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Abstract

Extending cloud computing applications to fog computers provides a rich hybrid cloud com-

puting platform for liberating mobile and embedded devices from severe resource constraints.

However, the security techniques that are well-suited to the traditional cloud computing

model do not adequately protect against the increased cyber-physical and privacy risk ele-

ment of the Internet of Things (IoT). Off-premise code execution in the hybrid cloud comput-

ing model must be resilient against both malicious software and an adversary with physical

access. Moreover, in the absence of user-controlled and remotely verifiable data protection

mechanisms, individuals must implicitly rely upon application service providers — including

the full software stack responsible for the deployment, management, and monitoring of cloud

workloads — for the handling of personal data.

This work develops the concept of fog mediation — a fog computing systems design

pattern, derived exclusively from the physical microstructure of commodity CPUs, for gen-

erating user-controlled cryptographic key material and, thereupon, mediating the usabil-

ity, security, and privacy requirements of security-sensitive Internet of Things applications.

The tamper-evident key generation properties of an isolated execution environment enable

security-sensitive application logic and data to move freely between on-premise and off-

premise computing resources. Fog mediation maps the variegated device capabilities of the

IoT to a manageable set of mandatory protections and discretionary controls that accord

with the application requirements and the data handling preferences of individuals.

How we regulate the use of data in the context of IoT has significant implications for

individual rights with regards to personal data and notions of privacy and cybersecurity in

an increasingly connected society. The policy analysis focuses on laws, standards, and regu-

lations relevant to the use of IoT in the United States. In particular, this work investigates

policy measures that could be adopted through the joint efforts of U.S. federal and state reg-

ulation, private sector self-regulation, transnational technical standards organizations, and

consumer-oriented non-governmental organizations.
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Chapter 1

Introduction

Today, the global prevalence of the Internet, the ubiquity of connected devices, and the

ever-increasing societal reliance on computing services highlight the importance of designing

computing systems with security in mind. The same computing infrastructure that increases

the reach of transformative technologies that promote public well-being is routinely compro-

mised by the unwholesome elements of human psychology and society.

It is at the intersection of computing and society where the persistence of old problems

and the constant emergence of new problems seem to resist our most well-intentioned at-

tempts to extend the attributes of computing systems (e.g., reliability and security) to the

individuals and groups that make use of them. This incongruence seems to indicate that the

properties achieved at the level of computing systems do not always translate in full measure

to the level of services and individuals. We build properties like reliability and security into

computing processes, but ensuring those properties translate into human experience presents

another challenge. However, it is also at the intersection of computing and society where

we observe many compelling opportunities for making tractable some of the most pressing

social, political, and economic problems.

This dissertation advances the state-of-the-art of hardware root of trust, remotely verifi-

able code execution, and privacy-preserving collaborative learning models as an aid to data
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protection policy and edge device security in hybrid cloud computing and the Internet of

Things (IoT). The research problem of how to provide edge device security and user data

protection in the IoT is particularly important because of the increased cyber-physical and

privacy risk element of the IoT. This problem has not been solved before due to the chal-

lenges of protecting security-sensitive code execution on commodity computer processors

(i.e., central processing units or CPUs) in the presence of adversaries with physical access

to the hardware. This work proposes minimal architectural changes that achieve an isolated

execution environment completely contained inside a modern CPU.1 The proposed CPU

instruction set extension does not require on-chip non-volatile memory to store secrets and

has resilience against several classes of hardware attacks. We model and evaluate the perfor-

mance of our implementation in a series of research studies demonstrating it’s applicability

to IoT security and privacy. We consider the laws, standards, and regulations relevant to

the use of IoT in the United States. We also consider the policy implications of the technical

proposals presented in this research in light of U.S. policies on IoT cybersecurity and data

protection. Based on this analysis, we recommend IoT cybersecurity and data protection

policy measures that could be implemented through collaboration between consumer advo-

cacy groups, technical standardization organizations, federal and state regulatory bodies,

and the private sector.

The policy conclusions we seek to inform are broad-based whereas the technical propos-

als examined in this work must provide enough specificity to demonstrate feasibility under

competitive assumptions for cost and performance (i.e., a reasonable account of the major

product drivers for the adoption of security features). The technical proposals presented

here address specific use case requirements, nonetheless, the motivating design choices (see

Sections 3.2.2, 4.2.2, and 5.2.2) provide actionable agency to the primary beneficiaries of pol-

icy interventions without unduly encumbering the implementers of policy interventions —

a benefit-cost balance that aims to bridge the disconnect we observe between platform-level

1These modifications are minimal in the sense that they make use of the semiconductor processes that
are already used in the production of modern CPUs.
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capabilities, service-level security guarantees, and IoT policy. Concrete implementations

also provide sufficient food for thought to those most interested in the potential trade-offs

between various design choices or building and deploying such systems.

The general approach followed in our line of inquiry borrows both from computer se-

curity and policy analysis. We lead into the technical proposals by first investigating the

existing engineering and policy landscape using the lens of the policy analyst. Our pri-

mary motivation here is to better understand the practical factors that enable policy-based

security and privacy requirements to be readily adopted as product design specifications.

Conversely, we investigate industry trends and technology-based mechanisms that inform

and suggest perhaps more advantageous directions for policy efforts. It is with this under-

standing in mind that we turn to the historical context of contemporary developments in

trusted computing in Chapter 2. In particular, we explore developments related to critical

computing infrastructure and the capabilities they give rise to. We then present several

systems architecture designs using the lens of the security researcher (Chapter 3, Chapter 4,

and Chapter 5). These proposals, leveraging trusted computing principles, provide a tech-

nical means for transferring system-level trust, and its attendant risks and uncertainties,

to the domain where individuals are most directly impacted by computing systems — the

domain of actionable regulation and industry standardization in the form of developer-facing

programming interfaces and user-facing apps. Finally, we switch back to the policy analyst

lens and ask what implications do the challenges and solutions addressed in this work have

for the Internet of Things security and privacy policy landscape (Chapter 6).

1.1 Research Questions

These research questions have guided the studies in this dissertation:

• What do we need to add to a modern CPU to achieve a highly efficient isolated execution

environment with remote attestation properties?
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• What do we need to add to fog and edge computing deployments to extend the security

guarantees of the proposed isolated execution environment to the diverse set of mobile

and embedded devices comprising the Internet of Things?

• What do we need to add to the optimization functionality of deep learning architec-

tures to learn accurate models that integrate isolated execution and remote attestation

properties with user-controlled data use models?

• What are the gaps and limitations in the legal and regulatory landscape to realizing

recommendations for user-verifiable code execution and data sharing models that utilize

hybrid cloud computing?

• What technical strategies provide a means for decision-makers to expedite the adoption

of user-verifiable code execution and data sharing models in economic markets that are

supportive of user-verifiable data protection in hybrid cloud computing?

• What technical strategies provide alternatives for individuals in economic markets that

are not supportive of user-verifiable data protection in hybrid cloud computing?

1.2 Security Challenges in the Cloud

Evaluating the trusted computing base (TCB) of an application in today’s cloud computing

infrastructure is a challenge. From the perspective of the user, the cloud trust model is vast,

inscrutable, and generally not designed with user-controlled data protection mechanisms.

The problem of securing the commercial cloud for cloud customers is a far from trivial task

and this fact is not lost on the major commercial cloud vendors. For example, Amazon

created a separate air-gapped cloud computing installation for the CIA.2

The challenge begins with the building blocks themselves — the hardware components

comprising the infrastructure. In the context of a globally distributed hardware supply chain,

2Announcing the New AWS Secret Region, Nov. 20th 2017.
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consideration must be made, not only for assessing how well a device protects its root of

trust during use, but also for how susceptible the root of trust is to compromise during the

manufacturing, system integration, and distribution phases. The production and trafficking

of counterfeit semiconductor products pose a major security risk to critical services that rely

on electronic systems. Semiconductor counterfeiting can occur both outside and inside the

authorized supply chain. For example, “e-waste” products that are re-marked to indicate

a newer or higher-performing unit than the original are an example of counterfeit occur-

ring outside an authorized supply chain. The case where a manufacturing plant produces

undocumented units for sale to unauthorized distributors is an example of counterfeit occur-

ring inside an authorized supply chain. The significant numbers of documented counterfeit

semiconductor products in a small portion of the commercial and military semiconductor

markets suggest that there is a recurring production of counterfeit products in the total

semiconductor market [1, 2].

Counterfeit operations are not subject to the best-practice industry controls that ensure

the quality, reliability, and security of semiconductor products. This results in the real pos-

sibility of compromised components being introduced into the market. A security property

that would lessen the risk potential of hardware production is a root of trust based on a key

generation mechanism that does not require on-chip non-volatile memory to store secrets.

This security property frees distributors and manufacturers from the liability of having to

protect platform secrets on behalf of the end-user. It also provides users with unique cryp-

tographic keys that are independent of any processes external to the requesting application

— resulting in a TCB that is independent of supply chain factors.

Even if the key derivation mechanism results in secrets that are verifiably independent

of any processes external to the requesting code or preceding run time, accounting for the

security of the remaining components in the TCB of the traditional cloud model is a difficult

proposition for an end-user. The most reliable strategy for securing large complex systems

is to minimize the complexity of its security-critical components — to minimize the TCB.
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From the perspective of the developer, it would simplify matters to reduce the TCB to the

processor and the executing code. This enables the security of a given software service to rest

on the correctness of its implementation. However, the current best practices for protecting

secrets in the cloud result in a TCB that contains many components not necessary for running

the security-sensitive applications.

As a result, cloud users must effectively include the service provider’s code, the full

software stack responsible for managing and monitoring cloud workloads, as well as any

privileged code (e.g., the firmware and hypervisor) in the trusted computing base. Addi-

tionally, cloud users implicitly trust the employees of the cloud service provider including

systems administrators as well as anyone with physical access to the hardware (e.g., security

staff, facilities staff, cleaning staff, and visitors). Lastly, as highlighted by reports regarding

the Utah Data Center and the Snowden leak [3, 4], cloud users implicitly trust the law en-

forcement agencies in any of the areas their data may be stored or duplicated. An externally

verifiable isolated execution environment that consists solely of the CPU would reduce the

TCB security-sensitive applications to the processor and the executing code.

In addition to the challenges of providing a strong hardware root of trust and minimizing

the size of TCB, the current cloud security model is generally designed to protect the cloud

infrastructure from untrusted cloud users and not vice versa — i.e., sandboxing is commonly

employed to protect privileged platform code (of the cloud provider) from untrusted code

(user data and services residing in a virtual machine/container). Whereas isolated execution

restricts access to user data exclusively to the authorized service (and the trusted computing

base needed to establish the integrity and secrecy of the execution environment). This

security model is a much more tenable prospect for the application developer and facilitates

communicating privacy and security to the user. From the perspective of the user, the

cloud infrastructure hosting their service operates transparently when the design objective

is isolated execution with remote attestation properties — enabling cloud users to assess the

security and privacy risk of their service primarily in terms of the application code.
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Utilizing a hardware root of trust and minimal TCB isolated execution environment —

to support integrity, secrecy, and remote attestation properties — enables user-verifiable

implementations of security-sensitive application logic to run unencumbered alongside cloud

task management functionality. Bolstering commodity CPUs with these properties also

provides resilience against a number of the additional security challenges of extending cloud

computing to fog computing and hybrid cloud computing. The term hybrid cloud refers

broadly to cloud services that rely on multiple cloud service providers. This could be used

in reference to a single cloud service that is ported to several cloud vendors to avoid lock-

in. It may also be used in reference to a cloud service that is an integration of multiple

cloud services. Hybrid cloud is often used to describe cloud services that have both private

cloud components and public cloud components [5]. We use this special case of hybrid

cloud computing (i.e., private/public or local/remote) in reference to the technical proposal

presented in this work for edge computing security services deployed to local fog computing

and remote cloud computing.

1.3 Security Challenges at the Edge

The Internet of Things extends the Internet from a network comprised of a well-defined set

of traditional device categories (e.g., client/server or host3/router) to a network that includes

everyday physical objects outfitted with software, sensors, and radios. The convergence of

software services and networked matter is an exciting prospect. However, this prospect in-

cludes new security and privacy challenges and an increase in the cyber-physical risk element

of cyber attacks [6].

The argument has been made that there is no such thing as an “Internet of Things”

— that it is simply our good old Internet with many devices connected to it. It is true

that the Internet has evolved as a medium, from an interconnection of workstations, routers,

and mainframes, to an interconnection of billions of devices, some of which have very little

3Host refers to a computing system or device that can host applications (i.e., a network endpoint).
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computing abilities or non-standard functionality [7]. In this sense, the IoT is an outgrowth

and development of how the Internet is used. However, this outgrowth has led to distinctions

in the way computing systems interface with one another and interact with the world —

distinctions with significant implications for how we address cybersecurity.

The notion of a domain in the IoT context is more closely aligned with physical prox-

imity than with the logical relationship of components. For example, a smart space may

contain embedded devices, network elements, displays, computers, sensors, and actuators

all operated by different users, serving different purposes, and managed by different service

providers but nonetheless falling under the same domain due to their proximity to the users

and user devices that leverage them. Similarly, the type of messages exchanged in IoT do-

mains are highly spatiotemporally dependent (e.g., contextual information such as system

state, observations about the environment, and control signals). The physical proximity

and contextual information flow characteristics of many IoT use cases may allow us to rule

out certain attack vectors (e.g., man-in-the-middle may become impractical), but may also

present some trade-offs.

1.4 Grounds for Mediation

We’ve discussed the challenges that end-users face in accounting for and reducing the trusted

computing base of cloud-based applications. We’ve discussed the security challenges intro-

duced by the IoT. We’ve also suggested that minimal modifications to commodity CPUs and

additional design considerations are keys to addressing the unique challenges of IoT security.

We now consider the role fog computing can play in addressing these challenges. Just as

“fog” is a cloud formation that is near to the surface of the earth, the idea of fog computing

is to bring cloud computing resources closer to the edge of the network. Fog computing refers

to computation, storage, and network resources residing between end devices and cloud com-

puting data centers [8, 9]. Fog computing installations often serve as a complement to cloud
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computing.

Crisp and responsive interaction remains a critical design constraint for software with

high quality of service requirements (e.g., real-time analytics, streaming, online planning

and actuating, and augmented reality). The physical nearness and single-hop network la-

tency of fog computers — with respect to the edge of the network and end devices —

enables both functional and performance improvements to applications [8]. When applied

to the Internet of Things, fog computing enables responsive resource-intensive services to

be augmented by resource-poor embedded devices and consumed by resource-constrained

user devices. The common characteristics of fog computing applications include latency-

sensitivity, location-awareness, wide geographical distribution4, increased wireless access,

increased mobility support5, ubiquity6, and heterogeneity7 [9].

We observe that resource-rich fog computing nodes provide not only a scalable platform

for liberating mobile and embedded devices from severe resource constraints but are well-

positioned as a grounds for mediating trust between the cloud and the edge of the network.

It is the goal of this research to examine ways in which security extensions to fog computing

architectures may be applied to the challenge of providing strong security assurance in the

Internet of Things. Additionally, this research analyzes U.S. policy with relevance to the

IoT and considers its implications for the individual right to personal data protection.

The proposals in this body of work consider an adversary in three contexts. This first

context is that of protecting the integrity and secrecy of code execution on commodity

CPUs deployed to the cloud. This second context is that of protecting code execution

4This is in contrast to applications relying on remote centralized cloud deployments. This geographical
distribution enables greater utilization of high-bandwidth wireless LAN and plays an active role in supporting
quality-of-service guarantees.

5For example, a common technique needed for fog computing mobility support is to enable mobile devices
to communicate with an application in a manner that decouples host identity from location-based and time-
based identity.

6Ubiquity refers to the integration and orchestration of very large numbers of network nodes and end-
points.

7The resource capacity, form factor, and deployment environments of fog computing units vary widely.
Fog apps make use of virtualization support and transient customization to support these heterogeneous and
dynamic deployment contexts.
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on commodity CPUs residing in fog computing deployments. This third context is that

of protecting individual privacy during the use of machine learning applications running

on hybrid cloud deployments. The considered hybrid cloud consists of a fog computing

component (local domain) and a cloud computing component (remote domain). Please note

that the detailed definition for each security problem is stated at the beginning of each study.

We present the adversary models and desired security properties in brief here.

The first adversary model is with regard to providing minimal TCB code execution in the

cloud (isolated execution). We consider a sophisticated adversary with physical access to the

computing platform. The adversary can introduce malware into the computing platform,

has access to the external ports of the platform to physically attach malicious peripherals.

Additionally, the adversary can probe and tamper with low-speed and high-speed buses,

inject code, and modify data. With regards to this class of adversary, we’d like to achieve

an isolated execution environment with a TCB consisting solely of the CPU packages —

providing strong root of trust, integrity, secrecy, and remote attestation properties to end-

users leasing hardware deployed to the cloud.

The second adversary model is with regard to enabling fog computing architectures to

provide minimal TCB code execution and mediation services to IoT applications (fog me-

diation). With regard to this class of adversary, we’d like to provide integrity, secrecy, and

remote attestation for security-sensitive code running on fog computing equipment in envi-

ronments that are physically accessible to any interested passerby. We’d also like to support

authentication and data access rules based on co-presence to the fog mediation node(s).

The third adversary model is with regards to enabling privacy-preserving data sharing

within machine learning applications deployed across user devices, fog computers, and cloud

computers (privacy partitioning). We consider an adversary with access to the hidden layer

activations of a deep neural network during the model inference stage. This adversary is

interested in carrying out an input inference attack (i.e., discovery of the original user in-

put) and a private attribute inference attack (i.e., unauthorized extraction of a private user
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attribute). With regard to this class of adversary, we’d like to lessen the applicability of inter-

mediate network states to unauthorized learning tasks without diminishing the classification

accuracy of authorized learning tasks.

1.5 Contributions

This work presents systems security design patterns for securely interfacing security-sensitive

apps, IoT devices, and user data with cloud computing and fog computing infrastructure:

isolated execution, fog mediation, and privacy partitioning. Isolated execution (OASIS) es-

tablishes a verifiable root of trust for measuring code execution environments utilizing the

modern computer processor (the topic of Chapter 3). Fog mediation (MEDIA) extends the

processor-level security guarantees of an isolated execution environment to support security-

sensitive fog computing applications (the topic of Chapter 4). Privacy partitioning (DA-

TUM) is a deep network optimization framework for protecting personal data originating

from a fog mediation node (the topic of Chapter 5). The policy analysis focuses on identify-

ing the policy implications of realizing user-verifiable code execution and data sharing models

in the IoT. Additionally, the policy analysis focuses on identifying the gaps and limitations

in the United States IoT policy landscape concerning cybersecurity and the individual right

to data protection (the topic of Chapter 6). In particular, this work makes the following

contributions:

OASIS Contributions.

• We present an instruction set extension for remotely verifiable, efficient code execution

requiring a minimal TCB (Section 3.4).

• We propose an application programming interface where the CPU provides unique

cryptographic keys to security-sensitive applications (Section 3.3).

• Our system is designed for deployment on existing commodity CPUs with minimal

12



modifications (Section 3.2).

• Our deployment model precludes the need for a distributor or manufacturer to protect

platform secrets on behalf of the end-user or their customers (Section 3.5).

• Contrary to prior approaches, our solution does not require on-chip non-volatile mem-

ory to store secrets. Thus, in addition to avoiding the strong assumption of secure

non-volatile memory, our solution is cheaper to implement in practice as it leverages

semiconductor processes already used in modern CPUs (Section 3.7).

MEDIA Contributions.

• We present a security architecture for isolated execution in fog computing applications

(Section 4.2).

• We examine the applicability of hardware-based root of trust and isolated execution

environments to the challenges of providing strong security assurance in the Internet

of Things (Section 4.3).

• We introduce the concept of fog mediated computing — a systems security design

pattern that leverages edge computing infrastructure to provide a common root of trust

between co-located users, mobile devices, embedded devices, and services (Section 4.4).

• We evaluate the performance of MEDIA using commodity computing hardware and

public cloud resources (Section 4.5).

DATUM Contributions.

• We propose an optimization technique for learning accurate deep networks that are

resilient against input inference and private attribute inference attacks (Section 5.3).

• Unlike related differential privacy research that protects statistical databases (aggre-

gate data) during the model inference phase, we propose a solution that protects indi-

vidual queries (Section 5.2).
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• We experimentally demonstrate the effectiveness of the proposed optimization tech-

nique in a series of experiments. The results indicate that privacy partitioning can sig-

nificantly reduce the privacy risk potential of deep network activation states (Section 5.4).

Policy Contributions.

• We identify gaps and limitations in the regulations and standards governing the United

States’ internal use policy on IoT (Section 6.2).

• We analyze federal and state paths to a comprehensive U.S. cybersecurity and U.S.

data protection policy frameworks.

• We make the case for joint public and private interventions that address the global

dimension of domestic cybersecurity policy effectiveness by drawing lessons from the

policy efforts to improve labor rights and environmental standards in the global supply

chain for electronics production (Section 6.1).

• We present a series of policy recommendations for IoT security and privacy based on

technical findings presented in this work (Section 6.3).

1.6 Research Components

We now highlight how the individual projects fit together to support fog computing ap-

plications. Isolated execution achieves a TCB consisting of the CPU package for use by

security-sensitive pieces of application logic. Some examples of security-sensitive pieces of

application logic include code segments within an application that are tasked with handling

cryptographic keys, carrying out cryptographic operations, or processing confidential user

data. These modifications do not presume a secure manufacturing process, are remotely ver-

ifiable and enable commodity CPUs to manage cryptographic secrets and complete security-

sensitive code routines — in a manner that is resilient to malware compromises as well as

adversaries with physical access to the computing platform.
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In particular, we consider the application of these processor extensions to cloud com-

puting and edge infrastructure to support service integration between the cloud provider,

the fog provider, and the service provider — to support fog mediation. The operations of

a fog mediation node include the launch and measurement of the isolated execution envi-

ronment, secure channel establishment with the remote verifier, the establishment of the

proximal domain (where a proximal domain refers to the set of connected devices and fog

nodes managed by a fog mediation cluster), the provisioning of services to the proximal

domain (where VM-based micro-services are deployed to proximate fog computing infras-

tructure), the provisioning of secrets to the proximal domain (where user-provisioned secrets

and hardware-generated secrets may be securely managed across any isolated execution en-

vironment instance belonging the application), code execution, saving the session state, and

clean up of the isolated execution environment after each session.

Each fog mediation node contains CPUs capable of isolated execution. The programming

interface for isolated execution enables proximal domains to be formed. Fog mediation nodes

manage device messaging within the domain as well as mediate the interactions between users

and apps. With respect to mediating co-present devices, fog mediation enables the app to

be transiently customized specifically for the space defined by the proximal domain. For

example, the capabilities of the deployed service can be modified based on the types of IoT

resources available within the proximal domain and the security and privacy preferences set

by the individuals present within the domain. With respect to mediating external resources,

privacy partitioning enables the data generated by a fog mediated proximal domain to be

processed remotely in a deep neural network without leaking the private attributes of the

proximal domain.
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Chapter 2

Technology, Trust, & Policy

2.1 Trusted Computing Risks & Benefits

Concerns regarding trust have had a significant impact on the development of technology

and policy [10, 11, 12]. The security of nations and the proper functioning of economies rely

on communications, transportation, energy distribution, health care, and financial systems

— all of which rely heavily on the proper functioning of networked computing systems. It is

this reliance on the uninterrupted proper functioning of a computing system that we denote

here as trust. Thus, a computing system is trustworthy to the extent that it can preserve its

security properties with high probability even while under attack.

The initial research and development of what was to become the Internet as it known

today began as a proof-of-concept network for evaluating the feasibility of using a packet-

switched network architecture to support interactive applications like e-mail [13]. The pre-

sumption of trust in this context was appropriate — this group of early adopters consisted of

a close-knit group of specialists and enthusiasts working for the United States government on

private research networks. Thus, the initial protocol specifications for the Internet focused

primarily on network connectivity to the omission of specific protections against misuse and

mal-use [10].
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During the rise of the commercial Internet, the rapid shift from boxed software products

with release cycles spanning multiple years to the rise of web browsers and mobile apps

with agile development cadences on the order of weeks left established technology companies

scrambling to adjust to the new security challenges of a web-first world [11]. Trustworthy

Computing is the imperative to develop computing systems that provide security, reliability,

and availability by design. The term trustworthy computing came into popular use during

this time of rapid growth in the commercial application of the Internet that characterized

the technological paradigm shift of the 1990s [12].

At the same time, concerns regarding personal privacy have increased alongside concerns

regarding the security of computing systems. In addition to privacy concerns stemming from

security breaches and criminal activity, there is a crystallizing milieu of concern regarding

the sheer amount of personally-identifiable data that is generated during the normal course

of online use — and how this digital footprint is aggregated, analyzed, and disseminated.

Notwithstanding any damping effects due to concerns over security and privacy, it is safe to

assume that online activity will continue to grow. The apparent trade-off between utility

and privacy takes on greater dimensions as we consider the proliferation of high-value digital

assets occurring alongside increased global connectivity.

The push for trustworthy computing was in part an acknowledgment that technology

must provide certain core properties if it is to be fully integrated into daily life. The majority

of the works presented here focus on systems security approaches. These methodologies

provide one such alternative to ceding the technological factors that support connectivity to

the manifest factors that undermine trust. In particular, this work focuses on the agency

of individual end-users via tools and policy prescriptions designed for software developers.

This approach provides a practical means to establish end-to-end trust in highly responsive

data access models, allowing individuals to securely interact with their data at any location,

on any device, using any service — reconciling many of the cross-cutting concerns for both

app developers and app users. Furthermore, we explore proposals for end-to-end trust and
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auditing capabilities that enable developers to make operative the pronouncements on which

stakeholder requirements are based (e.g., privacy-enhanced consumer protection policies).

These flexible tools equip developers to build secure services that provide transparent grounds

for trust even in the cases where the motivations of service providers may be at odds with

the expectations of individuals or consumer advocates.

2.2 User-Centered Computer Security Design

We now discuss the top-level design goals for the technical proposals. The initial security

standards for trusted computing were motivated by efforts in the U.S. Department of Defense

(DoD) to classify computing systems in terms of the security controls they provide [14].

Although these standards were designed specifically for the latticed command and control

organizational structure used in the military context, they were adopted and adapted by

many businesses that sought to build secure computing systems.

Trusted computing, as a heuristic for providing robust solutions for a given security

specification, can be factored into two aspects: (1) minimizing the trusted computing base

and (2) providing a mechanism for measuring the integrity of the trusted computing base [15].

In contrast to trusted computing implementations that develop these two aspects primarily

for use by hardware vendors and services providers, this work emphasizes the implementation

of the first aspect (minimal TCB) primarily for the benefit of app developers and the second

aspect (auditing capabilities) primarily for the benefit of end-users. Throughout this work,

we provide evidence that this adjustment in stakeholder prioritization (1) encourages greater

levels of end-to-end trust for all stakeholders and (2) makes tractable previously unavailable

policy options.

It is accepted that there are still serious security vulnerabilities facing modern proces-

sors [16, 17, 18]. Micro-architectural performance optimizations that preserve the correct-

ness of the architecture may not preserve system security [19]. The computer architecture
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community is working towards developing methods that are formally sound for hardware

security, and the work presented here is a step towards making it prohibitively difficult to

compromise secret keys on modern processors. In the mobile device ecosystem, the market

offers many promising avenues for hardware-based security protections, but these capabilities

have only recently become accessible to apps and individuals [20]. In the broader embedded

device market, platform security is often low in priority in cases where security is not the

marketable value proposition for the product due to competition and costs.

In terms of cloud computing, there are other works that prioritize protecting end-users

from an untrusted cloud (isolated execution) but in general, the security tools for commercial

public cloud infrastructures are developed to protect the cloud service stack from potentially

malicious tenets (sandboxing) [21]. In some instances, even the cloud service providers, some

of the biggest purchasers of semiconductors, are themselves locked out of access to critical

platform security management components, and thus, cannot fully guarantee sandboxing

for the cloud stack or end-to-end isolated execution for cloud tenants.1 Dedicated security

modules like the TPM are promising in some respects but have shortcomings that make

alternatives such as the CPU-based isolated execution environment proposed here more

appealing (discussed in greater detail in Section 3.8).

Table 2.1: Design Goals by Stakeholder

Stakeholder Context Information Security Policy

Military & Enterprise • data secrecy

Commercial • data integrity

Developers • launch point integrity

• remote attestation

Users • data protection

• service availability

1“MINIX — The most popular OS in the world, thanks to Intel.” Network World. Bryan Lunduke, Nov.
2nd, 2017.

20

https://www.networkworld.com/article/3236064/servers/minix-the-most-popular-os-in-the-world-thanks-to-intel.html


Table 2.1 contains a list of top-level security design goals in terms of stakeholders. The

military and enterprise context can be expanded to refer to any organization that must main-

tain controlled access to assets and thus needs a security policy for preventing unauthorized

disclosure (data secrecy). The commercial context is shorthand for an organization engaged

in commercial exchanges. In the commercial context proper accounting (i.e., preventing

unauthorized modification or data integrity) is paramount although data secrecy is still an

important security property. Developers refer to the deployment side of software services

whereas users refer to the consumption side of software services.

Table 2.2: Design Goals by Platform Contexts

Platform Context Platform Security Property

Manufacturing • strong root of trust

Code Execution • minimal trusted computing base

• isolated execution

Fog Mediation • user authorization

• device authorization

Proximal Domains • privacy controls

• service mobility

Internet of Things • interoperability

• remote device management

Table 2.2 contains a list of top-level security design goals in terms of the platform contexts

considered our studies. In the manufacturing platform context, a strong root of trust is

the key security design goal.2 In terms of the code execution platform context, the key

security design goals are minimizing the TCB while providing isolated execution. In the fog

mediation platform context, entity authentication is the paramount security design goal. In

the proximal domains platform context, privacy controls and mobility are paramount. In

2Please note that minimizing production and performance costs are top-level goals for each context and
often a key decision criterion for design choices.
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the IoT platform context, interoperability and remote device management (including patch

support) are paramount.

2.3 Integrity & Secrecy Defined

$")

instruction set extension root of trust

integrity secrecy authentication

launch point integrity secrets provisioning remote attestation

code integrity data integrity data confidentiality

Figure 2.1: Isolated Execution Security Proprieties. The hardware basis for
integrity and secrecy in the proposed architecture are the processor instruction set ex-
tensions and the processor root of trust, respectively. The code integrity, data integrity,
and data confidentiality properties provide platform protections for the executing code
and its associated state. The secrets provisioning and remote attestation properties
enable the platform to reliably relay this information to a remote verifier.

The primary security objectives in this research are integrity and secrecy. Integrity is the

assurance that code will run as written. Secrecy is the capability of the owner of a secret

to control its release. Figure 2.1 shows the properties provided by the isolated execution

environment proposed in this work in relation to the primary platform security objectives

of integrity and secrecy. The primary purpose of the instruction set extension is to provide

integrity. The property of launch point integrity provides the functional implementation of

isolated execution as long as it includes the assurance that the memory region belonging

to the executing code runs unaltered by any processes external to it and the integrity of

the executing state is maintained in between successive context switches. Isolated execution

enables strong assurances for code integrity and data integrity.
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The primary purpose of the hardware root of trust is to provide strong secrets. When

those secrets are used as an identifier they can be used to bootstrap authentication protocols.

Similarly, when those secrets are used as inputs to pseudorandom functions (i.e., key deriva-

tion functions) they may be used for the generation of cryptographic key material. Further,

when a secret is supplied in conjunction with a non-secret input (such as a user-provided code

or entropy from a random number generator function) to a key derivation function, many

cryptographic keys may be generated from this common secret (key diversification). Thus

a strong platform secret (i.e., a strong root of trust) provides authentication and secrecy

(e.g., when derivative cryptographic key material is used as an encryption key to provide

data confidentiality). Authentication supports both entity authentication (i.e., the ability to

make verifiable assertions of platform authenticity) and data authentication (i.e., the ability

to make verifiable assertions that a given message came from the claimed platform).

Integrity and secrecy encapsulate the high-level systems design security goal for many

isolated execution proposals [21, 22, 23, 24, 25, 26] — including the “essential trusted com-

puting base” microprocessor architecture proposed here (Chapter 3). This is in part be-

cause integrity and secrecy provide a useful shorthand for what is meant by “secure” in

the context of remotely verifiable code execution and thus provide a concise yet meaningful

expository label for discussing systems security architectures without delving too far into

implementation-specific properties or application-specific security objectives.

If the systems architecture provides strong assurances for code integrity then the opera-

tive security challenge shifts to assisting developers write safer software with, for example,

tools that improve code correctness (such as formal verification) or tools that make is more

difficult to write bad code (like type-safe programming languages). If the systems archi-

tecture provides strong tamper-resistant assurances for data secrecy then there is a strong

basis, strong root of trust, for the cryptographic operations based on those secrets such as

authentication or confidentiality protocols. Generally speaking, integrity and secrecy pro-

vide a foundation for any further security assurances. Without strong integrity and secrecy

23



assurances, the functioning of security-critical code is unpredictable due to the prevalence of

vulnerabilities in modern OSes [27, 28].

Additionally, many of the application-level security properties either reduce to these

two properties or are made feasible if the security architecture provides strong assurances

for them. Potential applications for the hardware-based isolated execution environment

proposed here include: remotely attestable computation [29, 30], secure multiparty com-

putation [31, 32, 33], secure boot [34], secure key provisioning [35], digital rights man-

agement [36], cryptographic key generation [23, 37], auditable billing and accounting [38],

privacy-preserving energy metering [39], privacy-preserving location services [40], privacy-

preserving deep learning [41], trusted mobile computing [42, 43], user authentication [44],

rule-based access control [45], remote policy enforcement [46], encryption at rest and en-

cryption in transit as-a-service [47], memory encryption [48, 49], hardware wallet for crypto-

graphic assets [50], password wallet [51], trusted path for I/O devices [52], and secure virtual

machine migration [44].

2.4 Composite Security

Composite security — i.e., building secure systems from smaller components — is a core

requirement for securely designing products and services that leverage the growing number

of connected devices comprising the IoT. Security-preserving composition allows for modular

design; enabling complex yet secure services to be built from simple building blocks.

Composite security is particularly challenging in the IoT context where security-critical

services are constructed from collections of connected-devices that may each be supported by

different providers, operated by different users, and serving different purposes. This research

points to the importance of composite security in addressing the challenges of developing se-

cure IoT products and services. Further, this research examines the potential for composite

security interventions that address the cross-organizational nature of IoT services. Whether
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composite security at the product level is achieved through industry-established best prac-

tices and design standards or is mandated by legislation, composite security is essential for

securing IoT products and services.

Composite security may be further categorized as nondestructive or constructive. Non-

destructive composition refers to the combination of components in a manner that ensures

that the implementation of one subsystem does not compromise the security properties of

another. Ensuring nondestructive composition is particularly challenging for composite sys-

tems that rely on shared state to integrate subsystems. Constructive composition refers to

the combination of components in a manner that aggregates the security features contributed

by each subsystem. The challenge with constructive composition is that there are many ways

to combine subsystems that appear reasonable, even to domain experts, but do not, how-

ever, extend the security properties of the subsystem components to the composite system.

For example, TLS is generally not secure (i.e., does not provide authenticated encryption)

because of the particular way the protocol combines its MAC and encryption whereas the

IPSec protocol does provide authenticated encryption [53].

At the protocol level, the cryptography community has accepted theories for composite

security due in large part to the work of Canetti[54]. However, at the systems level, notions

of composite security as applied to products and services leveraging connected devices and

third-party apps are not well understood. Even in cases where each connected device is

secure in isolation, it’s a non-trivial task to ensure that the end product achieves the specified

security requirements.

As an illustrative example, imagine an industrial facility with a collection of connected

sensing and actuating devices produced by several businesses. Furthermore, each device is

secure–i.e., conforms to the security policies established by the producer and the security

administrator of the facility. However, a critical security vulnerability is introduced due to the

composite insecurity of an authorized third-party software service leveraging the connected-

device. How can we minimize the potential for this class of vulnerabilities without limiting
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the versatility of IoT products and services? And in the case of imposed liability, who should

be held accountable for a vulnerability resulting from interactions (e.g., should the system

integrator be held accountable or the producer of the compromised device)?

Composite security is a fundamental computer security challenge for protecting consumer

privacy and building secure Internet of Things applications. Policy recommendations aimed

at enhancing security and consumer privacy that center on applying security measures to

individual connected devices do not adequately address this fundamental challenge.

This challenge of extending our protocol-level understanding of composite security to

product design is evidenced by real-world attacks in a wide variety of settings where the

properties of one subsystem are used to undermine the security properties of another. Pol-

icy measures are perhaps better suited to addressing composite security requirements than

exclusively technical interventions due to the cross-organizational coordination composite

security at the product level entails.
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Chapter 3

Isolated Execution

This chapter is largely a reproduction of the paper OASIS: On Achieving a Sanctuary

for Integrity and Secrecy on Untrusted Platforms co-authored with Jorge Guajardo,

Jonathan McCune, Jim Newsome, Adrian Perrig, and Amit Vasudevan [23]. This

research was supported in part by CyLab at Carnegie Mellon under grants DAAD19-02-

1-0389 from the Army Research Office, and by a gift from Robert Bosch LLC.

On Achieving a Sanctuary for Integrity and Secrecy (OASIS). This chapter presents

OASIS, a CPU instruction set extension (ISE) for externally verifiable initiation, execution,

and termination of an isolated execution environment (IEE) with a trusted computing base

(TCB) consisting solely of the CPU [23]. OASIS leverages the hardware components available

on commodity CPUs to achieve a low-cost, low-overhead design.

3.1 Overview

The Ken Thompson adage, “You can’t trust code that you did not totally create yourself,”

applies as much to software as it does to the entire execution stack running the software [55].

A code execution platform that is robust against malicious software and to an adversary

with physical access is a difficult yet important assurance for many security-sensitive ap-

plications. In particular, the increasing integration of cyber-physical systems across the
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infrastructural and industrial Internet of Things only heightens the scope and import of this

security challenge.

A minimal trusted computing base contained within the processor package elevates the

ubiquitous CPU from a base unit of computation to a base unit for mediating trust. This

work explores how strong root of trust properties derived from minimal extensions to modern

CPUs may be leveraged in support of strong isolated execution environments. Additionally,

the methods described here provide a powerful design abstraction for mitigating many of

the risks associated with dynamically offloading security-sensitive tasks to resource-rich but

untrusted compute nodes — i.e., many of the risks associated with mediating trust across

mobile, cloud, and fog computing.

For developers, strong root of trust and minimal TCB properties may be leveraged in sup-

port of isolated execution environments that simplify the task of delivering secure software

from reasoning about the state of an entire system to solely reasoning about the correctness

and usefulness of the software in development. For individuals, the isolated execution envi-

ronment presented here simplifies the task of reasoning about the security of their devices

to attesting to the launch point integrity of the processor.

Despite numerous attacks against a wide spectrum of organizations [56, 57], secure ex-

ecution environments protected by TCG technology have not seen widespread application

— even in cloud computing, where customers want to verify execution [58, 59]. Perhaps

this lack of application is due, in part, to the lack of end-to-end application software that

benefits from TCG properties, lack of trust in the TPM vendors, lack of protection against

local adversaries, and concerns over poor performance.

Many designs for an isolated execution environment have been proposed, but an inter-

esting question remains: What minimal additions do we need to add to a modern CPU to

achieve a highly-efficient isolated execution environment with remote attestation properties?

This work investigates what minimal architectural changes are required to obtain the essen-

tial TCB — an isolated execution environment completely contained inside a modern CPU
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— providing resilience against several classes of hardware attacks. In addition, we design

this architecture such that minimal changes to a modern commodity CPU are required for

deployment. In keeping with minimalist design, we provide a simple programming interface

consisting of few instructions.

Contributions.

• We present an ISE for remotely verifiable, efficient code execution requiring a minimal

TCB.

• We propose an API where the CPU provides unique cryptographic keys to security-

sensitive applications.

• Our deployment model precludes the need for a distributor or manufacturer to protect

platform secrets on behalf of the end-user or their customers.

• Our system is designed for deployment on existing commodity CPUs with minimal

modifications.

• Contrary to prior approaches, our solution does not require on-chip non-volatile mem-

ory to store secrets. Thus, in addition to avoiding the strong assumption of secure

non-volatile memory, our solution is cheaper to implement in practice as it leverages

semiconductor processes already used in modern CPUs.

Organization. Section 3.2 describes the problem space including the threat model and

design assumptions. Section 3.3 provides background information on the hardware building

blocks used in the construction of the OASIS architecture. Section 3.4 describes the OA-

SIS instruction set. Section 3.5 specifies a protocol for using the OASIS instruction set to

implement a security-sensitive application. Section 3.6 describes several important design

considerations not described else where in this chapter. Section 3.7 presents the experiment

test bed configuration and performance evaluation. Section 3.8 and Section 3.9 discuss the

related literature and the conclusions of the study, respectively.
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Figure 3.1: Device Life-cycle. This figure shows the stages during an OASIS-enabled
device’s life-cycle where each stakeholder party comes into play. The three key stakeholders
involved in varying degrees of bootstrapping platform-based trust and mediating application-
specific trust decisions during the life-cycle of the processor include the hardware manufac-
turer, the device owner, and the user.

3.2 Problem Definition

3.2.1 Model & Assumptions

Deployment Model. Our use case defines outsourced computation in the sense advocated

by public cloud computing. Thus, we identify three key parties (see Figure 3.1); and their

different roles and levels of trust as a device moves from production to use:

(i) The processor hardware manufacturer (HWM). The HWM is trusted to manufac-

ture the CPU to initialize a cryptographic device key with a Physically Unclonable Function.

(ii) The service provider (or device owner) that offers the device as a platform to

customers who wish to lease them for a certain amount of time or computation.

Finally, (iii) the user (or cloud customer) who wishes to lease computing resources.

Users are interested in verifying the trustworthiness of devices leased to them, guaranteeing

the integrity and confidentiality of their computations and data.

The hardware-based root of trust model proposed here is vendor-neutral, enables end-

users (i.e., device owners and cloud customers) to derive secrets that are independent of the
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production process, and does not require costly secure manufacturing processes. Although,

the manufacturer and/or system integrator provides platform certification that attests to

quality assurance guarantees, no stage of the production and integration process requires the

injection of secret key material and thus precludes the need for any distributor to protect

platform secrets on behalf of the end-user or their customers.

In the remainder of this chapter, we refer to the service provider’s device simply as the

platform or P , and to the user’s device as the verifier or V .

Adversary Model. We assume a sophisticated adversary with physical access to the com-

puting platform. In particular, the adversary can introduce malware into the computing

platform (e.g., to compromise an application, device drivers, the OS, or firmware), and has

access to the external ports of the platform to physically attach malicious peripherals to P .

Similarly, the adversary can probe and tamper with low-speed and high-speed buses (e.g., to

eavesdrop on a memory or PCI bus), and/or inject code and/or modify data. However, the

adversary cannot perform attacks that require complete unscrutinized access to the CPU for

extended periods of time. In particular, this implies that the service provider has organiza-

tional procedures in place to prevent attacks, but cannot guarantee the absence of a small set

of rogue employees.1 We consider denial-of-service, side-channel, and fault injection attacks

beyond the scope of this work.

Assumptions. With respect to the service provider, we assume that the CPU on the

untrusted platform P is not malicious and meets the vendor certification guarantees ascribed

to it (i.e., we trust the processor). We assume that this CPU contains a Physically Unclonable

Function that can only be accessed through the specified APIs. We assume that the CPU has

a true random number generator. Additionally, we assume that the CPU is tamper-resistant

— thus, physical security is not a requirement. Lastly, we assume that the verifier V has

the correct public key of the provider’s platform P .

1For example, a cloud service provider may unintentionally grant data center access to malicious [60] or
negligent [61] employees.
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3.2.2 Desired Properties

The following list contains the desired properties for OASIS.

P1 Secure. We would like the following security objectives to be satisfied:

P1.1 Externally Verifiable. Attestable code execution that guarantees platform integrity,

code integrity, launch point integrity, and unmodified code execution on the un-

trusted platform.

P1.2 Key Code Binding. Ensure that a unique cryptographic key is available to each

distinct code module that executes in the isolated environment.

P1.3 Program State Binding. The ability to bind data to code.

P1.4 Device Transferability. The ability to transfer ownership of a chip without exposing

the secrets of the previous owner.

P1.5 Limited Trust. The HWM should not have access to any device secrets.

P2 Economical. We would like the following economic objectives to be satisfied:

P2.1 Low-cost. No substantial increase of manufacturing cost or complexity (e.g., by

requiring non-volatile memory within the CPU).

P2.2 Self-contained. No requirement for additional hardware support such as secure

co-processors or TPMs.

P3 Essential. We aim for a balanced and simple design:

P3.1 Minimal TCB. On-die isolated execution environment with trustworthy computing

primitives entirely within the CPU package.

P3.2 Minimal Interface. Minimal interface with minimal controls, which presents a

usable programming abstraction.

P3.3 Minimal Setup. Efficient environment setup where expensive operations are by-

passed during repeated invocation.
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3.3 Hardware Building Blocks

3.3.1 PUFs, Fuzzy Extractors, & TRNGs

Pappu et al. introduce the concept of Physical Unclonable Functions (PUFs), which are

functions where the relationship between input (or challenge) C and output (or response) pe

is defined via a physical system [62, 63]. The physical system has the additional properties of

being random and unclonable. The system’s unclonability originates from random variations

in a device’s manufacturing process, which even the manufacturer cannot control. In their

most general form, PUFs can accept a large number of challenge-response pairs. Examples

of PUF constructions include: optical PUFs [63], silicon PUFs [62, 64], coating PUFs [65],

SRAM PUFs [66, 67], reconfigurable PUFs [68], and Flash memory-based PUFs [69].

Because of PUF variability across different environmental conditions (voltage, tempera-

ture, humidity, etc.), when a PUF is challenged with Ci, a response p′e (a noisy version of pe)

is obtained. In applications where the PUF response is used as a cryptographic key this noisy

response p′e is not acceptable. To solve this problem, algorithms known as fuzzy extractors

leverage non-secret helper data to work around the noisy nature of physical measurements

typical of PUF applications [70, 71, 72]. We assume that the fuzzy extractor is implemented

in a silicon block and is accessible as a function that is used (in combination with the PUF

interface) to realize our instructions.

While stability is fundamental for PUFs, variation in unstable bits can be leveraged for

random number generation [67, 73, 69]. For the purposes of this paper, we focus on PUFs

based on memory arrays, such as SRAM commonly used in CPU caches. SRAM memory

can be used as the raw source for a PUF as well as the entropy source for a True Random

Number Generator (TRNG).2

2The Intel random number generator is based on the instability of a couple of cross-coupled inverters,
which are the basic building block of an SRAM cell [73].
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3.3.2 Cache-as-RAM Mode

Cache memory is ubiquitous across CPU architectures. Traditionally, SRAM is used to im-

plement a cache. Modern CPUs often include several megabytes of memory on-die which

can be leveraged to create a Cache-as-RAM (CAR) execution environment [74]. Typically,

CAR mode is used to perform system boot-up tasks while DRAM (external to the CPU)

is initialized. Prior work has demonstrated that the CPU cache subsystem can be repur-

posed as a general-purpose memory area for isolated code execution and data read/write

operations [24]. The CPU CAR environment offers an isolated execution environment using

exclusively on-die hardware.

3.4 Instruction Set Extension

This section provides a high-level overview of the design — describing the requirements,

execution model, and implementation rationale for the instruction set extension proposed in

this paper. The notation used in the remainder of the chapter is summarized in Table 3.1.

3.4.1 Processor Requirements

OASIS is a set of new CPU instructions that aim to enable an isolated execution environment

contained entirely on-chip by leveraging CAR mode execution and by creating a secret key

available only to the CPU. OASIS is designed for ease of adoption and deployment with

respect to existing computing systems.

A critical support for the level of security achievable by OASIS-enabled software is the

PUF-derived secret key Kp. This secret key material is only briefly established during the

short-lived moment needed to generate derivative platform keys, is only accessible to the

CPU by construction, and functions as the root of trust of the whole isolated execution

environment.

OASIS is based on SRAM-PUFs [66, 67]. This has several advantages: (i) SRAM is
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Table 3.1: Notation Used in Instruction Set and Protocol

Notation

hw inst[] hardware instructions that make up the OASIS programming interface are
denoted using a fixed-width font

f hw func[] hardware functions are only accessible by OASIS hardware instructions and
are denoted using a fixed-width font identifier starting with the letter f

y ← x the value of x is assigned to variable y

⊥ this symbol is used to denote a failed platform operation

x||y concatenation of x and y

x.param returns parameter param of variable x

x.∗ data element formed by concatenating all parameters of variable x

A→ B : 〈m〉 A sends message 〈m〉 to B

r
R
←−{0, 1}ℓ assigns a random integer of ℓ bits to r

KX party X’s symmetric key

K+
X , K

−1
X party X’s public and private asymmetric key pair

{P}K the resulting ciphertext of plaintext P encrypted using key K

H (x) cryptographic hash function with input x

EncK(P ) encrypt plaintext P using key K

DecK(C) decrypt ciphertext C using key K

KDFK(x) key derivation function of key K and non-secret parameter x

MACK(x) message authentication code of x under key K

SignK−1

X
(m) sign message m with party X’s private key K−

X

VerifyK+

X
(m,σ) verify signature σ on message m using party X’s public key K+

X

Certy(x,K
+
X) certificate issued by y that binds the identity x to the public key K+

X
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init[]
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Kpo

Kpo auth Spo bind

Kpo encr

Kpo code K−1
po bind K+
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Figure 3.2: Key Generation Hierarchy. These keys are generated as the init[] and
create[] instructions are called. Hidden key material refers to platform secrets only acces-
sible by the processor. Visible key material refers to non-secret key material. Key material
that is unique to the PUF element, the platform, or the owner are denoted with subscripts
e, p, or o, respectively.

already available on modern CPUs in the form of the cache, (ii) SRAM PUFs need to be

powered to create the secret key material, thus, they cannot be read offline making them re-

sistant against scanning electron microscope-based attacks, (iii) because of their properties,

PUFs are tamper-evident (and in some cases tamper-resistant), a property that other tech-

nologies do not offer [66], and (iv) SRAM is manufactured using the standard semiconductor

process, which leads to decreased costs when compared to non-volatile memory.

OASIS assumes the availability of external non-secure non-volatile memory. This memory

is used to store public helper data as well as program state. External storage is plentiful

and does not further complicate the OASIS design since no special security guarantees are

assumed. In particular, alterations to the public helper data can be easily detected through

the use of robust fuzzy extractors [75, 76].
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Table 3.2: Variables Used in Instruction Set and Protocol

Hidden Variables: values accessible by processor

pe Raw PUF response

Kp Root key generated from PUF

So Secret seed value set by platform owner

p∗,q∗ Primes corresponding to an RSA private key

CR.Kpo Master platform secret for a specific owner seed

CR.Kpo auth Platform key for authenticating data from untrusted
storage

CR.Kpo encr Platform key for encrypting data before transfer to un-
trusted storage

CR.Kpo code Platform key used to derive code specific keys

CR.Spo bind Platform binding secret used to derive asymmetric bind-
ing keys

CR.K−1
po bind Platform private binding key, derived deterministically

from CR.Spo bind

CR.PCR Platform configuration registers

CR.KC Unique cryptographic key for code C′

Visible Variables: values accessible by software

K+
po bind Platform public binding key, derived deterministically

from CR.Spo bind

he Helper data used for noise reduction of pe

hPK Helper data used for retrieving asymmetric keys
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3.4.2 Root of Trust Instantiation

The SRAM-PUF response, pe, serves as a unique cryptographic secret which is used to

bootstrap a unique device identity, per-application encryption and authentication keys, and

random number generation. The resulting key material (Figure 3.2) is unique not just per

physical device, but per device owner. The SRAM-PUF response is used to derive the secret

root key, Kp, which never leaves the processor and is never directly accessible by any party

(including any software running on the processor).

The PUF-derived secret root key, Kp, enables the derivation of a key hierarchy as follows.

The device owner derives a key (Kpo) unique to themselves and the device via a key derivation

function (KDF), which accepts as inputs an owner supplied seed, So, and the PUF-derived

secret root key, Kp.

This master processor secret, Kpo, can then be used, in turn, to derive symmetric keys

for bulk encryption, authentication, and asymmetric operations. The details for the key

derivation are discussed in terms of the invoked functions and instructions in Section 3.4.4

and Section 3.4.5.

All keys are stored inside the CPU in a set of special-purpose cache registers (CR.∗)

which are only available within the OASIS environment and only accessible by the OASIS

instructions. Table 3.2 lists the keys stored in CR.∗. Observe that the root key, Kp, is

only used for the derivation of the master processor secret. More importantly, the entire key

hierarchy is based on an owner seed (So), enabling personalization and device transferability.

3.4.3 Instruction Set Overview

So far we have described how the CAR environment has been augmented with a secret key

(via the PUF) to be used as the root of trust in a transparent and low-cost manner. Next,

we describe how the PUF-based root of trust is used to enable the desired security objectives

of Section 3.2.2 by defining five new instructions: init[], create[], launch[], unbind[],

and bind[] (Figure 3.3).
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Figure 3.3: Invocation Life-cycle.
This figure shows the call order for
the OASIS instruction set where the la-
belled lines indicate special case instruc-
tion flows.

Figure 3.4: Function Tree. This fig-
ure shows the function call stack for the
OASIS instruction set. Instructions are
externally available for call by executing
software whereas functions are internally
available to OASIS instructions.
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Figure 3.5: Invocation by Session. This figure shows the OASIS session during (a)
initialization by the manufacturer, (b) setup by the device owner, and (c) code execution by
the user.

Initialization. We distinguish between three stages in the life cycle of the CPU. The first

stage is performed by the hardware manufacturer (Figure 3.5(a)). After manufacture, the

HWM initializes the master processor keyKp by calling init[]. The output of this operation

is helper data he and a hash H(pe, he), which is published and available to anyone using the

device.

We assume that the instruction init[] can be called only once or a limited number

of times to prevent attacks that exploit repeated invocations of the generator function f

init PUF[] to learn pe.
3 In addition to preventing these types of attacks, this constraint

allows for a trusted third party to certify the helper data via a standard public-key signature

σhe
← SignK−1

TTP
(he||H(pe, he)), which can be verified in a straight forward manner with the

public key K+
TTP of the TTP. This verification step need only be performed once per owner

during the initial call to create[] (Figure 3.3).

Given that the HWM does not have control of the PUF response pe (or by extension Kp

3The security of robust fuzzy extractors is directly related to the number of queries performed during an
attack [76]. It has been shown that, for non-robust fuzzy extractors, given a sufficiently large number of
invocations to the generator function f init PUF[], the resulting public outputs he1 ,..., hen contain enough
information to leak the secret input pe with high probability [77].
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as it is derived from pe), the init[] instruction enables the limited trust (P1.5), low cost

(P2.1), self contained (P2.2), and the minimal TCB (P3.1) properties of Section 3.2.2.

Configuration. The second stage is performed by the device owner (Figure 3.5(b)) and

corresponds to the generation of the key hierarchy (Figure 3.2). This is accomplished by

calling the create[] instruction, which has as its primary function the derivation of sym-

metric and asymmetric keys. During the call to create[], the platform owner generates

keys that are specific both with respect to the owner and the device so long as the secrecy

of input seed So is maintained.

These keys are used to exchange confidential and authenticated messages between the

prover (device owner) and the verifier (user) and to guarantee external verifiability (P1.1).

The main output of the instruction is a public key, which has been derived from the PUF-

based root key Kp and a seed So known only to the device owner. This allows for transfer-

ability of the platform (P1.4) as a new device owner can create his or her own public/private

keypair (K+
po bind, K

−1
po bind) by choosing a different seed S ′

o. Furthermore, even though the

device owner initiates the generation of the public/private keypair, only the CPU can access

the private key and thus decrypt messages encrypted with the public key.

Code Execution. The third stage corresponds to the execution of code on the device by

the user (Figure 3.5(c)). The user launches the code to be executed by issuing the launch[]

instruction. This instruction populates the CR.∗ registers with the symmetric keys derived

from the PUF helper data he, the device owner’s seed So, and the public key information

generated using create[] in the previous stage. Then, the unbind[] instruction can be

called to check the input’s integrity with respect to a code-specific key and decrypt any input

whose confidentiality is preserved by the verifier. The instruction provides two options, one

using public-key and one using symmetric-key primitives. The asymmetric option is used the

first time the application is called to transmit a secret symmetric key, KV P , only known to the

verifier (user) of the platform P . After this initial set-up, the verifier can use fast symmetric-

key operations to verify the integrity and confidentiality of its data (P3.3). At this point the
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code C can be executed in the isolated execution environment, state is saved (and encrypted

if desired), and integrity information is computed on the state using bind[] (P1.3). Finally,

all OASIS memory and internal registers are cleared out, and control is returned to the OS.

Observe that any program can in principle be executed in a secure environment using these

last three instructions, providing for a minimal and simple programming interface (P3.2).

Furthermore, the bind[] and unbind[] instructions, together with the key hierarchy derived

with the help of create[], enable external verifiability (P1.1) and program state binding

(P1.2), not only to a particular program but also to a specific CPU, a property unique to

OASIS.

3.4.4 Functions

We now describe the functions (Section 3.4.4) and instructions (Section 3.4.5) used in the de-

sign of OASIS. We make a distinction between functions (which are only internally available

to OASIS instructions) and instructions (which are externally available for call by execut-

ing software).4 In practice, functions and instructions might be implemented as digital

logic, integrity-checked firmware, microcode, or another process-specific mechanism. Refer

to Figure 3.4 for an overview of the organization of functions and instructions.

We have omitted explicit pseudocode definitions for several functions where the specific

implementation is left to the hardware manufacturer. Table 3.3 lists these functions. The

functionality of f read PUF[], f init PUF[] and f fuzzy extract PUF[] are briefly dis-

cussed next. Implementation details for the f find primes[] 5 and f rsa key gen[] are

discussed in the section on function f create asym keys[] (Function 3.2a) which is invoked

by the create[] instruction (Instruction 2).

The function f read PUF[] does not accept any inputs; it simply outputs the raw PUF

response pe. We provide two functions to interact with a (robust) fuzzy extractor [75, 76] as

4Instructions and functions are denoted using a fixed-width identifier. Functions begin with ‘f ’.
5Including an alternate higher performance implementation of f find primes[]: p, q, δp, δq ← f find

primes[Spo bind, RSAParam.size] and p, q ← f retrieve primes[Spo bind, δp, δq]
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Table 3.3: Hardware Manufacturer Implemented Functions

pe ← f read PUF[]

he, H(pe, he) ← f init PUF[pe, rand]

Kp ← f fuzzy extract PUF[pe, he, H(pe, he)]

p, q ← f find primes[Spo bind, RSAParam.size]

K+
po bind,

K−1
po bind

← f rsa key gen[p, q, e]

is common in the literature: (1) f init PUF[] and (2) f fuzzy extract PUF[].

The function f init PUF[pe, rand], which is called during the execution of the init[]

instruction (Instruction 1), accepts a raw PUF response pe and a random value rand and

outputs helper data he and a hash H(pe, he). The helper data he can be used to reconstruct

a uniformly random value Kp from a noisy raw PUF response p′e. The hash is used to

guarantee that only values of Kp constructed with the original helper data he are used for

further processing in OASIS.

The function fuzzy extract PUF implements a (robust) fuzzy extractor [75, 76], whose

output is Kp. Called during the execution of the create[] instruction (Instruction 2), f

fuzzy extract PUF[p′e, he, H(pe, he)] accepts a (noisy) raw PUF response p′e and helper data

he and outputs a uniformly random value Kp which can be used as a cryptographic key.6

We assume the use of existing hardware-supported fuzzy extractor implementations [78, 79].

Alternatively, this can be combined with a controlled PUF (CPUF), which are PUFs that

can only be accessed through an algorithm that is physically bound to the PUF [64]. Such

an interface would further limit the information learned by an attacker who can probe the

challenge-response behavior of the PUF. The function f fuzzy extract PUF[] checks for

correctness in the value of H(pe, he) and outputs a special symbol ⊥ if the input does not

correspond to the computed value. If the output is ⊥, the instruction calling f fuzzy

6The original definition of a robust fuzzy extractor requires a label as input to the fuzzy extractor, which
is used to define a member of a family of universal hash functions, which is used to create a uniform Kp [76].
Here we have abstracted out this detail for ease of exposition.
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extract PUF[] should take appropriate action. In the case of OASIS, we clear all key

registers and abort execution.

Function 3.1: f create sym keys[]

INPUT: So, he, H(pe, he)

OUTPUT: Spo bind

1: p′e ← f read PUF[]

2: Kp ← f fuzzy extract PUF[p′e, he, H(pe, he)]

3: Clear p′e

4: CR.Kpo ← KDFKp
(So)

5: Spo bind ← KDFCR.Kpo
(“bind”)

6: CR.Kpo auth ← KDFCR.Kpo
(“auth”)

7: CR.Kpo encr ← KDFCR.Kpo
(“encr”)

8: CR.Kpo code ← KDFCR.Kpo
(“code”)

9: if Kp =⊥ then

10: Clear CR.∗

11: Spo bind ←⊥

12: Clear Kp

13: return Spo bind

Function 3.1. This function loads the helper parameter he and the hash H(pe, he) into

memory.7 Next, the PUF is read and the fuzzy extractor is invoked to generate the platform

symmetric secret key, Kp. Internally, the fuzzy extractor checks whether the inputs H(pe, he)

and he correspond to the reconstituted PUF response p′e. A special symbol⊥ is output should

the values be different.

7A small portion of on-chip SRAM can be reserved for loading helper data as needed by the instructions.
Typically, helper data for an SRAM PUF requires no more than 10 K bytes of memory [78, 79].
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The key Kp and the (device owner) supplied seed So are used to derive the master

processor secret, CR.Kpo. The seed value So allows the device owner to personalize the

processor keys. The symmetric key CR.Kpo is used for the derivation of four symmetric

platform keys: (i) CR.Spo bind, the platform binding secret, (ii) CR.Kpo auth, the platform

key used for authenticating data residing in untrusted storage from prior invocations (iii)

CR.Kpo encr, the platform key used for encrypting data and (iv) CR.Kpo code, the platform

key used to derive code-specific keys. In all cases, keys are derived via a KDF, which in turn

may use pseudo-random functions (e.g., HMAC, CMAC) as building blocks. Constructions

of key derivation functions accepting secret and public parameters are well-known [80, 81].

At the end of the process, the function checks if the fuzzy extractor returned the special

symbol ⊥, which would indicate that either the PUF response was too noisy and therefore

it was not possible to reconstruct Kp or H(pe, he) 6= H(p′e, h
′
e).

8 In either case, all OASIS

registers are cleared and the function returns the special symbol ⊥ indicating failure. After

the check, Kp is cleared and Spo bind is returned.

8The function f create sym keys is written so as to always perform the same number of operations
regardless of whether the fuzzy extractor returns ⊥ or not. This helps in preventing leaking information via
timing attacks. In practice, this would require dummy operations erasing dummy memory at the end of the
if statement but this has not been included for ease of exposition.
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Function 3.2a: f create asym keys[] (using RSA key generation)

INPUT: Spo bind

OUTPUT: hPK

1: p, q,← f find primes[Spo bind, RSAParam.size]

2:







K+
po bind,

CR.K−1
po bind







← f rsa key gen[p, q, e]

3: {K−1
po bind}CR.Kpo encr

← EncCR.Kpo encr
(CR.K−1

po bind)

4: τ ← MACCR.Kpo auth
({K−1

po bind}CR.Kpo encr
, K+

po bind)

5: hPK ←
{

{K−1
po bind}CR.Kpo encr

, K+
po bind, τ

}

6: if Spo bind =⊥ then

7: Clear CR.∗

8: Clear hPK

9: return hPK

Function 3.2a. This function generates the processor asymmetric keys. The f find

primes[] function picks a random seed value of size RSAParam.size and begins search until

the first prime is found. The process is repeated for the second prime using a new seed value.

f find primes[] returns secret primes, p and q. The function f rsa key gen[] takes the

primes and a public exponent as inputs and generates the keypair K+
po bind, K

−1
po bind. Notice

that the RSA private key K−1
po bind is composed of p, q, and the inverse of the RSA public

exponent mod φ(N), where N = p ·q. Methodologies to generate primes are well-understood

and standardized [82]. The RSA private key K−1
po bind is encrypted using CR.Kpo encr, and a

message authentication code τ is computed over this value and the corresponding public key

K+
po bind. Finally, a data store hPK , containing the asymmetric keys and τ , is returned.

Extended Implementation. Functions p, q, δp, δq← f find primes[Spo bind, RSAParam.size]

and p, q ← f retrieve primes[Spo bind, δp, δq] describe a methodology which circumvents
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the prime search and, thus, it is much more efficient than the p, q← f find primes[Spo bind,

RSAParam.size] used in function 3.2a. We remark that we are not aware of it being de-

scribed in other works and thus, it might be of independent interest:

This function generates the processor asymmetric keys. The f find primes[] function

picks a random seed value of size RSAParam.size and begins search until the first prime

is found. The process is repeated for the second prime using a new seed value. The f

find primes[] returns secret primes, p and q, and their offsets from the seed values, δp and

δq. The function f rsa key gen[] takes the primes and a public exponent as inputs and

generates the keypair K+
po bind, K

−1
po bind.

The RSA helper parameters, δp and δq, are stored to avoid the expensive search for primes

in subsequent calls. The parameters are non-secret, however, they need to be checked for

authenticity before future use. Therefore, we construct a MAC of δp, δq, and K+
po bind under

platform data authentication key Kpo auth. The resulting asymmetric keys (K+
po bind, K

−1
po bind)

are stored to the register bank CR and the MAC, the offsets, and the public key are returned.

Methodologies to generate primes are well-understood and standardized [82].9 Func-

tion 3.2a, however, has a few additional features, which are worth highlighting. The first

time the RSA primes are generated, the f find primes[] subroutine proceeds as follows:

1. Generate a random value sp from Spo bind of size
RSAParam.size bits.

2. Ensure that s′ is odd: s′ = sp|1.
10

3. Check s′ for primality. If s′ is prime:

(a) set p = s′, store δp = p− sp.

(b) go to step 1, using random value sq
to generate q and δq.

4. Else s′ = s′ + 2, go to step 3.

9We have sketched roughly how standard prime generation works. This methodology can be easily
modified to accommodate the requirement of strong primes.

10Where “|” denotes the bitwise OR operator.
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Once a key pair is generated, one could go through the process of searching and generating

primes again when the key pair needs to be used. However, this is unnecessarily time-

consuming. Given the offsets, the RSA primes are generated using the f retrieve primes[]

subroutine as follows:

1. Generate the random seed value sp from Spo bind.

2. Set p = sp + δp.

3. Generate second random value sq.

4. Set q = sq + δq.

5. Call f rsa key gen[p, q,e] to generate K+
po bind, K

−1
po bind.

Observe that the expensive prime search and prime testing procedures required during

the original key generation are no longer needed thanks to the pointers δp, δq. In particular,

Riemann’s Prime Number Theorem holds that the density of prime numbers is n/ ln (n) for

the range 1 to n. Therefore, if we ignore even numbers in our search, the probability of

randomly selecting a prime number within the range 1 to n is 2/ ln (n). Assume we use a

2048 bit RSA modulus; the bit-length required to provide data protection guarantees into

the year 2022 [83]. The probability that the k-th number is a prime follows a Geometric

distribution. Therefore, we would need to search roughly 350 numbers on average before

finding primes of 1024 bits or less (p(X∗ = k) = (1 − p)k−1 ∗ p where p = 2/ ln (21024) and

E[X∗] = 1/p). We would like to avoid the performance hit associated with searching and

testing for RSA primes every time this instruction is called. Thus, we propose to store the

plain pointers δp, δq to the specific primes in untrusted memory. To prevent tampering, a

MAC is computed on the plain pointers and the RSA (public) modulus. The alternative is

to incur a performance hit by searching and testing the integers until the desired primes are

found, which may be undesirable.

Regarding the secrecy of RSA primes p and q, one could encrypt the pointers δp and δq

under key Kpo. However, the following argument provides evidence that this is not neces-

sary. Formally, what we would like to show is that given difference pointer δp, the amount
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of information leaked about p (or equivalently about sp) is negligible. The seed sp is chosen

uniformly at random from an interval (2k, 2k+1 − 1), thus, sp is uniformly distributed in

[1, 2−k]. For large k and small (relative to sp) δp, the distribution of sp + δp can be shown

to be statistically indistinguishable from random with statistical distance < 1/2k−log2 δp . To

show that in general δp is small, we resort to a conjecture by Cramér [84] and subsequent

improvements [85], which estimate the maximal gap between a prime p and the next succes-

sive prime to be≪ ln2+ǫ p. In practice, the largest gaps found are less than 216 for very large

primes (see [86] for extensive lists), thus, the amount of information leaked by the pointers

can be considered to be negligible.

Function 3.2b: f create asym keys[] (using ECC key generation)

INPUT: Spo bind

OUTPUT: hPK

1:







K+
po bind,

CR.K−1
po bind







← f ecc key gen[Spo bind, ECCParam]

2: {K−1
po bind}CR.Kpo encr

← EncCR.Kpo encr
(CR.K−1

po bind)

3: τ ← MACCR.Kpo auth
({K−1

po bind}CR.Kpo encr
, K+

po bind)

4: hPK ←
{

{K−1
po bind}CR.Kpo encr

, K+
po bind, τ

}

5: if Spo bind =⊥ then

6: Clear CR.∗

7: Clear hPK

8: return hPK

Function 3.2b. We describe an alternative implementation of the f create asym keys[]

(Function 3.2a) using elliptic curves in Function 3.2b. The implementation of this function is

analogous but much more efficient than its RSA counterpart, since there is no prime search

step. Key generation is a single elliptic curve multiplication, which in general is efficient. In
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addition, this version has the advantage of small area overhead, if support for asymmetric

operations is implemented at the hardware level. These advantages come at the cost of a

significant increase in the time required to perform a signature verification operation (when

compared to RSA). It is up to the HWM to decide which implementation is more appropriate

based on its own requirements and constraints.

Function 3.3: f read asym keys[]

INPUT: hPK

OUTPUT: K+
po bind

1: τ ′ ← MACCR.Kpo auth

(

hPK .
{

{K−1
po bind}CR.Kpo encr

, K+
po bind

})

2: if hPK .τ 6= τ ′ then

3: Clear CR.∗

4: Clear hPK .K
+
po bind

5: else

6: CR.K−1
po bind ← DecCR.Kpo encr

(hPK .{K
−1
po bind}CR.Kpo encr

)

7: return hPK .K
+
po bind

Function 3.3. This function is very efficient as it only requires symmetric cryptographic

operations. In particular, f read asym keys[] checks tag hPK .τ to ensure that input data

has not been tampered with. If this verification passes, the function decrypts the private

binding key to CR.K−1
po bind, using the symmetric key CR.Kpo encr. Note that the correspond-

ing read functions, for create functions 3.2a and 3.2b, are the same except for the sizes of

the operands, outputs, and registers required to store private and public keys.
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3.4.5 Instructions

Instruction 1: init[]

INPUT:

OUTPUT: {he, H(pe, he)}

1: pe ← f read PUF[]

2: rand
R
←−{0, 1}ℓ

3: {he, H(pe, he)} ← f init PUF[pe, rand]

4: Clear pe, rand

5: return {he, H(pe, he)}

Instruction 1. This instruction initializes the helper data he used to de-noise the raw

SRAM PUF value pe. The functions f read PUF[] and f init PUF[] read the raw PUF

value and instantiate the helper data, as described in Section 3.4.4. The hash value H(pe, he)

will be used by later instructions to prevent modified helper data from being used in attempts

to learn information about the PUF. Observe that a hardware-generated random number,

rand, is used to introduce entropy in the resulting helper data’s value.

The variable rand needs to remain secret and exposed only inside the processor. It

is also assumed that he can only be set once (or a limited number of times) to prevent

exposing the output of the fuzzy extractor. This can be achieved during the initialization,

which is performed by the HWM. Because of our use of robust fuzzy extractors [75, 76],

we do not require any secure non-volatile memory. All data is stored outside the chip,

either locally or externally published on a website. An additional step, not shown and not

performed as part of Instruction 1 is the signing of he||H(pe, he) by the HWM or a TTP with

output σhe
← SignK−1

TTP
(he||H(pe, he)). This guarantees to any third party (users, system

integrators, device owners, etc.) that the helper data was created by the HWM and not some

other (untrusted) party. Notice this is done only once during the lifetime of the device.
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Instruction 2: create[]

INPUT: So, he, H(pe, he), σhe
, K+

TTP

OUTPUT: hPK

1: if VerifyK+

TTP
(he||H(pe, he), σhe

) = accept then

2: Spo bind ← f create sym keys[So, he, H(pe, he)]

3: hPK ← f create asym keys[Spo bind]

4: Clear Spo bind

5: return hPK

6: else

7: ABORT

Instruction 2. This instruction generates a hierarchy of cryptographic keys from the raw

PUF response pe. Symmetric and asymmetric keys are generated by f create sym keys[]

(Function 3.1) and f create asym keys[] (Function 3.2a or 3.2b), respectively.

The hPK variable is assigned the {K+
po bind, K

−1
po bind} keypair generated by f create asym

keys[]. Observe that hPK is encrypted and contains authentication information, which is

verified internally by OASIS using a key derived from the internal PUF key and the seed So.

Lastly, note that verification of the signature σhe
is most efficient if the signature algorithm

is based on RSA using a small exponent (e.g., 3, 17, or 216 + 1). Regardless of the latency

due to signature verification, we expect that this step is performed rarely – e.g., whenever

the device changes ownership or if a user desires to set up the environment for future use.
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Instruction 3: launch[]

INPUT: C,C.inputs, So, he, H(pe, he), hPK

OUTPUT:

1: Configure CPU into CAR Mode

2: Load C into the CPU cache

3: Spo bind ← f create sym keys[So, he, H(pe, he)]

4: K+
po bind ← f read asym keys[hPK]

5: CR.PCR← H (C)

6: CR.KC ← KDFCR.Kpo code
(H (C))

7: if (Spo bind =⊥) then

8: Clear CR.∗

9: ABORT

10: Clear Spo bind

11: Transfer control to C’s entry point

Instruction 3. The launch[] instruction is designed to set up the OASIS environment

for code C and populate all necessary registers. It begins by setting up a clean-slate CAR

environment, including disabling interrupts and hardware debugging access. It then reads

and loads CR.∗ registers with cryptographic key material for further processing by other

instructions.11

To avoid the expensive operations performed in create[] for asymmetric key generation

(e.g., prime generation), an encrypted data store hPK is returned by f create asym keys[]

and f read asym keys[hPK] is used on subsequent invocations. This function’s overhead is

equivalent to a few efficient symmetric-key operations.

11A possible optimization is to conditionally invoke f create sym keys[] and f read asym keys[]. For
example, launch[] can be modified to only invoke f create sym keys[] once after the processor reboots
and maintain the resulting keys in CR.* during successive OASIS sessions. This optimization must be
carefully considered and constructed by the implementer to manage the security trade-off (PUF-derived
secrets persisting between invocations). Additionally, the call to f read asym keys[] may be skipped for
sessions that only require symmetric keys.
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Observe that if we want to make the public binding key available outside the environment,

Instruction 2 must be called first. Also note that Instruction 2 verifies the signature σhe
every

time it executes, whereas Instruction 3 does not. We expect that signature verification will be

performed at most once per session, where each session might call the launch[] instruction

multiple times. Notice that even if the signature verification function is performed every

time, the overhead should be minimal, assuming RSA signatures. Refer to Figure 3.5 for

details on when instructions are called.

Next, launch[] stores a hash of the target code C to the platform configuration register

CR.PCR. Finally, a symmetric key KC is generated using a key derivation function based

on CR.Kpo code and a hash of target code C. KC is used for encrypting and authenticating

the executing code’s state for local storage to untrusted memory.

At the end of launch[], the following registers have been populated: CR.Kpo, CR.Kpo auth,

CR.Kpo encr, CR.Kpo code, CR.K−1
po bind, CR.PCR, and CR.KC .

Instruction 4: unbind[]

INPUT: {X1, PCR ver}K+

po bind
, {X2, PCR ver}KC

OUTPUT: X

1: if {X1, PCR ver}K+

po bind
6= NULL then

2: X,PCR ver ← DecCR.K−1

po bind
({X1, PCR ver}K+

po bind
)

3: else if {X2, PCR ver}KC
6= NULL then

4: X,PCR ver ← AuthDecCR.KC
({X2, PCR ver}KC

)

5: else

6: X ←⊥

7:

8: if CR.PCR 6= PCR ver then

9: X ←⊥

10: return X
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Instruction 4. Inputs X1 and X2 contain data values that should only be released to the

code that generated the data. The unbind instruction provides assurance to the verifier that

the inputs will only be released to the code with measurement PCR ver. Note that unbind[]

can decrypt data encrypted under either of the binding key K+
po bind or the application secret

key KC .

In the protocol described in Section 3.5, included in X2 is a symmetric key KV P , which

is generated by the verifier V for bulk encryption of data to be transferred between V and

the platform P . Notice that we do not suggest using the public binding key, K+
po bind, for

bulk encryption. Instead, symmetric keys should be used for bulk encryption operations and

the public binding key for storing bulk encryption keys. This is a common practice used to

avoid the performance cost of public key cryptography.

In choosing the asymmetric encryption scheme, some care must be taken to prevent

an attacker from using the ciphertext {X,PCR ver}K+

po bind
, which is intended to be de-

crypted only by the code with measurement PCR ver, to generate a related ciphertext

{X,PCR ver′}K+

po bind
, which the device would be willing to decrypt for different code with

measurement PCR ver′. To prevent this, the encryption scheme must be non-malleable –

i.e., an attacker cannot use one ciphertext to generate a second ciphertext that decrypts

to a plaintext related to the original plaintext. The formal definition of non-malleable is

known as Chosen Ciphertex Attack of type 2 or CCA2. Examples of CCA2 (non-malleable)

asymmetric encryption schemes include RSA-OAEP and RSA-OAEP+ [87].12 An alterna-

tive strategy to using a non-malleable public-key encryption scheme is to use the secret

encrypted with the asymmetric primitive to derive two keys: an encryption key and a MAC

key. The MAC key should be used to compute a MAC over the bulk-encrypted ciphertext,

12Note that it is possible for an encryption scheme to be semantically secure while still being malleable [88].
For example, in a hybrid scheme where RSA is used to encrypt a symmetric key, which is in turn used in a
block cipher to encrypt the bulk data, then clearly the last block of the bulk-encrypted data can be modified
without changing the decryption of the preceding plaintext blocks. This could allow the attacker to change
the specified PCR if it appears at the end of bulk encrypted data. Even if the authorized PCR is at the
beginning, the attacker would still be able to modify the end of the bulk data without changing the value of
the preceding ciphertext.
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and the receiver should reject ciphertexts with an inconsistent MAC. This is the strategy

used in the Integrated Encryption Scheme [89]. In this work, we simply assume that we are

using a CCA2 public-key encryption scheme regardless of its particular implementation.

Instruction 5: bind[]

INPUT: out

OUTPUT: KV P , stateOS, hashInputs, resultV, update

1: if update 6= NULL then

2: C′ ← AuthDecKV P
(update)

3: if C′ 6=⊥ then

4: CR.PCR← H (C′)

5: CR.KC ← KDFCR.Kpo code
(CR.PCR)

6: out.OS ← AuthEncCR.KC
(stateOS,CR.PCR)

7: V.hosstate← H(stateOS)

8: V.hinp← hashInputs

9: V.encK ← AuthEncCR.KC
(KV P , CR.PCR)

10: V.res← resultV

11: out.V ← AuthEncKV P
(V )

12: Clear CR.∗

13: Clear all state

14: return out

Instruction 5. The bind[] instruction prepares data for transfer to the untrusted code.

This instruction should be called by the executing code right before returning. Inputs to this

instruction include a shared secret KV P , the application state stateOS, a hash of application

input hashInputs, and the application results results. The variables out.OS and out.V are

ciphertext to be stored in local memory and sent to the verifier, respectively. Please note that

out.OS and V.encK bind stateOS and KV P to the launch point measurement of executing
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code C. Finally, observe that bind[] enables program code C updates. This is enabled by

checking whether the update has been encrypted and authenticated with the shared secret

KV P and upon successful verification, updating CR.PCR and CR.KC , accordingly.

3.5 Remote Execution Protocol

The secure remote execution protocol (Figures 3.6-3.10) shows the interaction between the

verifier (V ) and the untrusted system (OS) during the initial invocation (setup) and repeated

invocations (compute) of code foo() within the isolated execution environment (IEE).

We assume that the remote verifier V has a copy of the public platform binding key,

K+
po bind. Similarly, the verifier can keep a certificate that is used to confirm the authenticity

of the public key it receives from the platform. We also assume that the verifier has access

to the plaintext code.

Setup Session

1. V : V.inp.cmd← command

: V.inp.pubdata← pubInputs

: if (V.inp.cmd = “setup”)

: KV P
R
←−{0, 1}ℓ

: V.inp.privdata← AuthEncKV P
(privInputs)

: V.inp.encsym← EncK+

po bind
({KV P , H (foo())})

: else if (V.inp.cmd = “compute”)

: V.inp.privdata←

: AuthEncKV P
(privInputs, outV.hosstate)

: V.inp.encsym← outV.encK

V → OS : 〈foo(), V.inp〉

: else /* other functionality */. . .

Figure 3.6: Protocol Step 1. Setup Session
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3.5.1 Setup Session

In Step 1, the verifier V initiates an isolated execution session with the platform. During

the initial invocation, the verifier V uses the public platform key K+
po bind to establish shared

secret KV P which is used for repeat invocations. V generates an encryption key KV P , and

binds the hash of the code foo() with KV P . Bind allows the verifier to encrypt data using

the public part of the platform key while ensuring that only the correct code running in a

correctly set up execution environment can access the data. The inputs along with the code

are sent to the platform.

Launch Code

2. OS : OS.inp← out.OS

: launch[foo(), {V.inp,OS.inp}]

Figure 3.7: Protocol Step 2. Launch Code

3.5.2 Launch & Execute Code

In Step 2, the OS calls the hardware instruction launch[] using the plaintext code foo(),

the verifier inputs V.inp, and the previously stored state OS.inp as inputs. Please note that

OS.inp is assigned NULL during the first launch.

In Step 3, the isolated execution environment IEE first checks inputs received from

the verifier. If a “setup” command was received from the verifier the IEE attempts to

unbind the encrypted inputs from V as follows. The IEE releases shared encryption key

KV P , using the unbind[] instruction, and decrypts any private inputs, aborting execution

if either operation fails. These checks prevent unauthorized code from proceeding. After the

checks, the application logic is executed. For example, if the application is a secure counter,

during the first iteration the counter is set to zero. In the case of an encrypted database,

the first records could be stored in the database or all records could be initialized to zero.
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Execute Code

3. IEE : if (V.inp.cmd = “setup”) then

: ksym← unbind[V.inp.encsym,NULL]

: if (ksym =⊥) then ABORT

: data1 ← V.inp.pubdata

: if (V.inp.privdata 6= NULL) then

: data2 ← AuthDecksym(V.inp.privdata)

: if (data2 =⊥) then ABORT

: else

: data2 ← NULL

: state← doWork1(data1, data2)

: out← bind[ksym, state,H(V.inp), NULL]

: else if (V.inp.cmd = “compute”)then

: ksym← unbind[NULL, V.inp.encsym]

: if (ksym =⊥) then ABORT

: data1 ← V.inp.pubdata

: if (V.inp.privdata 6= NULL) then

: data2 ← AuthDecksym(V.inp.privdata)

: if (data2 =⊥) then ABORT

: stateold ← unbind[NULL,OS.inp]

: if (data2.V hosstate 6= H (stateold)) then ABORT

: {statenew, res} ← doWork2 (stateold,

: data1, data2)

: out← bind[ksym, statenew, H(V.inp), res]

: else /* other functionality */. . .

Figure 3.8: Protocol Step 3. Execute Code

Save State

4. IEE → OS : 〈out.OS, out.V 〉

OS : store 〈foo(), out.OS〉

Figure 3.9: Protocol Step 4. Save State
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Verify Execution

5. OS → V : 〈out.V 〉

V : outV ← AuthDecKV P
(out.V )

: if (outV =⊥) then

: reject: invalid computation

: if (outV.hinp 6= H(V.inp)) then

: reject: invalid inputs

Figure 3.10: Protocol Step 5. Verify Execution

3.5.3 Save State & Verify Execution

Steps 4 and 5 show the parameters returned to the OS and the verifier, respectively. Step 5

is critical as it provides evidence to the verifier that the computation has been performed

on the correct inputs and, in particular, that the inputs have not been manipulated prior to

entering OASIS.

3.6 Discussion

3.6.1 Linkable Code Blocks

So far, we have presented how an application C that is fully contained within the CPU cache

is executed in OASIS. Recall that the unbind[] instruction guarantees that only C can

access its protected state during future invocations by verifying that the loaded application

has measurement H(C) before decrypting.

Now we consider the case of an application that has size greater than the cache (e.g.,

application C = C0|C1| . . . |Cn where Ci refers to the ith application code block). Execution

of more complex applications is achieved by computing a Merkle hash tree over the entire

program, and binding the resulting tree’s root value to the application state. The loaded

code block Ci is accepted if and only if the hash tree validation succeeds.

The hash tree construction provides several nice properties. First, it extends state protec-
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tion and load-time integrity checking to applications of arbitrary size. Second, it maintains

a small TCB. Third, it enables efficient execution because code block Ci may be safely

executed before the entire application C has been hashed.

3.6.2 Rollback Prevention

A rollback attack occurs when on old state is presented to the isolated execution environ-

ment. Since the stale state is cryptographically consistent, an isolated execution environment

implemented without rollback prevention will incorrectly accept it – potentially bypassing

stateful protection mechanisms to, for example, undo the append-only property of an au-

dit log. Thus, rollback resistance is needed to guarantee state continuity of the executing

application.

One technique for ensuring state continuity is to include a protected monotonic counter

as part of the state [90]. Another technique for rollback prevention is to keep a trusted

summary (e.g., a hash) of the expected state. Parno et al. include a summary of the state

history to permit reverting to a safe state in the case of an unexpected crash [91]. These

methods can be achieved by using protected non-volatile memory for persistent storage of

data describing the expected state. However, we seek a rollback prevention mechanism that

enables OASIS to remain stateless between invocations. Additionally, we rule out using a

trusted third party for state management.

What follows is a description of how the verifier can confirm state continuity using the

OASIS instruction set. During the execution protocol, the unbind[] instruction is invoked

to decrypt any state belonging to code C (Figure 3.8). After executing code C, the bind[]

instruction is invoked to protect state destined for the OS as well as output destined for

the verifier. Included in the output for the verifier is a summary of the current state,

H (stateOS). The verifier output is encrypted under key KV P before transferring control to

untrusted OS code for delivery to the verifier. The verifier includes this state summary as

an input during the next invocation. If the state presented by the untrusted OS matches
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the expected state, the code executes and the new state summary is communicated to the

verifier as acknowledgment. Otherwise, the protocol aborts. In this fashion, we achieve

rollback prevention without requiring a persistent application state in the OASIS TCB.

3.6.3 Distributed Deployment

We have presented cryptographic techniques for data secrecy, authenticity, and freshness.

Still, the rollback prevention mechanism described thus far is insufficient if we consider the

distributed deployment model where multiple verifiers collaborate through a remote service

provider. In this asynchronous context, even if cryptographic techniques prevent forged

responses and data snooping, a compromised OS can launch forking attacks by concealing

the operations of one verifier from another. For example, a compromised server may simply

omit the current state and replay an old state to the other verifiers.

Fork consistency ensures that all verifiers see the same operations log before an omission

but no verifier can see any other verifier’s operations after an omission fault (fork). Further-

more, the fork consistency condition enables the verifiers to detect a misbehaving service

provider after a single omission.

Li et al. present a protocol for achieving fork consistency where each verifier maintains a

signed version structure list [92]. Each verifier signs increasing version numbers and appends

these to their respective lists, allowing them to compare lists and detect a fork attack.

3.6.4 Version Updating

To support version updating (i.e., updating code C to legitimate new code C′), the appli-

cation must implement an update command which calls bind[] with parameter update set

(where the update parameter contains the new code version C′ encrypted under key KV P ).

The bind[] instruction first checks parameter update for authenticity and then updates

CR.PCR and CR.KC using the new code version C′ (refer to Table 3.2 for definitions of

variables and Instruction 5 for details on bind[]). In this way the application state of the
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current software version C is bound to the new software version C′. Accordingly, the next

invocation of unbind[] will release the application state to C′.

The decryption and authentication operations prove to OASIS that the software origi-

nated from the verifier V as she is the only one in possession of the key KV P . It is possible

to design an alternative update mechanism, based on asymmetric operations, which has the

advantage that an entity different from V can provide an update C′, thus granting it access

to the current OASIS state. However, this comes at the cost of requiring certification which

would add complexity and computational overhead.

3.6.5 Device Transferability

Recall that the device owner selects seed value So during key generation (refer to Function 3.1

for details). The seed value So enables the derivation of owner-specific processor keys. Cus-

tomization, via the owner-generated seed So, precludes previous device owners, including the

manufacturer, from generating the same platform secret as the current owner. Thus, the

device can be safely transferred. This protects the owners of new devices by limiting the

ability of malicious parties (e.g., along the supply chain) to learn the platform secrets of the

end-user. This allows, for example, a device to be repurposed at a new business unit or sold

to a new owner.

Please note that the owner-generated seed So effectively disassociates any resulting key

material from the device manufacturer. Nevertheless, the owner needs a mechanism to prove

the authenticity of their processor to a third party. A default seed value that is fixed for the

life of the device may be included to support secure device transfer while still providing a

mechanism for proving the authenticity of the executing platform. We refer to this default

seed value as the identity seed value or So
∗. Next, a master signing key is derived from root

secret Kp and identity seed So
∗. Certification can be handled by a third party for further

unlinkability. In this way, secrets linked to the hardware are derived from the fixed identity

seed So
∗ whereas secrets exclusive to the owner are derived from the custom owner seed So.
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Allowing the owner to choose any So as often as they like may allow an attacker to leak the

root platform key Kp through cryptanalysis. This can be mitigated by rate-limiting requests

for a fresh So. Upon request, the device generates a fresh seed value So and computes a

MAC over it using a key derived from the root secret Kp and the identity seed value So
∗.

This ensures that chosen values of So cannot be correlated with a response, during device

initialization, to learn the root platform key Kp.

3.7 Performance Evaluation

3.7.1 System Configuration

We model our proposed processor instruction set using Simics, a full-system simulator [93].

We build a prototype system by adding our new instructions to the x86-hammer model.13

We model a 2 GHz processor with non-unified L1 cache (64 KB data and instruction caches).

We use a modified Linux 2.6.32 kernel as our target operating system.

3.7.2 Microbenchmark Results

To evaluate micro- and macro-level benchmarks, we measure the performance of our imple-

mentation against TCG-style implementations of common security-sensitive code operations.

We use a pessimistic benchmark for the OASIS isolated execution environment and compare

it to an optimistic benchmark for TCG 1.2. See Table 3.4 for a list of the platform primi-

tives and their associated costs. See Table 3.5 for a comparison of performance overheads

for OASIS and DRTM-based implementations.14

We base the median performance costs associated with the cryptographic primitives by

leveraging open source libraries LibTomCrypt and OpenSSL.15 It is likely that these functions

13x86-hammer is a hardware model representing a generic 64-bit AMD Operteron processor sans on-chip
devices [94].

14We have based performance overheads in Table 3.5 on TPM benchmarks from [95] where the reference
DRTM implementation does not provide performance numbers for 2048-bit RSA operations.

15LibTom: www.libtom.org. OpenSSL: www.openssl.org.
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further increase in performance with a hardware implementation.

Table 3.4: Performance Overheads for Platform Operations

avg (of 210 executions)

cycles time(ms)

Platform Support

rand
R
←−{0, 1}ℓ 1.6 K 7.91 · 10−4

f read PUF ˜ 2.55 · 10−5

f init PUF ˜ 2.40 · 10−5

f fuzzy extract PUF ˜ 3.30 · 10−5

Crypto
H(pe) 4.9 K 2.49 · 10−3

KDFCR.Kpo
20.9 K 1.04 · 10−2

f sym encrypt 1.2 K 6.02 · 10−4

f sym decrypt 1.2 K 6.12 · 10−4

f rsa key gen 3.2 B 1.61 · 10+3

f rsa encrypt 3.08 M 1.54 · 10+0

f rsa decrypt 65.7 M 3.29 · 10+1

SignK−1

X
(m) 65.9 M 3.30 · 10+1

VerifyK+

X
(m,σ) 3.1 M 1.53 · 10+0

OASIS Functions
f create sym keys 104 K 5.21 · 10−2

f create asym keys 3.7 B 1.84 · 10+3

f read asym keys 18.5 K 9.26 · 10−3

OASIS Instructions
init 7.2 K 3.58 · 10−3

create 4.3 B 2.16 · 10+3

launch 137 K 6.84 · 10−2

unbind with asym 68.1 M 3.40 · 10+1

unbind with sym 17.9 M 8.95 · 10+0

bind 3.12 M 1.56 · 10+0

Performance overheads for platform operations used to instrument the OASIS isolated
execution environment hardware simulation. Times are based on a 2 GHz processor clock.
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Table 3.5: Comparison of Performance Overheads by Invocation Scenario

Scenario OASIS DRTM

operation(s) time operation(s) time ref.

One Time init[] 3.6 µsec NV Write, TPM 2048 Root Key Generation > 25 sec [95]

One Time per Owner create[] 2.6 sec TrustVisor-modeled AIK Generation: > 25 sec [95]
TPM and µTPM 2048 AIK Generation

Per Module Launch launch[] and 34.1 msec TrustVisor-modeled DRTM: > 1.8 sec [96]
(First Time) unbind[] with K+

po bind
Transfer SLB over LPC, Unseal µTPM keys,

encrypted input Quote SLB, µTPM HV Quote of PAL

Per Module Launch launch[] and 9.0 msec TrustVisor-modeled DRTM: 22 msec [96]
(Repeated Invocation) unbind[] with KC Set-up and HV Quote of PAL

encrypted input

3.7.3 Performance Advantages

We now present the performance advantages of our architecture as compared to a TPM

implementation.

In terms of processor speed, cryptographic applications benefit from running on a proces-

sor core instead of a TPM. For example, the Infineon TPM co-processor operates at 33 MHz,

which pales in comparison to even mid and low-end commodity processor speeds.

In terms of communication overhead, we avoid costly communication overheads by imple-

menting cryptographic functions on-chip instead of on a co-processor. For example, the TPM

interfaces using the Low Pin Count (LPC) bus. The LPC is used to connect low-bandwidth

devices to the CPU (4-bit-bus on a 33 MHz clock).

3.8 Related Work

Architecture Extensions. Hardware-based security mechanisms have been proposed and

implemented by both commercial and academic groups. In terms of commercial hardware-

based IEE technologies, the main components are the Trusted Execution Environment (TEE)

which provides capabilities for isolated execution and ensuring software is in a known good

state before launch, and the Trusted Platform Module (TPM) which provides remote attes-

tation, binding, and sealing capabilities. Popular TEE implementations include ARM Trust
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Zone [97], and Intel TXT [98]. More recently, Intel has improved on the TXT architecture

with the development of Intel SGX [99]. These techniques can be combined with the OASIS

API. For example, Enclaves from SGX would replace CAR mode based memory isolation to

support applications of much larger size.

Similar to our work, Defrawy et al. propose SMART, an architecture for establishing a

dynamic root of trust in remote devices [100]. SMART focuses on remote embedded devices

(in particular, low-end microcontroller units (MCUs)) whereas we are applicable to high-end

processors. Additionally, SMART investigates the usage of secret key material to establish

a root of trust, assuming the existence of secure non-volatile memory to store the secret. In

contrast, OASIS is based on the use of SRAM memory-based PUFs [66, 67].

Previous work has explored hardware extensions designed for an adversary model where

software and physical attacks are possible. Lie et al. present XOM, a hardware implemen-

tation of eXecute-only-memory [101]. Similar to our adversary model, XOM assumes a

completely untrusted OS. Unlike OASIS, XOM assumes a secure manufacturing process, al-

lows secure XOM applications to access the platform secret, and requires secure non-volatile

memory. Lee et al. present SP, a processor architecture for isolated execution [102, 103].

Similar to OASIS, SP does not require a secure manufacturing process; however, SP in-

cludes no immutable device secret which makes it a challenge to prove the authenticity of

the executing platform to a third party.

Memory cloaking provides secrecy and integrity of application data while allowing the

OS to carry on most of its memory management tasks by limiting the OS’s data access to

ciphertext. More recently, Williams et al. (Secure Executables [104]) and Chhabra et al.

(SecureMe [25]) propose an isolated execution environment using hardware-based memory

cloaking. Secure Executables uses CPU-protected memory regions to store the register set

(e.g., while a Secure Executable is suspended during a system call). This solution has the

advantage of avoiding cryptographic operations; however, direct memory attacks may be pos-

sible (e.g., by a DMA-enabled hardware component). The root of trust in Secure Executables
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is based on a public/private keypair that is installed in the CPU during manufacturing. In

our design, the manufacturer and the device owner (or system integrator) both contribute

to initializing a root of trust. This reduces the possibility of any large-scale data breaches

and also facilities repurposing the device for new owners. SecureMe improves upon previ-

ous cloaking methods by ensuring that the entire address space of the application remains

protected at all times. OASIS differs from SecureMe in its usage model. Unlike SecureMe,

OASIS enforces isolation in the strictest sense by suspending the OS for the duration of its

sessions.

PUF-Based Secrets. In 2002, Gassend introduced the notion of the Physically Unclonable

Functions (or a PUF) as a mechanism for storing secrets[105]. The PUFs unclonability is

due to random variations in a device’s manufacturing process, which even the manufacturer

cannot control. As a result, greater levels of physical security can be provided at a lower

cost than with previous approaches for storing digital secrets.

Guajardo et al. analyzes SRAM-based Physically Unclonable Functions (PUFs). The

results of this analysis indicate that PUFs based on SRAM cells provide excellent properties

for secure key storage[106].

Suh et al. propose a secure processing architecture, AEGIS, that makes use of Physical

Unclonable Functions for creating and protecting secrets [107]. AEGIS consigns security-

sensitive OS functionality (e.g., context switching and virtual memory management) to a

security kernel. However, this approach faces the same problem as the trusted OS model –

the resulting TCB can be quite large.

Similar to our work, Suh et al. propose a secure processing architecture, AEGIS, that

makes use of Physical Unclonable Functions for creating and protecting secrets [108]. AEGIS

consigns security-sensitive OS functionality (e.g., context switching and virtual memory man-

agement) to a security kernel. However, this approach faces the same problem as the trusted

OS model – the resulting TCB can be quite large.
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Alternate Deployment Models. Our ISE is inspired by the recommendations of McCune

et al. [109] but in contrast to previous approaches that use a TPM as the root of trust, we use

a PUF-derived key, integrated within the processor. This integration increases performance

and diminishes the possibility of attacks on the buses connecting the platform to the TPM.

We use hardware instructions to ensure strong isolation properties during the execution

of self-contained security-sensitive code. Another alternative is to use a special-purpose

hypervisor instead of additional hardware instructions. The hypervisor provides a less ex-

pensive alternative to hardware instruction set extensions and is significantly smaller than

a full OS. Nonetheless, a disadvantage of this approach is that the hypervisor is trusted to

enforce memory isolation and DMA protection for executing code and, accordingly, must be

included in the TCB.

An alternative to extending functionality to the CPU is to use a secure co-processor [110].

A dedicated TPM is the approach endorsed by the TCG. In terms of manufacturing, this

approach has the advantage of decoupling system security from the production of traditional

processors. A drawback of using co-processors, however, is a reduction of physical security

due to the exposed bus. Additionally, the performance hit due to communicating over the

bus is not suitable for minimal TCB execution where sessions are repeatedly set up and torn

down.

Alternatively, a co-processor could be included as an IP on an SoC which would provide

speed, tighter control, and enhanced security. The motivation for extending the processor

ISA rather than an SoC TPM implementation is cost savings.

3.9 Conclusion

Currently, TPM-based solutions have not reached widespread application in security-sensitive

contexts, perhaps because TCG solutions lack protection against a more resourceful adver-

sary, lack sufficient properties for end-to-end application protection, lack architectural safe-
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guards against supply-chain compromises, or concerns over poor performance. OASIS offers

a stronger degree of protection through highly efficient isolated execution with no hardware

dependencies outside the CPU.

We have explored the extent to which minimal modifications to commodity CPUs can

support isolated code execution. The ISA extensions explored in this research enable com-

pute service providers and application developers to provide high-security assurance at low

cost in terms of platform and software complexity.
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Part III

Micro Clouds: Securing the Edge

Through the Fog
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Chapter 4

Fog Mediation

This chapter is largely a reproduction of the paper MEDIA: Mediating Edge Device-based

Integrated Access co-authored with Faysal Shezan, Yuan Tian, Jorge Guajardo, and

Patrick Tague [111]. This research was supported in part by participation in the

Northrop Grumman Cybersecurity Research Consortium and by an award from the

Cisco IoT Security Grand Challenge.

Mediating Edge Device-based Integrated Access (MEDIA). This chapter develops

the concept of fog mediation as a method for extending the security guarantees of an iso-

lated execution environment to the diverse set of resource-constrained embedded devices

comprising the Internet of Things [111]. MEDIA leverages hardware-based security prim-

itives integrated into fog computing elements to provide end-to-end security guarantees,

improved performance, and mediate trust decisions between the cloud and co-located mobile

devices. Fog mediation enables policy related to IoT data protection practices within a fog

computing deployment to be independently verified by end-users.

4.1 Overview

In the context of the Internet of Things (IoT) and burgeoning data streams, the centralized

cloud data processing model has several drawbacks including (i) unstable connections and un-
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certain response times between the cloud and service endpoints, (ii) poor usability for latency-

sensitive applications due to the natural limits of message propagation speeds [112, 113] (iii)

increased network congestion due to a lack of local data processing, (iv) scalability challenges

due to an increasing number of Internet-accessible sensors and actuators [114] (v) and legal

and privacy issues related to writing sensitive data to geographically remote data centers.

Additionally, the security techniques well-suited to the traditional cloud computing model

are insufficient as we consider a significant shift towards more security-critical operations

performed at the edge of the network — e.g., autonomous cars and industrial equipment

which were previously offline or siloed in private networks can now receive remote actuating

signals — increasing the cyber-physical risk element of cyberattacks. The motivation for

delegating some computation to the edge (fog computing) rather than doing everything in

the core of the network (cloud computing) is to resolve these drawbacks (see Table 4.1).

Table 4.1: Comparison of the Cloud Computing and Fog Mediation Models

Cloud Computing Fog Mediation

Adversary Type AL2 [24]: Sophisticated remote attacks
(e.g., malware in app, OS, or cloud
management software)

AL5 [24]: Sophisticated remote and
local attacks
(e.g., attaching malicious peripherals
or bus tampering)

Security Objective Primarily system sandboxing Primarily application isolation

Privacy Policy Data confidentiality defined by service
agreement

Privacy preservation defined by data
provenance

Platform Ownership Centralized ownership by enterprise
cloud computing entities

Decentralized ownership by a collec-
tive of individuals and institutions

Platform Deployment Climate-controlled data center man-
aged by specialists

Service endpoint managed by non-
specialists

Platform Usage Hundreds of tenants at any given time Tens of tenants at any given time

Network Speeds WAN bandwidth & latency (>
30ms [112])

LAN bandwidth & latency (< 30ms)

Application State Primarily persistent Primarily transient

The first three items (adversary type, security objective, and privacy policy) are directly pertinent to
the fog mediation security model whereas the remaining items (platform ownership, platform deployment,
platform usage, network speeds, and application state) apply broadly to fog computing.
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We argue that a purely cloud-centric computing model is not adequate for IoT security

and privacy. For one, the cloud simply cannot support all application use cases. The

growth in the rate of data generation and an increasingly variegated landscape of connected

devices has been accompanied by an increased demand for computation, storage, and network

resources co-located with those data streams and connected devices — placing practical limits

on the applicability computing model [115, 7, 116]. The initial motivation for introducing

fog computing was, in part, to supplement remote data centers and bolster resource-poor

connected devices in edge computing use cases with high-performance requirements [8, 9].

Similarly, security techniques designed with traditional device categories in mind (e.g.,

smartphones and personal computers) do not address the unique challenges presented by

IoT device categories. Connected devices, or “things,” are generally not managed by IT

professionals or they may operate under deployment constraints that make it costly and

time-consuming to apply software patches as needed (e.g., battery-bound sensor networks

monitoring remote regions). Additionally, connected-devices are generally designed to meet

the functional requirements at the lowest cost possible and, as such, do not feature general-

purpose security functionality. In all these situations, fog mediation provides a means for

reducing the complexity of individual IoT devices in addition to providing a means of achiev-

ing high-performance networking and computing.

We observe that resource-rich fog computing nodes provide not only a scalable platform

for liberating mobile and embedded devices from severe resource constraints but are well-

positioned to act as a grounds for mediating trust between the cloud and the edge of the

network — a concept we call fog mediated computing. It is the goal of this research to examine

the extent to which fog mediation can be applied to the task of providing strong security

assurance in the IoT. To that end, this work explores fog mediation — i.e., establishing

isolated execution environments on fog computing nodes. Fog mediation extends the security

guarantees of an isolated execution environment to the diverse set of resource-constrained

embedded devices comprising the IoT. We evaluate our model in terms of performance
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and security and compare the results for real-world application traces against benchmark

implementations.

Contributions. This research explores minimal hardware and software extensions to fog

computing platforms that realize strong isolated execution properties using commodity pro-

cessors. Further, we expand these extensions to provide security to a wide range of IoT

devices. In particular, this work makes the following contributions:

• We observe that resource-rich fog computing nodes are well-positioned as a platform

for mediating trust between the apps, devices, and stakeholders spanning the cloud,

mobile, and ubiquitous computing models. We propose an intrinsic trust architecture

specification for isolated execution in the fog (Section 4.2).

• We examine the applicability of hardware-based root of trust and isolated execution

environments to the challenges of providing strong security assurance in the Internet

of Things (Section 4.3).

• We introduce the concept of fog mediated computing — a systems security design

pattern that leverages hardware-based security primitives instrumented as part of

edge computing infrastructure to provide local points of trust between co-located mo-

bile/embedded devices and cloud-based services (Section 4.4).

• We evaluate the performance of MEDIA using off-the-shelf hardware and public cloud

(Section 4.5).

Organization. This work posits that effective security measures for interfacing IoT devices

with the global Internet must adequately support isolated execution and contextual informa-

tion flow. Isolated execution establishes a verifiable basis of trust at the processor level (the

topic of Chapter 2 and Chapter 3). Contextual information flow maps the variegated device

capabilities and data use requirements of the IoT to a manageable set of mandatory protec-

tions and discretionary controls that accord with the privacy expectations of individuals (a

topic further developed in Chapter 5).
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At the nexus of these two top-level design goals is the need for a mechanism that extends

the hardware-based platform-level security properties to the user-centered app-level require-

ments and, conversely, provides assurance that the app-level requirements are founded on the

reliable ground of platform-level root of trust (the topic of the current chapter, Chapter 4).

In this study, we present, MEDIA, a systems design for mediating usability, security, and pri-

vacy requirements, for a given set of Internet of Things users and devices, using a network of

hardware-hardened fog computing nodes. Section 4.2 describes the problem space including

the threat model, the proposed deployment model, design assumptions, and desired prop-

erties. In particular, the problem space treated here focuses primarily on the challenge of

providing security and privacy in the context of the Internet of Things. Section 4.3 provides

descriptions of the key hardware building blocks used in the construction of the MEDIA

architecture (refer to Chapter 3 for design details on the CPU instruction set, OASIS, that

forms the basis of the isolated execution environment used in MEDIA). Section 4.4 presents

the MEDIA architecture which develops fog mediation as a set of platform primitives for sup-

porting performance and security requirements. Section 4.5 presents the experiment testbed

configuration and performance evaluation. Section 4.6 discusses the conclusions of the study.

4.2 Problem Definition

4.2.1 Model & Assumptions

Deployment Model. Our use case defines outsourced computation in the sense advocated

by the hybrid public cloud and edge computing deployment models.1 Accordingly, we identify

the following five key stakeholders and their primary roles:

(i) The hardware manufacturer (or HWM) is trusted to manufacture the fog node

according to published vendor certification guarantees including the capability of the CPU

1The deployment model presented in this section builds upon the description presented in Section 3.2.1.
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to initialize cryptographic device keys with a Physically Unclonable Function (PUF) and

support the cryptographic instruction set extension (ISE) discussed in the section on the

MEDIA hardware building blocks.

(ii) The cloud provider (data center) offers remote computation, storage, and network

resources as-a-service to cloud customers who wish to lease them for a certain amount of

time or computation.

(iii) The fog provider (domain admin) offers computation, storage, and network re-

sources as-a-platform for use by the network of co-located users and embedded devices.

Domain admins are interested in ensuring that all services deployed within their network

follow the domain’s security requirements and privacy policies.

(iv) The service provider (app developer) wishes to lease both fog computing and

cloud computing resources. Service providers are interested in verifying the trustworthiness

the devices leased to them, guaranteeing the integrity and confidentiality of their computa-

tions and data.

Finally, (v) the end user (user device) wishes to use fog mediated services — i.e.,

applications that leverage protected persistent application states sourced from the cloud and

co-located data streams emanating from the collection of embedded devices comprising the

domain. Users are interested in verifying the trustworthiness of proximate fog infrastructure,

guaranteeing the integrity and confidentiality of their computations and data.

HWM

hardware

authenticator

VVM

data center

VPAL

app developer

PIEE

domain admin

VUD

user device

Figure 4.1: Stakeholder Interaction Model.

The interactions between stakeholders in the hybrid public cloud and edge computing
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deployment model considered here are depicted in Figure 4.1. For ease of exposition, we refer

to the fog mediation node (i.e., the class of devices managed by domain admins) simply as

the untrusted platform or P . Similarly, we refer to the class of devices used to interface with

the fog mediation node simply as the verifier or V . We term each security-sensitive block

of app code running on P as a piece of application logic (PAL) [117, 96, 118, 24, 109]. We

refer to the hardware-protected software instances on P where the PAL is run as isolated

execution environments (PIEE).

Please note that the class of devices belonging to V includes devices managed by the cloud

provider (VVM), service provider (VPAL), and domain user (VUD) stakeholder groups as these

stakeholders are interested in attesting to the launch-point integrity of isolated execution

environment PIEE on platform P via virtual machine/container, a piece of application logic,

or user device, respectively. Also note that although, in practice, the service provider, VPAL,

is interested in verifying the trustworthiness of the leased computation, storage, and network

resources residing both within remote data centers and fog mediated domains (PVM ←−

VPAL −→ PIEE), the scope of this study is on the latter (VPAL −→ PIEE).

Although we treat each stakeholder group as a distinct party for the remainder of this

study, in practice a party may take on a combination of stakeholder responsibilities as the

use case dictates. In particular, the domain admins responsibilities may overlap with that of

the service provider or end-user depending on the type of domain. For example, the domain

admin would also take on the role of services provider in the case of a software product team

that manages remotely deployed embedded sensing devices. Similarly, the domain admin

would also take on the role of the end-user in the case of small-business owners managing a

private local area network. In other contexts, the domain admin may refer to a different set

of individuals (e.g., as in the case of a dedicated systems security admin team for a university

network).

Adversary Model. In contrast to large scale public cloud data centers, which have orga-

nizational processes in place to limit physical access to computing resources, fog computers
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must be deployed in proximity to end-users. Some fog computing environments have similar

resources in place for building security (e.g., like a large industrial facility that leverages

IoT and fog computing equipment for managing operations). Still, many high-value use

cases benefit from deploying equipment in environments that are readily accessible to any

interested passerby.

We assume an adversary that can introduce malware into the computing platform (e.g., by

compromising an application, the operating system, or firmware). We assume an adversary

with physical access to the computing platform. In particular, the adversary can probe and

tamper with low-speed and high-speed buses or physically attach malicious peripherals to

the external ports of the platform to (e.g., to eavesdrop on a memory or PCI bus, inject

code, or modify data).

Additionally, we assume that all protocols used in platform P are discoverable by the

adversary such that an adversary can compute response Rit = P (Ci, St) if challenge Ci and

state St are known (Kerckhoffs’ principle [119]).

Assumptions. With respect to the domain admin, we assume that the CPU on untrusted

platform P is not malicious and meets the vendor certification guarantees ascribed to it

(i.e., we trust the processor contained within the fog mediating node). With respect to the

verifying parties, we assume that V has the correct public key of the domain administrator’s

platform P .

We assume that the CPU contains a True Random Number Generator (TRNG) and a

Physically Unclonable Function (PUF) that is only accessible through the specified APIs

(see Section 4.3.1). We assume that the memory cells used as building blocks in crypto-

graphic protocols are not accessible for general use (e.g., memory cells with stable and un-

stable power-states states used for authentication or as an entropy source, respectively). We

assume that the construction of the processor-based cryptographic primitives has tamper-

resistance properties.

Lastly, we consider denial-of-service, side-channel [120], and fault injection style attacks
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beyond the scope of this work.

4.2.2 Desired Properties

The following list contains the desired properties for MEDIA.

P1 Trustworthy Root. We would like the following intrinsic platform trust objectives

to be satisfied:

P1.1 Accessible. Assets entrusted to the isolated execution environment should be pro-

hibitively expensive to compromise (i.e., leak or alter) even in the presence of

malware or an adversary with physical access to the platform.

P1.2 Self-generating. The root of trust for the isolated execution environment should

be ownerless for the entire duration of the platform life-cycle.

P1.3 Self-contained. The isolated execution environment should not depend on addi-

tional hardware support such as secure co-processors or trusted devices.

P1.4 Non-aligned. The secrecy of processor-generated key material should be indepen-

dent of management processes external to the platform including processes for

certification of platform authenticity.

P2 Trustworthy Mediation. We would like the following fog mediation security objec-

tives to be satisfied:

P2.1 Integrity. Data integrity guarantees and replay prevention for data loaded from

encryption-protected main memory regions to the processor.

P2.2 Secrecy. Data confidentiality guarantees for isolated on-die memory regions and

encryption-protected off-die memory regions.

P2.3 Verification. Remotely verifiable code execution that guarantees platform authen-

ticity, code integrity, and launch point integrity.
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P2.4 State-bindable. The ability to generate unique cryptographic keys for each dis-

tinct isolated execution environment and to bind program state to hardware, code,

and/or verifier group.

4.3 Hardware Building Blocks

The high-level aim of this collection of hardware building blocks is to provide integrity and

secrecy for a PAL executing on an untrusted host — i.e., isolated execution [23, 22, 26, 24, 20,

25, 21] on a fog node. For ease of exposition, we use the term isolated execution environment

to refer to the attendant properties required to provide a remote user with an end-to-end

assurance of isolated execution without having to trust the platform provider. Namely, the

(i) root of trust, (ii) remote attestation, (iii) secrets provisioning, and (iv) isolated execution

properties.

4.3.1 Bootstrapping Trust

The MEDIA architecture provides isolated execution via a suite of hardware security building

blocks built directly into the CPU package [108, 24, 23]. These building blocks are necessary

to establish strong root of trust (RoT) guarantees that, in turn, enable the generation of

platform-derived secret key material for use in cryptographic techniques that provide launch

point measurement and code integrity (i.e., proof of unmodified code execution even in the

context of an untrusted platform with potentially compromised application, firmware, or

OS) as well as data integrity and secrecy for all fog-mediated PALs.

Nourishing the Roots

Physically Unclonable Functions (PUFs) refer to structures that react in unpredictable but

repeatable ways to physical stimuli. PUFs are typically constructed from integrated cir-

cuits and derive their uncontrollable, yet reliable, response characteristic from the naturally
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challenge C

PUF

response pm
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helper data hm
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PUF
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Hash

root platform secret Kp

key derivation (a) key generation (b)

Figure 4.2: PUF-based Key Derivation and Key Generation. This diagram shows
the process for the derivation (a) and generation (b) of secrets suitable for use in cryp-
tographic protocols. The resulting bit sequence Kp may be used as an input to a key
derivation function. During the key generation sequence, public helper data hm is used
in conjunction with an error-correcting code and a potentially noisy PUF response p′m to
recover PUF response pm.

occurring variations in semiconductor microstructures that are introduced during the man-

ufacturing process. These variations function as a “silicon biometric” that makes it possible

to distinguish between any two otherwise structurally identical semiconductors.

In their function as building blocks in secure architectures, they provide a high-entropy

source of tamper-resistant bits suitable for applications like IP protection [66, 121, 122, 123],

authentication [124, 125], and the generation of cryptographic key material [37]. PUFs based

on volatile memory elements (e.g., latches, flip-flops, or SRAM) have been proposed as a

cost-effective alternative to secure non-volatile memory as they leverage the semiconductor

processes already used in modern CPUs and do not incur the costs and risks of having

injecting platform secrets.

For suitability as a cryptographic building block, a PUF construction should be highly
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reliable (i.e., exhibit consistent challenge-response behavior under varying voltage, temper-

ature, and aging effects). In practice, due to the complexity of physical microstructures and

variations in ambient conditions during challenge-response, error-correcting functionality,

called a fuzzy extractor, is required to produce bit-accurate data suitable for cryptography

from a noisy response (Figure 4.2). In the case of PUF-based cryptographic key generators,

it is also useful to have a “strong” PUF (i.e., a PUF construction that supports a very large

number of challenge-response pairs) [37].

Leveraging Processors

Cryptographic building blocks that leverage SRAM have significant benefits in terms of a low

barrier to adoption (SRAM is manufactured using the standard semiconductor process and

already available on modern CPUs), lower costs (avoids the costly requirement of using secure

non-volatile memory). SRAM PUFs are of particular interest in the context of hardware-

hardening fog computing nodes because (i) SRAM PUFs are unpredictable, reliable, and

compact i.e., an excellent approximation of an ideal PUF, (ii) resilient to side-channel and

fault injection attacks, (iii) and need to be powered to create the secret key material and

thus cannot be read offline [126, 127]. Taken together, these attributes satisfy the accessible

(P1.1), self-generated (P1.2), and self-contained (P1.3) properties. In particular, the self-

generating property lessens the cost, complexity, and security risk potential of the CPU

package and the manufacturing process by removing the need for non-volatile memory and

a secure secrets injection process.

A study by Bhargava et al. compares the reliability characteristics of several classes

of PUF constructions [126]. They find that SRAM PUFs outperform the Arbiter PUFs,

Ring Oscillator PUFs, and Sense Amplifier PUFs in terms of reliability characteristics under

variable voltage and temperature conditions. A study on the use of SRAM based FPGAs for

IP Protection by Guajardo et al. finds SRAM provides an excellent source of entropy (with

approximately 0.95 bits entropy for every SRAM cell [66]).
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Several attacks highlight some of the potential risks and trade-offs of using SRAM-PUFs

for secure storage. Helfmeier et al. present a proof-of-concept procedure for cloning SRAM

PUFs [128]. The general procedure is to first characterize the response of a PUF and then

use Focused Ion Beam circuit edit to create replica PUF with the same response. Although

the procedure demonstrates the plausibility of creating a physical clone, in the context of fog

mediation, the procedure is practical. The circuit characterization and circuit editing tools

needed to carry out procedure are prohibitive to all but the most dedicated and sophisticated

adversary — costing around $100K to $200K in 2012 USDs in equipment, suitable lab space,

takes 20 plus hours to produce the physical clones, and the same procedure has to be repeated

for each new PUF response. Nonetheless, this attack points out a potential attack vector for

counterfeiting or compromising platform secrets during the supply chain.

Yossef Oren et al. presents a side-channel attack based on remanence decay in volatile

memory [129, 130]. However, this side-channel assumes that the memory used for the PUF

may also be used for normal program operations. Thus, the remanence decay side-channel

can be prevented by reserving a range of cells for exclusive use in PUF-based key generation.

Sampling Randomness

As mentioned, in the case of key extractor PUFs instability in the power-up state of memory-

cells is undesirable. However, this instability can be leveraged as a source for introducing

entropy and as as a basis for strong or true random number generators (TRNGs). Thus,

the power-up SRAM state can be used both as a fixed fingerprint, in authentication and key

generation, and as an entropy source for random number generation [131].

4.3.2 Computing in the Fog

Fog computers are resource-rich well-connected computer clusters available nearby. The

concept of “fog computing” was originally introduced as “cloudlets” and formalized as a

VM technology by Satyanarayanan et al. [8]. In its most general definition, the notion of
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fog computing refers both to integrating cloud technologies into the core network (e.g., as

general-purpose enhancements to network infrastructure to better support edge computing)

and to deploying cloud computing resources at network endpoints (e.g., to better support

mobile computing).

Before the availability of public cloud (i.e., “computing as a utility” [132]), mainframe

computing (a precursor to cloud and fog computing) was used by enterprises for business-

critical applications. Moving business-critical applications to the public cloud allowed busi-

nesses to avoid the costly overhead of buying and maintaining proprietary computing archi-

tectures in-house. The tech sector as a whole benefited from the economies of scale resulting

from the outsourcing and standardization of information technology. On the other hand, the

users of cloud services were now entrusting data security to cloud service providers. During

this same time, the significant scale-up in connectivity (e.g., 4G to 5G), interoperability

(e.g., HTML5), and demand for mobile computing have re-established the business case for

on-premise computation infrastructure.

The vision of fog computing extends both mobile and cloud computing paradigms to

better support responsive performance for resource-intensive and latency-sensitive services

(e.g., real-time planning and actuating, machine learning, computer vision, natural language

processing, and augmented reality) leveraging resource-poor embedded devices (e.g., IoT de-

vices) and resource-constrained mobile clients (e.g., smartphones). Fog computing augments

cloud-backed persistent app states with transient local states, significantly reducing the need

to route traffic across the global Internet and the signal load of the core network (significant

obstacles to a high quality of service and security guarantees as we consider half a billion

Internet-addressable devices outfitted with high-resolution sensors). Additionally, deploying

general-purpose high-performance networking elements to fog nodes offers a scalable point

for cross-layer network state exchange for adaptive wireless network elements [133].

In practice, fog computing elements may be deployed as standalone cloudlets or as ex-

tensions to existing infrastructure such as cellular towers, networking controllers, content
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delivery networks, road-side traffic management equipment, in-vehicle communications net-

works, home energy management systems, home heating systems[134], routers, modems,

televisions, set-top boxes, video game consoles, etc. The alternative terms for fog computing

found in other contexts are useful for emphasizing specific aspects such as virtual machine

provisioning (cloudlets), network architecture components (mobile edge computing), or cloud

computing capabilities (micro cloud) [135]. In this work, we use the terms cloudlet and fog

computing interchangeably to refer to these technologies that enable distributed comput-

ing environments to process information within proximity to cellular subscribers and WiFi

hotspots.

Table 4.2: Perception and Latency

Response Time (ms)

Task Type low median high ref.

Website Load Time 100 ms 250 ms 500 ms [136, 137, 138]

Video Frame Rate 17 ms 33 ms 42 ms [139]

Screen Refresh Rate 4 ms 7 ms 17 ms [140]

PC Input Latency 15 ms 30 ms 150 ms [141]

VR/AR Input Latency 11 ms 20 ms 30 ms [142, 143, 144]

Stylus Input Latency 8 ms 17 ms 17 ms [145]

Responsiveness thresholds during common human-computer interactive tasks for low latency (i.e., the
threshold for optimal usability where improvements are generally imperceptible), median latency (i.e., the
threshold for target usability where the user interface is experienced as snappy and responsive), and high

latency (i.e., the threshold for satisfactory usability where lag is quite noticeable).

Human reaction time and delay tolerance is a complex process spanning contact (i.e., the

awareness of a sense object), perception (i.e., the labels of meaning applied to sensed objects),

and fabrication (i.e., mental proliferation such as discursive thinking or decision making based

on the sensed object). Additionally, there are physiological factors and context-dependent

queues that significantly impact human perception (e.g., the heightened reaction time of a

trained fighter pilot flying a jet vs. the relaxed reaction time of someone waiting in line at

the grocery store). Although delay tolerance depends on these subjective perceptual factors,

human factors professionals agree that responsiveness is a key usability requirement for in-
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teraction design [136], faster is generally better [137, 138], and the threshold for “seamless”

interaction is more or less fixed for a given task. In Table 4.2 we limit the discussion of

suitable input response times for human-computer interactive systems to the sensory per-

ception stage and make the case for the sub-30-millisecond threshold for seamless interaction

(compare this result to the cloud latency times found in Table 4.6).

Bringing computing power closer to the devices that interact with cloud services (i.e.,

cloudlets [8] and fog computing [146]) enables more seamless user experiences that are less

susceptible to latency jitter and unstable network conditions while reducing overall conges-

tion through better support for localized online processing — essentially allowing resource-

constrained mobile and embedded devices to act as thin-clients. Additionally, the availabil-

ity of co-located computation power and a federated app deployment model better supports

user-centered privacy controls based on data provenance and spatial-temporal filters [147].

4.4 Fog Mediation Architecture

4.4.1 Service Integration

This section describes the MEDIA architecture components pertaining to the application

including service integration between the cloud provider, the fog provider, and the service

provider.

Provisioning Domains

This section describes the process for establishing a proximal domain (Figure 4.3 (a)). The

notion of a domain in the IoT context is more closely aligned with physical proximity than

with the logical relationship of components. For example, a smart space may contain em-

bedded devices, network elements, displays, computers, sensors, and actuators all operated

by different users, serving different purposes, and managed by different service providers but

falling under the same domain due to their proximity to the user devices and the end-users
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Figure 4.3: Fog Mediation Architecture. This network diagram is organized into
three abstraction layers: public cloud (cloud layer), public telecommunications infrastruc-
ture (network layer), and proximal domains (domain layer). The interactions of verifier
group VUD (user devices and co-located connected devices), verifier group VPAL (appli-
cation service providers), and verifier group VVM (cloud service providers) are mediated
by MEDIA-enabled processors residing on fog nodes within the domain layer. The pri-
mary interaction for VUD, VVM , and VPAL occur during (a) proximal domain establish-
ment (Section 4.4.1), (b) service provisioning (Section 4.4.1), and (c) secrets provisioning
(Section 4.4.1), respectively.

that leverage them.

We also note that the type of messages that are exchanged in IoT domains are highly

spatiotemporally dependent (e.g., contextual information such as system state, observations

about the environment, and control signals). Additionally, there is a dynamic and transient

coupling between IoT devices and the services and users that employ them. As a result,

approaches to trust establishment and access control that assumes a client-server model

does not adequately support the joint security and privacy requirements of the stakeholders

in the IoT use case.

Thus we introduce the notion of a proximal domain as a practical programming abstrac-

tion for deploying IoT applications. A proximal domain is the set of N connected devices and
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MEDIA-enabled platforms managed by a fog mediation cluster. The fog mediation cluster

refers to the set of MEDIA-enabled co-located fog computers. Connected devices include

user attended connected devices (i.e., user devices or UDs) or unattended connected devices

(i.e., embedded devices or EDs).

In general, our interaction model assumes that the responsibility of managing access

control to the proximal domain by an application belongs to the domain admin VUD. Whereas

the responsibility of managing access control to the application by the connected devices

belongs to the service provider VPAL. The individuals consuming services from within a

proximal domain (i.e., end-users), as well as connected devices, can independently interface

with a proximal domain. The mode of interaction between a given connected device and

an isolated execution environment instance PIEE depends in part on the capabilities of the

connected device and application-specific requirements. The goal then of the fog mediation

cluster is to provide integrity and secrecy assurances to each running PAL while mediating

stakeholder interactions and connected device capabilities.

Provisioning Services

This section describes the process for provisioning services to MEDIA-enabled fog computing

nodes (Figure 4.3 (b)). We utilize a hardware virtualization technology to efficiently deploy

custom fog computing software stacks. Deployable virtual machines and containers support

two general types of operations. The first operation is mobile offloading where a resource-

poor device can offload services to the resource-rich fog nodes in its local network. The

second operation is cloudlet formation where the service provider VVM retrieves and re-

deploys cloud-based micro-services on proximate fog computing infrastructure to improve

performance, usability, and network quality of service guarantees. These virtual containers

may then be orchestrated using inter-container connections both to local fog-based containers

and to remote cloud-based containers.

The resulting virtual environments are transiently constructed to support the user de-
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vices, embedded devices, and services comprising the proximal domain. Further, the virtual

environments may be suspended and migrated from one proximal domain to another. For

example, when a user moves from location A to location B, the services registered to the

user can seamlessly re-authenticate and integrate with the new fog mediated connected de-

vice context. Once the container’s filesystem has been loaded on to platform P , executing

services can switch from the normal execution contexts to hardware-protected isolated exe-

cution contexts by defining PALs that invoke PIEE instances.

The sequence of steps beginning with a clean slate fog node and culminating in the

provisioning of a service to platform P are as follows: (i) lease cloud-based services, (ii) con-

struct custom container, and (iii) service provisioning. Throughout this process, the verifiers

complete remote attestation independently using the same process for remote attestation to

PIEE that is described in Section 3.5 and Section 4.4.1.

In step (i) the service provider VPAL and cloud provider VVM negotiate cloud-based

micro-services for security-sensitive application PAL. These services act as the server-side

component of the fog application. In step (ii) we utilize the dynamic VM-synthesis for

efficiently constructing custom containers on P [8]. Cloud provider VVM pre-loads the base

container image designated by VPAL onto P . VVM attests that the base image is in a known

safe state by requesting a measurement from PIEE and publishes the result to the verifier

group. Next, the cloud provider VVM retrieves the private container overlay designated by

mobile user VUD onto P . VUD attests that the private container overlay is in an expected state

by requesting a measurement from PIEE and publishes the result to the verifier group. The

base image and private overlay are then dynamically merged on P before launch. Leveraging

hardware-to-container bindings [148], VPAL measures the resulting security-sensitive PAL(s)

associated with the constructed container image, and publishes the result to the verifier

group.

In construction presented here, the launching of security-sensitive PALs is contingent

on the successful measurement of components such as the base image and private overlay
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container construction. Alternately, the PAL and its associated program state can be bound

to specific hardware and verifier group member or application-specific conditions such as the

presence of specific users or devices.

Remotely Attesting & Provisioning Secrets

Whereas Section 4.4.2 describes processor-derived secrets, this section describes the process

for provisioning verifier-generated secrets to an isolated execution environment (Figure 4.3

(c)). Unlike the processor-generated secrets, verifier-provisioned secrets are directly acces-

sible by the executing code. Nonetheless, secrets provisioned to an IEE instance benefit

from the same hardware protections as all IEE-protected states. Utilizing both derived se-

crets and provisioned secrets is useful for decoupling systems security programming logic

(e.g., launch-point integrity checks, remote attestation, isolated execution, and encryption-

protected main memory access) from application-specific programming logic (e.g., loading a

user’s private key and the accompanying code for generating signatures into the IEE). In this

way, processor-derived secrets are opaque to the application code while verifier-provisioned

secrets may be securely managed across any IEE instance belonging the application. Addi-

tionally, reliance on provisioned secrets is desirable for use cases where application code would

like to make use of MEDIA-enabled CPUs if available but should still degrade gracefully to

support differing application programming interfaces.

The sequence of steps culminating in remote attestation (P2.3) and the provisioning of

secrets to the IEE instance are as follows: (i) launch state measurement, (ii) secure channel

establishment, (iii) platform authentication, (iv) remote attestation, and (v) secrets provi-

sioning. In step (i) platform P measures the safety of the launch state and the contents of the

IEE prior to executing app code PAL. In step (ii) platform P establishes a secure connection

with the remote verifier VPAL. In step (iii) platform P sends the measurement evidence and

proof of the platform authenticity to verifier VPAL. In step (iv), given valid measurement

evidence (i.e., corresponding to a known safe execution state) and valid platform authenti-
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cation evidence, verifier VPAL acknowledges the successful remote attestation of the launch

state on P . In step (v), verifier VPAL provisions private inputs the PAL executing in the

IEE residing on platform P . The description here focuses on the interaction between the

service provider VPAL and a MEDIA-enabled platform P . A similar procedure may be used

by the other verifier classes, including cloud service providers VVM and domain users VUD,

to complete remote attestation and secrets provisioning.

pm hm σhm

So Kp Kpo

Kauth

Kencr

Kcode

Sbindi
K+

bindi

K−1
bindi

rmi (a)

(b)

Figure 4.4: Platform Authentication and Key Generation. This diagram shows
the processor-based key generation hierarchy belonging to a single session of the isolated
execution environment. The secret materials and derived keys in this key generation hier-
archy include hardware-generated random number rm, PUF response pm, helper data hm,
owner-provided seed value So, root platform secret Kp, master platform secret Kpo, sym-
metric sessions keys Kauth, Kencr, and Kcode, platform binding secret Sbind, and asymmetric
session keys K−1

bind, and K+
bind. Response pm may serve as either the cryptographic basis

for platform-derived authenticity evidence σhm
(a) or as the root of trust for platform-

derived key materials beginning with master platform secret Kpo (b). Random numbers
rmi

and asymmetric key tuple [Sbindi → K−1
bindi

, K+
bindi

] are depicted as stack elements to
indicate that multiple instances of processor-derived symmetric and asymmetric keys may
be generated as needed during a single session.

4.4.2 Processor Integration

This section describes the MEDIA architecture components of the CPUs residing in a fog

mediation node.
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Deriving Secrets

A central feature of the isolated execution environment is a hardware-derived root of trust

(Section 4.3.1) that is used to support the desired security objectives of fog mediation —

i.e., the integrity property P2.1, the secrecy property P2.2, the verification property P2.3,

and the state-bindable property P2.4 — by generating unique cryptographic key material

for use by security-sensitive PALs.

The root of trust instantiation (Figure 4.2) and the resulting hierarchy of key material are

shown in Figure 4.4. PUF response, pm, may serve both as as the root response for crypto-

graphic key generation and as a digital fingerprint for device authentication (Section 4.4.2).

Hardware-generated random numbers rmi
provide an entropy source for use in the construc-

tion of the key hierarchy (to introduce entropy to helper data hm) and for general purpose

use within the IEE (e.g., by a PAL requesting a cryptographic nonce). The function that

initializes pm accepts a random value rm0
and outputs helper data hm and hash H(pm, hm).

Public helper data hm is used by a robust fuzzy extractor function to retrieve pm given a

noisy response p′m (as it is commonly done in the literature [76]) and reconstruct the root

platform secret, the uniformly random value Kp.

The keys are derived using a key derivation function (KDF) based on pseudo-random

functions and accept secret parameters and public parameters [80, 81]. The root platform

secret Kp and the owner seed So are inputs to a key derivation function, resulting in the

master platform key Kpo. The owner-supplied seed value So enables the domain admin to

customize all resulting platform secrets. The use of an SRAM PUF response avoids the costly

requirements of on-chip non-volatile memory and a secure key injection process. Together,

these two mechanisms enable device transfers without the need for any other party to protect

platform secrets on behalf of the current device owner, satisfying the non-aligned property

(P1.4).

The master platform key Kpo is then used to derive symmetric (Kauth, Kencr, Kcode, and

Sbind) and asymmetric (K−1
bind,andK+

bind) session keys. Random numbers rmi
and asymmetric
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key tuple [Sbindi → K−1
bindi

, K+
bindi

] are depicted as stack elements in Figure 4.4 to indicate that

multiple instances of processor-derived symmetric and asymmetric keys may be generated

as needed during a single session.

All key material derived by the processor are short-lived — i.e., not manifest on P

beyond the completion of the IEE session — and managed internally — i.e., only accessible

to specialized processor instructions and written to dedicated memory cells — satisfying the

accessible property (P1.1). Since all of the platform key materials are PUF-based (P1.2)

and initialized by end-users, as opposed to burned into the processor’s fuses or stored off-die

in a trusted device (P1.3), this avoids the security risk potential related to the existence

a database of cryptographic keys. Additionally, since all of the platform key materials

required for attesting to the launch-point integrity of an IEE session on platform P are

internally generated this avoids the security risks related to requiring cryptographic keys to

be obtained over the Internet to use the platform (P1.4) [149].

Declaring Authenticity

During platform initialization the manufacturer certifies helper data hm using a standard

public-key signature σhm
← SignK−1

HWM
(hm||H(pm, hm)). This provides a basis for platform-

generated authenticity assertions. The resulting signature σhm
may then be verified using

a certified public key K+
HWM of the manufacturer to assert the authenticity of helper data

hm and, by extension, the authenticity of the MEDIA-enabled platform P it is bound to.

Alternately, a trusted third party (such as a system integrator) or an impartial witness

(such as a regulatory body tasked with consumer protection) may complete this platform

certification step, fulfilling the role of the signing party for σhm
. Additionally, centralized or

decentralized trust models for certification authorities — such as public key infrastructure or

web of trust — may be used to manage and distribute platform certificates of authenticity.

Special care should be taken to protect the secrecy of the platform-derived root of trust

(Figure 4.4 (b)) by ensuring its independence from platform-derived authenticity assertions
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(Figure 4.4 (a))(P1.4). Although the same process used for bootstrapping key generation

may be used for bootstrapping platform authentication, saving chip space, the additional

cost of a relatively small portion of reserved chip space is a small cost to pay for less exposure

to critical compromises. Thus, the cell arrays used for key generation should be different

than the cell arrays used for platform authentication to avoid the security risk potential of

compromising either process by correlating data intended for use by the other process.

Similarly, special care should be taken to protect the privacy of verifier interactions.

During an interaction between an IEE session and a remote verifier, the verifier would like

a trustworthy response to the query “is this an authentic MEDIA-enabled environment?”

without disclosing any other usage information to the manufacturer or certifying authority.

Once the verifier is able to establish the authenticity of the platform and retrieve the as-

sociated public platform binding key K+
bind0

, a secure channel between both parties may be

established before for confidential operations such as remote attestation and secrets provi-

sioning (refer to Section 3.5 for details on the remote execution protocol). Depending on the

construction of the platform authentication process and the nature and duration of the usage

information retained it is plausible for the certificate authority to learn when a particular

verifier interacts with a specific piece of hardware. In this construction, platform authenti-

cation need only occur one time per verifier-platform pair — limiting the potential privacy

and anti-trust risks related to placing the HWM at the center of each interaction between

every verifier and platform pair (P1.4) [149].

Extending the Instruction Set Architecture

A MEDIA-enabled platform achieves isolated execution using exclusively on-die components

and a programming interface that enables security-sensitive PALs running on platform P to

invoke a set of CPU instructions for transitioning from the normal computing environment

to an isolated execution environment PIEE. What follows is a brief recapitulation of the ISE

presented in Chapter 3:
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The programming interface supported by the ISE includes the init[], create[], launch[],

unbind[], and bind instructions: The init[] instructions is used by the HWM to initialize

the platform and extract platform-derived authenticity evidence. The create[] instruction

creates a hierarchy of key material from the raw PUF response. The launch[] instruction is

responsible for properly entering and exiting the dedicated IEE of the PAL. When invoked,

launch[] sets up a clean-slate IEE by disabling instructions that require system interrupts,

changes to a higher privilege setting, hardware debugging access, or I/O transitions. The

launch[] instruction also stores a hash of the PAL in the platform configuration register for

use during remote attestation and writes generated key material to dedicated IEE registers.

At the end of the execution session, launch[] prepares the IEE for transfer back to the

systems. The unbind[] instruction confirms that the hash of PAL matches the expected

measurement before decrypting app states retrieved from external non-volatile disk storage

and checks the integrity of any inputs received from the verifier using keys specific to the

PAL. The bind[] instruction prepares any outbound app state and messages for a verifier

using as a key derived from the measurement of the current state of the PAL. Additionally,

unbind[] and bind[] provide a mechanism for authorized software updates.

4.4.3 Operating System Integration

This section describes the MEDIA architecture components of the OS.

Hardening Execution

The rich execution environment (REE) is the normal execution context where the OS and

applications run. The REE balances system-level security requirements and process-level

security requirements while optimizing for overall CPU utilization. Even though modern

CPUs implement some form of hierarchical memory protection and privilege separation to

increase the OS’s control over applications (e.g., x86 protection rings), the REE is generally

too large for formal verification and too complex for a meaningful assessment of security
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based solely on integrity checks. Thus the OS is considered untrusted from the perspective

of the remote verifier in our adversary model.

As a building block for secure systems, TEEs provide trust anchors from which trusted

components are used to assess the integrity of the components comprising the execution con-

text. Minimizing the size and complexity of trust anchors is an effective way to reduce the

attack surface available to would-be attackers. Mechanisms for dynamically establishing a

trusted execution environment (TEE) provide strong security assurance for security-sensitive

PALs, a practical separation-of-concerns framework for developers, and enable a remote ver-

ifier to reliably infer the security of services using integrity checks. Hardware-based TEEs

are widely considered an indispensable building block for meeting stakeholder requirements

in many contexts including personal computing [90], cloud computing [23], mobile comput-

ing [43], and as we recommend here, in the ubiquitous computing contexts of the IoT.

In this work, we develop a two-tier execution framework comprised of a rich execu-

tion environment (REE) and an isolated execution environment (IEE) where the IEE is

a hardware-based TEE containing the building blocks described in the preceding sections.

Please note that throughout this work we use the terms secure world vs. normal world,

protected vs. unprotected, and trusted vs. untrusted interchangeable to refer to these two

modes of running PALs.

Isolating Execution

Modern CPUs store copies of frequently used data in cache memory to minimize the average

time and energy costs of accessing the main memory. Additionally, modern CPUs utilize

processor cache for system boot-up tasks until the main memory is initialized — a technique

known as Cache-as-RAM (CAR) [150, 74] — since cache memory can be initialized in a

few instructions. Whereas dynamic RAM is widely used for main memory functions due to

its low-cost and high-capacity properties, static RAM is generally used to implement cache

memory subsystems in modern processors due to its high-performance and structurally-
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independent properties.

Prior work has explored the security applications of CAR-mode execution [24, 23, 43]. In

particular, the low initialization costs of cache memory enables short-lived IEEs to run seam-

lessly in conjunction with the REE provided by the OS. Vasudevan et al. present CARMA,

an x86 architecture that leverages CAR-mode to provide a general-purpose secure execution

environment with a trusted computing base (TCB) consisting of the processor (for isolated

execution) and a trusted device (for root of trust initialization) [24]. The motivating challenge

that CARMA addresses — i.e., defending against a sophisticated adversary with physical

access to the platform — is one that is quite relevant to our challenge of establishing trust

in co-located critical infrastructure that is physically accessible to any passerby.

Owusu et al. present OASIS, an instruction set extension that leverages exclusively on-

die structures for processor-rooted trust establishment, integrated support for cryptographic

primitives, and on-demand isolated execution environments [23]. The OASIS architecture

uses SRAM cells with stability and instability stimuli-response characteristics as the cryp-

tographic basis for authentication and randomness, respectively, and the CARMA isolated

execution model for an efficient isolated execution environment with a TCB consisting solely

of the CPU.

Leveraging processor-derived isolation, MEDIA offers an efficient isolated execution en-

vironment (P1.3). The following instructions are disallowed from within the MEDIA IEEs:

• hardware debugging access

• inter-process communication

• system calls (i.e., requesting kernel services)

• I/O instructions

• privilege escalation

• reading memory residing outside processor package
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The resulting IEE provide strong integrity, secrecy, and freshness guarantees to any

executing security-sensitive PALs (properties P2.1 and P2.2). In general, the IEE is suitable

for use cases where the primary functionality of the PAL is to invoke the processor via an

IEE to manage secrets as well as carry out cryptographic operations based on those secrets

on its behalf. In contrast to SEEs, the strict run time isolation of IEEs necessarily places

restrictions on the types of services that can be executed. However, these restrictions avoid

the potential of providing system access to hardware isolated malware. So there is a trade-off

between usability and the risk potential for protecting malware.

Sandboxing the Guest

The sandboxing capability protects privileged platform code from potentially malicious user

code (the primary concern for platform owners like cloud provider and domain admin stake-

holders). Even though the primary security objective in the context of fog mediation (i.e.,

from the perspective of the service provider and the end-user) is isolated execution, in terms

of overall system security, it is beneficial to have a protection mechanisms that integrates

both isolated execution and the inverse property, sandboxing — e.g., Li et al. present Mini-

Box an x86 architecture providing two-way sandboxing [117] and Baumann et al. present

Haven [21] is a memory shielding architecture leveraging Intel SGX [151, 22] for isolation and

Drawbridge Library OS [152] for sandboxing. It’s also worth mentioning that the isolated

execution mechanism presented here reduces the security risks faced by both platform own-

ers (e.g., physical attacks like memory probing) and platform users (e.g., large, privileged,

and potentially malicious system code).

Baumann et al. introduce the notion of shielded execution and define it as essentially the

inverse of sandboxing — i.e., the ability to achieve confidential code execution for unmodified

application binaries with complex OS interactions [21, 148, 153]. Shielded execution envi-

ronments (SEEs) build on isolated execution environments to extend the hardware-based

integrity and secrecy guarantees of cache-resident IEEs to general-purpose apps — address-
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ing the challenges of using isolated execution for code that requires REE-level capabilities

such as access to system services, fault and exception handling, support for dynamically

allocated memory, and interactions with untrusted libraries [154].

In terms of memory protection, an IEEs trust perimeter ends at the boundary of the CPU

package. The task of safely accessing application states residing in untrusted memory DRAM

is achieved through integrating a memory encryption service [48]. In the remainder of the

chapter, we use the term isolated execution to refer to TEE instances utilizing both cache

memory and integrity-checked and encryption-protected access to main memory. Please

note that this memory protection architecture does not specify protections for an adversary

conducting traffic analysis style side-channels on encrypted data as it is loaded into on-die

memory or transferred to main memory (i.e., oblivious RAM is beyond the scope of this

work).

4.5 Performance Evaluation

This section discusses the experiments used to evaluate the fog mediation architecture

(Section 4.5.1). We evaluate the performance both in terms of the platform-level overheads

of an individual fog mediation computing node as it interacts locally with a security-sensitive

PAL (Section 4.5.2) and in terms of end-to-end application-level run-times for service de-

ployed to a MEDIA testbed as it mediates the interaction between co-located devices and

remote cloud resources (Section 4.5.3). We measure performance times during the execution

of benchmark machine learning and computer vision tasks to evaluate end-to-end applica-

tion performance under the client-server deployment model (i.e., traditional cloud) and the

proposed client-fog-cloud deployment model (i.e., fog mediation).
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4.5.1 Implementing MEDIA on SGX

Reference Hardware

The proposed fog mediation architecture is evaluated on a commodity microarchitecture to

capture instruction-level performance overheads. We use the 4 CPU Intel Core i7-6600U

x64-based microarchitecture with a 2.60 GHz processor base frequency (3189 MHz measured

frequency), 64 KB L1 instruction-cache, 64 KB L1 data-cache, 512 KB L2 cache, and 4 MB

L3 cache on a computing system with 20 GB main memory and 512 GB SSD disk memory

as the reference hardware for each fog node [155].

Performance Instrumentation

Our performance evaluation does not attempt to evaluate security guarantees (the topic of

Section 3.7). Instead, this evaluation aims to leverage SGX as an isolated execution hard-

ware security basis for the proposed MEDIA implementation (MEDIA-SGX) and to obtain

performance estimates for benchmark applications. We implement MEDIA-SGX in C++

running on 64-bit Microsoft Windows. Each job is deployed as a native 64-bit executable

(*.exe) containing the application. The MEDIA-SGX application contains the IEE code and

a static library containing the normal world (PAL+) and secure world (PAL−) enclave parti-

tions. The MEDIA-SGX implements an instruction handler for all SGX instructions used by

the IEE code including OCALL, ECALL, EREPORT, RDRAND, and EGETKEY [151]. We leverage the

mechanism described in [151] to access model-specific registers (MSRs) for execution tracing

and performance monitoring. We use the windows kernel function SwapContext as described

in [156] to preserve the same register context between subsequent enclave invocations.

The enclave page cache (EPC) refers to the 4 KB aligned protected memory regions

used to store pages belonging to an executing enclave [151]. An executing PAL− may

read and write contents to the EPC via specialized CPU instructions reserved for managing

enclaves. The SGX-enabled processor uses a data structure called the enclave page cache
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map (EPMC) for address-translation to the EPC where each page table entry tracks the

contents of an EPC page. The EPC and EPMC are processor assets (i.e., implemented in

SRAM) providing an isolated execution environment for the executing enclave. A memory

encryption engine (MEE) may be incorporated to support a shielded execution environment

for enclave instances that store the EPC in main memory (in DRAM) [48]. Please note that

the EPC specification for SGX is processor specific [151].

4.5.2 Study 1: Target Platform Micro-Benchmarks

We evaluate the performance for the target platform by running a series of computation

and memory-intensive tasks called nbench (Native Mode Benchmarks) [157] on the same

hardware with the same operating system running under two execution models (REE and

TEE). We utilize the reference hardware described in Section 4.5.1 running on Linux with

the following software configuration:

• OS: Linux 4.13.0-38-generic

• C compiler: gcc version 5.4.0

• libc: libc-2.23.so

The nbench test suite is a series of ten benchmarks that are designed to measure the

performance capabilities of a target platform’s CPU including the capabilities of its floating-

point unit and memory controller:

1. Numeric Sort - sorting of an array of long integers.

2. String Sort - sorting of an array of strings of varying lengths.

3. Bitfield - computes a set of bit manipulation functions.

4. Emulated Floating-Point - a software floating-point package.
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5. Fourier Coefficients - a numerical analysis routine for calculating series approximations

of waveforms.

6. Assignment Algorithm - a task allocation algorithm.

7. Huffman Compression - a text and graphics compression algorithm.

8. IDEA Encryption - a block cipher.

9. Neural Net - a back-propagation network simulator.

10. LU Decomposition - an algorithm for solving linear equations.

Table 4.3: Target Platform Micro-Benchmark

nbench [157] sgx-nbench [158]

Benchmark
iter. /
sec.

σ

(RSD)
iter. /
sec.

σ

(RSD)
sgx overhead

% +\-

Numeric Sort 1.62 · 103 1.02 % 1.49 · 103 1.83 % +9.9 %

String Sort 1.67 · 103 1.27 % 8.15 · 101 1.38 % +95.1 %

Bitfield 7.78 · 108 0.29 % 6.95 · 108 0.34 % +14.5 %

Emulated Floating-Point 7.48 · 102 0.23 % 4.69 · 102 0.88 % +37.2 %

Fourier Coefficients 5.04 · 104 0.81 % 1.09 · 105 0.25 % -116.3 %

Assignment Algorithm 6.62 · 102 1.26 % 6.61 · 102 1.18 % +0.2 %

IDEA encryption 1.30 · 104 0.17 % 1.27 · 104 1.55 % +2.3 %

Huffman Compression 6.22 · 103 0.32 % 6.43 · 103 0.76 % -3.3 %

Neural Net 1.26 · 102 0.66 % 1.05 · 102 0.56 % +16.7 %

LU Decomposition 2.94 · 103 1.24 % 2.88 · 103 0.58 % +2.04 %

Performance evaluation (measured in terms of algorithmic iterations per second) for the same bench-
mark, running on the same hardware and operating system, executing in two modes (REE and TEE).
We measure the performance differences between the two execution modes using the reference hardware
described in Section 4.5.1. The nbench [157] test suite provides a baseline performance measurement
for the target platform processing tasks using the REE. The sgx-nbench [158] test suite—an SGX port
of the nbench test suite—provides a measurement of the performance costs of executing tasks within
the TEE of the target platform. The values in the iterations per second columns are an average of
20 test runs performed for each benchmark. The values in the RSD columns are the relative standard
deviations (i.e., the coefficients of variation) of each series of test runs.

103



The nbench [157] test suite provides a baseline performance measurement for the target

platform processing tasks using the REE. The sgx-nbench [158] test suite—an SGX port of

the nbench test suite—provides a measurement of the performance costs of executing tasks

within the target platform’s TEE. We find that isolating code to the TEE adds a %1-%30

performance overhead depending on the type of computation (see Table 4.3). Two notable

exceptions to this range are the String Sort tasks — where sgx-nbench runs twice as slow

as the baseline, indicating that this type of computation is relatively more expensive to run

in isolation — and Fourier Coefficients task — where sgx-nbench runs twice as fast as the

baseline, indicating that certain computations benefit from running in isolation perhaps due

to optimizations designed to offset average performance penalties.

4.5.3 Study 2: Fog Mediation App-Benchmark

Face recognition is a widely used application. To successfully figure out whether a particular

person present in an image or not, it is useful to first detect all of the human faces in

an image. Therefore, the less complex task of locating human faces inside an image, or

face detection, became a popular research topic in the computer vision field. Similarly, it is

useful to be able to distinguish between the varies human facial features such as the boundary

of eyes, mouth, and nose — facial landmark detection. For testing the app benchmark, we

selected real-time facial landmark detection using OpenCV [159]. OpenCV’s facial landmark

detection has three different implementations: FacemarkKazemi [160], FacemarkAAM [161],

FacemarkLBF [162]. All of them follow a similar pattern. We selected FacemarkLBF for

detecting facial landmarks.

We use AES for the encryption and decryption of input image files. We use the WolfSSL

framework with Intel SGX support for performing cryptographic operations inside the SGX

enclave [163].

1. AES Key Size = 256 bit
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2. No. of Images = 1000

3. Mode = Simulation (32 bit)

4. Platform = Microsoft Visual Studio 2015

We use 256 bit AES key and run the experiments with 1000 images of different people

where each image size is approximately 7-14 KB [164]. In this experiment, we use SGX

enclave in simulation mode and Microsoft Visual Studio 2015.

Table 4.4: Baseline Analysis of Fog Mediation

Functionality
Single
Image

Multiple Images
(1000 Images)

Plain Image(s) Size 7725 bytes 14,231,214 bytes

Encrypted Image(s) Size 7728 bytes 14,238,736 bytes

Encryption (TEE) 1 ms 2.167 s

Decryption (TEE) 1 ms 1.463 s

Facial Landmark
Detection (REE)

6.633 s 115.284 s

Total Computation Time 6.635 s 118.914 s

We provision the shared secret key along with the encrypted data from the untrusted

zone to the trusted enclave. Inside the enclave, we decrypt all the image files using the

AES algorithm. After decryption, all images are sent back to the untrusted zone for further

image processing computation. When all of the images are decrypted by the enclave, the

application completes facial landmark detection on all the images inside the untrusted zone.

The measured computational time are listed in Table 4.4.

We further investigate fog mediation operations along with some of the basic operations

of SGX enclave to get a clear view of the computational time required for each operation. We

investigate the required time for enclave creation, encryption, and decryption of 1000 images

and facial landmark detection time on those 1000 images. We run our experiments using

the same settings over 100 times and list the mean running times and standard deviations

of those experiments in Table 4.5.
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Table 4.5: Measurement of Fog Mediation Operations

Functionality Mean (ms) Std Dev (ms)

Create Enclave 10.63 1.75

Encryption of 1000 images (TEE) 1523.67 129.16

Decryption of 1000 images (TEE) 1758.47 268.02

Facial Landmark
Detection (REE)

119850.12 6844.59

Destroy Enclave 1.21 0.19

4.6 Conclusion

This research develops the concept of fog mediation as a method for extending the secu-

rity guarantees of an isolated execution environment to the IoT. Fog mediation leverages

hardware-based security primitives integrated into fog computing elements to provide end-

to-end security guarantees, improved performance, and mediate trust decisions between the

cloud and co-located mobile devices. We evaluate the performance of fog mediation in terms

of the platform-level overheads and end-to-end application-level run-times using Intel SGX

reference hardware.

Future work will explore extensions to the fog mediation architecture that provides ad-

ditional security assurances. In particular, this work will explore novel notions of personal

privacy and data ownership in the context of fog mediated computing as well as propose

networking and software programming abstractions leveraging fog mediation.
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Table 4.6: Cloud Latency by Region

Data Center Response Time (ms)

Platform Location low median high σ

GCE (asia-northeast1-b) Tokyo, Japan 179 ms 180 ms 189 ms 2.65

GCE (us-central1-c) Iowa, USA 51 ms 51.5 ms 55 ms 1.32

GCE (europe-west4-b) Netherlands 105 ms 108.5 ms 114 ms 2.34

GCE (us-west1-b) Oregon, USA 88 ms 91 ms 93 ms 1.42

GCE (us-east1-c) S. Carolina, USA 33 ms 35 ms 38 ms 1.26

GCE (australia-southeast1-a) Sydney, Australia 220 ms 230.5 ms 395 ms 77.62

GCE (southamerica-east1-a) São Paulo, Brazil 160 ms 162 ms 170 ms 2.63

GCE (europe-west2-a) London, UK 96 ms 99 ms 106 ms 2.47

GCE (asia-east1-b) Changhua, Taiwan 203 ms 205.5 ms 333 ms 35.34

GCE (asia-southeast1-b) Jurong, Singapore 238 ms 242 ms 411 ms 67.53

GCE (us-east4-a) Virginia, USA 21 ms 23 ms 25 ms 1.11

GCE (europe-west1-c) St. Ghislain, Belgium 105 ms 106 ms 112 ms 1.85

GCE (asia-south1-a) Mumbai, India 299 ms 357.67 ms 421 ms 53.96

GCE (europe-west3-c) Frankfurt, Germany 109 ms 111 ms 119 ms 2.77

GCE (northamerica-...1-a) Montréal, Canada 35 ms 37 ms 45 ms 2.58

AWS (us-east-2) Ohio, USA 80 ms 83.5 ms 89 ms 2.8

AWS (us-west-2) Oregon, USA 216 ms 221 ms 226 ms 2.75

AWS (sa-east-1) São Paulo, Brazil 302 ms 309 ms 320 ms 5.85

AWS (us-east-1) N. Virginia, USA 55 ms 65.5 ms 72 ms 4.89

AWS (us-west-1) California, USA 192 ms 199 ms 204 ms 3.2

AWS (ap-northeast-2) Seoul, Korea 235 ms 451.5 ms 614 ms 147.67

AWS (eu-west-1) Ireland 211 ms 215.5 ms 224 ms 3.43

AWS (ap-northeast-1) Tokyo, Japan 213 ms 517.5 ms 615 ms 145.66

AWS (ap-southeast-1) Singapore 282 ms 481.5 ms 699 ms 133.35

AWS (eu-central-1) Frankfurt, Germany 233 ms 244 ms 252 ms 5.72

AWS (ca-central-1) Central Canada 72 ms 81 ms 86 ms 3.48

AWS (eu-west-3) Paris, France 210 ms 224 ms 230 ms 6.64

AWS (eu-west-2) London, UK 196 ms 200.5 ms 205 ms 2.72

AWS (ap-southeast-2) Sydney, Australia 238 ms 482.5 ms 614 ms 136.27

AWS (ap-south-1) Mumbai, India 226 ms 453 ms 615 ms 134.01

Round-trip delay times (RTDs) of ICMP pings with 72 byte data frame transferred between
source connection (Pennsylvania, USA) and regional Google Compute Engine (GCE) and
Amazon Web Services (AWS) EC2 cloud installations. Reported response times based on
12 tests preformed for each location in February 2018.
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Part IV

Smart Spaces: Contextual Privacy

Controls
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Chapter 5

Privacy Partitioning

This chapter is largely a reproduction of the paper Privacy Partitioning: Protecting

User Data During the Deep Learning Inference Phase co-authored with Jianfeng Chi,

Xuwang Yin, Tong Yu, Yuan Tian, and Patrick Tague [41]. This research was supported

in part by participation in the Northrop Grumman Cybersecurity Research Consortium.

Data Access Through User Mediation (DATUM). We present a deep network opti-

mization framework for protecting personal data during the inference phase of deep learning.

This framework applies to client-server deployment scenarios where the client (the app tasked

with handling inputs to a deep network) has a data privacy requirement. In the proposed

framework, a deep learning model is split into two parts — a local partition and a remote

partition. The two partitions are trained such that they jointly achieve a similar classifica-

tion accuracy as the reference deep network with the added constraint that the intermediate

state that is generated by the local partition and received by the remote partition is less

useful for unauthorized learning tasks. We term this approach privacy partitioning.

We quantify the protection strength and performance cost of this framework in a series

of experiments using benchmark computer vision tasks: MNIST (handwritten digit classifi-

cation), LFW (face recognition), CIFAR-10 (object detection), and AgeDB (age and gender

classification). The experimental results demonstrate that the performance optimization

mechanism of deep networks can be extended to simultaneously protect user data. We
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achieve a 0.02%-4.26% performance cost in the experiments where privacy partitioning is

applied to defend against input inference (MNIST, LFW, and CIFAR-10 benchmarks). We

achieve a 0.60% performance cost in the experiment where privacy partitioning is applied to

defend against private attribute inference (AgeDB benchmark).

5.1 Overview

Consider the case where N users of a mobile app and each user collects and stores personal

data locally on their mobile devices. The goal of collaborative deep learning is to leverage

a deep neural network (DNN) that incorporates the data of all N user devices to produce

relevant personalized services for each user [165, 166, 167, 168, 169].

Due to the potentially sensitive nature of personal data, we would like to achieve a high-

performance deep network while simultaneously providing strong data privacy guarantees

for all participants. That is, we would like to maximize the accuracy of the learned model

while minimizing the number of individual attributes that can be leaked or inferred about

each participant when the learned model is in use. Individual attributes include unprocessed

input data, such as audio from a voice assistant device or video from a home security system,

as well as personally-identifiable user attributes, such as identity, interests, habits, location,

or social network.

In general, there are two architectural approaches to learn large-scale deep networks:

centralized learning and distributed learning. The choice between the two (as well as the

spectrum of topologies spanning them) have differing implications for performance, scalabil-

ity, ease of deployment, and data privacy.

Centralized Learning. Traditionally, machine learning frameworks have assumed access

to a centralized repository of data (or otherwise considered data mining as outside the scope

of model learning and inference tasks). The centralized approach is developer-friendly since

a single operator can manage the entire process. Access to a unified data store of user data is
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an appealing option for service providers even in the case of privacy-sensitive learning tasks

requiring access to personally-identifiable datasets [170].

Investigative reports regarding popular voice devices suggest that some products do

stream clear audio to the cloud — perhaps for leveraging more powerful server-side compu-

tational resources — and that in some cases employees do access customer audio recordings

— perhaps as a practical consideration for simplifying manual engineering tasks and honing

user experience [171, 172]. Similarly, developer plug-ins required to generate ad revenue also

act as data collection vehicle that communicates privacy-sensitive user data labeled with

device identifiers to third party analytics providers — even in-app use cases that do not call

for advanced collaborative learning (e.g., a simple health tracker) [173].

This incoming stream of user data can be collated with other datasets, annotated for

utilization in supervised learning models, and directly applied to unsupervised deep learning

models to improve existing services and or develop entirely new the customer experiences.

In light of this, restricting the model inference phase exclusively to local processing on the

client may not be a viable commercial solution. For similar reasons, centralized learning

presents a significant privacy risk to users.

Cryptography-based protocols have also been proposed to protect user privacy during

the model inference phase [174, 175]. However, these protocols impose significant computa-

tional overheads. Differential privacy-based protection mechanisms have largely focused on

protecting training data (i.e., privacy-preserving model learning) [176, 177]. However, deep

learning services may pose more of a privacy risk during the model inference phase where

potentially more user data is processed. Researchers have also proposed applying differential

privacy during the model inference phase [178]. However, these approaches only apply to

collaborative learning tasks that produce aggregate results (e.g., crowd-sourced private sta-

tistical database) and not to the problem addressed here — the common task of processing

individual data items.

Distributed Learning. Researchers have proposed a variety of decentralized architectures
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as solutions to both performance and privacy. Decentralized deep learning (also known as

distributed or federated deep learning) includes proposals for building and updating a unified

model without the need to store individual data in the cloud and proposals that combine

both a personalized individual model managed locally on user devices and a shared model

constructed from anonymity averaged data [176, 177].

In principle, distributed learning enables participants to enjoy the full benefits of rich

shared models without the need to centrally store data. This benefit often comes at the

expense of increased complexity due to asynchronous operations and an assorted computing

and data management context. Additionally, fully distributed learning implementations may

complicate attempts to protect the trade secrets and intellectual property of the DNNs.

Partitioned Learning. We present partitioned learning as an alternative to centralized and

distributed learning architectures. Partitioned learning is a variant of centralized learning

since all input data is collected by a single administrative domain. This variant provides

the ease of software development benefits of centralized learning while realizing the user-

controlled privacy benefits of distributed learning.

In a deep network, each successive intermediate layer performs a transformation operation

using the output of the preceding layer. Prior work has demonstrated that the output

of intermediate layers (hidden layer activations) can be used to successfully launch model

inversion style attacks including input inference and private attribute inference [179, 180].

On the other hand, if a deep network generates hidden layer activations that cannot be used

to infer private attributes or discover input data then the network itself may serve as a basis

for user privacy. Further, if the privacy-enhanced hidden layer activations can be utilized in

subsequent iterations of update the model then the solution is not an obstacle to improving

customer experience like the local processing only approach. We demonstrate that these user

privacy and data utility properties are jointly achievable experimentally.

In a partitioned learning architecture, deep network Θ is partitioned into two parts,

resulting in bipartite network {Θl,Θr} where access to the network’s inputs are restricted to
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Figure 5.1: Partitioned Deep Network Topology. This figure depicts privacy par-
titioning applied to deep convolutional neural network Θ. Partition Θl is hosted by the
local computing context. Partition Θr is hosted by the remote computing context. Hidden
layer activation H is the output of the last local layer Li. Given deep network Θ, this
framework generates partitioned network {Θl,Θr} that learns model fθ : X → Y while
attenuating the potential for adversarial networks to learn function fθa : H → Z where Z
is a vector of private attributes and learning Z = X is equivalent to launching an input
recovery attack.

the local partition Θl (Figure 5.1). We consider the case where an adversary has complete

access to the remote partition Θr including its input H. The optimization goal the entire

network is high accuracy whereas the optimization goal of the local portion of the network is

to reduce the extent to which such an adversary can discover input data or infer additional

user characteristics (see Figure 5.1).

We demonstrate that the deep network optimization functionality can be augmented to

reduce the extent to which such an adversary can discover input data or infer additional user

characteristics given access to intermediate states generated by a portion of the deep network.

In the case of privacy partitioned age and gender estimation service, for example, the users

of the service have the assurance that other inference tasks such as subject identification

cannot be easily learned given access to the output of the local layers H the remote layers

in Θr.

The bipartite topology is applicable to the many app use cases featuring a private local

data handling and public remote data processing deployment model. This includes many
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client-server use cases, private edge computing and public cloud computing integration, and

use cases where resource-constrained mobile devices must offload to privacy-sensitive user

data to resource-rich proximate infrastructure for computationally-expensive analysis.

Contributions. In this study we present privacy partitioning, a privacy protection frame-

work for user-controlled model inference and model learning. In summary, this work makes

the following contributions:

• We propose a framework for learning accurate deep networks that are resilient against

input inference and private attribute inference attacks.

• Unlike related differential privacy research that protects statistical databases (aggre-

gate data) during the model inference phase, we propose a solution that protects the

individual queries.

• We experimentally demonstrate the effectiveness of our approach. In all experiments,

the results indicate that the privacy partitioning framework can significantly reduce

the privacy risk potential of deep network activation states.

Organization. The topic of the next section, Section 5.2, is the problem definition including

the deployment model, adversary model, assumptions, and desired properties. Section 5.3

presents the proposed framework. Section 5.4 presents experimental results for the pri-

vacy protection mechanism proposed here using three computers vision classifier networks.

Section 5.6 discusses the related literature, and Section 5.7 presents a summary of conclu-

sions.

5.2 Problem Definition

In general, the ideal problems for utilizing the privacy partitioning framework have some

or all of the following aspects: (i) the inputs to the deep network are privacy-sensitive,

(ii) it is required or advantageous to implement user-controlled restrictions to remote data
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usage, (iii) it is required or advantageous to decouple data handling processes from model

learning and model inference processes, or (iv) it is advantageous to support deep network

optimization-based privacy controls.

In this section, we introduce the deployment model, threat model, assumptions, and

design goals for the proposed framework. For ease of presentation, we present the privacy

partitioning framework using the case study of a deep learning IoT service deployed to edge

computing infrastructure. In this case study, the bipartite deep network is deployed to a

private edge computing network (local computing context) and a public cloud computing

service (remote computing context).

Case Study: Edge Computing. Consider the case where admins of the local computing

context manage M mobile and embedded devices for N users (e.g., an enterprise IoT deploy-

ment). Collectively, the devices comprising the local computing context collect and store

contextual data regarding the users and activities within the local domain. The admins are

responsible for maintaining the confidentiality of user and sensor data generated within the

local computing context and for initiating requests to deep learning IoT services. The remote

computing context is responsible for completing queries received from the local computing

context.

5.2.1 Model & Assumptions

In this study, we evaluate the privacy implications of deep network hidden layer activations

during the model inference stage. In the case of centralized learning, the entirety of deep

network Θ is deployed to a computing context managed by a single administrative domain.

The threat model defined here involves a deep network service deployed to two administra-

tive domains: the data custodian (local admin) and the cloud computing provider (remote

admin). This deployment model addresses a commonly occurring secrecy requirement where

a data custodian would like to safely leverage remote compute resources on behalf of its users

and devices.
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Deployment Model. Our use case defines outsourced computation in the sense advocated

by the edge computing and cloud computing deployment models. Accordingly, we identify

the following key stakeholders and their primary roles:

(i) The edge provider (local admin) offers edge network-based computing, storage, and

network resources (i.e., the local computing context) for use by the network of co-located

users and embedded devices. During the inference stage, it hosts the first few layers of

the deep learning model, and sends the output of this local partition (denoted by Θl) to

the remote cloud for the classification. The local admin is tasked with maintaining the

confidentiality of data originating from its local computing context.

(ii) The cloud provider (remote admin) offers data center-based compute, storage,

and network resources (i.e., the remote computing context) to cloud customers who wish to

lease them for a certain amount of time. During the inference stage, it receives the output

of local partition Θl, and host the remaining layers (denoted by Θr) of the deep learning

model.

(iii) The service provider (app developer) wishes to lease edge computing and cloud

computing resources to deploy its machine learning as-a-service (MLaaS) offerings. Its of-

ferings must include privacy protections for the users of the edge provider’s local computing

context. In particular, the solutions should have resilience against the use of deep network

intermediate states for input inference and private attribute inference style attacks without

resulting in significant reductions to the accuracy of the service.

Additionally, the privacy protections should be able to leverage the optimization func-

tionality of deep networks and be readily applicable to existing deep networks to make

software development easier. Similarly, it’s desirable for the privacy protection mechanism

to be deployed alongside best practice end-to-end encryption and privacy-preserving model

learning mechanisms.

Finally, (iv) the end user (user device) wishes to use authorized deep learning services

to analyze user data while restricting the confidentiality of user data to the local computing
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context.

Adversary Model. We consider two classes of adversary: (i) the remote attacker (e.g.,

an honest-but-curious service provider or unauthorized remote access in the case of a data

breach) with access to the output of local partition H, remote partition Θr, and the output

of the remote partition Y , and (ii) the network attacker with access to the output of the local

partition H. We consider two classes of attacks: (i) the input inference attack: discovery

of the original user input, and (ii) the private attribute inference attack: unauthorized

extraction of a private user attribute.

Assumptions. We consider data compromises resulting from the local computing context

out of scope. Additionally, we consider side-channel attacks beyond the scope of this work.

The servers constituting local and remote computing contexts are trusted to operate normally

(i.e., we consider denial-of-service style attacks out of scope). The attacker may know, may

partially know, or may not know the dataset that is used during the model learning phase to

train and validate bipartite network {Θl · Θr}. We evaluate the framework using attackers

who do have access to the training data used to train {Θl ·Θr}.

5.2.2 Desired Properties

The following list contains the desired properties for privacy partitioning.

P1 Privacy. We would like the following data privacy objectives to be satisfied:

P1.1 Input Inference Resilience. Protections can reduce the usefulness of deep network

intermediate states to input inference style attacks.

P1.2 Input Repurposing Resilience. Protections can reduce the usefulness of deep

network intermediate states to private attribute inference style attacks.

P2 Utility. We would like the following software development utility objectives to be

satisfied:
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P2.1 Performant. Protections result in a negligible reduction to model accuracy.

P2.2 Learning-Based. Protections do not require processes that are outside of the deep

learning tool-set such as managing cryptographic secrets.

P3 Versatility. We would like the following framework versatility objectives to be satis-

fied:

P3.1 Compatible. Protections can be readily applied to existing deep networks.

P3.2 Complementary. Protections can be readily deployed alongside end-to-end en-

cryption mechanisms and privacy-preserving model learning mechanisms.

5.3 Framework

In this section, we present a deep learning optimization for learning accurate deep networks

that are resilient against input inference (P1.1) and attribute inference attacks (P1.2). We

term this optimization framework privacy partitioning.

5.3.1 Partitioned Learning

The privacy partitioning framework encapsulates a process for building privacy-enhanced

deep learning models as well as a process for deploying the resulting network. An overview

of these two processes (model learning and model inference) are shown in Figure 5.2. The

desired outcome of the model learning phase is an accurate inference model with privacy

protections in place (Section 5.3.2). The resulting deep network has two partitions with

parameters that are tuned such that the output of local partition Θl, hidden layer activation

H, does not reveal private attribute Z while the output of remote partition Θr is highly

accurate. This enables Θr to be deployed remotely without jeopardizing privacy attributes

defined by Z.
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Figure 5.2: Model Learning and Model Inference. This figure illustrates the two
phases of deploying privacy partitioning protections to a deep network: (a) the model learn-
ing phase and (b) the inference phase. The model learning phase encompasses several ma-
chine learning activities including model training and validation. The inference phase refers
to processing inputs from end-users after the network has been deployed. During the model
learning phase, deep network Θ is first partitioned into a bipartite topology {Θl, Θr} and
defender Θd, acting as an oracle for attacker behavior, is added as a feedback mechanism
for minimizing the potential of recovering private attribute Z in X via hidden state H (see
Equation 5.2). During the inference phase — when bipartite network {Θl, Θr} has been de-
ployed — the adversary devises counterpart networks {Θa0 , Θa1 , ...Θan} that each attempt
to recover Z from H.

For example, assume that a deep network Θ implements an object detection service that

takes an image as input and indicates whether or not an apple is present in the image

(fθ : image→ boolean: containsApple). In the case where private attribute Z is set to

the input vector for oranges, this framework generates partitioned deep network {Θl,Θr} that

detects apples with similar accuracy as reference deep network Θ with the added optimization

that ensures the outputs generated by {Θl are not suitable for detecting the presence of

oranges in X . In the cases where private attribute Z is set to input vector X , privacy

partitioning protects against image reconstruction.

In summary, to protect user’s data during the inference stage, we train the machine

learning model so that the remote portion that will be deployed in the cloud server carries

less sensitive information about the user. For example, during the inference stage, it will

be more challenging for attackers to infer the private attribute of user data or reconstructed

user input. Since the privacy partitioning framework protects the privacy of user data while

maintaining the utility of the data, it enables offloading a portion of the machine learning
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task to remote computing resources.

Comparison with Differential Privacy. An alternative approach to privacy-preserving

data analysis is differential privacy [181]. Differential privacy aims to ensure that a private

statistical database (i.e., a database of statistics resulting from the analysis of confidential

data) does not overly depend on any individual entry belonging to the underlying dataset the

results are based on. The intuition is that the maximally private scenario for each individual

is if their data was not part of the confidential dataset, to begin with. Therefore, privacy loss

to an individual can be quantified in terms of how similar a private statistical database that

includes their data is to that same database less their entry. If this differential is below a

certain threshold for individuals, statistically, we conclude that an adversary cannot identify

individual subjects by querying the statistical database.

Since differential privacy provides privacy guarantees for individuals entries used for pro-

ducing an aggregate statistical result it has direct application to providing privacy to deep

learning during the model learning phase. Whereas privacy partitioning provides privacy

protections for each input to a deployed deep network during the model inference phase.

Thus, they are complementary solutions but not directly comparable. Since they are com-

plementary, researchers can use both the differential privacy and privacy partitioning to

protect user data during both the model learning and the model inference phases. Since

they are complementary, researchers can use both the differential privacy and privacy parti-

tioning to protect user data during both the model learning (for privacy-preserving database

membership) and the model inference phases (for privacy-preserving query).

5.3.2 Model Learning Phase

Intuitively, an initial motivation for computing a portion of the deep network locally is

because the hidden states of the successive layers contain more transformations, resulting in

less a traceable representation with regards to the attributes of the original inputs to the

network.
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However, this initial measure is not enough because an attacker can, in many cases,

generate a fairly accurate estimation of the privacy attribute z ∈ Z of the raw input x ∈ X

from the output of the local layers h ∈ H (i.e., the attacker can compute fθa : H → Z).

A privacy partitioned deep network should meet two goals. (i) Bipartite network {Θl,Θr}

should be a functional approximation of reference deep network Θ — i.e., the resulting model

should achieve good performance. (ii) It should be prohibitively difficult for an attacker

to reconstruct raw input data or estimate the private attributes of the input data given

the output of local layers. Therefore, when training the models, we need to optimize the

objective function so that model performance is maintained as the potential for such an

attack is lessened.

In effect, we would like to prevent the attacker from discovering the inputs by ensuring the

local layer operations are irreversible. To achieve this, we introduce an additional component

into the model learning phase: defender (Θd). The role of the defender is to simulate the

attackers. That is, the defender attempts to infer the private attributes of input data or

discover the input data given hidden state h ∈ H. The defender network and the bipartite

network are trained concurrently with the defender providing feedback regarding the efficacy

of the privacy partitioning during each round and the bipartite network updating it’s function

fθd : H → Z based on this information (see Figure 5.2 (a)).

Suppose we would like to learn a DNN model fθ : X → Y with the training data

D = {(xi, yi)}
m
i=1 with each individual data containing an private attribute zi (e.g., zi = xi

for input inference attack). According to our bipartite design, the deep learning model can

be formulated as fθ = fθl ◦fθr = fθr(fθl(·)), where fθl : X → H is the function mapping from

input domain X to domain of the intermediate activation state H in local partition Θl and

fθr : H → Y is the function mapping from H to output domain Y in remote partition Θr.

According to our design, the defender learns a mapping function fθd : H → Z and its

objective can be formulated as:
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min
θd

1

m

m
∑

i=1

δ
(

zi, fθd(fθl(xi))
)

(5.1)

where δ
(

·, ·
)

is the privacy distance metric between the ground truth label of private

attribute and the estimated private attribute by the defender. In Section 5.4 we will present

some choices of δ
(

·, ·
)

in different tasks.

When training the model, the service provider would leverage the output (guess of Z) of

defender’s as feedback to better optimize its parameters. The overall objective function of a

service provider can be formulated as:

min
θ

1

m

m
∑

i=1

l
(

yi, fθ(xi)
)

− λ · δ
(

zi, fθd(fθl(xi))
)

(5.2)

where θ = {θl, θr}, and l
(

·, ·
)

denotes the loss function for the original task of the model.

λ is the defender weight that help the service provider trades off between utility loss and

privacy loss.

To train different components collectively — e.g., to train the partition and defender

networks simultaneously — we use alternating update algorithms as it is commonly done in

the training Generative Adversarial Nets [182]. The details are described in Algorithm 5.1

by replacing the defender suite with the single defender.

5.3.3 Model Inference Phase

After the privacy partitioned model has been properly deployed to local and remote com-

puting contexts, the adversary would like to learn a mapping function fθa : H → Z

among all possible DNN architectures. We assume the attacker owns an auxiliary dataset

D′ = {x̂i, ẑi}
n
i=1 that helps them to learn fθa with the objective function formulated as

follows:
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min
θai∈{θa1 ,...,θak}

min
θai

1

n

n
∑

i=1

δ
(

ẑi, fθai (fθl(x̂i))
)

(5.3)

Note the auxiliary dataset D′ that the attacker uses for might be different from the

model’s training data. Attacker’s training data can be the data the attacker collected by

himself/herself, part of the training data set or the whole training data in the worst case.

In Equation 5.3, the attacker first obtains the output of the local partitions by querying

their auxiliary dataset. Then, they use the output as well as the corresponding private label

z to train the adversary network θa that could help perform the attack.

5.3.4 Concealed Learning Phase

This section describes a process by which a privacy partitioned deep network may be updated

online to incorporate new data. This provides input inference resilience and private attribute

inference resilience for data included in an update. We denote these updates as the online

learning phase to distinguish it from the initial learning phase described thus far.

Let Li denote the ith intermediate layer in the reference deep network defined by Θ

and its corresponding bipartite deep network {Θl · Θr}. Let {Li,Li+1} refer to neighboring

intermediate layers at the partition point of {Θl ·Θr} where Li is the last local layer and Li+1

is the first remote layer. The process for supporting online updating of the remote partition

occurs as follows:

1. initial learning phase:

(a) select reference network Θ

(b) select privacy partitioning point {Li,Li+1}

(c) learn bipartite network {Θl,Θr}

2. online learning phase:

(a) lock local partition Θl
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(b) securely generate updates fθl : X → H
∗

(c) update remote partition fθr : H
∗ → Y

(d) validate and test update fθ∗ : X → Y

(e) deploy bipartite network update {Θl,Θr∗}

The inclusion of an online learning phase, occurring after the initial model is learned, has

the primary benefit of completely removing any requirement to conduct data collection and

curation tasks in coordination with a remote computing context. Our construction thus far

assumes an initial learning stage where a single administrative domain requires access to the

entire topology and training data set. During the online learning phase and any subsequent

inference phases, the protections of privacy partitioning extend to training, validating, and

testing processes. Thus, there is no need for a specialized single admin learning phase after

the initial learning phase used to generate the local partition. Further, a remote admin and

local admin can negotiate an online update without having to grant training data access to

the remote computing context or requiring local computing context to manage the entire

process.

Additionally, during the online learning phase, the locked local partition may be deployed

individually to each device (as opposed to a single local computing context) to implement

fully distributed concealed collaborative learning. The lightweight local partition acts as

a privacy filter for each device. For the user, this modifies the privacy assurance from

confidentiality provided by a local admin to secrecy provided by their device both during

model inference and model learning phases. Individuals can opt-in to improving the shared

model by contributing only their protected hidden layer activations. These contributions can

be directly applied to updating unsupervised learning models. For updates to supervised

learning models, users must also provide labels (as in crowd-sourced tagging) since this

information can no longer be inferred from the protected hidden layer activations.
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5.3.5 Multiple Defenders

The depiction of the model learning phase in Figure 5.2 (a) shows a single defender deployed

at a single deep network partition point {Θl · Θr}. In practice, the privacy partitioning

protections for a given deep learning task fθ may be extended to include more than one

defender loss function at a given partition point. In other words, the defender fθd can be

extended to defender suite FD={fθd0 , fθd1 , . . . , fθdD} at the cost of increasing computational

complexity of the network and increasing the time it takes to learn fθ. Including more

defenders at the partition point provides more robust privacy protections for the associated

hidden state since the model can leverage the best defender of the defender suite in the

model learning phase, which can be formulated as follows:

min
θ=(θl,θr)

1

m

(

m
∑

i=1

l
(

yi, fθ(xi)
)

− λ min
θdi∈{θd1 ,...,θdD}

min
θdi

m
∑

i=1

δ
(

zi, fθdi (fθl(xi))
)

)

(5.4)

However, solving this optimization problem is difficult due to the complex form of the

optimization problem. In practice, the model provider may train multiple defenders in-

dividually using a batch of training data in each update step. Then, he/she chooses the

best defender from the defender suite in each update step and updates the model param-

eters based on the chosen defender using SGD. The model learning process with multiple

defenders is described in Algorithm 5.1.
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Function 5.1: Privacy Partitioning with Multiple Defenders

INPUT: Training set D = {(xi, yi)}
m
i=1

OUTPUT: Trained model fθ

1: Initialize model θ and defender suite {θd1, . . . , θdD}

2: for t ∈ [T ] do

3: for each mini-batch {xi, yi}
B
i=1 ∈ D do

4: 1. Update the defender suite parameters θd ∈ {θd1, . . . , θdD} via SGD using the

gradient

∇θd

1

m

m
∑

i=1

d
(

xi, fθd(fθl(xi))
)

5: 2. Choose the best defender via

θd = argmin
θd∈{θd1,...,θdD}

1

B

B
∑

i=1

d
(

xi, fθd(fθl(xi))
)

6: 3. Update the model parameters θ via SGD using the gradient

∇θ

1

B

B
∑

i=1

l
(

yi, fθ(xi)
)

− λ · d
(

xi, fθd(fθl(xi))
)

7: return θ

5.3.6 Multiple Partitions

Another strategy for hardening the privacy partitioning framework is to extend a bipartite

network {Θl, Θr}) with one privacy partitioning {Li,Li+1} into a partition suite ({Li,Li+1}, {Lj ,Lj+1}, . . . ,

Integration can occur by training a new deep network for each partition in the suite. Simul-

taneously learning more than one privacy partitioning provides a more complete protection

surface and more deployment configuration options at the cost of additional training over-
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head. The additional configurations enable flexible controls that can be adjusted to suit

changing privacy and accuracy requirements.

5.4 Experiments

In this section, we experimentally demonstrate that the proposed framework can generate

accurate deep networks with input inference and private attribute inference resilience in a

series of benchmark computer vision applications. Section 5.4.1 presents the methodology

used for evaluating the privacy partitioning framework. Section 5.4.2 presents a proof of

concept validation of the privacy partitioning framework using the MNIST dataset [183].

Section 5.4.3 presents a more comprehensive validation of the privacy partitioning framework

using a selection of datasets and classifier scenarios.

5.4.1 Evaluation Methodology

The evaluation aims to measure how well privacy partitioning performs against state-of-the-

art input inference and attribute inference style attacks. We quantify the protection strength

and performance cost of privacy partitioning in a series of experiments using benchmark

computer vision tasks: MNIST (handwritten digit classification), LFW (face recognition),

CIFAR-10 (object detection), and AgeDB (age and gender classification).

To evaluate the performance of the input inference attack, we use similarity metrics

that are highly consistent with human perceptual assessments to quantify the similarity of

recovered inputs as compared to original inputs. Specifically, we use mean square error

(MSE) and structural similarity index (SSIM) [184] in our experiments. MSE=0 or SSIM=1

score corresponds to a perfect reconstruction. We also use deep perceptual loss (DPL) [185]

and reprint accuracy (the model accuracy when inputting recovered data to pre-trained

DNNs) to quantify the machine perceptual loss of DNNs. All attacker networks are trained

to minimize human perceptual loss in input inference attacks after the model learning phase.
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For the attribute inference attack, the attacker attempts to infer the private attribute Z

of X from H. All of the assumptions for the input inference attacks scenario also apply to

the attribute inference attack scenario with the exception that the outputs of the attacker

DNNs are guesses of Z. We evaluate the performance of attribute inference attack using

accuracy scores.

The evaluation process for each benchmark is as follows. Given a classification task

and reference deep network Θ, we generate bipartite network {Θl · Θr} using the privacy

partitioning method described in Section 5.3. We then evaluate the protection strength of

{Θl ·Θr} in terms of how well it reduces the accuracy of an input inference attack by attacker

DNN Θa.

Initially, we tested the privacy partitioning framework against the most powerful model

used for input inference found in the research literature. We tested the state-of-the-art input

(image) inference attack proposed by Fredrikson et al. and found that privacy partitioning

is very effective against this implementation [179]. This attacker model achieves an SSIM

of < 0.2 for all datasets in primary evaluation ( Section 5.4.3). Next, we devised a stronger

attacker DNN that (1) has access to the full training dataset and (2) is better calibrated for

visually dissimilar class members.1

In all experiment settings, we assume that the attacker has full access to the training

dataset. In practice, the attacker does not need access to the same training dataset as

the target network to learn a deep network for input discovery (e.g., the attacker may use

publicly available images to compromise an image classifier). However, we are interested

in evaluating the effectiveness of the proposed protection mechanisms under the best-case

scenario for the attacker. This assumption is the most difficult to defend against since the

attacker has access to the same data distribution that was used to train the targeted model.

We focus on two types of attacks: the input inference attack and the attribute inference

attack. For the input inference attack, we assume the attacker trains DNNs to discover

1It has been demonstrated that the input inference model presented in [179] is unlikely to succeed when
class members are not all visually similar [186].
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the raw input data X from the output H of Θl (see Equation 5.3). The set of candidate

DNNs used for the attacker is selected from a combination of hyperparameter configurations

including layer type, choice of activation function, and the number of neurons per layer.

The selection of the strongest attacker DNNs is the result of an exhaustive search over the

hyperparameter space for each benchmark.2 We also assume the attacker DNNs are adaptive

to the layer that is selected for partitioning: when a deeper layer is selected for partitioning,

the attacker adapts by using a more complex attacker DNN structure for input inference.

Additional details regarding the selection of DNN parameters are in Section 5.4.5.

(a) original images (b) no defender (c) has defender

Figure 5.3: Handwritten Digit Image Recovery. This figure compares the
input images (a) to a handwriting-to-digit classifier network to the images
recovered by the two-layer ReLU-based MLP from this classifier network’s inter-
mediate layer output when the privacy partition is not applied (b) and when the
privacy partition is applied (c). The input to the recovery network consists of the
hidden layer output passed between the local domain and the remote domain of
the classifier network. The MSE for the images in (b) and (c) are ≈0.07 and ≈0.11
(SSIM ≈0.55 and ≈0.35), respectively.

5.4.2 Preliminary Evaluation

As a preliminary step, we validate the effectiveness of our method with a simple benchmark

dataset. We choose one of the most commonly used image benchmark datasets MNIST to

start our tests. MNIST [183] is a benchmark computer vision dataset containing 60,000

gray-scale images of handwritten digits (50,000 training and 10,000 testing). We train a

2We have chosen DNN structures that are based on autoencoders since autoencoders are the most powerful
DNN structures for input inference [187, 188, 179].
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three-layer ReLU-based MLP with 800 hidden units per layer for our task. The model

achieves an accuracy of around 98.4%. We choose the output of the second hidden layer for

partitioning. In this experiment, we evaluate the quality of the attack using both human

perceptual loss metric (MSE and SSIM). The details of training the model and defender as

well as details of the chosen attacker models can be found in Section 5.4.6.

(1) How does adjusting the defender weight impact the performance of attackers?

First, we consider the case where the model provider uses only one defender in the model

learning phase. We configure the defender model to a two-layer ReLU-based MLP. For the

attacker, we choose eight attacker models in total in different combinations of hyperparam-

eters. We set the defender weight λ (see Equation 5.2) to be 0, 100, 200, 300, 400, 500 to test

the corresponding model accuracy and human perceptual metrics. The results are shown

in Table 5.1.

Table 5.1: MNIST Model with Multiple Attackers Versus a Single Defender

Defender Weight 0 100 200 300 400 500

Model Accuracy 98.4% 98.2% 98.2% 98.1% 98.1% 98.1%

M
S
E

/
S
S
IM

Attacker 1 0.070/0.546 0.072/0.534 0.079/0.500 0.081/0.495 0.086/0.466 0.116/0.347

Attacker 2 0.072/0.524 0.068/0.553 0.080/0.500 0.082/0.491 0.093/0.449 0.117/0.361

Attacker 3 0.016/0.834 0.018/0.823 0.021/0.807 0.021/0.797 0.021/0.818 0.023/0.792

Attacker 4 0.022/0.783 0.021/0.794 0.025/0.755 0.025/0.765 0.023/0.787 0.025/0.760

Attacker 5 0.066/0.552 0.062/0.587 0.071/0.533 0.076/0.517 0.076/0.517 0.087/0.457

Attacker 6 0.074/0.514 0.070/0.543 0.087/0.457 0.097/0.420 0.092/0.448 0.131/0.298

Attacker 7 0.070/0.527 0.063/0.575 0.071/0.531 0.070/0.532 0.081/0.470 0.091/0.443

Attacker 8 0.032/0.734 0.037/0.713 0.046/0.659 0.049/0.637 0.048/0.640 0.061/0.558

The overall trend is a reduction in attacker recovery accuracy as defender weights are increased.

Result Analysis: In Table 5.1, we can see that for each attacker DNNs, the attacker is

less successful in discovering the inputs with the increase of the defender weight. In all cases,

the model classification accuracy remains at a high level (> 98%). The results demonstrate

the effectiveness of our framework: adding defenders in our framework makes it harder for the
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attacker to discover input images while maintaining the model inference accuracy. Figure 5.3

illustrates MNIST images recovered by the two-layer ReLU-based MLP with the defender

present and without the defender present. We can see that with the defender present, the

recovered images by the attacker network is harder to recognize.

(2) How does the addition of multiple defenders affect the performance of multiple attack-

ers?

Next, we extend the experiment by adding multiple defender DNNs in the model learning

phase. For comparison, we select the four different types of defender DNNs which increase the

diversity of defender DNN structure. The details of the chosen defenders are in Section 5.4.6.

As for the attacker DNNs, we use the same eight attackers used in the previous experiment

for comparison to see how the case of multiple defenders improves from that of a single

defender. We choose the defender weight λ = 200 for comparison. Experiment results are

shown in Table 5.2.

Result Analysis: In Table 5.2, we can see that the performance of each attacker DNN

degrades by a large extent when there are multiple defenders present, compared to the

performance of each attacker model when there is no or only one defender present. This is

because by training multiple defenders in the model learning phase, the model can choose

the best defender in each step that has the best recoverability to optimize its parameters.

This lessens the potential for attacker models to accurately infer input images.

5.4.3 Primary Evaluation

In this section, we validate privacy partitioning in different scenarios. We use three datasets

for different experimental settings. We use the LFW [189] and CIFAR-10 [190] datasets for

evaluating input inference protection. We use AgeDB [191] to evaluate attribute inference

protection. Next, we describe the details of these datasets and the data preprocessing steps

in our experiments.

The LFW dataset contains 13,233 images of faces collected from the web and each image
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Table 5.2: MNIST Model with Multiple Attacker Versus Multiple Defenders

Defenders Present
No

Defender
Single

Defender
Multiple
Defenders

Model Accuracy 98.4% 98.2% 98.0%

MSE

Attacker 1 0.070 0.079 0.215

Attacker 2 0.072 0.080 0.209

Attacker 3 0.016 0.021 0.070

Attacker 4 0.022 0.025 0.073

Attacker 5 0.066 0.071 0.195

Attacker 6 0.074 0.087 0.202

Attacker 7 0.070 0.071 0.168

Attacker 8 0.032 0.046 0.192

SSIM

Attacker 1 0.530 0.500 0.076

Attacker 2 0.540 0.500 0.098

Attacker 3 0.841 0.807 0.500

Attacker 4 0.820 0.755 0.494

Attacker 5 0.543 0.533 0.194

Attacker 6 0.518 0.457 0.117

Attacker 7 0.568 0.531 0.205

Attacker 8 0.722 0.659 0.160

contains a label of the person depicted. 1,680 subjects have at least two distinct images.

The size of the images is 250 × 250. We only retain the images of subjects that have at

least 30 different pictures and re-scale the images to 64× 64. After filtering, there are 2,370

images left with 34 subjects in total. We use 80% of the images for training and reserve the

remaining 20% for the test set.

The CIFAR-10 dataset is a benchmark datasets for object recognition and it contains

50, 000 training images and 10, 000 test images. We use this dataset for input inference

attacks.

The AgeDB dataset contains 16,488 images of faces containing gender, age, and subject
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Figure 5.4: Faces Photo Recovery. This figure compares nine sample images re-
covered by six configurations (2 defender configurations by 3 partition configurations) in
LFW dataset. Note that the recovery error both increase as a defender is applied to the
privacy partition (bottom-to-top trend) and as more layers are included in the local par-
tition Θl (left-to-right trend) (refer to Figure 5.5 for the full results of the photo-to-id
experiments).

label. There are 566 subjects in total. We filter out those images where faces are detected

using OpenCV library [192]. We have 14,857 images left after filtering. We then split 80% as

the training set and the rest 20% as the test set. We use this dataset for attribute inference

attacks: the deep network learns gender estimation while the attacker tries to learn subject

labels from H.

(1) Where should we place the privacy partition?

To answer this question, we apply privacy partitioning to several candidate layers for

input inference attacks for LFW and CIFAR-10. We use the CNN model for LFW dataset

(see Section 5.4.7 for model architecture) and VGG-19 [193] for CIFAR-10. We choose

the output of the first, second, and third pooling layer (denoted by pool1, pool2, pool3)

in each model for privacy partitioning. We choose these layers because the outputs of
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these layers represent different levels of abstraction of features in the model in the feature

extraction module in the CNNs [194]. Note that when privacy partitioning goes deeper

(in terms of layers) in the model, the attacker DNNs are more complex (e.g., more layers).

We use 3 different types of attacker DNNs for both datasets. As for the defender, we

choose the deconvolution decoder structure as the structure of the defender DNN [195, 188].

The detailed structures of the attacker DNNs and the defender DNN are in Section 5.4.7.

The defender weights are set to be 0.1 and 1.0 in the LFW and CIFAR-10 experiments,

respectively. We set the defender weight according to the ratio of model loss and defender

loss (3 : 1) in the first few iterations in case that the defender loss becomes the dominant

loss.

We measure the model accuracy, the human perceptual loss (SSIM and MSE), machine

perceptual loss (DPL and reprint accuracy) in all different settings. Figure 5.5(a)-(e) shows

the results of the best attacks for LFW experiments and Figure 5.5(f)-(j) for CIFAR-10

experiments. Note that we run all experiments five times and report the average.

From Figure 5.5(a)(f), we can see that privacy partitioning maintains model classification

accuracy at a high level; in all layers we test, the model accuracy is greater than 88% in

LFW experiments (91% in CIFAR-10 experiments). We also notice that applying privacy

partitions to “deeper” layers yields less reduction in model performance compared to placing

privacy partitions in the first layer pool1.

Figure 5.5(b)(e)(g)(j) shows that when privacy partitions are applied at any layer, it is

less likely for the DNNs to distinguish the recovered image from the original images correctly

(lower reprint accuracy and higher DPL). The overall trend is a decrease (increase) for reprint

accuracy (DPL) as privacy partitioning are deployed to deeper layers.

In Figure 5.5(c)(d)(h)(i), we consider human perceptual loss. The defender deteriorates

the quality of recovered input images in terms of perceptual metrics. The results also sug-

gest that by deploying privacy partitions to the deeper layers, the recovered images are

perceptually less discernible. Figure 5.4 shows the visualization results of LFW experiments
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Figure 5.5: Input Recovery Attacks Results in LFW and CIFAR-10 Experi-
ments. This figure shows the results for 6 configurations in LFW experiments (charts
a-e) and CIFAR-10 experiments (charts f-j), measured in terms of five performance crite-
ria. The configurations includes 2 defender configurations by 3 partition point selections:
H0 (pool1 activation), H1 (pool2 activation), H2 (pool3 activation). The 5 performance
criteria include the privacy partition model classification accuracy; the reprint accuracy
of the recovered image; the structural similarity index (SSIM) of recovered and originals
images; the mean squared error (MSE) of recovered and originals images; and the deep
perceptual loss (DPL) of recovered and originals images.

Overall, since our goal is to maintain the model performance while keeping the recovery

error of the attacker as high as possible, combined with all metrics we consider, deeper layers

such as pool3 are the best positions for the privacy partition. However, deploying more layers

in the local domain would compromise the intellectual property of the deep learning models

and increased local computational resources. The model providers and end-users should,

therefore, have a trade-off.

(2) Can privacy partitioning protect other private attributes?

We now demonstrate that the privacy partition method can defend against attribute

inference style attacks where an attacker attempts to learn other sensitive attributes from

hidden deep network states. We use AgeDB to train a DNN for gender classification. The

goal of the attacker is to identify the subject of the input images given access to the network’s
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Figure 5.6: Attribute Inference Attack Results: In the highest privacy setting of the
gender estimation experiment, privacy partitioning reduces the subject identification ability
of attacker by half (from 9.79% to 4.31%) with negligible (≈0.60%) reduction to the model
accuracy.

hidden state. We use VGG-19 convolutional neural network [193] for age estimation and

we choose the output of feature extractor in VGG-19 for privacy partitioning. We choose

this layer for privacy partitioning because this layer is relatively deep in the model (almost

near the output layer of the model). Our previous experiments demonstrate that such a

deployment strategy is the best setting to defend against the attackers.

The design strategy of defender DNN and attacker DNNs are the same as the previous

experiment except that the output is a prediction score for each subject. We set the defender

weight to be 0.3. All the DNNs architecture are shown in Section 5.4.9 and the results are

shown in Figure 5.6.

In Figure 5.6, we can see that our method has a negligible impact on the original clas-

sification task (94.82% drops to 94.25%). In the meantime, we find that the attacker can

successfully identify nearly 10% of the subjects (out of 566) even in the hardest setting for

the attackers. Applying the defender, we find that the subject identification ability of the

attacker is decreased by half (9.79% drops to 4.31%). Thus, we find that the privacy risk

potential of repurposing hidden layer activations is significant and that reduces the risks of

leaked private attributes.

(3) What is the insight of the defender’s role when training the model?

Our experiment results demonstrate quantitatively and qualitatively the effectiveness
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(a) no defender (b) has defender

Figure 5.7: Hidden Layers and Defender Strategy. This figure shows the impact
of defender strategy on the hidden layer activations in LFW experiment. The hidden
layer activation visualizations are outputs of pooling layer H0 when there is no defender
present (a) and when there is a defender present (b).

of our method. To have a more intuitive understanding of why the defender is effective,

we compare the visualizations of the hidden layer activation we protect. We visualize the

“protected” activations with those without protection in the LFW experiment. Note that

we choose the activation pool1 and pool2 for visualization since deeper layer features are

hard for a human to interpret semantically. From the visualization comparisons, we can

qualitatively check how the defender helps protect the information of hidden layer features

from leaking privacy-invasive characteristics. Figure 5.7 shows the visualization results for

pool1.

We can see from Figure 5.7 the differences between hidden layer activation of pool1 with

and without the defender. In Figure 5.7(a), we can see clearer human visually-recognizable

features in more filter activations, whereas in Figure 5.7(b), we can only capture the features

such as the basic outlines of human faces in fewer filter activations.

The visualization results meet our intuition that privacy partitioning reduces the dis-

coverability of private attributes while maintaining the features that support the autho-

rized classification task. Combined with the model classification accuracy results shown

in Figure 5.5(a), we can conclude that performing the privacy partitioning in the proper

layer not only maintain the model performance (emphasizing key features) but also make it
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harder for the attacker to steal more information from input images (deactivating sensitive

features that are less relevant to the classification tasks).

(4) Can we continue improving the model accuracy in privacy partitioning?

According to Section 5.3.4, we can continue to train remote partition in the inference

phase. This scheme of privacy partitioning fits well with fine-tuning concept [196] in DNNs.

We can continue to fine-tune the remote layers for better performance while keeping the

local layers unchanged.

We fine-tune our pre-trained privacy-partitioned model in all settings we tested before the

CIFAR-10 experiments for 50 epochs. We do not add any new training data when continuing

to train the remote layer. We still observe 0.2% − 0.3% increase in model accuracy for all

privacy partitioning deployments in pool1, pool2, and pool3. Note that we already use

VGG-19 (one of the state-of-the-art model for CIFAR-10 and it is hard to further improve

the model accuracy) and privacy partitioning only causes 0.2%−1.6% accuracy degradation

in VGG-19. We can see that continuing to fine-tune the remote layers can even make an

impact on the model accuracy more insignificant. It also demonstrates that even in the

inference phase of privacy partitioning, we can continue to train remote layers to further

improve the model accuracy.

(5) How does privacy partitioning compare to the method of adding differentially-private

noise to inputs?

Questions arise when we add noise directly to the input image to maintain data privacy.

How does it compare to privacy partitioning? Does this method provide better utility and

privacy trade-off?

To answer this question, we compare privacy partitioning with differential private image

pixelation [197], which extends the standard differential privacy notion to image data under

a similar threat model as ours (image owners wish to share with untrusted recipients).

Differential private image pixelation is proposed under the notion of m-neighborhood for

image data: two images are neighbors if they have the same dimension and they differ by at
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most m pixels. It has been argued that the m-differences of pixels can help to protect the

presence or absence of any sensitive information in the image (e.g. object, text, or person).

[197] also proposes the Differentially Private Pixelation algorithm that achieves ǫ-differential

privacy (see in Section 5.4.10 for details). The effectiveness of the algorithm is validated by

SSIM.

We apply differential private image pixelation algorithm for the CIFAR-10 dataset in the

inference phase on the pre-trained model. We set the pixelation grid cell length to be 2 and

m to be 1 to minimize the negative effects on image utility [197]. We change the value of ǫ

to see how SSIM and the classification accuracy change accordingly. The results are shown

in Figure 5.8.
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Figure 5.8: Differentially Private Image Pixelation Results. This figure shows
that as the privacy parameter ǫ in differentially private image pixelation increases, both
the SSIM and classification accuracy increase.

As shown in Figure 5.8, the classification accuracy drops significantly. In comparison, our

method almost has no impact over the model accuracy Figure 5.5(f)-(g)). This demonstrates

our method is more practical in real world scenarios than approaches that add noise directly

to inputs.

In this section, we present additional details on the parameter design choices used in this

study.

139



5.4.4 Deep Learning Background

In our work, we focus on the setting of supervised learning for simplicity: a DNN model

fθ : X → Y parameterized by θ. For classification problems, X is a high dimensional

vector space and Y is the space for the classes. Given a labeled dataset {(xi, yi)}
m′

i=1 where

(xi, yi) ∈ X × Y . The dataset is usually partitioned into training data of size m and test

data.

To learn a good DNNmodel that perform well on the test data, we will try to minimize the

loss function l which measures the difference between ground truth labels and the predicted

labels:

min
θ

1

m

m
∑

i=1

l
(

yi, fθ(xi)
)

There are many optimization algorithms to solve the above problem. Stochastic gradient

descent (SGD) and its variants are commonly used to train a DNN. Popular choices of fθ in

the application of deep learning include Multilayer Perceptrons (MLPs) [169], Convolutional

Neural Networks (CNNs) [165], Recurrent Neural Networks (RNNs) [168] or a combination

of them [167].

5.4.5 Input Inference Metrics

How best to quantify the privacy leakage of a recovered image as compared to its reference

image is a challenging problem in the field of computer vision. In general, providing formal

privacy guarantees is a challenging problem in deep learning theory due to the complexity

of the deep learning model and the unknown data distribution [198]. In many cases, the

definition of privacy depends on the application and user expectations. For example, a

user may want to upload portraits to a facial recognition deep learning service to help

automate tasks related to organizing and sharing photos but at the same time may not want

demographic information to be collected from those photos.
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Perceptual metrics are widely used in computer vision and lossy compression tasks as

statistical measures of human perception and data quality [184, 199, 200, 185]. Moreover,

researchers conducting user studies and statistical evaluations on a variety of image quality

measurement datasets have found that perceptual metrics are highly consistent with human

perceptual assessments of image quality [201, 202, 203, 204].

In the experiments that follow, we use perceptual metrics primarily as loss function

scores for balancing image discoverability with classification accuracy and as an application-

agnostic proxy for quantifying privacy leakage. Perceptual metrics are useful because they

can be readily computed in the context of optimization and have clear physical meanings.

Please note that the scoring metric can be replaced in the loss function without additional

alteration to the proposed privacy partition framework (e.g., to replace general-purpose

metrics with application-specific privacy metrics).

We use four types of perceptual metrics to measure the perceptual similarity between

original and recovered images: (i) a per-pixel similarity measure (MSE) [184], (ii) a per-

ceptual similarity measure (SSIM) [199], (iii) a deep-learning-based perceptual similarity

measure [200, 185], and (iv) an application-specific validation metric we term reprint accu-

racy.

MSE: The mean squared error (MSE) measures the per-pixel l2 Euclidean distance be-

tween two images [184]. If MSE = 0, two images are identical. MSE is usually used to

measure the quality of image reconstruction. In the context of image or video compression,

it is often used as an approximation of human perception of reconstruction quality. However,

the MSE is insufficient to assess highly-structured images since it assumes pixel-wise inde-

pendence. For example, blurring an image can result in small l2 changes but large perceptual

changes.

SSIM: The structural similarity index (SSIM) improves on MSE by assuming pixel-wise

dependence [184, 199]. It is computed using a sliding window to capture the structural

information between two images. It ranges from [−1, 1], where SSIM = 1 indicates that
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the two images are identical. SSIM is highly consistent with human perceptual assessments.

For example, image obfuscation techniques such as pixelation and blurring result in smaller

SSIM values.

DPL: Recently, studies have been shown that internal activations of deep convolutional

networks trained on image inference tasks are surprisingly effective at capturing an objective

measure of “perceptual loss” that corresponds to human visual perception especially in terms

of perceptual spatial ambiguities [200, 185]. In our experiment, we use deep perceptual

distance (DPL) [185] to evaluate the perceptual indistinguishability of recovered images as

a complementary metric to SSIM and MSE.

Reprint accuracy: The reprint accuracy is a measure of the model classification accu-

racy using recovered inputs by the attacker (i.e., the classification accuracy of f : H → X →

Y). Reprint accuracy provides a measure of the utility of recovered inputs as compared to the

original inputs. It can be modified to assess how well an adversarial network can complete

any privacy-invasive classification task using recovered images (re-classification accuracy).

5.4.6 MNIST Hyperparameter Settings

In this section, we will describe the experimental details for MNIST dataset.

In our experiment settings for MNIST, we train the model and the defender(s) using the

Adam optimization algorithm [205]. We set the learning rate of the model and the defender

at 0.0001 and 0.001, respectively. We train the model and the defender for 500 epochs with

batch size 32. We also use the dropout technique [206] with a drop probability of 0.1 to

prevent over-fitting.

We use SSIM as the distance metric (defined in Equation 5.2). We use MSE loss function

for training the attacker models, as it is typically used in computer vision tasks.

Here are all attacker DNNs used in the MNIST experiment:

• Attacker 1 : 800 → ReLU → 800 → Sigmoid
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• Attacker 2 : 800 → ReLU → dropout(0.1) → 800 → Sigmoid

• Attacker 3 : 800 → Tanh → 800 → Sigmoid

• Attacker 4 : 800 → Sigmoid → 800 → Sigmoid

• Attacker 5 : 512 → ReLU → 512 → Sigmoid

• Attacker 6 : 1024 → ReLU → 1024 → Sigmoid

• Attacker 7 : 1-D conv → ReLU → 800 → Sigmoid

• Attacker 8 : 784 → Sigmoid

Note the 512 means fully connected layer with 512 neurons, → denote the network

data flow direction and other notations denote the layer name and the corresponding layer

parameters.

Here are the defender DNNs used in the multiple defender training experiments:

• Defender 1 : 800 → Tanh → 800 → Sigmoid

• Defender 2 : 800 → Sigmoid → 800 → Sigmoid

• Defender 3 : 1-D conv → ReLU → 800 → Sigmoid

• Defender 4 : 784 → Sigmoid

5.4.7 LFW Hyperparameter Settings

We use the CNN model in LFW experiments. The model used for LFW experiment is:

conv2d 5×5→ conv2d 5×5→ maxpool 2×2 (pool1)→ conv2d 3×3→ conv2d 3×3

→ maxpool 2×2 (pool1) → conv2d 3×3 → conv2d 3×3 → maxpool 2×2 (pool3) →

conv2d 3×3→ conv2d 3×3→ maxpool 2×2→ 512→ dropout(0.5)→ 512→ dropout(0.5)

→ 512
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Note that each convolutional layer is followed by the ReLU activation and batch-normalization

layer.

We train the model and the defender using SGD algorithm with momentum 0.9 and an

initial learning rate of 0.01. The learning rate decays by a factor of 0.1 every 100 epochs,

and there are 250 epochs in total. l2 regularization is also applied to prevent over-fitting.

The design of the defender DNN is adaptive to the layer chosen for partitioning (e.g., in

our experiment, we choose the outputs of first three pooling layers pool1, pool2, and pool3

for partition). For example, if we choose pool2 for partition, the architecture of defender

network would be the “reversed” version of local layers:

deconv2d 3×3 (stride 2)→ conv2d 3×3→ ReLU→ deconv2d 5×5 (stride 2)→

deconv2d 5×5 → tanh

Note that this type of architecture resembles the design strategy of a convolutional au-

toencoder [187, 188]. The attacker DNNs also depend on which layer for partition since the

input dimension might be different from layer to layer. For example, if we choose pool2 for

partition, the attacker is

• Attacker 1 (DECONV ATTACKER): deconv2d 3×3 (stride 2)→ conv2d 3×3→ ReLU

→ deconv2d 5×5 (stride 2) → deconv2d 5×5 → tanh

• Attacker 2 (FC ATTACKER): 4096 → ReLU → 12288 → Tanh

• Attacker 3 (SPARSE FC ATTACKER): 4096→ ReLU→ dropout(0.5)→ 12288→ Tanh

Note that these types of attackers are chosen since they are the most commonly used

decoder architecture in auto-encoder designs [187] and they cover the most commonly used

operations in deep neural networks in the area of computer vision.

5.4.8 CIFAR-10 Hyperparameter Settings

We used batch-normalized VGG-19 [193] for the classification model. We train the model

with random crop and random horizontal flip data augmentation techniques for 150 epochs.
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(a) no defender (b) has defender

Figure 5.9: Hidden Layers and Defender Strategy II. This figure shows the
impact of the defender strategy on the pool2 activations (hidden layer H1) in LFW
experiments. Applying the defender strategy (b) results in more information loss to the
intermediate layer features a compared to training normally (a).

The initial learning rate is 0.01 with a decay factor of 0.1 for every 50 epochs. We use the

SGD algorithm with momentum 0.9 and l-2 penalty weight decay 0.0005.

The design strategies of defender DNN and attacker DNNs are similar in the LFW exper-

iment. For example, if we choose the second pooling layer pool2 for partition, the defender

DNN is:

deconv2d 3×3 (stride 2) → BatchNorm → ReLU → deconv2d 3×3 (stride 2) →

BatchNorm → ReLU → deconv2d 3×3 → BatchNorm

And the attacker DNNs are:

• Attacker 1 (DECONV ATTACKER): deconv2d 3×3 (stride 2) → BatchNorm → ReLU

→ deconv2d 3×3 (stride 2)→ BatchNorm→ ReLU→ deconv2d 3×3→ BatchNorm

• Attacker 2 (FC ATTACKER): 1024 → ReLU → 3072

• Attacker 3 (SPARSE FC ATTACKER): 1024 → ReLU → dropout(0.5) → 3072

5.4.9 Hyperparamter Settings in AgeDB Experiment

We used batch-normalized VGG-16 [193] for the classification model. We train the model

with random crop and random horizontal flip data augmentation techniques for 50 epochs.
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The initial learning rate is 0.01 with a decay factor of 0.1 for every 20 epochs. We use the

SGD algorithm with momentum 0.9 and l-2 penalty weight decay 0.0005.

The design strategies of defender DNN and attacker DNNs are similar in the previous

experiments, except that the output of model is a 566-dimensional vector (We have 566

subjects in total). The defender DNN is:

conv2d 1×1 (stride 1) → BatchNorm → 1024 → ReLU → dropout(0.2) → 566

And the attacker DNNs are:

• Attacker 1 (CONV ATTACKER): conv2d 1×1 (stride 1) → BatchNorm → 1024 →

ReLU → dropout(0.2) → 566

• Attacker 2 (FC ATTACKER): 1024 → ReLU → dropout(0.2) → 566

• Attacker 3 (Sparse FC ATTACKER): 1024 → ReLU → dropout(0.5) → 566

5.4.10 Differentially Private Image Pixelation

In this section, we will discuss the notion of differentially private image pixelation [197]

and how to achieve it. We define “neighboring images” as the application of the notion of

differential privacy to images as follows:

Definition [m-Neighborhood] Two images I1 and I2 are neighboring images if they have

the same dimension and they differ by at most m pixels.

To achieve ǫ-differential privacy, they also propose Differentially Private Pixelation al-

gorithm. The details of the algorithm are in Algorithm 5.2. It has been proved that

Algorithm 5.2 is ǫ-differential private in [197].
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Function 5.2: Differentially Private Image Pixelation

INPUT: Image I with size M ×N , neighbouring parameter m, pixelation grid size b,

privacy parameter ǫ

OUTPUT: Differentially private image Ĩ

1: Divide I into K = ⌈M
b
⌉⌈N

b
⌉ cells ck, where k = 1, . . . , ⌈M

b
⌉⌈N

b
⌉

2: Pixelate the image

p(I; b) = {
1

b2

∑

(x,y)∈c1

I(x, y), . . . ,
1

b2

∑

(x,y)∈cK

I(x, y)}

3: Sample Laplacian noises Ñ = {Ñ1, Ñ2, . . . , ÑK} with means 0 and and scales 255m
b2ǫ

4: Add noises to the pixelated image Ĩ = I + Ñ

5: return Ĩ

5.5 Discussion

In this section, we discuss the benefits and limitations of the privacy partitioning framework

for concealment-enhanced hidden layer activation states.

We evaluate the protection strength and performance cost of this framework in a series

of experiments using benchmark computer vision tasks (Section 5.4), demonstrating that

privacy partitioning increases input inference resilience (P1.1) and private input inference

resilience (P1) with negligible degradation of performance (P2.1).

The privacy partitioning framework is constructed using the deep learning optimization

functionality (P2.2). The privacy partitioning framework can be applied directly to existing

deep networks (P3.1). The resulting network can be readily deployed alongside end-to-end

encryption mechanisms. Similarly, the partitioned learning privacy optimization may also

be utilized by decentralized architectures and federated resource sharing models because the
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defender component can be applied independently to each data resource (P3.2).

Since the transferred hidden layer activations are input inference and input repurposing

resilient, the local computing context exerts more control over how data is used than the

remote-only deployment. Since defender suites need not be disclosed by the service provider3,

to either the local admin or the remote admin, the service provider exerts more control over

their intellectual property in partitioned learning than in the case of a remote-only or local-

only deployment of centralized learning.

This framework is particularly beneficial when the clients in the local computing context

are computationally resource-constrained devices such as mobile devices and IoT devices.

Since only a portion of the deep network is deployed locally, the local computing context

requires less computational resources than a remote-only deployment.

This approach does introduce additional components to the model learning phase. The

additional components (primarily the defender) result in increases to the time required to

learn a high-performance deep learning model. However, the scale of the defender is pro-

portional to that of the local partition [187]. Thus, the increased model complexity and

performance overhead during model learning is not a substantial performance or cost bar-

rier during model inference when compared to the baseline cost of deploying the reference

deep network. In the model inference phase, the only performance overhead is due to the

communication overhead of transferring hidden layer activations.

Another limitation of the proposed framework is that the selection of the defender suite

is an engineering task without the formal guarantee of a globally maximal implementation.

Similarly specifying the sufficient threshold for data secrecy or user privacy is application-

specific. For example, an SSIM threshold that provides a sufficient level of concealment

for one data type may not be adequate for another type of data. Nonetheless, privacy

partitioning enables privacy to be implemented as a learning problem where improvements

3The defender suite is included in the optimization functionality of the deep network during the model
learning phase. However, the defender suite is not required to verify the protection strength of the resulting
deep network or during model inference phase when the deep network is in use.
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to the quality of the training data distribution improve both model performance and data

protection properties.

5.6 Related Work

In this section, we discuss the related research in the areas of machine learning privacy

threats and privacy-preserving solutions of deep learning with a comparison to our work.

5.6.1 Machine Learning Privacy Threats

Data privacy of machine learning has been an active research topic for long. In one of the

newest works, Hitaj et al. [207] posit that there are fundamental limitations to the level of

privacy that can be achieved using a decentralized approach to training deep learning models.

Song et al. [208] consider a malicious machine learning services provider who supplies model-

training code to the data-holder. Fredrikson et al. [179] explore model inversion attack: they

show that model inversion could lead to unexpected privacy threats by leveraging confidence

values given by machine learning models. Shokri et al. [186] study membership inference

attacks: they assume black-box access to a machine learning inference model and determine

whether a labeled data instance appears in the training data that is used to train the model.

Other membership inference problems are studied in [209, 210, 211, 212]

Model privacy in machine learning is another important research area. Tramèr et al. [213]

demonstrate the feasibility of duplicating the functionality of machine learning models such

as decision tree and Logistics Regression in MLaaS system. Tramèr et al. term it as model

extraction attack. Wang et al. [214] propose hyperparameter stealing attacks and demon-

strate its effectiveness theoretically and empirically in machine learning models like logistics

regression and support vector machine.
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5.6.2 Privacy-Preserving Deep Learning

Differential Privacy. Differential privacy originates from the domain of database and it

provides formal privacy guarantees for each data record in the database. Differential privacy

has been applied to ensuring the privacy of training data of deep learning to protect against

the case that the model provider could learn from model parameters whether the individual

data is present or not [215, 216].

However, our threat model is different and it is hard to directly apply the standard

differential privacy notion in our case: for the task of image publication for MLaaS, we

often send image data to the model provider to request for the certain services for that

particular image data and the information leakage by directly sending to the model provider

is not guaranteed by differential privacy. In summary, standard differential privacy is for

protecting the privacy of individual entries in a confidential database (which is well defined

for training a machine learning model), whereas the privacy partitioning is for training a deep

network in such a way that inputs for classification are protected. They are complementary

but not directly comparable. In summary, differential privacy provides privacy/anonymity

for the individual samples training database while the privacy partitioning provides privacy

during model inference.

Erlingsson et al. [178] propose a Randomized Aggregated Privacy-Preserving Ordinal

Response (RAPPOR) to provide strong privacy guarantees for crowdsourcing population

statistics from end-users. However, a user might send a single data item for MLaaS system.

Thus, RAPPOR cannot be applied to this scenario if a user might send a single data item

for MLaaS. Fan et al. [197] also extend the standard notion of differential privacy to image

privacy for image publication. However, their method suffers from low data utility compared

with our method (Section 5.4.3).

Collaborative Training. Shokri et al. [177] propose a collaborative deep learning frame-

work to render multiple parties to learn a deep neural network without uploading their data

to the remote server in the model learning phase. Each local party has a copy of the model
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that can upload and download parameters during training so that the model is trained with-

out uploading the data to the central server party. However, the deployment of the model

on the local side would increase the local computing powers and leak the model privacy. Our

approach complements this framework by deploying part of the model in the local domain in

the model inference phase. McMahan et al. [176] propose a federated averaging algorithm to

protect the privacy of training data. Instead of uploading data directly to a remote server,

the client trains the model locally and uploads updated parameters to the central model.

Still, our work complements it since we aim to protect data privacy in the model inference

phase.

Cryptography-based Solutions. Cryptography-based protocols have long been used in

machine learning models to protect data privacy [217, 218, 219, 175]. Liu et al. [174] present

cryptography-based oblivious protocols to protect data privacy in the model inference phase

for deep learning models. They design oblivious protocols for linear transformations, popular

activation functions and pooling operations using secret sharing and garbled circuits in the

online prediction phase and perform request-independent operations using homomorphic en-

cryption together with single instruction multiple data (SIMD) batch processing technique.

Since the method requires no change in the pre-trained model, our approach is complemen-

tary to theirs. Furthermore, our method is compatible with all cryptography-based protocols

in principle.

5.7 Conclusion

We develop the privacy partitioning framework in the context of a common privacy require-

ment: confidential local data handling and concealed remote data handling. We evaluate

the effectiveness of the proposed privacy partitioning framework in a series of experiments

utilizing benchmark computer vision tasks. We find that it is a promising method for signif-

icantly reducing the capacity for an adversary with access to intermediate layer activations
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to perform input and private attribute inference attacks.

Future research can explore integration with complementary privacy protections, inte-

gration with software and hardware security modules used to secure a local domain, and

formal guarantees under varying data distributions, learning task types, and deep network

configurations.
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Part V

Security & Privacy in the Internet of

Everything

153



Chapter 6

Policy Implications of Internet of

Things Security & Privacy Practices

IoT impacts daily life in many ways. A national cybersecurity strategy for IoT policy, or

a lack thereof, has significant implications for national security, public safety, civil liberties,

and technology adoption. Critical infrastructure such as road and air traffic control, oil

pipelines, dams, electrical grids, communications networks, water systems, nuclear waste

processing, ports of entry, law enforcement, financial services, emergency medical services,

and manufacturing are all targets for national security and public safety threats. How

we regulate data use in the context of IoT also has significant implications for individual

rights with regards to personal data and notions of privacy in an increasingly connected

society. Similarly, how we regulate IoT security and privacy standardization has significant

implications for technology adoption. It is because IoT intimately impacts our lives in these

critical areas that governments and business leaders must establish a clear cybersecurity

framework and play a more proactive role in deploying solutions, setting standards, and

enforcing compliance. It is also important for society at large to establish data protection

as a fundamental individual right.

The analysis so far advances state-of-the-art enhancements to fog computing elements
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and privacy-preserving collaborative learning models as an aid to IoT cybersecurity and

data protection policy. Due to the global nature of the challenges presented by IoT security

and privacy, the results of these proposals have broad policy implications. However, we

focus on the policy implications for cybersecurity practices within governments and the data

protection rights of individuals — with particular reference to the United States. We will

also have a look at the policy landscape in other parts of the world like the European Union

to inform this discussion.

This analysis focuses on laws, standards, and regulations relevant to the use of IoT in the

United States. The key stakeholders considered here are state and federal policymakers (i.e.,

those responsible for developing cybersecurity and data protection policy frameworks) and

business leaders (i.e., those responsible for guiding organizational strategies on the adoption

of connected devices and cloud computing). In particular, this work recommends policy

measures that could be adopted through the collective efforts of consumer-oriented non-

governmental organizations, transnational technical standards organizations, private sector

self-regulation, and federal and state regulation to implement IoT security and data protec-

tion policy.

6.1 Internet of Things, Individual Rights, & Compre-

hensive Data Protection

Data protection refers to how personal data is used by organizations such as businesses and

governments [220]. A data protection policy is one approach to facilitating improvements

to IoT security and privacy. This approach has the benefit of providing clear guidelines

regarding individual rights over personal data. Additionally, since legislation is defined in

terms of how data is used instead of in terms of specific data handling processes, this approach

also has the benefit of providing a framework that is independent of — yet consequential to

— innovations to information technology processes. The General Data Protection Regulation
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(GDPR) of the European Union is perhaps the most comprehensive data protection policy

framework [221]. We consider it here as a potential reference framework for a comprehensive

U.S. data protection policy.

The objective of GDPR is to establish data protection as a fundamental right for the

European Union. It sets out policy in the form of individual rights, recommendations, and

obligations aimed at the legal protection of this right during the free movement of data.

The impact of GDPR is global in its reach since any company with employees or customers

based in the E.U. must comply to continue to do business. The scope of the regulated free

movement of data pertains both to the nature of the data being handled (i.e., any personally

identifiable data related to members of the E.U.) and to nature of the party handling the

data (i.e., any party with dealings in the E.U.).1

GDPR grants individuals with certain rights regarding their personal data.2 Under

GDPR, individuals are granted rights related to transparency (e.g., Article 12: the right

to concise and intelligible communication of data processing practices), access (e.g., Arti-

cle 15: the right of individuals to access personally identifiable data maintained by a data

controller), erasure (e.g., Article 17: the “right to be forgotten”), and decision-making (e.g.,

Article 21: the right to refuse a data processing request).

GDPR also contains guidelines and requirements for data handlers with any dealings in

the E.U.3 Under GDPR, the main obligations of data handlers is to process data in a manner

that is lawful, fair, and transparent with respect to the data subject, to use collected data

solely for pre-established legitimate reasons (purpose limitation), to only collect data that is

required for the authorized purpose (data minimization), to ensure collected data is accurate

and up to date, to store data in personally-identifiable form for only as long as needed (storage

limitation), to ensure data is protected (integrity and confidentiality), and to demonstrate

1GDPR Article 2 defines four scenarios within this scope where the regulations do not apply, including
in cases of purely personal data use or with regards to law enforcement in matters of public safety.

2Individuals are referred to as “natural persons” or “data subjects” in the GDPR text.
3The GDPR defines two parties involved in the handling of personal data: the controller and the processor.

The data controller is the party that establishes the purpose and means by which personal data is collected
and processed. The processor is the set of operations performed on personal data.
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compliance (accountability) [221]. The lawful use of data rule requires prior authorization

and/or a legitimate reason that is in accord with public interests and not in conflict with the

rights granted to data subjects (e.g., to meet a contractual obligation, legal obligation, or

protects the interests of data subjects). In cases of infringement of the regulation, the GDPR

enforcement rules grant data subjects the right to lodge complaints to a public independent

supervisory authority that can result in a judicial remedy and penalties such as liability

compensation and administrative fines.

So what do data protection policies such as GDPR mean for IoT? The broad guidelines of

the GDPR extend to IoT networks and devices in several ways. Under GDPR, businesses face

greater legal requirements to gain informed and timely consent from customers regarding the

purpose of collecting and processing personal data. Additionally, all businesses are tasked

with supporting significant user controls — such as right to data access, right to restrict data

access, right to restrict processing, right to data portability, and right to erasure — whether

or not data protection is the primary value proposition of the product or at odds with the

interests of the service provider. These requirements and guidelines are sensible in terms of

enforcing individual data protection rights but may prove cumbersome in practice for IoT

service providers to implement.

GDPR maintains that the responsibility of data handling applies across the entire prod-

uct supply chain. This is a challenge for IoT service providers since many of the unresolved

supply chain factors that make embedded systems particularly susceptible to compromise

are exacerbated in the IoT due to safety-critical sensing and control components. Chip man-

ufacturers (e.g., Qualcomm) and systems manufacturers (e.g., Foxconn) in the embedded

systems market differentiate their products by hardware features and performance specifi-

cations leaving little economic incentive for any individual entity to take on the additional

engineering cost of patching and updating board support packages once the product has

shipped [222]. This leaves the potential for an IoT marketplace with costly to patch software

and ambiguity regarding which entity should be held accountable for vulnerabilities stem-
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ming from system integration. It also leaves the potential for customer-facing entities —

that do not have the expertise and are not entirely to blame for the security risks of propri-

etary and open-source sub-components — facing the greater share of customer complaints

and legal penalties. Governments should play a more active role in ensuring that market

dynamics support after-sales software updates.

Supporting the rights granted to individuals under GDPR requires mechanisms specifying

individual data protection preferences. This entails additional support for the subset of

IoT form-factors that do not include screens, keypads, or other human interfaces. There

is also the potential for the guidelines to stymie competition and innovation. Compliance

is an added hurdle for entrants into markets where notification and consent lengthen new

customer enrollment processes [223]. Additionally, it is also unclear how service providers

will achieve compliance without impeding pervasive computing user experiences that benefit

from nonintrusive and ad hoc authentication such as IoT deployments to smart spaces.

Challenges like those could benefit from industry-established open-source mechanisms —

including the technical treatment of data protection such as those presented in this work —

that provide mechanisms that enable users to manage and remove their data trail using their

mobile phones [224]. Mobile and edge network operators could play a key role by supporting

privacy-preserving device identity management protocols that associate IoT device identifiers

and user device identifiers, providing a common mechanism for completing informed consent,

access, and deletion requests. Utilizing the mobile user identity enables service providers to

interact with users even in use cases where a mobile application is not the primary user

client or it’s otherwise challenging to complete a user authentication process. The resulting

opaque mobile network identifiers enable service providers to readily coordinate with any

number of stakeholders to complete access and deletion requests in a privacy-preserving and

auditable manner.

Approaches that implement user-controlled compliance mechanisms on mobile and edge

network elements enables individual IoT devices to be free from additional complexity while
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providing a common auditing medium for all stakeholders. This is one promising application

of the fog mediation proposal explored in this work. Even in cases where there are deployed

devices with known vulnerabilities, such a framework could provide stakeholders with the

relevant information to make decisions. For example, the notion of informed consent can

be extended to include live updates about which devices within an IoT network may have

unpatched components. Individuals would have the information to take informed action

before proceeding with a service. Service providers would be more transparent about the se-

curity risks faced by their networks. There would be more economic incentive and regulatory

pressure for supply-chain partners with the relevant expertise to participate in after-market

updates.

We now discuss U.S. federal and state proposals for data protection policies. In partic-

ular, we consider how the U.S. can develop and implement a GDPR-like policy. Differences

in institutional settings — including the formal structures of the state, the preferences of

dominant social groups, the roles of political parties in linking social preferences with state

institutions, the power of bureaucracies, and economic constraints — place limits on cross-

national policy comparison [220]. Nonetheless, the U.S. federal and state organizational

structure has similarities to the political and economic union of E.U. member states — which

lends itself to a comprehensive data protection framework that can be further delineated by

each state to address specific needs.

Presently, there is no United States counterpart to the European Union’s General Data

Protection Regulation. The Privacy Act of 1974 governs the collection and use of personally

identifiable information maintained by federal agencies [225]. The Children’s Online Pri-

vacy Protection Act of 1998 (COPPA) is a United States federal law that provides specific

regulation for the privacy of children including requirements such as verifiable consent from

parents or guardians and restrictions on marketing [226]. In addition to being limited in

scope, these U.S. federal regulations do not provide specific language that addresses areas

where notions of data privacy, informed consent, and 4th Amendment rights are challenged
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by emerging technologies [171].4 A comprehensive U.S. data protection and privacy frame-

work would provide a national standard, with global impact, that specifically addresses the

contemporary policy implications of modern information and communication technologies.

There are promising indications that point to the potential for the development and

convergence of data protection policies in a bottom-up state-by-state fashion. Presently,

all 50 states, the District of Columbia, Guam, Puerto Rico, and the Virgin Islands have

legislation in place requiring privately owned entities and government agencies to notify

individuals impacted by security breaches [227]. Similarly, all 50 states have enacted a piece

of consumer privacy legislation [228]. The California Data Privacy Act of 2018 (CCPA) is

the most stringent and expansive of the privacy laws in the United States [229]. CCPA —

which was released shortly after the E.U.’s GDPR and goes into effect in 2020 — gives much

more control over private data to consumers than any other state legislation. This legislation

has resulted in a number of other states releasing similar legislation [230].

There are pros and cons to pursuing a bottom-up state-by-state approach to data protec-

tion regulation as opposed to defining a top-down comprehensive framework. State-by-state

policy implementation provides an agile vehicle for consolidating best practices nation-wide.

A state-by-state policy landscape enables different strategies for data protection to be eval-

uated concurrently. States can also delve deeper into rules that address the specific needs of

their constituents than would be appropriate in federal regulation. The strategies that are

found to be most effective may then serve as references for other states or future iterations

of federal data protection policy. Similarly, there is a smaller geographic scope for policy

remedies that meet with adverse unanticipated consequences.

A drawback of the state-driven approach is that inconsistency in the U.S. policy landscape

may make the U.S. market less accessible than global markets with consistent and clearly

defined regulations on data use. Differences in requirements may complicate the compliance

efforts of businesses with dealings in multiple states. There is the potential of the private

4The Fourth Amendment to the United States Constitution grants individuals with freedom from unrea-
sonable searches and seizures and establishes legal requirements for issuing warrants.
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sector exerting greater political influence over the state policy in ways that are at odds with

the interests of individuals — states may end up competing with each other for jobs and

taxable revenue at the expense of individual rights as has occurred in the global market for

manufacturing [231, 232]. There is also a greater potential of legal loopholes and grey areas

in a nonuniform policy landscape.

Another route, perhaps complementary or antecedent to comprehensive federal regula-

tion, is to let domain experts in industry professional associations and non-regulatory gov-

ernment standardization organizations develop guidelines for IoT security and privacy policy.

A consortium of industry and government organizations in partnership with civil liberties

groups and privacy rights advocates may be an effective option to address security risks that

are rapidly changing, global in scope, and occur within a geographically heterogeneous legal

landscape. Several non-governmental organizations have issued cybersecurity frameworks

for fog computing and IoT [233, 234, 235]. However, there is no clear consensus on which

framework to adopt. Additionally, they have no legal or regulatory authority.

Members of the United States Congress are addressing the topic of smart device security

and believe that the National Institute of Standards and Technology (NIST) should play a

key role in defining a clear framework in four areas: (i) secure development standards, (ii)

identity management standards for smart devices, (iii) patching standards for IoT devices,

and (iv) configuration management for connected devices [236]. This bill introduced by

Senator Mark Warner defines the covered devices as any physical object that connects to the

Internet and has the computing capacity to store, send, and receive data but is not classed

as a general-purpose computing device (e.g., personal computer, smartphone, programmable

logic controls, or mainframe computing systems). Notably, the bill requires IoT devices meet

certain security standards to be purchased by the U.S. government which may encourage IoT

security research and development more broadly.

Collaborative public and private interventions is another route to data protection policy

development and convergence that can integrate all of the components of federal regulation,
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state regulation, and standardization. Research into the impacts of various approaches

to IoT regulation on cybersecurity and the individual right to data protection is nascent.

We can draw some lessons from policy efforts to improve labor rights and environmental

standards in the global supply chain where, similar to IoT policy, state interventions must

address a geographically dispersed issue involving conflicts of interest between civil liberties

and commercial interests. Moreover, our capacity to achieve beneficial societal outcomes

with respect to the cybersecurity and data protection mechanisms of connected devices is

inextricably linked with our capacity to ensure beneficial societal outcomes in the global

market for the production of these electronics.

Research and policy efforts to improve labor rights and environmental standards in the

global supply chain highlight both the limitations of solely private interventions as well as

the opportunity for productive cooperation between civil society, state governments, and

multinational actors [231, 232]. The allure of increased employment and tax revenues for

host nations coupled with slim profits margins and stiff competition have led to poor working

conditions and lax environmental standards in the facilities producing global brands [237,

231].

In response of these issues, researchers have studied intervention efforts including state

regulation (e.g., the enforcement of national labor and environmental laws), interventions by

labor-oriented non-governmental organizations (NGOs), and voluntary regulatory systems

implemented by multinational corporations (e.g., codes of conduct, audit programs, certifi-

cation programs). In the area of labor and environmental issues within the global supply

chain, there is little evidence that suggests that private initiatives alone lead to significant

improvements to labor and environmental standards [238, 239]. However, research on the

intersection of governance and labor standards suggests that the combination of public pol-

icy and private interventions has led to improvements to environmental standards and the

work conditions of laborers in the global electronics supply chain [232].

Research on how public and private regulations interact in practice suggests that whether
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they interact as compliments or substitutes depends on the national context and the issue be-

ing addressed [232]. In particular, Locke et al. find that private interventions to enforce labor

and environmental standards are significantly affected by state actors and non-governmental

actors. A quantitative analysis of the Hewlett-Packard supplier responsibility program (in-

cluding factory audits, interviews with buyers and supplier management, and field research)

found that national context — i.e., the strength of a nation’s civil society and regulatory

institutions — is the key factor in determining compliance [240].

Policy Recommendations: Addressing the following items would get the U.S. closer to

having a comprehensive regulatory framework that addresses the security and privacy risks

of connected device ecosystems:

• Governments should play a more active role in ensuring that the embedded systems

market provides after-sales security updates to board support packages.

• The federal government should release a comprehensive framework on personal data

use which addresses the challenges of informed consent in IoT.

• Mobile and edge network operators should play the unifying role of providing opaque

device identity management services that facilitate individual control over personal

data in dynamic IoT ecosystems.

• IoT standardization efforts should prioritize protocols that address the challenges of

granting individuals with greater control over personal data in the context of IoT.

• IoT standardization efforts should explore user-controlled compliance mechanisms that

minimize the need for individual IoT devices to implement regulated functionality.

• The United States should release federal regulation that establishes data protection as

a fundamental individual right.

• The government should assist industry cybersecurity standardization efforts by pro-

viding a clear consensus on the legal definition of data protection as a fundamental
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individual right.

• The government should assist industry cybersecurity standardization efforts by provid-

ing a clear consensus on which framework to adopt as well as a regulatory authority

for enforcement.

• NIST should play a unifying role in defining a clear technical framework for secure de-

velopment standards, identity management standards, patching standards, and device

identity management standards for IoT devices.

• A comprehensive cybersecurity strategy should address issues stemming from both the

production and the use of electronics.

• State and federal governments should fund auditing and research efforts to better un-

derstand how coordinated public policy and private interventions can lead to significant

improvements to data protection practices in a globally dispersed IoT marketplace.

6.2 Internet of Things & Cybersecurity in the U.S.

Government

A review of the U.S. government policies shows that there is a need for clear guidelines

regarding the internal use of IoT products and services. In particular, the federal government

lacks a clear cybersecurity framework for IoT, federal agencies do not have specific guidelines

on the internal use of IoT, federal contractors do not have specific security requirements

regarding the sale of IoT products to federal agencies, and there are structural impediments

to the coordinated implementation of IoT guidelines among federal agencies.

Crawford and Sherman conduct an analysis of the U.S. federal laws and regulations that

directly address or otherwise could be applied to IoT [241]. Their findings identify significant

gaps in the United States policy on IoT security and privacy. The authors cite the pace
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of change and growth in the emerging IoT marketplace as the key reason why the U.S.

government policy has had difficulty providing a comprehensive cybersecurity framework for

the space. According to Crawford and Sherman, there are no specific cybersecurity guidelines

for the internal use of IoT devices within the federal government. As a result, it is not clear

what security standards federal employees must meet before using IoT devices. Similarly,

there is a need for guidelines regarding the security standards contractors must meet before

the sale of IoT devices and services to the federal government. The Federal Acquisition

Regulation (FAR) system, which defines the set of rules governing the acquisition process of

federal agencies, contains no specific cybersecurity guidelines for the use of IoT devices. The

federal government should provide specific guidelines on the security standards contractors

must meet before the sale of IoT devices and services to the federal government to address

this gap. As the results of this analysis suggest, providing clear and stringent security

standards for obtaining government contractors may also induce the positive externality of

broader market innovation into IoT cybersecurity mechanisms.

The current structure for how federal agencies develop and share information security

best practices results in an inefficient leveraging of existing cybersecurity resources and an

asymmetrical distribution of cybersecurity preparedness across federal agencies. The Federal

Information Security Modernization Act (FIMSA) requires the Chief Information Officer of

each federal agency to decide how to document, implement, and audit information security

programs [242]. The result is that the cybersecurity standards significantly vary across

federal agencies. A more coordinated approach would encourage federal agencies to leverage

each other’s resources by requiring the federal government to consolidate best practices into

a cross-agency cybersecurity infrastructure. Efforts to establish such a cybersecurity baseline

could be led by the council of federal CIOs under the leadership of the National Cybersecurity

Coordinator.

The consequences of the lack of a clear cybersecurity framework for the IoT is exemplified

in the case where researchers discovered that they could track the location of U.S. military
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personnel by analyzing geolocation data streamed online from wearable fitness-tracking de-

vices [243]. This discovery led to updates in the Department of Defense (DoD) internal policy

on the use of connected devices, including prohibiting the use of both non-government and

government-issued geolocation-capable devices, apps, and services [244]. Although the DoD

ban on geo-locatable devices was a step in the right direction, the issue remains that there

is a lack of clear guidelines describing which devices are permissible or how to properly con-

figure devices for use while on the job. The usefulness of connected devices combined with a

lack of clear guidelines leaves military personnel in a bind that may result in similar security

compromises going forward.

Policy Recommendations: In summary, the primary limitations to the U.S. federal policy

on the internal use of IoT is the lack of clear guidelines both for government staff and

government contractors use. Addressing the following items would get us closer to having

a regulatory framework that addresses the security risks to federal personnel and federal

agencies posed by connected device ecosystems:

• The federal government should provide specific cybersecurity guidelines on the internal

use of IoT.

• The federal government should provide specific guidelines on the security standards

contractors must meet before the sale of IoT devices and services to the federal gov-

ernment.

• The federal government should assess the potential for stimulating broader market

innovation into IoT cybersecurity mechanisms by requiring stringent security standards

for government contractors.

• The federal government should reduce variations in cybersecurity standards across

federal agencies.

• The federal agencies should leverage each other’s cybersecurity resources to implement

a cross-agency baseline security infrastructure.
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6.3 Fog Mediation & Technologists

We advanced the idea of fog mediation — a fog computing-based reference monitor archi-

tecture as an aid to edge device security. Hence we identify several recommendations arising

from the development of fog mediation and discuss their implications for technologists devel-

oping IoT security and privacy mechanisms and for technical treatments of data protection

policy.

One implication of this work is that technical solutions like fog mediation may act as an

aid to the adoption of data privacy policy and edge device security in hybrid cloud computing.

Consider the following two data protection policy scenarios. The first scenario is the case

where there are significant barriers to the global adoption of data protection policies. The

second scenario is the case where there is a movement towards the global adoption of data

protection policies. Technical strategies for data protection could be instrumental in realizing

increased security and data protection for individuals in both scenarios.

In the scenario where there are significant barriers to the global adoption of data pro-

tection policies, standalone technical interventions can provide a remedy for individuals and

businesses who would benefit from data protection practices but are based in or operating

within regions that lack the institutional regulatory support for data protection policy. The

economic pull of moving towards data protection as an individual right, even if limited to

a few major economies like the U.S. and the EU, results in the manufacturing and avail-

ability of compliant products globally — including in territories that lack the institutional

regulatory support for data protection policy.

In the scenario where there is a global adoption of consumer-oriented data protection

policies regulating the use of IoT products and services, there remains the challenge of

implementing compliant solutions. For example, previously we discussed the challenge of

providing user capabilities such as informed consent in a way that does not drive up costs and

complexity or otherwise acts as an impediment to innovation. In this scenario, standalone

protection mechanisms that address security and privacy challenges provide the means for
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both delivering user-controlled data protection and meeting regulatory requirements.

The role trusted computing may play in the development of fog computing is promising

and potentially crucial to the security of the IoT. We explored the premise of leveraging fog

computers as platforms for mediating trust between the cloud and the edge of the network in

detail. Many of the technical proposals explored in this work leverage technologies that are

feasible due to the emerging industry-wide paradigm shifts in computing. There are several

technical recommendations with implications for policy that need to be addressed before the

promise of secure IoT applications may be realized via fog mediation.

For the technologist, hardware security primitives minimize the complexities of protect-

ing security-critical components. However, a recurring obstacle is a lack of access to such

hardware-based security primitives. We observe that hardware-based security primitives are

generally not available to app developers and end-users. In the cases where the market does

offer such protections, the security design emphasizes vendor lock-in as opposed to protect-

ing user assets [20]. We recommend the implementation of minimal trusted computing base,

isolated execution support specifically for use by app developers. Similarly, we recommend

the implementation of auditing capabilities like remote attestation specifically for use by

end-users.

As described in this work and many related works [108, 26, 25, 24, 23, 22, 20, 21],

hardware support for strong integrity and secrecy assurance is a promising component for

enabling developers to build user-controlled and verifiably secure services. These compo-

nents extend system-level security guarantees to developer-facing programming interfaces

— making it feasible to safely execute and remotely verify security-sensitive code running

alongside complex and potentially compromised software stacks [23]. When in place, these

components provide transparent grounds for trust even in the cases where the incentives of

service providers may be at odds with the expectations of individuals or consumer advocates.

We observe that there are significant security challenges related to manufacturing and

deploying the hardware building blocks themselves. The upper-bound on the extent to which

168



service providers can deliver secure services using hardware-based isolated execution envi-

ronments is inextricably linked with the industry controls that ensure the quality, reliability,

and security of semiconductor products [240, 232]. Thus, designs for such systems should

assess the risks and assumptions related to the entire device life cycle including during the

manufacturing, system integration, and distribution phases.

Moreover, the extent to which the platform root of trust can be established independently

of third parties improves the agency of security-sensitive service providers and, ultimately, of

individuals. In particular, advances to secure development techniques that bring us closer to

the ideal of hardware security primitives based on intrinsic trust such as hardware security

module constructions that remove the need for secure manufacturing processes, trusted mod-

ules pre-loaded with platform secrets, or reliance on trusted third parties is of great interest

and value. The use of Physically Unclonable Functions as a hardware root of trust basis

for key derivation, secure key storage, and platform authentication is one such promising

direction [23, 111].

We observe that code execution models that explicitly protect user data from the platform

and software stack are an aid application security and facilitate communicating privacy and

security to the user by minimizing the TCB. Thus, we recommend both sandboxing and

isolated execution functionality [117, 111].

Composite security is a crucial aspect of delivering secure IoT products and services.

Efforts aimed at enhancing security that focuses on applying security measures to individual

connected devices do not adequately address the challenges of composite security. Research

developments and accepted best practices are available within the cryptography community

for how best to achieve composite security when constructing cryptographic protocols. How-

ever, further research into best practices for the composite security of products and services

leveraging connected devices is needed. It is unlikely that device vendors will move to imple-

ment networking interfaces with composite security in mind without additional incentives to

do so. This is due to the reality that composite security is a cross-cutting concern involving
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coordination among multiple hardware and software vendors with little to no direct payoff

for a given device vendor. Thus, composite security is a good candidate for further research

by industry-wide consortium or regulatory intervention.

We observe that the notion of a domain in the IoT context is more closely aligned

with physical proximity than with the logical relationship of components as in the client-

server model. Further, spatiotemporally defined IoT contexts provide opportunities for novel

privacy-enhanced data use models that align with our conventional non-digital notions of

privacy [41, 111]. In this work, we focused on the problem of privacy-preserving deep neural

networks based on a proximal domain threat model. Further research should investigate

additional data protection applications of proximal domains.

Policy Recommendations:

• Technical treatments of edge device security and data protection like fog mediation

act as an aid to both the individual right to data protection and the adoption of data

privacy policy.

• We recommend greater availability of end-user access to hardware security primitives

that provide strong integrity and secrecy assurance.

• We recommend the implementation of minimal trusted computing base, isolated exe-

cution support specifically for use by app developers.

• We recommend implementation of auditing capabilities like remote attestation specif-

ically for use by

• Designs for secure systems should assess the risks and assumptions related to the

entire device life cycle including during the manufacturing, system integration, and

distribution phases.

• We recommend both sandboxing and isolated execution functionality.

• Further research should investigate spatiotemporally defined privacy threat models.
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