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Masses and Weak Decay Properties of Heavy-quark Baryons from
QCD Sum Rules and Production of Heavy Mesons in High Energy

Collisions

Bijit Singha

(ABSTRACT)

Quantum Chromodynamics Sum Rules (QCD Sum Rules) is a non-perturbative technique

which uses Wilson’s Operator Product Expansion of n-point functions and quark-hadron

duality together to extract various physical properties of hadrons. In this dissertation, we use

QCD Sum Rules to calculate the masses of charmed lambda (Λ+
c ), strange lambda (Λ0), and

bottom lambda (Λ0
b) baryons. We extend this framework to consider charm to strange quark

transition in the presence of an external pion field to estimate the coupling corresponding

to the Cabibbo-favored weak decay process: Λ+
c → Λ0 + π+. This framework can be used

further to estimate the Cabibbo-favored and Cabibbo-suppressed decays of the heavy-quark

baryons. In the second part of this dissertation, we calculate the production cross-section of

B mesons in unpolarized proton-proton and and heavy-ion collisions at
√
s = 200 GeV with

the main aspect being the fragmentation of a color-octet bottom-antibottom quark pair to

create B mesons.
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Chapter 1

Introduction

In order to categorize the huge number of strongly interacting particles already discovered

by the end of 1960’s, Murray Gell-Mann [1] and George Zweig [2] independently proposed

the existence of quarks. The categorization scheme, famously called ‘the eightfold way’, led

Gell-Mann and Ne’eman to predict the existence of yet another hadron (Ω−) and its mass,

and its decay products. Ω− was discovered in 1964 [3] in accord with these predictions.

Shortly after the quark model was proposed, Oscar W. Greenberg introduced the idea of

color charge in order to allow the quarks in baryons to be in symmetric configuration in the

space, spin and flavor degrees of freedom [4]. Following this work, in two separate papers by

Nambu [5], and Han and Nambu [6], an octet of gluons as the mediator of strong interaction

between the three-valued color charges of the quarks were introduced, leading to the present

form of Quantum Chromodynamics(QCD) as a SU(3) gauge theory.

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is now widely accepted to be the theory of strong interac-

tions, where the hadrons are assumed to be bound states of more fundamental, constituent

particles called quarks interacting with each other through the exchange of force-carriers

called gluons. Quarks come in six flavors: up, down, charm, strange, top and bottom.

Mathematically, QCD is formalized as a non-Abelian gauge theory with a local (gauge)

1



2 Chapter 1. Introduction

symmetry group SU(3). Much like quantum electrodynamics (QED), where the subset of

global symmetries among the U(1) gauge symmetry led to conservation of electric charge,

SU(3) symmetry group in QCD leads to another kind of conservation law called conservation

of color charge. The constituent particles of QCD are three-colored quarks (red, blue and

green), that lives in the fundamental representation of SU(3) of color and they interact with

each other, in the simplest case, through exchanging a massless gauge boson (called gluon)

that lives in the adjoint representation of SU(3). Unlike QED where photons are uncharged

and locally don’t interact with each other, gluon fields are, in general, color-charged and

self-interacting. The strength of interaction of quark fields with the gluon field as well as

self-interactions of the gluon field, are parametrized by a coupling constant g. The dynamics

of QCD is dictated by the lagrangian [7]

Lq =
∑
f

ψ̄f [iγ
µ(∂µ + igAµ)−mf ]ψ

f − 1

4
F a
µνF

aµν , (1.1)

where ψf (x) is the quark field of flavor f and mass mf , Aµ is the gluon field which can be

expanded in the basis of Gell-Mann matrices (generators of SU(3) color group)

Aµ(x) =
∑
a

λaAaµ(x), (1.2)

where a is color index, and F µν(x) is the gluon field strength tensor:

Fµν(x) =
∑
a

λaF a
µν(x) (1.3)

and is related to the gluon field through the following relation:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (1.4)
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Like any renormalizable theories, the mass and the coupling parameters in QCD get a scale

dependence after the renormalization procedure in such a way that the lagrangian is un-

changed. The invariance of a theory under such a continuous transformation is referred to

as Renormalization Group (RG) transformation. This scale dependence of the parameters

in the theory can be expressed by a differential equation, called RG equation. The physical

processes in QCD are described by the dependence of the coupling g on energy scale. If we

define αs = g2

4π
, then, for QCD with Nc colors and Nf flavors the running of αs assumes the

form

αs(P
2) =

g2(P 2)

4π
=

4π

b lnP 2/Λ2
QCD

, where b = 11Nc − 2Nf

3
. (1.5)

ΛQCD is a parameter in QCD that breaks the scale invariance of QCD even in the limit of

vanishing quark masses. Due to this fall-off of the effective coupling with the increase in

momenta P 2 as shown in Eq. (1.5), the coupling vanishes at sufficiently high energy scale.

This phenomenon is famously called asymptotic freedom. So, at very high energy or short-

distance scale, αs becomes very small, allowing us to treat the theory of QCD as quark-gluon

interaction perturbatively.

But αs(P 2) becomes very large at a distance scale ∼ 1 fm and larger, or an energy scale

∼ 1 GeV and smaller and non-perturbative effects of the interactions start to dominate in

this regime. Thus, although we start with a fairly simple QCD lagrangian, the complex

infrared structure arising from asymptotic freedom poses significant challenge to extract any

information about the low-lying energy spectrum assumed by the theory.

A few more things about QCD are: color symmetry, as we know so far, is an exact symmetry,

and we can observe only the color-singlet bound states of QCD. We call them hadrons. These

hadrons, although they are comprised of color-ed quarks, are always color-singlet. Note that
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an isolated color charge will require an infinite amount of energy due to the non-Abelian

nature of the interaction which is why a physical meson or baryon must be a color-singlet.

1.2 Charm in the Standard Model

The charm quark (charge +2
3
, spin 1

2
, running mass 1.275+0.025

−0.035 GeV in the MS scheme) is

a up-type quark of the second of the three generations and is the third most massive quark

in the standard model (SM) of particles and can decay through strong, electromagnetic and

weak interactions. Charm quantum number is conserved in strong and electromagnetic in-

teractions while it is violated in weak interactions. Strong and electromagnetic decays can

occur for a charmed hadron if its mass is not the lowest in the corresponding symmetry chan-

nel, otherwise the same hadron can decay via weak interactions through emission, exchange

or absorption of weak gauge bosons. Thus, for example, charmed lambda (Λ+
c ) can decay

only through weak interactions. Charmness is violated in weak decays, where a charm quark

(c) decays to either a strange (s) or a down quark (d). The strength of these flavor-changing

weak interactions is modelled through the Cabibbo-Kobayashi-Maskawa (CKM) matrix [8].

The CKM matrix element Vcs that parametrizes the charm to strange transition is close to

1, thus this transition is called Cabibbo-favored. The element Vcd is much smaller compared

to Vcs, thus charm to down transition is called Cabiboo-suppressed [9].

In order to explain the non-existence of flavor-changing neutral currents in decay such as

K0 → µ+µ− [10, 11], the observation of the mixing of neutral kaons [12, 13, 14], and to

properly order the divergences appearing in the weak interaction, Glashow, Iliopoulos and

Maiani proposed the existence of charm quark [15]. Charm was subsequently interpreted to

be hidden in the J/ψ state discovered in SLAC and Brookhaven [16, 17]. These observations

followed the first possible detection of open charm decay in cosmic ray [18]. Open charmed
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baryons (Λ+
c ) and mesons (D0, D+, D−

s ) were discovered soon with the observation of various

decay modes of these particles.

Charm physics garnered attention again after the discovery of open charmed mesons [19, 20]

that the conventional QCD could not explain [21, 22]. This opened up a whole new area

of excited charmonia states which are still being explored. The resurgence of charm physics

happened for the third time when BaBar and Belle reported the mixing of neutral charm

mesons [23, 24]. Since this discovery, a lot of effort has been put into searching for CP

violation in the charm sector as well as precision calculations and experiments. These recent

developments in charm spectroscopy, decay constants and new physics with charmed mesons

compelled Ikaros Bigi to wonder [25]: “Could Charm’s ‘Third Time’ Be the Real Charm?”

in hope for the ‘intervention of New Physics’.

Study of charm physics is so important mainly because it plays the unique role of opening

up the door to heavy quark physics. Almost all the theoretical models and speculations of

heavy quark physics have been first implemented to the charm sector. Furthermore, the

beauty or bottom quark (b quark) decays predominantly to charm quark, making charm an

indispensable part of b-physics as well.

1.3 Scope of the Thesis

In the first part of this thesis, we focus on estimating the mass and nonleptonic decay prop-

erties of Λ+
c (udc), the lightest charmed baryon. For this purpose, we use a non-perturbative

method called Quantum Chromodynamics Sum Rules (QCD Sum Rules) (for a detailed dis-

cussion, see Chapter 3). Although Λ+
c was the first charmed baryon ever to be discovered

[26], the knowledge of Λ+
c physics is much limited, primarily because it has many available

modes of decay. Studies of charmed baryon decays provide important information about
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Ξ−(dss) Ξ0(uss)

Σ+(uus)Σ−(dds)

p(uud)n(udd)
Ω0
c(ssc)

Σ++
c (uuc)Σ0

c(ddc)
Ω+
cc(scc)

Ξ++
cc (ucc)Ξ−(dcc)

•

Ξ+
c (usc)••Ξ0

c(dsc)

•Λ
+
c ,Σ

+
c (udc)

Λ,Σ0(uds)

• Ξ0(uss)•Ξ−(dss)

•
∆+(uud)

•
∆0(udd)

•
Σ0(uds)

Ω−(sss)

∆++(uuu)∆−(ddd)

•
Ξ+
c (usc)

•
Ξ0
c(dsc)

•Σ
+
c (udc)

Σ+(uus)•Σ−(dds) •

Ω0
c(ssc)

Σ++
c (uuc)Σ0

c

Ω+
cc(scc)

Ξ++
cc (ucc)Ξ+

cc(dcc)

Ω++
ccc

Figure 1.1: Baryon family predicted by the Standard Model for JP = 1/2+ (top) and
JP = 3/2+ (bottom) with different charmness. Baryons in the same plane have broken
SU(3) flavor symmetry in light quark (u, d, s) sector while particles in different horizontal
planes have different charmness.
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both strong and weak interactions. As discussed above, measurements of Λ+
c decay can pro-

vide us input on Λ0
b hadronic decays because the dominant branching fraction of Λ0

b involves

decaying to Λ+
c [27]. Furthermore, they can help us to constrain the fragmentation function

of c and b quarks in heavy-quark baryons [28].

Significant progress of technologies in particle tracking, identification and luminosity recently

has enabled us to detect a number of missing modes [29]-[35]. However, we know only

about 68% of the total branching ratio [36], mostly measured against the Cabibbo-favored

channel Λ+
c → pK−π+. The first model-independent measurements of the absolute branching

fraction of this golden channel, Λ+
c → pK−π+, have been made by Belle [37] and BESIII [38]

only recently. Studying these decays of Λ+
c is important because it provides us important

insights on subjects such as the internal dynamics between heavy and light quarks within

hadrons. Additionally, all other charmed baryons eventually decay to Λ+
c because it is the

lightest charmed baryon, thus studying the decay modes of this particle makes it possible to

study the decay properties of heavier charmed baryons as well.

Using QCD Sum Rules discussed in Chapter 3, we estimate the charmed lambda (Λ+
c )

baryon mass in Chapter 4 using a two-point correlation function of Λ+
c current operator.

The same calculations also help us to estimate the baryonic mass of Λ0 and Λ0
b by replacing

charm quark mass with strange and bottom quark masses respectively. In Chapter 5, we

extend this framework to consider a three-point function comprised of the Λ+
c and Λ0

b current

operators (used in Chapter 4) and weak Hamiltonian in the presence of an external pion field

to estimate the coupling constant corresponding to the decay process Λ+
c → Λ0π+. The Sum

Rule framework developed in Chapter 5 can be used further to estimate both the Cabibbo-

favored and Cabibbo-suppressed decays of heavy-quark baryons even for the cases when the

masses of the parent and product baryons are not close.

Publications:
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• Leonard S. Kisslinger, Bijit Singha. Charm, Bottom, Strange Baryon Masses Using

QCD Sum Rules. Int. J. Mod. Phys. A 33 (2018) 1850139: discussed in Chapter 4,

• Leonard S. Kisslinger, Bijit Singha. Charmed Baryon Decay to a Strange Baryon Plus

a Pion Using QCD Sum Rules. Int. J. Mod. Phys. A 34 (2019) 1950015: discussed

in Chapter 5.

In the second part of the thesis, we extend our previous work on the charmed mesons

D+(cd̄) and D0(cū) production from proton-proton (p-p) and heavy-ion (A-A) collisions [39]

to consider B0(bd̄) and B−(bū) production via unpolarized p-p and A-A collisions at 200

GeV in Chapter 6. Two main new aspects of this work are that a gluon can create a heavy

quark-antiquark pair bb̄ and then a fragmentation process converts a bb̄ into a bd̄ − db̄. We

also use the color octet model which assumes that the bb̄ pairs created from the gluons are

predominantly color-octet. At the proton-proton energies of the Fermilab, BNL-RHIC, or

the Large Hadron Collider, the color-octet mechanism [40, 41, 42] dominates the color-singlet

mechanism, as shown in studies of J/ψ production at
√
s = 200 GeV at BNL [43, 44]. Our

estimates of the B-production cross-section are expected to be tested by heavy-ion collision

experiments in the near future.

Publication:

• Leonard S. Kisslinger, Bijit Singha. B Production In p-p and A-A Collisions. Int. J.

Theor. Phys. 56 (2017) 3648: discussed in Chapter 6.



Chapter 2

On the Origin of Hadronic Mass

Over a few centuries, our understanding about mass has changed gradually from a founda-

tional extensive parameter of an object to an emergent property. In Newtonian mechanics,

mass is defined as ‘the quantity of matter’. It is the measure of the matter arising from

its density and volume conjointly [46]. Newton assumed mass as a conserved quantity of

any object that is not altered, created or destroyed during its motion through the absolute

space and time. Newton, then, went on to define momentum as the ‘quantity of motion’ and

expressed it as the product of the mass of any object times its velocity.

This notion of mass changed substantially during the early twentieth century with the advent

of the special and general theory of relativity. In relativity, mass is essentially defined as the

Minkowski norm of the four-momentum which is to say, two observers sitting in different

reference frames will measure different energy (E) and momentum (p⃗R) of any object but

they will agree upon the fact that E2 − (p⃗Rc)
2 = (mc2)2 is an invariant quantity, where m

is the particle’s proper mass or rest mass and c is the speed of light. Consequently,

• Unlike Newtonian mechanics where the momentum of any object was defined through

its mass: p⃗N = mv⃗, relativity allows even a particle with zero rest mass to have a

non-zero momentum through the relation pR = E/c ̸= 0 even if m→ 0. Also, it is the

energy of a set of objects and not the mass that is conserved as assumed in Newtonian

mechanics.

9



10 Chapter 2. On the Origin of Hadronic Mass

• In general relativity, the cause of curvature in spacetime is attributed to the energy-

momentum tensor and not just the mass. Thus, the importance of mass as the central

parameter to determine the inertia and thus the motion of any object through an ab-

solute space-time in the classical Newtonian description is weakened in the relativistic

formulation of physics.

However, both Newtonian and relativistic mechanics treat mass (or specifically, the rest

mass) as a parameter and do not give us any information about the origin of it. Furthermore,

both the theories fail to provide the reason behind identical particles and their identical

mass. If we observe two electrons that were created in different galaxies at different time,

they will have the same mass. Not only that, different subatomic particles (e.g. electron

and positron) are found in nature that have different quantum numbers but same mass.

Newtonian mechanics and Einstein’s theory of relativity fail to provide any fundamental

reason behind this universality. In order to address these issues we need quantum field

theory, which assumes that any fundamental particle can be thought of as quanta of an

underlying field prevalent in spacetime across the universe. Thus, the matter and energy

content of the universe and their chemistries that we perceive around us are nothing but

excitations of a few quantum fields spanning across the whole universe and their interactions

consistent with a few basic symmetries!

From the following section onward, we are going to narrow down our focus to describe the

emergence of mass in the specific area of nuclear and hadronic physics. We will start with

the nuclear mass and its relationship to the mass of the nucleons. Then, we will discuss the

origin of mass of nucleons and hadrons in general using QCD. We will also discuss different

symmetries of QCD that exist in the limit where QCD contains no mass parameters and

how they get broken by the introduction of mass in the theory. Discussion on Higgs physics,

although it is an important topic in the context of the current section, is beyond the scope
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of this thesis and we will not discuss it here. For more discussions on this topic, see [47, 48].

2.1 Origin of Mass within Nucleus and Low-lying Hadron

Spectrum

A nucleus is the dense center of an atom, a few fermi in size and is comprised of protons

and neutrons (together called nucleons). The mass of a nucleus is approximately the sum of

the masses of its individual nucleons. Thus, if mass of proton and a neutron is Mp and Mn,

then the mass of the ground state nucleon, MN , is given by

MN(Z,A) = ZMp + (A− Z)Mn +∆(Z,A) , (2.1)

where A is nucleon number and Z is atomic number. The quantity ∆(Z,A) ≪ MN is

called the mass defect of a nucleon and is related to the interaction energy between nucleons

inside a nucleus through the expression: ∆ = −EB/c2, where EB is the binding energy

and the negative sign signifies that the nuclear force is attractive inside a stable nucleus.

∆(Z,A) can be modelled by the semi-empirical Bethe-Weizsäcker formula [49]. One may

also ask, from the perspective of QCD, why there exists a separation between nucleons in

the nucleus if every nucleon is made of three light quarks and the inter-nucleon separation is

of the same size as the size of the nucleons. This is because, although scalar (spin 0) meson

exchange between two nucleons is the main source of attraction between two nucleons at

around the equilibrium distance, vector (spin 1) meson exchange dominates at the nearer

distances contributing to short-range repulsion. Also, the nucleons are fermions, thus there

exists an effective repulsion arising from Fermi-Dirac statistics. These two reasons give us

a qualitative explanation behind the fact that the nucleons inside a nucleus do not merge
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together to form a quark-commune. An important development towards the understanding

of this phenomenon has been through an effective field theory of the nuclear force, namely

Quantum Hadrodynamics [50]. Attempts have been made to understand nuclear interactions

in terms of quark degrees of freedom (e.g. [51, 52, 53, 54] where the authors have used QCD

Sum Rules), however, a full quantitative description of nuclear medium from QCD is still

missing in the literature.

In order to understand the origin of nucleon mass we try to calculate, using the theory of

QCD, how the chromoelectric and chromomagnetic fields from gluons and quarks can have

back-reactions resisting the acceleration of the quarks and gluons in a hadron. This is chal-

lenging especially because around 1 GeV the coupling parameter becomes of the order of

unity making the QCD processes non-perturbative. One way to make quantitative predic-

tions of these non-perturbative processes is lattice QCD which uses Markov Chain Monte

Carlo methods to evaluate the path integrals formulated in a four-dimensional spacetime lat-

tice. In fact, there has been significant progress in calculating the low-lying hadron spectrum

through this procedure as shown in Fig. 2.1.

To calculate the same spectrum analytically, we must try to understand the nontrivial struc-

ture of the QCD vacuum. Due to the non-perturbative nature of QCD in the infrared regime,

non-zero quantum fluctuations of quark and gluon fields persist in QCD vacuum and man-

ifest themselves through different vacuum condensates. These condensates break a number

of symmetries (e.g. chiral and dilatation symmetries) many of which are present in the QCD

lagrangian. The true nature of these condensates is not well understood yet. In fact, even

basic questions such as whether these condensates are properties of the QCD vacuum or just

the property of the hadrons themselves are still being debated [56, 57, 58, 59].

From here onwards, we use natural units: ℏ = c = 1.
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Figure 2.1: Low-lying hadron spectrum derived from ab initio calculations in lattice QCD
[55]. π and K masses fix the masses of the light quarks (u, d, s) and Ξ sets the overall scale,
thus these three hadrons do not have any error bar. Three lattice spacings were used for
extrapolating the results to continuum.
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2.2 Formation of Quark Condensates

The vacuum expectation value (VEV) of an antiquark-quark operator is called quark con-

densate. These condensates are formed in the ground state |Ω(U)⟩ and are given by

⟨Ω(U)|q̄fqf
′ |Ω(U)⟩ = −σU f ′

f , (2.2)

where f and f ′ are flavor indices and U ∈ SU(Nf ). We get a ground state for any given

choice of U and all these ground states are orthogonal and degenerate. The long-wavelength

ripples generated due to the small variations of U over spacetime are the Nambu-Goldstone

modes and can be parametrized as

U(x) = exp
[
2i

fπ
πa(x)T a

]
, a = 1, 2, ..., N2

f − 1 . (2.3)

Here πa(x) are the corresponding fields, {T a} are the generators of SU(Nf ), and fπ is the

pion decay constant. A full quantitative understanding of why these condensates form is

still lacking but let me try to provide a heuristic picture here. The tree level gluon exchange

processes that are dominating in the UV regime (g2S ≪ 1) are shown in Figure 2.2. The anti-

symmetric diagram of the quark-antiquark pairs leads to attraction while the symmetric

diagrams of color-adjoint quark pair lead to repulsion.

+ +

Figure 2.2: Tree-level gluon exchange diagrams dominant in the high energy limit, g2 ≪ 1.

But these diagrams do not give us non-zero matrix elements between the vacuum and the
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quark-antiquark pairs. The ones that give such matrix elements is shown in Figure 2.3.

In the infrared regime (g2S ∼ 1), these diagrams dominate and change the total number of

quarks and antiquarks in the system. As a result, the QCD vacuum gets populated with

such pairs leading to a non-zero VEV of q̄− q. Also, the Lorentz invariance is still preserved

in this process constraining the momentum and the angular momentum of the quark and

antiquark to be opposite.

+ +

Figure 2.3: Tree-level gluon exchange diagrams dominant in the low energy limit, g2 ∼ 1.

2.3 Formation of Gluon Condensates

Another condensate that appears in QCD Sum Rules is of mass dimension four and is called

the gluon condensate, ⟨αs

π
Ga
µνG

aµν⟩, where Gaµν denotes the gluon field. Unlike the quark

condensates, this is not an order parameter of any spontaneous symmetry breaking and to

understand the origin of this condensate, see Ref. [61].

Within hadrons exist unphysical quarks with spacelike momentum p where −p2 = P 2 ≫

Λ2
QCD. The uncertainty principle tells us that such quarks can propagate only for a small

amount of time δt ∼ (P 2)−1/2. Figure 2.4 shows such quark propagators created and ab-

sorbed by external currents within a hadron. These quarks can exchange gluons with soft

momentum k2 ≪ P 2 (where k denotes momentum of the gluon). The soft gluons, due to their

high uncertainty in spacetime, can propagate a very long distance before getting absorbed

by other quarks. Furthermore, these gluons are mostly modified due to strong coupling in
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the infrared regime and their behavior cannot be explained within the realm of perturbative

QCD but can be characterized by the so-called gluon condensates. This phenomenon will

also contribute to the vacuum energy density, ϵ, through the relation

ϵ =
π

8α2
s

β(αs)⟨
αs
π
Ga
µνG

aµν⟩ , (2.4)

where β(αs) is the beta function.

P P

∼ P/2

∼ P/2

k

k ≪ Q

k

Figure 2.4: Feynman diagram of injected quark-antiquark current with one soft gluon ex-
change. If the momentum of the gluon is much smaller compared to that of the quark
propagators, the gluon can travel far away and is modified strongly by confinement, giving
rise to gluon condensate. This diagram is taken from [61].

Since a negative value of the energy density is expected from bag model and instanton gas

model calculations and β(αs) is negative, the gluon condensate has a positive value. We use

Lorentz invariance and anti-symmetry of G to write

⟨αs
π
Ga
µνG

b
κλ⟩ = Cδab(gµκgνλ − gµλgκν) , (2.5)

where we must determine the constant C. Contracting Eq. (2.5) gives

δabgµκgνλ⟨αs
π
Ga
µνG

b
κλ⟩ = Cδabgµκgνλ (gµκgνλ − gµλgκν) = 96C,

C =
1

96
⟨αs
π
G2⟩ (2.6)
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allowing us to write

⟨αs
π
Ga
µνG

bµν⟩ = δab

96
⟨αs
π
G2⟩ . (2.7)

In the next section, we will discuss the different QCD condensates and recent progress in

their evaluation through experiments, lattice simulations, and chiral perturbation theory.

2.4 Estimating the QCD Condensates

The chiral condensate or quark condensate ⟨q̄q⟩ is defined as the average of up and down

quark condensates:

⟨q̄q⟩ = 1

2

(
⟨ūu⟩+ ⟨d̄d⟩

)
(2.8)

and is estimated by using the Gell-Mann-Oakes-Renner relation [62]:

f 2
πm

2
π = −2mq⟨0|q̄q|0⟩ . (2.9)

Here, mπ is the pion mass, mq is the averaged u and d quark mass. This can also be estimated

in lattice QCD and its present averaged value is given by [63]

⟨q̄q⟩ = − [272(5) MeV]3 (2.10)

with 2 + 1 flavors in MS scheme at a renormalization scale of 2 GeV. The strange quark

condensate is found from QCD Sum Rule analysis of baryon energy level splitting and has

a value ⟨0|s̄s|0⟩/⟨0|q̄q|0⟩ = 0.8 ± 0.1 [64]. All the other vacuum condensates cannot be
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estimated analytically from first principles calculations.

A recent estimate has been made for ⟨αs

π
G2⟩ by using stochastic perturbation theory [65]

where this quantity was calculated in perturbative series to order α35
s and subsequently was

subtracted from the lattice observable. The final values of the gluon condensate obtained by

this procedure is given below:

⟨αs
π
G2⟩ = 0.077 GeV4 (uncertainty 0.087 GeV4) (up to α35

s ), (2.11)

where the uncertainty arose due to the truncation prescription in the perturbative series.

There exist condensates of higher dimensions such as ⟨q̄σ.Gq⟩, ⟨q̄q⟩⟨αs

π
G2⟩ etc.. In the dis-

cussion for QCD Sum Rules in Chapter 3, we will expand the n-point functions of the time-

ordered product of hadron currents in terms of these condensates. The non-perturbative

contributions to the n-point function will be captured in these condensates.



Chapter 3

Quantum Chromodynamics Sum

Rules

If we can deal with the unsatisfaction of assuming only the phenomenon of color-confinement,

we would be able to produce a large amount of predictions using Quantum Chromodynamics

(QCD) Sum Rules [66]. The main idea is to attack the bound state problem from the short

distance side and gradually move to larger distances where asymptotic freedom starts to

break down, making the QCD vacuum non-trivial quantified by the emergence of power

corrections.

The method of QCD Sum Rules developed in 1979 has become an important tool in hadron

phenomenology in which hadrons are represented by their interpolating quark current con-

sidered at large virtualities instead of treating the hadrons in a model-independent way in

terms of constituent quarks. We write a two-point correlator using the hadron operator

and treat the correlator in the framework of Operator Product Expansion (OPE), where the

short and large distance contributions are dealt separately. The former is represented by a

vacuum condensate while the latter is called Wilson’s coefficient and evaluated using pertur-

bative QCD. The condensates carry information about the infrared behavior of the quark

and gluon Green’s functions. We further use quark-hadron duality to relate the spectral

density obtained by treating quarks and gluons as the fundamental degrees of freedom with

the phenomenological model of hadron spectrum. A review of this method is given in [64].

19
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In order to illustrate QCD Sum Rules, let’s consider a meson current of the general form

jΓ(x) = q̄iΓqj, where the subscript i and j denote the flavors and Γ encodes a tensor structure.

This current is projected to definite JPC quantum numbers. Additionally, we have to create

the right combination of flavors to create a current of definite isospin. This current will

polarize the vacuum and this phenomenon is quantified by the two-point function

i

∫
d4xeip.x⟨0|T {jΓ(x)jΓ(0)} |0⟩ = Tµν... Π

j(p2) , (3.1)

where we have denoted the time-ordered product of the meson currents on the left hand side

by T , Πj(p2) is a scalar function (possibly) related to vacuum polarization, Tµν... is tensor

arising from the tensor structure of the current.

Mentioned below is a list of meson currents corresponding to different JPC channels [66, 67]

jscalar = q̄iqj ,

jpseudoscalar = iq̄iγ5qj ,

jvector = q̄iγµqj ,

jaxial = ηµν q̄iγµγ5qj ,

jC=−1
axial = q̄i∂µγ5qi ,

jtensor = iq̄i(γµ∂ν + γν∂µ +
2

3
ηµν /∂)qi ,

JPC = 0++,

JPC = 0−+,

JPC = 1−−,

JPC = 1++,

JPC = 1+−,

JPC = 2++,

(3.2)

where ηµν = pµpν/p2 − gµν . We can construct baryon current operators in a similar way, for

example
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jN(x) = ϵabc
[
ua(x)Cγµub(x)

]
γ5γµd

c(x), (3.3)

j∆
++

µ (x) = ϵabc
[
ua(x)Cγµu

b(x)
]
uc(x), (3.4)

where C denotes the charge conjugation matrix, N stands for nucleon, and ∆++ stands for

delta baryon. We want to mention here that the choice of current for a given JPC is not

unique and a number of currents can couple to a physical state of a given channel.

Notice that we are including non-perturbative effects through the condensates which do not

take into account the leading non-perturbative contributions coming from the instantons.

However, it has been shown that the assumptions behind the OPE are valid in Eq. (3.6) and

they break down only at higher orders in P−2 [66].

3.1 Operator Product Expansion

The theoretical basis of QCD Sum Rules relies on the OPE for n-point correlation function.

We start at short distances, assuming that OPE is valid for the time-ordered product of

hadron currents allowing one to write, in coordinate space

⟨T {J(x)J(0)}⟩x→0 =
∑
n

Cn(x;µ)⟨On(µ)⟩ . (3.5)

µ is an artificial momentum that sets the normalization scale, meaning all fluctuations

higher than µ are assumed to be hard while fluctuations lower than µ are soft processes.

Thus, the modes lower than µ that are responsible for the non-perturbative effects will
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remain in the condensates while the higher modes will contribute to the Wilson coefficients.

Because the physical processes of our consideration are µ-independent, the µ-dependence of

the condensates are cancelled by the µ-dependence of the Wilson coefficients.

Taking the Fourier transform of Eq. (3.5) will give us

i

∫
d4xeip.xT {jΓ(x)jΓ(0)} = CΓ

I (p;µ)I +
∑
n

CΓ
n (p;µ)⟨Ôn(µ)⟩ . (3.6)

Here I is the identity operator, ⟨Ô⟩ = ⟨0|Ôn|0⟩ with Ôn’s gauge invariant operators comprised

of quark and gluon fields. These operators are arranged in the order of increasing mass

dimension, so the mass dimension of the Wilson coefficients Cn’s decrease in power of p2.

So, at high virtualities, the operator with the low dimensions will dominate and subsequently

give power corrections to the perturbative contribution coming from the unit operator. Since,

we are dealing with only the Vacuum Expectation Value(VEV) of the operators, we consider

only the spin-0 operators. Mentioned below is a list of all such operators of mass dimensions

less than equal to 6:

I, d = 0,

mq̄q, d = 4,

Ga
µνG

a
µν , d = 4,

q̄Γ1q q̄Γ2q, d = 6,

mq̄σµν
λa

2
qGa

µν , d = 6,

fabcG
a
µνG

b
νγG

c
γµ, d = 6,

where λa are Gell-Mann matrices, σµν = 1
2
i [γµ, γν ]. Thus, in Eq. (3.6), we consider VEV of

the operators On which are zero in perturbation theory. This is due to the nature of the QCD
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vacuum that it has non-perturbative fluctuations of the quark and gluon fields. But non-zero

values of these VEVs are a well-known phenomenon in QCD, for example, chiral symmetry

breaking is attributed to the VEV ⟨0|q̄q|0⟩ ̸= 0 and we had an extensive discussion about

this in the last chapter. As we will see next, all the soft, non-perturbative contributions to

the correlation function will be manifested through these VEV elements.

The most important expression in this section is Eq. (3.6) and it has a very clear interpreta-

tion. In order to calculate the correlator, we start at short distances (with the perturbative

term corresponding to the identity operator) and approach to large distance dynamics step

by step by introducing the vacuum condensates of increasingly higher orders.

To understand this parametrization of the non-perturbative effects caused by the vacuum,

let’s start with a heuristic picture of injecting a quark-antiquark pair through external (vector

or axial vector) current in the vacuum and analyzing its evolution. As a matter of fact, this

kind of currents exist in nature and the effect of this current on the vacuum is not substantial

if it can propagate only a small distance. In the realm of OPE, it just means that we have to

deal with only a few vacuum condensates in order to explain the physics arising from these

currents. Also, the momentum scale associated with the fluctuations of the valence quarks

and gluons inside a hadron must be much larger than the fictitious scale, µ, that we have

introduced in OPE.

The lowest-order gauge- and Lorentz-invariant condensate that we encounter in our for-

malism is the quark condensate ⟨q̄q⟩, which can be thought of as the order parameter of

spontaneous breaking of chiral symmetry responsible for generating massles pions. Thus, we

can interprete the contributions coming from the condensate terms as deviations from per-

turbation theory. The most evident reason behind this statement is the gluon condensate,
αs

π
Ga
µνG

a
µν .
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The gluon field can fluctuate with all possible frequencies ranging from very high (UV or

hard) to very low (IR or soft) modes. The normalization scale µ seperates out these two

regions. The hard modes contributes in a perturbative manner to the correlator, while the

soft modes saturates the gluon condensate. So, for example, the power divergence of the

energy density that we talked about in the last paragraph goes to the perturbative term of

the expansion allowing us to construct the condensates only with soft modes.

3.2 Dispersion Relations

In this subsection, we derive a dispersion relation that relate the resonances to the analytic

property of a two-point function. For this, we use Lehmann-Kallen spectral representation

to write the propagator of an interacting field as

∆(p2) =
1

π

∫ ∞

0

ds2
ρ(s2)

p2 − s2 + iϵ
, (3.7)

which is basically showing that the full propagator in momentum space is a superposition of

free single-particle propagators, each with different mass, weighted with a positive definite

function ρ(s2) which is the spectral density of the theory. If we assume that the lowest single

particle state in the theory is massive with s2 = m2, then the spectral density assumes the

following form:

ρ(s2) = πZδ(s2 −m2) + ρ(s2)Θ(s2 −m2
λ ̸=1) . (3.8)

where Z is normalization factor. Using this spectral density in Eq. (3.7), we get

∆(p2) =
Z

p2 −m2 + iϵ
+

1

π

∫ ∞

m2
λ̸=1

ds2
ρ(s2)

p2 − s2 + iϵ
. (3.9)
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Now we use Sokhotski-Plemelj theorem to write

lim
ϵ→0+

1

p2 − s2 ± iϵ
= P 1

p2 − s2
∓ iπδ(p2 − s2) . (3.10)

This allows to write the full propagator as

∆(p2) =
Z

p2 −m2 + iϵ
+

1

π
P
∫ ∞

m2
λ̸=1

ρ(s2)

p2 − s2
− i

∫ ∞

m2
λ̸=1

ds2δ(p2 − s2)ρ(s2) (3.11)

=
Z

p2 −m2 + iϵ
+

1

π
P
∫ ∞

m2
λ̸=1

ρ(s2)

p2 − s2
− iρ(p2)Θ(p2 −m2

λ ̸=1) . (3.12)

Using the property of Lorentzian function,

lim
ϵ→0

Fϵ(x) = lim
ϵ→0

1

π

ϵ

x2 + ϵ2
= δ(x). (3.13)

the imaginary part of this full propagator can be written as

i Im ∆(p2) = −iϵ Z

(p2 −m2)2 + ϵ2
− iρa.t.(p

2) (3.14)

⇒ Im ∆(p2) = −
[
Zπδ(p2 −m2) + ρa.t(p

2)
]
, (3.15)

where ρa.t(p2) = ρ(p2)Θ(p2 −m2
λ ̸=1) is the spectral density above the two-particle threshold.

Comparing Eq. (3.14) with Eq. (3.9), we can write

Im ∆(p2) = −ρ(p2) . (3.16)
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Also, from Eq. (3.12) we get

Re ∆(p2) =
Z(p2 −m2)

(p2 −m2)2 + ϵ2
+

1

π
P
∫ ∞

m2
λ̸=1

ds2
ρ(s2)

p2 − s2

=
Z

p2 −m2
+

1

π
P
∫ ∞

m2
λ̸=1

ds2
ρ(s2)

p2 − s2

=
1

π
P
∫ ∞

0

ds2
Zπδ(s2 −m2) + ρ(s2)Θ(s2 −m2

λ ̸=1)

p2 − s2

=
1

π
P
∫ ∞

0

ds2
ρ(s2)

p2 − s2
. (3.17)

Now using Eq. (3.16) in the above equation, we get the Kramers-Kronig dispersion relation

Re ∆(p2) =
1

π
P
∫ ∞

0

ds2
Im ∆(s2)

s2 − p2
. (3.18)

We will use this dispersion relation in QCD Sum Rules to compare Wilson’s OPE of the

n-point function to the phenomenological model.
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Charmed, Bottom, Strange Lambda

Baryon Masses Using QCD Sum

Rules

The application of QCD Sum Rules to calculate the hadronic mass spectrum started with

B. L. Ioffe [68] who observed that the dominant power correction to the two-point function

comes from the chiral symmetry breaking in the absence of any perturbative term. In this

work, Ioffe found the masses of the ∆ and nucleon and also considering the first order current

mass of the strange quark to be 150 MeV, he calculated the mass splitting in the decouplet

Σ∗(3
2

+
) and ∆(3

2

+
) to be 125 MeV. In another work [69], Belyaev and Ioffe extended the

framework to calculate the mass splitting in different hyperon multiplets expressed in terms

of the current strange quark mass and the quark condensate ⟨s̄s⟩. QCD Sum Rules were

used in heavy-quark mesons to calculate the S− and P -wave charmonium masses and Υ−ηb

splitting [67]. In [72], Sum Rules were used in the heavy quark limit mQ → ∞ to calculate the

mass gap between the resonances (Σ,Σb) and their heavy quarks. In [73], the neutron-proton

mass differences were estimated up to the operators of mass dimension 9.

QCD Sum Rules have been used to calculate the quark masses as well. Recently using the

Pseudoscalar Sum Rule, the strange quark mass m̄s was calculated (in MS scheme) to O(α4
s)

[74] m̄s(2 GeV) = (105±6|parameter±7|hadron) MeV, where the subscript parameter denotes the

27
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Sum Rule parameters and hadron denotes hadronic inputs. In [75], the relativistic and non-

relativistic ratios of Laplace transform QCD Moment Sum Rules for charmonia were used to

calculate the on-shell charm quark mass mc(P
2 = m2

c) = 1.46 ± 0.07 GeV. Narison studied

the effect of continuum phenomenological model on the spectral density to conclude that

the effect would be minimum for high enough moment of the n-point function and from this

feature, he extracted the value of the gluon condensate ⟨αsG2⟩ = (7.0±1.3)×10−2 GeV4 and

on-shell masses of charm quark, m̄c(m̄c) = 1261(16) MeV and of bottom quark, m̄b(m̄b) =

4173(10) MeV.

QCD Sum Rules have also found wide applications in providing essential information on the

exotic hadron spectroscopy. BaBar and Belle collaborations have detected a number of con-

troversial XY Z resonances such as X(3872), X(3940), Y (3930), Y (4008), Z(3930), Z+(4430)

etc. recently which can decay into final hadronic states that contain heavy quarks such as

charm and anticharm. These discoveries has opened up the possibilities that some of these

resonances are the exotics lying in the same region of the spectrum of heavy quarkonia. For

earlier works on this topic, see [77, 78, 79, 80] and for a recent review, see [81].

In this chapter, we present one of our research works where we use QCD Sum Rules to

estimate the lambda (Λ0), charmed lambda (Λ+
c ), bottom lambda (Λ0

b) baryon masses. We

use a lambda baryon current consistent with all the symmetries of the corresponding particle

and then use the two-point correlator of the lambda current operator. The terms containing

the light quark condensates will be exponentially suppressed in the Borel-transformed two-

point function, so the dominant contribution to the two-point function comes from the

perturbative diagram. Furthermore, we ignore all the terms that later give rise to power

divergences because those terms vanishes with Borel transformation. Eventually, as we

found in the last chapter, the hadronic mass of the baryon is found from the minima of the

graph of Borel-transformed two-point function. In this calculation, we have not used any
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free parameter in our calculations other than the current quark masses. Also, we have not

used any mass expansion of either the heavy- or the light-quark field propagator, thus the

expression we use for the perturbative term of the Borel-transformed two-point function is

exact.

4.1 Article

The following section (Section 4.2) has been adapted from:

Leonard S. Kisslinger, Bijit Singha. Charm, Bottom, Strange Baryon Masses Using QCD

Sum Rules. Int. J. Mod. Phys. A 33 no.23 (2018) 1850139

4.2 Estimating Masses of Λ0,Λ+
c and Λ0

b Using QCD Sum

Rules

The two-point correlator in momentum space is used to estimate the mass of the Λ+
c , a

charmed baryon. The two-point correlator is

Π2(p) = i

∫
d4x eip.x⟨0|T

[
ηΛ+

c
(x)η̄Λ+

c
(0)
]
|0⟩ . (4.1)

where ηΛ+
c

is the current for Λ+
c :

ηΛ+
c
(x) = ϵefg

[
ue

T

(x)Cγµdf (x)
]
γ5γµc

g(x) . (4.2)

with e, f, g color indices, u, d are up and down quarks and c is a charm quark, C is the charge

conjugation matrix (C2 = −1), and ϵefg is the totally antisymmetric tensor that makes ηΛ+
c

a
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Λ+
c Λ+

c

c
k1

u

k2

d p− k1 − k2

Figure 4.1: Perturbative diagram for the two-point correlator of Λ+
c

color-singlet. The current operator in Eq. (4.2) is constructed with the appropriate quantum

number corresponding to the hadronic system (Λ+
c here). The choice of the current operator

is not unique but as we will see, the charmed lambda resonance couples most strongly to this

current. The perturbative diagram that contributes to the two-point correlator is illustrated

in Figure (4.1).

Using the method of QCD Sum Rules[64], the time-ordered product in Eq. (4.1) is replaced

by a trace to give us

Π2(p) = i

∫
d4k1
(2π)4

d4k1
(2π)4

tr
[
Sc(k1)γ

5γµSu(k2)γ
5γµSd(p− k1 − k2)

]
, (4.3)

where Sc, Su, Sd are the charm, up, and down quark propagators. Using the Dirac slash

notation /p = pµγ
µ, we write

Sc(p) = i
/p+Mc

p2 −M2
c

, (4.4)

where Mc = 1.27 GeV is the on shell current charm quark mass. Su, Sd have similar
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expressions with mu ≈ md ≡ m≪Mc. Using Eqs. (4.3, 4.4) in Eq. (4.1), we get

Π2(p) =

∫
d4k1
(2π)4

d4k2
(2π)4

tr
[
(/k1 +Mc)γ

5γµ(/k2 +m)γ5γµ
(
/p− /k1 − /k2 +m

)]
(k21 −M2

c )(k
2
2 −m2)

[
(p− k1 − k22)

2 −m2
] . (4.5)

We use the trace identities of gamma matrices to evaluate the trace in the above equation.

We use the fact that the trace of odd number of gamma matrices is zero and

tr(γµγν) = 4gµν , (4.6)

tr(γµγνγκγω) = 4 (gµνgκω − gµκgνω + gµωgκν) . (4.7)

Using the above identities in Eq. (4.5), we get

Π2(p) = 8

∫
d4k1
(2π)4

d4k2
(2π)4

2Mcm
2 +Mck2.(p− k1 − k2) + 2mk1.(p− k1 − k2) +mk1.k2

(k21 −M2
c )(k

2
2 −m2)

[
(p− k1 − k22)

2 −m2
]

≡ 8

∫
d4k1

(2π)4(k21 −M2
c )
Πk1(p) . (4.8)

To evaluate this integral, we define p̄ = p− k1 and k = k2. This gives us

Πk1(p) =

∫
d4k

(2π)4
2Mcm

2 +Mck.(p̄− k) + 2mk1.(p̄− k) +mk1.k

(k2 −m2) [(p̄− k)2 −m2]
. (4.9)

We define

Π1(p) =

∫
d4k

(2π)4
1

(k2 −m2) [(p̄− k)2 −m2]
. (4.10)

In Eq. (4.10), there is a four-dimensional integral which is UV-divergent. We parametrize

all momentum-space propagators as

1

k2 −m2
=

∫ ∞

0

dα e−α(k
2−m2), m2 ̸= 0 . (4.11)
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We then write all vector products over a complex D = 4 − ϵ dimensional space. Eq. (4.10)

then reduces to generalized Gaussian integral which can easily be evaluated in the momentum

space:

∫
dDk̄

(2π)D
e−(α+β)k̄2 = 1/(4π(α + β))D/2 . (4.12)

We use this dimensional regularization technique [82, 83] with the substitution

k̄ = k − βp̄/(α + β), (4.13)

to evaluate the integral in Eq. (4.10):

Π1(p) =

∫ ∞

0

dρ

∫ 1

0

dα

∫ 1

0

dβ
1

(4π)D/2
ρ1−D/2δ (1− α− β) ρ1−D/2e−ρ[−m

2+α(1−α)p̄2] . (4.14)

Integrating Eq. (4.14) by parts we obtain

Π1(p) =
1

(4π)2
(2m2 − p̄2/2)I0(p̄) (4.15)

with I0(p) =

∫ 1

0

dα
1

α(1− α)p2 −m2
. (4.16)

We use the same technique to evaluate the integral

Πµ
1(p) =

∫
d4k

(2π)4
kµ

(k2 −m2) [(p̄− k)2 −m2]
=

p̄µ

(4π)2

[
(m2 − p̄2/4)I0(p̄)−

7

4

]
.(4.17)

We use Eq. (4.15) and Eq. (4.17) in Eq. (4.9) to get

Πk1(p) =
1

(4π)2

[
(2mk1.p̄+m2Mc)(2m

2 − p̄2/2)I0(p̄)

+(Mcp̄
2 −mk1.p̄)

(
(m2 − p̄2/4)I0(p̄)−

7

4

)]
. (4.18)
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From here we ignore the term 7
4

because it vanishes with Borel transform. Thus, we have

got the two-point function in terms of In(p) as:

Π2(p) =
8

(4π)4

∫ 1

0

dα

[
2m4McI1(p) + 3m3I2(p) +

3

2
m2McI3(p)−

3m

4
I4(p)−

Mc

4
I5(p)

]
.

(4.19)

where, for k = k1:

I1(p) =

∫
d4k

(2π)4
1

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

, (4.20)

I2(p) =

∫
d4k

(2π)4
k.(p− k)

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

, (4.21)

I3(p) =

∫
d4k

(2π)4
(p− k)2

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

, (4.22)

I4(p) =

∫
d4k

(2π)4
k.(p− k).(p− k)2

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

, (4.23)

I5(p) =

∫
d4k

(2π)4
(p− k)2(p− k)2

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

. (4.24)

If we neglect the power divergences that appear in any of the above integrals, we can write

I3(p) = m̄2I1(p), (4.25)

I4(p) = m̄2I2(p), (4.26)

I5(p) = m̄4I1(p), (4.27)

where m̄2 = m2/α(1− α). Let’s evaluate I1(p) and I2(p) now. For the first one,

I1(p) =

∫
d4k

(2π)4
1

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

, (4.28)
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We use here the same regularization technique mentioned in this section before to write

I1(p) =

∫
d4k

(2π)4

∫ ∞

0

dκdλ e−κ(k
2−M2

c )−λ[−m2+α(1−α)(p−k)2] . (4.29)

Now, we can evaluate the Gaussian integral over four-momenta to get

I1(p) =
1

(4π)2

∫ ∞

0

dκdλ

[
1

4π(κ+ λα(1− α))

]D/2

× exp
[
−λα(1− α)p2 + κM2

c + λm2 +
[λα(1− α)p]2

κ+ λα(1− α)

]
. (4.30)

Here we evaluate the one dimensional integral over λ to get

I1(p) =
1

(4π)2

∫ ∞

0

dρ

∫ 1

0

dκ ρ(1−D/2) 1

[κ+ α(1− α)(1− κ)]D/2

× exp
[
−ρ
{
κ(1− κ)α(1− α)p2

κ+ α(1− α)(1− κ)
− κM2

c − (1− κ)m2

}]
. (4.31)

Let’s define the quantity

a =
κ(1− κ)α(1− α)p2

κ+ α(1− α)(1− κ)
− κM2

c − (1− κ)m2 (4.32)

to write

I1(p) =
1

(4π)2

∫ ∞

0

dρ

∫ 1

0

dκ ρ(1−D/2) 1

[κ+ α(1− α)(1− κ)]D/2
e−ρa. (4.33)

To evaluate the integral over ρ, we use the following expression of gamma function as an

improper integral:

Γ(z) =

∫ ∞

0

xz−1e−xdx . (4.34)
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With this, we get

I1(p) =
1

(4π)2
Γ
( ϵ
2

)∫ 1

0

a−
ϵ
2

1

[κ+ α(1− α)(1− κ)]2
. (4.35)

With an infinitesimal ϵ, we can Taylor-expand a−
ϵ
2 = e−(ϵ/2) ln a = 1− (ϵ/2) ln a to get

I1(p) =
1

(4π)2

∫ 1

0

dκ
1

[κ+ α(1− α)(1− κ)]2
× (− ln a). (4.36)

We evaluate I2(p) in a similar way:

I2(p) =

∫
d4k

(2π)4
k.(p− k)

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

(4.37)

= pµ

∫
d4k

(2π)4
kµ

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

−
∫

d4k

(2π)4
M2

c

(k2 −M2
c ) [−m2 + α(1− α)(p− k)2]

(4.38)

= pµΠ̄
µ
1(p)−M2

c I1(p). (4.39)

Here Π̄µ
1 is given by

Π̄µ
1(p) =

∫
d4k

(2π)4
kµ
∫ ∞

0

dκdλ e−κ(k
2−M2

c )−λ[−m2+α(1−α)(p−k)2]

=

∫ ∞

0

dκdλ

∫
d4k

(2π)4
kµ exp

[
−
(
κ+ λα(1− α)

)(
k − λα(1− α)p

κ+ λα(1− α)

)2

−λα(1− α)p2 +
(λα(1− α)p)2

κ+ λα(1− α)
+ (κM2

c + λm2)
]
. (4.40)

Writing kµ → kµ + λα(1−α)pµ
κ+λα(1−α) , we get

Π̄µ
1(p) =

∫ ∞

0

dκdλ

∫
d4k

(2π)4

[
k +

λα(1− α)p

κ+ λα(1− α)

]µ
× exp

[
− (κ+ λα(1− α)) k2

−λα(1− α)p2 +
(λα(1− α)p)2

κ+ λα(1− α)
+ (κM2

c + λm2)
]
. (4.41)
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We integrate over the four-momenta to get

Π̄µ
1(p) =

pµ

(4π)2

∫ 1

0

dκ
α(1− α)(1− κ)

[κ+ α(1− α)(1− κ)]3
× (− ln a) . (4.42)

This gives us

I2(p) = p2Π̄(p)−M2
c I1(p) , (4.43)

where

Π̄(p) =
1

(4π)2

∫ 1

0

dκ
α(1− α)(1− κ)

[κ+ α(1− α)(1− κ)]3
× (− ln a) . (4.44)

We use the expressions in Eq. [4.36] and Eq. [4.42] to write the two-point function (Eq. [4.19])

as:

Π2(p) =
8

(4π)4

∫ 1

0

dα

[
2m4McI1(p) + 3m3I2(p) +

3

2
m2McI3(p)−

3m

4
I4(p)−

Mc

4
I5(p)

]
=

8

(4π)4

∫ 1

0

dα [2m4McI1(p) + 3m3
{
p2Π̄(p)−M2

c I1(p)
}
+

3m4Mc

2α(1− α)
I1(p)

− 3m3

4α(1− α)

{
p2Π̄(p)−M2

c I1(p)
}
− Mcm

4

4α2(1− α)2
I1(p)]

=
8

(4π)4

∫ 1

0

dα
[{

2m4Mc − 3m3M2
c +

3Mcm
4

2α(1− α)
+

3m3M2
c

4α(1− α)
− Mcm

4

4α2(1− α)2

}
I1(p)

+

{
3m3 − 3m3

4α(1− α)

}
p2Π̄(p)

]
. (4.45)

The above expression contains physical and unphysical divergences. To achieve convergence,

we make a Borel transformation of the form

Π̃2(P
2
0 ) =

1

(n− 1)!

(
− d

dP 2

)n−1

Π2(P
2)|P 2=P 2

0
, P 2 = −p2 . (4.46)
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that considers sufficiently high moment of the correlator and a high P 2, where only the

contribution from the lowest resonance predominates all other resonances in the channel.

Applying Borel transform to Eq. (4.45) gives us

Π̃2(MB) =
8

(4π)4

∫ 1

0

dα
[{

2m4Mc − 3m3M2
c +

3Mcm
4

2α(1− α)
+

3m3M2
c

4α(1− α)
− Mcm

4

4α2(1− α)2

}
BMB

[I1(p)]

+

{
3m3 − 3m3

4α(1− α)

}
BMB

[p2Π̄(p)]
]
, (4.47)

where MB is the Borel mass. We use the following Borel-transformed functions:

BM2
B
[ln(p2 − b2)] = −M2

B e−b
2/M2

B , (4.48)

BM2
B
[p2 ln(p2 − b2)] = −M2

B(b
2 −M2

B) e
−b2/M2

B . (4.49)

The above two expressions allows us to write

Π̃2(MB) = − 8

(4π)6

∫ 1

0

dα

∫ 1

0

dκ

(
2m4Mc − 3m3M2

c +
3Mcm

4

2α(1− α)
+

3m3M2
c

4α(1− α)
− Mcm

4

4α2(1− α)2

)
×

(
−M2

B e−b
2/M2

B

[κ+ α(1− α)(1− κ)]2

)

− 8

(4π)6

∫ 1

0

dα

∫ 1

0

dκ

(
3m3 − 3m3

4α(1− α)

)(
−M2

B(b
2 −M2

B) α(1− α)(1− κ)e−b
2/M2

B

[κ+ α(1− α)(1− κ)]3

)
.

(4.50)

So, finally we get the expression that gives us the charmed Lambda mass:

Π̃2(MB) =
8M2

B

(4π)6

∫ 1

0

dα dκ
g(α, κ)M5(α) + 3m3M2(α, κ)

g(α, κ)3
e−b(α,κ)

2/M2
B . (4.51)
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where

g(α, κ) = κ+ α(1− α)(1− κ), (4.52)

b(α, κ)2 = g(α, κ)
[ M2

c

α(1− α)(1− κ)
+

m2

κα(1− α)

]
, (4.53)

M2(α, κ) =
(
1− 1

4α(1− α)

)[
b(α, κ)2 −M2

]
, (4.54)

M5(α) = 2m4Mc − 3m3M2
c +

3Mcm
4

2α(1− α)
+

3m3M2
c

4α(1− α)
− Mcm

4

4α2(1− α)2
. (4.55)

We estimate The mass of Λ+
c from the minimum of the plot Π̃2(MB) vs. MB. Assuming

m = 0.004 GeV, Mc = 1.3 GeV, we get a plot as shown in Figure 4.2.

Figure 4.2: The Borel-transformed two-point correlator of charmed lambda current vs. Borel
Mass (in GeV).

From the plot, we can conclude that the charmed Lambda mass,

MΛ+
c
= (2.01± 0.30) GeV, (4.56)

assuming an error of 15% that appears typically in QCD Sum Rules due to the uncertainty
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in the non-perturbative terms.

Obtaining the two-point correlator for Λ0
b and Λ0 is straightforward. We replace the charm

quark with strange and bottom (c→ b, c→ s) in Eqs. (4.1, 4.2) and using Mc →Mb,Mc →

Ms in Eqs. (4.53, 4.55). We have used Mc ≈ 1.27 GeV and Mb ≈ 4.18 GeV, and Ms ≈ 96

MeV. We plot the Borel-transformed two-point function of Λ0 and Λ0
b in Figure 4.3 and

Figure 4.4 respectively.

Figure 4.3: The Borel-transformed two-point correlator of strange lambda current vs. Borel
Mass (in GeV).

The masses of charmed, bottom and strange lambda baryons are found to be:

MΛ+
c

= 2.01± 0.30 GeV, (4.57)

MΛ0
b

= 5.34± 0.25 GeV, (4.58)

MΛ0 = 1.05± 0.10 GeV, (4.59)
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Figure 4.4: The Borel-transformed two-point correlator of bottom lambda current vs. Borel
Mass (in GeV).

as compared to their experimentally found values

MExp
Λ+
c

= 2.28646± 0.00014 GeV, (4.60)

MExp
Λ0
b

= 5.61958± 0.00017 GeV, (4.61)

MExp
Λ0 = 1.115683± 0.000006 GeV . (4.62)

A few more comments here. Following the calculation, we see that the quark condensate

terms that contribute to the two-point function Eq. (4.51) will be proportional to a factor

⟨q̄q⟩ exp(−M2
c /M

2
B) and thus will have a much suppressed contribution compared to the

perturbative term. In the following chapter, we will use a three-point function in order to

extract the decay properties of charmed lambda.



Chapter 5

Charmed Baryon to Strange Baryon

Decay plus a Pion using QCD Sum

Rules

In the previous chapter, we have used QCD Sum Rules for a two-point function where we

extracted the mass of the lowest lying state of a channel from a two-point correlator made

of hadron currents with the quantum numbers specific for the channel (isospin, angular

momentum, parity, charge conjugation etc.). In this section, we describe how to extract

information about the dynamic properties, e.g. the hadronic matrix elements correspond-

ing to the electromagnetic and weak transitions, of hadrons by constructing a three-point

function using the same hadronic local field operators used in the two-point formalism. The

basic idea is simple: in the case where an external field is present, we have to include some

new condensates in the OPE. These condensates describe the response of the vacuum to the

correlation functions in the presence of an external field. For example, consider the VEV

⟨0|q̄σµνq|0⟩. In the absence of any external field, this will be identical to zero according

to Lorentz invariance. But, in the presence of an external electromagnetic field, a quark

propagating in vacuum will experience a VEV

⟨0|q̄σµνq|0⟩F =
√
4πα χqFµν⟨0|q̄q|0⟩ (5.1)

41
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induced by the electromagentic field tensor Fµν (the parameter χq having the interpretation

of magnetic susceptibility of the quark condensate).

One more important distinction of the external field method is that the three point function

is written in terms of the intermediate states (B with momentum p and B′ with momentum

p′) with double poles:

Π3(p, p
′) ∼ ⟨0|η|B⟩⟨B|jel|B′⟩⟨B′|η̄|0⟩ (p2 −m2)−1(p′2 −m′2)−1 . (5.2)

After the Borel transformation, both the single pole and the double pole acquire the same

exponential factor, exp (−m2/M2) with M being the Borel mass parameter. Thus, we have

to consider both the single pole and the double pole terms, giving us extra parameters on the

phenomenological side of the Sum Rule. The first problem did not bother us in this work

because we worked with only the Lorentz-invariant perturbative term of the three point

function. To tackle the second issue with double pole, we have considered reduced Borel

transformation of both the OPE and phenomenological sides as shown in Section 5.3.

In this chapter, we will estimate the coupling corresponding to a specific Cabibbo-favored

weak mode in which the charmed lambda decays to a strange lambda and a pion:

Λ+
c (udc) → Λo(uds) + π+ .

For this, we will consider a three-point correlation function of field operators corresponding

to charmed lambda (Λ+
c ), strange lambda (Λ0), and weak Hamiltonian (HW ) in the presence

of an external pion field. A similar method was used in [84] to estimate the weak decays

Σ− → n+π−,Σ+ → n+π+. The only difference here is that we consider a charm to strange

transition rather than a strange to up transition. We have shown the perturbative diagram
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for this process in Figure 5.1 in which the charm quark decays into the strange quark via

a weak-charged current. All higher order diagrams will exponentially suppressed with a

decaying exponent proportional to the heavy quark mass squared. We will use a dispersion

relation for the correlator obtained from the OPE, and carry out a Borel transform to ensure

rapid convergence. After comparing the decay rate for this process to the decay mode,

Λ+
c → pK−π+, we show that this weak decay mode has a comparatively small branching

ratio.

The framework developed in this chapter will be useful to estimate other Cabibbo-favored

and Cabibbo-suppressed decays of Λ+
c too. Charmed lambda was the first charmed baryon

ever to be discovered, but it has many modes of decay. This makes the detection and

estimation of the branching fraction of each mode considerably difficult. In this regard, our

estimates should be useful for future experiments as well as it will help us to calculate the

branching fraction of other modes as well. Also, this calculation can be extended in future

to calculate the weak decays of other heavy-quark baryons.

5.1 Article

This chapter has been adapted from:

Leonard S. Kisslinger, Bijit Singha. Charmed Baryon Decay to a Strange Baryon Plus a

Pion Using QCD Sum Rules. Int. J. Mod. Phys. A 34 (2019) 1950015
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5.2 QCD Sum Rules with 3-pt Correlator for Weak

Decay Λ+
c (udc) → Λo(uds) + π+

For the 3-point correlator to estimate Λ+
c (udc) → Λo(uds)π+ we need the currents for

Λ+
c (udc) and Λo(uds), and the weak Hamiltonian. We consider here the same currents

that we used for Λ+
c (udc) and Λo(uds) in [86] to estimate the lambda baryon masses:

ηΛ+
c
(x) = ϵabc[uaT (x)Cγµd

b(x)]γ5γµcc(x) , (5.3)

ηΛo(x) = ϵabc[uaT (x)Cγνd
b(x)]γ5γνsc(x) .

The weak Hamiltonian is

HW =
GF√
2
JµJ†

µ , (5.4)

Jµ = Vcs s̄γ
µ(1− γ5)c + Vud d̄γ

µ(1− γ5)u , (5.5)

where GF is the Fermi coupling constant and Vud = 0.97420±0.00021 and Vcs = 0.997±0.017

are the elements of Cabibbo-Kobayashi-Maskawa matrix [9]. Notice that Vcs is close to 1,

which makes this weak decay Cabibbo-favored.

The QCD diagram which is used for the 3-pt correlator to estimate Λ+
c (udc) → Λ0(uds)+π+

is shown in Figure 5.1. In this diagram, the charm-strange transition and the pion creation is

mediated by a weak gauge boson represented by the wavy line. There are other higher order

diagrams corresponding to the same process but their contribution is negligible compared to

this leading order process, so we ignore them here. The 3-pt correlator is
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Figure 5.1: Perturbative diagram for the process: Λ+
c → Λ0 + π+

Π3(p, q) = i

∫
d4xd4y eip·xeiq·yΠ3(x, y) , (5.6)

where

Π3(x, y) = < 0|T [ηΛ+
c
(x)HW (y)η̄Λo(0)]|0 >π+ . (5.7)

where the subscript π+ denotes that the constituent quarks of the lambda baryons propagate

in an external pion field. We also write the weak matrix element

< π+|Jα|0 > =
√
2FπVud qα , (5.8)

where Fπ is the weak pion form factor and q is the momentum of the pion. We use the

charmed and strange lambda baryon currents in Eqs. (5.3) and the weak Hamiltonian in

Eq. (5.4) in the three-point function in Eq. (5.6) and evaluate in Appendix A to obtain the

following expression for the three-point function:

Π3(p, q) = −16imcGFFπVudVcs Π3Q(p, q) , (5.9)
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where

Π3Q(p, q) = qν [Π
µµν +Πµνµ − Πνµµ] , (5.10)

Πµνω(p, q) =

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
lν(l − k − p− q)ω

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]
.(5.11)

We evaluate Πµµν , Πµνµ and Πνµµ in Eq. (5.10) using a dimensional regularization tech-

nique that uses Schwinger’s proper-time representation of the propagator, 1/(p2 − m2) =∫∞
0
dαe−α(p

2−m2), with the generalization of the gaussian integrals to D = (4−2ϵ)-dimensions

[82, 83]. We evaluate Eq. (5.11) in Appendix B to get

Π3Q(p, q) =
1

2(4π)4

∫ 1

0

dγdρ2ρ3(1− ρ)2 (p.q)

∫ 1

0

dκ
1

g(ρ, κ, γ)3

[
κ(p+ γq)2Γ(ϵ)a−ϵ

+ρΓ(−1 + ϵ)a1−ϵ
]
+

1

2(4π)4

∫ 1

0

dγdρ
2p.q

(1− ρ)

[
Γ(−1 + ϵ)(a′)1−ϵ

]
,

(5.12)

where

Z2(γ) = (1− γ)m2
c + γm2

s, (5.13)

g(ρ, κ) = κρ(1− ρ) + (1− κ), (5.14)

a(ρ, κ, γ) = −κρZ2 + κρ(1− ρ)p.(p+ γq)−
{κρ(1− ρ)

g

}
κρ(1− ρ)(p+ γq)2, (5.15)

a′(ρ, κ, γ) = −ρZ2 + ρ(1− ρ)p.(p+ γq)−
{κρ(1− ρ)

g

}
ρ(1− ρ)(p+ γq)2 . (5.16)

Notice that, in Eq. (5.12), Π3Q(p, q) will have both power and logarithmic divergences.

The former ones are insignificant for our purpose and we should only be interested in log-

divergences only. We address this issue in the next section, where we apply Borel transform

on Eq. (5.12) to extract the physical information relevant to the decay process.
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5.3 Borel Transformation of Π3Q(p, q)

In this section, we carry out a Borel transformation B on Π3Q(p, q) to ensure rapid conver-

gence of the integrals:

BM2Π3Q(P
2) = Π̃3Q(M

2) . (5.17)

Here, we write Γ(−1 + ϵ)a1−ϵ = a ln a and Γ(ϵ)a−ϵ = − ln a, ignoring the power-divergent

terms that vanish with the Borel transformation anyway. This finally gives us an expression

Π3Q(p, q) =
1

2(4π)4

∫ 1

0

dγdρdκ
2ρ3(1− ρ)2

g(ρ, κ, γ)3
(p.q)

[
κ(p+ γq)2 (− ln a) + ρ (a ln a)

]
+

1

2(4π)4

∫ 1

0

dρdγ
2p.q

(1− ρ)
[a′ ln a′] . (5.18)

Notice that, we have two parameters here in our expressions (p and q, or alternatively p2

and p′2 = (p + q)2). This means Borel transformation should give us an expression for the

three-point function in terms of two Borel masses, M2
B and M ′

B
2. If the baryon masses were

close, we could use M2
B = M ′

B
2. But in this case, we are behooved to consider different

values of the Borel masses. Following [89], we assume that they should obey a ratio

M ′
B
2

MB
2 =

M ′2

M2
, (5.19)

where M and M ′ are respective Lambda baryon (Λc and Λs) masses in this case. This helps

us to express the Π3c(p, q) in Eq. (5.18) in terms of one variable p2. We define a quantity δ

as

δ ≡
(
M ′2

M2
− 1

)
(5.20)
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to write, in the limit of zero pion mass,

q.(p+ γq) = q.p =
1

2
(p′2 − p2) =

1

2
δp2, (5.21)

(p+ γq)2 = (1 + γδ)p2, (5.22)

(1− γ)p2 + γp′
2

= (1 + γδ)p2, (5.23)

p.(p+ γq) = (1 +
γδ

2
)p2, (5.24)

Also, we can express a and a′ in a form that is convenient for Borel transform:

a(ρ, κ, γ) = c1(ρ, κ, γ)
[
p2 − b(ρ, κ, γ)2

]
, (5.25)

a′(ρ, κ, γ) = c2(ρ, γ)
[
p2 − b′(ρ, γ)

2
]
, (5.26)

where

c1(ρ, κ, γ) =
{κρ(1− ρ)

g(ρ, κ)

}[
(1− κ) +

1

2
γδg′(ρ, κ)

]
, (5.27)

b2(ρ, κ, γ) =
g(ρ, κ)Z2

(1− ρ)
[
(1− κ) + 1

2
γδg′(ρ, κ)

] , (5.28)

c2(ρ, γ) =
[
− δγρ(1− ρ)

2

]
, (5.29)

b′
2
(ρ, γ) = − 2

γδ(1− ρ)
Z2, (5.30)

g′(ρ, κ) = (1− κ)− κρ(1− ρ) . (5.31)

Using P 2 = −p2 and applying the Borel transformation

BM2
B
= lim

P 2,n→∞;P 2/n=M2
B

(P 2)n+1

n!

(
− d

dP 2

)n
, (5.32)
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we find

BM2
B

[
ln(P 2 + b2)

]
= −M2

Be
−b2/M2

B , (5.33)

BM2
B

[
P 2 ln(P 2 + b2)

]
= M2

B(b
2 +M2

B)e
−b2/M2

B , (5.34)

BM2
B

[
(P 2)2 ln(P 2 + b2)

]
= −M2

B(2M
4
B + 2b2M2

B + b4)e−b
2/M2

B (5.35)

to write the Borel-transformed function Π̃3c(MB) = BMB
[Π3c(P ;P

2 = −p2)] as

Π̃3Q(MB) =
1

2(4π)4

∫ 1

0

dγdρdκ
δρ3(1− ρ)2

g3

[
2
(
κ(1 + γδ)− c1ρ

)
M6

B

+
(
2κ(1 + γδ)− c1ρ

)
M4

Bb
2 + κ(1 + γδ)M2

Bb
4
]
e−b

2/M2
B

+
1

2(4π)4

∫ 1

0

dγdρ
( δ

1− ρ

) [
−2c2M

6
B − c2b

′2M4
B

]
e−b

′2/M2
B . (5.36)

What we have got finally in Eq. (5.36) is the Operator Product Expansion (OPE) of the

three-point correlator. We will equate this expression to a phenomenological model for the

decay process in order to calculate the coupling, gΛc→Λsπ .

5.4 Phenomenological Side of the Decay

We obtain the phenomenological side for this process from the restrictions imposed by sym-

metry. To illustrate that, let’s recall the three-point function here:

Π3(p, q) = i

∫
d4xd4y eip.x+iq.y ⟨0|T

[
ηΛc(x)HW (y)ηΛs(0)

]
|0⟩ . (5.37)
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We can express this function in terms of the physical intermediate states of our interest

through the following matrix elements:

⟨0|ηΛc |Λc(p)⟩ = λΛcu(p), (5.38)

⟨Λs(p′)|ηΛs|0⟩ = λΛsū(p
′), (5.39)

⟨Λc(p)|jµ|Λs(p′)⟩ = g(p, p′) [ū(p)iγµu(p′)] , (5.40)

where λΛc and λΛs are the couplings of the charmed and the strange lambda baryon currents

to their hadronic states u(p) is a spinor obeying the normalization u(p)ū(p) = 2mB with mB

being the mass of the the baryon B, and g(p, p′) is the coupling of the pion current to the

baryons and is related to the dimensionless coupling constant, gΛc→Λsπ that we seek to find

out in this paper, through the following relation[87]:

g(p, p′) = gΛc→Λsπ

[
2m2

πfπ
(mu +md) (q2 −m2

π)

]
, (5.41)

where mπ, mu and md are the mass of pion, up and down quarks, fπ is the pion decay

constant, and q2 = (p′ − p)2. Using Eq. (5.39), (5.39), (5.40), (5.41) and (5.4), we get

Πpheno
3 (p, p′) = iGFFπVud

[
⟨0|ηΛc |Λc(p)⟩
̸ p−mΛc

]
⟨Λc(p)|jµ|Λs(p′)⟩

[
⟨Λs(p′)|ηΛs|0⟩
̸ p′ −mΛs

]
= 4iGF gΛc→Λsπ Vud

2λΛcλΛsmΛcmΛsm
2
πF

2
π

(mu +md) (q2 −m2
π)

( ̸ p+mΛc) ̸ q (̸ p′ +mΛs)

(p2 −m2
Λc
)(p′2 −m2

Λs
)
.

(5.42)

Note that

(̸ p+mΛc) ̸ q(̸ p′ +MΛs) = (mΛc +mΛs) p.q + (mΛcmΛs − p2) ̸ q + 2q.p ̸ p

−i [qµσµνpνmΛc + pµσ
µνqνmΛs ] . (5.43)
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Out of all the terms present in Eq. (5.43), we can only concentrate on the first one and

ignore the others because only the first term is consistent with the Lorentz structure of

the OPE side of the three-point function. Inserting it back to Eq. (5.42), and considering

mu ≈ md = mq, we get

Πpheno
3 (p, p′) = −i gΛc→Λsπ GFVudλΛcλΛsmΛcmΛsF

2
π

mq

[
δp2 (mΛc +mΛs)

(p2 −m2
Λc
)(p′2 −m2

Λs
)

]
.

(5.44)

In the above expression, we have considered q2 = 0 and δ is defined in Eq. (5.20). Using

Eq. (5.19), we get eventually

Πpheno
3 (p) = −igΛc→Λsπ GFVudλΛcλΛsmΛcmΛsF

2
π

mq

×
δ (mΛc +mΛs)m

2
Λc

m2
Λs

[
1

p2 −m2
Λc

+
m2

Λc

(p2 −m2
Λc
)2

]
. (5.45)

Now, we apply the Borel transformation [Eq. (5.32)] on Πpheno
3 (p) to get

BM2
B

[
Πpheno

3 (p)
]

= igΛc→ΛsπGFVudλΛcλΛs

δ (mΛc +mΛs)F
2
π

mq

m2
Λc

m2
Λs

(
1−

m2
Λc

M2
B

)
e
−

m2
Λc

M2
B ,

(5.46)

where we consider mΛs = 1.115 GeV, mΛc = 2.286 GeV, ms = 0.095 GeV, mc = 1.275 GeV,

Fπ = 0.092 GeV, mq = 0.004 GeV. For the couplings, λΛc and λΛs , we follow [90], where

the values of these parameters were obtained from baryonic mass sum rules in heavy quark

effective theory [91]:

2(4π)4 |λb|2e−M
2/M2

B = M6
BE

b
2 +

2

3
amQ(1− 3γ)M2

BE
b
0 + βM2

BE
b
0 +

4

9
a2(3 + 4γ),

(5.47)
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where b denotes the baryon Λ+
c or Λ0, mQ denotes the mass of the heavy quark (charm or

strange). Also

a = −(2π)2⟨q̄q⟩ ≈ 0.5 GeV3, (5.48)

β = π2⟨αsG2/π⟩ ≈ 0.12 GeV4, (5.49)

γ = ⟨q̄q⟩/⟨s̄s⟩ − 1 ≈ −0.2, (5.50)

and Eb
n represents the continuum contribution,

Eb
n = 1−

(
1 + x+

x2

2
+ · · ·+ xn

n!

)
e−x, (5.51)

with x = sb/M
2, sb being the continuum threshold. Notice that, we can only determine the

absolute value of gΛc→Λsπ and not the sign, since Eq. (5.47) gives only the absolute value of

λb.

5.5 Results

In this section, we compare the OPE side of the three-point function given in Eq. (5.36)

to the phenomenological side in Eq. (5.46) to find out the coupling. The free parameters

appearing in the latter expression are the continuum thresholds, sb and sb′ , that determine

the couplings, λb and λb′ . From Eq. (5.47), we can write

|λb/λb′|2 e−(M2−M ′2)/M2
B =

Eb
2 +

(
2amc

3M4
B

)
(1− 3γ)Eb

0 +
(

β
M4

B

)
EB

0 +
(

4a2

9M6

)
(3 + 4γ)

Eb′
2 +

(
2ams

3M4
B

)
(1− 3γ)Eb′

0 +
(

β
M4

B

)
Eb′

0 +
(

4a2

9M6

)
(3 + 4γ)

.

(5.52)
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For what follows from here, b denotes Λc, b′ denotes Λs. To estimate sb, sb′ , λb and λb′ , we

start with a residual

R(M2) = (rhs − lhs)2/lhs2, (5.53)

where rhs and lhs denotes the right- and left-hand sides of Eq. (5.52) respectively. Then, we

assume a prior range of values for the free parameters and minimize the residual in Eq. (5.53).

Let’s define

r = |λb/λb′|2, (5.54)

sb = (M +∆)2 , (5.55)

sb′ = (M ′ +∆)
2
. (5.56)

The above definitions of sb and sb′ help us to constrain the continuum threshold with just

one free parameter, ∆. Similar parametrization has been adopted in other works, e.g., in [90]

and [89]. Now, using this residual method, we attempt to find a Borel window over which

(i) the residual will be close to zero, (ii) it will effectively become constant over this range

(window) of MB, because our result should be independent of the extra parameter MB that

we introduced just to regulate the divergences in the three-point function. We start with a

prior range of the free parameters: ∆ ∈ [0.5 GeV, 0.9 GeV], r ∈ [1, 18] and attain a suitable

Borel window for the following values of the free parameters:

r = 17.259, ∆ = 0.784 GeV . (5.57)

The residual is plotted in Figure 5.2 for the above-mentioned values of the free parameters.

Using the values of ∆ obtained in Eq. (5.57) in Eq. (5.46), and comparing Eq. (5.46) with
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Figure 5.2: Residual of Eq. (5.53) as a function of Borel mass for r = 17.259, ∆ = 0.784 GeV.

Eq. (5.36), we get gΛc→Λsπ as a function of Borel mass, as shown in Figure 5.3. Figure 5.2

and Figure 5.3 allow us to choose a Borel window M ∈ [2.7 GeV, 3.2 GeV] over which we

estimate the value of the coupling constant, gΛc→Λsπ.

gΛc→Λsπ = 1.060± 0.014 . (5.58)

With the parametrization adopted in the last section, this value of the coupling close to

unity indicates that the weak decay is Cabibbo-favored.
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Figure 5.3: gΛc→Λsπ as a function of Borel mass.
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5.6 Conclusions

In this work, we have calculated the coupling for the decay process Λ+
c → Λ0π+. We used a

parametric representation of the propagators analytically continued to complex D-dimensions

in order to solve the lowest order perturbative diagram corresponding to this process. We

achieved convergence with a reduced Borel transformation. This method will be extended

to estimate other Cabibbo-favored and Cabibbo-suppressed decays of heavy-quark baryons,

and also to estimate decays for other weak modes of charmed lambda in future.



Chapter 6

Heavy-Quark State Production from

p-p and A-A Collisions

Due to the abundance of the heavy-flavor quarks generated during the high-energy, inelastic

proton-proton collisions, there has been considerable interest recently in the heavy-quark

states production from such events. Measurements of the cross-sections of these events and

matching them to the results derived from perturbative QCD provides us the opportunity

to test QCD in the high energy limit. They could also serve as the background to explore

new physics and the basis for the predictions on the quark-gluon plasma (QGP) formation

in relativistic heavy-ion collisions (RHIC).

In this work, we estimate the production cross-section of B0(bd̄) and B−(bū) mesons in

proton-proton (p-p) and heavy-ion (A-A) collisions. Due to flavor conservation, the heavy

quarks are produced only in pairs during such collisions. We have incorporated this in our

work to say that if a gluon produces a heavy-quark pair, cc̄ or bb̄, then a fragmentation process

can convert the bb̄ into two B mesons, bd̄−db̄. We consider the fragmentation function from

the works of Braaten et al. . Furthermore, we assume in this work that each gluon channel

produces a color-octet S-wave state of the bb̄ pair. The color octet mechanism [40, 41, 42] is

found to dominate the color singlet mechanism in the experimental studies at
√
s = 200 GeV

[43, 44]. The long-distance non-perturbative fragmentation function is expressed in terms of

matrix elements corresponding to a color-octet state that basically encodes the probability

57
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of a color-octet b− b̄ state to form a B meson. These matrix elements can be found in [45].

The organization of this chapter is as follows. In Section 6.1 we give a brief introduction to the

parton model. In Section 6.2.1, we discuss factorization theorem and parton fragmentation.

In Section 6.2.2, we discuss the color-singlet and the color-octet mechanisms of the heavy-

quark state production in high-energy collisions. We derive the fragmentation function

Db→bq̄ in Section 6.3. We assimilate all these ideas in Section 6.5 to estimate the B meson

production cross-sections in p-p and A-A collisions.

6.1 The Parton Model

We start with an experimental fact that the pion production cross-section in high-energy (∼

10 GeV) p− p collisions has an exponential fall-off in the value of its transverse momentum.

This simple observation leads us to the following model [7]: a proton is composed of con-

stituents that have their momenta almost collinear with the momentum of the protons. In

a collision between two high-energy protons the final state (of hadrons) will have momenta

parallel to the collision axis. The ejection of hadrons at large transverse momentum would

need a large, spacelike q2, prohibiting this process to happen. It is observed that the proba-

bility of hadron production with large transverse momentum is much suppressed, indicating

that the strong interaction is much weaker at sufficiently high energy.

This ‘jelly’ model of a proton made of loosely bound pieces was put into rigorous test in

the 1960’s in SLAC-MIT deep inelastic scattering experiments. It was observed that the

scattering rate at large deflection angles could be estimated from the momentum of the

scattered electrons, indicating that the large momentum transfer happened through electro-

magnetic rather than strong interaction. However, the proton did not react to the scattering

electrons as a fundamental particle with simple Coulomb charge. The largest part of the
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scattering was contributed by the deep, inelastic region of phase space, in which the proton

was broken apart.

This constitutes a puzzle. We are assuming a strong interaction at a much deeper length

scale, i.e. at the scale of a proton but the same interaction is apparently absent in hard

scattering processes. Bjorken and Feynman attempted to solve this puzzle by putting forward

the ‘parton’ model [92, 93]. In this model, a proton is made of loosely bound, point-like

constituents called ‘partons’. Some of these partons are elementary fermions carrying some

electric charge and some of them are electrically neutral particles binding these fermions

loosely together. The electromagnetic interaction with the electron can knock a parton off

a proton. This parton can have soft momentum tranfer with the remainder of the proton

though, creating hadronic jets collinear with the original parton that was knocked out. In

this way, the parton model imposes strict constraints on the deep inelastic scattering cross-

section. It was later recognized that partons describe the same objects now more commonly

referred to as quarks and gluons. A more profound explanation of this puzzle can be given

by introducing asymptotic freedom in QCD.

6.2 Production of Heavy Quarkonium in High Energy

Collisions

Tevatron data around 1993 suggested that the parton processes that create charmonium

cannot be explained by the color-singlet model even in the lowest order of the strong coupling

constant [94, 95]. This leads towards a revision of the idea that the cc̄ pairs created from such

processes are in a color-singlet state. This phenomenon leads to two important development

in the understanding of charmonium physics:
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• Fragmentation: Heavy quarkonium is produced predominantly from the partons of

large transverse momentum (pT ).

• Color-octet mechanism: cc̄ pair can be produced in a color-octet state at a suffi-

ciently short distance scale.

In the following subsections, we discuss these two ideas in more detail.

6.2.1 Factorization Theorem and Parton Fragmentation

From the proton-proton or heavy-ion collision point emerges partons almost collinearly in a

narrow cone of jet. In this process, a hadron can be created by the partons with sufficiently

large transverse momentum. This phenomenon is called fragmentation. In the following

paragraph, we discuss factorization theorems that will allow us to write the perturbative part

of the B meson production cross-section in high-energy collisions separately from the part

containing the non-perturbative effects of QCD by guaranteeing how hadron productions at

very large momenta are dominated by fragmentation.

In order to explain factorization, let’s start with the simplest scenario of a radiative QED

process and assume that pN denotes the probability of finding N number of soft photons

with a frequency at most k0. The scattering cross-section for the Bremsstrahlung process

(Figure 6.1) in QED is given by

dσ

dΩ
(p→ p′ + γ) =

(
dσ

dΩ

)
0

[
+
α

π
ln
(
q2

m2

)
ln
(
E2
l

µ2

)
+O(α2)

]
, (6.1)

where α is the fine structure constant, q2 is the virtual photon four momentum, m is electron

mass term in the QED lagrangian, El is the detector resolution and µ is the photon mass.

As we can see from the expression, the cross-section becomes infinite in the limit µ→ 0.
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k

p′

p

+ k

p′

p

Figure 6.1: Bremsstrahlung process in QED. The divergence appearing in the Feynman
diagram of this process cancels out the divergence appearing in the electron-photon vertex
correction.

This divergence cancels with the infrared divergence arising from the quantum corrections

in the electron-photon interaction vertex. The elastic cross-section found after quantum

correction of vertex is given by

dσ

dΩ
(p→ p′) =

(
dσ

dΩ

)
0

[
1− α

π
ln
(
q2

m2

)
ln
(
q2

µ2

)
+O(α2)

]
. (6.2)

Summing Eq. (6.1) and (6.2) gives us the cross-section of a scattering event in which the

detector detects no photon

(
dσ

dΩ

)
Detected

=

(
dσ

dΩ

)
Elastic

+

(
dσ

dΩ

)
Bremsstrahlung

=

(
dσ

dΩ

)
0

[
1− α

π
ln
(
q2

m2

)
ln
(
q2

E2
l

)
+O(α2)

]
. (6.3)

This result can be extended and generalized to the level of a theorem which says that,

although the perturbative series expansion of transition amplitude often bugs us with di-

vergences, they are cancelled if we consider the average over the whole ensemble of states.

This is the famous ‘Kinoshita-Lee-Nauenberg theorem’ (KLN theorem) and is true of any

quantum mechanical system (even the degenerate ones, irrespective of whether we perform

Feynman diagram calculations explicitly or not). An equivalent statement of this theorem

is that the standard model is free of mass singularities and infrared infinities.
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Mass singularities appear when the massless limit of a theory is considered. In these cases,

we are typically encountered with two kind of infinities [96]: one is IR infinity, which is

the divergence associated with the zero limit for all the four components of momenta of the

real or virtual particles. The other kind of infinity is called mass divergence or collinear

divergence which appears with the vanishing electron mass in QED (in high energy limit,

p.p′ = m2, where p and p′ are momenta of the electron before and after the scattering)

or in non-Abelian gauge theories such as QCD. In such cases, the massless particles lead

to divergences if they are emitted parallel to the parent particle even if they carry large

momentum. But the divergences associated with the soft momenta gives us a factored form

for this contribution to inclusive cross-section. This idea was used in [97, 98] to define

fragmentation function (FF). In general, FF tells us how a parton of a given momentum gets

converted into a color-neutral hadron or a photon. Just like PDF tells us the probability

density of a given parton inside a hadron, FF tells us the probability density of a parton to

convert into a specific hadron.

Here are a few examplary processes and their schematic representations where the factoriza-

tion theorem and the fragmentation functions have been used:

• single-inclusive hadron production in electron-positron annihilation, e++ e− → h+X.

• semi-inclusive deep-inelastic lepton-nucleon scattering, l +N → h+X.

• single-inclusive hadron production in proton-proton collisions, p+ p→ h+X.

The factorization theorem gives us for these processes [99].
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e+

e−

h

X

(a)

l+

l−

h

X

(b)

N

p

p

X

h

(c)

Figure 6.2: Diagrammatic representation of the processes: (a) semi-inclusive hadron pro-
duction in e+ − e− annihilation, (b) semi-inclusive deep inelastic lepton-nucleon scattering,
(c) single-inclusive hadron production in p − p collisions. To estimate B production in p-p
collision, we use factorization of process (c).

σe
+e−→hX = σ̂ ⊗ FF, (6.4)

σlN→lhX = σ̂ ⊗ PDF ⊗ FF, (6.5)

σpp→hX = σ̂ ⊗ PDF ⊗ PDF ⊗ FF, (6.6)

where σ̂ denotes the perturbative field theory cross-section of the parton and FF denotes the

fragmentation function. The corresponding processes are shown in Figure 6.2. We will use

the factorization corresponding to the single-inclusive hadron production in p− p collisions

to estimate B production.
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6.2.2 Color-octet Mechanism

Along with fragmentation, this mechanism gives us a quantitative understanding about

modelling the formation of a bound state such as quarkonium. Before moving ahead to

discuss the color-octet model of charmonia production, let’s have a brief review of the color-

singlet model first [100].

In the color-singlet model, the amplitude of QQ̄ production (Q denotes a heavy quark such

as charm) is assumed to be zero if QQ̄ is not a color-singlet. Also, in order to form such a

bound state, the relative momenta of Q and Q̄ should be very small compared to the heavy-

quark mass mQ, otherwise Q and Q̄ can escape easily to form heavy-light mesons (such as

D and D̄).

Now, if Q and Q̄ are not present in the initial state, then they have to be produced from

the virtual excitations with momenta ∼ mQ. This is called the short distance part of

the amplitude in which QQ̄ is produced with a spatial separation ∼ m−1
Q . At this scale,

the constituent quarks are less sensitive to their relative momentum that corresponds to a

wavelength which is much larger than the length scale of the charmonium wavefunction. QQ̄

behaves like a pointlike pair while forming the bound state of quarkonium, H.

In the color-singlet model we denote, for example, a charmonium Fock-state |cc̄(1,2S+1 LJ)⟩,

where 1 denotes that cc̄ is in a color-singlet state with spin S, orbital angular momentum

L and total angular momentum J . Factorization theorem tells us that the amplitude of a

cc̄ pair to form charmonium, Â(ψ + F ) (F is some specific final state) are assumed to be

factorized into two factors: one is the amplitude in the limit of vanishing relative momentum,
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the other one being the Lth derivative of the radial wave-fucntion, R(0):

Â(ψ + F ) = Â
(
cc̄(1,3 S1) + F

)
Rψ(0), (6.7)

Â(χcJ + F ) = Â
(
cc̄(1,3 PJ) + F

)
R′
χc
(0) . (6.8)

The first term in the right hand side is the local amplitude and can be calculated using per-

turbation theory while the non-perturbative effects are absorbed in the radial wavefunction.

These wavefunctions are specified from some physical processes, e.g. Rψ(0) is determined

from the decay of ψ to electrons:

Γ(ψ → e+e−) ≈ 4α2

9m2
c

|Rψ(0)|2. (6.9)

Since, there cannot be any state other than color-singlet charm-anticharm pair that is con-

tributing to the amplitude, the form of the inclusive cross-section for charmonia production

is simply given by

dσ(ψ +X) = dσ̂
(
cc̄(1,3 S1) +X

)
|Rψ(0)|2, (6.10)

dσ(χcJ +X) = dσ̂
(
cc̄(1,3 P1) +X

)
|R′

χc
(0)|2 . (6.11)

As we will see, this expression will change under the color-octet model as we will have to

include the contribution from the color-octet cc̄ pair as well.

This simple model gives rise to some problems. Other than the fact that this model is

non-relativistic (as the relative momenta of the quark pair has been ignored throughout),

in principle it is not guaranteed that the amplitude will obey the factorization assumed in

Eq. (6.7) or (6.8) if we consider the higher order radiative processes too. Also, a color-octet

cc̄ can emit a soft gluon to become a color-singlet. But the color-singlet model does not allow
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QQ̄[3P
(1)
J ]

Qq̄

(a)

QQ̄[1S
(8)
1 ]

Qq̄

(b)

Figure 6.3: Feynman graph for heavy-light meson production at O(α3
s) through the (a)color

singlet mechanism and (b) color octet mechanisms. Short distance collisions create the QQ̄
pairs that hadronize at long distances into Qq̄ bound states.

this non-perturbative process to happen. Most evidently, there is no other process to cancel

out the IR divergence appearing in the cross-section for the p-wave states. Our solution to

these issues is that in our work, we have adopted this color-octet mechanism [101, 102, 103]

in which the bottom-antibottom pair created from gluon fragmentation is predominantly

color-octet and propagates before each of he two partons b and b̄ fragmentizes to produce a

B meson.

6.3 Fragmentation Function from First Principles

Brateen et al showed in 1993 that the parton fragmentation functions can be derived from

the first principles calculations using perturbative QCD [104]. In order to calculate the

fragmentation function, Db→bq̄, corresponding to the process, b→ bq̄, we consider an inclusive

process, b∗ → bq̄+q, as shown in Figure 6.4. It can be shown that the fragmentation function

will be the ratio of the two scattering amplitudes:

1. M corresponding to the production of an off-shell b∗ that subsequently fragmentize

into a B meson (Bq̄) and a real q, where q denotes a light quark.

2. M0 corresponding to the process of producing on-shell b∗ from Γ with the same three-
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Γ

Q∗

g

Q

q̄

q

Figure 6.4: Feynman diagram for heavy quark fragmentation function calculation

momentum (K⃗) as (1) in the limit K0 → ∞.

Taking the ratio of these two processes, we get the following form of the fragmentation

function:

D(z) =
1

16π2

∫
ds θ

(
s− M2

z
−

m2
q

1− z

)
× lim

K0→∞

∑
|M|2∑
|M0|2

, (6.12)

with M = mb + mq is the mass of the meson in non-relativistic limit and z is longi-

tudinal momentum fraction of the quarkonium state. The sums are over the spin and

color of the light quarks. This function can be calculated in the axial gauge for which

Kµ = (K0, 0, 0,
√
K2

0 − s). As shown in the Feynman diagram, Γ denotes the part of the

matrix element M that involves the production of a virtual b quark. Also, in the axial gauge

we choose only the production of B meson from a virtual quark of momentum Kµ.

The spinor Γ appears also in the second amplitude, M0 = Γu(K). Next we project bq̄ to
1S0 state using heavy quark effective theory

bq̄ → δij√
3

R(0)
√
M√

4π
γ5
(
1 + /v

2

)
, (6.13)

where R(0) is the radial wavefunction of the meson at the origin and vµ is its four-velocity.
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Then we use QCD Feynman rules for the light-quark spinor and qq̄g vertex and heavy-

quark effective theory Feynman rules for heavy quark propagator and bb̄g vertex to derive

the amplitude iM1 and perform the Dirac summation as given in Eq. (6.12) to write the

fragmentation function in leading order in r ≡ (mH −mb)/mH (mH = hadron mass, mb =

mass of the bottom quark):

Db→bq̄(y) = N
(y − 1)2

ry6
(
3y2 + 4y + 8

)
−N

(y − 1)3

y6
(
3y2 + 4y + 8

)
+O(r) , (6.14)

where

y =
1− (1− r)z

rz
, (6.15)

N =
2α2

s|R(0)|2

81πm3
q

. (6.16)

We will use the frgamentation function in Eq. (6.14) in order to calculate the B meson

production cross-section in the following section.

6.4 Article

The following sections of this chapter have been adapted from:

Leonard S. Kisslinger, Bijit Singha. B Production In p-p and A-A Collisions. Int. J. Theor.

Phys. 56 (2017) 3648
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6.5 B Production in p-p and A-A Collisions

In this subsection we consider B0(bd̄) and B−(bū) production via unpolarized p−p collisions

at 200 GeV. This is an extension of the work on D+(cd̄) and D0(cū) production in high

energy collisions [105] to the case of the heavy-light mesons containing a bottom quark. We

have also made use of previous work on J/ψ, ψ′(2S) and Υ(nS) productions in this work.

In addition to providing quantitative evidence for QCD as the fundamental theory behind

strong interactions, the estimate of B production via A − A collisions could provide a test

of Quark-Gluon Plasma (QGP) in relativistic heavy ion collisions. In Refs. [45], [106], the

mixed hybrid theory was used for the cross-section calculations of ψ′(2S) and Υ(3S) but is

not used in this work. The main new aspects of the present work is that while a gluon can

produce a cc̄ or bb̄ state, it cannot directly produce a bd̄. A fragmentation process converts

a bb̄ into a bd̄− db̄, for example. We use the fragmentation probability Db→bq̄ of Braaten et

al. [104] and derived in Section 6.3.

6.5.1 Differential pp→ BX Cross-section

B production in high energy collisions can proceed through either the quark-antiquark or the

gluon-gluon fusion channel [45]. But, the gluon distribution function evaluated at Q = 2mb

(mb = bottomonium mass) is much larger than the quark distribution function evaluated at
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the same energy:

fg(x,Q = 2mb) ≫ fq(x,Q = 2mb) . (6.17)

Thus the gluon-gluon fusion channel will be the dominant channel in BX production cross-

section (scenario 2 in [112]) and is given by

σpp→BX =

∫ 1

a

dx

x
fg(x, 2m)fg(a/x, 2m)σgg→BX , (6.18)

where we write using factorization theorem [111]

Γ

gluon fusion channel
H

g

g

g q

q̄
Γ

quark − antiquark fusion channel

g
g

H ′

Figure 6.5: Gluon(dominant) and quark-antiquark(suppressed) fusion channels.

σgg→BX = 2σ̂gg→bb̄Db→bq̄ , (6.19)

where σ̂gg→bb̄ is the bottomonium production cross-section and can be evaluated using per-

turbative QCD [45] and Db→bq̄ is the fragmentation function derived in section 6.3. For

E =
√
s = 200 GeV, the gluon distribution function for the bottomonia quarks is [45]

fg(y) = 275.14− 6167.6 x(y) + 36871.3 [x(y)]2 , (6.20)

where y denotes rapidity:

y =
1

2
ln
(
E + pz
E − pz

)
, (6.21)
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with E being the energy and pz being the component of the momentum along the beam axis,

and

x(y) =
1

2

[
m

E

(
exp y − exp (−y)

)
+

√(m
E
(exp y − exp (−y))

)2
+ 4a

]
. (6.22)

From Ref. [111], using for the light quark mass=(up-mass+down-mass)/2= 3.5 MeV.

Db→bq̄ = 9.21× 105α2
s|R(0)|2/π , (6.23)

in units of (1/GeV3), with αs = 0.26. For a 1S state |R(0)|2 = 4/a30. For a bq̄ state,

(1/ao) = mq ≃ 3.5 MeV. Therefore,

|R(0)|2 ≃ 1.71× 10−7 GeV3 ,

Db→bq̄ ≃ 3.39× 10−3 , (6.24)

so Db→bq̄ ≃ Dc→cq̄ [105] as expected from heavy-quark symmetry. The calculation of the

differential cross-section is similar to that in Ref. [45].

dσpp→BX

dy
= Abb × fg(x(y), 2m)fg(a/x(y), 2m)

dx(y)

dy

1

x(y)
Db→bq̄ , (6.25)

where Abb is the matrix element for bottomonium production [45], Abb = 5π3α2
s

288m3s
Ô⟨(1S8

0 )⟩,

and a = 4m2/s modified by an effective mass m: Abb = 7.9× 10−4(1.5/m)3 nb. For m = 5.0

GeV, Abb = 2.13× 10−5 nb. From Eq. (6.25) we find the differential cross-section, dσpp→BX

dy
,

shown in Figure 6.6, with m=5.0 GeV.
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Figure 6.6: dσ/dy for
√
s = 200 GeV unpolarized p-p collisions producing B +X.
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6.5.2 Total pp→ BX Cross-section

The total cross section for pp→ BX is given by

σpp→BX =

∫ 1

a

dx

x
Abb × fg(x(y), 2m)fg(a/x(y), 2m)Db→bq̄ . (6.26)

From Eqs. (6.17,6.24) and Abb one obtains

σpp→BX ≃ 0.4823 nb . (6.27)

Since σpp→DX ≃ 2680.0 nb [105], the ratio of σpp→BX to σpp→DX is

RR ≡ σpp→BX

σpp→DX

≃ 1.8× 10−4 , (6.28)

due to the difference in the quark mass and values of fg for bottom vs charm quarks. A

number of experiments have measured σcc̄ cross sections at √
spp=200 GeV [113, 116, 121,

122]. Experimental measurements of B production via p-p collisions are expected in the

future.

6.5.3 Differential Cu-Cu, Au-Au → BX Cross-sections

Cold nuclear matter effects on heavy-quark production were estimated for a number of

rapidities via PHENIX experiments [117]. We use the results of this experiment for the

study of B production via Cu-Cu and Au-Au collisions.

In this section we estimate the production of B0, B− from Cu-Cu and Au-Au collisions,

using the methods given in Ref. [106] for the estimate of production of Ψ and Υ states via
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Cu-Cu and Au-Au collisions based on p-p collisions.

The differential rapidity cross section for B + X production via A-A collisions is given by
dσpp→BX

dy
with modification described in Ref. [106] for Cu-Cu and Au-Au collisions:

dσAA→BX

dy
= RAAN

AA
bin

(
dσpp→BX

dy

)
, (6.29)

RAA is the nuclear-modification factor, NAA
bin is the number of binary collisions in the AA

collision, and
(
dσpp→BX

dy

)
is the differential rapidity cross section for BX production via

nucleon-nucleon collisions in the nuclear medium.(
dσpp→BX

dy

)
is given by Eq. (6.25) with x(y) replaced by the function x̄, the effective parton

x in the nucleus Au [118]:

x̄(y) = x(y)(1 +
ξ2g(A

1/3 − 1)

Q2
) , (6.30)

which was evaluated in Ref. [106], where it was shown that x̄(y) ≃ x(y).

Experimental studies show that for √
spp = 200 GeV, RE

AA ≃ 0.5 both for Cu-Cu [119, 120]

and Au-Au [121, 122, 123]. The number of binary collisions are NAA
bin =51.5 for Cu-Cu [124]

and 258 for Au-Au.

From Eqs. (6.25) and (6.29) one obtains the differential rapidity cross section for B+X

production via Cu-Cu and Au-Au collisions

dσCu−Cu→BX

dy
= (51.5/2)× Abb × fg(x(y), 2m)fg(a/x(y), 2m)

dx(y)

dy

1

x(y)
Db→bq̄ ,

dσAu−Au→BX

dy
= (258/2)× Abb × fg(x(y), 2m)fg(a/x(y), 2m)

dx(y)

dy

1

x(y)
Db→bq̄ . (6.31)
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Figure 6.7: dσ/dy for
√
s = 200 GeV unpolarized Cu-Cu collisions producing B +X.

dσCu−Cu→BX/dy and dσAu−Au→BX/dy are shown in the Figure 6.7 and Figure 6.8.
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Figure 6.8: dσ/dy for
√
s = 200 GeV unpolarized Au-Au collisions producing B +X.
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6.5.4 Total Cu-Cu → BX and Au-Au → BX Cross-sections

Total σCuCu→BX and σAuAu→BX cross-sections are obtained from σpp→BX Eq. (6.27) by mul-

tiplying σpp→BX by RAAN
AA
bin . Therefore

σCuCu→BX ≃ (51.5/2)× 0.4823 nb = 12.42 nb,

σAuAu→BX ≃ (258/2)× 0.4823 nb = 62.22 nb . (6.32)

6.6 Conclusions

We have estimated the production of heavy-quark mesons B0(bd̄), B−(bū) +X via p-p collli-

sions using the color-octet model with an extension of our previous work on production of c̄c

and b̄b states to d̄b or ūb B-meson states using fragmentation. Our results are expected to be

tested by p-p collision experiments in the future. We have also estimated the production of

B-meson states via Cu-Cu and Au-Au collisions, using experimental results for the nuclear

modification and number of binary collisions in recent A-A collisions experiments, which

also might be measured in future experiments.
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Summary

In this dissertation, we calculated the baryonic masses of charmed lambda (Λ+
c ), strange

lambda (Λ0), bottom lambda (Λ0
b) and have developed a framework to estimate the cou-

plings corresponding to the Cabibbo-favored and Cabibbo-suppressed weak decay processes

of heavy-quark baryons using the Quantum Chromodynamics Sum Rules (QCD Sum Rules).

QCD Sum Rules are non-perturbative techniques that use Operator Product Expansion

(OPE) of gauge-invariant QCD condensates of different mass dimensions to express the

n-point functions of the hadronic current operators and then use quark-hadron duality to

compare the OPE to a phenomenological model to extract various physical properties of the

hadrons. We used a two-point correlator of a current operator that projects into the state of

either Λ0, Λ+
c , or Λ0

b and evaluated exactly the perturbative term in the OPE. We achieved

convergence through Borel transformation and extracted the mass from the minima of the

Borel-transformed two-point correlators. We extended this work to consider a three-point

correlator comprised of the Λ+
c and Λ0 current operators, and the weak Hamiltonian re-

sponsible for charm to strange transition and an external pion creation. We compared the

OPE to a phenomenological model of the three-point correlator to estimate the coupling

corresponding to the process in which a charmed lambda decays to a strange lambda and a

pion. Because the Λ+
c and Λ0 masses are not close, we used reduced Borel transformation to

achieve convergence.

In the second part of the thesis, we extended one of our recent works on the charmed meson

78
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D production to calculate B meson production cross-section in unpolarized proton-proton

and and heavy-ion (copper-copper and gold-gold) collisions at
√
s = 200 GeV. The dominant

channel at this energy was the gluon-gluon fusion channel. While the gluons cannot directly

produce B mesons, they can create bottom-antibottom pairs which can later get converted

to B mesons(bd̄− db̄) through fragmentation process. The dominant mechanism behind the

bottom-antibottom creation was color-octet mechanism. The total production cross-section

of B meson at this energy was found to be much suppressed compared to that of D mesons

and the experimental measurements of B production cross-section from such processes are

expected in near future.
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Appendix A

OPE Side of the Three-point Function

Here we calculate the Operator Product Expansion side of the three-point function mentioned

in Chapter 5. Using Eq. (5.3), (5.4) and (5.8) and keeping the essential terms, Π3(x, y) is

Π3(x, y) = iGFFπVud qα⟨0| T
[
ϵabcū(x)aCγµd

b(x)γ5γ
µc(x)csj(y)γα(1− γ5)c̄

j(y)Vcs

ϵdefud(0)Cγλd̄
e(0)γ5γ

λs̄f (0)
]
|0⟩ . (A.1)

From Eq. (5.6), (A.1), and using q(x) =
∫

d4k
(2π)4

e−ik·xq(k),

Π3(p, q) = iGFFπVcsVud qα

∫
d4xd4yeip·xeiq·y

∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

d4k4
(2π)4

eik1·xe−ik2·xe−ik3·(x−y)e−ik4·yTr[Su(k1)CγµSd(k2)C
∗γλγ5γ

µSc(k3)γ
α(1− γ5)Ss(k4)γ

λγ5] ,

(A.2)

where the quark propagator is Sq(k) = ( ̸ k +mq)/(k
2 −m2

q) = (kµγ
µ +mq)/(k

2 −m2
q).

Using mu,md ≪ mc, the trace in Eq(A.2) is

Tr[Su(k1)CγµSd(k2)γ
νCγ5γ

µSc(k3)Ss(k4)γνγ5] = Tr[̸ k1Cγµ ̸ k2C∗γλγ5γ
µ( ̸ k3 +mc)γ

α(1− γ5)

(̸ k4 +ms)γλγ
5]

1

k21k
2
2(k

2
3 −m2

c)(k
2
4 −m2

s)
.

(A.3)
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In carrying out the trace in Eq(A.3) note that Tr[γ5γνγλ] = 0, and one obtains for the trace

on the right hand side

TR = Tr[̸ k1Cγµ ̸ k2C∗γλγ5γ
µ(̸ k3 +mc)γ

α(1− γ5)(̸ k4 +ms)γλγ5]

= 16mc(k1 · k2kα4 + k2 · k4kα1 − k1 · k4kα2 )

−16ms(−k1 · k2kα3 + k2 · k3kα1 − k1 · k3kα2 ) . (A.4)

Making use of
∫
d4xeix·(p−k) = (2π)4δ(4)(p− k) so k3 = p+ k1 − k2 and k4 = p+ k1 − k2 + q,

one obtains

Π3(p, q) = 16iGFFπVcsVud

∫
d4k1
(2π)4

d4k2
(2π)4

(mcF1 +msF2)

× 1

[k21k
2
2((p+ k1 − k2)2 −m2

c)((p+ q + k1 − k2)2 −m2
s)]

, (A.5)

where

F1 = k1.q k2.(p+ q + k1 − k2)− k2.q k1.(p+ q + k1 − k2) + k1.k2 q.(p+ q + k1 − k2),(A.6)

F2 = k1.(p+ k1 − k2) k2.q − k2.(p+ k1 − k2) k1.q + k1.k2 q.(p+ k1 − k2) . (A.7)

Using (k1 + p) ≡ l and k2 ≡ k, Π3(p, q) in Eq(A.5) can be expressed as

Π3(p, q) = 16iGFFπVudVcs
(
mcΠ3c +msΠ3s

)
, (A.8)

with

Π3c(p, q) =

∫
d4k

(2π)4
1

k2

∫
d4l

(2π)4
F1

(l + p)2 [(l − k)2 −m2
c ] [(l − k − q)2 −m2

s]
. (A.9)
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Π3s(p, q) =

∫
d4k

(2π)4
1

k2

∫
d4l

(2π)4
F2

(l + p)2 [(l − k)2 −m2
c ] [(l − k − q)2 −m2

s]
, (A.10)

where

F1 = k · (l − p)q · (l − k + q) + k · (l − k + q)q · (l − p)− (l − p) · (l − k + q)q · k (A.11)

F2 = k · (l − p) q · (l − k)− k · (l − k) q · (l − p) + (l − p) · (l − k) q · k . (A.12)

Here we consider ms ≪ mc to write

Π3(p, q) = 16imcGFFπVudVcs Π3c(p, q) . (A.13)

Defining

Π̃µνω(p, q) =

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
(l − p)ν(l − k + q)ω

(l + p)2 [(l − k)2 −m2
c ] [(l − k + q)2 −m2

s]

=

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
lν(l − k + p+ q)ω

l2 [(l − k + p)2 −m2
c ] [(l − k + p+ q)2 −m2

s]
(A.14)

to write

Π3c(p, q) = qν

[
Π̃µµν + Π̃µνµ − Π̃νµµ

]
. (A.15)

Using k → −k, l → −l, we get

Πµνω(p, q) = −Π̃µνω =

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
lν(l − k − p− q)ω

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]
.

(A.16)
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Thus,

Π3(p, q) = −16imcGFFπVudVcs Π3Q(p, q), (A.17)

where

Π3Q(p, q) = qν [Π
µµν +Πµνµ − Πνµµ] . (A.18)



Appendix B

Evaluation of Πµνω(p, q)

Here we evaluate the integral in Eq. (A.16). Let’s define

Πl0(p, q) =

∫
d4l

(2π)4
1

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]
,

Πµ
l1(p, q) =

∫
d4l

(2π)4
lµ

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]
,

Πµν
l2 (p, q) =

∫
d4l

(2π)4
lµlν

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]
. (B.1)

These integrals are evaluated using the regularization technique adopted in [86] to give us

Πl0(p, q) =
1

(4π)2

∫ ∞

0

dαdβdγ
eA(α,β,γ)+βm

2
c+γm

2
s

(α+ β + γ)2
, (B.2)

Πµ
l1(p, q) =

1

(4π)2

∫ ∞

0

dαdβdγ
[(β + γ)k + s]µ

(α + β + γ)3
eA(α,β,γ)+βm

2
c+γm

2
s , (B.3)

Πµν
l2 (p, q) =

1

(4π)2

∫ ∞

0

dαdβdγ eA(α,β,γ)+βm
2
c+γm

2
s

[
− 1

2(4π)2
gµν

(α + β + γ)3

+
[(β + γ)k + s]µ [(β + γ)k + s]ν

(α + β + γ)4

]
, (B.4)

where

sµ = (β + γ)pµ + γqν . (B.5)
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Using d4k → dDk, D ≡ 4 − 2ϵ, β → ρβ, γ → ργ, δ(ρ − β − γ) → δ(1 − β − γ)/ρ, and

repeating for α as well, one obtains

Πl0(p, q) =
1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ ρeA+κρ[(1−γ)m
2
c+γm

2
s], (B.6)

Πµ
l1(p, q) =

1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ ρ2[k + p+ γq]µ eA+κρ[(1−γ)m
2
c+γm

2
s], (B.7)

Πµν
l2 (p, q) =

1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ ρ

[
− 1

2κ
gµν + ρ2(k + p+ γq)µ(k + p+ γq)ν

]
eA+κρ[(1−γ)m

2
c+γm

2
s] ,

(B.8)

where we redefine

A = Dk2 + F.k + f(p, q) , (B.9)

where

D = −κρ(1− ρ), (B.10)

F µ = −2κρ(1− ρ)(p+ γq)µ, (B.11)

f(p, q) = −κρ(1− ρ)p.(p+ γq) . (B.12)
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Using Eq. (B.6), (B.7), (B.8) in Eq. (5.11), we get

Πµµν(p, q) =

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
lµ(l − k − p− q)ν

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]

=

∫
d4k

(2π)4
kµ
k2

[
Πµν
l2 − (k + p+ q)ν Πµ

l1

]
=

1

(4π)2

∫ ∞

0

dαdβdγ eA+βm
2
c+γm

2
s

∫
d4k

(2π)4
kµ
k2

[
− gµν

2(α + β + γ)3

+
[(β + γ)k + s]µ [(β + γ)k + s]ν

(α + β + γ)4
− (k + p+ q)ν [(β + γ)k + s]µ

(α + β + γ)3

]
.

(B.13)

Similarly, we can write

Πµνµ =

∫
d4k

(2π)4
kµ
k2

∫
d4l

(2π)4
lν(l − k − p− q)µ

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]

=
1

(4π)2

∫ ∞

0

dαdβdγ eA+βm
2
c+γm

2
s

∫
d4k

(2π)4
kµ
k2

[
− gµν

2(α + β + γ)3

+
[(β + γ)k + s]µ [(β + γ)k + s]ν

(α + β + γ)4
− (k + p+ q)µ[(β + γ)k + s]ν

(α+ β + γ)3

]
,(B.14)

Πνµµ =

∫
d4k

(2π)4
kν
k2

∫
d4l

(2π)4
lµ(l − k − p− q)µ

l2 [(l − k − p)2 −m2
c ] [(l − k − p− q)2 −m2

s]

=
1

(4π)2

∫ ∞

0

dαdβdγ eA+βm
2
c+γm

2
s

∫
d4k

(2π)4
kν
k2

[
− gνν

2(α + β + γ)3

+
[(β + γ)k + s]µ [(β + γ)k + s]µ

(α + β + γ)4
− (k + p+ q)µ[(β + γ)k + s]µ

(α + β + γ)3

]
.

(B.15)



88 Appendix B. Evaluation of Πµνω(p, q)

Multiplying Eq. (B.13), (B.14) and (B.15) with the pion four momentum, qµ, we get

qνΠ
µµν =

1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ eκρZ
2
[
− ρ

2κ

∫
d4k

(2π)4
eA

q.k

k2

+ρ3
∫

d4k

(2π)4
eA

k.(k + p+ γq) q.(k + p)

k2

−ρ2
∫

d4k

(2π)4
eA

k.(k + p+ γq) q.(k + p)

k2

]
, (B.16)

qνΠ
µνµ =

1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ eκρZ
2
[
− ρ

2κ

∫
d4k

(2π)4
eA

q.k

k2

+ρ3
∫

d4k

(2π)4
eA

k.(k + p+ γq) q.(k + p)

k2

−ρ2
∫

d4k

(2π)4
eA

k.(k + p+ q) q.(k + p)

k2

]
, (B.17)

qνΠ
νµµ =

1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ eκρZ
2
[
− 2ρ

κ

∫
d4k

(2π)4
eA

q.k

k2

+ρ3
∫

d4k

(2π)4
eA

k.q (k + p+ γq)2

k2

−ρ2
∫

d4k

(2π)4
eA

k.q (k + p+ γq).(k + p+ q)

k2

]
. (B.18)

Eq. (B.16), (B.17) and (B.18) and (B.23) allows us to write

Π3Q =
1

(4π)2

∫
dγdρ

∫ ∞

0

dκ eκρZ
2
[ρ
κ

∫
d4k

(2π)4
eA

k.q

k2

+2ρ3
∫

d4k

(2π)4
eA

k.(k + p+ q) q.(k + p)

k2

−ρ3
∫

d4k

(2π)4
eA

(q.k)(k + p+ γq)2

k2

−ρ2
∫

d4k

(2π)4
eA

q.(k + p)

k2

{
2k2 + (p+ q).k + (p+ γq).k

}
+ρ2

∫
d4k

(2π)4
eA

q.k

k2

{
k2 + k.

[
(p+ q) + (p+ γq)

]
+ (p+ q).(p+ γq)

}]
.(B.19)
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After a little manipulation, we get

Π3Q =
1

(4π)2

∫ 1

0

dγdρ

∫
dκ eκρZ

2
[ρ
κ

∫
d4k

(2π)4
eA

k.q

k2

+2ρ3
{∫ d4k

(2π)4
eA + (p+ γq)µ

∫
d4k

(2π)4
eA
kµ

k2

}
q.(k + p)

−ρ3
∫

d4k

(2π)4
eA

(k.q) [k2 + 2k.(p+ γq) + (p+ γq)2]

k2

−2ρ2
∫

d4k

(2π)4
eA q.(k + p)− ρ2

∫
d4k

(2π)4
eA

q.(k + p) k.
{
(p+ q) + (p+ γq)

}
k2

+ρ2
∫

d4k

(2π)4
eA q.k + ρ2

∫
d4k

(2π)4
eA

(q.k) k.
{
(p+ q) + (p+ γq)

}
k2

+ρ2
∫

d4k

(2π)4
eA

(q.k)(p+ q).(p+ γq)

k2

]
, (B.20)

we get

Π3Q =
1

(4π)2

∫ 1

0

dγdρ

∫ ∞

0

dκ eκρZ
2
[ ∫ d4k

(2π)4
eA

k.q

k2

{ρ
κ
− (γ + 1)ρ2q.p

+2ρ3γ(p.q)− ρ2(p+ γq). [ρ(p+ γq)− (p+ q)]
}

+2ρ2(ρ− 1)(p.q)

∫
d4k

(2π)4
eA

k.p

k2
+ 2ρ2(ρ− 1)(p.q)

∫
d4k

(2π)4
eA + ρ2(ρ− 1)

∫
d4k

(2π)4
eA k.q

]
,

(B.21)

But

−(γ + 1)ρ2q.p+ 2ρ3γ(p.q)− ρ2(p+ γq). [ρ(p+ γq)− (p+ q)] = −ρ2(ρ− 1)p2 .

(B.22)
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This eventually gives us

Π3Q =
1

(4π)2

∫
dγdρ ρ2(ρ− 1)

∫ ∞

0

dκ eκρZ
2
[
− p2

∫
d4k

(2π)4
eA

k.q

k2
+ 2p.q

∫
d4k

(2π)4
eA

k.p

k2

+2p.q

∫
d4k

(2π)4
eA +

∫
d4k

(2π)4
eA (k.q) +

ρ

κ

∫
d4k

(2π)4
eA

k.q

k2

]
. (B.23)

Using

∫
d4k

(2π)4
eA =

1

2(4π)2
ef−F

2/4D

D3
(2D), (B.24)∫

d4k

(2π)4
kµ eA =

1

2(4π)2
ef−F

2/4D

D3
(−F µ), (B.25)∫

d4k

(2π)4
kµ

k2
eA =

∫ ∞

0

dλ
ef−F

2/4(D−λ)

2(4π)2(D − λ)3
(−F µ) , (B.26)∫

d4k

(2π)4
kµkν

k2
eA =

∫ ∞

0

dλ
ef−F

2/4(D−λ)

2(4π)2(D − λ)3

[
gµν +

F µF ν

2(D − λ)

]
, (B.27)

we get

Π3Q =
1

2(4π)4

∫ 1

0

dγdρ2ρ3(1− ρ)2 (p.q)

∫ 1

0

dκ
1

g(ρ, κ, γ)3

[
κ(p+ γq)2Γ(ϵ)a−ϵ

+ρΓ(−1 + ϵ)a1−ϵ
]
+

1

2(4π)4

∫ 1

0

dγdρ
2p.q

(1− ρ)

[
Γ(−1 + ϵ)(a′)1−ϵ

]
,

(B.28)

where

Z2(γ) = (1− γ)m2
c + γm2

s, (B.29)

g(ρ, κ) = κρ(1− ρ) + (1− κ), (B.30)

a(ρ, κ, γ) = −κρZ2 + κρ(1− ρ)p.(p+ γq)−
{κρ(1− ρ)

g

}
κρ(1− ρ)(p+ γq)2,(B.31)

a′(ρ, κ, γ) = −ρZ2 + ρ(1− ρ)p.(p+ γq)−
{κρ(1− ρ)

g

}
ρ(1− ρ)(p+ γq)2 . (B.32)
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