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Abstract

Cyber-physical systems (CPS) involve the cyber components of computing and commu-
nication interacting with and controlling elements in the physical world. Emerging CPS
are increasingly distributed and perform coordinated sensing and actuation over large
geographical areas. Examples include local-scale industrial robots, city-scale traffic man-
agement, and regional/continental-scale smart grids. Hence, a hierarchy of resource-
constrained embedded sensing/actuation nodes, edge cloudlets and the cloud will be
key to enable scalable coordination, while simultaneously hosting the intelligence behind
these systems. To meet the low-latency real-time requirements of CPS, these platforms
typically harness a variety of computing resources ranging from multi-core processors to
hardware accelerators such as general-purpose Graphics-Processing Units (GP-GPUs).
In conjunction with low latency, a shared and precise notion of time is key to en-
abling coordinated action in distributed CPS. Hence, in this dissertation, we introduce
abstractions, system-design methodologies and frameworks that enable time-based co-
ordination in geo-distributed cyber-physical systems. While a shared notion of time
enables coordination at the distributed scope, to coordinate effectively it is also necessary
to simultaneously schedule multiple application components at the scope of each node,
such that all deadlines are met, while ensuring that the resource/physical constraints of
the system are satisfied. Therefore, this dissertation also introduces energy-, thermal-
and resource-efficient analyzable real-time scheduling techniques for applications de-
ployed on platforms utilizing both multi-core processors and hardware accelerators.
Our proposed solutions are readily applicable to commodity embedded, edge and

cloud platforms, and together can enable time-aware and energy-efficient CPS.
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Chapter 1

Introduction

The only reason for time is so
that everything doesn’t happen

at once.

Albert Einstein

1.1 Motivation

Coordination is key to the successful operation of a distributed cyber-physical system.
Distributed coordination occurs at different spatial and temporal scales, ranging from
local-scale robotic coordination — occurring at the timescale of hundred microseconds to
a few milliseconds, and city-scale connected vehicles coordinating at the granularity of
hundreds of microseconds to a few milliseconds, to planetary-scale coordination among
GPS satellites — occurring even at the nanosecond timescale. A non-exhaustive list of
such coordinated systems includes swarm robotics [5], distributed databases [6], tele-
surgery [7], industrial robotics [8], smart grids [9] and connected vehicles [10]. Figure
1.1 highlights the spatio-temporal nature of distributed coordination at different scales.

The common thread binding many of the above-mentioned applications is the need

for low-latency decision-making. This is particularly true for cyber-physical systems
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Figure 1.1: The scale of coordination in time and space

(CPS) [11], which involve the cyber components of computation and networking, in-
teracting with and controlling elements in the physical world [11]. In these systems, the
nature of coordination is usually dependent on the analysis of sensed data by intelligent
computational entities, which in real-time decide a course of coordinated action/actuation
at distributed endpoints. The data-intensive and low-latency nature of decision-making
makes the cloud in tandem with edge cloudlets and embedded endpoints well-suited for
hosting such applications. While recent work [12] [13] [14] [15] has focused on the need
for edge computing to reduce the latency of computation, the need for a distributed
coordination primitive has not received much attention.

Time is one such construct which plays an important role in enabling coordination
among distributed entities [16]. This is especially true for cyber-physical systems (CPS)
which need to interact with the real world. A shared notion of time, by means of

synchronized clocks, enables [17]:
1. events to be ordered at distributed scale, and
2. coordinated actuation to be scheduled at/by specific time instants.

Therefore, maintaining a shared notion of time is critical to the performance and

reliable operation of many large-scale distributed systems.
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Figure 1.2: DronePorter: Time-based Drone coordination

To illustrate the importance of a shared notion of time, we consider a fleet of n
drones (as shown in Figure 1.2) transporting an object (), too large to be carried by a
single drone. We call this hypothetical application DronePorter. To successfully transport
(), the drones need to follow a coordinated flight-plan such that (i) the object is not
damaged or destabilized, and (ii) the drones do not collide with each other or obstacles
in the environment. One way to accomplish this is by having a master entity, which can
be one of the drones, send out timestamped flight-plans with way-points to each of the
drones, such that each drone tries to reach a given way-point at the specified time.

To coordinate successfully, the clock on each drone needs to be synchronized such
that the accuracy is within some specified limits. This accuracy (or uncertainty) specifi-
cation can depend on multiple factors, ranging from the velocity and size of the drones,
to the other uncertainties in the environment. For example, to meet a particular velocity,
while maintaining safety, having a tighter clock-synchronization accuracy can be used
to compensate for higher localization uncertainties or higher environmental uncertain-
ties [18]. Additionally, as shown in Figure 1.2, we can also have an edge/cloud controller
which provides (i) high-level objectives/guidance to the fleet of coordinating drones, and
(ii) fleet-management capabilities. One can also envision that this edge/cloud-controller

can be responsible for multiple fleets of drones.



CHAPTER 1. INTRODUCTION 4

While a shared notion of time is key for geo-distributed coordination, it also
helps characterize a system’s end-to-end latency requirements, necessary for enabling
real-time decision making. These low-latency requirements are characterized by per-
component deadlines, which need to be met to satisfy the safety and/or end-to-end per-
formance specifications of the system. Hence, it also becomes necessary to effectively
schedule multiple application components at each compute node, using analyzable real-
time scheduling techniques such that they meet all deadlines.

Let us re-visit the DronePorter application. Each drone relies on processing multiple
sensor-driven data streams, such as cameras and LIDARs, to perceive its surround-
ings. To operate safely, these data streams need to be analyzed in real-time, in order
to decide an appropriate course of action before a deadline. Techniques ranging from
signal processing to machine learning, which are both computationally intensive and
highly parallelizable, are often used in the decision-making process. These observations
also apply to multiple cyber-physical application domains including, but not limited
to, autonomous vehicles [19], augmented reality [20] and robotics [8]. Therefore, the

scheduling techniques utilized in such cyber-physical systems need to take into account,

e the computational requirements of each application, and their execution patterns,

e the use of heterogeneous platforms with multi-core processors coupled with one or
more concurrent hardware accelerators such as General-Purpose Graphics Process-
ing Units (GP-GPUs), Digital Signal Processors (DSPs), and Application-Specific

ICs (ASICs) to meet the increasing computational requirements [21] [22] [23], and

e physical limitations such as energy budgets and thermal constraints, because CPS

are often deployed in resource-constrained or mobile settings.

Therefore, while a shared notion of time enables coordination at the distributed scope,
to coordinate effectively it is also necessary to simultaneously schedule multiple appli-

cation components at the scope of each node, such that all deadlines are met, while
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ensuring that the resource/physical constraints of the system are satisfied. Hence, in

this dissertation we introduce:

1. abstractions, system-design methodologies and frameworks that enable time-based

coordination in geo-distributed cyber-physical systems, and

2. energy-, thermal- and resource-efficient analyzable real-time scheduling tech-
niques for applications deployed on platforms utilizing both multi-core processors

and hardware accelerators.

The thesis supported by this dissertation is as follows:

Thesis Statement: Time-sensitive cyber-physical applications can effectively coor-
dinate multiple geo-distributed components deployed across the cloud, edge cloudlets
and resource-constrained embedded platforms, by: (i) utilizing our time-as-a-service
abstraction, which provides a shared, precise and adaptive notion of time based on
application-defined quality metrics, and (ii) low-latency computations made pre-

dictable and energy-efficient by adopting analyzable real-time scheduling techniques.

The remainder of this chapter provides an overview of this dissertation. We first de-
scribe the scope of this dissertation by providing an overview of the problem statements
we consider. Subsequently, we briefly describe the key contributions of this dissertation.

Lastly, we state the organization of the rest of this dissertation.

1.2 Scope of the Thesis

We now describe the key problem spaces we address in this dissertation, and briefly

outline the direction of the solutions we propose.
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1.2.1 Time-based Distributed Cyber-Physical Coordination

Consider a distributed cyber-physical application with components performing sensing,
actuation and computation deployed across multiple geo-distributed nodes. Reliable
planetary-scale coordination among these application components requires a shared and
precise notion of time [4]. Clock synchronization is a mature field and technologies such
as the Global Positioning System (GPS), Network Time Protocol (NTP) [1], and Precision
Time Protocol (PTP) [2] have made it possible to provide distributed systems with a
reliable and accurate shared notion of time. However, these technologies are best-effort
and/or agnostic to application-specific requirements. Additionally, clock synchroniza-
tion is not perfect, and there is always some uncertainty in a node’s estimate of the
shared notion of time. This timing uncertainty is introduced by a variety of factors in-
cluding, but not limited to, networking delays [1], timestamping errors, and operating
system and virtualization-induced latency and jitter [24] [25]. If this timing uncertainty
exceeds an application’s specifications, it can affect the quality and reliability of coor-
dination [17]. The level of uncertainty acceptable to an application often depends on
the time granularity at which coordination occurs, as well as the coordination policy
itself [17].

As time is fundamental to a range of applications, it needs to be exposed as a service

to applications. Therefore, we propose and define Time-as-a-Service (TaaS) as,

“the ability to provide an application-specific clock, which tracks a time refer-
ence, such that the timing uncertainty is within application-specified require-

ments.”

Time exposed as a first-class entity to applications addresses these issues effectively.
This can be done by: (i) allowing applications to specify their timing requirements in
terms of accuracy and resolution, and (ii) feeding back the delivered timing uncertainty
back to the application. Allowing distributed application components the ability to

specify their uncertainty tolerances enables the underlying system to orchestrate the
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infrastructure to meet them, thus providing “time-as-a-service”. Furthermore, exposing
the delivered uncertainty to applications allows them to be fault-tolerant and adaptive in
the event where the delivered uncertainty exceeds specified limits. Thus, fault-tolerant
time-based coordination becomes enabled by using our notion of Quality of Time (QoT)

[4], which represents,

“the end-to-end uncertainty bounds corresponding to a timestamp, with re-

spect to a clock reference.”

From an application perspective, if these bounds exceed an acceptable limit, the ap-
plication can enter a graceful degradation mode, and thus be fault-tolerant during clock-
synchronization failure. For instance, let us re-visit the DronePorter application described
in Figure 1.2. If the QoT deviates beyond the specified requirements, the drones can be
notified, and can adapt by gracefully coming to a safe halt on the ground.

Therefore, we propose to leverage Quality of Time (QoT) to develop software abstrac-
tions necessary to expose “Time-as-a-Service” to applications, along with a QoT-based
application programming interface (API) to enable fault-tolerant time-based coordina-
tion in cyber-physical systems.

Modern distributed cyber-physical applications are inherently complex, and consist
of multiple interacting components. Thus, deploying these components and manag-
ing their life-cycles are complex endeavors. Additionally, while some components may
be deployed on bare-metal embedded devices, many of these components will also be
deployed in the cloud or at the edge in conjunction with other applications. In such
scenarios, the use of virtualization technologies like virtual machines [26] and con-
tainerization [27] simplifies the deployment and life-cycle management of distributed
applications. Therefore, we focus on the challenges associated with delivering Time-as-

a-Service, at both the node! scope [4] [24] as well as the distributed scope [28].

!We use the terminology “node” to define an independent physical or virtual computing platform.
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1.2.2 Fixed-Priority Real-Time Scheduling

Scheduling application components within the node scope at/by the right time instant
is key to ensuring effective coordination in cyber-physical systems. As mentioned in
Section 1.1, given that most cyber-physical systems also have safety and performance
requirements, we need to ensure that each application component needs to complete
before its respective deadline. Therefore, we utilize analyzable real-time scheduling
techniques to provably check if all deadlines can be met. This subsection provides an
overview of the real-time scheduling terminology we use in this dissertation, as well as
some of the assumptions we make with respect to scheduling policy and computational
platforms.

Terminology: In the terminology of real-time scheduling each application component
deployed on a node is referred to as a task [29], and a collection of tasks deployed on
a node is referred to as a taskset. These cyber-physical tasks typically perform recur-
rent operations which are either triggered at specific time instants (time-triggered) or by
the occurrence of an event (event-triggered). Hence, we utilize the sporadic task model to
model CPS applications. Under, the sporadic task model, each task repeatedly releases
a workload, called a job, with a minimum inter-arrival time between two subsequent
job arrivals of a single task. The response time of a task is defined as the time duration
from when a job of the task is released till the time it completes. Therefore, for a task
to always be schedulable, its worst-case response time must always be less than or equal
to its deadline. Given a real-time scheduling policy, if we can show that all tasks 7; in a
taskset I' always meet their respective deadlines, then the taskset is said to be schedulable.

Scheduling Policy: In this dissertation, we focus on fixed-priority real-time schedul-
ing [29], as it is analyzable and widely supported in many commercial [30] [31] and
open-source operating systems [32] [33]. In the realm of multi-core real-time schedul-
ing, there are two approaches to scheduling tasks on multiple processing cores: (i) par-

titioned scheduling, and (ii) and global scheduling. Partitioned scheduling statically
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assigns each task to a core and tasks always execute on the assigned core. Therefore,
in the partitioned-scheduling context, finding an optimal task allocation can be mod-
eled as a bin-packing problem. On the other hand, global scheduling allows tasks to
migrate between cores at runtime. In this dissertation, we focus on partitioned multi-
core scheduling as it yields more predictable execution behavior at run time, delivers
much better worst-case performance, and unlike global scheduling does not suffer from
scheduling anomalies [34].

Platform: Modern CPS rely on analyzing computationally-intensive data streams in
real-time to perform decision making. Therefore, it is common to find CPS platforms
containing multi-core processors coupled with one or more hardware accelerators such
as GPUs and DSPs. In this dissertation, we consider platforms with homogeneous multi-
core processors, where each CPU core has identical characteristics. We also consider
hardware accelerators which do not support preemption. This assumption is in line
with the fact that most commercially-available hardware accelerators, including GPUs,
do not support preemption. These hardware accelerators may support concurrent exe-
cution of multiple tasks [35], or may only allow mutually-exclusive access to a single
task. Additionally, we also consider the possibility of modern hardware accelerators

supporting software partitioning of computational resources [36] [37].

1.2.3 Energy and Thermal-Aware Real-Time Scheduling

Cyber-physical systems often have components deployed in mobile and/or resource-
constrained settings [5] [19]. Therefore, we also need to take into account the physical
constraints of the system while meeting all task deadlines. In particular, we focus on
energy and thermal constraints, where reducing the energy consumption of a battery-
powered system can lead to a significant increase in operating lifetime [5], while de-
creasing the operating temperature of the system can lead to increased reliability and

prevent thermal failure [38] [39].
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Advancements in semiconductor technology have enabled compute-intensive cyber-
physical applications by increasing the number of transistors available to system design-
ers. However, the side effects of rising transistor density include increased power and
heat dissipation [40]. Therefore, energy savings and system temperature are intricately
tied together. Modern processors are equipped with energy-management features such
as Dynamic Voltage and Frequency Scaling (DVFS) [41], and the use of low-power sleep
states [42]. DVFS enables the processor to change its operating frequency and volt-
age, thereby reducing dynamic switching power, while low-power sleep states use power
gating and/or clock gating [43] to reduce static leakage power dissipation when the pro-
cessor is idle. As transistor geometries get smaller, the dominance of static power as a
contributor to total power consumption is only expected to increase [44]. Since static
power is also directly dependent on the operating temperature, scheduling techniques
will increasingly need to take advantage of processor sleep states.

Most modern multi-core processors support a number of low-power states called C-
states [45]. However, there is a minimum round-trip time associated with each of these
low-power sleep states [42]. This round-trip time is longer for moving to and from
lower-power states due to the overhead required for the main oscillator to startup and
stabilize [42]. From a real-time systems scheduling perspective, it is critical that all
tasks 7; in a given taskset I' meet their deadlines to ensure reliable system operation.
Therefore, it is essential that the processor be put into a correct sleep state at the correct
time and for a pre-computed duration, to ensure that all deadlines are met, while the
energy consumption of the system is minimized.

In particular, we focus on designing energy-efficient multi-core partitioned fixed-
priority real-time scheduling techniques, which utilize the processor’s deep-sleep state
to reduce static leakage power, and hence save energy. We also focus on analyzing the
thermal implications of utilizing these techniques on real-world multi-core platforms.

Hardware accelerators are also commonly found in CPS platforms and consume sig-

nificant amounts of power [46]. Like multi-core processors, hardware accelerators can
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Figure 1.3: Task 77 executing using a combination of CPU and GPU resources

also expose power-management interfaces. However, in commercial accelerators like
GP-GPUs and DSPs, only P-states are exposed to the user [47] [48]. Thus, in effect, they
expose only voltage and frequency-scaling knobs for power management, and the job of
reducing static power is done in firmware or hardware. Therefore, we focus on using
frequency-scaling-based techniques to reduce the power consumption of systems using
hardware accelerators. In particular, we focus on techniques to statically set the proces-
sor and accelerator to a pre-computed taskset-specific frequency, such that the aggregate
energy consumption is reduced, while ensuring that all deadlines are met. Therefore, as
there are no dynamic frequency changes, the unpredictable latency involved in chang-
ing the oscillator frequency is avoided, leading to more deterministic operation, which
is desirable in real-time systems.

Consider a platform with a multi-core processor coupled with one (or more) hard-
ware accelerator(s). As shown in Figure 1.3, tasks executing on this platform execute
using a combination of both CPU and accelerator resources. In this scenario, to meet all
task deadlines while reducing energy consumption, we jointly optimize the accelerator

and CPU frequencies in order to reduce the energy consumption of the entire system.

1.2.4 Real-Time Scheduling for Concurrent Accelerators

As mentioned in Section 1.1, CPS ranging from autonomous vehicles to industrial robots
increasingly rely on techniques such as deep-neural networks for perception and plan-
ning. Additionally, it is not uncommon to find multiple such computationally-intensive

workloads as part of a single application. Modern accelerators often support concurrent
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execution, and allow requests belonging to different tasks to be co-scheduled and execute
in parallel. This is especially true for modern GPU architectures such as NVIDIA Fermi
and Pascal [49] [50]. For example, the NVIDIA Xavier [21] has 512 cores which can be
utilized by concurrent kernels. Such platforms often provide built-in schedulers which
aim to maximize concurrency, but do not take into account task deadlines.

From a real-time systems perspective, for a set of tasks to be schedulable, it is im-
perative that all deadlines be met. Therefore, multiple analytical frameworks [51] [52]
[53] [54] [55] have been proposed to analyze the schedulability of tasksets which utilize
hardware accelerators such as GP-GPUs. To the best of our knowledge, most known
analysis techniques treat the accelerator as a mutually-exclusive resource which at any
point of time can only be accessed by a single task. This leads to additional schedulabil-
ity pessimism for accelerators supporting concurrent execution. Therefore, we focus on
developing schedulability-analysis techniques for real-time tasksets utilizing hardware
accelerators which support concurrent execution. Figure 1.4 shows an example sequence
of two tasks executing concurrently on a GPU.

In terms of scheduling policies, we focus on work-conserving fixed-priority schedul-
ing and non-work-conserving First-in-First-out (FIFO) scheduling. Traditionally, co-
scheduling task requests concurrently on hardware accelerators like GPUs has consid-
ered the global scheduling paradigm. In this paradigm, task requests are ordered in a
single queue [56] and dispatched to be scheduled on any part of the global resource.

However, recent GPU architectures such as NVIDIA Volta [36] coupled with software-
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partitioning techniques [37] have enabled GPUs to be partitioned into multiple fractional
components. Therefore, we even propose techniques for partitioning a hardware accel-

erator, to increase execution predictability.

1.3 Contributions

The primary contribution of this thesis is the development of novel distributed software
abstractions and frameworks, which in conjunction with node-level analytical real-time
scheduling techniques, enable resource-efficient and time-aware geo-distributed coordi-
nation in cyber-physical systems.

We now briefly describe each of the individual contributions which make up this

dissertation.

1.3.1 Making Time Prime in Cyber-Physical Systems

We now briefly summarize our contributions which enable time-based geo-distributed
coordination in CPS. Detailed descriptions of these contributions can be found in Chap-

ters 3, 4 and 5.

e Timelines, Quality of Time (QoT) and the QoT Stack [17] [4]: Adopting a holis-
tic notion of Quality of Time (QoT) that captures clock metrics such as resolution,
accuracy, and stability, we propose an architecture in which the local perception of
time is a controllable operating system primitive with observable uncertainty, and
where clock synchronization balances applications’ timing demands with system
resources such as energy and bandwidth. Our architecture features an expressive
application programming interface that is centered around the notion of a timeline
— a virtual temporal coordinate frame that is defined by an application to provide
its distributed components with a shared sense of time, with a desired accuracy

and resolution — that enables developers to easily write applications whose activi-
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ties are choreographed across time and space. The timeline abstraction on the one
hand allows applications to adapt to changes in uncertainty in system time, and
on the other hand enables the OS to efficiently manage clocks and synchronization
protocols. Leveraging open-source hardware and software components, we proto-
type an implementation for Linux called the QoT Stack, and present results from

its evaluation on a standard embedded-computing platform.

e Bringing QoT to Virtual Machines [24]: Given that most public clouds and edge
cloudlets provide multi-tenancy using virtualized units of computing, we aim to in-
troduce the notion of QoT to virtual machines. The use of virtual machines entails
the use of a hypervisor, which adds additional timing uncertainty due to relatively
higher jitter in clock-read and timer-interrupt latencies. Hence, the use of virtual-
ization presents a challenge in terms of observing and guaranteeing the QoT deliv-
ered to an application. To meet these challenges, we present the QuartzV extension
to the QoT Stack, to make virtual machines QoT-aware. We utilize the open-source
QEMU-KVM [57] hypervisor, and illustrate the para-virtual design choices that are
key for delivering near-native levels of timing performance in virtual machines.
We also demonstrate the utility of QuartzV by using it in the development of an
industrial-automation application. Our experimental evaluations also show the

efficacy of QuartzV with respect to the native and fully-virtualized cases.

e Time-as-a-Service for Geo-distributed Coordination [18] [28]: The emergence of
edge computing, specifically to facilitate low-latency decision-making, is leverag-
ing the trend where multiple cyber-physical and software applications with dif-
ferent timing requirements will coexist in both the cloud and at the edge. To
enable such fault-tolerant time-based coordinated applications running on multi-
tenant geo-scale infrastructure, we introduce the Quartz framework, which exposes
Time-as-a-Service. Quartz allows geo-distributed application components to each

specify its timing requirements, while it autonomously orchestrates the underlying
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infrastructure to meet them. Centered around a shared virtualized notion of time,
based on the timeline abstraction, Quartz provides an API which makes it easy
to develop time-based geo-distributed applications. Using this API, Quartz feeds
back the timing uncertainty, i.e., the delivered Quality of Time (QoT) back to each
application, enabling it to be fault-tolerant in the face of clock-synchronization
tailure. Quartz is designed for containerized applications, features a distributed
architecture and is implemented using containerized micro-services. Our experi-
mental evaluations on real-world embedded, edge and cloud platforms highlight

the performance and scalability of our architecture.

1.3.2 Analytical Techniques for Energy-Aware Real-Time Scheduling

We now briefly describe the energy-aware real-time scheduling policies which make
up this dissertation, along with their corresponding schedulability-analysis techniques.

Detailed descriptions of these contributions can be found in Chapters 6, 7 and 8.

e Energy-Saving Multi-core Real-Time Sleep Schedulers [58]: Modern processors
provide sleep states which minimize leakage power by gating portions of the pro-
cessor and/or the system clock. We present partitioned fixed-priority scheduling
solutions for utilizing these sleep states to efficiently schedule sporadic real-time
tasks, and maximize energy savings on multi-core processors. The techniques pre-
sented rely on an enhanced version of Energy-Saving Rate-Harmonized Scheduling
(ES-RHS) [42], and our newly proposed Energy-Saving Rate-Monotonic Scheduling
(ES-RMS) policy to maximize the time the processor spends in the lowest-power
deep-sleep state. We collectively call these schedulers Energy-Saving schedulers. In
some modern multi-core processors, all cores need to transition synchronously
into deep sleep. For this class of processors, we present a partitioning technique
called Max-SyncSleep which utilizes a priori task information, to maximize the syn-

chronous deep-sleep duration across all processing cores. The performance of Max-
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SyncSleep is compared to the classical Worst-Fit Decreasing load-balancing heuris-
tic. We also illustrate the benefits of using ES-RMS over ES-RHS for this class of
processors. For processors which allow cores to individually transition into deep
sleep, we prove that, while utilizing ES-RHS on each core, any feasible partition
can optimally utilize all of the processor’s idle durations to put it into deep sleep.
Our experimental evaluations indicate that our proposed techniques can provide

significant energy savings and better schedulability.

e Thermal Implications of Energy-Saving Schedulers [59]: In many real-time sys-
tems, continuous operation can raise processor temperature, potentially leading
to system failure, bodily harm to users, or a reduction in the functional lifetime
of a system. In this dissertation, we explore the relationship between energy sav-
ings and system temperature in the context of fixed-priority energy-saving sched-
ulers, which utilize a processor’s deep-sleep state to save energy. We derive insights
from a well-known thermal model, and are able to identify proactive design choices
which are independent of system constants and can be used to reduce processor
temperature. Our observations indicate that, while energy savings are key to lower
temperatures, not all energy-efficient solutions yield low temperatures. Based on
these insights, we propose the SysSleep and ThermoSleep algorithms, which enable
a thermally-effective sleep schedule. We also derive a lower bound on the optimal
temperature achievable by energy-saving schedulers. Additionally, we discuss par-
titioning and task-phasing techniques for multi-core processors, which require all
cores to synchronously transition into deep sleep, as well as those which support
independent deep-sleep transitions. We observe that, while energy optimization
is straightforward in some cases, the dependence of temperature on partitioning
and task phasing makes temperature minimization non-trivial. Our evaluations
show that compared to the existing purely energy-efficient design methodology,

our proposed techniques yield lower temperatures (up to ~4°K lower) along with
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significant energy savings.

e Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators
[60]: In CPS, most tasks execute using a combination of CPU and accelerator re-
sources. Hence, the power of the CPU and the accelerator needs to be managed in
tandem. To reduce energy consumption, commercially-available accelerators such
as GP-GPUs and DSPs expose interfaces to scale their operating voltage and fre-
quency. Hence, we propose the CycleTandem static frequency-scaling technique to
co-optimize the operating frequencies of both the CPU and the hardware accelera-
tor. Based on practical considerations of real-world platforms, we consider various
energy-management scenarios where the accelerator or CPU frequencies may or
may not be adjustable, and propose the CycleSolo family of algorithms for such
contexts. Furthermore, we also study partitioning techniques to reduce the operat-
ing frequency when multi-core processors are used in conjunction with hardware
accelerators. Our experimental evaluations indicate that our proposed techniques
can yield significant energy savings. We also present a case-study on the NVIDIA
TX2 embedded platform to illustrate the energy savings delivered by our proposed
techniques, and observe up to 44.29% lower energy consumption as compared to the

case without energy management.

1.3.3 Analytical Real-Time Scheduling for Concurrent Accelerators

We summarize the fixed-priority schedulability analysis that we propose for concurrent

accelerators. A detailed description of this analysis can be found in Chapter 9.

e Co-Scheduling Real-Time Workloads on Concurrent Hardware Accelerators:
Modern accelerators often support concurrent execution, and allow requests be-
longing to different tasks to be co-scheduled and execute in parallel. However, ex-
isting fixed-priority real-time scheduling analyses assume that tasks can access the

accelerator only one at a time. This leads to additional schedulability pessimism
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for accelerators supporting concurrent execution. In this dissertation, we propose
schedulability-analysis techniques for real-time tasksets utilizing hardware acceler-
ators which support concurrent execution. In terms of scheduling policies, we fo-
cus on work-conserving fixed-priority scheduling and non-work-conserving FIFO
scheduling. We consider global scheduling, where the accelerator is treated as a
single resource. Our experimental evaluations suggest that our proposed analysis
methodologies can yield improved schedulability, up to ~2x more tasksets, over

traditional non-concurrent analysis techniques.

e Partitioning Techniques for Concurrent Hardware Accelerators: Modern GPU
architectures [36] coupled with software-partitioning techniques [37] have enabled
GPUs to be partitioned into multiple fractional components. Therefore, we also
consider partitioned-scheduling techniques, where an accelerator can be partitioned
into discrete units, and the accelerator requests in the taskset can be allocated
to these partitions. In particular, we propose a novel worst-fit decreasing-based
heuristic to create accelerator partitions, and allocate requests to them. Our exper-
iments indicate that, as compared to the global scheduling-based approach, our

proposed partitioning techniques offer improved schedulability.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews the relevant
prior work. Chapters 3, 4 and 5 describe abstractions and frameworks which enable
time-based coordination in geo-distributed CPS. Chapters 6 and 7 introduce the family
of energy-saving sleep schedulers, and provide an analytical understanding of the en-
ergy savings they provide along with their thermal implications. Chapter 8 introduces
the CycleSolo and CycleTandem algorithms to reduce the energy consumption of real-time

systems using hardware accelerators. Chapter 9 provides techniques and schedulabil-
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ity analysis for real-time systems using concurrent hardware accelerators. Chapter 10

concludes this dissertation and provides possible future research directions.



Chapter 2

Related Work

This chapter presents the relevant prior work on topics in the scope of this disserta-
tion. In particular, we cover relevant clock-synchronization techniques and time-based
system-design methodologies, energy- and thermal-aware real-time scheduling, and

real-time resource management for hardware accelerators.

2.1 Time-based Distributed Coordination

The utility of a shared notion of time in distributed systems has been well-studied in
prior work. In [16], the benefits of using synchronized clocks in distributed systems was
analyzed. The author concluded that synchronized clocks can improve performance
by replacing communication with local computation [16], i.e., by knowing the current
time, some properties of the system can be inferred. Therefore, this section provides an

overview of clock-synchronization techniques and time-based distributed architectures.

2.1.1 Clock Synchronization

Clock synchronization is a mature field of study, and comprehensive software solu-
tions with accompanying hardware are readily available. Examples of hardware include

GPS and atomic clocks, switches that calculate residency delay for routed packets, and

20
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network adapters that precisely timestamp incoming and outgoing packets. Such infras-
tructure is already in use by many back-end systems. For example, cellular telephone
backhaul networks use bespoke hardware for synchronizing transmissions to maximize
channel utilization. On the other hand, software protocols like the Network Time Pro-
tocol (NTP) [1], and Precision Time Protocol (PTP) [2] play a key role in achieving a
reliable and accurate shared notion of time.

The common thread underlying most clock-synchronization protocols involves pass-
ing timestamped messages between multiple nodes to estimate the round-trip packet
delay, and subsequently the clock offset between them. Most often, calculating the off-
set © between a pair of nodes involves taking the difference of the transmission time
of a clock-synchronization packet on the sender node t;y, and the reception time of the
packet on the receiver node t,y, and subtracting the estimated packet delay between the

nodes A. Therefore, the offset can be calculated by:
@ — trx - ttx - A (2.1)

Multiple such measurements are typically used to compensate for timing uncertainty.
This is because, as mentioned in Section 1.2.1, this timing uncertainty is introduced by
a variety of factors including, but not limited to, networking delays [1], timestamping
errors, and operating system and virtualization-induced latency and jitter [24] [25].

It is currently possible to synchronize to an accuracy in the order of milliseconds
with the Network Time Protocol (NTP) [1] over Ethernet, or microseconds with the
Precision Time Protocol (PTP) [2] and compliant hardware. More specialized projects,
such as WhiteRabbit [61], attain sub-nanosecond error — enough to measure the distance
light travels in a second with millimeter accuracy — by compensating for cable delay
asymmetry and using Synchronous Ethernet to frequency-lock devices.

Most recently, a number of protocols [3] [62] have been proposed to achieve
nanosecond-accuracy clock synchronization in data-centers. Notable among these is

the Huygens [3] protocol which uses a peer-to-peer probing mesh along with Support
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Vector Machines (SVM) to compute clock offsets between nodes. Based on these offset
values, the network effect [3] is used to minimize the clock-synchronization error. The
network effect utilizes the fact that clock synchronization is reflexive and transitive, and
hence the sum of the clock-synchronization error over a loop should equal zero [3].

In the wireless sensor-networking literature clock synchronization has been ap-
proached in a different way. Rather than considering the objective as synchronizing
devices to some universal time reference, all that matters is that peer devices — which
may be multiple hops away from each other — share a common sense of time, with an em-
phasis on channel-utilization efficiency. For the case where the root time is maintained
across all nodes in the network, Flooding Time Synchronization Protocol (FTSP) [63]
is state of the art. It allows only one-way reference broadcasts as opposed to Timing-
sync Protocol for Sensor Networks (TPSN) [64] and Reference Broadcast Synchroniza-
tion (RBS) [65], which use two-way message exchange between nodes, thus effectively
reducing the network traffic. All of these protocols implicitly assume that the distance
between devices is sufficiently small enough (tens of meters or less) so that propagation
delay can be ignored. Recently, Glossy [66] and PulseSync [67] have emerged and im-
proved on the multi-hop accuracy of FISP by flooding pulses at high speed throughout
the network.

However, all the above-mentioned protocols are best-effort and do not consider
application-specific QoT requirements. Therefore, most systems using these protocols
end up being over-engineered to meet the needs of pre-determined applications. Hence,
there is a need for an application-level framework which can respond to application
timing demands, while making it easy to develop time-based distributed applications.

Also relevant but complementary to our work is research on analytical modeling of
clock uncertainties [68], and methods to compensate for them via approaches such as
Kalman filtering [69]. The work in [68] models the clock by applying a Kalman filter
to track the clock offset and skew, and compensates for the uncertainty by adjusting

the synchronization interval. Seong et al. [70] compensates for the quantization error in
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timestamping using a feed forward filter preceding a PI controller. Xu et al. [69] uses
a Kalman filter based proportional-integral (PI) clock servo to correct for the quantiza-
tion error and clock offset. These kind of techniques only discuss few sources of clock
uncertainties and try to compensate for them.

In this dissertation, we focus on proposing system abstractions and frameworks,
which build on existing clock-synchronization technologies to provide “Time-as-a-

Service” to geo-distributed cyber-physical applications.

2.1.2 Time-based System Design

In the context of model-based design, PTIDES [71] is a hardware-software co-design
framework to model, design and deploy time-critical embedded applications, using a
shared notion of time. For safety-critical systems in the automotive and aerospace do-
mains, the Time-Triggered Architecture (TTA) [72] provides a deterministic way to de-
ploy systems using a shared clock.

The Time-Triggered Architecture (TTA) [72] addresses issues in safety-critical real-
time systems by establishing a global time-base to specify interaction between nodes,
whereas, an event-triggered architectures like PTIDES [71] maps model time to real
time, only when systems react or act to the physical world, e.g, sensors and actuators.
PtidyOS [73] is a micro kernel for PTIDES that generates target specific code for the
PTIDES model and runs on bare metal. However, these frameworks do not consider
the utility of the knowledge of timing uncertainty, and often rely on best-effort clock
synchronization and/or system modeling in order to achieve a correct outcome. Addi-
tionally, both PTIDES and TTA are designed for the embedded domain, and cannot scale
to geo-distributed cyber-physical applications which run in distributed heterogeneous
environments including the cloud and the edge.

There has also been some work on distributed-programming idioms that support

time as a first-class citizen. Examples include Stampede [74] which uses application-
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specified “virtual time” as the basis for enabling temporal causality in distributed ap-
plications, Stampede-RT [75] which builds on Stampede and allows distributed appli-
cations to timestamp events with real-time tags, and Persistent Temporal Streams [76]
which unifies in-memory and stable storage temporal events of a given activity. How-
ever, while these systems focus on programming abstractions for ordering distributed
events, they do not consider the utility of exposing timing uncertainty to applications,
which is key to providing time-as-a-service.

Google’s geo-distributed Spanner database utilizes synchronized clocks with the un-
certainty information to achieve global-scale consistency [6]. However, Spanner is a
closed system, is not adaptive, and relies on dedicated infrastructure. Additionally, the
TrueTime API [6] is tailored only to database transactions and does not treat the notion
of QoT as an application-specified requirement. The same is true for the POSIX API [77]

available in many modern OS.

2.2 Energy-Aware Multi-Core Real-Time Scheduling

Energy savings and system temperature are intricately tied together. Modern proces-
sors are equipped with energy-management features such as Dynamic Voltage and Fre-
quency Scaling (DVES) [41], and the use of low-power sleep states [42]. DVES enables
the processor to change its operating frequency and voltage, thereby reducing dynamic
switching power, while low-power sleep states use power gating and/or clock gating [43]
to reduce static leakage power dissipation when the processor is idle. As transistor geome-
tries get smaller, the dominance of static power as a contributor to total power consump-
tion is only expected to increase [44]. Since static power is also directly dependent on
operating temperature, scheduling techniques will increasingly need to take advantage

of processor sleep states.
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2.2.1 Energy-Aware Real-Time Scheduling

In the domain of real-time systems, the use of frequency scaling-based energy saving
scheduling techniques has been well-studied. In the context of fixed-priority schedul-
ing, Saewong et al. [78] proposed the SysClock algorithm to analytically determine the
energy-optimal frequency at which the processor must run, so that a taskset meets all its
deadlines. In the same work, dynamic frequency scaling-based scheduling techniques
named PM-Clock and DynamicPM-Clock [78] were also proposed. In [79], Arvind et al.
proposed the Static Frequency Assignment Algorithm (SFAA) to partition tasks on multi-
core processors which have a single frequency domain. SFAA extends the SysClock
framework to the multi-core context and aims to minimize the operating frequency
across all cores, so as to minimize the energy consumption. In [80] [81] [82], DVFS-
based scheduling techniques for multi-core processors can be found, where each core
has its own voltage and frequency domain.

At technology nodes smaller than 65nm [83], static leakage power already domi-
nates the total power consumption of CMOS-based VLSI circuits. For general-purpose
computing workloads, Le Sueur et al. [45] compared the energy efficiency of DVFS and
sleep state-based power-management techniques. Their work experimentally analyzes
the trade-offs between slow down (DVFES) and race-to-halt (sleep) for a range of comput-
ing platforms such as the desktop-class Intel i7 870 and the low-power Intel Atom Z550.
The result of the analysis concluded that using C-state based techniques offer improved
energy efficiency with a small impact on performance [45].

In the context of real-time systems, a priori task execution information can be uti-
lized to schedule tasks efficiently so as to maximize the time spent in low-power states.
Scheduling techniques that cluster task executions to save energy have been proposed
in [84] [85] [86] [87] [88]. In [85] [87] [88], dynamic-priority EDF scheduling is used. [86]
uses procrastination of tasks to determine the instances at which the processor can be

shutdown. [84] uses a fixed-priority scheduling based approach, which relies on online
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simulation to estimate the duration for which a task can procrastinate, thus significantly
increasing the scheduler run-time complexity. For tasks with given release times and
deadlines, [89] and [90] present dynamic priority-based scheduling techniques to maxi-
mize the common idle time on multi-core processors. In [42], Rowe et al. proposed and
analyzed the benefits of using ES-RHS in uniprocessor systems. ES-RHS is a simple,
easy-to-implement approach based on a notion of harmonization, that aggregates all the
processor idle durations together. This allows the processor to be put into deep sleep
for all idle durations, thus enabling optimal energy savings for processors which lack
frequency-scaling capabilities [42].

In conjunction with reservation-based real-time operating systems (such as Lin-
ux/RK [91]), ES-RHS presents an effective approach for energy management in unipro-
cessor real-time systems, and is particularly useful for processors which have only one
sleep state [92]. The work by Rowe et al. [42] also offers brief guidelines for the use
of ES-RHS in the multi-core context. We build on ES-RHS to propose deep-sleep-based

energy-saving techniques for real-time systems using multi-core processors.

2.2.2 Thermal-Aware Real-Time Scheduling

Thermal Management can be done reactively at runtime [93] [94] [95] [96] or proactively
at design time [97] [98] [99] [100] [101] [102] [103]. In the scope of reactive techniques,
Fu. et al. [94] proposed a control-theoretic algorithm to meet the desired temperature
requirement on a multi-core processor, subject to timing constraints. Yun et al. [96]
used a machine-learning technique (SVM) to predict the temperature profile of a multi-
processor system. Based on the predicted value, a dynamic temperature-management
scheme is used. In [93], Chandarli et al. proposed an optimal reactive scheduler for
tixed-priority uniprocessor sleep scheduling along with an associated response-time
based analysis framework. However, reactive schedulers require temperature sensors,

which may not always be present in real platforms.
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In the scope of proactive techniques, [101] describes a real-time scheduling algorithm
for uniprocessors, based on a thermal model approximated by Fourier’s Law. The algo-
rithm derives a speed schedule by minimizing temperature under both timing and ther-
mal constraints. In [102], an assignment and scheduling technique for an MPSoC was
proposed, which utilizes a mixed-integer linear program solver to optimize the peak
temperature. In [99], an optimal speed schedule is derived for a multi-core platform,
based on a thermal model given at design time. In [103], Masud et al. proposed the use
of a thermal-aware periodic resource to minimize peak temperature, in the context of
uniprocessor Earliest Deadline First (EDF) scheduling. The processor slack is utilized to
put the processor into a sleep state.

Most of the pieces of earlier work [94] [95] [96] [99] [97] [98] have focused on the
use of DVFS to optimize the processor temperature. However, the dominance of static
power makes it necessary to investigate techniques which utilize sleep states. Addi-
tionally, many low-powered devices often lack DVFES, but support sleep states [42].
The work in [93] and [103] propose thermal-aware techniques which utilize processor
sleep states. However, [103] assumes dynamic-priority EDF scheduling. On the other
hand, [93] presents a reactive framework for uniprocessor fixed-priority scheduling. To
the best of our knowledge, no thermal-analysis framework for proactive fixed-priority
sleep scheduling exists in the literature.

In this dissertation, we analyze the thermal implications of fixed-priority energy-
saving schedulers which periodically utilize the processor’s deep-sleep state, in light
of their energy-saving properties. Based on a well-known thermal model, we derive
practical insights and algorithms. Our proposed techniques focus on minimizing the

maximum temperature, rather than optimizing to meet a set of thermal constraints.
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2.3 Real-Time Scheduling for Hardware Accelerators

In this section, we first summarize the techniques proposed in literature to arbitrate
access to hardware accelerators like GP-GPUs. Subsequently, we discuss energy-saving

techniques for hardware accelerators.

2.3.1 Accelerator as a Mutually-Exclusive Resource

Most commercially-available accelerators like GP-GPUs and DSPs do not typically sup-
port preemption. The large number of registers in these accelerators makes context
switching an expensive proposition. Therefore, prior work [53] [52] has focused on
modeling accelerator access as a critical section arbitrated by a global lock. In par-
ticular, the work in [54] [104] models GPUs as mutually-exclusive resources, whose
access is governed by existing real-time synchronization protocols. The same authors
also proposed GPUSync [52], which is a software framework for GPU management in
multi-core real-time systems. GPUSync provides support for both fixed- and dynamic-
priority scheduling policies. It also provides functionalities such as budget enforcement,
multi-GPU support, and clustered scheduling. Based on this synchronization-based ap-
proach, [53] extends the analysis proposed in [54] [55] [105] [106], to propose a less
pessimistic response-time analysis framework to decide the schedulability of tasksets
which may use one or more accelerators. This analysis assumes the use of the Multi-
processor Priority Ceiling Protocol (MPCP) [105], while incorporating the effect of self
suspensions [106] [107].

In [51], Kim et al. proposed the server-based approach, where a server task is created
to access the GPU on behalf of the client applications, to arbitrate access to a GPU. In
this approach, a server task is created which performs access to the GPU on behalf of the
client applications. Each task submits its GPU requests to the server and suspends. The
server adds each GPU request to a priority queue, and if the GPU is free, it dispatches

the highest-priority task in its queue to access the GPU. Once a GPU request completes,
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the server wakes up the task which made the request, and copies over the computed
result to the task. For this approach, the authors also propose a response-time analy-
sis framework. In this dissertation, we focus on the synchronization-based approach.

However, our proposed techniques can be extended to the server approach.

2.3.2 Exploiting Concurrency

All the above-mentioned analyses treat the accelerator as a mutually-exclusive resource
and do not consider concurrency. Treating the accelerator as a mutually-exclusive re-
source leads to increased pessimism in the schedulability analysis. Nevertheless, most
modern GPU architectures support the concurrent execution of requests belonging to
different tasks.

Consider GPUs from NVIDIA. Each GPU consists of multiple streaming processors
(SMs). Typically, embedded GPUs have one or two SMs [22], while high-end GPUs can
have 10-20 SMs [108]. In terms of an application, each request is structured as a kernel,
which consists of a fixed set of parallel instructions. Each kernel consists of multiple
threads which combine to form thread blocks, which are assigned to one or more SMs
on the GPU. Based on the number of thread blocks in a kernel, it is possible for more
than one kernel to be scheduled on a single SM.

A number of techniques have been proposed in the literature to co-schedule task re-
quests and effectively exploit concurrency in GPUs. [109] proposed the Kernelet frame-
work, which dynamically reshapes GPU kernels to improve process throughput. How-
ever, Kernelet does not consider task deadlines. In [110], the authors propose S3SDNN
which exploits the execution characteristics of DNNs at runtime to optimize their dis-
patch times, so as to maximize concurrency while meeting task deadlines. In [111],
the authors infer the characteristics of the GPU scheduler on the NVIDIA TX1 platform
to gain more insight into their use in real-time systems. However, none of the above-

mentioned approaches focus on analyzing the schedulability of tasksets which utilize
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concurrent accelerators. Specifically, we consider the global-scheduling paradigm, where
task requests can be scheduled concurrently on any available fraction of the hardware
accelerator.

Recent work has also looked at partitioning the GPU into multiple fractions to which
tasks can be assigned. In general, partitioned scheduling can lead to more predictable
operation due to less interference from tasks outside the partition. NVIDIA, in their
recent GPU architectures, provides the multi-process service (MPS) [35] for partitioning.
However, MPS only performs compute partitioning and does not consider memory re-
sources. Therefore, [37] introduces the Fractional-GPU approach which provides both
compute and memory partitioning. As a part of this dissertation, we consider parti-
tioning as a tool to make unschedulable tasksets schedulable, by reducing interference
between tasks which don’t fit well together. However, we consider only computational

resources and leave memory for future work.

2.3.3 Energy Savings and Hardware Accelerators

Most accelerators do not provide user-configurable sleep states, and only support volt-
age and frequency scaling. Thus, sleep-state-based techniques cannot be used in their
context. Therefore, the work in [112] proposes a hardware-based approach called MER-
LOT for GPU energy management in the context of real-time systems. MERLOT exploits
the fact that, in the general case, most GPU kernels do not execute up to their worst-
case execution time. In such situations, the slack can be dynamically used to reduce the
voltage and frequency of the GPU. However, MERLOT considers individual job dead-
lines, and does not consider taskset schedulability, or the fact that most tasks execute
using a combination of CPU and GPU segments. In this dissertation, we instead focus
on proposing analytical approaches to compute the best CPU and accelerator frequency

pairs to reduce energy consumption, while ensuring taskset schedulability.



Chapter 3

Enabling Time-based Coordination in

Cyber-Physical Systems

Reliable cyber-physical coordination requires a shared and precise notion of time. As
illustrated in Figure 1.1 (in Chapter 1), these time-aware cyber-physical systems have
extremely diverse timing requirements. Additionally, even within a cyber-physical sys-
tem, the timing precision and accuracy requirements of one domain of connected objects
may be substantially different from another, and may also change over time. Figure 3.1
illustrates this idea by showing an example system with heterogeneous device types,
and communication channels forming different timing subgroups.

While technologies likes GPS and the Network Time Protocol (NTP) [1] have enabled
networked devices to share a precise notion of time, trends like networking delays [1],
multi-core processors and virtualization [25] introduce greater timing uncertainty. This
uncertainty is rarely visible to applications, and most systems rely on best-effort time
synchronization. In this chapter, we advocate for timing uncertainty to be visible, con-
trollable and verifiable. To do so, we introduce the concept of Quality of Time (QoT),
which represents “the end-to-end uncertainty in the notion of time delivered to an ap-
plication by the system”. Building on QoT, we present the QoT Architecture [4], centered

around a shared virtualized notion of time, which allows applications to specify their tim-
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Figure 3.1: Coordinating subgroups in a cyber-physical system require access to a shared
sense of time

ing requirements, while delivering the required QoT and exposing timing uncertainty
to applications. We argue that the knowledge of QoT enables applications to adapt and
be fault-tolerant, while allowing the system to manage resources efficiently.

To achieve these objectives, this chapter also introduces the timeline abstraction, which
features a factored-coordination paradigm for managing time in computing systems. This
abstraction enables developers to implement coordinated applications easily. Consider
an application that needs to perform coordinated actions by its distributed components.
Each of these components bind to a common timeline, each specifying its respective
QoT requirements. Application-specified QoT requirements open up the possibility of
network and system orchestration to ensure that application requirements are met, while
managing resources efficiently. This is fundamentally different from existing best-effort
clock-synchronization techniques [1] [2].

The primary contributions described in this chapter are as follows! [4]:

e We introduce the notion of Quality of Time (QoT) along with the timeline abstrac-
tion, which together re-define how time-aware applications and the operating sys-

tem exchange information about time and timing uncertainty.

e We present an application programming interface (API), centered around the time-

line abstraction, that allows developers to implement time-aware applications.

!portions of this work were done jointly with Fatima Anwar, Andrew Symington and Adwait Dongare
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e We present the QoT Stack for Linux, a realization of the QoT Architecture illus-
trated in Figure 3.3. The QoT Stack allows applications to specify their timing
requirements, while delivering the required QoT and exposing timing uncertainty

to applications.

o We evaluate the capabilities of the QoT Stack on a Linux-based embedded plat-
torm, the Beaglebone Black [113].

3.1 The Case for Shared Time and QoT

We now argue for designing coordinated CPS using a shared notion of time with the as-
sociated knowledge of QoT. In distributed software systems, a shared notion of time en-
ables increased performance and better coordination, along with decreasing the number
of messages which need to be exchanged [16]. However, there are inherent uncertainties
associated with synchronizing clocks over a network. Hence, in [16], Liskov reasons
that systems should rely on clock synchronization for performance but not for correct-
ness. This is true for most software systems. For example, reducing timing uncertainty
decreases the transaction commit wait in Spanner, leading to better performance [6].
However, in CPS, the uncertainty tolerances are dictated by the application and the en-
vironment. If the required QoT cannot be met, then the application should be aware of
it, and gracefully degrade to satisfy safety and reliability requirements.

We highlight the benefits of coordination using a shared notion of time by presenting
an emerging CPS application utilizing an idealized solution called TimeNet. Subsequently,
we present the practical challenges in enabling scalable coordination in CPS using shared

time and QoT.
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3.1.1 Connected Vehicles using TimeNet

Coordinating fleets of connected autonomous vehicles for city-wide dynamic traffic man-
agement is an example of a geo-distributed application which can benefit from using a
shared notion of time. The proposed application hierarchy is illustrated in Figure 3.2,
and consists of autonomous vehicles, Vehicle-to-Infrastructure (V2I) nodes, cloudlets and
the cloud.

In an ideal world, we can assume that all components of this application are con-
nected to a network which provides instantaneous access to an ideal source of time with
no associated uncertainty. For the sake of simplicity, let’s call this hypothetical network
TimeNet. Let’s assume that TimeNet can be used to perfectly timestamp all events and
messages with zero uncertainty. Hence, using TimeNet, a unique total ordering on all
events can be derived.

In the context of our application, the infrastructure nodes can precisely measure
the location of the vehicles, along with the exact timestamp associated with a vehicle’s
presence at that location. This timestamped information can be then forwarded to a

nearby cloudlet, which receives state information from multiple infrastructure nodes in



CHAPTER 3. ENABLING TIME-BASED COORDINATION IN CYBER-PHYSICAL
SYSTEMS 35

a small geographical area. Multiple such cloudlets can then forward their respective
state information to the cloud, which sits atop the application hierarchy. This provides
a snapshot of the traffic conditions in the city to the distributed coordination policies
running in the the cloud.

In this hierarchy, the cloud is responsible for shaping traffic flow at a macroscopic
level. Based on the macroscopic policy, the cloudlets make local decisions for their
respective regions. Lastly, infrastructure nodes decide microscopic traffic policy and
convey instructions to the autonomous vehicles, which implement these instructions. At
each stage of the hierarchy, important information is distilled and passed on to the next
tier, thus reducing the bandwidth demand on the network. Additionally, as microscopic
conditions change faster than macroscopic ones, communication frequency reduces and
QoT requirements reduces as we go up the hierarchy.

In an ideal world, accurate information can be inferred from these timestamped
events, which can be used to formulate plans of action, such that vehicles coordinate
their actions using this ideal notion of time. Thus, vehicular traffic is dynamically man-
aged at city scale. In the worst case, if timing constraints are violated or messages
delayed, then by using the current time, components can detect failures, and take cor-
rective action [16].

Unfortunately, a perfect source of time does not exist, and practical systems introduce
uncertainty in timing measurements. Hence, to determine the validity of timestamps,
the knowledge of its associated uncertainty is essential. Based on this uncertainty in-
formation, coordination policies can order events with different degrees of confidence.
If the uncertainty exceeds tolerable limits, systems can fail-over or gracefully degrade.
For example, in the context of the dynamic traffic management application, if the uncer-
tainty exceeds tolerable limits, the coordination policy can instruct all or some vehicles
to temporarily change their speeds, or come to a safe halt.

Exposing the notion of QoT to applications also allows timing requirements to be ex-

plicitly specified. This enables the system to optimize for application QoT requirements,
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and manage resources efficiently. Hence, in the context of CPS, synchronized clocks
along with QoT can deliver both performance and reliability.

The present-day GPS is a close approximation to TimeNet, ideally providing synchro-
nization in the order of tens of nanoseconds. However, GPS is not accesible indoors and
inaccurate in urban canyons. This limits its use in many applications. Hence, a practical
realization of TimeNet may involve multiple outdoor GPS receivers equipped with chip-
scale atomic clocks [114]. These receivers can distribute accurate time to subscribers both
wirelessly and over the Internet [1]. To support the notion of QoT, it is crucial that each
node in TimeNet quantify the uncertainty in its notion of time.

Thus, to enable fault-tolerant time-based coordination in cyber-physical systems, there
is a need for a coordination abstraction which allows a distributed application to specify

its QoT requirements to the underlying system.

3.2 Timelines

Modern operating systems keep track of time by means of a single hardware timer

driven by an oscillator. Take the case of Linux: multiple virtual clocks, such as
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CLOCK_REALTIME and CLOCK_MONOTONIC, are derived from a single hardware timer. These
virtual clocks all share the same accuracy and resolution, and expose themselves to ap-
plications in userspace via the POSIX clock [77] interface. This interface allows clocks
to be read by an application, and be disciplined using clock-synchronization algorithms
such as NTP [1] and PTP [2].

These clock-synchronization algorithms are based on the “trickle-down time” ap-
proach, shown in Figure 3.4a, where a static master sits on top of a timing hierarchy. All
the other nodes in the hierarchy synchronize their clocks to this master and measure time
with respect to its reference clock. Furthermore, the master’s synchronization rate for
the entire network may be statically chosen based on the slave with the tightest accuracy
requirement. Such approaches are inherently not adaptive and wasteful of resources.

We introduce the timeline abstraction, which features an alternative paradigm based
on factored coordination, where multiple coordinating application components bind to a
common timeline to synchronize their clocks to one another, as shown in Figure 3.4b.
A timeline provides a shared virtual clock reference to all the distributed components
of an application. Consider an application that needs to perform coordinated actions
at its distributed endpoints. All of these components bind to a common timeline, each
specifying its respective QoT requirements. As a result, the timeline abstraction provides

the following functionalities:

1. allows an application to specify which components coordinate with each other

using shared time, and

2. provides visibility into where each application component is deployed, and what

its QoT requirements are with respect to the timeline reference.

The above-mentioned functions allow the underlying framework to orchestrate the
clock-synchronization protocols and infrastructure to ensure that QoT requirements are

met, while making the achieved QoT visible to the application.
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(a) Trickle-Down Time Model (b) Timeline Model

Figure 3.4: Traditional v/s Timeline-based synchronization models [4]

Thus, a timeline abstracts away clock synchronization from the application. Addition-
ally, a timeline is not necessarily tied to any standard timing reference (such as UTC),
and, in the context of distributed coordination, serves as the “narrow waist”. This en-
ables developers to easily develop distributed time-based applications on heterogeneous
infrastructure, using a timeline-based API. For example, multiple players in the same
locality playing a virtual/augmented-reality game need not synchronize to an external
time server. Instead, each player can bind to a timeline, which synchronizes their clocks
to one another, so as to meet their QoT requirements.

The ability of a timeline to expose a virtual clock reference allows different coordi-
nating sub-groups with varying QoT requirements to each have its own time reference
and co-exist on the same infrastructure. Note that each node bound to a timeline can
have different QoT requirements with respect to the chosen reference. These QoT re-
quirements are generally defined by (i) safety constraints, (ii) performance requirements
and/or (iii) the assumptions/tolerances of the controller/decision-making entity. Addi-
tionally, multiple virtual timelines can coexist on a single node, although they can be tied
to a single time source. Thus, timelines overcome the limitations of the static master-
slave synchronization paradigm, and support applications that dynamically bind and
unbind from timelines in an ad-hoc fashion.

Motivated by the timeline abstraction, the next section introduces the QoT Architec-

ture, along with its corresponding Linux implementation.
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3.3 QoT Architecture and Stack

We now present the QoT Architecture, which provides a framework to enable CPS,
which rely on a shared notion of time for performing distributed coordination. Using
the timeline abstraction, the QoT Architecture takes in application QoT requirements,
orchestrates the underlying infrastructure to meet them, and makes the delivered QoT
(timing uncertainty) observable to QoT-aware applications.

The QoT Architecture consists of three distinct components:

1) Clocks are used to expose timekeeping hardware, and provide timekeeping and
time-stamping capabilities. Clocks also expose their parameters such as accuracy, preci-
sion and drift, which enable uncertainty calculations.

2) System Services are responsible for distributing timeline meta-data, message pass-
ing, quantifying timing uncertainties, and synchronizing clocks across nodes.

3) The QoT Core acts as a bridge between all the system components, applications
and the operating system. It is responsible for application scheduling as well as main-
taining synchronization and timeline state.

The architectural components present on each node along with their interactions are
illustrated in Figure 3.3. Based on this architecture, we developed a prototype QoT Stack
for Linux [4], which focuses on implementing necessary functionality over a Local-Area
Network (LAN). Along with a wide range of available software, Linux supports plat-
forms ranging from embedded to server-class processors. This makes it an ideal target
OS for both prototyping and real-world use-cases. A detailed architectural diagram for
the QoT Stack for Linux can be found in Figure 3.5. In subsequent sections, we briefly
describe each component of the QoT architecture, and its corresponding implementation

in the QoT Stack for Linux. More details can be found in [4].
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3.4 Clocks

The QoT architecture characterizes timekeeping hardware as clocks. These clocks play a
key role in providing a shared notion of time to userspace applications. Each clock also
keeps track of its inherent uncertainty, which is useful for estimating QoT. Based on the
tunctionality provided, the QoT architecture supports two types of clocks:

1) Core Clocks are integral to maintaining a shared notion of time, and all timelines
derive their reference time as a projection from the core clock. For a clock to be utilized
as a core clock, it must provide (i) the ability to read a strictly-monotonic counter, which
cannot be modified, (ii) the ability to generate hardware interrupts which can be used
to schedule events, and (iii) provide the hardware resolution and uncertainty associated
with reading the clock. Optionally, a core clock may also provide the ability to timestamp
external events, or precisely trigger hardware events in the future.

2) Network Interface Clocks, also referred to as NICs, assist in disciplining the local
timeline clock to some chosen reference time. Modern network interfaces often provide

the ability to accurately timestamp network packet transmission and reception at the
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physical layer. This can enable more accurate measurements of the propagation delay
associated with a medium, which in turn can enable precise calculation of the offset
between two clocks. Like a core clock, a NIC also provides the ability to read time,
and optionally may provide the ability to precisely timestamp an event, or generate a
very deterministic pulse in the future. A NIC however, differs from a core clock in
that (i) it is disciplinable and may not necessarily be monotonic, and (ii) it does not
provide the ability to schedule interrupts. Hence, it cannot be used to schedule user-
level application threads. Given these differences in features and functionality, the QoT
architecture needs to support both clock types. As described in later sections, this adds
an additional requirement for both these clock types to be synchronized with each other.

Linux Implementation: The clocks in our QoT Stack implementation (illustrated as
Network Interface Clock and Platform Core Clock in Figure 3.5) are managed via drivers, and
we make use of the Linux ptp_clock libraries to abstract away from hardware-platform-
specific clock sources. This abstraction provides the ability to (i) enable or disable the
clock source, (ii) read the clock source, (iii) configure timer pins (for timestamping inputs
or generating pulse-width modulated outputs) and (iv) discipline the external clock —
either in hardware or in software. Additional details of the prototype clock drivers

implemented for the ARM-based Beaglebone Black [113] can be found in [4].

3.5 System Services

In the QoT architecture, the userspace system services are responsible for distributing
timeline metadata, computing QoT, and performing clock synchronization. The primary
system services are described as follows:

1) The Data Distribution Service is a publish-subscribe standard for real-time sys-
tems [115], which we utilize to disseminate timeline metadata across the network. This
provides applications visibility into available timelines. Additionally, the system can

also use this information to configure and optimize synchronization strategies to meet
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Figure 3.6: Timeline-based end-to-end time synchronization

application QoT requirements. In the QoT Stack, we utilize OpenSplice [115] as the data
distribution service.

2) The Synchronization Service is responsible for exchanging timestamps to map
local time to some reference time. Our timeline-driven architecture supports multiple
timelines on a single node, with each timeline maintaining its own notion of time. In the
QoT Stack, we maintain each timeline reference as a mapping from a local core time to
a global timeline reference. To generate this mapping, we perform clock-synchronization
in two steps as shown in Figure 3.6. The first step performs intra-node synchronization
by accurately aligning each network-interface clock (NIC) to the presiding core clock.
By this process, the timestamps provided by a NIC can be considered as equivalent to
the core clock. Hence, these NIC timestamps can now be utilized to perform clock syn-
chronization between nodes, using existing clock-synchronization protocols. Additional
details about the synchronization-service implementation, and the process by which it
estimates QoT can be found in [4].

3) The System-Uncertainty Estimation Service estimates the uncertainty introduced
by the OS in reading a timestamp. Every timestamp read by a user application contains
an uncertainty value introduced by the operating system. This uncertainty varies, and
is a function of different factors like the system load and the CPU operating frequency.
Therefore, this service continuously updates these uncertainty statistics and passes it
to the QoT Stack, which in turn utilizes this value while computing the end-to-end

uncertainty bounds.
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3.6 QoT Core

The QoT Core (also referred to as the core) is central to the QoT architecture and acts
as a point of information exchange between applications, clocks, system services and the
host operating system. The core performs the following key functions:

1) Timeline Management: To satisfy different QoT requirements, the core keeps track
of different timelines and the applications bound to these timelines. It also provides an
interface for applications to bind /unbind to/from a timeline, as well as specify /update
their QoT requirements.

2) Clock Management: The core provides an interface for different hardware clocks
to register with it, and exposes an interface for a privileged user or service to choose and
switch between these different hardware clocks. The core utilizes this chosen clock to
maintain a monotonic sense of time, referred to as core time. The core also maintains
the per-timeline projection parameters from the core clock to each timeline reference,
and also provides an interface for the synchronization service to manipulate these per-
timeline projection parameters.

3) Event Scheduling: Scheduling an application on a global notion of time is impor-
tant to execute distributed tasks synchronously. Hence, the core provides applications
the ability to synchronously schedule events based on a timeline reference. The core pro-
vides this functionality in the form of blocking waits by interfacing with the operating
system scheduler. Note that a blocking wait consists of an application suspending, and
requesting the OS scheduler to re-schedule the application at or after a specified absolute
time instant or relative time duration. Our scheduling subsystem is designed to dynam-
ically compensate for any synchronization changes made to a timeline reference. The
design of the scheduling subsystem is such that it is agnostic to the scheduling policy
followed by the operating system, and only changes the state of an application from
ready to waiting and vice versa. This gives flexibility to operating system designers to

optimize the scheduler for different scheduling metrics, based on the target platform.
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Table 3.1: Quality of Time APIs
Category API Return Type Functionality
Timeline timeline_bind (name, accuracy, resolution) timeline Bind to a timeline
Association | timeline_unbind (timeline) status Unbind from a timeline

timeline_getaccuracy (timeline) accuracy Get binding accuracy
timeline_getresolution (timeline) resolution Get Binding resolution
timeline_setaccuracy (timeline, accuracy) status Set Binding accuracy

timeline_setresolution (timeline, resolution)

status

Set Binding resolution

timeline_setschedparams (timeline, period, start_offset)
timeline_waituntil_nextperiod (timeline)

timeline_timer_create (timeline, period, start_offset, count, callback)
timeline_timer_cancel (timer)

timeline_config_events (timeline, event_type, event_config, enable, callback)

status
uncertain_timestamp
timer
status
status

Time timeline_gettime (timeline) uncertain_timestamp | Get timeline reference time with uncertainty
Management | timeline_getcoretime () uncertain_timestamp | Get core time with uncertainty
timeline_core2ren (timeline, core_time) uncertain_timestamp | Convert a core timestamp to a timeline reference
timeline_rem2core (timeline, time) uncertain_timestamp | Convert a timeline reference timestamp to core time
Event timeline_waituntil (timeline, absolute_time) uncertain_timestamp | Absolute blocking wait
Scheduling | timeline_sleep (timeline, interval) uncertain_timestamp | Relative blocking wait

Set period and start offset

Absolute blocking wait until next period

Register a periodic callback

Cancel a periodic callback

Configure events/external timestamping on a pin

4) QoT Propagation: One of the key functions of the QoT architecture is to expose
the end-to-end timing uncertainty to applications. As shown in Figure 3.3, the core helps
collect the measured uncertainties from different sources and combines them to compute
an end-to-end QoT estimate. These QoT estimates are appended to every timestamp.

In the QoT Stack for Linux, the QoT Core (shown as the central component in Fig-
ure 3.5) is implemented as a loadable kernel module. This design choice ensures that
no changes are made to the Linux kernel, ensuring portability across different kernel

versions. Additional details of the QoT Core kernel module can be found in [4].

3.7 Application Programming Interface

Ease of application development is one of the key objective of the QoT Stack. Therefore,
we propose an API that allows application developers to simplify the development of
distributed time-aware applications. The key API calls are described in Table 3.1. Based

on their functionality, we can categorize the API calls as follows:

1. Timeline Association APls allow applications to bind/unbind to/from a specific

timeline, and specify /update their QoT requirements.

2. Time Management APIs allow applications to read the timeline notion of time with

the uncertainty estimate.
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3. Event Scheduling APIs allow applications to schedule events using absolute and
relative blocking waits on the timeline reference, along with returning the timing
uncertainty in when the event was actually scheduled. Additionally, the APIs also
provides the ability to trigger events at a deterministic point in the future, as well
as accurately timestamp external events, contingent on hardware support from the

core clock.

We now present an example Time Division Multiple Access (TDMA) application in List-
ing 3.1, which was written using our C APL To successfully perform TDMA, multiple
nodes need to be allocated transmit slots, such that no packet collisions occur. Therefore,
it is essential that all nodes participating in the TDMA transmissions have access to a
shared notion of time, along with visibility into the associated timing uncertainty. In
current implementations of TDMA, the application over-compensates for timing uncer-
tainty by using guard bands. However if timing uncertainty increases beyond these guard
bands (for example, if synchronization is lost), then packets will collide. Hence, provid-
ing the application with uncertainty measurements by means of QoT bounds, enable the
application to adapt when the required QoT cannot be delivered.

The TDMA application described in Listing 3.1, starts by creating a binding to a
timeline, with desired accuracy and resolution using timeline_bind. Given that trans-
mitting in a TDMA slot is inherently periodic, the application sets its period and start
offset using timeline_setschedparams. Subsequently, the application executes a loop,
where it calls timeline_waituntil_nextperiod, which wakes the task up every period,
using the programmed period and start offset. This call also returns an uncertainty in
the time when the scheduler returned control to the application. The application can
make use of this information to take a decision on transmitting a packet. Finally, before

the application terminates, it unbinds from the timeline using timeline_unbind.
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Listing 3.1: QoT-aware TDMA Application

/* Binding Parameters =/

timeinterval_t accuracy;

accuracy .below = {0, lel2}; /* 1 microsecond x/
accuracy.above = {0, lel2}; /* 1 microsecond x/
timelength_t resolution = {0, 1e9}; /+ 1 nanosecond %/

period = TDMA_CYCLE;
start_offset = get_my_slot ();
name = "tdma—timeline"
/* Bind to a timeline with requested UUID x/
timeline_t timeline;
timeline = timeline_bind (name, accuracy, resolution);
/* Set period and start offset x/
timeline_setschedparams (timeline, period, start_offset);
/* Transmit Packets using TDMA slot x/
while (tdma_running) {
timestamp = timeline_waituntil_nextperiod (timeline);
if (timestamp.uncertainty < accuracy ) {
transmit_packet ();
}
else {

hold_off ();

)

/+ Unbind from a timeline x/

5 timeline_unbind (timeline);

3.8 Experimental Evaluation

We now evaluate the performance of the QoT Stack for Linux. Our prototype imple-
mentation provides hardware support for the ARM-based Beaglebone Black (BBB) [113]
embedded platform. Therefore, our testbed comprises of multiple BBB nodes connected

by means of an IEEE-1588-compliant switch [116].
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Figure 3.7: (a) Core-NIC synchronization accuracy (b) Illustrating the adjustable syn-
chronization parameter

3.8.1 Clock-Synchronization Measurements

We now describe the evaluations performed to benchmark the clock-synchronization
capabilities of our QoT Stack.

Core-NIC Clock Synchronization: As described in Section 3.5, to achieve end-to-
end synchronization, i.e., mapping local core time to a global timeline reference, the
first step involves accurately synchronizing the on-board network-interface clock (NIC)
with the local core clock. Figure 3.7a plots the probability distribution of Core-NIC
synchronization accuracy. Observe that we achieve an accuracy in the order of tens of
nanoseconds by utilizing a hardware-programmable timer on the BBB AM335x. This
timer deterministically triggers periodic voltage-change outputs on a pin, which is then
timestamped by the NIC, to work out the clock-disciplining parameters.

Tunable Clock Synchronization: The ability to adapt to application QoT require-
ments is also a key proposition of the QoT architecture. Therefore, we investigate the
use of modifying the transmission rate of synchronization packets to tune the clock-
synchronization accuracy. Figure 3.7b plots the measured clock-synchronization accu-
racy as a function of the synchronization interval (inversely proportional to synchroniza-
tion rate). Observe that, as we increase the synchronization-packet transmission rate, the
synchronization error reduces.

End-to-End Clock Synchronization: We consider a topology similar to the one il-
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Figure 3.8: (a) shows pair-wise error probability density of three nodes a, b, ¢ bound to
Timeline 1 in Figure 3.4b with 100 usec accuracy requirement, while (b) shows pair-wise
error probability density of three nodes ¢, d, e bound to Timeline 2 with 1 psec accuracy
(Note that x-axis units are in nanoseconds, and x-axis scale changes in (a) and (b)). Note
that ¢ maintains mappings of both timelines, and the achieved accuracy for all the nodes
is almost equal to their desired accuracy

lustrated in Figure 3.4b (Section 3.2) to measure the end-to-end clock-synchronization
accuracy. In particular, we consider two timing subgroups: a test application A de-
ployed on nodes a, b and c bound to Timeline 1 with an accuracy requirement of 100
usec; and a test application B deployed on nodes ¢, d and e bound to Timeline 2 with
an accuracy requirement of 1 usec. The system sets a synchronization rate of 0.05 Hz
for Timeline 1, and 2 Hz for Timeline 2 based on their respective application-specified
accuracy requirements. We utilize this topology to demonstrate that the QoT Stack can
run multiple parallel synchronization sessions on a single node, which simultaneously
disciplines multiple timelines. The results are illustrated in Figure 3.8, where node c
maintains two timelines with different accuracy requirements of 100 usec and 1 usec,
with respect to Timelines 1 and 2 respectively. This experiment validates our claim that
the timeline-driven architecture not only supports multiple virtual time references on a

single node, but is also able to adapt to meet application QoT requirements.



CHAPTER 3. ENABLING TIME-BASED COORDINATION IN CYBER-PHYSICAL

SYSTEMS 49
4000 — — 15000
30001 10000
'S 2000 | 3
2 € 5000
= 1000 - =
:% o -% ‘A’-\/
g R |
S -1000; - 5 ‘ ‘
-5000f - T :
-2000} - :
—-3000 , : -10000
0 5000 10000 0 1000 2000 3000
Common events Common events
(a) Synchronization on for 1 hour (b) Synchronization on, then off for 5 mins
80000
60000
'S 40000
2
= 20000
<
I 0
5
£ -20000

-40000
-60000
0

5000 10000

Common events

(c) Synchronization on, then off for 1 hour

Figure 3.9: Upper bound (upper green plot) and lower bound (lower blue plot) around
the actual uncertainty (middle red plot) with and without synchronization. Note the
change in y-axis scale which is increasing from (a) to (c)

QoT Estimation: Figure 3.9 showcases the QoT Stack’s ability to estimate valid QoT
estimates. These QoT estimates capture the timing uncertainty introduced by different
sources of errors, which cause a node’s time estimate to diverge from its true value.
In Figure 3.9, the red plot provides the ground truth i.e, the actual measured offset
between the local timeline reference and the global timeline reference. On the other hand,
the green and blue plots describe the upper and lower QoT bounds respectively, as

estimated by the QoT Stack. Note that these provided bounds are valid as they always
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bound the measured error. Section 3.1 highlighted the benefits of QoT for applications
to detect clock-synchronization failure. Therefore, Figure 3.9b and 3.9c¢ first synchronize
the clock, and then simulate clock-synchronization failure by disconnecting the network.
Observe that, after the network disconnects, the provided QoT bounds extend in both
directions as a function of variance in frequency bias, and they always bound the actual
measured offset between the two nodes. Thus, we can conclude that the QoT Stack

provides accurate QoT estimates.

3.8.2 Scheduler Measurements

We benchmark the QoT Stack’s scheduling interface against the Linux Real-Time (RT)
scheduler by using periodic pin-toggling applications. All the following experiments
were conducted under identical load conditions, for a duration of 3000 seconds, with
the pin-toggling application being the highest real-time priority user application in the
system. Multiple sporadic tasks with lower real-time priorities, which used the QoT
Stack, were also running on the same system.

Scheduler Uncertainty: To measure scheduler uncertainty, we devise the fol-
lowing experiment. = On a single node, an application periodically calls the
timeline_waituntil_nextperiod API call, such that the task is scheduled to toggle
a memory-mapped GPIO pin at every second boundary on a timeline reference. When
the task wakes up, the QoT Stack provides a timestamp (with uncertainity) for when
the event was actually scheduled. The scheduler latency can be estimated by taking the
difference of the timestamps: when the task was supposed to wake up, and when it
was actually scheduled. We also empirically measure the scheduler latency by using a
Salae Logic Pro 16 logic analyzer [117]. The logic analyzer measures the latency for each
pin toggle event by comparing against a deterministic PWM with edges at every second
boundary on a timeline reference.

Figure 3.10a plots the distribution of the scheduler latency as estimated by the QoT



CHAPTER 3. ENABLING TIME-BASED COORDINATION IN CYBER-PHYSICAL

SYSTEMS 51
0.06 0.035
2005 2 003
g £ 0.025
80041 a
= 2 0.021
B50.03} 3
%’ %’ 0.015
a 0027 & 001}
0.017 0.005
O o Mrfbeetiome m o l
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Scheduler Latency (us) Scheduler Latency (us)
(a) Estimated QoT Scheduler Latency (b) Measured QoT Scheduler Latency
0.06
0.05}

Probability Density
o o o9
o o o
N w S

o

o

=
T

0
20 40 60 80 100 120 140

Scheduler Latency (us)

(c) Measured Linux RT Scheduler Latency

Figure 3.10: Scheduler Latency Distributions, for a periodic pin-toggling application on
a single node

Stack, while Figure 3.10b shows the empirically-measured distribution. Observe that
the empirically-measured distribution and the distribution provided by our stack share
similar characteristics. This demonstrates that the uncertainty estimate provided by the
QoT Stack holds up to empirical measurement.

For the Linux RT scheduler, using the SCHED_FIFO real-time priority scheduling pol-
icy, Figure 3.10c shows the measured latency distribution, where the clock_nanosleep
system call was used to schedule a periodic pin toggle. Note that the QoT-aware Linux
scheduler and the Linux RT scheduler share similar statistical properties. The QoT-

aware scheduler provides adherence to our timeline-driven architecture, with no loss in
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Figure 3.11: End-to-End Scheduling Jitter Distributions, for a distributed synchronous
pin-toggling application deployed on two nodes

performance.

Coordinated Scheduling: The ability to perform choreographed scheduling is key
to our stack, and hence we characterize the end-to-end synchronous scheduling jit-
ter. In our setup, we have two identical applications running on separate nodes.
Both applications bind to the same timeline, specifying a synchronization accuracy
requirement of 1 us. The applications synchronously toggle a GPIO pin, using the
timeline_waituntil_nextperiod API call, at every second boundary on the timeline
reference. The synchronization service is also running on both nodes. In Figure 3.11a,
we plot a distribution of the end-to-end jitter between the pin toggles of the distributed
application. The instants at which the pins were toggled was captured by a logic ana-
lyzer, and the difference in timestamps, were used to compute the obtained distribution.

We conduct a similar experiment using the Linux clock_nanosleep system call on
two distributed nodes synchronized by PTP. Figure 3.11b plots the distribution of the
end-to-end scheduling jitter for Linux and PTP. Our stack runs a patched PTP synchro-
nization service. Hence, the distribution obtained has a similar jitter profile to that
obtained using PTP. Note that our stack does not suffer any performance loss, while at

the same time providing a range of QoT-based functionality.
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Figure 3.12: Clock read latency histograms in different time intervals, estimated by the
system uncertainty estimation service

Clock-Read Latency: Figure 3.12 shows two histograms for the estimated latency in
reading the core clock from userspace, over different one-second durations, as estimated
by the system uncertainty estimation service. Observe that the distributions change over
time and is a function of system load. Each peak in the distribution corresponds to dif-
terent locks which cause contention in reading the core clock. This measured distribution
plays a key role in continuously keeping track of the uncertainty introduced by the OS

in reading the clock.

3.9 Summary

In this chapter, we introduced the notion of Quality of Time (QoT), which represents “the
end-to-end uncertainty bounds corresponding to a timestamp, with respect to a clock ref-
erence.” Adopting this holistic notion of Quality of Time (QoT), which captures clock
metrics such as resolution, accuracy, and stability, we propose an architecture in which
the local perception of time is a controllable operating system primitive with observable
uncertainty, and where an adaptive clock-synchronization service balances applications’

timing demands with system resources such as energy and bandwidth. Our architecture
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features an expressive application programming interface that is centered around the no-
tion of a timeline — a virtual temporal coordinate frame that is defined by an application
to provide its distributed components with a shared sense of time, with a desired accu-
racy and resolution — that enables developers to easily write applications whose activities
are choreographed across time and space.

Leveraging open-source hardware and software components, we built an implemen-
tation of our proposed QoT Architecture called the QoT Stack for Linux, and present re-
sults from its evaluation. The QoT Stack manages clocks and synchronization protocols
to deliver application-specified levels of QoT. Additionally, it also makes the delivered
QoT visible so that QoT-aware applications can adapt if the delivered QoT exceeds ap-
plication requirements. Our QoT Stack for Linux is open-source, and the code can be

found at https://bitbucket.org/rose-line/qot-stack/src.


https://bitbucket.org/rose-line/qot-stack/src

Chapter 4

Bringing QoT to Virtual Machines

To enable scalable time-based cyber-physical coordination, it is essential that we engineer
a QoT-aware cloud/edge-cloudlet infrastructure [17]. However, to maintain application
isolation, most public clouds and cloudlets provide multi-tenancy using virtualized units
of computing. These maybe Virtual Machines (VMs) [26] or application containers [27].
Additionally, the use of virtualization for consolidation of multiple real-time systems
on a single platform is also of increasing interest [118]. Motivated by these needs, this
chapter focuses on bringing the notion of QoT to the dominant virtualization technology,
namely virtual machines. We design and implement the QuartzV extension to the QoT
Stack for Linux for introducing the notion of QoT to Linux VMs running atop the open-
source QEMU-KVM [57] hypervisor.

The contributions described in this chapter are as follows:

e Elucidating the challenges and subsequent architectural choices in bringing QoT

to Virtual Machines,

e Introducing the QuartzV extensions for Linux VMs which support para-virtual

clocks,

e Porting the QoT Stack for Linux to VMs and hypervisors which do not support

para-virtual clocks, and

55



CHAPTER 4. BRINGING QOT TO VIRTUAL MACHINES 56

e Evaluating and comparing the performance and scalability of the para-virtual

QuartzV approach against the native and fully-virtualized scenarios.

4.1 Background

We now introduce the background relevant to time and virtualization.

4.1.1 Virtualization

Virtualization is often used to share physical hardware resources among multiple users,
while providing the illusion that every user has access to his/her own machine [119]. To
support this illusion, it is important that (i) virtualized units are well-isolated from other
users [119], and (ii) the overhead of virtualization is low [119]. These objectives are often
conflicting, and virtualization technologies generally trade off one of the objectives in
tavor of the other. For example, hypervisor-based virtual machines [57] [120] offer strong
isolation by trading off some performance due to the overhead of the hypervisor. On
the other hand, operating-system level virtualization [27] (also known as containerization)
trades off some level of isolation for performance by eliminating the hypervisor.

In this chapter, we focus on hypervisor-based virtual machines (VMs). Modern hy-
pervisors generally take advantage of hardware-accelerated virtualization, based on hard-
ware extensions like Intel VT-x [121] and AMD-V [122]. These technologies enable
VMs to execute unprivileged CPU instructions natively, while privileged instructions
are serviced using the trap and emulate mechanism [121]. On the other hand, para-
virtualization [119] enables low-latency access to peripherals and I/O devices, such as
network interfaces, disks and clocks, also delivering near-native performance. This ac-
cess is made possible by para-virtual drivers [119], which can directly perform protected
access to the hardware through the hypervisor. For systems which do not support hard-
ware acceleration or for VMs which lack para-virtual drivers, all CPU instructions or

peripheral-device access must be emulated in the hypervisor. This is also referred to as
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full virtualization [119]. In practice, modern hypervisors generally utilize a mixture of
para-virtualization and hardware-accelerated virtualization [57] [120] to provide near-

native levels of performance.

4.1.2 Time and Virtualization

The use of hypervisor-based VMs introduces an additional abstraction layer between
applications and the hardware. This translates to additional timing uncertainty, due to
higher jitter in clock-read and interrupt-servicing latencies [25]. Therefore, in [25], the
authors experimentally characterize the timekeeping properties of the Xen hypervisor
[119]. Their work highlights the weaknesses of the existing timing solution in Xen,
which uses independent NTP [1] synchronization sessions for each guest VM. They refer
to this as the independent clock paradigm, where each VM independently performs clock
synchronization. The authors note that this practice is wasteful of system resources, and
degrades synchronization accuracy. Additionally, the authors also find the practice of
keeping clock-synchronization state in the VM detrimental for live migration. Hence,
the authors propose a dependent-clock solution based on the RADclock [123] feed-forward
synchronization algorithm. Each VM has a dependent clock, which is sourced from the
hardware clock on the host machine. Hence, each VM has access to the para-virtualized
hardware clock exposed in the host OS. This clock is disciplined in the host OS, and
thus only one synchronization service is required per host machine. Apart from being
resource-efficient, as VMs now do not contain synchronization state, the dependent-
clock paradigm also aids VM live migration. Hence, if a VM is migrated, it need not
re-synchronize its clock, and can derive the time from the hypervisor at the new host.
The authors in [25] conclude that the para-virtualized dependent clock is useful for
VMs. However, the authors do not consider the utility of exposing timing uncertainty in-
formation. Additionally, the recent evolution of hypervisors and the advent of hardware-

accelerated virtualization offers a fresh opportunity to re-visit the problem of time and
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Figure 4.1: The QEMU-KVM Hypervisor. VM 1 supports para-virtual peripheral access,
while VM N utilizes peripheral emulation (full virtualization)

virtualization.

4.1.3 Kernel-Based Virtual Machine (KVM)

We focus on one commodity open-source hypervisor, namely Kernel-based Virtual Ma-
chine [57], also referred to as QEMU-KVM. However, the core concepts of this work are
applicable to other commercial and open-source hypervisors. Figure 4.1 shows the or-
ganization of the QEMU-KVM hypervisor, and illustrates how virtual machines interact
with its components. QEMU-KVM consists of two core components:

1) The QEMU Emulator functions as a hypervisor, and each VM runs as a QEMU
process. QEMU can be used for full virtualization (all instructions emulated), or
hardware-accelerated virtualization (only privileged instructions emulated). In addi-
tion, QEMU also provides VMs with para-virtualized access to host peripherals (such
as disks, I/O devices, network interfaces and clocks). For VMs which do not support
para-virtualization, QEMU also provides peripheral-device emulation.

2) The KVM Loadable Kernel Module enables QEMU to interface with the Linux
kernel. This allows QEMU-KVM to use existing kernel functionality for resource man-

agement (such as scheduling and isolation). Additionally, the KVM kernel module also



CHAPTER 4. BRINGING QOT TO VIRTUAL MACHINES 59

enables the hypervisor to take advantage of hardware extensions like Intel VT-x and
AMD-V.

In terms of clock support, QEMU-KVM provides the para-virtual KVM-clock [124] to
Linux VMs. This allows a para-virtual guest VM to access the host’s monotonic system
clock (CLOCK_MONOTONIC) and real-time clock (CLOCK_REALTIME). On the x86 architecture,
KVM-clock uses the Time-Stamp Counter (TSC) [125], and a memory page mapped into
the VM’s virtual-memory space to provide low-latency clock reads. Whenever the VM
is scheduled, the hypervisor writes the current time (monotonic and real-time), and
corresponding TSC value into this page. The VM can then use this timestamp along
with reading the current TSC value to calculate the current time. Given that both reading
the TSC (rdtsc) and accessing a memory address are non-privileged operations, a para-
virtual guest VM can perform low-latency clock reads. For VMs which do not support

para-virtualization, QEMU-KVM provides access to emulated timers [57].

4.2 Time-Based Applications using QoT

Before describing QuartzV, we motivate its utility by describing an application which
can be enabled by using virtualization and QoT. Although the application described
is from the industrial-automation domain, the core concepts can be adapted for other
coordinated distributed application domains.

Consider an industrial-automation application, where multiple robotic arms are used
to collaboratively assemble a mechanical assembly. Collaborative manufacturing is often
required to: (i) speedup assembly (e.g. performing parallel assembly), and (ii) perform
joint tasks which may be too large for a single robot to operate on (e.g. cooperatively
picking and placing a large part onto the main assembly). To successfully perform col-
laborative manufacturing, we need to ensure that the robotic arms are coordinated such
that, (i) when performing parallel tasks, they do not interfere with the proper function-

ing of each other, or operate in/on the same physical space, and (ii) when performing
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joint tasks, they coordinate their actuations (actions) to successfully complete the task.
While these coordination scenarios can be carried out using extensive message passing,
the overhead involved is high. This message-passing overhead prevents a system from
scaling to multiple endpoints. Often, industrial systems are over-engineered or hard-
coded to achieve such tasks, which limits the capabilities and flexibility of the system.

An alternative approach is to use a shared notion of time as a primitive for coordina-
tion [16] [4]. In this case, an intelligent centralized /distributed task planner with a view
of the entire system can dynamically generate action commands with a corresponding
action timestamp, based on shared time. The endpoints of the system can then execute
these actions at the planned time points. However, given that industrial systems are
often safety-critical, a fault-detection primitive such as QoT is needed to handle the case
of clock-synchronization failure [17].

By specifying the required QoT, each component in the system knows the maximum
level of uncertainty tolerable to perform successful coordination. Since each node in-
dependently maintains its own notion of QoT with respect to the reference, a node can
enter a graceful-degradation [126] mode when the level of uncertainty exceeds the tol-
erable limit. Additionally, if a coordination message is delayed or arrives too late, all
a node needs to do is compare the action timestamp against the current time on its
local clock [16]. Based on this timestamp, the endpoint can adapt or enter a graceful
degradation mode. Given that modern oscillators drift slowly, the probability of clock-
synchronization failure is much lower than the probability of CPUs, networks or disks
failing [6]. Therefore, using a shared notion of time with QoT can enable scalable and
fault-tolerant coordination [17].

Based on the philosophy of QoT, Figure 4.2 illustrates a collaborative-assembly sce-
nario using two robot arms. The system consists of (i) a centralized task planner running
in a VM (using QuartzV) hosted on a server machine, (ii) two embedded-grade arm con-
troller nodes (using the QoT Stack for Linux), and (iii) two robot arms with sensors (to

determine state), an end effector, and real-time motor controllers.
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We now describe this system in a top-down fashion:

1) The Task Planner in a VM is able to receive timestamped sensory input from the
sensors on the robotic arms, and can be based on techniques including signal-processing,
machine learning [127], or model-based artificial intelligence [128]. Based on the sys-
tem objective, sensory inputs, and the state of the system, the task-planner can generate
receding-horizon-based [129] timestamped action commands for the robotic arms to per-
form the collaborative assembly. In the context of the example application, the action
commands can be in the form of (i) the position of the end-effector, and (ii) “pick” or
“place” actions of the end-effector. These action commands are received by the “con-
troller” nodes.

2) The Controller Nodes are responsible for generating a time-parametrized feasible
motion plan for their respective robotic arms based on the action commands, and the
sensory inputs from the arm. This requires converting the coarse-grained end-effector
trajectory into feasible fine-grained joint-motion trajectories or end-effector actions, such
that collisions are avoided. These embedded controller nodes also contain I/O ports
which enable them to directly interface with their respective robotic arms with low
latency.

3) The Robot Arms contain on-board low-level real-time motor controllers which
are responsible for carrying out the motion plan received from their respective controller
nodes.

In the described system, the task-planner node (VM) and the controller nodes are
inter-connected using a switched Ethernet network. All these three nodes use the QoT
Stack functionality to bind to a common timeline with their specified QoT requirements
(+/-1 ms for the task-planner node, and +/-100 us for the controller nodes). The syn-
chronization service (based on PTP [2]) can then discipline the clocks to meet the speci-
tied QoT requirements. Notably, there is no need for the robot arms to directly join the
timeline. This is because the on-board motor controllers of the robot arm can perform

real-time control with deterministic latency [130] [131]. Additionally, sensor values can
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Figure 4.2: Time-based Coordinated Industrial Automation

also be accessed with deterministic latency. This assumption holds true for most indus-
trial robots. Thus, due to the presence of dedicated controllers and interfaces, the robots
can carry out the motion plan specified by the embedded controller in deterministic
fashion. Additionally, using the dedicated I/O interface, the embedded-controller node
can read the robot’s sensors with deterministic latency, and hence assign timestamps
using its own local timeline reference.

Our objective is to use QuartzV in the design of scalable and fault-tolerant coordi-

nated applications, like the above, using a shared notion of time and QoT.

4.3 QuartzV Extension to the QoT Stack

In this section, we describe the design choices involved in bringing QoT to hypervisor-
based virtualization. Subsequently, we present the QuartzV extension to the QoT Stack
for Linux to provide QoT awareness for para-virtual guest VMs running atop the QEMU-
KVM hypervisor. QuartzV adds extensions to the QEMU-KVM hypervisor, in order to
provide clock-synchronization-as-a-service to para-virtual guests. This enables applications

running in a guest VM to specify their QoT requirements, while a host service tries to
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meet the specified requirements, and feeds back the achieved QoT to the application
running in the guest VM.

We first discuss the applicability of QuartzV in a para-virtualized setting, and later
discuss how our implementation works in an environment where clocks are fully vir-
tualized (emulated), or the hypervisor cannot provide clock-synchronization extensions.
While QuartzV has been implemented for QEMU-KVM, the concepts are readily appli-

cable to other commodity open-source hypervisors like Xen [120].

4.3.1 QoT and Virtualization

While designing QuartzV for a para-virtual setting, the following design considerations
need to be taken into account:

1) Specifying QoT Requirements: To provide QoT awareness in the virtualization
context, applications need to be able to specify their QoT requirements. Hence, we need
to develop a mechanism to allow applications running in a VM to convey their QoT
requirements to a service running on the host OS. Since specifying QoT requirements is
not on the critical path of most applications, we can afford a somewhat higher-latency
communication mechanism for this purpose.

2) Exposing QoT to Applications: To expose the notion of QoT to applications,
every timestamp read should contain its associated uncertainty. Reading timestamps
from a clock is often on the critical path of most applications. Hence, we must provide a
timestamp along with its associated uncertainty, with low latency. For this purpose, we
require an efficient low-latency mechanism which can transfer a timestamp, along with
the achieved QoT from the host to the guest VM.

3) Supporting Multiple VMs: The key idea of virtualization is to consolidate multi-
ple VMs on a single physical machine. Hence, it is imperative that our implementation
scale to support multiple VMs without any impact on performance.

4) Maintaining VM Isolation: While workload consolidation is key, isolation be-
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tween different VMs is essential. Hence, our implementation should prevent malicious
VMs from affecting the correct operation of other VMs.

5) Portability: We aim to implement our system such that no modification is made to
the hypervisor source code. Instead, we use existing hypervisor functionality to imple-
ment our extensions. This ensures that our implementation is portable across different

versions of the QEMU-KVM hypervisor.

4.3.2 QuartzV: Design and Implementation

Based on these considerations, we now present the design of QuartzV, which builds
upon the previously described QoT Stack for Linux [4] (Chapter 3), to bring the notion
of QoT to VMs. The key components of QuartzV are as follows:

1) QoT Application Library: Also known as qotlib, it provides QoT-specific func-
tionality to user-space applications. This library exposes timeline-based distributed co-
ordination APIs, that are independent of the platform and OS. The APIs enable appli-
cations to (i) bind/unbind from a timeline, (ii) specify /update their QoT requirements,
(iii) schedule events based on shared time, (iv) timestamp events, and (v) support pub-
lish/subscribe messaging for coordination [17]. All API calls return the QoT actually
delivered to the application, providing the ability to adapt to changes in QoT [4]. This
library can be configured with a compilation flag to enable para-virtual guest-related
functionality. This allows native applications to be ported to a VM without any changes
to the source code.

2) QoT Core Kernel Module: It acts as a bridge between the components of the QoT
Stack for Linux [4], and is responsible for timeline management, clock management and
time-based event scheduling. Applications and system services interact with the QoT
Core using an ioctl interface exposed over the /dev/qotusr character device. Both the
host and guest VMs contain their own QoT Core module. The QoT core’s scheduling

interface is policy-agnostic [4], and is responsible for moving tasks from the scheduler
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wait-queue to the run-queue at the specified time. This provides developers the flexibil-
ity to choose the appropriate real-time scheduling policy based on application priorities
and requirements.

3) QoT Clocks: These are useful for maintaining a shared notion of time, and also
aid in performing clock synchronization over a network [4]. The core clock [4] is used to
maintain a monotonic free-running (drift not disciplined) notion of time. Each timeline-
reference clock /dev/timelineX (where X is the timeline id) is mapped from the core
clock (on the host) using the parameters tlg,,, (drift correction), corej,s; (the core-clock
timestamp at the last synchronization event) and t/},5 (timeline-reference timestamp at
the last synchronization event). Using the current core timestamp, core; oy, the timeline-

reference time, tl,,,, can be projected as follows:

thiow = tiast + tlskew * (COTenow — COTE51) 4.1)

4) Synchronization Service: This is deployed on the host, and synchronizes the local
timeline clock, derived from the local monotonic clock source, with the global timeline
reference. We use feed-back synchronization to discipline the clock on a per-timeline
basis. This service polls the timeline clock over /dev/timelineX (where X is the timeline
id) to detect any updates to application QoT requirements. Based on these applica-
tion requirements, the service disciplines the timeline-reference clock by modifying its
parameters (drift and offset) to achieve the desired levels of QoT. In doing so, the syn-
chronization service periodically updates the clock mapping parameters and associated
timestamp uncertainty lower and upper bounds, €; and ¢j,, on a per-timeline basis.

5) Inter-VM Shared-Memory Server: Also known as ivshmem_server, this is de-
ployed on the host, and creates a POSIX shared-memory region which is used to dis-
tribute clock parameters and timestamp-uncertainty information to applications running
in guest VMs.

6) QoT Virtualization Service: Also referred to as qot_virtd, this service is de-

ployed on the host, and aggregates application-specific QoT requirements from different
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guest VMs hosted on the host machine. It creates a Unix socket, and acts as a server,
while the guest VMs are its clients. Applications running in a VM can send their timeline
information and QoT requirements to qot_virtd using the created socket. Addition-
ally, whenever the synchronization service updates the clock parameters and estimated
timing uncertainty of a given timeline reference, qot_virtd is responsible for convey-
ing these changes back to the application, using the shared-memory region created by
ivshmem_server.

Using the above components, we now describe their interactions which facilitate
the transfer of QoT and timeline-related information between the applications deployed
inside guest VMs and the services running on the host.

1) Specifying QoT Requirements (Guest VM to Host): To transfer application-
specific QoT requirements from the guest to the host, we utilize the para-virtual VirtIO-
serial interface, also referred to as virtserial [132]. VirtIO-serial provides bi-directional
serial communication between applications running inside guest VMs with a host ser-
vice. This interface is exposed to the guest application through a QEMU character-device
driver front-end in the VM. Using an API, guest applications can read from or write
messages to the character-device front-end. Since each VM runs as a QEMU process, the
QEMU backend can forward guest application messages to a specified service on the
host over a Unix socket. When an application in a VM binds to a timeline, the informa-
tion is sent to qot_virtd using virtserial via the socket interface. The daemon then
creates a version of the timeline on the host (using the QoT Core kernel module [4]),
and registers the QoT requirements of the application with the host OS. qot_virtd also
sends an acknowledgment to the guest application to indicate if the request was success-
tully accepted. Figure 4.3 highlights this interaction of each guest VM application with
qot_virtd, and illustrates the transfer of application QoT requirements from a guest
(VM 1) to the host using VirtlO-Serial. Although our stack supports multiple VMs, for
the purpose of illustration, we show only one VM.

2) Facilitating Low-Latency Clock Reads: In QuartzV, we utilize the para-virtualized
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dependent-clock paradigm and perform clock synchronization on the host on a per-
timeline basis. Hence, we maintain a monotonic free-running core clock on the host, and
compute its disciplining parameters (drift and offset), with respect to a global timeline
reference. These disciplining parameters allow us to project the monotonic core clock
to a global timeline reference. Therefore, to compute the current timeline time reference,
a guest application needs to access a monotonic counter (on the host), and apply the
clock-discipline parameters to this monotonic clock. Additionally, the synchronization
service also computes the achieved QoT. This estimated QoT enables an application to
read a timestamp with its associated uncertainty.

To enable low-latency reads of the timeline reference, we need to provide low-latency

access to:
1. the monotonic core clock,
2. the timeline clock-projection parameters and,
3. the estimated QoT

We solve problem (1) by utilizing the para-virtual KVM-clock, which pro-
vides low-latency access to the host’s real-time (CLOCK_REALTIME) and monotonic
(CLOCK_MONOTONIC) clocks. Of these two clocks, CLOCK_MONOTONIC provides a monotonic
clock source, and hence can be used as a core clock. Thus, KVM-clock allows the host
OS and the guest VMs to, in practice, share the same core clock. Therefore, timeline
clock-projection parameters calculated with respect to the host core clock can be applied
(using Equation 1) inside the VM as well.

To solve problems (2) and (3), we use the inter-VM shared-memory (ivshmem) [133]
interface to memory-map a shared-memory region containing the timeline clock param-
eters and uncertainty information into the guest VM application’s virtual-memory space.
Therefore, reading a timeline-reference timestamp involves reading KVM-clock and ap-

plying the timeline-projection and uncertainty parameters from shared memory. Since
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Figure 4.3: Specifying QoT information from guest applications to host service
qot_virtd using VirtlO serial

these instructions are all unprivileged, the timeline-reference time can be read with low
latency.

When a VM boots up, it registers with ivshmem_server over a Unix socket cre-
ated by ivshmem_server (/tmp/ivshmem_socket). The server replies with a read-only
tile descriptor to the POSIX shared-memory region /dev/shm/ivshmem (created by
ivshmem_server). ivshmem exposes this shared-memory region as a PCI device to the
guest. When a guest application binds to a timeline, it interacts with this PCI device
to memory-map the shared-memory region with read-only access into its own virtual-
memory space. The fact that this shared-memory space is potentially shared across mul-
tiple VMs makes it necessary that VMs have read-only access. This provides isolation
between different VMs while enabling low-latency clock reads.

In our implementation, we launch the ivshmem_server service on the host. This ser-

vice provides a guest VM the right to access a read-only shared-memory region, which
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contains the timeline clock parameters, and estimated uncertainty information. In ad-
dition to the guest VMs, the QoT Virtualization Service, qot_virtd, also memory-maps
this shared-memory region with read-write access into its own virtual-memory space.
Therefore, whenever the synchronization service updates the clock parameters and un-
certainty information corresponding to a given timeline, qot_virtd writes these param-
eters to the shared-memory region which is memory-mapped into a guest application’s
virtual-memory space. Figure 4.4 highlights this interaction of guest VM applications
with ivshmem_server and qot_virtd, and illustrates the sharing of per-timeline clock
parameters and uncertainty information from host to guest (VM 1) using the memory-

mapped shared-memory region created by ivshmem_server.
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Figure 4.5: QoT Stack for Linux in a fully-virtualized guest VM

4.3.3 QoT and Full Virtualization

For guest VMs which do not support para-virtualized clocks, or hypervisors which do
not permit extensions, the notion of QoT can still be supported. Our latest implemen-
tation of the QoT Stack for Linux allows all of its components: QoT core, QoT clocks,
and clock-synchronization service (both NTP-based and PTP-based with software times-
tamping), to run inside a VM which does not support para-virtualization. However, the
overhead of emulated hardware timers (full virtualization) will cause a loss in applica-
tion performance, due to higher clock-read latency. Additionally, the overhead of an em-
ulated network stack and lack of hardware-timestamping support (for PTP) can degrade
the achieved synchronization accuracy and QoT. Figure 4.5 illustrates the components
of the QoT Stack for Linux, deployed in a QEMU-KVM Linux VM (VM 1), which does
not support para-virtualized clocks.

To support a core clock based on CLOCK_MONOTONIC, our latest implementation of the
QoT Stack for Linux implements an architecture-independent QoT core clock driver [4],

which allows the entire QoT stack to be deployed on any Linux-based platform includ-
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ing VMs. This implementation provides a monotonic clock based on CLOCK_MONOTONIC,
and provides time-based scheduling by using the existing Linux high-resolution timer

(HRTIMER) interface.

434 QoT-based Industrial Automation using QuartzV

We now describe a simple test prototype to realize the industrial-automation application
described in Section 4.2. We utilize the same structure as the described application and
the main components are as follows:

1) The Task Planner running in a para-virtual VM with QuartzV is responsible
for generating time-parametrized tasks. The VM is deployed atop QEMU-KVM on the
desktop Onyx running Ubuntu 14.04 with a quad-core Intel i7 processor.

2) Two Controller Nodes each deployed on a Beaglebone Black [113] embedded
platform (Agate and Citrine) with the QoT Stack for Linux, are responsible for generating
and executing motion plans based on the time-based task plans.

3) Simulated Robot Arms receive motion plans from the controller nodes using the
ROS-based [134] publish-subscribe mechanism. Since we did not have ready access to
real robots, we utilize ROS Indigo [134] with the Gazebo simulator [135] to simulate
two Universal Robotics UR5 [130] robot arms along with their motion controllers (using
ros-control [136]). The simulation is performed on the desktop machine Jasper running
Ubuntu 14.04 with a quad-core Intel i7 processor and an Nvidia GT620M GPU.

We consider a simple scenario where two robots collaboratively pick and place a
component synchronously. However, our testbench can be used to develop and test
more complex application scenarios. Additionally, the use of ROS enables the same
application code to be deployed directly on a real robot. A video showing our prototype

application can be found at https://youtu.be/7NoxnZEWDrM.


https://youtu.be/7NoxnZEWDrM
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Figure 4.6: QuartzV Clock-Synchronization Test-bed
4.4 Experimental Evaluation

We now present some experimental results to benchmark the performance of QuartzV
using as metrics (i) clock-synchronization accuracy, and (ii) clock-read latencies. We use
the QoT Stack for Linux deployed natively as the baseline. Before stating the results, we

describe our experimental setup.

4.4.1 Experimental Setup

Figure 4.6 illustrates the different nodes in our clock-synchronization test-bed. All the
nodes are interconnected by an IEEE 1588 (PTP)-compliant Ethernet switch [137].

Our evaluations are performed on a quad-core (8 virtual cores) x86-64 Intel i7-based
desktop Onyx, which hosts the QoT-based benchmarking applications. Onyx utilizes
Ubuntu 14.04 with the Linux 4.4 kernel and also contains version 2.8 of the QEMU-KVM
hypervisor. This enables Onyx to host VMs utilizing QuartzV. The Intel i7 CPU contains
a constant-invariant TSC which always maintains a steady frequency, and thus can be

used as a reliable clocksource. Additionally, Onyx is equipped with an IEEE 1588 (PTP)-
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compliant Intel 82574L network interface [138] which supports hardware timestamping
at the PHY layer. The presence of hardware timestamping allows us to perform accu-
rate clock synchronization using the QoT Stack for Linux’s PTP-based synchronization
service.

We utilize the Beaglebone Black node Citrine as our clock reference. The Beaglebone
Black ARM-based TI AM335x chipset [113] contains an IEEE 1588-compliant network
interface which supports hardware timestamping at the PHY Layer.

To measure the accuracy of clock synchronization on Onyx, with respect to the refer-
ence node Citrine, we utilize the nodes Amethyst and Agate. To measure synchronization
accuracy, we need to take (near) simultaneous timestamps of a common event on both
the reference (master) and the target (slave). By comparing these timestamps over a
period of time, we can compute the synchronization accuracy. Therefore, we use (i) the
node Agate (Beaglebone Black) to periodically (every second) generate UDP-multicast
packets which serve as common-reference events providing timestamping opportuni-
ties, and (ii) the node Amethyst to generate reference timestamps (equivalent to Citrine)
for the UDP datagrams.

Amethyst has an x86-64 Intel i7 processor, running Ubuntu 14.04 with the Linux 4.12
kernel, and is equipped with an Endace 7.5G2 DAG card [139]. The DAG card con-
tains two ports which intercept all packets flowing between Agate and Onyx. This card
also provides 7.5 nanosecond resolution timestamping [139], and processing of packets
at line rate. Therefore, all the UDP packets from Agate can be accurately timestamped
with no significant delay introduced by the DAG card. The same UDP packets can sub-
sequently be timestamped on Onyx (using socket/hardware timestamping [140] on the
host and guest VMs). Hence, if we assume (for now) that the DAG card on Amethyst
can provide equivalent timestamps as the reference Citrine, then by comparing these
timestamps with those (nearly) simultaneously generated on Onyx, we can compute the
clock-synchronization accuracy of Onyx with respect to Citrine. Note that the introduc-

tion of the DAG card adds noise to our measurements, as there is some latency between
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the DAG timestamp and the timestamp on Onyx. However, given that Onyx and the
DAG card share a dedicated link, the latency is low.

To accurately synchronize the DAG card on Amethyst to the reference Citrine, we
utilize its inbuilt PPS (Pulse-per second) input. We use Citrine (Beaglebone Black) to
generate a reference PPS signal over a GPIO pin (using a hardware timer), which is
fed to the PPS input of the DAG card. The DAG card can use this signal along with
Amethyst’s system clock (CLOCK_REALTIME) to precisely synchronize its clock with <10ns
accuracy. Hence, to achieve precise synchronization (using PPS), we also need to syn-
chronize Amethyst’s system clock (CLOCK_REALTIME) to the reference clock on Citrine,
with an accuracy within 1s. This can be done using Linux PTP’s [141] two-stage system-
clock synchronization (ptp4l and phc2sys). Amethyst is also equipped with an IEEE 1588-
compliant Intel 82574L network interface [138] which supports hardware timestamping
at the PHY layer. Hence, using PTP, we can synchronize CLOCK_REALTIME to the refer-
ence clock on Citrine to an accuracy on the order of microseconds, which is more than
sufficient compared to the requirement of within 1s. Along with PPS, this allows us to
achieve DAG clock synchronization with accuracy on the order of a few nanoseconds.

Therefore, we can externally measure the synchronization accuracy of QuartzV.

4.4.2 Synchronization Accuracy

We now compare the clock-synchronization accuracy (or error), with respect to the refer-
ence Citrine, achieved by (i) QuartzV for a Linux VM with para-virtual-clock support, (ii)
the QoT Stack for Linux deployed natively, and (iii) the QoT Stack for Linux deployed in
a VM with a fully-virtualized clock. Note that, in cases (i) and (ii), clock synchronization
happens on the host OS, while, in case (iii), clock synchronization happens inside the
VM. We use Ubuntu 14.04 VMs, each configured to use 2 Virtual CPU cores and 2 GB of
memory.

Figure 4.7 shows the histogram of the measured clock-synchronization accuracy, and
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Figure 4.7: Measured Clock-Synchronization Error Distributions. The y-axis represents
the probability density, and the x-axis the measured error

Figure 4.8 shows a box-plot of the clock-synchronization accuracy for the mentioned
scenarios. The measurements were taken over a period of six hours. Notice that the
accuracy distribution achieved by the QoT Stack natively (Figure 4.7a) and QuartzV for
para-virtual VMs (Figure 4.7b) is nearly identical with a mean of 24.28us and 26.12us
respectively, and standard deviation of 5.05us and 5.12us respectively. This is because
QuartzV performs clock synchronization on the host and transfers the clock-projection
parameters to the guest VM. On the other hand, the accuracy achieved by the fully-
virtualized QoT Stack inside a VM (Figure 4.7c) is lower with a mean of 70.23us and

a standard deviation of 128.28us. This is due to the additional packet-timestamping
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o

uncertainty introduced by the virtualized networking stack.

The ability to provide QoT bounds also enables fault detection. Figures 4.9a and
49b plot the upper and lower QoT bounds calculated by para-virtual QuartzV, and
the fully-virtualized QoT Stack deployed inside a VM respectively. Observe that the
computed bounds always bound the accuracy measured by the experimental test-
bench. From these results, we can conclude that QuartzV can provide near-native clock-

synchronization accuracy to applications running in VMs.

4.4.3 Clock-Read Latency

To compare clock-read latencies, we consider the following scenarios: (i) the QoT Stack
for Linux deployed natively, with the x86 Time-Stamp Counter (TSC) clocksource, (ii) a
para-virtual Linux VM using QuartzV with the KVM-clock [57] clocksource, and (iii) the
QoT Stack for Linux deployed in a VM with an emulated (fully-virtualized) x86 High-
Precision Event Timer (HPET) clocksource. For each of these cases, we measure the
latency of reading a timeline reference, which is calculated by applying the projection
parameters to the QoT core clock, QOT_CORE (based on CLOCK_MONOTONIC). To measure a

clock’s read latency, we read the clock in a continuous loop, and take the difference be-
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tween adjacent readings. For the sake of comparison, we also present latency measure-
ments for the clocks exposed by Linux (CLOCK_MONOTONIC and CLOCK_REALTIME) along
with the x86 TSC.

The clock-read latency data can be found in Table 4.1. We present the minimum,
average and standard deviation of the latency measurements for all of the clocks being
compared. The data is averaged across 1000 experiments, each consisting of 1 mil-
lion consecutive clock reads. Observe that, for CLOCK_MONOTONIC, CLOCK_REALTIME and
QOT_CORE, the average and minimum clock-read latency observed in the para-virtual
guest VM is roughly twice (~2x) that observed in the native environment. This reflects
the overhead introduced by using the para-virtual KVM-clock as a clocksource. Compare
this with the fully-virtualized case which has latencies that are 3 orders of magnitude
(>100x) greater than the native setting. This is due to the overhead of emulating the
HPET clocksource. On the other hand, reading the TSC (using the rdtsc instruction)
has nearly the same latency in all three scenarios. This is because rdtsc is an unprivi-
leged instruction and can be executed natively [121].

QOT_CORE (QoT core clock) is implemented as a wrapper around CLOCK_MONOTONIC.
Observe that, in all the three cases, the observed latency in reading QOT_CORE is slightly

greater than CLOCK_MONOTONIC. This is because of the additional overhead of applying the
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Table 4.1: Clock-Read Latency (nanoseconds)

Scenario | Clock | Min | Average | Std. Dev
Native QoT Stack TSC 4 7.41 59.55
(x86 TSC) REALTIME 13 26.19 172.44
MONOTONIC 13 18.41 95.74

QOT_CORE 16 32.01 123.69

Para-virtual QuartzV TSC 4 8.28 88.75
(KVM-clock) REALTIME 31 40.46 246.47

MONOTONIC 31 34.79 233.83
QOT_CORE 54 60.71 242.34

Fully-virtual QoT Stack TSC 4 8.19 95.18

(Emulated HPET) REALTIME | 1785 | 2038.02 | 9721.72
MONOTONIC | 1786 | 2022.13 | 8912.25
QOT_CORE | 1892 | 2435.64 | 9512.45

timeline clock-projection parameters. For the para-virtual scenario using QuartzV, the
QOT_CORE latency is ~1.8x that of CLOCK_MONOTONIC. This is due to the overhead of access-
ing the shared-memory region exposed by ivshmem. However, this overhead is minimal
and does not affect the order of magnitude of the clock-read latency, as compared to
CLOCK_MONQOTONIC.

If we compare the two virtualization scenarios based on standard deviation, we can
observe that reading the para-virtual KVM-clock clocksource provides approximately 40x
lower standard deviation (clock-read latency variability) than an emulated clocksource.
This lower variability translates to better QoT. Additionally, note that the QuartzV im-
plementation of the QOT_CORE clock has similar standard deviation as CLOCK_MONOTONIC.
Therefore, we conclude that QuartzV provides minimal loss in timing performance (la-
tency and uncertainty) compared to the native case, while allowing services on the host
to expose the notion of Quality of Time to applications running in guest VMs.

Notice that for both the para-virtual and fully-virtual scenarios, the clock-
synchronization error is an order of magnitude (>10x) higher than the clock-read la-
tency. Thus, the network residency and timestamping uncertainties are the bottlenecks

for achieving good QoT for an application in a VM.
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Figure 4.10: QuartzV Synchronization Scalability Results. The dashed lines represent
moments in time where a new VM was spawned

4.4.4 Clock-Synchronization Scalability

We now analyze the scalability of (i) QuartzV for Linux VMs with para-virtual clock
support, and (ii) the QoT Stack for Linux deployed in a VM utilizing full virtualization.
Our experiments measure the clock-synchronization accuracy achieved in the presence
of competing VMs present on the same host. To test the limits of both approaches, we
consider scenarios involving competing VMs with CPU and network-intensive work-
loads.

Figures 4.10 and 4.11 provide the scalability results for the para-virtual QuartzV

setup, and the fully-virtual QoT Stack respectively. In both figures, subplots (a) provide
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results in the presence of competing VMs with CPU-intensive workload, subplots (b)

provide results in the presence of competing VMs with network data-reception-intensive

workload, and subplots (c) provide results in the presence of competing VMs with

network data-transmission-intensive workload. Each plot shows the measured clock-

synchronization accuracy and reported QoT bounds. The x-axis denotes the progression

of time in seconds, and the y-axis indicates the measured synchronization error in mi-

croseconds. Please note that each sub-plot has a different scale for the y-axis.

Figures 4.10a and 4.11a present scalability results when multiple VMs with CPU-

intensive workload are present. To test the limits of our approach, we consider a maxi-
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mum of 8 VMs, each with 1 virtual core and 2 GB of memory, as our test-node Onyx has
8 virtual cores and 16 GB of memory. Each VM runs a simple QoT-aware application,
which binds to a timeline, and reads the timeline clock in a tight loop with real-time
priority. In addition, each VM also utilizes the stress tool [142] to spawn a single CPU-
intensive thread, without real-time priority. This ensures that any CPU capacity left over
by the QoT-aware application will be consumed by the stress tool. We spawn a new VM
every 300 seconds, and the dashed lines in the plot represent points in time where a
new VM was spawned. In practice, we observe that our test-bed system’s CPU is fully
utilized with 6 CPU-intensive VMs. This is due to the use of some processing capacity
by the host OS, the graphics sub-system, and QEMU-KVM.

Observe that, for the para-virtual QuartzV case (Figure 4.10a), there is no significant
change in synchronization accuracy as new CPU-intensive VMs are spawned. This is
because clock-synchronization is performed in the host OS, and as long as the synchro-
nization service has sufficient resources, the accuracy remains unaffected. Additionally,
the use of hardware timestamping (available only on the host), ensures that the packet-
timestamping uncertainty is unaffected by CPU load. On the other hand, for the fully-
virtualized QoT Stack (Figure 4.11a), as the VM count grows higher, the synchronization
accuracy degrades, and greater instability can be observed in the obtained accuracy. This
is because clock synchronization is performed inside the VM, and the networking stack
is emulated by the hypervisor. Thus, greater CPU load increases the uncertainty in the
software timestamping of synchronization packets, and makes the synchronization ser-
vice unstable. This in turn degrades accuracy. Specifically, after the addition of the 7th
VM, the system is overloaded, and there are durations where the synchronization accu-
racy is significantly degraded (>5 times the case without overload). The QoT bounds
returned by the system reflect this instability in the fully-virtual synchronization service.

Figures 4.10b, 4.10c, 4.11b and 4.11c present scalability results when multiple VMs
with network-intensive workloads are present. In these experiments, we consider a

single VM running a QoT-aware application, and a maximum of 5 competing VMs, each
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with 1 virtual core and 2 GB of memory, and no per-VM bandwidth restrictions. We
spawn a new VM every 200 seconds, and the dashed lines in the plot represent points in
time where a new VM was spawned. Each VM uses the iperf tool [143] to send/receive
TCP packets to/from another machine on the LAN, such that the available network
bandwidth is saturated. We observed that, without bandwidth regulation, a single VM
is able to nearly saturate the network bandwidth. Further adding new VMs causes the
load to grow incrementally until VM 4, after which the bandwidth is fully saturated.
This is because, in our setup, the 100 Mbps industrial PTP switch [137] is the network
bottleneck, as compared to the 1 Gbps Ethernet card on the host Onyx.

Notice that, for the para-virtual QuartzV case, with network data-reception-intensive
workload (Figure 4.10b), the achieved synchronization accuracy and uncertainty (vari-
ance) degrades by ~1.2x, as compared to the load-free scenario shown in Figure 4.9.
However, this degradation is minimal and does not significantly change as new compet-
ing VMs are added. This is because clock synchronization is performed on the host, and
uses hardware timestamping. Similarly, for the para-virtual QuartzV case with network
data-transmission-intensive competing workload (Figure 4.10c), the achieved synchro-
nization accuracy is similar to the network data-reception-intensive case. However, the
synchronization uncertainty (variance) degradation is higher by ~1.3x, as compared to
the previous case. This observation especially holds true when more competing VMs
are present (> 3), and is reflected by the increase in the reported QoT bounds.

On the other hand, for the fully-virtualized QoT Stack (Figures 4.11b and 4.11c), as
the competing network-intensive VMs increase, the synchronization accuracy degrades
significantly on average (~1.8x-4x in different regions). Moreover, at the instances where
new VMs are added, greater instability can be observed in the obtained accuracy. Also,
observe that, for the network data-reception-intensive case, the accuracy significantly
degrades on the addition of the fourth VM, and for the data-transmission intensive case,
this can be observed at the point of addition of the third VM. The accuracy degradation

is one order-of-magnitude worse for the network data-transmission-intensive case, and
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Figure 4.12: QuartzV Synchronization Scalability Results with per-VM Network Recep-
tion/Transmission Bandwidth restricted to 2 MB/s

this is reflected by the QoT bounds returned by the system, which are, in the worst case,
about ~10x of those reported in the presence of network data-reception-intensive load.

For both the para-virtual and fully-virtual scenarios, the accuracy degradation ob-
served is greater in the presence of data-transmission-intensive network load. This is
because, for the network-reception case, as the incoming traffic increases, there is more
congestion at the PTP switch, as the switch is the bottleneck. On the other hand, for
the network-transmission case, as the switch becomes congested, packets start getting
dropped, and there are more re-transmission attempts made at the host Ethernet card
(due to TCP), thus causing greater congestion at the host. However, the degradation
of both the measured accuracy and computed QoT bounds observed while using para-
virtual QuartzV is minimal, as compared to the significant degradation observed while
using the fully-virtualized QoT Stack inside a VM. This is explained by the fact that,
during overload, the overhead of using an emulated networking stack creates greater
uncertainties and delays in handling and timestamping synchronization packets.

In summary, our scalability experiments indicate that, for the para-virtual QuartzV
approach, CPU-intensive VMs do not significantly affect clock-synchronization accuracy

when: (i) adequate hard CPU reservations are used (already guaranteed by default in all
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Figure 4.13: Fully-Virtual QoT Stack Synchronization Scalability Results with per-VM
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hypervisors), (ii) Virtual Machine over-commit is avoided (i.e., not allowing more VMs
than available resources), and (iii) by ensuring that the clock-synchronization service
has sufficient resources. However, the same cannot be said for the fully-virtualized
QoT Stack deployed inside a VM. For the network-intensive scalability experiments, we
have observed that, for both QuartzV and the fully-virtual QoT Stack, a heavy network
load does affect the clock-synchronization accuracy and the reported QoT bounds. The
degradation in the observed accuracy is significant for the fully-virtual QoT Stack while
being minor for the para-virtual QuartzV approach. This degradation is caused due
to added uncertainty in network timestamping and packet residency delays, and can
be avoided by restricting the network bandwidth available to a VM, based on a user-
specified limit. Such functionality is available in most hypervisors including QEMU-
KVM.

Figures 4.12 and 4.13 present scalability results in the presence of bandwidth-
restricted network-intensive VMs, for para-virtual QuartzV and the fully-virtual QoT
Stack respectively. We consider a maximum of 5 competing VMs, each of which has
its transmission and reception bandwidth restricted to 2 MB/s (16 Mbps). In both fig-

ures, subplots (a) provide results in the presence of competing VMs with network data-
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reception-intensive workload, and subplots (b) provide results in the presence of compet-
ing VMs with network data-transmission-intensive workload. For both the para-virtual
QuartzV scenario and the fully-virtual QoT Stack, the plots indicate that restricting the
bandwidth of competing VMs can prevent significant degradation of synchronization

accuracy, as compared to the scenario with no bandwidth restrictions.

4.4.5 Clock-Read Scalability

Figure 4.14 plots the average clock-read latency of the para-virtual QuartzV approach
with multiple VMs continuously performing simultaneous clock reads. Observe that for
both QOT_CORE and CLOCK_MONOTONIC, the clock-read latency increases slightly for each
new VM spawned. This is due to the unavoidable contention in reading the hardware
counter to compute the time. Thus, as qot_virtd writes the clock-discipline parameters
to a shared-memory region which all VMs can simultaneously read from, there is no

bottleneck in our implementation, allowing QuartzV to easily scale and support multiple

VMs.
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4.5 Summary

Given that virtualization is increasingly utilized in cyber-physical applications, we in-
troduced the QuartzV extension to our QoT Stack for Linux to make virtual machines
(VMs) QoT-aware. QuartzV harnesses para-virtual clocks along with the dependent-
clock paradigm [25] to provide near-native timing performance in VMs. We also demon-
strated the utility of QuartzV by using it in a prototype industrial-automation applica-
tion. This, in turn, illustrates that QoT-awareness makes it possible for intelligent CPS
applications to dynamically take coordination decisions, based on a shared notion of
time and the delivered QoT.

For VMs which do not support para-virtual clocks, or hypervisors which do not
permit extensions, we extended the QoT Stack for Linux so that it can be entirely
deployed in a VM. However, our experiments indicate that QuartzV’s para-virtual
implementation can achieve much higher synchronization accuracy, better scalability
and timing performance. QuartzV is open-source, and the code can be found at

https://bitbucket.org/rose-line/qot-stack/src.


https://bitbucket.org/rose-line/qot-stack/src

Chapter 5

Time-as-a-Service for Geo-distributed

Coordination

Modern distributed applications are inherently complex and consist of multiple interact-
ing components. Thus, deploying these components and managing their life-cycles are
complicated endeavors. Additionally, many of these components will be deployed in the
cloud or at the edge in conjunction with other applications. In such scenarios, the use of
OS-level virtualization technologies like containerization [27] simplifies the deployment
and life-cycle management of distributed applications. Therefore, Quartz builds on the
QoT Architecture [4] for providing Time-as-a-Service (TaaS) to containerized applications.
Quartz features a distributed modular architecture and is implemented using container-
ized micro-services, making it easy to deploy and use across a range of platforms.
Unlike the kernel-space QoT Stack [4] which operated at LAN-scale, Quartz over-
comes the scalability and portability issues by featuring a fully user-space implementa-
tion which (i) supports multi-tenancy, (ii) operates at geo-distributed (WAN)-scale, and
(iii) is portable to an array of application domains and platforms. Quartz also provides
an API for distributed coordination based on the timeline abstraction [4], and allows dis-
tributed application components to specify their required QoT. Based on these require-

ments, Quartz orchestrates the underlying system and clock-synchronization protocols

87
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to meet these application-specific requirements, and feeds back the delivered QoT back
to the application.

The key contributions described in this chapter are as follows:

1. Elucidating the challenges and subsequent architectural choices in exposing Time-
as-a-Service, maintaining timelines and estimating Quality of Time (QoT) at geo-

distributed scale,

2. Introducing techniques to make clock-synchronization protocols, adaptive to ap-

plication QoT requirements, and

3. Introducing Quartz, an autonomous, adaptive and fault-tolerant middleware ex-
posing Time-as-a-Service for containerized applications using time as a coordina-

tion primitive.

5.1 An Application’s Perception of Time

We first motivate the utility of Quartz by describing two application scenarios which
can be enabled by using a shared notion of time and QoT. These applications are (i)
DronePorter, a fleet of drones coordinating to transport a payload, and (ii) TimeCop,
a trafficcmanagement solution which coordinates vehicular traffic flow at city scale in
both space and time. However, the core concepts can be adapted to other distributed-
coordination application domains.

DronePorter: Consider a fleet of n drones (as shown in Figure 1.2 in Chapter 1)
transporting an object (), too large to be carried by a single drone. To successfully
transport (), the drones need to follow a coordinated flight-plan such that (i) the object
is not damaged or destabilized, and (ii) the drones do not collide with each other or
obstacles in the environment. One way to accomplish this is by having a master entity,

which can be one of the drones, send out timestamped flight-plans with way-points to
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each of the drones, such that each drone tries to reach a given way-point at the specified
time.

To coordinate successfully, the clock on each drone needs to be synchronized such
that the accuracy is within some specified limits. This accuracy (or uncertainty) specifi-
cation can depend on multiple factors, ranging from the velocity and size of the drones,
to the other uncertainties in the environment. For example, to meet a particular velocity,
while maintaining safety, having a tighter clock-synchronization accuracy can be used
to compensate for higher localization uncertainties or higher environmental uncertain-
ties [18]. Therefore, in this scenario, each drone can use Quartz to bind to a timeline
each specifying its QoT requirements. If the QoT deviates beyond these requirements,
the drones can be notified, and can adapt by moving into a graceful-degradation mode.
Additionally, as shown in Figure 1.2, we can also have an edge/cloud controller also join
the timeline, and provide (i) high-level objectives/guidance to the fleet of coordinating
drones, and (ii) fleet-management capabilities. Note that such a cloud/edge controller
can provide a higher level of macroscopic control at a lower frequency, and hence can
have less-stringent QoT requirements than the drones.

TimeCop: Consider a city with an adaptive traffic signal deployed at each inter-
section, which contains: (i) a traffic signal with an interface through which the phase
(traffic-signal state) can be set, and (ii) camera-based sensors which provide per-lane
queue lengths (number of vehicles) at the intersection.

Each intersection is controlled by a traffic controller, which can be deployed on an
edge device at or near the intersection, for low-latency decision-making. This controller
is responsible for controlling the timing and phase of the traffic signals at the intersec-
tion. The traffic controller makes decisions periodically, by taking as input (i) the number
of vehicles per ingress lane at the intersection (read from the traffic sensors) in the last
interval, and (ii) the number of vehicles inbound from adjacent intersections (published
by the adjacent intersections). The generated output is the next phase of the traffic sig-

nal. In this scenario, a shared notion of time is key to ensure that (i) the state from



CHAPTER 5. TIME-AS-A-SERVICE FOR GEO-DISTRIBUTED COORDINATION 90

adjacent intersections has accurate timestamps, and (ii) the phase of the traffic signals
at an intersection can be switched at an accurate time instant to ensure efficient traffic
flow. Thus, each intersection controller uses Quartz to bind to the traffic-management
timeline with a QoT requirement of +/-1 ms, while Quartz ensures that all controllers
bound to the timeline share the same notion of time with the desired QoT specification.
Thus, the timeline abstraction allows a coordinating group of endpoints to be specified.
Quartz also ensures that every timestamp is appended with accurate QoT estimates,
enabling controllers to decide “data validity” based on the QoT bounds, i.e., data with
QoT bounds beyond tolerable limits can be discarded or used with abundant caution.
Figure 5.1 illustrates the TimeCop solution.

Consider a scenario where multiple applications such as TimeCop and DronePorter
are deployed on the same infrastructure. For example, DronePorter’s high-level con-
troller can be deployed on the same edge device as TimeCop’s per-intersection traffic
controllers. One can also envision a situation where multiple such emerging smart-city
applications are deployed on the same infrastructure. In such a scenario, the ability to
simultaneously maintain multiple per-application timelines allows (i) each application’s
coordinating components and their QoT requirements to be individually specified, and
(ii) allows the system to meet potentially different QoT requirements of each application.

With each application component specifying the required QoT, the system knows
the maximum level of uncertainty tolerable by the distributed-coordination application.
Since each node independently computes its QoT with respect to the reference, a node
can enter a graceful-degradation [126] mode when the level of uncertainty exceeds the
tolerable limit. Additionally, if a coordination message is delayed or arrives too late, all
a node needs to do is compare the message timestamp against the current time on its
local clock [16]. Also, given that commodity oscillators drift slowly, the probability of
clock-synchronization failure is much lower than the probability of CPUs, networks or
disks failing [6]. Therefore, utilizing a shared notion of time with the added notion of

QoT can enable scalable and fault-tolerant coordination [17].



CHAPTER 5. TIME-AS-A-SERVICE FOR GEO-DISTRIBUTED COORDINATION 91

| Intersection | |\
1| Controllerx | Traffic Light N P4

Nommoemomeoeee Ph @
N Dren "G

Timestamped 1
Adjacent Intersection; | Intersection

State Controller z ,'
@ EdgeC = g - \
; ' Per-Lane
| Intersection | i | | —
‘| Controllery | Traffic State -
Nommemeeeees - traffic-management v
Timeline

Figure 5.1: TimeCop: City-Scale Traffic Management
5.2 Quartz: Time-as-a-Service (TaaS)

We now introduce Quartz which exposes Time-as-a-Service to containerized applications.
We describe Quartz by starting at the application level and then explaining the high-level
capabilities Quartz provides through its APIL. Subsequently, we focus on its architecture,

design choices and its implementation as micro services.

5.2.1 Quartz: API

Quartz features a rich application-programming interface (API) that is centered around
the notion of a timeline — a virtual sense of time to which applications bind with their
desired accuracy level and minimum clock resolution [4]. A timeline is the key primitive
specifying the application components which coordinate with each other. The Quartz
API provides applications the ability to (i) bind /unbind from a timeline, (ii) specify /up-
date their QoT requirements, (iii) schedule computation, sensing and actuation by/at
a reference time instant, (iv) timestamp events and (v) get latency estimates between a
pair of nodes on a timeline. Note that for an application involving distributed coordina-
tion, latency estimates give a good idea of how far into the future actuation commands

should be scheduled.
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All APT calls return the QoT actually delivered to the application, providing the
ability to adapt to changes in the QoT. Thus, the Quartz API is designed to provide a
core set of capabilities which are useful to applications relying on a shared notion of
time to achieve coordination.

Listing 5.1 shows a simple application written using Quartz’s Python API binding.
The sample application binds to a timeline with an accuracy and resolution requirement
of Ims each. The application then periodically wakes up every second and reads the
time. This is indicative of a collection of periodic time-triggered application components
which each wake up at their own specific time instants to perform some coordinated
action. Similarly, we can also envision event-driven applications which, in response to
an event, capture a timestamp of the event. Such event timestamps can be captured

using a callback function facilitated by the timeline_timestamp_events API call.

Listing 5.1: Simple Periodic App using the Quartz API

def main_func(timeline_uuid: str, app_name: str):
# Initialize the TimelineBinding class as an app
binding = TimelineBinding("app")
# Bind to the timeline with 1ms accuracy and resolution
ret = binding.timeline_bind (timeline_uuid, app_name, Ims, 1ms)
if ret != ReturnTypes.QOT_RETURN_TYPE OK:
print (’Unable to bind to timeline, terminating ....")
exit (1)
# Set the Scheduling Period and Offset (1s and Ons repectively)
binding .timeline_set_schedparams (1000000000, 0)
while running:
# Wait until the next period
binding . timeline_waituntil_nextperiod ()
# Do Something —> Read the time with the uncertainty
tl_time = binding.timeline_gettime ()
print (’Timeline time is %f’ % tl_time["time_estimate"])
print ("Upper Uncertainty is %f’ % tl_time["interval_above"])
print(’Lower Uncertainty is  %f’ % tl_time["interval_below"])
# Unbind from the timeline

binding . timeline_unbind ()
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5.2.2 Quartz: Architecture & Implementation

To enable time-based geo-distributed applications at scale and deliver Time-as-a-Service,
Quartz is tasked with the following primary objectives: (i) maintaining the notion of a
timeline at geo-distributed scale, (ii) meeting application-specific QoT requirements with
respect to the chosen timeline reference, and (iii) computing QoT estimates with respect
to the chosen timeline reference. While meeting the above objectives, Quartz is also
tasked with optimizing system resources by merging multiple timelines under the hood,
based on application requirements and how they are deployed.

Given the above objectives, Quartz specifically needs to overcome the following chal-
lenges (i) scalability: both geographical and quantitative, (ii) autonomy: the system
should autonomously adapt to application demands and faults, (iii) portability: easy to
deploy and manage, and (iv) ease of development. Challenges (i) and (ii) are heavily
influenced by the architecture, while (iii) is a function of the implementation, and (iv) is
a function of the APL

A hierarchical architecture is one approach to both scalability and autonomy. There-
fore, Quartz features a 3-tier hierarchical architecture with services which operate at the
following tiers:

1) A Node represents any single computing node/device (virtual or physical) with
an independent clock.

2) A Cluster represents any administrator-defined set of networked nodes which can
communicate with each other. An example cluster is a set of nodes connected over a
LAN. Note that a node cannot belong to more than one cluster, since each node has a
single independent clock.

3) The Global scope represents the global set of clusters.

Based on the scope at which a timeline is discoverable by other nodes, we define two
types of timelines:

1) A Local Timeline is discoverable only on nodes inside the cluster in which the
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timeline is created. It is useful for applications with coordinating components restricted
to the cluster scope.

2) A Global Timeline can be discovered by any node in the global set of clusters. A
global timeline is useful for applications which have coordinating components spanning
multiple clusters.

When a timeline is created, its type must be specified. This allows Quartz to choose
an appropriate clock-synchronization protocol and virtual timeline reference, based on
the application scope.

We implement Quartz using user-space micro-services, which are designed to run
natively or as Docker [27] containers. Each service exposes an interface for exchanging
information and receiving requests. Figure 5.2 illustrates the Quartz Architecture, and
highlights the interactions between the various components through their exposed in-
terfaces. We first describe each service’s high-level implementation before stating how
they provide different functions:

1) The Timeline Service is the interface through which applications interact with
Quartz, i.e.,, most API requests are handled by the timeline service. It exposes a unix-
domain socket (UDS)-based interface through which applications on the node can send
requests to the service. It is also tasked with performing the bookkeeping of the time-
lines that exist on a node, the applications bound to each timeline, and the QoT re-
quirements of each application and timeline. Therefore, the timeline service maintains
timelines at the scope of a node, and hence, each node has its own timeline service.

2) The QoT Clock-Synchronization Service synchronizes the per-timeline clocks and
computes the QoT estimates. Since every node has a hardware clock, which serves as
a basis for per-timeline virtual clocks, each node has its own clock-synchronization ser-
vice. Like the timeline service, it also exposes a UDS-based interface through which the
timeline service can send it requests. In its current implementation, the synchronization
service supports NTP [1], PTP [2] and Huygens [3] clock-synchronization protocols.

3) The Coordination Service is a distributed service responsible for maintaining
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Figure 5.2: Quartz Time-as-a-Service. Solid boxes indicate components, and dashed
boxes indicate interfaces.

timelines within the scope of a cluster. Hence, every cluster must have one active coordi-
nation service. Within a cluster, the coordination service helps each node discover other
nodes on a timeline, and conveys QoT requirements across nodes. This information is
used by each node’s timeline service to orchestrate its node’s clock-synchronization ser-
vice, based on application QoT requirements. It exposes a REST API accessible to all
the nodes within the cluster. The REST API allows the timeline service on each node to
register (POST) timelines and its QoT requirement with the coordination service. This
also allows timeline services on other nodes in the cluster to discover timelines (GET)
and update (PUT) the most-stringent QoT requirement on a timeline.

4) The Global Discovery Service serves as Quartz’s global book-keeper, and is tasked
with maintaining timelines at the global scope, by allowing a cluster to discover the pres-
ence of other timelines and clusters bound to it. The discovery service maintains a

key-value store of timelines and their relevant metadata along with the clusters associ-
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ated with each timeline. It also provides an interface for cluster-specific coordination
services to discover each other, and exchange timeline and QoT information. It is imple-
mented using Apache Zookeeper [144], which provides a consistent and highly-available
filesystem-like abstraction. The discovery service maintains a /timelines Zookeeper
node, under which different timelines are registered. This allows cluster-specific co-
ordination services to register the presence of timelines associated with their cluster,
as /timelines/<timeline-name>. Under this timeline-specific Zookeeper node, a child
node exists for each cluster participating in the timeline. In particular, the ability to
(1) set watches on Zookeeper nodes: receive asynchronous notification on changes to a
node or its children, and (2) ephemeral nodes: elements which disappear on a network
disconnect, allows the coordination service to detect if another cluster has joined or left
a timeline. Thus, Zookeeper is well-suited for the role of the global discovery service.

As may be expected, using a hierarchical architecture provides a very clear distribu-
tion of responsibilities. Therefore, even if higher-layer services (global or cluster-level)
are temporarily lost, lower-layer services (cluster or node-level) can still continue to op-
erate and provide essential functionality to applications.

Quartz Clocks: Quartz also features timeline-specific clocks, which are required for
providing applications with their own shared notion of time. At the node scope, Quartz
utilizes a core clock Cgore [4] derived from a hardware clock, which maintains a mono-
tonic free-running notion of time with undisciplined drift and offset. Each timeline-
reference clock is maintained as a mapping from the core clock using the parameters
tlarife (drift correction), corey (the core-clock timestamp at the last synchronization
event) and tlj,5; (timeline-reference timestamp at the last synchronization event). Using
the current core timestamp, core,y, the timeline-reference time, tl,,,, can be projected
as follows:

tHuow = tiast + tlarift * (COT€non — COTCI4gt) (6.1)

A key proposition of Quartz is the ability to provide high-probability QoT bounds to
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applications. Therefore, every timestamp provided to applications has its QoT bounds
appended to it. At any instant of time, the timing uncertainty € is given by the following
equation:

€ = Hyound + Hskew * (COTenowy — corerys;) (5.2)

where, tl,,, is a high-probability upper bound on the drift of the timeline-specific clock,
and tly,,,,4 is a high-probability upper bound on the offset of the timeline-specific clock.
Note that the probability of these bounds should be configurable by a system designer.
Therefore, given a QoT accuracy requirement Q, the probability of the bounds being in-
valid can be given by P(e > Q). Therefore, for each timeline clock, with high probability
1—P(e > Q), we can say that a timestamp 000 € [tlpow — €, tlnow + €].

Hardware Timestamping: Most modern network interfaces have their own clocks
and also provide the ability to timestamp some or all network packets in hardware
at the physical layer [2]. This enables both accurate packet timestamping and clock
synchronization, and is referred to as hardware timestamping. Therefore, Quartz also
supports network-interface clocks Cy,t, and maintains an accurate mapping between the

core clock and network clock(s).

5.2.3 Quartz: Inner Workings

Figure 5.3 provides a global view of Quartz, which highlights its hierarchical architec-

ture. We now describe the inner workings of the services and their interactions.

Facilitating Low-Latency Clock Reads

From an application perspective, it is desirable that the timeline reference be read with
low latency. To read a timestamp with its corresponding QoT, an application requires
the current core-clock timestamp along with the timeline-projection and QoT parameters
(Equations 5.1 & 5.2). Therefore, for each timeline, the timeline service creates a shared-

memory region which holds the timeline projection and QoT calculation parameters.
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Applications can request to map this shared-memory region, with read-only privilege,
into their own virtual-memory space. Thus, by reading the core clock and applying
the timeline projection parameters from shared memory, an application can read the
timeline reference with low latency. In Quartz, we choose the Linux real-time clock
(CLOCK_REALTIME) as our core clock, as it is available on all Linux systems, and can be
read with low latency from user space [145]. Note that applications obtain read-only
access to the timeline-clock shared memory, which prevents malicious applications from

modifying the parameters held in shared-memory.

Handling Application Requests

Quartz provides a library implementation of its API which helps applications make re-
quests, and removes the complexity of directly interacting with the timeline service. The
API calls are stylized as remote procedure calls (RPCs) made by the application, and ex-
ecuted on the timeline service. However, only API calls related to (i) binding /unbinding
from a timeline, (ii) updating timeline QoT requirements, and (iii) getting latency esti-
mates between a pair of nodes, need to be handled by the timeline service. All other API
calls related to scheduling sensing/computation/actuation, and time-stamping events
are handled internally by the library in the context of the application process. Our ini-
tial version of Quartz implements C++ and Python bindings. However, the API can
be generalized to any programming language which supports socket programming and
shared memory. We now describe how Quartz handles application requests.

Timeline Creation/Deletion: When an application binds to a timeline, the informa-
tion is sent to the timeline service using the APIL If the timeline does not exist on the
node, the timeline service creates an instance of the timeline. This instance keeps track
of all applications on the node bound to that timeline, and the instance is deleted when
no active bindings exist. The timeline service also checks if the timeline exists at the co-
ordination service (GET), and if not, it registers the timeline at the cluster scope (POST).

If the timeline exists at cluster scope, then the timeline service updates (PUT) the QoT
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Figure 5.3: Quartz Time-as-a-Service at global scope

requirements, if they are more stringent than the timeline’s most stringent existing QoT
requirements. Similarly, the coordination service updates (creates) the timeline on the
global discovery service at global scope if it exists (does not exist). A similar chain
of events occurs for timeline deletion. The timeline service also creates a per-timeline
shared-memory clock used to hold the timeline projection and QoT-estimation parame-
ters. This shared-memory region is passed to the clock-synchronization service, which
updates the projection and QoT-estimation parameters to synchronize the local timeline
clock to the timeline reference.

Event Timestamping: Since Quartz is designed for containerized applications, there
are three types of possible events: (1) software events timestamped by the system clock,
(2) network events timestamped by the system clock (software/kernel timestamping) or
the network-interface clock (hardware timestamping), and (3) externally-timestamped
events on a sensor. While events of type (1) and (2) are commonly observed in software
systems, events of type (3) are most likely to be observed in embedded systems.

To support time-stamping software and network events, the Quartz clock-

synchronization service maintains a mapping between the core and network clocks
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(if hardware timestamping is supported), along with the projection from the system
(core) time to the timeline reference. Whenever these projection parameters are updated,
the clock-synchronization service publishes them using NATS [146], which provides a
publish-subscribe-based communication mechanism. The Quartz API library subscribes
to these projection parameters and maintains a ring buffer of the last n projection param-
eters. Based on the incoming event system/network timestamp, the Quartz API library
chooses the appropriate parameters from the ring buffer to project the event timestamp
to the timeline reference. This new projected timestamp also contains a QoT estimate.
To utilize hardware timestamping, the clock-synchronization service container, and the
container getting network-timestamped packets, must be run in superuser mode.

In some embedded systems with general-purpose I/O (GPIO) pins, some pins have
the ability to detect a voltage-change event and record (or capture) a corresponding
hardware-timer value. This voltage-change event can also be triggered by a sensor.
Through appropriate transformations, this hardware-timer value can be mapped to a
timestamp on a timeline. In Quartz, we expose all such timestamping hardware using
the Linux ptp_clock [147] abstraction. These clocks expose an I/O control (ioctl) in-
terface over a /dev/ptpX character device, where X is a non-negative integer. To access
this character device from the context of a Docker container, it needs to be mapped into
the container at startup [148]. Additionally, most devices also require superuser priv-
ileges to access them. Therefore, there should be some higher-level admission-control
service which decides if a container can access a device, and which then maps the de-
vice into the container’s file-system at startup. Note that Quartz does not provide this
functionality. However, on application startup, the Quartz API library enumerates all
the /dev/ptpX devices available in the container’s file-system, and exposes them to the
application using its timeline_timestamp_events API call. In the background, Quartz
uses the Linux ptp_clock headers and API to interface with the /dev/ptpX character
device.

Event Scheduling: Scheduling an application on a timeline is important for execut-
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ing distributed tasks/actuation synchronously. Therefore, the Quartz API library pro-
vides the ability to schedule events after a fixed time instant or duration on the timeline
reference, in the form of wait-until calls, which suspend the application until a speci-
fied time instant. The library implements event scheduling internally, and schedules
all events on the core clock. Therefore, the timeline-projection parameters are used to
translate a scheduling request on the timeline reference to the core clock. Given that
Quartz uses the Linux real-time clock (CLOCK_REALTIME), the Quartz API Library inter-
nally uses the existing clock_nanosleep POSIX API to schedule computation/actuation
on CLOCK_REALTIME.

Latency Estimates: Consider a controller node sending out timestamped actuation
commands to an actuator. From the controller’s perspective, knowing a high-confidence
end-to-end latency estimate between the planner and the endpoint gives it a good idea
of how far into the future actuation commands should be scheduled. An end-to-end
latency estimate characterizes the latency incurred in sending a message from user space
to another application. To request a latency estimate, an application must first request
(timeline_reqlatency) for the latency to a specific node on the timeline to be computed.
This request is issued to the timeline service, which translates a node’s unique name
on a timeline to its corresponding IP address (using the coordination service). The
Quartz API library then creates a new thread in the application context which uses
ICMP packets (similar to the ping utility [149]) to compute the end-to-end latency. This
latency measurement is projected to the timeline reference clock. The application also
specifies the number of measurements n used to calculate a latency estimate, as well
as the percentile value p which should be returned. Subsequently, the application can
read the estimated latency using the timeline_getlatency call. Quartz uses a sliding

window of the last n# measurements to return the p** percentile latency estimate.
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Clock Synchronization and QoT Estimation

Quartz features a flexible implementation allowing integration with multiple clock-
synchronization protocols over IP-compliant networks. Our implementation utilizes
NTP [1], PTP [2] and Huygens [3] clock-synchronization protocols, and avoids re-
inventing the wheel. This is because existing protocols like NTP and PTP are well-
tuned for modern hardware, and are based on standards and implementations that have
evolved and been refined over time. Meanwhile, Huygens is a recently-proposed proto-
col for data centers [3].

However, unlike traditional clock-synchronization protocols which are best-effort,
Quartz monitors the delivered QoT to check if it is within the application-specified lim-
its, and orchestrates the synchronization-protocol parameters to meet them. We now
describe how Quartz provides an autonomous clock-synchronization service, which dy-
namically responds to application QoT requirements as well as external changes (net-
work disconnections, changes and load). Quartz is autonomous in the sense that, based
on application requirements, it chooses: (i) an appropriate protocol, (ii) an appropriate
clock reference, and (iii) appropriate clock-synchronization tuning parameters. We first
describe how Quartz synchronizes clocks for global timelines, and subsequently local
timelines.

Global-Timeline Clock Synchronization: As global timelines can potentially span
multiple clusters in different geo-distributed regions, the simplest way to maintain a
shared notion of time is to synchronize all clocks to a common reference. To do so,
Quartz uses the Network Time Protocol (NTP) [1] to synchronize the global timeline
reference to Universal Coordinated Time (UTC). We use the chrony [150] implementation
of NTP, which synchronizes the local clock by communicating with a set of NTP servers,
and choosing the best source as the reference clock [150]. However, traditional NTP
clients are often either configured using default or application/topology-specific tailor-

made configurations. As Quartz is autonomous and aware of application requirements,
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it responds to application demands by dynamically configuring NTP.

At startup, the Quartz timeline service automatically creates a default global timeline,
and starts an NTP synchronization session on the synchronization service. Since, in
our implementation, all global timelines follow a single clock reference, it suffices to
maintain a single set of timeline-projection parameters for all global timelines. When
an application binds to a global timeline specifying its timing requirements, Quartz
checks if the application QoT requirement is being met. As all global timelines follow
UTC, the QoT requirements of a global timeline are always defined with respect to UTC.
Therefore, we use the root dispersion and clock skew values provided by NTP, which give
a conservative estimate of how far or uncertain the clock is relative to UTC, to obtain a
node’s QoT. If the application QoT requirements are not being met, then Quartz tries to
(i) either modify the synchronization rate, or (ii) if the root dispersion corresponding to
the chosen reference indicates that the QoT requirements cannot be satisfied, it picks a
new server from the pool of NTP servers. For a newly-created timeline, if the chosen
server is able to deliver the desired QoT, Quartz registers this server with the cluster-
specific coordination service, which in turn registers it with the discovery service. This
chain of events allows other nodes on the same timeline, at both cluster and global scope,
to select the same server as one of their reference sources. Thus, we ensure that nodes
on the same timeline have a similar set of clock references. If available, Quartz also
automatically chooses network-interface hardware time-stamping. Figure 5.4 presents a
flow chart illustrating how we make NTP adaptive.

Local-Timeline Clock Synchronization: As local timelines are constrained to the
cluster scope, we utilize PTP or Huygens (based on the system configuration) to syn-
chronize the clocks in the cluster. When a local timeline is created on a node, the timeline
service requests the synchronization service to start a timeline-specific synchronization
session, and monitors the delivered QoT.

Precision Time Protocol (PTP) [2]: If PTP is the configured local-timeline protocol, then

there is no need to choose a reference, as PTP automatically chooses a reference using
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the best-master clock-selection (BMC) protocol [2]. However, Quartz modulates the PTP
synchronization rate (message-exchange frequency) in order to match the application
QoT requirements to the delivered QoT. Quartz uses the linuxptp [141] implementation
of the PTP standard.

Huygens [3]: is the state-of-the-art protocol well-suited to operate at cluster scale.
Huygens uses a mesh of probes, which estimates the offsets between pairs of nodes
using a Support Vector Machine (SVM). Based on the probe-mesh topology, the pair-
wise offsets are sent to a centralized server, which uses the network effect to calculate the
final node offsets with respect to a pre-defined in-cluster clock reference. As Huygens is

not open-source, we have written our own implementation which consists of three major



CHAPTER 5. TIME-AS-A-SERVICE FOR GEO-DISTRIBUTED COORDINATION 105

components: (1) per-node probe client-server pair which compute the pair-wise offsets
and periodically publish the offsets using NATS, (2) per-cluster offset-calculator which
calculates and publishes the final offsets by subscribing to the pair-wise offsets, and (3)
per-node offset-receiver which subscribes to the final offsets.

If Huygens is the configured protocol, then the clock synchronization (1) topology,
(2) rate and, (3) clock reference can be configured. Whenever a local timeline is created
on a node, a unique offset-receiver is started per-timeline (allowing per-timeline clock-
references), while the probe mesh and the offset-calculator are started at the first time
a local timeline is created on the cluster. To meet the application-specified QoT, Quartz
modulates the probe-mesh frequency, while monitoring the delivered QoT. In this initial
version of Quartz, given that Huygens is designed to operate with a centralized server,
we statically define the clock-synchronization topology and the master reference. How-
ever, future extensions can make the selection of both topology and master dynamic.

QoT Estimation: To estimate the QoT for local timelines using PTP or Huygens, the
timing uncertainty relative to the local-timeline-reference needs to be computed by each
node. In our implementation, we utilize the methodology proposed in [?] to compute
the timing uncertainty. The proposed approach takes in a sliding window of n samples
of the clock frequency-drift and offset (computed by the clock-synchronization protocol).
After estimating the distribution of their variances, it computes a high-probability upper-
bound on the clock offset and the drift, which can be used to estimate the QoT (Equation
5.2). Both the number of samples n and the confidence probability of the bounds can be
configured.

Adaptive Synchronization Rate: Unlike NTP, both PTP and Huygens are master-driven
synchronization protocols. This means that the master node drives the synchronization
rate. For example, in PTP, the master clock reference sends periodic multi-cast SYNC
packets to all the slaves at a pre-determined rate. The slave nodes then respond with
follow-up packets, and hence, the master controls the rate of clock synchronization. Note

that, having a single rate for the entire network implies the node with the tightest QoT
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requirements holds significant influence on the synchronization rate. On the other hand,
NTP is a client-driven protocol, and each client can independently decide and adapt its
clock-synchronization rate by initiating a synchronization-request with an NTP server(s).
Therefore, for both PTP and Huygens, we employ a similar clock-synchronization rate-
adaptation strategy. Each node in a timeline periodically publishes its current delivered
QoT on a particular timeline-specific topic using the NATS publish-subscribe mecha-
nism. The master node listens to all the slave nodes, and tries to configure the synchro-
nization rate to try to meet the QoT requirements of all the nodes on the timeline. Each
master node has a protocol-specific lower and upper bounds on the rate of packets it
can send. At the start, the master sends a burst of packets to quickly synchronize all the
clocks. Subsequently, the master reduces its rate to the recommended protocol-specific
rate. Based on whether the QoT requirements are being met or not, the master can
gradually increase or decrease its synchronization rate.

Our entire implementation is open source and the source code along with the instruc-
tions to build and deploy can be found at: https://bitbucket.org/sandeepdsouza93/

quartz/. We now illustrate how TimeCop (Section 5.1) is deployed using Quartz.

5.2.4 Enabling TimeCop with Quartz

To demonstrate TimeCop, since we do not have ready access to real traffic controllers
in a city, we simulate a city-scale traffic scenario with multiple intersections, using the
open-source SUMO traffic simulator [151]. We use TraCl [151] to interface with the
simulation, and ensure that each time-step in the simulation mirrors the flow of time
in the real world. Using TraCl, we expose each intersection as MQTT [152] endpoints
which (i) periodically publish intersection sensor state — the number of vehicles queued
per-incoming lane in the last period, and (ii) listen for commands — the next phase of the
traffic signals at the intersection. Note that using MQTT decouples the simulation logic

from the controllers.
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Each containerized intersection controller is deployed using the Nutanix Xi IoT [153]
platform which makes it easy to seamlessly develop, deploy, monitor and manage dis-
tributed IoT applications across multiple edge devices. Each controller gets the intersec-
tion state by subscribing to the MQTT endpoints corresponding to the intersection. The
controller is based on deep reinforcement-learning [154], which uses the current intersec-
tion state to dynamically decide the next phase of the traffic signals at the intersection.
The controller also periodically receives timestamped state from adjacent intersections,
which it uses to improve traffic flow in coordination with other intersections. The cho-
sen phase is published to the intersection MQTT endpoint listening for commands. Each
intersection controller uses Quartz to bind to the traffic-management timeline with a QoT
requirement of +/-1 ms, while Quartz ensures that all controllers bound to the timeline
share the same notion of time with the desired QoT specification. Therefore, Quartz can
be useful for building large-scale distributed-coordination applications.

The source code to build and deploy TimeCop can be found at: https://bitbucket.

org/sandeepdsouza93/traffic_app/

5.3 Evaluation

We now evaluate the performance and scalability of Quartz. We first assess the accuracy
delivered by the clock-synchronization protocols that Quartz supports: NTP [1], PTP
[2] and Huygens [3]. For these protocols, we consider different time-stamping options
(hardware/software) and platforms. In particular, we consider two embedded/edge-
form-factor platforms: Intel NUC [155] and Beaglebone Black (BBB) [113]. Secondly, we
highlight the ability of Quartz to adapt to application-specific QoT requirements, and
accurately estimate the delivered QoT. Lastly, we evaluate the scalability of Quartz by

creating a prototype geo-distributed-scale deployment.
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5.3.1 Measurement Testbed

To perform clock-synchronization-related micro-benchmarks we have setup a testbed
consisting of multiple Intel NUC (dual-core Intel Core i3, 8 GB RAM) and Beaglebone
Black (uni-core ARM Cortex-A8, 1 GB RAM) nodes. The two platforms are represen-
tative of both embedded (BBB) and edge-computing (NUC) devices. As time-stamping
network events is key to clock-synchronization, the NUC supports hardware timestamp-
ing of all UDP packets and the BBB supports hardware timestamping of PTP-compliant
packets, as well as software timestamping of all packets. While both platforms are
capable of running Docker containers, only the Intel NUC supports the Kubernetes
container-orchestration engine [156].

The test-bed consists of two LANs: greenwich and roseline. Greenwich has two clus-
ters (i) NUC-Amethyst: Kubernetes cluster with 4 NUCs, and (ii) BBB-Citrine: 4 BBBs
with Docker; and an event generator BBB-Onyx. The event generator creates events
(UDP packets, or voltage-change on a hardware pin), which serve as opportunities for
other nodes to timestamp. By comparing the timestamps of a common event, the offset
between two clocks can be measured. Roseline has one cluster BBB-Ametrine: 4 BBBs
with Docker.

We now describe each of the cluster types and their utility.

1) The BBB Clusters are used to benchmark the performance of (i) Huygens and
PTP with hardware timestamping, and (ii) NTP with software timestamping. The BBB
hardware strictly restricts hardware timestamping to PTP-compliant multi-cast packets
sent/received on port 319 over 4 prescribed multi-cast IPs [157]. This constrains us to
performing Huygens micro-benchmarks with not more than 4 nodes. However, the BBB
have GPIO pins which allow 42ns-resolution timestamping on a rising or falling edge
(generated by the event-generator BBB-Onyx). This allows us to externally measure the
offset between two clocks and validate our implementation. In addition, having two BBB

clusters on different LANs (citrine on greenwich, and ametrine on roseline) also enables
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Table 5.1: NTP [1] Accuracy Micro-benchmarks (yseconds)
Platform | Timestamps | Cluster | Stratum | Max | Mean | Std. Dev

NUC HW Intra 1 4267 380 633
HW Intra 2 12607 | 2480 3351

BBB SW Intra 1 1638 542 245
SW Intra 2 5855 | 2380 717

SW Inter 1 2127 929 553

SW Inter 2 6033 | 3582 1032

clock-synchronization accuracy measurements between the two LANSs.

2) The NUC Cluster is used to benchmark the performance of NTP, PTP and Huygens
with hardware timestamping. The NUC features a desktop-class processor and a low-
cost gigabit network interface [158] which supports hardware timestamping. As the
NUC does not have external pins, the synchronization accuracy cannot be externally
measured. Instead, we use the event generator (BBB-Onyx) to periodically generate
multi-cast UDP packets, which the NUC timestamps in the network-interface hardware.
We use these timestamps (after applying the timeline-projection parameters) to compute
a safe upper bound of the offset between the two clocks. To ensure that the multi-cast
event reaches all the NUCs as simultaneously as possible, the event generator is connected
to the same switch as the NUC, and short cables of the same length are used to connect

each NUC to the switch.

5.3.2 Quartz: Clock-Synchronization Accuracy

We now present micro-benchmarks to evaluate the performance of NTP, PTP and Huy-
gens in various scenarios based on (i) timestamping capability (hardware/software), (ii)
platform (NUC/BBB), and (iii) server stratum (for NTP). Our micro-benchmarks are
intended to provide a glimpse of the best-effort accuracy deliverable by a protocol on
a given platform. This helps us to gain insights required to autonomously select an
appropriate protocol and configuration within Quartz. The accuracy (modulus of the

measured offset) obtained from our test-bed is specified in micro-seconds (ys).
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Table 5.2: PTP [2] Accuracy Micro-benchmarks (yseconds)
Platform | Timestamps | Rate (s) | Max | Mean | Std. Dev

NUC HW 1 183 31 113
HW 2 220 24 32

HW 4 13 9 2

BBB HW 1 14 2 3
HW 2 39 8 7

HW 4 39 5 7

1) NTP: The NTP micro-benchmark accuracy results are summarized in Table 5.1. In
all the experiments, we utilize publicly-available NTP pool servers, and each node can
pick its own server. In Section 5.2.3, we define all global timelines relative to UTC. There-
fore, not constraining nodes to pick a single server avoids the server from becoming a
single point of failure or a performance bottleneck, which is useful for maintaining time-
lines at global scale. This provides us with a good estimate of the accuracy achievable
in real-world deployments without the need for custom NTP infrastructure. However,
better accuracy can be achieved using custom NTP-server deployments. If we compare
the measured accuracy based on platform type or network-timestamping capabilities,
no significant differences are observed. This is because (i) NTP requires few resources
and can synchronize clocks efficiently even on low-power platforms like the BBB, and
(ii) most NTP servers do not support hardware timestamping on their end. On the other
hand, we observe that, regardless of the platform, the choice of server (stratum) plays
an important role in the accuracy obtained. This is because lower-stratum NTP servers
track UTC with lower error. Thus, even choosing different stratum 1 servers can yield
sub-millisecond accuracies across different LANs (Inter). Thus, NTP is well suited for
global-scale applications which have QoT requirements in the order of 100s of us to
several ms.

2) PTP: Both platforms support hardware timestamping of IEEE 1588 PTP packets,
and the accuracy results are summarized in Table 5.2. The network we utilize is not PTP-

compliant and does not correct for queuing delays, which is mostly true for real-world
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networks. For both platforms, we observe that PTP at LAN-scale can yield accuracies
in the order of 1-100 us. This is primarily due to the use of hardware timestamping,
and the fact that the Linux kernel natively-supports PTP. On the NUC, decreasing the
synchronization rate causes a slight increase in accuracy. In contrast, on the BBB, a
lower synchronization rate yields marginally better accuracy. Thus, a faster rate does not
always imply better accuracy. The Allan intercept of the clock [159], an indicator of clock
stability, influences the optimal rate. Therefore, choosing the correct rate autonomously is
useful in achieving application-specified levels of QoT.

3) Huygens: We benchmarked Huygens on both platforms, and the accuracy results
are summarized in Table 5.3. For both platforms, we consider a toy deployment of 4
nodes (in their clusters) with the probe-mesh pairs setup to form a 4-node loop. We
observe that Huygens at LAN-scale can yield accuracies in the order of 100s of us. The
values in the table are for a pair of nodes separated by one hop in the probe mesh, while
the values within parentheses are for a pair of nodes separated by two hops. Huygens
relies on exchanging 10-100s of packets between nodes every second, and is designed for
data-centers and not low-cost hardware. In both of our platforms, while using hardware
timestamping, we observed significant timestamping errors at the network interface.
This was especially severe for the BBB, which incorrectly orders/loses timestamps when
packets arrive rapidly. Hence, we observed accuracies of the order of a few seconds, as
the BBB NIC is only designed to timestamp PTP packets arriving at a rate of about 1-4
packets per second [157]. We also run Huygens with software (kernel) timestamping,
and observe that it yields an accuracy in the order of 100s of ys, and the synchronization
session is stable. This obtained accuracy is in line with the resolution provided by kernel
timestamps.

Therefore, while both NTP and PTP are well-suited to run on low-cost platforms,

Huygens is better suited for resource-rich settings.
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Table 5.3: Huygens [3] Accuracy Micro-benchmarks (ys)

Platform ‘ Timestamps ‘ Rate (ms) ‘ Max ‘ Mean ‘ Std. Dev
NUC HW 10 401 (1596) | 294 (1099) | 21 (501)
HW 100 405 (382) | 104 (105) 64 (75)

SW 10 1835 (1205) | 294 (252) | 242 (163)

SW 100 1251 (965) | 234 (328) | 259 (243)

BBB HW 100 13000000 2000000 | 3000000
SW 10 782 170 153

SW 100 4593 1091 340
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5.3.3 Quartz: Adaptiveness & QoT Estimates

The key proposition of Quartz is to provide Time-as-a-Service, and adapt to application-
specific QoT demands. We now evaluate Quartz’s ability to: (i) orchestrate clock-
synchronization protocols to deliver application-specific QoT requirements, and (ii) re-
port accurate QoT estimates to applications during transient (external disturbances) or
permanent failure (network disconnect). We first focus on NTDP, as it is our protocol of
choice for providing TaaS at geo-distributed scale (global timelines). Subsequently, we

benchmark PTP and Huygens for cluster-scale local timelines.

Global Timelines

Figures 5.5a, 5.5b, 5.5c and 5.5d showcase four scenarios, where two application com-
ponents a7 and &y, on two different nodes (Nodel and Node2), each bind to a global
timeline gl_test, specifying their QoT requirements of +/-1 ms relative to UTC. Each fig-
ure plots the measured offset between the two nodes, as well as the QoT estimate that
Quartz provides to each application. As the QoT bounds presented for global timelines
are always relative to UTC, the bounds can be lesser than the measured offset between
two nodes. As mentioned in Section 5.2.3, all global timelines are maintained relative to
UTC, and hence, we use only one NTP instance to synchronize all the global timelines.
Quartz orchestrates and configures this NTP instance to meet application requirements.

Adaptivity: Figure 5.5a showcases Quartz’s ability to adapt to application-specific

QoT requirements. At time t = 0, 1 on Nodel (NUC-Amethyst-1) binds to the time-
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Figure 5.5: Quartz NTP: (a) Adaptive clock-synchronization, (b) QoT bounds on clock-
synchronization failure, (c) Effect of CPU & network interference on QoT, and (d) Inter-
cluster QoT estimation. Note the different y-axis on each plot

line gl _test. As the existing clock reference cannot satisfy a;’s requirements, Nodel’s
synchronization service tries new servers from the NTP pool, until the first dashed line,
when it selects a suitable server which meets a;’s requirements. At time ¢ = 500, a; on
Nodey (NUC-Amethyst-2) binds to gl_test. As Node2’s current reference cannot satisfy
ay’s requirements, Node2’s timeline service queries the cluster-scope coordination ser-
vice for any known NTP servers being used by other apps on gI_test. As a server exists
(registered by &1), Node2’s synchronization service selects it, and is able to meet a;’s

QoT requirements. As a consequence, the offset between the two nodes reduces, and
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Figure 5.6: Validating the accuracy of the QoT bounds for NTP

this is reflected in the QoT bounds returned to «5.

QoT-based Fault Detection: Figure 5.5b plots a network-disconnection scenario
where clock synchronization is lost, as a node(s) is unable to communicate. At time
t = 180, we simulate a network-disconnect/synchronization-service failure by killing
the synchronization service on both Nodes1&2 (NUC-Amethyst-1&2). In this scenario,
the API library (used by a; & a3) uses the last-known QoT parameters to keep estimat-
ing the QoT (using Equation 5.2), until the clock is re-synchronized. As highlighted in
Figure 5.5b, the bounds diverge linearly at the rate given by the upper bound of the
clock drift (tlg.,). When the bounds exceed application-specified QoT requirements,
the application is notified.

Resilience to CPU/Network Interference: Processing and networking resources are
essential to clock synchronization. Figure 5.5¢ illustrates the effect of adversarial CPU
and network-intensive workloads on the QoT and offset between two nodes (NUC-
Amethyst-1&2). Between time t = 500 and t = 700, we introduce a CPU-intensive
workload on Nodel using the stress tool [142]. The stress tool creates 10 CPU-intensive
threads which nearly saturate the CPU on nodel. Observe that, as NTP is a lightweight
protocol, there is no significant effect on the measured clock-synchronization accuracy,

and this is also reflected in the QoT bounds. At time t = 700, we introduce a network-
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intensive workload on Nodel using the iperf tool [143]. The iperf tool fully saturates the
network interface on Nodel with TCP traffic. Shortly after the network load is intro-
duced, there is a degradation in clock-synchronization accuracy, as reflected by the ~4x
increase in the measured offset between Nodes1&2. Note that the QoT bounds deliv-
ered to the application on Nodel also suddenly increase to reflect this degradation in
clock-synchronization accuracy. Hence, Quartz detects transient changes in QoT due to
anomalies or interference.

Inter-Cluster QoT Estimation: Computing accurate QoT estimates across clusters in
different LANs is key to providing TaaS at geo-scale. Figure 5.5d plots the measured
offset between two nodes (BBB-Citrine-1&BBB-Ametrine-1) in different LANs (green-
wich and roseline), as well as the reported QoT. Additionally, to validate whether the
QoT bounds are accurate, we also consider two nodes synchronized to different NTP
servers. For this scenario, Figure 5.6 plots the measured offset between two nodes (BBB-
Citrine-1&BBB-Ametrine-1) in different LANs (greenwich and roseline), as well as the
reported QoT, while each of these nodes are synchronized to a different NTP server —
ntp-1.ece.cmu.edu and and ntpl.wiktel.com respectively. For both Figures 5.5d and
5.6, as the QoT is defined relative to UTC, for the bounds to be valid, the sum of the two

QoT bounds should not be less than the measured offset between the two nodes.

Local Timelines

Figures 5.7a & 5.7b plot the QoT estimates for local timelines, when using PTP and
Huygens respectively. For both protocols, the QoT and offset of Node2 are defined
relative to the timeline reference (Nodel). Both sets of measurements were obtained
using a pair of NUCs (NUC-Amethyst-1&2). For Huygens, we observed significantly
higher QoT bounds than the measured offset. This is due to the high variance in the clock
offset and drift measurements caused by hardware timestamping instabilities/errors in
the network interface. Therefore, for local timelines, we focus on the PTP protocol. We

utilize a pair of nodes in the BBB-Citrine cluster to perform experiments. As stated
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Figure 5.7: Quartz QoT estimation: (a) PTP and (b) Huygens

before, the BBB have GPIO pins which allow 42ns-resolution timestamping of a voltage-
change event (generated by the event-generator BBB-Onyx). We use this to externally
measure the offset between two clocks.

Adaptivity: Figures 5.8a & 5.8b showcase Quartz’s ability to orchestrate PTP to adapt
to application QoT requirements. The left y-axis shows the measured offset and the
estimated QoT, and the right y-axis shows the binary logarithm (log,) of the period of
the PTP SYNC messages [2]. As described in section 5.2.3, Quartz modulates PTP’s clock-
synchronization rate to meet application QoT requirements. We consider #; on Nodel
(BBB-Citrine-1) and ap on Node2 (BBB-Citrine-2) bound to the local timeline test. In both
Figures 5.8 5.8a & 5.8b, a1 on Nodel is elected as the timeline master-clock reference,
and the application QoT requirements are set to (a) 10us and (b) 5us respectively. In
Figure 5.8a, Quartz initially increases the rate to quickly meet the QoT requirements,
and then slows down once the QoT requirements are met. Similar observations can
be made for the case illustrated in Figure 5.8b. Note that for a multi-cast protocol like
PTP, decreasing the synchronization rate can lead to significant reduction in network
bandwidth consumed. Additionally, in case (b), sometimes during durations of high-
synchronization rates, there can be timestamping instabilities, which cause the offset,

and the delivered QoT to spike. We believe that this is due to an issue in the BBB
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Figure 5.8: Quartz PTP: Adaptive clock-synchronization with QoT requirement (a) 10us,
(b) 5us, (c) QoT bounds on clock-synchronization failure, and (d) Effect of CPU & net-
work interference on QoT. Note the different y-axis on each plot

hardware-timestamping module.

QoT-based Fault Detection: Figure 5.8c plots a network disconnection scenario
where clock synchronization is lost, as a node(s) is unable to communicate. At time
t = 280, we simulate a network-disconnect failure by killing the synchronization service
on Node2 (BBB-Citrine-2). Similar to the NTP case, the API library (used by ay) uses
the last-known QoT parameters to keep estimating the QoT (using Equation 5.2), until
the clock is re-synchronized. As highlighted in Figure 5.8c, the bounds are diverged

linearly at the rate given by the upper bound of the clock drift (t/5,,). When the bounds



CHAPTER 5. TIME-AS-A-SERVICE FOR GEO-DISTRIBUTED COORDINATION 118

Table 5.4: Continent-scale Scalability Results
Specified QoT (Accuracy) | Worst Delivered QoT | Best Delivered QoT

500us 442us 284us
1ms 994us 233us

exceed application-specified QoT requirements, the application is notified and can enter
a graceful-degradation mode.

Resilience to CPU/Network Interference: Figure 5.8d illustrates the effect of CPU
and network-intensive workloads on Quartz PTP. At time t = 200, we introduce a CPU-
intensive workload on Node2 using the stress tool [142] for 100 seconds, which fully
saturates the CPU on the BBB. Since PTP is lightweight, there is no significant effect on
the clock-synchronization accuracy, and the observed QoT bounds. At time ¢t = 400,
we introduce a network-intensive workload on Node2 using iperf [143] for 100 seconds.
This saturates all the network bandwidth, and PTP packets cannot get through. Thus,
the clock offset as well as the observed QoT diverges. Observe that, as soon as the
network interference goes away, Quartz increases the PTP clock-synchronization rate to
ensure that the delivered QoT quickly returns to the desired level (10us).

Therefore, we conclude that Quartz adapts to application demands and external in-

terference at both cluster and global scales.

5.3.4 Scalability

We now demonstrate the ability of Quartz to provide Time-as-a-Service at geo-
distributed scale, by utilizing clusters deployed using Virtual Machines (VMs) hosted in
the public cloud. Our experiments are meant to demonstrate scale, and hence we con-
sider global timelines maintained using Quartz’s Adaptive NTP clock-synchronization
protocol. As we cannot externally measure the accuracy of clock-synchronization inside
the VMs, we rely on the ability of our system to accurately provide QoT estimates, to
check if different application-specified QoT levels can be achieved across all the geo-

distributed clusters. We conduct two sets of experiments:
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Table 5.5: Geo-distributed Scalability Results: Microsoft Azure

QoT Spec. ‘ Region ‘ Worst QoT ‘ Best QoT ‘ Average QoT ‘ Fraction
500us east-us 506us 200us 327us 0.98916
central-us 504us 216pus 354pus 0.98844
west-europe 508us 249us 415us 0.97398
east-australia NA NA NA NA
east-asia NA NA NA NA
1 ms east-us 635us 199us 365us 1
central-us 568s 140us 293us 1
west-europe 640us 307us 476us 1
east-australia 1003us 490us 758us 0.99076
east-asia 1006ps 459us 645us 0.97398

1) Continental Scale: We deploy Quartz across 15 VMs running across three Amazon
Web Services (AWS) [160] regions spanning the continental United States (5 VMs each
in us-east-1 Virginia, us-east-2 Ohio and us-west-2 Oregon). Each VM is configured as a
standalone Kubernetes cluster using the Nutanix Xi IoT [153] platform, which also helps
deploy the Quartz micro-services as Kubernetes pods. In this experiment we deploy an
application with 15 coordinating components, each deployed in one of the 15 VMs. Each
application component binds to a common global timeline gl _test, and specifies its QoT
requirement. This experiment gives us an idea of the accuracy that Quartz can achieve
at continental scale, for a geo-distributed deployment on a single network backbone. We
conduct this experiment over a period of 5 hours and consider two QoT-specification
levels (required clock-synchronization accuracy): 500 us and 1 ms. For a given specified
QoT level, Table 5.4 summarizes the best and worst QoT level delivered by Quartz across
the 15 geo-distributed clusters. As seen in Table 5.4, the best QoT represents the tightest
accuracy bounds observed, and the worst QoT represents the loosest bounds observed.

2) Global Scale: We deploy Quartz across 20 Virtual Machines (VMs) spanning five
continents and two public cloud providers. Our deployment consists of 10 VMs run-
ning in five Microsoft Azure (Azure) [161] regions (2 VMs each in east-us, central-us,
europe-west, australia-east and asia-east), and 10 VMs running in five Google Cloud

(GCP) [162] regions (2 VMs each in asia-east, asia-south, us-west, europe-north and
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Table 5.6: Geo-distributed Scalability Results: Google Cloud

QoT Spec. ‘ Region ‘ Worst QoT ‘ Best QoT ‘ Average QoT ‘ Fraction
500us asia-east 716us 230us 376pus 0.96025
asia-south 88611s 214pus 390us 0.94606
us-west 501us 184us 289us 0.99850
europe-north 389us 186yus 291us 1
south-america 1100us 276us 473us 0.87861
1 ms asia-east 6481s 292us 426us 1
asia-south 813us 237us 484us 1
us-west 1009us 224us 542us 0.99566
europe-north 509us 204pus 309us 1
south-america 746ys 277us 458s 1

south-america-east). Each VM is configured as a standalone Kubernetes cluster. In this
experiment we deploy an application with 20 coordinating components, each deployed
in one of the 20 VMs. Each application component binds to a common global timeline
gl_test, and specifies its QoT requirement. This experiment gives us an idea of the
accuracy that Quartz can achieve for a geo-distributed deployment. We conduct this
experiment over a period of 5 hours and consider two QoT-specification levels (required
clock-synchronization accuracy): 500 us and 1 ms. Tables 5.5 and 5.6 summarize the
best, worst and average observed QoT, along with the fraction of time the specified QoT
requirements were satisfied, for the VMs deployed in Azure and GCP respectively.

For our continental-scale experiments on AWS (Table 5.4), we observe that Quartz
can reliably deliver an accuracy level of 500us. On the other hand, for our global-
scale deployment across Azure and GCP (Tables 5.5 and 5.6), we observe that some
nodes cannot achieve a QoT level of 500us. This is especially true for the Azure nodes
deployed in the east-australia and east-asia regions (values indicated by NA in Table
5.5). This is because Quartz is unable to choose an appropriate NTP server to satisfy the
QoT specification of 500ys.

Note that the lowest-possible uncertainty with respect to Universal Coordinated Time
(UTC), achievable by a client using a specific NTP server depends on the server’s: (i)

stratum [1], i.e., how closely it tracks UTC, and (ii) the round-trip network latency be-
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tween the server and the client. For example, if Quartz chooses a low-stratum server
located in the United States (US), which tracks UTC accurately, then the high round-trip
latency between the server in the US, and a client in Australia will constitute the dom-
inant factor in the clock-synchronization uncertainty or QoT reported by Quartz. This
may prevent the QoT requirements of 500 us from being met.

Thus, Quartz can maintain global timelines with sub-millisecond accuracy, while

estimating QoT at geo-distributed scale.

54 Summary

Time is a key primitive for enabling coordination in distributed systems. In this chapter,
we introduced Quartz which provides Time-as-a-Service to geo-distributed containerized
applications, which coordinate using a shared notion of time. Based on the notion of
Quality of Time (QoT) in conjunction with the timeline abstraction, Quartz exposes an
API which simplifies the development of geo-distributed coordinated applications, and
allows applications to specify their QoT requirements. Quartz orchestrates the under-
lying infrastructure to meet these application-specific requirements, and exposes the
delivered QoT back to the application. Thus, time-based distributed-coordination appli-
cations can be fault-tolerant in the face of clock-synchronization failure.

Quartz features a modular architecture implemented using containerized micro-
services. This makes it scalable and easy to deploy on platforms ranging from embedded
devices to the edge, and the cloud. Our evaluation indicates that Quartz adapts to appli-
cation demands, and maintains a timeline across multiple geo-distributed nodes. We also
demonstrated the utility of Quartz by using it in TimeCop, which uses a shared notion of
time to coordinate traffic signals, and consequently vehicular-traffic flow at city scale.

Our realization of Quartz is open-source and supports Python and C++ applications,
along with NTP, PTP and Huygens clock-synchronization protocols. While Quartz is

most relevant for cyber-physical systems, the core concept of Time-as-a-Service is also
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useful for distributed software applications, such as databases and logging systems.
We strongly believe that the ability to request and observe application-specific QoT can

be used to relax many of the stringent asynchronous assumptions associated with dis-

tributed systems.



Chapter 6

Sleep Scheduling for Energy-Savings in

Multi-Core Processors

The emergence of edge computing and the Internet of Things (IoT) [12] have begun to
place an increasing demand for computation on highly-connected and mobile devices.
Platforms such as Google Glass and smartwatches are examples of IoE systems using
multi-core processors. The need for high performance in an energy-constrained environ-
ment makes it necessary to investigate the use of various energy-management techniques
for multi-core systems. To increase battery life, modern processors are equipped with
a number of energy-management features. Primary among them are Dynamic Voltage
and Frequency Scaling (DVFS) [41], and the use of low-power sleep states. The use of
DVES enables the processor to change its operating frequency and voltage, thereby re-
ducing dynamic switching power. On the other hand, low-power sleep states use power
gating and/or clock gating [43] to reduce static leakage power dissipation when the pro-
cessor is idle. However, there is a minimum round-trip time associated with each of
these low-power sleep states [42]. This round-trip time is longer for moving to and from
lower-power states due to the overhead required for the main oscillator to startup and
stabilize [42].

From a real-time systems scheduling perspective, it is critical that all tasks meet their

123
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deadlines to ensure reliable system operation. The presence of such systems in resource-
constrained and mobile environments also makes it essential that the system minimize
energy consumption. As technology scales, the dominance of static power makes it
necessary that scheduling techniques take advantage of built-in processor sleep states.
The focus of this chapter is on energy-efficient multi-core partitioned fixed-priority
real-time scheduling techniques, which utilize the processor’s deep-sleep state to reduce
static leakage power, and hence save energy. The primary contributions described in this

chapter are as follows:

e We propose an enhanced version of ES-RHS, named ES-RHS+, which has better
schedulability properties than ES-RHS [42].

e We provide an energy-saving version of rate-monotonic (deadline-monotonic)
scheduling, named Energy-Saving Rate-Monotonic (Deadline-Monotonic) Scheduling
(ES-RMS and ES-DMS), which has better energy-saving guarantees than ES-RHS
and ES-RHS+ for multi-core processors where all cores can only transition into

deep-sleep state together.

e We present a new task-partitioning heuristic that increases synchronized sleep

times, where all cores can only transition into deep-sleep state together.

e We prove that ES-RHS (ES-RHS+) is optimal for energy savings on multi-core pro-
cessors where, each core can independently go into deep-sleep state, for any parti-

tion feasible under multi-core ES-RHS (ES-RHS+).

6.1 Energy-Saving Rate-Harmonized Scheduling

This section introduces the notation used in the context of uniprocessor ES-RHS. We then

describe a version of ES-RHS with enhanced schedulability conditions, named ES-RHS+.
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6.1.1 Notation and Background

Consider a taskset I' consisting of n independent1 periodic real-time tasks 71, 1o, ..., Ty.
Each task 7; € I' can be characterized by {C;, T;, D;}, where C; is the worst-case execution
time, T; is the period, and D; is the relative deadline from its arrival time. In this chapter,
we assume that D; = T;, i.e., for each task, deadlines are implicit. The utilization of a
task 7; is given by U; = C;/T;. Consider fixed-priority preemptive scheduling, with task
priorities assigned using the rate-monotonic policy [29]. The taskset is listed in non-
increasing order of task priorities such that T; < T, < .. < T),. Each task has an initial
arrival time of ¢;, such that its arrival times are ¢;, ¢; + T;, ¢; + 2T}, .... Without loss of
generality, we assume that the initial arrival time of task 7, ¢; = 0.

The family of Rate-Harmonized Schedulers [42] utilizes a periodic value Ty, referred to
as the Harmonizing Period. As described in [42], the Harmonizing Period has the same
initial phasing as the highest priority task 7, i.e, ¢; = 0. No such phasing constraints
are imposed on the other tasks. In the basic Rate-Harmonized Scheduler (RHS), tasks that
arrive before or after integral multiples of Ty are not eligible to execute until the next
closest boundary of Ty, when they are serviced based on their priority [42]. For a given
taskset I', Ty is chosen so as to improve schedulability [42]. As stated in [42], let us
suppose ¥ = {7j|T; < 2Ty,j # 1}. If ¥ = @, Ty = Ty, otherwise Ty = Ty /2.

In ES-RHS, by using a periodic Energy-Saver task T, in conjunction with RHS,
optimal energy savings can be achieved. The Energy-Saver task Ty, is scheduled at
the highest priority with its period Ty, = Th, initial arrival time ¢, = ¢1 = 0 and
execution time Cgeep > Csieepmin, Where Cgpeeppin 18 @ system constraint that represents
the minimum round-trip time required for the processor to go into the deep-sleep state,
and revert back to the active state. While using ES-RHS, the state of the processor can

be broadly classified as follows [42]:

e Busy: The processor is executing a task 7; € T'.

ITask release jitter and task dependence can be incorporated using the frameworks proposed in [163]
and [164], and is beyond the scope of this work.
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e Forced Sleep: The processor is forced into deep sleep by the Energy Saver task Tyjeep.-
e Idle: The processor is neither busy nor in forced sleep.

ES-RHS exhibits an interesting property, where every idle duration precedes, and is
contiguous with the forced-sleep duration. Thus, idle durations can always be merged
with the subsequent forced-sleep duration [42]. Hence, by harmonizing the executions of
non-harmonic tasks, ES-RHS can yield an optimal sleep schedule. We now re-define the

notion of harmonization to enhance the schedulability of ES-RHS.

6.1.2 Energy-Saving Rate-Harmonized Scheduling+

We first re-define the notion of harmonization as follows:

“A task is eligible to execute when the processor is busy or a Harmonizing Period
boundary has been reached.”

The above re-definition allows tasks to become eligible earlier than previously de-
fined rate-harmonized schedulers including RHS and ES-RHS, without affecting their
worst-case energy savings. Based on this new notion of harmonization, we propose ES-
RHS+. To illustrate our new definition of harmonization, consider the ES-RHS schedule
in Figure 6.1. The second instance of task 7, arrives at time t = 23 but only becomes
eligible to execute at t = 30. Under our re-definition, the second instance of 7, becomes
eligible to execute at time ¢ = 23, because the processor is busy, i.e., the forced-sleep task
is “executing”. Similarly, the second instance of task 73 which arrives at time t = 36
becomes eligible at t = 40 under ES-RHS. Under our new definition, since the processor
is busy at time t = 36 (executing 1), it becomes eligible to execute immediately. Eligible
tasks will continue to be scheduled based on their respective scheduling priorities.

Using the new definition of harmonization, a task which arrives when the proces-
sor is busy (including forced sleep) becomes eligible to execute immediately. In ES-RHS,
such tasks can execute only after the next instance of T, finishes execution. In the

worst case, a task T, ] # 1, which arrives just after the harmonizing period boundary,
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Figure 6.1: The taskset 7 = (1,10), » = (4,23), 3 = (3,36) being scheduled with
ES-RHS on the top, and ES-RHS+ at the bottom. For both cases, Csjeep = 5, Tsjeep = 10.

has to wait until the next harmonizing period boundary to become eligible to execute.
This induces a worst-case blocking duration of Ty, Under ES-RHS+, the worst-case
blocking for a task 7j,j # 1, happens when it arrives just after the Energy Saver task
has finished execution. It becomes eligible to execute no later than the next harmonizing
period boundary, giving rise to a worst-case blocking term of Tjeep — Csleep-

We now prove that the energy savings obtained by using ES-RHS are still true for
ES-RHS+.

Theorem 1: Every idle duration in the ES-RHS+ schedule will precede and be con-
tiguous with a forced-sleep duration.

Proof: The Energy Saver task, T, executes at the highest priority in the system, with
an initial phasing ¢s..p = ¢1 = 0. Hence, the processor will be in forced sleep in the
intervals [(k — 1) Tsieep, (k — 1) Tieep + Cteep), Where, k = 1,2,3,.... Correspondingly, the
processor is considered to be busy in the intervals [(k — 1) Tyjeep + Coreep, kTs1cep) Where,

k = 1,2,3,... Lett be any time instant at which the processor becomes idle, i.e., t
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represents the beginning of an idle duration. Given the execution pattern followed by
ES-RHS+, t must lie in the interval [(k —1)Teep + Cteep, kTsieep) Where, k = 1,2,3, ...
It needs to be shown that the interval (¢, kT,,,), for any positive value of k, is an idle
duration which in turn precedes the forced-sleep execution of the Energy Saver task
Tsleep-

For ES-RHS+, Ty = Tgep- Hence, any task 7; € I' that arrives in the interval
(t, kTseep), for any positive value of k, would become eligible to execute at the next
harmonizing period boundary, i.e., kTg,.,. Any task 7; € T, which arrives before
(k — 1) Tizeep, in the worst case, would have become eligible to execute at (k — 1) Tyjeep- If
any task arrives in the interval [(k — 1)Tsleep + Csleep, 1), 1.6, when the processor is busy,
then using the re-defined notion of harmonization, it would have become eligible to ex-
ecute immediately. If 7; still has some execution time left over at ¢, then ES-RHS+ must
schedule 7; at time ¢. This contradicts the assumption that t represents the beginning of
an idle duration. |

Theorem 2: Every idle duration in the ES-RHS+ schedule can be utilized to put the
processor into deep sleep without any additional penalty.

Proof: From Theorem 1, we can conclude that all idle durations precede and are
contiguous with the forced-sleep execution. Hence, all idle durations in the system can
be combined with Cg,,, to create a single chunked deep-sleep execution, guaranteeing
that whenever the system becomes idle, it can transition into a deep-sleep duration
greater than or equal to Cjeep. |

Given that all idle durations in the ES-RHS+ schedule can be combined with the

forced-sleep execution, the processor utilization spent in deep sleep is given by:

" C
usleep =1- Z; f =1 — Upnskset
1=

where, Uy,qxset is the total utilization of I'. Thus, for a taskset I' schedulable by ES-RHS+,

the processor utilization spent in deep sleep is maximal. The following theorem yields

the worst-case feasibility conditions, based on utilization bounds, for a taskset to be
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schedulable by ES-RHS+.
Theorem 3: A taskset I is feasible under ES-RHS+ if

C
sleep +g <1 A
Tsleep T

%ZEEP + .i % + —TSleep ; Coteep <i(2""-1) Vi=2ton
sleep  j=1 1] i

Proof: Under ES-RHS+, it is always guaranteed that 7; executes immediately after the
execution of Tsleep- Hence, we can equivalently assume that 7y and 7y, together form
a high-priority taskset scheduled using RMS with harmonic periods. Thus, given the
harmonicity of 71 and T, using RM-theory [29], if (Csjeep/ Tsteep) + (C1/T1) < 1, then
71 is schedulable by ES-RHS+.

Consider other tasks in the taskset I, 7; Vi = 2 to n. Compared to RMS, an instance of
T; incurs a maximum additional delay (or blocking) of Tgjeep — Cleep- Hence, apart from
the preemption term contributed by the execution of Ty, the term Tgjeep — Cgpeep can be
added as a blocking term to the computational time of 7; (C;), and the RMS utilization
bounds [29] can be used to test feasibility. |

The tests based on RMS utilization bounds are pessimistic in nature. A more practical
schedulability test utilizes the estimation of the worst-case response time of task 7; € T'.

For ES-RHS+, the worst-case response time test for a task T; is given by the following

recurrence relations:

Wo=Ci+ Tsleep - Csleep (6.1)
W, =W

Wi1 = Wo + |7T—k“ Csleep + Z Tk—‘ Cj (6.2)
sleep j=1 j

until Wy, 1 = Wy, in which case, Wy is the worst-case response time of the task 7;. If
Wii1 < D;j, then T; will be schedulable, otherwise 7; will miss its deadline.

Compared to the schedulability conditions of ES-RHS [42], ES-RHS+ enhances the
schedulability and feasibility conditions due to the reduction in the blocking faced by

tasks. Another important property of both ES-RHS and ES-RHS+ is their inherent ability
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to perform slack stealing. In situations where tasks do not execute up to their worst-case
execution time, all the additional slack can be used to put the processor into deep sleep

without any additional penalty (Theorem 2).

6.2 Energy-Saving Rate-Monotonic Scheduling

ES-RMS is a practical extension to RMS designed with the objective of maximizing en-
ergy savings in some existing operating systems. As presented in subsequent sections,
ES-RMS can also help maximize energy savings for some multi-core processors. Moti-
vated by ES-RHS, the basic Rate-Monotonic Scheduler can be extended to use a periodic
Energy Saver task, Tyeep, that executes at the highest priority with its execution time
Csieep = CsleepMin, period Tgeepy = Tr or T1/2 and phasing ¢gieep = ¢1 = 0. The following
theorem provides the worst-case feasibility conditions for a taskset to be schedulable by
ES-RMS, based on utilization bounds.

Theorem 4: A taskset on a uniprocessor is feasible under ES-RMS if

C
sleep +g <1 A
Tsleep T
C L C; ,
ZlP LY T <iYi1) Vi=2ton
Tsleep j=1 T]

Proof: Under ES-RMS, the forced-sleep execution T, has an initial phasing of
Psieep = ¢1 = 0 and a period Tgep = T1 or T1/2. Hence, 7y always executes imme-
diately after the execution of 7, and together form a high-priority taskset, scheduled
using RMS with harmonic periods. Thus, given the harmonicity of 71 and Ty, using
RM-theory [29] we can say that if (Csieep/ Tsteep) + (C1/T1) < 1, then 1y is schedulable
by ES-RMS.

Consider other tasks in the taskset I, 7; Vi = 2 to n. The preemption term contributed
by the execution of 7y,,, has to be included, and the RMS utilization bounds [29] are

used to test feasibility. [ |
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For ES-RMS, the worst-case response time test for a task 7; is given by the recurrence

relations:
Wo =C; (6.3)
W, =W
Wi =GCi+ |7T—k“ Csleep + 2 |7Tk“ C] (6.4)
sleep j=1 j
until Wi, = W, in which case, Wi, is the worst-case response time of the task ;. If

Wii1 < D;j, then T; will be schedulable, otherwise 7; will miss its deadline.
ES-RMS can also be readily extended to the case where task deadlines are not im-

plicit, by using a version of Deadline-Monotonic Scheduling (DMS), ES-DMS.

6.3 Energy-Saving Schedulers

Both ES-RHS+ and ES-RMS (ES-DMS) are characterized by a high-priority periodic
Energy-Saver task (also referred to as an ES-task or forced-sleep task). Therefore, we
call this class of schedulers Energy-Saving Schedulers or ES Schedulers. For ES Sched-
ulers, the generalized worst-case response time test for a task 7; is given by the following

recurrence relation:

Wi
Tsleep

i—1
W
Wo = Ci, Wey1 = C; + { }Csleep +Y {—Tf‘ w C; (6.5)
j=1] 1i

where, Wi 1 is the worst-case response time of the task 7;. If W1 < Dj, then 7; will be
schedulable, otherwise T; will miss its deadline, where, Dl( is the generalized deadline of a
task 7; and depends on the type of ES Scheduler used. Based on this notation, we briefly
summarize each of the ES Schedulers:

(1) ES-RMS: Tasks execute as per rate-monotonic priorities and deadlines are as-
sumed to be implicit (D; = T;). Here, the generalized deadline, D} = T;.

(2) ES-DMS: Tasks execute as per deadline-monotonic priorities. This implies that
the generalized deadline, D} = D;.

(3) ES-RHS+: Tasks execute as per rate-monotonic priorities, and deadlines are im-

plicit. However, tasks become eligible to execute based on the principle of harmonization:
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A task is eligible to execute only when the processor is busy or a Harmonizing Period
boundary has been reached [58]. The use of harmonization enables every idle dura-
tion in the ES-RHS+ schedule to precede and be contiguous with the ES-task. Hence, all
the processor’s idle durations can be utilized to put it into deep sleep, thereby providing
maximal energy savings [58]. Due to harmonization, each task can be delayed by at most
Tsteep — Csteep [58]. This implies that the generalized deadline, D} = T; — (Tsjeep — Csteep),
and provides a tight schedulability test compared to the slightly looser one proposed in

Section 6.1.2.

6.4 Sleep-State based Energy-Saving on Multi-Core
Processors

In this section,