featured predictors; if any are
jointly responsible for the same variation in ∆η, then we will select just the most representative one
among them.

After performing forward-stepwise selection, we find that cluster ellipticity is the most dominant
predictor for the central galaxy alignment effect, and almost all of the central-related quantities are
selected as feature predictors except for central galaxy dominance. The linear regression results,
including the statistical significance of each selected predictor, are in Table 2.3, and the estimated
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Figure 2.9: Scatterplot matrix of the position angle difference between central and cluster shapes,
∆η, with the ten central- and cluster-related predictors. The correlation coefficient between each pair
of parameters is noted on the plot. We highlight scatterplots with correlations that are significant at
> 10σ in yellow. The gray contour levels indicate 20%, 40%, 70%, and 95% number of clusters of
our data.
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Table 2.3: Selected featured predictors for the central galaxy-cluster alignment effect based on the
8233 DR8 clusters. The first column is the name of the selected predictor. The second column gives
the regression coefficient β. Columns 3 and 4 provide the t- and p-values from the significance tests
on the deviation of β from zero. Higher |t | or smaller p indicates a higher significance for β , 0.
Columns 5 and 6 are the mean and standard deviation of the corresponding predictor for the 8233
clusters, necessary in Eq. (2.12) to normalize our predictor Pi to regressor Xi.

Predictor β t-value p-value mean σ

cluster e -4.91 -17.8 8 × 10−70 0.21 0.11
∆log(cen. Reff) -2.67 -9.7 6 × 10−22 0.00 0.15
cen. 0.1Mr 2.42 7.8 9 × 10−15 -22.30 0.47
cen. color -1.29 -4.6 4 × 10−5 0.97 0.08
Pcen -1.21 -4.0 6 × 10−5 0.87 0.17
cen. e† -1.03 -3.7 0.0002 0.26 0.16
log(richness) -0.65 -2.2 0.03 1.48 0.15
†The relationship between central galaxy ellipticity and the
central galaxy alignment signal is more complicated. We will
provide further investigation in Sec. 2.6.5.

best-fitting equation is:

∆η = 35.07 − 4.91
cluster e − 0.21

0.11

−2.67
∆log(cen. Reff) − 0.00

0.15
+ 2.42

cen. 0.1Mr + 22.30
0.47

−1.29
cen. color − 0.97

0.08
− 1.21

Pcen − 0.87
0.17

−1.03
cen. e − 0.26

0.16
− 0.65

log(richness) − 1.48
0.15

(2.14)

Here we note that since the relation between ∆η and these selected predictors is not truly linear and
has substantial stochasticity, we cannot rely on the resulting regression equation to predict the value of
∆η for any given cluster. We can only use Eq. (2.14) to understand the sign and approximate strength
of the variation of ∆η with those predictors to first order. Therefore, based on the trend of Eq. (2.14),
we find that central galaxy alignment effects are strongest for clusters that are more elongated and
higher richness, or clusters that have centrals with larger physical size, brighter absolute magnitude,
redder color, larger ellipticity2, and a higher centering probability.

2.4.3 Linear regression: angular segregation of satellite galaxies

In Sec. 2.4.2, we used the positions of satellite galaxies weighted by their membership probabilities to
trace the cluster and underlying halo shape, without any consideration of individual satellite properties.

2As we will demonstrate later in Sec. 2.6.5, the dependence on central galaxy ellipticity is actually more complicated
than this simple linear regression result indicates.
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Table 2.4: Predictors involved in the angular segregation of satellites as analyzed in Sec. 2.4.3. The
columns are the same as in Table 2.3. The bottom panel lists the already-identified central galaxy and
cluster quantities. These quantities are included in the linear regression equation when doing variable
selection, in order to properly account for their influence on the angular segregation of satellites. The
top panel shows the four selected satellite quantities that significantly affect angular segregation.

Predictor β t-value p-value mean σ

satellite color -0.66 -6.7 2 × 10−11 0.91 0.09
satellite 0.1Mr 0.54 5.23 1 × 10−7 -20.46 0.76
log(r/R200m) 0.21 2.12 0.03 -0.87 0.32
satellite e 0.20 2.1 0.04 0.43 0.26
cluster e -2.52 -25.6 2 × 10−143 0.21 0.11
∆log(cen. Reff) -0.64 -6.4 1 × 10−10 0.02 0.15
cen. 0.1Mr 0.58 5.01 1 × 10−6 -22.35 0.49
cen. color -0.28 -2.8 0.005 0.98 0.07
Pcen -0.46 -4.2 2 × 10−5 0.87 0.17
cen. e -0.42 -4.2 3 × 10−5 0.25 0.16
log(richness) 0.09 0.8 0.4 1.58 0.21

However, satellite galaxies with different properties are known to be distributed in different wayswithin
clusters, a phenomenon known as segregation (e.g., van den Bosch et al., 2016). Segregation is often
discussed in terms of the radial direction to the cluster center. Here we investigate angular segregation
with respect to the central galaxy major axis, to understand what satellite properties most strongly
predict the satellite tendency to lie along the central galaxy major axis.

Fig. 2.10 shows the scatterplot matrix of θcen versus the six satellite-related quantities for the
73146 DR8 central-satellite pairs. The top row displays scatterplots between θcen and all other
satellite quantities. Compared with Fig. 2.9, the absolute magnitudes of the correlation coefficients of
θcen with these satellite quantities are generally smaller than the correlation between ∆η and central
and cluster quantities. Although the correlations are weak, the large number of pairs means there
is still enough statistical power to measure these correlations robustly. In general, the relationships
between all pairs of predictors appear to be weak, except for 0.1Mr and ellipticity, with a correlation
coefficient of 0.236. The lower right corner shows the distribution of φsat, which is very close to
flat, indicating that satellite radial alignment is a far weaker phenomenon compared to central galaxy
alignments; we explore this phenomenon in more detail in future work.

Given that we already identified the important central galaxy- and cluster-related predictors that
affect the central galaxy alignment signal, it is reasonable to include these predictors in our linear
regression analysis in order to compensate for their influence on the angular segregation of satellites.
Table 2.4 shows the results of linear regression, with the new selected satellite quantities on top and
the already-known central galaxy and cluster quantities on the bottom. Almost all previously-selected
quantities have an associated p−value below 0.05 when using θcen as the response variable, except
for cluster richness λ. This may be due to the fact that higher richness clusters tend to be rounder (as
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Figure 2.10: Scatterplot matrix of the central galaxy alignment angle with the six satellite related
quantities. The correlation coefficient between each pair of parameters is noted on the plot. We
highlight scatterplots with correlations that are significant at > 10σ in yellow. The gray contour levels
indicate 20%, 40%, 70%, and 95% number of satellites of our data.
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revealed in the last row of Fig. 2.9), and thus have their member galaxies less segregated toward any
specific direction. Also, although the regression slope for log(richness) is positive, we cannot infer
that satellites in lower richness clusters tend to be more segregated (i.e. having smaller θcen). The level
of angular segregation against richness is not significant enough for us to make such a conclusion.
The best-fitted linear regression equation with these predictors is

θcen = 41.60 − 0.66
sat. color − 0.91

0.09
+ 0.54

sat. 0.1Mr + 20.46
0.76

+0.21
log(r/R200m) + 0.87

0.32
+ 0.20

sat. e − 0.43
0.26

−2.52
cluster e − 0.21

0.11
− 0.64

∆log(cen Reff) − 0.02
0.15

+0.58
cen 0.1Mr + 22.35

0.49
− 0.28

cen color − 0.98
0.07

−0.46
Pcen − 0.87

0.17

−0.42
cen e − 0.25

0.16
+ 0.09

log(richness) − 1.58
0.21

(2.15)

The tendency of satellites to reside along the central galaxy major axis is strongest for satellites that
are redder, brighter, rounder, and located closer to the central.

2.5 The effect of shape measurement method on the central galaxy
alignment signal

In the rightmost panels of Figs. 2.6 and 2.8, we compared the distributions of our response variables,
∆η and θBCG, using three different shape measurements methods. In both cases, the level of central
galaxy alignment measured via de Vaucouleurs and isophotal shapes agree with each other within the
error bar, while the re-Gaussianization measurement gives us a less strong central galaxy alignment
effect. In this section, we discuss the interpretation of this result in terms of systematic and physical
effects in these shape measurements. Our discussion also relies on results of Singh & Mandelbaum
(2016), who analyzed the effect of these three shape measurement methods on the inferred galaxy
alignments of luminous red galaxies (LRGs).

2.5.1 Systematic error

Different shape measurements deal with the effects of the PSF on galaxy images differently. The re-
Gaussianization technique was designed for weak lensing studies requiring the most complete removal
of the PSF effect on galaxy shapes. The de Vaucouleurs shape measurement only partially corrects
for the PSF by using a double-Gaussian fit instead of the full PSF model, while the isophotal shape
measurement does not correct for the effect of the PSF explicitly.

Another relevant aspect of systematics has to do with what part of the light profile is used for the
measurement. The re-Gaussianizationmethod has an elliptical Gaussianweight function, emphasizing
the central regions of the profile. The de Vaucouleurs profile includes both the central region and
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the large-scale wings of the light profile, while the isophotal shape measurement only uses the 25
mag/arcsec2 isophote which is quite far out in the wings. These choices could make the latter two
methods more sensitive to sky subtraction systematics than the re-Gaussianization method (for more
discussion in the context of the isophotal method, see Hao et al., 2011).

One could infer that isophotal shapes would contain severe systematics due to the PSF. However,
the results of Singh & Mandelbaum (2016) suggest that the impact of the PSF on the shape measured
at very low surface brightness is quite small. Instead, the de Vaucouleurs shapes exhibited the most
significant systematic errors of the three methods. Therefore, we may treat the detected differences in
the central galaxy alignment strength between the re-Gaussianization and isophotal shapes as reflecting
a true physical effect that we will discuss below. However, we should keep in mind that the systematic
tests in Singh & Mandelbaum (2016) were based on a specific sample of galaxies, while our central
galaxy sample (which is preferentially located in regions of high galaxy density) may still suffer from
some contamination in the isophotal shapes, as suggested by Hao et al. (2011).

2.5.2 Physical effect

The higher apparent degree of central galaxy alignment using isophotal shapes compared to that using
re-Gaussianization sahpes may be primarily due to a mechanism called “isophote twisting” (di Tullio,
1978, 1979; Kormendy, 1982; Romanowsky & Kochanek, 1998; Lauer et al., 2005). The physical
origin of this effect is that the outer part of the galaxy light profile may respond more strongly to tidal
fields than the inner part of the galaxy. Thus, by tracing the outermost isophote of the galaxy, the
isophotal shape records the highest level of alignment with the tidal field.

2.6 The origin of central galaxy alignment

In Sec. 2.4.2 we applied linear regression analysis to the nine central galaxy and cluster quantities,
and picked the predictors that significantly influence the alignment between central galaxy and its
host cluster. We now address the origin of this alignment phenomenon and compare our results with
previous studies.

2.6.1 Dependence on cluster ellipticity

Simulations have revealed that clusters are triaxial rather than spherical (Jing & Suto, 2002; Hopkins
et al., 2005; Kasun & Evrard, 2005; Allgood et al., 2006; Hayashi et al., 2007), so they look elongated
when projected on the sky. The last panel in the second last row of Fig. 2.9 shows the distribution
of projected redMaPPer cluster ellipticities traced by the weighted member galaxy distribution (see
Sec. 2.2.2 for definition of cluster ellipticity), with a mean cluster ellipticity of ∼0.20 and a mean
projected semi-minor to semi-major axis ratio of 〈b/a〉 ∼ 0.67, which agrees with the N-body
simulation of Hopkins et al. (2005) (〈b/a〉 ∼ 0.67, at redshift zero), but is rounder than that directly
measured through gravitational lensing (〈b/a〉 ∼ 0.48+0.14

−0.09 in Evans & Bridle 2009, and 〈b/a〉 ∼
0.46 ± 0.04 in Oguri et al. 2010).

As shown in Table 2.3, we find that cluster ellipticity has the most significant influence on the
central galaxy alignment signal, with centrals in more elongated clusters having a stronger alignment
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with the orientation of their host clusters (see also the second-to-last panel in the first row of Fig. 2.9,
which directly displays the correlation between cluster ellipticity and central galaxy alignment). Since
the position angle for round clusters is not very meaningful, particularly given observational noise, we
have examined the correlation trend for clusters with ellipticity > 0.2, and found the trend that more
elongated clusters show stronger alignment still holds.

The influence of cluster ellipticity on central galaxy alignment can be further visualized in the
left panel of Fig. 2.11, where we plot the distribution of the pmem-weighted averaged central galaxy
alignment angle for all pmem > 0.2 central-satellite pairs in each cluster, 〈θcen〉cl =

∑
i pmem, iθcen∑

i pmem, i
,

against the cluster ellipticity. The sharp boundary on each side is due to the way we define cluster
ellipticity. Since we calculate cluster ellipticity via the satellite galaxy distribution, round clusters
(with satellites distributed in an almost circularly symmetric way) thus have 〈θcen〉cl ∼ 45◦. More
elongated clusters have more potential for going to lower or higher 〈θcen〉cl values. At fixed cluster
ellipticity, the distribution of 〈θcen〉cl tends to cluster towards the edges of the minimum and maximum
available values. As a demonstration, the right panel of Fig 2.11 shows the results of simulating
two fake clusters with fake member galaxies distributed with elliptical symmetry such that the two
clusters would have measured cluster ellipticity of 0.5 (green) and 0.3 (red). We then randomized
the P.A. of the simulated central galaxies, and calculated the corresponding 〈θcen〉cl value. From the
scatter plot and histograms of P.A. central vs. 〈θcen〉cl, it is clear that the relationship between central
galaxy P.A. and 〈θcen〉cl is non-linear, and that this non-linearity is responsible for the shape of the
left panel of Fig. 2.11. However, with more clusters distributed on the 〈θcen〉cl < 45◦ side across the
full cluster ellipticity range shown in the left panel of Fig 2.11, centrals do prefer to align with their
overall satellite distributions.

There are two mechanisms that may be responsible for the strong dependence of central galaxy
alignment on cluster shape: 1) the imprint of infall of matter and galaxies into the cluster preferentially
along filaments, and 2) the large-scale tidal gravitational field (either primordial, at the time of central
galaxy formation, or tidal torquing over time). First, centrals and their parent clusters are both formed
via accreting galaxies along filaments, which imprint preferred directions. As a result of these inflows,
we expect central galaxies to be aligned with their clusters, especially for relatively young and small
clusters with only one dominant filament, leaving an elongated distribution of galaxies (Knebe et al.,
2004; Libeskind et al., 2005, 2015). More massive clusters may have experienced several merger
events along filaments in various directions during their assembly history. This more complicated
history makes the distribution of galaxies in these clusters more disturbed and randomized, resulting in
a rounder shape. Indeed, as shown in the second-to-last row of Fig. 2.9, there is a weak anti-correlation
between cluster ellipticity and richness in our data, with richer clusters having a smaller ellipticity.
The subsequent violent merger activities may wash out the memory of the primordial filamentary
structure, causing a reduction in the alignment signal (Ragone-Figueroa & Plionis, 2007).

However, over the process of virialization, the distribution of galaxies in clusters would again
gradually be stretched out along the direction with the surrounding large-scale tidal field, reaching
new equilibrium states with a triaxial morphology. At the same time, central galaxies would also
gradually be tidally torqued along the new established direction of tidal field. A more anisotropic
distribution of satellites could indicate a more intense tidal fields to torque the centrals. It is unclear
how important this instantaneous torquing is; Camelio & Lombardi (2015) demonstrated that at galaxy
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Figure 2.11: Left Panel: Contour plot between cluster ellipticity and averaged central galaxy alignment
angle for all central-satellite pairs in each cluster, 〈θcen〉cl. The blue dashed line indicates the case
〈θcen〉cl = 45◦, when satellites are randomly distributed within cluster. The light-green (pink) shaded
area marks out clusters with ellipticity in the range of 0.43∼0.57 (0.28∼0.32). For each cluster
ellipticity value, there are more clusters distributed in the region below the blue dash line than above,
showing the tendency for central galaxy alignments. Right Panel: Non-linear relationship between
central galaxy P.A. and the derived 〈θcen〉cl in our simulated data. The simulated clusters with cluster
ellipticity of 0.5 (0.3) are shown in green (red). With completely random distributions of simulated
central galaxy P.A., the distributions of derived 〈θcen〉cl tend to peak at their minimum or maximum
available values. The light-green and pink shaded histograms are the distributions of 〈θcen〉cl in our
observational data within certain cluster ellipticity ranges as highlighted in the left panel.
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scales, it is too weak to account for the observed intrinsic alignments, but it is unclear whether it is
definitely subdominant for cluster mass scales.

We emphasize that the above two scenarios (anisotropic infall and tidal torquing) are not mutually
exclusive and do not necessarily have some sequence in time. They could both operate at various
stages of the cluster and central galaxy evolutionary process. Also, according to the linear alignment
model (e.g., Catelan et al., 2001; Hirata & Seljak, 2004b), the intrinsic alignment is already set by
tidal fields at the time of galaxy formation, and it is not clear how relevant these additional processes
that operate later may be.

2.6.2 Dependence on central galaxy effective radius

As we have shown, the central galaxy effective radius at fixed intrinsic luminosity is also a very
significant predictor of the central galaxy alignment effect, with larger-sized centrals at a given
luminosity exhibiting a stronger degree of central galaxy alignment than smaller-sized centrals.

Observations and semi-analytic models have revealed that most massive galaxies grow inside-out,
with their extended stellar halos dominated by accreted stars. The supply of accretion stars may
originate from the stellar streams (Belokurov et al., 2006) or the diffuse intracluster light (ICL) which
is composed of tidally-stripped stars that are gravitationally bound to the cluster potential (Oemler,
1976; Lin & Mohr, 2004). These massive accretion-dominated galaxies thus tend to have more
extended light profiles compared to galaxies with a stellar component that primarily underwent “in
situ” star formation (van Dokkum et al., 2010; Cooper et al., 2013).

There are two scenarios that can explain the dependence of central galaxy alignment on central
galaxy size. First, centrals with more extended morphology may respond more strongly to tidal forces
(either the primordial or instantaneous tidal field). Defined as the difference between the gravitational
forces at two different positions on an object, the strength of the tidal force would be stronger for objects
that have a larger spatial extent. The alternative explanation stems from the closely linked formation
and evolution histories of centrals with their host clusters and the surrounding large-scale structures
(Conroy et al., 2007). As reported in Zhao et al. (2015), centrals with extended cD envelopes tend to
have larger Re, and are believed to be dominated by baryons from accretion. If there is an abundant
supply of accretion stars in some direction aligning with the overall distribution of member galaxies,
the central galaxy shape would naturally extend towards the preferred direction of accretion, and thus
align with the angle of the member galaxy distribution. We are unable to distinguish between these
two scenarios.

2.6.3 Dependences on central galaxy luminosity, dominance and centering probability

According to Fig. 2.9, central galaxy luminosity, dominance and centering probability are mutually
highly correlated with each other, and thus are likely caused by similar physical origins. Here we
discuss the dependences of central galaxy alignment on these three predictors.

As revealed in Table 2.3, we found that ∆η depends significantly on central galaxy 0.1Mr and
Pcen, with centrals that are more luminous and have a higher centering probability tending to be more
aligned with the cluster position angle. Central galaxy dominance, however, was not selected as a
featured predictor. This does not mean that central galaxy dominance is not important, but rather that
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its effect on central galaxy alignment may have been soaked up by the effects of central 0.1Mr and
Pcen, so that knowing the central galaxy dominance provides no further help when predicting ∆η if
the other two predictors are also known.

Our result is consistent with that of Hao et al. (2011), who also detected a strong dependence of
BCG alignment on BCG luminosity based on a sample of richness ≥ 15 clusters taken from GMBCG,
a cluster catalog constructed based on the red-sequence method (Hao et al., 2010). Also, due to the
tight correlation between central galaxy 0.1Mr and dominance, with more luminous centrals showing
higher degree of central galaxy dominance, our result implies that clusters withmore dominant centrals
should have stronger central galaxy alignment. This agrees with the result of Niederste-Ostholt et al.
(2010). They found that BCG-dominant clusters exhibit stronger BCG alignments than less BCG-
dominant clusters do, with a difference significant at the 4.4σ level, based on both the maxBCG cluster
catalog (Koester et al., 2007) and a matched filter cluster catalog of Dong et al. (2008).

The dependences of the central galaxy alignment signal on central 0.1Mr , dominance and Pcen have
their common origin in the following aspects. 1) It may originate from the purity of measurement.
Luminous and dominant centrals have a higher probability of sitting closer to the true center of their
dark matter potential wells (Wen & Han, 2013). This kind of system suffers less contamination from
wrong detections, and could therefore end up showing a higher central galaxy alignment signal. 2)
Clusters with luminous and dominant centrals are typically more relaxed. More relaxed systems
have experienced the uninterrupted (by mergers) influence of surrounding large-scale tidal fields for a
longer period of time, and thus it may be more likely for their centrals to align.

Given that central 0.1Mr and dominance are highly correlated at ∼0.6, it is natural to ask what
causes us to select central 0.1Mr rather than dominance as a featured predictor? To address this
question, in Fig. 2.12, we show some example clusters with luminous but less dominant centrals. As
shown, these clusters typically have several bright galaxies, and may still be undergoing significant
merging and disruptive interactions. Figs. 2.12a and c show examples of clusters with their dominantly
bright members still some distance away from the centrals. These systems may be not relaxed, but
if the centrals’ high luminosities and the distributions of their members stem from the same primary
avenue of accretion, high alignment signals can still shown even if the centrals are not dominant. This
explains why the importance of central 0.1Mr stands out from central galaxy dominance.

Fig. 2.12b shows the case where the bright members already sank into the potential well of the
cluster and are closely interacting with the central galaxy. In this case, the orientation of the central
galaxy may be affected temporarily by these closely interacting galaxies, rather than reflecting the
tidal field originating from the large-scale environment. The upper right corner of each panel in
Fig. 2.12 shows some physical properties of the central galaxy. In the case of Fig. 2.12b, with several
bright galaxies crowded in the central region of the cluster, the central Pcen tends to be low. This
demonstrates that Pcen can still be selected as a featured predictor even after selecting central 0.1Mr ,
because it indicates whether there are other bright galaxies near the central that may reduce the central
galaxy alignment with the large-scale tidal field through dynamical processes. While examining
images of individual clusters does not give the full picture, it is a way of supplementing the statistical
measure of central galaxy alignment from the linear regression analysis.
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Figure 2.12: Examples of clusters with central galaxies that are luminous but not dominant. The
widths of panels (a), (b), (c) are set to be 1

4 ,
1
5 , and

1
2 R200m (respectively) of their host clusters.
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2.6.4 Dependence on central galaxy color

We observed that redMaPPer centrals with redder color show stronger central galaxy alignments. The
enhancement of the central galaxy alignment signal among red hosts has also been observed in systems
across a wide range in halo masses. Based on a sample of isolated host galaxies with typically 1–2
csatellites, Azzaro et al. (2007) and Agustsson & Brainerd (2010) found an excess of satellites along
the major axis of their centrals only in red-colored hosts, while satellite distributions are consistent
with isotropic around blue hosts. Based on group catalogs spanning from isolated host to cluster scale
halos, Yang et al. (2006), Wang et al. (2008), and Siverd et al. (2009) all found that the alignment
signal is only detected in groups with red centrals, and is strongest when considering red centrals and
red satellites.

Unlike those previous works, our sample is selected based on the red-sequence method, so the
centrals all belong to the red galaxy population. Within the red population, we nonetheless found that
the central galaxy alignment depends on the 0.1Mg −0.1 Mr color of central galaxy in cluster scale.
Galaxy color indicates the age of the stellar populations. Recent star formation activities induced
by the supply of gas from surrounding materials or merger events would cause the central galaxy
color to become less red. Our result thus suggests that central galaxy alignment signal preferentially
exists in centrals with relatively old stellar population. For clusters with bluer central galaxies, the
alignment of centrals may be disturbed by the recent merger events that also triggered star formation
and contributed to the bluer color.

2.6.5 Dependence on central galaxy ellipticity

Our linear regression shows that central galaxy ellipticity (as defined in Eq. 2.2) is negatively correlated
with ∆η, which means that centrals with larger ellipticity exhibit stronger central galaxy alignment.
However, the complication in detecting this trend is that it is more difficult to accurately determine the
position angles for round centrals. Statistical scatter in measuring the position angles of more round
centrals could in principle drive the effect we have observed, rather than it being a true physical effect.
Many studies have required the central galaxy ellipticity to exceed some value in order to avoid this
effect, at the expense of introducing some systematic selection effect.

To address this issue, in Fig. 2.13 we show what happens to the correlation between central galaxy
ellipticity and central galaxy alignment angle when we divide the original full sample (left panel) into
two ellipticity bins at a value of 0.2, with 3554 centrals in the < 0.2 bin, and 4679 centrals in the
other. This division reveals that the detected negative correlation of -0.047 in the full cluster sample
is dominated by centrals with ellipticity below 0.2 (middle panel), in which a correlation coefficient
of -0.12 is measured. These centrals are particularly sensitive to measurement error in the position
angle, so the observed negative correlation may arise at least in part from measurement error. It
may be also possible that this negative correlation originates from real physical mechanisms. The
morphology of centrals reflect their formation history. More elliptical centrals may have experienced
more anisotropic accretion that contributes to a stronger alignment effect. Distinguishing between
measurement error and this real physical effect is difficult.

If focusing on systems with ellipticities above 0.2 (right panel), the central galaxy alignment angle
becomes positively correlated at 0.044 ± 0.015, meaning that more elongated centrals have smaller
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Figure 2.13: Contours of scatterplots of central galaxy ellipticity v.s. the position angle difference
between central galaxy and cluster (∆η) in different central galaxy ellipticity bins. The left panel
shows all of our cluster sample, the middle panel shows only clusters with central galaxy ellipticity
below 0.2, while the right panel plots clusters with their central galaxy ellipticity above 0.2. The
correlation coefficient between ∆η and central galaxy ellipticity is shown at the upper right corner in
each panel.

alignment signals. We also find that the observed positive correlation is largely driven by the 8%
highest ellipticity centrals, with ellipticity ≥ 0.5. Our result agrees with that of Yang et al. (2006) (see
their Fig. 2), who found the same tendency using groups with central galaxy ellipticity3 ≥ 0.2.

What causes high-ellipticity centrals to be less aligned? To partially address this question, we
visually inspected the images of centrals with very high ellipticities (≥ 0.6) and presented some
examples in Fig. 2.14. Surprisingly, besides the expected cases of high-ellipticity centrals that are
more blue and exhibit disky structures (Fig. 2.14a) or those with anisotropic ICL (Fig. 2.14b), we
found that in many instances, high-ellipticity centrals are systems with ≥ 2 bright cores in a single
extended envelope (Fig. 2.14c, 2.14d). These multiple-core centrals are currently undergoing mergers.
During the violent coalescence processes, the position angles of centrals change rapidly and no longer
reflect the large-scale matter distribution, resulting in a wide spread in ∆η.

We conclude that we should ignore central galaxy ellipticity as an predictor, although it is signifi-
cantly identified through our variable selection process. The observed negative correlation is mostly
driven by rounder centrals whose P.A. determination is more likely affected by systematics. For more
elongated centrals, positive correlation with ∆η is found, and this correlation is possibly driven by
centrals at higher ellipticity end. So far we cannot draw a clear conclusion about the impact of central
ellipticity on central galaxy alignments. Larger sample size and improved shape measurement method
in the future would help us to analyze the non-linear relation between ∆η and central galaxy ellipticity.

3The definition of galaxy ellipticity adopted in Yang et al. (2006) is 1-b/a, based on SDSS isophotal measurement.
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(c)      Cen. e = 0.69
           Δη = 88.4

(b)      Cen. e = 0.62
           Δη =   6.4

     Cen. e = 0.76
           Δη = 36.8

(a)

(d)      Cen. e = 0.78
           Δη = 79.4

Figure 2.14: Examples of centrals with measured ellipticity ≥ 0.5. The central galaxy ellipticity and
position angle difference between the central galaxy and cluster member galaxy distribution (∆η) is
shown in the upper right corner of each panel. All panels are 150 kpc on each side. (a) Disky structure
central with blueish color. (b) Central galaxy with elongated ICL. (c)&(d) Centrals with double or
more bright cores within common extended envelopes.
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2.6.6 Dependence on richness

Richness was selected as a statistically significant predictor when using∆η as the response variable, but
not for the response variable θcen. This result suggests that the impact of richness on the central galaxy
alignment signal is marginal. We refer the reader back to the ending of Sec. 2.4.3 for related discussion.
At similar cluster mass scales, Niederste-Ostholt et al. (2010) also found a slight indication that richer
clusters show stronger alignment signals, at 2.3σ significance, while Hao et al. (2011) detected no
dependence of BCG alignment on richness.

Observationally, richness is a good estimator for the underlying cluster dark matter halo mass
(Rykoff et al., 2012). The weak dependence on richness may be due to the limited range of halo
masses covered by the redMaPPer cluster sample. In what follows, we compare papers in which the
mean central galaxy alignment angles, 〈θcen〉, are provided, and summarize the comparison results in
Table 2.5. Since almost all of the previous works used the isophotal shape measurements, we also turn
to our isophotal measurements to fairly compare the 〈θcen〉 values. At the mass scale corresponding
to galaxy groups, many studies have observed that there is a stronger alignment tendency in richer
groups (Yang et al., 2006; Wang et al., 2008; Siverd et al., 2009). As shown in Table 2.5, the 〈θcen〉

value in the highest mass bin of Yang et al. (2006) is consistent with our isophotal 〈θcen〉. Going down
to even smaller systems, Brainerd (2005) and Agustsson & Brainerd (2010) have measured the 〈θcen〉

using a sample of isolated host centrals. The values of 〈θcen〉 are generally larger than that measured
in cluster scales. Therefore, we suggest that there truly is some effect of host halo mass on alignments,
despite our marginal findings using richness as a mass tracer on cluster mass scales.

Another possible reason that richness may be a less significant predictor is due to the cluster
assembly process. Perhaps originally more massive and richer clusters had a stronger primordial
alignment with the tidal field, but the subsequent mergers and other major events washed them out,
making central galaxy alignments depend only weakly on richness.
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Chapter 2. Central galaxy alignments 2.6. The origin of central galaxy alignment

2.6.7 Dependence on redshift

We did not find any significant redshift dependence of central galaxy alignment within the limited
redshift range of 0.1–0.35. In agreement with our observation, Kang et al. (2007) studied the alignment
strength from redshift 2 to 0 and found no redshift evolution based on N-body simulations with a semi-
analytical model for galaxy formation. Based on hydrodynamic simulations, Tenneti et al. (2015a)
showed a weak redshift dependence on the intrinsic alignment amplitude at galaxy mass scales, with
the alignment signal decreasing at lower redshift. However, based on samples at cluster scale, both
Niederste-Ostholt et al. (2010) and Hao et al. (2011) have found that the BCG alignment signal is
stronger as redshift decreases within the redshift ranges of 0.08 < z < 0.44 and z < 0.4, respectively.
The discrepancies between their results and ours may arise from the following: 1) The two previous
studies have considered slightly wider redshift ranges than us such that the redshift-dependent trends
become detectable. 2) The observed redshift evolution may be just a reflection of possible combined
evolutions with other physical predictors, since those two studies did not consider as many parameters
as we do. 3) For studies that based on isophotal shape, there may be more contamination from
systematic errors at lower redshift, since for an apparently brighter BCG (at fixed luminosity), its
25 mag/arcsec2 isophote traces a larger radius where the light of BCG is more easily confused with
that from other neighboring satellites. For our redMaPPer sample, when using isophotal shape
measurements, we find that the correlation coefficient between ∆η and z is ∼1.5 times higher than that
based on re-Gaussianization shape. As discussed in Sec. 2.5, this could be partly due to a systematic
and partly driven by a real physical effect.

Studying the redshift evolution of the overall central galaxy alignment signal is important for
understanding the physical mechanism that is responsible for it. If the central galaxy alignment
largely stems from the primordial tidal field at the time of cluster formation (Catelan et al., 2001;
Hirata & Seljak, 2004b), later merging or virialization processes may weaken the primordial signal
(Hopkins et al., 2005). However, if the central galaxy alignment is dominated by signals established
from underlying tidal fields acting during the entire lifetime of clusters, or as suggested by Niederste-
Ostholt et al. (2010), the primordial alignment signals could be enhanced by the secondary infall
episodes, we may expect stronger alignment toward lower redshifts. Currently we lack data to make
a convincing conclusion about redshift evolution of central galaxy alignment; further simulations or
deeper observational data pushing to higher redshift are needed to further investigate this problem.

2.6.8 Dependence on cluster concentration ∆R

Miyatake et al. (2016) observed that separating redMaPPer clusters with similar richness and redshift
distributions into large-Rmem and small-Rmem populations (see Eq. 2.9 for definition of Rmem) yields
two cluster subsamples with similar halo masses, but different large-scale biases. Based on the N-body
simulation in the work of More et al. (2016), Rmem is found to be a good indicator for cluster mass
accretion rate. Miyatake et al. (2016) thus interpreted the detected difference in large-scale bias as
evidence for halo assembly bias, wherein the clustering of halos depends not only on their mass,
but also on other properties related to their assembly histories, such as halo formation time, mass
accretion rate, concentration, and spin (see, e.g., Gao et al. 2005; Wechsler et al. 2006; Gao & White
2007; Dalal et al. 2008; Lin et al. 2016). Regardless of whether this result indicates assembly bias
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or some other physical effect can explain the differences in large-scale bias, Rmem does correlate with
the concentration of the cluster member galaxy distribution, and it is nonetheless interesting to test
whether Rmem influences central galaxy alignments. Here we use the parameter ∆R, which removes
the richness and redshift dependence of the observed concentration of the member galaxy distribution
(Eq. (2.10)).

We found that ∆R has no effect on the central galaxy alignment. In fact, the correlation coefficient
between ∆η and ∆R is the smallest (0.016) among our predictors, as shown in the upper right corner
of Fig. 2.9. Moreover, the last row of Fig. 2.9 shows that ∆R does not have any > 10σ correlations
with other parameters, and is therefore relatively independent from the rest of the parameter space
considered in this work.

2.7 The origin of angular segregation of satellites

Wefind that the angular segregation of satellites with respect to their central galaxymajor axis direction
depends strongly on satellite color and 0.1Mr , and weakly but still significantly on log(r/R200m) and
satellite ellipticity, as shown in Table 2.4 in Sec. 2.4.3. In the following we discuss the possible
origins of these dependencies, and compare our results with previous work. We remind the reader
that instead of considering all satellite galaxies, our analysis is only based on red-sequence satellites
with membership probability above 0.8 according to the redMaPPer algorithm.

2.7.1 Dependence on satellite color

The color of the red-sequence satellites is the strongest predictor of their angular segregation, with
redder satellites tending to preferentially lie along the major axis direction of centrals. This result
agrees with previous work that considered satellites in a wider color range and revealed that the
distribution of redder satellites shows more anisotropy than that of bluer ones (Yang et al., 2006;
Azzaro et al., 2007; Faltenbacher et al., 2007; Wang et al., 2008; Agustsson & Brainerd, 2010).

Part of the dependence on satellite color may originate from galaxy properties in filaments
connected to clusters. Clusters assembled mainly by accreting satellites from surrounding filaments
(e.g., Onuora & Thomas, 2000; Lee & Evrard, 2007). As a result, galaxy properties in filaments may
leave some imprint on substructures within clusters. Using a filament catalog (Chen et al., 2016)
constructed from SDSS, Chen et al. (2017) found that red galaxies are on average closer to filaments
than blue galaxies. Hence, the observed angular segregation of redder satellites may be due to their
being preferentially accreted along filaments, which likely have more tendency to align with the major
axes of centrals (see also Kang et al. 2007).

Another possible explanation for the angular segregation by color is related to environmental
quenching. Galaxies in denser environments are redder than galaxies of similar mass in less dense
environments (Peng et al., 2010, 2012). Thus, satellites falling along denser filamentary channels
would tend to be redder than those falling into the cluster from the field (Martínez et al., 2016). Those
falling into the cluster along filaments already pre-quenched. Also, satellites orbiting closer to the
major axis direction of centrals should experience higher environmental quenching efficiency due to
the higher matter density there.
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2.7.2 Dependence on satellite luminosity

More luminous satellites are more likely to lie along the major axis directions of centrals. For isolated
host-satellite systems, Agustsson & Brainerd (2010) have also found a consistent trend.

The satellite luminosity dependence may also have its origin from galaxy properties in filaments.
By analyzing galaxies in filaments, Chen et al. (2017) found that more massive galaxies tend to be
closer to filaments than lower mass galaxies. Li et al. (2013) observed that there is a significant
alignment between the orientations of brightest satellite galaxies with the major axes of their groups,
suggesting that brightest satellite galaxies entered their host groups more recently than other satellites.
Using N-body simulations, van den Bosch et al. (2016) have also shown that subhalos with a larger
mass at the time of accretion (a quantity used to link with galaxy stellar mass through abundance
matching) tend to be accreted at a later time (see their Fig. 5) with smaller orbital energy (i.e., on
more bound orbits, see their Fig. 9). Combining these previous findings, the physical picture is that
more luminous satellites are more likely in-falling from filaments connected to clusters. Since they
are accreted by the cluster at a later time, they have not yet orbited enough to lose the imprint of their
original large-scale structure. Furthermore, with smaller orbital energy at infall, their dynamics would
be more easily influenced by the overall mass distribution in the cluster, and thus as they settle into
orbit in the cluster potential well they are more likely to remain along the major axis direction of the
central galaxy.

2.7.3 Dependence on satellite-central distance

We found that the satellite-central distance is a statistically significant predictor of the angular segre-
gation of satellites, with those closer to centrals being more likely to be located along the major axis
directions of central galaxies. This may seem puzzling given that the second panel in the first row of
Fig. 2.10 shows that the correlation coefficient between log(r/R200m) and θcen is consistent with zero
within the error bar. Apparently, log(r/R200m) is selected as a feature predictor due to some interplay
with another predictor. To identify which other predictor is responsible, we removed one predictor at
a time in Eq. (2.15) to find which one, when removed, caused log(r/R200m) to no longer be selected as
a feature predictor.

The result of this process was that satellite-central distance was selected due to the presence of
cluster ellipticity in the model. The reason why adding cluster ellipticity results in the selection of
log(r/R200m) is illustrated in Fig. 2.15. For satellites with projected distances r < b (the semi-minor
axis of the cluster), the possible values of θcen can vary between 0◦ and 90◦, while for those with r > b,
their θcen values are confined within 0◦ and θr

◦ < 90◦ due to the boundary of the region contained by
the circularized halo radius. Thus, if satellites were randomly distributed within the elliptical footprint
of a cluster, we would expect that more elliptical clusters exhibit a stronger anti-correlation between
log(r/R200m) and θcen, with larger log(r/R200m) showing smaller θcen. The fact that that anti-correlation
is not observed suggests that galaxies are not randomly distributed within the elliptical footprint of
a cluster, but rather are preferentially located on the major axis to a degree that is more significant
at smaller values of log(r/R200m). Or viewing in the other way, central galaxies tend to point toward
nearby satellites, whose distribution reflects local, smaller-scale tidal field.

Several previous studies have also investigated the dependence of projected distance on θcen.
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b

a

r

θr

Figure 2.15: Illustration of how cluster ellipticity can lead to a false detection of dependence of θcen

on log(r/R200m).

For isolated host scale, Brainerd (2005) found that strength of anisotropy increases with decreasing
projected distance, while Azzaro et al. (2007) claimed that the degree of anisotropy is independent
of the projected distance and Agustsson & Brainerd (2010) also reported no distance dependence for
red host galaxies. For galaxy group scale, both Yang et al. (2006) and Siverd et al. (2009) detected
stronger central galaxy alignment effects at smaller projected distance. Also, in Fig. 2 of Faltenbacher
et al. (2007), θcen is smaller in the inner part of halos than in the outer part for red satellites.

The general physical picture regarding angular segregation of satellites is that it is due to large-
scale tidal fields, which leads to preferential infall of satellites along the connected filaments. This
picture is also reflected in the identification of cluster ellipticity as an predictor described in Sec. 2.6.1.
If a cluster’s small-scale tidal field always followed it’s large-scale tidal field, then with the presence
of predictor cluster ellipticity (reflecting the direction large-scale tidal field), log(r/R200m) (reflecting
small-scale tidal field) would not be selected out, as all of its effect would be absorbed in cluster
ellipticity. During the chaotic assembly process, a cluster’s inner tidal field may differ from it’s
large-scale tidal field. The positive correlation between θcen and log(r/R200m) found here implies that
smaller-scale local tidal field, either newly established or following along the large-scale tidal field,
does play some role in torquing the central galaxies to align with satellites located relatively nearby
as well.

2.7.4 Dependence on satellite ellipticity

We observed a (marginally) statistically significant dependence of the angular segregation of satellites
along the central galaxy major axis on satellite ellipticity, with rounder satellites exhibiting a stronger
tendency to lie along the central galaxy major axis direction.

An intuitive way of interpreting the effect of satellite ellipticity is to link it with related galaxy
properties. Rounder galaxies have less disk component and an older stellar population, and thus
look redder in color. Also, luminous galaxies tend to be rounder in morphology. Given the relation
between satellite ellipticity, color, and luminosity, they may share similar origins, as we have discussed
in Secs. 2.7.1 and 2.7.2. However, notice in Fig. 2.10 that the correlation coefficients for satellite
ellipticity with 0.1Mr and color are ∼ 0.2 and −0.1 respectively, meaning that there exists other
physical origins different from the effects of 0.1Mr or color. We must seek other physical mechanisms
that are more tightly linked to the satellite ellipticity itself.
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One possible mechanism for the preference of rounder satellites to lie along the major axis
directions of centrals may be their frequent interaction with nearby galaxies. According to Kuehn &
Ryden (2005), harassment processes due to close encounters with neighboring galaxies make galaxies
rounder. Also, Rodríguez et al. (2016) found that elliptical galaxies in groups, where more disturbing
events are likely to happen, are more spherical than field elliptical galaxies with similar intrinsic
properties. Therefore, satellites residing near the major axis directions of centrals are more likely to
be harassed due to the higher number density there. Besides the effect of shaping galaxies, higher
frequency interactions with other members let satellites experience through more phase mixing and
relation processes, thus speeding up their sinking onto the plane of central galaxy, as the gravitational
potential is deeper there.

2.8 Summary and conclusion

In this work, we investigate the central galaxy alignment effect using the redMaPPer cluster catalog.
We use three kinds of measurements of the central galaxy position angle from the SDSS derived
from previous work: re-Gaussianization, de Vaucouleurs, and isophotal shapes, compare the derived
central galaxy alignment strength among them, and discuss possible systematic effects. To identify
the dominant predictors of the central galaxy alignment signal, we include as many potential phys-
ical parameters as possible, and apply forward-stepwise linear regression to quantify the statistical
significance of these parameters as predictors, as well as to properly account for correlations between
them.

Our analysis has two steps. In step one, we regress the position angle difference between the
central galaxy and cluster shape (as traced by the member galaxy distribution, a proxy for the dark
matter halo shape), ∆η, against central galaxy and cluster related quantities. The goal of this step
is to identify the central galaxy and cluster properties that most significantly affect their alignment.
In step two, we regress the angular location θcen of each member galaxy with reference to its central
galaxy major axis direction against several satellite-related quantities, in order to identify important
predictors for the angular location of the satellite with respect to the central galaxy major axis. Our
key results are as follows.

1. The detected central galaxy alignment signal is strongest based on isophotal shape, followed by
de Vaucouleurs and re-Gaussianization shape (see the right panels in Figs. 2.6 and 2.8). This
may be caused by the fact that the isophotal shape traces a galaxy’s outermost regions, which
are more susceptible to the external tidal fields.

2. The central galaxy-cluster alignment is strongest for clusters that are more elongated and higher
richness, or that have centrals with larger physical size, higher luminosity, redder color, and
higher centering probability4.

3. The tendency of satellites to reside along the central galaxy major axis direction is strongest
for satellites with redder color, higher luminosity, located closer to its central galaxy and with

4Although central galaxy ellipticity is found to be a significant predictor as listed in Table 2.3, we discussed in Sec. 2.6.5
that the correlation between central galaxy ellipticity and ∆η is more complicated than a simple linear relation, which
requires further investigation in future work.
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smaller ellipticity.

As shown, we have selected many predictors that have a statistically significant influence on
the central galaxy alignment effect. This implies that central galaxy alignment is a complicated
phenomenon potentially involved multiple relevant physical processes during galaxy and cluster
formation and evolution, such that it cannot be straightforwardly explained by just few dominant
factors. We have discussed in great detail the potential physical origins of these selected predictors in
Secs. 2.6 and 2.7. The most relevant factors seem to be that central galaxy alignment may originate
from the filamentary accretion processes, but also possibly affected by the tidal field (either the large-
scale primordial tidal field, or the newly-established small-scale tidal field after the redistribution
of satellites). Also, merger events tend to destroy alignment. From this work, we cannot fully
disentangle the relative contributions from the above three effects, or rule out contributions from
other possible mechanisms that can increase or reduce central galaxy alignment. We expect future
investigations either based on observations or simulations to put tighter constraints on possible central
galaxy alignment scenarios.
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Abstract
We study the orientations of satellite galaxies in redMaPPer clusters constructed from the
Sloan Digital Sky Survey at 0.1 < z < 0.35 to determine whether there is any preferential
tendency for satellites to point radially toward cluster centers. We analyze the satellite
alignment (SA) signal based on three shape measurement methods (re-Gaussianization,
de Vaucouleurs, and isophotal shapes), which trace galaxy light profiles at different radii.
The measured SA signal depends on these shape measurement methods. We detect the
strongest SA signal in isophotal shapes, followed by de Vaucouleurs shapes. While no
net SA signal is detected using re-Gaussianization shapes across the entire sample, the
observed SA signal reaches a statistically significant level when limiting to a subsample
of higher luminosity satellites. We further investigate the impact of noise, systematics,
and real physical isophotal twisting effects in the comparison between the SA signal
detected via different shape measurement methods. Unlike previous studies, which only
consider the dependence of SA on a few parameters, here we explore a total of 17
galaxy and cluster properties, using a statistical model averaging technique to naturally
account for parameter correlations and identify significant SA predictors. We find that the
measured SA signal is strongest for satellites with the following characteristics: higher
luminosity, smaller distance to the cluster center, rounder in shape, higher bulge fraction,
and distributed preferentially along the major axis directions of their centrals. Finally, we
provide physical explanations for the identified dependences, and discuss the connection
to theories of SA.

3.1 Introduction

The projected orientations of galaxies observed on sky are not random, but rather exhibit some
coherent patterns related to the matter distribution in the Universe. Galaxy shapes tend to point
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3.1. Introduction Chapter 3. Satellite galaxy alignments

towards overdense regions, leaving a net preference of correlated orientations. This phenomenon,
known as “intrinsic” alignments (IA), contains important information about structure formation and
galaxy evolution (for recent reviews, see Joachimi et al. 2015; Kirk et al. 2015; Kiessling et al. 2015).
Besides the physically-induced alignment signal, the images of galaxies located behind overdense
structures tend to be distorted tangentially with respect to those structures, producing the apparent
tangential alignment signal that is the key characteristic of gravitational lensing. This lensing effect
is used as a tool to map the distribution of dark matter in the Universe, to study the growth of
structure, and to constrain cosmological parameters (see e.g. Massey et al. 2010; Weinberg et al. 2013;
Mandelbaum et al. 2013). The presence of IA challenges the process of interpreting the observed
shape correlations (intrinsic+apparent) in terms of the basic physics that generates lensing signals.
Ongoing surveys such as the Dark Energy Survey (DES, Dark Energy Survey Collaboration et al.
2016), the Kilo-Degree Survey (KiDS, de Jong et al. 2015), Hyper Suprime-Cam Survey (HSC,
Miyazaki et al. 2012), and future surveys like the Large Synoptic Survey Telescope (LSST, LSST
Science Collaboration et al. 2009), Euclid (Laureijs et al., 2011), and the Wide Field Infrared Survey
Telescope (WFIRST, Spergel et al. 2015) aim to constrain the cosmological constants to sub-percent
precision, which requires precise removal of all possible systematics including intrinsic alignments
(e.g., Blazek et al., 2012; Krause et al., 2016). Quantifying the strength of IA signal and developing
models that will enable its removal thus becomes one of the key steps to reach this goal.

IA have been detected over a wide range of scales. On scales above several Mpcs, red dispersion-
dominated galaxies preferentially point towards overdense regions (see e.g., Mandelbaum et al. 2006;
Hirata et al. 2007; Okumura et al. 2009; Joachimi et al. 2011; Singh et al. 2015 from the observational
side, and Tenneti et al. 2015a; Chisari et al. 2015 from numerical simulation). Part of this observed
correlation originates from the tendency of galaxies to align towards overdensities andwith filamentary
structures (see e.g., observation: Zhang et al. 2013; Tempel et al. 2015, and simulation: Chen et al.
2015). For red galaxies located in sheets, Zhang et al. (2013) observed that they tend to have their
major axes aligned parallel to the plane of the sheets. For blue angular momentum-dominated galaxies,
there is no significant detection of alignment so far (Mandelbaum et al., 2011). Besides the alignment
of galaxies, people also found alignment between the shape of clusters with respect to the underlying
density field (observation: Smargon et al. 2012; van Uitert & Joachimi 2017; simulation: Hopkins
et al. 2005).

The other alignment at intra-halo scale is satellite alignment, i.e. the preference of satellites to
align radially toward the cluster center. The SA signal is relatively subtle compared with the strength
of central galaxy alignment; along with the difficulty of achieving accurate shape measurements on
faint satellites whose light profiles are more subject to contamination from neighboring galaxies, many
conflicting observational results have been published. Earlier works based on SDSS isophotal shape
measurement, which trace the very outer part of the galaxy light profiles, have reported detections of
SA signal (Pereira & Kuhn, 2005; Agustsson & Brainerd, 2006; Faltenbacher et al., 2007). However,
later studies claimed that when using de Vaucouleurs shape, which puts relatively more weight
on the galaxy inner light profiles, satellite orientations are consistent with random (Siverd et al.,
2009; Hao et al., 2010). Studies that used shape measurements that are optimized for lensing,
which requires corrections for many observational systematics, reported non-detection of satellite
alignments (Schneider et al., 2013; Sifón et al., 2015). There is therefore some tension between past
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measurements, and reconciliation of that tension may require investigation into the different galaxy
populations used for these measurements and/or false SA signals generated by systematics in isophotal
shape measurements (e.g., Hao et al., 2010).

Our current theoretical understanding of IA for red dispersion-dominated galaxies is that their
orientations are affected by the tidal field of the surrounding environment. On large scales, the
linear alignment model (Catelan et al., 2001; Hirata & Seljak, 2004b) suggests that the shapes of
proto-galaxies are largely set by the primordial tidal field at their formation time, so that their shape
correlation with the matter field is frozen in since then and simply grows with the matter power
spectrum. The primordial tidal field also leaves its imprint on the assembly history of clusters by
channeling the majority of satellites into clusters through accretion along filamentary structures, which
results in the observed cluster alignment phenomenon (Hopkins et al., 2005). At small scales, the
orientation of cluster central galaxies would also be generated by the same primordial tidal field,
leaving the observed central galaxy alignment (see discussions in Paper I). While later non-linear
evolutionary processes such as mergers or baryonic feedback from galaxies may erase the alignment
signals set by primordial tidal fields (Tenneti et al., 2017), the late-time re-arranged structures can set
up new tidal environments that gradually torque galaxies to align (Ciotti & Dutta, 1994; Kuhlen et al.,
2007; Pereira et al., 2008; Faltenbacher et al., 2008). The timescales for tidal locking of satellites under
the cluster potential depend on the eccentricity of infalling orbits as well as properties of satellites (e.g.
angular momentum, morphology). As shown in the simulations of Pereira & Bryan (2010), within the
time of one orbital period (∼ 5 Gyr), a triaxial DM subhalo orbiting in circular orbit around a cluster
potential becomes tidally locked, and it takes a lag of .2 Gyr, depending on the initial conditions, for
the stellar components to respond.

In this work, we carry out SA measurements using re-Gaussianization, de Vaucouleurs and
isophotal shapes that differ in sensitivity to the outskirt of a galaxy’s light profile. The size of the
redMaPPer cluster catalogue provides the necessary statistical power to contrain SA signals at halo
masses& 1014M� h−1. The two main questions we aim to address in this paper are 1) What causes the
detected discrepancies in SA signals using different shape measurement methods? 2) Which satellite
properties associated with which central galaxy and cluster properties are correlated with stronger SA
signals? We estimate the level of possible noises and systematics that could cause the inconsistent
galaxy position angle (PA) measurements. As in paper I, we explore a large parameter pool which
contains characteristic satellite, central galaxy, and cluster properties to identify important predictors
of SA effect using linear regression analysis.

The paper is organized as follows. In Sec. 3.2, we describe our data and definitions of the physical
parameters involved in the analysis. Sec. 3.3 presents the overall signal of SA alignment measured
in redMaPPer clusters. Details of the linear regression and variable selection results are described in
Sec. 3.4. Sec. 3.5 explores possible factors that cause the discrepancy in the measured SA angle using
three different shape measurement methods, and provides estimates of the degree of contribution from
each factor. The physical origins of our identified featured predictors on the SA effect are discussed
in Sec. 3.6. We conclude and summarize our key findings in Sec. 3.7.

Throughout this paper, we adopt the standard flatΛCDMcosmologywithΩm = 0.3 andΩΛ = 0.7.
All length and magnitude units use H0 = 100 km s−1 Mpc−1. We use log as shorthand for the 10-based
logarithm.
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3.2 Data and Measurements

All data used in this paper come from the SDSS (York et al., 2000) surveys. Here we describe the
catalogs involved in our analysis, sample construction, and definitions of the cluster- and galaxy-related
parameters. Most of the data and parameters remain the same as in Paper I, although some small
differences exist, as we will highlight in the relevant subsections below. In order to properly interpret
the measured satellite alignments, Paper II puts more focus on exploring systematics in the different
shape measurement approaches. New samples for systematic tests are constructed and described
below.

3.2.1 Galaxy cluster catalog

Our cluster member galaxy sample is taken from the SDSS DR8 (Aihara et al., 2011) redMaPPer
v5.10 cluster catalog1, constructed based on a red-sequence cluster finding approach. Details of the
algorithm and the cluster properties can be found in Rykoff et al. (2014); Rozo & Rykoff (2014); Rozo
et al. (2015a,b). Some features of the redMaPPer cluster catalog are briefly summarized here.

For each cluster, it identifies five most probable central galaxies, with their corresponding central
probability, Pcen. Each cluster member galaxy is assigned with a membership probability, pmem,
according to its color, magnitude, and position information. The photometric redshift z for each
cluster is estimated from high-probability members. The cluster sample is approximately volume-
limited in the redshift range of 0.1 ≤ z ≤ 0.35. The cluster richness, λ, is defined by summing
the membership probabilities over all possible cluster members. Most of the clusters have λ & 20,
corresponding to an approximate halo mass threshold of M200m & 1014 h−1M� (Rykoff et al., 2012;
Simet et al., 2017).

3.2.2 Galaxy shapes

Shape-related parameters

We adopt the following definition of ellipticity/distortion components in a global Cartesian frame to
measure each galaxy’s ellipticity:

(e1, e2) =
1 − (b/a)2

1 + (b/a)2
(cos 2α, sin 2α), (3.1)

where b/a is the minor-to-major axis ratio and α the position angle (PA) of the major axis of the galaxy.
Here e1 measures the projected distortion in the RA/dec directions, and e2 in diagonal directions. The
total galaxy ellipticity e can then be calculated as

e =
√

e2
1 + e2

2 =
1 − (b/a)2

1 + (b/a)2
. (3.2)

Once the PA α of a galaxy is obtained by one of the methods described in Sec. 3.2.2, we can
then derive its central galaxy alignment angle θcen and satellite alignment angle φsat as illustrated in
Fig. 3.1.

1http://risa.stanford.edu/redmapper/
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central
φsat

θcen

satellite

δ

α

Figure 3.1: Illustration of the galaxy alignment angles. The satellite alignment angle, φsat, defined as
the angle between a satellite’s major axis and its orientation towards the central galaxy, is the main
focus of this paper. The central galaxy alignment angle, θcen, defined as the angular location of a
satellite relative to its central galaxy’s major axis direction, is the area of focus in our previous Paper
I.
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The central galaxy alignment angle (θcen) is defined as the angle between the major axis of the
central galaxy and the line connecting the central to the satellite galaxy. We only need a viable shape
measurement for the central galaxy (but not the satellites) to derive θcen. The analysis of central galaxy
alignments in redMaPPer clusters has already been reported in Paper I. The satellite alignment angle
(φsat) is defined as the angle between the major axis of the satellite galaxy and the line connecting
its center to the central galaxy. Deriving φsat requires a shape measurement for the satellite galaxy.
In this paper, we focus on the satellite alignments, and will use the central galaxy alignment angle
θcen as one of the candidate predictors in our parameter pool. We use the highest-probability centrals
provided in redMaPPer for calculation of both θcen and φsat.

We restrict both θcen and φsat to the range [0◦, 90◦] due to symmetry. By definition, θcen = 0◦/90◦

indicates a satellite located along the major/minor axis of the central. A satellite is radially/tangentially
aligned with the central if φsat = 0◦/90◦.

Besides using φsat to quantify the degree of SA signal, another commonly-used parameter is e+,
the distortion in the radial-tangential direction in a new frame with the original axes rotated to the
radial-tangential directions of each central-satellite pair. From simple algebra, we have:

(e+, e×) =
1 − (b/a)2

1 + (b/a)2
(cos 2(δ − α), sin 2(δ − α)), (3.3)

where α is the PA of the satellite, and δ the azimuthal angle of the satellite projected position with
respect to the cluster central galaxy, as indicated in Fig. 3.1. A positive e+ indicates a radial alignment
of the satellite toward cluster center, while a negative e+ indicates a tangential alignment. Therefore,
if satellite galaxies do preferentially align in the radial direction, we expect 〈e+〉 > 0 when taking
the average over all central-satellite pairs. The e× component is the distortion at ±45◦ from the
radial/tangential direction. It is is commonly used as an indicator for certain systematics. Due to
symmetry, 〈e×〉 should be consistent with zero.

Shape data

We will measure satellite alignments using three shape measurement methods: re-Gaussianization,
isophotal, and de Vaucouleurs shapes, to compare differences in the signals and investigate systemics.
Details of these methods have been described in Paper I (Sec. 2.3), and we only briefly summarize
here.

The re-Gaussianization shape measurement method (Hirata & Seljak, 2003) is specifically de-
signed for weak lensing studies, which require great care in removing the point spread function (PSF)
effect on the observed galaxy images. This method has a Gaussian weight function that emphasizes
the inner, brighter regions of galaxy profiles in order to reach higher precision distortion measurement
especially for faint galaxies. In this work, we take the distortion measurement (e1 and e2) from a
re-Gaussianization shape catalog of Reyes et al. (2012) with shapes measured in the r and i bands
based on the SDSS DR8 photometry.

Isophotal shape measurement does not include an explicit correction for the effect of the PSF. It
determines a galaxy’s shape by fitting the surface brightness at 25 mag/arcsec2, which traces the outer
part of a galaxy’s profile. Since isophotal shapes were not released in DR8, we take the isophotal
position angle in r band from DR7 to compute satellite alignment angles.
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The de Vaucouleurs shape measurements were determined by fitting each galaxy’s image with
a de Vaucouleurs model (Stoughton et al., 2002), which is a good description for typical elliptical
galaxies (which includes the majority of the galaxies in this work, since they were selected based on
a red-sequence method). It partially corrects for the PSF effect using an approximate PSF model,
and overall is sensitive to light profiles on scales between those measured by re-Gaussianization and
isophotal methods. We use the de Vaucouleurs fit position angle in r band provided from the SDSS
DR7 in this work 2.

3.2.3 The central-satellite pair sample

To fairly compare the measured alignment signal across redshift, we restrict our analysis to a volume-
limited cluster sample within 0.1 ≤ z ≤ 0.35 from the redMaPPer catalog. Besides this, an appropriate
membership probability cut of pmem ≥ 0.55 is applied on satellite galaxies, which results in a total
of 305997 central-satellite pairs in 10749 distinct clusters (before requiring galaxies to have shape
measurements). The choice of the pmem = 0.55 cut comes from optimizing the S/N for detection of
SA signals, as explained in Appendix 3.A.

While applying a lower pmem cut returns us more central-satellite pairs into analysis, the resulting
satellite alignment signal will be diluted due to the inclusion of more pairs with “satellite” galaxies
that are not actually in clusters. Throughout this work, we will reduce this contamination by applying
pmem as the weighting factor on each central-satellite pair.

We define two sets of central-satellite pair samples for analysis in this work.
1. DR8 footprint sample: The first set is within the SDSS DR8 footprint, constructed by ac-

quiring that the 305997 pmem ≥ 0.55 satellites have well-defined re-Gaussianization shape
measurements. There are 174180 central-satellite pairs within 8121 distinct clusters in this data
set. The effective total number of pairs in DR8 footprint sample after weighting by pmem is∑
i

pmem,i ≈ 132072 pairs.

2. DR7 footprint sample: The second data set is constructed for comparing the level of satellite
alignment signals via three different shape measurement methods. We require satellites in this
subsample to have all three kinds of shape measurements, and thus this data set covers the
smaller DR7 footprint. In total, there are 158537 central-satellite pairs within 7385 distinct
clusters, or effectively 120200 after weighting by pmem.

The resulting redshift and luminosity distributions of satellites in the constructed DR8 and DR7
sample sets are almost indistinguishable, indicating that the selection functions for different shape
measurements are quite similar.

In Paper I, to investigate the effect of the sky-subtraction technique on the measured central galaxy
alignment signal, we have reported the results based on a set of DR4 footprint satellites, which have
re-Gaussianianization shape measurement based on both DR4 and DR8 SDSS photometric pipelines.
We found that within error bars, the measured central galaxy alignment signals are very similar when

2We have tried fixing the shape measurement method to re-Gaussianzation but varying SDSS photometry pipeline
between DR4 and DR8. We found that the derived shape parameters based on different pipelines are statistically consistent.
Similarly, we expect that using DR7 photometry for de Vaucouleurs shapes should give consistent results as using those
based on DR8.
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different photometric pipelines are used, and therefore concluded that the effect of sky-subtraction
does not substantially influence the central galaxy alignment measurement. In this work for satellite
alignment, we have also examined whether sky-subtraction is an issue for the detecting signal using
the DR4 footprint data set, but did again failed to find any disagreement. For this reason, to simplify
the analysis we will only report the measured satellite alignment results for the DR8 and DR7 footprint
sample.

3.2.4 Systematic test sample

We construct three systematic test samples to study potential systematic effects in the crowded cluster
environment. All of the samples are constructed from the red-sequence Matched filter Galaxy v6.3
Catalog (redMaGiC) (Rozo et al., 2016), a photometrically-selected luminous red galaxy (LRG)
catalog with very high quality photo-z estimation based on the SDSS DR8 photometric data. Overall,
the bias, defined as the median value of zphoto − zspect, of the DR8 redMaGiC photo-z is less than
0.005. The 1σ scatter of (zphoto − zspect)/(1 + zspect) is . 0.02.

1. Foreground & background of redMaPPer: The foreground and background sample is com-
posed of galaxies that are in the same sky area as redMaPPer clusters, but are not physically
associated with the cluster. This sample is constructed as follows. For each central galaxy in
the redMaPPer cluster, we use 1.5Rc(λ) as a searching radius to select out LRGs within the
projected area in the redMaGiC catalog. The Rc(λ) is the radius within which pmem is assigned
in the original redMaPPer catalog, and it is estimated that R200c ≈ 1.5Rc(λ) (Rykoff et al.,
2012, 2014). Next we select LRGs whose photo-z < (>) zcluster as foreground (background)
candidates. To improve the purity of the sample, we further exclude pmem > 0.2 galaxies in
the “ubermem” version of the redMaPPer catalog. This “ubermem” catalog extends the pmem

estimation out to 1.5Rc(λ) and down to fainter galaxies (mag i < 21), thus enabling us to re-
move potential cluster members at 1 ∼ 1.5Rc(λ) and those that are relatively faint, unlike in the
original redMaPPer catalog. After this cut, 95% of foregrounds and 99% of backgrounds have
their ∆z = |zphoto − zcluster | & 0.02, suggesting that the above procedures return a set of clean
foreground and background galaxies. After requiring these galaxies to have re-Gaussianization
shape measurements, we have 45030 fake central-satellite pairs in the DR8 footprint, of which
4459 and 40571 are foreground and background galaxies, respectively. Further requiring these
galaxies to have de Vaucouleurs and isophotal shapes in DR7, leaves us with 4134 and 36941
foreground and background galaxies, respectively.

2. Non-cluster field sample: To highlight the effect of the crowded cluster environment on the
shape measurement of galaxies within the cluster area on the sky (either physically-associated
member galaxies or just foreground/background galaxies), we construct a sample of galaxies
that are not in the footprint of redMaPPer cluster fields, and call it the “non-cluster field sample”.
We do so by simply taking the full redMaGiC catalog, and excluding all galaxies (pmem ≥ 0)
that belong to the redMaPPer cluster member sample as well as galaxies in the foreground and
background sample constructed above. After requiring that these galaxies have all three shape
measurements, we have 697308 galaxies within the DR7 footprint.

3. Foreground&background ofmr<19 non-cluster field bright galaxies: In order to understand
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Table 3.1: Sample sets used in this work. The upper part of the table shows the two cluster subsamples
used for the overall measurement of the satellite alignment effect, as described in Sec. 3.2.3. The
columns indicate the total number of satellites (Nsat), total number of distinct clusters (Ncluster), and the
effective number of central-satellite pairs for each sample after weighting by pmem (Neff). The lower
part of the table summarizes the subsamples used for systematic tests, as described in Sec. 3.2.4. The
columns indicate the total number of galaxies (Ntot), number of foreground (Nfore) and background
objects (Nback), respectively.

Cluster system sample Nsat Ncluster Neff

DR8 footprint sample 174180 8121 132072
DR7 footprint sample 158537 7385 120200

Systematic test sample Ntot Nfore Nback

Foreground & background of redMaPPer (DR8 footprint) 45030 4459 40571
Foreground & background of redMaPPer (DR7 footprint) 41075 4134 36941
Non-cluster field sample 697308
Foreground & background of mr<19 non-cluster field bright galaxies 278204 6990 271214

the level of contamination caused by the extended light profile of bright central galaxies on nearby
satellites, we select bright galaxies with mr<19 from our non-cluster field sample described
above, and construct a sample composed of the corresponding foreground and background
galaxies around these bright galaxies. We again find the foreground/background galaxies from
redMaGiC, and require their zphoto to be at least 0.04 smaller/greater than that of their nearby
bright galaxies. Here 0.04 is chosen to be about 2σ given the average photo-z error of redMaGiC.
Requiring that all foreground and background galaxies having well-defined shapemeasurements
yields 281114 galaxies in total.

Table 3.1 summarizes the data sets we have defined in Secs. 3.2.3 and 3.2.4, with detailed sample
size information provided.

3.2.5 Summary of physical parameters

Similar to our analysis in Paper I, we aim to identify predictors that significantly influence the satellite
alignment effect from a large parameter pool. Almost all of the physical parameters explored in this
work are the same as in Paper I, except for one newly added variable: fracDeV.

The cmodel magnitude systems in SDSS pipeline tries to fit galaxy light profile by taking the
linear combination of both de Vaucouleurs and exponential profiles, and stores the coefficient of the
de Vaucouleurs term in the quantity fracDeV, which describes the fraction of light from a fit to a de
Vaucouleurs profile. For a galaxy that can be best fitted by pure exponential profile, fracDeV = 0,
while fracDeV = 1 for pure de Vaucouleurs profile. In general, the brightness distribution of disks
follows the exponential profile, whereas bulges are better described with a de Vaucouleurs profile.
The fracDeV parameter thus can be viewed as a tracer for a galaxy’s angular momentum content or its
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Figure 3.2: pmem-weighted probability density distribution of SA angle, φsat, for the 174180 pmem >

0.55 pairs measured using the re-Gaussianization method. The dark blue filled circles indicate the
pdf of φsat for central-satellite pairs of redMaPPer clusters selected using pmem > 0.55. The weighted
averaged SA angle, 〈φsat〉, is consistent with 45◦ within error bar, indicating that the overall SA signal
measured based on re-Gaussianization shape is not very significant. The open markers show the
probability density function (pdf) of φsat for foreground (light blue square) and background (orange
circle) pairs in the footprint of redMaPPer clusters. As expected, the 〈φsat〉 value for foreground is
consistent with random, and there is tangential alignment signal 〈φsat〉 > 45◦ for backgrounds. The
horizontal black dashed line shows the expected result for randomly oriented satellite galaxies.

overall morphology, which has similar but not identical information to galaxy color. It is interesting
to check the dependence of angular momentum on SA signal.

In total, we have one response variable (φsat) and 17 other variables constituting the pool of
possible predictors for φsat. We classify the 17 parameters into three categories: satellite-related
quantities, central galaxy-related quantities and cluster-related quantities. A brief summary of impor-
tant information about these parameters is in Table 3.2; we refer readers to Sec. 2.2 of Paper I for
details.

3.3 Overall Signal of Satellite Alignment

3.3.1 Distribution of φsat

The dark blue filled circles in the left panel of Fig. 3.2 indicate the pmem-weighted distribution of the
SA angle, φsat, for our 174180 satellites in the DR8 footprint, based on the re-Gaussianization shape
measurements. The weighted average SA angle is 〈φsat〉 = 44.92◦ ± 0.07◦, consistent with no net
tendency for SA.
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Table 3.2: A summary of the 17 parameters used to study the satellite alignment effect.
Response Variable Properties

φsat

• Satellite alignment angle, as demonstrated in Fig. 3.1.
•We use this parameter as a response variable to quantify the level of satellite alignment.
Smaller φsat indicates a stronger satellite alignment effect.

Satellite Galaxy Quantities Properties
log(r/R200m) •Member distance from the cluster central galaxy, normalized by R200m

satellite 0.1Mr • r-band absolute magnitude of the satellite, k-corrected to z = 0.1

satellite 0.1Mg −
0.1 Mr • Color of the satellite galaxy, k-corrected to z = 0.1

satellite ellipticity • Satellite ellipticity as defined in Eq. 3.2

∆log(satellite Reff )

• The excess of galaxy size with respect to the predicted size at the same luminosity
∆log(satellite Reff ) ≡ measured log(satellite Reff ) − predicted log(satellite Reff )
• The predicted log(satellite Reff )= −0.20(satellite 0.1Mr )−3.84, derived by linearly fit to all
pmem > 0.55 satellites in the DR8 footprint sample. A relevant figure is presented in Fig. 5 of
Paper I, except that the derived predicted log(satellite Reff ) is slightly different from Paper I due
to the inclusion of lower pmem satellites in Paper II.

fracDeV • The fractional flux contribution of the de Vaucouleurs profile, see Sec. 3.2.5 for detail.
• fracDeV=0 for a pure exponential profile; fracDeV=1 for a pure de Vaucouleurs profile.

θcen

• Central galaxy alignment angle, as demonstrated in Fig. 3.1
• Smaller θcen indicates that the satellite is residing closer to the major axis direction of its
central galaxy.

Central Galaxy Quantities Properties

central galaxy dominance
•Magnitude gap between the central galaxy and the mean of the 2nd and 3rd brightest satellites

Central dominance ≡ Central 0.1Mr −
0.1Mr,1st+

0.1Mr,2nd
2

• A smaller value indicates a more dominant central galaxy.

central 0.1Mr • r-band absolute magnitude of the central, k-corrected to z = 0.1

central 0.1Mg −
0.1 Mr • Color of the central galaxy, k-corrected to z = 0.1

central ellipticity • Ellipticity of central galaxy as defined in Eq. 3.2.

∆log(central Reff )

• The excess of central galaxy size with respect to the predicted size of centrals
at the same luminosity.
∆log(central Reff ) ≡ measured log(cental Reff ) − predicted log(central Reff )
• The predicted log(central Reff )= −0.31(central 0.1Mr )−6.16, derived by linearly fit to all
centrals in the DR8 footprint sample. See also Fig. 4 in Paper I for more more detail.

Pcen

• Central galaxy probability provided in redMaPPer.
• Pcen is an indicator of whether a cluster system contains only a single dominant central
galaxy or has multiple central galaxy candidates.

Cluster Quantities Properties
log(richness) • Cluster richness taken from the redMaPPer catalog.

redshift • Cluster redshift estimated by redMaPPer.

cluster ellipticity • Calculated based on the distribution of member galaxies. See Sec. 2.2.3 of Paper I for detail.
• A cluster with larger cluster ellipticity has more elongated satellite distribution.

cluster member concentration, ∆R

• Derived based on the average projected distance of member galaxies from the cluster center,
with some normalization towards cluster richness and redshift. See Sec. 2.2.9 of Paper I for
detail definition.
• By construction, negative ∆R value means the cluster has a more compact member galaxy
distribution than the average cluster at similar richness and redshift.79
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However, it does not rule out the possibility of a statistically significant SAdetection for subsamples
of the satellite population. We will show later in Sec. 3.4.2 that when focusing on brighter satellites,
we can still detect a statistically significant SA signal using re-Gaussianization shapes.

3.3.2 SA measurement in e+

Besides using the parameter φsat to quantify the degree of SA signal, it is also useful to calculate the
mean radial ellipticity 〈e+〉, especially when quantifying the level of IA systematics to weak lensing
signals (e.g., Schneider et al., 2013; Sifón et al., 2015). Here we also compute mean radial ellipticities
in order to compare with previous work. For the definition of e+, we refer readers back to Sec. 3.2.2
for more detail. Under our definition, a satellite with e+ > 0 tends to point radially toward its host
central galaxy.

The dark blue filled circles in Fig. 3.3 show the averaged 〈e+〉 component based on re-Gaussianization
shapes for all DR8 footprint satellites, divided into bins in projected separation from their own central
galaxy. The corresponding error bars are simply the standard error of the mean. We observe that the
SA signal is consistent with zero within 3σ across all radial bins, meaning that we do not detect any
significant SA effect in the overall redMaPPer satellite population. The grey triangles indicate the
measured averaged ellipticity component 〈e×〉, which provides a 45◦ systematic test (also known as
B-mode test). By symmetry, the expected 〈e×〉 value should be zero, unaffected by either lensing or
SA effects, which only contribute to the e+ component. We find that our measured 〈e×〉 is consistent
with zero in all radial bins, suggesting that systematic errors that would generate a B-mode signal are
negligible.

While there is no coherent radial orientation of satellites across the entire DR8 sample, as we
will show later in Sec. 3.4.2, more luminous satellites tend to have stronger SA signal. Here we
demonstrate that a subsample of satellites with 0.1Mr < −21 has 〈e+〉 ≈ 0.014 ± 0.0042 (∼3.3σ)
and 〈e+〉 ≈ 0.0062 ± 0.0028 (∼2.3σ) in the two smallest radial bins at ∼ r < 0.2R200m, as shown
in the red pentagons of Fig. 3.3. In comparison, Sifón et al. (2015) found no significant SA across
all radial bins for satellites with 0.1Mr < −21 (see their Fig. 10) when using satellites of 91 massive
galaxy clusters with shape measurements optimized for lensing. Similarly, Schneider et al. (2013)
also found no apparent SA signal across all radial bins for early-type satellites based on members of
galaxy groups (see their Fig. 7).

3.3.3 SA signal based on different shape measurements

To investigate the effect of shapemeasurementmethods on the detection of SA signals, we use satellites
within the DR7 footprint, as defined in Sec. 3.2.3 (see also Table 3.1), which have re-Gaussianization,
deVaucouleurs, and isophotal shapemeasurements. The left panel of Fig. 3.4 shows the pmem-weighted
distribution of φsat for this sample set, with the teal green circles, yellow green diamonds and olive
triangles representing shape measurements based on the re-Gaussianization method, de Vaucouleurs
fits, and isophotal fits, respectively. The isophotal shape measurement produces the strongest SA
signal (〈φsat〉 = 44.35◦ ± 0.08◦), followed by de Vaucouleurs fits (〈φsat〉 = 44.71◦ ± 0.08◦) and finally
re-Gaussianization shapes (〈φsat〉 = 44.91◦ ± 0.08◦). However, as described in Hao et al. (2011),
we still must test whether the detected SA signal is real (due to physical alignments) or fake (due to
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Figure 3.3: Satellite alignment signal measured in 〈e+〉 (dark blue filled circle) in bins of normalized
projected distance based on re-Gaussianization shapes for the 174180 DR8 redMaPPer pmem > 0.55
satellites. Under our definition, 〈e+〉 > 0 indicates radial alignment. The measured SA signal is
consistent with zero within 3σ across all radial bins. The 〈e+〉 signals for foregrounds (light blue
square) and backgrounds (orange open circle) in redMaPPer cluster fields are also shown. The 〈e×〉
component for physical pairs, indicated in grey triangles, is consistent with zero in all radial bins.
This suggests that systematics that would cause a B-mode signal in the re-Gaussianization shapes are
negligible. When focusing on a subsample of brighter satellites with 0.1Mr < 21 (red pentagon), we
find 〈e+〉 ≈ 0.014±0.0042 (∼3.3σ) and 〈e+〉 ≈ 0.0062±0.0028 (∼2.3σ) in the two smallest radial bins
at ∼ r < 0.2R200m. This indicates that we reach a significant SA detection using re-Gaussianization
shapes with satellites that are more luminous and located closer to central galaxies.
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Figure 3.4: pmem-weighted probability density distribution of φsat for the 158537 pmem > 0.55
redMaPPer satellites in the DR7 footprint based on re-Gaussianization (teal green circle), de Vau-
couleurs (yellow green diamond), and isophotal (olive triangle) shape measurements. The weighted
average SA angles, 〈φsat〉, for both de Vaucouleurs and isophotal shapes are less than 45◦, indicat-
ing we have observed SA effect significantly based on these two shape measurements. However for
re-Gaussianization shape, 〈φsat〉 is consistent with 45◦ within error bars.

systematics). We will investigate possible systematic effects in Sec. 3.5.

3.3.4 Foreground and background systematic tests

We examine our SA measurement using sample sets of foreground and background galaxies in the
footprint of redMaPPer cluster field. For construction of foreground and background samples, we
refer readers back to Sec. 3.2.4. For foregrounds, we expect galaxies to be randomly oriented in
the measured φsat with respect to the central galaxies of redMaPPer clusters in the same field. For
backgrounds, we expect galaxies to exhibit tangential alignment because of the gravitational lensing
effect. The light blue sqares/orange open circles in Fig. 3.2 show the distribution of φsat measured using
re-Gaussianization shapes for our foreground/background samples. The observed φsat distributions
are consistent with our expectation. This indicates that there are no severe systematics due to the
complexity of measuring shapes in cluster fields based on re-Gaussianization method. However, the
test we applied is not very sensitive for low-level systematics due to the lack of foreground pairs.

Besides the test for re-Gaussianization shape, Fig. 3.5 shows the foreground (light blue square)
and background (orange open circle) tests for de Vaucouleurs shape (left panel) and isophotal shape
(right panel). For foregrounds, the p-values of KS tests, as indicated in the legend below the figures,
show that the distribution is consistent with uniform distribution. For backgrounds, we also observe
the expected lensing effect in de Vaucouleurs and isophotal shaps.
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Figure 3.5: Foreground (light blue open square) and background (orange open circle) tests for de
Vaucouleurs (left panel) and isophotal shape (right panel) measurements.

3.4 Linear Regression Analysis

We apply linear regression analysis and variable selection techniques to properly account for corre-
lations among various parameters and to identify featured predictors that significantly affect the SA
phenomenon. The variable selection methods are quite similar (but not identical) to those described
in Sec. 3 of Paper I. Below, we briefly summarize the approaches, including the new methodology in
this paper, and report the results.

3.4.1 Methodology

Overview of Linear Regression

Linear regression is a method to study the relationship between a response variable Y and a variety
of regressors vectorized as X = (X1, X2, X3, ..., XN ). One tries to estimate optimal values of the free
parameters by minimizing the squared residuals of the following model:

Y = f (X) = β0 + β1X1 + ... + βiXi + ... + βN XN + ε, (3.4)

where the intercept β0 and the slopes βi are the unknown regression coefficients, and ε represents
random observational error, usually assumed to be distributed normally with mean zero and some
dispersion.

In our analysis, we use φsat as the response variable Y , regressed against the 17 parameters in our
parameter pool, as listed in Table 3.2. In short, we have 7 satellite-related, 6 central galaxy-related
and 4 cluster-related quantities. When fitting the regression Eq. (3.4), we standardize the parameters
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Pi:

Xi =
Pi − 〈P〉i
σPi

, (3.5)

where 〈P〉i and σPi are the sample mean and standard deviation respectively of the parameter Pi, with
the latter representing the width of the intrinsic scatter combined with measurement error. Table 3.3
lists the 〈P〉 and σP for our 17 parameters for DR8 redMaPPer satellites. The standardization means
that even though our predictors Pi have different magnitudes and spreads, the fitted values βi all have
essentially the same meaning: larger |βi | indicates a stronger effect of the regressor Xi on φsat. We also
quantify the level of significance for any identified correlations using the t-value. The t-value, defined
as the ratio of βi to its standard error, can be positive or negative depending on the sign of βi. A larger
|t| indicates a higher likelihood that βi , 0, which means a stronger relationship between φsat and Xi.
Statistically, under the assumption that βi is asymptotically normal,3 there is a direct link between the
t-value and p-value on the hypothesis test of whether βi = 0 or not. A p-value of 0.05 corresponds
to a 95% confidence interval for βi that does not overlap with zero. We will count predictors with
p-value < 0.05 as having significant effect on SA signal when doing model selection later.

Model Averaging

The next issue we need to face is how to choose a model with predictors that truly affect φsat. A linear
model with all possible predictors has many free parameters to tune to fit the data well, but may cause
high variance. By contrast, a model with only few predictors is more stable, but may underfit the data
yielding a high bias. A good model results from achieving a balance between goodness of fit and
complexity. With 17 predictor candidates in our parameter pool, there are a total of 217 (= 131 072)
possible models.

In Paper I, we applied standard “Forward Stepwise” and “Best Subset” model selection methods
to identify a single best model, and interpreted our results based on that model alone. However, SA
is a relatively weak signal, so identifying predictors that reflect the true underlying physics rather
than noise requires a careful treatment of model uncertainty, which can lead to the selection of a
model that by random chance includes uninformative predictors. Thus in this work, we apply the
“model averaging” technique (see e.g. Burnham & Anderson 2003b and Grueber et al. 2011, and
references therein), which combines a portion of ‘good models’ from the parent model pool by taking
a weighted-average based on the performance scores of each model measured by some information
criterion (such as AIC; ?). Through the model averaging process, fluctuations due to noise can be
averaged out and the combined model is thus more stable.

The detailed model averaging analysis proceeds as follows:
1. As was the case in Paper I, we use best-subset selection to fit each of the 217 possible models

using R’s leaps package, and for each we estimate the AIC:

AICi =
1

nσ̂2
i

(RSSi + 2diσ̂2
i ), (3.6)

3Suppose we do many measurements on βi , with different but statistically similar sets of data, and plot the distribution
of the resulting βi . We say βi is asymptotically normal if the distribution is a gaussian at the mean of the true βi value with
certain variance.
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where RSSi is the residual sum of squares, di is the number of predictors used in the ith model,
σ̂2
i is an estimate of the variance of observational error ε shown in Eq. (3.4), and n is the total

number of satellite-central pairs. A lower AIC value indicates a better-fitting model.

2. We convert each AIC value to a relative quantity:

∆AICi = AICi −min(AIC), (3.7)

where min(AIC) represents the smallest AIC value of all possible models in the previous step.

3. Given the set of relative AIC values, we compute the model-averaging weight for each model:

wi =
exp (−∆AICi/2)

217∑
k=1

exp (−∆AICk/2)
. (3.8)

4. For computational efficiency, we apply a cut of ∆AIC = 12, meaning that we only average that
subset of 485 models with ∆AICi < 12. For this cut, the sum of weights is 0.996.

5. The final averaged regression estimate β̃j and variance estimate σ̃2
j for each of the 17 predictors

are given by

β̃j =
∑
i

wiβj,iI(βj ∈ Mi) (3.9)

σ̃2
j =

∑
i

wi[σ
2
j,i + (βj,i − β̃j)

2]I(βj ∈ Mi) . (3.10)

The first summation can be read as “taking weighted average of the of the j th regression
coefficient over all models with ∆AICi < 12 where the j th regressor appears” (as indicated by
the indicator function I). The second summation is the variance of the j th regressor. If the
estimated β̃j is more than 1.96 σ̃j away from zero, assuming β̃j is distributed normally with
mean zero, this corresponds to a p value < 0.05 that β̃j , 0. One can interpret that the predictor
j is important for the SA signal.

We note that the way in which β̃j is computed has the effect of shrinkage: the smaller number of
models in which β̃j appears, the closer β̃j gets to zero. This method for computing β̃j is dubbed the
zero method (Burnham & Anderson 2003b), which is contrasted against the natural average method,
where we normalize the predictor estimate by dividing by

∑
i
wiI(βj ∈ Mi). The zero method is

preferable in situations such as ours where the aim is to determine which predictors have the strongest
effects on the response variable.

3.4.2 Featured Predictor Selection – re-Gaussianization shape

In this subsection, we report the predictor selection result for our DR8 footprint sample with φsat

measured using the re-Gaussianization method. All analyses below are properly weighted by pmem

for each satellite-central pair.
Table 3.4 lists those models that have ∆AIC < 3, with the first row containing the model with

the smallest AIC value, i.e., the model that would be selected in a traditional implementation of best-
subset selection using AIC as the fit metric (or equivalently using Mallow’s Cp, which is proportional
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to AIC). The first column indicates the total number of regressors included in a model, and the
subsequent 2nd to the 18th columns records the regression coefficients βj formulated in Eq. (3.4).
Some predictors, such as log(r/R200m) and satellite luminosity 0.1Mr , appear in all of the top models,
while less important predictors appear only occasionally. In Table 3.5 we lists the values of β̃ and σ̃,
as well as the absolute t value, for each predictor after averaging over all models with ∆AIC < 12
(485 models in total; see eqs. (3.9) and (3.10)). Predictors with |t | > 1.96 are identified as significant
in affecting SA. Under the re-Gaussianization shape measurement, we identify log(r/R200m), 0.1Mr,
satellite ellipticity esat, and f racDeV as significant predictors. To reiterate a point made above, in
this work we are not interested in using the β̃ values to predict φsat; our interest lies in quantifying
the significances of the predictors (as indicated by t values) and in exhibiting their effect on φsat (as
indicated in the sign of β̃).

Fig. 3.6 illustrates these trends by plotting the averaged value of φsat in bins of each selected featured
predictor, with the correlation coefficient between φsat and each predictor also provided. Clearly the
satellite luminosity (0.1Mr) and separation from the central galaxy in units of R200m (log(r/R200m)) are
prominent predictors for satellite alignments. There are sub-populations with measured 〈φsat〉 > 45◦,
although with less than 3σ significance, for example at faint luminosity or low f racDeV . This
may in part be due to lensing contamination from background galaxies that are wrongly included
in the satellite sample. The orange triangular points shown in Fig. 3.6 are the estimates of lensing
contamination based on the assumption that the pmem values accurately reflect reality; we refer readers
to Appendix 3.B for details. The estimated contribution from lensing contamination to 〈φsat〉 ≈ 45.1◦

across all subsamples.
In Sec. 3.3.1 and 3.3.2, no SA signal was detected based on re-Gaussianization shapemeasurement,

when averaging over all satellite-central pairs. The results in this section demonstrate that there do
exist statistically significant SA effects for certain subsamples of satellites, such as those that are
intrinsically brighter or located closer to their host central galaxies. We further discuss these selected
predictors in Sec. 3.6.
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Figure 3.6: Averaged satellite alignment angle 〈φsat〉 of redMaPPer member galaxies in the SDSS
DR8 footprint sample as a function of the 4 significant predictors whose |t | > 1.96 shown in Table 3.5.
The correlation coefficient between φsat and each predictor is labeled on the lower-right corner of each
panel. One can see that 〈φsat〉 < 45◦ for satellites that have higher luminosity, are located closer to
cluster center, are rounder in shape, and have a higher f racDeV . Especially for the subsamples of
luminous satellites, we detect a very significant SA signal. The triangular orange markers show the
estimated level of lensing contamination from background galaxies that are wrongly included in the
SA analysis (see Appendix 3.B for details), resulting in 〈φsat〉 ∼ 45.1◦ across all bins.
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3.4.3 Featured Predictor Selection – de Vaucouleurs and isophotal shapes

Here we repeat the predictor selection process as in the previous section, now using the DR7 sample
satellites that have φsat well-measured using all three shape measurement methods. Using both de
Vaucouleurs and isophotal shapes result in a nonzero net SA signal detection in the overall sample as
shown in Sec. 3.3.3. It is therefore interesting to check if the predictor selection result is consistent with
that based on re-Gaussianization shape, where the detected SA signal is small. If we select a different
set of predictors, we must consider whether they are caused by a fake systematic alignment signal
captured in de Vaucouleurs and isophotal shapes, or they could be physically reasonable predictors that
are authentically associatedwith the SA phenomenon, but are not selected out in the re-Gaussianization
shape due to its sensitivity to different regions of the galaxy light profiles.

We summarize our predictor selection results for de Vaucouleurs and isophotal shapes in Tables 3.6
and 3.7. Under the criterion of |t | > 1.96, for de Vaucouleurs shape, in addition to the predictors that
have been identified based on re-Gaussianization shape (Table 3.5), one extra predictor, θcen, is added
with a fairly high t-value. For isophotal shape, we identify two new predictors compared to those from
re-Gaussianization shapes: θcen and redshift. As revealed in the sign of the β̃, satellites with smaller
θcen (stronger central galaxy alignment with the shape of the satellite galaxy distribution) and smaller
redshift have stronger isophotal SA signal.

Fig. 3.7 shows the averaged SA angle 〈φsat〉 of our DR7 footprint sample in bins of the identified
predictors. The correlation coefficients measured between φsat using the three shape measurements
and each predictor are shown in the legend. The correlations become tighter as we move from
re-Gaussianization to isophotal shapes for most predictors – log(r/R200m), satellite 0.1Mr , satellite
ellipticity, θcen, and f racDeV . However, the correlation coefficient for the redshift has a different sign
when measured in isophotal shape vs. the other two shapes. We will discuss the redshift dependence
in more detail in Sec. 3.6.

In general, for all differences between methods, we must consider whether they originate from
systematic effects, or from real differences between the methods due to their sensitivity to different
parts of the galaxy light profiles and isophotal twisting.

3.5 Origin of discrepancy in detected Satellite Alignment signal with
different shape measurement methods

As reported in Fig. 3.4, the detected SA signal strength depends on shape measurement methods.
The isophotal shape detects the strongest SA signal, followed by de Vaucouleurs shape then re-
Gaussianization shape. This trend is consistent with the large-scale IA measurement done by Singh
& Mandelbaum (2016) using these three shape measurement algorithms.

In this section, we discuss possible reasons for this discrepancy. We note that in cluster systems,
the difference in SA angle (|φsat,iso−φsat,reG |) is identical to the PA difference, |PAiso−PAreG |measured
in the RA-dec frame. We can therefore use |PAiso − PAreG | for our tests, which allows us to introduce
galaxies that do not belong to any cluster for tests of statistical and systematic errors.

In what follows, we classify the origin of the discrepancy in the measured galaxy PA into three
dominant factors, as summarized in Fig. 3.8. Our high-level goal is to consider all possible factors that
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Figure 3.7: Averaged satellite alignment angle 〈φsat〉 of redMaPPer members in the SDSS DR7
footprint as a function of the 6 significant predictors whose |t | > 1.96 as shown in Tables 3.6 and
3.7. Correlation coefficients between φsat and x-axes parameters are shown in the upper right corner
of each panel.
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Difference 
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Physical

Systematic

Noise
Ellipticity noise

Pixel noise

Crowded field systematic

Bright neighbor systematic

Isophote twisting

PSF systematic

Figure 3.8: The origin of discrepancies in PA differences measured with different shape measurement
methods. Three origins for these discrepancies are explored: discrepancies due real physical isophote
twisting effect (Sec. 3.5.3), discrepancies caused by systematic errors, and discrepancies due to noise.
The systematic origins can be further classified into three factors: the bright neighbor and crowded
field systematics (Sec. 3.5.2) and the PSF systematic (Sec. 3.5.2). The origins of noise are separated
into two sources: pixel (Sec. 3.5.1) and ellipticity noises (Sec. 3.5.1). The items colored in green
background are factors that especially important for galaxies residing in cluster fields, while the ones
colored in grey background are relevant in all possible environments.

may contribute to the measured difference in average SA angle for our redMaPPer cluster sample, and
determine whether the result is dominated by noises and systematics, or we do detect any interesting
physical effects.

3.5.1 PA discrepancies due to noise

The first factor that affects the difference in PA is simply noise. We further separate the origin of noise
into ellipticity noise and pixel noise.

Ellipticity noise

The ellipticity noise is perhaps the most dominant factor in determining how precisely the PAs are
measured. For a given S/N ratio of a detection, the uncertainty in the PA is larger for rounder galaxy
(see Table 1 of Refregier et al. 2012). We demonstrate this effect in Fig. 3.9a using our non-cluster field
sample, as defined in Sec. 3.2.4. We plot the PA differences between isophotal and re-Gaussianization
shapes as a function of the ellipticity based on re-Gaussianization measurement. The filled circle
shows the mean of the |PAiso − PAreG | value in ellipticity bins, revealing that the averaged differences
in PA become larger when galaxies are rounder.

Pixel noise

Pixel noise arises from the Poisson noise in the sky and object flux in CCD measurements. Its impact
is strongest on the images of faint galaxies, which have relatively low signal but still experience all
the Poisson noise due to the background level. Pixel noise makes it difficult to measure the shape of
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low S/N galaxies, especially when those galaxies are also poorly resolved compared to the PSF (e.g.,
Refregier et al., 2012). As a consequence, there may also be an apparent redshift trend.

Figs. 3.9b, 3.9c, and 3.9d show the scatter plots for |PAiso−PAreG | as a function of apparent r-band
magnitude, r-band resolution factor4, and photo-z respectively from the non-cluster field sample. We
can see that the averaged differences in PA (filled circle) go up for galaxies with fainter mr , lower
resolution, and higher z as expected.

3.5.2 PA discrepancies due to systematic errors

Systematic errors due to data analysis methods or contamination from nearby objects (see Fig. 3.8)
may also cause PA discrepancies between different methods.

PSF systematics

Different shape measurements correct for the effects of the PSF on galaxy images at different levels.
If not removed properly, the residuals of PSF would bias the resulting shape parameters: In the case
that PSFs are round and galaxies have elliptical isophotes, on average, the PA will be unaffected by the
PSF convolution, with only the magnitude of the galaxy shape being affected. If PSFs are elongated
toward specific directions, then both the measured ellipticity and PA of galaxies are contaminated.

Isophotal shapes do not explicitly correct for the PSF convolution; de Vaucouleurs shapes partially
correct for the PSF using an approximate (double-Gaussian) PSF model. The re-Gaussianization
shapes consider a full PSF model to remove PSF systematics in order to recover small weak lensing
signals. Therefore, part of the discrepancy in PA measured based on different shape measurements
may be due to different levels of PSF anisotropy removal.

Singh & Mandelbaum (2016) explored the additive bias in galaxy shape measurements due to
residual PSF anisotropy, resulting in a coherent additive bias in the measured shapes of SDSS LOWZ
galaxies using these three shape measurements. They found that for both re-Gaussianization and
isophotal shapes, their additive biases are quite small. However, for de Vaucouleurs shapes, the
additive bias is about a factor of 10 larger than with the other two shape measurements (see their
Fig. 5). They claimed that this may be due to the fact that the de Vaucouleurs modeling uses an
approximate PSF model. If those results are relevant for galaxies in cluster fields, then part of the
PA discrepancy between de Vaucouleurs shape and the other two is contributed by the residual PSF
anisotropy in the galaxy shapes. In fact, they should be even more important here, because the galaxies
used in our analysis are smaller and fainter, resulting in a greater susceptibility to PSF anisotropy
modeling errors.

Bright neighbor and crowded field systematics

Different shape measurement methods determine galaxy PA based on different parts of the galaxy’s
light profile. The re-Gaussianization method puts more emphasis on the central region of a galaxy’s
profile. The de Vaucouleurs shape includes both central and outer extended wings of the light profile

4The resolution factor reflects how resolved a galaxy is compared to its PSF, with 0 (1) indicating a completely unresolved
(perfectly well-resolved) galaxy. See Appendix A of Reyes et al. (2012) for its definition.
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Figure 3.9: Absolute PA differences between isophotal and re-Gaussianization shapes as a function
of galaxy ellipticity, mag r , r-band resolution factor, and redshift. The grey contour levels indicate
the level below which 20%, 45%, 70%, and 95% of the central-satellite pairs are located. The filled
solid dots indicate the averaged |PAiso −PAreG | values in bins of the horizontal axes values. As shown,
the averaged differences in PA increase for galaxies that are rounder in shape, with fainter mr , lower
resolution, and located at higher z.

94



Chapter 3. Satellite galaxy alignments 3.5. Origin of discrepancy in SA

to fit PA, while the isophotal shape traces the outermost region of a galaxy along the 25 mag/arcsec2

isophote. These choices maymake the latter twomethods more sensitive to artifacts in the de-blending
and sky subtraction processes, leading to spurious SA signals. The two dominant systematics that
affect the de-blending and sky subtraction processes and further contribute to the PA discrepancy
are bright neighbor and crowded field systematics. The bright neighbor systematic arises due to
the contamination of light from nearby bright neighbors in the galaxy for which we are attempting
to measure a shape. In cluster-like high density regions, the measured galaxy PA could be biased
coherently pointing toward the high-density direction due to the intracluster light or due to the fact
that the large number of bright galaxies causes a misestimated sky gradient. We refer this second
effect as the crowded field systematic.

Below we start by estimating the level of bright neighbor systematic. In the left panel of Fig. 3.10,
we show the measured mean absolute PA discrepancy (hereafter, MAPAD) between isophotal and
re-Gaussianization shapes as a function of projected sky separation for galaxies that have a bright
mr < 19 non-physically associated neighbor, as defined in (iii) of Sec. 3.2.4 (plotted in purple open
points). We see that the MAPAD increases to ∼ 27◦ for the innermost sky separation bin, indicating
potentially more contamination from bright neighbors at closer sky separation.

Besides systematics, there is also a noise contribution (see Sec. 3.5.1) to the measured MAPAD,
which must be estimated in order to properly constrain the level of bright neighbor and crowded field
systematics. Note that for the MAPAD data points shown in purple open circles in Fig. 3.10, there is
no contribution from a physical effect like isophotal twisting, due to our use of foreground/background
galaxies at different redshifts from the bright central galaxies.

To distinguish between bright neighbor systematic and noise, we re-weight the galaxies in our
non-cluster field sample (as defined in Sec. 3.2.4, (ii)) to match the distributions of mr , z, and ellipticity
in the sample around bright galaxies used here. This reweighting is done separately within each bin
in projected sky separation. We can then record the weighting factors in the mr -z-ellipticity space,
and use these weighting factors to calculate the weighted-MAPAD from galaxies in the non-cluster
field sample. The resulting weighted-MAPAD value is then a proper estimation of the noise level for
galaxies in each sky separation bin, assuming that those three quantities are the main ones determining
the statistical uncertainty in the MAPAD. The triangular data points in both panels of Fig. 3.10 show
the resulting estimation of the noise level. The convergence of the triangular points towards the
circular points at larger separations appears to validate the assumption behind this method.

After subtracting the noise contribution in the left panel of Fig. 3.10, the remaining signal shown
in Fig. 3.11 (purple open circles) should be dominated by MAPAD due to bright neighborhood
systematics. This figure shows that for large sky separations (& 0.4′), the detected MAPAD is
consistent with our prediction for the noise. For the innermost bin in sky separation, the excess of
MAPAD, ∆ 〈|PAiso − PAreG |〉, increases to ∼ 7◦ for galaxies that have a bright (mr < 19) neighbor.
The best-fitting models of the form

∆
〈
|PAiso/deV − PAreG |

〉
= A (sky separation)B (3.11)

are provided in the legend of Fig. 3.11, and will later be used to estimate the level of MAPAD due to
bright neighbor systematics. The right panel of Fig. 3.11 shows the same results as in the left panel,
but for de Vaucouleurs (rather than isophotal) vs. re-Gaussianization shapes. The trends in both panels
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Figure 3.10: Left panel: mean absolute PA differences (MAPAD) between isophotal and re-
Gaussianization shapes as a function of projected angular separation on the sky for galaxies that
are in the foreground and background of mr <19 non-cluster field bright galaxies (purple open circle),
and for galaxies in the foreground and background of redMaPPer clusters (dark blue filled circle). The
lighter color points shown with triangular symbols indicate the estimated 〈|PAiso − PAreG |〉 contribu-
tion from noise (see the text for details). Right panel: similar to the left panel but for the MAPAD
between de Vaucouleurs and re-Gaussianization shapes, 〈|PAdeV − PAreG |〉. As shown, the MAPAD
increases toward small sky separation.

are similar.
Aside from the simple diagnostics shown here, Mandelbaum et al. (2005) and Aihara et al.

(2011) have also pointed out other ways that the imperfect deblending and sky-subtraction can affect
the measured properties of the faint galaxy populations around bright galaxies in SDSS DR4 and
DR8 photometry pipelines. We conclude that bright neighbor systematic does play some role in the
measured MAPAD between different shape measurement methods in the data, and its effect increases
for galaxies around brighter neighbors.

We attempt to measure the strength of the crowded field systematic by measuring the MAPADs
for foreground and background galaxies of redMaPPer clusters as defined in sample (i) of Sec. 3.2.4.
The right panel of Fig. 3.10 shows the resulting estimate, with the estimated noise contribution shown
as well. The difference between the two sets of data points, as shown in the blue filled circles in
Fig. 3.11, indicates the joint contribution of MAPAD due to both bright neighborhood and crowded
field systematics in the redMaPPer cluster field. Unfortunately here we lack pairs at small projected
sky separation, resulting in a very noisy estimate of these combined effects.

3.5.3 PA discrepancies due to physical effects

Finally, in the case that a pair of galaxies are physically associated, aside from noise and systematics,
some portion of the measuredMAPAD could be explained by a real physical effect known as “isophote
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Figure 3.11: Left panel: Excess of mean absolute PA differences (MAPAD) between isophotal
and re-Gaussianization shapes caused by bright neighbor or crowded field systematics as a function
of projected angular separation on the sky, for galaxies in the foreground and background of mr

<19 (purple open circle) and for galaxies in the foreground and background of redMaPPer (blue
filled circle). Right panel: similar to the left panel, but for the excess of MAPAD between de
Vaucouleurs and re-Gaussianization shapes. As shown, the level of bright neighbor and crowded field
systematics increases toward small sky separation bins. The fitted models (see Eq. 3.11) between
∆

〈
|PAiso/deV − PAreG |

〉
and sky separation are provided in the legendwith x = sky separationmeasured

in arcmin and y = ∆
〈
|PAiso/deV − PAreG |

〉
.
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twisting” (di Tullio, 1978; Kormendy, 1982). The origin of this phenomenon is that the galaxy outer
light profile may be more sensitive to external tidal fields, and hence could show a stronger SA signal
compared with its inner light profile.

From N-body simulations, at one halo length scale, Pereira & Bryan (2010) detected a significant
amount of isophotal twisting for triaxial galaxies orbiting in a cluster potential (see their Figs. 6 and
8). Also, Tenneti et al. (2015a) found in cosmological hydrodynamic simulations that the measured
IA signal at all spatial separations becomes larger when defining galaxy shapes and orientations in a
way that emphasizes the outer parts of the galaxy light profile.

Observationally, since the isophotal shape traces the outermost part of the light profile, the
measurement based on isophotal shapes should detect the strongest SA signals, followed by de
Vaucouleurs and re-Gaussianization shapes, if isophotal twisting is occurring at a significant level.
Singh & Mandelbaum (2016) detect a stronger IA amplitude with isophotal shapes than with re-
Gaussianization shapes at large separations (& 5Mpc). After considering possible systematic errors,
they conclude that this difference most likely originates from isophotal twisting.

In this work, since we focus particularly on galaxies in cluster environments, we need to reassess
whether systematics may be contributing in a significant way to the measured MAPADs between the
two shape measurement methods compared to what was found in Singh &Mandelbaum (2016). Only
after doing so can we draw conclusions about possible detections of isophotal twisting.

The effect of isophote twisting should be more intense for galaxies in a stronger gravitational field.
Thus we expect to detect a larger MAPAD for satellites located physically closer, not just looked closer
in projection, to the centers of clusters. Therefore, in Fig. 3.12, we make similar plots for redMaPPer
members (teal green circles) as that shown in Fig. 3.11, but change the x-axis from sky separation to
physical projected separation. We process similar noise estimation as what we have done in Fig. 3.10,
i.e. by reweighting non-cluster field galaxies to have similar z, mr , and ellipticity distributions as that
of redMaPPer members, but now operate it in bins of physical projected separation. After the removal
of noise, the values of y-axis shown in Fig. 3.12 should be caused largely by bright neighbor and
crowded field systematics, as well as physical isophote twisting effects. The left panel of Fig. 3.12 is
the excess of MAPAD between isophotal and re-Gaussianization shapes, while the right panel plots
that between de Vaucouleurs and re-Gaussianization shapes. In the following, we will first try to
estimate how much of the excess MAPAD is contributed by the bright neighbor systematic, and then
based on that we can judge whether there is leftover isophotal twisting signal.

To estimatewhat fraction of the excessMAPAD inFig. 3.12 is due to the bright neighbor systematic,
we apply the following procedure: for each central-satellite pair of redMaPPer member, we use its
projected sky separation as input in the derived best-fitting ∆

〈
|PAiso/deV − PAreG |

〉
–(sky separation)

relation (in the form of Eq. 3.11) shown in Fig. 3.11 to estimate the level of systematics in cluster
field. Next, we take averages for all central-satellite pairs in each physical r bin. The solid purple
line in Fig. 3.12 indicates the resulting estimated contribution due to bright neighbor systematics. We
observe that at the smallest r bin, the bright neighbor systematic could potentially contribute more than
50% of the measured ∆

〈
|PAiso/deV − PAreG |

〉
. However, the actual level of bright neighbor systematic

in cluster environments could be larger, since the central galaxies have (on average) brighter apparent
magnitudes than the sample of non-centrals used to estimate the bright neighbor systematic.

Roughly, the remaining differences in the y-axes between the green dashed and purple solid lines
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Figure 3.12: Left panel: Excess of mean absolute PA differences (MAPAD) between isophotal
and re-Gaussianization shapes, ∆〈|PAiso − PAreG |〉, as a function of projected physical separation
for members in redMaPPer clusters (teal green circles). Right panel: similar to the left panel but
with ∆〈|PAdeV − PAreG |〉 in the y-axis. The purple line is the estimated level of bright neighbor
systematic derived using the best-fitting models shown in Fig. 3.11. We observe that at the smallest
r bin, the bright neighbor systematic could potentially contribute more than 50% of the measured
∆
〈
|PAiso/deV − PAreG |

〉
. Roughly, the remaining differences in the y-axes between the green dashed

and purple solid lines are contributed by real physical isophote twisting signal and the crowded field
systematic (for which we lack a good estimate), and probably some residual bright neighbor systematic
due to the fact that the average apparent magnitude of cluster central galaxies is brighter than that of
the galaxy sample used to estimate the bright neighbor systematic.
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are contributed by real physical isophote twisting signal and the crowded field systematic (for which
we lack a good estimate). Residual bright neighbor systematic error may also play a role since the
average apparent magnitude of cluster central galaxies is brighter than that of the galaxy sample used to
estimate the bright neighbor systematic. Unfortunately, we have no good way to empirically estimate
the crowded field systematic more accurately, due to the small size of the foreground and background
samples in cluster fields. Simulation pipelines associated with future large surveys may be a better
tool to estimate and remove various sources of systematic contamination and provide constraints on
isophote twisting effects in cluster environments.

3.6 The dependence of satellite alignment on the selected predictors

In Sec. 3.4, we apply linear regression analysis and apply the model averaging technique to identify
predictors that have a significant influence on the variation of the SA signal (as summarized in
Tables 3.5, 3.6 and 3.7 for different shape measurements). We now address possible reasons for the
observed relationship between φsat and these selected predictors.

3.6.1 Dependence on satellite luminosity

As shown in Figs. 3.6a and 3.7b, we found that satellite 0.1Mr has a very significant influence on the
SA signal, with more luminous satellites being more likely to have their long axes oriented toward
their host central galaxies.

Our result is consistent with the observation of Hung & Ebeling (2012). Based on high quality
HST/ACS data for shape measurement they also detected a statistically significant trend for the
dependence of 〈φsat〉 on satellite luminosity (see their Fig. 6) for members in 12 X-ray clusters at
z ∼ 0.5–0.6.

Based on N-body simulations, Pereira et al. (2008) reported that there is no apparent dependence
of subhalo alignment signals on the subhalo mass (see their Fig. 3). In a cosmological hydrodynamic
simulation, Tenneti et al. (2014) found that the misalignment between a galaxy’s own DM subhalo and
its luminous component becomes larger for less massive galaxies. Therefore, the observed relationship
between 〈φsat〉 and satellite luminosity may be due to this misalignment dependence on luminosity.
For faint galaxies, which are typically less massive, they appear to be more randomly oriented because
their luminous components are not good tracers of the orientation of their own DM halos.

3.6.2 Dependence on satellite-central distance

Satellite-central distance is another significant factor determining the strength of the SA effect, with
satellites located closer to their centrals having a stronger SA signal. Many previous observational
studies that have reported detections of SA also found dependence of 〈φsat〉 on satellite-central distance
(Pereira & Kuhn, 2005; Agustsson & Brainerd, 2006; Faltenbacher et al., 2007; Siverd et al., 2009;
Hung & Ebeling, 2012).

The satellite-central distance dependence naturally reflects the fact that SA is triggered by tidal
forces from the DM potential of the host halo. Hence, the strength of the tidal force would be stronger
for satellites located closer to the central region of the host halo. However, as discussed in Sec. 3.5.2,
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part of this trend could coming from bright neighbor and crowded field systematics, especially for
galaxies located near the cluster central region.

From the simulation side, where this radius-dependence can be measured to small scales without
observational systematics, Pereira et al. (2008) showed that the relationship between the subhalo SA
signal and satellite-central distance is actually non-linear. As shown in their Fig. 4, the SA signal
first rises gradually when satellites are closer to cluster center, peaks at around 0.5 times the virial
radius, then decreases again toward the center. This is because when falling into the cluster along an
eccentric orbit, a subhalo’s orbiting speed becomes too fast for the tidal torquing to be effective at the
orbital pericenter, so the alignment cannot keep up with the satellite subhalo’s own motion (see Fig. 8
of Pereira et al. 2008), leading to the decrease in SA signal at very small radius (see also discussion
in Sec. 6 of Kuhlen et al. 2007).

3.6.3 Dependence on satellite ellipticity

We identified a statistically significant SA signal dependence on satellite ellipticity, with rounder
satellites exhibiting a stronger tendency to radially point toward their cluster central galaxy. Since it
is difficult to accurately determine the PA of a satellite with a round shape, we divide our samples into
two ellipticity bins at the boundary of 0.2, and see if the resulting correlation is still strong enough
that satellite ellipticity can be selected as an important indicator of the SA effect through the variable
selection process. Our result is that this quantity is still selected as a feature predictor. Fig. 3.13 plots
the 〈φsat〉 value in bins of satellite ellipticity. We see that the net SA signal is fairly strong for satellites
with ellipticity < 0.2 (Fig. 3.13b), and that the detected positive correlation is still quite significant
for satellites with ellipticity ≥ 0.2 (Fig. 3.13c).

According to Pereira & Bryan (2010), for galaxies orbiting in cluster potentials, their stellar
components tend to become more spherical with time (see their Fig. 18). Also it takes time for
satellites to become tidally locked and pointing radially toward central. We propose that the observed
correlation between 〈φsat〉 and the ellipticity of satellites reflects this physical picture.

3.6.4 Dependence on the f racDeV parameter

In the work of Siverd et al. (2009), based on a catalog of group-mass systems, they have studied the
effect of f racDeV , an indicator of a galaxy’s bulge fraction, on the SA signal. They reported that the
level of SA strength is most strongly dependent on the f racDeV parameter. To compare with their
result, we have added f racDeV into our parameter pool for use during the variable selection process.

Our analysis also showed that f racDeV is a statistically-significant predictor for the satellite
alignment effect, with de Vaucouleurs profile-dominated (higher bulge fraction) galaxies having
stronger SA signal compared to galaxies with exponential dominated-profile (higher disk fraction).
As shown in the φsat- f racDeV plots of Figs. 3.6d and 3.7e, the observed SA signal is mostly coming
from satellites with high f racDeV values.

Typically a galaxy with higher luminosity, rounder shape, and redder color tends to have a higher
bulge fraction, and thus higher f racDeV . Therefore, it is important to ensure that the dependence be-
tween φsat and f racDeV is not caused by correlations of f racDeV with other parameters. (Although
linear regression is a useful tool to break out degeneracies among parameters, since SA is a weak sig-
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Figure 3.13: The averaged SA angle, 〈φsat〉, in bins of satellite ellipticity. The left panel shows all
satellites in our DR7 footprint sample; the middle panel shows only satellites with ellipticity < 0.2,
while the right panel shows satellites with ellipticity ≥ 0.2. The correlation coefficients between φsat

and satellite ellipticity measured in various shapes are provided in the upper right corner for each of
subsamples. We see the observed significant trend of positive correlation in the full satellite sample is
still there for satellites with ellipticity ≥ 0.2, whose PA (and thus φsat) measurements are more robust.

nal, we still need to pay extra attention on the possible degeneracy issue.) To check whether f racDeV
is a representative parameter with its own distinct effect on 〈φsat〉, we construct five subsamples by
excluding satellites of the top 20% most luminous, smallest satellite-central distance, roundest, and
reddest color from the parent DR8 sample pool each time. After that, we can check if the remaining
80% of the satellites still exhibit a significant correlation between f racDeV and φsat. In Fig. 3.14, we
plot the averaged φsat in bins of f racDeV for these five subsample sets. One can see that although
excluding these satellite subsets decreases the overall SA signal strength, the trend between f racDeV
and 〈φsat〉 remains similar as in the original full sample. This finding confirms that f racDeV really
is a special parameter with its own distinct effect on the SA signal.

We propose that f racDeV is chosen as an important predictor because it encapsulates information
about the importance of angular momentum in the dynamics of each galaxy. It has been observed
that SA signal only appears in samples of red bulge-dominated galaxies, while blue disky galaxies
generally have random orientation within clusters (see e.g. Pereira & Kuhn 2005; Faltenbacher et al.
2007; Siverd et al. 2009 based SDSS isophotal shapes and Hung & Ebeling 2012 based on high quality
HST images). Since material in disks has higher angular momentum compared with that in bulges,
it becomes less effective to torque disks to align with the surrounding tidal field. According to the
N-body simulation results of Pereira & Bryan (2010), galaxies with initial figure rotation generally
take longer to become radially aligned than non-rotating galaxies (see their Sec 5.5). Tenneti et al.
(2016) also found using cosmological hydrodynamic simulations that the misalignment angle between
disky galaxies with the shape of their host DM subhalos is larger compared with ellipticals. In that
case, they used an angular-momentum based discriminator for disk vs. elliptical galaxies, so again
f racDeV should be relevant.
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Figure 3.14: The averaged SA angle, 〈φsat〉, in bins of f racDeV for different subsamples of the
redMaPPer satellites as indicated in the title of each plot. The correlation coefficient between φsat and
f racDeV for each subsample is shown in the upper right corner. After excluding part of satellites
with properties that correlate with f racDeV , the correlation trend between f racDeV and φsat still
remains similar as the original full sample. This confirms that f racDeV as its own distinct effect on
the SA signal.

We remind the readers that our work only includes fairly red galaxies, since the redMaPPer
members are selected based on the red-sequence method. This may lead to the result that f racDeV
(tracing angular momentum) appears to be a more important predictor than color (which directly
reflects the gas contain of a galaxy). However, based on hydrodynamical simulations, Debattista et al.
(2015) pointed out that “gas” is a key factor affecting the degree of misalignment between a disky
galaxy and its own subhalo. A red, gas poor disk can have a stable orientation governed by halo
torques, but when there is gas cooling onto a disk, the blue disk could have arbitrary orientations set
by the balance between halo torques and angular momentum of the ongoing gas accretion.

3.6.5 Dependence on central galaxy alignment angle θcen

For de Vaucouleurs and isophotal shapes, we detected a positive correlation between φsat and θcen,
with satellites located closer to the central galaxy major axis direction showing a stronger SA signal.

In Paper I, we have explored the angular segregation of satellites in redMaPPer clusters and
concluded that the angular segregation may be due to 1) preferential infall of satellites along the
filamentary structure aligned with the large-scale primordial tidal field (see Paper I Sec. 6.1) or 2) the
newly-established local tidal field produced by the current configuration of satellites which torques
centrals to align (see Paper I Sec. 7.3). The observed dependence of φsat on θcen can also be explained
based on the above two scenarios. Assuming that a central galaxy is aligned with its most dominant
primordial tidal field, since many satellites are fed into clusters along this direction, some satellites
located near the edge of the cluster may still remember their original orientations along this primordial
tidal field because of their relatively late entrance into the clusters. Thus, for satellites with small
θcen, it is natural that they will point radially toward central galaxy (Faltenbacher et al., 2008). For the
second scenario, if later dynamical evolution has changed the central galaxy’s orientation to align with
its newly established local tidal field, satellites near cluster central region would also show tendency to
align along this tidal field, especially those located at small θcen, forming a local filamentary structure.
Note it is likely that the later local tidal field still follows the direction with its primordial large-scale
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Figure 3.15: The relationship between 〈φsat〉 and θcen for the DR7 footprint sample in different
satellite-central separation bins as indicated in the title of each plot. The correlation coefficients
between φsat and θcen measured in various shapes are provided in the upper right corner for each of
subsamples. We see that the originally observed significant correlation in the full sample is dominated
by satellites located closer to cluster central region.

tidal field.
One way to check the above scenarios is to look at the correlation between θcen and φsat for

satellites at small and large satellite-central separations, as plotted in Fig. 3.15. We observe that there
is almost no signal at the largest log(r/R200m) bin (Fig.3.15d). The correlation is mostly driven by
satellites at small log(r/R200m) bin (Fig.3.15b). Thus if the detected correlation is real, then the local
tidal field is the most likely cause for the correlation between θcen and φsat.

Besides the physical origin, the correlation between θcen and φsat could be induce by systematics.
At small satellite-central distances, φsat measurements based on de Vaucouleurs and isophotal shapes
may suffer from bright neighbor systematic (see Sec. 3.5.2) due to the central galaxies’ extended light
profiles. Satellites located on the major axes directions of the centrals would be more strongly affected
by this systematic. This may be the reason why θcen is identified as an important predictor only in de
Vaucouleurs and isophotal shape measurements. It therefore remains interesting to check whether we
can detect robust dependence between θcen and φsat, especially at small scale, using simulation data
in the future.

3.6.6 Dependence on redshift

For the isophotal shape measurements, we observed that there is stronger SA for satellites at lower
redshift. As shown in Fig. 3.7f, the correlation coefficient between z and 〈φsat〉 is very small (0.002),
but the correlation is still identified using our variable selection procedure.

However, we suspect that the correlation detected in isophotal shapes here may be dominated by
systematics. For a galaxy at lower redshift, its 25 mag/arcsec2 isophote traces a larger area on the sky,
and thus would have more fake alignment signal from bright neighbor and crowded field systematics
(see Sec. 3.5.2). Besides, the correlation coefficients observed between φsat and z measured in
re-Gaussianization and de Vaucouleurs shapes are both negative, meaning that satellites at higher
redshift show stronger SA signal (although not a strong enough dependence to be identified through
our variable selection procedure).
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Comparing with other observational work, Hao et al. (2010) also observed an increase of the SA
signal toward lower z based on isophotal shape, but detected no SA signal across all redshift bins using
de Vaucouleurs shapes. Schneider et al. (2013) reported stronger SA at higher redshift for early-type
galaxies in groups based on 2D Sersic model shape measurements.

From the simulation side, Pereira et al. (2008) found that the SA strength increases steadily with
time for all of their simulated clusters (see their Fig. 5), suggesting that IA strength within the one-halo
regime requires time to develop. This trend is inconsistent with the current best theoretical model
for IA of galaxies at large scales. The linear alignment model (Catelan et al., 2001; Hirata & Seljak,
2004b) suggests that IA stems from the primordial tidal field at the time when galaxies form. This
implies that later merging or baryonic processes of galaxy evolution may weaken this primordial
signal, as shown in the N-body simulation work of Hopkins et al. (2005), who found that the strength
of cluster alignments (not galaxy alignments within clusters) decreases at later times.

Currently, our technique is not good enough yet to completely demonstrate proper removal of
systematics contamination and measure the evolution of SA signals with redshift robustly. Future
exploration on the dependence of SA particularly with redshift is important in a sense that it may
have different theoretical origin compared with current large-scale linear alignment model, which
needs to be investigated to properly extend the linear alignment model down to smaller scale (see e.g.
Schneider & Bridle 2010 for smaller scale IA modeling).

3.7 Summary

In this work, we investigate the radial alignment of satellites in redMaPPer clusters based on three
different shape measurement methods: re-Gaussianization, de Vaucouleurs and isophotal shapes.
We compare the observed SA signals among these measurements, and explore possible systematic
effects. To identify the predictors that are relevant to the variation of the SA signal, we perform linear
regressions on all possible models and apply the model averaging technique on a total of 17 physical
parameters related to satellite, central galaxy, and cluster properties (see Table 3.2), and quantify the
significance of their relationship with the satellite alignment angle, φsat.

Our main results are summarized as follows:

1. Based on re-Gaussianization shape measurements, which puts more weight on a galaxy’s inner
light profile, we do not detect any convincing SA signal in the overall pmem > 0.55 satellite
population of redMaPPer clusters (Fig. 3.2). However, a statistically significant SA signal is
observed for the entire sample when using de Vaucouleurs shapes, and the overall SA strength
reaches to its strongest level in isophotal shape, which traces the outermost light profile of a
galaxy (Fig. 3.4).

2. Despite the lack of detection of satellite alignments for the entire sample, there are nonetheless
distinct subpopulations that carry highly significant satellite alignments signals whenmeasuring
using re-Gaussianization. The SA strength is strongest for satellites with higher luminosity,
located closer to their central galaxies, with smaller ellipticity, and have higher bulge fraction
in the light profiles. (Fig. 3.6). We also find that satellites located closer to the major axis
directions of their central galaxies show higher SA signal, when using de Vaucouleurs and
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isophotal shape measurements for satellite shapes (Fig. 3.7).

3. The selected predictors that show significant influence on the SA effect highlight the roles of
tidal torquing mechanism, the primordial pre-infall alignment, the process of violent relaxation
in clusters, and the angular momentum of galaxies in causing the observed SA dependences.

4. We discuss possible factors that could cause the observed different strength of SA among these
three shape measurement methods (Fig. 3.8), provide an estimate of the noise level and discuss
contributions from systematics and physical isophote twisting effect.

Over the past decade, there has been some disagreement in the literature regarding the existence
and strength of the SA effect. Here we report detections of SA phenomenon based on a well-
understood shape measurement method using nearly 104 clusters, which provides great statistical
power in constraining SA. We identify the regions of parameter space where SA signals become
significant, which in some cases can explain previous reported non-detections (e.g., in measurements
dominated by satellites in the regions of parameter space where we also find no significant detection
of SA). Our results will be useful in improving IA modeling at small scale, for example by building
a more realistic halo model of intrinsic alignments (building on work by Schneider & Bridle, 2010),
and further helps constrain systematics from IA in weak lensing analysis. We also discuss possible
physical origins of the SA signal based on the galaxy and cluster properties that most strongly predict
it, and point out directions for future work with even larger cluster samples that are becoming available
with next-generation imaging surveys.

Acknowledgments

We thank Eric Baxter for providing galaxy concentration parameter used in the work, and Sukhdeep
Singh for helpful comments and discussions. We also thank Sivaraman Balakrishnan for sharing his
view on variousmodel selection criteria. This work was supported by the National Science Foundation
under Grant No. AST-1313169 and by NASA ROSES 12-EUCLID12-0004.

3.A The choice of membership probability cut of our sample

There are several considerations driving the choice of pmem cut when defining the sample to use for
measuring SA. In general, a higher pmem cut would result in a stronger SA signal because brighter
and redder satellites tend to have a higher pmem in redMaPPer, and these galaxies are more likely
to point radially toward cluster centers. However, raising the threshold in pmem results in a smaller
sample size, and thus larger statistical uncertainty. Setting a lower pmem cut would increase the sample
size (reduce statistical errors), but also results in a lower signal due to both the inclusion of lower
luminosity satellites which carry less signal, and due to the higher contamination rate from non-cluster
members. In this appendix, we attempt to estimate the SA signal and noise as a function of the pmem

cut. Based on the observed dependences, we can then determine a pmem cut that maximizes the S/N
of SA.

Here we define the signal S to be the weighted averaged SA angle over all potentail central-satellite
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pairs indexed i,

S = 〈45◦ − φsat〉 =

∑
i
wi(45◦ − φsat,i)∑

i
wi

, (3.12)

where wi is the weighting factor for each central-satellite pair. In practice, we use wi = pmem,i. We
shift φsat by 45◦ such that for pairs with no alignment, their signal S = 0. Some of the central-satellite
pairs used in our calculation may be contaminated by foreground/background galaxies that are not
physically associated with the cluster system. These fake pairs are assumed to contribute nothing
to the numerator of Eq. (3.12); in other words, we are ignoring the lensing of background galaxies,
which would lead to 〈φsat〉 > 45◦. We can rewrite Eq. (3.12) as

S =

∑
real pair, j

wj(45◦ − φsat, j)∑
i
wi

, (3.13)

with the summation in the numerator (indexed j) now including only contributions from real central-
satellite pairs. The contaminating pairs do contribute to the denominator, thereby diluting the signal.
Under the assumption that the pmem values in the redMaPPer catalogue represent a correct statistical
description of cluster membership (but see Zu et al., 2017), the summation

∑
real pair, j

should be statisti-

cally equivalent to
∑
i

pmem,i. Also, we find that a linear model is a good description for the relationship

between the strength of the SA signal (45◦ − φsat) and pmem 5.
With these two simplifications and also putting wi = pmem,i in Eq. (3.13), we conclude that the

signal S is described as

S ∝

∑
i

p3
mem,i∑

i
pmem,i

. (3.14)

The first pmem,i in the numerator comes from replacing the summation over real central-satellite pairs
with the summation over all potential pairs; the second comes from the weight; and the third from the
approximation that individual SA signal to lowest order are proportional to pmem,i

For the noise N, we simply apply standard error of the mean as the level of noise here, i.e.
N = σφsat/

√
Neff . Here the standard deviation of φsat (σφsat) is around 26◦ per pmem bin, while the the

effective number of central-satellite pairs (Neff) is ranging from 104 to 5 × 104 across various pmem

bins. Therefore, the variation in the noise on the measurement of the average φsat value with the pmem

cut value is mostly driven by the change in Neff . We assume that the noise N is proportional to the
Poisson noise on the mean value, defined as

N ∝
1
√

Neff
=

1√∑
i

pmem,i
(3.15)

5We have tried fitting the relation between (45◦ − φsat) and pmem with linear, quadratic, and other higher order of power
law models. Unfortunately, our data does not have the power to constrain more complicated models very well, so we simply
apply the linear model here.
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Figure 3.16: Satellite alignment S/N optimization with different pmem thresholds. The S/N is
maximized at pmem cut = 0.55. Note that the absolute normalization of the curve is arbitrary; only the
relative changes as a function of the pmem cut are meaningful.

The signal to noise ratio S/N would then be proportional to:

S/N ∝

∑
i

p3
mem,i√∑

i
pmem,i

. (3.16)

This is a quantity that we can easily calculate for all central-satellite pairs in our catalog, as a function
of the lower limit on pmem. The results are shown in Fig. 3.16. A pmem cut at 0.55 gives the highest
S/N , so we adopt this value throughout our analysis.

3.B Estimating 〈φsat〉 with contamination from background lensing sig-
nal

In Fig. 3.6, we saw that there are some subsamples with measured 〈φsat〉 > 45◦, meaning that satellites
in these data bins show a net preferred tangential alignment signal. Part of the excess may come from
lensing of galaxies that are actually in the background, because we allow a pmem cut at 0.55 when
doing our analysis. Here we provide a rough estimate of the degree of this contamination based on
the re-Gaussianization shape results 6.

We begin by defining two quantities: fraction of expected contamination from fake members ( fx)
and fraction of expected contribution from true members ( fv). Assuming that the pmem values provide
a correct statistical reflection of reality, we can estimate these via summations over all central-satellite

6In principle, lensing contamination comes into all shape measurements, but for de Vaucouleurs and isophotal shapes,
it is hard to extract the hidden lensing signal due to higher levels of systematics in these shape measurements.

108



Chapter 3. Satellite galaxy alignments 3.B. background contamination in SA signal

pairs with pmem > 0.55, indexed i:

fx =

∑
i
wi(1 − pmem)∑

i
wi

(3.17)

fv =

∑
i
wi(pmem)∑
i
wi

(3.18)

Here the weighting factor is just pmem, and by definition, fx + fv = 1.
After fx and fv are calculated, we can estimate the predicted value of 〈φsat〉 due to background

contamination by:

〈φsat〉pred = fv × 44.92 + fback fx × 46.07 + (1 − fback) fx × 45.0 (3.19)

Here fback is a free parameter that controls the fraction of contaminating pairs for which the contami-
nating galaxy is in the background (while 1− fback is the fraction of contaminating pairs consisting of
foregrounds). The predicted 〈φsat〉 value from each component is taken from that shown in the legend
of Fig. 3.2. For real cluster members, 〈φsat〉 = 44.92; for background pairs 〈φsat〉 = 46.07, while for
foregrounds, we expect φsat to have 〈φsat〉 = 45.0. The triangular orange data points shown in Fig. 3.6
are estimated based on setting fback = 0.6. Although here we do not have a good estimation for fback,
we find that the derived 〈φsat〉pred are all roughly around 45.1◦, insensitive to the setting of fback values
ranging from 0.5∼1.
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Abstract

Modifications of the matter power spectrum due to baryonic physics are one of the major
theoretical uncertainties in cosmological weak lensingmeasurements. Developing robust
mitigation schemes for this source of systematic uncertainty increases the robustness of
cosmological constraints, and may increase their precision if they enable the use of infor-
mation from smaller scales. Here we explore the performance of two mitigation schemes
for baryonic effects in weak lensing cosmic shear: the PCA method and the halo-model
approach in HMcode. We construct mock tomographic shear power spectra from four
hydrodynamical simulations, and run simulated likelihood analyses with CosmoLike
assuming LSST-like survey statistics. With an angular scale cut of `max < 2000, both
methods successfully remove the biases in cosmological parameters due to the various
baryonic physics scenarios, with the PCA method causing less degradation in the pa-
rameter constraints than HMcode. For a more aggressive `max =5000, the PCA method
performs well for all but one baryonic physics scenario, requiring additional training
simulations to account for the extreme baryonic physics scenario of Illustris; HMcode
exhibits tensions in the 2D posterior distributions of cosmological parameters due to
lack of freedom in describing the power spectrum for k > 10 h−1Mpc. We investigate
variants of the PCA method and improve the bias mitigation through PCA by accounting
for the noise properties in the data via Cholesky decomposition of the covariance matrix.
Our improved PCA method allows us to retain more statistical constraining power while
effectively mitigating baryonic uncertainties even for a broad range of baryonic physics
scenarios.

4.1 Introduction

The origin of the accelerated expansion of the Universe has been one of the most profound mysteries
in modern cosmology since its discovery (Riess et al., 1998; Perlmutter et al., 1999). The ΛCDM
framework is currently consistent with observations of the expansion history of our Universe from early
(Planck Collaboration et al., 2016) to late times (Abbott et al., 2018). Ongoing photometry surveys
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such as KiDS (Kilo-Degree Survey1), HSC (Hyper Suprime-Cam2) and DES (Dark Energy Survey3)
or future experiments such as LSST (Large Synoptic Survey Telescope4), Euclid5, and WFIRST
(Wide-Field Infrared Survey Telescope6) experiments aim to constrain cosmological parameters to
higher precision and search for deviations from ΛCDM in order to understand the nature of dark
energy and General Relativity.

Weak gravitational lensing (WL), the deflection of light by the gravitational potential of cosmic
structure, is one of the most promising cosmological probes to discriminate between dark energy
models (Weinberg et al., 2013; Mandelbaum, 2018). Tomographic WL measurements, in which
galaxy shapes are cross-correlated within and across bins in redshift space (e.g. Hu & Jain 2004),
are directly sensitive to structure growth, with secondary dependence on the relative distance ratios.
In order to use tomographic WL measurements to constrain cosmological parameters, an accurate
model for matter density power spectrum, Pδ(k, z), is required. It has been estimated that Pδ(k, z)
must be predicted to approximately 1% accuracy for k ≤ kmax ∼ 10 h−1Mpc in order to avoid biasing
cosmological parameter constraints in the era of LSST (Huterer & Takada, 2005; Eifler, 2011; Hearin
et al., 2012).

In the linear and quasi-linear regime, perturbation theory can be used to calculate the matter power
spectra for a set of given cosmological parameters (Bernardeau et al., 2002). On smaller scales, N-body
simulations are needed in order to capture the complicated non-linear evolution of structure growth.
For example, the Halofit method employs a functional form of Pδ(k, z) derived from halo models,
and calibrates the model parameters from N-body simulations at various cosmological parameters
(Smith et al., 2003; Takahashi et al., 2012). Alternatively, the Cosmic emu package emulates Pδ(k, z)
by directly interpolating the N-body simulation results at a range of cosmological models (Heitmann
et al., 2010, 2014; Lawrence et al., 2017). However, only gravitational physics is included in these
dark-matter-only (DMO) simulations, which neglects any modification of the matter distribution due
to baryonic physics processes such as star formation, radiative cooling and feedback (e.g. Cui et al.
2014; Velliscig et al. 2014; Mummery et al. 2017). These processes can modify Pδ(k, z) by tens of
per cent compared to the DMO power spectra from k ≈ 1 to 10 h−1Mpc at z = 0 (van Daalen et al.,
2011). The changes in the matter power spectrum due to baryonic physics can affect our inferences
on dark energy (e.g. Copeland et al. 2018) and neutrino mass parameters (e.g. Harnois-Déraps et al.
2015) as they have similar effects on part of the power spectrum, but the different scale and redshift
dependencies can help in breaking some of the degeneracies.

There are several approaches to mitigating the impact of uncertainty in how the baryonic physics
modifies the matter power spectrum. The simplest approach is to eliminate data points that may be
severely affected by this uncertainty, so that limitations in small-scale modeling do not bias the inferred
cosmology (e.g., see Krause et al. 2017 for the determination of the redshift-dependent angular scale
cuts for the DES-Y1 analysis or see Taylor et al. 2018 for another method relating angular scale cuts
to physical (k) space). This approach results in a loss of cosmological constraining power, especially

1http://www.astro-wise.org/projects/KIDS/
2http://hsc.mtk.nao.ac.jp/ssp/
3www.darkenergysurvey.org/
4http://www.lsst.org/lsst
5sci.esa.int/euclid/
6http://wfirst.gsfc.nasa.gov/
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when the statistical precision of the data increases in the future, resulting in the need for even more
conservative scale cuts. A more economical way of discarding data is through peak clipping (Simpson
et al., 2011, 2013). By cutting the most extreme peaks in the density fields of both observed and
mock data sets, the derived summary statistics become less sensitive to the poorly-modeled non-linear
regime, while still allowing the use of a wider range of scales to extract cosmological information
(Giblin et al., 2018). Eifler et al. (2015) propose the principal component analysis (PCA) framework
(see also Kitching et al., 2016), which utilizes suites of hydrodynamical simulations to build a set of
principal components (PCs) describing the modification of the observables by baryonic physics. The
first few PC modes point toward directions in observable space where deviation from DMO power
spectra due to baryons are most dominant. One can then efficiently remove the vast majority of
baryonic uncertainties by discarding the first 3 ∼ 4 PC modes. Mohammed & Gnedin (2018) point
out that the training hydro simulations used to construct PCs have to be sufficiently broad in order to
offer flexible degrees of freedom to span the possible baryonic scenarios for our Universe.

Other methods focus on modeling the ratio of power spectra that includes baryons to those that
do not, with the goal of finding functional forms to describe the range of possible behavior of
Pδ,bary(k, z)/Pδ,DMO(k, z). Harnois-Déraps et al. (2015) use a parametric form with 15 parameters
that is able to describe the power spectrum ratio of several OWLS simulations (van Daalen et al., 2011)
to within 10% precision up to k ≈ 20 h−1Mpc and z < 1.5. Chisari et al. (2018) show that the above
parametric form is sufficiently flexible to fit the power spectra ratio in the Horizon-AGN (Dubois
et al., 2014) simulation to within 3% across z . 4 up to k ≈ 30 h−1Mpc, but with the downside of
involving too many free parameters. The authors propose a more compact model with 4 parameters
that is capable of providing a fit to Horizon-AGN to within < 5%.

Based on the fact that baryonic physics mainly affects the matter power spectrum by altering the
structure of darkmatter halos, another proposed approach is tomodel the deviations in thematter power
spectrum through the framework of the halo model (Peacock & Smith, 2000; Seljak, 2000; Cooray
& Sheth, 2002). Zentner et al. (2008, 2013) demonstrate that incorporating the halo concentration-
mass relation and its redshift evolution into the halo model framework and marginalizing over the
associated free parameters can successfully mitigate baryonic bias for Stage III surveys such as DES,
but is insufficient for Stage IV experiments. In addition to the degree of freedom that governs halo
concentration, Mead et al. (2015, 2016) consider a parameter that characterizes the mass dependence
of feedback, with publicly available software available for this model in HMcode7. Copeland et al.
(2018) further extend HMcode, introducing a core radius parameter to characterize the inner halo
structure that is believed to be an outcome of baryonic effects (Martizzi et al., 2012). There are also
approaches that go beyond NFW (Navarro-Frenk-White, Navarro et al. 1996) halo profiles, focusing
on modeling the radial density distributions of stellar, gas, and DM components of halos to capture the
main features of baryonic feedback (Semboloni et al., 2011, 2013; Mohammed et al., 2014; Schneider
& Teyssier, 2015; Schneider et al., 2019). The improvement of the halo model approach is an active
research area, in particular on constraining the prior range. These halo model approaches potentially
enable us to jointly constrain halo structural information and cosmological parameters from data.

Baryonic effects can be mitigated also via a joint analysis through optimized combination of
different cosmological probes, as demonstrated in Osato et al. (2015). Finally, a gradient-based

7https://github.com/alexander-mead/HMcode
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Table 4.1: Basic information for the hydrodynamical simulations used in this work.

Simulation Box Length Total DM particle initial gas force softening cosmology
Particle # mass particle mass length

OWLS 100 h−1Mpc 2 × 5123 4.06 × 108 h−1M� 8.66 × 107 h−1M� 0.78 h−1kpc WMAP3
MassiveBlack-II 100 h−1Mpc 2 × 19723 1.1 × 107 h−1M� 2.2 × 106 h−1M� 1.85 h−1kpc WMAP7
Illustris 75 h−1Mpc 2 × 18203 4.41 × 106 h−1M� 8.87 × 105 h−1M� 1.4 h−1kpc WMAP7
Eagle 67.77 h−1Mpc 2 × 15043 6.57 × 106 h−1M� 1.23 × 106 h−1M� 1.8 h−1kpc Planck2013
Horizon-AGN 100 h−1Mpc 2 × 10243 1.1 × 107 h−1M� 2.2 × 106 h−1M� 1.85 h−1kpc WMAP7

method is proposed recently by Dai et al. (2018). Dark matter particles in N-body simulations are
moved along the gradient of estimated thermal pressure to mimic the effect of baryonic feedback.
This method can be implemented as a post-processing step on N-body simulations to produce fast
hydrodynamical-like simulations.

In this paper, we focus on studying two of the above baryonicmitigationmethods – the PCAmethod
and HMcode. We test the effectiveness of these baryonic physics mitigation techniques on a broad
range of possible baryonic scenarios by applying them to LSST-like mock observables constructed
from hydrodynamical simulations of MassiveBlack-II (Khandai et al., 2015), Illustris (Vogelsberger
et al., 2014), Eagle (Schaye et al., 2015), and Horizon-AGN (Dubois et al., 2014), and comparing
their cosmological parameter constraints. In addition, for the PCA method, we investigate different
ways of constructing the PCs, and provide a modification to the original formalism to improve their
efficiency.

This paper is organized as follows. In §4.2, we give an overview on the hydrodynamical simulations
used in this work for the construction of our training and test sets. §4.3 describes the setup of our
simulated LSST-like likelihood simulations . In §4.4, we provide the detailed theoretical formalism
for the baryonic mitigation techniques from literatures and our improved PCA scheme applied in this
work. §4.5 presents the main results of the likelihood simulations under various baryonic scenarios
and compares the performances of different mitigation methods. We summarize our findings in §4.6,
and discuss the prospects of PCA-based methods for future investigation.

4.2 Baryonic Effects in Simulations

In this section, we introduce the hydrodynamical simulations involved in our analysis (summarized in
Table 4.1), and compare the impact of the baryonic physics considered on the matter distributions.

4.2.1 OWLS Simulation Suite

The OWLS simulations are a large suite of cosmological hydrodynamical simulations with varying
implementations of subgrid physics to enable investigations of the effects of altering or adding a
single physical process on the total matter distribution (Schaye et al., 2010). Here we adopt 9 different
baryonic simulations from OWLS. We refer readers to van Daalen et al. (2011) for a more detailed
description.

• REF: The baseline simulation that contains many of the physical processes known to be impor-
tant for galaxy formation except for the AGN feedback mechanism. REF includes prescriptions
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of radiative cooling and heating for 11 different elements, star formation assuming the Chabrier
(2003) stellar initial mass function (IMF), stellar evolution, mass loss, chemical enrichment,
and SN feedback in kinetic form (wind mass loading factor η = 2 and initial wind velocity
vw = 600 km s−1 ; all together ηv2

w determines the energy injected into the winds per unit stellar
mass). The other 8 hydro simulations are based on REF, with modifications indicated below.

• NOSN: Exclude SN feedback.

• NOZCOOL: Exclude metal-line cooling. Only assume primordial abundances when computing
cooling rates.

• NOSN_NOZCOOL: Exclude both SN feedback and metal-line cooling.

• WML1V848: Adopt the same SN feedback energy per unit stellar mass as for REF, but reduce
the mass loading factor by a factor of 2 (η = 1) and increase the wind velocity by a factor of

√
2

(vw = 848 km s−1).

• WDENS: Adopt the same SN feedback energy per unit stellar mass as that of REF, but let η and
vw depend on gas density (vw ∝ n1/6

H ; η ∝ n−1/3
H ).

• WML4: Double SN feedback per unit stellar mass by increasing the mass loading factor by a
factor of 2 (η = 4).

• DBLIMFV1618: Once the gas reaches a certain pressure threshold, 10% of the star formation
activity follows a top-heavy IMF. In this case, more high-mass stars are produced, which leads
to higher SN energy feedback.

• AGN: In addition to physics included in the REF model, add a subgrid model for BH evolution
and AGN feedback following the prescription of Booth & Schaye (2009). BHs inject 1.5% of
the rest mass energy of the accreted gas into the surrounding matter in the form of heat.

The simulation cube for OWLS is L = 100 h−1Mpc in comoving scale on a side. TheOWLS-DMO
simulation contains 5123 collisionless DM particles; the 9 hydro simulations contain an additional
5123 particles in the form of collisional gas or collisionless stars to capture the baryonic processes.
The DM and (initial) gas particle masses are ≈ 4.06×108 h−1M� and 8.66×107 h−1M�, respectively.
The gravitational softening length is ε ≈ 0.78 h−1kpc in comoving scale, and is limited to a maximum
physical scale of 2 h−1kpc. The cosmological parameters used in the simulation are based onWMAP3
results (Spergel et al., 2007): {Ωm, Ωb, ΩΛ, σ8, ns, h} = {0.238, 0.0418, 0.762, 0.74, 0.951, 0.73}.

The OWLS simulation sets are not specifically fine-tuned to match with key observables. As
indicated in McCarthy et al. (2017), the original OWLS models underpredict the abundance of
M∗ < 1011M� galaxies at the present day due to overly efficient stellar feedback (see their Fig. 1).
The successor BAHAMAS simulation lowers the wind velocity vw from 600 to 300 km s−1 in order
to provide a better fit to the observed abundance of low-to-intermediate mass galaxies.8

8Due to the low resolution of BAHAMAS, we are not able to include it as one of the hydrodynamical scenarios in this
work (see Appendix 4.B.2 for details of our resolution requirement).
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4.2.2 Eagle Simulation

The Eagle simulation (Schaye et al., 2015) is conducted in a cubic periodic box of side length L =
67.77 h−1Mpc (comoving). There are 15043 DM particles in both hydrodynamical and DMO simula-
tions, and an approximately equal number of baryonic particles in the hydrodynamical run. The mass
of each DM particle is 6.57×106 h−1M� and the initial baryonic mass resolution is 1.23×106 h−1M�.
The gravitational softening length is ε = 1.8 h−1kpc in comoving units (The EAGLE team, 2017). The
cosmological parameters used in Eagle are consistent with Planck 2013 results (Planck Collaboration
et al., 2014): {Ωm, Ωb, ΩΛ, σ8, ns, h} = {0.307, 0.04825, 0.693, 0.8288, 0.9611, 0.6777}.

The subgrid physics used in Eagle is based on OWLS. The physical models include radiative
cooling and photoionization heating; star formation associated with stellar mass loss and energy
feedback; BH mergers, gas accretion, and AGN feedback. The most important changes compared
to OWLS are: star forming feedback energy changing in terms of thermal form rather than kinetic;
accounting for angular momentum during the accretion of gas onto BHs; inclusion of a metallicity-
dependence in the star formation law. In contrast to many hydrodynamical simulations, Eagle employs
stellar and AGN feedback only in thermal form, which captures the collective effects of mechanisms
such as stellar winds, radiation pressure, SN feedback, radio- and quasar-mode AGN feedback. One
major improvement in the treatment of thermal feedback is that it can be performed without turning
off radiative cooling and hydrodynamical forces.

The galaxy stellar mass function of Eagle matches extremely well with observations at z = 0.1,
because its stellar and AGN feedback related parameters are specifically calibrated at each resolution
to reproduce this observable (see Crain et al. 2015; Schaye et al. 2015 for details of calibration
philosophy).

4.2.3 MassiveBlack-II Simulation

TheMassiveBlack-II (hereafter MB2) simulation is a high-resolutionΛCDM cosmological simulation
(Khandai et al., 2015). Both DMO (Tenneti et al., 2015b) and hydrodynamical MB2 simulations are
conducted in a cubic simulation box with sides of length L = 100 h−1Mpc in comoving scale. There
are 19723 DM particles in both the MB2-hydro and MB2-DMO simulations, with an additional 19723

initial number of gas particles in the hydro run. The mass of each DM particle is 1.1 × 107 h−1M�
and the initial baryonic mass resolution is 2.2 × 106 h−1M�. The gravitational softening length is
ε = 1.85 h−1kpc in comoving units. The cosmological parameters inMB2 are consistent withWMAP7
results (Komatsu et al., 2011): {Ωm, Ωb, ΩΛ, σ8, ns, h} = {0.275, 0.046, 0.725, 0.816, 0.968, 0.701}.

The subgrid models of baryonic physics in MB2 includes a multiphase interstellar medium model
with star formation and associated feedback by SN and stellar winds (Springel & Hernquist, 2003);
BH accretion, merger, and associated AGN feedback in quasar-mode (Di Matteo et al., 2005; Springel
et al., 2005).

The AGN feedback efficiency of MB2 is relatively weak compared with other hydrodynamical
simulations that have AGN subgrid physics involved in this work. One outcome of this is that MB2
overpredicts the abundance of massive galaxies at low redshift (Khandai et al., 2015).
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4.2.4 Illustris Simulation

The Illustris simulation (Vogelsberger et al., 2014) is carried out in a cubic periodic box with sides of
length L = 75 h−1Mpc (comoving). We download the highest resolution snapshot data from the public
releasewebsite (Nelson et al., 2015) to calculate power spectra for both hydrodynamical andDMOruns.
There are 18203 DM particles in both hydrodynamical and DMO simulations, and an approximately
equal number of baryonic particles in the hydrodynamical run. The mass of each DM particle is
4.41 × 106 h−1M� and the initial baryonic mass resolution is 8.87 × 105 h−1M�. The gravitational
softening length is ε = 1.4 h−1kpc in comoving units. The cosmological parameters adopted in
Illustris are consistent with WMAP7 results (Komatsu et al., 2011): {Ωm, Ωb, ΩΛ, σ8, ns, h} =
{0.2726, 0.0456, 0.7274, 0.809, 0.963, 0.704}.

Illustris incorporates a broad range of galaxy formation physics (Vogelsberger et al., 2013): gas
cooling in primordial andmetal-lines; stellar evolution associatedwith chemical enrichment and stellar
mass-loss; kinetic stellar feedback driven by SN; BH accretion, merging, and related AGN feedback
in terms of quasar- and radio-modes as well as associated radiative electromagnetic feedback.

Illustris is run using themoving-mesh-based codeAREPO (Springel, 2010), which ismore efficient
in cooling compared with classical particle-based SPH codes (e.g. Springel 2005). The energy input
from feedback is designed to be strong to avoid efficient stellar mass buildup. Even with this setting,
Illustris still overshoots the observed low redshift stellar mass function on both high and low mass
ends. The radio-mode AGN feedback is also too violent for the gas component, under predicting
the baryon content in lower-redshift high mass halos where the radio-mode feedback is the dominant
heating channel (Genel et al., 2014; Haider et al., 2016). The successor IllustrisTNG simulation
replaces the intense thermal energy dump of radio-mode feedback with kinematic kicks to heat up
affected gas particles (Weinberger et al., 2018).

4.2.5 Horizon-AGN Simulation

The Horizon-AGN (Dubois et al., 2014) is carried out in a cubic periodic box of side length L =
100 h−1Mpc (comoving). There are 10243 DM particles in both the DMO and hydrodynamical
runs, with the DM particle mass of 9.9 × 107 h−1M� for the DMO run, and 8.3 × 107 h−1M� for
the hydrodynamical run. The initial gas particle mass is about 1 × 107 h−1M�. The cosmological
parameters used in the simulation are compatible with WMAP7 cosmology (Komatsu et al., 2011):
{Ωm, Ωb, ΩΛ, σ8, ns, h} = {0.272, 0.045, 0.728, 0.81, 0.967, 0.704}.

Subgrid physics models for a variety of baryonic physics effects are implemented in Horizon-AGN.
Gas is allowed to cool down to 104 K via transition lines of hydrogen and helium as well as metals
using the Sutherland & Dopita 1993 model. When the hydrogen number density exceeds a threshold
of 0.1 H cm−3, star formation is triggered following a random Poisson process (Rasera & Teyssier,
2006; Shandarin & Zeldovich, 1989). SN feedback is taken into account assuming an IMF with a
low-mass cut-off at 0.1 M� and a high-mass cut-off at 100 M�. Chemical enrichment happens along
with SN explosions and stellar winds. The AGN feedback is modeled in a combination of two different
modes: the kinematic radio mode when ÛMBH/ ÛMEdd < 0.01 and the thermal quasar mode otherwise
(Dubois et al., 2012).

Although Horizon-AGN is not specifically tuned to reproduce the galaxy stellar mass function
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Figure 4.1: The ratios of the matter power spectra in different hydrodynamical simulations with
respect to their counterpart DMO simulations at z = 0. The thick lines show results for the Eagle,
MB2 and Illustris simulations, while the thin lines indicate the 9 different baryonic scenarios in
OWLS simulation suite. The gray vertical line separates between regions where the data points
come from direct measurement (k . 30 h−1Mpc) and from extrapolation with a quadratic spline fit
(k & 30 h−1Mpc; see Appendix 4.B for further details).

at local Universe, it shows reasonable consistency with observations, with slight overproduction of
galaxies at the low mass end (Kaviraj et al., 2017).

4.2.6 Comparison of Power Spectra in Hydrodynamical versus DMO Simulations

From the snapshot data release of Eagle, MB2 and Illustris, we calculate the matter power spectra as
detailed inAppendix 4.A. ForOWLS andHorizon-AGN simulations, we use the computed results from
van Daalen et al. (2011) and Chisari et al. (2018), respectively. Power spectra from DMO simulations,
with the same initial condition as their paired hydrodynamical simulations, are also computed in order
to perform a fair comparison across simulations with different cosmological parameters and with
reduced cosmic variance. For each paired simulation set, only a single realization was available to
construct the power spectrum ratio.

Figure 4.1 shows the z = 0 ratio of power spectra from different hydrodynamical simulations with
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respect to their counterpart DMO simulations. The thin lines indicate the nine different baryonic
scenarios in the OWLS simulation suite. For the eight baryonic scenarios without AGN feedback,
the common feature is a rapid increase in power on small scales. The power enhancement is due
to efficient cooling of gas which eventually leads to formation of galaxies within halos, and further
concentrates the DMdistribution (Blumenthal et al., 1986). Simulations without SN feedback (NOSN,
NOSN_NOZCOOL) tend to have an even stronger increase in power compared to the reference
simulation REF due to the enhanced cooling effect. When adding AGN feedback to REF, the power is
suppressed dramatically, with 1% reduction for k ≈ 0.3 h−1Mpc and exceeding 10% for k & 2 h−1Mpc
(van Daalen et al., 2011). The suppression of power is due to baryons being pushed outward by the
energetic AGN feedback processes.

The thick lines represent power spectra ratio for Eagle, MB2, Illustris and Horizon-AGN simu-
lations. Although they all involve a broad range of astrophysical processes that are believed to be
relevant to galaxy formation, the resulting power spectra show significant differences. The feedback
mechanism in Illustris drastically suppresses the power by 35% at k ≈ 5 h−1Mpc. Eagle reaches
its maximum suppression of power of 20% at k ≈ 20 h−1Mpc. A similar trend is also observed in
Horizon-AGN, but it reaches its minimum amplitude reduction of 10% at k ≈ 10 h−1Mpc. Going
towards higher k, we start to see that the ratio curves bend upward and keep increasing beyond k
of 30 h−1Mpc. The MB2 power spectrum behaves relatively similar to DMO, but still the baryonic
prescription prevents the power spectrum ratio from growing too quickly compared to the OWLS
scenarios without AGN feedback, which suffer from severe overcooling effect (e.g. Tornatore et al.
2003; McCarthy et al. 2011).

The input cosmologies (pco,sim) for the five simulation suites are different. In order to predict
matter power spectra with baryonic effects for arbitrary cosmological parameters, we take the power
spectrum ratios shown Fig. 4.1 and apply the following equation:

Phydro
δ (k, z | pco) =

Phydro,sim
δ (k, z | pco,sim)

PDMO,sim
δ (k, z | pco,sim)

Ptheory
δ (k, z | pco) , (4.1)

wherePhydro,sim
δ (k, z | pco,sim)denotes the hydrodynamical run fromagiven simulation; PDMO,sim

δ (k, z | pco,sim)

is the corresponding DMO run; Ptheory
δ (k, z | pco) is the theoretical power spectrum calculated from

Halofit (Takahashi et al., 2012) or HMcode (Mead et al., 2015), which are calibrated by DMO
simulations.

Eq. (4.1) illustrates the most important assumption in this work: we assume that baryonic effects
on the power spectrum can be represented as a fractional change in the power spectrum, and that
this fractional change is independent of cosmology. The cosmology enters our analysis only through
the theoretical power spectrum Ptheory

δ (k, z | pco). This is a reasonable assumption. According to
van Daalen et al. (2019), the power spectrum ratio remains more or less the same when varying
cosmologies (see their Fig. 6).

4.3 Likelihood Analysis Methodology

Here we present our methodology in estimating the cosmological constraining power for an LSST-like
survey. We start by describing the theoretical models used in the work, our mock observations,
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the covariance matrix constructed for an LSST-like survey, and finally the likelihood formalism
used in estimating the posterior distribution of cosmological parameters. The cosmological model
considered in our likelihood simulation is flat wCDM, with varying cosmological parameters pco =

{Ωm, σ8, Ωb, ns, w0, wa, h}.

4.3.1 Theoretical Models

We rely on two main theoretical models to fit our mock observables in this work. The first one is
the Takahashi et al. (2012) version of Halofit. It adopts empirically-motivated functional forms
to characterize the variation of power spectra with cosmology. Having been calibrated with high-
resolution N-body simulations, it provides an accurate prediction of the nonlinear matter spectrum
with 5% precision at k ≤ 1 h−1Mpc and 10% at 1 ≤ k ≤ 30 h−1Mpc within the redshift range of
0 ≤ z ≤ 10.

The second fitting routine is HMcode, constructed by M15. It utilizes the halo-model formalism
to describe the cosmological change of power spectra via physically motivated parameters. HMcode
has prescriptions for capturing the impact of baryons on the matter power spectrum via two free
parameters: the amplitude of the concentration-mass relation (A; see Eq. (14) in M15), and a halo
bloating parameter (η0; see Eqs. (26), (29) in M15) controlling the change of dark matter halo profiles
in a halo mass-dependent way to account for different feedback energy levels. When allowing A and
η0 to vary, it can successfully fit the power spectra from various baryonic scenarios of OWLS (M15).
When fixing A = 3.13 and η0 = 0.6044, HMcode functions as a regular DMO-based emulator, which
is calibrated with high-resolution N-body simulations to an accuracy of ≈ 5% at k ≤ 10 h−1Mpc for
z ≤ 2. We note that the ≈ 5% discrepancy between the DMO mode of HMcode and Halofit is
non-negligible within LSST statistics. We therefore construct two sets of mock observables based on
each theoretical model.

4.3.2 Mock Observational Data

We rely on four hydrodynamical simulations: Eagle, MB2, Illustris and Horizon-AGN to construct
mock observables, and investigate the performances of the PCA method (Eifler et al., 2015, hereafter
E15) and the halo model approach (Mead et al., 2015, hereafter M15) on mitigating baryonic effects.
These methods will be described in more detail in §4.4. For simplicity, besides baryonic effects, our
mock data vectors do not include any other source of noise or systematics.

We consider tomographic weak lensing shear power spectra as the summary statistics. These are
defined as:

Ci j(`) =
9H4

0Ω
2
m

4c4

∫ χh

0
dχ

gi(χ)g j(χ)

a2(χ)
Pδ

(
`

fK (χ)
, χ

)
. (4.2)

Here Ci j(l) is the convergence power spectrum for tomographic bin combination {i, j} at angular
wavenumber l, χ is the comoving distance, χh is the comoving horizon distance, fK (χ) is the
comoving angular diameter distance (set to χ since we assume a flat Universe), a(χ) is the scale
factor, and Pδ is the 3D matter power spectra. The lens efficiency in the i-th tomographic interval is
defined as

gi(χ) =

∫ χh

χ
dχ′ni(χ′)

fK (χ′ − χ)
fK (χ′)

(4.3)
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Figure 4.2: The normalized galaxy number density split into ten Gaussian tomographic photo-z bins
as shaded regions from blue (low z) to green (high z). For comparison, we show the true underlying
redshift distribution as a solid blue line.

with ni(χ′(z)) being the redshift distribution of source galaxies in tomographic bin i. The overall
source redshift distribution is parametrized in the form of

n(z) ∝ zα exp

[
−

(
z
z0

)β]
, (4.4)

where α = 1.27, β = 1.02, and z0 = 0.5 following Table 2 in Chang et al. (2013), which mimics an
LSST cosmic shear source galaxy sample after deblending. The number density of source galaxies is
26/arcmin2.

We perform a tomographic analysis by dividing the sources into 10 tomographic bins with equal
total number of galaxies in each bin. We also smooth the redshift distribution with a Gaussian kernel
to characterize potential photo-z uncertainties. Fig. 4.2 shows the exact redshift distribution in each
bin. This results in 55 unique combinations of auto- and cross- correlation shear tomographic power
spectra. For each of the tomographic power spectra, we consider 18 equally spaced logarithmic bins
in angular wavenumber ` ranging from 23 ∼ 2060. This results in a total of 55× 18 = 990 data points
in our data vector. For the main analysis of this paper, we adopt an upper limit of `max ≈ 2000. This
limit is driven by the resolution of the hydrodynamical simulations used in this work. We refer readers
to Appendix 4.B for further details on how we extrapolate power spectra to perform the integration to
derive Ci j(`), and how the decision on the `max ≈ 2000 cut is made.

The fiducial cosmology pco,fid of the data vectors is set to be consistent with the Planck 2015
(TT+TE+EE+lowP and assuming ΛCDM) results (Planck Collaboration et al., 2016) as summarized
in Table 4.2.

Our mock data vectors for various baryonic physics scenarios are computed with the Pδ term in
Eq. (4.2) generated from Eq. (4.1). Since Halofit and HMcode (in DMO mode) agree at the level of
. 5% to k = 10 h−1Mpc, and . 10% out to k ≤ 100 h−1Mpc (see Fig. 4 of M15), we create two sets
of Eagle/MB2/Illustris/Horizon-AGN data vectors, with Ptheory

δ (k, z | pco,fid) generated from Halofit
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Table 4.2: Fiducial cosmology, minimum and maximum of the flat prior on the cosmological param-
eters, and halo-structural parameters in HMcode.

Parameter Fiducial Prior
Ωm 0.3156 flat (0.05, 0.6)
σ8 0.831 flat (0.5, 1.1)
ns 0.9645 flat (0.84, 1.06)
w0 -1.0 flat (-2.1, 0.0)
wa 0.0 flat (-2.6, 2.6)
Ωb 0.0049 flat (0.04, 0.055)
h0 0.6727 flat (0.4, 0.9)
A - flat (0.5, 10)
η0 - flat (0.1, 1.2)

or HMcode, and incorporate the baryonic features through the power spectrum ratio. Throughout our
experiment, when relying on Halofit or HMcode as the theoretical model to perform fitting, we use
the same fitting function to generate the mock observational data vectors for the fiducial cosmology.
This way, when comparing the performance of different baryonic mitigation schemes, if one of the
methods fails to recover the fiducial cosmological parameters, we can be assured that this failure is
purely because of that method’s inability to mitigate the modification of the matter power spectrum
due to baryonic physics, not because of an inherent discrepancy between the mock data and the DMO
matter power spectrum model.

In Fig. 4.3 we show the ratio of baryonic to DMO C00(`, pco,fid) shear power spectrum for various
simulations. The thin lines indicate the nine baryonic scenarios from the OWLS simulation suite.
The thick lines represent the Eagle/MB2/Illustris/Horizon-AGN universes, which are the data vectors
that we will use for the LSST-like experiment. One can see that in this lowest tomographic bin, even
for large scales at ` ≈ 100, the baryonic scenario of Illustris already causes a deviation from DMO
at the 5% level, with even more severe suppressions at smaller angular scales. For higher redshift
tomographic bins, the deviations between hydrodynamical and DMO simulations are less severe.
Semboloni et al. (2011) showed that a scale cut of `max ≈ 500 would be needed to avoid w0 bias
for a Euclid-like survey if the baryonic scenario of our Universe is like OWLS-AGN. When applying
the traditional way of mitigating baryonic uncertainty by omitting small scale information, we would
need to discard a considerable amount of data before we can rely on DMO-based theoretical model to
achieve an unbiased cosmological inference.

One subtle feature shown in Fig. 4.3 is that there is a small but noticeable large-scale excess of
power (< 0.4%) in the Horizon-AGN simulation. This is because the power spectrum ratio between
hydrodynamical and DMO runs of Horizon-AGN has < 0.1% excess at large scales (see Fig. 4.1),
even though they share the same initial conditions. The true cause of this subtle excess is not clear.
After exploring, Chisari et al. (2018) concluded that this may originate from the box being too small
to reach the linear regime at large scales. However, the other simulations studied here are similar in
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size and do not exhibit this feature.

4.3.3 Covariance Matrix

We generate the analytical covariance matrix of tomographic shear power spectra using CosmoLike
(Eifler et al., 2014; Krause & Eifler, 2017). Briefly, our covariance matrix contains both Gaussian and
non-Gaussian parts. The Gaussian covariance matrix contains contributions from cosmic variance
and shape noise, derived under the assumption that the 4pt-function of the shear field can be expressed
in terms of 2pt-functions (Hu & Jain, 2004; Takada & Bridle, 2007). The non-Gaussian part is given
by the convergence trispectrum derived using the halo model (Cooray & Sheth, 2002), which contains
one-, two-, three-, and four-halo terms and a halo sample variance term characterizing the scatter of
halo number density due to large-scale density fluctuations (Cooray &Hu, 2001; Takada & Jain, 2009;
Sato et al., 2009). The exact equations of our implementation can be found in the appendix of Krause
& Eifler (2017).

We assume 18,000 deg2 as the survey area in our covariance matrix and adopt the same redshift
distribution and source galaxy number density (26/arcmin2) as depicted in Fig. 4.2. The shape noise
is set to be σε = 0.26 in each ellipticity component.

4.3.4 Likelihood Formalism

Given a data vectorD (at somefiducial cosmology andwith baryonic effects fromEagle/MB2/Illustris/Horizon-
AGN), one can infer the corresponding posterior probability distribution of cosmological parameters
pco and potential nuisance parameters pnu via Bayes’ theorem:

P(pco, pnu |D) ∝ L(D |pco, pnu)Pr (pco, pnu) , (4.5)

where Pr (pco, pnu) denotes the prior probability distribution and L(D |pco, pnu) is the likelihood. In
this work, we assume a Gaussian likelihood function for the observables,

L(D |pco, pnu) ∝ exp
(
−

1
2

[
(D − M)t C−1 (D − M)

]︸                           ︷︷                           ︸
χ2(pco,pnu)

)
. (4.6)

We further assume that the covariance C is constant in parameter space for simplicity (but see Eifler
et al. 2009; Morrison & Schneider 2013 for likelihood analysis with cosmology-dependent covariance
matrix). As described in §4.3.1, the model vector M may be derived based on Halofit which is
a pure function of cosmology M = M(pco), or it can be a function of some nuisance parameters
M = M(pco, pnu) as well, with factors that are known to affect D absorbed in pnu. For example, in
HMcode, we have A and η0 acting as nuisance parameters to account for the baryonic effects (see
§4.3.1 for details). The final posterior distribution on cosmological parameters then can be derived
by marginalizing over all other nuisance parameters in the model

P(pco |D) ∝

∫
dpnu P(pco, pnu |D) . (4.7)

We use the python emcee package (Foreman-Mackey et al., 2013), which relies on the algorithm of
Goodman et al. (2010) to sample the parameter space spanned by pco ({Ωm, σ8, Ωb, ns, w0, wa, h0})
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Table 4.3: Summary of baryonic physics mitigation techniques. The first column is the label of each
method, which we refer to in the text and plots throughout the work. The second column has simple
descriptions that highlight the essential elements of each method. The third column presents the exact
χ2 equations that go into the likelihood analysis. Finally, the last column provides a section number
where more information can be found for each method.

Method Brief description χ2 equation Section
reference

A PCA in difference matrix, with exclusion [(D −M)pc,cut]
t C−1

pc,cut [(D −M)pc,cut] §4.4.1
B PCA in difference matrix, with marginalization [D −MB (pco,Q)]

t C−1 [D −MB (pco,Q)] §4.4.1
C PCA in L−1 weighted difference matrix, with exclusion [UchPUt

chL−1(D −M)]t I [UchPUt
chL−1(D −M)] §4.4.2

D PCA in fractional difference matrix, with marginalization [D −MR (pco,Q)]
t C−1 [D −MR (pco,Q)] §4.4.3

M Halo model parameter marginalization [D −MHMcode(pco, A, η0)]
t C−1 [D −MHMcode(pco, A, η0)] §4.4.4

as well as pnu (if needed depending on the model). Altogether, we have conducted ∼250 likelihood
simulations to present the results for this paper. The MCMC (Markov Chain Monte Carlo) chains
contain∼ 200000 to 400000MCMC steps (after discarding 100000 steps as burn-in phase), depending
on the dimension of the parameter space which ranges from 7∼16. For simplicity, we assume flat priors
for all of our parameters, with their minimum and maximum values summarized in Table 4.2. For
likelihood simulations with informative priors based on Planck, we refer readers to E15. Informative
priors help to better constrain ns, Ωb, and h, to which cosmic shear is not very sensitive.

Wewill present in §4.4 on howwe implement various baryonicmitigation schemes in the likelihood
analysis. But before that, in Fig. 4.4 we show the posterior distribution of cosmological parameters
derived from our LSST likelihood simulation, when naively applying the Halofit model on fitting the
data vectors contaminated with baryonic effects from Eagle/MB2/Horizon-AGN/Illustris simulations.
For ease of visualization, we only show posteriors in the subspace of four cosmological parameters
out of seven in total. Depending on the intensity of baryonic feedback as reflected in the ratio of
hydrodynamical to DMO power spectra shown in Fig. 4.1, the resulting cosmology constraints can
be severely biased in the case of Illustris (2σ ∼ 13σ depending on cosmological parameters) or at
1σ ∼ 2σ level in the other three cases. We note that the degree of bias depends on the `max used in
the analysis. Fig. 4.4 presents the result when applying a cut at `max ≈ 2000 on D, which is the default
setting in the paper. In §4.5.4, we will show how this result changes when extending data vectors to
`max ≈ 5000.

4.4 Methods of mitigating baryonic effects

In this section, we describe the methods used to mitigate the impact of baryonic physics on the
cosmological parameter estimates from weak lensing. The methods can be classified into two cat-
egories: PCA-based methods and the halo-model based approach. We discuss several PCA-based
methods that are minor variants of each other in §4.4.1 to §4.4.3. The halo-model based approach is
described in §4.4.4. Throughout the work, we use the nine OWLS simulations as our ‘training sample’
to construct PCs for the PCA-based methods, and use the four mock data vectors constructed from
Eagle/MB2/Illustris/Horizon-AGN simulations as ‘test sample’ to test methods listed in Table 4.3.
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Figure 4.4: Cosmological parameter constraints for an LSST-likeweak lensing surveywith data vectors
generated using various baryonic physics scenarios: pure DM (gray/solid) and the Eagle (blue/solid),
MB2 (red/dashed), Illustris (yellow/dot-dashed) and Horizon-AGN (black/dotted) hydrodynamical
simulations. In all cases, baryonic physics was ignored during the likelihood analysis, hence providing
a worst-case scenario for biases due to baryonic physics. The analyses are carried out assuming non-
informative priors on the parameters. Here, and in all such 2D posterior plots below, the contours
depict the 68% confidence levels. Depending on the intensity of the baryonic feedback, the resulting
posterior distributions can be significantly away from the fiducial cosmology (marked in gray lines).
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4.4.1 PCA in Difference Matrix

Summary of the PCA framework (Method A)

The original framework for using PCA to mitigate the impact of baryonic physics for weak lensing is
described in Eifler et al. (2015). The essential idea is that even though hydrodynamical simulations
with different baryonic prescriptions predict a range of variations on thematter power spectra (Fig. 4.1),
we can still extract the common features of those diversity using PCA, and build an empirical model
to mitigate baryonic uncertainty based on these hydrodynamical simulations. Below we provide a
step-by-step description of the PCA framework.

Firstly, we collect the tomographic shear power spectra constructed from the nine OWLS simula-
tions as our training sample, and label these nine data vectors as B1, ..., B9. Next we build a difference
matrix ∆(pco) with dimension of Ndata × Nsim = 990 × 9. Each column records the deviation between
the baryonic data vector and the DMO model vector M at any arbitrary cosmology (recomputed for
each MCMC step) in terms of their difference

∆(pco) =

 B1 − M B2 − M . . . B9 − M

Ndata×Nsim

. (4.8)

The left panel of Fig. 4.6 provides a visualization of the entries of the difference vectors used to
construct ∆. Here notice that both Bx(pco) and M(pco) are functions of cosmology, and therefore so
is ∆. We refer readers to Appendix 4.C for details of how we compute the baryon-contaminated data
vectors at different pco.

The second step is to perform the PCA on the difference matrix, with the goal of identifying the
few dominant principle components (PCs) that signify the directions of largest discrepancy between
the baryonic and DMO data vectors from the nine OWLS simulations. To find the PCs, we apply the
(full) singular value decomposition (SVD) on ∆,

∆ = U Σ Vt . (4.9)

As shown in Fig. 4.5, SVD decomposes ∆ into the product of three matrices. Both U and V are square
unitary matrices with dimensions of Ndata × Ndata (990 × 990) and Nsim × Nsim (9 × 9) respectively.
The upper Nsim × Nsim (9 × 9) block of Σ is a diagonal matrix consisting of Nsim (9) positive real
singular values σ1...σ9 arranged in descending order, and the remaining Ndata − Nsim (981) rows have
only zeros (indicated by the dashed square). The Ndata (990) columns of U are eigenvectors of ∆∆t,
with eigenvalues in the diagonal entries of ΣΣt.

The first 9 eigenvectors constitute a set of orthogonal PCs in order of decreasing importance
according to the amount of variation they capture in the different training vectors. The right panel
of Fig. 4.6 shows these 9 PC modes in projection on the C00 tomographic bin. The PC modes span
a 9-dimensional subspace within the 990 dimensional space which covers entirely the degrees of
freedom to explain baryonic uncertainties in the nine OWLS hydro simulations. In other words, any
given Bx(pco) − M(pco), can be described with 9 free parameters via

Bx(pco) − M(pco) =

9∑
n=1

Qn PCn(pco) , (4.10)
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Figure 4.5: We perform singular value decomposition (SVD) on the difference matrix ∆ built based
on the 9 baryonic scenarios of OWLS (see Eq. (4.8)). U is a unitary matrix with columns that form an
orthonormal basis set to span the 990-dimensional space of our data vector. Among them, the first 9
PCs of U form a complete description of the modifications of the data vector due to baryonic physics
in the nine OWLS hydro simulations. We will test whether these 9 PCs can also describe the impact
of baryonic physics in the Eagle/MB2/Illustris/Horizon-AGN simulations.

with Qn being the amplitude of PCn. The remaining 981 columns of U are silent orthogonal vectors
which extends U into a unitary matrix. With 9 baryonic scenarios as our training sample, we have at
most 9 independent PCs to describe modifications to the observables due to baryonic physics. One of
the goals of this work is to understand how effectively the PCA basis can describe baryonic physics
scenarios in other more recent hydrodynamical simulations.

The third step is to transform everything to PC basis, and mitigate baryonic uncertainty by
excluding PC modes. In PC basis, our data and model vectors are defined as

Dpc = UtD (4.11a)

Mpc = UtM , (4.11b)

and the covariance matrix is

Cpc = Ut C U . (4.12)

Viewing from PC coordinate, the majority of the baryonic uncertainties between Dpc and Mpc would
be absorbed in the first N elements. We can then directly cut the data vector Dpc to obtain a shorter
vector Dpc,cut, and do the same to the model vector Mpc → Mpc,cut to avoid modeling challenges on
these data points.

When doing MCMC analysis, we modify the original Eq. (8) from E15 to properly account for
the change of covariance matrix due to loss of information after PC mode removal. We cut the
corresponding rows and columns on Cpc, and use the corresponding sub-matrix, Cpc,cut to calculate
the inverse covariance C−1

pc,cut for Dpc,cut. The χ2 equation can then be written as:

χ′2(pco) = (D − M)tpc,cut C−1
pc,cut (D − M)pc,cut , (4.13)
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Figure 4.6: Left: The difference vectors, B−M , from theOWLS simulation set used to construct PCs as
input in columns of Eq. (4.8). The thicker lines indicate the difference vectors for Eagle/MB2/Horizon-
AGN/Illustris simulations as our test set. Right: The PCmodes constructed from theOWLS simulation
set in projection on the difference vector space for the tomographic bin C00. The goal of this work is
to check whether these PC modes can flexibly describe the baryonic physics scenarios in the test set
hydrodynamical simulations.

and the likelihood equation:

L(D |pco) ∝ exp
(
−

1
2

[
(D − M)tpc,cut C−1

pc,cut (D − M)pc,cut
]︸                                          ︷︷                                          ︸

χ′2(pco)

)
. (4.14)

The marginalization version of the PCA framework (Method B)

We refer to ‘PC marginalization’ as a method that includes (up to nine) amplitudes of PCs as free
parameters to parametrize the impact of baryonic physics on the tomographic shear power spectra.
As shown in Eq. (4.10), the current 9 PCs fully span the baryonic degrees of freedom in the 9 OWLS
simulations. We can further check whether they are also effective in describing the impact of baryonic
physics on the observables in our test set of hydrodynamic simulations by building a new model with
the following parametric form:

MB(pco, Q) = M(pco) +

m∑
n=1

Qn PCn(pco) . (4.15)

where m 5 9, and Q = {Q1,Q2, ...,Qm} are free parameters in addition to the cosmological parame-
ters. The likelihood function for the cosmological parameters can be derived by marginalizing over
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the amplitude parameters:

L(D |pco) ∝

∫
dQ ×

exp
(
−

1
2

[
(D − MB(pco, Q))

t C−1 (D − MB(pco, Q))
] )
.

(4.16)

Theoretically, one can prove that the likelihood functions of Eq. (4.14) (method A) and Eq. (4.16)
return identical results if the priors on the PC amplitudes are uninformative. We will provide
comparisons of the posterior distributions of pco in §4.5.1 and further comment on both methods
there.

4.4.2 Noise-weighted PCA – Cholesky Decomposition (Method C)

As noted at the end of §2.2 of E15, performing PCA on the difference matrix ∆ (Eq. (4.8)) is not
necessarily the most optimal choice. They suggested an option of conducting the PCA on the ‘noise’-
weighted ∆. As a result of re-weighting, the derived PCs would be more sensitive in accounting for
deviations in data vectors due to baryonic physics at well-measured data points, where larger weighting
factors are applied. Therefore, when doing PC mode removal, we tend to more effectively remove
baryonic physics degrees of freedom that impact better-measured (lower noise) scales, which may
more effectively reduce cosmological parameter biases.

To find the weights, we first decompose our covariance matrix by applying a Cholesky Decompo-
sition

C = LLt , (4.17)

where L is a lower triangular matrix with real and positive diagonal entries. We can then weight our
D and M vectors as

Dch = L−1D ,

Mch = L−1M .
(4.18)

After this transformation, our new data vector Dch has an identity covariance matrix 1, which can be
easily proved as follows

Cch =
〈
(Dch − Dch)(Dch − Dch)

t
〉
=

〈
L−1(D − D)(L−1(D − D))t

〉
= L−1

〈
(D − D)(D − D)t

〉
(L−1)t = L−1C−1(L−1)t = 1 .

(4.19)

In other words, after applying Eq. (4.18), we not only re-weight but also decorrelate the data vector.
Similar to Eq. (4.8), we build the new difference matrix as

∆ch(pco) =

 B1,ch − Mch . . . B9,ch − Mch

Ndata×Nsim

= L−1∆(pco) = Uch Σch Vt
ch .

(4.20)

Here each of the OWLS training data vectors is weighted by L−1 as Bx,ch = L−1Bx. The ∆ch matrix
is equivalent to performing a L−1 matrix transformation on ∆ shown in Eq. (4.8). We can then apply
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SVD to derive the PC basis set as stored in the Uch(pco) matrix. The first 9 PCs form natural bases to
span the weighted difference vector for various baryonic effects

Bch − Mch = L−1(B − M) =
9∑

n=1
Qn PCn . (4.21)

In Fig. 4.7, we show the Bch − Mch = L−1(B − M) vectors in our lowest tomographic bin, at
pco,fid. The thicker lines represent our four test simulations; the thinner lines are for the nine baryonic
scenarios in OWLS, which compose the columns of ∆ch in Eq. (4.20). Comparing with the left
panel of Fig. 4.6, one can see that after re-weighting by L−1, we more strongly emphasize baryonic
fluctuations at smaller scales, so the PCs should also be more effective in accounting for small-scale
baryonic features.9

Similar to §4.4.1, to perform the PC mode removal, we transform everything to the PC basis:

Dch,pc = Ut
chDch (4.22a)

Mch,pc = Ut
chMch (4.22b)

Cch,pc = Ut
ch Cch Uch = 1 , (4.22c)

and then cut all the elements from the data and model vectors and the covariance matrix for the PC
modes that are to be removed. Here since Cch is an identity matrix, it and its inverse C−1

ch,pc in the
PC basis remain the same after coordinate transformation. The final PC mode removal χ2 equation
becomes:

χ2
ch(pco) = (Dch − Mch)

t
pc,cut C−1

ch,pc cut (Dch − Mch)pc,cut

= (Dch − Mch)
t
pc,cut (Dch − Mch)pc,cut

(4.23)

The marginalization version of method C can be viewed as the following. By reorganizing
Eq. (4.21), we can build a baryonic model generator as

MC(pco, Q) = M(pco) + L
m∑
n=1

Qn PCn(pco) , (4.24)

where m 5 9. The cosmological parameter-dependence comes in through the DMO model vector,
while the amplitudes of PCs are used as higher order correction for baryonic effects.

4.4.3 PCA in Fractional Difference Matrix (Method D)

Instead of using the difference matrix ∆ to perform PCA, Mohammed & Gnedin (2018) identified PCs
based on the fractional difference matrix R defined as:

R =


B1−M
M

B2−M
M . . . B9−M

M

990×9

= UR ΣR Vt
R .

(4.25)

9Although we plot Dch −Mch vs. ` in Fig. 4.7, we note that actually the new data points are not strictly functions of the
original ` because of the non-zero off-diagonal terms in L−1. However, our take-away point from Fig. 4.7 still holds due to
the fact that our covariance matrix is dominated by Gaussian noise, and thus the off-diagonal terms in L−1 are small.

130



Chapter 4. Baryon mitigation for lensing 4.4. Methods of mitigating baryonic effects

102 103

`

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

L
−

1
[
B
−

M
]

C00

AGN

DBLIMFV1618

NOSN

NOSN NOZCOOL

NOZCOOL

REF

WDENS

WML1V848

WML4

Eagle

MB2

Horizon-AGN

Illustris

Figure 4.7: The discrepancy between baryon-contaminated data vectors and model in terms of
Bch−Mch for various hydrodynamical simulations in the lowest tomographic bin. This is similar to the
left panel of Fig. 4.6, but here shows results for the case when applying Cholesky decomposition on our
B and M vectors. The nine OWLS baryonic scenarios (thinner lines) compose columns of ∆ch, which
are used to build PCs. These PCs are used to span the variation of Eagle/MB2/Illustris/Horizon-AGN
simulations in Dch − Mch space. After Cholesky decomposition, the largest data-model inconsistency
shifts to smaller scales compared with the upper panel of Fig. 4.6, indicating the PCs trained from ∆ch

are more efficient at describing small-scale variations in the matter power spectrum due to baryonic
physics compared with performing PCA on ∆.
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One fundamental difference between the fractional difference matrix R and the difference matrices ∆
or ∆chy is that R does not depend on cosmology, given our assumption of Eq. (4.45). After the UR

is derived by SVD analysis, a model for the observables with baryonic physics degrees of freedom
spanned by OWLS can be built as:

MR(pco, Q) = M(pco)

[
1 +

m∑
n=1

Qn PCn

]
, (4.26)

wherem 5 9, andQ = {Q1,Q2, ...,Qm} are free parameters controlling the amplitudes of PCs, and PC1

∼ PC9 are in the first nine columns ofUR. Similar to the methodology in §4.4.1, the likelihood function
for the cosmological parameters can be derived by marginalizing over the amplitude parameters:

L(D |pco) ∝

∫
dQ ×

exp
(
−

1
2

[
(D − MR(pco, Q))

t C−1 (D − MR(pco, Q))
] )
.

(4.27)

Similar to the concept mentioned in §4.4.2, performing PCs on the matrix R can be viewed as
putting the weight of 1/M into the PCA analysis. Since M decreases with increasing `, and the overall
amplitude of M increases toward higher redshift, after taking its inverse, we upweight data points at
smaller scales and lower redshift. The fractional difference vectors of OWLS that go into columns of
R are plotted in Fig. 4.3. The PCs derived from R are expected to be more efficient in accounting for
smaller scale and lower redshift variation of the observables due to baryonic physics.

4.4.4 HMcode (Method M)

Finally, we compare the above PCA-based methods with the halo model-based approach proposed
from Mead et al. (2015), HMcode. HMcode utilizes two halo profile-related parameters to capture
the impact of baryonic physics on the matter power spectrum: the amplitude of the concentration-
mass relation (A) and a halo bloating parameter (η0) controlling the (mass-dependent) change of halo
profiles. We refer readers back to §4.3.1 for a brief summary of this approach.

There exists some level of degeneracy between A and η0, as shown in Fig. 6 of M15. Thus, when
implementing the likelihood analysis, one can either vary both of the parameters, or change only the
single parameter A while fixing

η0 = 0.98 − 0.12A. (4.28)

For example, Joudaki et al. (2017) applied only varying A to marginalize over baryonic physics in
CFHTLenS cosmic shear, whileMacCrann et al. (2017) and Troxel et al. (2018) varied both parameters
to marginalize over baryonic physics in the Dark Energy Survey (DES).

Equation (4.28) is derived based on the OWLS simulation suite. We will test whether it remains
valid for the baryonic physics scenarios in Eagle/MB2/Illustris/Horizon-AGN for our forecasted
scenario with LSST-like statistical power. Also, we will compare the performances of HMcode
(marginalization over halo model parameters) with the above PCA-based methods.
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4.5 Performances of Baryonic Mitigation Techniques

In this section, we present our simulated likelihood analysis for the different baryonic mitigation
schemes listed in Table 4.3. We refer readers back to § 4.3 for a description of the simulated likelihood
analysis setup.

Ideally, we need a baryonic physics mitigation strategy that can reduce the biases in cosmological
parameters due to inaccuracies in theoretical modeling (as demonstrated in Fig. 4.4) to a level that
is much smaller than the statistical uncertainties. In addition, we hope that the increase in statistical
errors on cosmological parameters due to the additional nuisance parameters will be as small as
possible.Throughout this section, we will use a criterion of bias < 0.5σ (where σ represents the
marginalized statistical error) for individual cosmological parameters to evaluate whether a method is
effective in mitigating the uncertainties due to baryonic physics under various baryonic scenarios. We
also compare their performance based on the degradation of cosmological constraining power through
the size of the 1D marginalized uncertainties on cosmological parameters.

4.5.1 PC Mode Exclusion versus Marginalizing Over PC Amplitude

We start by presenting the results for methods A and B (see Table 4.3) with their PCs described using
the same difference matrix ∆. In Method A, we modify the data vector by excluding the first few
PC modes and modify the covariance self-consistently as well. In method B, the data vector and
covariance matrix are unmodified, but we introduce free parameters describing the PC amplitudes to
marginalize over in the likelihood analysis.

Mathematically, methods A and B are equivalent if no priors are set on the baryonic physics
parameters. From an information perspective, when removing data points (and the corresponding
covariance elements), we lose all of the information that can constrain the amplitudes of the excluded
PC modes. Thus, this should be equivalent to marginalizing over PC amplitudes with uninformative
priors.

In Fig. 4.8, we use simulated likelihood analyses based on Horizon-AGN (yellow dot-dashed &
black dotted) and Illustris (blue solid & red dashed) to demonstrate the excellent consistency between
PC mode exclusion and PC amplitude marginalization. For the case of Illustris, large residual biases
still exist after performing the baryonic physics mitigation. We will discuss this issue in §4.5.3.
Although not shown, we have also confirmed the consistency between methods A & B for Eagle and
MB2.

In conclusion, we have demonstrated with examples that the PC exclusion formula shown in
Eq. (4.13) gives consistent results as when marginalizing over PC amplitudes with an uninformative
prior. Method B can provide baryonic information through the constrained PC amplitudes, which can
be used as a standard to quantify baryonic effects. So far, we allow the PC amplitudes to vary from
(−∞, ∞). Reducing the prior ranges on PC amplitudes could potentially increase the constraining
power on cosmology if we can develop a consistent way of setting the priors on PC amplitudes, given
our knowledge of baryonic physics. The downside of method B is that it requires running longer
MCMC chains to ensure convergence due to an increase in the dimensionality of parameter space.
Therefore if one does not care to learn about baryonic physics, and would simply like to marginalize
over it, we recommend method A.
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Figure 4.8: Comparison of the posterior distributions of cosmological parameters between baryonic
physics mitigation techniques A & B listed in Table 4.3. The yellow dot-dashed and black dotted
contours indicate the 1σ contours of the posterior probability distributions obtained from methods
A and B, respectively, for the Horizon-AGN simulation after excluding or marginalizing over the
first PC modes. Similarly, the blue solid and red dashed contours indicate the case for Illustris after
excluding or marginalizing over 3 PC modes. The excellent match between the posterior probability
distributions for cosmological parameters between methods A and B confirms that the PC exclusion
formula shown in Eq. (4.13) is conceptually equivalent to marginalizing over PC amplitudes.
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4.5.2 Comparison between various PC construction methods

Here we compare the performances of the PCA-based methods listed Table 4.3. We have already
shown in §4.5.1 that PCmode exclusion (method A) is equivalent to marginalizing over PC amplitudes
(method B), so here we only compare methods A, C, and D.

The fundamental difference between these PCA methods is the way the PCs are constructed from
the training simulations, which affects their efficiency in describing how baryonic physics modifies
the data vectors on larger or smaller scales. We refer readers back to §4.4 for more details about
this formalism. Briefly, when PCs are derived from ∆ (method A; Eq. (4.8)), they are most efficient
in describing the difference vector D − M . For PCs trained from ∆chy (method C; Eq. (4.20)), they
are most efficient in describing the noise-weighted difference, Dchy − Mchy = L−1(D − M), due to
baryonic physics. Finally, PCs trained from R (method D; Eq. (4.25)) are most efficient in describing
variations in the fractional difference D−M

M from baryonic effects.
Figure 4.9 shows the median of the marginalized 1D posteriors of cosmological parameters

under different baryonic physics mitigation techniques for data vectors derived from our four test
simulations. The lower and upper error bars represent for the 16 and 84th quantiles of the 1D
marginalized posterior distribution. The x−axes indicate numbers of PC modes excluded or numbers
ofmarginalization parameters used in the analysis. We select some cases fromFig. 4.9 and present their
1D and 2D posteriors in Fig. 4.10. The brown crosses in Fig. 4.9 indicate the case when no baryonic
physics mitigation scheme is applied. One can see that the deviations from the fiducial cosmological
parameters exceeds 1σ for all of our test baryonic scenarios. This is also shown in Fig. 4.4 on the 2D
posterior contours. The blue-circle, red-triangle, and yellow-square markers indicate the results of
performing baryonic physics mitigation by PCA-based methods A, C, and D, respectively. When the
modifications of the data vectors due to baryonic physics are relatively weak as inMB2/Eagle/Horizon-
AGN, we find that removing up to 2 PCmodes is sufficient to marginalize baryonic bias to within 1σ10
for the cosmological parameters presented here. For the Illustris simulation, due to its strong baryonic
feedback, we need to remove up to 6 PCs for the 1σ posteriors to include the fiducial cosmological
parameters.

Method C is superior to methods A and D

In Fig. 4.11 we plot the w0 bias (in color-filled markers; defined as |w0,best fit − w0,fid |, with w0,best fit

being the median value of the marginalized posterior distribution of w0) and the 0.5σ error of w0 (in
open markers; with σ defined as the half difference between the 16th and 84th percentile of the 1D
marginalized posterior of w0) for various baryonic physics mitigation schemes. For a method to be
effective in mitigating baryonic-induced parameter biases, we require that the bias be below the 0.5σ
errors. For all baryonic physics scenarios, we observe that at fixed number of excluded PC modes,
the biases of method C (red-solid triangles) are nearly always smaller than methods A (blue-solid
circles) and D (yellow-solid squares). If focusing on the lower left panel of Fig. 4.10, using Illustris
when removing 3 PC modes as an examples, one can see that the 2D 1σ posteriors of method C (red

10The 1σ criterion is a looser condition than the 0.5σ constraint we will later use for defining acceptability; we use this
looser condition here as we are just trying to compare the basic behavior of the different PCA methods here. Once we are
comparing the best-performing PCA methods with HMCode, we will consistently impose a 0.5σ constraint on both.
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Figure 4.9: Marginalized 1D constraints on cosmological parameters when using different baryonic
physics mitigation techniques from Table 4.3. Each panel is for a different input data vector based on
a different hydrodynamical simulation as explained in the plot title. The gray dashed horizontal lines
indicate the fiducial cosmological values. The marker position, the lower and upper error bars indicate
the median, the 16th and the 84th percentiles of marginalized 1D posteriors. The brown crosses
indicate the results when fitting the data vectors with the DMO-based emulator (Halofit) without
applying any baryonic physics mitigation technique. The blue circles, red triangles and yellow squares
show the results when applying PCA-based methods A, C, and D respectively, with their positions
in the x−direction indicating how many PC modes are excluded or numbers of marginalization
parameters used when doing the analysis. The black pentagons located at x = 1 indicate the result
when only marginalizing over A in HMcode (with η0 fixed via Eq. (4.28)). The black pentagons
located at x = 2 are the results when marginalizing over both A and η0 in HMcode. For PCA-
based methods, we find the 1σ posteriors start to enclose the fiducial cosmology after removing 2
PC modes for MB2/Eagle/Horizon-AGN, while excluding 6 PC modes is required for more extreme
baryonic scenarios of Illustris. When using HMcode to perform marginalization, except for the
Illustris simulation for which marginalizing over A alone is enough, generally it is required to vary
both A and η0 to mitigate baryonic effects to within 1σ.
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Figure 4.10: The 2D posterior distributions on cosmological parameters for some selected cases
shown in Fig. 4.9. Each panel is for a different input data vector based on a different baryonic physics
scenario as labeled in the legend. The legend also describes which baryonic mitigation techniques are
applied, and how many PC modes are excluded or the HMcode parameters marginalized over.
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Figure 4.11: The w0 bias and statistical uncertainty under various baryonic physics mitigation tech-
niques listed in Table 4.3. The darker colored-filled markers indicate the level of w0 bias, defined
as |w0,best fit − w0,fid |. The fainter unfilled markers indicate the 0.5σ statistical uncertainty, with 1σ
defined as the half difference between the 16th and 84th quantiles of the marginalized 1D w0 posterior
distribution. We adopt a criterion of residual bias < 0.5σ error in this work when determining how
many PC modes are required to mitigate biases due to baryonic physics. The four main lessons from
this plot are that: i) Of various PCA methods, at fixed number of excluded PC modes, the biases of
method C are nearly always smaller than methods A and D, indicating method C is the most efficient
PCA method. ii) For MB2/Eagle/Horizon-AGN simulations, removing ≥ 2 PC modes is enough to
mitigate baryonic physics-induced bias to 0.5σ. For the Illustris simulation, all PCA methods fail to
pass the bias < 0.5σ criteria even after 9 PCmodes are removed. iii) No matter which PCAmethod (A,
C or D) is applied, after removing ≥ 6 PC modes, the statistical errors on w0 converge to similar val-
ues. iv) HMcode works particularity well for the Illustris simulation. For MB2/Eagle/Horizon-AGN,
marginalizing over both A and η0 is required to safely mitigate baryons to 0.5σ.
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dot-dashed curves) enclose the fiducial cosmology, while the posteriors of method A (light blue solid
curves) are several σ away. Based on these, we conclude that PCs build from ∆chy are potentially
more effective than others to mitigate baryonic effects.

To understand why method C performs better, we can go back to the χ2 equation when both D

and M are set at pco,fid:〈
χ2

bary

〉
+ 〈Noise〉 =

〈
[D − M(pco,fid)]

t C−1 [D − M(pco,fid)]
〉

=
〈
[D − M]t L−1tL−1 [D − M]

〉
=

〈
[Dch − Mch]

t
1 [Dch − Mch]

〉
.

(4.29)

〈
χ2

bary

〉
quantifies the amount of χ2 caused by baryonic uncertainties. The noise term in our likelihood

simulation is zero by construction. Our goal is to reduce
〈
χ2

bary

〉
to avoid bias in cosmological

parameters due to baryonic physics. From Eq. (4.29), one can see that when doing PC mode exclusion
in Dch − Mch (with PCs constructed in ∆chy), there is a direct connection in reducing

〈
χ2

bary

〉
, while

when doing PC mode exclusion in D − M (with PCs constructed in ∆), the covariance matrix in
between makes the reduction of baryonic uncertainties less direct.

Error bars converge for all PCA methods

Going back to Fig. 4.11, and focusing on the trend in the 0.5σ error bars of w0 shown in open fainter-
colored markers. Generally, error bars grow as more PC modes are excluded (see also Fig. 4.10 for
the growth of error ellipse on 2D posteriors). The size of the error bars varies among the different
PCA methods when fewer PC modes are excluded, but eventually converge/saturate to similar error
bar sizes when excluding & 6 PC modes, independent of how PCs are constructed. This means that
the PCs fully absorb the range of matter power spectrum modifications due to baryonic physics across
the nine OWLS simulation, characterizing them using 6 dominant degrees of freedom; the last 3 PC
modes are subjected to very small singular values (σ as depicted in Fig. 4.5) such that only a tiny
amount of baryonic fluctuation would be projected on them. In principle, including more training
samples with different features would enrich the PC pool, increasing the number of effective degrees
of freedom to characterize other possible baryonic scenarios.

4.5.3 PCA framework versus HMcode

We now move to a more detailed comparison of the two main ways to marginalize over baryonic
uncertainties, namely the PCA-based methods and the halo-model based approach. Since we already
compared in §4.5.2 that of all PCA methods listed in Table 4.3, method C is more efficient than the
other two in mitigating biases in cosmological parameters due to baryonic physics. In the following,
we will use method C as a representative for PCA-based methods, and compare it with HMcode
(method M).
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Comparison on the effectiveness (criterion: bias < 0.5σ)

We begin by discussing the performance of HMcode when using only one (A) vs. two (both A and η0)
parameters to marginalize over baryonic physics. When only the parameter A is used, HMcode sets
the η0 value via Eq. (4.28). Going back to Fig. 4.11, with w0 as an example, the pentagons at an x-axis
value of 1 indicate the bias (black-solid) and 0.5σ error (gray-open) of only varying A in HMcode.
Similarly, the pentagons at an x-axis value of 2 indicate the option for HMcode varying both A and
η0. For the Illustris simulation, both options can successfully mitigate the baryonic bias on w0 to
within our 0.5σ criterion. However, apart from Illustris, for the baryonic scenarios of MB2, Eagle,
and Horizon-AGN, we find that varying only A while setting η0 following Eq. (4.28) is not sufficient
to mitigate baryonic bias. This implies that the current empirical relation described in Eq. (4.28)
may not be precise enough for MB2/Eagle/Horizon-AGN-like data vectors with LSST-like statistical
power. We therefore recommend that the extra freedom carried by η0 is needed for upcoming weak
lensing surveys to effectively mitigate the impact of baryonic physics on cosmological weak lensing
measurements. This is even more true in light of recent findings that indicate that our Universe is not
like Illustris, for which the AGN feedback is known to be too strong such that the baryon fractions
in massive halos are too low compared with observations (Haider et al., 2016). In Fig. 4.19 of
Appendix 4.D, we also provide similar bias and error plots for other cosmological parameters: Ωm,
σ8, and wa. The same conclusion holds for HMcode on these cosmological parameters (as shown in
the filled and open pentagons), except for the wa constraint for Illustris (Fig. 4.19l), where varying
only A is not enough to mitigate wa bias to within 0.5σ.

For the PCA-based method C, as indicated in red triangles of Fig. 4.11 for w0 and Fig. 4.19 for
Ωm, σ8, and wa), we find that removing ≥ 3 PC modes is sufficient to mitigate baryonic uncertainties
to within 0.5σ for all cosmological parameters considered here, if our Universe has a baryonic physics
scenarios like MB2/Eagle/Horizon-AGN.

For the case of the Illustris simulation, we find that the PCA method fails to mitigate baryonic
biases to within 0.5σ for w0 and Ωm (Fig. 4.19d), even after 9 PC modes are removed, but just passes
the threshold for σ8 (Fig. 4.19h) and wa (Fig. 4.19l) after removing 7 PC modes. We note that this
is likely not a major concern as the baryonic effects of Illustris are unrealistically large, and the next
generation IllustrisTNG hydrodynamical simulation (Pillepich et al., 2018a; Springel et al., 2018) will
address the defects of the old version.

We provide a summary of the results from the above discussion in Table 4.4. In Appendix 4.E,
we further provide the χ2 values computed at the best-fitted cosmological parameters from various
baryon mitigation models.

Comparison on the level of degradation on cosmology

We now compare the error bars on cosmological parameter constraints between PCA method C
and HMcode, on baryonic scenarios of MB2/Eagle/Horizon-AGN, where both methods successfully
mitigate the baryonic biases to within 0.5σ. The pink open triangles in Fig. 4.11 indicate the 0.5σ
error of w0 under method C, and the gray open pentagons indicate the same for HMcode. Besides
w0, other cosmological parameters are also shown in Fig. 4.19. As discussed in §4.5.2, one nice
feature of the PCA method is that the error bars converge to a certain level when excluding ≥ 6
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Table 4.4: Summary of the effectiveness of baryonic physics mitigation methods in reducing biases to
within 0.5σ for various cosmological parameters under different baryonic scenarios. A cosmological
parameter is struck out if a mitigation method fails to pass our criterion of bias < 0.5σ, where σ
represents the marginalized statistical error (see §4.5.3 for detail).

MB2/Eagle/Horizon-AGN Illustris
HMcode (A) all fail Ωm σ8 w0 ��wa

HMcode (A, η0) all pass all pass
PCA (trained by 9 sims) all pass �

�Ωm σ8 ��w0 wa

PC modes. We find that the converged error bars for method C generally are smaller than those
for HMcode, even though HMcode only utilizes 2 parameters to marginalize over baryonic physics
uncertainties while the PCA method needs 3 parameters to mitigate baryonic effects to 0.5σ in the
case of MB2/Eagle/Horizon-AGN. A similar result can be seen from the 1σ 2D posteriors shown in
Fig. 4.10.

Baryonic feature constraint from HMcode

In Fig. 4.12, we plot the 2D posterior distributions on A and η0 for various baryonic scenarios in
colored contours, along with Eq. (4.28) shown in the black line. We can see that although relying on
this A-η0 relationship is not effective enough to mitigate baryonic bias in most of baryonic recipes
under LSST-like survey, the suggested relationship is still good enough to pass the 68% contours in
all cases. Therefore, instead of following a fixed relationship like Eq. (4.28) or allowing both A and
η0 to vary unboundedly, setting an A-dependent prior on η0 may help recover some cosmological
constraining power while still reducing biases in cosmological parameters when using HMcode.

In Fig. 4.13, we compare the power spectra generated fromHMcode at the best-fitted values of A, η0

(cross symbols in Fig. 4.12) to the original power spectra derived directly from the hydrodynamical
simulations at redshift z = 0, 1, 2, 3. We note that this is not a fair comparison because the underlying
Pδ(k, z) is not constrainable from the projected tomographic power spectra, unless the tomographic
bins are fine enough to recover the full 3D information.11 Here we simply use these plots to understand
the effects of HMcode parameters on Pδ(k, z). Firstly, HMcode does not have degrees of freedom
for the cooling feature of hydro simulations, which leads to a turn-over in the power spectrum ratio at
k & 10 h−1Mpc. This is expected as according to M15, the halo-model power is accurate to ≈ 5%
only for k ≤ 10 h−1Mpc and z ≤ 2. Because of this limitation, HMcode tends to produce a shallower
suppression of power for a given k (when k ≤ 10 h−1Mpc) compared with MB2/Eagle/Horizon-
AGN, in order to compensate for the lack of cooling prescription at k > 10 h−1Mpc. Secondly,
the redshift evolution of HMcode power spectra is too monotonic, lacking freedom to capture the
complicated evolutionary pattern that generally exists in hydrodynamical simulations. The redshift

11If using HMcode to directly fit the 3D matter power spectrum including baryonic effects at some specific redshift,
according to M15, by adjusting A(z), and η0(z), HMcode has enough degrees of freedom to match the baryonic power
spectra from the OWLS simulations to k & 10 h−1Mpc.
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Figure 4.12: The 2D constraints on the HMcode halo structure parameters A and η0 from our
simulated likelihood analysis for baryonic scenarios of Eagle (blue/solid), MB2 (red/dotted), Illustris
(green/dot-dashed), and Horizon-AGN (yellow/dashed). The black line plots the relationship between
A and η0 that is used to provide single-parameter fit in HMcode. Both 68% and 95% confidence
levels are shown.

evolution patterns can be very different for various baryonic scenarios. HMcode’s inability to
model redshift evolution may be due to the fact that only two nuisance parameters are involved in
describing the complex scale and redshift dependences of baryonic effects seen in the simulations. One
straightforward suggestions is to add redshift dependence to A and η0. Further development of halo
model approaches to account for the modification of the matter power spectrum for k > 10 h−1Mpc is
also needed. Although the currentmodel does not describe all the complexity of possiblemodifications
of P(k) due to baryonic physics, we can still use HMcode to gain insight into the strength of feedback
from the constrained values of A and η0. As shown in Fig. 4.12, the Illustris-like universe tends to
have small A and large η0.

4.5.4 Pushing to even smaller angular scales: `max of 5000

Until now, all elements of our analysis have been based on mock tomographic shear data vectors with
`max ≈ 2000, which is a conservative choice under the limitation that we lack accurate power spectra
at k > 30 h−1Mpc. The `max ≈ 2000 cut assures that various extrapolation curves on Pδ(k) ratio
out to k > 30 h−1Mpc would not cause significant change on the resulting Ci j(`) data vector (see
Appendix 4.B for details on how the scale cut limit is determined).

To further test the limits of the proposed baryonic mitigation techniques, we generate mock Ci j(`)

data vectors with `max ≈ 5000 (based on the quadratic extrapolation trends derived by fitting the Pδ(k)
ratio in k ∈ [10, 30] h−1Mpc, see the red curve in Fig. 4.16 as a demonstration), and then perform the
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Figure 4.13: Comparisons of power spectra generated from HMcode at the best-fitted A and η0 values
(solid lines) and power spectra directly derived from hydrodynamical simulations (dotted or dashed
lines) at z = 0, 1 , 2, 3. The discrepancy indicates that HMcode lacks degrees of freedom to account
for the cooling effect at high k, and that it is too simplified to capture the complex redshift evolution
patterns present in hydrodynamical simulations.
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Table 4.5: Similar to Table 4.4, but now for the likelihood simulations with mock observables pushing
to `max ≈ 5000.

MB2/EagleHorizon-AGN Illustris
HMcode (A) all fail all fail all fail
HMcode (A, η0) all pass Ωm σ8 w0 ��wa �

�Ωm ��σ8 w0 wa

PCA (trained by 9 sims) all pass all pass all fail
PCA (trained by 12 sims) all fail

same simulated likelihood analyses with mitigation techniques described in §4.3 and §4.4. The only
difference is that we append 3 extra data points that with equal logarithmic spacing in ` ∈ [2060, 5000]
to the original data vector D in each tomographic bin. The new length of D is thus extended to
55 × (18 + 3) = 1155 data points (see §4.3.2 for the original format of D). The covariance matrix is
also updated accordingly.

The dark gray contours in Fig. 4.14 indicate the 2D posterior distributions of the cosmological
parameters, when no baryonic physics mitigation technique is applied. Compared with the similar plot
shown in Fig. 4.4, but for `max ≈ 2000, the biases on cosmological parameters increases to 2σ ∼ 19σ
for the various cosmological parameters in an Illustris-like universe, and around 1.5σ ∼ 6σ for
the other cases. This amount of bias is consistent with Fig. 5 of E15, who showed the posterior
distributions for `max ∼ 5000 for the OWLS baryonic physics scenarios for an LSST-like likelihood
simulations.

Since we showed in §4.5.2 that method C is the most efficient of the PCA-based methods, we
only run simulated likelihood analyses with PCA-based method C, compared with method M using
HMcode for `max ≈ 5000. In Fig. 4.15, we plot the marginalized w0 bias (color-filled symbols) and
0.5σ w0 uncertainty (open symbols) as a function of the number of excluded PC modes in method C
(blue diamonds) and HMcode (yellow hexagons). (The red triangles and black pentagons are simply
copies of the data points shown in Fig. 4.11, to enable easier comparison of results with `max of 2000
versus 5000.) The bias and error plots for Ωm, σ8 and wa are also provided in Fig. 4.19.

Similar to §4.5.3, we rely on the bias < 0.5σ criterion to validate the effectiveness of baryonic
physics mitigation methods, with the results summarized in Table 4.5. First of all, for HMcode,
varying only A is not sufficient to mitigate the bias to within 0.5σ for the Illustris simulation, which
HMcode is particularly good at describing. Both A and η0 must be varied to meet our criterion
for MB2 and Eagle. For Horizon-AGN and Illustris, HMcode works well for some cosmological
parameters, while it fails for the others. For the PCA method, it still works for baryonic scenarios of
MB2/Eagle/Horizon-AGN when pushing to `max ≈ 5000, but continues to fail to meet our criterion
for the Illustris scenario.

In terms of degradation on cosmological parameter constraints after marginalization, for the cases
of MB2 and Eagle, the scenarios in which both PCA and HMcode succeed in mitigating the bias to
within 0.5σ, we see that PCA method yields smaller converged error bars (light blue open diamonds)
compared with HMcode using 2 parameters (yellow open hexagons) to do marginalization.

Does extending the data vectors to `max ≈ 5000 help to better constrain cosmological parameters
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Figure 4.14: Similar to Fig. 4.4, but for the cases when pushing our mock observables toward
`max ≈ 5000.
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Figure 4.15: The w0 bias and uncertainty for the baryonic physics mitigation methods C (as our
representative for PCA-based method) and M (halo model-based method/HMcode) (see Table 4.3 for
details). The darker colored-filled markers indicate the level of w0 bias, defined as |w0,best fit − w0,fid |.
The fainter colored-open markers indicate the 0.5σ w0 uncertainty, with 1σ defined as the half
difference between the 16th and 84th percentile of the marginalized 1D w0 posterior distribution. The
four key results on this plot are: i) the PCA method (blue diamonds) mitigates bias to within 0.5σ for
the milder baryonic physics scenarios – MB2, Eagle, and Horizon-AGN – after excluding more than
3 PC modes, but fails for the Illustris scenario. ii) When marginalizing over both A and η0, HMcode
(yellow hexagons) mitigates w0 to within 0.5σ for all baryonic scenarios. iii) For baryonic scenarios
of MB2 and Eagle, the cases for which both methods work, the error bars for the PCA method (light
blue open diamonds) converge to smaller values compared with HMcode (yellow open hexagons). iv)
Including more small-scale data in the analysis reduces the statistical error to ∼ 20% for PCA method
(light blue open diamonds v.s. pink open triangles) and to about 12% ∼ 30% for HMcode (yellow
open hexagons v.s. gray open pentagons). v) Including more training simulations in PCA improves
reducing the w0 bias induced by neglecting baryonic effects to ∼ 15% for the case of Illustris (brown
solid stars v.s. blue solid diamonds), although the improvement on residual bias is not reaching our
criterion of < 0.5σ. 146
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compared with `max ≈ 2000? As shown in Fig. 4.11, for the PCA method, we observe that the
converged w0 errors for the `max ≈ 5000 cases (light blue open diamonds) are smaller by ∼ 20%
compared with the errors for `max ≈ 2000 (pink open triangles). For the cases of HMcode when
varying both A and η0, the w0 errors reduce by ∼ 12% for MB2, ∼ 18% for Eagle, and ∼ 30% for
Horizon-AGN, after extending data points to `max ≈ 5000 (yellow open hexagons) from `max ≈ 2000
(gray open pentagons). This means that we do benefit from additional constraining power when
including more small-scale data in the analysis, if the baryonic physics effect in our Universe is near
the physics implemented in Eagle/MB2/Horizon-AGN.

4.5.5 Including more AGN prescriptions in the training set

The reason why the PCA method fails to mitigate the impact of baryonic physics on the matter power
spectrum in Illustris is that the PCs built from the current training set do not capture the strong
variation with k to explain its intense feedback feature. As also discussed in Mohammed & Gnedin
(2018), it is better to have a training set that comprises adequately exotic but reasonable models. Of
the nine training OWLS simulations, only the OWLS-AGN contains an AGN feedback prescription,
and we rely on this single AGN model to explain Illustris. However, this shortcoming can be fixed
by incorporating more training simulations into the PCA, so that the resulting PCs will include more
degrees of freedom to explain the broader range of outcomes due to baryonic physics.

We try to address the above Illustris problemby including the baryonic scenarios ofMB2/Eagle/Horizon-
AGN in our training set, and then build a ∆ch matrix with 12 columns to extend the capability of the
derived PCs. In the bottom left panel of Fig. 4.15, we plot the marginalized w0 bias (brown filled
stars) and error (light brown open stars) for Illustris simulation with PCs trained from the 12 baryonic
scenarios, and a scale cut at `max ≈ 5000. (The results for other cosmological parameters can be found
in the last column of Fig. 4.19 as well.) With this expanded training set, the PCA method now reduces
the w0 bias from 1.5σ (blue filled diamonds) to 0.8σ (brown filled stars), which is an improvement
but still does not enable us to meet our criterion of bias < 0.5σ.

The error bars when using 12 simulations in the training set converge after removing ≥ 6 PC
modes. Notice that the converged errors become bigger when the PCs are trained from 12 simulations
rather than just the 9 OWLS simulations. By including more simulations to construct the PCs, we also
enlarge the range of baryonic uncertainties, which is a trade-off to ensure a more effective removal of
biases due to baryonic physics for a broad range of baryonic physics scenarios. However, we can also
imagine trying to rely on external information from independent observations to rule out baryonic
scenarios that fail to describe our Universe. By carefully controlling the uncertainty range of the
training set, we could potentially improve the cosmological constraining power after mitigation.

4.6 Summary and Discussion

We have explored the two major approaches to mitigate uncertainties in cosmic shear tomographic
power spectra due to baryonic physics, with the goal of understanding their performance on cosmolog-
ical constraints for the upcoming LSST survey. The first approach is the PCA-based analysis proposed
by E15. Based on a set of training hydrodynamical simulations with various baryonic prescriptions
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(spanned by OWLS in this work), a difference matrix (Eq. (4.8)) is computed. Its columns are filled
with difference vectors between these hydro and DMO simulations. PCA is then performed on the
difference matrix to find dominant PC modes that can be used to model baryonic effects in other hydro
simulations. The second approach is the halo model-based method coded in the package of HMcode
byM15, which utilizes two halo structural parameters (A and η0) related to the halo concentration-mass
relation to marginalize over baryonic uncertainties.

We examine the basics of the PCA formalism and provide amodification to properly account for the
change of covariance matrix after removal of PC modes. Under the new formalism, we demonstrate
that PC mode removal is equivalent to marginalization over PC amplitudes (see §4.5.1). Instead
of difference matrices, we also investigate PCA on other kinds of matrix forms with their columns
filled with the fractional difference (Eq. (4.25)) or noise-weighted difference vectors (Eq. (4.20)) to
quantify deviations in the matter power spectrum due to baryonic physics. The derived PC bases from
different matrices vary in their efficiency in explaining baryon fluctuations at different angular scales.
Difference matrix PCs can more effectively account for large scale baryonic fluctuations, fractional
difference matrix PCs are more effective at describing the small scale fluctuations, and noise-weighted
difference matrix PCs most effectively describe the scales at which the S/N is maximal. We find
that performing PCA on the noise-weighted difference matrix, with the weighting factor derived via
performing Cholesky decomposition on the covariance matrix (§4.4.2), is the most efficient way to
mitigate the impact of baryonic physics on inferred cosmological parameters (§4.5.2). Therefore,
for future application on real data, we recommend applying the noise-weighted PCA technique.It
should be noted that except for method D, the current PCs are wiggling slightly in their directions
at each MCMC step, when cosmology changes. If we would like to quantify baryon physics via PC
amplitudes, we hope the constrained PC amplitudes are subjected to a fixed set of PCs. A more
complete design of PCA algorithm therefore would be an iteration process. We will first use the
current setting to find the best-fitted cosmology, and once the pco,best fit is determined, we will fix PC
basis at pco,best fit, and constrain the posteriors of PC amplitudes subjected to this PC set.

We apply both the PCA and HMcode techniques on mock shear tomographic data vectors (Ci j(`))
with baryonic physics scenarios of MB2/Eagle/Illustris/Horizon-AGN. We test whether these miti-
gation techniques can reduce the bias in cosmological parameters induced by neglecting baryonic
effects to within 0.5σ. With a scale cut at `max ≈ 2000, and for milder baryonic physics scenarios
like MB2/Eagle/Horizon-AGN, both methods succeed in mitigating the impact of baryonic effects on
the inferred cosmological parameters. For the PCA method, we find that excluding 3 PC modes is
sufficient to mitigate the bias to within 0.5σ for Ωm, σ8,w0 and wa. For HMcode, we find that it is
safer to vary both A and η0 when performing marginalization, rather than varying only one of them
and having the other follow the suggested relation in M15, at least at the level of LSST statistical
power. For the Illustris scenario, only HMcode is sufficient to mitigate the bias to within 0.5σ. The
PCA method fails to pass our criterion even after removing 9 PC modes. With a more aggressive `max

of 5000, the PCA methods still work for MB2/Eagle/Horizon-AGN, but fail for Illustris. HMcode
remains sufficient for MB2/Eagle after marginalizing over 2 parameters but only works partially on
some of the cosmological parameters for Horizon-AGN and Illustris, as summarized in Table 4.5.

We found that HMcode is most effective at mitigating the impact of baryonic physics for a strong
feedback scenario like Illustris, because HMcode is designed to describe the impact of baryonic
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physics on the matter power spectrum for k ≤ 10 hMpc−1, where the main feature is the suppression
of power due to feedback (Fig. 4.1). HMcode and halo model-based approaches in general have the
advantage over PCA that they have cosmology dependence built in. Although the current version of
HMcode lacks the complexity to fully describe various baryonic scenarios (Fig. 4.13), it provides a
good summary of the level of feedback strength through two nuisance parameters (Fig. 4.12). Future
improvements of the halo model to smaller scales of k ≥ 10 hMpc−1, as well as adding parameters
to allow additional freedom in the redshift evolution of baryonic physics effects, may constrain halo
structural parameters and baryonic power spectra ratio curve together with cosmology. Exploring the
prior ranges on halo model parameters also help to improve cosmological parameter constraint. For
example, we can use the posterior constraints from realistic hydrodynamical simulations as shown in
Fig. 4.12 to narrow down the allowed ranges of A and η0. Joint constraints from galaxy-galaxy lensing
together with cosmic shear may also provide additional information from the data itself on the halo
structure parameters (Zentner et al., 2008).

There are several advantages of the PCA method. Firstly, it successfully mitigates quite general
baryonic fluctuations and complex redshift evolution patterns, when collecting several representative
training hydrodynamical simulations to conduct PCA. The complex baryonic behaviors as well as the
redshift evolution would then be naturally absorbed in only a few dominant PC modes, and we can use
the amplitudes of these PC modes to perform marginalization (or, equivalently, PC mode exclusion).
Secondly, the PCA method efficiently accounts for baryonic uncertainties without losing too much
cosmological constraining power. As discussed in §4.5.3, whenever both methods are successful in
removing baryonic bias, the error bars are generally smaller for PCA methods compared with the
errors of HMcode. It is quite important to note that even if we do not know in advance how many
PC modes must be excluded to safely remove baryonic bias in our Universe, excluding all effective
PC modes does not unacceptably increase the errors, which saturate at a certain limit. The maximum
number of effective PC modes one can remove is equal to the total number of training simulations
used in the PCA (see §4.4.1 for detail). Finally, the PCA method has significant flexibility to make
adjustments as our knowledge of baryonic physics improves. For example, in §4.5.4 we tried to
improve the bias mitigation of the Illustris simulation by including more realistic baryonic scenarios
with AGN prescriptions in our training set, which enriches the space of possible baryonic uncertainties
that the PCs can describe. After the inclusion of MB2/Eagle/Horizon-AGN as well as the original 9
OWLS scenarios in our training set, we can further decrease the residual cosmological parameter bias
compared with the results when only using the 9 OWLS simulations as training set. The cost is that
we lose some constraining power. The flexibility of the PCA framework makes it easy to adjust the
model based on changes in our knowledge of baryonic physics, and allows us to regulate errors by
controlling the input training simulations in the PCA.

There are several aspects regarding the PCA framework that we do not explore within this work.
Firstly, our training hydro simulations are all run under the flat ΛCDM model, and we assume that
the baryonic fluctuations, as quantified in terms of power spectrum ratios between hydrodynamical
and DMO simulations, remain fixed when cosmology changes. In reality, baryonic and cosmological
effects vary jointly. Currently, there is no easy way to investigate this assumption, but future fast
hydrodynamical simulations under development would be an ideal tool to systematically study this
issue. Secondly, we adopted a power law extrapolation scheme for Pδ(k) ratio at k ≥ 30 hMpc−1 (see
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Appendix 4.B). The most relevant physics that governs the high k behavior is the cooling and inner
stellar density profile of galaxies. Current large-volume cosmological hydrodynamical simulations
lack the resolution to resolve the physics of galaxy formation to galaxy centers. We rely on sub-
grid models of feedback to avoid the overcooling of gas and to mitigate the differences between the
observed and simulated galaxies, but discrepancies still exist (Stinson et al., 2010; Bottrell et al., 2017;
Furlong et al., 2017). This implies that Pδ(k) in the high k regime is still highly uncertain. Does
the Pδ(k) ratio continue the trend of increasing monotonically? Or should it reach a saturation point
at some high k regime? How to properly propagate the uncertainties of the poorly understood small
scale Pδ(k) ratio into the errors of integrated Ci j(`) which in turn affects the derived PCs? These
questions require higher resolution hydrodynamical simulations to further address. Finally, we have
briefly demonstrated in §4.5.5 that depending on the training simulation set, the derived PCs carry
different abilities to mitigate baryonic effects, and differ in the final constraining power. It would be
worthwhile to systematically investigate various possible combinations of the training simulations, to
find a most effective set of PCs that are able to span a wide enough range of baryonic uncertainties
but with less degradation on constraining power.

In future extensions of this work, we will apply the PCA framework to a configuration-space
tomographic shear analysis on real data to constrain the baryonic feature of our Universe and compare
it with hydrodynamical simulations. We aim to develop a consistent way of quantifying priors of PC
amplitudes, which would provide us with more constraining power on cosmological parameters by
shrinking the allowed range of baryonic physics modifications of the matter power spectrum. We will
also develop a PCA tool for joint analysis of galaxy-galaxy lensing and galaxy clustering observables.
The full 3×2-point analysis then can be self-consistently analyzed within the PCA framework to
increase the constraining power on cosmology while safely marginalizing over baryonic physics.
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4.A Power Spectrum Computation

Herewe describe the practical implementation of our power spectrum computation from the simulation
snapshots.
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4.A.1 The power spectrum estimator

The matter density field in the Universe can be quantified via the overdensity δ(x), defined as δ(x) =
ρ(x)−ρ̄
ρ̄ , where ρ(x) specifies the density function at position x and ρ̄ is the global mean density. We

first estimate δ(x) on a uniform grid of 1024 cells across a side of the simulation box with the particle
deposition step carried out via Nearest Grid Point (NGP) assignment. Our estimator is

δ̂(x) = δ(x) ∗W(x) =
∫

Vbox

dx′δ(x′)W(x − x′) . (4.30)

Here the mass assignment function can be described by W(x) =
∏

i W(xi), with

W(xi) =

{
1/∆L for |xi | < ∆L/2

0 else
, (4.31)

where the grid cell side length ∆L = Lbox/1024, and the index i is the axies label of the Cartesian
coordinate system. We then perform a discrete Fourier transform on δ̂(x) to derive its Fourier
transformation pair δ̂(k):

δ̂(k) = δ(k)W(k) . (4.32)

After the Fourier transform, the convolution operation in Eq. (4.30) becomes a simple product, with
W(k) being the Fourier space mass assignment window function:

W(k) =
∏
i

W(ki) =
∏
i

sin ( ki∆L2 )

(
ki∆L

2 )
, (4.33)

where ki (i = x, y, z) is the i-th component of k. The Fourier transformation pair of δ(x) then can be
computed by

δ(k) = δ̂(k)
W(k)

. (4.34)

We choose the convention of Fourier transform as δ(k) =
∫

dx δ(x)e−ik·x. Under this convention, the
power spectrum can be estimated by averaging over all modes k with a length of k:

P̂δ(k) =
1

Vbox

〈
|δ(k)|2

〉
k= |k | , (4.35)

with Vbox being the box size of simulation.
The rawestimation of P̂δ(k) above is known to be affected by discreteness effects, which contributes

into the power through a constant amplitude called shot noise

Pshot = Vbox/Neff . (4.36)

Here Neff is the effective number of particles, which accounts for their difference in mass:

Neff =
(ΣNi mi)

2

ΣNi m2
i

, (4.37)

where mi is the individual particle mass, and N is the total number of particles. For DMO simulations
where all tracer particles have equal mass, Neff = N . The final power spectrum Pδ(k) used throughout
this work is derived after subtraction of the shot noise term:

Pδ(k) = P̂δ(k) − Pshot . (4.38)
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4.A.2 The accuracy of power spectrum

On large scales, due to the limited size of simulation boxes, the statistical uncertainties of the estimated
matter power spectra are dominated by cosmic variance. The contribution of cosmic variance on Pδ(k)
can be estimated by (Takada & Hu, 2013):

σ2(k) = 2
P2
δ(k)

Nmodes(k)
. (4.39)

Nmodes is total number of modes available in the bin range [k − ∆k/2, k + ∆k/2]:

Nmodes(k) =
1
(2π)3

Vbox

∫ k+∆k/2

k−∆k/2
4πk2 dk

≈
1

2π2 Vboxk2
∆k .

(4.40)

The small-scale error of power spectra is mostly caused by the simulation resolution. For DMO
simulations, Heitmann et al. (2010) pointed out that the Pδ(k) values of different resolutions are within
1% agreement for k < kNy/2, where the Nyquist wavenumber is set by the inter-particle separation
on the initial grid:

kNy =
πNp

Lbox
, (4.41)

with Np being the cube-root of the total number of particles used in simulations. For smaller scales
at k > kNy/2, we expect a suppression of power for scales around k ∼ kNy followed by a steep
rise of power at even larger k (see Fig. 8 of Heitmann et al. 2010 and Fig. A3 of van Daalen et al.
2011). According to Heitmann et al. (2010), the suppression of power is due to discreteness effects
in sampling small scale fluctuations. When fewer low-mass halos are resolved, Pδ(k) is suppressed
at small scales. The steep rise of power is believed to be caused by incorrect shot noise subtraction.
Shot noise should be scale-dependent at small scales rather than a simple constant as in Eq. (4.36).

For hydrodynamical simulations, the convergence properties are more difficult to systematically
quantify due to the interplay between resolution effects and galaxy formation physics. For example,
as the resolution increases, more lower mass halos are resolved, leading to an increased power of SN
feedback. Subgrid parameters regulating SN feedback then must be modified to account for this effect
in order to match the observables like galaxy stellar mass function. Typically subgrid prescriptions
are designed to reach some level of convergence with the variation of resolution. However, the
functionality of such self-regulation is rather limited. Eagle is currently the only hydro simulation
with its subgrid model parameters re-calibrated to match observations when the resolution is changed
(see Fig. 7 of Schaye et al. 2015). In the left-hand panel of Fig. A2 in van Daalen et al. (2011), they
showed a convergence comparison between the power spectra of OWLS-REF hydro simulations with
kNy of 16 (the current OWLS resolution used in this work) and 32 respectively. The two baryonic
power spectra agree to within ∼ 10% out to k ≈ 40 hMpc−1. We note that this statement only applies
to OWLS-REF. There is no general rule on the behavior of convergence for hydro simulations, given
that the galaxy observations are not yet converged, and that the subgrid prescriptions are all different.
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4.B Power Spectrum Ratio

The power spectrum ratio between hydrodynamical and DMO simulations is an important quantity
in this work. We rely on it in Eq. (4.1) to derive mock observables at different cosmology, as well
as to build difference matrices to perform PCA. Here we discuss the validity of our estimates of this
ratio over the range of scales used throughout this work, and describe how we perform extrapolation
to smaller scales than those that are well-described in the simulation.

4.B.1 Discussion on the convergence of the power spectrum ratio

The ratios of matter power spectra that we use in this work are accurate to k . 30 hMpc−1 for
Eagle/MB2/Illustris/Horizon-AGN and of k . 10 hMpc−1 for OWLS. Below we will justify this
claim.

We have discussed the statistical uncertainty of Pδ(k) due to cosmic variance in §4.A.2. Based on
the first order error propagation, Var[XY ] =

X
2

Y
2

(
σ2

X

X
2 +

σ2
Y

Y
2 − 2 Cov[X,Y]

X Y

)
, the cosmic variance contribu-

tion to the uncertainty in the power spectrum ratio is

Var
[

Pδ,hydro(k)
Pδ,DMO(k)

]
=

1
P2
δ,DMO(k)

σ2
hydro(k)

+
P2
δ,hydro(k)

P4
δ,DMO(k)

σ2
DMO(k)

− 2
Pδ,hydro(k)

P3
δ,DMO(k)

Cov
[
Pδ,hydro(k), Pδ,DMO(k)

]
,

(4.42)

where the variance of the power spectrum σ2
hydro/DMO(k) is expressed in Eq. (4.39).

The hydrodynamical and DMO runs are set at exactly the same initial conditions, and baryonic ef-
fects are negligible on large scales. When Pδ,hydro(k) ≈ Pδ,DMO(k) andCov

[
Pδ,hydro(k), Pδ,DMO(k)

]
≈

1, as is the case at small k, we expect the variance of the power spectrum ratio in Eq. (4.42) to approach
zero.

On small scales, as discussed in §4.A.2, Pδ(k) would achieve 1% convergence out to k ≈ kNy/2.
Hence, we expect the uncertainty in the power spectrum ratio due to limited simulation resolution to
be < 2% to k ≈ kNy/2, where kNy/2 is ∼ 30 hMpc−1 for Eagle/MB2/Illustris/Horizon-AGN and ∼
10 hMpc−1 for OWLS.

For the cosmic variance contribution on small scales, we can derive an upper limit by set-
ting Cov

[
Pδ,hydro(k), Pδ,DMO(k)

]
to zero in Eq. (4.42), and with the σ2

hydro/DMO(k) estimated using
Eqs. (4.39) and (4.40):

Var
[

Pδ,hydro(k)
Pδ,DMO(k)

]
upper
→

8π2

Vboxk2∆k

P2
δ,hydro(k)

P2
δ,DMO(k)

. (4.43)

For k ≈ 10 hMpc−1, Lbox = 100 h−1Mpc, ∆k = 0.1, and Pδ,hydro
Pδ,DMO

≈ 0.9, the estimated variance of the
power spectrum ratio is ∼ 0.0005. Thus the 1σ uncertainty in the power spectrum ratio due to cosmic
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variance is expected be . 0.3%.12
If we naively derive the power spectrum ratio by using the raw data points of Pδ,DMO(k) and

Pδ,hydro(k) at k > kNy/2, the derived ratio will be overestimated due to the underestimation of the
denominator of Pδ,DMO(k) at scales of several times kNy, and underestimated toward even higher k
due to the overestimation of Pδ,DMO(k) (see §4.A.2). We will introduce our extrapolation scheme
below to avoid the biases.

4.B.2 Power Spectrum Ratio Extrapolation Scheme

For scales below k < 0.1 hMpc−1, we simply let the ratio curve asymptotically approach one, which is
a justifiable assumption since we know that baryons hardly modify the matter power spectrum on large
scales. For small scales, as shown in Fig. 4.1, the power spectrum ratio between hydrodynamical and
DMO simulations tends to increase after k & 20 hMpc−1. This increase is caused by cooling effects
in hydrodynamical simulation. In order to capture this physical effect, we make use of data points
in k ∈ [10, 30] hMpc−1, perform a smooth quadric spline fitting in log(k)- log(Pδ,bary(k)/Pδ,DMO(k))
space, and extrapolating the fitted trend out to k > 30 hMpc−1. Figure 4.1 shows the extrapolation
curves for all baryonic scenarios.

The above extrapolation scheme holds for Eagle/MB2/IIIustris/Horizon-AGN simulations, where
we have reliable power spectrum ratios in the range k ∈ [10, 30] hMpc−1. For the OWLS simulation
set, as discussed above, the ratio data is only well-determined to k < 10 hMpc−1. The black line in
Fig. 4.16 indicates the naively derived power spectrum ratio from the raw data of OWLS-AGN and
OWLS-DMO. In the case of OWLS-AGN, we do need data points slightly beyond k of 10 hMpc−1 to
capture the transition from suppression to enhancement of power. We therefore still make use of the
raw data points in the range of k ∈ [10, 30] hMpc−1, where the uncertainties may > 2% but not that
worse, to perform extrapolation spline line fitting, and the resulting curve is indicated in the red-dashed
curve of Fig. 4.16. The raw data curve is slightly higher than the extrapolating curve when k is large.
This is resulting from the underestimation of the DMO power spectrum as discussed in §4.A.2 and
§4.B. The extrapolation based on fitting data at k ∈ [10, 30] hMpc−1 may exhibit uncertainties in the
final extrapolation slope at high k. Therefore, we try to explore such uncertainties by setting slightly
different extrapolating parameters that are shown as upper (yellow line) and lower (brown dot-dashed)
bounds in Fig. 4.16. Finally, we also check the simplest constant extrapolation scheme as shown in
the dark blue line. We will explore the effects of different extrapolation schemes on the resulting
tomographic shear power spectra later.

If only using data points around k < 10 hMpc−1 to perform smooth extrapolation, one would
fail to capture the cooling effect that typically exists in hydrodynamical simulations at high k. The
light blue dash-dot-dotted line of Fig. 4.16 indicates such an extrapolation based on the data points for
k ∈ [3, 10] hMpc−1. This sets a very important requirement for ourmethod. If we really want to use the
PCA framework to achieve better cosmological parameter constraints by including more small scale
information, the simulations that are used to build the PC basis must also have high enough resolution

12Chisari et al. (2018) have estimated the effect of cosmic variance on the power spectrum ratio (see their Fig. 5) by
subsampling the Horizon-AGN simulation with a volume that is 8 times smaller then our setting here. So the expected 1σ
error due to cosmic variance in their case should be on the order of 1% (

√
8 times larger then our setting). The total spread

of their subsampled power spectra ratios is consistent with our derivation within 3σ.
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Figure 4.16: Power spectrum ratio between OWLS-AGN and OWLS-DMO at z = 0, assuming
different extrapolation schemes above k > 10 hMpc−1. The black line shows the raw data calculated
by simply taking ratio from the raw OWLS power spectra from van Daalen et al. (2011). The red
dashed line indicates the extrapolation scheme by extending a quadric spline fitted curve using the
raw data points in k ∈ [10, 30] hMpc−1. The yellow and brown dot-dashed lines indicate the two
possible upper and lower bounds one may derive, if there is some uncertainty in the raw data points
k ∈ [10, 30] hMpc−1. The dark blue line plots a pure flat extrapolation. The light blue dash-dot-dotted
line indicates the case of extrapolation when using data points in k ∈ [3, 10] hMpc−1, which are
believed to be well-measured.
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Figure 4.17: The ratio of tomographic shear power spectrum between OWLS-AGN and OWLS-DMO
simulations for our lowest tomographic bin. Curves in different colors represent different Pδ(k) ratio
extrapolation schemes as colored in Fig. 4.16. The vertical dashed line indicates the angular scale of
` = 2060, where the cut is made for all of tomographic bins in our data vector. This cut is chosen
such that the derived Ci j(`) curve would not be too sensitive on different Pδ(k) ratio extrapolation
schemes.

to construct a reasonable extrapolation down to the scale that goes into cosmological analysis. This
is the reason why we avoid using the Rudd et al. (2008) and Gnedin et al. (2011) simulations to build
our PC basis as in the previous work of E15. The half-Nyquist wavenumbers of these two simulations
are too low to capture the up-turn in the power spectrum ratio, given the angular scales of ` ≈ 2000
used in this work.

We now justify how the choice of angular scale cut at ` ≈ 2000 is made. In Fig. 4.17 we present
the computed tomographic shear power spectra in our lowest redshift bin, for various extrapolation
schemes on the power spectra ratio shown in Fig. 4.16. The vertical gray line indicates the angular
scale cut of ` = 2060 we have adopted. One can see that the Ci j(`) ratio only differs mildly at this
scale. Therefore, although our current extrapolation scheme may lead to a considerable error in the
Pδ(k) ratio, after the integration process, such error propagation in Ci j(`) ratio is estimated to be
within 10% when making an ` cut at ≈ 2000. We make a conservative choice of cutting in ` such that
the final result is not too sensitive to our extrapolation scheme.
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4.C Computing baryon-contaminated data vectors at varying cosmol-
ogy

In this Appendix, we describe in detail how we compute baryon-contaminated data vectors as a
function of cosmology. This procedure is needed to build the difference matrix (Eq. 4.8), weighted
difference matrix (Eq. 4.20), or ratio matrix (Eq. 4.25) when doing PCA.

To produce a baryon-contaminated vector Bx at cosmology pco, in principle we should rely on
Eq. (4.1) to generate the matter power spectrum for that cosmology, and integrate it to derive the
tomographic shear data vector

Ci j
hydro,x(` | pco) =

9H4
0Ω

2
m

4c4

∫ χh

0
dχ

gi(χ)g j(χ)

a2(χ)
Phydro,x
δ

(
`

fK (χ)
, χ | pco

)
.

(4.44)

However, to increase the computational speed, we approximate this step by

Bx(pco) = Ci j
hydro,x(pco) =

Ci j
hydro,x(pco,fid)

Ci j
theory(pco,fid)

Ci j
theory(pco) , (4.45)

where Ci j
hydro,x(pco,fid) is pre-computed using Eq. (4.44) setting at pco,fid and stored. Ci j

theory(pco) is
our model vector M(pco) generated from Halofit. Approximating Eq. (4.44) by Eq. (4.45) avoids
the need to integrate nine times when constructing the nine columns of ∆(pco)/∆chy(pco)/R(pco) at

each MCMC step. In using Eq. (4.45), we basically assume the quantity [
C00

hydro(pco)

C00
DMO(pco)

]/[
C00

hydro(pco,fid)

C00
DMO(pco,fid)

] ≈ 1
at various pco. To check the validity, we compute all the elements in this quantity using Eq. (4.44)
and plot it in Fig. 4.18, with pco set at different values of Ωm or σ8, while keeping the rest of the
cosmological parameters the same as pco,fid. As shown, the C00 ratio curves are within 0.25% of 1 for
various pco demonstrated here.

4.D Constraints on cosmological parameters of Ωm, σ8, and wa

In this Appendix, we provide constraints on cosmological parameters ofΩm, σ8, and wa after applying
baryon mitigation techniques using HMcode or various PCA methods. The solid markers indicate
the amount of residual bias after mitigation, and the open markers indicate the 0.5σ errors on the
marginalized 1D posteriors. We rely on this plot to checkwhether amitigationmethod can successfully
reduce the baryonic physics-induced bias to within 0.5σ for different cosmological parameters and
baryonic scenarios. The results are briefly summarized in Tables 4.4 and 4.5. We refer readers back
to discussions at §4.5.3 and §4.5.4 for details.
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Figure 4.18: The ratio of tomographic power spectra ratio at bin C00 between hydrodynamical and

DMO simulations evaluated at various pco v.s. pco,fid, i.e, [
C00

hydro(pco)

C00
DMO(pco)

]/[
C00

hydro(pco,fid)

C00
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]. Here different
curves indicate changes of Ωm or σ8 to values shown in the legend, while keeping the remaining
cosmological parameters the same as pco,fid. The fact that all ratio curves are ≈ 1 to within 0.25%
indicates the validity of using Eq. (4.45) as our approximation.
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Table 4.6: Goodness of fit for various baryon mitigation models.

Eagle MB2 Horizon-AGN Illustris
no-mitigation at pco,bestfit (pco,fid) 2.68 (30.92) 0.93 (5.71) 3.85 (103.2) 107.5 (3258)
HMcode – A 2.09 0.74 2.34 4.84
HMcode – A, η0 0.91 0.29 1.69 4.80
PCA ex1 at pco,bestfit (pco,fid) 1.39 (3.25) 0.70 (5.11) 0.75 (6.75) 11.91 (40.0)
PCA ex2 0.41 (0.39) 0.37 (0.81) 0.45 (2.72) 9.68 (34.2)
PCA ex3 0.28 (0.24) 0.28 (0.32) 0.26 (2.65) 3.08 (12.0)
PCA ex4 0.15 (0.07) 0.18 (0.30) 0.20 (1.38) 2.06 (4.89)
PCA ex5 0.13 (0.04) 0.14 (0.07) 0.16 (0.64) 1.65 (2.55)
PCA ex6 0.09 (0.03) 0.11 (0.06) 0.20 (0.59) 1.58 (2.18)
PCA ex7 0.11 (0.03) 0.12 (0.06) 0.19 (0.54) 1.50 (2.00)
PCA ex8 0.09 (0.03) 0.08 (0.06) 0.15 (0.53) 1.44 (2.00)
PCA ex9 0.07 (0.03) 0.10 (0.05) 0.15 (0.43) 1.37 (2.00)

4.E Goodness of fit for baryon mitigation models

In this Appendix, we summarize the fitting quality for various baryonmitigationmethods. In Table 4.6,
we provide the χ2 values computed at the best-fitted (fiducial) cosmology for HMcode and the PCA
method Cwhen applied on each baryonic scenario for the `max ≈ 2000 likelihood simulations. Here we
define our best-fitted parameters to be the median value at the marginalized 1D posterior distribution.

Notice that because our mock data vectors are noiseless, the χ2 values cannot be used to make
statements about overfitting or underfitting based on the reduced χ2 criterion (i.e. we do not expect
χ2/(d.o.f) ≈ 1). However, using the information from the relative χ2 values (∆χ2) and the relative
degrees of freedom (∆ d.o.f) between two models, we can determine the model complexity needed
from the data by performing the Chi-square difference test13 .

For example, for the Illustris scenario, we see that when comparing the PCA results between
excluding 1 PC mode to 5 PC modes, the ∆χ2 = 11.91 − 1.646 = 10.264, and the ∆ d.o.f = 4.
The corresponding p−value is 0.036, which means that the improvement is marginally statistically
significant (p−value < 0.05). Excluding 6 PC modes does not significantly improve the goodness of
fit compared with the result when excluding 5 PC modes (∆χ2 = 0.062, ∆ d.o.f = 1, p−value = 0.8).

After a few PC modes are excluded, we see that the χ2 values computed at pco,bestfit is comparable
to that computed at pco,fid for all baryonic scenarios. This means that excluding PC modes does not
just reduce parameter bias in our simulated likelihood analysis, but the resulting best-fitting model
also provides a good fit to the data.

13We refer readers to this link for more detail about Chi-square difference test.
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5 Dark Energy Survey Year 1 Results: Constraints on
Baryonic Effects

Abstract
In this work we develop a principal component (PC) based baryon mitigation pipeline
in order to include the small scale cosmic shear data down to 2.5 arcmin into the
original Dark Energy Survey (DES) Year 1 3 × 2 point analysis. We use the baryonic
features from five sets of hydrodynamical simulations (OWLS-AGN, Eagle, Horizon-
AGN, MB2, IllustrisTNG) to construct baryon-contaminated mock observable vectors,
and perform principal component analysis (PCA) on them to derive PC modes with
flexibility to span the uncertainties of baryonic physics. We validate our pipeline by
running likelihood simulations to finalize pipeline settings and to understand expected
performances before applying on real data. We find that marginalizing over one PC
modes is sufficient to reduce systematic biases to the 1σ statistical error under the DES
Y1 covariance, and we expect to have ∼10% smaller error bar on S8 by including small
scale cosmic shear data into analysis. For the expected constraining power on baryonic
parameters, at most we would be able to differentiate two very distinct baryonic scenarios
(e.g. Illustris v.s. MB2) by one sigma, given the DES Y1 statistical power. We also
study the interplay of baryonic parameters with cosmology and nuisance parameters for
other systematic effects. While there are some level of intrinsic correlation between the
baryonic parameters and cosmology, we find that most of the degeneracies trends between
the baryonic parameters and cosmology in our full analysis are driven by allowing the
galaxy bias parameters to vary.

5.1 Theory and Analysis Setting

5.1.1 Data

Observational Data

We use the publicly released 3×2pt data vector from the Dark Energy Survey (DES) Y1 key project
(Abbott et al., 2018) as our observational data vector1. Throughout the work, we adopt the metacal-
ibration (Huff & Mandelbaum, 2017; Sheldon & Huff, 2017) version shape catalog as our source
sample for cosmic shear (Troxel et al., 2018), and the redMaGiC (Rozo et al., 2016) sample as the
lens population for galaxy-galaxy lensing (Prat et al., 2018) and galaxy clustering (Elvin-Poole et al.,
2018) measurements.

The DES Y1 source galaxies are divided into four tomographic bins ranging from z = 0.2 to
1.3, resulting in 10 auto- and cross-correlations of cosmic shear for ξ+ and ξ−, respectively. The

1The publicly released 3×2pt data vector and its associated covariance matrix, 2pt_NG_mcal_1110.fits, can be
downloaded at https://des.ncsa.illinois.edu/releases/y1a1/key-products
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Figure 5.1: The effect of baryons on matter power spectrum. We plot the power spectrum ratio for
hydrodynamical simulations of IllustrisTNG100, MB2, Eagle, Horizon-AGN, Illustris, and OWLS-
AGN, with respect to their corresponding DMO simulation setting at the same initial condition,
at redshifts 0, 0.3, 0.9 (within the redshift range that DES Y1 galaxy clustering and weak lensing
observables is sensitive at).

lens galaxies are placed in five tomographic bins ranging from z = 0.15 to 0.9, resulting in 20 cross-
correlations between lens and source samples for galaxy-galaxy lensing, and 5 auto-correlations for
galaxy clustering. Each of the correlation statistics is measured using treecorr2 in 20 log-spaced
bins of angular separation 2.5′ < θ < 250′. Conservative scale cuts are applied to the raw 3×2pt
data vector to avoid modeling challenges on small scale (see Troxel et al. 2018; Krause et al. 2017 for
the determination of scale cuts), resulting in a total of 457 elements for the fiducial DES Y1 3×2pt
cosmological analysis (Abbott et al., 2018).

To extract the baryon information of our Universe, we extend the DES Y1 cosmic shear correlation
function measurements to scales of 2.5 arcmin; together with the galaxy-galaxy lensing and galaxy
clustering measurements (subjected to the original DES Y1 scale cuts), our extended 3×2pt data
vectors have a total of 630 data points (400 elements for cosmic shear, 176 elements for galaxy-galaxy
lensing and 54 elements for galaxy clustering).

Hydrodynamcial Simulation Data and Power Spectrum

To build our baryon mitigation models with sufficient flexibility and to validate our pipelines, a total
of six hydrodynamical simulations is involved in this work: OWLS-AGN (Schaye et al., 2010; van
Daalen et al., 2011), MassiveBlack-II (MB2, Khandai et al. 2015; Tenneti et al. 2015b), Horizon-AGN
(Dubois et al., 2014), Eagle (Schaye et al., 2015), Illustris (Vogelsberger et al., 2014; Genel et al.,
2014), IllustrisTNG (Springel et al., 2018; Pillepich et al., 2018b; Naiman et al., 2018; Marinacci
et al., 2018; Nelson et al., 2018). We refer readers to §2 of Huang et al. 2019 (hereafter H19) for our
brief summary on these simulations.

Figure 5.1 shows the effects of baryons for different hydrodynamical simulations in terms of their
derived power spectrum ratios with respect to their corresponding darkmatter only (DMO) simulations

2https://github.com/rmjarvis/TreeCorr
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at the same initial condition. On small scale, the effects of baryons show large variations, and have
different redshift evolution histories across simulations. On large scale, we expect the power spectrum
ratios converge to unity because of the negligible baryonic effects there, and because of the cosmic
variance fluctuations being canceled when taking ratios of power for pairs of simulations seeded at
identical initial condition. In Appendix B of H19, we have discussed in detail on the convergence of
power spectrum ratio and provide an upper limit estimation on its uncertainties due to cosmic variance.

We have computed the power spectrum ratio for MB2, Illustris, Eagle for the work of H19. The
IllustrisTNG baryonic scenario is added into our power spectrum library using the publicly released
TNG100 snapshot data (Nelson et al., 2019). The OWLS-AGN power spectra are computed by van
Daalen et al. (2011). For Horizon-AGN, we use the power spectra data released by Chisari et al.
(2018). We make a slight adjustment on the power spectrum ratios for Horizon-AGN, due to its
∼ 0.5% excess above unity toward large scales, as shown in Fig. 5 of Chisari et al. (2018). According
to van Daalen et al. (2019), this large-scale (. 1%) excess of power is originating from details of
simulation setup between pairs of hydrodynamical and DMO simulations, for which their transfer
functions and the number of particles are often differ. Given that this sub-percent level offset is due
to artifacts, we correct for this power mismatch by re-scaling the DMO power spectra using the linear
growth factor, letting the ratio between Phydro

δ and PDMO
δ asymptotic to one toward large scales.

Mock Data Vectors

To validate our baryon mitigation pipeline, we generate three mock data vectors to conduct likelihood
simulations: the pure theoretical data vector derived from CosmoLike with the fiducial parameters
setting shown in Table 5.1 (we will label this mock data vector as the DMO scenario hereafter), and
two baryon-contaminated mock data vectors with the Illustris and Eagle scenarios.

We derive the baryon-contaminated data vectors at specific cosmology pco using the underlying
hydrodynamical power spectrum defined as

Phydro
δ (k, z | pco) =

Phydro,sim
δ (k, z | pco,sim)

PDMO,sim
δ (k, z | pco,sim)

Ptheory
δ (k, z | pco) , (5.1)

where the ratio term P
hydro,sim
δ (k,z | pco,sim)

PDMO,sim
δ (k,z | pco,sim)

is visualized in Fig. 5.1. When using Eq. (5.1), we assume that
baryonic effects and cosmology are independent, which is a fair assumption. According to van Daalen
et al. (2019) the power spectrum ratio remains more or less the same when varying cosmologies (see
their Fig. 6).

With the Phydro
δ (k, z | pco) being computed, we then pass it into the CosmoLike package to derive the

baryon-contaminated data vectors, for which we detailed in §5.1.2.

5.1.2 Model

We use the CosmoLike package (Krause & Eifler, 2017), one of the parallel pipelines for DES
cosmological inferences, to perform theatrical modeling on the 3×2pt data vectors. The linear DMO
power spectrum is generated at each cosmology using class (Blas et al., 2011), with nonlinear
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correlations derived from the Takahashi et al. (2012) version of Halofit . Throughout the work, we
consider a flatΛCDMcosmological model with six free parameters, pco = {Ωm, As, Ωb, ns, Ωνh2, h}.

Below we briefly summarize the theoretical modeling of the three types of two-point correlation
functions and their associated systematic effects.

Cosmic Shear ξ±(θ)

The real-space cosmic shear correlation function in tomographic bins i, j is modeled as

ξ
i j
± (θ) = (1 + mi)(1 + m j)

1
2π

∫
d` `J0/4(`θ)C

i j
γγ(`) . (5.2)

Here J0 and J4 are Bessel functions of the first kind. mi is a constant multiplicative factor for each
tomographic bin to account for shear calibration bias (Heymans et al., 2006). Ci j

γγ(`) is the detected
shear-shear power spectrum, which contains the real lensing signal due to gravity (GG) as well as the
contamination due to intrinsic alignment (II, GI, IG terms).

Ci j
γγ(`) = Ci j

GG(`) + Ci j
II (`) + Ci j

GI(`) + Ci j
IG(`) . (5.3)

For the real lensing contribution, under theLimber approximation and the flatUniverse assumption,

Ci j
GG(`) =

∫ χh

0
dχl

gi(χl)g
j(χl)

χ2
l

Pδ(k =
`

χl
, χl) , (5.4)

where χl is the comoving distance for the matter distribution (lens) along the line of sight, and χh is
the comoving horizon distance. The lensing kernel in the i-th tomographic interval is

gi(χl) =
3
2

H2
0Ωm

c2
χl

a(χl)

∫ χh

χl

dχsnis(χs)
χs − χl

χs
, (5.5)

with nis(χs) being the probability density function (pdf) for the redshift distribution of source galaxies
in tomographic bin i, defined such that nis(χs)dχs = nis(z)dz, and is normalized to unity.

For the intrinsic alignment (IA) contamination, we have the the intrinsic-intrinsic shape correlation
due to the local gravity on pairs of source galaxies,

Ci j
II (`) =

∫ χh

0
dχs

nis(χs)n
j
s (χs)

χ2
s

PII(k =
`

χs
, χs) , (5.6)

and the lensing shear-intrinsic shape correlations for pairs of galaxies with the foreground one being
torqued and the background one being sheared under the effect of the same gravitational field,

Ci j
GI(`) + Ci j

IG(`) =

∫ χh

0
dχ

gi(χ)n j
s (χ) + nis(χ)g

j(χ)

χ2 PGI(k =
`

χ
, χ) . (5.7)

The PII and PGI are IA power spectra. Throughout the work, we adopt the commonly used non-linear
alignment (NLA) model (Hirata & Seljak, 2004a) to mitigate IA uncertainties, i.e. assuming the
amplitudes of IA power spectra are linearly related to the local density field:

PII(k, z) = A2(z)Pδ(k, z)

PGI(k, z) = A(z)Pδ(k, z)

A(z) = −AIAC1
3H2

0Ωm

8πG
D−1(z) (

1 + z
1 + z0

)ηIA .

(5.8)
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HereD(z) is the linear growth factor;C1 is the normalization constant being set at5×10−14 M−1
� h−2Mpc3

(Brown et al., 2002); the pivot redshift z0 is being set at 0.62. The nuisance parameters that go into
the pipeline for IA marginalization are AIA and ηIA. For a more detailed IA analysis on DES Y1 data,
see Samuroff et al. (2018).

Galaxy Clustering

The location galaxies traces the underlying matter density field, yet with some unknown bias factor
which depends on the tracer galaxy properties. On large scale, under the simple scale-independent
linear biasmodel, the theoretical prediction for galaxy-galaxy auto-correlation function in tomographic
bin i is:

wi(θ) =
1

2π

∫
d`J0(`θ)Cii

δgδg
(`)

Cii
δgδg
(`) = (big)

2
∫ χh

0
dχl
(nil (χl))

2

χ2
l

Pδ(k =
`

χl
, χl) ,

(5.9)

where nil (χl) is the pdf for the redshift distribution of lens galaxies, and big is the bias factor for each
tomographic bin.

Galaxy-Galaxy Lensing

Galaxy-galaxy lensing, the cross correlation between the position of lens galaxies in bin i and their
surrounding matter density field traced by the shear of source galaxies in bin j, is modeled as:

γ
i j
t (θ) = (1 + m j)

1
2π

∫
d`J2(`θ)C

i j
δgγ
(`) , (5.10)

where m j is the multiplicative shear bias; J2 is the second-order Bessel function. Similarity, the
Ci j
δgγ
(`) term has contributions from both pure lensing and IA effects,

Ci j
δgγ
(`) = Ci j

δgG(`) + Ci j
δgI(`) . (5.11)

The the lensing term is

Ci j
δgG(`) = big

∫ χh

0
dχl

nil (χl)g
j(χl)

χ2
l

Pδ(k =
`

χl
, χl) . (5.12)

The IA term is

Ci j
δgI(`) = big

∫ χh

0
dχ

nil (χ)n
j
s (χ)

χ2 PGI(k =
`

χ
, χ) , (5.13)

with the IA power spectrum PGI being defined in Eq. (5.8).

Finally, throughout out the work, the uncertainty in the photometric redshifts are modeled as a constant
shift from the initial pdf nipz(z), for both source and lens galaxies, in each tomographic bin.

nis(z) = nis,pz (z − ∆zis) ; nil (z) = nil,pz (z − ∆zil ) (5.14)
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Table 5.1: Parameters and priors used to run the likelihood analyses. Flat denotes a flat prior in
the range given while Gauss(µ, σ) is a Gaussian prior with mean µ and width σ. The third column
summarizes the fiducial parameter values we used to construct PCs. The cosmological, intrinsic
alignment, and galaxy bias parameters are chosen to be in consistent with the posterior constraints
from the fiducial ΛCDMmodel of DES Y1 3×2pt analyses (Abbott et al., 2018). The fiducial photo-z
and shear calibration parameters are set at the peak of the gaussian prior for the purpose of running
likelihood simulations.

Parameter Prior Fiducial Value
Cosmology

Ωm Flat (0.1, 0.9) 0.3
As Flat (5 × 10−10, 5 × 10−9) 2.19 × 10−9

ns Flat (0.87, 1.07) 0.97
Ωb Flat (0.03, 0.07) 0.048
Ωνh2 Flat (5 × 10−4, 10−2) 0.00083

h Flat (0.55, 0.91) 0.69
Lens Galaxy Bias

b1
g Flat (0.8, 3.0) 1.53

b2
g Flat (0.8, 3.0) 1.71

b3
g Flat (0.8, 3.0) 1.70

b4
g Flat (0.8, 3.0) 2.05

b5
g Flat (0.8, 3.0) 2.14

Lens photo-z shift
∆z1

l Gauss (0.008, 0.007) 0.008
∆z2

l Gauss (−0.005, 0.007) -0.005
∆z3

l Gauss (0.006, 0.006) 0.006
∆z4

l Gauss (0.0, 0.01) 0.0
∆z5

l Gauss (0.0, 0.01) 0.0
Source photo-z shift

∆z1
s Gauss (−0.001, 0.016) -0.001

∆z2
s Gauss (−0.019, 0.013) -0.019

∆z3
s Gauss (+0.009, 0.011) 0.009

∆z4
s Gauss (−0.018, 0.022) -0.018

Shear calibration (metacalibration)
m1 Gauss (0.012, 0.023) 0.012
m2 Gauss (0.012, 0.023) 0.012
m3 Gauss (0.012, 0.023) 0.012
m4 Gauss (0.012, 0.023) 0.012

Intrinsic Alignment
AIA Flat (−5, 5) 0.45
ηIA Flat (−5, 5) -1.0

Baryon PC amplitude

Qi

(i = 1, 2, 3)
Flat (−100, 100)

QDMO : [0.00 , 0.00 , 0.00]
Qillustris : [4.13 ,−1.11 , 0.18]
Qeagle : [0.51 , 0.31 ,−0.12]
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Figure 5.2: The effect of baryons on cosmic shear. Here we show the ratio of cosmic shear correlation
functions for baryonic scenarios of IllustrisTNG100,MB2, Eagle, Horizon-AGN, Illustris, andOWLS-
AGN, with respect to the theoretical (DMO) predictions. The gray bands highlight data points that
were excluded in the fiducial DES Y1 analysis, but are now included in this work.

5.1.3 PC Decomposition to model baryonic effects

We adopt the principal component (PC) decomposition technique to model baryonic effects for small
scale cosmic shear (Eifler et al., 2015). The basic idea of this technique is to perform principal
component analysis (PCA) on the difference of the theoretical model vectors (the 3 × 2pt vectors
for this work) between hydrodynamical and DMO simulations, for several baryonic scenarios. The
resulting dominant PC modes then serve as a flexible bases set to account for possible baryonic effects
of our Universe. In H19, we validate this method under an LSST-like cosmic shear experiment. We
further improvement the efficiency of this method by applying some weighting when constructing PC
modes. Throughout the work, we will apply the method C of H19 to mitigate uncertainties of baryons
in DES Y1. Below briefly summarize the formalism of our method.

First, we build the difference matrix ∆ and weigh it by L−1 to derive the noise-weighted difference
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matrix ∆ch.
∆ch = L−1∆

= L−1
[
B1 − M B2 − M . . . BNsim − M

]
Ndata×Nsim

= Uch Σch Vt
ch .

(5.15)

The weighting factor L−1 is derived from Cholesky Decomposition from covariance matrix C via

C = LLt . (5.16)

Each column of ∆ is a difference vector with 630 elements (§5.1.1), Bx−M , withM(pco,fid, pnu,fid) be-
ing a DMOmodel vector setting at the fiducial parameters summarized in Table 5.1. Bx(pco,fid, pnu,fid)

represents for a model vector contaminated with baryonic scenario x.
In Fig. 5.2, we show the ratio of data vectors Bx/M on cosmic shear for all the hydrodynamical

scenarios involved in the analysis of this work. Notice that after integration, the variation of baryonic
effects on ratios of ξ± is more monotonous to the θ range considered here, compared with their ratios
in Pδ(k) as shown in Fig. 5.1. This feature makes it earlier to construct models to mitigate baryonic
effects in observable spaces, but more challenging to constraint different baryonic scenarios via weak
lensing observables.

Next, we apply the singular value decomposition (SVD) on ∆ch. The first Nsim columns of Uch

matrix is a set of PC bases that can be used to fully span the baryonic features of our training
simulations. For a given baryonic scenario x, we have

L−1(Bx − M) =
Nsim∑
i=1

Qi PCi . (5.17)

Note that although we pass the full 3× 2pt vector in Eq. (5.15) to perform PCA, for the galaxy-galaxy
lensing and galaxy clustering parts, subjected to their conservative scale cuts, the resulting deviations
from DMO scenario are extremely small in projection on these elements. Thus, the PCs mostly
functions on accounting for baryonic effects in small-scale data points of cosmic shear.

With the PCs derived, we can then generate a baryonic model that utilizes PC amplitudes Qi to
simulate possible baryonic behaviors.

Mbary(pco, pnu, Q) = M(pco, pnu) +

n∑
i=1

Qi L · PCi . (5.18)

Here n specifies the number of PC amplitudes/PC modes used to model baryonic effect, and n ≤ Nsim.
The operation of L · PCi transforms the PC mode back to the same basis as M .

Input hydrodynamical scenarios for PC construction

We construct two PC basis sets throughout this work for all the analyses. The first PC set is constructed
with 5 hydrodynamical scenarios: OWLS-AGN, MB2, Horizon-AGN, TNG100, and Eagle. We will
use this basis set to mitigate baryonic effects for our Illustris and DMO mock data vectors (see
§5.1.1), and for the real DES Y1 observational data vector. The other PC basis set is constructed with
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Figure 5.3: The principal bases used to model uncertainties of baryons. Here we show the first three
L · PC components, as shown in Eq. (5.18), projected on the cosmic shear correlation functions.

hydrodynamical scenarios of OWLS-AGN, MB2, Horizon-AGN, and TNG100, for which the Eagle
scenario is excluded, because we will use this PC set to perform mitigation for the Eagle mock data
vector.

Figure 5.3 provides a visualization ofL·PCi in projection on ξ±. One can see thatmost of variations
are concentrating on small scales of ξ−, where the baryonic effects have the largest variances across
the baryonic scenarios that are used in PC construction, as shown in Fig. 5.2.

5.1.4 Likelihood Analysis

We infer the posterior probability distribution of cosmological (pco) and nuisance parameters (pnu)
via Bayes’ theorem:

P(pco, pnu |D) ∝ L(D |pco, pnu)Pprior(pco, pnu) , (5.19)

169



5.2. Likelihood Simulation Results Chapter 5. Baryonic Effects in DES Y1

with the prior probability distribution or each of the parameter defined in Table 5.1. We assume the a
simple Gaussian likelihood function:

L(D |pco, pnu) ∝ exp
(
−

1
2

[
(D − M)t C−1 (D − M)

]︸                           ︷︷                           ︸
χ2(pco,pnu)

)
, (5.20)

where the C is the covariance matrix reflecting the statistical uncertainties of measurements. We use
the publicly released covariance for DES Y1 computed from CosmoLike (Krause & Eifler, 2017).
The calculation of covariance matrix and the associated validation tests is detailed in Krause et al.
(2017).

We use the emcee package (Foreman-Mackey et al., 2013), which relies on the affine-invariant
ensemble sampling algorithm (Goodman et al., 2010), to sample the parameter space. We runMCMC
(Markov Chain Monte Carlo) chains to 2.5 million steps in length, and then discard the first 1.25
million steps as burn-in.

5.1.5 Blinding

We develop our baryon mitigation pipeline by running likelihood simulations on mock baryon-
contaminated data vectors (§5.1.1), and use the information to determine the degrees of freedom
(number of PC modes) needed to be opened to assure unbiased cosmological inferences, to learn what
to expect in terms of the constraining power on baryonic parameters from the small-scale cosmic shear
information, and to understand the expected improvement in cosmological constraint compared with
the fiducial DES Y1 3×2pt scale cuts. After everything is fully understood among the authors, we
then apply our pipeline on the real DES Y1 data (§5.1.1).

5.2 Likelihood Simulation Results

In this section we present our simulated likelihood results for the three mock data vectors of baryonic
scenarios DMO, Eagle, and Illustris. The results shown here would stand as references for the designed
and expected performances of our baryon mitigation pipeline.

5.2.1 Number of PC modes to be marginalized over given DES Y1 constraining power

The residual bias after marginalization

To determine howmany PCmodes are needed in Eq. (5.18) to safely marginalize over baryonic effects
given DES Y1 covariance, we examine the posterior constraints on cosmological parameters for our
likelihood simulation runs with increasing degrees of freedom opened until the bias on each of the
cosmological parameters are within 1σ of the posterior distribution.

Figure 5.4 shows the marginalized 1D S8 posterior constraints for our likelihood simulations. If
the baryonic scenario of our Universe is like Eagle, even without marginalization the S8 bias is still
within 1σ for DES Y1, when extending cosmic shear to 2.5 arcmin. If using the Illustris scenario as
a more conservative validation, we find that marginalizing over two PC modes should be enough to
account for baryonic effects to within 1σ for DES Y1. We also note that subjected to the original Y1
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Figure 5.4: The marginalized 1D S8 posterior constraints for our likelihood simulations with baryonic
scenarios of DMO, Eagle and Illustris. The marker position, the lower and upper error bars indicate
the median, the 16th and the 84th percentiles of marginalized 1D posteriors. The open symbols are
results of 3 × 2 point mock data vectors subjected to the original DES Y1 scale cuts, while the filled
symbols are results when extending the cosmic shear data points to 2.5 arcmin (§5.1.1), with different
choices on the number of marginalizing PC amplitudes Qi to account for baryonic effects.

scale cut, the bias on S8 is expected to be > 1σ (open blue triangle). This is because the original Y1
scale cut is designed and validated based on the OWLS-AGN scenario, which is less intense compared
with Illustris (see Figs. 5.1 and 5.2).

The degradation on parameter constraint after marginalization

The small scale cosmic shear data points provide extra information in cosmology, while some of the
information would lose after accounting for uncertainties of baryons. Here we try to understand the
expected degradation on parameter constraints within the PCA framework, subjected to our choices
on the number of marginalization parameters for baryons.

Figure 5.5 shows the marginalized 1σ error for S8 for our likelihood analysis results on mock data
vectors contaminated with baryonic scenarios of Illustris, Eagle and DMO. The gray bars are S8 errors
derived when applied the original Y1 scale cuts. The blue/red/orange/brown are the results with the
cosmic shear data points extended to 2.5 arcmin, andwith 0/1/2/3 PCmode(s) beingmarginalizedwhen
running analysis. The bar on the far left indicates the S8 error when running the CosmoLike pipeline
on real DES 3×2 pt data vector with original Y1 scale cuts. We find that when only marginalizing over
one PC mode, we still have the advantage by relying on small scale cosmic shear data to obtain better
cosmological constraint. However, when opening more than 2 PC modes to perform marginalization,
we lose the benefit of adding extra data points due to our lack of knowledge to control uncertainties
of baryonic effects.

To summarize, we find that, under themost conservative case for aUniverse like Illustris, marginalizing
over two PC modes should be sufficient for DES Y1 when including small scale cosmic shear into
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Figure 5.5: The marginalized 1σ error for S8 for our likelihood analysis results on mock data vectors
contaminated with baryonic scenarios of Illustris, Eagle and DMO, and on the real DES data subjected
to original Y1 scale cuts (the bar on the far left). The gray bars are S8 errors subjected to Y1 scale
cuts. The blue/red/orange/brown are the results with the cosmic shear data points extended to 2.5
arcmin, and with 0/1/2/3 PC mode(s) being marginalized when doing analysis.

the 3 × 2 point analysis. However, this choice ends up with having less cosmological constraining
power compared with the fiducial DES Y1 analysis subjected to conservative scale cuts. Luckily, it
is believed that our Universe is not like Illustris, for which the radio-mode AGN feedback is known
to be too violent such that too much gas are heated and ejected, leading to lack of baryons in galaxy
groups (Haider et al., 2016). For the Eagle scenario, the expected biases are within 1σ even without
applying any marginalization technique. We therefore conclude that marginalizing over one PC mode
is likely to be sufficient for DES Y1 covariance, for baryonic scenarios that are less intense compared
with Illustris (but we will still present the results with two PC modes coming into marginalization,
when applied on real data). When marginalizing over only one baryonic parameter, we expect to
have slightly better cosmological constraint after marginalization. As for the case of Eagle, we have
∼10% smaller error bar on S8 when including small scale cosmic shear data compared with the result
subjected to the original DES Y1 scale cut (Fig. 5.5).

Note that although throughout §5.2.1 we use the S8 constraint to build our points, the conclusions
would not change based on the results for Ωm or σ8.

The finding that we would only gain tighter cosmological constraint from small scale cosmic
shear when marginalizing over one PC mode motivates the reasoning on our choice of baryonic
scenarios when conducting PCA. With only a single PC mode involved, we hope that this PC mode
could reflect the truth of our Universe as close as possible. Hence, we do not include the Illustris
scenario in the PCA process, but only use it on validation. Unlike our previous PC construction in
H19, we also exclude baryonic scenarios without AGN subgrid model in the OWLS simulation suit.
Our final choice then being narrowed down to the remaining five hydrodynamical scenarios in our
library (OWLS-AGN, Horizon-AGN, MB2, IllustrisTNG, Eagle), and use them as representatives on
the range of uncertainties for baryonic physics.
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5.2.2 The interplay among baryons, cosmology, and other systematic parameters

Here we investigate the correlations of the PC amplitudes (Qi) with cosmological and other nuisance
parameters as listed in Table 5.1. Since there are nearly 30 parameters involved in modeling the
full 3 × 2 pt data vectors, it is challenging to draw a complete picture on the dependencies among
parameters in such a high dimensional space. To approach this problem in a simpler way, we will
use the likelihood simulation chains from the DMO scenario as demonstrations to construct potential
interpretations.3

Figure 5.6 shows the posterior distributions for the likelihood analyses, with the DMO mock data
vector as input. The numbers on the corner of the some selected panels are correlation coefficients
of parameters derived from the MCMC chains as labeled in the legend. The correlation matrix is the
inverse of parameter covariance matrix computed as

Ci j
par =

1
N − 1

N∑
k=1
(θik − 〈θi〉)(θ jk − 〈θ j〉) , (5.21)

with 〈θi〉 indicating the mean of the i-th parameter, and k ∈ [1, N] being the index running over the
first 90% higher likelihood steps in the MCMC chain. We discard 10% MCMC samples with low
likelihood values when deriving parameter covariance in order to decrease the effects from samples
distributed far away from high likelihood region.

The degeneracy of PC amplitudes with cosmology and systematic parameters can be found in
panels of the last two raws of Fig. 5.6. We find that

• As highlighted in the yellow backgrounds, Q1,2 have negative correlations withΩm and positive
correlations with σ8, ns. The tendency of degeneracy becomes stronger when opening two PC
modes to perform marginalization.

• No apparent degeneracies for Qi with neutrino and intrinsic alignment parameters.

• No apparent degeneracies for Qi with systematic parameters subjected to informative priors
(shear calibration and photo-z).4

• The PC amplitudes are found to have negative correlations with the galaxy bias parameters big.

• As highlighted in the gray backgrounds, the parameter dependencies among Ωm, σ8, and big are
really strong, with the absolute values of their correlation coefficients to be around 0.9.

• When allowing 2 PC amplitudes to vary, the correlation coefficient between Q1 and Q2 is -0.62.
To intuitively understand the parameter degeneracy derived from theMCMC black box in Fig. 5.6,

we will use Figs. 5.7 and 5.8 to provide our explanation. In Fig. 5.7, we plot the fractional changes
of model vectors (M−Mfid

Mfid
) when varying individual parameters to 1σ above (solid lines) or below

(dash lines) from its fiducial value listed in Table 5.1. The 1σ value for each parameter adopted
is derived from our DMO based likelihood simulation results when marginalizing over 2 PC modes
(the blue contours shown in Fig. 5.6). To understand the posterior distribution with less complicated
entanglement of parameters, in Fig. 5.8, we present results from a series of likelihood analyses for

3The main intuitions drawn would remain similar for the Eagle and Illustris MCMC chains.
4For clarity, in Fig. 5.6 we only select one or two representative tomographic bins for systematic parameters, but the

degeneracy trends for bins that are not shown remain similar to the selected bins as demonstrated in the plot.
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Figure 5.6: The posterior distributions for our likelihood analyses, with the DMO mock data vector
as input. The fiducial parameter values are indicated in the cross lines (gray). The black contours
indicate the 1σ level constraints with the original DES Y1 scale cuts applied on our mock data vector.
The red / blue contours are results when extending cosmic shear down to 2.5 arcmin and with one /
two PC amplitude(s) being marginalized. The colored numbers on the corner of the selected panels
are correlation coefficients between two parameters derived from each of the corresponding MCMC
chains.
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the DMO 3×2 pt mock data vector with cosmic shear extended to 2.5 arcmin, but keep certain set
of nuisance parameters fixed at their fiducial values. This experiment also allows us to investigate
changes of degeneracy when different combinations of parameters are allowed to vary.

Below we provide our explanations on the correlation trends observed in Fig. 5.6 using evidences
found in Figs. 5.7 and 5.8. From the dark blue chain shown in Fig. 5.8, when all other nuisance
parameters are not allowed to vary, we derive slightly positive correlations between Q1 with Ωm and
σ8 (correlation coefficient 0.17, and 0.51 respectively). This is supported from the upper panel of
Fig. 5.7. When Q1 increases, the power on ξ± decreases (mostly on small scale); one can boost the
overall power of ξ± by increasing σ8 (Ωm), which leads to the positive correlation between Q1 and σ8

(Ωm). The apparent differences in the angular scale variation of ξ± when varying Q1 and σ8 (Ωm)
further explains why the correlation exists but is weak.

From Fig. 5.8 we observe that opening degrees of freedom for systematic parameters subjected to
tight priors barely disturb the original correlations among parameters (light blue vs dark blue contours).
Adding IA parameters into the parameter pool also hardly changes the degeneracy directions of
posteriors (gray vs dark blue contours). As shown in Fig. 5.7, although varying AIA and ηIA results in
an overall amplitude shifts on the data vectors, with the angular scale variation being similar as tuning
σ8, the degeneracies between IA and σ8 can still be broken from the their distinction in the redshift
direction. For example, in the bottom panel of Fig. 5.7, for galaxy-galaxy lensing, IA contamination
only comes in correlations of lens and source pairs being affected by the same gravitational field
(i.e. the (2,2) tomographic bins where there is an overlap in the lens-source redshift distribution); for
tomographic bins that have little overlap in redshifts, there is almost no IA contamination, as shown
in the (2,3) bin for γt.

The galaxy bias parameters play an important role in varying the degeneracy of parameters, as
shown in the dark blue v.s. yellow contours in Fig. 5.8. In fact, we can further conclude that the
observed degeneracy trends in our full analysis (when opening all degrees of freedom) is driven by
allowing big to vary, as shown from the high similarity between the yellow and red contours.

As shown in panels B and C, the correlation between Q1 and σ8 stays positive but is slightly
boosted (0.51→0.67) when free galaxy bias parameters, while the correlation between Q1 and Ωm

changes from positive to negative direction (0.17→-0.5). We think this flipping of sign originates from
the tight coupling among big, Ωm and σ8. When Q1 increases, σ8 tends to increase (panel C); because
of the tight negative coupling between galaxy bias and σ8 (panel E), big tends to decrease. Moreover,
because of the significant positive correlation between big and Ωm (panel D), when big decreases, Ωm

tends to decrease. This series of correlation eventually leads to the resulting negative between Q1 and
Ωm (i.e. Q1 ↗, σ8 ↗, big ↘,Ωm ↘), when galaxy bias parameters are allowed to vary. Although
intrinsically Q1 and Ωm tends to have slightly positive correlation, the much stronger degeneracy
between Ωm and big erases this trend. One can go to the galaxy clustering column in Fig. 5.7 to find
why the correlation between Ωm and big is positive. When increasing Ωm, the amplitude of galaxy
clustering decreases; this is because we have to adjust the As parameter accordingly in order to keep
σ8 fixed.5

5While the amplitude of galaxy clustering decreases when increasing Ωm at fixed σ8, the overall amplitudes in cosmic
shear and galaxy-galaxy lensing observables still increasing. This is because there are extra Ωm factors in their theoretical
formulae coming from the lensing kernel shown in Eq. (5.5).
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Figure 5.7: The fractional changes of model vectors when varying each of individual parameters to
1σ above (solid lines) or below (dash lines) its fiducial value listed in Table 5.1. We only select
two tomographic bins for each of the observable as demonstration, with the bin information indicated
on the bottom right corner of each panel (for galaxy-galaxy lensing, the first number is for lens
tomographic bin; the second number for source). The darker gray bands covered in galaxy-galaxy
lensing and clustering panels mark data points that are excluded throughout the work. The lighter gay
bands in the cosmic shear observable highlight data points that are excluded in the original DES Y1
analysis, but are now included in this work. The error bars shown are the square root of the covariance
matrix diagonal elements. For the neutrino parameterΩνh2, 0.0005 is the lowest value we can go with
the choice of its prior range.
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Figure 5.8: Posterior constraints from likelihood analyses with certain set of nuisance parameters
fixed at their fiducial values. The input data vector is the DMO scenario with cosmic shear extended
to 2.5 arcmin. We run five chains with the 6 cosmological and the two PC amplitudes always allowed
to vary, but from top to bottom listed in the legend, we 1) fix all other systematic parameters (blue), 2)
allow systematic parameters subjected to informative priors to vary (lightblue), 3) allow IA parameters
to vary (gray), 4) allow galaxy bias parameters to vary (yellow), and finally the fifth chain plotted is
the standard analysis with all nuisance parameters allowed to vary (red). The colored numbers on the
corner of the selected panels are correlation coefficients between two parameters derived from chains
No. 1, 4 and 5.
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Figure 5.9: Posterior constraints of PC amplitudes for mock data vectors of Illustris and Eagle
scenarios. The left panel shows the posterior of Q1, when only marginalizing over 1 PC mode. The
right panel shows the 2D posterior distribution of Q1 and Q2, for likelihood simulations when opening
degrees of freedom for 2 PC amplitudes.

The degeneracies ofQ1,2 and galaxy bias parameters (panels F, G in Fig. 5.8) can also be explained
through the coupling among big, Ωm, σ8. In principle, one may expect PC amplitudes being almost
independent with galaxy bias parameters, because tuningQ1,2 only affects the cosmic shear observable,
while tuning big only affects the galaxy clustering part (see Fig. 5.7). However, due to the coupling of
PC amplitudes with cosmology, Q1,2 then are linked to galaxy bias parameters via the tight correlation
among big with Ωm or σ8.

5.2.3 Expected constraints on baryonic parameters

Here we discuss the expected constraints on PC amplitude parameters, when including small-scale
cosmic shear data points into analyses and given the DES Y1 covariance. We will use our likelihood
simulation results with the Illustris and Eagle mock data vectors as input to demonstrate our points.

Figure 5.9 shows the posterior distributions of PC amplitudes, when marginalizing over only Q1

on the left panel, and when varying both Q1,2 parameters on the right panel. We also present the
expected Q1,2 values for various baryonic scenarios in various markers.

When only allowing one PC amplitude to vary, we are expected to exclude baryonic scenarios that
are very different from the fiducial input by one sigma. For example, as shown in the left panel of
Fig. 5.9, the Q1 values for the OWLS-AGN and Illustris scenarios are falling outside the 1σ region
of the posterior from the Eagle chain (blue). Similarly, when the input mock baryonic scenario is
Illustris, the Q1 values for MB2 and DMO scenarios can be ruled out by 1σ.

When allowing two PC amplitudes to vary, depending on the input mock data vector, the scatter
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of PC amplitudes for all of the baryonic scenarios considered in this work may all fall within the 1σ
region on the Q1 and Q2 projected plan, as shown in the right panel of Fig. 5.9, for the case of Illustris
likelihood simulation result.

5.3 Future Works and Outlook

So far we have validated our pipeline using likelihood simulation analyses on several mock data
vectors. Our pipeline is ready to be applied on real DES Y1 data once there is an agreement reached
among the co-authors and the DES collaboration.

In real data analysis, many nuisance parameters are involved to account for various systematic
effects. We find that there is only room for one extra PC parameter to account for baryonic effects
in order to benefit from including small scale cosmic shear data into analysis, compared with the
original Y1 conservative scale cut. Due to complex parameter degeneracies, the residual biases on
cosmological constraints do not necessarily go down with increasing degrees of freedom opened, even
in a noise free simulated analysis. It is thus important to reach better controls on prior information
through improved understanding of baryonic physics in order to derive robust cosmological information
from small scale data.
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6 Conclusion and Outlook

Gravitational lensing provides a unique channel to directly probe dark matter, in contrast as relying on
luminous galaxies as biased tracers on the large scale matter distribution. Even with this promising
fact, we still need to deal with complex astrophysics related to galaxies in order to extract the pure
lensing effect caused by gravity, and to relate the matter distribution information to cosmological
models.

The complexity in astrophysics often requires high resolution data to fundamentally understand
the triggering mechanism, spectroscopic information to extract required information, and large sample
size to test possible hypotheses and establish arguments. As presented in Chapters 2 and 3, though
with an attempt of understanding the physical origin of small-scale IA phenomenon, the best we could
draw from data is concluded that small-scale IA is a complicated phenomenon potentially involving
multiple relevant physical processes during galaxy and cluster formation and evolution. We also try
to identify the evidence of tidal torquing effect on IA from various shape measurement methods with
different weights on galaxy light profiles. Unfortunately, we are lack of galaxies to construct control
sample to rule out systematic effects in shape measurement errors. On-going and future spectroscopic
data from eBOSS and DESI will enlarge the sample size and push IA constraints to fainter galaxies
and higher redshifts, enabling more stringent tests on theories of IA. Our IA analyses method will also
be useful to build an empirically-motivated halo model for IA including parametric dependencies on
galaxy and cluster properties.

While the science of cosmology is in the era of precision, many of the astrophysical quantifications
are still in the phase of estimating errors in units of dex. Fortunately, in cosmological application
the issue of astrophysics can be passively managed via quantifying their uncertainties and designing
mitigation schemes to transport the current level of uncertainty constraints to marginalized error on
cosmology. As demonstrated in Chapters 4 and 5, we design a modeling framework to deal with
the systematic effect of baryons in cosmic shear measurements, with the flexibility to shrink the
level of uncertainty opened in advance with next generation hydrodynamical simulations, which will
continuously be tuned to match with novel observational constraints. Based on the assumption that
current hydrodynamical simulations are well represented for the scatter of baryonic effects of our
Universe, we have demonstrated that after mitigation, we could potentially benefit from involving
small-scale information in cosmological analyses in certain circumstances. For future works, we can
also quantify the diversity of IA power spectra from various hydrodynamical scenarios and construct
small-scale IA mitigation models in a similar framework.

Building models based on hydrodynamical simulations is always a concern because currently
no hydrodynamical simulation can well reproduce observational results in all aspects, and there
is no guarantee that the parameter space can ever be fully explored, not to mention that different
subgrid physics prescriptions are used in different hydrodynamical codes. Currently most of the
hydrodynamical simulations are calibrated based on galaxy related quantities (e.g. the stellar mass
function, stellar mass–black hole mass relation...). For the cosmology needs for weak lensing and
cluster sciences, relatively larger scale effects (& few Mpc) of baryonic physics are more important
given the limit of scale range we could potentially push down to constrain cosmology. At this regime,
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the dominant baryonic effect is the suppression of power caused by baryonic feedback processes,
which are closely related to the gas properties of halos. Additional observational data sets will soon
be available to provide powerful constraints on the characteristics and the distributions of gas in our
Universe. On-going Stage III thermal and kinetic Sunyaev-Zel’dovich measurements combined with
future DESI spectroscopic galaxy samples will bring dramatic improvements on the sensitivity of
signals, providing information on the thermodynamic properties of intergalactic medium (Battaglia
et al., 2017). Over the next few years, the eROSITA mission, which was just successfully launched
this summer, will create a deep full sky X-ray map of our Universe, and brining about 105 galaxy
cluster samples for better understanding of halo gas profiles (Merloni et al., 2012). In the long run,
the accumulated information from observed gas properties will play a crucial role in pinning down the
parameter space allowed by baryonic feedback mechanisms, and provide more manageable calibration
standards on hydrodynamical simulations for cosmological science.
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