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Abstract

Cyber-physical systems (CPS) involve the cyber components of computing and commu-

nication interacting with and controlling elements in the physical world. Emerging CPS

are increasingly distributed and perform coordinated sensing and actuation over large

geographical areas. Examples include local-scale industrial robots, city-scale traffic man-

agement, and regional/continental-scale smart grids. Hence, a hierarchy of resource-

constrained embedded sensing/actuation nodes, edge cloudlets and the cloud will be

key to enable scalable coordination, while simultaneously hosting the intelligence behind

these systems. To meet the low-latency real-time requirements of CPS, these platforms

typically harness a variety of computing resources ranging from multi-core processors to

hardware accelerators such as general-purpose Graphics-Processing Units (GP-GPUs).

In conjunction with low latency, a shared and precise notion of time is key to en-

abling coordinated action in distributed CPS. Hence, in this dissertation, we introduce

abstractions, system-design methodologies and frameworks that enable time-based co-

ordination in geo-distributed cyber-physical systems. While a shared notion of time

enables coordination at the distributed scope, to coordinate effectively it is also necessary

to simultaneously schedule multiple application components at the scope of each node,

such that all deadlines are met, while ensuring that the resource/physical constraints of

the system are satisfied. Therefore, this dissertation also introduces energy-, thermal-

and resource-efficient analyzable real-time scheduling techniques for applications de-

ployed on platforms utilizing both multi-core processors and hardware accelerators.

Our proposed solutions are readily applicable to commodity embedded, edge and

cloud platforms, and together can enable time-aware and energy-efficient CPS.
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Chapter 1

Introduction

The only reason for time is so

that everything doesn’t happen

at once.

Albert Einstein

1.1 Motivation

Coordination is key to the successful operation of a distributed cyber-physical system.

Distributed coordination occurs at different spatial and temporal scales, ranging from

local-scale robotic coordination – occurring at the timescale of hundred microseconds to

a few milliseconds, and city-scale connected vehicles coordinating at the granularity of

hundreds of microseconds to a few milliseconds, to planetary-scale coordination among

GPS satellites – occurring even at the nanosecond timescale. A non-exhaustive list of

such coordinated systems includes swarm robotics [5], distributed databases [6], tele-

surgery [7], industrial robotics [8], smart grids [9] and connected vehicles [10]. Figure

1.1 highlights the spatio-temporal nature of distributed coordination at different scales.

The common thread binding many of the above-mentioned applications is the need

for low-latency decision-making. This is particularly true for cyber-physical systems

1
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Figure 1.1: The scale of coordination in time and space

(CPS) [11], which involve the cyber components of computation and networking, in-

teracting with and controlling elements in the physical world [11]. In these systems, the

nature of coordination is usually dependent on the analysis of sensed data by intelligent

computational entities, which in real-time decide a course of coordinated action/actuation

at distributed endpoints. The data-intensive and low-latency nature of decision-making

makes the cloud in tandem with edge cloudlets and embedded endpoints well-suited for

hosting such applications. While recent work [12] [13] [14] [15] has focused on the need

for edge computing to reduce the latency of computation, the need for a distributed

coordination primitive has not received much attention.

Time is one such construct which plays an important role in enabling coordination

among distributed entities [16]. This is especially true for cyber-physical systems (CPS)

which need to interact with the real world. A shared notion of time, by means of

synchronized clocks, enables [17]:

1. events to be ordered at distributed scale, and

2. coordinated actuation to be scheduled at/by specific time instants.

Therefore, maintaining a shared notion of time is critical to the performance and

reliable operation of many large-scale distributed systems.
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Figure 1.2: DronePorter: Time-based Drone coordination

To illustrate the importance of a shared notion of time, we consider a fleet of n

drones (as shown in Figure 1.2) transporting an object Ω, too large to be carried by a

single drone. We call this hypothetical application DronePorter. To successfully transport

Ω, the drones need to follow a coordinated flight-plan such that (i) the object is not

damaged or destabilized, and (ii) the drones do not collide with each other or obstacles

in the environment. One way to accomplish this is by having a master entity, which can

be one of the drones, send out timestamped flight-plans with way-points to each of the

drones, such that each drone tries to reach a given way-point at the specified time.

To coordinate successfully, the clock on each drone needs to be synchronized such

that the accuracy is within some specified limits. This accuracy (or uncertainty) specifi-

cation can depend on multiple factors, ranging from the velocity and size of the drones,

to the other uncertainties in the environment. For example, to meet a particular velocity,

while maintaining safety, having a tighter clock-synchronization accuracy can be used

to compensate for higher localization uncertainties or higher environmental uncertain-

ties [18]. Additionally, as shown in Figure 1.2, we can also have an edge/cloud controller

which provides (i) high-level objectives/guidance to the fleet of coordinating drones, and

(ii) fleet-management capabilities. One can also envision that this edge/cloud-controller

can be responsible for multiple fleets of drones.
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While a shared notion of time is key for geo-distributed coordination, it also

helps characterize a system’s end-to-end latency requirements, necessary for enabling

real-time decision making. These low-latency requirements are characterized by per-

component deadlines, which need to be met to satisfy the safety and/or end-to-end per-

formance specifications of the system. Hence, it also becomes necessary to effectively

schedule multiple application components at each compute node, using analyzable real-

time scheduling techniques such that they meet all deadlines.

Let us re-visit the DronePorter application. Each drone relies on processing multiple

sensor-driven data streams, such as cameras and LIDARs, to perceive its surround-

ings. To operate safely, these data streams need to be analyzed in real-time, in order

to decide an appropriate course of action before a deadline. Techniques ranging from

signal processing to machine learning, which are both computationally intensive and

highly parallelizable, are often used in the decision-making process. These observations

also apply to multiple cyber-physical application domains including, but not limited

to, autonomous vehicles [19], augmented reality [20] and robotics [8]. Therefore, the

scheduling techniques utilized in such cyber-physical systems need to take into account,

• the computational requirements of each application, and their execution patterns,

• the use of heterogeneous platforms with multi-core processors coupled with one or

more concurrent hardware accelerators such as General-Purpose Graphics Process-

ing Units (GP-GPUs), Digital Signal Processors (DSPs), and Application-Specific

ICs (ASICs) to meet the increasing computational requirements [21] [22] [23], and

• physical limitations such as energy budgets and thermal constraints, because CPS

are often deployed in resource-constrained or mobile settings.

Therefore, while a shared notion of time enables coordination at the distributed scope,

to coordinate effectively it is also necessary to simultaneously schedule multiple appli-

cation components at the scope of each node, such that all deadlines are met, while
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ensuring that the resource/physical constraints of the system are satisfied. Hence, in

this dissertation we introduce:

1. abstractions, system-design methodologies and frameworks that enable time-based

coordination in geo-distributed cyber-physical systems, and

2. energy-, thermal- and resource-efficient analyzable real-time scheduling tech-

niques for applications deployed on platforms utilizing both multi-core processors

and hardware accelerators.

The thesis supported by this dissertation is as follows:

Thesis Statement: Time-sensitive cyber-physical applications can effectively coor-

dinate multiple geo-distributed components deployed across the cloud, edge cloudlets

and resource-constrained embedded platforms, by: (i) utilizing our time-as-a-service

abstraction, which provides a shared, precise and adaptive notion of time based on

application-defined quality metrics, and (ii) low-latency computations made pre-

dictable and energy-efficient by adopting analyzable real-time scheduling techniques.

The remainder of this chapter provides an overview of this dissertation. We first de-

scribe the scope of this dissertation by providing an overview of the problem statements

we consider. Subsequently, we briefly describe the key contributions of this dissertation.

Lastly, we state the organization of the rest of this dissertation.

1.2 Scope of the Thesis

We now describe the key problem spaces we address in this dissertation, and briefly

outline the direction of the solutions we propose.
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1.2.1 Time-based Distributed Cyber-Physical Coordination

Consider a distributed cyber-physical application with components performing sensing,

actuation and computation deployed across multiple geo-distributed nodes. Reliable

planetary-scale coordination among these application components requires a shared and

precise notion of time [4]. Clock synchronization is a mature field and technologies such

as the Global Positioning System (GPS), Network Time Protocol (NTP) [1], and Precision

Time Protocol (PTP) [2] have made it possible to provide distributed systems with a

reliable and accurate shared notion of time. However, these technologies are best-effort

and/or agnostic to application-specific requirements. Additionally, clock synchroniza-

tion is not perfect, and there is always some uncertainty in a node’s estimate of the

shared notion of time. This timing uncertainty is introduced by a variety of factors in-

cluding, but not limited to, networking delays [1], timestamping errors, and operating

system and virtualization-induced latency and jitter [24] [25]. If this timing uncertainty

exceeds an application’s specifications, it can affect the quality and reliability of coor-

dination [17]. The level of uncertainty acceptable to an application often depends on

the time granularity at which coordination occurs, as well as the coordination policy

itself [17].

As time is fundamental to a range of applications, it needs to be exposed as a service

to applications. Therefore, we propose and define Time-as-a-Service (TaaS) as,

“the ability to provide an application-specific clock, which tracks a time refer-

ence, such that the timing uncertainty is within application-specified require-

ments.”

Time exposed as a first-class entity to applications addresses these issues effectively.

This can be done by: (i) allowing applications to specify their timing requirements in

terms of accuracy and resolution, and (ii) feeding back the delivered timing uncertainty

back to the application. Allowing distributed application components the ability to

specify their uncertainty tolerances enables the underlying system to orchestrate the
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infrastructure to meet them, thus providing “time-as-a-service”. Furthermore, exposing

the delivered uncertainty to applications allows them to be fault-tolerant and adaptive in

the event where the delivered uncertainty exceeds specified limits. Thus, fault-tolerant

time-based coordination becomes enabled by using our notion of Quality of Time (QoT)

[4], which represents,

“the end-to-end uncertainty bounds corresponding to a timestamp, with re-

spect to a clock reference.”

From an application perspective, if these bounds exceed an acceptable limit, the ap-

plication can enter a graceful degradation mode, and thus be fault-tolerant during clock-

synchronization failure. For instance, let us re-visit the DronePorter application described

in Figure 1.2. If the QoT deviates beyond the specified requirements, the drones can be

notified, and can adapt by gracefully coming to a safe halt on the ground.

Therefore, we propose to leverage Quality of Time (QoT) to develop software abstrac-

tions necessary to expose “Time-as-a-Service” to applications, along with a QoT-based

application programming interface (API) to enable fault-tolerant time-based coordina-

tion in cyber-physical systems.

Modern distributed cyber-physical applications are inherently complex, and consist

of multiple interacting components. Thus, deploying these components and manag-

ing their life-cycles are complex endeavors. Additionally, while some components may

be deployed on bare-metal embedded devices, many of these components will also be

deployed in the cloud or at the edge in conjunction with other applications. In such

scenarios, the use of virtualization technologies like virtual machines [26] and con-

tainerization [27] simplifies the deployment and life-cycle management of distributed

applications. Therefore, we focus on the challenges associated with delivering Time-as-

a-Service, at both the node1 scope [4] [24] as well as the distributed scope [28].
1We use the terminology “node” to define an independent physical or virtual computing platform.
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1.2.2 Fixed-Priority Real-Time Scheduling

Scheduling application components within the node scope at/by the right time instant

is key to ensuring effective coordination in cyber-physical systems. As mentioned in

Section 1.1, given that most cyber-physical systems also have safety and performance

requirements, we need to ensure that each application component needs to complete

before its respective deadline. Therefore, we utilize analyzable real-time scheduling

techniques to provably check if all deadlines can be met. This subsection provides an

overview of the real-time scheduling terminology we use in this dissertation, as well as

some of the assumptions we make with respect to scheduling policy and computational

platforms.

Terminology: In the terminology of real-time scheduling each application component

deployed on a node is referred to as a task [29], and a collection of tasks deployed on

a node is referred to as a taskset. These cyber-physical tasks typically perform recur-

rent operations which are either triggered at specific time instants (time-triggered) or by

the occurrence of an event (event-triggered). Hence, we utilize the sporadic task model to

model CPS applications. Under, the sporadic task model, each task repeatedly releases

a workload, called a job, with a minimum inter-arrival time between two subsequent

job arrivals of a single task. The response time of a task is defined as the time duration

from when a job of the task is released till the time it completes. Therefore, for a task

to always be schedulable, its worst-case response time must always be less than or equal

to its deadline. Given a real-time scheduling policy, if we can show that all tasks τi in a

taskset Γ always meet their respective deadlines, then the taskset is said to be schedulable.

Scheduling Policy: In this dissertation, we focus on fixed-priority real-time schedul-

ing [29], as it is analyzable and widely supported in many commercial [30] [31] and

open-source operating systems [32] [33]. In the realm of multi-core real-time schedul-

ing, there are two approaches to scheduling tasks on multiple processing cores: (i) par-

titioned scheduling, and (ii) and global scheduling. Partitioned scheduling statically
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assigns each task to a core and tasks always execute on the assigned core. Therefore,

in the partitioned-scheduling context, finding an optimal task allocation can be mod-

eled as a bin-packing problem. On the other hand, global scheduling allows tasks to

migrate between cores at runtime. In this dissertation, we focus on partitioned multi-

core scheduling as it yields more predictable execution behavior at run time, delivers

much better worst-case performance, and unlike global scheduling does not suffer from

scheduling anomalies [34].

Platform: Modern CPS rely on analyzing computationally-intensive data streams in

real-time to perform decision making. Therefore, it is common to find CPS platforms

containing multi-core processors coupled with one or more hardware accelerators such

as GPUs and DSPs. In this dissertation, we consider platforms with homogeneous multi-

core processors, where each CPU core has identical characteristics. We also consider

hardware accelerators which do not support preemption. This assumption is in line

with the fact that most commercially-available hardware accelerators, including GPUs,

do not support preemption. These hardware accelerators may support concurrent exe-

cution of multiple tasks [35], or may only allow mutually-exclusive access to a single

task. Additionally, we also consider the possibility of modern hardware accelerators

supporting software partitioning of computational resources [36] [37].

1.2.3 Energy and Thermal-Aware Real-Time Scheduling

Cyber-physical systems often have components deployed in mobile and/or resource-

constrained settings [5] [19]. Therefore, we also need to take into account the physical

constraints of the system while meeting all task deadlines. In particular, we focus on

energy and thermal constraints, where reducing the energy consumption of a battery-

powered system can lead to a significant increase in operating lifetime [5], while de-

creasing the operating temperature of the system can lead to increased reliability and

prevent thermal failure [38] [39].
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Advancements in semiconductor technology have enabled compute-intensive cyber-

physical applications by increasing the number of transistors available to system design-

ers. However, the side effects of rising transistor density include increased power and

heat dissipation [40]. Therefore, energy savings and system temperature are intricately

tied together. Modern processors are equipped with energy-management features such

as Dynamic Voltage and Frequency Scaling (DVFS) [41], and the use of low-power sleep

states [42]. DVFS enables the processor to change its operating frequency and volt-

age, thereby reducing dynamic switching power, while low-power sleep states use power

gating and/or clock gating [43] to reduce static leakage power dissipation when the pro-

cessor is idle. As transistor geometries get smaller, the dominance of static power as a

contributor to total power consumption is only expected to increase [44]. Since static

power is also directly dependent on the operating temperature, scheduling techniques

will increasingly need to take advantage of processor sleep states.

Most modern multi-core processors support a number of low-power states called C-

states [45]. However, there is a minimum round-trip time associated with each of these

low-power sleep states [42]. This round-trip time is longer for moving to and from

lower-power states due to the overhead required for the main oscillator to startup and

stabilize [42]. From a real-time systems scheduling perspective, it is critical that all

tasks τi in a given taskset Γ meet their deadlines to ensure reliable system operation.

Therefore, it is essential that the processor be put into a correct sleep state at the correct

time and for a pre-computed duration, to ensure that all deadlines are met, while the

energy consumption of the system is minimized.

In particular, we focus on designing energy-efficient multi-core partitioned fixed-

priority real-time scheduling techniques, which utilize the processor’s deep-sleep state

to reduce static leakage power, and hence save energy. We also focus on analyzing the

thermal implications of utilizing these techniques on real-world multi-core platforms.

Hardware accelerators are also commonly found in CPS platforms and consume sig-

nificant amounts of power [46]. Like multi-core processors, hardware accelerators can
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also expose power-management interfaces. However, in commercial accelerators like

GP-GPUs and DSPs, only P-states are exposed to the user [47] [48]. Thus, in effect, they

expose only voltage and frequency-scaling knobs for power management, and the job of

reducing static power is done in firmware or hardware. Therefore, we focus on using

frequency-scaling-based techniques to reduce the power consumption of systems using

hardware accelerators. In particular, we focus on techniques to statically set the proces-

sor and accelerator to a pre-computed taskset-specific frequency, such that the aggregate

energy consumption is reduced, while ensuring that all deadlines are met. Therefore, as

there are no dynamic frequency changes, the unpredictable latency involved in chang-

ing the oscillator frequency is avoided, leading to more deterministic operation, which

is desirable in real-time systems.

Consider a platform with a multi-core processor coupled with one (or more) hard-

ware accelerator(s). As shown in Figure 1.3, tasks executing on this platform execute

using a combination of both CPU and accelerator resources. In this scenario, to meet all

task deadlines while reducing energy consumption, we jointly optimize the accelerator

and CPU frequencies in order to reduce the energy consumption of the entire system.

1.2.4 Real-Time Scheduling for Concurrent Accelerators

As mentioned in Section 1.1, CPS ranging from autonomous vehicles to industrial robots

increasingly rely on techniques such as deep-neural networks for perception and plan-

ning. Additionally, it is not uncommon to find multiple such computationally-intensive

workloads as part of a single application. Modern accelerators often support concurrent
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execution, and allow requests belonging to different tasks to be co-scheduled and execute

in parallel. This is especially true for modern GPU architectures such as NVIDIA Fermi

and Pascal [49] [50]. For example, the NVIDIA Xavier [21] has 512 cores which can be

utilized by concurrent kernels. Such platforms often provide built-in schedulers which

aim to maximize concurrency, but do not take into account task deadlines.

From a real-time systems perspective, for a set of tasks to be schedulable, it is im-

perative that all deadlines be met. Therefore, multiple analytical frameworks [51] [52]

[53] [54] [55] have been proposed to analyze the schedulability of tasksets which utilize

hardware accelerators such as GP-GPUs. To the best of our knowledge, most known

analysis techniques treat the accelerator as a mutually-exclusive resource which at any

point of time can only be accessed by a single task. This leads to additional schedulabil-

ity pessimism for accelerators supporting concurrent execution. Therefore, we focus on

developing schedulability-analysis techniques for real-time tasksets utilizing hardware

accelerators which support concurrent execution. Figure 1.4 shows an example sequence

of two tasks executing concurrently on a GPU.

In terms of scheduling policies, we focus on work-conserving fixed-priority schedul-

ing and non-work-conserving First-in-First-out (FIFO) scheduling. Traditionally, co-

scheduling task requests concurrently on hardware accelerators like GPUs has consid-

ered the global scheduling paradigm. In this paradigm, task requests are ordered in a

single queue [56] and dispatched to be scheduled on any part of the global resource.

However, recent GPU architectures such as NVIDIA Volta [36] coupled with software-
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partitioning techniques [37] have enabled GPUs to be partitioned into multiple fractional

components. Therefore, we even propose techniques for partitioning a hardware accel-

erator, to increase execution predictability.

1.3 Contributions

The primary contribution of this thesis is the development of novel distributed software

abstractions and frameworks, which in conjunction with node-level analytical real-time

scheduling techniques, enable resource-efficient and time-aware geo-distributed coordi-

nation in cyber-physical systems.

We now briefly describe each of the individual contributions which make up this

dissertation.

1.3.1 Making Time Prime in Cyber-Physical Systems

We now briefly summarize our contributions which enable time-based geo-distributed

coordination in CPS. Detailed descriptions of these contributions can be found in Chap-

ters 3, 4 and 5.

• Timelines, Quality of Time (QoT) and the QoT Stack [17] [4]: Adopting a holis-

tic notion of Quality of Time (QoT) that captures clock metrics such as resolution,

accuracy, and stability, we propose an architecture in which the local perception of

time is a controllable operating system primitive with observable uncertainty, and

where clock synchronization balances applications’ timing demands with system

resources such as energy and bandwidth. Our architecture features an expressive

application programming interface that is centered around the notion of a timeline

– a virtual temporal coordinate frame that is defined by an application to provide

its distributed components with a shared sense of time, with a desired accuracy

and resolution – that enables developers to easily write applications whose activi-
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ties are choreographed across time and space. The timeline abstraction on the one

hand allows applications to adapt to changes in uncertainty in system time, and

on the other hand enables the OS to efficiently manage clocks and synchronization

protocols. Leveraging open-source hardware and software components, we proto-

type an implementation for Linux called the QoT Stack, and present results from

its evaluation on a standard embedded-computing platform.

• Bringing QoT to Virtual Machines [24]: Given that most public clouds and edge

cloudlets provide multi-tenancy using virtualized units of computing, we aim to in-

troduce the notion of QoT to virtual machines. The use of virtual machines entails

the use of a hypervisor, which adds additional timing uncertainty due to relatively

higher jitter in clock-read and timer-interrupt latencies. Hence, the use of virtual-

ization presents a challenge in terms of observing and guaranteeing the QoT deliv-

ered to an application. To meet these challenges, we present the QuartzV extension

to the QoT Stack, to make virtual machines QoT-aware. We utilize the open-source

QEMU-KVM [57] hypervisor, and illustrate the para-virtual design choices that are

key for delivering near-native levels of timing performance in virtual machines.

We also demonstrate the utility of QuartzV by using it in the development of an

industrial-automation application. Our experimental evaluations also show the

efficacy of QuartzV with respect to the native and fully-virtualized cases.

• Time-as-a-Service for Geo-distributed Coordination [18] [28]: The emergence of

edge computing, specifically to facilitate low-latency decision-making, is leverag-

ing the trend where multiple cyber-physical and software applications with dif-

ferent timing requirements will coexist in both the cloud and at the edge. To

enable such fault-tolerant time-based coordinated applications running on multi-

tenant geo-scale infrastructure, we introduce the Quartz framework, which exposes

Time-as-a-Service. Quartz allows geo-distributed application components to each

specify its timing requirements, while it autonomously orchestrates the underlying
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infrastructure to meet them. Centered around a shared virtualized notion of time,

based on the timeline abstraction, Quartz provides an API which makes it easy

to develop time-based geo-distributed applications. Using this API, Quartz feeds

back the timing uncertainty, i.e., the delivered Quality of Time (QoT) back to each

application, enabling it to be fault-tolerant in the face of clock-synchronization

failure. Quartz is designed for containerized applications, features a distributed

architecture and is implemented using containerized micro-services. Our experi-

mental evaluations on real-world embedded, edge and cloud platforms highlight

the performance and scalability of our architecture.

1.3.2 Analytical Techniques for Energy-Aware Real-Time Scheduling

We now briefly describe the energy-aware real-time scheduling policies which make

up this dissertation, along with their corresponding schedulability-analysis techniques.

Detailed descriptions of these contributions can be found in Chapters 6, 7 and 8.

• Energy-Saving Multi-core Real-Time Sleep Schedulers [58]: Modern processors

provide sleep states which minimize leakage power by gating portions of the pro-

cessor and/or the system clock. We present partitioned fixed-priority scheduling

solutions for utilizing these sleep states to efficiently schedule sporadic real-time

tasks, and maximize energy savings on multi-core processors. The techniques pre-

sented rely on an enhanced version of Energy-Saving Rate-Harmonized Scheduling

(ES-RHS) [42], and our newly proposed Energy-Saving Rate-Monotonic Scheduling

(ES-RMS) policy to maximize the time the processor spends in the lowest-power

deep-sleep state. We collectively call these schedulers Energy-Saving schedulers. In

some modern multi-core processors, all cores need to transition synchronously

into deep sleep. For this class of processors, we present a partitioning technique

called Max-SyncSleep which utilizes a priori task information, to maximize the syn-

chronous deep-sleep duration across all processing cores. The performance of Max-
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SyncSleep is compared to the classical Worst-Fit Decreasing load-balancing heuris-

tic. We also illustrate the benefits of using ES-RMS over ES-RHS for this class of

processors. For processors which allow cores to individually transition into deep

sleep, we prove that, while utilizing ES-RHS on each core, any feasible partition

can optimally utilize all of the processor’s idle durations to put it into deep sleep.

Our experimental evaluations indicate that our proposed techniques can provide

significant energy savings and better schedulability.

• Thermal Implications of Energy-Saving Schedulers [59]: In many real-time sys-

tems, continuous operation can raise processor temperature, potentially leading

to system failure, bodily harm to users, or a reduction in the functional lifetime

of a system. In this dissertation, we explore the relationship between energy sav-

ings and system temperature in the context of fixed-priority energy-saving sched-

ulers, which utilize a processor’s deep-sleep state to save energy. We derive insights

from a well-known thermal model, and are able to identify proactive design choices

which are independent of system constants and can be used to reduce processor

temperature. Our observations indicate that, while energy savings are key to lower

temperatures, not all energy-efficient solutions yield low temperatures. Based on

these insights, we propose the SysSleep and ThermoSleep algorithms, which enable

a thermally-effective sleep schedule. We also derive a lower bound on the optimal

temperature achievable by energy-saving schedulers. Additionally, we discuss par-

titioning and task-phasing techniques for multi-core processors, which require all

cores to synchronously transition into deep sleep, as well as those which support

independent deep-sleep transitions. We observe that, while energy optimization

is straightforward in some cases, the dependence of temperature on partitioning

and task phasing makes temperature minimization non-trivial. Our evaluations

show that compared to the existing purely energy-efficient design methodology,

our proposed techniques yield lower temperatures (up to ~4◦K lower) along with
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significant energy savings.

• Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

[60]: In CPS, most tasks execute using a combination of CPU and accelerator re-

sources. Hence, the power of the CPU and the accelerator needs to be managed in

tandem. To reduce energy consumption, commercially-available accelerators such

as GP-GPUs and DSPs expose interfaces to scale their operating voltage and fre-

quency. Hence, we propose the CycleTandem static frequency-scaling technique to

co-optimize the operating frequencies of both the CPU and the hardware accelera-

tor. Based on practical considerations of real-world platforms, we consider various

energy-management scenarios where the accelerator or CPU frequencies may or

may not be adjustable, and propose the CycleSolo family of algorithms for such

contexts. Furthermore, we also study partitioning techniques to reduce the operat-

ing frequency when multi-core processors are used in conjunction with hardware

accelerators. Our experimental evaluations indicate that our proposed techniques

can yield significant energy savings. We also present a case-study on the NVIDIA

TX2 embedded platform to illustrate the energy savings delivered by our proposed

techniques, and observe up to 44.29% lower energy consumption as compared to the

case without energy management.

1.3.3 Analytical Real-Time Scheduling for Concurrent Accelerators

We summarize the fixed-priority schedulability analysis that we propose for concurrent

accelerators. A detailed description of this analysis can be found in Chapter 9.

• Co-Scheduling Real-Time Workloads on Concurrent Hardware Accelerators:

Modern accelerators often support concurrent execution, and allow requests be-

longing to different tasks to be co-scheduled and execute in parallel. However, ex-

isting fixed-priority real-time scheduling analyses assume that tasks can access the

accelerator only one at a time. This leads to additional schedulability pessimism
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for accelerators supporting concurrent execution. In this dissertation, we propose

schedulability-analysis techniques for real-time tasksets utilizing hardware acceler-

ators which support concurrent execution. In terms of scheduling policies, we fo-

cus on work-conserving fixed-priority scheduling and non-work-conserving FIFO

scheduling. We consider global scheduling, where the accelerator is treated as a

single resource. Our experimental evaluations suggest that our proposed analysis

methodologies can yield improved schedulability, up to ~2x more tasksets, over

traditional non-concurrent analysis techniques.

• Partitioning Techniques for Concurrent Hardware Accelerators: Modern GPU

architectures [36] coupled with software-partitioning techniques [37] have enabled

GPUs to be partitioned into multiple fractional components. Therefore, we also

consider partitioned-scheduling techniques, where an accelerator can be partitioned

into discrete units, and the accelerator requests in the taskset can be allocated

to these partitions. In particular, we propose a novel worst-fit decreasing-based

heuristic to create accelerator partitions, and allocate requests to them. Our exper-

iments indicate that, as compared to the global scheduling-based approach, our

proposed partitioning techniques offer improved schedulability.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews the relevant

prior work. Chapters 3, 4 and 5 describe abstractions and frameworks which enable

time-based coordination in geo-distributed CPS. Chapters 6 and 7 introduce the family

of energy-saving sleep schedulers, and provide an analytical understanding of the en-

ergy savings they provide along with their thermal implications. Chapter 8 introduces

the CycleSolo and CycleTandem algorithms to reduce the energy consumption of real-time

systems using hardware accelerators. Chapter 9 provides techniques and schedulabil-
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ity analysis for real-time systems using concurrent hardware accelerators. Chapter 10

concludes this dissertation and provides possible future research directions.



Chapter 2

Related Work

This chapter presents the relevant prior work on topics in the scope of this disserta-

tion. In particular, we cover relevant clock-synchronization techniques and time-based

system-design methodologies, energy- and thermal-aware real-time scheduling, and

real-time resource management for hardware accelerators.

2.1 Time-based Distributed Coordination

The utility of a shared notion of time in distributed systems has been well-studied in

prior work. In [16], the benefits of using synchronized clocks in distributed systems was

analyzed. The author concluded that synchronized clocks can improve performance

by replacing communication with local computation [16], i.e., by knowing the current

time, some properties of the system can be inferred. Therefore, this section provides an

overview of clock-synchronization techniques and time-based distributed architectures.

2.1.1 Clock Synchronization

Clock synchronization is a mature field of study, and comprehensive software solu-

tions with accompanying hardware are readily available. Examples of hardware include

GPS and atomic clocks, switches that calculate residency delay for routed packets, and

20
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network adapters that precisely timestamp incoming and outgoing packets. Such infras-

tructure is already in use by many back-end systems. For example, cellular telephone

backhaul networks use bespoke hardware for synchronizing transmissions to maximize

channel utilization. On the other hand, software protocols like the Network Time Pro-

tocol (NTP) [1], and Precision Time Protocol (PTP) [2] play a key role in achieving a

reliable and accurate shared notion of time.

The common thread underlying most clock-synchronization protocols involves pass-

ing timestamped messages between multiple nodes to estimate the round-trip packet

delay, and subsequently the clock offset between them. Most often, calculating the off-

set Θ between a pair of nodes involves taking the difference of the transmission time

of a clock-synchronization packet on the sender node ttx, and the reception time of the

packet on the receiver node trx, and subtracting the estimated packet delay between the

nodes ∆. Therefore, the offset can be calculated by:

Θ = trx − ttx − ∆ (2.1)

Multiple such measurements are typically used to compensate for timing uncertainty.

This is because, as mentioned in Section 1.2.1, this timing uncertainty is introduced by

a variety of factors including, but not limited to, networking delays [1], timestamping

errors, and operating system and virtualization-induced latency and jitter [24] [25].

It is currently possible to synchronize to an accuracy in the order of milliseconds

with the Network Time Protocol (NTP) [1] over Ethernet, or microseconds with the

Precision Time Protocol (PTP) [2] and compliant hardware. More specialized projects,

such as WhiteRabbit [61], attain sub-nanosecond error – enough to measure the distance

light travels in a second with millimeter accuracy – by compensating for cable delay

asymmetry and using Synchronous Ethernet to frequency-lock devices.

Most recently, a number of protocols [3] [62] have been proposed to achieve

nanosecond-accuracy clock synchronization in data-centers. Notable among these is

the Huygens [3] protocol which uses a peer-to-peer probing mesh along with Support
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Vector Machines (SVM) to compute clock offsets between nodes. Based on these offset

values, the network effect [3] is used to minimize the clock-synchronization error. The

network effect utilizes the fact that clock synchronization is reflexive and transitive, and

hence the sum of the clock-synchronization error over a loop should equal zero [3].

In the wireless sensor-networking literature clock synchronization has been ap-

proached in a different way. Rather than considering the objective as synchronizing

devices to some universal time reference, all that matters is that peer devices – which

may be multiple hops away from each other – share a common sense of time, with an em-

phasis on channel-utilization efficiency. For the case where the root time is maintained

across all nodes in the network, Flooding Time Synchronization Protocol (FTSP) [63]

is state of the art. It allows only one-way reference broadcasts as opposed to Timing-

sync Protocol for Sensor Networks (TPSN) [64] and Reference Broadcast Synchroniza-

tion (RBS) [65], which use two-way message exchange between nodes, thus effectively

reducing the network traffic. All of these protocols implicitly assume that the distance

between devices is sufficiently small enough (tens of meters or less) so that propagation

delay can be ignored. Recently, Glossy [66] and PulseSync [67] have emerged and im-

proved on the multi-hop accuracy of FTSP by flooding pulses at high speed throughout

the network.

However, all the above-mentioned protocols are best-effort and do not consider

application-specific QoT requirements. Therefore, most systems using these protocols

end up being over-engineered to meet the needs of pre-determined applications. Hence,

there is a need for an application-level framework which can respond to application

timing demands, while making it easy to develop time-based distributed applications.

Also relevant but complementary to our work is research on analytical modeling of

clock uncertainties [68], and methods to compensate for them via approaches such as

Kalman filtering [69]. The work in [68] models the clock by applying a Kalman filter

to track the clock offset and skew, and compensates for the uncertainty by adjusting

the synchronization interval. Seong et al. [70] compensates for the quantization error in
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timestamping using a feed forward filter preceding a PI controller. Xu et al. [69] uses

a Kalman filter based proportional-integral (PI) clock servo to correct for the quantiza-

tion error and clock offset. These kind of techniques only discuss few sources of clock

uncertainties and try to compensate for them.

In this dissertation, we focus on proposing system abstractions and frameworks,

which build on existing clock-synchronization technologies to provide “Time-as-a-

Service” to geo-distributed cyber-physical applications.

2.1.2 Time-based System Design

In the context of model-based design, PTIDES [71] is a hardware-software co-design

framework to model, design and deploy time-critical embedded applications, using a

shared notion of time. For safety-critical systems in the automotive and aerospace do-

mains, the Time-Triggered Architecture (TTA) [72] provides a deterministic way to de-

ploy systems using a shared clock.

The Time-Triggered Architecture (TTA) [72] addresses issues in safety-critical real-

time systems by establishing a global time-base to specify interaction between nodes,

whereas, an event-triggered architectures like PTIDES [71] maps model time to real

time, only when systems react or act to the physical world, e.g, sensors and actuators.

PtidyOS [73] is a micro kernel for PTIDES that generates target specific code for the

PTIDES model and runs on bare metal. However, these frameworks do not consider

the utility of the knowledge of timing uncertainty, and often rely on best-effort clock

synchronization and/or system modeling in order to achieve a correct outcome. Addi-

tionally, both PTIDES and TTA are designed for the embedded domain, and cannot scale

to geo-distributed cyber-physical applications which run in distributed heterogeneous

environments including the cloud and the edge.

There has also been some work on distributed-programming idioms that support

time as a first-class citizen. Examples include Stampede [74] which uses application-
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specified “virtual time” as the basis for enabling temporal causality in distributed ap-

plications, Stampede-RT [75] which builds on Stampede and allows distributed appli-

cations to timestamp events with real-time tags, and Persistent Temporal Streams [76]

which unifies in-memory and stable storage temporal events of a given activity. How-

ever, while these systems focus on programming abstractions for ordering distributed

events, they do not consider the utility of exposing timing uncertainty to applications,

which is key to providing time-as-a-service.

Google’s geo-distributed Spanner database utilizes synchronized clocks with the un-

certainty information to achieve global-scale consistency [6]. However, Spanner is a

closed system, is not adaptive, and relies on dedicated infrastructure. Additionally, the

TrueTime API [6] is tailored only to database transactions and does not treat the notion

of QoT as an application-specified requirement. The same is true for the POSIX API [77]

available in many modern OS.

2.2 Energy-Aware Multi-Core Real-Time Scheduling

Energy savings and system temperature are intricately tied together. Modern proces-

sors are equipped with energy-management features such as Dynamic Voltage and Fre-

quency Scaling (DVFS) [41], and the use of low-power sleep states [42]. DVFS enables

the processor to change its operating frequency and voltage, thereby reducing dynamic

switching power, while low-power sleep states use power gating and/or clock gating [43]

to reduce static leakage power dissipation when the processor is idle. As transistor geome-

tries get smaller, the dominance of static power as a contributor to total power consump-

tion is only expected to increase [44]. Since static power is also directly dependent on

operating temperature, scheduling techniques will increasingly need to take advantage

of processor sleep states.
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2.2.1 Energy-Aware Real-Time Scheduling

In the domain of real-time systems, the use of frequency scaling-based energy saving

scheduling techniques has been well-studied. In the context of fixed-priority schedul-

ing, Saewong et al. [78] proposed the SysClock algorithm to analytically determine the

energy-optimal frequency at which the processor must run, so that a taskset meets all its

deadlines. In the same work, dynamic frequency scaling-based scheduling techniques

named PM-Clock and DynamicPM-Clock [78] were also proposed. In [79], Arvind et al.

proposed the Static Frequency Assignment Algorithm (SFAA) to partition tasks on multi-

core processors which have a single frequency domain. SFAA extends the SysClock

framework to the multi-core context and aims to minimize the operating frequency

across all cores, so as to minimize the energy consumption. In [80] [81] [82], DVFS-

based scheduling techniques for multi-core processors can be found, where each core

has its own voltage and frequency domain.

At technology nodes smaller than 65nm [83], static leakage power already domi-

nates the total power consumption of CMOS-based VLSI circuits. For general-purpose

computing workloads, Le Sueur et al. [45] compared the energy efficiency of DVFS and

sleep state-based power-management techniques. Their work experimentally analyzes

the trade-offs between slow down (DVFS) and race-to-halt (sleep) for a range of comput-

ing platforms such as the desktop-class Intel i7 870 and the low-power Intel Atom Z550.

The result of the analysis concluded that using C-state based techniques offer improved

energy efficiency with a small impact on performance [45].

In the context of real-time systems, a priori task execution information can be uti-

lized to schedule tasks efficiently so as to maximize the time spent in low-power states.

Scheduling techniques that cluster task executions to save energy have been proposed

in [84] [85] [86] [87] [88]. In [85] [87] [88], dynamic-priority EDF scheduling is used. [86]

uses procrastination of tasks to determine the instances at which the processor can be

shutdown. [84] uses a fixed-priority scheduling based approach, which relies on online
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simulation to estimate the duration for which a task can procrastinate, thus significantly

increasing the scheduler run-time complexity. For tasks with given release times and

deadlines, [89] and [90] present dynamic priority-based scheduling techniques to maxi-

mize the common idle time on multi-core processors. In [42], Rowe et al. proposed and

analyzed the benefits of using ES-RHS in uniprocessor systems. ES-RHS is a simple,

easy-to-implement approach based on a notion of harmonization, that aggregates all the

processor idle durations together. This allows the processor to be put into deep sleep

for all idle durations, thus enabling optimal energy savings for processors which lack

frequency-scaling capabilities [42].

In conjunction with reservation-based real-time operating systems (such as Lin-

ux/RK [91]), ES-RHS presents an effective approach for energy management in unipro-

cessor real-time systems, and is particularly useful for processors which have only one

sleep state [92]. The work by Rowe et al. [42] also offers brief guidelines for the use

of ES-RHS in the multi-core context. We build on ES-RHS to propose deep-sleep-based

energy-saving techniques for real-time systems using multi-core processors.

2.2.2 Thermal-Aware Real-Time Scheduling

Thermal Management can be done reactively at runtime [93] [94] [95] [96] or proactively

at design time [97] [98] [99] [100] [101] [102] [103]. In the scope of reactive techniques,

Fu. et al. [94] proposed a control-theoretic algorithm to meet the desired temperature

requirement on a multi-core processor, subject to timing constraints. Yun et al. [96]

used a machine-learning technique (SVM) to predict the temperature profile of a multi-

processor system. Based on the predicted value, a dynamic temperature-management

scheme is used. In [93], Chandarli et al. proposed an optimal reactive scheduler for

fixed-priority uniprocessor sleep scheduling along with an associated response-time

based analysis framework. However, reactive schedulers require temperature sensors,

which may not always be present in real platforms.
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In the scope of proactive techniques, [101] describes a real-time scheduling algorithm

for uniprocessors, based on a thermal model approximated by Fourier’s Law. The algo-

rithm derives a speed schedule by minimizing temperature under both timing and ther-

mal constraints. In [102], an assignment and scheduling technique for an MPSoC was

proposed, which utilizes a mixed-integer linear program solver to optimize the peak

temperature. In [99], an optimal speed schedule is derived for a multi-core platform,

based on a thermal model given at design time. In [103], Masud et al. proposed the use

of a thermal-aware periodic resource to minimize peak temperature, in the context of

uniprocessor Earliest Deadline First (EDF) scheduling. The processor slack is utilized to

put the processor into a sleep state.

Most of the pieces of earlier work [94] [95] [96] [99] [97] [98] have focused on the

use of DVFS to optimize the processor temperature. However, the dominance of static

power makes it necessary to investigate techniques which utilize sleep states. Addi-

tionally, many low-powered devices often lack DVFS, but support sleep states [42].

The work in [93] and [103] propose thermal-aware techniques which utilize processor

sleep states. However, [103] assumes dynamic-priority EDF scheduling. On the other

hand, [93] presents a reactive framework for uniprocessor fixed-priority scheduling. To

the best of our knowledge, no thermal-analysis framework for proactive fixed-priority

sleep scheduling exists in the literature.

In this dissertation, we analyze the thermal implications of fixed-priority energy-

saving schedulers which periodically utilize the processor’s deep-sleep state, in light

of their energy-saving properties. Based on a well-known thermal model, we derive

practical insights and algorithms. Our proposed techniques focus on minimizing the

maximum temperature, rather than optimizing to meet a set of thermal constraints.
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2.3 Real-Time Scheduling for Hardware Accelerators

In this section, we first summarize the techniques proposed in literature to arbitrate

access to hardware accelerators like GP-GPUs. Subsequently, we discuss energy-saving

techniques for hardware accelerators.

2.3.1 Accelerator as a Mutually-Exclusive Resource

Most commercially-available accelerators like GP-GPUs and DSPs do not typically sup-

port preemption. The large number of registers in these accelerators makes context

switching an expensive proposition. Therefore, prior work [53] [52] has focused on

modeling accelerator access as a critical section arbitrated by a global lock. In par-

ticular, the work in [54] [104] models GPUs as mutually-exclusive resources, whose

access is governed by existing real-time synchronization protocols. The same authors

also proposed GPUSync [52], which is a software framework for GPU management in

multi-core real-time systems. GPUSync provides support for both fixed- and dynamic-

priority scheduling policies. It also provides functionalities such as budget enforcement,

multi-GPU support, and clustered scheduling. Based on this synchronization-based ap-

proach, [53] extends the analysis proposed in [54] [55] [105] [106], to propose a less

pessimistic response-time analysis framework to decide the schedulability of tasksets

which may use one or more accelerators. This analysis assumes the use of the Multi-

processor Priority Ceiling Protocol (MPCP) [105], while incorporating the effect of self

suspensions [106] [107].

In [51], Kim et al. proposed the server-based approach, where a server task is created

to access the GPU on behalf of the client applications, to arbitrate access to a GPU. In

this approach, a server task is created which performs access to the GPU on behalf of the

client applications. Each task submits its GPU requests to the server and suspends. The

server adds each GPU request to a priority queue, and if the GPU is free, it dispatches

the highest-priority task in its queue to access the GPU. Once a GPU request completes,



CHAPTER 2. RELATED WORK 29

the server wakes up the task which made the request, and copies over the computed

result to the task. For this approach, the authors also propose a response-time analy-

sis framework. In this dissertation, we focus on the synchronization-based approach.

However, our proposed techniques can be extended to the server approach.

2.3.2 Exploiting Concurrency

All the above-mentioned analyses treat the accelerator as a mutually-exclusive resource

and do not consider concurrency. Treating the accelerator as a mutually-exclusive re-

source leads to increased pessimism in the schedulability analysis. Nevertheless, most

modern GPU architectures support the concurrent execution of requests belonging to

different tasks.

Consider GPUs from NVIDIA. Each GPU consists of multiple streaming processors

(SMs). Typically, embedded GPUs have one or two SMs [22], while high-end GPUs can

have 10-20 SMs [108]. In terms of an application, each request is structured as a kernel,

which consists of a fixed set of parallel instructions. Each kernel consists of multiple

threads which combine to form thread blocks, which are assigned to one or more SMs

on the GPU. Based on the number of thread blocks in a kernel, it is possible for more

than one kernel to be scheduled on a single SM.

A number of techniques have been proposed in the literature to co-schedule task re-

quests and effectively exploit concurrency in GPUs. [109] proposed the Kernelet frame-

work, which dynamically reshapes GPU kernels to improve process throughput. How-

ever, Kernelet does not consider task deadlines. In [110], the authors propose S3DNN

which exploits the execution characteristics of DNNs at runtime to optimize their dis-

patch times, so as to maximize concurrency while meeting task deadlines. In [111],

the authors infer the characteristics of the GPU scheduler on the NVIDIA TX1 platform

to gain more insight into their use in real-time systems. However, none of the above-

mentioned approaches focus on analyzing the schedulability of tasksets which utilize
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concurrent accelerators. Specifically, we consider the global-scheduling paradigm, where

task requests can be scheduled concurrently on any available fraction of the hardware

accelerator.

Recent work has also looked at partitioning the GPU into multiple fractions to which

tasks can be assigned. In general, partitioned scheduling can lead to more predictable

operation due to less interference from tasks outside the partition. NVIDIA, in their

recent GPU architectures, provides the multi-process service (MPS) [35] for partitioning.

However, MPS only performs compute partitioning and does not consider memory re-

sources. Therefore, [37] introduces the Fractional-GPU approach which provides both

compute and memory partitioning. As a part of this dissertation, we consider parti-

tioning as a tool to make unschedulable tasksets schedulable, by reducing interference

between tasks which don’t fit well together. However, we consider only computational

resources and leave memory for future work.

2.3.3 Energy Savings and Hardware Accelerators

Most accelerators do not provide user-configurable sleep states, and only support volt-

age and frequency scaling. Thus, sleep-state-based techniques cannot be used in their

context. Therefore, the work in [112] proposes a hardware-based approach called MER-

LOT for GPU energy management in the context of real-time systems. MERLOT exploits

the fact that, in the general case, most GPU kernels do not execute up to their worst-

case execution time. In such situations, the slack can be dynamically used to reduce the

voltage and frequency of the GPU. However, MERLOT considers individual job dead-

lines, and does not consider taskset schedulability, or the fact that most tasks execute

using a combination of CPU and GPU segments. In this dissertation, we instead focus

on proposing analytical approaches to compute the best CPU and accelerator frequency

pairs to reduce energy consumption, while ensuring taskset schedulability.
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Enabling Time-based Coordination in

Cyber-Physical Systems

Reliable cyber-physical coordination requires a shared and precise notion of time. As

illustrated in Figure 1.1 (in Chapter 1), these time-aware cyber-physical systems have

extremely diverse timing requirements. Additionally, even within a cyber-physical sys-

tem, the timing precision and accuracy requirements of one domain of connected objects

may be substantially different from another, and may also change over time. Figure 3.1

illustrates this idea by showing an example system with heterogeneous device types,

and communication channels forming different timing subgroups.

While technologies likes GPS and the Network Time Protocol (NTP) [1] have enabled

networked devices to share a precise notion of time, trends like networking delays [1],

multi-core processors and virtualization [25] introduce greater timing uncertainty. This

uncertainty is rarely visible to applications, and most systems rely on best-effort time

synchronization. In this chapter, we advocate for timing uncertainty to be visible, con-

trollable and verifiable. To do so, we introduce the concept of Quality of Time (QoT),

which represents “the end-to-end uncertainty in the notion of time delivered to an ap-

plication by the system”. Building on QoT, we present the QoT Architecture [4], centered

around a shared virtualized notion of time, which allows applications to specify their tim-
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Figure 3.1: Coordinating subgroups in a cyber-physical system require access to a shared
sense of time

ing requirements, while delivering the required QoT and exposing timing uncertainty

to applications. We argue that the knowledge of QoT enables applications to adapt and

be fault-tolerant, while allowing the system to manage resources efficiently.

To achieve these objectives, this chapter also introduces the timeline abstraction, which

features a factored-coordination paradigm for managing time in computing systems. This

abstraction enables developers to implement coordinated applications easily. Consider

an application that needs to perform coordinated actions by its distributed components.

Each of these components bind to a common timeline, each specifying its respective

QoT requirements. Application-specified QoT requirements open up the possibility of

network and system orchestration to ensure that application requirements are met, while

managing resources efficiently. This is fundamentally different from existing best-effort

clock-synchronization techniques [1] [2].

The primary contributions described in this chapter are as follows1 [4]:

• We introduce the notion of Quality of Time (QoT) along with the timeline abstrac-

tion, which together re-define how time-aware applications and the operating sys-

tem exchange information about time and timing uncertainty.

• We present an application programming interface (API), centered around the time-

line abstraction, that allows developers to implement time-aware applications.
1portions of this work were done jointly with Fatima Anwar, Andrew Symington and Adwait Dongare
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• We present the QoT Stack for Linux, a realization of the QoT Architecture illus-

trated in Figure 3.3. The QoT Stack allows applications to specify their timing

requirements, while delivering the required QoT and exposing timing uncertainty

to applications.

• We evaluate the capabilities of the QoT Stack on a Linux-based embedded plat-

form, the Beaglebone Black [113].

3.1 The Case for Shared Time and QoT

We now argue for designing coordinated CPS using a shared notion of time with the as-

sociated knowledge of QoT. In distributed software systems, a shared notion of time en-

ables increased performance and better coordination, along with decreasing the number

of messages which need to be exchanged [16]. However, there are inherent uncertainties

associated with synchronizing clocks over a network. Hence, in [16], Liskov reasons

that systems should rely on clock synchronization for performance but not for correct-

ness. This is true for most software systems. For example, reducing timing uncertainty

decreases the transaction commit wait in Spanner, leading to better performance [6].

However, in CPS, the uncertainty tolerances are dictated by the application and the en-

vironment. If the required QoT cannot be met, then the application should be aware of

it, and gracefully degrade to satisfy safety and reliability requirements.

We highlight the benefits of coordination using a shared notion of time by presenting

an emerging CPS application utilizing an idealized solution called TimeNet. Subsequently,

we present the practical challenges in enabling scalable coordination in CPS using shared

time and QoT.
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Figure 3.2: Hierarchy of the dynamic traffic-management application. The text on the
left highlights the components, while the text on the right indicates the networking
technology used to connect adjacent levels of the hierarchy

3.1.1 Connected Vehicles using TimeNet

Coordinating fleets of connected autonomous vehicles for city-wide dynamic traffic man-

agement is an example of a geo-distributed application which can benefit from using a

shared notion of time. The proposed application hierarchy is illustrated in Figure 3.2,

and consists of autonomous vehicles, Vehicle-to-Infrastructure (V2I) nodes, cloudlets and

the cloud.

In an ideal world, we can assume that all components of this application are con-

nected to a network which provides instantaneous access to an ideal source of time with

no associated uncertainty. For the sake of simplicity, let’s call this hypothetical network

TimeNet. Let’s assume that TimeNet can be used to perfectly timestamp all events and

messages with zero uncertainty. Hence, using TimeNet, a unique total ordering on all

events can be derived.

In the context of our application, the infrastructure nodes can precisely measure

the location of the vehicles, along with the exact timestamp associated with a vehicle’s

presence at that location. This timestamped information can be then forwarded to a

nearby cloudlet, which receives state information from multiple infrastructure nodes in
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a small geographical area. Multiple such cloudlets can then forward their respective

state information to the cloud, which sits atop the application hierarchy. This provides

a snapshot of the traffic conditions in the city to the distributed coordination policies

running in the the cloud.

In this hierarchy, the cloud is responsible for shaping traffic flow at a macroscopic

level. Based on the macroscopic policy, the cloudlets make local decisions for their

respective regions. Lastly, infrastructure nodes decide microscopic traffic policy and

convey instructions to the autonomous vehicles, which implement these instructions. At

each stage of the hierarchy, important information is distilled and passed on to the next

tier, thus reducing the bandwidth demand on the network. Additionally, as microscopic

conditions change faster than macroscopic ones, communication frequency reduces and

QoT requirements reduces as we go up the hierarchy.

In an ideal world, accurate information can be inferred from these timestamped

events, which can be used to formulate plans of action, such that vehicles coordinate

their actions using this ideal notion of time. Thus, vehicular traffic is dynamically man-

aged at city scale. In the worst case, if timing constraints are violated or messages

delayed, then by using the current time, components can detect failures, and take cor-

rective action [16].

Unfortunately, a perfect source of time does not exist, and practical systems introduce

uncertainty in timing measurements. Hence, to determine the validity of timestamps,

the knowledge of its associated uncertainty is essential. Based on this uncertainty in-

formation, coordination policies can order events with different degrees of confidence.

If the uncertainty exceeds tolerable limits, systems can fail-over or gracefully degrade.

For example, in the context of the dynamic traffic management application, if the uncer-

tainty exceeds tolerable limits, the coordination policy can instruct all or some vehicles

to temporarily change their speeds, or come to a safe halt.

Exposing the notion of QoT to applications also allows timing requirements to be ex-

plicitly specified. This enables the system to optimize for application QoT requirements,
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Figure 3.3: Timeline-driven Quality-of-Time Architecture

and manage resources efficiently. Hence, in the context of CPS, synchronized clocks

along with QoT can deliver both performance and reliability.

The present-day GPS is a close approximation to TimeNet, ideally providing synchro-

nization in the order of tens of nanoseconds. However, GPS is not accesible indoors and

inaccurate in urban canyons. This limits its use in many applications. Hence, a practical

realization of TimeNet may involve multiple outdoor GPS receivers equipped with chip-

scale atomic clocks [114]. These receivers can distribute accurate time to subscribers both

wirelessly and over the Internet [1]. To support the notion of QoT, it is crucial that each

node in TimeNet quantify the uncertainty in its notion of time.

Thus, to enable fault-tolerant time-based coordination in cyber-physical systems, there

is a need for a coordination abstraction which allows a distributed application to specify

its QoT requirements to the underlying system.

3.2 Timelines

Modern operating systems keep track of time by means of a single hardware timer

driven by an oscillator. Take the case of Linux: multiple virtual clocks, such as
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CLOCK_REALTIME and CLOCK_MONOTONIC, are derived from a single hardware timer. These

virtual clocks all share the same accuracy and resolution, and expose themselves to ap-

plications in userspace via the POSIX clock [77] interface. This interface allows clocks

to be read by an application, and be disciplined using clock-synchronization algorithms

such as NTP [1] and PTP [2].

These clock-synchronization algorithms are based on the “trickle-down time” ap-

proach, shown in Figure 3.4a, where a static master sits on top of a timing hierarchy. All

the other nodes in the hierarchy synchronize their clocks to this master and measure time

with respect to its reference clock. Furthermore, the master’s synchronization rate for

the entire network may be statically chosen based on the slave with the tightest accuracy

requirement. Such approaches are inherently not adaptive and wasteful of resources.

We introduce the timeline abstraction, which features an alternative paradigm based

on factored coordination, where multiple coordinating application components bind to a

common timeline to synchronize their clocks to one another, as shown in Figure 3.4b.

A timeline provides a shared virtual clock reference to all the distributed components

of an application. Consider an application that needs to perform coordinated actions

at its distributed endpoints. All of these components bind to a common timeline, each

specifying its respective QoT requirements. As a result, the timeline abstraction provides

the following functionalities:

1. allows an application to specify which components coordinate with each other

using shared time, and

2. provides visibility into where each application component is deployed, and what

its QoT requirements are with respect to the timeline reference.

The above-mentioned functions allow the underlying framework to orchestrate the

clock-synchronization protocols and infrastructure to ensure that QoT requirements are

met, while making the achieved QoT visible to the application.
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Thus, a timeline abstracts away clock synchronization from the application. Addition-

ally, a timeline is not necessarily tied to any standard timing reference (such as UTC),

and, in the context of distributed coordination, serves as the “narrow waist”. This en-

ables developers to easily develop distributed time-based applications on heterogeneous

infrastructure, using a timeline-based API. For example, multiple players in the same

locality playing a virtual/augmented-reality game need not synchronize to an external

time server. Instead, each player can bind to a timeline, which synchronizes their clocks

to one another, so as to meet their QoT requirements.

The ability of a timeline to expose a virtual clock reference allows different coordi-

nating sub-groups with varying QoT requirements to each have its own time reference

and co-exist on the same infrastructure. Note that each node bound to a timeline can

have different QoT requirements with respect to the chosen reference. These QoT re-

quirements are generally defined by (i) safety constraints, (ii) performance requirements

and/or (iii) the assumptions/tolerances of the controller/decision-making entity. Addi-

tionally, multiple virtual timelines can coexist on a single node, although they can be tied

to a single time source. Thus, timelines overcome the limitations of the static master-

slave synchronization paradigm, and support applications that dynamically bind and

unbind from timelines in an ad-hoc fashion.

Motivated by the timeline abstraction, the next section introduces the QoT Architec-

ture, along with its corresponding Linux implementation.
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3.3 QoT Architecture and Stack

We now present the QoT Architecture, which provides a framework to enable CPS,

which rely on a shared notion of time for performing distributed coordination. Using

the timeline abstraction, the QoT Architecture takes in application QoT requirements,

orchestrates the underlying infrastructure to meet them, and makes the delivered QoT

(timing uncertainty) observable to QoT-aware applications.

The QoT Architecture consists of three distinct components:

1) Clocks are used to expose timekeeping hardware, and provide timekeeping and

time-stamping capabilities. Clocks also expose their parameters such as accuracy, preci-

sion and drift, which enable uncertainty calculations.

2) System Services are responsible for distributing timeline meta-data, message pass-

ing, quantifying timing uncertainties, and synchronizing clocks across nodes.

3) The QoT Core acts as a bridge between all the system components, applications

and the operating system. It is responsible for application scheduling as well as main-

taining synchronization and timeline state.

The architectural components present on each node along with their interactions are

illustrated in Figure 3.3. Based on this architecture, we developed a prototype QoT Stack

for Linux [4], which focuses on implementing necessary functionality over a Local-Area

Network (LAN). Along with a wide range of available software, Linux supports plat-

forms ranging from embedded to server-class processors. This makes it an ideal target

OS for both prototyping and real-world use-cases. A detailed architectural diagram for

the QoT Stack for Linux can be found in Figure 3.5. In subsequent sections, we briefly

describe each component of the QoT architecture, and its corresponding implementation

in the QoT Stack for Linux. More details can be found in [4].
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3.4 Clocks

The QoT architecture characterizes timekeeping hardware as clocks. These clocks play a

key role in providing a shared notion of time to userspace applications. Each clock also

keeps track of its inherent uncertainty, which is useful for estimating QoT. Based on the

functionality provided, the QoT architecture supports two types of clocks:

1) Core Clocks are integral to maintaining a shared notion of time, and all timelines

derive their reference time as a projection from the core clock. For a clock to be utilized

as a core clock, it must provide (i) the ability to read a strictly-monotonic counter, which

cannot be modified, (ii) the ability to generate hardware interrupts which can be used

to schedule events, and (iii) provide the hardware resolution and uncertainty associated

with reading the clock. Optionally, a core clock may also provide the ability to timestamp

external events, or precisely trigger hardware events in the future.

2) Network Interface Clocks, also referred to as NICs, assist in disciplining the local

timeline clock to some chosen reference time. Modern network interfaces often provide

the ability to accurately timestamp network packet transmission and reception at the
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physical layer. This can enable more accurate measurements of the propagation delay

associated with a medium, which in turn can enable precise calculation of the offset

between two clocks. Like a core clock, a NIC also provides the ability to read time,

and optionally may provide the ability to precisely timestamp an event, or generate a

very deterministic pulse in the future. A NIC however, differs from a core clock in

that (i) it is disciplinable and may not necessarily be monotonic, and (ii) it does not

provide the ability to schedule interrupts. Hence, it cannot be used to schedule user-

level application threads. Given these differences in features and functionality, the QoT

architecture needs to support both clock types. As described in later sections, this adds

an additional requirement for both these clock types to be synchronized with each other.

Linux Implementation: The clocks in our QoT Stack implementation (illustrated as

Network Interface Clock and Platform Core Clock in Figure 3.5) are managed via drivers, and

we make use of the Linux ptp_clock libraries to abstract away from hardware-platform-

specific clock sources. This abstraction provides the ability to (i) enable or disable the

clock source, (ii) read the clock source, (iii) configure timer pins (for timestamping inputs

or generating pulse-width modulated outputs) and (iv) discipline the external clock –

either in hardware or in software. Additional details of the prototype clock drivers

implemented for the ARM-based Beaglebone Black [113] can be found in [4].

3.5 System Services

In the QoT architecture, the userspace system services are responsible for distributing

timeline metadata, computing QoT, and performing clock synchronization. The primary

system services are described as follows:

1) The Data Distribution Service is a publish-subscribe standard for real-time sys-

tems [115], which we utilize to disseminate timeline metadata across the network. This

provides applications visibility into available timelines. Additionally, the system can

also use this information to configure and optimize synchronization strategies to meet
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application QoT requirements. In the QoT Stack, we utilize OpenSplice [115] as the data

distribution service.

2) The Synchronization Service is responsible for exchanging timestamps to map

local time to some reference time. Our timeline-driven architecture supports multiple

timelines on a single node, with each timeline maintaining its own notion of time. In the

QoT Stack, we maintain each timeline reference as a mapping from a local core time to

a global timeline reference. To generate this mapping, we perform clock-synchronization

in two steps as shown in Figure 3.6. The first step performs intra-node synchronization

by accurately aligning each network-interface clock (NIC) to the presiding core clock.

By this process, the timestamps provided by a NIC can be considered as equivalent to

the core clock. Hence, these NIC timestamps can now be utilized to perform clock syn-

chronization between nodes, using existing clock-synchronization protocols. Additional

details about the synchronization-service implementation, and the process by which it

estimates QoT can be found in [4].

3) The System-Uncertainty Estimation Service estimates the uncertainty introduced

by the OS in reading a timestamp. Every timestamp read by a user application contains

an uncertainty value introduced by the operating system. This uncertainty varies, and

is a function of different factors like the system load and the CPU operating frequency.

Therefore, this service continuously updates these uncertainty statistics and passes it

to the QoT Stack, which in turn utilizes this value while computing the end-to-end

uncertainty bounds.
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3.6 QoT Core

The QoT Core (also referred to as the core) is central to the QoT architecture and acts

as a point of information exchange between applications, clocks, system services and the

host operating system. The core performs the following key functions:

1) Timeline Management: To satisfy different QoT requirements, the core keeps track

of different timelines and the applications bound to these timelines. It also provides an

interface for applications to bind/unbind to/from a timeline, as well as specify/update

their QoT requirements.

2) Clock Management: The core provides an interface for different hardware clocks

to register with it, and exposes an interface for a privileged user or service to choose and

switch between these different hardware clocks. The core utilizes this chosen clock to

maintain a monotonic sense of time, referred to as core time. The core also maintains

the per-timeline projection parameters from the core clock to each timeline reference,

and also provides an interface for the synchronization service to manipulate these per-

timeline projection parameters.

3) Event Scheduling: Scheduling an application on a global notion of time is impor-

tant to execute distributed tasks synchronously. Hence, the core provides applications

the ability to synchronously schedule events based on a timeline reference. The core pro-

vides this functionality in the form of blocking waits by interfacing with the operating

system scheduler. Note that a blocking wait consists of an application suspending, and

requesting the OS scheduler to re-schedule the application at or after a specified absolute

time instant or relative time duration. Our scheduling subsystem is designed to dynam-

ically compensate for any synchronization changes made to a timeline reference. The

design of the scheduling subsystem is such that it is agnostic to the scheduling policy

followed by the operating system, and only changes the state of an application from

ready to waiting and vice versa. This gives flexibility to operating system designers to

optimize the scheduler for different scheduling metrics, based on the target platform.
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Table 3.1: Quality of Time APIs

Category API Return Type Functionality
Timeline timeline_bind (name, accuracy, resolution) timeline Bind to a timeline

Association timeline_unbind (timeline) status Unbind from a timeline
timeline_getaccuracy (timeline) accuracy Get binding accuracy
timeline_getresolution (timeline) resolution Get Binding resolution
timeline_setaccuracy (timeline, accuracy) status Set Binding accuracy
timeline_setresolution (timeline, resolution) status Set Binding resolution

Time timeline_gettime (timeline) uncertain_timestamp Get timeline reference time with uncertainty
Management timeline_getcoretime () uncertain_timestamp Get core time with uncertainty

timeline_core2rem (timeline, core_time) uncertain_timestamp Convert a core timestamp to a timeline reference
timeline_rem2core (timeline, time) uncertain_timestamp Convert a timeline reference timestamp to core time

Event timeline_waituntil (timeline, absolute_time) uncertain_timestamp Absolute blocking wait
Scheduling timeline_sleep (timeline, interval) uncertain_timestamp Relative blocking wait

timeline_setschedparams (timeline, period, start_offset) status Set period and start offset
timeline_waituntil_nextperiod (timeline) uncertain_timestamp Absolute blocking wait until next period
timeline_timer_create (timeline, period, start_offset, count, callback) timer Register a periodic callback
timeline_timer_cancel (timer) status Cancel a periodic callback
timeline_config_events (timeline, event_type, event_config, enable, callback) status Configure events/external timestamping on a pin

4) QoT Propagation: One of the key functions of the QoT architecture is to expose

the end-to-end timing uncertainty to applications. As shown in Figure 3.3, the core helps

collect the measured uncertainties from different sources and combines them to compute

an end-to-end QoT estimate. These QoT estimates are appended to every timestamp.

In the QoT Stack for Linux, the QoT Core (shown as the central component in Fig-

ure 3.5) is implemented as a loadable kernel module. This design choice ensures that

no changes are made to the Linux kernel, ensuring portability across different kernel

versions. Additional details of the QoT Core kernel module can be found in [4].

3.7 Application Programming Interface

Ease of application development is one of the key objective of the QoT Stack. Therefore,

we propose an API that allows application developers to simplify the development of

distributed time-aware applications. The key API calls are described in Table 3.1. Based

on their functionality, we can categorize the API calls as follows:

1. Timeline Association APIs allow applications to bind/unbind to/from a specific

timeline, and specify/update their QoT requirements.

2. Time Management APIs allow applications to read the timeline notion of time with

the uncertainty estimate.
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3. Event Scheduling APIs allow applications to schedule events using absolute and

relative blocking waits on the timeline reference, along with returning the timing

uncertainty in when the event was actually scheduled. Additionally, the APIs also

provides the ability to trigger events at a deterministic point in the future, as well

as accurately timestamp external events, contingent on hardware support from the

core clock.

We now present an example Time Division Multiple Access (TDMA) application in List-

ing 3.1, which was written using our C API. To successfully perform TDMA, multiple

nodes need to be allocated transmit slots, such that no packet collisions occur. Therefore,

it is essential that all nodes participating in the TDMA transmissions have access to a

shared notion of time, along with visibility into the associated timing uncertainty. In

current implementations of TDMA, the application over-compensates for timing uncer-

tainty by using guard bands. However if timing uncertainty increases beyond these guard

bands (for example, if synchronization is lost), then packets will collide. Hence, provid-

ing the application with uncertainty measurements by means of QoT bounds, enable the

application to adapt when the required QoT cannot be delivered.

The TDMA application described in Listing 3.1, starts by creating a binding to a

timeline, with desired accuracy and resolution using timeline_bind. Given that trans-

mitting in a TDMA slot is inherently periodic, the application sets its period and start

offset using timeline_setschedparams. Subsequently, the application executes a loop,

where it calls timeline_waituntil_nextperiod, which wakes the task up every period,

using the programmed period and start offset. This call also returns an uncertainty in

the time when the scheduler returned control to the application. The application can

make use of this information to take a decision on transmitting a packet. Finally, before

the application terminates, it unbinds from the timeline using timeline_unbind.
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Listing 3.1: QoT-aware TDMA Application

1 /∗ Binding Parameters ∗/

2 t i m e i n t e r v a l _ t accuracy ;

3 accuracy . below = { 0 , 1 e12 } ; /∗ 1 microsecond ∗/

4 accuracy . above = { 0 , 1 e12 } ; /∗ 1 microsecond ∗/

5 t imelength_t r e s o l u t i o n = { 0 , 1e9 } ; /∗ 1 nanosecond ∗/

6 period = TDMA_CYCLE;

7 s t a r t _ o f f s e t = get_my_slot ( ) ;

8 name = " tdma−t i m e l i n e "

9 /∗ Bind to a t i m e l i n e with requested UUID ∗/

10 t i m e l i n e _ t t i m e l i n e ;

11 t i m e l i n e = timeline_bind ( name , accuracy , r e s o l u t i o n ) ;

12 /∗ Set period and s t a r t o f f s e t ∗/

13 timeline_setschedparams ( t imel ine , period , s t a r t _ o f f s e t ) ;

14 /∗ Transmit Packets using TDMA s l o t ∗/

15 while ( tdma_running ) {

16 timestamp = t imeline_waitunti l_nextperiod ( t i m e l i n e ) ;

17 i f ( timestamp . u n c e r t a i n t y < accuracy ) {

18 transmit_packet ( ) ;

19 }

20 e l s e {

21 hold_off ( ) ;

22 }

23 }

24 /∗ Unbind from a t i m e l i n e ∗/

25 timeline_unbind ( t i m e l i n e ) ;

3.8 Experimental Evaluation

We now evaluate the performance of the QoT Stack for Linux. Our prototype imple-

mentation provides hardware support for the ARM-based Beaglebone Black (BBB) [113]

embedded platform. Therefore, our testbed comprises of multiple BBB nodes connected

by means of an IEEE-1588-compliant switch [116].
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3.8.1 Clock-Synchronization Measurements

We now describe the evaluations performed to benchmark the clock-synchronization

capabilities of our QoT Stack.

Core-NIC Clock Synchronization: As described in Section 3.5, to achieve end-to-

end synchronization, i.e., mapping local core time to a global timeline reference, the

first step involves accurately synchronizing the on-board network-interface clock (NIC)

with the local core clock. Figure 3.7a plots the probability distribution of Core-NIC

synchronization accuracy. Observe that we achieve an accuracy in the order of tens of

nanoseconds by utilizing a hardware-programmable timer on the BBB AM335x. This

timer deterministically triggers periodic voltage-change outputs on a pin, which is then

timestamped by the NIC, to work out the clock-disciplining parameters.

Tunable Clock Synchronization: The ability to adapt to application QoT require-

ments is also a key proposition of the QoT architecture. Therefore, we investigate the

use of modifying the transmission rate of synchronization packets to tune the clock-

synchronization accuracy. Figure 3.7b plots the measured clock-synchronization accu-

racy as a function of the synchronization interval (inversely proportional to synchroniza-

tion rate). Observe that, as we increase the synchronization-packet transmission rate, the

synchronization error reduces.

End-to-End Clock Synchronization: We consider a topology similar to the one il-
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Figure 3.8: (a) shows pair-wise error probability density of three nodes a, b, c bound to
Timeline 1 in Figure 3.4b with 100 µsec accuracy requirement, while (b) shows pair-wise
error probability density of three nodes c, d, e bound to Timeline 2 with 1 µsec accuracy
(Note that x-axis units are in nanoseconds, and x-axis scale changes in (a) and (b)). Note
that c maintains mappings of both timelines, and the achieved accuracy for all the nodes
is almost equal to their desired accuracy

lustrated in Figure 3.4b (Section 3.2) to measure the end-to-end clock-synchronization

accuracy. In particular, we consider two timing subgroups: a test application A de-

ployed on nodes a, b and c bound to Timeline 1 with an accuracy requirement of 100

µsec; and a test application B deployed on nodes c, d and e bound to Timeline 2 with

an accuracy requirement of 1 µsec. The system sets a synchronization rate of 0.05 Hz

for Timeline 1, and 2 Hz for Timeline 2 based on their respective application-specified

accuracy requirements. We utilize this topology to demonstrate that the QoT Stack can

run multiple parallel synchronization sessions on a single node, which simultaneously

disciplines multiple timelines. The results are illustrated in Figure 3.8, where node c

maintains two timelines with different accuracy requirements of 100 µsec and 1 µsec,

with respect to Timelines 1 and 2 respectively. This experiment validates our claim that

the timeline-driven architecture not only supports multiple virtual time references on a

single node, but is also able to adapt to meet application QoT requirements.
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Figure 3.9: Upper bound (upper green plot) and lower bound (lower blue plot) around
the actual uncertainty (middle red plot) with and without synchronization. Note the
change in y-axis scale which is increasing from (a) to (c)

QoT Estimation: Figure 3.9 showcases the QoT Stack’s ability to estimate valid QoT

estimates. These QoT estimates capture the timing uncertainty introduced by different

sources of errors, which cause a node’s time estimate to diverge from its true value.

In Figure 3.9, the red plot provides the ground truth i.e, the actual measured offset

between the local timeline reference and the global timeline reference. On the other hand,

the green and blue plots describe the upper and lower QoT bounds respectively, as

estimated by the QoT Stack. Note that these provided bounds are valid as they always
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bound the measured error. Section 3.1 highlighted the benefits of QoT for applications

to detect clock-synchronization failure. Therefore, Figure 3.9b and 3.9c first synchronize

the clock, and then simulate clock-synchronization failure by disconnecting the network.

Observe that, after the network disconnects, the provided QoT bounds extend in both

directions as a function of variance in frequency bias, and they always bound the actual

measured offset between the two nodes. Thus, we can conclude that the QoT Stack

provides accurate QoT estimates.

3.8.2 Scheduler Measurements

We benchmark the QoT Stack’s scheduling interface against the Linux Real-Time (RT)

scheduler by using periodic pin-toggling applications. All the following experiments

were conducted under identical load conditions, for a duration of 3000 seconds, with

the pin-toggling application being the highest real-time priority user application in the

system. Multiple sporadic tasks with lower real-time priorities, which used the QoT

Stack, were also running on the same system.

Scheduler Uncertainty: To measure scheduler uncertainty, we devise the fol-

lowing experiment. On a single node, an application periodically calls the

timeline_waituntil_nextperiod API call, such that the task is scheduled to toggle

a memory-mapped GPIO pin at every second boundary on a timeline reference. When

the task wakes up, the QoT Stack provides a timestamp (with uncertainity) for when

the event was actually scheduled. The scheduler latency can be estimated by taking the

difference of the timestamps: when the task was supposed to wake up, and when it

was actually scheduled. We also empirically measure the scheduler latency by using a

Salae Logic Pro 16 logic analyzer [117]. The logic analyzer measures the latency for each

pin toggle event by comparing against a deterministic PWM with edges at every second

boundary on a timeline reference.

Figure 3.10a plots the distribution of the scheduler latency as estimated by the QoT
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(c) Measured Linux RT Scheduler Latency

Figure 3.10: Scheduler Latency Distributions, for a periodic pin-toggling application on
a single node

Stack, while Figure 3.10b shows the empirically-measured distribution. Observe that

the empirically-measured distribution and the distribution provided by our stack share

similar characteristics. This demonstrates that the uncertainty estimate provided by the

QoT Stack holds up to empirical measurement.

For the Linux RT scheduler, using the SCHED_FIFO real-time priority scheduling pol-

icy, Figure 3.10c shows the measured latency distribution, where the clock_nanosleep

system call was used to schedule a periodic pin toggle. Note that the QoT-aware Linux

scheduler and the Linux RT scheduler share similar statistical properties. The QoT-

aware scheduler provides adherence to our timeline-driven architecture, with no loss in
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Figure 3.11: End-to-End Scheduling Jitter Distributions, for a distributed synchronous
pin-toggling application deployed on two nodes

performance.

Coordinated Scheduling: The ability to perform choreographed scheduling is key

to our stack, and hence we characterize the end-to-end synchronous scheduling jit-

ter. In our setup, we have two identical applications running on separate nodes.

Both applications bind to the same timeline, specifying a synchronization accuracy

requirement of 1 µs. The applications synchronously toggle a GPIO pin, using the

timeline_waituntil_nextperiod API call, at every second boundary on the timeline

reference. The synchronization service is also running on both nodes. In Figure 3.11a,

we plot a distribution of the end-to-end jitter between the pin toggles of the distributed

application. The instants at which the pins were toggled was captured by a logic ana-

lyzer, and the difference in timestamps, were used to compute the obtained distribution.

We conduct a similar experiment using the Linux clock_nanosleep system call on

two distributed nodes synchronized by PTP. Figure 3.11b plots the distribution of the

end-to-end scheduling jitter for Linux and PTP. Our stack runs a patched PTP synchro-

nization service. Hence, the distribution obtained has a similar jitter profile to that

obtained using PTP. Note that our stack does not suffer any performance loss, while at

the same time providing a range of QoT-based functionality.
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Figure 3.12: Clock read latency histograms in different time intervals, estimated by the
system uncertainty estimation service

Clock-Read Latency: Figure 3.12 shows two histograms for the estimated latency in

reading the core clock from userspace, over different one-second durations, as estimated

by the system uncertainty estimation service. Observe that the distributions change over

time and is a function of system load. Each peak in the distribution corresponds to dif-

ferent locks which cause contention in reading the core clock. This measured distribution

plays a key role in continuously keeping track of the uncertainty introduced by the OS

in reading the clock.

3.9 Summary

In this chapter, we introduced the notion of Quality of Time (QoT), which represents “the

end-to-end uncertainty bounds corresponding to a timestamp, with respect to a clock ref-

erence.” Adopting this holistic notion of Quality of Time (QoT), which captures clock

metrics such as resolution, accuracy, and stability, we propose an architecture in which

the local perception of time is a controllable operating system primitive with observable

uncertainty, and where an adaptive clock-synchronization service balances applications’

timing demands with system resources such as energy and bandwidth. Our architecture
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features an expressive application programming interface that is centered around the no-

tion of a timeline – a virtual temporal coordinate frame that is defined by an application

to provide its distributed components with a shared sense of time, with a desired accu-

racy and resolution – that enables developers to easily write applications whose activities

are choreographed across time and space.

Leveraging open-source hardware and software components, we built an implemen-

tation of our proposed QoT Architecture called the QoT Stack for Linux, and present re-

sults from its evaluation. The QoT Stack manages clocks and synchronization protocols

to deliver application-specified levels of QoT. Additionally, it also makes the delivered

QoT visible so that QoT-aware applications can adapt if the delivered QoT exceeds ap-

plication requirements. Our QoT Stack for Linux is open-source, and the code can be

found at https://bitbucket.org/rose-line/qot-stack/src.

https://bitbucket.org/rose-line/qot-stack/src


Chapter 4

Bringing QoT to Virtual Machines

To enable scalable time-based cyber-physical coordination, it is essential that we engineer

a QoT-aware cloud/edge-cloudlet infrastructure [17]. However, to maintain application

isolation, most public clouds and cloudlets provide multi-tenancy using virtualized units

of computing. These maybe Virtual Machines (VMs) [26] or application containers [27].

Additionally, the use of virtualization for consolidation of multiple real-time systems

on a single platform is also of increasing interest [118]. Motivated by these needs, this

chapter focuses on bringing the notion of QoT to the dominant virtualization technology,

namely virtual machines. We design and implement the QuartzV extension to the QoT

Stack for Linux for introducing the notion of QoT to Linux VMs running atop the open-

source QEMU-KVM [57] hypervisor.

The contributions described in this chapter are as follows:

• Elucidating the challenges and subsequent architectural choices in bringing QoT

to Virtual Machines,

• Introducing the QuartzV extensions for Linux VMs which support para-virtual

clocks,

• Porting the QoT Stack for Linux to VMs and hypervisors which do not support

para-virtual clocks, and

55
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• Evaluating and comparing the performance and scalability of the para-virtual

QuartzV approach against the native and fully-virtualized scenarios.

4.1 Background

We now introduce the background relevant to time and virtualization.

4.1.1 Virtualization

Virtualization is often used to share physical hardware resources among multiple users,

while providing the illusion that every user has access to his/her own machine [119]. To

support this illusion, it is important that (i) virtualized units are well-isolated from other

users [119], and (ii) the overhead of virtualization is low [119]. These objectives are often

conflicting, and virtualization technologies generally trade off one of the objectives in

favor of the other. For example, hypervisor-based virtual machines [57] [120] offer strong

isolation by trading off some performance due to the overhead of the hypervisor. On

the other hand, operating-system level virtualization [27] (also known as containerization)

trades off some level of isolation for performance by eliminating the hypervisor.

In this chapter, we focus on hypervisor-based virtual machines (VMs). Modern hy-

pervisors generally take advantage of hardware-accelerated virtualization, based on hard-

ware extensions like Intel VT-x [121] and AMD-V [122]. These technologies enable

VMs to execute unprivileged CPU instructions natively, while privileged instructions

are serviced using the trap and emulate mechanism [121]. On the other hand, para-

virtualization [119] enables low-latency access to peripherals and I/O devices, such as

network interfaces, disks and clocks, also delivering near-native performance. This ac-

cess is made possible by para-virtual drivers [119], which can directly perform protected

access to the hardware through the hypervisor. For systems which do not support hard-

ware acceleration or for VMs which lack para-virtual drivers, all CPU instructions or

peripheral-device access must be emulated in the hypervisor. This is also referred to as
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full virtualization [119]. In practice, modern hypervisors generally utilize a mixture of

para-virtualization and hardware-accelerated virtualization [57] [120] to provide near-

native levels of performance.

4.1.2 Time and Virtualization

The use of hypervisor-based VMs introduces an additional abstraction layer between

applications and the hardware. This translates to additional timing uncertainty, due to

higher jitter in clock-read and interrupt-servicing latencies [25]. Therefore, in [25], the

authors experimentally characterize the timekeeping properties of the Xen hypervisor

[119]. Their work highlights the weaknesses of the existing timing solution in Xen,

which uses independent NTP [1] synchronization sessions for each guest VM. They refer

to this as the independent clock paradigm, where each VM independently performs clock

synchronization. The authors note that this practice is wasteful of system resources, and

degrades synchronization accuracy. Additionally, the authors also find the practice of

keeping clock-synchronization state in the VM detrimental for live migration. Hence,

the authors propose a dependent-clock solution based on the RADclock [123] feed-forward

synchronization algorithm. Each VM has a dependent clock, which is sourced from the

hardware clock on the host machine. Hence, each VM has access to the para-virtualized

hardware clock exposed in the host OS. This clock is disciplined in the host OS, and

thus only one synchronization service is required per host machine. Apart from being

resource-efficient, as VMs now do not contain synchronization state, the dependent-

clock paradigm also aids VM live migration. Hence, if a VM is migrated, it need not

re-synchronize its clock, and can derive the time from the hypervisor at the new host.

The authors in [25] conclude that the para-virtualized dependent clock is useful for

VMs. However, the authors do not consider the utility of exposing timing uncertainty in-

formation. Additionally, the recent evolution of hypervisors and the advent of hardware-

accelerated virtualization offers a fresh opportunity to re-visit the problem of time and
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Figure 4.1: The QEMU-KVM Hypervisor. VM 1 supports para-virtual peripheral access,
while VM N utilizes peripheral emulation (full virtualization)

virtualization.

4.1.3 Kernel-Based Virtual Machine (KVM)

We focus on one commodity open-source hypervisor, namely Kernel-based Virtual Ma-

chine [57], also referred to as QEMU-KVM. However, the core concepts of this work are

applicable to other commercial and open-source hypervisors. Figure 4.1 shows the or-

ganization of the QEMU-KVM hypervisor, and illustrates how virtual machines interact

with its components. QEMU-KVM consists of two core components:

1) The QEMU Emulator functions as a hypervisor, and each VM runs as a QEMU

process. QEMU can be used for full virtualization (all instructions emulated), or

hardware-accelerated virtualization (only privileged instructions emulated). In addi-

tion, QEMU also provides VMs with para-virtualized access to host peripherals (such

as disks, I/O devices, network interfaces and clocks). For VMs which do not support

para-virtualization, QEMU also provides peripheral-device emulation.

2) The KVM Loadable Kernel Module enables QEMU to interface with the Linux

kernel. This allows QEMU-KVM to use existing kernel functionality for resource man-

agement (such as scheduling and isolation). Additionally, the KVM kernel module also
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enables the hypervisor to take advantage of hardware extensions like Intel VT-x and

AMD-V.

In terms of clock support, QEMU-KVM provides the para-virtual KVM-clock [124] to

Linux VMs. This allows a para-virtual guest VM to access the host’s monotonic system

clock (CLOCK_MONOTONIC) and real-time clock (CLOCK_REALTIME). On the x86 architecture,

KVM-clock uses the Time-Stamp Counter (TSC) [125], and a memory page mapped into

the VM’s virtual-memory space to provide low-latency clock reads. Whenever the VM

is scheduled, the hypervisor writes the current time (monotonic and real-time), and

corresponding TSC value into this page. The VM can then use this timestamp along

with reading the current TSC value to calculate the current time. Given that both reading

the TSC (rdtsc) and accessing a memory address are non-privileged operations, a para-

virtual guest VM can perform low-latency clock reads. For VMs which do not support

para-virtualization, QEMU-KVM provides access to emulated timers [57].

4.2 Time-Based Applications using QoT

Before describing QuartzV, we motivate its utility by describing an application which

can be enabled by using virtualization and QoT. Although the application described

is from the industrial-automation domain, the core concepts can be adapted for other

coordinated distributed application domains.

Consider an industrial-automation application, where multiple robotic arms are used

to collaboratively assemble a mechanical assembly. Collaborative manufacturing is often

required to: (i) speedup assembly (e.g. performing parallel assembly), and (ii) perform

joint tasks which may be too large for a single robot to operate on (e.g. cooperatively

picking and placing a large part onto the main assembly). To successfully perform col-

laborative manufacturing, we need to ensure that the robotic arms are coordinated such

that, (i) when performing parallel tasks, they do not interfere with the proper function-

ing of each other, or operate in/on the same physical space, and (ii) when performing
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joint tasks, they coordinate their actuations (actions) to successfully complete the task.

While these coordination scenarios can be carried out using extensive message passing,

the overhead involved is high. This message-passing overhead prevents a system from

scaling to multiple endpoints. Often, industrial systems are over-engineered or hard-

coded to achieve such tasks, which limits the capabilities and flexibility of the system.

An alternative approach is to use a shared notion of time as a primitive for coordina-

tion [16] [4]. In this case, an intelligent centralized/distributed task planner with a view

of the entire system can dynamically generate action commands with a corresponding

action timestamp, based on shared time. The endpoints of the system can then execute

these actions at the planned time points. However, given that industrial systems are

often safety-critical, a fault-detection primitive such as QoT is needed to handle the case

of clock-synchronization failure [17].

By specifying the required QoT, each component in the system knows the maximum

level of uncertainty tolerable to perform successful coordination. Since each node in-

dependently maintains its own notion of QoT with respect to the reference, a node can

enter a graceful-degradation [126] mode when the level of uncertainty exceeds the tol-

erable limit. Additionally, if a coordination message is delayed or arrives too late, all

a node needs to do is compare the action timestamp against the current time on its

local clock [16]. Based on this timestamp, the endpoint can adapt or enter a graceful

degradation mode. Given that modern oscillators drift slowly, the probability of clock-

synchronization failure is much lower than the probability of CPUs, networks or disks

failing [6]. Therefore, using a shared notion of time with QoT can enable scalable and

fault-tolerant coordination [17].

Based on the philosophy of QoT, Figure 4.2 illustrates a collaborative-assembly sce-

nario using two robot arms. The system consists of (i) a centralized task planner running

in a VM (using QuartzV) hosted on a server machine, (ii) two embedded-grade arm con-

troller nodes (using the QoT Stack for Linux), and (iii) two robot arms with sensors (to

determine state), an end effector, and real-time motor controllers.
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We now describe this system in a top-down fashion:

1) The Task Planner in a VM is able to receive timestamped sensory input from the

sensors on the robotic arms, and can be based on techniques including signal-processing,

machine learning [127], or model-based artificial intelligence [128]. Based on the sys-

tem objective, sensory inputs, and the state of the system, the task-planner can generate

receding-horizon-based [129] timestamped action commands for the robotic arms to per-

form the collaborative assembly. In the context of the example application, the action

commands can be in the form of (i) the position of the end-effector, and (ii) “pick” or

“place” actions of the end-effector. These action commands are received by the “con-

troller” nodes.

2) The Controller Nodes are responsible for generating a time-parametrized feasible

motion plan for their respective robotic arms based on the action commands, and the

sensory inputs from the arm. This requires converting the coarse-grained end-effector

trajectory into feasible fine-grained joint-motion trajectories or end-effector actions, such

that collisions are avoided. These embedded controller nodes also contain I/O ports

which enable them to directly interface with their respective robotic arms with low

latency.

3) The Robot Arms contain on-board low-level real-time motor controllers which

are responsible for carrying out the motion plan received from their respective controller

nodes.

In the described system, the task-planner node (VM) and the controller nodes are

inter-connected using a switched Ethernet network. All these three nodes use the QoT

Stack functionality to bind to a common timeline with their specified QoT requirements

(+/-1 ms for the task-planner node, and +/-100 µs for the controller nodes). The syn-

chronization service (based on PTP [2]) can then discipline the clocks to meet the speci-

fied QoT requirements. Notably, there is no need for the robot arms to directly join the

timeline. This is because the on-board motor controllers of the robot arm can perform

real-time control with deterministic latency [130] [131]. Additionally, sensor values can
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Figure 4.2: Time-based Coordinated Industrial Automation

also be accessed with deterministic latency. This assumption holds true for most indus-

trial robots. Thus, due to the presence of dedicated controllers and interfaces, the robots

can carry out the motion plan specified by the embedded controller in deterministic

fashion. Additionally, using the dedicated I/O interface, the embedded-controller node

can read the robot’s sensors with deterministic latency, and hence assign timestamps

using its own local timeline reference.

Our objective is to use QuartzV in the design of scalable and fault-tolerant coordi-

nated applications, like the above, using a shared notion of time and QoT.

4.3 QuartzV Extension to the QoT Stack

In this section, we describe the design choices involved in bringing QoT to hypervisor-

based virtualization. Subsequently, we present the QuartzV extension to the QoT Stack

for Linux to provide QoT awareness for para-virtual guest VMs running atop the QEMU-

KVM hypervisor. QuartzV adds extensions to the QEMU-KVM hypervisor, in order to

provide clock-synchronization-as-a-service to para-virtual guests. This enables applications

running in a guest VM to specify their QoT requirements, while a host service tries to
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meet the specified requirements, and feeds back the achieved QoT to the application

running in the guest VM.

We first discuss the applicability of QuartzV in a para-virtualized setting, and later

discuss how our implementation works in an environment where clocks are fully vir-

tualized (emulated), or the hypervisor cannot provide clock-synchronization extensions.

While QuartzV has been implemented for QEMU-KVM, the concepts are readily appli-

cable to other commodity open-source hypervisors like Xen [120].

4.3.1 QoT and Virtualization

While designing QuartzV for a para-virtual setting, the following design considerations

need to be taken into account:

1) Specifying QoT Requirements: To provide QoT awareness in the virtualization

context, applications need to be able to specify their QoT requirements. Hence, we need

to develop a mechanism to allow applications running in a VM to convey their QoT

requirements to a service running on the host OS. Since specifying QoT requirements is

not on the critical path of most applications, we can afford a somewhat higher-latency

communication mechanism for this purpose.

2) Exposing QoT to Applications: To expose the notion of QoT to applications,

every timestamp read should contain its associated uncertainty. Reading timestamps

from a clock is often on the critical path of most applications. Hence, we must provide a

timestamp along with its associated uncertainty, with low latency. For this purpose, we

require an efficient low-latency mechanism which can transfer a timestamp, along with

the achieved QoT from the host to the guest VM.

3) Supporting Multiple VMs: The key idea of virtualization is to consolidate multi-

ple VMs on a single physical machine. Hence, it is imperative that our implementation

scale to support multiple VMs without any impact on performance.

4) Maintaining VM Isolation: While workload consolidation is key, isolation be-
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tween different VMs is essential. Hence, our implementation should prevent malicious

VMs from affecting the correct operation of other VMs.

5) Portability: We aim to implement our system such that no modification is made to

the hypervisor source code. Instead, we use existing hypervisor functionality to imple-

ment our extensions. This ensures that our implementation is portable across different

versions of the QEMU-KVM hypervisor.

4.3.2 QuartzV: Design and Implementation

Based on these considerations, we now present the design of QuartzV, which builds

upon the previously described QoT Stack for Linux [4] (Chapter 3), to bring the notion

of QoT to VMs. The key components of QuartzV are as follows:

1) QoT Application Library: Also known as qotlib, it provides QoT-specific func-

tionality to user-space applications. This library exposes timeline-based distributed co-

ordination APIs, that are independent of the platform and OS. The APIs enable appli-

cations to (i) bind/unbind from a timeline, (ii) specify/update their QoT requirements,

(iii) schedule events based on shared time, (iv) timestamp events, and (v) support pub-

lish/subscribe messaging for coordination [17]. All API calls return the QoT actually

delivered to the application, providing the ability to adapt to changes in QoT [4]. This

library can be configured with a compilation flag to enable para-virtual guest-related

functionality. This allows native applications to be ported to a VM without any changes

to the source code.

2) QoT Core Kernel Module: It acts as a bridge between the components of the QoT

Stack for Linux [4], and is responsible for timeline management, clock management and

time-based event scheduling. Applications and system services interact with the QoT

Core using an ioctl interface exposed over the /dev/qotusr character device. Both the

host and guest VMs contain their own QoT Core module. The QoT core’s scheduling

interface is policy-agnostic [4], and is responsible for moving tasks from the scheduler
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wait-queue to the run-queue at the specified time. This provides developers the flexibil-

ity to choose the appropriate real-time scheduling policy based on application priorities

and requirements.

3) QoT Clocks: These are useful for maintaining a shared notion of time, and also

aid in performing clock synchronization over a network [4]. The core clock [4] is used to

maintain a monotonic free-running (drift not disciplined) notion of time. Each timeline-

reference clock /dev/timelineX (where X is the timeline id) is mapped from the core

clock (on the host) using the parameters tlskew (drift correction), corelast (the core-clock

timestamp at the last synchronization event) and tllast (timeline-reference timestamp at

the last synchronization event). Using the current core timestamp, corenow, the timeline-

reference time, tlnow, can be projected as follows:

tlnow = tllast + tlskew ∗ (corenow − corelast) (4.1)

4) Synchronization Service: This is deployed on the host, and synchronizes the local

timeline clock, derived from the local monotonic clock source, with the global timeline

reference. We use feed-back synchronization to discipline the clock on a per-timeline

basis. This service polls the timeline clock over /dev/timelineX (where X is the timeline

id) to detect any updates to application QoT requirements. Based on these applica-

tion requirements, the service disciplines the timeline-reference clock by modifying its

parameters (drift and offset) to achieve the desired levels of QoT. In doing so, the syn-

chronization service periodically updates the clock mapping parameters and associated

timestamp uncertainty lower and upper bounds, εl and εh, on a per-timeline basis.

5) Inter-VM Shared-Memory Server: Also known as ivshmem_server, this is de-

ployed on the host, and creates a POSIX shared-memory region which is used to dis-

tribute clock parameters and timestamp-uncertainty information to applications running

in guest VMs.

6) QoT Virtualization Service: Also referred to as qot_virtd, this service is de-

ployed on the host, and aggregates application-specific QoT requirements from different
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guest VMs hosted on the host machine. It creates a Unix socket, and acts as a server,

while the guest VMs are its clients. Applications running in a VM can send their timeline

information and QoT requirements to qot_virtd using the created socket. Addition-

ally, whenever the synchronization service updates the clock parameters and estimated

timing uncertainty of a given timeline reference, qot_virtd is responsible for convey-

ing these changes back to the application, using the shared-memory region created by

ivshmem_server.

Using the above components, we now describe their interactions which facilitate

the transfer of QoT and timeline-related information between the applications deployed

inside guest VMs and the services running on the host.

1) Specifying QoT Requirements (Guest VM to Host): To transfer application-

specific QoT requirements from the guest to the host, we utilize the para-virtual VirtIO-

serial interface, also referred to as virtserial [132]. VirtIO-serial provides bi-directional

serial communication between applications running inside guest VMs with a host ser-

vice. This interface is exposed to the guest application through a QEMU character-device

driver front-end in the VM. Using an API, guest applications can read from or write

messages to the character-device front-end. Since each VM runs as a QEMU process, the

QEMU backend can forward guest application messages to a specified service on the

host over a Unix socket. When an application in a VM binds to a timeline, the informa-

tion is sent to qot_virtd using virtserial via the socket interface. The daemon then

creates a version of the timeline on the host (using the QoT Core kernel module [4]),

and registers the QoT requirements of the application with the host OS. qot_virtd also

sends an acknowledgment to the guest application to indicate if the request was success-

fully accepted. Figure 4.3 highlights this interaction of each guest VM application with

qot_virtd, and illustrates the transfer of application QoT requirements from a guest

(VM 1) to the host using VirtIO-Serial. Although our stack supports multiple VMs, for

the purpose of illustration, we show only one VM.

2) Facilitating Low-Latency Clock Reads: In QuartzV, we utilize the para-virtualized
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dependent-clock paradigm and perform clock synchronization on the host on a per-

timeline basis. Hence, we maintain a monotonic free-running core clock on the host, and

compute its disciplining parameters (drift and offset), with respect to a global timeline

reference. These disciplining parameters allow us to project the monotonic core clock

to a global timeline reference. Therefore, to compute the current timeline time reference,

a guest application needs to access a monotonic counter (on the host), and apply the

clock-discipline parameters to this monotonic clock. Additionally, the synchronization

service also computes the achieved QoT. This estimated QoT enables an application to

read a timestamp with its associated uncertainty.

To enable low-latency reads of the timeline reference, we need to provide low-latency

access to:

1. the monotonic core clock,

2. the timeline clock-projection parameters and,

3. the estimated QoT

We solve problem (1) by utilizing the para-virtual KVM-clock, which pro-

vides low-latency access to the host’s real-time (CLOCK_REALTIME) and monotonic

(CLOCK_MONOTONIC) clocks. Of these two clocks, CLOCK_MONOTONIC provides a monotonic

clock source, and hence can be used as a core clock. Thus, KVM-clock allows the host

OS and the guest VMs to, in practice, share the same core clock. Therefore, timeline

clock-projection parameters calculated with respect to the host core clock can be applied

(using Equation 1) inside the VM as well.

To solve problems (2) and (3), we use the inter-VM shared-memory (ivshmem) [133]

interface to memory-map a shared-memory region containing the timeline clock param-

eters and uncertainty information into the guest VM application’s virtual-memory space.

Therefore, reading a timeline-reference timestamp involves reading KVM-clock and ap-

plying the timeline-projection and uncertainty parameters from shared memory. Since
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Figure 4.3: Specifying QoT information from guest applications to host service
qot_virtd using VirtIO serial

these instructions are all unprivileged, the timeline-reference time can be read with low

latency.

When a VM boots up, it registers with ivshmem_server over a Unix socket cre-

ated by ivshmem_server (/tmp/ivshmem_socket). The server replies with a read-only

file descriptor to the POSIX shared-memory region /dev/shm/ivshmem (created by

ivshmem_server). ivshmem exposes this shared-memory region as a PCI device to the

guest. When a guest application binds to a timeline, it interacts with this PCI device

to memory-map the shared-memory region with read-only access into its own virtual-

memory space. The fact that this shared-memory space is potentially shared across mul-

tiple VMs makes it necessary that VMs have read-only access. This provides isolation

between different VMs while enabling low-latency clock reads.

In our implementation, we launch the ivshmem_server service on the host. This ser-

vice provides a guest VM the right to access a read-only shared-memory region, which
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Figure 4.4: Sharing clock parameters and QoT information from host service qot_virtd
to guest VM applications using ivshmem
contains the timeline clock parameters, and estimated uncertainty information. In ad-

dition to the guest VMs, the QoT Virtualization Service, qot_virtd, also memory-maps

this shared-memory region with read-write access into its own virtual-memory space.

Therefore, whenever the synchronization service updates the clock parameters and un-

certainty information corresponding to a given timeline, qot_virtd writes these param-

eters to the shared-memory region which is memory-mapped into a guest application’s

virtual-memory space. Figure 4.4 highlights this interaction of guest VM applications

with ivshmem_server and qot_virtd, and illustrates the sharing of per-timeline clock

parameters and uncertainty information from host to guest (VM 1) using the memory-

mapped shared-memory region created by ivshmem_server.
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4.3.3 QoT and Full Virtualization

For guest VMs which do not support para-virtualized clocks, or hypervisors which do

not permit extensions, the notion of QoT can still be supported. Our latest implemen-

tation of the QoT Stack for Linux allows all of its components: QoT core, QoT clocks,

and clock-synchronization service (both NTP-based and PTP-based with software times-

tamping), to run inside a VM which does not support para-virtualization. However, the

overhead of emulated hardware timers (full virtualization) will cause a loss in applica-

tion performance, due to higher clock-read latency. Additionally, the overhead of an em-

ulated network stack and lack of hardware-timestamping support (for PTP) can degrade

the achieved synchronization accuracy and QoT. Figure 4.5 illustrates the components

of the QoT Stack for Linux, deployed in a QEMU-KVM Linux VM (VM 1), which does

not support para-virtualized clocks.

To support a core clock based on CLOCK_MONOTONIC, our latest implementation of the

QoT Stack for Linux implements an architecture-independent QoT core clock driver [4],

which allows the entire QoT stack to be deployed on any Linux-based platform includ-
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ing VMs. This implementation provides a monotonic clock based on CLOCK_MONOTONIC,

and provides time-based scheduling by using the existing Linux high-resolution timer

(HRTIMER) interface.

4.3.4 QoT-based Industrial Automation using QuartzV

We now describe a simple test prototype to realize the industrial-automation application

described in Section 4.2. We utilize the same structure as the described application and

the main components are as follows:

1) The Task Planner running in a para-virtual VM with QuartzV is responsible

for generating time-parametrized tasks. The VM is deployed atop QEMU-KVM on the

desktop Onyx running Ubuntu 14.04 with a quad-core Intel i7 processor.

2) Two Controller Nodes each deployed on a Beaglebone Black [113] embedded

platform (Agate and Citrine) with the QoT Stack for Linux, are responsible for generating

and executing motion plans based on the time-based task plans.

3) Simulated Robot Arms receive motion plans from the controller nodes using the

ROS-based [134] publish-subscribe mechanism. Since we did not have ready access to

real robots, we utilize ROS Indigo [134] with the Gazebo simulator [135] to simulate

two Universal Robotics UR5 [130] robot arms along with their motion controllers (using

ros-control [136]). The simulation is performed on the desktop machine Jasper running

Ubuntu 14.04 with a quad-core Intel i7 processor and an Nvidia GT620M GPU.

We consider a simple scenario where two robots collaboratively pick and place a

component synchronously. However, our testbench can be used to develop and test

more complex application scenarios. Additionally, the use of ROS enables the same

application code to be deployed directly on a real robot. A video showing our prototype

application can be found at https://youtu.be/7NoxnZEWDrM.

https://youtu.be/7NoxnZEWDrM
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Figure 4.6: QuartzV Clock-Synchronization Test-bed

4.4 Experimental Evaluation

We now present some experimental results to benchmark the performance of QuartzV

using as metrics (i) clock-synchronization accuracy, and (ii) clock-read latencies. We use

the QoT Stack for Linux deployed natively as the baseline. Before stating the results, we

describe our experimental setup.

4.4.1 Experimental Setup

Figure 4.6 illustrates the different nodes in our clock-synchronization test-bed. All the

nodes are interconnected by an IEEE 1588 (PTP)-compliant Ethernet switch [137].

Our evaluations are performed on a quad-core (8 virtual cores) x86-64 Intel i7-based

desktop Onyx, which hosts the QoT-based benchmarking applications. Onyx utilizes

Ubuntu 14.04 with the Linux 4.4 kernel and also contains version 2.8 of the QEMU-KVM

hypervisor. This enables Onyx to host VMs utilizing QuartzV. The Intel i7 CPU contains

a constant-invariant TSC which always maintains a steady frequency, and thus can be

used as a reliable clocksource. Additionally, Onyx is equipped with an IEEE 1588 (PTP)-
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compliant Intel 82574L network interface [138] which supports hardware timestamping

at the PHY layer. The presence of hardware timestamping allows us to perform accu-

rate clock synchronization using the QoT Stack for Linux’s PTP-based synchronization

service.

We utilize the Beaglebone Black node Citrine as our clock reference. The Beaglebone

Black ARM-based TI AM335x chipset [113] contains an IEEE 1588-compliant network

interface which supports hardware timestamping at the PHY Layer.

To measure the accuracy of clock synchronization on Onyx, with respect to the refer-

ence node Citrine, we utilize the nodes Amethyst and Agate. To measure synchronization

accuracy, we need to take (near) simultaneous timestamps of a common event on both

the reference (master) and the target (slave). By comparing these timestamps over a

period of time, we can compute the synchronization accuracy. Therefore, we use (i) the

node Agate (Beaglebone Black) to periodically (every second) generate UDP-multicast

packets which serve as common-reference events providing timestamping opportuni-

ties, and (ii) the node Amethyst to generate reference timestamps (equivalent to Citrine)

for the UDP datagrams.

Amethyst has an x86-64 Intel i7 processor, running Ubuntu 14.04 with the Linux 4.12

kernel, and is equipped with an Endace 7.5G2 DAG card [139]. The DAG card con-

tains two ports which intercept all packets flowing between Agate and Onyx. This card

also provides 7.5 nanosecond resolution timestamping [139], and processing of packets

at line rate. Therefore, all the UDP packets from Agate can be accurately timestamped

with no significant delay introduced by the DAG card. The same UDP packets can sub-

sequently be timestamped on Onyx (using socket/hardware timestamping [140] on the

host and guest VMs). Hence, if we assume (for now) that the DAG card on Amethyst

can provide equivalent timestamps as the reference Citrine, then by comparing these

timestamps with those (nearly) simultaneously generated on Onyx, we can compute the

clock-synchronization accuracy of Onyx with respect to Citrine. Note that the introduc-

tion of the DAG card adds noise to our measurements, as there is some latency between
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the DAG timestamp and the timestamp on Onyx. However, given that Onyx and the

DAG card share a dedicated link, the latency is low.

To accurately synchronize the DAG card on Amethyst to the reference Citrine, we

utilize its inbuilt PPS (Pulse-per second) input. We use Citrine (Beaglebone Black) to

generate a reference PPS signal over a GPIO pin (using a hardware timer), which is

fed to the PPS input of the DAG card. The DAG card can use this signal along with

Amethyst’s system clock (CLOCK_REALTIME) to precisely synchronize its clock with <10ns

accuracy. Hence, to achieve precise synchronization (using PPS), we also need to syn-

chronize Amethyst’s system clock (CLOCK_REALTIME) to the reference clock on Citrine,

with an accuracy within 1s. This can be done using Linux PTP’s [141] two-stage system-

clock synchronization (ptp4l and phc2sys). Amethyst is also equipped with an IEEE 1588-

compliant Intel 82574L network interface [138] which supports hardware timestamping

at the PHY layer. Hence, using PTP, we can synchronize CLOCK_REALTIME to the refer-

ence clock on Citrine to an accuracy on the order of microseconds, which is more than

sufficient compared to the requirement of within 1s. Along with PPS, this allows us to

achieve DAG clock synchronization with accuracy on the order of a few nanoseconds.

Therefore, we can externally measure the synchronization accuracy of QuartzV.

4.4.2 Synchronization Accuracy

We now compare the clock-synchronization accuracy (or error), with respect to the refer-

ence Citrine, achieved by (i) QuartzV for a Linux VM with para-virtual-clock support, (ii)

the QoT Stack for Linux deployed natively, and (iii) the QoT Stack for Linux deployed in

a VM with a fully-virtualized clock. Note that, in cases (i) and (ii), clock synchronization

happens on the host OS, while, in case (iii), clock synchronization happens inside the

VM. We use Ubuntu 14.04 VMs, each configured to use 2 Virtual CPU cores and 2 GB of

memory.

Figure 4.7 shows the histogram of the measured clock-synchronization accuracy, and
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Figure 4.7: Measured Clock-Synchronization Error Distributions. The y-axis represents
the probability density, and the x-axis the measured error

Figure 4.8 shows a box-plot of the clock-synchronization accuracy for the mentioned

scenarios. The measurements were taken over a period of six hours. Notice that the

accuracy distribution achieved by the QoT Stack natively (Figure 4.7a) and QuartzV for

para-virtual VMs (Figure 4.7b) is nearly identical with a mean of 24.28µs and 26.12µs

respectively, and standard deviation of 5.05µs and 5.12µs respectively. This is because

QuartzV performs clock synchronization on the host and transfers the clock-projection

parameters to the guest VM. On the other hand, the accuracy achieved by the fully-

virtualized QoT Stack inside a VM (Figure 4.7c) is lower with a mean of 70.23µs and

a standard deviation of 128.28µs. This is due to the additional packet-timestamping
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Figure 4.8: Clock-Synchronization Accuracy Boxplot. The center ’red’ line represents the
median accuracy, the inner whiskers the 25th and 75th percentile accuracy, and the outer
whiskers the minimum and maximum error observed.

uncertainty introduced by the virtualized networking stack.

The ability to provide QoT bounds also enables fault detection. Figures 4.9a and

4.9b plot the upper and lower QoT bounds calculated by para-virtual QuartzV, and

the fully-virtualized QoT Stack deployed inside a VM respectively. Observe that the

computed bounds always bound the accuracy measured by the experimental test-

bench. From these results, we can conclude that QuartzV can provide near-native clock-

synchronization accuracy to applications running in VMs.

4.4.3 Clock-Read Latency

To compare clock-read latencies, we consider the following scenarios: (i) the QoT Stack

for Linux deployed natively, with the x86 Time-Stamp Counter (TSC) clocksource, (ii) a

para-virtual Linux VM using QuartzV with the KVM-clock [57] clocksource, and (iii) the

QoT Stack for Linux deployed in a VM with an emulated (fully-virtualized) x86 High-

Precision Event Timer (HPET) clocksource. For each of these cases, we measure the

latency of reading a timeline reference, which is calculated by applying the projection

parameters to the QoT core clock, QOT_CORE (based on CLOCK_MONOTONIC). To measure a

clock’s read latency, we read the clock in a continuous loop, and take the difference be-
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Figure 4.9: QoT Bounds: (a) para-virtual QuartzV, (b) fully-virtual QoT Stack

tween adjacent readings. For the sake of comparison, we also present latency measure-

ments for the clocks exposed by Linux (CLOCK_MONOTONIC and CLOCK_REALTIME) along

with the x86 TSC.

The clock-read latency data can be found in Table 4.1. We present the minimum,

average and standard deviation of the latency measurements for all of the clocks being

compared. The data is averaged across 1000 experiments, each consisting of 1 mil-

lion consecutive clock reads. Observe that, for CLOCK_MONOTONIC, CLOCK_REALTIME and

QOT_CORE, the average and minimum clock-read latency observed in the para-virtual

guest VM is roughly twice (~2x) that observed in the native environment. This reflects

the overhead introduced by using the para-virtual KVM-clock as a clocksource. Compare

this with the fully-virtualized case which has latencies that are 3 orders of magnitude

(>100x) greater than the native setting. This is due to the overhead of emulating the

HPET clocksource. On the other hand, reading the TSC (using the rdtsc instruction)

has nearly the same latency in all three scenarios. This is because rdtsc is an unprivi-

leged instruction and can be executed natively [121].

QOT_CORE (QoT core clock) is implemented as a wrapper around CLOCK_MONOTONIC.

Observe that, in all the three cases, the observed latency in reading QOT_CORE is slightly

greater than CLOCK_MONOTONIC. This is because of the additional overhead of applying the



CHAPTER 4. BRINGING QOT TO VIRTUAL MACHINES 78

Table 4.1: Clock-Read Latency (nanoseconds)

Scenario Clock Min Average Std. Dev

Native QoT Stack TSC 4 7.41 59.55
(x86 TSC) REALTIME 13 26.19 172.44

MONOTONIC 13 18.41 95.74
QOT_CORE 16 32.01 123.69

Para-virtual QuartzV TSC 4 8.28 88.75
(KVM-clock) REALTIME 31 40.46 246.47

MONOTONIC 31 34.79 233.83
QOT_CORE 54 60.71 242.34

Fully-virtual QoT Stack TSC 4 8.19 95.18
(Emulated HPET) REALTIME 1785 2038.02 9721.72

MONOTONIC 1786 2022.13 8912.25
QOT_CORE 1892 2435.64 9512.45

timeline clock-projection parameters. For the para-virtual scenario using QuartzV, the

QOT_CORE latency is ~1.8x that of CLOCK_MONOTONIC. This is due to the overhead of access-

ing the shared-memory region exposed by ivshmem. However, this overhead is minimal

and does not affect the order of magnitude of the clock-read latency, as compared to

CLOCK_MONOTONIC.

If we compare the two virtualization scenarios based on standard deviation, we can

observe that reading the para-virtual KVM-clock clocksource provides approximately 40x

lower standard deviation (clock-read latency variability) than an emulated clocksource.

This lower variability translates to better QoT. Additionally, note that the QuartzV im-

plementation of the QOT_CORE clock has similar standard deviation as CLOCK_MONOTONIC.

Therefore, we conclude that QuartzV provides minimal loss in timing performance (la-

tency and uncertainty) compared to the native case, while allowing services on the host

to expose the notion of Quality of Time to applications running in guest VMs.

Notice that for both the para-virtual and fully-virtual scenarios, the clock-

synchronization error is an order of magnitude (>10x) higher than the clock-read la-

tency. Thus, the network residency and timestamping uncertainties are the bottlenecks

for achieving good QoT for an application in a VM.



CHAPTER 4. BRINGING QOT TO VIRTUAL MACHINES 79

Time(s)

0 300 600 900 1200 1500 1800 2100 2400

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r 

(µ
s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: CPU-stress

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

VM 6

Started

VM 7

Started

VM 8

Started

(a) CPU Stress

Time(s)

0 200 400 600 800 1000

S
y
n

c
h

ro
n

iz
a

ti
o

n
 E

rr
o

r 
(µ

s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: Network Rx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(b) Network Rx

Time(s)

0 200 400 600 800 1000

S
y
n

c
h

ro
n

iz
a

ti
o

n
 E

rr
o

r 
(µ

s
)

-80

-60

-40

-20

0

20

40

60

80

QuartzV Scalability: Network Tx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(c) Network Tx

Figure 4.10: QuartzV Synchronization Scalability Results. The dashed lines represent
moments in time where a new VM was spawned

4.4.4 Clock-Synchronization Scalability

We now analyze the scalability of (i) QuartzV for Linux VMs with para-virtual clock

support, and (ii) the QoT Stack for Linux deployed in a VM utilizing full virtualization.

Our experiments measure the clock-synchronization accuracy achieved in the presence

of competing VMs present on the same host. To test the limits of both approaches, we

consider scenarios involving competing VMs with CPU and network-intensive work-

loads.

Figures 4.10 and 4.11 provide the scalability results for the para-virtual QuartzV

setup, and the fully-virtual QoT Stack respectively. In both figures, subplots (a) provide
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Figure 4.11: Fully-Virtual QoT Stack Synchronization Scalability Results. The dashed
lines represent moments in time where a new VM was spawned

results in the presence of competing VMs with CPU-intensive workload, subplots (b)

provide results in the presence of competing VMs with network data-reception-intensive

workload, and subplots (c) provide results in the presence of competing VMs with

network data-transmission-intensive workload. Each plot shows the measured clock-

synchronization accuracy and reported QoT bounds. The x-axis denotes the progression

of time in seconds, and the y-axis indicates the measured synchronization error in mi-

croseconds. Please note that each sub-plot has a different scale for the y-axis.

Figures 4.10a and 4.11a present scalability results when multiple VMs with CPU-

intensive workload are present. To test the limits of our approach, we consider a maxi-
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mum of 8 VMs, each with 1 virtual core and 2 GB of memory, as our test-node Onyx has

8 virtual cores and 16 GB of memory. Each VM runs a simple QoT-aware application,

which binds to a timeline, and reads the timeline clock in a tight loop with real-time

priority. In addition, each VM also utilizes the stress tool [142] to spawn a single CPU-

intensive thread, without real-time priority. This ensures that any CPU capacity left over

by the QoT-aware application will be consumed by the stress tool. We spawn a new VM

every 300 seconds, and the dashed lines in the plot represent points in time where a

new VM was spawned. In practice, we observe that our test-bed system’s CPU is fully

utilized with 6 CPU-intensive VMs. This is due to the use of some processing capacity

by the host OS, the graphics sub-system, and QEMU-KVM.

Observe that, for the para-virtual QuartzV case (Figure 4.10a), there is no significant

change in synchronization accuracy as new CPU-intensive VMs are spawned. This is

because clock-synchronization is performed in the host OS, and as long as the synchro-

nization service has sufficient resources, the accuracy remains unaffected. Additionally,

the use of hardware timestamping (available only on the host), ensures that the packet-

timestamping uncertainty is unaffected by CPU load. On the other hand, for the fully-

virtualized QoT Stack (Figure 4.11a), as the VM count grows higher, the synchronization

accuracy degrades, and greater instability can be observed in the obtained accuracy. This

is because clock synchronization is performed inside the VM, and the networking stack

is emulated by the hypervisor. Thus, greater CPU load increases the uncertainty in the

software timestamping of synchronization packets, and makes the synchronization ser-

vice unstable. This in turn degrades accuracy. Specifically, after the addition of the 7th

VM, the system is overloaded, and there are durations where the synchronization accu-

racy is significantly degraded (>5 times the case without overload). The QoT bounds

returned by the system reflect this instability in the fully-virtual synchronization service.

Figures 4.10b, 4.10c, 4.11b and 4.11c present scalability results when multiple VMs

with network-intensive workloads are present. In these experiments, we consider a

single VM running a QoT-aware application, and a maximum of 5 competing VMs, each
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with 1 virtual core and 2 GB of memory, and no per-VM bandwidth restrictions. We

spawn a new VM every 200 seconds, and the dashed lines in the plot represent points in

time where a new VM was spawned. Each VM uses the iperf tool [143] to send/receive

TCP packets to/from another machine on the LAN, such that the available network

bandwidth is saturated. We observed that, without bandwidth regulation, a single VM

is able to nearly saturate the network bandwidth. Further adding new VMs causes the

load to grow incrementally until VM 4, after which the bandwidth is fully saturated.

This is because, in our setup, the 100 Mbps industrial PTP switch [137] is the network

bottleneck, as compared to the 1 Gbps Ethernet card on the host Onyx.

Notice that, for the para-virtual QuartzV case, with network data-reception-intensive

workload (Figure 4.10b), the achieved synchronization accuracy and uncertainty (vari-

ance) degrades by ~1.2x, as compared to the load-free scenario shown in Figure 4.9.

However, this degradation is minimal and does not significantly change as new compet-

ing VMs are added. This is because clock synchronization is performed on the host, and

uses hardware timestamping. Similarly, for the para-virtual QuartzV case with network

data-transmission-intensive competing workload (Figure 4.10c), the achieved synchro-

nization accuracy is similar to the network data-reception-intensive case. However, the

synchronization uncertainty (variance) degradation is higher by ~1.3x, as compared to

the previous case. This observation especially holds true when more competing VMs

are present (> 3), and is reflected by the increase in the reported QoT bounds.

On the other hand, for the fully-virtualized QoT Stack (Figures 4.11b and 4.11c), as

the competing network-intensive VMs increase, the synchronization accuracy degrades

significantly on average (~1.8x-4x in different regions). Moreover, at the instances where

new VMs are added, greater instability can be observed in the obtained accuracy. Also,

observe that, for the network data-reception-intensive case, the accuracy significantly

degrades on the addition of the fourth VM, and for the data-transmission intensive case,

this can be observed at the point of addition of the third VM. The accuracy degradation

is one order-of-magnitude worse for the network data-transmission-intensive case, and
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Figure 4.12: QuartzV Synchronization Scalability Results with per-VM Network Recep-
tion/Transmission Bandwidth restricted to 2 MB/s

this is reflected by the QoT bounds returned by the system, which are, in the worst case,

about ~10x of those reported in the presence of network data-reception-intensive load.

For both the para-virtual and fully-virtual scenarios, the accuracy degradation ob-

served is greater in the presence of data-transmission-intensive network load. This is

because, for the network-reception case, as the incoming traffic increases, there is more

congestion at the PTP switch, as the switch is the bottleneck. On the other hand, for

the network-transmission case, as the switch becomes congested, packets start getting

dropped, and there are more re-transmission attempts made at the host Ethernet card

(due to TCP), thus causing greater congestion at the host. However, the degradation

of both the measured accuracy and computed QoT bounds observed while using para-

virtual QuartzV is minimal, as compared to the significant degradation observed while

using the fully-virtualized QoT Stack inside a VM. This is explained by the fact that,

during overload, the overhead of using an emulated networking stack creates greater

uncertainties and delays in handling and timestamping synchronization packets.

In summary, our scalability experiments indicate that, for the para-virtual QuartzV

approach, CPU-intensive VMs do not significantly affect clock-synchronization accuracy

when: (i) adequate hard CPU reservations are used (already guaranteed by default in all
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Figure 4.13: Fully-Virtual QoT Stack Synchronization Scalability Results with per-VM
Network Reception/Transmission Bandwidth restricted to 2MB/s

hypervisors), (ii) Virtual Machine over-commit is avoided (i.e., not allowing more VMs

than available resources), and (iii) by ensuring that the clock-synchronization service

has sufficient resources. However, the same cannot be said for the fully-virtualized

QoT Stack deployed inside a VM. For the network-intensive scalability experiments, we

have observed that, for both QuartzV and the fully-virtual QoT Stack, a heavy network

load does affect the clock-synchronization accuracy and the reported QoT bounds. The

degradation in the observed accuracy is significant for the fully-virtual QoT Stack while

being minor for the para-virtual QuartzV approach. This degradation is caused due

to added uncertainty in network timestamping and packet residency delays, and can

be avoided by restricting the network bandwidth available to a VM, based on a user-

specified limit. Such functionality is available in most hypervisors including QEMU-

KVM.

Figures 4.12 and 4.13 present scalability results in the presence of bandwidth-

restricted network-intensive VMs, for para-virtual QuartzV and the fully-virtual QoT

Stack respectively. We consider a maximum of 5 competing VMs, each of which has

its transmission and reception bandwidth restricted to 2 MB/s (16 Mbps). In both fig-

ures, subplots (a) provide results in the presence of competing VMs with network data-
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Figure 4.14: QuartzV Clock-Read Scalability Results

reception-intensive workload, and subplots (b) provide results in the presence of compet-

ing VMs with network data-transmission-intensive workload. For both the para-virtual

QuartzV scenario and the fully-virtual QoT Stack, the plots indicate that restricting the

bandwidth of competing VMs can prevent significant degradation of synchronization

accuracy, as compared to the scenario with no bandwidth restrictions.

4.4.5 Clock-Read Scalability

Figure 4.14 plots the average clock-read latency of the para-virtual QuartzV approach

with multiple VMs continuously performing simultaneous clock reads. Observe that for

both QOT_CORE and CLOCK_MONOTONIC, the clock-read latency increases slightly for each

new VM spawned. This is due to the unavoidable contention in reading the hardware

counter to compute the time. Thus, as qot_virtd writes the clock-discipline parameters

to a shared-memory region which all VMs can simultaneously read from, there is no

bottleneck in our implementation, allowing QuartzV to easily scale and support multiple

VMs.
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4.5 Summary

Given that virtualization is increasingly utilized in cyber-physical applications, we in-

troduced the QuartzV extension to our QoT Stack for Linux to make virtual machines

(VMs) QoT-aware. QuartzV harnesses para-virtual clocks along with the dependent-

clock paradigm [25] to provide near-native timing performance in VMs. We also demon-

strated the utility of QuartzV by using it in a prototype industrial-automation applica-

tion. This, in turn, illustrates that QoT-awareness makes it possible for intelligent CPS

applications to dynamically take coordination decisions, based on a shared notion of

time and the delivered QoT.

For VMs which do not support para-virtual clocks, or hypervisors which do not

permit extensions, we extended the QoT Stack for Linux so that it can be entirely

deployed in a VM. However, our experiments indicate that QuartzV’s para-virtual

implementation can achieve much higher synchronization accuracy, better scalability

and timing performance. QuartzV is open-source, and the code can be found at

https://bitbucket.org/rose-line/qot-stack/src.

https://bitbucket.org/rose-line/qot-stack/src


Chapter 5

Time-as-a-Service for Geo-distributed

Coordination

Modern distributed applications are inherently complex and consist of multiple interact-

ing components. Thus, deploying these components and managing their life-cycles are

complicated endeavors. Additionally, many of these components will be deployed in the

cloud or at the edge in conjunction with other applications. In such scenarios, the use of

OS-level virtualization technologies like containerization [27] simplifies the deployment

and life-cycle management of distributed applications. Therefore, Quartz builds on the

QoT Architecture [4] for providing Time-as-a-Service (TaaS) to containerized applications.

Quartz features a distributed modular architecture and is implemented using container-

ized micro-services, making it easy to deploy and use across a range of platforms.

Unlike the kernel-space QoT Stack [4] which operated at LAN-scale, Quartz over-

comes the scalability and portability issues by featuring a fully user-space implementa-

tion which (i) supports multi-tenancy, (ii) operates at geo-distributed (WAN)-scale, and

(iii) is portable to an array of application domains and platforms. Quartz also provides

an API for distributed coordination based on the timeline abstraction [4], and allows dis-

tributed application components to specify their required QoT. Based on these require-

ments, Quartz orchestrates the underlying system and clock-synchronization protocols

87
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to meet these application-specific requirements, and feeds back the delivered QoT back

to the application.

The key contributions described in this chapter are as follows:

1. Elucidating the challenges and subsequent architectural choices in exposing Time-

as-a-Service, maintaining timelines and estimating Quality of Time (QoT) at geo-

distributed scale,

2. Introducing techniques to make clock-synchronization protocols, adaptive to ap-

plication QoT requirements, and

3. Introducing Quartz, an autonomous, adaptive and fault-tolerant middleware ex-

posing Time-as-a-Service for containerized applications using time as a coordina-

tion primitive.

5.1 An Application’s Perception of Time

We first motivate the utility of Quartz by describing two application scenarios which

can be enabled by using a shared notion of time and QoT. These applications are (i)

DronePorter, a fleet of drones coordinating to transport a payload, and (ii) TimeCop,

a traffic-management solution which coordinates vehicular traffic flow at city scale in

both space and time. However, the core concepts can be adapted to other distributed-

coordination application domains.

DronePorter: Consider a fleet of n drones (as shown in Figure 1.2 in Chapter 1)

transporting an object Ω, too large to be carried by a single drone. To successfully

transport Ω, the drones need to follow a coordinated flight-plan such that (i) the object

is not damaged or destabilized, and (ii) the drones do not collide with each other or

obstacles in the environment. One way to accomplish this is by having a master entity,

which can be one of the drones, send out timestamped flight-plans with way-points to
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each of the drones, such that each drone tries to reach a given way-point at the specified

time.

To coordinate successfully, the clock on each drone needs to be synchronized such

that the accuracy is within some specified limits. This accuracy (or uncertainty) specifi-

cation can depend on multiple factors, ranging from the velocity and size of the drones,

to the other uncertainties in the environment. For example, to meet a particular velocity,

while maintaining safety, having a tighter clock-synchronization accuracy can be used

to compensate for higher localization uncertainties or higher environmental uncertain-

ties [18]. Therefore, in this scenario, each drone can use Quartz to bind to a timeline

each specifying its QoT requirements. If the QoT deviates beyond these requirements,

the drones can be notified, and can adapt by moving into a graceful-degradation mode.

Additionally, as shown in Figure 1.2, we can also have an edge/cloud controller also join

the timeline, and provide (i) high-level objectives/guidance to the fleet of coordinating

drones, and (ii) fleet-management capabilities. Note that such a cloud/edge controller

can provide a higher level of macroscopic control at a lower frequency, and hence can

have less-stringent QoT requirements than the drones.

TimeCop: Consider a city with an adaptive traffic signal deployed at each inter-

section, which contains: (i) a traffic signal with an interface through which the phase

(traffic-signal state) can be set, and (ii) camera-based sensors which provide per-lane

queue lengths (number of vehicles) at the intersection.

Each intersection is controlled by a traffic controller, which can be deployed on an

edge device at or near the intersection, for low-latency decision-making. This controller

is responsible for controlling the timing and phase of the traffic signals at the intersec-

tion. The traffic controller makes decisions periodically, by taking as input (i) the number

of vehicles per ingress lane at the intersection (read from the traffic sensors) in the last

interval, and (ii) the number of vehicles inbound from adjacent intersections (published

by the adjacent intersections). The generated output is the next phase of the traffic sig-

nal. In this scenario, a shared notion of time is key to ensure that (i) the state from
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adjacent intersections has accurate timestamps, and (ii) the phase of the traffic signals

at an intersection can be switched at an accurate time instant to ensure efficient traffic

flow. Thus, each intersection controller uses Quartz to bind to the traffic-management

timeline with a QoT requirement of +/-1 ms, while Quartz ensures that all controllers

bound to the timeline share the same notion of time with the desired QoT specification.

Thus, the timeline abstraction allows a coordinating group of endpoints to be specified.

Quartz also ensures that every timestamp is appended with accurate QoT estimates,

enabling controllers to decide “data validity” based on the QoT bounds, i.e., data with

QoT bounds beyond tolerable limits can be discarded or used with abundant caution.

Figure 5.1 illustrates the TimeCop solution.

Consider a scenario where multiple applications such as TimeCop and DronePorter

are deployed on the same infrastructure. For example, DronePorter’s high-level con-

troller can be deployed on the same edge device as TimeCop’s per-intersection traffic

controllers. One can also envision a situation where multiple such emerging smart-city

applications are deployed on the same infrastructure. In such a scenario, the ability to

simultaneously maintain multiple per-application timelines allows (i) each application’s

coordinating components and their QoT requirements to be individually specified, and

(ii) allows the system to meet potentially different QoT requirements of each application.

With each application component specifying the required QoT, the system knows

the maximum level of uncertainty tolerable by the distributed-coordination application.

Since each node independently computes its QoT with respect to the reference, a node

can enter a graceful-degradation [126] mode when the level of uncertainty exceeds the

tolerable limit. Additionally, if a coordination message is delayed or arrives too late, all

a node needs to do is compare the message timestamp against the current time on its

local clock [16]. Also, given that commodity oscillators drift slowly, the probability of

clock-synchronization failure is much lower than the probability of CPUs, networks or

disks failing [6]. Therefore, utilizing a shared notion of time with the added notion of

QoT can enable scalable and fault-tolerant coordination [17].
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Figure 5.1: TimeCop: City-Scale Traffic Management

5.2 Quartz: Time-as-a-Service (TaaS)

We now introduce Quartz which exposes Time-as-a-Service to containerized applications.

We describe Quartz by starting at the application level and then explaining the high-level

capabilities Quartz provides through its API. Subsequently, we focus on its architecture,

design choices and its implementation as micro services.

5.2.1 Quartz: API

Quartz features a rich application-programming interface (API) that is centered around

the notion of a timeline – a virtual sense of time to which applications bind with their

desired accuracy level and minimum clock resolution [4]. A timeline is the key primitive

specifying the application components which coordinate with each other. The Quartz

API provides applications the ability to (i) bind/unbind from a timeline, (ii) specify/up-

date their QoT requirements, (iii) schedule computation, sensing and actuation by/at

a reference time instant, (iv) timestamp events and (v) get latency estimates between a

pair of nodes on a timeline. Note that for an application involving distributed coordina-

tion, latency estimates give a good idea of how far into the future actuation commands

should be scheduled.
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All API calls return the QoT actually delivered to the application, providing the

ability to adapt to changes in the QoT. Thus, the Quartz API is designed to provide a

core set of capabilities which are useful to applications relying on a shared notion of

time to achieve coordination.

Listing 5.1 shows a simple application written using Quartz’s Python API binding.

The sample application binds to a timeline with an accuracy and resolution requirement

of 1ms each. The application then periodically wakes up every second and reads the

time. This is indicative of a collection of periodic time-triggered application components

which each wake up at their own specific time instants to perform some coordinated

action. Similarly, we can also envision event-driven applications which, in response to

an event, capture a timestamp of the event. Such event timestamps can be captured

using a callback function facilitated by the timeline_timestamp_events API call.

Listing 5.1: Simple Periodic App using the Quartz API

1 def main_func ( t imel ine_uuid : s t r , app_name : s t r ) :

2 # I n i t i a l i z e the TimelineBinding c l a s s as an app

3 binding = TimelineBinding ( " app " )

4 # Bind to the t i m e l i n e with 1ms accuracy and r e s o l u t i o n

5 r e t = binding . timeline_bind ( t imeline_uuid , app_name , 1ms , 1ms)

6 i f r e t != ReturnTypes .QOT_RETURN_TYPE_OK:

7 p r i n t ( ’ Unable to bind to t imel ine , terminat ing . . . . ’ )

8 e x i t ( 1 )

9 # Set the Scheduling Period and O f f s e t (1 s and 0ns r e p e c t i v e l y )

10 binding . timeline_set_schedparams (1000000000 , 0 )

11 while running :

12 # Wait u n t i l the next period

13 binding . t imeline_waitunti l_nextperiod ( )

14 # Do Something −> Read the time with the u n c e r t a i n t y

15 t l _ t i m e = binding . t imeline_gett ime ( )

16 p r i n t ( ’ Timeline time i s %f ’ % t l _ t i m e [ " t ime_est imate " ] )

17 p r i n t ( ’ Upper Uncerta inty i s %f ’ % t l _ t i m e [ " in terva l_above " ] )

18 p r i n t ( ’ Lower Uncerta inty i s %f ’ % t l _ t i m e [ " interva l_be low " ] )

19 # Unbind from the t i m e l i n e

20 binding . timeline_unbind ( )
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5.2.2 Quartz: Architecture & Implementation

To enable time-based geo-distributed applications at scale and deliver Time-as-a-Service,

Quartz is tasked with the following primary objectives: (i) maintaining the notion of a

timeline at geo-distributed scale, (ii) meeting application-specific QoT requirements with

respect to the chosen timeline reference, and (iii) computing QoT estimates with respect

to the chosen timeline reference. While meeting the above objectives, Quartz is also

tasked with optimizing system resources by merging multiple timelines under the hood,

based on application requirements and how they are deployed.

Given the above objectives, Quartz specifically needs to overcome the following chal-

lenges (i) scalability: both geographical and quantitative, (ii) autonomy: the system

should autonomously adapt to application demands and faults, (iii) portability: easy to

deploy and manage, and (iv) ease of development. Challenges (i) and (ii) are heavily

influenced by the architecture, while (iii) is a function of the implementation, and (iv) is

a function of the API.

A hierarchical architecture is one approach to both scalability and autonomy. There-

fore, Quartz features a 3-tier hierarchical architecture with services which operate at the

following tiers:

1) A Node represents any single computing node/device (virtual or physical) with

an independent clock.

2) A Cluster represents any administrator-defined set of networked nodes which can

communicate with each other. An example cluster is a set of nodes connected over a

LAN. Note that a node cannot belong to more than one cluster, since each node has a

single independent clock.

3) The Global scope represents the global set of clusters.

Based on the scope at which a timeline is discoverable by other nodes, we define two

types of timelines:

1) A Local Timeline is discoverable only on nodes inside the cluster in which the
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timeline is created. It is useful for applications with coordinating components restricted

to the cluster scope.

2) A Global Timeline can be discovered by any node in the global set of clusters. A

global timeline is useful for applications which have coordinating components spanning

multiple clusters.

When a timeline is created, its type must be specified. This allows Quartz to choose

an appropriate clock-synchronization protocol and virtual timeline reference, based on

the application scope.

We implement Quartz using user-space micro-services, which are designed to run

natively or as Docker [27] containers. Each service exposes an interface for exchanging

information and receiving requests. Figure 5.2 illustrates the Quartz Architecture, and

highlights the interactions between the various components through their exposed in-

terfaces. We first describe each service’s high-level implementation before stating how

they provide different functions:

1) The Timeline Service is the interface through which applications interact with

Quartz, i.e., most API requests are handled by the timeline service. It exposes a unix-

domain socket (UDS)-based interface through which applications on the node can send

requests to the service. It is also tasked with performing the bookkeeping of the time-

lines that exist on a node, the applications bound to each timeline, and the QoT re-

quirements of each application and timeline. Therefore, the timeline service maintains

timelines at the scope of a node, and hence, each node has its own timeline service.

2) The QoT Clock-Synchronization Service synchronizes the per-timeline clocks and

computes the QoT estimates. Since every node has a hardware clock, which serves as

a basis for per-timeline virtual clocks, each node has its own clock-synchronization ser-

vice. Like the timeline service, it also exposes a UDS-based interface through which the

timeline service can send it requests. In its current implementation, the synchronization

service supports NTP [1], PTP [2] and Huygens [3] clock-synchronization protocols.

3) The Coordination Service is a distributed service responsible for maintaining
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timelines within the scope of a cluster. Hence, every cluster must have one active coordi-

nation service. Within a cluster, the coordination service helps each node discover other

nodes on a timeline, and conveys QoT requirements across nodes. This information is

used by each node’s timeline service to orchestrate its node’s clock-synchronization ser-

vice, based on application QoT requirements. It exposes a REST API accessible to all

the nodes within the cluster. The REST API allows the timeline service on each node to

register (POST) timelines and its QoT requirement with the coordination service. This

also allows timeline services on other nodes in the cluster to discover timelines (GET)

and update (PUT) the most-stringent QoT requirement on a timeline.

4) The Global Discovery Service serves as Quartz’s global book-keeper, and is tasked

with maintaining timelines at the global scope, by allowing a cluster to discover the pres-

ence of other timelines and clusters bound to it. The discovery service maintains a

key-value store of timelines and their relevant metadata along with the clusters associ-
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ated with each timeline. It also provides an interface for cluster-specific coordination

services to discover each other, and exchange timeline and QoT information. It is imple-

mented using Apache Zookeeper [144], which provides a consistent and highly-available

filesystem-like abstraction. The discovery service maintains a /timelines Zookeeper

node, under which different timelines are registered. This allows cluster-specific co-

ordination services to register the presence of timelines associated with their cluster,

as /timelines/<timeline-name>. Under this timeline-specific Zookeeper node, a child

node exists for each cluster participating in the timeline. In particular, the ability to

(1) set watches on Zookeeper nodes: receive asynchronous notification on changes to a

node or its children, and (2) ephemeral nodes: elements which disappear on a network

disconnect, allows the coordination service to detect if another cluster has joined or left

a timeline. Thus, Zookeeper is well-suited for the role of the global discovery service.

As may be expected, using a hierarchical architecture provides a very clear distribu-

tion of responsibilities. Therefore, even if higher-layer services (global or cluster-level)

are temporarily lost, lower-layer services (cluster or node-level) can still continue to op-

erate and provide essential functionality to applications.

Quartz Clocks: Quartz also features timeline-specific clocks, which are required for

providing applications with their own shared notion of time. At the node scope, Quartz

utilizes a core clock Ccore [4] derived from a hardware clock, which maintains a mono-

tonic free-running notion of time with undisciplined drift and offset. Each timeline-

reference clock is maintained as a mapping from the core clock using the parameters

tldri f t (drift correction), corelast (the core-clock timestamp at the last synchronization

event) and tllast (timeline-reference timestamp at the last synchronization event). Using

the current core timestamp, corenow, the timeline-reference time, tlnow, can be projected

as follows:

tlnow = tllast + tldri f t ∗ (corenow − corelast) (5.1)

A key proposition of Quartz is the ability to provide high-probability QoT bounds to
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applications. Therefore, every timestamp provided to applications has its QoT bounds

appended to it. At any instant of time, the timing uncertainty ε is given by the following

equation:

ε = tlbound + tlskew ∗ (corenow − corelast) (5.2)

where, tlskew is a high-probability upper bound on the drift of the timeline-specific clock,

and tlbound is a high-probability upper bound on the offset of the timeline-specific clock.

Note that the probability of these bounds should be configurable by a system designer.

Therefore, given a QoT accuracy requirement Q, the probability of the bounds being in-

valid can be given by P(ε > Q). Therefore, for each timeline clock, with high probability

1− P(ε > Q), we can say that a timestamp tlnow ∈ [tlnow − ε, tlnow + ε].

Hardware Timestamping: Most modern network interfaces have their own clocks

and also provide the ability to timestamp some or all network packets in hardware

at the physical layer [2]. This enables both accurate packet timestamping and clock

synchronization, and is referred to as hardware timestamping. Therefore, Quartz also

supports network-interface clocks Cnet, and maintains an accurate mapping between the

core clock and network clock(s).

5.2.3 Quartz: Inner Workings

Figure 5.3 provides a global view of Quartz, which highlights its hierarchical architec-

ture. We now describe the inner workings of the services and their interactions.

Facilitating Low-Latency Clock Reads

From an application perspective, it is desirable that the timeline reference be read with

low latency. To read a timestamp with its corresponding QoT, an application requires

the current core-clock timestamp along with the timeline-projection and QoT parameters

(Equations 5.1 & 5.2). Therefore, for each timeline, the timeline service creates a shared-

memory region which holds the timeline projection and QoT calculation parameters.
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Applications can request to map this shared-memory region, with read-only privilege,

into their own virtual-memory space. Thus, by reading the core clock and applying

the timeline projection parameters from shared memory, an application can read the

timeline reference with low latency. In Quartz, we choose the Linux real-time clock

(CLOCK_REALTIME) as our core clock, as it is available on all Linux systems, and can be

read with low latency from user space [145]. Note that applications obtain read-only

access to the timeline-clock shared memory, which prevents malicious applications from

modifying the parameters held in shared-memory.

Handling Application Requests

Quartz provides a library implementation of its API which helps applications make re-

quests, and removes the complexity of directly interacting with the timeline service. The

API calls are stylized as remote procedure calls (RPCs) made by the application, and ex-

ecuted on the timeline service. However, only API calls related to (i) binding/unbinding

from a timeline, (ii) updating timeline QoT requirements, and (iii) getting latency esti-

mates between a pair of nodes, need to be handled by the timeline service. All other API

calls related to scheduling sensing/computation/actuation, and time-stamping events

are handled internally by the library in the context of the application process. Our ini-

tial version of Quartz implements C++ and Python bindings. However, the API can

be generalized to any programming language which supports socket programming and

shared memory. We now describe how Quartz handles application requests.

Timeline Creation/Deletion: When an application binds to a timeline, the informa-

tion is sent to the timeline service using the API. If the timeline does not exist on the

node, the timeline service creates an instance of the timeline. This instance keeps track

of all applications on the node bound to that timeline, and the instance is deleted when

no active bindings exist. The timeline service also checks if the timeline exists at the co-

ordination service (GET), and if not, it registers the timeline at the cluster scope (POST).

If the timeline exists at cluster scope, then the timeline service updates (PUT) the QoT
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Figure 5.3: Quartz Time-as-a-Service at global scope

requirements, if they are more stringent than the timeline’s most stringent existing QoT

requirements. Similarly, the coordination service updates (creates) the timeline on the

global discovery service at global scope if it exists (does not exist). A similar chain

of events occurs for timeline deletion. The timeline service also creates a per-timeline

shared-memory clock used to hold the timeline projection and QoT-estimation parame-

ters. This shared-memory region is passed to the clock-synchronization service, which

updates the projection and QoT-estimation parameters to synchronize the local timeline

clock to the timeline reference.

Event Timestamping: Since Quartz is designed for containerized applications, there

are three types of possible events: (1) software events timestamped by the system clock,

(2) network events timestamped by the system clock (software/kernel timestamping) or

the network-interface clock (hardware timestamping), and (3) externally-timestamped

events on a sensor. While events of type (1) and (2) are commonly observed in software

systems, events of type (3) are most likely to be observed in embedded systems.

To support time-stamping software and network events, the Quartz clock-

synchronization service maintains a mapping between the core and network clocks
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(if hardware timestamping is supported), along with the projection from the system

(core) time to the timeline reference. Whenever these projection parameters are updated,

the clock-synchronization service publishes them using NATS [146], which provides a

publish-subscribe-based communication mechanism. The Quartz API library subscribes

to these projection parameters and maintains a ring buffer of the last n projection param-

eters. Based on the incoming event system/network timestamp, the Quartz API library

chooses the appropriate parameters from the ring buffer to project the event timestamp

to the timeline reference. This new projected timestamp also contains a QoT estimate.

To utilize hardware timestamping, the clock-synchronization service container, and the

container getting network-timestamped packets, must be run in superuser mode.

In some embedded systems with general-purpose I/O (GPIO) pins, some pins have

the ability to detect a voltage-change event and record (or capture) a corresponding

hardware-timer value. This voltage-change event can also be triggered by a sensor.

Through appropriate transformations, this hardware-timer value can be mapped to a

timestamp on a timeline. In Quartz, we expose all such timestamping hardware using

the Linux ptp_clock [147] abstraction. These clocks expose an I/O control (ioctl) in-

terface over a /dev/ptpX character device, where X is a non-negative integer. To access

this character device from the context of a Docker container, it needs to be mapped into

the container at startup [148]. Additionally, most devices also require superuser priv-

ileges to access them. Therefore, there should be some higher-level admission-control

service which decides if a container can access a device, and which then maps the de-

vice into the container’s file-system at startup. Note that Quartz does not provide this

functionality. However, on application startup, the Quartz API library enumerates all

the /dev/ptpX devices available in the container’s file-system, and exposes them to the

application using its timeline_timestamp_events API call. In the background, Quartz

uses the Linux ptp_clock headers and API to interface with the /dev/ptpX character

device.

Event Scheduling: Scheduling an application on a timeline is important for execut-
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ing distributed tasks/actuation synchronously. Therefore, the Quartz API library pro-

vides the ability to schedule events after a fixed time instant or duration on the timeline

reference, in the form of wait-until calls, which suspend the application until a speci-

fied time instant. The library implements event scheduling internally, and schedules

all events on the core clock. Therefore, the timeline-projection parameters are used to

translate a scheduling request on the timeline reference to the core clock. Given that

Quartz uses the Linux real-time clock (CLOCK_REALTIME), the Quartz API Library inter-

nally uses the existing clock_nanosleep POSIX API to schedule computation/actuation

on CLOCK_REALTIME.

Latency Estimates: Consider a controller node sending out timestamped actuation

commands to an actuator. From the controller’s perspective, knowing a high-confidence

end-to-end latency estimate between the planner and the endpoint gives it a good idea

of how far into the future actuation commands should be scheduled. An end-to-end

latency estimate characterizes the latency incurred in sending a message from user space

to another application. To request a latency estimate, an application must first request

(timeline_reqlatency) for the latency to a specific node on the timeline to be computed.

This request is issued to the timeline service, which translates a node’s unique name

on a timeline to its corresponding IP address (using the coordination service). The

Quartz API library then creates a new thread in the application context which uses

ICMP packets (similar to the ping utility [149]) to compute the end-to-end latency. This

latency measurement is projected to the timeline reference clock. The application also

specifies the number of measurements n used to calculate a latency estimate, as well

as the percentile value p which should be returned. Subsequently, the application can

read the estimated latency using the timeline_getlatency call. Quartz uses a sliding

window of the last n measurements to return the pth percentile latency estimate.
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Clock Synchronization and QoT Estimation

Quartz features a flexible implementation allowing integration with multiple clock-

synchronization protocols over IP-compliant networks. Our implementation utilizes

NTP [1], PTP [2] and Huygens [3] clock-synchronization protocols, and avoids re-

inventing the wheel. This is because existing protocols like NTP and PTP are well-

tuned for modern hardware, and are based on standards and implementations that have

evolved and been refined over time. Meanwhile, Huygens is a recently-proposed proto-

col for data centers [3].

However, unlike traditional clock-synchronization protocols which are best-effort,

Quartz monitors the delivered QoT to check if it is within the application-specified lim-

its, and orchestrates the synchronization-protocol parameters to meet them. We now

describe how Quartz provides an autonomous clock-synchronization service, which dy-

namically responds to application QoT requirements as well as external changes (net-

work disconnections, changes and load). Quartz is autonomous in the sense that, based

on application requirements, it chooses: (i) an appropriate protocol, (ii) an appropriate

clock reference, and (iii) appropriate clock-synchronization tuning parameters. We first

describe how Quartz synchronizes clocks for global timelines, and subsequently local

timelines.

Global-Timeline Clock Synchronization: As global timelines can potentially span

multiple clusters in different geo-distributed regions, the simplest way to maintain a

shared notion of time is to synchronize all clocks to a common reference. To do so,

Quartz uses the Network Time Protocol (NTP) [1] to synchronize the global timeline

reference to Universal Coordinated Time (UTC). We use the chrony [150] implementation

of NTP, which synchronizes the local clock by communicating with a set of NTP servers,

and choosing the best source as the reference clock [150]. However, traditional NTP

clients are often either configured using default or application/topology-specific tailor-

made configurations. As Quartz is autonomous and aware of application requirements,
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it responds to application demands by dynamically configuring NTP.

At startup, the Quartz timeline service automatically creates a default global timeline,

and starts an NTP synchronization session on the synchronization service. Since, in

our implementation, all global timelines follow a single clock reference, it suffices to

maintain a single set of timeline-projection parameters for all global timelines. When

an application binds to a global timeline specifying its timing requirements, Quartz

checks if the application QoT requirement is being met. As all global timelines follow

UTC, the QoT requirements of a global timeline are always defined with respect to UTC.

Therefore, we use the root dispersion and clock skew values provided by NTP, which give

a conservative estimate of how far or uncertain the clock is relative to UTC, to obtain a

node’s QoT. If the application QoT requirements are not being met, then Quartz tries to

(i) either modify the synchronization rate, or (ii) if the root dispersion corresponding to

the chosen reference indicates that the QoT requirements cannot be satisfied, it picks a

new server from the pool of NTP servers. For a newly-created timeline, if the chosen

server is able to deliver the desired QoT, Quartz registers this server with the cluster-

specific coordination service, which in turn registers it with the discovery service. This

chain of events allows other nodes on the same timeline, at both cluster and global scope,

to select the same server as one of their reference sources. Thus, we ensure that nodes

on the same timeline have a similar set of clock references. If available, Quartz also

automatically chooses network-interface hardware time-stamping. Figure 5.4 presents a

flow chart illustrating how we make NTP adaptive.

Local-Timeline Clock Synchronization: As local timelines are constrained to the

cluster scope, we utilize PTP or Huygens (based on the system configuration) to syn-

chronize the clocks in the cluster. When a local timeline is created on a node, the timeline

service requests the synchronization service to start a timeline-specific synchronization

session, and monitors the delivered QoT.

Precision Time Protocol (PTP) [2]: If PTP is the configured local-timeline protocol, then

there is no need to choose a reference, as PTP automatically chooses a reference using
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the best-master clock-selection (BMC) protocol [2]. However, Quartz modulates the PTP

synchronization rate (message-exchange frequency) in order to match the application

QoT requirements to the delivered QoT. Quartz uses the linuxptp [141] implementation

of the PTP standard.

Huygens [3]: is the state-of-the-art protocol well-suited to operate at cluster scale.

Huygens uses a mesh of probes, which estimates the offsets between pairs of nodes

using a Support Vector Machine (SVM). Based on the probe-mesh topology, the pair-

wise offsets are sent to a centralized server, which uses the network effect to calculate the

final node offsets with respect to a pre-defined in-cluster clock reference. As Huygens is

not open-source, we have written our own implementation which consists of three major
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components: (1) per-node probe client-server pair which compute the pair-wise offsets

and periodically publish the offsets using NATS, (2) per-cluster offset-calculator which

calculates and publishes the final offsets by subscribing to the pair-wise offsets, and (3)

per-node offset-receiver which subscribes to the final offsets.

If Huygens is the configured protocol, then the clock synchronization (1) topology,

(2) rate and, (3) clock reference can be configured. Whenever a local timeline is created

on a node, a unique offset-receiver is started per-timeline (allowing per-timeline clock-

references), while the probe mesh and the offset-calculator are started at the first time

a local timeline is created on the cluster. To meet the application-specified QoT, Quartz

modulates the probe-mesh frequency, while monitoring the delivered QoT. In this initial

version of Quartz, given that Huygens is designed to operate with a centralized server,

we statically define the clock-synchronization topology and the master reference. How-

ever, future extensions can make the selection of both topology and master dynamic.

QoT Estimation: To estimate the QoT for local timelines using PTP or Huygens, the

timing uncertainty relative to the local-timeline-reference needs to be computed by each

node. In our implementation, we utilize the methodology proposed in [?] to compute

the timing uncertainty. The proposed approach takes in a sliding window of n samples

of the clock frequency-drift and offset (computed by the clock-synchronization protocol).

After estimating the distribution of their variances, it computes a high-probability upper-

bound on the clock offset and the drift, which can be used to estimate the QoT (Equation

5.2). Both the number of samples n and the confidence probability of the bounds can be

configured.

Adaptive Synchronization Rate: Unlike NTP, both PTP and Huygens are master-driven

synchronization protocols. This means that the master node drives the synchronization

rate. For example, in PTP, the master clock reference sends periodic multi-cast SYNC

packets to all the slaves at a pre-determined rate. The slave nodes then respond with

follow-up packets, and hence, the master controls the rate of clock synchronization. Note

that, having a single rate for the entire network implies the node with the tightest QoT
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requirements holds significant influence on the synchronization rate. On the other hand,

NTP is a client-driven protocol, and each client can independently decide and adapt its

clock-synchronization rate by initiating a synchronization-request with an NTP server(s).

Therefore, for both PTP and Huygens, we employ a similar clock-synchronization rate-

adaptation strategy. Each node in a timeline periodically publishes its current delivered

QoT on a particular timeline-specific topic using the NATS publish-subscribe mecha-

nism. The master node listens to all the slave nodes, and tries to configure the synchro-

nization rate to try to meet the QoT requirements of all the nodes on the timeline. Each

master node has a protocol-specific lower and upper bounds on the rate of packets it

can send. At the start, the master sends a burst of packets to quickly synchronize all the

clocks. Subsequently, the master reduces its rate to the recommended protocol-specific

rate. Based on whether the QoT requirements are being met or not, the master can

gradually increase or decrease its synchronization rate.

Our entire implementation is open source and the source code along with the instruc-

tions to build and deploy can be found at: https://bitbucket.org/sandeepdsouza93/

quartz/. We now illustrate how TimeCop (Section 5.1) is deployed using Quartz.

5.2.4 Enabling TimeCop with Quartz

To demonstrate TimeCop, since we do not have ready access to real traffic controllers

in a city, we simulate a city-scale traffic scenario with multiple intersections, using the

open-source SUMO traffic simulator [151]. We use TraCI [151] to interface with the

simulation, and ensure that each time-step in the simulation mirrors the flow of time

in the real world. Using TraCI, we expose each intersection as MQTT [152] endpoints

which (i) periodically publish intersection sensor state – the number of vehicles queued

per-incoming lane in the last period, and (ii) listen for commands – the next phase of the

traffic signals at the intersection. Note that using MQTT decouples the simulation logic

from the controllers.

https://bitbucket.org/sandeepdsouza93/quartz/
https://bitbucket.org/sandeepdsouza93/quartz/
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Each containerized intersection controller is deployed using the Nutanix Xi IoT [153]

platform which makes it easy to seamlessly develop, deploy, monitor and manage dis-

tributed IoT applications across multiple edge devices. Each controller gets the intersec-

tion state by subscribing to the MQTT endpoints corresponding to the intersection. The

controller is based on deep reinforcement-learning [154], which uses the current intersec-

tion state to dynamically decide the next phase of the traffic signals at the intersection.

The controller also periodically receives timestamped state from adjacent intersections,

which it uses to improve traffic flow in coordination with other intersections. The cho-

sen phase is published to the intersection MQTT endpoint listening for commands. Each

intersection controller uses Quartz to bind to the traffic-management timeline with a QoT

requirement of +/-1 ms, while Quartz ensures that all controllers bound to the timeline

share the same notion of time with the desired QoT specification. Therefore, Quartz can

be useful for building large-scale distributed-coordination applications.

The source code to build and deploy TimeCop can be found at: https://bitbucket.

org/sandeepdsouza93/traffic_app/

5.3 Evaluation

We now evaluate the performance and scalability of Quartz. We first assess the accuracy

delivered by the clock-synchronization protocols that Quartz supports: NTP [1], PTP

[2] and Huygens [3]. For these protocols, we consider different time-stamping options

(hardware/software) and platforms. In particular, we consider two embedded/edge-

form-factor platforms: Intel NUC [155] and Beaglebone Black (BBB) [113]. Secondly, we

highlight the ability of Quartz to adapt to application-specific QoT requirements, and

accurately estimate the delivered QoT. Lastly, we evaluate the scalability of Quartz by

creating a prototype geo-distributed-scale deployment.

https://bitbucket.org/sandeepdsouza93/traffic_app/
https://bitbucket.org/sandeepdsouza93/traffic_app/
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5.3.1 Measurement Testbed

To perform clock-synchronization-related micro-benchmarks we have setup a testbed

consisting of multiple Intel NUC (dual-core Intel Core i3, 8 GB RAM) and Beaglebone

Black (uni-core ARM Cortex-A8, 1 GB RAM) nodes. The two platforms are represen-

tative of both embedded (BBB) and edge-computing (NUC) devices. As time-stamping

network events is key to clock-synchronization, the NUC supports hardware timestamp-

ing of all UDP packets and the BBB supports hardware timestamping of PTP-compliant

packets, as well as software timestamping of all packets. While both platforms are

capable of running Docker containers, only the Intel NUC supports the Kubernetes

container-orchestration engine [156].

The test-bed consists of two LANs: greenwich and roseline. Greenwich has two clus-

ters (i) NUC-Amethyst: Kubernetes cluster with 4 NUCs, and (ii) BBB-Citrine: 4 BBBs

with Docker; and an event generator BBB-Onyx. The event generator creates events

(UDP packets, or voltage-change on a hardware pin), which serve as opportunities for

other nodes to timestamp. By comparing the timestamps of a common event, the offset

between two clocks can be measured. Roseline has one cluster BBB-Ametrine: 4 BBBs

with Docker.

We now describe each of the cluster types and their utility.

1) The BBB Clusters are used to benchmark the performance of (i) Huygens and

PTP with hardware timestamping, and (ii) NTP with software timestamping. The BBB

hardware strictly restricts hardware timestamping to PTP-compliant multi-cast packets

sent/received on port 319 over 4 prescribed multi-cast IPs [157]. This constrains us to

performing Huygens micro-benchmarks with not more than 4 nodes. However, the BBB

have GPIO pins which allow 42ns-resolution timestamping on a rising or falling edge

(generated by the event-generator BBB-Onyx). This allows us to externally measure the

offset between two clocks and validate our implementation. In addition, having two BBB

clusters on different LANs (citrine on greenwich, and ametrine on roseline) also enables



CHAPTER 5. TIME-AS-A-SERVICE FOR GEO-DISTRIBUTED COORDINATION 109

Table 5.1: NTP [1] Accuracy Micro-benchmarks (µseconds)
Platform Timestamps Cluster Stratum Max Mean Std. Dev

NUC HW Intra 1 4267 380 633
HW Intra 2 12607 2480 3351

BBB SW Intra 1 1638 542 245
SW Intra 2 5855 2380 717

SW Inter 1 2127 929 553
SW Inter 2 6033 3582 1032

clock-synchronization accuracy measurements between the two LANs.

2) The NUC Cluster is used to benchmark the performance of NTP, PTP and Huygens

with hardware timestamping. The NUC features a desktop-class processor and a low-

cost gigabit network interface [158] which supports hardware timestamping. As the

NUC does not have external pins, the synchronization accuracy cannot be externally

measured. Instead, we use the event generator (BBB-Onyx) to periodically generate

multi-cast UDP packets, which the NUC timestamps in the network-interface hardware.

We use these timestamps (after applying the timeline-projection parameters) to compute

a safe upper bound of the offset between the two clocks. To ensure that the multi-cast

event reaches all the NUCs as simultaneously as possible, the event generator is connected

to the same switch as the NUC, and short cables of the same length are used to connect

each NUC to the switch.

5.3.2 Quartz: Clock-Synchronization Accuracy

We now present micro-benchmarks to evaluate the performance of NTP, PTP and Huy-

gens in various scenarios based on (i) timestamping capability (hardware/software), (ii)

platform (NUC/BBB), and (iii) server stratum (for NTP). Our micro-benchmarks are

intended to provide a glimpse of the best-effort accuracy deliverable by a protocol on

a given platform. This helps us to gain insights required to autonomously select an

appropriate protocol and configuration within Quartz. The accuracy (modulus of the

measured offset) obtained from our test-bed is specified in micro-seconds (µs).
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Table 5.2: PTP [2] Accuracy Micro-benchmarks (µseconds)

Platform Timestamps Rate (s) Max Mean Std. Dev

NUC HW 1 183 31 113
HW 2 220 24 32
HW 4 13 9 2

BBB HW 1 14 2 3
HW 2 39 8 7
HW 4 39 5 7

1) NTP: The NTP micro-benchmark accuracy results are summarized in Table 5.1. In

all the experiments, we utilize publicly-available NTP pool servers, and each node can

pick its own server. In Section 5.2.3, we define all global timelines relative to UTC. There-

fore, not constraining nodes to pick a single server avoids the server from becoming a

single point of failure or a performance bottleneck, which is useful for maintaining time-

lines at global scale. This provides us with a good estimate of the accuracy achievable

in real-world deployments without the need for custom NTP infrastructure. However,

better accuracy can be achieved using custom NTP-server deployments. If we compare

the measured accuracy based on platform type or network-timestamping capabilities,

no significant differences are observed. This is because (i) NTP requires few resources

and can synchronize clocks efficiently even on low-power platforms like the BBB, and

(ii) most NTP servers do not support hardware timestamping on their end. On the other

hand, we observe that, regardless of the platform, the choice of server (stratum) plays

an important role in the accuracy obtained. This is because lower-stratum NTP servers

track UTC with lower error. Thus, even choosing different stratum 1 servers can yield

sub-millisecond accuracies across different LANs (Inter). Thus, NTP is well suited for

global-scale applications which have QoT requirements in the order of 100s of µs to

several ms.

2) PTP: Both platforms support hardware timestamping of IEEE 1588 PTP packets,

and the accuracy results are summarized in Table 5.2. The network we utilize is not PTP-

compliant and does not correct for queuing delays, which is mostly true for real-world
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networks. For both platforms, we observe that PTP at LAN-scale can yield accuracies

in the order of 1-100 µs. This is primarily due to the use of hardware timestamping,

and the fact that the Linux kernel natively-supports PTP. On the NUC, decreasing the

synchronization rate causes a slight increase in accuracy. In contrast, on the BBB, a

lower synchronization rate yields marginally better accuracy. Thus, a faster rate does not

always imply better accuracy. The Allan intercept of the clock [159], an indicator of clock

stability, influences the optimal rate. Therefore, choosing the correct rate autonomously is

useful in achieving application-specified levels of QoT.

3) Huygens: We benchmarked Huygens on both platforms, and the accuracy results

are summarized in Table 5.3. For both platforms, we consider a toy deployment of 4

nodes (in their clusters) with the probe-mesh pairs setup to form a 4-node loop. We

observe that Huygens at LAN-scale can yield accuracies in the order of 100s of µs. The

values in the table are for a pair of nodes separated by one hop in the probe mesh, while

the values within parentheses are for a pair of nodes separated by two hops. Huygens

relies on exchanging 10-100s of packets between nodes every second, and is designed for

data-centers and not low-cost hardware. In both of our platforms, while using hardware

timestamping, we observed significant timestamping errors at the network interface.

This was especially severe for the BBB, which incorrectly orders/loses timestamps when

packets arrive rapidly. Hence, we observed accuracies of the order of a few seconds, as

the BBB NIC is only designed to timestamp PTP packets arriving at a rate of about 1-4

packets per second [157]. We also run Huygens with software (kernel) timestamping,

and observe that it yields an accuracy in the order of 100s of µs, and the synchronization

session is stable. This obtained accuracy is in line with the resolution provided by kernel

timestamps.

Therefore, while both NTP and PTP are well-suited to run on low-cost platforms,

Huygens is better suited for resource-rich settings.
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Table 5.3: Huygens [3] Accuracy Micro-benchmarks (µs)
Platform Timestamps Rate (ms) Max Mean Std. Dev

NUC HW 10 401 (1596) 294 (1099) 21 (501)
HW 100 405 (382) 104 (105) 64 (75)
SW 10 1835 (1205) 294 (252) 242 (163)
SW 100 1251 (965) 234 (328) 259 (243)

BBB HW 100 13000000 2000000 3000000
SW 10 782 170 153
SW 100 4593 1091 340

5.3.3 Quartz: Adaptiveness & QoT Estimates

The key proposition of Quartz is to provide Time-as-a-Service, and adapt to application-

specific QoT demands. We now evaluate Quartz’s ability to: (i) orchestrate clock-

synchronization protocols to deliver application-specific QoT requirements, and (ii) re-

port accurate QoT estimates to applications during transient (external disturbances) or

permanent failure (network disconnect). We first focus on NTP, as it is our protocol of

choice for providing TaaS at geo-distributed scale (global timelines). Subsequently, we

benchmark PTP and Huygens for cluster-scale local timelines.

Global Timelines

Figures 5.5a, 5.5b, 5.5c and 5.5d showcase four scenarios, where two application com-

ponents α1 and α2, on two different nodes (Node1 and Node2), each bind to a global

timeline gl_test, specifying their QoT requirements of +/-1 ms relative to UTC. Each fig-

ure plots the measured offset between the two nodes, as well as the QoT estimate that

Quartz provides to each application. As the QoT bounds presented for global timelines

are always relative to UTC, the bounds can be lesser than the measured offset between

two nodes. As mentioned in Section 5.2.3, all global timelines are maintained relative to

UTC, and hence, we use only one NTP instance to synchronize all the global timelines.

Quartz orchestrates and configures this NTP instance to meet application requirements.

Adaptivity: Figure 5.5a showcases Quartz’s ability to adapt to application-specific

QoT requirements. At time t = 0, α1 on Node1 (NUC-Amethyst-1) binds to the time-
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Figure 5.5: Quartz NTP: (a) Adaptive clock-synchronization, (b) QoT bounds on clock-
synchronization failure, (c) Effect of CPU & network interference on QoT, and (d) Inter-
cluster QoT estimation. Note the different y-axis on each plot

line gl_test. As the existing clock reference cannot satisfy α1’s requirements, Node1’s

synchronization service tries new servers from the NTP pool, until the first dashed line,

when it selects a suitable server which meets α1’s requirements. At time t = 500, α2 on

Node2 (NUC-Amethyst-2) binds to gl_test. As Node2’s current reference cannot satisfy

α2’s requirements, Node2’s timeline service queries the cluster-scope coordination ser-

vice for any known NTP servers being used by other apps on gl_test. As a server exists

(registered by α1), Node2’s synchronization service selects it, and is able to meet α2’s

QoT requirements. As a consequence, the offset between the two nodes reduces, and
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Figure 5.6: Validating the accuracy of the QoT bounds for NTP

this is reflected in the QoT bounds returned to α2.

QoT-based Fault Detection: Figure 5.5b plots a network-disconnection scenario

where clock synchronization is lost, as a node(s) is unable to communicate. At time

t = 180, we simulate a network-disconnect/synchronization-service failure by killing

the synchronization service on both Nodes1&2 (NUC-Amethyst-1&2). In this scenario,

the API library (used by α1 & α2) uses the last-known QoT parameters to keep estimat-

ing the QoT (using Equation 5.2), until the clock is re-synchronized. As highlighted in

Figure 5.5b, the bounds diverge linearly at the rate given by the upper bound of the

clock drift (tlskew). When the bounds exceed application-specified QoT requirements,

the application is notified.

Resilience to CPU/Network Interference: Processing and networking resources are

essential to clock synchronization. Figure 5.5c illustrates the effect of adversarial CPU

and network-intensive workloads on the QoT and offset between two nodes (NUC-

Amethyst-1&2). Between time t = 500 and t = 700, we introduce a CPU-intensive

workload on Node1 using the stress tool [142]. The stress tool creates 10 CPU-intensive

threads which nearly saturate the CPU on node1. Observe that, as NTP is a lightweight

protocol, there is no significant effect on the measured clock-synchronization accuracy,

and this is also reflected in the QoT bounds. At time t = 700, we introduce a network-
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intensive workload on Node1 using the iperf tool [143]. The iperf tool fully saturates the

network interface on Node1 with TCP traffic. Shortly after the network load is intro-

duced, there is a degradation in clock-synchronization accuracy, as reflected by the ~4x

increase in the measured offset between Nodes1&2. Note that the QoT bounds deliv-

ered to the application on Node1 also suddenly increase to reflect this degradation in

clock-synchronization accuracy. Hence, Quartz detects transient changes in QoT due to

anomalies or interference.

Inter-Cluster QoT Estimation: Computing accurate QoT estimates across clusters in

different LANs is key to providing TaaS at geo-scale. Figure 5.5d plots the measured

offset between two nodes (BBB-Citrine-1&BBB-Ametrine-1) in different LANs (green-

wich and roseline), as well as the reported QoT. Additionally, to validate whether the

QoT bounds are accurate, we also consider two nodes synchronized to different NTP

servers. For this scenario, Figure 5.6 plots the measured offset between two nodes (BBB-

Citrine-1&BBB-Ametrine-1) in different LANs (greenwich and roseline), as well as the

reported QoT, while each of these nodes are synchronized to a different NTP server –

ntp-1.ece.cmu.edu and and ntp1.wiktel.com respectively. For both Figures 5.5d and

5.6, as the QoT is defined relative to UTC, for the bounds to be valid, the sum of the two

QoT bounds should not be less than the measured offset between the two nodes.

Local Timelines

Figures 5.7a & 5.7b plot the QoT estimates for local timelines, when using PTP and

Huygens respectively. For both protocols, the QoT and offset of Node2 are defined

relative to the timeline reference (Node1). Both sets of measurements were obtained

using a pair of NUCs (NUC-Amethyst-1&2). For Huygens, we observed significantly

higher QoT bounds than the measured offset. This is due to the high variance in the clock

offset and drift measurements caused by hardware timestamping instabilities/errors in

the network interface. Therefore, for local timelines, we focus on the PTP protocol. We

utilize a pair of nodes in the BBB-Citrine cluster to perform experiments. As stated
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Figure 5.7: Quartz QoT estimation: (a) PTP and (b) Huygens

before, the BBB have GPIO pins which allow 42ns-resolution timestamping of a voltage-

change event (generated by the event-generator BBB-Onyx). We use this to externally

measure the offset between two clocks.

Adaptivity: Figures 5.8a & 5.8b showcase Quartz’s ability to orchestrate PTP to adapt

to application QoT requirements. The left y-axis shows the measured offset and the

estimated QoT, and the right y-axis shows the binary logarithm (log2) of the period of

the PTP SYNC messages [2]. As described in section 5.2.3, Quartz modulates PTP’s clock-

synchronization rate to meet application QoT requirements. We consider α1 on Node1

(BBB-Citrine-1) and α2 on Node2 (BBB-Citrine-2) bound to the local timeline test. In both

Figures 5.8 5.8a & 5.8b, α1 on Node1 is elected as the timeline master-clock reference,

and the application QoT requirements are set to (a) 10µs and (b) 5µs respectively. In

Figure 5.8a, Quartz initially increases the rate to quickly meet the QoT requirements,

and then slows down once the QoT requirements are met. Similar observations can

be made for the case illustrated in Figure 5.8b. Note that for a multi-cast protocol like

PTP, decreasing the synchronization rate can lead to significant reduction in network

bandwidth consumed. Additionally, in case (b), sometimes during durations of high-

synchronization rates, there can be timestamping instabilities, which cause the offset,

and the delivered QoT to spike. We believe that this is due to an issue in the BBB
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Figure 5.8: Quartz PTP: Adaptive clock-synchronization with QoT requirement (a) 10µs,
(b) 5µs, (c) QoT bounds on clock-synchronization failure, and (d) Effect of CPU & net-
work interference on QoT. Note the different y-axis on each plot

hardware-timestamping module.

QoT-based Fault Detection: Figure 5.8c plots a network disconnection scenario

where clock synchronization is lost, as a node(s) is unable to communicate. At time

t = 280, we simulate a network-disconnect failure by killing the synchronization service

on Node2 (BBB-Citrine-2). Similar to the NTP case, the API library (used by α2) uses

the last-known QoT parameters to keep estimating the QoT (using Equation 5.2), until

the clock is re-synchronized. As highlighted in Figure 5.8c, the bounds are diverged

linearly at the rate given by the upper bound of the clock drift (tlskew). When the bounds
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Table 5.4: Continent-scale Scalability Results
Specified QoT (Accuracy) Worst Delivered QoT Best Delivered QoT

500µs 442µs 284µs
1ms 994µs 233µs

exceed application-specified QoT requirements, the application is notified and can enter

a graceful-degradation mode.

Resilience to CPU/Network Interference: Figure 5.8d illustrates the effect of CPU

and network-intensive workloads on Quartz PTP. At time t = 200, we introduce a CPU-

intensive workload on Node2 using the stress tool [142] for 100 seconds, which fully

saturates the CPU on the BBB. Since PTP is lightweight, there is no significant effect on

the clock-synchronization accuracy, and the observed QoT bounds. At time t = 400,

we introduce a network-intensive workload on Node2 using iperf [143] for 100 seconds.

This saturates all the network bandwidth, and PTP packets cannot get through. Thus,

the clock offset as well as the observed QoT diverges. Observe that, as soon as the

network interference goes away, Quartz increases the PTP clock-synchronization rate to

ensure that the delivered QoT quickly returns to the desired level (10µs).

Therefore, we conclude that Quartz adapts to application demands and external in-

terference at both cluster and global scales.

5.3.4 Scalability

We now demonstrate the ability of Quartz to provide Time-as-a-Service at geo-

distributed scale, by utilizing clusters deployed using Virtual Machines (VMs) hosted in

the public cloud. Our experiments are meant to demonstrate scale, and hence we con-

sider global timelines maintained using Quartz’s Adaptive NTP clock-synchronization

protocol. As we cannot externally measure the accuracy of clock-synchronization inside

the VMs, we rely on the ability of our system to accurately provide QoT estimates, to

check if different application-specified QoT levels can be achieved across all the geo-

distributed clusters. We conduct two sets of experiments:
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Table 5.5: Geo-distributed Scalability Results: Microsoft Azure

QoT Spec. Region Worst QoT Best QoT Average QoT Fraction

500µs east-us 506µs 200µs 327µs 0.98916
central-us 504µs 216µs 354µs 0.98844

west-europe 508µs 249µs 415µs 0.97398
east-australia NA NA NA NA

east-asia NA NA NA NA

1 ms east-us 635µs 199µs 365µs 1
central-us 568µs 140µs 293µs 1

west-europe 640µs 307µs 476µs 1
east-australia 1003µs 490µs 758µs 0.99076

east-asia 1006µs 459µs 645µs 0.97398

1) Continental Scale: We deploy Quartz across 15 VMs running across three Amazon

Web Services (AWS) [160] regions spanning the continental United States (5 VMs each

in us-east-1 Virginia, us-east-2 Ohio and us-west-2 Oregon). Each VM is configured as a

standalone Kubernetes cluster using the Nutanix Xi IoT [153] platform, which also helps

deploy the Quartz micro-services as Kubernetes pods. In this experiment we deploy an

application with 15 coordinating components, each deployed in one of the 15 VMs. Each

application component binds to a common global timeline gl_test, and specifies its QoT

requirement. This experiment gives us an idea of the accuracy that Quartz can achieve

at continental scale, for a geo-distributed deployment on a single network backbone. We

conduct this experiment over a period of 5 hours and consider two QoT-specification

levels (required clock-synchronization accuracy): 500 µs and 1 ms. For a given specified

QoT level, Table 5.4 summarizes the best and worst QoT level delivered by Quartz across

the 15 geo-distributed clusters. As seen in Table 5.4, the best QoT represents the tightest

accuracy bounds observed, and the worst QoT represents the loosest bounds observed.

2) Global Scale: We deploy Quartz across 20 Virtual Machines (VMs) spanning five

continents and two public cloud providers. Our deployment consists of 10 VMs run-

ning in five Microsoft Azure (Azure) [161] regions (2 VMs each in east-us, central-us,

europe-west, australia-east and asia-east), and 10 VMs running in five Google Cloud

(GCP) [162] regions (2 VMs each in asia-east, asia-south, us-west, europe-north and
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Table 5.6: Geo-distributed Scalability Results: Google Cloud

QoT Spec. Region Worst QoT Best QoT Average QoT Fraction

500µs asia-east 716µs 230µs 376µs 0.96025
asia-south 886µs 214µs 390µs 0.94606

us-west 501µs 184µs 289µs 0.99850
europe-north 389µs 186µs 291µs 1
south-america 1100µs 276µs 473µs 0.87861

1 ms asia-east 648µs 292µs 426µs 1
asia-south 813µs 237µs 484µs 1

us-west 1009µs 224µs 542µs 0.99566
europe-north 509µs 204µs 309µs 1
south-america 746µs 277µs 458µs 1

south-america-east). Each VM is configured as a standalone Kubernetes cluster. In this

experiment we deploy an application with 20 coordinating components, each deployed

in one of the 20 VMs. Each application component binds to a common global timeline

gl_test, and specifies its QoT requirement. This experiment gives us an idea of the

accuracy that Quartz can achieve for a geo-distributed deployment. We conduct this

experiment over a period of 5 hours and consider two QoT-specification levels (required

clock-synchronization accuracy): 500 µs and 1 ms. Tables 5.5 and 5.6 summarize the

best, worst and average observed QoT, along with the fraction of time the specified QoT

requirements were satisfied, for the VMs deployed in Azure and GCP respectively.

For our continental-scale experiments on AWS (Table 5.4), we observe that Quartz

can reliably deliver an accuracy level of 500µs. On the other hand, for our global-

scale deployment across Azure and GCP (Tables 5.5 and 5.6), we observe that some

nodes cannot achieve a QoT level of 500µs. This is especially true for the Azure nodes

deployed in the east-australia and east-asia regions (values indicated by NA in Table

5.5). This is because Quartz is unable to choose an appropriate NTP server to satisfy the

QoT specification of 500µs.

Note that the lowest-possible uncertainty with respect to Universal Coordinated Time

(UTC), achievable by a client using a specific NTP server depends on the server’s: (i)

stratum [1], i.e., how closely it tracks UTC, and (ii) the round-trip network latency be-
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tween the server and the client. For example, if Quartz chooses a low-stratum server

located in the United States (US), which tracks UTC accurately, then the high round-trip

latency between the server in the US, and a client in Australia will constitute the dom-

inant factor in the clock-synchronization uncertainty or QoT reported by Quartz. This

may prevent the QoT requirements of 500 µs from being met.

Thus, Quartz can maintain global timelines with sub-millisecond accuracy, while

estimating QoT at geo-distributed scale.

5.4 Summary

Time is a key primitive for enabling coordination in distributed systems. In this chapter,

we introduced Quartz which provides Time-as-a-Service to geo-distributed containerized

applications, which coordinate using a shared notion of time. Based on the notion of

Quality of Time (QoT) in conjunction with the timeline abstraction, Quartz exposes an

API which simplifies the development of geo-distributed coordinated applications, and

allows applications to specify their QoT requirements. Quartz orchestrates the under-

lying infrastructure to meet these application-specific requirements, and exposes the

delivered QoT back to the application. Thus, time-based distributed-coordination appli-

cations can be fault-tolerant in the face of clock-synchronization failure.

Quartz features a modular architecture implemented using containerized micro-

services. This makes it scalable and easy to deploy on platforms ranging from embedded

devices to the edge, and the cloud. Our evaluation indicates that Quartz adapts to appli-

cation demands, and maintains a timeline across multiple geo-distributed nodes. We also

demonstrated the utility of Quartz by using it in TimeCop, which uses a shared notion of

time to coordinate traffic signals, and consequently vehicular-traffic flow at city scale.

Our realization of Quartz is open-source and supports Python and C++ applications,

along with NTP, PTP and Huygens clock-synchronization protocols. While Quartz is

most relevant for cyber-physical systems, the core concept of Time-as-a-Service is also
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useful for distributed software applications, such as databases and logging systems.

We strongly believe that the ability to request and observe application-specific QoT can

be used to relax many of the stringent asynchronous assumptions associated with dis-

tributed systems.



Chapter 6

Sleep Scheduling for Energy-Savings in

Multi-Core Processors

The emergence of edge computing and the Internet of Things (IoT) [12] have begun to

place an increasing demand for computation on highly-connected and mobile devices.

Platforms such as Google Glass and smartwatches are examples of IoE systems using

multi-core processors. The need for high performance in an energy-constrained environ-

ment makes it necessary to investigate the use of various energy-management techniques

for multi-core systems. To increase battery life, modern processors are equipped with

a number of energy-management features. Primary among them are Dynamic Voltage

and Frequency Scaling (DVFS) [41], and the use of low-power sleep states. The use of

DVFS enables the processor to change its operating frequency and voltage, thereby re-

ducing dynamic switching power. On the other hand, low-power sleep states use power

gating and/or clock gating [43] to reduce static leakage power dissipation when the pro-

cessor is idle. However, there is a minimum round-trip time associated with each of

these low-power sleep states [42]. This round-trip time is longer for moving to and from

lower-power states due to the overhead required for the main oscillator to startup and

stabilize [42].

From a real-time systems scheduling perspective, it is critical that all tasks meet their

123
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deadlines to ensure reliable system operation. The presence of such systems in resource-

constrained and mobile environments also makes it essential that the system minimize

energy consumption. As technology scales, the dominance of static power makes it

necessary that scheduling techniques take advantage of built-in processor sleep states.

The focus of this chapter is on energy-efficient multi-core partitioned fixed-priority

real-time scheduling techniques, which utilize the processor’s deep-sleep state to reduce

static leakage power, and hence save energy. The primary contributions described in this

chapter are as follows:

• We propose an enhanced version of ES-RHS, named ES-RHS+, which has better

schedulability properties than ES-RHS [42].

• We provide an energy-saving version of rate-monotonic (deadline-monotonic)

scheduling, named Energy-Saving Rate-Monotonic (Deadline-Monotonic) Scheduling

(ES-RMS and ES-DMS), which has better energy-saving guarantees than ES-RHS

and ES-RHS+ for multi-core processors where all cores can only transition into

deep-sleep state together.

• We present a new task-partitioning heuristic that increases synchronized sleep

times, where all cores can only transition into deep-sleep state together.

• We prove that ES-RHS (ES-RHS+) is optimal for energy savings on multi-core pro-

cessors where, each core can independently go into deep-sleep state, for any parti-

tion feasible under multi-core ES-RHS (ES-RHS+).

6.1 Energy-Saving Rate-Harmonized Scheduling

This section introduces the notation used in the context of uniprocessor ES-RHS. We then

describe a version of ES-RHS with enhanced schedulability conditions, named ES-RHS+.



CHAPTER 6. SLEEP SCHEDULING FOR ENERGY-SAVINGS IN MULTI-CORE
PROCESSORS 125

6.1.1 Notation and Background

Consider a taskset Γ consisting of n independent1 periodic real-time tasks τ1, τ2, ..., τn.

Each task τi ∈ Γ can be characterized by {Ci, Ti, Di}, where Ci is the worst-case execution

time, Ti is the period, and Di is the relative deadline from its arrival time. In this chapter,

we assume that Di = Ti, i.e., for each task, deadlines are implicit. The utilization of a

task τi is given by Ui = Ci/Ti. Consider fixed-priority preemptive scheduling, with task

priorities assigned using the rate-monotonic policy [29]. The taskset is listed in non-

increasing order of task priorities such that T1 ≤ T2 ≤ .. ≤ Tn. Each task has an initial

arrival time of φi, such that its arrival times are φi, φi + Ti, φi + 2Ti, .... Without loss of

generality, we assume that the initial arrival time of task τ1, φ1 = 0.

The family of Rate-Harmonized Schedulers [42] utilizes a periodic value TH, referred to

as the Harmonizing Period. As described in [42], the Harmonizing Period has the same

initial phasing as the highest priority task τ1, i.e, φ1 = 0. No such phasing constraints

are imposed on the other tasks. In the basic Rate-Harmonized Scheduler (RHS), tasks that

arrive before or after integral multiples of TH are not eligible to execute until the next

closest boundary of TH, when they are serviced based on their priority [42]. For a given

taskset Γ, TH is chosen so as to improve schedulability [42]. As stated in [42], let us

suppose Ψ = {τj|Tj < 2T1, j 6= 1}. If Ψ = ∅, TH = T1, otherwise TH = T1/2.

In ES-RHS, by using a periodic Energy-Saver task τsleep in conjunction with RHS,

optimal energy savings can be achieved. The Energy-Saver task τsleep, is scheduled at

the highest priority with its period Tsleep = TH, initial arrival time φsleep = φ1 = 0 and

execution time Csleep ≥ CSleepMin, where CSleepMin is a system constraint that represents

the minimum round-trip time required for the processor to go into the deep-sleep state,

and revert back to the active state. While using ES-RHS, the state of the processor can

be broadly classified as follows [42]:

• Busy: The processor is executing a task τi ∈ Γ.
1Task release jitter and task dependence can be incorporated using the frameworks proposed in [163]

and [164], and is beyond the scope of this work.
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• Forced Sleep: The processor is forced into deep sleep by the Energy Saver task τsleep.

• Idle: The processor is neither busy nor in forced sleep.

ES-RHS exhibits an interesting property, where every idle duration precedes, and is

contiguous with the forced-sleep duration. Thus, idle durations can always be merged

with the subsequent forced-sleep duration [42]. Hence, by harmonizing the executions of

non-harmonic tasks, ES-RHS can yield an optimal sleep schedule. We now re-define the

notion of harmonization to enhance the schedulability of ES-RHS.

6.1.2 Energy-Saving Rate-Harmonized Scheduling+

We first re-define the notion of harmonization as follows:

“A task is eligible to execute when the processor is busy or a Harmonizing Period

boundary has been reached.”

The above re-definition allows tasks to become eligible earlier than previously de-

fined rate-harmonized schedulers including RHS and ES-RHS, without affecting their

worst-case energy savings. Based on this new notion of harmonization, we propose ES-

RHS+. To illustrate our new definition of harmonization, consider the ES-RHS schedule

in Figure 6.1. The second instance of task τ2 arrives at time t = 23 but only becomes

eligible to execute at t = 30. Under our re-definition, the second instance of τ2 becomes

eligible to execute at time t = 23, because the processor is busy, i.e., the forced-sleep task

is “executing”. Similarly, the second instance of task τ3 which arrives at time t = 36

becomes eligible at t = 40 under ES-RHS. Under our new definition, since the processor

is busy at time t = 36 (executing τ1), it becomes eligible to execute immediately. Eligible

tasks will continue to be scheduled based on their respective scheduling priorities.

Using the new definition of harmonization, a task which arrives when the proces-

sor is busy (including forced sleep) becomes eligible to execute immediately. In ES-RHS,

such tasks can execute only after the next instance of τsleep finishes execution. In the

worst case, a task τj, j 6= 1, which arrives just after the harmonizing period boundary,
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Figure 6.1: The taskset τ1 = (1, 10), τ2 = (4, 23), τ3 = (3, 36) being scheduled with
ES-RHS on the top, and ES-RHS+ at the bottom. For both cases, Csleep = 5, Tsleep = 10.

has to wait until the next harmonizing period boundary to become eligible to execute.

This induces a worst-case blocking duration of Tsleep. Under ES-RHS+, the worst-case

blocking for a task τj, j 6= 1, happens when it arrives just after the Energy Saver task

has finished execution. It becomes eligible to execute no later than the next harmonizing

period boundary, giving rise to a worst-case blocking term of Tsleep − Csleep.

We now prove that the energy savings obtained by using ES-RHS are still true for

ES-RHS+.

Theorem 1: Every idle duration in the ES-RHS+ schedule will precede and be con-

tiguous with a forced-sleep duration.

Proof: The Energy Saver task, τsleep, executes at the highest priority in the system, with

an initial phasing φsleep = φ1 = 0. Hence, the processor will be in forced sleep in the

intervals [(k− 1)Tsleep, (k− 1)Tsleep + Csleep), where, k = 1, 2, 3, .... Correspondingly, the

processor is considered to be busy in the intervals [(k − 1)Tsleep + Csleep, kTsleep) where,

k = 1, 2, 3, .... Let t be any time instant at which the processor becomes idle, i.e., t
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represents the beginning of an idle duration. Given the execution pattern followed by

ES-RHS+, t must lie in the interval [(k − 1)Tsleep + Csleep, kTsleep) where, k = 1, 2, 3, ....

It needs to be shown that the interval (t, kTsleep), for any positive value of k, is an idle

duration which in turn precedes the forced-sleep execution of the Energy Saver task

τsleep.

For ES-RHS+, TH = Tsleep. Hence, any task τi ∈ Γ that arrives in the interval

(t, kTsleep), for any positive value of k, would become eligible to execute at the next

harmonizing period boundary, i.e., kTsleep. Any task τi ∈ Γ, which arrives before

(k− 1)Tsleep, in the worst case, would have become eligible to execute at (k− 1)Tsleep. If

any task arrives in the interval [(k− 1)Tsleep + Csleep, t), i.e., when the processor is busy,

then using the re-defined notion of harmonization, it would have become eligible to ex-

ecute immediately. If τi still has some execution time left over at t, then ES-RHS+ must

schedule τi at time t. This contradicts the assumption that t represents the beginning of

an idle duration. �

Theorem 2: Every idle duration in the ES-RHS+ schedule can be utilized to put the

processor into deep sleep without any additional penalty.

Proof: From Theorem 1, we can conclude that all idle durations precede and are

contiguous with the forced-sleep execution. Hence, all idle durations in the system can

be combined with Csleep to create a single chunked deep-sleep execution, guaranteeing

that whenever the system becomes idle, it can transition into a deep-sleep duration

greater than or equal to Csleep. �

Given that all idle durations in the ES-RHS+ schedule can be combined with the

forced-sleep execution, the processor utilization spent in deep sleep is given by:

Usleep = 1−
n

∑
i=1

Ci

Ti
= 1−Utaskset

where, Utaskset is the total utilization of Γ. Thus, for a taskset Γ schedulable by ES-RHS+,

the processor utilization spent in deep sleep is maximal. The following theorem yields

the worst-case feasibility conditions, based on utilization bounds, for a taskset to be
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schedulable by ES-RHS+.

Theorem 3: A taskset Γ is feasible under ES-RHS+ if

Csleep

Tsleep
+

C1

T1
≤ 1 ∧

Csleep

Tsleep
+

i

∑
j=1

Cj

Tj
+

Tsleep − Csleep

Ti
≤ i(21/i − 1) ∀i = 2 to n

Proof: Under ES-RHS+, it is always guaranteed that τ1 executes immediately after the

execution of τsleep. Hence, we can equivalently assume that τ1 and τsleep together form

a high-priority taskset scheduled using RMS with harmonic periods. Thus, given the

harmonicity of τ1 and τsleep, using RM-theory [29], if (Csleep/Tsleep) + (C1/T1) ≤ 1, then

τ1 is schedulable by ES-RHS+.

Consider other tasks in the taskset Γ, τi ∀i = 2 to n. Compared to RMS, an instance of

τi incurs a maximum additional delay (or blocking) of Tsleep − Csleep. Hence, apart from

the preemption term contributed by the execution of τsleep, the term Tsleep−Csleep can be

added as a blocking term to the computational time of τi (Ci), and the RMS utilization

bounds [29] can be used to test feasibility. �

The tests based on RMS utilization bounds are pessimistic in nature. A more practical

schedulability test utilizes the estimation of the worst-case response time of task τi ∈ Γ.

For ES-RHS+, the worst-case response time test for a task τi is given by the following

recurrence relations:

W0 = Ci + Tsleep − Csleep (6.1)

Wk+1 = W0 +

⌈
Wk

Tsleep

⌉
Csleep +

i−1

∑
j=1

⌈
Wk
Tj

⌉
Cj (6.2)

until Wk+1 = Wk, in which case, Wk+1 is the worst-case response time of the task τi. If

Wk+1 ≤ Di, then τi will be schedulable, otherwise τi will miss its deadline.

Compared to the schedulability conditions of ES-RHS [42], ES-RHS+ enhances the

schedulability and feasibility conditions due to the reduction in the blocking faced by

tasks. Another important property of both ES-RHS and ES-RHS+ is their inherent ability
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to perform slack stealing. In situations where tasks do not execute up to their worst-case

execution time, all the additional slack can be used to put the processor into deep sleep

without any additional penalty (Theorem 2).

6.2 Energy-Saving Rate-Monotonic Scheduling

ES-RMS is a practical extension to RMS designed with the objective of maximizing en-

ergy savings in some existing operating systems. As presented in subsequent sections,

ES-RMS can also help maximize energy savings for some multi-core processors. Moti-

vated by ES-RHS, the basic Rate-Monotonic Scheduler can be extended to use a periodic

Energy Saver task, τsleep, that executes at the highest priority with its execution time

Csleep ≥ CSleepMin, period Tsleep = T1 or T1/2 and phasing φsleep = φ1 = 0. The following

theorem provides the worst-case feasibility conditions for a taskset to be schedulable by

ES-RMS, based on utilization bounds.

Theorem 4: A taskset on a uniprocessor is feasible under ES-RMS if

Csleep

Tsleep
+

C1

T1
≤ 1 ∧

Csleep

Tsleep
+

i

∑
j=1

Cj

Tj
≤ i(21/i − 1) ∀i = 2 to n

Proof: Under ES-RMS, the forced-sleep execution τsleep, has an initial phasing of

φsleep = φ1 = 0 and a period Tsleep = T1 or T1/2. Hence, τ1 always executes imme-

diately after the execution of τsleep, and together form a high-priority taskset, scheduled

using RMS with harmonic periods. Thus, given the harmonicity of τ1 and τsleep, using

RM-theory [29] we can say that if (Csleep/Tsleep) + (C1/T1) ≤ 1, then τ1 is schedulable

by ES-RMS.

Consider other tasks in the taskset Γ, τi ∀i = 2 to n. The preemption term contributed

by the execution of τsleep has to be included, and the RMS utilization bounds [29] are

used to test feasibility. �
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For ES-RMS, the worst-case response time test for a task τi is given by the recurrence

relations:

W0 = Ci (6.3)

Wk+1 = Ci +

⌈
Wk

Tsleep

⌉
Csleep +

i−1

∑
j=1

⌈
Wk
Tj

⌉
Cj (6.4)

until Wk+1 = Wk, in which case, Wk+1 is the worst-case response time of the task τi. If

Wk+1 ≤ Di, then τi will be schedulable, otherwise τi will miss its deadline.

ES-RMS can also be readily extended to the case where task deadlines are not im-

plicit, by using a version of Deadline-Monotonic Scheduling (DMS), ES-DMS.

6.3 Energy-Saving Schedulers

Both ES-RHS+ and ES-RMS (ES-DMS) are characterized by a high-priority periodic

Energy-Saver task (also referred to as an ES-task or forced-sleep task). Therefore, we

call this class of schedulers Energy-Saving Schedulers or ES Schedulers. For ES Sched-

ulers, the generalized worst-case response time test for a task τi is given by the following

recurrence relation:

W0 = Ci, Wk+1 = Ci +

⌈
Wk

Tsleep

⌉
Csleep +

i−1

∑
j=1

⌈
Wk
Tj

⌉
Cj (6.5)

where, Wk+1 is the worst-case response time of the task τi. If Wk+1 ≤ D′i , then τi will be

schedulable, otherwise τi will miss its deadline, where, D′i is the generalized deadline of a

task τi and depends on the type of ES Scheduler used. Based on this notation, we briefly

summarize each of the ES Schedulers:

(1) ES-RMS: Tasks execute as per rate-monotonic priorities and deadlines are as-

sumed to be implicit (Di = Ti). Here, the generalized deadline, D′i = Ti.

(2) ES-DMS: Tasks execute as per deadline-monotonic priorities. This implies that

the generalized deadline, D′i = Di.

(3) ES-RHS+: Tasks execute as per rate-monotonic priorities, and deadlines are im-

plicit. However, tasks become eligible to execute based on the principle of harmonization:
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A task is eligible to execute only when the processor is busy or a Harmonizing Period

boundary has been reached [58]. The use of harmonization enables every idle dura-

tion in the ES-RHS+ schedule to precede and be contiguous with the ES-task. Hence, all

the processor’s idle durations can be utilized to put it into deep sleep, thereby providing

maximal energy savings [58]. Due to harmonization, each task can be delayed by at most

Tsleep − Csleep [58]. This implies that the generalized deadline, D′i = Ti − (Tsleep − Csleep),

and provides a tight schedulability test compared to the slightly looser one proposed in

Section 6.1.2.

6.4 Sleep-State based Energy-Saving on Multi-Core

Processors

In this section, we are concerned with utilizing the processor’s deep-sleep state for

energy-efficient real-time multi-core scheduling. We focus on fully-partitioned fixed-

priority scheduling. Most modern multi-core processors support a number of low-power

states called C-states. In processors which have more than one C-state, individual cores

can transition to idle states. However, not all processors give each core the ability to in-

dividually transition into deep sleep. Based on the ability to transition into deep sleep,

we can define two types of energy-saving scheduling problems:

1) Multi-core processors where all cores can only transition synchronously into deep

sleep. For this class of processors, we refer to the scheduling problem as “Synchronized-

Sleep Multi-Core Energy-Saving Scheduling”, hereafter referred to as SyncSleep Schedul-

ing. Examples of such processors are Intel Core2 Duo [165] and AMD Opteron [166].

2) Multi-core processors where each core can independently transition into deep

sleep. For this class of processors, we refer to the scheduling problem as “Independent-

Sleep Multi-Core Energy-Saving Scheduling”, hereafter referred to as IndSleep Schedul-

ing. Examples of such processors are Samsung Exynos 5800 [92] and the 4th generation
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Intel Core processors [167].

Consider SyncSleep scheduling, where the minimum amount of time for which the

system can be in deep sleep is dictated by the core which has the least forced-sleep

duration. To maximize energy savings, the scheduler needs to maximize the mini-

mum forced-sleep duration across all the cores. This requires task-partitioning heuristics

which efficiently distribute the load across the cores so as to achieve more energy sav-

ings. Given a balanced partition, the amount of forced-sleep duration possible on a core

also depends on the scheduling algorithm used on each core.

Consider the use of ES-RHS+ on each core for SyncSleep scheduling. There is no

guarantee that the idle durations across all cores are of the same length. Hence, all the

idle time cannot be used to put the processor into deep sleep. We need to maximize

and synchronize the per-core forced-sleep duration, so as to maximize the guaranteed

overlap between the forced-sleep executions on each core. Thus, scheduling techniques

which can guarantee a longer synchronous forced-sleep execution will provide greater en-

ergy savings.

Lemma 1: Consider two uniprocessor fixed-priority preemptive scheduling policies

X and Y, where X has better schedulability conditions than Y (hence X can schedule all

tasksets schedulable by Y but not vice versa). Then, given a taskset Γ and the period

of the sleep task Tsleep, the maximum amount of time for which the processor can be in

forced sleep for policy X is greater than or equal to policy Y.

Proof: Assume that a taskset exists, such that Y provides a longer forced-sleep du-

ration than X. This implies that the combined utilization of the taskset and the forced

sleep for Y, is greater than that for X. This contradicts the assumption that X has better

schedulability conditions than Y. �

Using Equations 6.1, 6.2, 6.3 and 6.4, we can conclude that all possible tasksets

schedulable by ES-RHS+ will be schedulable by ES-RMS. However, the opposite is not

true. Hence, using Lemma 1, we can say that given a taskset, ES-RMS can provide a

forced-sleep duration that is greater compared to ES-RHS+. This property of ES-RMS is
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beneficial for SyncSleep scheduling.

We extend ES-RMS and ES-RHS+ to the multi-core scheduling context by adding an

Energy Saver task on each core. In the following sections, solutions for both SyncSleep

and IndSleep scheduling are presented.

6.5 SyncSleep Scheduling

In this section, we formally state the energy minimization (or deep-sleep maximization)

problem for SyncSleep Scheduling, which is as follows:

Consider a taskset Γ, consisting of n periodic real-time tasks τ1, τ2, ..., τn that need to

be scheduled on a homogeneous multi-core processor with m cores, M1, M2, ..., Mm. Each

core Mk has a Energy Saver task, τsleep,k where k = 1, 2, ..., m. τsleep,k has a forced-sleep

duration of Csleep,k every Tsleep,k. The system has the constraint that all cores must syn-

chronously transition into deep sleep. Our objective is to find a partition, and compute

the global synchronized forced-sleep duration for all the cores such that:

1. The workload allocated to each core can be scheduled by ES-RMS (or ES-RHS+) in

a feasible manner.

2. The synchronized forced-sleep duration is maximized, thus ensuring that the par-

tition maximizes the minimum guaranteed energy savings among all partitions.

The above problem is a more constrained form of the feasibility problem in multi-core

processor scheduling, which is known to be NP-hard in the strong sense [79]. Hence,

the SyncSleep scheduling problem is also NP-hard. For the case, where all tasks have the

same periods, with different computation time, it is similar to the Bin-Packing problem,

which is known to be NP-Hard [79].

For SyncSleep scheduling, the forced-sleep execution must be synchronized across all

the cores. Hence, for every τsleep,k where k = 1, 2, ..., m, we let Tsleep,k = Tsleep, and the

initial phase be φsleep,k = φsleep = 0. Therefore, if minm
k=1(Csleep,k) ≥ CSleepMin, then the
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minimum guaranteed deep-sleep utilization is given by minm
k=1(Csleep,k)/Tsleep. For a

partition to be feasible, we must have minm
k=1(Csleep,k) ≥ CSleepMin. If minm

k=1(Csleep,k) <

CSleepMin, then the system cannot transition into deep sleep.

Given a feasible partition and assuming that Tsleep is fixed for a given taskset Γ, to

maximize energy savings, we need to maximize Csleep,k for each processing core without

changing the partition, such that the tasks on each core do not become unschedulable.

For each core in a feasible partition, CSleepMin ≤ Csleep,k ≤ Tsleep. By using the schedula-

bility tests based on utilization bounds (presented in Section III and IV), we can obtain

a conservative estimate of Csleep,k for each processing core. However, the schedulability

tests based on utilization bounds are pessimistic in nature, and higher Csleep,k values can

be achieved on each core. We now present a technique, which conducts a binary search

over [CSleepMin, Tsleep] so as to efficiently compute the maximum Csleep,k on each core.

Consider a partitioning algorithm P, which partitions a taskset Γ onto m cores, such

that the partition is feasible in the context of SyncSleep scheduling (either using ES-

RMS or ES-RHS+). Then, for the subset of tasks Γk ∈ Γ assigned to core k ∈ 1, 2, ..., m,

from Equations 6.2 and 6.4, the response time of the task τi ∈ Γk is a non-decreasing

function of the forced-sleep duration Csleep,k. Since the schedulability of a task depends

on its response time, for a subset of tasks Γk ∈ Γ assigned to core k ∈ 1, 2, ..., m, if Γk

is not schedulable for Csleep,k = Cx, then Γk will not be schedulable for any value of

Csleep,k ≥ Cx. Based on this property, we use binary search to maximize Csleep,k on a

core k, given a partition. We call this technique Binary “maxSleep” Search (or BMS) and

present it in Algorithm 1. BMS utilizes the response time tests (Equations 6.1-6.2 and

6.3-6.4) to test schedulability, and has a complexity of O(log2(Tsleep/ε)). Hereafter, we

assume that all the partitioning schemes used in this chapter use BMS to maximize the

forced-sleep execution on each core.

For a given partition, the guaranteed energy savings depends on the deep-sleep uti-

lization [42]. As ES-RMS has better schedulability conditions than ES-RHS+, the former

can provide better guarantees on minimum deep-sleep utilization for SyncSleep schedul-
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Algorithm 1 Binary “maxSleep” Search

1: procedure BMS (Γk, CSleepMin, Tsleep, ε)
2: Cdn

sleep,k ← CSleepMin . Set lower bound

3: Cup
sleep,k ← Tsleep . Set upper bound

4: TestSchedulability(Γk, CSleepMin, Tsleep)
5: if not Schedulable then
6: return Γk not Schedulable
7: while (Cup

sleep,k − Cdn
sleep,k) ≥ ε do

8: Csleep,k ← (Cup
sleep,k + Cdn

sleep,k)/2
9: TestSchedulability(Γk, Csleep,k, Tsleep)

10: if Schedulable then
11: Cdn

sleep,k ← Csleep,k
12: else
13: Cup

sleep,k ← Csleep,k

14: return Cdn
sleep,k

BMS

ing. Therefore, we consider multi-core ES-RMS, and then compare it experimentally

with multi-core ES-RHS+.

6.5.1 Load Balancing to Maximize Energy Saving

Load balancing is often used to realize energy savings in multi-core systems [79]. For

SyncSleep scheduling, it makes intuitive sense to balance the load across all cores, so as

to maximize the synchronized forced-sleep duration. Based on this intuition, we state

the following lemma:

Lemma 2: For SyncSleep scheduling, an ideal energy-aware partitioning technique is

one that partitions a taskset Γ with utilization Utotal onto m processors, such that the

forced-sleep utilization on each processor is 1− (Utotal/m).

Proof: Assume an algorithm Φ exists, which for a taskset Γ, can achieve a partition

with forced-sleep utilization of 1− (Utotal/m) + ε on each processor, where ε is a finite

positive quantity. Given this forced-sleep execution, the amount of processor utilization

available for tasks to run is Utotal −mε. This is less than the utilization required for the
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taskset Γ to execute, and hence tasks will start missing their deadlines. Hence, no such

algorithm Φ can exist. �

From Lemma 2, we can conclude that, if a balanced partition exists, then an ideal al-

gorithm creates a completely balanced partition, such that the synchronous forced-sleep

utilization is maximized across all the cores in the system. Among the task-partitioning

heuristics studied in the literature, the Worst-Fit Decreasing (WFD) algorithm is known

to typically produce a well-balanced partition [79]. WFD allocates tasks one by one in

non-decreasing order of their utilization. Given a task to be allocated, WFD allocates it

to the core with the least utilization. For this type of problem, where WFD can allocate

tasks to use only m cores, it is equivalent to List Scheduling, where tasks with utilization

ui ∈ [0, 1] are allocated to m cores, with the aim of reducing the maximum utilization on

any core. Given that WFD and List Scheduling are equivalent in this context, we refer

to both as WFD.

In [168], it was proved that, in an m-core system, for a partition generated using WFD

with Earliest-Deadline First (EDF) scheduling (or equivalently RMS with only harmonic

tasks), the core with the maximum load has a utilization of no more than (4/3)− (1/m)

times that of the optimal. As m → ∞, the ratio becomes 4/3. In [79], Arvind et al.

extended this result to the case where RMS is used along with WFD. The result states

that the core with the maximum load has a utilization no more than [(4/3)− (1/m)]/ln2

times that of the optimal. As m → ∞, the ratio becomes 4/(3ln2). In the general case,

for a scheduling technique with a per-core utilization bound Ubound, it can be stated that

the core with the maximum load has a utilization no more than [(4/3)− (1/m)]/Ubound

times that of the optimal [79].

The approximation ratio of an algorithm is the worst-case ratio between the result ob-

tained by the algorithm, as compared to the optimal solution. For SyncSleep scheduling,

the approximation bound can be defined as the ratio of the synchronous forced-sleep

utilization obtained using an algorithm, compared to the optimal. In the following theo-

rems, we state and prove the approximation bound for WFD while using ES-RMS. Given
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the nature of the problem, the approximation bound is a function of the synchronous

forced-sleep utilization obtained by WFD. This worst-case synchronous forced-sleep uti-

lization is the minimum forced-sleep utilization supported by the system and is given

by USleepMin.

Theorem 5: For SyncSleep scheduling, the WFD heuristic for partitioning indepen-

dent harmonic tasks onto a multi-processor, under ES-RMS, has an approximation ratio

of at most:
4− 3(1−USleepMin)

2

4USleepMin

Proof: Let WFD yield a partition with a synchronous forced-sleep utilization of

USleepMin. Therefore, given that the taskset is harmonic, the combined utilization of

the tasks on the core with the maximum load is 1 − USleepMin. Let the synchronous

forced-sleep utilization for the optimal partition be USleepOpt. Hence, the combined uti-

lization of the tasks on the core with the maximum load is 1−USleepOpt. Using the result

in [168], the following must hold:

4
3 −

1
m

Ubound
(1−USleepOpt) = 1−USleepMin

By substituting the ES-RMS utilization bound Ubound = 1−USleepMin, we obtain:

USleepOpt = 1−
(1−USleepMin)

2

(4/3)− (1/m)

The above function is maximized as m → ∞. Hence, for the case where the taskset is

harmonic, the approximation ratio for WFD under ES-RMS is:

USleepOpt

USleepMin
=

4− 3(1−USleepMin)
2

4USleepMin

�

Theorem 6: For SyncSleep scheduling, the WFD heuristic for partitioning indepen-

dent tasks onto a multi-processor, under ES-RMS, has an approximation ratio of at most:

4− 3(ln2−USleepMin)
2

4USleepMin
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Figure 6.2: Approximation ratio for ES-RMS and WFD as a function of USleepMin

Proof: Let WFD yield a partition with forced-sleep utilization of USleepMin. For a

set of n schedulable tasks the utilization bound for RMS is n(21/n − 1). As n → ∞,

the utilization bound Ubound → ln2. Therefore, the combined utilization of the tasks

on the core with the maximum load is ln2−USleepMin. Let the forced-sleep utilization

for the optimal partition be USleepOpt. Hence, in the best case, the maximum combined

utilization of the tasks on the core with the maximum load is 1−USleepOpt. The theorem

can now be proved using the technique used to prove Theorem 5. For the sake of brevity,

the details are omitted. The plot for the approximation ratios derived are illustrated in

Figure 6.2. �

Given the non-linear nature of the schedulability tests for ES-RMS (and ES-RHS+),

load balancing may not always be the best approach to obtain better energy savings for

SyncSleep scheduling. This observation is illustrated by the following example. Consider

a taskset Γ which contains four tasks τ1 = (40, 100), τ2 = (40, 100), τ3 = (105, 250) and

τ4 = (210, 500), which need to be scheduled on two cores M1 and M2. We assume that

each core schedules tasks using ES-RMS. Hence, across both cores, Tsleep = 50 (here,

Tsleep = T1/2). Let us consider the following two cases:

Case 1: Tasks are assigned using WFD. τ1 and τ4 are assigned to M1, and τ2 and
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τ3 are assigned to M2. By using the ES-RMS schedulability bounds followed by Binary

“MaxSleep” Search, we obtain Csleep,1 = 9 and Csleep,2 = 5. Hence, for the system, the

deep-sleep utilization would be Usleep = min(Csleep,1, Csleep,2)/Tsleep = 5/50 = 0.1.

Case 2: Tasks are assigned using an alternate scheme. τ3 and τ4 are assigned to M1,

and τ1 and τ2 are assigned to M2. We now obtain Csleep,1 = 8 and Csleep,2 = 10. Hence,

for the system, the deep-sleep utilization would be Usleep = min(Csleep,1, Csleep,2)/Tsleep =

8/50 = 0.16.

This example illustrates that task utilization is not the only factor which affects the

time for which the system can be put into deep sleep. Other factors such as the period

of a task, and how it affects the schedulability of tasks already allocated, also plays an

important role.

6.5.2 Max-SyncSleep Task-Partitioning Heuristic

We now present a task-partitioning heuristic for maximizing the synchronous forced-

sleep duration. Max-SyncSleep uses ES-RMS (or ES-RHS+) in conjunction with BMS, to

improve the deep-sleep utilization of a multi-core processor, so as to maximize energy

savings. The pseudo-code for Max-SyncSleep can be found in Algorithm 2.

Let Csleep be the duration of time for which the entire multi-core processor can tran-

sition into deep-sleep state. At any instant of time, Max-SyncSleep first adds each unas-

signed task τi in the taskset Γ to each of the m cores and computes a value δi for each

task. When a task τi is added to a processor k, a value δik is computed which reflects

the change in the system Csleep, after adding the task. For each task τi, the minimum of

these δik∀k ∈ 1, 2...m values is assigned to δi. The task having the maximum weight δi is

chosen to be the next task to be allocated. Compared to WFD, which considers only the

utilization of the task for allocation, Max-SyncSleep considers the effect of both the period

and the worst-case execution time of a task on Csleep. The metric δi effectively captures

this intuition, as it measures the impact of each unassigned task on the synchronous
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Algorithm 2 Max-SyncSleep Task-Partitioning Heuristic

1: procedure Max-SyncSleep (Γ, CSleepMin, m)
2: Γunassigned ← Γ . Unassigned tasks
3: Csleep = Tsleep . deep-sleep time
4: for k = 1 to m do
5: Γassigned,k ← φ . Tasks assigned to core k

6: while Γunassigned is non empty do
7: δmax ← −∞
8: for i = 1 to Cardinality(Γunassigned) do
9: τ ← Γunassigned[i]; δmin ← ∞

10: for k = 1 to m do
11: Add τ to Γassigned,k
12: TestSchedulability(Γassigned,k)
13: if Schedulable then
14: δ = Csleep − BMS(Γassigned,k)
15: if δ ≤ δmin then
16: δmin ← δ; α← k
17: Remove τ from Γassigned,k

18: if τ not schedulable on any core then
19: return Γ not-schedulable
20: if δmin ≥ δmax then
21: task← τ; core← α; δmax ← δmin

22: Add task to Γassigned,core
23: Remove task from Γunassigned
24: Csleep ← Min[BMS(Γassigned,k)∀k ∈ (1, m)]

25: return Csleep, Γassigned,k∀k ∈ (1, m)
Max-SyncSleep

forced-sleep duration. Once a task τi is selected to be assigned, we need to choose a core

to allocate the task to. This allocation is done on the previously computed δik values.

The chosen τi is assigned to the core which provides the minimum δik∀k ∈ 1, 2...m. The

motivation behind this step lies in the fact that we allocate the task τi to a core, such that,

after addition of the task, the decrease in Csleep is minimized. During the execution of

Max-SyncSleep, if a task is found which is not schedulable on any core, then the heuristic

declares the taskset as not schedulable. The complexity of the Max-SyncSleep heuristic is

O(n2mlog2(Tsleep/ε)).
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6.6 IndSleep Scheduling

For processors which enable cores to independently transition to deep sleep, IndSleep

scheduling is possible, and enables greater energy savings over SyncSleep scheduling.

On such processors, it is feasible to run ES-RHS+ on each core, so as to utilize all the

idle durations to put the processor into deep sleep. We formally state the energy mini-

mization (or deep-sleep maximization) problem as follows:

Consider a taskset Γ, consisting of n periodic real-time tasks τ1, τ2, ..., τn that

need to be scheduled on a homogeneous multi-core processor consisting of m cores,

M1, M2, ..., Mm. Each core Mk has a forced-sleep execution, τsleep,k where k = 1, 2, ..., m.

τsleep,k has a forced-sleep duration of Csleep,k every Tsleep,k. Our objective is to find a parti-

tion that maximizes the sum of the forced-sleep durations on each of the cores such that

the workload allocated to each core can be scheduled by ES-RHS+ in a feasible manner.

For every τsleep,k, where k = 1, 2, ..., m, the period Tsleep can be chosen based on the

tasks allocated to core k. While using ES-RHS+ (or ES-RHS) on each core, Csleep,k ≥

CSleepMin must hold, in order to utilize all the processor idle durations. If Csleep,k <

CSleepMin, then that core cannot transition into deep sleep. Hence, for IndSleep scheduling

using ES-RHS+, we can define a feasible partition as one in which each core has a forced-

sleep execution, Csleep,k ≥ CSleepMin. We now prove that using ES-RHS+ optimally solves

the IndSleep scheduling problem.

Theorem 7: If a taskset Γ can be feasibly scheduled on m cores using ES-RHS+, with

IndSleep scheduling, then in any such feasible partition, all idle durations can be used to

put the processor into deep sleep.

Proof: Let the total utilization of the tasks in Γ be Utaskset. Consider a feasible partition,

such that Γ is partitioned into m disjoint sets Γk, k ∈ 1, 2, ..m, where tasks τi,k ∈ Γk are

scheduled on core k. Let the worst-case utilization of each task be ui,k. Given that
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ES-RHS+ is used on each core, the deep-sleep utilization on each core is:

Usleep,k = 1−
|Γk|

∑
i=1

ui,k

where, |Γk| is the cardinality of the set Γk. Hence, the deep-sleep utilization of the system

can be given by:

Usleep =
m

∑
k=1

Usleep,k =
m

∑
k=1

(1−
|Γk|

∑
i=1

ui,k)

= m−
m

∑
k=1

|Γk|

∑
i=1

ui,k = m−Utaskset

According to the theorem, using ES-RHS+ for IndSleep scheduling provides a lot of

flexibility in task allocation, since any feasible partition is optimal from an energy-saving

perspective. �

Hence, we can obtain a feasible and optimal partition by using partitioning heuristics

like WFD or Max-SyncSleep, by enforcing that, for each core k, Csleep,k = CSleepMin.

6.7 Comparative Evaluations

In this section, we assess the performance of ES-RHS+, ES-RMS and Max-SyncSleep. We

compare different techniques on the basis of schedulability and energy savings, with

respect to the total utilization of the taskset. Experiments have been performed using

randomly generated tasksets. Each task is randomly assigned a period between 20 and

400 time units, and a random worst-case computation time such that the per-task uti-

lization is always below 25%. The minimum supported forced-sleep execution, CSleepMin

is set to 10 time units. The number of tasks used in the experiment depends on the

target utilization of the taskset. Each data point we plot is an average of 1000 randomly

generated task-sets with the same utilization. For each taskset, the maximum possible

forced-sleep execution, Csleep is calculated using the BMS technique.

Note: The plots in this section are best viewed in color.
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Figure 6.3: (a) Percentage of tasksets schedulable with respect to taskset utilization, and
(b) Utilization of the forced sleep and total deep sleep with respect to taskset utilization,
in the uniprocessor context

6.7.1 Uniprocessor Comparisons

In the uniprocessor context, we compare ES-RHS, ES-RHS+ and ES-RMS on the basis of

schedulability, and the utilization of the forced-sleep execution Usleep = Csleep/Tsleep.

Figure 6.3a shows how the schedulability of the compared techniques changes as the

taskset utilization is varied. In terms of schedulability; ES-RMS > ES-RHS+ > ES-RHS.

From the plot, we can observe that ES-RMS can schedule upto 33% more tasksets than

ES-RHS+.

Figure 6.3b shows how the utilization of the forced-sleep execution changes with the

utilization of schedulable tasksets. Again, observe that ES-RMS always outperforms both

ES-RHS+ and ES-RHS. For schedulable tasksets, ES-RMS can provide up to 18% more

forced-sleep execution than ES-RHS+. This validates the use of ES-RMS for SyncSleep

scheduling. By performing simulations over the hyperperiod of the tasksets, we also

compare ES-RHS+ and ES-RMS on the basis of the total deep-sleep utilization achieved.

Observe that while ES-RHS+ provides optimal energy savings, ES-RMS comes very close

to the optimal.

In Figures 6.4a and 6.4b, the schedulability and sleep utilization are plotted as a
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Figure 6.4: (a) Percentage of tasksets schedulable with respect to the minimum sup-
ported sleep duration, CSleepMin, and (b) Utilization of the forced sleep and total deep
sleep with respect to the minimum supported sleep duration, CSleepMin, in the unipro-
cessor context

function of CSleepMin, when the utilization of the tasksets is kept constant, Utaskset = 0.4,

and CSleepMin is varied from 2 to 15. Observe that the forced-sleep utilization is not

sensitive to CSleepMin. However, the schedulability of the compared techniques degrades,

as CSleepMin increases.

6.7.2 SyncSleep Scheduling

For multi-core SyncSleep scheduling, we compare ES-RHS, ES-RHS+ and ES-RMS on

the basis of schedulability, and the utilization of the synchronous forced-sleep execution

(Usleep = Csleep/Tsleep). We consider each of these techniques using both WFD and Max-

SyncSleep for task partitioning.

In Figures 6.5a and 6.6a, we compare the schedulability of the techniques as a func-

tion of the taskset utilization, for a quad-core (m = 4) and an octa-core (m = 8) processor

respectively. In terms of schedulability; ES-RMS > ES-RHS+ > ES-RHS. In the average

case, combining any of these techniques with the Max-SyncSleep partitioning technique

yields significantly better schedulability than WFD. In both the quad-core and octa-

core cases, observe that the schedulability of the WFD-based techniques significantly



CHAPTER 6. SLEEP SCHEDULING FOR ENERGY-SAVINGS IN MULTI-CORE
PROCESSORS 146

Taskset Utilization (C
SleepMin

 = 10, m = 4)

0.5 1 1.5 2 2.5

%
 o

f 
ta

s
k
s
e
ts

 s
c
h

e
d

u
la

b
le

0

10

20

30

40

50

60

70

80

90

100

ES-RHS WFD

ES-RHS+ WFD

ES-RMS WFD

ES-RHS Max-SyncSleep

ES-RHS+ Max-SyncSleep

ES-RMS Max-SyncSleep

(a)

Taskset Utilization (C
SleepMin

 = 10, m = 4)

0.5 1 1.5 2 2.5

S
y
n

c
h

ro
n

o
u

s
 F

o
rc

e
d

 S
le

e
p

 U
ti

li
z
a
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ES-RHS WFD

ES-RHS+ WFD

ES-RMS WFD

ES-RHS Max-SyncSleep

ES-RHS+ Max-SyncSleep

ES-RMS Max-SyncSleep

(b)

Figure 6.5: (a) Percentage of tasksets schedulable with respect to taskset utilization, and
(b) Utilization of the synchronous forced-sleep execution versus taskset utilization, in
the multi-processor SyncSleep scheduling context (m = 4)

decreases as the number of cores/taskset utilization increases.

Figures 6.5b and 6.6b show how the utilization of the synchronous forced-sleep ex-

ecution varies as a function of the utilization of schedulable tasksets for a quad-core

(m=4) and an octa-core (m=8) processor respectively. Observe that ES-RMS always out-

performs both ES-RHS+ and ES-RHS in this respect. Using Max-SyncSleep with ES-RMS,

guarantees up to 14% more synchronous forced sleep than Max-SyncSleep with ES-RHS+,

in the octa-core case. Also, note that using Max-SyncSleep provides significantly larger

synchronous forced-sleep durations than WFD, thus leading to greater energy savings.

The energy savings are greater, as the number of cores/utilization of the taskset in-

crease: up to 57% more for ES-RMS with Max-SyncSleep compared to ES-RMS with WFD

for the octa-core case. Hence, using Max-SyncSleep provides both better schedulability

and energy savings. Note that for some taskset utilization values, using ES-RHS+ or ES-

RHS with WFD does not yield any schedulable tasksets. For these cases, the obtained

synchronous forced-sleep utilization is shown as zero.
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Figure 6.6: (a) Percentage of tasksets schedulable with respect to taskset utilization, and
(b) Utilization of the synchronous forced-sleep execution versus taskset utilization, in
the multi-processor SyncSleep scheduling context (m = 8)

6.7.3 IndSleep Scheduling

For IndSleep scheduling, we compare ES-RMS and ES-RHS+. For a feasible partition,

ES-RHS+ is provably optimal in this context. Hence, we use Max-SyncSleep to generate a

feasible partition for both ES-RHS+ and ES-RMS. Figure 6.7 shows the guaranteed deep-

sleep utilization as a function of taskset utilization for a quad-core processor (m = 4).

The straight line plot obtained for ES-RHS+ indicates that it optimally guarantees that all

idle durations can be used to put the processor into deep sleep. The additional guaranteed

sleep utilization obtained is up to 28% more than ES-RMS.

6.8 Summary

In this chapter, we have presented fixed-priority partitioned scheduling techniques,

which utilize processor sleep states to save energy. In the uniprocessor context, we pre-

sented an enhanced version of ES-RHS. By re-defining the notion of harmonization [42],

ES-RHS+ provides enhanced schedulability over ES-RHS, while still guaranteeing that

all idle durations can be spent in deep-sleep state. In the multi-core context, we iden-



CHAPTER 6. SLEEP SCHEDULING FOR ENERGY-SAVINGS IN MULTI-CORE
PROCESSORS 148

Taskset Utilization (C
SleepMin

 = 10, m = 4)

0.5 1 1.5 2 2.5

G
u

a
ra

n
te

e
d

 D
e

e
p

 S
le

e
p

 U
ti

li
z
a

ti
o

n

0

0.5

1

1.5

2

2.5

3

3.5

4

ES-RHS+ Max-SyncSleep

ES-RMS Max-SyncSleep

Figure 6.7: Guaranteed deep-sleep utilization versus taskset utilization, in the multi-
processor IndSleep scheduling context (m = 4)

tified two classes of scheduling problems: SyncSleep Scheduling, where cores need to

synchronously transition to deep sleep, and IndSleep Scheduling, where cores can inde-

pendently transition to deep sleep.

For SyncSleep scheduling, we proposed and used an energy-saving version of RMS

called ES-RMS. ES-RMS provides greater energy savings (i.e., longer synchronous

forced-sleep durations), as well as better schedulability than ES-RHS+. To maximize

the synchronous forced-sleep execution, it is necessary to balance the load across cores.

We proved the approximation ratio of WFD using ES-RMS as a function of the minimum

possible deep-sleep utilization. We then showed that WFD does not always result in a

partition with good energy savings, and proposed the Max-SyncSleep partitioning heuris-

tic, which obtains significantly better schedulability and energy savings over WFD, by

taking into account the impact of individual tasks on the synchronous forced sleep. In

the IndSleep scheduling context, we proved that for any feasible partition, using ES-RHS+

on each core, optimally uses all the idle durations to put the processor into deep sleep.



Chapter 7

Thermal Implications of Energy-Saving

Schedulers

Energy savings and system temperature are intricately tied together. As transistor ge-

ometries get smaller, the dominance of static power as a contributor to total power

consumption is only expected to increase [44]. Since static power is also directly de-

pendent on operating temperature, scheduling techniques will increasingly need to take

advantage of processor sleep states.

In this chapter, we analyze the thermal properties of Energy-Saving (ES) Sched-

ulers [58], presented in Chapter 6, which utilize the processor’s deep-sleep state. The

contributions described are as follows:

• We analyze the thermal performance of ES Schedulers using the well-known ther-

mal model based on Fourier’s Law, and derive design choices to pro-actively (i.e. a

priori) minimize the maximum temperature for both uni-core and multi-core pro-

cessors.

• We present the SysSleep algorithm to maximize the time the processor can be in

deep sleep, and the ThermoSleep heuristic that yields a thermally-effective sleep

schedule.

149
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• We derive a lower bound on the optimal maximum temperature achievable by ES

Schedulers.

• We propose task-partitioning heuristics that significantly reduce the maximum

temperature for multi-core processors using ES Schedulers.

• We analyze the impact of phasing each core’s forced-sleep task on temperature, in

the context of multi-core processors where cores can independently transition into

deep sleep.

7.1 Thermal Modeling of ES Schedulers

In this section, we introduce the thermal model used in the chapter, and derive insights

in the context of ES Schedulers. The temperature of a processor is dependent on the

power consumption, and the variation in power consumption over time. Therefore,

we can broadly define three factors responsible for a processor’s thermal profile: (i)

Heat generation by a core (due to power consumption). (ii) Heat dissipation to the

environment (using heat sinks). (iii) Heat dissipation between adjacent cores (due to

difference in power-consumption patterns).

7.1.1 Power and Thermal Model

As described in Chapter 7, the power consumption of a CMOS circuit is modeled as a

combination of two components:

(1) Dynamic Switching Power is dependent on the processor operating frequency, and

is consumed when the processor is busy. The dynamic power consumption, PD, can be

modeled as a convex function of the operating frequency s as [93]: PD = κ0sα where, α

and κ are system constants which depend on the semiconductor technology used.

(2) Static Leakage Power is due to leakage current, which depends on the semiconduc-

tor technology and the operating temperature. Static power is consumed even when the
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processor is idle, but can be nearly eliminated by putting the processor into deep sleep.

Static power, PS, can be conservatively modeled as a linear function of temperature [93]:

PS = κ1Θ + κ2 where, κ1 and κ2 are technology-dependent system constants, and Θ is

the operating temperature.

Hence, the total power consumption P, as a function of time t, can be modeled

as: P(t) = PD(t) + PS(t). This model can be used to derive the thermal model for a

uniprocessor. As OS schedulers control task execution at the granularity of a processor

core, each core can be treated as a single unit producing heat and can be modeled as an

RC circuit [93] [169]. When a core is busy, it generates heat. Using the RC thermal model,

Fourier’s Law [93] can be used to state the differential equation of the temperature, Θ∗

with respect to time:

dΘ∗(t)/dt = [P(t)/C]− [(Θ∗(t)−ΘA)/RC] (7.1)

where, ΘA is the ambient temperature of the environment. By substituting PD and PS in

Equation 7.1, we can rewrite Equation 7.1 as a classical linear differential equation [93]:

dΘ(t)/dt = a− bΘ(t) (7.2)

where, a = κ0sα/C, b = (1− κ1R)/RC and the temperature has been offset from Θ∗(t)−

[(κ2R + ΘA)/(1− κ1R)] to Θ(t). Solving Equation 7.2 gives the temperature at time t as:

Θ(t) = a/b + (Θ(t0)− a/b)e−b(t−t0) (7.3)

When the processor is in deep sleep, the power consumption can be assumed to be

negligible. This is a valid assumption as the difference in power consumption between

the busy and deep-sleep states is different by several orders of magnitude [42]. Hence,

the processor can be deemed to be cooling when in the deep-sleep state. Using this

assumption, one can set a = 0 in Equation 7.3 to obtain the model for cooling:

Θ(t) = Θ(t0)e−b(t−t0) (7.4)
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7.1.2 Thermal-Aware ES Scheduler Design

Consider a uni-core processor. For ES Schedulers, the processor is guaranteed to be in

deep sleep atleast for a duration Csleep every Tsleep. Hence, in the worst case, a core is

busy for a duration of Tsleep−Csleep every Tsleep. Therefore, in the worst case, a processor

core heats up from kTsleep to kTsleep + Csleep and cools down from kTsleep + Csleep to (k +

1)Tsleep, where k is a non-negative integer. As the heating function is monotonic in the

period Tsleep, the temperature would be maximum at the end of the heating duration. We

call this temperature Θmax. Similarly, as the cooling function is monotonic in the period

Tsleep, the temperature would be minimum at the end of the cooling duration. We call

this temperature Θmin. Applying the heating and cooling models from Equations 7.3

and 7.4 in the duration [kTsleep, (k + 1)Tsleep), we can write Θmax and Θmin as recurrent

equations:

Θk
max = a/b + (Θk−1

min − a/b)e−b(Tsleep−Csleep), Θk
min = Θk

maxe−bCsleep (7.5)

At steady state, as k → ∞, then Θk
min = Θk−1

min and Θk
max = Θk−1

max. Hence, the steady

state worst-case values of Θmax and Θmin are given by:

Θmin = (a/b) ∗ [(ebTsleep(1−Usleep) − 1)/(ebTsleep − 1)], Θmax = ΘminebUsleepTsleep (7.6)

where, Usleep = Csleep/Tsleep denotes the guaranteed utilization of the ES-task. Based on

the steady state temperatures, we can draw the following conclusions:

• Increasing Usleep, keeping Tsleep constant, decreases the maximum temperature

Θmax.

• Decreasing Tsleep, keeping Usleep constant, decreases the maximum temperature

Θmax.

Hence, minimizing Tsleep, while maximizing Usleep, leads to a low maximum temper-

ature. Thus, while it is advantageous to increase the total fraction of time the processor

cools, i.e. Usleep ↑ (also increases guaranteed energy savings), the cooling durations
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should be smaller but more frequent, i.e. Tsleep ↓. Note that these statements hold re-

gardless of the system’s thermal constants. Hence, using these principles, we can design

techniques which can be used to minimize the temperature across a range of different

systems.

In the previous chapter [42] [58], it was assumed that the period of the ES-task is a

sub-harmonic of the highest-priority task. In the following section, we relax this con-

straint and provide techniques to design a thermally-effective ES schedule. Addition-

ally, we show how choosing a proper Tsleep can maximize energy savings and improve

schedulability.

7.2 SysSleep Algorithm

Consider a uni-core processor. To lower the worst-case maximum temperature for a

taskset, we need to find an ES-task with a small period Tsleep, which also maximizes

Usleep. Maximizing Usleep corresponds to finding the maximum highest-priority workload

that can be added to a taskset without making it unschedulable. In [78], Saewong et

al. proposed the SysClock algorithm which calculates the lowest processor frequency

at which all tasks (with RM/DM priority assignment) meet their deadlines. SysClock

calculates the slack at all scheduling points in the critical zone [170] to determine the

optimal operating frequency. We extend that algorithm in the context of ES Schedulers,

and use it to compute the set of Tsleep values which maximize Usleep. Our algorithm

is called SysSleep, and its pseudo-code is presented in Algorithm 3. We illustrate the

working of SysSleep by proving its optimality.

Theorem 1. For a taskset Γ using ES-RMS, SysSleep yields the maximum possible forced-sleep

utilization Umax
sleep.

Proof. Consider the critical zone theorem [170] where, in the worst case, the requests

of all tasks arrive simultaneously. In order to be schedulable, a task τi must complete
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before its deadline Di, i.e., its worst-cast response time Ri ≤ Di. If an ES-task is added

to the system, all tasks will now complete at a later time, which should still be less than

Di for the task to remain schedulable. Since the workload changes at every scheduling

point, SysSleep determines the maximum workload αt
i , that can be added to the system,

such that a task τi completes exactly at the end of each idle period t between Ri and

Di. This maximum workload corresponds to the slack utilization in the schedule up to

time t. While calculating αt
i , we consider a task’s execution as well as all other higher-

priority tasks. For a task, the maximum workload that can be added is chosen to be the

maximum of these candidate values. We refer to this as the maximum additional workload,

ρmax
i = maxt(αt

i) for a task τi.

For a taskset Γ, the maximum highest-priority workload that can be added also cor-

responds to the maximum possible forced sleep Umax
sleep, which is the minimum of the

maximum additional workload of all the tasks, i.e., Umax
sleep = minτiεΓ(ρ

max
i ). Hence, Umax

sleep cor-

responds to the task, τc with the lowest maximum additional workload, i.e. minτiεΓ(ρ
max
i ).

If the added workload exceeds Umax
sleep, then τc will miss its deadline and the taskset will

become unschedulable.

Example: Consider a taskset Γ consisting of two tasks τ1 = (1, 5) and τ2 = (1, 7). For

τ1, the only end-of-idle period to consider is 5.

α5
1 = (t− C1)/t = 0.8, ρmax

1 = max(α5
1) = 0.8

For τ2, the end-of-idle periods to consider are 5 and 7.

α5
2 = [t− (C1 + C2)]/t = 0.6, α7

2 = [t− (2C1 + C2)]/t = 0.57, ρmax
2 = max(α5

2, α7
2) = 0.6

Hence, the maximum workload Umax
sleep that can be added is: Umax

sleep = min(ρmax
1 , ρmax

2 ) =

0.6

We now need to find the set of Tsleep values which yield the maximum forced-sleep

utilization Umax
sleep. For each task τi, let the end-of-idle period to which ρmax

i corresponds

be its critical deadline, tcritical
i . Using this notation, we can state the following lemma:
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Algorithm 3 SysSleep Algorithm

1: procedure SysSleep(Γ)
2: for τi ∈ Γ do
3: (ρmax

i , tcritical
i ) = CalculateMaxSlack(τi, Γ)

4: Umax
sleep = min(ρmax

i , τi ∈ Γ) . Max Sleep Utilization

5: tcritical = tcritical
argmin(ρmax

i ) . Critical Deadline

6: return Umax
sleep, tcritical

7: procedure CalculateMaxSlack(τi, Γ)
8: /* S = slack, I = idle duration, BusyFlag is set if core busy, β = workload */
9: S = I = β = ∆ = 0, µ = 1, BusyFlag=TRUE

10: ω = Ci, ω′ = 0
11: while ω < Di do
12: if BusyFlag == TRUE then . Start of a busy period
13: ∆ = Di −ω
14: while ω < Di AND ∆ > 0 do
15: ω′ = ∑i

j=0[Cj ∗ (
⌊
ω/Tj

⌋
+ 1)] + S . Workload Calculation

16: ∆ = ω′ −ω, ω = ω′

17: BusyFlag = FALSE
18: else . Start of an idle period
19: I = min∀j<i[(Tj ∗

⌈
ω/Tj

⌉
−ω), Di −ω] . Slack Computation

20: S = S + I, ω = ω + I, t = ω, β = ω− S
21: if β/t < µ then
22: µ = β/t, tcritical = t, ρ = 1− µ . Update the maximum additional

workload
23: BusyFlag = TRUE
24: return ρ, tcritical

Lemma 1. If Tsleep is a sub-harmonic of tcritical
i , then the ES-task τsleep can utilize all the slack

ρmax
i till tcritical

i , such that τi completes at tcritical
i .

Proof. If Tsleep is a sub-harmonic of tcritical
i , the effective utilization [171] of τsleep in the

duration [0, tcritical
i ] is equal to its utilization Usleep. The effective utilization of a task in a

duration [0, t] is the fraction of processor time used by a task in that duration. The actual

utilization of a task cannot exceed its effective utilization in any duration. Hence, τsleep

can optimally utilize all the slack ρmax
i in the duration [0, tcritical

i ], such that its effective

and actual utilizations are equal in the duration, i.e. Usleep = ρmax
i .

The calculated Umax
sleep corresponds to the task with the minimum ρmax

i . Let us call
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this the critical task τc, and let the end-of-idle period to which ρmax
c corresponds be its

critical deadline, tcritical
c . Applying Lemma 2 in the context of τc, we can state the following

corollary:

Corollary 1.1. If Tsleep is a sub-harmonic of tcritical
c , then the ES-task, τsleep, optimally utilizes

all the slack, such that the critical task τc completes at tcritical
c .

Unfortunately, choosing any sub-harmonic of tcritical
c may not guarantee schedulabil-

ity for other tasks in Γ. If the effective utilization of τsleep exceeds ρmax
k in the duration

[0, tcritical
k ], for another task τk ∈ Γ, then τk will become unschedulable. Hence, we need

to choose Tsleep such that the effective utilization of τsleep is always less than ρmax
i ∀τi ∈ Γ.

Theorem 2. Choosing Tsleep as a common divisor of all tcritical
i ∀τi ∈ Γ such that Tsleep ≤ T1,

always yields a schedule with the optimal forced-sleep utilization Umax
sleep.

Proof. From Lemma 2, choosing Tsleep as a common divisor of all tcritical
i ensures that the

effective utilization Ue f f
sleep of the energy-saver task τsleep is equal to its maximum uti-

lization Umax
sleep in all the critical durations [0, tcritical

i ]∀τi ∈ Γ. The optimal forced-sleep

utilization is given by, Umax
sleep = minτiεΓ(ρ

max
i ). Hence, Ue f f

sleep = Umax
sleep ≤ ρmax

i ∀τi ∈ Γ.

It is very important to note that, in practice, the choice of Tsleep is constrained by

the system constraint CSleepMin on the lower side and the period of the highest-priority

task T1 (τsleep must execute at the highest priority) on the higher side. Given this system

constraint, we can state the following theorem:

Theorem 3. Consider a taskset Γ, schedulable by an ES scheduler, running on a system with the

minimum deep sleep round-trip duration CSleepMin. Then for Γ, the lower bound on the optimal

worst-case maximum temperature Θbest
max achievable by ES schedulers is:

Θbest
max = (a/b)[(ebTmin

sleep(1−Umax
sleep) − 1)/(ebTmin

sleep − 1)] ∗ ebUmax
sleepTmin

sleep (7.7)

Proof. For a taskset Γ, SysSleep returns the maximum possible forced-sleep utilization

Umax
sleep. Hence, given the system constraint CSleepMin, the smallest feasible ES-task pe-
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Algorithm 4 ThermoSleep Heuristic

1: procedure ThermoSleep(Γ, CSleepMin, num_core)
2: while True do
3: Umax

sleep, tcritical
j = SysSleep(Γ) . Invoke SysSleep

4: if tcritical
j ≤ D′j then break . If critical deadline is within generalized deadline

5: if CSleepMin/Umax
sleep < T1 then . Check if feasible solution exists

6: µ =
⌊

Umax
sleep ∗ tcritical/CSleepMin

⌋
, ν =

⌈
tcritical/T1

⌉
. Range of divisors

7: if µ < ν then
8: µ = ν

9: Θbest = ∞
10: for k = µ to ν do
11: Tk

sleep = tcritical/k
12: Θbest

k = CalcTemperature(Umax
sleep, Tk

sleep) . Lowest temperature for Tk
sleep

13: if Θbest < Θbest
k then

14: break
15: else
16: Ubest

sleep = FindSleepUtil(Γ, Tk
sleep, num_core) . Find best Usleep for Tk

sleep

17: Θmax = CalcTemperature(Ubest
sleep, Tk

sleep)

18: if Θmax < Θbest then
19: Tsleep = Tk

sleep, Usleep = Ubest
sleep, Θbest = Θmax . Best Solution found

20: else
21: return NotSchedulable . No feasible solution exists
22: return Tsleep, Usleep

23: procedure FindSleepUtil(Γ, Tsleep, m)
24: /* m = num_cores, Γi = tasks allocated to core i */
25: for i = 1 to m do
26: Ui

sleep = FindBestSleep(Γi, Tsleep) . Invoke FindBestSleep

27: return mini(Ui
sleep)

riod is Tmin
sleep = CSleepMin/Umax

sleep. From Equation 7.6, the worst-case maximum temper-

ature Θmax is minimized by simultaneously minimizing Tsleep and maximizing Usleep.

Hence, substituting the smallest feasible ES-task period, Tmin
sleep, and the largest schedula-

ble forced-sleep utilization Umax
sleep in Equation 7.6 yields the lower bound on the optimal

worst-case maximum temperature Θbest
max achievable by ES Schedulers, corresponding to

the taskset Γ.

From a thermal perspective, for a fixed Usleep, a smaller Tsleep yields a lower worst-
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case maximum temperature. Hence, a possible thermally-effective solution with optimal

forced-sleep utilization can be the smallest common divisor of all tcritical
i ∀τi ∈ Γ that lies

in the range [CSleepMin/Umax
Sleep, T1]. If CSleepMin/Umax

sleep > T1, then no feasible solution

exists. Note that, choosing Tsleep as any common divisor of tcritical
i ∀τi ∈ Γ that lies in the

range [CSleepMin/Umax
Sleep, T1] would yield solutions with equivalent energy consumption.

However, the dependence of temperature on Tsleep would yield different thermal profiles.

Unfortunately, in many cases, no common divisor of the critical deadlines may lie in

[CSleepMin/Umax
Sleep, T1]. Hence, we present the ThermoSleep heuristic. ThermoSleep invokes

SysSleep to compute Umax
sleep, along with the critical deadline tcritical

c corresponding to Umax
sleep.

ThermoSleep uses these values to return the smallest possible sub-harmonic of the critical

deadline tcritical
c corresponding to the critical task τc, that yields a thermal and energy-

efficient schedule. The pseudo-code for ThermoSleep is presented in Algorithm 4.

Given an ES-task period Tsleep ≤ T1, ThermoSleep uses the FindBestSleep (FBS) algo-

rithm to compute the optimal Csleep for a core, which allows a taskset Γ to be schedulable.

The pseudo-code for FBS is provided in Algorithm 5. We now prove the optimality of

FBS.

Theorem 4. For a taskset Γ schedulable by ES-RMS, with an ES-task τsleep having a period

Tsleep, FindBestSleep returns the optimal forced-sleep utilization U′sleep.

Proof. Consider the critical zone theorem [170] where, in the worst case, the requests

of all tasks arrive simultaneously. In order to be schedulable, a task τi must complete

before its deadline Di. Given that a new job of τsleep is dispatched every Tsleep, for each

task τi ∈ Γ, FBS determines the maximum workload that can be added to the taskset,

such that τi completes by t where, t is an integer multiple of Tsleep, i.e., (k ∗ Tsleep ≤ Di)

or Di. This gives the effective slack, αt
i , that τsleep can utilize, if τi and all higher-priority

tasks complete by t. For a task τi, the maximum highest-priority workload with period

Tsleep that can be added is the maximum of these calculated values ρmax
i = maxt(αt

i). For

a taskset Γ with an ES-task period Tsleep, this workload corresponds to the maximum
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Algorithm 5 FindBestSleep Algorithm

1: procedure FindBestSleep(Γ, CSleepMin, Tsleep)
2: for τi ∈ Γ do
3: (ρmax

i , tcritical
i ) = CalculateSlack(τi, Γ, Tsleep)

4: Usleep = min(ρmax
i , τi ∈ Γ) . Max Sleep Utilization

5: if Usleep ∗ Tsleep ≥ CSleepMin then . Check if feasible solution exists
6: return Umax

sleep ∗ Tsleep
7: else
8: return NotSchedulable
9: procedure CalculateSlack(τi, Γ, Ts)

10: /* S = slack, I = idle duration, BusyFlag is set if core busy, β = workload */
11: S = I = β = ∆ = 0, µ = 1, BusyFlag=TRUE, ω = Ci, ω′ = 0
12: while ω < Di do
13: if BusyFlag == TRUE then . Start of a busy period
14: ∆ = Di −ω
15: while ω < Di AND ∆ > 0 do
16: ω′ = ∑i

j=0[Cj ∗ (
⌊
ω/Tj

⌋
+ 1)] + S . Workload Calculation

17: ∆ = ω′ −ω, ω = ω′

18: BusyFlag = FALSE
19: else . Start of an idle period
20: Ω = {j ∈ Z+ | (j− 1) ∗ Ts ≤ Di < j ∗ Ts}
21: I = min∀j∈Ω[(j ∗ Ts ∗ dω/j ∗ Tse −ω)] . Slack computation
22: S = S + I, ω = ω + I, t = ω, β = ω− S
23: if β/t < µ then
24: µ = β/t, ρ = 1− µ . Update the maximum additional workload
25: BusyFlag = TRUE
26: return ρ

possible forced sleep, U′sleep, which is the minimum of the ρmax
i of all the tasks. Hence,

U′sleep = minτiεΓ(ρ
max
i ), which corresponds to the task, τc | c = argminτiεΓ(ρ

max
i ). If

the added workload exceeds U′sleep, then τc will miss its deadline and Γ will become

unschedulable.

For ES-RHS+, the total deep-sleep utilization USleepTotal is given by 1−∑τi∈Γ(Ci/Ti).

Hence, for a schedulable taskset, ES-RHS+ guarantees a sleep schedule with optimal

energy savings. However, this deep-sleep utilization is not uniformly distributed over

each period. To reduce the worst-case maximum temperature, the ES-task utilization

Usleep must be increased, and its period Tsleep must be decreased. In Section 2 the
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schedulability test for ES-RHS+ was discussed, and for each task the generalized dead-

line D′i = Ti − (Tsleep − Csleep), is a function of both Csleep and Tsleep. Hence, ThermoSleep

invokes SysSleep multiple times to compute Umax
sleep until the critical deadline of the crit-

ical task lies within its generalized deadline. To calculate the generalized deadline, we

choose Tsleep to be the smallest sub-harmonic of the critical deadline in the feasible range

[CSleepMin/Umax
sleep, T1], and Csleep = Umax

sleep ∗ Tsleep.

Given a forced-sleep period, Tsleep, ES-RMS can provide a higher forced-sleep utiliza-

tion, Usleep, than ES-RHS+ [58]. Hence, for a taskset Γ, in most cases, ES-RMS will yield

a lower worst-case maximum temperature compared to ES-RHS+. In practice, ES-RHS+

can yield lower temperatures, as it utilizes all idle durations to put the processor into

deep sleep.

7.3 Thermal-Aware Multi-Core ES Scheduling

Consider a task set Γ consisting of n periodic real-time tasks τ1, τ2, ..., τn that need to be

scheduled on a homogeneous multi-core processor with m cores, M1, M2, ..., Mm. Each

core Mk has an ES-task, τsleep,k, which has a forced-sleep duration of Csleep,k ≥ CSleepMin

every Tsleep,k. As mentioned in Section 2, two types of multi-core ES scheduling prob-

lems were defined in [58]. In this section, we analyze the thermal implications of Sync-

Sleep and Indsleep scheduling, and propose techniques to derive thermally-effective par-

titioned schedules.

In multi-core processors, heat also dissipates between adjcacent cores, and the rate

of dissipation depends on the temperature differences between them. Hence, each core

can be modeled using the RC model with the addition of thermal resistances between

adjacent cores [99]. Let the instantaneous temperature on each core be Θj, for j =

1, 2, ..., m. Using Fourier’s Law, the differential equation for each core’s temperature can
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Figure 7.1: SyncSleep Scheduling for a quad-core system with cores Mi.

be given by:
dΘj(t)

dt
=

Pj(t)
C
−

Θj(t)−ΘA

RC
−

m

∑
k=1

Θj(t)−Θk(t)
RjkC

(7.8)

where, Pj is the instantaneous power dissipated by the core, and Rjk is the thermal

resistance between the cores j and k. For non-adjacent cores one can reasonably assume

there is no heat dissipation between them and hence, Rjk = ∞ [99].

7.3.1 SyncSleep Scheduling

For SyncSleep scheduling, the forced-sleep task must be synchronized across all cores

[58]. As the sleep transition is synchronous, for all cores Tsleep,k = Tsleep, and the initial

ES-task phase can be taken as φsleep,k = 0 [58]. Additionally, the minimum amount of

time for which the system can be in deep sleep is dictated by the core which has the

least forced-sleep duration [58]. Hence, if the system synchronous sleep CSyncSleep =

minm
k=1(Csleep,k) ≥ CSleepMin, then the minimum guaranteed deep-sleep utilization is

given by minm
k=1(Csleep,k)/Tsleep.

Based on the synchronous-sleep constraint, in the worst case, we can assume that all

the cores are in deep sleep for the durations [kTsleep, kTsleep + CSyncSleep), and busy from
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[kTsleep + CSyncSleep, (k + 1)Tsleep). Hence, all cores will have the same worst-case execu-

tion profile (as illustrated in Figure 7.1(a)), and we can assume that in the worst case, at

any time instant, all cores share the same temperature. Thus, the worst-case inter-core

temperature difference is always zero, and the model reduces to the uniprocessor ther-

mal model. Hence, from a worst-case perspective, we can consider the entire system as

one thermal unit. Applying these assumptions in Equation 7.8, the worst-case SyncSleep

temperature model is given by:

dΘj(t)/dt = Pj(t)/C− (Θj(t)−ΘA)/RC (7.9)

Figure 7.1(b) presents an example using SyncSleep ES-RMS for a quad-core system

with cores Mi, i = {1, 2, 3, 4}. The taskset Γ = {τ1(6, 10), τ2(7, 10), τ3(5, 10), τ4(4, 10)} is

used, such that, during partitioning, each core receives one task (τi is assigned to Mi).

Due to the synchronous nature of forced sleep, all cores have similar temperature pro-

files, making the heat dissipation between cores negligible. Hence, like the uniprocessor

case, the problem reduces to finding a forced-sleep task τsleep which minimizes Tsleep

while maximizing Usleep. However, given that we have multiple cores, partitioning the

tasks among them also plays a major role in determining the thermally-effective τsleep.

The temperature minimization problem can be stated as the following task-partitioning

problem: “Find a partition that has a synchronized ES-task which minimizes the worst-

case maximum temperature, such that the workload allocated to each core can be sched-

uled feasibly by an ES Scheduler.”

The stated partitioning problem is a more constrained form of the feasibility prob-

lem in multi-core processor scheduling, which is known to be NP-hard in the strong

sense [172] [173]. Hence, the thermal-aware SyncSleep scheduling problem is also NP-

hard. Consider the trivial case where all tasks have the same periods, with different

computation times. In this case, choosing the optimal Tsleep is trivial (from Theorem 4,

it is a sub-harmonic of the task period). Given Tsleep, the temperature across all cores

will be minimized if all cores have the same load. Hence, the problem reduces to cal-
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Algorithm 6 SyncSleep Partitioning Heuristic

1: procedure PartitionTaskset(Γ, CSleepMin, m)
2: /* m = number of cores, Γi = tasks allocated to core i */
3: Ts = 1 . Set forced-sleep period to 1
4: Γi∀i ∈ 1 to m = MaxSyncSleep(Γ, CSleepMin, Ts, m) . from [58]
5: Us, Ts = ThermoSleep(Γ, CSleepMin, m) . Invoke ThermoSleep
6: return Us, Ts . SyncSleep task parameters

culating the optimal balanced partition for independent tasks with known computation

times, which is known to be equivalent to the Partition problem [174] which is NP-

Complete [174].

We now present a two-stage heuristic for the partitioning problem:

Partitioning for Thermal Performance: In the first stage, we choose the best possi-

ble hypothetical Tsleep = 1 to find the best synchronous forced sleep that a partitioning

heuristic can achieve. Theorem 4 states that, on a single core, the optimal Usleep is

achieved when Tsleep is a common divisor of the critical deadline. Since 1 is a divisor

of all integers, choosing Tsleep = 1 enables a heuristic to achieve its best possible forced-

sleep utilization. If a taskset cannot be scheduled when Tsleep = 1, we consider it un-

schedulable. Setting Tsleep = 1 and maximizing the forced-sleep utilization is similar to

the energy minimization problem for SyncSleep Scheduling [58]. To realize energy sav-

ings and minimize temperature in multi-core systems, load balancing is often used [58].

Worst-Fit Decreasing (also referred to as WFD or List Scheduling when the number of

cores is fixed a priori) is commonly used to obtain a load-balanced partition. WFD al-

locates tasks to the core with the least utilization, one by one in non-increasing order

of their utilization. For ES Schedulers, the period ratios also play an important role in

dictating the forced-sleep utilization, something that WFD does not take into account.

In [58], the MaxSyncSleep (MSS) partitioning heuristic was proposed. Instead of using

utilization to allocate tasks to cores, MSS measures the impact of a task’s allocation on

the synchronous forced-sleep duration.

Choosing the SyncSleep Period: In the second stage, we find a thermally-effective
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Tsleep. For an m-core system, let the best possible synchronous forced-sleep utilization

(setting Tsleep = 1) obtained by a partitioning heuristic A be Umax
SyncSleep, which corre-

sponds to the core k with the minimum forced-sleep utilization. The feasible range for

Tsleep can now be given by [CSleepMin/Umax
SyncSleep, T1]. To find a good value for Tsleep, we

run ThermoSleep on the partition. The proposed partitioning technique is described in

Algorithm 6.

7.3.2 IndSleep Scheduling

Some processors allow each core to individually transition into deep sleep, enabling

better energy savings. Hence, each core Mk has a forced-sleep task, τsleep,k, which has a

forced-sleep duration of Csleep,k ≥ CSleepMin every Tsleep,k, with a phasing φsleep,k. Note

that, compared to SyncSleep scheduling, each core’s forced-sleep task can have a different

Csleep,k, as well as a different phasing φsleep,k. Hence, we need to consider heat dissipation

between cores. Thus, the IndSleep thermal model is given by Equation 7.8, and takes into

account both heat dissipation to the environment, as well as between cores.

For IndSleep scheduling, the thermal-aware scheduling problem can be defined as

follows: “Find a partition and forced-sleep task parameters (including phasing) on each

core, that minimizes the maximum temperature of the system, under the constraint that

the workload allocated to each core can be scheduled by an ES Scheduler.”

In [58], it was proved that using ES-RHS+ can yield an energy-optimal schedule for all

feasible partitions. A partition is feasible if the tasks allocated to each core are schedula-

ble. However, unlike the energy-minimization problem, all the feasible partitions are not

optimal from a thermal perspective. This is due to the dependence of temperature on

the ES-task period, as well as the execution pattern between cores, i.e. relative ES-task

phasing.

The heat flow between two objects is primarily dependent on their thermal properties

as well as the temperature difference between them. At any instant, the temperature
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difference between two adjacent cores will always be less than the temperature difference

between a core and the environment. This is based on the practical assumption that the

environmental temperature is always lower than that of any core. Thus, we can safely

assume that heat dissipation to the environment is the dominant factor for cooling.

Hence, from an optimization standpoint, we first optimize the schedule on each core

to reduce its own temperature, and then optimize the schedule between cores to ensure

maximal heat dissipation between them. Based on this practical assumption, we propose

a two-stage solution:

Partitioning for Thermal Performance: The objective of partitioning is to ensure

that the worst-case maximum temperature of the system is minimized. If there were

no heat dissipation between cores, then the worst-case maximum temperature Θk
max on

a core k is a function of Tsleep,k and Usleep,k. A balanced partition helps ensure that all

cores have similar Θk
max. In an unbalanced partition, a core with a significantly lower

Usleep,k would yield a higher temperature, thus raising the maximum temperature of the

system. This is similar to the SyncSleep problem, and hence is also NP-Hard. Hence,

like SyncSleep, we initially set Tsleep,k = 1 on each core, and use MaxSyncSleep [58] (or

WFD) to create a balanced partition. Applying ThermoSleep to all the cores together

gives a single Tsleep that is suitable for all the cores. We refer to this as uniform sleep.

However, since each core can independently transition into deep sleep, each core’s ES-

task can have a different period, that we refer to as non-uniform sleep. These non-uniform

sleep periods Tsleep,k can be calculated by applying ThermoSleep to each core individually.

FindBestSleep is then used to obtain each Csleep,k using the corresponding Tsleep,k. While

uniform sleep ensures that all cores have a similar temperature profile, non-uniform sleep

can allow each core to attain a lower temperature.

Forced-Sleep Phasing: The phasing between ES-tasks plays an important role in the

heat dissipation between cores. In the worst case, we can assume that each core Mj, j = 1

to m is in deep sleep for the durations [φsleep,j + kTsleep,j, φsleep,j + kTsleep,j + Csleep,j), and

busy from [φsleep,j + kTsleep,j + Csleep,j, φsleep,j + (k + 1)Tsleep,j). To ensure maximal heat
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Figure 7.2: IndSleep Scheduling with uniform sleep periods for a quad-core system with
cores Mi.

dissipation between adjacent cores, the temperature difference between them needs to

be maximal. For two adjacent cores i and j, the largest temperature difference between

them occurs when core i is at the start of its forced-sleep period and core j is at the

end of its forced-sleep period. Hence, if τsleep,i starts exactly after τsleep,j ends, then the

instantaneous temperature difference between the cores can be maximized. This leads

to an execution pattern where core i is busy while core j is in deep sleep and vice versa.

Figure 7.2(b) presents an example using IndSleep ES-RMS with uniform peri-

ods for a quad-core system with cores Mi, i = {1, 2, 3, 4}. The taskset Γ =

{τ1(6, 10), τ2(7, 10), τ3(5, 10), τ4(4, 10)} is used, such that, during partitioning, each core

receives one task (τi is assigned to Mi). Note that, each core has its own distinct thermal

profile. Additionally, phasing the ES-task on each core, to minimize execution overlap

can yield thermal benefits. For the IndSleep example, the odd-even execution pattern

illustrated in Figure 7.2(a) is noteworthy, where execution overlap is minimized by en-

suring that odd-numbered cores are busy (i.e. execute tasks), while even-numbered cores

are in deep sleep, and vice-versa. From the thermal profile, observe that this phasing

causes the temperature difference between adjacent cores to be maximized, thus yielding
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better heat dissipation between adjacent cores.

As a simplification, we formulate the phasing problem as one of: “minimizing the

execution (or forced-sleep) overlap between adjacent cores”. By considering busy dura-

tions as hot and forced-sleep durations as cool, the execution overlap metric captures the

durations where hot regions overlap, hence acting as a proxy for temperature difference.

In most processor designs, cores are rectilinear, and adjacent cores are of the same size.

Hence, to compute a thermally-effective phasing, the overlap between every pair of ad-

jacent cores needs to be minimized. This execution overlap (also referred to as overlap)

needs to be calculated over the relative hyperperiod, TR, of all the cores. We define the

relative hyperperiod as the least common multiple of all the cores’ forced-sleep periods. In

the simplest case, consider a dual-core system, with two adjacent cores. Let the cores be

M1 and M2, and their forced-sleep tasks be τsleep,i = (Csleep,i, Tsleep,i) with phasing φsleep,i

where, i = 1, 2. Assume that all the terms are integers, which is reasonable as we can

convert timescales to arbitrarily small units (like nanoseconds). We have four possible

cases:

1) Tsleep,1 = Tsleep,2, i.e. uniform sleep. The phasing with the minimum overlap is

computed over TR = Tsleep,1 = Tsleep,2. The minimum overlap possible is TR − Csleep,1 −

Csleep,2. Then, φsleep,1 = 0, φsleep,2 = Csleep,1, is one of the phasings which guarantees

minimum overlap.

2) Tsleep,1 and Tsleep,2 are relatively prime, i.e. non-uniform sleep whose greatest com-

mon divisor is 1. The minimum overlap needs to be computed over TR = Tsleep,1 ∗ Tsleep,2.

In this case, any relative integer phasing of τsleep,1 and τsleep,2 guarantees the same overlap,

which is the minimum overlap. This stems from the fact that all possible relative integer

phasings between two periods are encountered, before the relative phasing is equal to

that at the start.

3) Tsleep,1 and Tsleep,2 are harmonic, i.e. non-uniform sleep where one is a multiple of

the other. Let Tsleep,2 = a ∗ Tsleep,1, a ∈ Z+. Hence, TR = Tsleep,2, and only one iteration

of τsleep,2 occurs in TR. Then φsleep,1 = 0, φsleep,2 = Csleep,1 can guarantee the minimum
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overlap.

4) Tsleep,1 and Tsleep,2 are not relatively prime and not harmonic, i.e. non-uniform sleep

which share a common divisor, but one is non-divisible by the other. Here, TR < Tsleep,1 ∗

Tsleep,2. In this case, no property can be stated on the relative phasing which guarantees

minimum overlap.

Based on the above properties, we see that while simple approaches work for phasing

uniform sleep, using non-uniform sleep requires more complex optimization techniques.

However, using uniform sleep does not always guarantee lower execution overlap than

using non-uniform sleep. This can be seen from the following 3 cases:

Case 1: Uniform Sleep performs better than Non-Uniform Sleep. Consider a taskset

with two tasks, τ1 = (6, 9) and τ2 = (10, 15). τ1 is assigned to core M1, and τ2 to

core M2. In the uniform sleep case the best ES-task periods in terms of sleep utilization

are τsleep,1 = (3, 9) and τsleep,2 = (2.5, 9). Using the best possible phasing, achieves a

guaranteed minimum execution overlap of 3.5 every 9 (38.89%). In the non-uniform

case, the best ES-task periods are τsleep,1 = (3, 9) and τsleep,2 = (5, 15). By searching the

entire search space of unique relative integer phasings, the minimum execution overlap

achievable is 20 every 45 (44.44%). Hence, in this case, using uniform sleep provides lower

execution overlap.

Case 2: Uniform Sleep performs equal to Non-Uniform Sleep. Consider a taskset with

two tasks, τ1 = (6, 9) and τ2 = (9, 12). τ1 is assigned to core M1, and τ2 to core M2. In

the uniform sleep case, the best ES-task periods in terms of sleep utilization are τsleep,1 =

(3, 9) and τsleep,2 = (1.5, 9). By using the best phasing, we can achieve a guaranteed

minimum execution overlap of 4.5 every 9 (50%). In the non-uniform case, the best

ES-task periods are τsleep,1 = (3, 9) and τsleep,2 = (3, 12). By searching the entire search

space of unique relative integer phasings, the minimum execution overlap achievable is

18 every 36 (50%). Hence, both provide a solution with the same execution overlap.

Case 3: Uniform Sleep performs worse than Non-Uniform Sleep. Consider a taskset

with two tasks, τ1 = (6, 9) and τ2 = (9, 11). τ1 is assigned to core M1, and τ2 to core M2.
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In the uniform sleep case, the best ES-task periods are τsleep,1 = (3, 9) and τsleep,2 = (1, 9).

Using the best phasing, achieves a guaranteed minimum execution overlap of 5 every

9 (55.55%). In the non-uniform case, the best ES-task periods are τsleep,1 = (3, 9) and

τsleep,2 = (2, 11). By searching the entire search space of unique relative phasings, the

minimum execution overlap achievable is 54 every 99 (54.54%). Hence, in this case using

non-uniform sleep provides lower execution overlap.

Since there is no exact solution for choosing ES-task periods for minimizing execution

overlap, we examine the properties of using uniform sleep versus non-uniform sleep:

Best Phasing: While uniform sleep can be phased easily and optimally (using the

odd-even execution pattern from Figure 7.2(a)) for a rectilinear multi-core processor, no

such simple technique can be used for non-uniform sleep.

Temperature Profile: Uniform sleep will ensure that all cores have similar temperatures.

However, using non-uniform sleep allows each individual core to choose the best Tsleep,

to further reduce its temperature, based on the tasks allocated to it.

7.4 Comparative Evaluation

We now evaluate our proposed techniques on the basis of schedulability and worst-

case maximum temperature Θmax with an offset. Results are obtained using both static

worst-case analysis as well as dynamic simulations using Hotspot [169]. Static analysis

experiments were performed on 100,000 tasksets generated randomly using UUniFast-

Discard [175] for each data-point. In a taskset, each task is randomly assigned a period

between 15 and 400 time units, and the number of tasks varies from 1 to 20. CSleepMin is

set to 5 time units. The system thermal parameters were set to a = 2 and b = 0.228 [93].

To the best of our knowledge, no other proactive techniques exist for designing thermal-

aware fixed-priority sleep schedules. Hence, we compare against the purely energy-

efficient design methodology proposed in the previous chapter [58].
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Figure 7.3: Uniprocessor Results (a) Utilization of the ES-task w.r.t taskset utilization,
and (b) % of task sets schedulable w.r.t taskset utilization
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Figure 7.4: Uniprocessor Results (a) Worst-case maximum temperature w.r.t taskset uti-
lization, and (b) Worst-case maximum temperature w.r.t CSleepMin

7.4.1 Static Worst-Case Analysis

Uniprocessor Comparisons: We compare ES-RMS and ES-RHS+ with and without using

ThermoSleep on the basis of schedulability, and the worst-case maximum temperature,

Θmax. Figure 7.3a plots schedulability versus taskset utilization. In terms of schedulabil-

ity: ES-RMS performs better than ES-RHS+. Observe that, using ThermoSleep, ES-RMS

can schedule up to 62.5% more task sets than before. Figure 7.3b plots the ES-task uti-

lization versus taskset utilization for tasksets schedulable by all techniques. By using
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Figure 7.5: SyncSleep Results (a) % of task sets schedulable w.r.t taskset utilization, for
multi-core SyncSleep scheduling (m = 4), and (b) Worst-case maximum temperature w.r.t
taskset utilization, for multi-core SyncSleep scheduling (m = 4)

SysSleep, ThermoSleep-based techniques yield slightly greater ES-task utilization —up to

3.3% greater for ES-RMS. Figure 7.4a plots Θmax versus taskset utilization for tasksets

schedulable by all techniques. Despite the ES-task utilization being similar, by choos-

ing a smaller ES-task period, ThermoSleep can achieve significantly lower temperatures

—on average up to 4◦K lower for ES-RMS, while simultaneously yielding better energy

savings. Figure 7.4a also plots the average of the lower bound on Θmax for the tasksets.

On average, the worst-case deviation between the solution provided by ES-RMS and

ThermoSleep, and the optimal lower bound was 0.028◦K. Figure 7.4b plots Θmax as a

function of CSleepMin, when taskset utilization Utaskset = 0.4. Observe that, despite vary-

ing CSleepMin, our approach yields solutions with a worst-case temperature difference of

0.067◦K compared to the optimal lower bound.

Multi-core SyncSleep Comparisons: We compare ES-RMS and ES-RHS+ on the ba-

sis of schedulability and the worst-case maximum temperature, Θmax. We consider each

technique using both WFD and Max-SyncSleep (MSS) for task partitioning, with and

without using ThermoSleep. For a quad-core (m = 4) processor, Figure 7.5a plots schedu-

lability versus taskset utilization, and Figure 7.6a plots the utilization of the synchro-
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Figure 7.6: SyncSleep Results (a) Synchronized ES-task utilization w.r.t taskset utiliza-
tion, for multi-core SyncSleep scheduling (m = 4), and (b) Worst-case maximum temper-
ature w.r.t taskset utilization, for multi-core SyncSleep scheduling (m = 8)

nized ES-task USyncSleep. In terms of schedulability and USyncSleep ES-RMS performs

better than ES-RHS+ for all partitioning techniques. For partitioning techniques, MSS

marginally dominates WFD in terms of schedulability and USyncSleep, both with and

without using ThermoSleep. Using ThermoSleep provides marginally better USyncSleep

—up to 11.59% greater for ES-RMS with MSS. Figures 7.5b and 7.6b plot Θmax, versus

taskset utilization, for a quad-core (m = 4), and an octa-core (m = 8) processor respec-

tively. Using ThermoSleep can give significantly lower Θmax —on average up to 2.89◦K

lower for ES-RMS with MSS for m = 4.

Multi-core IndSleep Comparisons: We compare ES-RMS and ES-RHS+ using Max-

SyncSleep to generate partitions. We consider using both uniform and non-uniform sleep

for each core’s ES-task. MSS along with ThermoSleep is used to determine the sleep

periods. Figure 7.7a plots the percentage of schedulable tasksets. Note that using non-

uniform sleep allows for greater schedulability —up to 1.2% greater for ES-RMS. Figure

7.7b plots Θmax without considering inter-core heat dissipation. Note that, while ES-

RHS+ provides maximal energy savings, in all cases ES-RMS yields lower temperatures

than ES-RHS+. Additionally, due to better use of each core’s idle durations, non-uniform



CHAPTER 7. THERMAL IMPLICATIONS OF ENERGY-SAVING SCHEDULERS 173

Taskset Utilization (C
SleepMin

 = 5, M = 4)

0.5 1 1.5 2 2.5 3 3.5

%
 o

f 
S

c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

0

10

20

30

40

50

60

70

80

90

100

ES-RHS+ UniformSleep

ES-RMS UniformSleep

ES-RHS+ Non-UniformSleep

ES-RMS Non-UniformSleep

(a)

Taskset Utilization (C
SleepMin

 = 5, M = 4)

0.5 1 1.5 2 2.5 3 3.5

W
o

rs
t-

c
a
s
e
 M

a
x
im

u
m

 T
e
m

p
e
ra

tu
re

 (
Θ

m
a
x
)

5

5.5

6

6.5

7

7.5

8

8.5

9

ES-RHS+ UniformSleeo

ES-RMS UniformSleep

ES-RHS+ Non-UniformSleep

ES-RMS Non-UniformSleep

(b)

Figure 7.7: IndSleep Results (a) % of task sets schedulable w.r.t taskset utilization, for
multi-core IndSleep scheduling (m = 4), and (b) Worst-case maximum temperature w.r.t
taskset utilization, for multi-core IndSleep scheduling (m = 4)

sleep provides slightly lower temperatures than uniform sleep —up to 0.08◦K.

7.4.2 Dynamic Simulations

To perform dynamic thermal simulation, we have designed a real-time multi-core

scheduling simulation tool called Inferno (v1.0). Based on the processor floor-plan, prior

temperature, power consumption in the interval and the interval length, Inferno uses

Hotspot [169] to calculate each core’s temperature, in each scheduler-simulation inter-

val. Inferno supports fully-partitioned fixed-priority scheduling. Simulation parameters

such as the number of cores, simulation cycles, simulation granularity, CSleepMin, floor-

plan and thermal configuration can be specified by the user. The power consumption

of each core for different operating frequencies in the busy, idle and deep-sleep states are

specified in a look-up table. Based on the taskset and partition provided by the user,

Inferno provides a trace of the power and temperature values at each simulation instant.

The source code for Inferno can be found at https://github.com/sandeepdsouza93/Inferno.

In order to use realistic power values, we considered the automotive benchmark from

the MiBench suite [176]. The benchmark was compiled and executed in the SniperSim
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Figure 7.8: Dynamic simulations (a) maximum temperature w.r.t taskset utilization (m =
4), and (b) average power w.r.t taskset utilization (m = 4)

[177] cycle-accurate x86 emulator (for a Nehalem-class x86 processor) for a range of

frequency settings (1.22-2.66 GHz). The execution trace obtained from SniperSim is then

fed to the McPAT [178] power simulator, which calculates the power consumption based

on an x86 Nehalem power model (45 nm technology node). To model the dependency

of static power on temperature, McPAT power calculations were done for the range of

temperatures: 300-400◦K, and the values were stored in a look-up table. Inferno uses

these values to compute the core power consumption value, based on the previously

calculated core temperature. The scheduling simulation granularity was set to 10µs, and

Hotspot’s default thermal configuration was used.

We have simulated a quad-core processor, with the floor-plan consisting of cores laid

out in a square grid (as shown in Figures 7.1(a) and 7.2(a)). 10,000 randomly generated

tasksets were considered, each containing 1 to 20 tasks. The taskset utilization varied

from 0.8 to 3.2. Each taskset was simulated up to thermal steady state (Hotspot warm-up

was considered).

Figure 7.8a plots maximum temperature versus taskset utilization. Observe that ES-

RMS IndSleep with non-uniform sleep yields the lowest temperature. We also com-

pared techniques from [58] following a purely energy-efficient design (UniOrig), and
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it returned the highest temperature —on average up to 3.91◦K of difference between

ES-RMS IndSleep without thermal considerations (UniOrig), and ES-RMS IndSleep with

non-uniform sleep. We also compare our techniques with SysClock, which is the energy-

optimal fixed-priority technique for static frequency scaling. We simulate SysClock with

RMS where each core could have its own frequency. SysClock yields higher tempera-

tures than IndSleep —up to 1.5◦K higher.

Figure 7.8b plots the average power consumption versus taskset utilization. We find

that by better utilizing the idle durations, ES-RHS+ IndSleep yields lower power con-

sumption than ES-RMS SyncSleep —up to 5.04 W lower. ES-RHS+ IndSleep on average

yields a power consumption that is 8.52 W lower than SysClock with a maximum dif-

ference of 21.74 W. This highlights the importance of energy-saving techniques based on

sleep states. Our techniques also provide greater power savings compared to the purely

energy-efficient design methodology presented in [58] —up to 8.36 W additional power-

savings for ES-RHS+ IndSleep. Note that, although ES-RHS+ IndSleep provides greater

energy savings, ES-RMS IndSleep yields lower temperatures. Additionally, even though

SysClock consumes significantly more power than ES Schedulers, they both yield similar

maximum temperatures. This highlights the fact that energy efficiency does not always

imply lower temperatures.

7.5 Summary

In this chapter, we analyzed the thermal implications of fixed-priority energy-saving

schedulers, which utilize the processor’s deep-sleep state to save energy. We infer de-

sign choices from a well-known thermal model, and presented two techniques for de-

signing thermally-effective ES Schedulers: the SysSleep algorithm to provide optimal

sleep utilization and the ThermoSleep heuristic to design a thermally-effective ES-task.

Specifically, we derive a lower bound on the optimal maximum temperature, thus quan-

tifying the best thermal performance achievable by ES Schedulers. In the multi-core
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context, we extend our analysis to two classes of scheduling problems [58]: SyncSleep,

where cores need to synchronously transition into deep sleep, and IndSleep, where cores

can independently transition into deep sleep. We consider the impact of both task parti-

tioning and ES-task phasing on temperature. In the SyncSleep context, we observe that

the synchronous deep-sleep constraint reduces the temperature-minimization problem

to the energy-minimization problem, with the exception of the synchronous ES-task pe-

riod calculation. On the other hand, while energy minimization is straightforward in

the IndSleep context (all feasible partitions are optimal using ES-RHS+ [58]), the same

cannot be said for temperature minimization. The dependence of temperature on the

ES-task periods and relative phasing makes the IndSleep problem non-trivial.

Since we focus on fully-partitioned scheduling, our proposed framework can be ex-

tended to heterogeneous multi-core processors. Additionally, our techniques do not re-

quire significant knowledge of a system’s thermal parameters, and hence are applicable

to a range of multi-core platforms. Static analysis and dynamic simulation validate our

approach, yielding lower temperatures and better energy savings than both the purely

energy-efficient ES Scheduler design [58], and frequency scaling based techniques [78].

Our results show that, while energy savings is key to lower temperatures, not all energy-

efficient solutions yield low temperatures.



Chapter 8

Energy-Saving Scheduling for Real-Time

Systems with Hardware Accelerators

Hardware accelerators often consume significant amounts of power [46]. In addition,

energy-constrained platforms such as smartphones, drones, robots and AR/VR headsets

also contain one or more hardware accelerators [20] [179] [180]. Hence, it is necessary to

focus on energy management for systems using hardware accelerators.

Like multi-core processors, hardware accelerators can also expose power-

management interfaces. However, in commercial accelerators like GP-GPUs and DSPs,

only P-states are exposed to the user [47] [48]. Thus, in effect, they expose only volt-

age and frequency-scaling knobs for power management, and the job of reducing static

power is done in firmware or hardware. Therefore, we focus on using frequency-scaling-

based techniques to reduce the power consumption of systems using hardware accelera-

tors. In particular, we propose techniques to statically set the processor and accelerator to

a pre-computed taskset-specific frequency, such that the aggregate energy consumption

is reduced, while ensuring that all deadlines are met. The use of static frequency-scaling

techniques involves setting the processor and/or the accelerator to a pre-computed

taskset-specific frequency. Therefore, as there are no dynamic frequency changes, the

unpredictable latency involved in changing the oscillator frequency is avoided, leading

177
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to more deterministic operation, which is desirable in real-time systems.

The primary contributions described in this chapter are as follows:

• We introduce a novel search technique called ratchet search, and use it to jointly

estimate the upper and lower bounds of the range containing the lowest feasible

frequency, as additional tasks and resources are considered

• We propose the CycleSolo family of algorithms to calculate the energy-optimal

frequency-scaling factor, when (i) the frequency of only the CPU or the acceler-

ator can be scaled, or (ii) both the CPU and accelerator frequency must be scaled

by the same common factor.

• We propose the CycleTandem algorithm to calculate low-power frequency-scaling

factors for the CPU and the accelerator, when both the CPU and accelerator fre-

quency can be independently scaled.

• We extend the CycleSolo and CycleTandem algorithms to the fully-partitioned multi-

core context.

8.1 System Model

In this section, we present the assumptions and system model used in this chapter. We

also provide some background about the synchronization-based approach used to gov-

ern access to hardware accelerators [52], along with its suspension-based schedulability

analysis introduced in prior work [53].

8.1.1 Assumptions and Task Model

Consider a taskset Γ consisting of n sporadic real-time tasks τ1, τ2, ..., τn. The taskset

is deployed on an m-core homogeneous multi-core processor M, with a single non-

preemptive hardware accelerator A. This assumption is reasonable as most existing
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accelerators, including GP-GPUs and DSPs, do not support preemption [53]. We model

the accelerator as a shared resource, and assume that access to the accelerator is treated

as a critical section arbitrated by a global lock L [52]. We also assume that, at any point

of time, only a single task can utilize the accelerator. This avoids any unpredictability in

execution time caused by accelerators which support concurrent execution [53]. Addi-

tionally, accelerators used in energy-constrained platforms may not support concurrent

execution.

Based on the above assumptions, each task τi ∈ Γ is characterized by {Ci, Gi, Ti, Di},

where Ci is the worst-case execution time (WCET) on the CPU, Gi is the WCET on the

accelerator, Ti is the period or minimum job inter-arrival time (sporadic tasks), and Di

is the relative deadline from the arrival time. The term Gi consists of: (i) Ge
i , the WCET

of the task on the accelerator, and (ii) Gm
i , the worst-case CPU-intervention required to

access the accelerator. Note that Gi ≤ Ge
i + Gm

i , as Ge
i and Gm

i may not occur on the

same control path [53]. However, we assume that Gi = Ge
i + Gm

i . Therefore, for each task

τi, we define the total CPU time required as Ei = Ci + Gm
i . We also assume that each

task can access the accelerator at most once every period. This assumption is reasonable

since, in practice, most tasks have a single accelerator-executed segment. Tasks which

have multiple accelerator segments can be split into separate tasks. We also assume that,

while accessing the accelerator, each task suspends on the CPU.

In this chapter, we consider fully-partitioned fixed-priority preemptive scheduling

and assume deadlines are constrained, i.e., Di ≤ Ti. Task priorities are assumed to be

unique with each task τi assigned the priority πi. The taskset is listed in decreasing

order of task priorities, i.e., π1 > π2 > ... > πn.

MPCP-based Analysis: In the context of this work, we utilize the Multiprocessor

Priority Ceiling Protocol (MPCP) [105] to govern access to the global lock L used to

access the accelerator [53]. We consider the version of MPCP, where a task requesting

access to a critical section locked by another task is suspended and inserted into a lock-

specific priority queue [53]. When a task releases a lock, the task at the head of the
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priority queue is scheduled, and granted access to the critical section. In doing so,

the priority of the task is raised to the lock’s priority ceiling. The priority ceiling of the

critical section of task τi accessing lock L, is given by πi = πk +πB, where πB is a priority

level greater than the base priority of any task in the system and πk is the highest base

priority of any task that uses L. On completion of the critical section, τi releases the lock,

and its priority is returned to its original base priority.

To determine taskset schedulability, we use response-time-based analysis. Based on

this technique, the worst-case response time for a task τi is given by the following recur-

rence:

W0
i = Ci + Gi + Bi, Wk+1

i = Ci + Gi + Bi +
i−1

∑
h=1

Ii,h (8.1)

where, Wi is the worst-case response time of the task τi, Bi provides an upper-bound on

the worst-case blocking faced by τi in getting access to the accelerator, and Ii,h denotes

the worst-case CPU preemption τi faces due to a higher-priority task τh. If Wi ≤ Di, then

τi will be schedulable.

The worst-case preemption Ii,h, faced by task τi due to a higher-priority task τh is

given by:

Ii,h = αi,h ∗ Eh, αi,h = d(Wi + Wh − Eh)/The (8.2)

where, αi,h represents an upper bound on the number of jobs of τh released during a

single job of τi [53]. Note that αi,j considers the jitter, Wh − Eh, introduced by τh’s self-

suspension on the CPU, while accessing the accelerator [107].

The worst-case blocking Bi, faced by a task τi, in accessing the accelerator can be

upper-bounded by multiple approaches described in prior work [53] [54] [55]. Three

such approaches are (i) the job-driven analysis, (ii) the request-driven analysis, and (iii)

the hybrid analysis. Neither of the first two analyses strictly dominates the other. In

practice, the work in [53] observed that the job-driven analysis dominates the request-

driven analysis when the number of critical sections a task executes on the accelerator

increases. On the other hand, as Ci and Wi increase the job-driven analysis becomes
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more pessimistic. The hybrid analysis proposed in [53] uses a combination of the job-

driven and request-driven analysis to provide a less-pessimistic worst-case response-

time estimate.

In Section 8.1.1, we assumed that each task has only one critical section which is

executed on the accelerator. Under this assumption, we can prove the following theorem.

Theorem 1: If all tasks in Γ have at most one critical section executed on the accelera-

tor, then the request-driven analysis always dominates the job-driven analysis.

Proof: Consider the case where all tasks in Γ have at most one critical section executed

on the accelerator. Both the request-driven and job-driven analyses determine schedu-

lability using response-time calculations (Equation 8.1). The only difference lies in the

calculation of high-priority blocking faced by each task τi. In the request-driven analysis,

the number of instances of each higher-priority task τh, which contribute to blocking τi,

is given by the term βi,h, which upper-bounds the number of accelerator requests made

by a higher-priority task τh, while τi is being blocked. Thus, βi,h =
⌈

Bi+Wh−Eh
Th

⌉
, where

Bi upper bounds the time for which τi is blocked [53] [55]. In contrast, for the job-driven

analysis, the number of instances of each high-priority task τh, which contribute to block-

ing τi, is given by the term αi,h, which upper-bounds the number of accelerator requests

made by a higher-priority task τh, during τi’s response time. Thus, αi,h =
⌈

Wi+Wh−Eh
Th

⌉
,

where Wi upper-bounds τi’s worst-case response time [53]. From Equation 8.1, for every

task τi, we can conclude that Bi < Wi. Therefore, for every feasible pair of τi and τh,

βi,h ≤ αi,h. This implies that, for the given context, the request-driven analysis always

computes a tighter blocking estimate, as compared to the job-driven analysis. Thus, from

Equation 8.1, we can also conclude that the request-driven analysis always computes a

tighter worst-case response-time estimate, as compared to the job-driven analysis. �

As a corollary, to the above theorem, it can also be proven that the request-driven

analysis is equivalent to the hybrid analysis [53]. Therefore, in this work, we utilize the

request-driven analysis. However, the algorithms we propose can easily be adapted to

other analysis techniques.
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Based on the request-driven analysis [53] [55], the worst-case blocking Bi, faced by a

task τi in accessing the accelerator, can be upper-bounded by the following recurrence

[53]:

B0
i = max

τl |l>i
(Gl), Bk+1

i = max
τl |l>i

(Gl) +
i−1

∑
h=1

βi,h ∗ Gh (8.3)

where, βi,h = d(Bi + Wh − Eh)/The upper bounds the number of accelerator requests

made by a higher-priority task τh, while τi is being blocked. Note that βi,h considers the

self-suspension of a task on the CPU, while accessing the accelerator.

8.1.2 Power Model

The power consumption of modern CMOS-based processors is modeled as a combina-

tion of two major components:

(1) Dynamic Power is dependent on the processor operating frequency. Assuming that

voltage is scaled with frequency, dynamic power consumption, PD, can be modeled as

a convex function of the operating frequency s as [83]: PD = K f α where, α and K are

technology-dependent system constants.

(2) Static Power is due to leakage current, which depends on the semiconductor tech-

nology. Static power, PS, can be modeled as [83]: PS = VIleak where, V is the operating

voltage and Ileak is the technology-dependent leakage current.

Hence, power consumption P = PD + PS. Therefore, the total power consumed by

the CPU-accelerator combination can be given by Ptotal = Pcpu + Pacc, where Pcpu and

Pacc are the power consumption of the CPU and accelerator respectively.

While dynamic power is reduced using voltage and frequency scaling, static power

is reduced using sleep states. However, as mentioned earlier, most accelerators do not

provide user-configurable sleep states to reduce static power [181], and rely on firmware-

based control to reduce static power. Therefore, we focus on using frequency-scaling-

based power management, and assume that the processor/accelerator performs its own

optimizations in parallel to reduce static power. In particular, we focus on statically
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choosing a single operating frequency for the CPU/accelerator. This is based on the

well-known property that, for processors with a non-decreasing convex power-frequency

function, the energy is minimized if the processor executes its workload at the lowest-

possible constant frequency [78].

For the sake of simplicity, we assume a continuous processor/accelerator frequency

range normalized to the range [0, 1]. In later sections, we discuss how discrete frequen-

cies can be accommodated. We also assume that task worst-case execution times (WCET)

are specified at the maximum frequency, fmax = 1, and the WCET is scaled in proportion

to the operating frequency f , i.e, WCETf = WCETfmax / f . However, our proposed algo-

rithms are independent of this scaling model, and any model where the execution-time

monotonically increases with decreasing frequency can be used.

8.2 CycleSolo Algorithm

We now introduce the CycleSolo family of algorithms for uniprocessor systems with a

single hardware accelerator. We propose three variants of CycleSolo:

1) CycleSolo-CPU: when the accelerator does not support frequency scaling, and only

the CPU frequency can be scaled.

2) CycleSolo-Accel: when the accelerator supports frequency scaling, but the CPU

frequency cannot be scaled.

3) CycleSolo-ID: when both the accelerator and the CPU frequencies must be scaled

by a common scaling factor.

The two steps of the CycleSolo family of algorithms are as follows: 1) Compute a

tight bound on the frequency range in which the optimal frequency lies. 2) Perform a

binary search testing schedulability over the computed frequency range, to obtain the

lowest-possible CPU/accelerator operating frequency which ensures that all deadlines

are met.
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Algorithm 7 Binary Search Minimizing Frequency

1: procedure BinarySearch(Γ, εconv, fhigh, flow)
2: while fhigh − flow > εconv do
3: fest = ( fhigh + flow)/2 . chosen frequency
4: Γ′ = ScaleTaskset-Frequency(Γ, fest)
5: if Γ′ is Schedulable then fhigh = fest
6: else flow = fest

7: return fhigh

We can easily prove that given a schedulability-analysis technique, a binary search

(Algorithm 7) will always converge to the lowest-possible operating frequency.

Lemma 1: Given a taskset Γ, and a response-time-based schedulability-analysis tech-

nique S, a binary search testing schedulability over the operating frequency range,

converges to the lowest-possible operating frequency fmin, which guarantees that Γ is

schedulable using technique S.

Proof: Consider an operating frequency 0 < f ≤ fmax. For every task τi, the worst-

case execution time is inversely proportional to the frequency. Therefore, the response

time of a task also increases monotonically as the frequency decreases. Thus, we can

conclude that the taskset will be schedulable for all frequencies f ′ ≥ f , if and only if

the taskset is schedulable at frequency f , using technique S. Conversely, if a taskset

is not schedulable at frequency f , it will not be schedulable for all frequencies f ′ ≤ f .

Given that Γ transitions from schedulable to unschedulable after frequency fmin, the

estimated frequency range decreases with each iteration of the binary search (Algorithm

7), and, given sufficient iterations, converges to fc = fmin, which is the lowest frequency

guaranteeing Γ is schedulable according to analysis technique S. �

However, performing the response-time-based schedulability test multiple times over

the entire frequency range [0, fmax] is not desirable, as the response-time-based analysis

has pseudo-polynomial complexity. Therefore, we now explain how CycleSolo computes

a tight bound on the range in which the optimal frequency lies, by proving various

results in the context of CycleSolo-CPU. However, the same results can be easily extended
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to the entire CycleSolo family of algorithms.

CycleSolo-CPU: Consider a uniprocessor with a non-preemptive accelerator, whose

frequency is not adjustable. Therefore, to minimize energy, we need to find the lowest

CPU operating frequency at which all tasks meet their deadlines.

In [78], the SysClock algorithm was proposed for independent sporadic tasks us-

ing fixed-priority uniprocessor scheduling. SysClock calculates the lowest processor fre-

quency at which all tasks meet their deadlines. For each task τi, SysClock calculates the

slack at all scheduling points in the critical zone [170] to determine the minimum fre-

quency, fi, at which τi meets its deadline, in the presence of high-priority interference.

SysClock finally chooses the lowest frequency fmin, as the maximum of these per-task

minimum frequencies, i.e., fmin = maxi|τi∈Γ fi. Thus, SysClock chooses the lowest fre-

quency at which all tasks meet their deadlines.

In this work, we use the slack-calculation methodology from SysClock. However,

unlike SysClock, the following issues are encountered while estimating the minimum

frequency:

1) Undefined Critical Instant: In the presence of blocking and self suspensions, the

critical instant does not necessarily occur when all high-priority jobs arrive together with

the task τi, and is undefined [107]. Therefore, additional blocking and self-suspension

terms are added to utilize the existing response-time analysis. In effect, this assumes the

same critical instant, but adds extra pessimism by considering the worst-case blocking

and modeling the self-suspensions as release jitter [107]. Therefore, like SysClock, the

CycleSolo algorithms consider the critical-zone theorem [170] where, in the worst case,

the requests of all tasks arrive simultaneously. In practice, the worst-case blocking,

interference and self-suspension penalties never appear together. Due to this pessimism,

all the known analysis techniques are safe, but none of them are exact [53]. This prevents

us from finding the absolute minimum frequency. Instead, we can obtain the minimum

frequency which allows a taskset to be schedulable given the analysis framework used.

2) Frequency-Dependent Slack: Due to self suspensions, the interference and block-
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ing faced by each low-priority task depends on the response time and worst-case exe-

cution time of higher-priority tasks. However, the worst-case response time of higher-

priority tasks depends on the operating frequency. Thus, different operating frequencies

create different amounts of high-priority interference and blocking, which makes the

slack calculation frequency-dependent. In SysClock, it is sufficient to calculate the slack

at each scheduling point, i.e., a task’s deadline or points in time when a new job of a task

is released. However, in the presence of self-suspending tasks, the pessimism added to

the response-time analysis changes the effective points in time at which new instances of

tasks appear, and makes them dependent on the frequency.

Lemma 2: Consider response-time-based schedulability-analysis techniques which

model self-suspension as release jitter. Then, for a task τh which self-suspends, the set of

effective scheduling points, i.e., points in time where new instances of a task effectively

arrive are given by:

Sh := {j ∗ Th − (Wh − Eh)|j > 0} (8.4)

Proof: The definition of the response-time analysis stated in Equation 8.1, calculates

the number of jobs, αi,h, of each higher-priority task τh which interfere with the execution

of a low-priority job τi. For a higher-priority task τh, which self-suspends on the CPU,

at each time instant t ∈ Sh, the interference increases by the execution time of one job of

τh. Therefore, they can be considered as effective scheduling points in the context of the

response-time analysis being used. �

Lemma 2 indicates that the interference calculation depends on the high-priority

response time, which depends on the operating frequency. This dependence does not

occur for tasks which do not self-suspend, as is the case in SysClock, and prevents us

from calculating the lowest frequency in a single pass over all the tasks. We instead

estimate a feasible range [ f low, f high] which contains the lowest frequency, fmin.

Algorithm 8 presents the pseudo-code for CycleSolo-CPU, which considers tasks in

decreasing order of their priority. For each task τi ∈ Γ, CycleSolo-CPU computes a range
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[ f low
i , f high

i ], which contains the lowest frequency ensuring that τi and all higher-priority

tasks τh|h<i are schedulable.

Consider a task τi ∈ Γ. Let us assume that the range [ f low
i−1 , f high

i−1 ] has already been

computed, and is known. To calculate the minimum frequency at which τi and all

higher-priority tasks are schedulable, we need to estimate the available slack in the

schedule. Based on Lemma 2, for a task τi, the workload βt
i changes at every schedul-

ing point t ∈ {Sh | h < i, t ≤ Di} ∪ Di. Therefore, CycleSolo-CPU determines the CPU

workload βt
i , that exists in the system up to each scheduling point t. However, for

CycleSolo-CPU, the scheduling points depend on the frequency at which the high-priority

workload is run. In particular, as the frequency decreases, the response time of high-

priority tasks Wh|h<i is monotonically non-decreasing. Thus, the estimated workload βt
i

also depends on the frequency fh chosen for the higher-priority tasks, and is monotoni-

cally non-decreasing as the frequency fh decreases. Assuming we choose a frequency fh,

CycleSolo-CPU’s slack calculation would yield a frequency f est
i = mint∈Sh,Di βt

i/t, where,

h < i and t ≤ Di.

We need to choose the frequency fh, such that the obtained f est
i can provide a safe

range [ f low
i , f high

i ] containing the lowest frequency f min
i which can ensure that τi and all

higher-priority tasks τh|h<i are schedulable.

Lemma 3: For a task τi ∈ Γ, choosing the high-priority frequency fh as f high
i−1 , yields

a correct range [ f low
i , f high

i ] in which lies the lowest frequency f min
i guaranteeing that τi

and all higher-priority tasks are schedulable using analysis S.

Proof: Let us choose fh = f high
i−1 − δ, where δ ∈ (0+, f high

i−1 − f low
i−1 ]. Now, in the worst

case, the minimum frequency required to schedule only the higher-priority tasks τh|h<i

can be f min
i−1 > fh. Therefore, at frequency fh, at least one of the higher-priority tasks

τh|h<i will miss their deadlines. As the slack calculation used to estimate f est
i uses the

higher-priority worst-case response time Wh, this deadline violation will lead to an in-

correct estimate of f est
i . Therefore, there is a contradiction. Thus, δ = 0, which implies
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Algorithm 8 Minimizing CPU Frequency

1: procedure CycleSolo-CPU(Γ, εconv)
2: flow = fhigh = Ucpu . initial bounds from Lemma 4
3: for τi ∈ Γ do . from high to low priority
4: flow, fhigh = EstimateFreqRange(τi, Γ, fhigh, flow)

5: fmin = BinarySearch(Γ, εconv, fhigh, flow)
6: return fmin

7: procedure EstimateFreqRange(τi, Γ, fhigh, flow)
8: fh = fhigh . Lemma 3, fh= high-priority frequency
9: /* S = slack, ω = resp time, β = CPU workload */

10: S = I = β = ∆ = 0, fest = 1, BusyFlag=TRUE
11: W = Calculate-HP-ResponseTime( fh)
12: Bi = CalculateBlocking(τi, Γ, fh, W)
13: ωg = Gi + Bi − Gcpu . Accelerator execution time
14: ω = Ci + Gi + Bi, ω′ = 0, Ji = ω
15: while ω < Di do
16: if BusyFlag == TRUE then
17: ∆ = Di −ω
18: while ω < Di AND ∆ > 0 do
19: ω′ = ∑i−1

h=0 Eh ∗ [
⌊

ω+Wh−(Eh/ fh)
Th

⌋
+ 1]

20: ω′ = ω′ + Ji + S, ∆ = ω′ −ω, ω = ω′

21: BusyFlag = FALSE
22: else . Start of an idle period
23: t = Find-EarliestSchedulingPoint(τi, Γ, ω)
24: S = S + (t−ω), ω = t, t′ = ω−ωg, β = ω− S−ωg
25: if β/t′ < fest then
26: fest = β/t′

27: BusyFlag = TRUE
28: flow, fhigh = RatchetSearch-Step( fhigh, flow, fest)
29: return flow, fhigh

30: procedure CalculateBlocking(τi, Γ, fh, W)
31: Gl,max = maxτl∈lp(τi)

(Gl), B = Gl,max, B′ = 0
32: while B != B′ do

33: B′ = B, B = Gl,max + ∑τh∈hp(τi)
d

B′+Wh−
Eh
fh

Th
e ∗ Gh

34: return B

fh = f high
i−1 . �

Ratchet Search: A “ratchet search” is an incremental technique that refines earlier

estimates based on additional parameters. Algorithm 9 presents the RatchetSearch-Step
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Algorithm 9 Calculating the CycleSolo Frequency Bounds

1: procedure RatchetSearch-Step( fhigh, flow, fest)
2: /* fhigh = upper bound, flow = lower bound*/
3: if fest > fhigh then . check estimate against bounds
4: flow = fhigh; fhigh = fest . Case III
5: elseif fest > flow
6: flow = fest . Case II
7: return flow, fhigh . chosen frequency range

routine, which is a single step of RatchetSearch, in the context of estimating the bounds

of the frequency range [ f low
i , f high

i ].

Consider the frequency f est
i obtained by choosing the high-priority frequency fh =

f high
i−1 . We can have three scenarios:

Case I. f est
i < f low

i−1 implies that τh ∈ Γ | h ≤ i will be schedulable at fh, as the

available slack is sufficient to support an operating frequency f est
i ≤ fh. Hence, no

change is needed to the existing frequency range, as f min
i ∈ [ f low

i−1 , f high
i−1 ].

Case II. f est
i ∈ [ f low

i−1 , f high
i−1 ]. Of all the frequencies in the previously-computed feasi-

ble range, choosing fh = f high
i−1 , introduces the least-possible high-priority interference.

This creates the maximum-possible slack for τi, and enables f est
i to be minimized for the

frequencies in the feasible range. Therefore, the minimum frequency f min
i required to

schedule tasks τh ∈ Γ | h ≤ i is always greater than f est
i . Thus, the lower bound of the

range f low
i can be safely updated to f est

i .

Case III. f est
i > f high

i−1 implies that τi is not schedulable at fh = f high
i−1 . Therefore, the

lower bound of the range f low
i can be safely updated to fh. The previous statement also

implies that task τi would not be schedulable for any frequency f < fh. Therefore,

choosing fh = f high
i−1 also introduces the maximum-feasible high-priority interference,

which minimizes the available slack and allows f est
i to be maximized. Thus, f est

i is a

safe and tight upper bound which guarantees that tasks τh ∈ Γ | h ≤ i are schedulable.

Therefore, the upper bound of the range f high
i can be safely updated to f est

i .

However, the RatchetSearch routine requires an initial estimate of the upper and lower
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bounds of the range, f low
init and f high

init , in which the minimum frequency lies. As Ratchet-

Search always increases or “ratchets up” the value of the bounds, both bounds can be

initialized to f low
init = f high

init = 0.

Lemma 4: The lowest-possible CPU frequency, fmin, at which a taskset Γ is schedu-

lable is always greater than or equal to Ucpu ∗ fmax, where Ucpu is the CPU utilization of

the taskset at the maximum operating frequency fmax.

Proof: Let the taskset Γ be schedulable at frequency f ′ = Ucpu ∗ fmax − ε, for some

ε > 0. At this frequency f ′, the CPU utilization of the taskset will be Ucpu ∗ fmax/ f ′ > 1.

Therefore, the taskset cannot be schedulable at frequency f ′. �

Therefore, as an optimization, the initial estimate of the bounds, f low
init and f high

init , con-

taining the minimum frequency can be set to f low
init = f high

init = Ucpu ∗ fmax.

Based on the final frequency range [ flow, fhigh] returned by RatchetSearch, a binary

search over the estimated range converges to the lowest frequency which allows a taskset

to be schedulable, for a given schedulability-analysis technique.

Theorem 2: CycleSolo-CPU converges to the lowest CPU frequency fmin at which Γ is

schedulable using analysis S.

Proof: The proof follows from Lemmas 1, 2, 3 and 4. �

The time-complexity of RatchetSearch is linear in the number of tasks. The CycleSolo

slack-calculation step has pseudo-polynomial complexity due to the response-time test.

Example: Consider a taskset Γ with two implicit-deadline tasks τ1 = (C1=10, G1=8,

T1=50), and τ2 = (C2=20, G2=5, T2=80). For this example, assume that the CPU interven-

tion required for accelerator access Gm = 0. To determine schedulability, we consider

the request-driven analysis. The initial range estimates, f low
init and f high

init , are set to the total

CPU utilization 0.45. For τ1, the only effective scheduling point to consider is t = 50,

which is τ1’s deadline. By calculating the CPU execution and slack up to time t = 50, we

obtain the minimum CPU frequency estimate f est
1 = C1/(50− G1 − G2) = 0.27. How-

ever, as f est
1 < f low

init (Case I of RatchetSearch) the bounds are not updated. Subsequently,
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we need to determine the lowest frequency f est
2 , which ensures τ2 is schedulable in the

presence of interference from τ1, running at CPU frequency f high
1 = 0.45 (Lemma 3).

From Lemma 2, the effective scheduling points we need to consider are t = 42, corre-

sponding to an effective scheduling point of task τ1, and t = 80, corresponding to τ2’s

deadline. However, the request-driven analysis indicates that there is no slack up to

t′ = 53. Hence, we only need to consider t = 80. Computing the CPU execution and

slack up to t = 80 yields f est
2 = (2 ∗ C1 + C2)/(80− G1 − G2) = 0.597. As f est

2 > f high
1 ,

the upper bound is updated to f high
2 = 0.597 (Case III of RatchetSearch), and the lower

bound f low
2 is set to f high

1 = 0.45. Therefore, the final CPU frequency range is [ f low
2 =

0.45, f high
2 = 0.597]. Performing a binary search over this range yields the minimum CPU

frequency fmin = 0.597, ensuring schedulability using the request-driven analysis.

CycleSolo-Accel: Consider a uniprocessor whose frequency is not adjustable, with

a single accelerator which supports frequency scaling. To minimize energy, we need to

find the lowest-possible accelerator frequency at which all tasks meet their deadlines. In

practice, such a scenario rarely exists, but CycleSolo-Accel helps bootstrap our CycleTan-

dem algorithm.

Algorithm 10 presents the pseudo-code for CycleSolo-Accel, which considers tasks in

decreasing priority order. For each task τi ∈ Γ, CycleSolo-Accel uses RatchetSearch to

compute the range [ f low
i , f high

i ], which contains the lowest accelerator frequency which

ensures that tasks τh ∈ Γ | h ≤ i are schedulable. CycleSolo-Accel is identical to CycleSolo-

CPU, except that it (i) calculates the frequency using the accelerator workload in the

critical zone, and (ii) only performs the frequency-range estimation for tasks with accel-

erator segments. Thus, the results proved for CycleSolo-CPU also hold in the context of

CycleSolo-Accel.

CycleSolo-ID: Consider a uniprocessor coupled with a single non-preemptive ac-

celerator, where their operating frequencies can only be scaled by the same factor. To

minimize energy, we need to find the lowest-possible identical frequency-scaling factor

at which all tasks meet their deadlines. In practice, this scenario may exist when a CPU
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Algorithm 10 Minimizing Accelerator Frequency

1: procedure CycleSolo-Accel(Γ, εconv)
2: flow = fhigh = Uacc . initial bounds
3: for τi ∈ Γ do . from high to low priority
4: flow, fhigh = EstimateFreqRange(τi, Γ, fhigh, flow)

5: fmin = BinarySearch(Γ, εconv, fhigh, flow)
6: return fmin

7: procedure EstimateFreqRange(τi, Γ, fhigh, flow)
8: /*S = slack, ω = resp time, β = accelerator workload*/
9: fh = fhigh, S = β = ∆ = 0, fest = 1, BusyFlag=TRUE

10: W = Calculate-HP-ResponseTime( fh)
11: Bi = CalculateBlocking(τi, Γ, fh, W)
12: ωg = Gi − Gcpu . Accelerator execution time
13: ω = Ci + Gi + Bi, ω′ = 0, Ji = ω
14: while ω < Di do
15: if BusyFlag == TRUE then
16: ∆ = Di −ω
17: while ω < Di AND ∆ > 0 do
18: ω′ = ∑i−1

h=0 Eh ∗ [
⌊

ω+Wh−(Eh)
Th

⌋
+ 1]

19: ω′ = ω′ + Ji + S, ∆ = ω′ −ω, ω = ω′

20: BusyFlag = FALSE
21: else . Start of an idle period
22: t=Find-EarliestSchedulingPoint(τi, Γ, ω)
23: S = S + (t−ω), ω = t, t′ = ωg + S, β = ωg
24: if β/t′ < fest then
25: fest = β/t′

26: BusyFlag = TRUE
27: flow, fhigh = RatchetSearch-Step( fhigh, flow, fest)
28: return flow, fhigh

29: procedure CalculateBlocking(τi, Γ, fh, W)
30: Gl,max = maxτl∈lp(τi)

(Gl), B = Gl,max/ fh, B′ = 0
31: while B != B′ do
32: B′ = B, B = Gl,max

fh
+ ∑τh∈hp(τi)

dB′+Wh−Eh
Th

e ∗ Gh
fh

33: return B

is combined with an on-chip accelerator, and both share the same oscillator.

Algorithm 11 presents the pseudo-code for CycleSolo-ID, which considers tasks in

decreasing order of their priority. For each task τi ∈ Γ, CycleSolo-ID uses RatchetSearch

to compute the range [ f low
i , f high

i ], which contains the lowest common frequency-scaling
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Algorithm 11 Minimizing the Common Frequency

1: procedure CycleSolo-ID(Γ, εconv)
2: flow = fhigh = Ucpu . initial bounds
3: for τi ∈ Γ do . from high to low priority
4: flow, fhigh = EstimateFreqRange(τi, Γ, fhigh, flow)

5: fmin = BinarySearch(Γ, εconv, fhigh, flow)
6: return fmin

7: procedure EstimateFreqRange(τi, Γ, fhigh, flow)
8: /*S = slack, ω = resp time, β = total workload*/
9: fh = fhigh, S = β = ∆ = 0, fest = 1, BusyFlag=TRUE

10: W = Calculate-HP-ResponseTime( fh)
11: Bi = CalculateBlocking(τi, Γ, fh, W)
12: ω = Ci + Gi + Bi, ω′ = 0, Ji = ω
13: while ω < Di do
14: if BusyFlag == TRUE then
15: ∆ = Di −ω
16: while ω < Di AND ∆ > 0 do
17: ω′ = ∑i−1

h=0 Eh ∗ [
⌊

ω+Wh−(Eh/ fh)
Th

⌋
+ 1]

18: ω′ = ω′ + Ji + S, ∆ = ω′ −ω, ω = ω′

19: BusyFlag = FALSE
20: else . Start of an idle period
21: t=Find-EarliestSchedulingPoint(τi, Γ, ω)
22: S = S + (t−ω), ω = t, t′ = ω− Bi, β = ω− Bi − S
23: if β/t′ < fest then
24: fest = β/t′

25: BusyFlag = TRUE
26: flow, fhigh = RatchetSearch-Step( fhigh, flow, fest)
27: return flow, fhigh

28: procedure CalculateBlocking(τi, Γ, fh, W)
29: Gl,max = maxτl∈lp(τi)

(Gl), B = Gl,max/ fh, B′ = 0
30: while B != B′ do

31: B′ = B, B = Gl,max
fh

+ ∑τh∈hp(τi)
d

B′+Wh−
Eh
fh

Th
e ∗ Gh

fh

32: return B

factor which can ensure that tasks τh ∈ Γ | h ≤ i are schedulable. CycleSolo-ID is

identical to CycleSolo-CPU, except that it calculates the frequency using both the CPU

and accelerator workload in the critical zone. Thus, all the results proved for CycleSolo-

CPU also hold in the context of CycleSolo-ID.

Like SysClock, in theory, the CycleSolo algorithms can also use a per-task binary search
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to converge to the minimum frequency fi, which ensures that a task τi is schedula-

ble in the presence of high-priority interference. This approach would entail multi-

ple calls to the pseudo-polynomial response-time-analysis. Therefore, for n tasks and

an operating frequency range fop, the per-task-binary-search has n ∗ log( fop) pseudo-

polynomial complexity. However, the ratchet-search-based-technique has n + log( frs)

pseudo-polynomial complexity, where frs < fop is the range returned by RatchetSearch.

8.3 CycleTandem Algorithm

Consider a uniprocessor coupled with a single non-preemptive accelerator, where the

CPU and accelerator operating frequencies can be set independently. Therefore, to min-

imize the energy consumption of the system, the CPU and accelerator frequencies need

to be optimized in tandem.

Though the CPU and accelerator frequencies can be set independently, the taskset-

schedulability constraint introduces a dependency between the CPU and accelerator fre-

quencies. We now prove the “See-Saw Theorem” which shows the relationship between

the CPU and accelerator frequencies.

Theorem 3: For a taskset Γ to be schedulable according to analysis S, both the CPU

frequency fcpu and the accelerator frequency facc cannot be less than the minimum com-

mon frequency, f solo
id , determined by CycleSolo-ID.

Proof: Suppose Γ is schedulable by S, when both the CPU and accelerator frequen-

cies fcpu, facc < f solo
id . Therefore, Γ will be schedulable if both the accelerator and CPU

frequencies are set to fid = max( fcpu, facc) < f solo
id . However, given an analysis tech-

nique S, CycleSolo-ID returns the minimum common frequency, f solo
id . Thus, there is a

contradiction. �

We now see that there is a see-saw relationship between facc and fcpu. If one is reduced

to be less than f solo
id , the other will increase and always be greater than or equal to f solo

id .

Thus, we can also conclude that facc is monotonically non-increasing with fcpu, and vice-



CHAPTER 8. ENERGY-SAVING SCHEDULING FOR REAL-TIME SYSTEMS WITH
HARDWARE ACCELERATORS 195

Algorithm 12 CycleTandem Algorithm

1: procedure CycleTandem(Γ, εconv)
2: f solo

cpu = CycleSolo-CPU(Γ, εconv)
3: f solo

acc = CycleSolo-Accel(Γ, εconv)
4: f up

cpu, f up
acc = ComputeRange(Γ, f solo

cpu , f solo
acc , εconv)

5: if f up
cpu − f solo

cpu < f up
acc − f solo

acc then
6: fcpu, facc = SearchRange-CPU(Γ, f up

cpu, f solo
cpu )

7: else
8: fcpu, facc = SearchRange-Acc(Γ, f up

acc, f solo
acc )

9: return fcpu, facc

versa. Therefore, given an analysis technique, for every feasible CPU frequency fcpu, there

exists a unique minimum accelerator frequency, facc, which guarantees schedulability.

This accelerator frequency can be found by scaling the taskset to the CPU frequency,

and then computing the corresponding minimum accelerator frequency using CycleSolo-

Accel. Similarly, for every feasible accelerator frequency facc, CycleSolo-CPU can find the

minimum CPU frequency, fcpu, guaranteeing schedulability.

It is trivial to show that, for a fixed CPU (accelerator) frequency, the minimum cor-

responding accelerator (CPU) frequency minimizes energy. Therefore, given the one-to-

one see-saw relationship between the CPU and accelerator frequencies, it is sufficient to

find the optimal accelerator frequency in order to compute the optimal CPU frequency,

and vice versa. Thus, an exhaustive search in the range of feasible accelerator frequencies

will yield the optimal frequency pair ( f opt
cpu, f opt

acc ).

Theorem 4: The energy-optimal accelerator frequency f opt
acc always lies in [ f solo

acc , f up
acc],

where f solo
acc is the frequency returned by CycleSolo-Accel, and f up

acc is the minimum feasible

accelerator frequency guaranteeing schedulability, when the CPU is set to the CycleSolo-

CPU frequency f solo
cpu .

Proof: If we set the CPU frequency to be f solo
cpu , there may be some slack in the system

which can be utilized to reduce the accelerator frequency below its maxima. As f solo
cpu is

the lowest feasible CPU frequency (Theorem 2), the corresponding accelerator frequency

f up
acc can safely upper-bound the range which contains the optimal accelerator frequency,
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as any frequency above f up
acc will not be energy-efficient. Additionally, CycleSolo-Accel

yields the lowest feasible accelerator frequency f solo
acc (corollary of Theorem 2). Therefore,

the optimal accelerator frequency f opt
acc must lie in [ f solo

acc , f up
acc]. �

As a corollary, if we choose the accelerator frequency to be f solo
acc , we obtain the CPU

frequency f up
cpu. Therefore, the optimal CPU frequency f opt

cpu will lie in [ f solo
cpu , f up

cpu].

For CycleSolo, assuming a convex energy function, the energy consumption is min-

imized at the minimum feasible frequency, which is independent of the power-model

parameters. However, for CycleTandem, the energy-optimal frequency pair depends on

the power-model parameters, due to the non-linear see-saw schedulability-analysis-

dependent relationship between the accelerator and CPU frequencies which renders the

energy function non-convex. This non-linearity is caused by an effect we refer to as slack-

squeezing. Given some usable slack, the frequency of the CPU (accelerator) depends on

the effective utilization of the CPU (accelerator) up to a scheduling point. Therefore, a

δ > 0 increase in the CPU (accelerator) frequency can cause a δ′ > δ decrease in the cor-

responding accelerator (CPU) frequency. In other words, if δcpu > δacc, the CPU squeezes

the available slack more efficiently than the accelerator, and vice versa. The following

theorem highlights the effect of slack squeezing on energy.

Theorem 5: Consider a feasible CPU frequency fcpu ∈ [ f solo
cpu , fmax), and its corre-

sponding minimum feasible accelerator frequency facc. If we increase the CPU frequency

by δ, then the energy consumption decreases if and only if the gradient of the accelerator

frequency with respect to the CPU frequency,

|∇ fcpu, facc | = |
∂ facc

∂ fcpu
| >

Kcpu ∗Ucpu ∗ f α−1
cpu

Kacc ∗Uacc ∗ f α−1
acc

(8.5)

Proof: Given the power model from Section 8.1.2, the gradients of the energy at any

frequency pair ( fcpu, facc), are: ∂Etotal/∂ fcpu = α ∗ Kcpu ∗Ucpu ∗ f α−1
cpu and ∂Etotal/∂ facc =

α ∗ Kacc ∗ Uacc ∗ f α−1
acc . Now, for each frequency pair, assume that an increase in one

frequency say fcpu, causes a corresponding increase in energy (∂Etotal), which can be

compensated (−∂Etotal) by a decrease in the other frequency facc. In this case, we can
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divide one of the above gradients by the other, we get the ratio of the frequency changes

which yields the same energy, i.e.,

|∇0| =
∂Etotal/∂ fcpu

∂Etotal/∂ facc
=

∂ facc

∂ fcpu
=

Kcpu ∗Ucpu ∗ f α−1
cpu

Kacc ∗Uacc ∗ f α−1
acc

Now, for a feasible frequency pair ( fcpu, facc), if the absolute value of the gradient of

the see-saw relationship at frequency fcpu, |∇ fcpu, facc | > |∇0|, then the decrease in the

accelerator frequency facc can more than compensate for the increase in energy caused by

increasing the CPU frequency fcpu, causing the overall energy to decrease. Conversely, if

the energy decreases on increasing the CPU frequency fcpu by a small value ∆, then the

corresponding decrease in accelerator frequency facc by a small value ∆′, is more than

that required to compensate for the increase in energy caused by increasing fcpu, leading

to |∇ fcpu, facc | > |∇0|. �

The corollary of the above theorem, corresponding to the accelerator frequency also

holds.

Consider a taskset Γ with CPU and accelerator utilization Ucpu and Uacc. Let

( fcpu, facc) constitute a feasible frequency pair, ensuring Γ is schedulable. Therefore,

based on the energy model described in Section 8.1.2, the normalized energy con-

sumption of the system in the hyperperiod is given by Etotal = Ecpu + Eacc, where

Ecpu = Kcpu ∗Ucpu ∗ f α−1
cpu + Ecpu

static is the CPU energy, and Eacc = Kacc ∗Uacc ∗ f α−1
acc + Eacc

static

is the accelerator energy. Since we have no control on reducing the static power of the

system, we conservatively assume that it also shares a direct dependency on the operat-

ing voltage and frequency. Thus, both Ecpu and Eacc are indeed convex non-decreasing

functions in fcpu and facc respectively, and their combination Etotal will also be a con-

vex function in fcpu and facc. However, if the schedulability constraint is applied, then

due to the see-saw theorem, facc can become a non-linear non-convex function of fcpu

and vice-versa, which in turn can render the energy function Etotal non-convex. This

non-convexity unfortunately makes it difficult to find the optimal frequency-pair which

minimizes the total energy consumption.
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Figure 8.1: (a) Energy and (b) Accelerator Frequency vs CPU Frequency

By looking at the function for Etotal∀(α > 3), it may seem that, if Kcpu ∗ Ucpu >

Kacc ∗Uacc, then to minimize Etotal, fcpu < facc, and vice versa. However, the non-linear

relationship between facc and fcpu causes this statement to not always hold, except under

special conditions.

Theorem 6: If Kcpu ∗Ucpu >> Kacc ∗Uacc, then the energy-optimal CPU frequency for

taskset Γ approaches f solo
cpu .

Proof: In this case, Etotal ≈ Ecpu. As Ecpu is minimized at f solo
cpu , therefore as fcpu →

f solo
cpu , Etotal is also minimized. �

As a corollary, if Kacc ∗Uacc >> Kcpu ∗Ucpu, then for taskset Γ the energy-optimal ac-

celerator frequency facc → f solo
acc . Therefore, the energy-optimal frequency pair depends

on (i) the ratio of the accelerator and CPU utilization, (ii) the power-model parameters,

and (iii) the schedulability-analysis-dependent see-saw relationship between facc and

fcpu.

Example: Consider a taskset Γ consisting of 5 implicit-deadline tasks with their ex-

ecution parameters (C, Ge, Gm, T): {(0.27, 15.11, 1, 84), (24.08, 0, 0, 221), (37.89, 0, 0, 231),

(13.19, 0, 0, 330), (78.44, 45.18, 1, 427)}. Figure 8.1 illustrates the relationship of the CPU

frequency, fcpu with the energy consumption Figure 8.1a and the accelerator frequency

(Figure 8.1b). In (Figure 8.1a), note the non-convexity of the energy function and the
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dependence of the energy-optimal frequency on the power-model parameters. Addi-

tionally, observe the non-linear relationship between the accelerator frequency and the

CPU frequency in Figure 8.1b. Notice that for fcpu ≈ 0.7 to 0.75, the accelerator frequency

drops rapidly due to the slack-squeezing effect.

It appears that the energy-optimal frequency pair cannot be found analytically, and

instead we need to search the feasible space to find the optimal solution. Of the CPU

and accelerator frequency ranges, the smaller range can be chosen. In theory, a gradient

descent over the feasible range can yield a local optima. Alternatively, if the range is

small, an exhaustive search with a small step size can quickly yield a good solution.

Algorithm 12 presents the CycleTandem algorithm, which can utilize any reasonable

search technique, SearchRange, in the feasible range. In our experiments, we use a

greedy-search algorithm which first computes the energy at both ends of the feasible

range. Subsequently, it chooses the endpoint with the lower energy, and increases/de-

creases the CPU (accelerator) frequency in small steps, until the first local minima is

reached.

Accommodating Discrete Frequencies: In most systems, the frequency of the pro-

cessor (accelerator) can only be set to discrete values. For CycleSolo, we can compute

the minimum frequency, and pick the next-greater discrete frequency. Alternatively, the

binary-search step of CycleSolo can only consider the discrete frequencies. If no discrete

frequencies lie in the feasible range, we pick the next-greater frequency than the upper

bound of the range. Similarly, for CycleTandem, we can search over the discrete frequen-

cies in the feasible range, and pick the frequency pair yielding the minimum energy.

8.4 Multi-core CycleSolo and CycleTandem

We now extend CycleSolo and CycleTandem for fully-partitioned multi-core processors,

coupled with a single accelerator. With respect to CPU frequency, we consider two

scenarios where, if the CPU supports frequency scaling, then (i) all its cores must be set
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to the same frequency, and (ii) each core’s frequency can be independently set. We call

case (i) the uniform-frequency setting, and case (ii) the independent-frequency setting. We

now propose techniques for both of these scenarios. Lastly, we discuss task-partitioning

techniques for both scenarios.

8.4.1 Uniform Frequency

Consider a taskset Γ, partitioned among m cores, such that each core has a subset of

tasks Ψj ⊂ Γ | j = 1, 2, .., m. The context in which each algorithm can be used, given the

uniform-frequency setting is as follows:

1) CycleSolo-CPU: all the CPU cores can be set to a common frequency, and the accel-

erator frequency is not adjustable.

2) CycleSolo-Accel: the frequency of the CPU cores cannot be scaled, and the accelera-

tor frequency is adjustable.

3) CycleSolo-ID: all the CPU cores and the accelerator, can only be set to an identical

frequency-scaling factor.

4) CycleTandem: all the CPU cores can be set to a common frequency, and the acceler-

ator frequency is also adjustable.

Consider the CycleSolo algorithms. The best solution is still a single lowest frequency.

Therefore, Lemma 3 holds, and we can use the RatchetSearch frequency-range estimation

algorithm. The only differences from the uniprocessor case are as follows: (i) for each

core j, interference is computed considering only the tasks τi ∈ Ψj, and (ii) remote

blocking by tasks on other cores is taken into account.

Theorem 7: Given a taskset Γ, and its schedulable partition Ψ onto an m-core pro-

cessor, then the CycleSolo algorithms converge to the lowest CPU/accelerator/common

frequency fmin at which partition Ψ is schedulable using analysis S.

Proof: The CycleSolo algorithms compute a single frequency range. Thus, Theorem

2 holds, and a single binary search, testing schedulability across m cores using analysis
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S, over the feasible range returned by RatchetSearch, converges to the lowest frequency

fmin. �

Consider the CycleTandem algorithm. We share a single CPU frequency across all

cores. Therefore, the see-saw theorem still holds, and a one to one mapping between

every common CPU and accelerator frequency still exists. Thus, multi-core CycleTandem

can use CycleSolo-CPU and CycleSolo-Accel to compute a lower bound on the common

CPU frequency f solo
cpu , and the accelerator frequency f solo

acc respectively. Therefore, using

f solo
cpu and f solo

acc , the safe upper bounds on the accelerator frequency f up
acc, and the common

CPU frequency f up
cpu can be calculated. Subsequently, performing an exhaustive search

over the feasible CPU or accelerator range can yield the energy-optimal frequency pair.

Similarly, we can also use the greedy search proposed for uniprocessors.

8.4.2 Per-CPU-core Independent Frequency

Consider a taskset Γ, partitioned among m cores, such that each core has a subset of

tasks Ψj ⊂ Γ | j = 1, 2, .., m. In the independent-frequency setting, where each CPU

core can have its own frequency, only the CycleSolo-CPU and CycleTandem algorithms can

exploit this feature. Therefore, we now describe techniques for both the CycleSolo-CPU

and CycleTandem scenarios in the independent-frequency setting.

Due to self-suspension, the response time of a task on one core, can depend on the

frequency chosen for another core. This is due to the dependence of a task τi’s response

time on the response time of higher-priority tasks τh | h < i, which may be allocated to

other cores. This interdependence between cores makes it difficult to find the optimal

frequencies for a given task partition in the independent-frequency setting. Therefore,

we cannot perform a search over a single frequency range, and instead need to rely on

heuristics to find a good solution.



CHAPTER 8. ENERGY-SAVING SCHEDULING FOR REAL-TIME SYSTEMS WITH
HARDWARE ACCELERATORS 202

Algorithm 13 CycleSolo-CPU Independent Frequency

1: procedure CycleSolo-CPU-Independent(Γ, Ψ, m, εconv)
2: /* Ψ - Partition, m - Number of Cores*/
3: χ = {} . set of cores whose frequency is chosen
4: f solo

cpu = CycleSolo-CPU(Γ, εconv) . CycleSolo-CPU Uniform Frequency
5: fcpu,j = f solo

cpu ∀j ∈ 1, 2, .., m . set each core’s frequency to f solo
cpu

6: for j ∈ 1 to m do . choose the best core in each iteration
7: f , core = FindBestCoreFreq(Γ, χ, fcpu)
8: fcpu,j = f . set the chosen frequency for the chosen core
9: χ← χ + core . assign the core to chosen set

10: return fcpu,j∀j ∈ 1, 2, .., m

11: procedure FindBestCoreFreq(Γ, χ, fcpu)
12: /* χ - cores whose frequency is chosen */
13: /* fcpu - array of assigned per-core frequencies */
14: /* Initialize the best energy savings, core and frequency */
15: Ebest

saved = 0, corebest = −1, fbest = f solo
cpu

16: for j ∈ 1 to m do . find core with most energy-reduction capability
17: if j /∈ χ then . check if core frequency is not set yet
18: fhigh = f solo

cpu , flow = Ucpu,j . set search range
19: /* scale the tasks as per the assigned frequencies */
20: Γ′ = ScaleTasksetCPU-Frequency( fcpu)
21: /* estimate the best frequency for this core */
22: fchosen = BinarySearch(Γ′, εconv, fhigh, flow)
23: Esaved = EstimateEnergySaving(Γ, fchosen)
24: /* check if the energy savings is the best in this iteration */
25: if Esaved > Ebest

saved then
26: Ebest

saved = Esaved, corebest = j, fbest = fchosen

27: return fbest, corebest

CycleSolo-CPU Independent Frequency

In this scenario, each CPU core can be individually set to an independent frequency, and

the accelerator frequency is not adjustable. To find a good set of per-core frequencies,

f solo
cpu,j|j < m, we utilize a greedy heuristic described in Algorithm 13. This heuristic

initially starts by setting each core’s frequency to the CycleSolo-CPU uniform frequency,

fcpu,j = f solo
cpu |j < m. We then try to estimate the lowest frequency fcpu,j each core j can

be set to, while keeping all the other cores at a fixed frequency. The core k which leads

to the most energy reduction is chosen and added to the set χ, which keeps track of
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Algorithm 14 CycleTandem-Independent Algorithm

1: procedure CycleTandem-Independent(Γ, Ψ, m, εconv)
2: f solo

cpu = CycleSolo-CPU(Γ, εconv) . get the CycleSolo-CPU uniform frequency
3: f solo

acc = CycleSolo-Accel(Γ, εconv) . get the CycleSolo-Accel frequency
4: f up

cpu, f up
acc = ComputeRange(Γ, f solo

cpu , f solo
acc , εconv) . compute the search range

5: /* Perform a search over the Accelerator Frequency Range */
6: { fcpu,j∀j ∈ 1, 2, .., m}, facc = SearchRangeIndependent-Acc(Γ, f up

acc, f solo
acc )

7: return { fcpu,j∀j ∈ 1, 2, .., m}, facc . per-core CPU and accelerator frequencies

the cores whose frequency has already been assigned, and the frequency of core fcpu,k

is set to the corresponding frequency. This process is repeated m times, where m is

the number of cores, such that in each iteration, (i) only cores j /∈ χ are considered in

the frequency-estimation phase with their initial frequency assigned as f solo
cpu , and (ii) the

cores k ∈ χ are set to the frequency that was assigned to them in previous iterations.

This ultimately yields a solution where, each core j’s frequency is fcpu,j <= f solo
cpu |j < m.

Note that the solution provided by this heuristic is not optimal, as in some situations,

increasing the frequency of some core k can provide greater energy savings due to the

decrease in the frequency of other cores j 6= k. However, the heuristic guarantees that

the energy consumption of the solution is lower than or equal to the uniform-frequency

CycleSolo-CPU solution.

CycleTandem Independent Frequency

In this scenario, each CPU core can be individually set to an independent frequency,

and the accelerator frequency is also adjustable. To find a good set of per-core frequen-

cies, f tandem
cpu,j |j < m, we utilize a heuristic described in Algorithm 14. Like the uniform-

frequency CycleTandem setting, this heuristic also performs a greedy or brute-force search

over the feasible accelerator frequency range. For a feasible accelerator frequency in the

range, the taskset is scaled, and the CycleSolo-CPU-Independent heuristic (Algorithm 13)

is used to find a set of good per-core CPU frequencies, corresponding to the chosen

accelerator frequency.
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8.4.3 Task Partitioning

Load balancing is often used to determine an energy-efficient partition in multi-core

systems [79]. When the CPU frequency is common across all cores, the core with the

highest effective load determines the CPU frequency. Thus, load balancing is useful

as it tries to minimize the maximum load across cores [79]. Among task-partitioning

heuristics studied in the literature, the Worst-Fit Decreasing (WFD) heuristic is known

to yield a well-balanced partition [79]. WFD allocates tasks to cores in non-decreasing

order of their utilization. Given a task to be allocated, WFD assigns it to the core with

the least utilization. When WFD can allocate tasks to use only m cores, it is equivalent

to List Scheduling.

However, the blocking and self-suspension penalties introduced by accessing the ac-

celerator affects the frequency estimation. Therefore, motivated by the work in [182],

we propose a modified version of WFD called Sync-Aware WFD or SA-WFD, which for

a taskset Γ, first computes the fraction of CPU load belonging to tasks which utilize

the accelerator, γacc = Uacc
cpu/Utotal

cpu , and subsequently allocates ψ = dγacc ∗ me cores for

these tasks. Finally, our heuristic balances the load while constraining the tasks using

the accelerator to ψ cores. Thus, this heuristic restricts the self-suspension penalties to a

few cores.

Similarly, when each core can have its own frequency (CycleSolo-CPU and CycleTan-

dem), load balancing ensures that all cores have an intermediate frequency, rather than a

single core having a high frequency. This is desirable, as indicated in the power model

in Section 8.1.2, energy consumption is proportional to f α, where α > 3 [83]. Therefore,

both WFD and SA-WFD are also applicable in this setting.
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Figure 8.2: Energy as a function of (a) CPU Utilization, (b) Accelerator Utilization

8.5 Experimental Evaluation

We now assess the energy-savings delivered by our proposed CycleSolo and CycleTandem

algorithms. We first present analytical evaluations using the request-driven analysis [55]

and the power model presented in Section 8.1.2. Subsequently, we present experiments

performed on the NVIDIA TX2 [22] embedded platform to demonstrate the practical

applicability of our proposed techniques. We assume fully-partitioned fixed-priority

scheduling, with task priorities assigned using the Rate-Monotonic policy [29]. To the

best of our knowledge, no other energy-saving real-time scheduling techniques exist in

the context of hardware accelerators. Therefore, we compare against a base case without

energy management.

8.5.1 Analytical Evaluation

We compare our proposed techniques on the basis of analytically-computed energy sav-

ings over the hyperperiod of a given taskset. Every data point plotted is an average

of 5000 tasksets, randomly generated using the UUniFast-Discard [175] algorithm, such

that no task has a CPU/accelerator utilization greater than 0.4. We consider sporadic

tasks with the minimum inter-arrival time randomly assigned to be between 5 and 500
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Figure 8.3: Energy as a function of (a) % of tasks using the accelerator (b) power-model
parameters

time units.

Uniprocessor Experiments: Figures 8.2a, 8.2b and 8.3a plot the average normalized

energy as we vary (a) the CPU utilization keeping Uacc = 0.3, (b) the accelerator uti-

lization keeping Ucpu = 0.4, and (c) the fraction of tasks using the accelerator keeping

Ucpu = 0.4 and Uacc = 0.3. The power-model parameters are set to: Kcpu = 1, Kacc = 2

and α = 3. Consider Figure 8.2a. As the CPU utilization is varied, our proposed Cy-

cleTandem greedy-search heuristic returns a solution that in the worst-case consumes

1.53% greater energy than the brute-force search. Compared to the case without energy

management, i.e., executing all tasks at the maximum frequency, CycleTandem with the

greedy-search heuristic on average delivers up to 71.88% lower energy consumption.

Compared to the case without energy management, CycleSolo-CPU, CycleSolo-Accel and

CycleSolo-ID deliver up to 27.42%, 63.41% and 71.03% lower energy respectively. Similar

trends can be observed for Figures 8.2b and 8.3a, where the CycleTandem greedy-search

heuristic yields a result with near-optimal energy savings.

Figure 8.4 shows the computed CPU and accelerator frequencies for our proposed

techniques. For all three sub-figures, (8.4a, 8.4b and 8.4c) the CycleSolo-Accel and

CycleSolo-CPU frequencies are never greater than the CycleSolo-ID frequency. For Cy-
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Figure 8.4: CPU and Accelerator frequency as a function of (a) CPU Utilization, (b)
Accelerator Utilization, and (c) Percentage of tasks using the accelerator

cleTandem, note the see-saw relationship between the accelerator and CPU frequencies

around the CycleSolo-ID frequency.

We also performed experiments to determine the impact of varying the power-model

parameters on the CycleTandem greedy-search heuristic. Figure 8.3b plots the average

normalized energy for five sets of power-model parameters. Note that when the power-

model parameters are varied, the greedy-search heuristic yields solutions that, in the

worst case, consume only up to 12.48% more energy than the brute-force search.

Multicore Experiments Uniform Frequency: In Section 8.4, we proved that given

a taskset Γ and its schedulable partition P onto an m-core processor, we can find the
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Figure 8.5: WFD vs Sync-Aware WFD (SA-WFD) (a) schedulability comparisons, (b)
Energy vs CPU utilization, and (c) Energy vs Accelerator utilization

optimal solution for all the CycleSolo algorithms. Therefore, we consider m = 4 cores,

and focus on comparing our proposed Sync-Aware WFD (SA-WFD) heuristic against

WFD, in the context of CycleTandem.

Figure 8.5a compares SA-WFD and WFD on the basis of schedulability. The CPU

utilization is varied while keeping Uacc = 0.3. Observe that, as the CPU utilization

increases, SA-WFD yields more schedulable partitions than WFD, and can schedule up

to 6.3% more tasksets than WFD. We also illustrate the utility of our proposed greedy-

search heuristic for CycleTandem. Figures 8.5b and 8.5c plot the average normalized

energy for CycleTandem as we vary (b) the CPU utilization keeping Uacc = 0.3, and (c)
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Figure 8.6: Multicore Independent Frequency normalized energy vs CPU utilization (a)
independent frequency vs uniform frequency, and (b) WFD vs SA-WFD

the accelerator utilization keeping Ucpu = 1.5. Note that, for both WFD and SA-WFD, the

CycleTandem greedy-search heuristic returns a solution that, in the worst case consumes

1.38% and 1.42% more energy than the brute-force search, respectively. Comparing the

CycleTandem greedy-search heuristic across the two partitioning techniques indicates that

SA-WFD on average yields a solution with up to 3.3% lower energy consumption than

WFD. Thus, SA-WFD yields better schedulability and energy savings than WFD, with

the same algorithmic complexity.

Multicore Experiments Independent Frequency: In Section 8.4.2, we stated that

the independent-frequency setting is only applicable to CycleSolo-CPU and CycleTandem.

Therefore, we consider m = 4 cores, and focus on (i) comparing the energy savings of

these two algorithms in the independent-frequency setting as compared to the uniform-

frequency setting, and (ii) comparing our proposed Sync-Aware WFD (SA-WFD) heuris-

tic against WFD, for both CycleSolo-CPU and CycleTandem in the independent-frequency

context.

Figures 8.6a and 8.6b plot the normalized energy as we vary the CPU utilization

for a quad-core processor. For the uniform-frequency multicore setting, CycleTandem

yields the most energy-efficient solution. Therefore, in Figure 8.6a, we compare the
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Table 8.1: Experimental Tasksets Deployed on the NVIDIA TX2

Taskset (Γ) Tasks Ucpu Uacc Description

Γ1 8 1.75 0.39 High Ucpu, High Uacc
Γ2 4 0.44 0.14 Low Ucpu, High Uacc
Γ3 4 1.94 0.02 High Ucpu, Low Uacc
Γ4 6 0.10 0.52 Low Ucpu, High Uacc

independent-frequency heuristics using the uniform-frequency CycleTandem solution as

the baseline, while using the WFD partitioning algorithm. We observe that, on aver-

age, if we can set independent frequencies on each core both CycleSolo-CPU-Independent

and CycleTandem-Independent, can yield solutions with up to 10.3% and 53.8% lower

energy consumption than the uniform-frequency CycleTandem solution respectively. In

Figure 8.6b, we compare the independent frequency algorithms across the two partition-

ing techniques: WFD and SA-WFD. Our experiments indicate that SA-WFD can yield

marginally lower energy consumption (on average only up to 1.33%).

8.5.2 Experiments on the NVIDIA TX2

We next examine the practical energy savings delivered by our algorithms by performing

experiments on the NVIDIA Jetson TX2 embedded platform [22]. The TX2 contains 4

ARM A57 CPU cores, 2 Denver CPU cores and an integrated 256-core Pascal GPU [22].

In our experiments, we disable the 2 Denver CPU cores. The ARM cores can be set to

12 discrete frequencies ranging from 345.6 MHz to 2.03 GHz, and the GPU can be set

to 12 discrete frequencies ranging from 114.75 MHz to 1.13 GHz. Note that all 4 ARM

cores lie in the same voltage domain, and can only be set to the same frequency (uniform

frequency). However, the GPU lies in a separate power domain and its frequency can be

independently set.

We consider four tasksets Γi|i=1,2,3,4 described in Tables 8.1 and 8.2. Each taskset con-

sists of matrix-multiplication tasks accessing the GPU. The length of each task’s CPU

and GPU segments are configurable. An implementation of the MPCP-based synchro-
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Table 8.2: NVIDIA TX2 Taskset Parameters (ms)

Γ Implicit-deadline (D = T) Task Parameters (C,Ge,Gm,T)

Γ1 (20,4,0.3,100),(10,6,0.3,100),(30,4,0.3,150),(50,18,0.3,200),
(50,9,0.3,300),(100,30,0.3,300),(100,13,0.3,600),(400,30,0.3,1200)

Γ2 (10,13,0.3,150),(50,4,0.3,300),(60,18,0.3,600),(125,9,0.3,1200)

Γ3 (200,4,0.3,450),(300,4,0.3,600),(400,4,0.3,900),(1000,4,0.3,1800)

Γ4 (2,18,0.3,250),(4,30,0.3,250),(10,47,0.3,500),(20,47,0.3,500),
(10,89,0.3,750),(30,30,0.3,1500)

Table 8.3: CPU,GPU Frequencies used on the NVIDIA TX2 (MHz)

Γ CS-CPU CS-Accel CS-ID C-Tandem

Γ1 1728,1135 2032,1033 1881,1033 1728,1135

Γ2 499,1135 2032,319 806,421 499,523

Γ3 1267,1135 2032,115 1267,727 1267,217

Γ4 346,1135 2032,931 1728,931 653,931

nization approach was used to arbitrate GPU access. Tasks are allocated to cores using

Sync-Aware WFD. For all our proposed techniques, we compute the frequency(ies) using

our theoretical model, and then choose the next larger available CPU/GPU frequency.

Our algorithms depend on the ratio Kcpu/Kgpu. In our calculations, the power-model

parameters are set to: Kcpu = 1, Kacc = 1 and α = 3. This is based on the fact that both

the CPU and the GPU lie on the same chip [22]. We also assume that the task WCET

scales with the frequency. The frequencies we computed for the different tasksets can be

found in Table 8.3.

The energy consumption of each taskset is measured over multiple hyper-periods by

using the on-board INA3221 power monitors [183]. To compute the energy consumption,

we periodically read the monitors, which measure the power drawn by the 4 ARM cores

and the GPU, every 10 ms. The possible sources of error in our measurements are: (i)

the INA3221 has a measurement accuracy of 0.1%, and (ii) the overhead of reading the

INA3221 on the CPU. However, we believe that these sources of error are small and do

not qualitatively affect our results.
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Table 8.4: Power Measurements on the NVIDIA TX2 (milliwatts)

Γ Type No VFS CS-CPU CS-Accel CS-ID C-Tandem

Γ1 Total 1826.91 1435.20 1805.91 1601.79 1425.93
CPU 1338.36 995.07 1363.23 1160.09 985.45
GPU 488.03 440.12 440.12 441.69 440.48

Γ2 Total 906.23 607.38 835.82 537.31 530.12
CPU 607.14 305.06 611.41 312.01 305.59
GPU 299.09 302.32 224.41 225.30 224.53

Γ3 Total 1405.27 797.32 1363.00 784.31 782.74
CPU 1211.90 636.12 1209.90 636.12 629.53
GPU 193.37 161.20 153.10 161.20 153.20

Γ4 Total 632.57 419.61 625.28 539.78 404.65
CPU 469.41 238.95 467.97 381.29 244.86
GPU 163.15 180.65 157.30 158.48 159.78

To get a flavor of the realized energy savings, Γi|i=1,2,3,4 have differing amounts of

CPU and GPU utilization. The results are described in Table 8.4. Compared to the case

without frequency scaling, CycleTandem (C-Tandem) delivers the most energy savings,

and for taskset Γ3, we observe 44.29% lower power, which translates to a 1.78x increase

in the life of a battery-powered system. Similarly, when the CPU utilization is low (Γ2

and Γ4), using CycleSolo-CPU (CS-CPU) yields up to 32% reduction in power. Note that,

as we reduce the operating frequency, we observe greater reduction in CPU energy as

compared to GPU energy. This is likely because (i) the GPU energy also depends on

the frequency of the GPU memory, and, (ii) since there are multiple CPU cores, there is

more opportunity to reduce the CPU frequency.

8.6 Summary

In this chapter, we introduced energy-saving fixed-priority scheduling techniques for

real-time systems with non-preemptive hardware accelerators. We first proposed the

CycleSolo algorithms for systems where only the CPU or accelerator frequency can be set.

CycleSolo utilizes our novel ratchet search technique to compute a tight range containing
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the lowest frequency, following which a binary search in this range yields the optimal

frequency, for a given schedulability-analysis technique.

We also introduced the CycleTandem algorithm for systems where the processor and

accelerator frequencies can be independently set. We compute the feasible ranges con-

taining the energy-optimal CPU and accelerator frequency pair, and propose a greedy-

search heuristic to find a good solution.

Finally, we extend the CycleSolo and CycleTandem algorithms to fully-partitioned

multi-core processors. In this context, we also propose the Sync-Aware Worst-Fit De-

creasing heuristic which yields better schedulability and energy savings, than Worst-Fit

Decreasing. Analytical experiments show that our proposed techniques can deliver sig-

nificant energy savings. In addition, practical experiments on the NVIDIA TX2 indicate

significant energy savings – up to 44.29%, and validate the effectiveness of our theoreti-

cal contributions.



Chapter 9

Co-Scheduling Real-Time Workloads on

Concurrent Hardware Accelerators

Hardware accelerators often support concurrent execution, where requests from differ-

ent tasks can be executed in parallel, leading to better throughput and resource uti-

lization. This is especially true for modern GPU architectures such as NVIDIA Fermi

and Pascal [49] [50]. For example, the NVIDIA Xavier [21] has 512 cores which can be

utilized by concurrent kernels. Such platforms often provide in-built schedulers which

aim to maximize concurrency and throughput, but do not take into account task dead-

lines. Recent work [110] [111] has focused on using online techniques to co-schedule

multiple real-time tasks on an accelerator, so as to increase throughput and minimize

deadline misses. However, to the best of our knowledge, no known framework analyzes

the schedulability of tasksets being scheduled on platforms consisting of a multi-core

processor coupled with an accelerator supporting concurrent execution.

Traditionally, co-scheduling task requests concurrently on hardware accelerators like

GPUs has considered the global scheduling paradigm. In this paradigm, tasks requests

are ordered in a single queue [56] and dispatched to be scheduled on any part of the

global resource. However, recent GPU architectures such as NVIDIA Volta [36] cou-

pled with software-partitioning techniques [37] have enabled GPUs to be partitioned

214
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into multiple “fractional” components. The ability to create both compute and mem-

ory partitions can lead to increase predictability and lower interference. Therefore, in

this work, we also explore the impact of hardware accelerator partitioning on taskset

schedulability.

The primary contributions described in this chapter are as follows:

• We propose a schedulability-analysis framework for fixed-priority work-

conserving scheduling on platforms containing a hardware accelerator support-

ing concurrent execution. In particular, we introduce the novel liquefaction and

wavefront techniques which aid in computing a safe upper bound on the blocking

duration.

• We propose a schedulability-analysis framework for non-work-conserving FIFO

scheduling on a hardware accelerator supporting concurrent execution.

• We evaluate ad identify conditions where our proposed approach works better

than existing analyses [53].

• We propose techniques to partition the hardware accelerator into discrete parti-

tions, and allocate the taskset to those partitions.

9.1 Background and System Model

We now present the system model used in this chapter. We also briefly describe the

synchronization-based approach used to govern access to hardware accelerators [52],

along with its suspension-based schedulability analysis introduced in [53].

9.1.1 Assumptions and Task Model

Consider a taskset Γ consisting of n sporadic real-time tasks τ1, τ2, ..., τn. The taskset is

deployed on an m-core homogeneous multi-core processor M, with cores P1, P2,..., Pm
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coupled with a single non-preemptive hardware accelerator A, which supports concurrent

simultaneous execution of requests belonging to different tasks. We also assume that (i)

each task submits its request to the accelerator and self-suspends on the CPU, and (ii)

each task issues only one request at a time.

Each task τi ∈ Γ is characterized by: (i) Ci, the worst-case execution time (WCET) on

the CPU, (ii) Ti, the period or minimum job inter-arrival time (sporadic tasks), (iii) Di,

the relative deadline from the arrival time, and (iv) ηi, the number of accelerator requests

made in each job of the task. Each accelerator request τi,k|k = 1, 2, ..., ηi is characterized

by the tuple {Gi,k, Fi,k, ζi,k}, where Gi,k is the WCET, Fi,k ∈ (0, 1] is the fraction of the

accelerator requested, and ζi,k ∈ Z+ is the number of accelerator segments in a request.

Unless specified otherwise, we assume that ζi,k = 1. The term Gi,k consists of: (i) Ge
i,k,

the WCET of the task on the accelerator, and (ii) Gm
i,k, the worst-case CPU-intervention

required to access the accelerator. Note that Gi,k ≤ Ge
i,k + Gm

i,k, as Ge
i,k and Gm

i,k may not

occur on the same control path [53]. However, to model the worst case, we assume that

Gi,k = Ge
i,k + Gm

i,k. For each task τi, the total CPU time required is Ei = Ci + ∑
ηi
k=0 Gm

i,k,

and the total accelerator time required is Gi = ∑
ηi
k=0 Gi,k.

CPU Scheduling Policy: For tasks executing on the multi-core CPU, we consider

fully-partitioned fixed-priority preemptive scheduling. Each task τi is assigned a unique

priority πi, such that τj has a higher priority than τi if πj > πi. P(τi) is used to denote

the set of tasks allocated to the same core as τi. We use hp(τi) and lp(τi) to represent the

set of all tasks which have a base priority higher and lower than τi respectively.

Accelerator Scheduling Policy: The accelerator can have a different scheduling pol-

icy than the CPU. In practice, most commercial accelerators do not disclose their internal

scheduling policy. However, prior work indicates that GPUs execute requests in FIFO

order [184]. Therefore, an accelerator is typically modeled as a shared resource, and a

lock [52] or a server [51] is used to decide which task is dispatched to the accelerator.

Hence, by implementing an appropriate scheduling policy in this lock or server, the or-

der in which an accelerator receives requests can be controlled. Since we consider global
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scheduling, we assume that the accelerator maintains a single queue of incoming task re-

quests, which are dispatched to the accelerator based on (i) resource availability, and (ii)

scheduling policy. Similarly, for partitioned scheduling, we assume that each accelerator

partition has its own request queue, and tasks cannot migrate between partitions. Note

that each partition can have a different size (accelerator fraction). Scheduling policies on

the accelerator can also be characterized as work-conserving or non-work-conserving.

A work-conserving scheduler always keeps a resource busy if any waiting job can exe-

cute using the available resource, while a non-work conserving scheduler can idle the

resource even if there is some waiting job.

9.1.2 Schedulability-Analysis Preliminaries

To determine taskset schedulability, the response-time-based analysis is used, and the

worst-case response time for a task τi is given by the following recurrence [53]:

W0
i = Ci + Gi + Bi, Wk+1

i = Ci + Gi + Bi +
i−1

∑
h=1

Ii,h (9.1)

where, Wi is the worst-case response time of the task τi, Bi provides an upper-bound on

the worst-case blocking faced by τi in getting access to the accelerator, and Ii,h denotes

the worst-case CPU preemption τi faces due to a higher-priority task τh. If Wi ≤ Di, then

τi will be schedulable.

Preemption: The worst-case preemption Ii,h faced by task τi due to a higher-priority

task τh on the CPU is given by:

Ii,h = αi,h ∗ Eh, αi,h = d(Wi + Wh − Eh)/The (9.2)

where, αi,h represents an upper bound on the number of jobs of τh released during

a single job of τi [53]. Note that αi,h considers the jitter, Wh − Eh, introduced by τh’s

self-suspension on the CPU, while accessing the accelerator [107].

Blocking: For accelerators which do not support concurrent execution, under fixed-

priority non-preemptive scheduling, a synchronization protocol or a server is used to
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govern accelerator access. The worst-case blocking Bi, faced by a task τi, in accessing

such an accelerator can be upper-bounded by multiple approaches described in prior

work [53] [54] [55]: (i) the job-driven analysis, (ii) the request-driven analysis, and (iii)

the hybrid analysis. Neither of the first two analyses strictly dominates the other. In

practice, the work in [53] observed that the job-driven analysis dominates the request-

driven analysis when the number of per-job task accelerator requests increases. On the

other hand, as Ci and Wi increase, the job-driven analysis becomes more pessimistic. The

hybrid analysis proposed in [53] combines both analyses to provide a less-pessimistic

worst-case response-time estimate.

The concurrency of the accelerator does not impact the high-priority interference that

tasks face on the CPU. However, compared to non-concurrent accelerators, the blocking

calculation changes. Therefore, we extend existing analyses to the context of acceler-

ators supporting concurrent execution. In terms of accelerator scheduling policies, we

consider global scheduling, and first analyze work-conserving fixed-priority scheduling.

Subsequently, we analyze non-work conserving first-in-first-out (FIFO) scheduling.

9.2 Work-Conserving Fixed-Priority Scheduling

We now describe the schedulability analysis considering work-conserving fixed-priority

scheduling on both the CPU and the concurrent accelerator. On the accelerator, we

consider non-preemptive global scheduling, where all task requests are enqueued into a

single priority queue. At any point of time, if some fraction 0 < f ≤ 1 of the accelerator

is free, then the highest-priority task request waiting to run, which has a fractional

requirement, Fi,k ≤ f , is scheduled.

9.2.1 Concurrency-Induced Complexities

The fact that multiple requests can concurrently execute on the accelerator violates the

“mutually-exclusive access” assumption of existing analysis techniques. This is in partic-
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Figure 9.1: Concurrency-Induced Serialization on the CPU

ular consequential for analyses which assume the use of resource-access protocols such

as the Multiprocessor Priority-Ceiling Protocol (MPCP) [105]. Additionally, if a critical

section has both CPU and accelerator components (as is common in GPU requests), then

requests executed concurrently on the accelerator can suffer some serialization of their

CPU segments. We refer to this phenomenon as concurrency-induced serialization, and it is

illustrated in Figure 9.1, using a GPU-access example with two tasks τ1 and τ2. Observe

that, despite there being sufficient accelerator resources to ensure both τ1 and τ2 can use

the accelerator, the CPU components of the accelerator requests can get serialized.

Multi-Access MPCP: We introduce a modified version of MPCP, called Multi-Access

MPCP (MA-MPCP), which preserves the key properties of MPCP while (i) allowing

multiple tasks to concurrently utilize a shared resource, and (ii) arbitrating access to

the CPU for requests undergoing concurrency-induced serialization. Like MPCP, each

shared resource Rp has a resource-specific priority queue Qp which governs its access.

In the context of concurrent-accelerator access, the key rules of MA-MPCP are:

1) A task τi, with priority πi ∈ Z+, requesting access to a resource Rp, with a frac-

tional request Fi is suspended and inserted into a resource-specific priority queue.

2) When a task τj with a fractional request Fj completes its resource request, it releases

the fraction Fj of the resource. Subsequently, the task τi closest to the head of the priority
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queue with a fractional requirement Fi ≤ Fj is scheduled, and granted access to the

resource. In doing so, the priority of τi is raised to Πi, given by:

Πi = ΠB + Πh + [(πi −Πl)/(Πh −Πl + 1)] (9.3)

where ΠB is a priority level greater than the base priority of any task [105], while Πh and

Πl are the highest and lowest base priority of any task using the resource R respectively.

3) On resource access completion, τi releases the fraction Fi of the resource, and its

priority returns to its base priority.

Key Observations: Compared to MPCP, on a task successfully acquiring a fraction

of the resource, MA-MPCP raises the task priority to the priority ceiling, πC
i = ΠB +

Πh, plus an additional fractional term πR
i = [(πi −Πl)/(Πh −Πl + 1)] ∈ [0, 1). This

additional term has two implications:

1) Tasks holding resource Rp have a unique priority that is proportional to their base

priority. Thus, for tasks concurrently executing on a resource, concurrency-induced

serialization on the CPU proceeds in the original priority order.

2) It allows the raised priority of tasks holding resource Rp to be less than the raised

priorities of tasks holding resource Rq with a higher priority ceiling. Thus, MA-MPCP

has the same behavior as MPCP, when it comes to interference caused by tasks accessing

resources with higher priority ceilings.

Therefore, building on the MPCP-based blocking analysis for non-concurrent accel-

erators [53], we can split up the blocking faced by tasks into the following components:

(i) direct blocking, caused by tasks τj using a resource requested by τi, (ii) indirect blocking,

caused when tasks τk accessing a resource with a higher priority ceiling preempt the

execution of τj, which is holding a resource that τi is waiting for, (iii) prioritized blocking,

which is incurred when lower-priority tasks τl executing their critical sections with pri-

ority ceilings preempt the CPU execution of τi, and (iv) concurrency-induced serialization,

incurred when higher-priority tasks τh executing concurrently on the shared resource

with τi block the CPU critical sections of τi. This concurrency-induced serialization does
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Figure 9.2: Lack of a Critical Instant for Concurrent GPUs

not occur in non-concurrent accelerators.

We now describe the analysis of each of these blocking components in the following

sub-sections.

9.2.2 Direct Blocking

The introduction of concurrency changes the direct blocking calculation significantly due

to the following reasons: (i) the critical instant is undefined, (ii) the blocking depends

on the order in which task requests arrive and are scheduled, and (iii) some low-priority

tasks which arrive with or after the blocked request can still contribute to its blocking.

We look into each of these components in the context of direct blocking faced by a single

request of a task, and later generalize it to a more concrete analysis framework.

Lemma 1: For concurrent accelerators using non-preemptive work-conserving fixed-

priority scheduling, the worst-case blocking suffered by a request b of task τi does not

always occur when all requests corresponding to other tasks arrive together with the

blocked request.

Proof: We illustrate the lack of a fixed critical instant by providing an example. Con-

sider taskset Γ, with four implicit-deadline tasks, each containing a single accelerator

request. Without loss of generality, let the CPU intervention required for each accel-

erator request be Gm = 0. Given these constraints, the task execution parameters are

given by (Ci, Gi, Fi, Ti), where Gi denotes the WCET on the accelerator, and Fi the ac-
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celerator fraction required by a request. The taskset is as follows: τ1 = (1, 1, 0.5, 10),

τ2 = (1, 2, 0.2, 20), τ3 = (1, 3, 0.1, 30), τ4 = (1, 1, 0.75, 40). Figure 9.2 illustrates the blocking

faced by the lowest-priority task τ4 under two different scenarios. Figure 9.2a shows

that the blocking is 2 when all high-priority requests arrive together with τ4’s request.

This is because, at time t = 2, 0.9 of the accelerator becomes available, which is greater

than the fraction F4 = 0.75 required by τ4’s request. Alternatively, Figure 9.2b shows

that the blocking is 3, when the highest-priority task τ1’s request arrives later at time

t = 2. This proves that the worst-case blocking pattern does not necessarily involve all

the higher-priority requests arriving with the blocked request. �

Key Observation: Given that we are considering global scheduling on the acceler-

ator, Lemma 1 is analogous to the undefined critical instant in global multi-processor

scheduling [185]. Therefore, to calculate a safe upper bound on the worst-case blocking

faced by a task request, we need to re-frame the blocking calculation as the following

optimization problem.

Objective: To maximize the blocking faced by the kth accelerator request of a task τi,

with a fractional requirement of Fi,k, find the longest valid sequence of the concurrent

execution of task requests which keeps at least 1 − Fi,k + ε fraction of the accelerator

resource busy, for some small ε > 0.

The optimal solution to this objective function is a sequence of task requests which

keep the accelerator just busy enough to delay the execution of a blocked task request

as much as possible, thus, maximizing its blocking. However, unlike the non-concurrent

accelerator case, this optimal sequence and, as a consequence, the worst-case blocking

depend on:

1. the order in which requests are fulfilled – which impacts which requests execute

concurrently to just keep the accelerator sufficiently busy to block the task, and

2. the time at which requests arrive – which impacts both how tasks execute concur-

rently as well as how many jobs of a task can contribute to the blocking sequence.
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Figure 9.3: Example framing the blocking calculation as a bin-packing problem

This unfortunately results in the optimization problem becoming combinatorial in

nature, which requires an exhaustive search to find the optimal solution. Consider the

following example taskset with 10 tasks, each with period ∞. For the sake of simplicity,

we initially assume task periods as ∞, as this avoids complications associated with new

task requests arriving. We will relax this assumption in later steps. Each task has a

unit-size accelerator request, and the fraction Fi of the accelerator required for each task

to execute is given by the following set {0.08, 0.006, 0.012, 0.003, 0.07, 0.03, 0.02, 0.05,

0.05, 0.9}. Let us calculate the worst-case blocking faced by the lowest-priority task τ10’s

request with a fraction F10 = 0.9. Based on the objective function, we need to find the

longest sequence which keeps at least a fraction fbusy > 0.1 of the processor busy. Figures

9.3a and 9.3b show two sequences of task request orderings which cause a blocking of 2

and 3 respectively, and in this case, 3 is the worst-case blocking duration.

Max-Resource Bin Packing: This problem is similar to the bin-packing [186] problem,

with the objective as follows: “maximize the number of bins such that each bin has at

least γ material in it”. Our problem is identical to the maximum-resource bin-packing

problem, which is known to be NP-complete [186]. In this case, each bin represents

a unit amount of time in the blocking sequence, and γ = 1− Fi,k + ε, for some small

ε > 0, is the amount of material required to just overflow a bin, and therefore block the

request under consideration from executing. In a real-world setting, the unit length of
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time and the value ε are system constraints dictated by the smallest accelerator execution

granularity in both space and time.

Key Observations: In the stated example scenario, each task had a single request

which was of unit length. If these restrictions are lifted, then the bin-packing problem

is augmented by two constraints: (i) as execution on the accelerator is non-preemptive,

unit-length pieces corresponding to a single request need to go into adjacent bins, and

(ii) multiple requests corresponding to the same task cannot go into the same bin, as

each task request must complete before the next request can be enqueued. This is in

effect a more constrained form of the stated bin-packing problem, and is hence also NP-

complete. Therefore, we seek a polynomial algorithm that always yields a safe upper

bound on the blocking. Note that this solution should be greater than or equal to the

optimal number of bins to be safe.

Theorem 1: The optimal solution to the maximum-resource bin-packing problem al-

ways yields a number of bins which is greater than or equal to the optimal solution to the

constrained version described above.

Proof: For a taskset Γ, assume that the optimal solution to the constrained version of

the maximum-resource bin-packing problem yields more bins than the optimal solution

to its unconstrained version considering unit-sized (in time) pieces of task requests.

However, the optimal solution to the constrained problem should also be a valid optimal

solution to the un-constrained problem. Hence, there is a contradiction. �

Theorem 1 implies that finding a safe upper bound to the number of bins yielded

by the optimal solution to the maximum-resource bin-packing problem will yield a safe

estimate of the worst-case blocking. Note that serializing all the task requests is one

such safe upper bound. However, it is overly pessimistic and yields a blocking estimate

similar to the non-concurrent case. Therefore, we require an estimate that is safe but still

utilizes the concurrency of the accelerator. One such solution we propose is liquefaction.
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Liquefaction

Liquefaction involves breaking up or liquefying each task request {G, F} into multiple

smaller component requests with parameters {G′, F′} = {1, ε}, for some small ε > 0.

The optimal solution to the maximum-resource bin-packing problem, for these trans-

formed uniform-sized liquefied components, can be easily found by pouring the liquid

components into unit-width (in time) bins (or jugs) of height γ, where γ = 1− Fi,k + ε,

for some small ε > 0, is the amount of material required to just overflow the bin, and

block the request τi,k under consideration from executing. Each time a bin overflows, a

new bin is opened until we run out of “liquid”. The number of overflowing bins is the

optimal solution for this new transformed taskset.

Theorem 2: Consider n blocking requests, each with duration Gi, and fractional re-

quirement Fi, which block a request b with fractional requirement Fb. Then, liquefaction

yields a safe upper bound Θ = b(∑n
i=0 Gi ∗ Fi)/γc to the optimal number of bins for the

maximum-resource bin-packing problem, where γ = 1− Fb + ε, for some small ε > 0.

Proof: We prove the theorem using contradicition. Combining all the n liquefied

requests yields ∑n
i=0 Gi ∗ Fi volume of liquid. Therefore, if each bin has a maximum

size of γ = 1− Fb + ε, then the maximum number of full (or overflowing) bins is given

by Θ = b(∑n
i=0 Gi ∗ Fi)/γc, where the floor function discards the last partially-filled

bin. Now, suppose that the optimal solution to the maximum-resource bin-packing

problem considering the original non-liquefied request is Θ + k, where k ∈ Z+. Thus,

as each bin is at least filled up to the level γ, the total volume of the non-liquefied tasks

must be at least (Θ + k) ∗ γ, simplified as: (Θ + k) ∗ γ = (Θ + 1) ∗ γ + (k − 1) ∗ γ >

(Θ + 1) ∗ γ > ∑n
i=0 Gi ∗ Fi which is greater than the total volume of the liquefied tasks.

However, liquefaction does not change the volume of the set of requests. Hence, there is

a contradiction. �

Figure 9.4 illustrates liquefaction using a taskset with four implicit-deadline tasks,

each with a single accelerator request. Without loss of generality, the CPU intervention
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Figure 9.4: Liquefaction Example

required for each accelerator request is set to Gm = 0. The task parameters are given

by (Ci, Gi, Fi, Ti) and, the taskset in priority-order is: τ1 = (1, 5, 0.1, 10), τ2 = (1, 2, 0.2, 20),

τ3 = (1, 3, 0.1, 30), τ4 = (1, 1, 0.75, 40). We calculate the worst-case blocking for the lowest-

priority task τ4, and liquefy each task such that the “liquid” in each unit-sized time bin

is filled up to the overflow point γ = 1− 0.75 + ε = 0.25 + ε. Since the last bin (t = 4 to

5) is partially filled, there is sufficient fraction (>= 0.75) for τ4’s request to execute, and

hence its direct blocking is 4.

Key Observations: Liquefaction can be used to get a safe upper bound on the block-

ing estimate. Furthermore, while finding the optimal worst-case blocking for a request

using the maximum-resource bin-packing problem has non-polynomial complexity, liq-

uefaction yields a valid upper bound by using simple arithmetic. In addition, we can also

apply some optimizations to make the bound returned by liquefaction less pessimistic,

and these are given by the following results.

The Liquefaction Factor is the smallest fractional unit-sized chunk into which re-

quests are broken into. For example, using a liquefaction factor of δ > 0 converts a

task request {G, F} into F ∗ G/δ smaller unit-sized fractional component requests with

parameters {G′, F′} = {1, δ}.

Lemma 2: Consider n blocking requests, with duration Gi, and fractional requirement

Fi, which block a request b. Then, liquefying the requests using the greatest common

divisor GCDn
i=0(Fi) as the liquefaction factor yields a valid upper bound on the blocking
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faced by request b.

Proof: Consider the n requests, each broken into Gi pieces with parameters {1, Fi}.

If we place some combination of these pieces into unit-sized bins, the height of the bin

will always be a multiple of GCDn
i=0(Fi), as the GCD perfectly divides all Fi. Thus, any

combination of these pieces just reaching or exceeding γ will also be a multiple of the

GCD. Therefore, while liquefying using the GCD as the liquefaction factor, stacking the

liquefied chunks in each bin would yield a height p ∗ GCD, where p ∈ Z+ is the smallest

positive integer which satisfies p ∗GCD ≥ γ. This implies that, in the optimal solution to

the maximum-resource bin-packing solution, each bin must have a height h ≥ p ∗ GCD.

Therefore, as liquefaction conserves the volume of all the requests, and its bin height is

always less than or equal to the optimal solution, it will always yield a number of bins

greater than or equal to the optimal solution, yielding a safe bound on the worst-case

blocking. �

Lemma 3: Consider n blocking requests, each with duration Gi, and fraction Fi,

which block a request b with fraction Fb. Then, only liquefying requests with Fi < γ =

1− Fb + ε, and assigning all other requests their own bin yields a valid upper bound on

the blocking faced by request b.

Proof: In the optimal solution to the maximum-resource bin-packing problem, re-

quests with fractional requirement Fi ≥ γ will always go into their own separate bin

(or bins based on their length in time). Therefore, the blocking calculation problem

can be re-phrased as a combination of two independent components: the serialized

length of all requests with fractional requirement Fi ≥ γ, and the optimal solution to

the maximum-resource bin-packing problem considering only requests with fractional

requirement Fi < γ. Therefore, from Theorem 2, liquefaction can be used to yield a

safe upper bound to the optimal solution to the maximum-resource bin-packing prob-

lem considering only requests with fractional requirement Fi < γ. Combining this value

with the serialized length of all requests with fractional requirement Fi ≥ γ yields a safe

upper bound on the worst-case blocking. �
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Generalization to Sporadic Tasks: So far, we have only considered aperiodic tasks

with period Ti = ∞. However, requests that arrive when a task is being blocked also

contribute to direct blocking. In this scenario, liquefaction still provides a valid upper

bound if we consider that all other task requests arrive together with the blocked request.

This is despite the critical instant for calculating the worst-case blocking being undefined

for concurrent accelerators (Lemma 1).

Theorem 3: Consider n sporadic tasks which can block request b requiring an ac-

celerator fraction Fb. Then, liquefaction yields a safe upper bound on b’s worst-case

blocking, if we consider that all the blocking requests arrive together with b.

Proof: Let us assume that the optimal solution using liquefaction yields a safe upper

bound on the blocking with Θ bins. Assume that this optimal solution includes at least

one task τj’s first blocking request which arrives before or after the request b. Therefore,

the total volume of all tasks contributing to blocking is at most M = Θ ∗ γ + (γ − ε),

where γ = 1− Fb + ε. Now, if all requests arrive with the blocked request, let the total

volume be M′ < M, which yields a solution with bins Θ′ lesser than or equal to the

optimal solution Θ. However, there is a contradiction, as all tasks arriving together with

the blocked request b allows the maximum jobs of a task to be considered and yields

the maximum volume. This follows from the critical-zone theorem for fixed-priority

uniprocessor scheduling [170] [29]. �

Therefore, liquefaction effectively converts the multi-faceted bin-packing-based prob-

lem into one of maximizing the amount of blocking resource and using it to fill up space.

However, while the bound is valid, liquefaction can still be pessimistic.

Blocking Tasks: While liquefaction is useful, we still need to establish which tasks

accessing the accelerator contribute to blocking. Due to the nature of fixed-priority

scheduling, a task can be blocked by all higher-priority requests. However, utilizing

work-conserving scheduling also implies that if a processor is idle and no higher-priority

tasks can run (due to an insufficient available fraction), then some lower-priority tasks

can jump the queue and contribute to worst-case blocking.
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Lemma 4: For concurrent accelerators, a task τb’s request with fractional requirement

Fb can also be blocked by lower-priority requests l, requiring a smaller fraction Fl < Fb

of the accelerator, which arrive with or after the blocked request.

Proof: Consider a scenario where a blocked task request corresponding to τb is

blocked by higher-priority task requests corresponding to tasks τh|h ∈ hp(τb). Let the

available accelerator fraction be Fb − ε, for some small ε > 0. Now, if all the higher-

priority tasks have a fraction Fh > Fb, then neither tasks τh or τb can execute on the

accelerator. However, as the scheduler is work-conserving, if any lower-priority task

τl|l ∈ lp(τb) arrives with a request with fractional requirement Fl ≤ Fb − ε < Fb, it can

jump the queue and execute on the accelerator. Thus, it can block a request from τb. �

The ability of lower-priority requests to jump the queue can significantly increase

blocking by causing a cascading effect which allows other lower-priority tasks to jump

ahead as well.

Fraction-Inverse-Monotonic Policy (FIM): One alternative to avoid this increase in

blocking is by assigning priorities to requests in inverse proportion to the fraction of

the accelerator they require, i.e, for the jth request of τi, the priority πi,j ∝ 1/Fi,j. This

ensures that requests with smaller fractions have a higher priority. Thus, they cannot be

blocked by any lower-priority request as they always require a bigger fraction.

Lemma 5: A task τi’s request b with fractional requirement Fb can only be blocked

by requests from at most one job of a lower-priority task τl, if τl has at least one request

with fractional requirement Fl > Fb.

Proof: From Lemma 4, only lower-priority requests with fractional requirement less

than Fb, can execute ahead of b. Therefore, if even one request of lower-priority task τl

has a fraction Fl > Fb, it cannot execute before b. Hence, subsequent jobs of τl cannot be

enqueued until b completes. �

Key Observations: Consider a request b with fractional requirement Fb = 0.5. Let

there be a low-priority task τl with 6 consecutive requests each with their parameters

{Gl,j, Fl,j} given by the set {{2,0.8},{3,0.4},{4,0.3}, {1,0.7},{4,0.2},{5,0.4}}. As a conse-
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quence of Lemma 5, if we consider blocking due to low-priority task τl’s requests which

arrive after b, then it can only be blocked by one job of τl and only by requests j = 2, 3, 5

and 6. Additionally, for τl, requests 1 and 4 both have fractional requirements greater

than 0.5, and hence cannot block b by executing ahead of it. As a consequence, b can only

be blocked by requests 2 and 3, or 5 and 6. Therefore, for a low-priority task τl, a request

b can only be blocked by a consecutive sequence of requests with fractional requirement

less than Fb. If we use liquefaction, then to maximize the worst-case blocking estimate

of b, we need to consider the sequence of such requests corresponding to τl which have

the greatest volume when liquefied. In the example, to maximize blocking, we should

use consecutive requests 5 and 6 as they have a combined volume of 2.8, compared to

requests 3 and 4 which have a volume of 2.4.

As the accelerator is non-preemptive, apart from tasks which arrive with or after a

blocked request, requests already executing on the accelerator also contribute to direct

blocking.

Wavefront

There is a pattern to the worst-case blocking due to already-executing requests, and we

capture this notion with a “wavefront”.

Theorem 4: Assume a blocked request b arrives at time t. The worst-case blocking on

request b with fraction Fb caused by already-executing task requests occurs when these

requests start executing at t − ε for some small ε > 0. The requests which make up

this pattern include the k longest requests each starting at t− ε and together utilizing a

fraction f > γ = 1− Fb + ε.

Proof: To maximize the blocking caused by already-executing task requests, we need

to keep at least γ of the processor occupied for as long as possible after a blocked request

arrives. The latest a request can start to count as already executing is t − ε, for some

small ε > 0. Therefore, the latest start ensures that each already-executing request can

block request b for the longest time possible. In terms of requests, choosing the k longest
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requests, each starting at t− ε and together utilizing a fraction f > γ, ensures that at

least γ of the processor is busy till the length (WCET) Gk of the kth longest request.

Replacing any of these requests with a shorter request will cause this busy duration to

only decrease. �

Figure 9.5 illustrates the wavefront using the same example taskset with four implicit-

deadline tasks, used to illustrate liquefaction. We calculate the worst-case blocking for

the highest-priority task τ1, and construct a wavefront up to the overflow point γ =

1− 0.1 + ε = 0.9 + ε. Since the bin is partially filled from t = 1 to 2, there is sufficient

fraction left (>= 0.1) for τ1’s request to execute, and hence its direct blocking is 1.

Key Observation: We consider all higher-priority and some lower-priority requests

in the blocking calculation (liquefaction) as arriving with or after the blocked request b.

Therefore, only requests not used in liquefaction should be used to create the worst-case

wavefront of already-executing requests. For a request τi,j, we define the set of requests

which are a part of the wavefront using the set ω(τi,j)

Estimating Direct Blocking: Combining Wavefront and Liquefaction

Consider the wavefront pattern created by stacking the k task requests creating the worst-

case direct-blocking pattern caused by already-executing tasks on a request b. Let the

set of these requests in increasing order of time duration Gi be given by the set Λb =

({G1, F1}, .., {Gk, Fk}). Thus, without loss of generality, if we assume request b arrived

at t = 0, then requests arriving subsequently which contribute to blocking can start
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executing at the time instants given by the set λb = 0 ∪ Gi ∈ Λb. Therefore, we can

perform liquefaction on the tasks arriving subsequently by considering the size of the

first Gk bins to be κi = max(0, γb − ∑k
j=ν(i) Fi), where i ∈ [1, Gk] is the bin number and

ν(i) is a function which returns the smallest Gi ∈ λb|i ≤ Gi. All bins after Gk are of size

γb = 1− Fb + ε.

Lemma 6: Liquefying all the requests that are part of the wavefront pattern still yields

a safe direct blocking estimate.

Proof: Consider the case where the volume M from liquefying requests which arrive

with or after the blocked request is not sufficient to fill the first Gk bins each of size κi,

i.e., M < ∑k
i=1 κi. In this case, the direct blocking Bdr

b faced by b will be less than Gk.

Therefore, all the volume from the wavefront that lies beyond Bdr
b will not contribute

to the estimate. Thus, if we liquefy the requests in the wavefront, all the volume gets

counted in the blocking estimate which leads to either the same or a more pessimistic

but valid estimate. �

We can now state the worst-case direct blocking computations using the request-

driven, job-driven and hybrid analyses.

Request-driven Analysis: The jth accelerator request of task τi, in the worst case, can

be directly blocked for a duration Bdr
i,j . Then, using the request-driven analysis [53] [55]

the total direct blocking can be given by: Bdr
i = ∑

ηi
j=1 Bdr

i,j .

Using the request-driven analysis, the worst-case direct blocking faced by the jth

accelerator request τi,j of task τi can be computed using Algorithm 15. For the jth accel-

erator request of task τi with fractional requirement Fi,j, direct blocking can be caused by

the following independent components: (i) all higher-priority task requests, and lower-

priority task requests with fractional requirement F < Fi,j, given by the set Φ(τi,j), which

arrive with request τi,j and while τi,j is being blocked, and (ii) lower-priority task requests

not considered above, which are already executing on the accelerator when a request ar-

rives. As both these components occur independently, direct blocking as a result of case

(i) can be computed using liquefaction (Theorem 3), and case (ii) can be computed using
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Algorithm 15 Request-Driven Direct Blocking Calculation

1: procedure RequestDriven-Direct(τi,j)
2: B′ = 0, γ = 1− Fi,j + ε, ∆ = ∆′ = 0
3: /* blocking pattern due to already-executing tasks */
4: λ, Λ = Wavefront(i, j) . get wavefront requests
5: for t = 0 to max(Hq) ∈ λ do
6: ν(t) = min(Hl ∈ λ|t ≤ Hl)
7: κt = max(0, γ−∑k

p=ν(t) Fp) . get bin size
8: ∆′ = ∆′ + κt . get liquefying volume used
9: ∆ = GetLiquefactionVol(i, j, t)

10: if ∆ < ∆′ then . if insufficient volume
11: Bdr

i,j = max(0, t− 1), return Bdr
i,j

12: /* blocking pattern due to arriving tasks */
13: while B′ not equal to B do
14: B′ = B, ∆ = 0, Blp = max(Hq) ∈ λ
15: for τh ∈ hp(τi) ∪ Fh,k < Fi,j do
16: βi,h = d(B′ + Wh − Eh)/The
17: ∆ = ∆ + βi,h ∗ Hh,k ∗ Fh,k

18: Bdr
i,j = B = Blp + b(∆− ∆′)/γc

19: return Bdr
i,j . request direct blocking

the wavefront (Theorem 4). Algorithm 15 uses a combination of the wavefront and liq-

uefaction techniques to calculate the blocking. Note that, the term βi,h in line 4, captures

the number of jobs which arrive while the request τi,j is being blocked, while taking

self-suspensions into account. Additionally, instead of using the WCET of each acceler-

ator request Gp,q, we instead use the worst-case response time of each request Hp,q [53].

This captures the effects of indirect blocking and concurrency-induced serialization, as

described in sections 9.2.3, 9.2.5 and 9.2.6.

Instead of using Algorithm 1, we can also obtain a valid, albeit more pessimistic

bound by liquefying the requests in the wavefront ω (Lemma 6). This can be obtained

using a low-complexity recurrence useful for online admission control:

Bdr
i,j =

⌊
∑τl,k∈ω(τi,j)

Hl,k.Fl,k + ∑τh∈Φ(τi,j)
βi,h.Hh,k.Fh,k

γi,j

⌋
Note that, the floor term is used to discard the liquefied volume placed in the last

partially-filled bin.
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Job-driven Analysis: The job-driven approach considers the blocking that a job of

a task τi can face. All requests corresponding to a single job of a task τi can suf-

fer direct blocking caused by the following independent components: (i) all higher-

priority task requests, and lower-priority task requests with fractional requirement

Fl < Fmax
i,j = maxj≤ηi(Fi,j), given by the set Φ(τi), which arrive with the request and

while the request is being blocked, and (ii) lower-priority task requests not considered

above, which are already executing on the accelerator when each of τi’s ηi requests ar-

rives. Note that, using a strict interpretation, the job-driven approach does not consider

individual request characteristics. Therefore, the worst-case blocking faced by the task

is given by:

Bdr
i =

⌊
ηi. ∑τl,k∈ω(τi)

Hl,k.Fl,k + ∑τh∈Φ(τi)
αi,h.Hh,k.Fh,k

γi

⌋
where, αi,h = d(Wi +Wh− Eh)/The represents the maximum number of jobs of τh which

can arrive during the response time of τi, while taking into account the effect of self

suspensions [106]. Consider the numerator of the floor function. Observe that the first

term does not consider the wavefront pattern, as the job-driven analysis does not perform

per-request liquefaction. Therefore, from Lemma 6, we instead liquefy all the tasks in

the wavefront pattern ω(τi), and consider ηi invocations for each request in a job of

task τi. Subsequently, the second term performs liquefaction considering all the jobs

of tasks τh ∈ Φ(τi) which arrive during the response time of task τi. Given that Φ(τi)

considers all requests with a smaller fraction than τi’s request with the largest fraction

maxj≤ηi(Fi,j), the job-driven analysis can yield a pessimistic analysis. In theory, if the

largest request requires the entire accelerator, then the analysis will consider almost all

accelerator requests. Therefore, we can make the job-driven analysis less pessimistic by

considering requests of the blocked task τi one at a time.

Key Observation: Consider τi, with ηi requests, such that all requests have the same

priority. Then, using the wavefront pattern with liquefaction results in requests with a

bigger fractional requirement Fi,j getting blocked for a longer duration. The reason for
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Algorithm 16 Request-Oriented Job-driven Direct Blocking Calculation

1: procedure RO-JobDriven-Direct(τi)
2: B = 0, ∆ = ∆′ = 0 . Initialize Blocking
3: for j = 1 to ηi do
4: ∆′ = GetLiquefactionVol(Wavefront(i, j))
5: γi,j = 1− Fi,j + ε
6: if Fi,j < maxk∈[j,ηi]

(Fi,k) then
7: B = B + b∆′/γi,jc+ Hi,j
8: else
9: B = PerformRecurrence(i, j, γi,j, ∆, B) + Hi,j

10: ∆ = ∆+ GetLiquefactionVol(i, j, B)
11: return Bdr

i = B . ro job-driven direct blocking

this is twofold: (i) a smaller fraction of the accelerator needs to be kept busy to block

requests with bigger Fi,j, and (ii) more tasks are considered in the blocking calculation

for liquefaction. Therefore, considering individual requests with smaller fractional re-

quirement Fi,j in the job-driven analysis can yield a less pessimistic blocking estimate.

Request-oriented (RO) Job-driven Analysis: Like the simple job-driven analysis, its

request-oriented version considers all the jobs of blocking tasks which arrive during a

job’s response time. However, instead of considering the biggest request of the blocked

job, it considers specific requests.

Key Observation: Consider a job of task τi with ηi requests. Suppose that τi’s re-

quests are ordered such that Fi,1 < Fi,2 < ... < Fi,ηi . In this scenario, in the worst case,

each request can be blocked by task requests already executing, which for request τi,j

can be upper-bounded by liquefying the wavefront set ω(τi,j). Additionally, each re-

quest can also be blocked by all the jobs of other tasks which arrive during τi’s response

time. However, the blocking pattern which leads to maximal blocking occurs when all

these requests end up blocking the request Fi,ηi with the maximum fractional require-

ment. Alternatively, if the request Fi,k|k < ηi has the biggest fractional requirement,

then we could perform the liquefaction recurrence calculation considering that request

until convergence. Subsequently, of the remaining requests, we can choose the next

biggest request, and so on until we reach the last request. Note that we do not need to
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consider jobs already accounted for in previous requests. Algorithm 16 describes this

request-oriented job-driven blocking calculation.

Hybrid Analysis: The hybrid analysis uses a combination of the job-driven and

request-driven approaches to yield a less-pessimistic worst-case blocking estimate. If

we consider a simple case, then we can return the worst-case blocking as the minimum

of that returned by both the job-driven and request-driven approaches. This is a valid

bound as both bounds are valid. Note that, in the non-concurrent accelerator scenario, if

we consider blocking due to already-executing tasks, the hybrid analysis considered the

ηi longest lower-priority requests which arrive during the response time of the task [53].

However, for concurrent accelerators, we need to consider the wavefront pattern. Hence,

limiting the number of some requests to the number of jobs which arrive during the

response time, along with building per-request wavefronts, makes it a combinatorial

problem. Therefore, for the concurrent accelerator case, the worst-case direct blocking

faced by task τi can be stated as:

Bdr,hybrid
i = min(Bdr,job

i , Bdr,request
i ) (9.4)

9.2.3 Indirect Blocking

Indirect blocking is caused when a task τk accessing a resource with a higher priority

ceiling preempts the CPU critical section execution of τj, which is holding a resource

that τi is waiting to access. This occurs when τk is scheduled on the same CPU core as

τj. Note that, (i) indirect blocking occurs due to execution on a different resource, which

can be another accelerator or a partition of the same accelerator and (ii) it occurs due

to CPU segments of different critical sections interfering. Therefore, it is not affected by

concurrency, and the indirect blocking faced by a request of task τi is identical to the

non-concurrent accelerator case as described in [53].

Lemma 7: The worst-case indirect blocking faced by the pth critical section of τj is
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given by [53]:

Bir
j,p = (ζ j,p + 1) ∗ ( ∑

τq∈P(τj)

max
πq,k>πj,p

(Gm
q,k)) (9.5)

9.2.4 Prioritized Blocking

Prioritized blocking is caused by lower-priority tasks τl executing the CPU segments

of their critical sections at the priority ceiling of the resource, as a result of using MA-

MPCP. This execution can preempt the CPU execution of τi scheduled on the same CPU

as τl. Note that prioritized blocking is caused by CPU segments of lower-priority critical

section execution interfering with non-critical section CPU segments of higher-priority

tasks. Therefore, it is not affected by concurrency and the prioritized blocking faced

by a request of task τi is identical to the non-concurrent accelerator case as described

in [53]. Using the analysis in [53], the prioritized blocking faced by a task τi, Bpr
i , can be

computed using the request-driven, job-driven and hybrid analysis.

9.2.5 Concurrency-Induced Serialization

Concurrency-induced serialization is unique to concurrent accelerators. Consider two

tasks τh and τi assigned to the same CPU core, both making requests to the same con-

current accelerator. When both τh and τi execute requests concurrently on the shared

resource, the CPU segments corresponding to their critical sections can get serialized

on the CPU. Using MA-MPCP (Section 9.2.1) assigns unique raised priorities to tasks

executing their critical sections. These raised priorities are assigned in proportion to

their base priorities. As a result, only a critical section corresponding to higher-priority

tasks τh can block the CPU segment of the critical section of τi. Note that every request

p of τi with fractional requirement Fi,p can only suffer concurrency-induced blocking by

higher-priority requests which have a fractional requirement F ≤ 1− Fi,p.

Lemma 8: The worst-case concurrency-induced serialization incurred by the pth crit-
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ical section of τi is given by:

Bcis
i,p = (ζi,p + 1) ∗ ( ∑

h∈hp(τi)∧P(τi)

max
k≤ηh∧

Fh,k≤1−Fi,p

(Gm
h,k)) (9.6)

Proof: The term ζi,p captures the number of accelerator accesses made in one critical

section for request p of τi. As there will be ζi,p + 1 CPU segments required to facilitate

accelerator access in the critical section, each of these segments can be preempted by

higher-priority tasks τh|h ∈ hp(τi) on the same CPU core as τi, which concurrently

access the resource. Additionally, as we cannot utilize more than 100% of the accelerator,

only requests with fractional requirement Fh,k ≤ 1− Fi,p can execute concurrently on the

accelerator with τi,p. The term max(Gm
h,k) captures the request of task τh with the longest

CPU critical section intervention. Each such task τh, after accessing a critical resource,

will return to its base priority. Therefore, only one request of each task τh can contribute

to concurrency-induced serialization. �

9.2.6 Putting it All Together

The work in [53] captures indirect blocking on each critical section instance of τj and

incorporates it into the analysis through its impact on direct blocking. Therefore, for

the pth critical section of task τj, the term Hj,p, which captures the worst-case response

time, is used in the direct blocking analysis instead of the WCET Gj,p. However, for

concurrent accelerators, apart from indirect blocking, the CPU segments of the critical

section can also face concurrency-induced serialization. Hence, from Lemmas 7 and 8,

the worst-case response time for the pth critical section of τj is given by:

Hj,p = Gj,p + Bir
j,p + Bcis

j,p (9.7)

Theorem 5: The worst-case total blocking Bi faced by task τi while accessing a con-

current accelerator can be upper-bounded by Bi = Bdr
i + Bpr

i + Bir
i + Bcis

i , where Bdr
i is the

worst-case direct blocking, Bpr
i is the worst-case prioritized blocking, Bir

i is the worst-case

indirect blocking and Bcis
i is the worst-case concurrency-induced serialization.
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Proof: The proof follows from Theorem 1 in [53]. However, in [53], the authors do not

consider the effects of indirect blocking on τi’s accelerator execution itself. Therefore, we

consider both the indirect blocking and concurrency-induced serialization faced by τi in

the total blocking calculation. As stated in Equation 9.7, the worst-case indirect blocking

and concurrency-induced serialization suffered by other requests, while they block τi,

are considered in direct blocking. �

9.3 Non-Work-Conserving FIFO Scheduling

We now describe the schedulability analysis considering work-conserving fixed-priority

scheduling on the CPU and non work-conserving FIFO (First-In-First-Out) scheduling

on the accelerator. Requests are scheduled on the accelerator in order of their arrival, i.e.,

a request τi,j with fractional requirement Fi,j is scheduled as soon as (i) all requests which

arrived before τi,j have been dispatched to the accelerator, and (ii) a fraction F ≥ Fi,j of

the accelerator is available.

As the CPU uses fixed-priority scheduling, the CPU segments of the accelerator re-

quests are not scheduled using the FIFO policy. Therefore, when a task request τi,j

accesses the accelerator, we raise its priority to the value as prescribed by the MA-MPCP

protocol in Section 9.2.1. As a result of this choice, the worst-case indirect blocking,

prioritized blocking and concurrency-induced serialization incurred by task requests

remain the same as compared to the fixed-priority scheduling case. However, the direct-

blocking calculation changes, as given by the following theorem.

Theorem 6: For FIFO scheduling, in the worst case, each accelerator request τi,j can be

directly blocked by at most one request of all the other tasks τk accessing the accelerator.

Proof: Let τi,j be blocked by more than one request of a task τk. For each task τk, an

accelerator request must complete before the next request is enqueued. Therefore, two

requests of a single task τk cannot be enqueued before τi,j. �

In theory, this property of FIFO scheduling can sometimes lead to better schedula-
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bility than fixed-priority scheduling. This is especially true for tasksets with few tasks,

with each task consisting of multiple short accelerator requests. However, when each

task has multiple requests, choosing the best set of per-task requests as well as their

ordering is required to create the worst-case blocking pattern. This is a combinatorial

problem with no obvious solution. For a request τi,j, a valid upper bound on the worst-

case direct blocking, which does not consider concurrency, can be given by the sum of

the longest task requests of each task: Bdr
i,j = ∑τp|p 6=i max(Hp,q), where, Hp,q (Equation

9.7) is the worst-case response time of each request. Therefore, using the request-driven

approach the direct blocking faced by τi is given by Bdr
i = ∑

ηi
j=1 Bdr

i,j .

Similarly, we can also calculate the direct blocking by extending the non-concurrent

job-driven and hybrid approaches to FIFO. However, if we consider concurrency, the

problem is again combinatorial. The total blocking Bi faced by τi can still be computed

using Theorem 5, Bi = Bdr
i + Bpr

i + Bir
i + Bcis

i .

9.4 Concurrent Accelerator Partitioning

Partitioning an accelerator can lead to more predictable execution by reducing interfer-

ence. Therefore, we now consider accelerators which support software partitioning of

compute resources [35], and propose preliminary techniques to efficiently partition the

accelerator. Note that memory partitioning is also required to reduce memory interfer-

ence [37]. However, we only consider techniques for compute partitioning, and leave

memory partitioning for future work.

Consider an accelerator A, which can be partitioned into fractional compute parti-

tions υk|k ∈ N, each with a fractional size of fk, such that fmin ≤ fk ≤ 1, where fmin is

an accelerator-specific constraint specifying the minimum fractional size of a partition.

We assume that fmin also constrains the maximum number of accelerator compute parti-

tions to b1/ fminc. In practice, a software-partitioning framework like NVIDIA MPS [35],

or a restriction on the number of memory partitions [37], may place further constraints
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Figure 9.6: Accelerator-Partitioning Example

on the maximum number of compute partitions. We also assume that only accelerator

requests with fractional requirements Fi,j ≤ fk can be assigned to partition υk, and re-

quests assigned to a single partition cannot execute concurrently. This is in line with the

partitioned-scheduling approach for multi-core CPUs, and can also ensure greater pre-

dictability, by reducing interference within a partition. Future work will look at relaxing

this constraint.

Figure 9.6 illustrates an example accelerator partition. In this example, we consider

five accelerator requests ri|i ∈ {1, 2, ...5} each described by a tuple (G, F), where G is the

worst-case execution time of the request on the accelerator and F is the fraction of the

accelerator required by the request. These request parameter tuples are described in the

following set {r1 =(2,0.6), r2 =(1,0.25), r3 =(1,0.4), r4 =(5,0.4), r5 =(3, 0.55)}. We assign

requests r2 and r4 to partition 1, and requests r1, r3 and r5 to partition 2. Observe that,

within a partition, requests execute in serial order.

9.4.1 Partitioning Schedulability Analysis

We now describe the response-time-based schedulability analysis to decide the schedu-

lability of tasksets using partitioned accelerators. In particular, we consider work-

conserving fixed-priority scheduling. From a schedulability-analysis perspective, each

accelerator partition behaves as a separate non-preemptive shared resource. Addition-
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ally, as we assume that only a single task can access a partition, each partition also

behaves as a “mutually-exclusive” resource. Therefore, we can directly use the analysis

presented in [53] by considering each partition as an individual resource, with access to

each partition governed by its own lock, arbitrated using the MPCP protocol [105].

As described in Section 9.1.2, the response time of a task is influenced by the time for

which a task is (i) preempted by higher-priority tasks, and (ii) the blocking delay faced

in accessing a shared resource. However, when we consider accelerator partitions, there

is no impact on the preemption caused by higher-priority tasks.

Therefore, building on the MPCP-based blocking analysis for non-concurrent accel-

erators [53], as described in Section 9.2.1, the blocking faced by tasks is composed of the

following components: (i) direct blocking, caused by tasks τj using a resource requested by

τi, (ii) indirect blocking, caused when tasks τk accessing a resource with a higher priority

ceiling preempt the execution of τj, which is holding a resource that τi is waiting for, (iii)

prioritized blocking, which is incurred when lower-priority tasks τl executing their critical

sections with priority ceilings preempt the CPU execution of τi, and (iv) concurrency-

induced serialization, incurred when higher-priority tasks τh executing concurrently on

the shared resource with τi block the CPU critical sections of τi.

Of the above blocking terms, indirect blocking, prioritized blocking and concurrency-

induced serialization, all occur on the CPU. Therefore, their analysis is not impacted by

the introduction of accelerator partitions. On the other hand, direct blocking is only

caused by accelerator requests which execute on the same partition as the blocked re-

quest. Therefore, the direct-blocking analysis needs to take into account which partition

a request is assigned to, and it can be computed using the request-driven, job-driven or

hybrid analyses proposed in [53].
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9.4.2 WFD-based Accelerator Partitioning

We now present a heuristic to efficiently partition an accelerator. Unlike the process

of assigning tasks to CPU cores, the accelerator-partitioning problem needs to (i) first

generate accelerator partitions, which can have different fractional sizes, and (ii) subse-

quently assign requests to each partition, while ensuring that the fractional requirement

Fi,j of an accelerator request τi,j is less than or equal to the fractional size fk of the parti-

tion υk. Thus, the second stage of accelerator partitioning is equivalent to a constrained

version of the bin-packing problem, which is known to be NP-hard [79]. Therefore, we

believe that the accelerator-partitioning problem is also NP-hard, and hence focus on

finding an efficient heuristic.

Algorithm 17 presents a worst-fit decreasing (WFD)-based heuristic called WFD-

AcceleratorPartition, for assigning accelerator requests to partitions. As mentioned in

Section 6.5.1, among the task-partitioning heuristics studied in the literature, the Worst-

Fit Decreasing (WFD) algorithm is known to typically produce a well-balanced parti-

tion [79]. WFD allocates tasks one by one in non-decreasing order of their utilization.

Given a task to be allocated, WFD allocates it to the partition with the least utilization.

This makes WFD useful in this setting, as it ensures that all accelerator partitions have

similar utilization, thus providing a greater chance for the taskset to be schedulable.

Our proposed heuristic first generates an initial set of partitions, each with an equal

fractional size, equivalent to the accelerator request with the biggest fractional require-

ment. Note that the request with the biggest fractional requirement dictates the size

of the largest accelerator partition. Subsequently, requests are assigned to the created

partitions using the worst-fit decreasing strategy, while taking into account whether a

request τi,j can be accommodated into a partition υk (based on its fractional requirement

Fi,j ≤ fk). Each partition is then re-sized based on the request with the biggest fractional

requirement fk = maxτi,j∈υk Fi,j. Any left-over fraction after the previous step, is assigned

to a new partition. All these steps are performed iteratively until either (i) no “left-over”
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Algorithm 17 WFD-based Accelerator Partitioning

1: procedure WFD-AcceleratorPartition(Γ)
2: ρ = OrderAccRequestsByUtil(Γ) . order accelerator requests by utilization
3: Flarge = FindLargestAccFraction(ρ) . largest accelerator fractional requirement
4: num_partitions = b1/Flargec . initial number of partitions
5: Υ = InitialPartitions(num_partitions) . initialize the partitions of the same size
6: left_over = 1 . initialize the left over fraction
7: while left_over > 0 do
8: /* Use WFD to assign requests to partitions */
9: status = WorstFitDecreasing(ρ, Υ)

10: /* Check if at least one partition is empty */
11: if status is False then
12: break
13: /* Re-size each partition to the assigned request with the biggest fraction */
14: left_over = ResizePartitions(ρ, Υ)
15: return
16: procedure WorstFitDecreasing(ρ, Υ)
17: /*ρ = list of accelerator requests */
18: /*Υ = list of partitions */
19: for req in ρ do
20: if req is movable then
21: /* Assign the request to the emptiest partition it fits in */
22: υ. = AssignReqToEmptiestFeasiblePartition(Υ, req)
23: procedure ResizePartitions(ρ, Υ)
24: /*ρ = list of accelerator requests */
25: /*Υ = list of partitions */
26: left_over = 1 . unused accelerator fraction
27: /* Resize each partition to the maximum fractional requirement */
28: for υ in Υ do
29: /* Get the request req with the maximum fraction in the partition υ*/
30: max_fraction, req = FindMaxFractionPartition(υ)
31: resize(υ, max_fraction) . resize the partition
32: /* make req immovable, and all others in partition movable */
33: left_over = left_over - max_fraction
34: MarkReqFixed(υ, req)
35: CreateNewPartition(Υ, left_over) . create a new partition from the left over

return left_over

fraction is available to create a new partition, or (ii) the worst-fit decreasing step yields

one partition which does not contain any requests. Case (i) implies that we cannot cre-

ate any new partitions, without re-assigning requests, and Case (ii) indicates that the

smallest partition cannot accommodate any of the requests in the taskset. In summary,
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Figure 9.7: Schedulability vs CPU Utilization: (a) unicore: concurrent analyses, (b) uni-
core, (c) 4-core and, (d) 8-core concurrent vs traditional analysis.

our heuristic iteratively creates new partitions from the left-over fraction, and tries to

balance the requests among the existing partitions. While doing so, we also ensure that

the request with the biggest fraction in each partition is not moved by WFD in the next

iteration. This ensures that the partition sizes do not decrease between iterations.

9.5 Comparative Evaluation

We now present an analytical evaluation of our proposed schedulability-analysis tech-

niques for concurrent hardware accelerators. On the CPU, we assume fully-partitioned
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fixed-priority scheduling, with task priorities assigned using the Rate-Monotonic pol-

icy [29]. To the best of our knowledge, no other analysis techniques exist for concur-

rent hardware accelerators. Therefore, we compare against the traditional fixed-priority

schedulability-analysis introduced in prior work, which models the accelerator as a se-

rialized resource [53].

We compare all techniques on the basis of schedulability. Every data point plotted

uses 5000 tasksets, randomly generated using the UUniFast-Discard [175] algorithm,

such that no task has a CPU or accelerator utilization greater than 0.4. We consider

sporadic tasks with the minimum inter-arrival time randomly assigned to be between 5

and 500 time units.

Unicore Experiments: Figures 9.7a and 9.7b plot the percentage of tasksets schedu-

lable as we vary the CPU utilization keeping the accelerator utilization Ugpu = 0.3 and

the maximum fractional requirement of any accelerator request, Fmax = 0.5. Figure 9.7a

compares the schedulability of our proposed concurrent schedulability analyses. As ex-

pected, the hybrid analysis yields the best schedulability: 7.8% and 43.5% more tasksets

than the request-oriented job-driven and the request-driven analyses respectively. This is

because the hybrid analysis computes blocking by taking the minimum of the job-driven

and request-driven analyses (Equation 9.4).

Figure 9.7b compares the schedulability of our concurrent hybrid analysis (Hybrid-

Concurrent) against the traditional hybrid analysis (Hybrid) [53], which treats the accel-

erator as a serialized entity. We also compare against the proposed non-work-conserving

FIFO analysis. For the most part, the concurrent hybrid analysis yields the best schedu-

lability: 8% and 50.1% more tasksets than the traditional hybrid and FIFO analyses

respectively. However, when the CPU utilization is low, the traditional hybrid analysis

dominates. This is because our proposed concurrent analysis has extra pessimism. This

is due to the lower-priority blocking suffered because of the work-conserving nature of

the fixed-priority scheduler, which leads to a few tasksets becoming unschedulable.

Multicore Experiments: Figures 9.7c and 9.7d plot the percentage of tasksets schedu-
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lable as we vary the CPU utilization of a 4-core (Figure 9.7c) and 6-core processor (Figure

9.7d), keeping the accelerator utilization Ugpu = 0.3 and the maximum fractional require-

ment of any accelerator request Fmax = 0.5. We compare our proposed concurrent hybrid

analysis with the traditional serialized hybrid analysis. As we consider fully-partitioned

scheduling on the CPU, we also compare two partitioning techniques namely Worst-Fit

Decreasing (WFD) and Sync-Aware WFD (SA-WFD) [60]. Note that while allocating

tasks to cores the partitioning techniques use schedulability analysis to decide feasibil-

ity. Like the unicore case, for the most part, the concurrent hybrid analysis yields better

schedulability. Observe that, when the CPU utilization is low, the traditional analysis

dominates, but after a certain utilization (∼1.4 and ∼2.3 for the 4 and 6 core cases re-

spectively), the trend flips and the concurrent analysis dominates. Among partitioning

techniques, Sync-Aware WFD yields better schedulability – 17.8% more tasksets than

WFD on the 6-core setting, if we consider our concurrent hybrid analysis. This is be-

cause SA-WFD constrains the tasks using the accelerator to a few cores, which restricts

the effects of blocking to these cores [60].

Figures 9.8a, 9.8b, 9.8c and 9.8d plot the percentage of tasks schedulable on a 4-core

processor, while varying various accelerator-related taskset parameters, and keeping the

CPU utilization Ucpu = 1.5. In all four plots, among partitioning techniques, SA-WFD

yields better schedulability than WFD. Therefore, we summarize the differences between

the traditional (serialized) and concurrent hybrid analysis using SA-WFD as the parti-

tioning technique. Figure 9.8a varies the accelerator (GPU) utilization, while keeping the

maximum fractional requirement of any accelerator request Fmax = 0.5. As the accelera-

tor utilization increases, the concurrent hybrid approach can schedule up to 49.02% more

tasksets than the traditional hybrid analysis. Figure 9.8b varies the maximum fractional

requirement of any accelerator request Fmax, while keeping the accelerator utilization

Ugpu = 0.5. As expected, when all requests demand a small fraction of the accelerator,

the concurrent approach can schedule upto 2.7x more tasks than the traditional hybrid

analysis. Alternatively, when all tasks demand a higher fraction of the accelerator, the
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Figure 9.8: Schedulability vs Taskset Accelerator Parameters: (a) accelerator utilization,
(b) maximum accelerator fractional requirement of task requests, (c) maximum number
of per-task accelerator segments and, (d) percentage of tasks using the accelerator.

traditional hybrid analysis dominates – up to 42.7% greater.

Figure 9.8c varies the maximum number of accelerator requests a job of a task can

have, while keeping Ugpu = 0.5, and Fmax = 0.5. The concurrent hybrid approach sched-

ules 6% more tasksets than the traditional approach. Figure 9.8d varies the percentage of

tasks which utilize the accelerator. Again, the concurrent hybrid approach can schedule

10.1% more tasksets than the traditional approach.

Our proposed concurrent analysis techniques on average yield much better schedu-

lability than the traditional non-concurrent analysis. However, there are some scenarios
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Figure 9.9: Uniprocessor + Partitioned-Accelerator Schedulability: (a) accelerator utiliza-
tion, and (b) maximum accelerator fractional requirement of task requests

where the non-concurrent analysis can yield better schedulability, especially when there

is lesser concurrency in the system due to tasks with large accelerator fractional require-

ments (Fmax >= 0.5). This is due to the pessimism our analysis adds for task requests

with larger fractions, which, due to the work-conserving nature of the scheduler, can be

blocked by lower-priority requests with smaller fractional requirements.

Accelerator-Partitioning Results: We now compare the schedulability of our pro-

posed concurrent-accelerator analysis techniques (global scheduling) against that of

our proposed WFD-based accelerator partitioning heuristic. Figures 9.9a and 9.9b plot

schedulability for a unicore processor as a function of (a) accelerator utilization (keeping

the maximum fractional requirement of any accelerator request, Fmax = 0.5), and (b) the

maximum fractional requirement of any accelerator request (keeping the accelerator uti-

lization Ug pu = 0.4). As we vary the accelerator utilization (Figure 9.9a), we observe that

at lower utilization, the hybrid partitioned analysis (Hybrid-Partition) can schedule up to

~18% more tasksets than the hybrid global scheduling analysis (Hybrid-Conc). Similarly,

as we increase the maximum fractional requirement of the accelerator (Figure 9.9b), we

observe that the partitioned scheduling approach can schedule up to ~14% more tasksets

than the hybrid global scheduling analysis.
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Figure 9.10: Multicore + Partitioned-Accelerator Schedulability: (a) accelerator utiliza-
tion, and (b) maximum accelerator fractional requirement of task requests

Figures 9.10a and 9.10b plot schedulability for a quad-core processor as a function of

(a) accelerator utilization (keeping the maximum fractional requirement of any accelera-

tor request, Fmax = 0.5), and (b) the maximum fractional requirement of any accelerator

request (keeping the accelerator utilization Ug pu = 0.4). Observe that at lower accelera-

tor utilization (Figure 9.10a), the hybrid partitioned analysis (Hybrid-Partition) can sched-

ule up to ~53% more tasksets than the hybrid global scheduling analysis (Hybrid-Conc).

Similarly, like the uniprocessor case, as we increase the maximum fractional requirement

of the accelerator (Figure 9.10b), the partitioned-scheduling approach can schedule up

to ~107% more tasksets than the hybrid global-scheduling analysis.

In summary, we observe that, as the maximum accelerator fraction of accelera-

tor requests increases, the accelerator partitioning approach yields significantly higher

schedulability than the concurrent global scheduling approach. This is because the con-

current global analysis, significantly penalizes higher-priority requests with larger frac-

tional requirement of the accelerator (Lemma 4).
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9.6 Summary

Traditional analyses consider an accelerator as a serial resource, which can lead to

schedulability pessimism. Therefore, in this chapter, we introduced schedulability-

analysis techniques for real-time systems with hardware accelerators supporting con-

current execution. For the concurrent accelerator, we consider non-preemptive global

scheduling, and propose analysis techniques for both work-conserving fixed-priority

scheduling and non work-conserving FIFO scheduling.

We first characterized and defined the scheduling problem and proved multiple prop-

erties associated with scheduling requests concurrently on a hardware accelerator. In

particular, we proposed the Multi-Access MPCP protocol to govern concurrent access to

the accelerator, while allowing concurrency-induced serialization on the CPU to proceed

in task-priority order. We also formulated the scheduling problem as the maximum-

resource bin-packing problem, and proposed the wavefront and liquefaction techniques

which provide an upper bound on the blocking faced by a task’s accelerator request.

Subsequently, for work-conserving fixed-priority scheduling, we generalized our

proposed methodologies to derive a schedulability-analysis framework based on the

request-driven, job-driven and hybrid analyses [53] [54] [55]. We also introduced an

analysis for non work-conserving FIFO scheduling. Evaluations show that when there is

significant opportunity for concurrency, our analysis techniques yield increased schedu-

lability over non-concurrent analyses.

However, due to the inherent pessimism of the analysis, there is scope for improved

schedulability. Therefore, we utilize the ability to partition compute and memory re-

sources in modern GPUs and propose partitioned-scheduling techniques which both

increase schedulability and decrease interference. We therefore recommend the use of

partitioned scheduling.



Chapter 10

Conclusions and Future Work

The primary contribution of this dissertation is the development of novel distributed

software abstractions and frameworks, which in conjunction with node-level analyt-

ical real-time scheduling techniques, enable resource-efficient and time-aware geo-

distributed coordination in cyber-physical systems. In particular, we highlighted the

necessity of a shared-notion of time to enable coordination at the distributed scope, along

with the importance of simultaneously scheduling multiple application components at

the scope of each node, such that all deadlines are met, while ensuring that the resource/-

physical constraints of the system are satisfied.

To support our thesis statement, we introduced multiple components which can be

used stand-alone or be combined together to enable both time-aware and energy-efficient

cyber-physical systems. Our research contributions are summarized as follows:

• Timelines, Quality of Time (QoT) and the QoT Stack [17] [4]: In Chapter 3 we

introduced the concept of Quality of Time (QoT) as the “end-to-end uncertainty in

the notion of time delivered to an application by the system”. Building on the

notion of QoT, we also introduced the QoT Stack, centered around a shared virtu-

alized notion of time, based on the timeline abstraction, which allows applications to

specify their timing requirements, while delivering the required QoT and exposing

252
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timing uncertainty to applications. Lastly, we also argued that the knowledge of

QoT enables applications to adapt and be fault-tolerant, while allowing the system

to manage resources efficiently.

• Bringing QoT to Virtual Machines [24]: Most public clouds and edge platforms

provide multi-tenancy using virtualized units of computing. Therefore, in Chapter

4 we introduced the notion of QoT to virtual machines. The use of virtualization

presents a challenge in terms of observing and guaranteeing the QoT delivered to

an application. To meet these challenges, we presented the QuartzV extension to

the QoT Stack, to make virtual machines QoT-aware. QuartzV utilizes para-virtual

clocks, which our experiments indicate are key for delivering near-native levels of

timing performance in virtual machines.

• Time-as-a-Service for Geo-distributed Coordination [18] [28]: In Chapter 5 we

focused on enabling fault-tolerant time-based coordinated applications running on

multi-tenant geo-scale infrastructure. To enable such applications, we introduced

the Quartz framework, which provides Time-as-a-Service. We defined Time-as-a-

Service (TaaS) as “the ability to provide an application-specific clock, which tracks

a time reference, such that the timing uncertainty does not exceed application-

specified requirements.” Quartz allows geo-distributed application components to

each specify its timing requirements, while it autonomously orchestrates the under-

lying infrastructure to meet them. Quartz is designed for containerized applica-

tions, features a distributed architecture and is implemented using containerized

micro-services. Our experimental evaluations indicate that Quartz can be deployed

on real-world embedded, edge and cloud platforms and can provide Time-as-a-

Service in a geo-distributed setting.

• Energy-Saving Multi-core Real-Time Sleep Schedulers [58]: Modern processors

provide sleep states which minimize leakage power by gating portions of the pro-

cessor and/or the system clock. In Chapter 6, we presented partitioned fixed-
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priority scheduling solutions for utilizing the processor deep-sleep state to effi-

ciently schedule sporadic real-time tasks, and maximize energy savings. The tech-

niques presented rely on our proposed family of Energy-Saving schedulers namely,

an enhanced version of Energy-Saving Rate-Harmonized Scheduling (ES-RHS) [42],

and our newly proposed Energy-Saving Rate-Monotonic Scheduling (ES-RMS) policy

to maximize the time the processor spends in the lowest-power deep-sleep state. We

also illustrated the benefits of using ES-RMS over ES-RHS for processors which

only allow all cores to transition into the deep-sleep state together. For processors

which allow cores to individually transition into deep sleep, we prove that, while

utilizing ES-RHS on each core, any feasible partition can optimally utilize all of the

processor’s idle durations to put it into deep sleep.

• Thermal Implications of Energy-Saving Schedulers [59]: In Chapter 7, we explore

the relationship between energy savings and system temperature in the context of

our previously-proposed fixed-priority energy-saving schedulers, which utilize a

processor’s deep-sleep state to save energy. We derive insights from a well-known

thermal model, and identified proactive design choices which are independent of

system constants and can be used to reduce processor temperature. Based on these

insights, we proposed the SysSleep and ThermoSleep algorithms, which enable both

an energy-efficient and thermally-effective sleep schedule. Our observations and

experiments indicate that, while energy savings are key to lower temperatures, not

all energy-efficient solutions yield low temperatures.

• Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

[60]: In many modern cyber-physical systems, tasks execute using a combination

of CPU and accelerator resources such as GP-GPUs. Hence, in Chapter 8 we focus

on reducing the energy consumption of systems using hardware accelerators. To

reduce energy consumption, commercially-available accelerators such as GP-GPUs

and DSPs are equipped with interfaces to scale their operating voltage and fre-
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quency. Hence, we proposed the CycleTandem static frequency-scaling technique to

co-optimize the operating frequencies of both the CPU and the hardware accelera-

tor. Based on practical considerations of real-world platforms, we also considered

various energy-management scenarios where the accelerator or CPU frequencies

may or may not be adjustable, and proposed the CycleSolo family of algorithms

for such contexts. To evaluate our proposed techniques, we performed both ana-

lytical evaluations and real-world experiments on the NVIDIA TX2 platform, on

which we observed up to 44.29% lower energy consumption as compared to the

case without energy management.

• Co-Scheduling Real-Time Workloads on Concurrent Hardware Accelerators:

Modern accelerators often support concurrent execution, and allow requests be-

longing to different tasks to be co-scheduled and execute in parallel. However, ex-

isting fixed-priority real-time scheduling analyses assume that tasks can access the

accelerator only one at a time. Therefore, in Chapter 9, we propose schedulability-

analysis techniques for real-time tasksets utilizing hardware accelerators which

support concurrent execution. We first considered global scheduling, where the

accelerator is treated as a single resource, and focused on work-conserving fixed-

priority scheduling and non-work-conserving FIFO scheduling. Subsequently, we

also considered partitioned-scheduling techniques, where an accelerator can be par-

titioned into discrete compute units, and the requests in the taskset can be allocated

to these partitions. Our experimental evaluations suggest that our proposed analy-

sis methodologies can yield improved schedulability, up to ~2x more tasksets, over

traditional non-concurrent analysis techniques.
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10.1 Future Directions

The future holds promise for cyber-physical system with possibly even inter-planetary-

scale coordination. Consider the recently launched Breakthrough Starshot Initiative

[187]. The initiative proposes to send laser-propelled nano-spacecraft to Alpha Centauri.

While there are a number of engineering challenges still to be solved, one can envision a

global network of laser arrays being used to send such nano-spacecraft into deep space.

These laser arrays will typically be fired for a few minutes to accelerate the space-craft

to about 20% of the speed of light [187]. To propel fleets of nano-spacecrafts, it will

be essential to precisely coordinate the direction and intensity of these geographically-

distributed laser arrays, while taking into account the effects of the earth’s rotation and

atmospheric interference. One can also envision an inter-planetary network of such

lasers.

The inherent complexity and geo-distributed nature of such cyber-physical applica-

tions along with the heterogeneity of the infrastructure makes their development, de-

ployment and management a challenging proposition. This has often resulted in the

development of application-specific siloed solutions, which are often over-engineered.

Therefore, what is required is a distributed framework which solves a key set of chal-

lenges common to a range of these systems. This dissertation focused on two challenges,

namely time and energy. However, given the spatio-temporal nature of CPS, we posit that

in the future both time and location need to be exposed as first-class entities to cyber-

physical applications, while meeting the resource constraints of the underlying system.

Therefore, we advocate for future research which focuses on:

• a distributed cyber-physical OS to enable spatio-temporal coordination in CPS, and

• quality metrics which expose both time and location as first-class primitives to

cyber-physical applications.

Therefore, like our proposed Quality of Time (QoT) [4] metric, one can also envision



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 257

a Quality of Location (QoL) [18] metric, which quantifies “the uncertainty radius in a

location estimate, with respect to a reference”.

While time, location and resource constraints like energy and maximum temperature

are paramount in the design of cyber-physical systems, we also believe that the following

are some important directions of future research:

• Security: The real-world implications of cyber-physical systems make security an

important concern. Unlike software services, which are hosted in a secure data

center, cyber-physical systems may have physical nodes deployed in public or

semi-private spaces. Hence, malicious nodes need to be detected and isolated

without violating safety constraints. From a spatio-temporal coordination aspect,

time or location spoofing can also adversely impact coordination and result in

unsafe decisions. Therefore, for a cyber-physical OS, essential security features in-

clude (i) access control to resources, (ii) isolation between applications and users,

(iii) anomaly detection and (iv) a verifiable implementation.

• Privacy: From a privacy standpoint, significant amounts of personal data may be

used by cyber-physical systems for distributed decision making. It is important

that all personally-identifiable data be sufficiently anonymized [13] [188] to reduce

the risk of exposure in case of data breaches.

• Fault Tolerance and Reliability: Most cyber-physical applications are safety-

critical [11], making fault tolerance necessary [189]. In the software services do-

main, fault tolerance is concerned with reducing down time, and preventing in-

formation loss. Hence, most services are replicated across different fault-tolerance

domains. Most CPS also utilize replication techniques to ensure fault tolerance.

However, CPS interact with the real world, where the safety of humans and in-

frastructure is critical. Therefore, CPS may also rely on analytical redundancy [126],

involving graceful-degradation modes. When multiple components fail, the sys-

tem must be able to gracefully degrade and stop without causing any harm [19].
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• Time and Software Systems: While a shared notion of time is key for cyber-

physical coordination, the core-concept of Time-as-a-Service is also useful for dis-

tributed software applications [6] [16]. We believe that the ability to request and

observe application-specific QoT can be used to relax many of the stringent asyn-

chronous assumptions associated with distributed systems.
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