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Abstract

Group signature schemes enable a set of members to anonymously sign data on

behalf of the entire group. In order to prevent misuse, a designated group manager

has the ability to trace a given signature back to a member. Other extensions can also

be realized in specifically designed schemes, such as verifier local revocation (VLR)

wherein only the verifier needs information about the validity status of signing key

pairs.

This paper contributes two results towards group signature schemes. First, we

present a new design for a group signature scheme that is secure under the standard

model, with common relaxations for anonymity. The scheme also enables VLR and

allows for fully-dynamic groups; i.e. groups that allow members to both leave and

join after creation. Secondly, we implement a preliminary version of the scheme to

begin investigating the efficiencies gained through utilizing one-time signing keys,

instead of the traditional non-interactive, zero-knowledge proof systems.
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1

Introduction

In 1991, Chaum and Van Heyst proposed a novel concept called group signatures

[13]. Group signatures allow for a carefully crafted set of private keys to generate

digital signatures, all of which are verifiable by a single public key. Each of the

private keys can be given to a different group member, allowing them to digitally sign

anonymously on behalf of the group. Interestingly, it also allows a group manager

the privilege of being able to ”open” any signature and link it back to a specific

individual, should the need arise.

These properties and concepts were phrased somewhat informally in Chaum

and Van Heyst’s paper, but have come to have well established names and defi-

nitions. Those properties, excluding the obvious ones applicable to all digital signa-

ture schemes, include: group unforgability, anonymity, traceability, unlinkability, and

coalition resistance. For brevity, the definitions of these security properties are left

to Appendix A. Nevertheless, it is crucial to highlight that they (both the properties

and authors) laid the foundation for group signatures.
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1.1 Background Information

To understand nearly two decades of research, we will attempt to break the ap-

proaches down into three main periods of time: the Early Years, the Efficiency

Climb, and finally the Modern Twists.

1.1.1 The Early Years

The Early Years happened directly after the release of Chaum and Van Heyst’s

paper. This era was defined by exploration of group signatures in order to gain

an understanding of the concept. For instance, Chen and Pedersen [14] explored a

slightly modified scheme that changed two properties. First, they removed trace-

ability, meaning that the signatures were unconditionally anonymous. Second, they

achieved some semblance of what is now known as a dynamic group by allowing

members to join after the group was created.

We should point out that Chaum and Van Heyst’s paper [13] did not clearly

define group signatures. They proposed a number of possible schemes to achieve

the goal, but did not show a full proof for any of them. These were the problems

that Chen and Pedersen were addressing in their 1994 paper, and also the subject of

Camenisch’s 1997 paper Efficient and Generalized Group Signatures [8]. Camenisch

concretely showed and proved a group signature scheme that achieved all of the

necessary properties. The efficiency claim was an added bonus and something to

be discussed further in the Efficiency Climb era. Camenisch also demonstrated the

ability to adapt his scheme into threshold group signatures.

Threshold group signatures schemes embody the idea of needing more than one

group member to sign on behalf of the group. Threshold signature schemes are often

expressed as pt, nq-group signatures where n represents the number of potential sign-

ers (group members) and t is the number of members required to create a signature
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for the group [4, 8, 20, 33].

To round out the Early Years there are two other papers to note: one by Kim

et al. [24] and the other by Petersen [31]. Kim et al. explored convertible group

signatures which allow a group member to publish some small amount of data in order

for all of their anonymous signatures to be converted into regular digital signatures.

Petersen showed that any digital signature scheme can be converted into a group

signature scheme. Although Petersen’s result is interesting, the general approach

that was needed made the idea inefficient.

1.1.2 The Efficiency Climb

The Efficiency Climb came as a result of the inefficiencies in the early group signature

schemes. To be precise, the early group signature schemes suffered from public key

sizes that grew linearly with the group size and general computational complexity. In

other words, these schemes were mathematically beautiful, but impractical for real-

world applications. In this vein, there were systems proposed which fixed the length

of the keys, independent of group size. For example, this property was realized by

Camenisch and Stadler in their paper Efficient Group Signature Schemes for Large

Groups [11].

Additionally, there was quite a lot of research conducted in adapting well-known

and efficient signature schemes into group signature schemes. RSA was the most

common choice and showed promise in addressing both computational and memory

efficiency challenges. Interestingly, most of the RSA based schemes achieved the

same security properties. Where they differed was in the assumptions they made in

order to prove the security of the system [1, 5, 10].
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1.1.3 Modern Twists

In 2003, Bellare et al. published a paper which detailed a method to prove the

security of group signature schemes [2]. This method marks the beginning of the

Modern Twists era as newly proposed schemes have a well-defined, method to prove

the security of their solution. As a result, this era of research, which brings us

to modern day, proves the security of novel group signature properties and unique

combinations of existing properties using a variety of assumptions.

First, we would like to discuss revocation and fully dynamic groups. As we

mentioned, the first group signature schemes only supported a fixed group size,

determined at the time of creation. Slightly later on, with Chen and Pedersen [14],

for instance, we saw schemes which could add new members after the initial creation

is complete. However, in order to realize fully dynamic groups (i.e. groups that can

add and remove members after creation), we also need a way to revoke users, which

turned out to be difficult to solve.

All of the revocation schemes, even into the Modern Twists era, were broadcast

schemes. In other words, they required information exchange between the group

manager and all members in order to revoke a user from the group. Not only is this

sort of communication expensive, but the actual mechanism to realize the revocations

added significant overhead as well [27].

Over time, revocation mechanisms were refined and the introduction of Verifier

Local Revocation (VLR) helped to speed things along. VLR is essentially a revo-

cation mechanism that only needs to communicate with signature verifiers, not all

members of a group. As far as we are aware, Boneh and Shacham were the first

to propose and implement this concept [6]. Since then, a number of other schemes

have implemented this idea and taken the additional step of creating fully dynamic

groups [7, 21, 30].
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In addition to fully dynamic schemes there has been some research into the fol-

lowing areas as well:

‚ Using bilinear pairings as the cryptographic basis [15]

‚ Using lattice-based cryptography as the cryptographic basis [18, 25, 26]

‚ Allowing linkability of signatures from the same group member [28]

1.1.4 Application Areas

There are two main application areas for group signatures: offline payment sys-

tems and vehicle communication. Offline payment systems were invented by Chaum

wherein the system prevents third parties from being able to know the time, amount

paid, and recipient of a transaction [12]. In essence, the idea was to create anonymous

payments. Group signature appear to be a promising way to realize such a scheme as

they represent an implementation of basic properties required in the system [16, 29].

Vehicle communication is another interesting and recent application area. In par-

ticular, with the introduction of self-driving cars it is important that vehicles also

communicate with each other in order to better inform their decisions. This com-

munication, referred to as vehicle-to-vehicle (V2V), opens potential attack vectors

for misuse including the loss of private data. One route being explored in order to

protect the driver’s private data is to use both ad hoc and long term group signature

schemes to anonymize the information [19, 32].

1.2 Contribution

In this thesis we contribute two main ideas towards group signature research. First,

we show the construction of a group signature scheme that is secure under the stan-

dard model with common relaxations for anonymity. The scheme also enables verifier

local revocation and allows for full-dynamic groups. Importantly, the scheme is built

upon one-time signing key pairs which allievate the need for non-interactive, zero-
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knowledge (NIZK) proof of membership systems. We believe this last point to be

of particular interest since NIZK proof of membership systems are known to be

computationally difficult.

Secondly, we implement a preliminary version of the scheme to begin investigating

the efficiencies gained through the aforementioned use of one-time signing key pairs.

Further, as we will discuss in Chapter 4, there are currently very few implementations

of group signature schemes. Therefore, this is also a contribution towards making

group signatures more accessible to the larger security community.

Recent Related Works

Group signatures are an active area of research, as demonstrated by the recent Kat-

sumata and Yamada paper [22]. In their paper Katsumata and Yamada explore a

new group signature scheme based on lattice cryptography. However, they faced the

problem that there are no known (at the time) NIZK proof systems under the lattice

cryptography area. Thus, they were able to show the definition and security of a

group signature scheme under the standard model without using an NIZK system

[22].

Although their work is largely similar to ours there are still some key differences.

First, their scheme was for a static group and thereby also had no need for VLR.

Second, they utilized indexed attribute based signatures in order to alleviate the

need of NIZK proof systems. Lastly, they used lattice cryptography which has only

recently gained traction within the security community1.

1 For example, we were only able to find one library for lattice cryptography that is still
being maintained, however, it is an active area of research; https://gitlab.com/palisade/

palisade-release
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2

Security Notion

2.1 Notation

We let N “ t1, 2, 3, ...u represent the set of positive integers. For a set S we let

s
$
ÐÝ S be the operation where element s is chosen uniformly at random from S.

Additionally, allow H to represent the empty set. We write xÐ Apa, b, ...q to denote

function A being run with inputs a, b, ... and storing the output in x. Further, we

write x Ð Apa, b, ... : O1,O2, ...q to denote function A being run with inputs a, b, ...

with oracles O1,O2, ... and storing the output in x. Standard notation is used for

negligible (neglp¨q) functions with pp¨q representing an arbitrary polynomial function.

xa, by is used to show the arbitrary concatenation of a to b.

Finally, we need a few non-standard notations. First, some algorithms encompass

a series of communications between two parties. The bulk of the algorithm will be

run by the group manager (referred to as admin) with parts being run by other

entities prefaced with member Ź, for example, to denote that member is running that

part of the algorithm. Secondly, there will be a need to use items in a set only once

over a series of operations. This is made possible by maintaining the real set and
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a counterpart ”used” set; however, it adds nothing to the algorithms or concepts.

Therefore, we abstract this notion into the set element δ where we can write s
$
ÐÝ Srδs

which represents uniformly at random selecting element s of S which has not been

selected previously. Lastly, we let ψ denote a set of state information that can be

carried between different stages of an experiment.

2.2 PKI

The proposed scheme depends on an existing Public Key Infrastructure (PKI). Since

PKI implementations are so widely prevalent in modern systems, the exact definition

has been left intentionally vague. Beyond basic requirements, we ask that the PKI

support two functions: CheckCRL and AddToCRL. CheckCRL takes a certificate as

input and verifies its validity against the defined certificate revocation list (CRL),

returning 1 for a success (i.e. certificate is valid) and 0 otherwise. AddToCRL takes

the PKI’s signing key sks and a certificate as input and adds the given certificate to

the revocation list.

2.3 IND-CCA

Part of our assumptions will include the existence of an IND-CCA secure encryption

scheme, AE “ pKe, Enc, Decq. These schemes have been shown to exist under a

number of assumptions and underlying mathematics. Here we recall the definition.

Consider the experiment Expind´cca b
AE,A pkq for encryption scheme AE with security

parameter k P N and adversary A, as shown in Algorithm 1.

Algorithm 1 Expind´cca b
AE,A pkq

ppk, skq Ð Kepkq
pψ,m0,m1q Ð Apchoose, pk : Decpsk, ¨qq
C Ð Encppk,mbq

b1 Ð Apguess, ψ, C : Decpsk, ¨qq
Return b1

8



In this setup, a fixed bit b is chosen. The challenger generates a pair of keys

ppk, skq. In the first stage, choose, the adversary is given pk and a decryption

oracle Decpsk, ¨q and outputs its state information and two message m0 and m1. The

challenger then produces C as the encryption of message mb using key sk. In the

second stage the adversary is given its state information and access to the same

decryption oracle but with the caveat she is not allowed to query C to it. At the

end of the stage, the adversary outputs b1 which is then returned by the experiment

[23, 2].

The experiments allow the definition of the adversary’s advantage as:

Advind´cca
AE,A pkq “ PrrExpind´cca 1

AE,A pkq “ 1s ´ PrrExpind´cca 0
AE,A pkq “ 1s. (2.1)

2.4 EUF-CMA

We will also need to define an EUF-CMA signature scheme, DS “ pKs, Vf, Sigq,

for use in our scheme’s assumptions. Recall the definition is as follows. For the

experiment Expeuf´cma
DS,A pkq involving adversary A we have the following algorithm.

Algorithm 2 Expeuf´cma
DS,A pkq

ppk, skq Ð Kspkq
pm,σq Ð Appk : Sigpsk, ¨qq
if All of the following are true then Return 1

1. Vfppk, σ,mq “ 1

2. m was not queried to Sig oracle

else Return 0

In the experiment shown in Algorithm 2, the challenger begins by generating a key

pair ppk, skq utilizing security parameter k. The adversary is then given pk and the

signing oracle Sigpsk, ¨q and is tasked with creating a forged message and signature.

For the forgery to be valid, it must be verified to be correct (i.e. Vfppk, σ,mq “ 1)

and the adversary must not have submitted m to the signing oracle. We then say
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that a given scheme is secure against existential unforgability under chosen message

attacks if the following advantage is negligible [23, 2]:

Adveuf´cma
DS,A pkq “ PrrExpeuf´cma

DS,A pkq “ 1s. (2.2)

2.5 Group Signatures

In their 2003 paper Bellare, Micciancio, and Warinschi created a common, formal

definition of group signature schemes [2]. Additionally, they were able to prove that

all previous requirements for group signature schemes could be simplified to two

strong concepts: full-anonymity and full-traceability1. They further showed that

a scheme satisfying full-anonymity and full-traceability could theoretically exist by

simply assuming that trapdoor permutations exist. Their work has been used in

numerous other publications and has become the standard model for static group

signature schemes.

The group signature scheme described in Chapter 3 utilizes their standard model.

However, the scheme presented in this thesis is fully-dynamic, which means that

members can join and leave the group after its creation. As such, Bellare et al. did

propose a number of modifications to enable dynamic groups [2]. Those modifications

are discussed in the following sections that define group signature notations and the

security properties.

2.5.1 Syntax of Group Signature Schemes

To begin, we describe the group signature scheme as

GS “ pGK, Join, Upd, GSig, GVf, Open, Revokeq. (2.3)

These seven algorithms are the basis for the rest of the paper and are informally

defined below.

1 Refer to Appendix A for more information
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• GK – The group signature key generation algorithm takes a security parameter

k P N as input and returns the tuple pgpk, gmsk, gisk, Uq where gpk is the

group public key, gmsk is the group manager’s secret key, gisk is the group’s

issuing secret key, and U is the set of all user identifiers that are members of

the group.

• Join – The group join algorithm takes a security paramter k P N, group’s

issuing secret key gisk, and the set of current users U as input. The algorithm

will add a user to the group and help them generate an initial set of group

signing keys through an interactive process. For use in later oracles, such

as the Corrupt oracle, the algorithm will also update the group’s secret keys

variable gsk. More information about gsk is given below.

• Upd – The member update function is effectively identical to Join, the main dif-

ference being that already existing members of the group will use this function

to interactively generate a new/fresh set of signing keys for the group.

• GSig – The group signing algorithm that takes a secret key gskrisrjs and a

message m as input and returns σ, a signature over the message.

• GVf – The group verification algorithm takes the group public key gpk and a

tuple of a message and signature pm,σq as input and returns 1 if the signature

verification was successful and 0 otherwise.

• Open – The group manager’s opening algorithm takes the group manager secret

key gmsk, the list of valid members U , the group public key gpk, and a tuple

of a message and signature pm,σq as input. Open will return a group member’s

identity i on success or the symbol K on failure.

• Revoke – The member revocation algorithm takes the group’s issuing secret

11



key gisk, the set of current members U , and a member’s identity i as input

and revokes all currently valid certificates issued to the user. Additionally, the

user is removed from U but not the gsk construct2.

Throughout the thesis we will also need two other functions. First, Send is a

function which moves data between two parties over a secure channel. For example,

Sendpadmin, xq would represent sending data x to admin. Second, Corrupt is an ora-

cle, which takes a member identity i as input and returns the private key information

gskris.

On the gsk Variable

The group’s secret keys, gsk, is defined to be a set of all information related to all

members within the group. For example, gskrisrjs would represent the signing key,

public key, and corresponding certificates for group signing key j of group mem-

ber i. The purpose of gsk is to provide a notation for indexing user secrets and

for referencing specific key usage. The variable is not meant to exist in real-world

implementations3.

2.5.2 Fully-Dynamic Groups

Fully-dynamic groups allow members to both enter and leave at any point in time.

Bellare et al. correctly pointed out that the leave operation is a much more delicate

than the join one [2]. For instance, suppose some signature σ was generated by

gskarisrδs (i.e. group member i during time period a). Now consider σ being verified

in time period b ą a and suppose that i has since been kicked out of the group.

2 The revoked member remains in the set gsk in order to simulate an adversary having access to
signing keys and the corresponding certificates after they have been revoked from the system.

3 Further, we will see in Chapter 3 that it is impossible for any group member or manager to
construct it.
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Should the signature still verify? Bellare et al. concisely stated this as one of two

possibilities:

1. Signatures are valid as long as the person was a member when they signed.

2. Signatures are valid as long as verification takes place when the signer is a

member.

Neither answer is correct as both have their drawbacks. However, for our purpose

we will pick with the second option. This choice was made simply because it is

easy to understand how this would be implemented in our public key infrastructure

(PKI) system: when a member leaves the group, we revoke all of their certificates4.

However, if the use case demands it, the first option is possible to realize: when a

member leaves, we only revoke the certificates from the most recent time period.

To realize a fully-dynamic group, we needed to extend some of the standard model

definitions. First, we must allow gsk to vary over time. Although this is possible

in our construction, we will not make reference to time periods since it adds little

value to the scheme. For instance, the group manager may generate enough keys for

a given time period to satisfy all of an adversary’s requests during an experiment.

Alternatively, if an adversary should require keys from multiple time periods it would

be trivial for them to wait until a new time period started.

Second, we also allow gpk to vary over time periods. In this case, we will ignore

time periods due to the construction of the scheme. In Chapter 3 we will see that gpk

and the manager are roughly equivalent to a root certificate authority’s public infor-

mation [2]. As such, the scheme does not require gpk to vary over short time periods.

4 Doing this in such a brute force way could break unlinkability for the user, so the practice is
best avoided or done in conjunction with other revocations to obfuscate which certificates belonged
to a single person. Alternatively, the group manager may no longer care about unlinkability on a
revoked member’s signatures.
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Note, however, that this functionality is important for real-world implementations

where the group/root key and certificate will have a validity period.

Finally, in fully-dynamic groups we split the usual function of GK into two pieces

GK and Join. In general this division is representative of non-static key generation.

This further allows for interactive key generation processes during the Join operation

as well. Additionally, it implies that there is a difference in the group’s secret key

gmsk and the issuing secret key5 gisk [2]. We will show how these changes have been

applied to the described algorithms.

On Bellare, Shi, and Zhang’s Dynamic Standard Model

A few years after Bellare, Micciancio, and Warinschi [2] published their paper on a

standard model for group signatures Bellare, Shi, and Zhang [3] published an updated

standard model specifically for monotonically growing group signature schemes6. A

monotonically growing group signature scheme is one where members can be added

to the group after it has been created, but they cannot be removed. Redefining the

standard model seems to have come from a desire to divide the role of group manager

into two: one manager for opening and one manager for issuing keys to members.

This division enables a more robust security model to be generated, even allowing

for the compromise or partial compromise of the managers.

We have decided not to use the updated model for a combination of the following

reasons:

‚ As mentioned, the model allows for either manager to be partially or fully compro-

mised. Although this can be generally beneficial, any compromise of a manager

5 The separation of keys does two things. First, it allows for a division of labor in group and
issuing managers (see Section On Bellare, Shi, and Zhang’s Dynamic Standard Model). Second, it
raises the question if gisk should correspond to a completely separate key.

6 The term ”dynamic” is overloaded in this context, so the notion of ”monotonically growing” has
been proposed to prevent ambiguity.
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still results in violations of the desired security properties [3]. Therefore, the

benefits of dividing the manager role appear minimal.

‚ As a result of dividing the managers, there are additional functions and many

oracles added to the system. Although these algorithms are useful when analyzing

the scheme, they fundamentally realize the same security properties presented in

the static standard model.

‚ The authors claim that a fully-dynamic group signature scheme usually is only

applicable to a niche use case (as we have discussed in Section 2.5.2). Sub-

sequently, they decided to only include monotonically growing group signature

schemes because they intended the standard model to be applicable to all situa-

tions. However, this means additional algorithms and oracles would need to be

added in order to satisfy member revocation, regardless of the base model used.

However, we have integrated some of the ideas into the following sections.

2.5.3 Full Anonymity

Loosely speaking, full-anonymity is obtained when an adversary, in possesion of all

group member secret keys, cannot determine the identity of some signature. The

adversary is also given access to the GSig, Open, Join, and Revoke oracles in order

to account for a group of any size, and the adversary being allowed to see other

signatures and openings [2]. Although this level of security is desirable it is rather

difficult to achieve. Additionally, it may be too strict for reasonable application areas

of group signature schemes [9]. As a result, a slightly weaker notion of anonymity was

developed to fit more general use cases and schemes. The notion is called selfless-

anonymity and is the subject of the following section.
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2.5.4 Selfless Anonymity

Camenisch and Groth were the first to define selfless-anonymity [9]. As mentioned

previously, they used it as a relaxation of full-anonymity as they presented argu-

ments that full-anonymity was too strict for practical applications. In particular,

they argued that full-anonymity is a good definition of security for certain threat

models. However, there are other, arguably more common, threat models in which

full-anonymity would be overbearing and potentially prevent or limit other useful

features, such as signature claiming7. Camenisch and Groth further argue that the

weaker definition also still satisfies the informal notations of anonymity and unlink-

ability required by Bellare, Micciancio, and Warinschi [9, 2]

Since creating a fully-anonymous scheme is quite difficult, and because of its

real-world irrelevance, the scheme defined in Chapter 3 will only satisfy selfless-

anonymity. Informally, in selfless-anonymity the adversary in possession of all group

member signing keys, except for the two which the experiment is run upon, cannot

determine the identity of a signature. As with full-anonymity, the adversary is given

access to the GSig, Open, Join, and Revoke oracles during the experiment. We then

formally define the selfless-anonymity experiment in Algorithm 3.

In Algorithm 3 we consider the experiment Expanon´b
GS,A pkq for static b P t0, 1u. The

challenger generates an empty group signature scheme defined by pgpk, gmsk, gisk, Uq.

The adversary then enters the choose stage and is given gpk, gisk, and U as input

as well as access to the GSig, Open, Corrupt, Join, and Revoke oracles. The output

of the choose stage is the adversary’s state information ψ, two identities i0 and i1,

and a message m. The challenger then signs message m using the secret key of

member ib. In the second stage, guess, the adversary has access to the same oracles

and is given her state information ψ and the signature σ. The adversary returns a

7 Signature claiming is where a group member can publically claim signature they have produced.
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Algorithm 3 Expanon´b
GS,A pkq

pgpk, gmsk, gisk, Uq Ð GKpkq
pψ, i0, i1,mq Ð Apchoose, gpk, gisk, U : GSigpgskr¨srδs, ¨q,

Openpgmsk, U, gpk, p¨, ¨qq, Corruptp¨q, Joinpk, gisk, Uq, Revokepgisk, U, ¨qq
σ Ð GSigpgskribsrδs,mq
b1 Ð Apguess, ψ, σ : GSigpgskr¨srδs, ¨q, Openpgmsk, U, gpk, p¨, ¨qq,

Corruptp¨q, Joinpk, gisk, Uq, Revokepgisk, U, ¨qq
if All of the following are true then Return b1

1. m,σ was not queried to Open oracle during guess stage

2. Neither i0 nor i1 were not queried to Corrupt during either stage

3. Neither i0 nor i1 were queried to Revoke during either stage

else Return K

bit b1 at the end of the the guess stage. We say that the adversary has won the

experiment if b1 “ b, pm,σq was not queried to Open during the guess stage, and

neither i0 or i1 was queried to the Corrupt nor Revoke oracle during either stage.

Note that the first win condition is checked externally, as the experiment outputs b1.

However, the experiment will return K if one of the oracle rules is violated8.

With this scheme in mind, we say that a group signature scheme is secure under

selfless-anonymity if the following advantage is negligible:

Advanon
GS,Apkq “ PrrExpanon´1

GS,A “ 1s ´ PrrExpanon´0
GS,A “ 1s. (2.4)

Ishida et al. [21] aptly points out that selfless-anonymity is usually associated

with two problems. First, in typical schemes under the standard model it implies that

the compromise of a user’s private key compromises all past and future signatures.

Second, selfless-anonymity can imply that the group manager, knowing the private

keys of all members, could generate signatures on behalf of the users. Although these

problems are not formally defined, we will show that these concerns do not affect the

scheme described in Chapter 3. Since these are not formally defined issues we coin the

8 We assume the case of outputting K to be trivially non-existent. An attacker is aware of the rules
of the game and should not break them as that action would result in an automatic loss/failure.
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term strong selfless-anonymity to represent a system that can demonstrate standard

selfless-anonymity along with showing the above two concerns are not applicable.

2.5.5 Full Traceability

Full-traceability, as specified by Bellare et al. [2], is reproduced here and updated

with the proper modifications to make it suitable for a dynamic group. The property

ensures that only user i may generate valid signatures, all of which can be traced to

user i. Informally full-traceability is defined by an adversary given the group’s secret

key gmsk, and working with any number of colluding group members (including the

possibility of the entire group) she must not be able to create a valid signature that

either cannot be opened or is not from a member of the colluding group. The adver-

sary is also given the GSig, Corrupt, Join, and Revoke oracles in order to simulate

viewing previous signatures, corrupting group members, creating fake group mem-

bers, and revoking group members, respectively. A formal definition of this property

is covered by the experiment described in Algorithm 4.

Algorithm 4 Exptrace
GS,Apkq

pgpk, gmsk, gisk, Uq Ð GKpkq
pm,σq Ð Apgpk, gmsk : GSigpgskr¨srδs, ¨q, Corruptp¨q,

Joinpk, gisk, Uq, Revokepgisk, U, ¨qq
if GVfpgpk, pm,σqq “ 0 then Return 0

if Openpgmsk, U, gpk, pm,σqq “K then Return 1

if Di P U s.t. the following are all true then Return 1

1. Openpgmsk, U, gpk, pm,σqq “ i

2. i was not queried to the oracle Corrupt

3. i,m was not queried to oracle GSig

else Return 0

In the experiment, the challenger generates an empty group signature scheme

pgpk, gmsk, gisk, Uq and gives the adversary gpk and gmsk as well as access to the

GSig, Corrupt, Join, and Revoke oracles. The objective of the adversary is to out-
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put a tuple of a message and corresponding signature pm,σq. If the signature fails

the verify the experiment outputs 0 signaling a failure. If the Open function returns

K the experiment outputs a 1 signaling success. Finally, if the Open function returns

i such that i P U , i was not queried to the Corrupt oracle, and i,m was not queried

to the GSig oracle then the experiment outputs a 1. Otherwise, it returns 0.

We say a scheme is secure under full-traceability if the following advantage is

shown to be negligible:

Advtrace
GS,Apkq “ PrrExptrace

GS,Apkq “ 1s. (2.5)

2.5.6 Verifier Local Revocation

Verifier Local Revocation (VLR) was originally described by Boneh and Shacham

in [6]. VLR represents the ability to revoke a member by only sending revocation

notifications to the verifying clients. The need for this property arose from previous

schemes that required revocations to either re-key the entire group or to send a

broadcast message to all members and verifiers about the event [6].

The scheme presented in Chapter 3 has this property as it is similar to current

public key infrastructure (PKI) solutions. Specifically, PKIs implement some form of

a certificate revocation list (CRL). These lists are maintained by the PKI ”manager”

and are only required by the verifiers during the verification process.
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3

Constructing the Group Signature Scheme

3.1 Assumptions

The assumptions for constructing this scheme are minimal and standard. We assume

the existence of an IND-CCA secure encryption algorithm AE . Additionally, we

assume that an EUF-CMA signature algorithm DS exists. Due to some interactive

algorithms within the scheme, we require that a secure communication channel exists

between the group members and the manager. This requirement is easy to satisfy

in a modern setting where mechanisms such as mutually authenticated TLS can be

utilized. We assume that the group manager(s) are honest1. Finally, the existence

of a basic PKI is available for use as discussed in Section 2.2.

3.2 Definition

In this section we will define the algorithms used in our scheme. However, a few

key values should be highlighted. We use k P N as a security parameter. Similarly,

λ P N is used as a secondary security parameter that denotes the number of valid

1 This idea was assumed in the static standard model ([2]) and we have further commented upon
it in 2.5.2.
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signing keys a user is allowed in a given time period. For both AE and DS we

generate ppk, skq key pairs and distinguish them by supscriting the variables with

e or s for encryption or signing keys, respectively. gpk contains the group’s public

signing key2 pks as well as the group’s root certificate certg. gmsk simply contains

the secret encryption key ske. Finally, gisk consists of the secret signing key sks

and the public encryption key pke.

The algorithm definitions for our scheme are presented in the following sections.

Each section will give the formal definition followed by a description of the algorithm.

Group Key Generation

Algorithm 5 GKpkq

ppks, sksq Ð Kspkq ; ppke, skeq Ð Kepkq
certg Ð Sigpsks, pksq
gpkÐ ppks, certgq ; gmskÐ ske ; giskÐ psks, pkeq ; U ÐH

Return pgpk, gmsk, gisk, Uq

The group key generation algorithm, shown in Algorithm 5, is used to establish

a new group signature system. GK only takes the security parameter k as input. The

algorithm generates an encryption key pair ppke, skeq, a signing key pair ppks, sksq,

and the corresponding group certificate certg. The output of the algorithm is then

gpk the group public key, gmsk the group manager secret key, gisk the group issuing

secret key, and U a list of active users.

Add New Member

Algorithm 6 shows the algorithm to add a new member to the group. Join takes

the security paramter k, the group issuing secret key gisk, and the list of active

users U as input. Next, it uniformly at random generates a member identity i and

adds it to the active user list U . Then it performs a series of operations repetitively

2 pke may also be included in gpk but is not used outside of the group managers.
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Algorithm 6 Joinpk, gisk, Uq

Parse gisk as psks, pkeq

i
$
ÐÝ t0, 1uppkq ; U Ð U Y tiu

for xÐ 1, ..., λ do
memberi Ź ppki,x, ski,xq Ð Kspkq
memberi Ź Sendpadmin, pki,xq
µi,x Ð Encppke, iq
certi,x Ð Sigpsks, xµi,x, pki,xyq
Sendpmemberi, xcerti,x, µi,xyq

gskrisrxs Ð pk, i, µi,x, pki,x, ski,x, certi,x, pks, certgq

until λ group signing keys are generated for the new users. First, the user generates

a signing key pair ppki,x, ski,xq and sends the public key pki,x to the manager. The

manager then encrypts the member identity i to create µi,x. Then, the signing key

certificate certi,x is creating over the public key pki,x and the encrypted identity

µi,x. Finally, the manager sends the certificate certi,x and the encrypted identity

µi,x back to the user3.

Update Member Keys

Algorithm 7 Updpk, gisk, U, iq

Parse gisk as psks, pkeq
for xÐ 1, ..., λ do

memberi Ź ppki,x, ski,xq Ð Kspkq
memberi Ź Sendpadmin, pki,xq
µi,x Ð Encppke, iq
certi,x Ð Sigpsks, xµi,x, pki,xyq
Sendpmemberi, xcerti,x, µi,xyq

gskrisrxs Ð pk, i, µi,x, pki,x, ski,x, certi,x, pke, pks, certgq

The algorithm for updating member keys, shown in Algorithm 7, is identical to

the Join algorithm except for the generation of a member identity i. As a result,

the description is not be duplicated.

3 Note that gsk is also updated with the key information, but this is not important to the algorithm
as discussed in Section 2.5.1.
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Sign Data

Algorithm 8 GSigpgskrisrjs,mq

Parse gskrisrjs as pk, i, µi,j, pki,j, ski,j, certi,j, pke, pks, certgq
sÐ Sigpski,j,mq
σ Ð ps, pki,j, µi,j, certi,jq
Return σ

Algorithm 8 shows the group signature algorithm used by members to sign data

on behalf of the group. GSig takes one of the member’s secret keys gskrisrjs and

a message m as input. The algorithm then uses ski,j to sign message m. Once the

signature is created, the algorithm outputs σ “ ps, pki,j, µi,j, certi,jq.

Verify Signature

Algorithm 9 GVfpgpk, pm,σqq

Parse σ as ps, pki,x, µi,x, certi,xq ; Parse gpk as ppks, certgq
y1 Ð Vfppks, certg, pksq
y2 Ð CheckCRLpcerti,xq

y3 Ð Vfppks, certi,x, xµi,x, pki,xyq
y4 Ð Vfppki,x, s,mq
if y1 “ 0 OR y2 “ 0 OR y3 “ 0 OR y4 “ 0 then Return 0
else Return 1

The group signature verification algorithm, shown in Algorithm 9, is used to

verify group signatures created by group members. GVf take gpk and the signature

pm,σq as input and then performs a series of signature verifications. First, the

algorithm checks that the group certificate certg is valid. Next, it verifies that

the member certificate certi,x is valid, both in terms of the group’s CRL and the

signature. Finally, the algorithm verifies the signature s over the message m. If all

of the verifications were successful, the algorithm outputs a 1. Otherwise, it outputs

0.
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Open Signature

Algorithm 10 Openpgmsk, U, gpk, pm,σqq

Parse gpk as ppks, certgq ; Parse gmsk as ske
Parse σ as ps, pki,x, µi,x, certi,xq
Parse Decpske, µi,xq as i
if i R U OR Vfppki,x, s,mq “ 0 OR Vfppks, certi,x, xµi,x, pki,xyq “ 0 then

Return K
else Return i

Algorithm 10 describes the signature opening algorithm used by the group man-

ager to determine which member created a given signature. Open takes gmsk, U, and gpk

as well as the message and signature pm,σq as inputs. The algorithm then parses

the inputs and decrypts µi,x from the certificate certi,x included in σ. Finally, the

algorithm checks that i P U , the member signature on the data is valid, and the user

certificate is valid. If these three checks pass, the algorithm outputs i. Otherwise, it

outputs K representing a failure state.

Revoke Member

Algorithm 11 Revokepgisk, U, iq

Parse gisk as psks, pkeq
for xÐ 1, ..., λ do

AddToCRLpsks,gskrisrxsq

U Ð U{tiu

The member revocation algorithm, shown in Algorithm 11, is used to revoke all of

the currently active certificates of a member. Revoke takes gisk, U, and i as inputs

and retrieves the certificates pertaining to i from the certificate store. Then it uses

the PKI function AddToCRL in conjunction with sks (from gisk) to revoke all of the

retrieved certificates.
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3.3 Security Analysis

Using Section 2.5 we prove the following two lemmas in order to show the security

of group signature scheme GS.

Lemma 1. If AE is an IND-CCA secure ecryption scheme, then group signature

scheme GS is selfless-anonymous.

Lemma 2. If DS is an EUF-CMA secure digital signature scheme, then group sig-

nature scheme GS is fully-traceable.

We begin with a proof of Lemma 1. The proof is given in three sections: intro-

duction, describing the adversary, and the conclusion.

Proof. We show that for any polynomial time attacker B who is attacking selfless-

anonymity of GS, we can construct polynomial time IND-CCA adversary A who

attacks AE , such that @k P N

Advanon
GS,Bpkq “ Advind´cca

AE,A pkq. (3.1)

From our assumptions, we conclude that the advantage of A on the right hand

side is negligible, therefore the left hand side is negligible as well. Importantly, the

key pairs for DS and AE are generated independently. Further, all signing key pairs

expect ppks, sksq are created independently across all group memebers, are only used

once, and no public record exists which links either the public or secret keys to a

specific member. Therefore the signature scheme and corresponding signatures are

not relevant for B in this experiment.

Adversaries Against the Encryption Scheme

Adversary A is shown in Figure 3.1, described formally in Algorithm 12 and 13, and

described informally in the remainder of this section.
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Figure 3.1: Graphic representation of the IND-CCA adversary A using a selfless-
anonymity adversary B.

Algorithm 12 Apchoose, pkc : Decpskc, ¨qq

ppks, sksq Ð Kspkq
certg Ð Sigpsks, pksq
gpkÐ ppks, certgq ; gmskÐH ; giskÐ psks, pkcq ; U ÐH

pψ, i0, i1,mq Ð Bpchoose, gpk, gisk, U : GSigpgskr¨srδs, ¨q,
OpenptDecpskc, ¨qu, U, gpk, p¨, ¨qq, Corruptp¨q, Joinpk, gisk, Uq, Revokepgisk, U, ¨qq

ψ1 Ð pgpk, gisk, U,gsk, ψ,mq
Return pψ1, i0, i1q

Algorithm 13 Apguess, ψ1, C : Decpskc, ¨qq

Parse ψ1 as pgpk, gisk, U,gsk, ψ,mq ; Parse gisk as psks, pkcq
ppkn, sknq Ð Kspkq
certn Ð Sigpsks, xC, pknyq ; sÐ Sigpskn,mq
σ Ð ps, pkn, C, certnq
b1 Ð Bpguess, ψ, σ : GSigpgskr¨srδs, ¨q, Openpgmsk, U, gpk, p¨, ¨qq,

Corruptp¨q, Joinpk, gisk, Uq, Revokepgisk, U, ¨qq
Return b1
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For the choose stage, adversaryA runs a modified version of GKpkq where ppks, sksq

is generated and used to create certg, but the keypair from the IND-CCA game is

used as the encryption key. However, A does not have access to skc and must sim-

ulate access to it by use the Dec oracle. A then provides adversary B with the

necessary information to start their choose stage. Note that all of the oracles for B

can be simulated by A, trivially. After B returns, the requisite information is stored

in ψ1 and A returns pψ1, i0, i1q.

In the guess stage, adversary A begins by generating a new signing key pair

ppkn, sknq and the corresponding group certificate certn for xC, pkny. The adversary

then signs B’s requested message m with skn and forms the group signature σ “

ps, pkn, C, certnq. Adversary A now provides ψ and σ to B’s guess stage. Once

again, the oracles are easy to simulate, as above. Further, since B cannot query

the Open oracle with m,σ, A need not worry about querying C to the Dec oracle.

Finally, A returns the same answer of b1 that B produced as her guess stage output.

Concluding the Proof

We now relate the description of adversary A to the formula described in the intro-

duction section of this proof. In adversary A’s guess stage, it establishes a perfect

simulation of a group for use by B. After receiving B’s guess stage output, A out-

puts the same two identities to allow the IND-CCA game to act as part of the issuing

manager (i.e. Join or Upd) for GS.

When Apguess, ...q is called the first goal is to generate a signature from member

ib represented by C. The problem is, A is not sure which set of signing keys to use

(either gskri0srδs or gskri1srδs). As a solution, she generates a new set of signing

keys ppkn, sknq, creates the corresponding cert certn over pkn and C, then signs m

with skn. We argue that generating a new signing key pair is equivalent to using an

existing one (from i0 or i1) for three reasons.
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1. B is not given access to gsk so it is impossible for the adversary to know that

the new key pair did not exist within the system prior to the guess stage.

2. Since we make no assumptions about the signature system, it is possible all key

pairs are equivalent, meaning that generating a new key pair changes nothing

about the scheme.

3. It would also be possible for A to modify gsk such that

@i P UDx P rλs s.t. gskrisrxs “

pk, i, µi,n, pkn, skn, certi,n, pke, pks, certgq (3.2)

and ensure those key slots are not used during the choose stage of B. This

would mean that ppkn, sknq is a valid key pair for all members, therefore, the

key pair could be used to generate a signature over m for B regardless of the

IND-CCA’s choice of b P t0, 1u.

Finally, A submits the signature of m with key pair ppkn, sknq to Bpguess, ...q and

outputs the same result as B. This means the probability that A guesses correctly

is less then or equal to the probability that B guesses correctly in the anon game.

Therefore, we get the equations expressed in Eq. 3.3 which satisfy the assumptions

stated in 3.1.

Advind´cca
AE,A pkq

“ PrrExpind´cca 1
AE,A pkq “ 1s ´ PrrExpind´cca 0

AE,A pkq “ 1s

“ PrrExpanon´1
GS,B pkq “ 1s ´ PrrExpanon´0

GS,B pkq “ 1s

“ Advanon
GS,Bpkq (3.3)
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Next, we will prove Lemma 2. Again, the proof is given in three sections: intro-

duction, describing the adversary, and the conclusion.

Proof. We show that for any polynomial time attacker B who is attacking full-

traceability of GS, we can construct polynomial time EUF-CMA adversary A who

attacker DS, such that @k P N

Advtrace
GS,B pkq ď Adveuf´cma

DS,A pkq. (3.4)

From our asusmptions, we conclude that the advantage of the adversary on the

right hand side is negligible, therefore the left hand side is negligible as well. As

mentioned previously, the encryption and signing key pairs are generated indepen-

dently. We further argue that the use of a null encryption scheme would not affect

the experiment since knowledge of member identity is unrelated to signature forgery.

Adversaries Against the Signature Scheme

Adversary A is shown in Figure 3.2, described formally in Algorithm 14, and infor-

mally in the remainder of this section.

Algorithm 14 Appkd : Sigpskd, ¨qq

ppke, skeq Ð Kepkq
certg Ð Sigpskd, pkdq
gpkÐ ppkd, cert

1
gq ; gmskÐ ske ; giskÐ ptSigpskd, ¨qu, pkeq ; U ÐH

pm,σq Ð Bpgpk, gmsk : GSigpgskr¨srδs, ¨q, Corruptp¨q, Joinpk, gisk, Uqq
Parse σ as ps, pkx, µi,x, certxq
Return pxµi,x, pkxy, certxq

Adversary A begins by running a modified version of GKpkq where an encryption

key is generated and the key pair from the EUF-CMA game is used as the signing

key pair for the group. Without knowledge of skd the adversary must utilize the Sig

oracle to simulate its use.
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Figure 3.2: Graphic representation of the EUF-CMA adversary A using a full-
traceability adversary B.

Once the group signature scheme is established,A can call B with gpk, gmsk, and U .

All of the oracles required by B are trivial for A to simulate. When B returns, A

only needs to parse σ in order to extract the certificate signature and ppkx, µi,xq tuple

over which the certificate was generated. This combination of pxµi,x, pkxy, certxq is

then output by A.

Concluding the Proof

We now relate the description of adversary A to the formula described in the first

section. It should be clear that A is able to perfectly simulate a group signature

scheme, and thereby the trace experiment, to B. Once B has given its output of

pm,σq there are three possibilities for success.

1. Openpgmsk, U, gpk, pm,σqq “K : In this case, B has generated a signature which

we know is valid because it passed the GVf step prior to being open. This also
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tells us that the opening failed because the contained i R U . For this to be

the case, B would have needed to generate a new, valid certificate for the fake

user i by using the key pair ppkd, skdq. In other words, this certificate is a valid

forgery for the EUF-CMA game.

2. Openpgmsk, U, gpk, pm,σqq “ i : For this scenario, B has generated a valid sig-

nature for a legitimate identity i. One way this can be realized is by B creating

a new signing key pair for member i and then generating a valid certificate

using ppkd, skdq. Like in the scenario 1, this means that this certificate is a

valid forgery for the EUF-CMA game.

3. Openpgmsk, U, gpk, pm,σqq “ i : This is the alternative outcome for scenario

2. Another option is for B to have either guessed a key of member i or have

reversed the secret key from a previously seen signature by member i. These

situations are nearly identical and are both a direct attack on the EUF-CMA

security of the signing system.

These cases are then translated as follows:

Adveuf´cma
DS,A pkq “ PrrExpeuf´cma

DS,A pkq “ 1s

ě Prrcase 1sPrrExptrace
GS,B pkq “ 1s ` Prrcase 2sPrrExptrace

GS,B pkq “ 1s

` Prrcase 3sPrrExpeuf´cma
DS,B pkq “ 1s

ě pPrrcase 1s`Prrcase 2sqPrrExptrace
GS,B pkq “ 1s`Prrcase 3sPrrExpeuf´cma

DS,B pkq “ 1s.

(3.5)

Since we are not aware of the probability of each case, we must evaluate the

extremes and middle cases. Our three cases are as follows:

• Assume that Prrcase 3s “ 1. This implies that Prrcase 1s ` Prrcase 2s “ 0.

Therefore, out equation becomes:

PrrExpeuf´cma
DS,A pkq “ 1s ě PrrExpeuf´cma

DS,B pkq “ 1s. (3.6)
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The equation should hold in that B should not be able to do better than A at

attacking EUF-CMA.

• Assume that Prrcase 1s `Prrcase 2s “ 1 implying that Prrcase 3s “ 0. Note

that we do not care which of the two cases happens since they realize the same

attack. In this case, we get the following equation, which is identical to the

desired Equation 3.4:

PrrExpeuf´cma
DS,A “ 1s ě PrrExptrace

GS,B pkq “ 1s. (3.7)

• Finally, we must assume the probabilities for each case takes a value between

0 and 1. The argument utilizes the fact that Prrcase 1s ` Prrcase 2s `

Prrcase 3s “ 1 and goes as follows:

PrrExpeuf´cma
DS,A “ 1s

ě pPrrcase 1s ` Prrcase 2sqPrrExptrace
GS,B pkq “ 1s

` p1´ pPrrcase 1s ` Prrcase 2sqqPrrExpeuf´cma
DS,B pkq “ 1s. (3.8)

By moving the secondary term to the other side of the equation and utilizing

our result from the Prrcase 3s “ 1 case we get:

PrrExpeuf´cma
DS,A “ 1s

` p1´ pPrrcase 1s ` Prrcase 2sqqPrrExpeuf´cma
DS,B pkq “ 1s

ď PrrExpeuf´cma
DS,A “ 1s` p1´pPrrcase 1s`Prrcase 2sqqPrrExpeuf´cma

DS,A pkq “ 1s

“ pPrrcase 1s ` Prrcase 2sqPrrExpeuf´cma
DS,A pkq “ 1s

ě pPrrcase 1s ` Prrcase 2sqPrrExptrace
GS,B pkq “ 1s. (3.9)
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This results in:

Adveuf´cma
DS,A pkq “ PrrExpeuf´cma

DS,A pkq “ 1s

ě PrrExptrace
GS,B pkq “ 1s “ Advtrace

GS,B pkq. (3.10)

3.3.1 Strong Selfless-Anonymity

As mentioned in Section 2.5.4, there are two typical problems with group signature

schemes that are only selfless-anonymous secure. In pointing out these problems, we

introduced the idea of strong selfless-anonymity for schemes which can demonstrate

these problems are not applicable as well as proving general selfless-anonymity. Be-

low, we discuss these two problems and informally show that the scheme described

in this chapter satisfies strong selfless-anonymity.

1. In typical schemes under the standard model, selfless-anonymity implies that

the compromise of a member’s private key compromises all past and future

signatures as well. For the above scheme we can define a key compromise as

one of two things. Either the adversary is able to gain a single secret key

(i.e. gskrisrxs) or they are able to compromise multiple secret keys up to the

entire λ keys that are issued for the time period. The first situation means

the attacker can link up to a single signature back to member i since the keys

are generated independently. The second situation is decidedly worse, but the

same reasoning means the attacker is only able to link up to λ past or future

signatures to the member i. Further, the Upd, Open, and Revoke functions are

useful in this context to identify false signatures and compromised members,

while helping to mitigate the overall security impact to the group.
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2. Selfless-anonymity can imply that the group manager, knowing the secret keys

of all members, could generate signatures on behalf of the users. In the our

scheme, it is trivially clear that all secret keys for group signatures are generated

by the members themselves. This means that the group manager would have

to determine the secret key of the signing key pair only through knowledge of

the public key, which is known to be difficult in EUF-CMA signature schemes.

Admittedly, there is a possibility of the manager creating a signing key pair on

their own and falsely issuing it to a member. By doing so, the group manager

would have a ”valid” signing key for the user. Attacks in this vein are solid

arguments for dividing the role of group manager into two entities, although

this brings problems of its own, as discussed in Section 2.5.2.
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4

Implementation

4.1 Motivation

We implemented our scheme for two reasons. First, our solution relies heavily on

utilizing an existing PKI which brings in its own computational and memory over-

head. As such, we wanted to evaulate the scheme in a real-world setting. Second,

we could only find a few libraries that implement group signature schemes in some

capacity. The best example we could find of an existing library is the libgroupsig

project from Jesus Diaz et al. [17]. The library mainly focused on standardizing an

interface for all group signature implementations.

In its current state, libgroupsig [17] is effectively a proof of concept that never

promised or showed the signature implementations to be correct, let alone optimized.

The project’s main ideas are discussed in Section 5.1. The paper describing to

libgroupsig mentions a small number of other implementations. However, they

implement schemes that are over a decade old.
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4.1.1 Language & Algorithm Choices

When deciding on implementation paramters, we first looked at any real-world op-

timizations the scheme could take advantage of. In particular, we realized that an

assymetric encryption scheme, while nice for mathematical proofs, was vastly more

costly to compute compared to symmetric counterparts. We ended up settling on

the ChaCha20 encrypting algorithm as it is now one of the recommended standards

for data encryption.

For signature schemes we were concerned about the amount of data being stored

on both the members and the manager, so we wanted to minimize key and certificate

sizes. This notion led us quickly to elliptic curve cryptography and then onto the

well-known and used NIST P-256 curve (also referred to as prime256v1). The use of

elliptic curves also allowed for the possibility of key expansion as a means to limit

data transfer over the communication channel, but this never came to fruition for

various reasons.

In choosing our algorithms we were also careful to choose ones that were well-

known and in wide-spread use. This decision allowed us to exploit existing, well-

optimized libraries. To be precise, these algorithms are implemented in the popular

OpenSSL cryptography stack1.

OpenSSL is implemented in C and gives access to a command line interface.

While implementing our scheme in C code next to the OpenSSL implementation

would be ideal, some already complex operation (i.e. custom X.509 extensions not

included in the certificate signing request) would be made overburdeningly difficult

at that level. As a result, we deemed an extremely optimized implementation out-

of-scope as the amount of time invested would be significant compared to the payoff.

Instead, we utilized the command line interface to realize the scheme.

1 https://www.openssl.org/
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Finally, we must mention that the implementation utilizes X.509 certificate since

they are widely used and allow for custom extensions. In our case, we utilized a

custom extension on the certificates to store the encrypted user identity µ.

4.2 Our Implementation

The implementation of the scheme was done utilizing bashs scripts on a MacOS

10.14.6 machine. The scripts utilize the libreSSL 2.6.5 variant of OpenSSL. The code

base is hosted in the following repository: https://bitbucket.org/bmendrick/

thesis_pegss_implementation

4.2.1 Functions & Usage

Of the seven functions that constitute the group signature scheme, six are represented

in the code base with individual executables. These six functions are described below:

• gen group.sh – Equivalent to GK – Generates the manager’s keys, the group’s

root certificate, and establishes the directory structure for later use.

• create user.sh – Equivalent to Join – Adds a new user to the group. The algo-

rithm slightly varies from Join in that the new member generates λ certificates

before sending them all to the manager. The manager then similarly generates

certificates and all λ keys before returning them to the member.

• sign.sh <user-id> <message> – Equivalent to GSig – Causes user <user-id>

to sign the message <message>. Resultant signatures are stored in the ./sig-

natures directory.

• verify.sh <signature> <message> – Equivalent to GVf – Verifies that the sig-

nature <signature> is valid for the message <message>. This function will

utilize the group/root certificate present in the signature’s directory, but will

retrieve an up-to-date CRL from the manager.
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• open.sh <signature> <message> – Equivalent to Open – Verifies that the sig-

nature <signature> is valid for the message <message> before decrypting the

user identity token on the certificate. Unlike verify.sh, this function does not

verify the validity of the root certificate and does not check the member cer-

tificate against the CRL.

• revoke.sh <user-id> – Equivalent to Revoke – Searches the manager’s internal

pairings of user identificiations to certificate serial numbers. All certificates

matching user identity <user-id> are then revoked (i.e. added to the CRL).

Note that the Upd function is missing an implementation in the scheme. While

the function is valuable in long-lived groups, the testing we were looking to perform

did not require its use. Further, its performance can be implied by examining the

create user.sh or Join function’s performance as they are effectively identical.

4.2.2 General Metrics

The following metrics were gathered on a MacOS 10.14.6 machine running a 2.6GHz

Intel i7 processor with 16GB of RAM. As mentioned above, the scripts employed the

use of the OpenSSL variant libreSSL version 2.6.5. All tests were performed with a

λ value of 100.

Computational Efficiency

In order to assess the computational performace of the algorithms, the time utility

was employed and the total time elapse (i.e. ”real-time”) was measured. Each logical

code segment was time separately with the results being stored in time.log files with

one existing for each member, for the manager, and for the verifier.

The average time, over 10 executions, for the GK, GSig, GVf, Open, and Revoke

algorithms are shown in Table Table 4.1. Data for the Join algorithm is shown in
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Table Table 4.2. Note that the Join function is interactive between the member and

manager, so it is broken into the three computation stages: member generating keys,

manager generating certificates, member verifying the certificates.

Table 4.1: Average execution times for group signature algorithms

GK GSig GVf Open Revoke

Time (sec) 0.050 0.047 0.036 0.046 0.117

Table 4.2: Average execution times for Join stages

Member – Keys Manager – Certs Member – Verify
Time (sec) 1.600 3.876 1.825

When testing the Revoke function, we got a slightly strange result. The first exe-

cution of the function took magnitudes longer to complete than the others. Without

the first outlier execution the average would be 0.012 seconds. Upon a second set of

10 trial execution, the same patterned appeared: the first execution taking signifi-

cantly longer. We suspect this to be a result of files having to be loaded into memory

on the first execution, but then are not paged out of memory for subsequent runs.

Memory Overhead

Memory usage is measured in two ways. First, we examine the amount of data being

stored on each member as well as on the manager. This case is shown in Table

Table 4.3 and shows a break down of both private and public storage. To clarify, we

classify files such as private keys as needing private storage, and things such as the

CRL, certificates, etc. as public2 storage. For the manager, the size of the group and

number of revoked certificates changes the storage requirements. As a baseline, we

2 Perhaps better thought of as ”non-private” storage
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have evaluated a manager with 10 active members and no revocations (adminsmall)

and one with 50 active members and 5,000 revoked certs (adminlarge).

Table 4.3: Memory usage for members and the manager (bytes)

member adminsmall adminlarge
Private 22,700 384,190 3,840,357
Public 98,500 987,428 5,114,292
Total 121,200 1,371,618 8,954,649

The second evaulation relates to the amount of traffic transferred over the secure

channel by the members and manager. While this channel is only used during the

Join and Upd algorithms, it is still important to understand the requirements being

placed upon the network during that time. Further, knowledge of the data quantity

can allow for extrapolation, based on a set of network parameters, to reason about

network interaction times on either end of the connection. The amount of data

transferred for a single Join execution are shown in Table Table 4.4.

Table 4.4: Amount of data sent over the secure communication channel during a
single Join operation (bytes)

member admin

Sent 61,100 98,628
Recieved 98,628 61,100

Results

Given that there are no good comparisons, it is difficult to say whether or not the

group signature scheme is efficient. From a computational point-of-view, all of the

algorithms operate quickly enough for us to begin questioning the accuracy of the

time utility’s measurements. The one exception to this is the Join algorithm, where

compute times are magnitudes larger. This, however, should not pose an issue as

Join and Upd operations should be rare, realtively speaking.
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From the memory usage perspective, the scheme presented in this paper clearly

utilizes more memory than many of its modern counterparts. Most, if not all, modern

group signature schemes use key sizes which are static or grow logarithmically in

size, meaning the memory requirements for the members are a few kilobytes at most

and managers have tens of kilobytes in large groups. However, storage space is

inexpensive and the requirements our scheme places on the clients is not extreme,

especially regarding the private data storage.
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5

Conclusions

5.1 Future Work

Through the creation of this thesis, we have uncovered a number of new directions

for future research. The three main areas are discussed below:

• Group Manager(s) – Many schemes make the assumption that group man-

agers will act honestly. The real-world has many bad actors, however, so this

assumptions may need to be relaxed or removed before group signature schemes

have wider appeal. Some work has been done towards this end, for example

by Bellare et al. [3] and their attempt to divide the manager role into two

parts and allow for partial or full compromise of the managers. While allowing

partial compromise is a good first step, protecting group members from full

compromise of either manager would be ideal.

• Anonymity – Recent group signature research shows a mix of proving full-

anonymity vs proving some notion of selfless-anonymity. We believe two things

should happen in this area. First, we need to examine if full-anonymity and its

corresponding threat model is too strong for real-world applications. Second,
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we need to concretely state the idea of selfless-anonymity and understand the

real-world security implications that follow. These two steps will also tie into

the following item about Application Areas & Implementations.

• Application Areas & Implementations – Understanding application areas will

inform future research and decisions about threat models, efficiency require-

ments, and additional features. We believe that a key to exploring application

areas is to enable security engineers to have easy access to group signature

scheme implementations for use in their domains. As we have discussed in

Section 4.1, however, there are currently very few group signature scheme im-

plementations. Therefore, we are stuck in a sort of gridlock where new group

signature schemes are developed without a goal, implementations are not cre-

ated since new schemes are published frequently, and application areas are not

explored due to a lack of implementations and the churn of new schemes. Ad-

ditionally, efforts to bridge the gap between these issues, such as libgroupsig

[17], have not gained traction. While it is unclear what a solution may be, we

do believe that this cycle needs to be interrupted for group signatures to see

real-world or wide spread use.

5.2 Concluding Remarks

In this thesis, we constructed a new group signature scheme and proved it to be secure

under selfless-anonymity and full-traceability. These properties are representative of

the standard model for group signatures, with a common relaxation for anonymity

from full-anonymity to selfless-anonymity. We also introduced the notion of strong

selfless-anonymity which protects against common pitfalls of group signature schemes

when relaxing from full- to selfless-anonymity.

An implementation of our group signature scheme was also constructed. The
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intial results indicate that our scheme is computationally efficient when signing, ver-

ifying, opening, and revoking signatures. Further, we saw that the memory overhead

for members was in an acceptable range. We also observed that the group manager is

roughly equivalent to a certificate authority within a PKI, meaning it has acceptable

computational and memory overhead as well.

Through this work we explored the creation of a group signature scheme that

compromised a small amount of security to become practically efficient in use. Al-

though this balance may not be ideal, we believe it is important to push towards

schemes which are usable in the real-world in order to develop and understand appli-

cation areas. Within these application areas is the future of group signature schemes

and we are hopeful for their discovery and proliferation.
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Appendix A

Generalized Group Signature Properties

As mentioned in this thesis, Bellare, Micciancio, and Warinschi’s seminal paper [2]

on group signature modeling stated that their definitions of full-anonymity and full-

traceability included all previous, loosely defined security properties. In Table A we

list the security properties that Bellare et al. discussed as well as what property

they follow from and a brief description. However, for an in-depth understanding

these properties and how exactly they are included in the model, we refer to reader

to Section 3 of [2].
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Name Covered By Description
Unforgability Full-Traceability It is computationally infeasible to produce a signa-

ture pm,σq, which verifies correctly, without know-
eldge of the secret keys.

Exculpability Full-Traceability No member of the group, not even the group man-
ager, can produce signatures on behalf of other
users.

Traceability Full-Traceability Originally referred to the functional property that
if a message is signed by the private key of i and
the Open algorithm is applied to it, then i must
be returned. Traceability was also overloaded with
a security property which later became known as
coalition resistance.

Coalition Resis-
tance

Full-Traceability The possibility of group members colluding to-
gether in order to create signatures which could
not be traced to any of them.

Framing Full-Traceability A variation on coalition resistance where a group
of members combine their keys to produce a valid
signature which opened to another member’s iden-
tity.

Anonymity Full/Selfless-
Anonymity

Similar to full- or selfless-anonymity, but the at-
tacker does not have access to the Open oracle.

Unlinkability Full/Selfless-
Anonymity

After seeing a list of signatures an adversary can-
not relate two signatures as being produced by
the same member. More generally, unlinkability
is hard to define as it is highly dependent on the
threat model assumptions, however, all reasonable
definitions follow from full-anonymity1.

Table 1.1: Overview of past group signature security properties

1 Selfless-anonymity trivially covers most, but not all, of the threat models considered. Further
analysis is required to understand which threat models are not covered (see item Anonymity in
Section 5.1).
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