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Abstract

Infrastructure-as-a-Service (IaaS) Cloud is a popular platform for providing virtual computing and storage

resource to millions of users all over the world. It allows many Cloud users to deploy their applications

in a simple and cost-effective way. Cloud applications are usually deployed in virtual components such as

virtual machines and containers. Each virtual component provides a specific function and they together

provide services to customers. Due to the complex and dynamic nature, Cloud applications are prone to

performance anomalies. Performance anomalies degrade the quality of experience for the users and may

cause loss of revenue for service providers. Performance anomalies could propagate from one component

to another through their interactions. A faulty component could cause abnormal behaviors in many other

components. When there is an anomaly, it is important to detect it and locate the faulty component as

quickly as possible. Virtual components owned by Cloud tenants do not provide visibility nor access to

Cloud providers. Existing IaaS Cloud infrastructures usually monitor resource consumption and activity

of each component. However, the resource utilization metrics do not reflect the actual service performance.

We propose decentralized methods for anomaly detection and localization in non-intrusive fashion.

We detect performance anomalies and localize the faulty component in Cloud applications without any

information about inner workings of virtual components. Our systems do not own these virtual compo-

nents and treat them as black boxes. We monitor network traffic from each virtual component and its

interaction with other components. The interaction behavior is not affected by fault propagation if all

component involved in the local interaction are normal. This discovery helps us quickly filter out normal

components. We classify these interactions into three different dependency primitives. We show that these

dependency primitives help achieve better anomaly detection and localization in Cloud applications.

We propose DMADL (Dependency Model-based Anomaly Detection and Localization) to estimate the

mean response time of each component using the arrival and departure pattern of data packets. DMADL

achieves anomaly localization through the dependency model and component impact analysis. We also

propose DMFDL (Dependency Model-based Flow ratio analysis for Anomaly Detection and Localization)

and DMCDL (Dependency Model-based flow Correlation analysis for Anomaly Detection and Localiza-

v
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tion) to model the relationship that the response flow always follow the request flow within an acceptable

time limit for each component service. This relationship is true for varying workload conditions at any

component of Cloud applications as long as it runs in normal operation.

We evaluate our methods in realistic deployment scenarios using the CloudSuite web search applica-

tion, the Olio web application, and the MediaWiki application. The results show that DMADL achieves

accurate response time estimation at each component. DMADL has around 95% precision and 5% false

negative rate in both anomaly detection and localization under varying workload scenarios. DMFDL and

DMCDL have, on average, 87% precision and 5% false negative rate in anomaly detection and localization.

Compared to the anomaly detection methods based on resource utilization metrics, DMFDL and DMCDL

achieve on average 18% higher precision, and 17% fewer false negatives. In anomaly localization, DMFDL

and DMCDL achieve around 15% higher precision and 10% fewer false negatives than FChain, another

black-box component-level fault localization method. FChain relies on the chronological changing order

of components without considering the dependency model. We also evaluate DMADL, DMFDL, and

DMCDL with extensive chronic faults. We show that our methods detect anomaly within 5 minutes for

extensive chronic faults.
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Chapter 1

Introduction

Infrastructure-as-a-Service (IaaS) is a popular platform for providing virtual computing and storage re-

sources to Cloud users. It allows many users to share a common physical infrastructure in a cost-effective

way. Cloud applications are usually deployed in virtual components. These virtual components could be

virtual machines or containers. Users manage their own virtual components and applications. The virtual

components owned by Cloud users do not provide visibility or access to Cloud providers. Cloud providers

must monitor the state of virtual components without access to their inner services. Due to their complex

and dynamic nature, Cloud applications are prone to performance anomalies. Performance anomalies

degrade the quality of experience to users and cause loss of revenue for service providers. When a single

component has an anomaly, it propagates to other normal components through inter-component interac-

tion. As a result, other components also show abnormal behavior. It is important to detect and locate the

faulty component quickly before the faulty component causes a service failure.

Existing IaaS Cloud infrastructures include Amazon EC2, Microsoft Azure, and Google Cloud Plat-

form. Amazon EC2 CloudWatch is a typical monitoring framework for virtual machines (VM). Cloud-

Watch monitors the resource consumption and activity of each VM at a 5-minute polling interval. The

monitored metrics include CPU utilization, disk reads/writes, network in and out, volume read/write,

volume total read/write time, volume idle length and volume queue length. If Cloud users want to view

more metrics of their VMs at 1-minute intervals, they have to pay an additional fee. CloudWatch also

provides a set of system status checks for: 1) Loss of network connectivity and loss of system power and

2) Notification to VM owners of exhausted memory and corrupted file systems. 5-minute polling intervals

are too long for performance-critical applications. Many things could go wrong in 5 minutes or even in

1 minute. The resource utilization metrics do not reflect the service performance properly. The service

response time is more important to users than resource utilization metrics.

1
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We propose non-intrusive dependency model-based methods for anomaly detection and localization

in IaaS Cloud applications. Multi-tier Cloud applications run together on multiple components. These

components have complex interactions and unpredictable behavior for different applications VDEP [43]

introduces dependency primitives to characterize the execution sequence when a component calls multiple

other components to process arrived requests. The basic dependency primitives together capture the

complex behavior of distributed applications. The interactions of components in Cloud applications can

be described by using three dependency primitives: Composite dependency, Concurrent dependency, and

Distributed dependency. We identifies the dependency primitives using non-intrusive analysis and apply

these dependency primitives in understanding the interaction of each component. Our system has agents

distributed on physical hosts. The distributed agents run data monitoring tasks, interaction behavior

analysis, anomaly detection, and localization tasks independently and autonomously. It does not require

any knowledge from the operating system of virtual components or underlying application domains. Our

agents do not send data to a central location for processing. The operation of each agent is simple. It

is easy to deploy these agents on a large number of physical hosts. Our agents monitor network traffic

outside virtual components and model the service performance of each component through analysis of

traffic flows. The agents analyze the interaction behavior and use the performance model for anomaly

detection and localization in Cloud applications.

1.1 Challenges

The scale, complexity, and dynamics of IaaS Cloud makes the interaction behavior characterization,

anomaly detection, and anomaly localization challenging.

1. An IaaS Cloud data center has hundreds of thousands if not millions of physical servers. Each

physical server could host tens of virtual components. Management of all these virtual components

requires automatic and careful operation. It is unrealistic to have human operators detect anomalies

and locate faulty components manually. An automatic tool for detection and localization is necessary

for large-scale virtualized data centers.

2. There are a large number of system metrics available, such as different kinds of system resource

usage and various performance counters in the operating system. It is difficult to determine the

importance of each metric with regards to its relationship to the service performance. It is critical to

determine the metrics which best reflect the service performance.

3. Cloud applications consist of multiple components interacting with each other to serve end users.

It is important to understand their interaction behavior. The service performance of a component
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depends on that of other components. Performance anomalies could propagate from one component

to other components through their interactions. When an anomaly is detected at a component, it

requires an effective method to determine whether the anomaly is caused by the local component or

other components.

4. Cloud providers have limited access and visibility to the services inside virtual components. Intru-

sive monitoring is hard without the agreement and cooperation from users. The anomaly detection

and localization must be done using traffic flows monitored outside virtual components.

1.2 Contributions

To address the aforementioned challenges, we propose non-intrusive and decentralized methods for

anomaly detection and localization of faulty components in Cloud applications. We incorporate the in-

teraction behavior amongst components and service performance model to further enhance accuracy in a

non-intrusive way. Here are our main contributions:

1. Our work is the first anomaly detection and localization framework that incorporates dependency

primitives for characterizing the performance of each component in normal operation. Existing

works study the dependency path, but they do not consider the execution sequence in anomaly

detection and localization. The execution sequence of components is important in multi-tier applica-

tions. It provides insights on how strong the behavior of a component is correlated with the behavior

of other components.

2. The local interaction behavior helps our methods to quickly filter out normal components in local-

ization of faulty components. The interaction behavior is not impacted by the fault propagation if all

involved components in the local dependency model are normal. Other methods based on resource

utilization do not utilize the interaction behaviors among application components. The fault prop-

agation affects the resource usage of all components in the application. With the local dependency

primitive at each component, our methods have a clear view of how the component interacts with

other components. We show that a fault could propagate vertically amongst components in the

same tier even though they do not interact with each other directly. Without understanding of the

dependency primitive, it is very difficult to locate the true faulty component by checking individual

components separately.

3. Our methods are non-intrusive. We use nothing more than the TCP header of packets. It is easy to

deploy our agents on the IaaS Cloud platform and agents operate without a complex configuration.
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The agents run on physical hosts and they do not need coordination from virtual components. Our

methods are based on the fact that the response flow follows the request flow. We not only estimate

the service response time, but also model the service performance using the relationship between

request flow and response flow of components. Our methods achieve high precision and recall in

detection of performance anomalies and localization of faulty components in realistic deployment

of Cloud applications with a low overhead.

4. We evaluate our non-intrusive methods with extensive chronic software faults. Prior works for

chronic software fault detection are based on analysis of software source code. It requires extensive

efforts to do software debugging. Our methods show that it is possible to detect chronic software

faults using traffic flows outside virtual components without the knowledge of the specific applica-

tion software.

1.2.1 Dependency Model

The dependency model characterizes how a component interacts with its dependent components. We

count the number of request data packets and response data packets at each component to infer the causal

execution order. We do not need to parse application level protocols to extract request and response events

for dependency model construction compared to VDEP. We validate our method for dependency model

extraction with realistic deployment scenarios using the Olio multi-tier application, the CloudSuite web

search application (SolrCloud setup), and the MediaWiki multi-tier application. Our method identifies the

interaction behavior among components correctly in deployed applications. We avoid isolated analysis of

each component by accounting for the dependency model in anomaly detection and localization. We show

that the dependency model improves the performance in anomaly detection and localization compared to

other methods that do not consider the dependency model.

1.2.2 DMADL Method

DMADL is a method that uses the estimated mean response time at each component with the dependency

model for anomaly detection and localization. DMADL approximates the response time of each request

as the elapsed time from the moment when he first request data packet arrives at the component to the

moment the last response data packet leaves the component. The response time of a component represents

the total amount of time spent by the component and its subsystem for processing requests. While existing

methods rely on either analysis of server logs or inspection of packet payload, DMADL agents capture

only data packets and analyze the TCP headers of each packet. We compare the estimated end-to-end
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response time with the logged response time at both client side and server side. The results show that

the estimated mean response time can accurately reflect the service performance at each component. We

evaluate DMADL using both common fault models and performance bugs. The results show that DMADL

achieves almost 95% detection precision and 5% false positives and false negatives for anomaly detection

in deployed Cloud applications. We compare DMADL with existing resource utilization-based anomaly

detection methods. DMADL achieves 32.3% higher detection precision and 21.9% fewer false negatives

than resource utilization-based methods. DMADL also has a smaller detection latency, i.e., less than 5

seconds. DMADL detects anomalies over 20 seconds earlier than correlation methods.

DMADL further derives the subsystem response time of each component using the dependency model

and the estimated response time of each dependent component. DMADL analyzes the impact of each

component in real time and pinpoints the component with the highest impact on the service performance

as faulty. We evaluate the effectiveness of DMADL through extensive experiments with different kinds of

faults in multiple applications. We compare DMADL with another component-level localization method,

FChain [42]. The results show that DMADL achieves 31.1% higher localization precision and 15.8% fewer

false negatives than FChain. DMADL incurs less than 1% CPU cost and negligible memory cost for each

virtual component under varying workload intensity. DMADL does not interfere with the performance

of running services on virtual components or physical hosts.

1.2.3 DMFDL Method

DMFDL builds a flow ratio model and combines it with the dependency model for anomaly detection

and localization. The flow ratio model uses an adaptive ratio between the number of outgoing response

data packets and the number of request data packets to model the service performance in normal opera-

tion. It shows that the flow ratio is stable under varying workload intensity at each component of Cloud

applications. A DMFDL agent detects an anomaly if the flow ratio in a decision window deviates too far

from the flow ratio in normal operation or if the local dependency model changes. We compare DMFDL

with resource utilization-based anomaly detection methods. DMFDL achieves over 22.6% higher detec-

tion precision and 17.4% fewer false negatives than resource utilization-based methods. DMFDL detects

anomalies over 12 seconds earlier than methods that use the correlation between resource utilization.

DMFDL uses the local dependency model and the flow ratio model for anomaly localization. DMFDL

agents use the ratio between the request flow to dependent components and the request flow to the local

component to characterize the interaction behavior between the local component and its dependent com-

ponents. DMFDL agents pinpoint components whose request flow ratios change the most or the earliest
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as faulty under different dependency primitives. DMFDL achieves 21.5% higher localization precision and

11.2% fewer false negatives than FChain. DMFDL incurs less than 1% CPU cost and negligible memory

cost for each virtual component under varying workload intensity. DMFDL does not interfere with the

performance of services running on virtual components or physical hosts.

1.2.4 DMCDL Method

DMCDL applies the correlation analysis between the input request flow and the output response flow

for modeling the service performance at each component of Cloud applications. In normal operation, the

output response flow changes with the input request flow within an acceptable time limit. The flow corre-

lation decreases if there is an anomaly in the component or its subsystem. We evaluate the stability of the

flow correlation under varying workload intensities and use the flow correlation to characterize the service

performance in normal operation. We compare DMCDL with resource utilization-based anomaly detec-

tion methods. DMCDL achieves around 20.1% higher detection precision and 17.0% fewer false negatives

than resource utilization-based methods. DMCDL detects anomalies with larger latency than DMADL

and DMFDL. DMCDL still detects anomalies with 5-second smaller detection latency than methods that

use the correlation between resource utilization.

DMCDL uses the correlation between the request flow to a local component and the request flow to

its dependent components to characterize the interaction between the local component and its dependent

components. DMCDL agents pinpoint a dependent component as faulty if the request flow correlation of

the dependent component decreases the earliest or the most under different dependency primitives. DM-

CDL uses the dependency model and the request flow correlation for anomaly localization in Cloud appli-

cations. We compare DMCDL with FChain, another non-intrusive component-level localization method.

The results show that DMCDL achieves around 19.9% higher precision and 9.2% fewer false negatives in

anomaly localization than FChain.

1.2.5 Non-Intrusiveness and Low Overhead

By restricting the task of traffic monitoring, dependency model extraction, anomaly detection, and local-

ization to local components, the load on each agent does not increase with the size of the application

nor the size of the data center. The load only depends on the workload intensity. Each agent operates

autonomously, and it does not need coordination or communication from other agents during operation.

Each agent does localization analysis only after it detects anomalies. Centralized localization methods

have to analyze the behavior of all components when it detects anomalies in applications. Compared to
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these methods, our methods reduce unnecessary operation and have more accurate results. Our agents do

not require any domain knowledge and they take each component as a black box using passive monitor-

ing techniques. It has low overhead, and it does not interfere with the performance of application services

deployed inside virtual components.

1.2.6 Extensive Chronic Fault Evaluation

We evaluate our methods DMADL, DMFDL, and DMCDL in detecting sampled faults from three different

classes of chronic software faults as used in [45]. Although no individual technique could detect all chronic

faults, multiple techniques used together could. For those chronic software faults that do not show obvious

symptoms from their occurrence, our methods could still detect these faults at an early stage.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we discuss related works in anomaly detection and

localization. Chapter 3 describes the fault model and fault propagation in Cloud applications. The ex-

perimental setup and evaluation criterion are described in Chapter 4. We analyze different dependency

primitives and derive the relationship between subsystem response time and the mean response time of

each dependent component in Chapter 5. We present DMADL for anomaly detection and localization in

Chapter 6. We introduce DMFDL and evaluate its performance in Chapter 7. In Chapter 8, we introduce

DMCDL and show its performance in anomaly detection and localization. We use our methods (DMADL,

DMFDL, DMCDL) for detection of extensive chronic faults and show the comparative analysis of their

performance in anomaly detection and localization in Chapter 9. We conclude the thesis in Chapter 10.



Chapter 2

Related Works

In this chapter, we review existing research works on performance monitoring and anomaly detection, ap-

plication dependency, and anomaly localization by different methods and show our difference compared

to their work.

2.1 Anomaly Detection

The goal of anomaly detection is to identify when the application performance is deviating from the

specified or expected performance requirement. There are two different classes of anomaly detection

methods: metric-based methods and model-based methods.

2.1.1 Response Time-based Anomaly Detection

The response time is an important performance metric in understanding the performance of applications.

From users’ perspective, the response time measures how responsive the application is while interacting

with users. This class of approaches estimate the end-to-end response time as one of the most important

metrics for performance anomaly detection.

There are many works in the literature using server-side response time estimation for anomaly detec-

tion [2, 5, 9, 11, 22, 44]. EtE [2] relies on request-response reconstruction and web page reconstruction to

estimate the overall end-to-end service latency from the analysis of network traces. EtE requires the anal-

ysis of TCP segment payloads to extract all HTTP requests and corresponding responses. It reconstructs

page access statistics by grouping requests and responses of each web page from knowledge base and

statistical analysis. EtE may compete with running applications intensively for CPU and I/O bandwidth.

It is better to place EtE as an independent network appliance between clients and application servers.

8
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Olshefski et al. proposed ksniffer [5] and RLM [9] to passively infer application-level response times

for HTTP transactions. ksniffer needs a kernel module to be installed on the server system, and RLM runs

as a network appliance between clients and application systems. However, both tools require to parse

TCP payloads and analyze HTTP headers, making them unsuitable for encrypted traffic such as HTTPS.

As HTTP headers can be embedded anywhere in the TCP payload, they have to analyze all payload

content and may incur high overhead. sMonitor [11] estimates the response time for HTTP and HTTPS

through packet size analysis. All these works require intrusion and visibility into operating systems and

application layers.

Adudump [22] continuously collects and processes TCP and IP headers in a streaming fashion to build

client-server interaction model from the sequence and acknowledgement numbers. It further extracts the

server-side response time and compares the response time distribution with historical distributions for

detecting anomalies.

PBAD [44] estimates the upper bound of the server-side response time from packet counts and uses

the estimated response time for anomaly detection. The adudump is the closest approach to ours for

estimating the response time using only TCP headers. However, DMADL uses only data packets that

contain TCP payload, and it does not need to reconstruct the TCP dialogue from the SEQ and ACK

numbers. We estimate the mean response time for anomaly detection in real time. Other classes of

anomaly detection approaches rely on the application or system logs for anomaly detection [23, 24]. Deep

packet inspection techniques have scalability issues in terms of computational and storage capacity.

2.1.2 Queuing Model-based Anomaly Detection

Queuing model approaches model the application system as a set of connected queues. They take com-

ponents such as the inter-arrival process, the service process, the number of servers and customers into

consideration.

Urgaonkar et al. [6] uses a network of queues to model each tier of multi-tier applications. Their

analytic model mostly considers the session-based workload, concurrency limits, and caching effects at

each tier. They estimate response time by the mean value analysis. Their model assumes the arrival rates

and residence time at each tier are provided by the logging mechanisms. They have to estimate the visit

ratio and the service time at each tier. They also have to estimate the think time of each client.

Zhang et al. [16] applies a regression-based approximation of the CPU demand of client transactions

on a given hardware. Then we use this approximation in an analytic model of a simple network of

queues, each queue representing a tier, and show the approximation’s effectiveness for modeling diverse
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workloads with a changing transaction mix over time. Also, the unit of work is transactions, not web

requests. They do not consider the inherent performance variability in a cloud environment and the load

on the servers in terms of used memory and disk I/O.

Bi et al. [25] proposes a network of queuing models of multi-tier applications. First they need to

determine the capacity of multiple VMs for each tier in terms of the request rates they can handle, then

they compute the number of VMs required at each tier to satisfy the requirement of customer response

time. Their approach requires monitoring system resource usage metrics (such as CPU, memory, network,

and disk), and request rates at each single server of each tier. In their systems, per-tier service times are

assumed to be drawn from a known fixed distribution. They consider that the per-tier utilization of VM

for virtualized multi-tier application is the utilization metric correspond to the utilization of the busiest

resource (e.g. CPU, disk, or network) for the tier. However, in their approach there is a very obvious

problem that the service rate of the multi-tier application is the sum of service rates at each tier. It is not

true because there is a dependency relationship among different tiers. The server rate at each tier could

affect the service rate at other tiers, and simple summing the service rates at different tiers could cause

deviated performance estimation.

2.1.3 Machine Learning Model-based Anomaly Detection

This class of approaches model the system performance using machine learning models. They either

build the performance index as the regression model of various system resource usage metrics. They train

the performance model during normal operation, and trigger anomaly alert when the system operation

deviates from the trained model.

Cherkasova et al. [20] models the application resource consumption (mainly CPU consumption) by a

set of different application transactions. They find out the CPU consumption for each transaction type

by solving a regression model. If the observed CPU consumption cannot explained by the transaction

model, they trigger anomaly alert or application performance change. They further profile the application

latency and combine it with the transaction model to find out the service time for each type of transaction

as the performance signature. After detecting performance anomalies, they compare the new performance

signature against the old one to distinguish the transaction which caused the model change. This approach

implies extracting details from all transactions, such as overall latency, outbound calls, and the average

latency of outbound calls. Another drawback is that the CPU consumption model may not work well in

modern applications, which contain many different transactions of complex dynamic contents. Lastly, it

requires a large amount of training data and online adaptation to model the CPU consumption for each
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transaction model, which may not be accurate enough when the training sample is too small and cannot

scale to other servers.

UBL [31] uses Self-Organizing Maps (SOM) on resource utilization metrics to capture normal system

behaviors and predict unknown anomalies. UBL first collects resource utilization of VMs (e.g., CPU

usage, memory allocation, network I/O, disk I/O) in normal operation to learn the normal behavior of

the system. UBL uses SOMs to model system behaviors in two different phases: learning and mapping.

During the learning phase, the SOM uses a competitive learning process to adjust the weight vectors of

different neurons. For each normal sample, the SOM updates the closest neuron and its neighborhood

neurons. During application run-time, it maps each measurement vector to a neuron in the map and

determines whether the sample is normal or abnormal from the distance between the neuron and its

neighborhood neurons. There are several parameters to be configured in order to use SOM properly

for anomaly detection, such as the map size, neuron vector initialization, and threshold for detection

decision. Improper configuration would result in bad detection performance of the SOM. It also imposes

a large overhead as the size of SOM increases in order to accurately model the dynamic system. UBL’s

performance degrades when the system has a completely previously-unseen workload.

Neural networks are used to analyze and learn the normal usage behavior of Cloud customers and

detect anomalies [36]. The focus of the work is to detect security attacks, not performance anomalies.

Zhang et al. [53] presents an improved incremental self-organizing Map (IISOM) model for anomaly

detection of virtual machines. They collect around 1000 run-time performance measurements to train the

self-organizing maps for anomaly detection. They use a Weighted Euclidean Distance (WED) algorithm

to speed up the training process and improve the model quality. However, their approach has similar

problems to UBL [31]. The parameters of map size of SOM, learning rate, and initial weight value of

neurons still have to be predefined by empirical estimation. It may incur high computational complexity

and iterative regression for empirical estimation.

Sauvanaud et al. [55] describes an anomaly detection system (ADS) designed to detect errors related to

the erroneous behavior of the service, and SLA violations in cloud services. It uses a system monitoring

entity to collect metrics from both hypervisor counters and virtual machine OS counters, and detect

anomalies using supervised machine learning models. The machine learning algorithms include random

forests, neural networks, nearest neighbors, naive bayes, support vector machine (SVM), and gradient

boosting algorithm.
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2.1.4 Correlation-based Anomaly Detection

The correlation-based approaches first extract metrics that have high correlation with each other and then

uses their correlations to characterize the application performance. Their detect performance anomalies

when the corresponding correlations drop below a certain threshold.

PeerWatch [28] builds a canonical correlation analysis (CCA) model to extract correlated behaviors of

system metrics between multiple application instances, and uses the model to cross check the status of

those instances. It requires multiple instances in Cloud applications to exhibit similar workload pattern

in terms of resource utilization pattern. This is a limitation in dynamic Clouds, where different instances

show completely different pattern in resource usage. Correlation analysis across different instances may

produce false positives, as different components could be totally different in their resource usage since

different application functions require different resources.

Magalhaes et al. [26] monitors client transactions and system metrics to associate the response time

with the number of processed transaction mixes. The Pearson correlation coefficient is used to describe the

relationship between the amount of concurrent users and collected system parameters. A low correlation

coefficient triggers the anomaly alert.

LFD [32] detects anomalies based on the hypothesis that the processing of a request alternates between

the communication phase and the computation phase. It hypothesizes that the alternating activity induces

correlated behavior between user-space CPU utilization with other system resources’ consumption when

the system is normal. They trigger an anomaly alert when the correlation between user-space CPU uti-

lization and other system resource consumption decreases. LFD has to be implemented in each VM

individually to explore the correlation between the user-space CPU utilization and other system metrics,

and thus incurs an overhead that may affect the application performance.

CloudPD [37] combines resource utilization models with linear pairwise correlation models as an

invariant of application behavior to detect anomalies. It requires both system-level and application-level

metrics, such as service latency and throughput. CloudPD has to learn stable correlations among a large

set of metrics. This limits its scalability in large Clouds due to numerous metrics in a data center with a

very large number of VMs and applications.

PAD [41] proposes a combined threshold analysis and correlation-based approach for anomaly de-

tection and root cause identification. PAD first collects data from different performance counters and

compares counter values or their statistical properties (i.e., mean, median, or quantile) with predefined

thresholds to identify violated performance counters. PAD uses correlation (Pearson and Spearman) co-

efficients to find out those performance counters that are responsible for the anomaly.
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LADT [47] is a lightweight anomaly detection tool based on LFD. LADT correlates host and aggregated

virtual machine (VM-level) metrics in Cloud data centers. LADT is based on the hypothesis that metrics

from physical hosts and virtual machines (VMs) are strongly correlated in an anomaly-free system. LADT

detects anomalies via correlation analysis between host-level and VM-level system metrics. As we know,

the host resource utilization almost equals the aggregated resource utilization of all virtual machines. This

approach works if there is anomaly with the physical host software, but it causes false negatives when the

VMs have performance anomalies.

Wang et al. [48] uses an online incremental clustering method to recognize access behavior patterns,

and uses the canonical correlation analysis (CCA) to model the correlation between workloads and metrics

related to application performance or resource utilization in a specific access behavior pattern. It detects

anomalies by discovering an abrupt change of correlation coefficients in an exponentially weighted moving

average (EWMA) control chart, and locates suspicious metrics using a feature selection method. This

approach assumes prior knowledge about the underlying applications and the workload. It requires

knowledge of the exact number of components (servlets) in the application, and the details about different

types of user requests.

EbAT [27] analyzes distributions of different metrics collected from virtual machines and physical

hosts. They use entropy to capture the degree of dispersal or concentration of the distributions. They

aggregate several raw metrics across the data center to form an entropy distribution. Finally, they detect

anomalies via wavelet analysis and visual spike detection in general and at each level of the hierarchy.

2.2 Anomaly Localization

In multi-component applications, a fault at any component could propagate to the whole system such

that many components behave abnormally. When a performance anomaly is detected, it is important

to determine which component is the source of the anomaly. Works towards anomaly localization are

divided into three different classes: localization based on system traces, using application dependency

graphs, and using machine learning techniques.

2.2.1 Trace-based Anomaly Localization

Tracing requests’ execution path is typical class of approach for locating faults and diagnosing problems.

It usually requires either tagging requests and logging requests at each components (application-level).

These approaches could give a clean picture of system operation. But it requires both domain knowledge
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and too much human configuration or instrumentation to work well. It is hardly to scale this approach to

heterogeneous applications in IaaS Cloud today.

Pinpoint [1] is a tool used for accurate detection and localization of faulty components in large dis-

tributed systems. The authors modify the J2EE middleware to capture the paths and track the success or

failure status of requests traveling through a distributed system by tagging J2EE calls with a request ID.

Pinpoint further infers components that are causing faults with client traces and request success/failure

logs. It uses a data clustering algorithm to find out components that are highly correlated with failures

of requests. One limitation of Pinpoint is that the middleware instrumentation requires visibility of VMs

and applications, which is not reasonable in IaaS Cloud. A more obvious limitation is that it applies only

to services based on the J2EE platform.

Magpie [3] specifically associates the traced messages with each incoming request by tagging a unique

identifier and associating resource usage throughout the system with that identifier. It implies a much

more sophisticated tracing infrastructure for debugging of low-level system problems. Project5 [4] and

WAP5 [10] are aimed at debugging wide-area distributed applications by exposing causal communication

sequences within applications and the delays of components that imply bottlenecks. They solve these

problems by gathering traces, particularly overlapping traces from multiple sniffers, and reconciling them

into a single trace for analysis.

PerfCompass [50] is a fault debugging tool based on the premise that it is important to distinguish

between faults with a global impact and faults with a local impact, since the diagnosis and recovery steps

for faults with a global impact or local impact are quite different. PerfCompass can use this information

to suggest the root cause as either an external fault (e.g., environment-based) or an internal fault (e.g.,

software bug). PerfCompass records system calls from monitored application using lightweight kernel-

level system call tracing tools. It performs fault localization and inference using four steps. First, it

segments the large raw system call traces into execution units, which are groups of closely related system

calls. Next, these execution units are processed to extract a set of fine-grained fault features (e.g., which

threads are affected by the fault, or how quickly the fault manifests in different threads). Third, these

fine-grained fault features are used to differentiate between faults with a global impact and faults with

a local impact and identify the root cause as external or internal. Lastly, PerfCompass identifies the top

affected system calls and provides ranks for those affected system calls, which allows developers to iden-

tify affected subsystems (e.g., network, I/O, CPU) and further diagnose the fault. Note that PerfCompass

requires instrumenting the kernel running on each VM with a kernel tracing tool to monitor the system

calls generated by each application running on that VM.

Roots [51] is a system for detecting anomalies and identifying their root cause in web applications
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deployed in Platform-as-a-Service (PaaS) clouds. Roots tracks events within the PaaS Cloud related to

each specific request and records the latency for each request for anomaly detection. Roots requires meta-

data injection and platform-level instrumentation. It requires tagging each request at the front-end web

server for each application. It then intercepts and records events as the application code invokes various

service implementations of the PaaS cloud using the tagged ID. Roots also records the latency of each

application call to the internal cloud service implementation. In order to perform data collection, Roots

must be able to introspect the entire platform software stack. Roots truly provides the accurate request

execution path, but it requires too much human efforts and supports only a specific set of applications. In

this work, we aim at detecting and localizing performance anomalies. Roots can help in detail performance

diagnosis to find out the root cause after we pinpoint the root cause component.

Mdhaffar et al. [52] presents a cross-layer reactive monitoring approach for Cloud computing envi-

ronments. The work monitors performance metrics across 4 different layers: physical host layer, virtual

machine layer, middleware platform layer, and application layer. It uses a complex event processing (CEP)

methodology to detect and repair performance-related problems. The correlation coefficients between

metrics across different layers is used to reduce the number of monitored parameters and derive the

interactions and root cause of performance-related problems.

These trace-based approaches precisely record the execution path information and locate the abnormal

component through instrumenting either the application or middleware platform. They are very helpful

to debug distributed applications, but the overhead brought by these tools is significant, hindering the

possibility of deploying them in IaaS Clouds. Additionally, deploying these tools requires the administra-

tors to understand heterogeneous middleware platform or application source code running inside VMs.

Compared to these tools, we aim at developing an approach that has low overhead and does not need any

specific knowledge of the underlying platform or applications running on VMs. It operates outside VMs

for anomaly detection and localization.

2.2.2 Application Component Dependency Analysis

Deriving an application dependency graph is important for understanding the whole topology of multi-

component applications. The dependency graph is useful to understand how performance anomalies or

faults propagate from the source component to the whole application, and can be used to determine fault

propagation paths and identify the root causes of anomalies.

The Sherlock [15] system is aimed at giving IT administrators the tools they need to localize per-

formance problems and hard failures that affect end-users. Sherlock detects the existence of faults and
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performance problems by monitoring the response time of services and localizes the problem to the most

suspicious component. It needs to create an observation node for each client reporting service response

time, making the service meta-node a parent of the observation node.

Constellation [18] uses a black-box approach to learn explicit models of dependencies using little more

than the timings of packet transmission and reception. Constellation is aimed at discovering network-wide

service dependencies and can help in diagnosing network-wide problems. The dependency building

algorithm used by Constellation can also run in a distributed fashion. Orion [19] discovers machine

dependencies using packet headers and timing information in network traffic based on a novel insight of

delay spike based analysis.

CauseInfer [40] focuses on the dependency directions between every pair of communicating compo-

nents in client-server Cloud applications. CauseInfer leverages the fact that packets sent by a server

follows the change in packets sent by a client with some delay. CauseInfer uses the lag correlation of the

sending traffic between two services to distinguish the dependency direction. For example. if a service

A depends on another service B, the traffic sent by A follows the change in the traffic sent by B. We

consider multiple pair-wise dependency relationship to characterize the interaction behavior between the

local component and multiple dependent components.

VEDP [43] discovers dependency models that incorporate complex application behavior/interaction

patterns in addition to communicative and causal relationships. VDEP introduces three dependency

primitives as basis to represent the basic behaviors of component dependencies and they together cap-

ture the complex behavior of distributed Cloud applications. It derives response time characteristics for

each dependency primitive and uses response time characteristics to validate the accuracy of dependency

extraction. However, VDEP requires inspection into the packet payload to extract request and response

events. It requires understanding of application protocols and decryption of encrypted application pro-

tocols such as HTTPS. These operations involve specific inspection operations for each specific service

protocol. In real data center applications, the dependency graph can change frequently due to component

failure and replacement, or component function change. We have agents build only local dependency

which characterizes only the interaction between the local component and its dependent components.

Whenever a component within the same application changes, only those components that involve direct

interaction with the changed component needs to update its dependency graph. Thus, it is more robust

to individual component change. In a centralized system, the process of building dependency graph has

to repeat for all components.



CHAPTER 2. RELATED WORKS 17

2.2.3 Machine Learning-based Anomaly Localization

NetMedic [21] periodically captures a large set of variables ranging from system level to application

level for problem diagnosis. The captured metrics include system resource utilization, exchanged traffic,

application-level process activity such as inter-process communication, the fraction of failed requests, and

the process response time. Then it models the communication behavior of components in the network as

a dependency graph. After computing the abnormality of each component based on their deviation from

normal history, NetMedic represents the component impact as weighted edges in the dependency graph.

Finally It formulates detailed diagnosis as an graph inference problem which finds out the most likely

cause with highest impact on the network.

PAL [30] pinpoints the faulty components in distributed applications by extracting anomaly propaga-

tion patterns. PAL first detects critical change points at different components, and then sorts all critical

change points in chronological order to derive the propagation pattern. PAL assumes that the system-

level metric changes caused by normal workload fluctuations are less significant than those caused by the

performance bugs and that the anomaly onset time instants at faulty components are earlier than those

of other components. PAL relies on either an external monitoring tool to keep track of the application

SLO status. These assumptions may produce false positive as the workload for Cloud applications is

unpredictable. Different types of workload consumes different resources intensively. The change point

detection algorithm may not be able to differentiate anomaly change points from normal change points.

In a distributed application, a component fault may affect the whole system instantly. A false change

point leads to the false positive and false negative for anomaly localization.

FChain [38] uses a combination of predictability-based abnormal change point selection and depen-

dency information for fault localization. FChain monitors low-level system metrics for each VM and

learns normal fluctuation patterns for each metric. When a performance anomaly is detected, FChain first

selects abnormal change points and sorts the starting time of abnormal changes at different components

to identify the propagation path. It pinpoints the faulty component as the source component that shows

the earliest fault manifestation. Further, it filters out spurious abnormal change propagation paths using

inter-component dependencies. For example, Figure 2.1 shows how FChain pinpoints faulty components

after it detects abnormal changes at the two application servers and the database. The application server

1 starts to exhibit abnormal change at time t0 = 200s, and it is earlier than the application server 2

(t1 = 205s) and the database (t2 = 210s). FChain first infers that the abnormal changes start at application

server 1 and it propagates following the path from the application server 1 to the application server 2,

and finally to the database. Second, FChain finds that there is no dependency between the application
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Figure 2.1: The fault localization process of FChain

server 1 and the application server 2, and infers that the propagation path from the application server 1

to the application server 2 does not exist. Therefore, FChain pinpoints the application server 2 as faulty

as well. Finally, FChain pinpoints the two application servers as faulty components. It works well while

the difference between the changing points of different components is observable (tens of seconds). In our

applications, we observe that the anomaly propagates from the faulty components to normal components

almost within 1 second. It is difficult to pinpoint the faulty components based on the chronological order

of change points of different components. Another problem is that FChain requires a sufficient amount

and diversity of training data to represent normal system states under different workload scenarios and

all possible transitions between different states.

Zhang et al. [56] proposed and implemented a system called Deepview for virtual hard disk (VHD)

failure localization in IaaS Cloud where virtual machines use remote storage service. Deepview first

builds a global view of the system computing cluster, storage cluster, and network devices. It simplifies

the global system view by aggregating possible paths between each pair of computing and storage clus-

ter. They start from the bottom and go up for each cluster and aggregate the network devices by tiers,

and then use shortest path routing to find the lowest overlap between each cluster pair. Deepview pin-

points the problem to network tiers after the simplification. Deepview further uses the Lasso regression

with L1-norm constraint to estimate the failure probability for each component. Finally, Deepview uses

hypothesis testing on the failure probability to decide whether to blame the corresponding component

or not. Compared to Deepview, our approach focuses on virtual components and targets performance

anomalies rather than disk failures.



Chapter 3

Fault Models

We evaluate our proposed systems with an extensive and comprehensive set of faults found in computing

systems. We first introduce the fault models that we use in all of our experiments. We also analyze how a

fault propagates among components in Cloud applications.

3.1 Fault Model

We introduce the faults in three categories. The first category of faults is about resource bottlenecks.

These faults are mostly caused by improper resource allocation or bursting workload on IaaS Cloud. The

second category of faults deal with software bugs. These faults cause immediate performance degradation,

service hang, or even service crash problems. The third category of faults are extensive chronic faults.

These faults do not have an immediate impact on the service performance and they usually hide in the

system for a long time compared to software faults in the second class. We mainly focus on the faults

that manifest as unacceptable response time. We do not consider faults that directly cause the virtual

or physical infrastructure to crash. Crash faults (e.g., virtual machine crash, physical host crash) can be

easily detected by a simple heartbeat mechanism.

3.1.1 Resource Bottleneck Fault

We first introduce common resource bottlenecks in Cloud applications as used in previous work in Ta-

ble 3.1. We also show how we inject these faults in our virtual components.

19
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Table 3.1: Fault Models, Fault Scenarios, Fault Injection Techniques and References

Fault
Models Fault Scenarios Fault Injection Techniques Reference

CPU-fault

• Application bug: infinite
loops

• CPU bottleneck by un-
expected high workload,
or resource contention in
software

• Inject program to run infi-
nite loops

• Unexpected workload to
cause CPU bottleneck

[12, 17, 28,
26, 27, 32,
33, 34, 38,

48, 50]

Memory-
fault

• Memory leakage: contin-
ual memory allocation, no
freeing

• Memory contention: no
available memory

• Run another memory-
intensive program

• Unexpected workload to
cause CPU bottleneck

[12, 17, 28,
26, 32, 33, 34,

38, 48, 50]

Network-
fault

• Congested network

• Packets are dropped with
a random probability

• Inject additional delay to
packets

[17, 28, 32,
48, 50]

Disk-fault • Disk I/O contention • Run disk I/O intensive
process in background

[12, 17, 28,
26, 27, 32,
33, 34, 38,
48, 47, 50]

3.1.2 Common Software Fault

There are numerous cases of service degradation due to software performance bugs. We search for soft-

ware performance bugs reported by real world users in the bug repository. We focus on software perfor-

mance bugs that cause service slowdown or hang. We reproduce those bugs as given in the bug reports

to recreate the problem in our system. For those bugs that do not provide bug replication procedure, we

emulate them with similar effect on the system. Table 3.2 gives the list of software performance bugs.

3.1.3 Extensive Chronic Fault

Chronic software faults occur in common software systems. Chronic software fault could hide in the

system for a long time before it causes serious performance degradation. Randomly chosen samples of

software faults from bug reports may not represent chronic faults properly. It is better to classify software

faults into different classes and then sample a set of faults from each class.

The chronic software faults have three root causes according to Li et. al [13].
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Table 3.2: Software performance bugs occurred in different application platforms

System Fault ID Fault Description

SolrCloud SOLR-138
A burst of “expensive” queries can cause contention within

lucene, greatly reducing effective throughput and causing more
and more queries to stack up.

SolrCloud SOLR-5935 SolrCloud hangs when querying and indexing is run at the
same time during performance tests.

SolrCloud SOLR-5216

A long time of stress-testing of document updates to SolrCloud
can cause a distributed deadlock. The Solr instances start to see

each other as down, flooding the Solr logs with "Connection
Refused" exceptions

SolrCloud SOLR-4940 The cluster crashes after executing a long and large query on
the index set.

Apache HTTPD-48905 On busy websites, some processes hang out and no longer
process user requests.

Apache HTTPD-57628 Apache processes randomly crash when serving request to
download large file.

Apache Configuration Low number of connection pool threads causes the server to
reject client connections.

MySQL MySQL-54332 A MySQL deadlock bug that occurs when each one of two
connections locks one table and tries to lock the other.

MySQL MySQL-40968 MySQL server hangs when the server is under heavy load.

MySQL MySQL-87164 MySQL queries running much slower in version 5.7 versus 5.6.

PHP PHP-62418 The php-fpm master process crashes randomly on lightly
loaded server.

Nginx Nginx-62418 THe Nginx worker process crashes under heavy load.
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1. Memory faults caused by improper handling of memory objects;

2. Concurrency faults that occur in multi-threading or multi-process environments;

3. Semantic faults which are caused by inconsistency with the design requirements or the program-

mer’s intention. Faults that are not classified as memory or concurrency faults are considered as

semantic faults [13].

We use these chronic software faults as they contain the most common and critical types of faults

and they are the design focus of bug detection tools [7, 13]. For memory faults, we search for bugs that

cause slow memory leakage. For concurrency faults, we search the bug reports using keywords such

as “race”, “lock”, “concurrency”, and “synchronization”. We identify chronic faults as those faults that

do not cause complete system failure and/or can persist for a long time before causing performance

degradation. Concurrency faults usually cannot be reproduced easily, especially if they are subtle chronic

faults. Hence, we analyze the effect of these faults and emulate these faults with similar effect as those

chronic concurrency bugs. We have selected Apache HTTP Server 1, Nginx 2, and MySQL 3 as main

software components to evaluate chronic software faults. Apache and Nginx are the two most popular

web servers in market share. MySQL is the most popular database in market share. Table 3.3 shows the

target software components, fault effect, and related bugs in evaluation of our methods. All selected bugs

are found in Apache bugzilla 4, Nginx bugzilla 5, and MySQL bugzilla 6

Most semantic faults in Apache and Nginx result in malformed responses to clients. Examples of these

faults in Apache include corrupted header fields or a truncated body in the response. The chronic faults

in Nginx cause it to send corrupted or malformed response content to clients. These chronic faults are

usually preceded by data corruption in the system.

3.2 Fault Propagation

When a component becomes faulty, the fault propagates to other components through inter-component

interaction. Understanding the fault propagation path helps to localize the faulty components from mul-

tiple components that exhibit abnormal behavior. Here we describe fault propagation from two different

perspectives: dependency path and TCP path.

1Apache HTTP Server: https://httpd.apache.org/.
2Nginx HTTP Server: https://nginx.org/en/
3MySQL Database Server: https://www.mysql.com/
4Apache Bugzilla: https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=httpd
5Nginx Bugzilla: https://trac.nginx.org/nginx/report
6MySQL Bugzilla: https://bugs.mysql.com/

https://httpd.apache.org/
https://nginx.org/en/
https://www.mysql.com/
https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=httpd
https://trac.nginx.org/nginx/report
https://bugs.mysql.com/
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Table 3.3: Extensive chronic faults in different application platforms

Software
Component Fault Effect Bugs

Apache
HTTP
Server

slow memory leak Apache #25667, #35404, #43223, #44975, #53435, #55296, #56271,
#497077, #849272, #33899, #44026, #44783, #61222

Apache
HTTP
Server

child process
failure

Apache #10266, #47370, #50702, #59798, #60071, #98979,
#119128, #641968

Apache
HTTP
Server

high CPU usage Apache #5225, #37680, #52858, #57544, #57800, #117832

Apache
HTTP
Server

truncated response
fault

Apache #27292, #50481, #56176, #57476, #61147, #908583,
#1569081

Nginx
Application

Server
slow memory leak Nginx #568 #871, #996,#1482, #1509, #1587

Nginx
Application

Server

worker process
failure Nginx #912, #822, #192

Nginx
Application

Server

partial content
error Nginx #683, #1014, #1304, #549, #1357, #1550

MySQL
Database

Server
slow memory leak MySQL #56924, #66740, #72885, #83047, #86082, #87501,

#852477, #68287, #68514, #68980, #77403

MySQL
Database

Server
high CPU usage MySQL #34312, #65778, #76402, #87637

MySQL
Database

Server

slow database
queries

MySQL #15815, #36525, #37633, #67252, #71130, #80989, #86215,
#88834
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Dependency Path Propagation

First, fault propagation follows the application dependency path: from downstream components to up-

stream components. A faulty component could affect those components that depend on it. As the faulty

component takes longer to process the request, the response time of its upstream components increases.

As shown in Figure 3.1, when the component AP2 is faulty, it also causes the response time of component

LB to increase. As a result, LB exhibits abnormal behavior.

LB

BAP1AP1

BAP2

SQLAP2

Client 

Generator

NRT: 64.1ms 

ART: 860.7ms

NRT: 29.0ms 

ART: 61.2ms

NRT: 24.0ms 

ART: 1436.2ms

NRT: 4.5ms 

ART: 7.5ms

NRT: 3.5ms 

ART: 5.1ms

NRT: 0.8ms 

ART: 20.1ms

faulty component
NRT: mean response time during normal operation

ART: mean response time after fault happens

Figure 3.1: An example of anomaly propagation in multi-tier applications

TCP Propagation Path

The TCP congestion control impacts two interacting components. TCP propagation happens due to either

of two reasons [42]: (1) The TCP sender does not send fast enough and causes the receiver to be read-

blocked; (2) The TCP receiver does not receive or process data fast enough and causes the sender to be

write-blocked. When a component is faulty, it impacts not only its upstream components, but also its

dependent components through the TCP propagation path.

• The faulty component cannot process requests coming from its upstream components fast enough.

Its upstream components are write-blocked as they try to send requests to the faulty component.

The waiting time at the upstream components increases.

• The faulty component cannot read responses coming from its dependent components fast enough.

Its dependent components are write-blocked as they try to return responses to the faulty component.

The waiting time at the dependent components increase.
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Experimental Setup

In this chapter, we show the setup of application benchmarks in our data center. We also introduce

evaluation criterion for the performance of our methods in anomaly detection and localization.

4.1 Application Benchmarks

We implement our anomaly detection and localization approaches on top of the KVM platform in our

production data center. We conduct extensive experiments using 3 different application benchmarks:

(1) MediaWiki 1; (2) Olio web application [35]; (3) CloudSuite web search benchmark [49] with Apache

SolrCloud setup 2.

4.1.1 MediaWiki Application

MediaWiki is a free, open-source web serving application. It is composed of an front web application

server (Apache 2.2.15 + PHP 7.0.30) and a backend database server (MySQL 5.5.60). Requests are gener-

ated from the Wikipedia request trace between September 2007 and January 2008. We setup the MediaWiki

application to characterize more complex modern applications by including two backend computation

servers and deploy MediaWiki application as shown in Figure 4.1. Each node is configured with a 2-

vCPU, and 4GB memory. Whenever the application servers need to query the database, they call the two

backend servers to do a random-dimensional matrix multiplication. After the computation servers return

the result, the application servers then query the database. The modified MediaWiki benchmark includes

three basic dependency primitives. The two application servers a distributed dependency primitive. The

1Mediawiki: https://www.mediawiki.org.
2SolrCloud: https://lucene.apache.org/solr/guide/7_4/solrcloud.html
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two computation servers (bap1, bap2), and the database server together form a composite dependency

primitive.

Clients

Clients

Clients

Load 

Balancer (lb0)

Application 

Server 1 (ap1)

Application 

Server 2 (ap2)

Backend Application 

Server 1 (bap1)

Backend Application 

Server 2 (bap2)

MySQL Database

Server (sq0)

Figure 4.1: The setup of 3-tier MediaWiki benchmark application

4.1.2 Olio Web Application

The Olio web application [35] consists of an application server and a database server. We scale this

setup to have more nodes serving user requests. First, we setup an Apache load balancer in front of two

application servers. We configure the load balancer to support stickiness on top of cookies. Whenever a

request arrives at the load balancer, the load balancer chooses one of the application server to process the

request. The two application servers share a common MySQL database. We run the Rain [29] workload

generator to produce dynamic workload to Olio web application. The topology setup of Olio application

is shown in Figure 4.2.

Clients

Clients

Clients

Load 

Balancer (lb0)

Application 

Server 1 (ap1)

Application 

Server 2 (ap2)

MySQL Database 

Server (sq0)

Figure 4.2: The setup of 3-tier Olio web application



CHAPTER 4. EXPERIMENTAL SETUP 27

4.1.3 CloudSuite Web Search Benchmark

The original CloudSuite web search benchmark [49] contains a single Solr indexing server serving 12GB

data. However, a single node setup cannot scale and the response time could be very high under high

workload. We deploy the CloudSuite web search application in a SolrCloud consisting of 8 virtual ma-

chines. We split the CloudSuite web search index data into 8 different shards (i.e., each shard has about

1.5GB index data) and deploy each shard to a different virtual machine.

With SolrCloud setup, users could select any node in the SolrCloud to send search requests. When

a Solr node receives a search request in SolrCloud, the request is further routed to a node containing

a shard that is part of the collection being searched. The reception node acts as an aggregator and it

creates internal requests to each shard in the collection. It coordinates the responses and issues any

subsequent internal requests as needed. The reception node aggregates results returned from other nodes

and constructs the final response for the request. We show the SolrCloud setup for the CloudSuite web

search application as shown in Figure 4.3.
Use original UI

cloudsuite_web_search

shard1_0_0_0 10.1.128.65

shard1_0_0_1 10.1.128.138

shard1_0_1_0 10.1.128.93

shard1_0_1_1 10.1.128.2

shard1_1_1_0 10.1.128.123

shard1_1_1_1 10.1.128.4

shard1_1_0_0 10.1.128.9

shard1 1 0 1 10.1.128.10

Figure 4.3: The SolrCloud setup of CloudSuite web search application

4.2 Workload Configuration

We evaluate our methods under different workload scenarios. We adjust the number of clients and keep

the application CPU usage from 15% to 75% in normal operation. We do not consider cases where the

system has less than 15% CPU usage or more than 75% CPU usage. When the system has less than 15%,

the workload is too low. The randomness of individual requests incurs noise in the evaluation result.

When the system has more than 75% CPU usage, the system tends to have resource contention among

requests even in normal operation. We avoid more than 75% CPU usage as it obfuscates the system

behavior in normal operation. The web page requests are generated using exponentially distributed think
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times with mean of 7 seconds between receiving a response and issuing the next page request in a client

session as used in [69]. Each experiment runs for 20 minutes, and the load becomes stable enough after

first 3 minutes.

For resource bottleneck faults, we inject CPU, memory, network, and disk resource bottleneck faults in

each experiment. Each fault lasts for 60 seconds, and the interval between fault injections is 120 seconds

for the system to come back to normal operation. We repeat each experiment with the same configuration

for 5 times to avoid the impact of random noise in dynamic system. For common software faults, we inject

software bugs in different components of the application.

In evaluating the performance of our methods in anomaly detection, we conduct 4 sets of experiments

for each kind of resource bottleneck faults, and software faults. Each set consists of experiments under

15 different workload scenarios. In evaluating the performance of our methods in anomaly localization, 4

faults are injected to different components in each experiment.

4.3 Evaluation Criterion

In this part, we introduce the criterion for evaluating the performance of our methods in anomaly detection

and localization of faulty components in Cloud applications.

4.3.1 Anomaly Detection

We use the standard precision and recall metrics to evaluate the performance of our detection methods.

Let Dtp, D f n and D f p denote the number of true positives (correct detection of an anomaly), false negatives

(missing an anomaly), and false positives (detecting an anomaly under normal operation), respectively.

The precision and recall metrics are calculated as follows,

Precision =
Dtp

Dtp + D f p
, Recall =

Dtp

Dtp + D f n

We also use the detection latency to characterize how fast our method reacts to the anomaly. It is

the elapsed time from when the system shows performance anomaly tactual to when an anomaly alert is

triggered tdetection.

Latency = tdetection − tactual

4.3.2 Anomaly Localization

Given the number of injected faults LI , the number of triggered anomaly alerts and localization results LD,

the number of true localization results LT , the number of false localization decisions LF, and the number
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of missed faulty dependent components LM. We use the following metrics to evaluate the performance of

our methods.

1. Precision: LT
LD

. It measures the percentage of correct localization decisions. The false positive rate is

given by LF
LD

. It measures the percentage of false localization results.

2. Recall: 1 − LT
LI

. It measures the completeness of the method in anomaly localization. The false

negative rate is given by LT
LD

. It measures the percentage of missed localization results.

A perfect anomaly localization scheme should achieve 100% localization precision and recall.

4.4 Experimental Setup for Comparative Study

In order to compare our non-intrusive methods with other methods for anomaly detection and localiza-

tion, we also implement other methods. We describe the setup here.

4.4.1 Anomaly Detection

We compare our non-intrusive methods with resource utilization-based methods. They either rely on

thresholding resource usage or discover the correlation among the usage of different resources. Amazon

CloudWatch puts thresholds on the resource usage of virtual machines. Whenever the utilization of a

resource exceeds the predefined threshold, it triggers an alert to the owner. Other methods correlate the

usage of different resources. We choose one of the most representative methods LFD [?] as a comparison

method for anomaly detection. LFD uses the highest correlation between user-space CPU utilization

and other resource utilization metrics to characterize service performance. LFD has agents monitor the

resource utilization metrics inside virtual components. The monitored resource utilization metrics include

the user-space CPU usage, kernel-space CPU usage, memory utilization, memory page in, memory page

out, number of incoming packets and outgoing packets in the network interface, and disk write of virtual

machines. We implement LFD algorithm and uses it to detect anomalies at each component.

4.4.2 Anomaly Localization

We compare our non-intrusive methods with another black-box fault localization scheme FChain [38].

FChain has shown a superior performance compared to other methods. FChain is a non-intrusive method

that monitors the resource usage outside virtual machines. We compare our methods with FChain for

anomaly localization. FChain uses a predictability-based abnormal change point selection scheme to iden-

tify the onset time of the abnormal behaviors at different components. We implement FChain algorithm
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and use it to pick the earliest abnormal change start time among 8 different metrics as the component’s

abnormal change start time. The 8 different metrics include the CPU usage, memory utilization, memory

page in, memory page out, input network packets, output network packets, disk read, and disk write of

virtual machines.
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Dependency Model

Cloud applications are usually deployed in multiple virtual machines (VM). Each VM provides a specific

service or function to other VMs within the application. Figure 5.1 shows an example of a multi-tier

application. When clients generate a request, the request first arrives at the web server A. The web server

A then sends a request to the application server B, which, in turn, calls the database server C. Multi-tier

applications can be regarded as being composed of nested components. A component’s subsystem is the

set of other components which the component has to call in order to process the received request. In

Figure 5.1, database server C does not contain any subsystem. The subsystem of application server B

is database server C. The subsystem of web server A consists of both application server B and database

server C. A component may send requests to its subsystem in order to complete the request.

When a component has to wait for the response from its subsystem before local processing, the re-

sponse time of a request is usually the sum of the time on the component and the time on its subsystem

when the execution of local component and its subsystem does not run in parallel.

When a component does local processing in parallel while waiting for a response from its subsystem,

the response time would be less than the sum of the time spent on the local component and the time spent

on its subsystem.

Database 

Server C

Application 

Server B

Web 

Server A
Clients

Figure 5.1: An example of a multi-tier application

When a component A calls component B and has to wait for B’s result, we consider B as the dependent

component of A, and A as the upstream component of B. A component’s dependent components are its

31
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subsystem components that have direct interaction with the local component.

A component in multi-tier applications may have no dependent component, a single dependent com-

ponent, or more than 2 dependent components, We discuss how to determine the subsystem response

time of a component given the number of dependent components.

1. When a component has no any dependent component, its subsystem response time is always 0.

2. When a component has only one dependent component, its subsystem response time is the same as

that of the dependent component if the communication latency is negligible.

3. When a component has multiple dependent components, the subsystem response time is more

complex. VDEP [43] introduces three dependency primitives, and these dependency primitives

form a basis to characterize the interaction behavior between the local component and its dependent

components. The dependency primitives determine how to compute the subsystem response time

given the response time of each dependent component.

5.1 Dependency Model

The dependency model consists of three basic dependency primitives: composite, concurrent, and dis-

tributed. It characterizes the complex interaction between a component and its dependent components (at

least two dependent components). In this section, we illustrate different dependency primitives and show

how the subsystem response time is determined from the response time of each dependent component.

For convenience, we use a simple case where a local component A has two dependent components,

B and C to illustrate the difference between different dependency primitives. Table 5.1 gives a list of

variables and notations used for mean subsystem response time derivation.

5.1.1 Composite Dependency

A composite dependency primitive describes the interaction behavior at a component where requests are

sequentially processed by its dependent components. For example, a request to web server A may involve

user authentication in server B before passing transaction requests to the transaction server C as shown in

figure 5.2. A request arrived at A causes a various number of requests to different dependent components.

The subsystem response time of a request is the sum of time spent on dependent components.
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Table 5.1: Variable notations for response time characterization

Variables Notation

∆T the length of the sampling interval for measuring the mean response time

RA(t) the mean response time of component A during the interval (t− ∆T, t)

SA(t) the mean subsystem response time of component A during the interval (t− ∆T, t)

PA(t) the mean service time of component A during the interval (t− ∆T, t)

nA(t) the number of requests arrived at component A during the interval (t− ∆T, t)

bi the number of requests to component B caused by ith request at component A

cj the number of requests to component C caused by jth request at component A

nAB(t) the number of requests from component A to B during the interval (t− ∆T, t)

RAB(t) the mean response time of component B perceived by agent of A in interval (t− ∆T, t)

RB j the response time of jth request at component B during the interval (t− ∆T, t)

nAC(t) the number of requests from component A to C during the interval (t− ∆T, t)

RAC(t) the mean response time of component C perceived by agent of A in interval (t− ∆T, t)

RCk the response time of kth request at component C during the interval (t− ∆T, t)

Web 
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Server A Authentication 
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Transaction 
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Server A
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Server A

Figure 5.2: The composite dependency primitive
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VDEP [43] has a mutual exclusion definition of composite dependency primitive: when B and C form

a composite dependency primitive, A has to wait for B to finish its execution before sending requests to

C. In this work, we adjust more flexible definition of composite primitive since component execution are
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becoming more parallel in Cloud applications for better performance, as analyzed in Mystery [39]. We

allow an overlap (but not concurrency) between the execution of B and C. On the other hand, we use a

non-intrusive method and it is hard to tell whether B has finished execution or not before C’s execution. As

long as there exists a causal order between B and C, we consider that they form a composite dependency

primitive. In this case, the subsystem response time is smaller than the sum of response time of composite

dependent components.

5.1.2 Concurrent Dependency

A concurrent dependency primitive describes the interaction behavior at a component where requests are

concurrently processed by its dependent components. For example, generating a web page in web server

A involves concurrent requests to the database server B and the content server C as shown in figure 5.3.

The subsystem response time of a request with the concurrent dependency primitive is the maximum

time taken by each dependent component to process the request.
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Figure 5.3: The concurrent dependency primitive
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5.1.3 Distributed Dependency

A distributed dependency describes the interaction behavior at a component where each request chooses

one of its dependent components to process the request. When a request arrives at the load balancer A, A



CHAPTER 5. DEPENDENCY MODEL 35

distributes the request to either B or C as shown in Figure 5.4. As the number of possible execution paths

is finite, The subsystem response time of a request is the probabilistic summation of the time spent on all

dependent components.
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Figure 5.4: The distributed dependency primitive
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For components where local processing does not run in parallel with subsystem execution. The local

service time can be derived given the mean response time and the mean subsystem response time.

PA(t) = RA(t)− SA(t)

But this does not hold when the local processing and subsystem overlaps.

5.2 Dependency Extraction Analysis

The dependency model is useful for characterizing the interaction behavior between a component and its

dependent components. We use a black box method to extract the dependency primitive. The method

requires to monitor the following metrics for each component using a monitoring interval ∆Td.

• Input request flow: the number of incoming request data packets arrived at the component.

• Output request flow: the number of outgoing request data packets from the local component to each

dependent components.
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Table 5.2: Collected system metrics for dependency extraction

Variables Notation
∆Td the length of the sampling interval for dependency extraction

XA(t) the number of request data packets arrived at component A in the interval (t− ∆Td, t)
XAB(t) the number of request data packets from component A to B in the interval (t− ∆Td, t)
XAC(t) the number of request data packets from component A to C in the interval (t− ∆Td, t)

The variables and notations used for dependency model extraction are listed in Table 5.2.

5.2.1 Distributed Dependency Extraction

For distributed dependency, requests arrived at the local component are distributed to its dependent com-

ponents for further execution. In real applications, the load balancer is the most common component that

has distributed dependency primitive. In a load balancer, the number of arrived requests approximately

equals the sum of the number of requests from the load balancer to its dependent components. This ob-

servation is also true in terms of the number of data packets: the number of request data packets arrived

at the load balancer approximately equals the sum of the number of request data packets from the local

component to its dependent components.

For components that do not have exactly the same behavior as the load balancer, it requires more

general method to find out the distributed dependency primitive condition. But the relationship between

the number of request data packets arrived at the component and the sum of the number of request data

packets from the local component to its dependent components is stable and approximately constant C.

XAB(t) + XAC(t)
XA(t)

≈ C

In this work, we focus on the distributed dependency extraction for a component that has similar

behavior as a common load balancer.

Sampling Interval

The sampling interval ∆Td is important for the extraction of the distributed dependency. If ∆Td is too

short, it may happen that requests arrived at the local component within (t−∆Td, t) cannot be distributed

to dependent components within the same sampling interval. In this case, XA(t) will differ significantly

from XAB(t)+ XAC(t). The sampling interval should be at least as large as the maximum time for the local

component to send a request to any of its dependent components. We define the relative error between

the local input request flow and the sum of output request flow to all dependent components.

REX(t) =
XAB(t) + XAC(t)− XA(t)

XA(t)
REY(t) =

YAB(t) + YAC(t)−YA(t)
YA(t)
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We show the impact of sampling interval on distributed dependency extraction in our experiments.

5.2.2 Composite or Concurrent Dependency Extraction

For non-distributed dependency, requests arrived at a local component cause requests to the dependent

components in either sequential or concurrent way based on the implemented application logic. We

analyze the difference between the composite and concurrent dependency primitives.

• In composite dependency as shown in Figure 5.2, A sends requests sequentially to B and C. There is

a noticeable delay between the outgoing request flow to B and the outgoing request flow to C.

• In concurrent dependency as shown in Figure 5.3, A sends requests to both B and C concurrently.

There is no delay between the outgoing request flow to B and the outgoing request flow to C.

We use the lag correlation between the number of request data packets from A to dependent compo-

nents B and C to distinguish a composite dependency from a concurrent dependency. The lag correlation

between time series XAB(t) and XAC(t) of length L is defined as

ρB,C(k) =
∑L−1

0

(
XAB(t)− XAB(t)

) (
XAC(t + k)− XAC(t)

)
√

∑L−1
0

(
XAB(t)− XAB(t)

)2
√

∑L−1
0

(
XAC(t + k)− XAC(t)

)2

We pick maxK as the lag value that achieves the maximum correlation between the request flows to

two dependent components.

maxK = arg max
k

ρ(k)

If maxK = 0, B and C execute concurrently. Otherwise, B and C execute sequentially. If maxK > 0, B

executes before C. If maxK < 0, C executes before B.

Sampling Interval

The sampling interval ∆Td is crucial for differentiating the composite dependency primitive from the

concurrent dependency primitive. If ∆Td is too large, it may happen that the outgoing request flow from

A to its composite dependent components B and C, are observed within the same sampling interval.

In this case, we may falsely identify the composite dependency primitive as the concurrent dependency

primitive. The sampling interval should be smaller than the minimum delay between the outgoing request

flows from the local component to its dependent components. We show the importance of the sampling

interval in order to correctly identify the composite dependency extraction in our experiments.
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5.3 Distributed View of Dependency

Previous methods rely on the dependency graph for the entire application in order to locate the faulty

component. In this work, we do not need to build the dependency graph for the whole application. We

employ a distributed method where agents distributed on physical hosts monitor local virtual machines

and their dependent components. We show a global view of dependency for the whole application in

Figure 5.5 and a distributed view of dependency at each agent in Figure 5.6.
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Figure 5.5: A centralized view of dependency graph for an application
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(b) The local dependency view at B
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(c) The local dependency view at C

Figure 5.6: A distributed view of dependency at each component of the application

5.3.1 Dependency Extraction Algorithm

Distributed dependency graph requires us to find out the dependency primitive locally. The global depen-

dency graph is constructed with a combination of local partial dependency. We construct the dependency

primitive for each component using Algorithm 1. The dependency extraction algorithm is applied for

each virtual component (VM or container) for extracting local dependency from individual component’s

perspective. By combining the extracted dependency primitive from individual components, a global

dependency graph can be built for the whole application. It also ensures that our dependency primitive
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Algorithm 1: Dependency extraction

input : Given a local component A and its m dependent components S = {Ad1, Ad2, · · · , Adm};
• A proper sampling interval ∆Td

• The number of incoming request data packets at component A: XA(t)

• The number of request data packets from component A to each of its dependent components:
{XA1(t), XA2(t), · · · , XAm(t)}

output: The execution sequence of component A’s dependent components
1 if XA(t) ≈ XA1(t) + XA2(t) + · · ·+ XAm(t) then
2 A’s dependent components form a distributed primitive;
3 else
4 foreach i from 1 to m do
5 foreach j from 1 to m do
6 foreach k from 1 to L

2 do
7 Compute the correlation between XAi (t) and XAj(t) at a lag k:;
8

ρi,j(k) =
∑L−1

0

(
XAi (t)− XAi (t)

) (
XAj(t + k)− XAj(t)

)
√

∑L−1
0

(
XAi (t)− XAi (t)

)2
√

∑L−1
0

(
XAj(t + k)− XAj(t)

)2

9 end
10 Find the lag that achieves the maximum correlation: maxK = arg max

k
ρi,j(k);

11 if maxK = 0 then
12 A’s dependent components Ai and Aj form a concurrent dependency primitive.
13 else
14 A’s dependent components Ai and Aj form a composite dependency primitive;
15 if maxK > 0 then
16 Ai executes before Aj
17 else
18 Ai executes after Aj
19 end
20 end
21 end
22 end
23 end

algorithm is scalable to large-scale applications as each component runs independently with limited set

of dependent components.

5.4 Experimental Evaluation

In this section, we use the black-box dependency extraction algorithm for dependency extraction in de-

ployed applications in our cluster. The detailed experimental setup is described in Section 4.1.
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5.4.1 MediaWiki Application

In the MediaWiki application, the dependency analysis is performed at the load balancer (lb), application

server 1 (ap1), and application server 2 (ap2). Figure 5.7 show the relationship of the request flow and the

response flow at the load balancer. The sum of the number of incoming request data packets going to the

two application servers approximately equals the number of requests arriving at the load balancer. The

sum of the number of outgoing response data packets returned by two application servers approximately

equals the number of outgoing response data packets from the load balancer.
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(a) The number of request data packets at the load balancer
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(b) The number of response data packets at the load balancer

Figure 5.7: Distributed dependency primitive analysis at the load balancer in MediaWiki application

The number of request data packets arrived at the application server does not equal the sum of the

number of request data packets from the application server to its dependent components. The distributed

dependency primitive is not true for both application servers. We use the lag correlation analysis to extract

the execution sequence of the computation servers (ap1, ap2) and database sq0. With the lag value of 1, the

correlation between two computation servers reaches the maximum as shown in Figure 5.8. It accurately
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models that the two computation servers execute sequentially and bap1 executes before bap2. In Figure 5.8,

the correlation reaches the maximum between the computation server bap1 and database sq0 with a lag

value of 2. It accurately models the fact that the database executes after bap1 and bap2. The lag correlation

result is similar for component ap2.
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Figure 5.8: The dependency primitive analysis in MediaWiki application

5.4.2 Olio Web Application

In the Olio application, the load balancer is configured to support session stickiness. When a request is

directed to a backend server, then all following requests from the same user should be proxied to the same

backend server. The sum of the number of request data packets from lb0 to all its dependent components

(ap1 and ap2), and the number of request data packets arrived at lb0 are shown in Figure 5.9a. The sum

of the number of request data packets from lb0 to its dependent components (i.e., ap1+ap2) approximately

equals the number of request data packets arrived at lb0. Figure 5.9a shows that the sum of the number of

response data packets from all its dependent components (i.e., ap1+ap2) approximately equals the number

of response data packets departed from lb0. It validates the fact that the two application servers (ap1 and

ap2) form a distributed dependency primitive with the load balancer lb0 in the Olio application.

5.4.3 CloudSuite Web Search Application

In SolrCloud application, we select a reception node for receiving user requests. For convenience, we label

the reception node as solr0, and other nodes sequentially as solr1 to solr7. To evaluate the dependency

primitive at solr0, the number of request data packets from solr0 to each of its dependent components

is collected in every 5 milliseconds. We perform lag correlation analysis between “solr1” and all other

dependent components. The result is shown in Figure 5.10, and the correlation achieves the maximum
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(a) The relationship between request flows in the distributed dependency primitive
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(b) The relationship between response flows in the distributed dependency primitive

Figure 5.9: The relationship of request and response flow at the load balancer in Olio application

with a lag value of 0. It means the latency among requests from solr0 to its dependent components are

always within 5ms. Since the mean response time of dependent components are larger than 5ms, all

dependent components (solr1, solr2, solr3, solr4, solr5, solr6, solr7) form a concurrent dependency primitive

with solr0 in SolrCloud. It validates that the SolrCloud dependency primitive is concurrent as the reception

node concurrently sends requests to other nodes and waits for their responses.

5.4.4 Distributed Dependency Extraction: Impact of Sampling Interval

When a local component and its dependent components form a distributed dependency primitive, it is

observed that the number of request data packets arrived at the local component is almost equal to the

number of request data packets issued from the local component to its dependent components. This is

true if the sampling interval we used to collect the number of packets is large enough. In a dynamic

system, it takes some time for a request to go to its dependent components after arriving at the local
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Figure 5.10: The lag correlation for the dependency primitive analysis in SolrCloud application
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Figure 5.11: The impact of sampling interval on the distributed dependency primitive extraction

component. We may not always observe they fall into the same interval if the sampling interval is too

small. We show the relative error between the input request flow to lb0 and the sum of output request

flow from lb0 to all dependent components (ap1 and ap2) using different sampling intervals in Figure 5.11.

Figure 5.12 shows the mean relative error with 95% confidence interval. From the boxplot of the relative

error, we learn that the distributed analysis is more accurate as we use a larger sampling interval. When

the sampling interval is larger than the local response time, the relative error is almost negligible.

5.4.5 Composite and Concurrent Dependency Extraction: Impact of the Sampling Interval

As we know, the lag correlation analysis is sensitive to the size of the sampling interval. We show how

the maxK changes as the sampling interval increases in Figure 5.13 for the composite dependency. The
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Figure 5.12: The impact of sampling interval on the distributed dependency primitive extraction

composite dependency extraction is sensitive to the sampling interval. As the sampling interval gets

larger, the maxK gets smaller. The sequential execution among all dependent components of ap1 if the

sampling interval is larger than 50ms. In general, it is easy to extract the composite dependency primitive

correctly with a sampling interval of 5ms. The impact of the sampling interval for dependency primitive

analysis is similar as ap2.
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Figure 5.13: The impact of sampling interval on composite dependency extraction

5.5 Discussion

In this chapter, we derive the mean response time characteristics in different dependency primitive and

evaluate our black-box dependency extraction method through practical applications. Experimental re-

sults show that our method could correctly identify different dependency primitives.

The sampling interval is an critical parameter for dependency extraction. To extract the distributed
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dependency correctly, the sampling interval is better to be larger, If the a component does not have the

distributed dependency primitive, a sampling interval small enough is important to identify whether the

dependency primitive is composite or concurrent.



Chapter 6

DMADL: Dependency Model-based Response

Time Analysis for Anomaly Detection and

Localization

In this chapter, we propose DMADL, a dependency model-based anomaly detection and localization sys-

tem for IaaS Cloud applications. DMADL has agents distributed on physical hosts. The agents do not re-

quire any knowledge from the underlying operating system or application domain in virtual components.

DMADL monitors network traffic and estimates mean response time through the arrival and departure

pattern of data packets. Any abnormal changes in the dependency model or the estimated response time

trigger anomaly alerts. DMADL determines the impact of individual dependent component in the local

response time of each component. When a component is faulty, its response time should dominate the

response time of any component that has the faulty component as its subsystem component. DMADL

pinpoints the faulty component by analyzing the impact of each component along the dependency path

in a distributed fashion.

6.1 Mean Response Time Estimation

The response time of a component is measured from the time when a request arrives at the component

to the time when the corresponding response leaves the component. Unexpected long response times

degrade users’ quality of experience. It is challenging to accurately monitor the response time from

outside of a component without intrusive operation.

There are two main methods for obtaining the response time: deep packet inspection or server log

analysis. The deep inspection of packets’ payload requires either understanding of application protocols

46
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Table 6.1: Metrics collected by DMADL for anomaly detection

Variables Notation
R(t) the mean response time of the service

RQ(t) the number of requests arrived at the service
RP(t) the number of responses departed from the service
X(t) the number of request data packets arrived at the service
Y(t) the number of response data packets departed from the service
D(t) the number of request timeouts for the service

or decryption of encrypted application protocols such as HTTPS. The analysis of server logs requires

intrusive access to the service inside virtual components and extra configuration for logging the response

time. DMADL assumes that the communication between each pair of components are through requests

and responses in Cloud applications. DMADL assumes serial operation without pipelining operations

within each TCP connection. DMADL estimates the response time of a request as the elapsed time from

when the first request data packet arrives at the service to when the last response data packet leaves the

service. At each component, DMADL estimates the mean response time within each monitoring interval

(t− ∆T, t) as a real-time indicator of the service performance including both the local component and its

subsystem.

6.1.1 Monitored Metrics

In each monitoring interval (t− ∆T, t), DMADL agents distributed on physical hosts collect the metrics

in Table 6.1 for each local service and its dependent services.

Figure 6.1 shows an example of how DMADL agents estimate the mean response time using data

packets in a single TCP flow. The first request data packet arrives at A’s local service at time t0 during

the monitoring interval (t− ∆T, t). Within the same monitoring interval (t− ∆T, t), the DMADL agent

obtains the response time as the time difference between the timestamp of the last outgoing data packet t1

and the timestamp of the first incoming data packet t0: t1 − t0. In the next monitoring interval (t, t + ∆T),

the DMADL agent observes more outgoing data packets still for the same request within the TCP flow.

It updates the response time for the request arrived at time t0 as t2 − t0. DMADL estimates the mean

response time in real time using Algorithm 2.

6.1.2 Accuracy Analysis

When the last observed outgoing data packet within a monitoring interval is not the actual last data

packet of a response, the estimated response time is smaller than the real response time. For example, the

response time within interval (t− ∆T, t) is t1 − t0 in Figure 6.1. It is smaller than the real response time
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Figure 6.1: The response time estimation scheme of DMADL using data packets in each TCP flow

Algorithm 2: DMADL mean response time estimation

input : Stream of request data packets arrived at service A, and response data packets departed
from service A in a monitoring interval (t− ∆T, t), the flow table FA.

output: Estimated Metrics: mean response time RA(t), the number of requests RQA(t), the
number of responses RPA(t), the number of request data packets XA(t), the number of
response data packets YA(t).

1 Initialization RA(t) = 0, RQA(t) = 0, RPA(t) = 0, XA(t) = 0, YA(t) = 0, DA(t) = 0;
2 for each data packet pkt arriving at A or departing from A in (t− ∆T, t) do
3 if pkt is arriving at service A then
4 if f low(pkt) 6∈ FA then
5 XA(t) + +;
6 Insert f low(pkt) into FA;
7 f low(pkt).treq = pkt.ts;
8 RQA(t) = RQA(t) + 1;
9 f low(pkt). f lag = 0;

10 end
11 else
12 if f low(pkt) ∈ FA then
13 YA(t) + +;
14 f low(pkt).trep = pkt.ts;
15 if f low(pkt). f lag == 0 then
16 f low(pkt). f lag = 1;
17 RA(t) = RA(t) + (pkt.ts− f low(pkt).treq);
18 RPA(t) = RPA(t) + 1;
19 else
20 RA(t) = RA(t) + (pkt.ts− f low(pkt).trep);
21 end
22 end
23 end
24 end

25 RA(t) =
RA(t)

RPA(t)
;

t2 − t0. The mean response time estimated by DMADL agents is accurate when the first data packet and

the last data packet of the same response are always observed in the same monitoring interval.

In normal operation, the response time RT would be always within SLA: RT < SLA. We denote the

delay between the first data packet and the last data packet of a response as τ < RT < SLA. The first data



CHAPTER 6. DMADL: DEPENDENCY MODEL-BASED RESPONSE TIME ANALYSIS FOR ANOMALY
DETECTION AND LOCALIZATION 49

packet of a response could occur at any time t f during the monitoring interval (t− ∆T, t), the indicator

function of whether we can observe both the first data packet and the last data packet of a response within

the same interval is given as follows.

p =


1, t f ∈ (t− ∆T, t− τ)

0, t f ∈ (t− τ, t)

Suppose the arrival time t f of the first response data packet in the interval (t− ∆T, t) follows a dis-

tribution f (qt). τ follows a distribution g(τt) with a cumulative distribution function (CDF) G(τt). In a

normal operation, τmax < SLA, and in abnormal operation τmax increases and even violates the SLA (i.e.

τmax > SLA). The probability that the first data packet and the last data packet of responses are observed

within the same monitoring interval (t− ∆T, t) is,

psame(t) =
∫ ∆T

0
P(qt = t− x) ∗ P(τt ≤ x)

=
∫ ∆T

0
f (t− x) ∗ G(x)dx

We assume the arrival time of the first response data packet within a monitoring interval is distributed

according to the uniform distribution.

f (qt) =
1

∆T

psame(t) =
1

∆T

∫ ∆T

0
G(x)dx >

∆T − τmax

∆T

The probability psame(t) is exactly the area covered by the area covered by G(x) within ∆T. Its area

decreases when the component has performance anomalies. As we pick the monitoring interval ∆T �

τmax, the probability psame(t) > ∆T−τmax
∆T . Under this condition, the estimated mean response time by

DMADL agents is accurate. In our system, we pick ∆T = 10 ∗ τmax. The estimated response times for

more than 90% of responses are accurate.

6.1.3 Theoretical Overhead Analysis

We analyze the memory overhead of each DMADL agent in estimation of the mean response time. For

each TCP flow, its data structure takes 288 bits. If there are 100, 000 TCP flows for a component service,

the required memory size is about 3MB.

As the number of stored TCP flows increases in run time, DMADL agents periodically clean the expired

TCP flows to avoid unnecessary memory consumption. A TCP flow record is cleaned from the memory

if the inactive time of that flow exceeds a timeout threshold Tout. The timeout value Tout represents a

critical limit above which the response time becomes unacceptable. If a request still does not receive its
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response after Tout time, the agent counts the request as a timeout request. If a DMADL agent captures

many timeout requests, the estimated mean response time is no longer accurate as the response times of

many requests are not considered in the estimation of mean response time. In this case, users’ experience

degrades significantly. The DMADL agent triggers an anomaly alert immediately after it detects many

timeout requests.

6.2 Anomaly Detection

DMADL agents use the local mean response time and the number of timeout requests at each component

for anomaly detection. The performance of a component is suspicious if the mean response time exceeds

an acceptable threshold. This threshold dynamically adapts to different workload scenarios to reflect the

dynamic characteristics of Cloud services. A static threshold would fail to capture dynamic behaviors.

We train the system and obtain the response time Xt during normal operation. The component’s normal

response time distribution is characterized with its mean µt and standard deviation σt. DMADL uses the

exponentially weighted moving average to update the distribution:

µt = αµt−1 + (1− α)Xt

σt = ασt−1 + (1− α)max{|Xt − µt|, σt−1}

Here, α is the weight put on the historical response time. The max function is used as a watermark for the

maximum fluctuation in the historical response time.

If the current response time stays within λ ∗ σt from the mean µt, i.e., Xt ∈ {0, µt + λσt}, then the

response time Xt is normal. Otherwise, the response time is considered as suspicious. The response time

of a dynamic system usually fluctuates even in normal operation. DMADL agents use a window of latest

W samples to make decisions. A DMADL agent triggers an anomaly alert if the number of suspicious data

points in the decision window exceeds a tolerable threshold. Otherwise, the DMADL agent determines

that it caused by normal system fluctuations.

6.3 Anomaly Localization

DMADL uses the dependency model and corresponding response time estimator for anomaly localization.

When a DMADL agent detects an anomaly at a component, it first checks whether the local component

has dependent components. The anomaly can be caused by a fault in the component itself or its subsystem

components. DMADL has different localization schemes for different dependency primitives.
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Algorithm 3: DMADL anomaly detection

input : Given a local component A and its m dependent components S = {Ad1, Ad2, · · · , Adm}
output: Detection result for the local component A

1 It selects a sampling interval ∆TA to monitor the number of incoming request data packets and
outgoing response data packets. The sampling interval ∆TA should approximate the maximum
acceptable response time at the local component.;

2 It monitors the number of request data packets arrived at component A: XA(t), and the number of
response data packets departed from component A: YA(t).;

3 It uses a window of latest WA samples for detecting anomalies;
4 if ∑WA

t=1 DA(t) > 0 then
5 state(t) = −1;
6 Anomaly Alert: A does not return responses within the timeout value;
7 else if ∑WA

t=1 XA(t) > 0 and ∑WA
t=1 YA(t) == 0 and ∑WA−1

t=1 XA(t) > 0 then
8 state(t) = −1;
9 Anomaly Alert: A does not return responses for requests;

10 else
11 if ∑WA

t=1 RA(t) >= µA(t) + kAσA(t) then
12 suspicious(t) = −1 ;
13 else
14 suspicious(t) = 1 ;
15 end
16 if ∑WA

t=1 suspicious(t) <= THA then
17 state(t) = −1;
18 Anomaly Alert: A’s response time is abnormal;
19 else
20 state(t) = 1;
21 end
22 end

6.3.1 No Dependent Component

If a local component does not have any subsystem component, the local response time can be impacted

by itself or its upstream components due to TCP propagation. As shown in Figure 3.1, the agent for

component SQL detects larger response time but SQL is still normal. The agent for SQL cannot make the

decision since the local anomaly can be caused by upstream component. The DMADL agent has different

functions under different scenarios.

1. If the anomaly alert is triggered by abnormal response time, the agent does not perform localization

analysis for a local component without any dependent component. The state of local component is

given by DMADL agents of its upstream components.

2. If the anomaly alert is triggered by many detected timeout requests, many requests do not have

their responses returned within the acceptable time limit. The DMADL agent decides that the local

component is faulty and reports the result.
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6.3.2 Single Dependent Component

When the local component has only one dependent component, the DMADL agent decides the source

of anomaly from the mean response time of the local component and its subsystem. Figure 6.2 gives a

case where a local component A has a single dependent component B. With different workload, a request

Server A Server B

Variable Notation
The number of requests at A nA(t)

The number of requests from A to B nAB(t)
The mean response time of A RA(t)

The mean response time of B monitored at A RAB(t)

Figure 6.2: The case with a single dependent component

arrived at A may cause a different number of requests to B: a request may only access A but not cause

any request to B; a request may cause a few requests to B as it requires only a small part of service B;

and a request may cause many requests to B as it relies heavily on B. On average, a request arrived at the

local component A causes nAB(t)
nA(t)

requests to its dependent component B with mean response time RAB(t).

Therefore, each request at the local component A spends nAB(t)
nA(t)

∗ RAB(t) time on the dependent component

B and B’s subsystem. The mean response time of A’s subsystem SA(t) is the average time spent at A’s

subsystem.

SA(t) =
nAB(t)
nA(t)

∗ RAB(t)

The DMADL agent first checks the state of the dependent component using following steps.

• If the agent captures many timeout requests or no outgoing responses for incoming requests in

recent period, the agent directly determines that the dependent component as faulty.

• If step 1 is not satisfied, the agent checks the mean response time of the dependent component. If

the mean and the subsystem impact (e.g., SA(t)
RA(t)

) increases significantly in recent period, the agent

determines that the dependent component as faulty. If the subsystem impact decreases, the agent

determines that the dependent component is normal.

6.3.3 Multiple Dependent Components

If the local component has more than one dependent component, the DMADL agent uses the local de-

pendency model to first determine the mean subsystem response time. We use a simple example of a

local component A with two dependent components (B and C) in Figure 6.3 to show how to determine

subsystem response time with different dependency primitives.
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Server A

Server B

Server C

Variable Notation
The number of requests at A nA(t)

The number of requests from A to B nAB(t)
The number of requests from A to C nAC(t)

The mean response time of A RA(t)
The mean response time of B monitored at A RAB(t)
The mean response time of C monitored at A RAC(t)

Figure 6.3: The case with multiple dependent components

Composite Dependency

If dependent components form a composite dependency primitive, the time spent at the subsystem is the

sum of the time spent at its dependent components.

SA(t) =
(

nAB(t)
nA(t)

∗ RAB(t) +
nAC(t)
nA(t)

∗ RAC(t)
)

Concurrent Dependency

If dependent components form a concurrent dependency primitive, the subsystem response time is the

maximum time spent at individual dependent components.

SA(t) = max
(

nAB(t)
nA(t)

∗ RAB(t),
nAC(t)
nA(t)

∗ RAC(t)
)

Distributed Dependency

If dependent components form a distributed dependency primitive, the subsystem response time is the

probabilistic sum of the time spent at its dependent components.

SA(t) =
(

nAB(t)
nA(t)

∗ RAB(t) +
nAC(t)
nA(t)

∗ RAC(t)
)

After deriving the mean subsystem response time of the local component A, the DMADL agent intro-

duces component impact analysis for anomaly localization.

6.3.4 Subsystem Impact Analysis

The subsystem impact is defined as the ratio of subsystem response time over the local mean response

time. For example, the subsystem impact of A is defined as:

ISA(t) =
SA(t)
RA(t)

When an anomaly is triggered and the DMADL detects a larger subsystem impact compared to that

in normal operation, the DMADL agent determines that the anomaly is caused by the subsystem. The

DMADL agent further finds out which dependent components are causing the local anomaly if there are

multiple dependent components.
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6.3.5 Component Impact Analysis

The DMADL agent determines the impact of dependent components using the local dependency model

and uses the component impact to determine the source of anomaly.

Distributed and Composite Dependency Primitive

In distributed dependency primitive and composite dependency primitive, the impact of a dependent

component is the ratio of its mean response time over the subsystem response time multiplied by the

number of dependent components. The dependent component impact of B computed by the DMADL

agent of the local component A during a monitoring interval (t− ∆T, t) is

IAB(t) =
RAB(t)
SA(t)

∗ NA

Similarly, the dependent component impact of C computed by the agent of the local component A during

a monitoring interval (t− ∆T, t) is

IAC(t) =
RAC(t)
SA(t)

∗ NA

Concurrent Dependency Primitive

In concurrent dependency primitive, the impact of a dependent component is the ratio of mean response

time over the sum of response time of dependent components multiplied by the number of dependent

components.

IAB(t) =
RAB(t)

RAB(t) + RAC(t)

For each dependent component, the agent repeats the following steps to pinpoint whether the depen-

dent component is faulty or not.

1. If the agent captures many timeout requests at a dependent component in recent period, then it

determines that the dependent component is faulty.

2. If step 1 is not satisfied, DMADL starts to check the mean response time of subsystem and de-

pendent components. If the subsystem impact decreases, the DMADL agent determines that the

subsystem is normal. If the subsystem impact increases compared to that in normal operation, the

agent determines that the subsystem is faulty. After that, the agent determines that the dependent

component whose impact increases as faulty.

If all dependent components are normal and the agent captures many timeout requests at the local compo-

nent, the agent determines that the local component is faulty. Otherwise, the agent cannot determine the
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state of the local component. Instead, its state would be reported by DMADL agents that are monitoring

its upstream components.

Each DMADL agent reports the localization result of its local component and corresponding dependent

components. DMADL has a central administrator which summarizes the localization results of all agents

and achieve anomaly localization in Cloud applications.

6.4 Experimental Evaluation

We first evaluate the accuracy of the approximated mean response time compared to the real response

time obtained from the server logs and client logs under varying workloads. We then show the perfor-

mance of anomaly detection using the estimated mean response time. After that, we evaluate DMADL

in localization of faulty components with faults injected to different components in Cloud applications.

Finally, we show the overhead of DMADL.

6.4.1 Mean Response Time Estimation

We evaluate DMADL in estimation of the mean response time and mean request rate with 95% confidence

interval measured under varying workload intensity in different Cloud applications. To check its validity,

we also measure the mean response time and mean request rate in client-side logs, and server logs. All

variables are measured using a 1-second sampling interval. We show the result at the entry point of each

application: CloudSuite web search application in Figure 6.4, Olio web application in Figure 6.4, and

MediaWiki application in Figure 6.4. The mean response time approximated by DMADL agents usually

falls between the client-side response time and the server-logged response time. The server-logged mean

response time is usually smaller than the mean response time estimated by DMADL agents. DMADL

agents estimate the response time of each request as the elapsed time from when the first data packet

of the request arrives at the network interface to when the last data packet of its response departs from

the network interface. The server logs the starting time of a request when it arrives at the application

layer and the application header is parsed by the component service. The server logs a response when

the response is passed from the application layer to bottom layers. The server-logged response time of a

component includes the response time of its subsystem and the processing time of itself in the application

layer, it does not include the waiting time and processing time below the application layer at the local

component. DMADL has agents estimate the mean response time at each component of multi-component

applications. The estimated mean response time characterizes the performance of the component and its

subsystem. It is further used for anomaly detection and localization in Cloud applications.
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Figure 6.4: The DMADL estimation of mean response time and mean request rate in CloudSuite web
search application
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Figure 6.5: The DMADL estimation of mean response time and mean request rate in Olio web application
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Figure 6.6: The DMADL estimation of mean response time and mean request rate in MediaWiki applica-
tion
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6.4.2 Resource Fault Detection

We show how DMADL detects different resource faults in different Cloud applications. We use a 1-second

sampling interval to estimate the mean response time and count the number of timeout requests (e.g., the

request is not responded within 5 seconds). Figure 6.7 shows the estimated mean response time and

the number of timeout requests at the component solr0 in CloudSuite web search application. Figure 6.8

shows the estimated mean response time and the number of request timeouts at the component lb0 in

Olio web application. Figure 6.9 shows the estimated mean response time and the number of request

timeouts at the component lb0 in MediaWiki application. All sampled metrics give a clear view about the

effectiveness of our anomaly detection method.

1. CPU fault. It takes much longer time to process each arriving request. The mean response time

increases from several milliseconds to several seconds. Some requests are even not responded within

the timeout limit. The estimated response time increases and there are a large number of timeout

requests.

2. Memory fault. During the memory fault, each request requiring accessing the memory suffers much

longer delay. The faulty processes keep spinning on “malloc()/free()” functions on the memory.

When processes free the memory resource, the service gets enough memory to process requests

and return responses. When processes request for memory allocation, the service gets stuck due to

memory bottleneck. As a result, the mean response time suffers frequent fluctuation, as well as the

number of requests and responses per second at the local component during the memory fault.

3. Network fault. During the network fault, each outgoing packet is delayed at the local component for

much longer time. The estimated response time increases and DMADL agents also capture many

timeout requests.

4. Disk fault. During the disk fault, requests that need access to disk data suffers much longer delay.

There are no responses returned from the faulty component. The mean response time reaches several

seconds, and some requests cannot have their responses within timeout limit.

6.4.3 Common Software Fault Detection

We further reproduce different performance bugs and inject them into experiments. The SOLR-5935 bug

is injected to component solr0 during 120-180s, and to component solr2 during 480-540s. The SOLR-5216

bug is injected to component solr0 during 300-360s, and to component solr2 during 760-820s. Figure 6.10a

shows the estimated number of requests and responses at component solr0. Figure 6.10b shows the
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Figure 6.7: The DMADL detection result of resource faults in CloudSuite web search application
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(b) The mean response time and timeout requests at lb0.

Figure 6.8: The DMADL detection result of resource faults in Olio web application
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Figure 6.9: The DMADL detection result of resource faults in MediaWiki application

estimated mean response time and the number of timeout requests at the component solr0 in CloudSuite

web search application.

1. Deadlock bug: the SOLR-5935 bug at component solr0 causes local solr threads to fall into deadlock.

The component cannot return responses for incoming requests. Requests have to wait at the com-

ponent until the deadlock is released. The SOLR-5935 bug at the dependent component solr2 does

not necessarily cause the local service to crash. It takes longer time to return responses for incoming
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requests. The number of outgoing responses per second is much lower than the number of incoming

requests per second at component solr0.

2. Service hang bug: the SOLR-5216 bug at component solr0 causes the solr process to hang. The com-

ponent cannot return responses for incoming requests. Requests have to wait in the component until

the deadlock is released. The SOLR-5216 bug at the dependent component solr2 does not necessarily

cause the local service to crash. As all dependent components form a concurrent dependency prim-

itive, the component solr2 cannot return responses. The local component waits for requests until the

timeout limit is reached. Finally, the component solr0 returns incomplete responses back to clients.
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Figure 6.10: The DMADL detection result of performance bugs in CloudSuite web search application

Figure 6.11 shows the detection result of performance bugs in Olio application.

0 100 200 300 400 500 600 700 800
Time (s)

0
200
400
600
800
1000
1200
1400
1600
1800

N
um

be
r

Request Response

(a) The number of requests/responses at component lb0

0 100 200 300 400 500 600 700 800
Time (s)

0

200

400

600

800

1000

M
ea

n 
R
es

po
ns

e 
Ti

m
e 
(m

s)

 httpd
-48905

 nginx
-62418

 nginx
-62418

 mysql
-40968

0
10
20
30
40
50
60
70
80

# 
of

 T
im

eo
ut
 R

eq
ue

st
s

response time # of timeout

(b) The mean response time and timeout requests at lb0

Figure 6.11: The DMADL detection result of performance bugs in Olio web application

1. Bug HTTPD-48905: the bug injected into the Apache load balancer lb0 causes most child processes

to hang. No responses would be returned from hanged processes. Many requests are considered

as timeout requests. The remaining normal child processes still process requests correctly and the

response time is still normal. DMADL triggers anomaly alert after detecting a large number of

timeout requests.
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2. Bug NGINX-62418: the bug injected into both Nginx application servers ap1 causes worker processes

to crash. The component would not be able to return responses for incoming requests. All upstream

components cannot have any responses. DMADL detects a lot of timeout requests and triggers alert

at component lb0.

3. Bug MySQL-40968: the bug at the database component sq0 causes the MySQL process to hang

without any error message. The component would not be able to return responses for incoming

requests. Requests have to wait in the component until the MySQL process recovers. The MySQL

process would not be able to return responses for arrived requests. The response time increases and

DMADL detects a lot of timeout requests.

Figure 6.12 shows the detection result of performance bugs in MediaWiki application.
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Figure 6.12: The DMADL detection result of performance bugs in MediaWiki application

1. Bug HTTPD-57628: the bug causes unexpected larger response time. DMADL triggers anomaly alert

as the response time goes from 10ms to more than 1 second.

2. Bug MySQL-87614: the bug at the database component sq0 causes the MySQL process to suffer much

larger latency in processing MySQL queries. It causes larger response time at the load balancer as

the load balancer contains the database as a subsystem component.

6.4.4 Anomaly Detection Performance

We show the performance of DMADL for anomaly detection in different Cloud applications. We perform

a large number of experiments under varying workload intensities. During the experiment, we inject dif-

ferent kinds of faults into different components. We compare DMADL with two other black-box anomaly

detection methods LFD [32], and FlowBox [45].
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Figure 6.13: The detection performance of DMADL and other methods in CloudSuite web search applica-
tion.
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Figure 6.14: The detection performance of DMADL and other methods in Olio web application
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Figure 6.15: The detection performance of DMADL and other methods in MediaWiki application
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We observe that both DMADL and FlowBox achieves high detection precision and low false positive for

different faults. DMADL also achieves lowest false negative for different faults. FlowBox has high false

negative while detecting CPU and network faults. We check into those cases and found that FlowBox

misses many CPU and network faults when the workload intensity is low. When the workload intensity

is very low, the limited capacity is enough to process requests. Another reason is that a lower workload

intensity causes the common flow ratio to be more unpredictable. But with the adjusted flow ratio,

DMADL still detects it well. LFD has the worst detection performance for all different faults. The main

reason is that it selects the highest correlation between the user-space CPU utilization and other resource

utilization as the metric to characterize the service performance. It is prone to high false positive and high

false negative. There are two main reasons. One is that if the server does not use too much user-space CPU

utilization, the correlation is not meaningful. The other reason is that some resource utilization metrics

are still highly correlated with the user-space CPU utilization even when the server has different faults.
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(c) The detection latency in MediaWiki

Figure 6.16: The detection latency of DMADL and other methods in different Cloud applications.

Figure 6.16 shows the mean detection latency for different kinds of faults in the CloudSuite web search

application. The error bar denotes the standard deviation of the detection latency. DMADL and FlowBox

achieves consistently small detection latency. LFD has much longer delay at detecting memory, network



CHAPTER 6. DMADL: DEPENDENCY MODEL-BASED RESPONSE TIME ANALYSIS FOR ANOMALY
DETECTION AND LOCALIZATION 63

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8
Su

bs
ys

te
m
 Im

pa
ct

(a) The subsystem impact

0 500
Time (s)

0

5

C
om

po
ne

nt
 Im

pa
ct

   fault 
 at solr0

   fault 
 at solr2

   fault 
 at solr4

   fault 
 at solr6

solr1
solr2

solr3
solr4

solr5
solr6

solr7

(b) The dependent component impact

Figure 6.17: The component impact analysis for anomaly localization in CloudSuite web search application

and software faults. It is because LFD uses a long-time window for computing the correlation. The fault

usually causes LFD correlation to decrease gradually and the sliding window has to move long enough

to trigger anomaly alert.

6.4.5 Anomaly Localization Case Study

In this section, we evaluate DMADL for anomaly localization in different Cloud applications when per-

formance anomalies are injected at different components.

CloudSuite Web Search Application

Figure 6.17 shows the component impact analysis at component solr0 when faults are injected to solr0

during 120− 180s, solr2 (300− 360s), solr4 (480− 540s), and solr6 (660− 720s). When the fault is injected

to solr0, the local response time increases mostly because the service time of solr0 increases. The subsystem

has smaller impact on the local response time, and the DMADL agent determines that the subsystem of

solr0 is normal. When the fault is injected to solr2, the response time of solr2 increases. The subsystem

response time of solr0 also increases, and the subsystem impact of solr0 increases. The DMADL agent

of solr0 determines that the anomaly is caused by the subsystem. The impact of solr2 has much higher

impact than other dependent components. The DMADL agent of solr0 determines that the local anomaly

is caused by solr2. The similar analysis applies when faults are injected to other dependent components.

Olio Web Application

Figure 6.18 shows the component impact analysis at different components of Olio web application when

faults are injected to lb0 (120− 180s), ap1 (300− 360s), ap2 (480− 540s), and sq0 (660− 720s) respectively.

When the fault is injected to component lb0, the local service time of lb0 increases. The local response

time increases, but it is mostly caused by local component. The subsystem impact of lb0 decreases. The
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Figure 6.18: The component impact analysis for anomaly localization in Olio web application

fault at lb0 may affect the response time of its dependent components. But the impact is similar on

all dependent components. The impact of its dependent components (ap1, ap2) almost do not change
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compared to normal operation. The DMADL agent of lb0 determines that the local component is faulty.

When the fault is injected to component ap1, the response time of ap1 increases and the subsystem re-

sponse time of lb0 increases significantly. The subsystem impact increases compared to normal operation.

The DMADL agent of lb0 determines that its subsystem is faulty. The response time of ap2 is still normal.

The impact of the dependent component ap1 increases, but the impact of ap1 decreases. The DMADL

agent determines that the anomaly at lb0 is caused by the dependent component ap1. The similar analysis

also applies when the fault is injected to component ap2.

When the fault is injected to component sq0, the response time of sq0 increases and it increases the

response time of its upstream components (ap1, ap2, lb0). At component lb0, the local response time in-

creases mostly because of its subsystem. The response time of both ap1 and ap2 increases similarly, and

their component impacts do not show significant changes compared to normal operation. The subsystem

impact of lb0 increases and the DMADL agent of lb0 determines that its subsystem as faulty. The compo-

nent ap1 and ap2 have a single dependent component sq0, the subsystem impact increases. The DMADL

agents of both ap1 and ap2 pinpoint sq0 as faulty. Combining these results, DMADL determines that sq0

is faulty.

MediaWiki Application

Figure 6.19 shows the component impact analysis at different components when faults are injected to

component ap1 (120-180s), bap1 (300-360s), bap2 (480-540s), and sq0 (660-720s).

When component ap1 is faulty, DMADL agents for component lb0, ap1, and sq0 detect anomalies. The

agent of lb0 finds that the impact of ap1 increases a lot, but the impact of ap2 decreases. The subsystem

impact is always 1.0. DMADL agent of lb0 pinpoints its dependent component ap1 as faulty. The agent

of ap1 checks the component impact of all dependent components. The subsystem impact decreases,

it means the local response time increases not because of subsystem. Although, the componentsq0 has

higher impact, DMADL still concludes that the subsystem is normal. DMADL of ap1 does not perform

localization for itself, and it does not report any component. DMADL agent of sq0 does not perform

localization as sq0 does not have any dependent component.

When component bap1 is faulty, DMADL agents of component lb0, ap1, ap2, and bap1 detect anomalies.

The agent of lb0 observes that the response time of both dependent components increase. The subsystem

impact is always 1.0. The local response time increases due to the subsystem. DMADL agent of lb0

pinpoints the subsystem as faulty. DMADL agent of ap1 finds that the component impact of bap1 increases

and the subsystem impact does not decrease, It shows that the response time of ap1 increases due to bap1.

DMADL agent of ap1 pinpoints the dependent component bap1 as faulty. Similarly, DMADL agent of ap2
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(c) The component impact analysis at component ap2

Figure 6.19: The component impact analysis for anomaly localization in MediaWiki application
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also pinpoints bap1 as faulty. DMADL agent of bap1 does not perform localization as bap1 does not have

any dependent component.

When component bap2 is faulty, DMADL agents of component lb0, ap1, ap2, and bap2 detect anomalies.

The agent of lb0 observes that the response time of both dependent components increase. The subsystem

impact is always 1.0. The local response time increases due to the subsystem. DMADL agent of lb0

pinpoints the subsystem as faulty. DMADL agent of ap1 finds that the component impact of bap2 increases

and the subsystem impact does not decrease, It shows that the response time of ap1 increases due to bap2.

DMADL agent of ap1 pinpoints the dependent component bap2 as faulty. Similarly, DMADL agent of ap2

also pinpoints bap2 as faulty. DMADL agent of bap2 does not perform localization as bap1 does not have

any dependent component.

When component sq0 is faulty, DMADL agents of component lb0, ap1, ap2, and sq0 detect anomalies.

The agent of lb0 observes that the response time of both dependent components increase. The subsystem

impact is always 1.0. The local response time increases due to the subsystem. DMADL agent of lb0

pinpoints the subsystem as faulty. DMADL agent of ap1 finds that the component impact of sq0 increases

and the subsystem impact does not decrease, It shows that the response time of ap1 increases due to sq0.

DMADL agent of ap1 pinpoints the dependent component sq0 as faulty. Similarly, DMADL agent of ap2

also pinpoints sq0 as faulty. DMADL agent of sq0 does not perform localization as sq0 does not have any

dependent component.

6.4.6 Anomaly Localization Performance

Figure 6.20 shows the localization performance comparison of DMADL and FChain in CloudSuite web

search application. DMADL achieves much higher precision and fewer false positives than FChain for all

different faults. We further check the localization result given by FChain and find that there are around 6

different components showing the same change start time. It fails to determine the faulty component after

applying FChain in anomaly localization. All dependent components have the same change point. For

example, when a CPU fault happens at solr2, the abnormal change start time of the faulty component is

the onset time of the CPU fault. The fault further affects the interaction between the index component solr0

and other dependent components. Other dependent components show abnormal change in the number of

incoming or outgoing packets. DMADL has fewer false negatives than FChain for all different faults. The

main reason is that a component fault propagates very quickly due to high throughput communication

when it interacts with other components. The fault at component solr0 propagates to its dependent

components. FChain falsely pinpoints its dependent components as faulty, but it misses the true faulty
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component solr0. Figure 6.21 and Figure 6.22 show the performance of DMADL and FChain in Olio

web application and MediaWiki application, respectively. DMADL achieves much higher precision than

FChain for all different faults. We further check the localization result of FChain and find that there are

more than one component showing the same fault manifestation time. FChain fails to determine the faulty

component in Cloud applications.
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(b) The localization recall

Figure 6.20: The localization performance of DMADL and other methods in CloudSuite web search appli-
cation
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(b) The localization recall

Figure 6.21: The localization performance of DMADL and other methods in Olio web application

6.4.7 Overhead Analysis

The overhead of DMADL agent depends on the number of processed data packets per second. We show

the CPU overhead of DMADL agents and the number of processed data packets at different components

in Cloud applications.

In CloudSuite web search application, the number of clients increases from 100 to 1600. DMADL uses

less than 0.6% CPU while processing up to 9000 data packets per second under varying workload intensity
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(b) The localization recall

Figure 6.22: The localization performance of DMADL and other methods in MediaWiki application
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(b) CPU overhead of DMADL agents

Figure 6.23: The CPU overhead and the number of processed data packets per second by DMADL under
varying workload intensity in CloudSuite web search application.
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(b) CPU overhead of DMADL agents

Figure 6.24: The CPU overhead and the number of processed data packets per second by DMADL under
varying workload intensity in Olio web serving application.

as shown in Figure 6.23. We also measure the memory overhead of DMADL using “ps” tool in Linux. It

always shows 0%. Since, the “ps” tool measures memory cost at a unit of 0.1%. DMADL incurs less than
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Figure 6.25: The CPU overhead and the number of processed data packets per second by DMADL under
varying workload intensity in MediaWiki application.

0.1% memory under varying workload intensity.

In Olio application, the number of clients increases from 50 to 500. The component lb0 has the highest

number of processed data packets per second, but the DMADL agent still has only 0.7% CPU overhead

for processing 25000 data packets per second. On average, DMADL costs less than 0.5% CPU resource

while processing up to 9, 000 data packets per second under varying workload as shown in Figure 6.24.

We also measure the memory overhead of DMADL and DMADL incurs less than 0.1% memory under

varying workload.

In MediaWiki web search application, the number of clients increases from 100 to 1000. DMADL costs

less than 0.5% CPU resource while processing up to 900 data packets per second under varying workload

at component lb0. DMADL agents of component (ap1, ap2, sq0) do not cause negligible CPU overhead.

We also measure the memory overhead of DMADL and DMADL incurs less than 0.1% memory cost

under varying workload. With less than 1% CPU overhead and negligible memory cost, DMADL could

be deployed for anomaly detection and localization in large-scale Cloud applications.

6.5 Summary

DMADL combines the dependency model and response time estimation for anomaly detection, and local-

ization in IaaS Cloud applications. The response time estimated by DMADL depends on the interaction

pattern. Now HTTP/2 has been supported by almost all major browsers and web servers. We discuss

what the estimated service response time by DMADL means in the interaction between end-users and

front-end web servers over HTTP/2.

HTTP2 server push function allows servers to send files before they are requested. It is common that

a request for a web page requires other resources such as images, java scripts, style sheets, and so on.
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In previous HTTP protocols, the server sends the requested HTML back to clients, and waits for the

browser to parse the HTML and issue subsequent requests for associated resources before it can send

those resources. Now in HTTP/2, as the server knows the client will eventually request specific resources

for a web page, it can send corresponding resources together with the HTML response back to the client

in advance. The function allows websites to save page loading time by skipping network round-trips. In

this case, the response time estimated by DMADL is the response time for the entire web page including

all requested resources.

HTTP/2 multiplexing allows users to fire multiple requests in parallel in a single connection. The

browser could fire off requests to get the HTML, CSS, images and corresponding resources together on

the same connection without waiting for responses before sending out next requests. The server could

respond these requests in any order to prevent “head of line” blocking problem. Similarly, all multiplexed

requests for an entire web page are considered as one request, and corresponding responses are considered

as one response by DMADL. The response time estimated by DMADL is the response time for the entire

web page. If that is how most users use HTTP/2, DMADL can still be used for anomaly detection.



Chapter 7

DMFDL: Dependency Model-based Flow Ratio

Analysis for Anomaly Detection and

Localization

In this chapter, we present DMFDL, a dependency model-based traffic flow ratio analysis for performance

anomaly detection and localization in IaaS Cloud. DMFDL is based on a simple relationship of data flow in

any given component of Cloud applications: the number of requests should be almost equal to the number

of responses within a given time interval in normal operations. A reasonable time interval corresponds

to an acceptable service response time. We define this simple relationship as flow conservation. The flow

refers to the transmitted messages from the start of request to the end of response in both directions.

Regardless of the complexity of the application structure or unforeseen component behavior, the flow

conservation model always holds during normal operations. Even with highly dynamic workload, the

flow conservation still holds when a component runs in normal operation. When the number of requests

changes, the number of corresponding responses changes accordingly during normal operations. The flow

conservation relationship no longer holds at a component when itself or its subsystem has performance

anomalies. For example, when the response time increases or the server cannot return any response, many

requests cannot have corresponding responses within an acceptable time limit. The number of responses

is much less than the number of requests in the same interval. It is usually hard to identify requests and

responses from packet streams. DMFDL uses the flow ratio to model the flow conservation relationship

between the number of request data packets and the number of response data packets. We show that

it is feasible to detect performance anomalies by using the flow ratio to model the flow conservation

relationship. DMFDL triggers anomaly alert when the flow ratio violates a dynamic threshold from the

72
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normal profile. DMFDL adapts the flow ratio to consider the past variation and combines the adapted flow

ratio with the dependency model to achieve more accurate detection and localization. DMFDL has agents

distributed on physical hosts. The agents do not require domain knowledge from operating systems of

virtual components or underlying applications. DMFDL agents operate outside virtual components in

real time and each agent performs anomaly detection and localization locally.

7.1 DMFDL overview

DMFDL agents consist of 5 major functions: flow monitoring, dependency model extraction, flow ratio

model, anomaly detection, and anomaly localization. The operating flow of DMADL agents is shown

in Figure 7.1. The flow monitoring function works with packet streams outside virtual components and

counts the number of data packets in traffic flows. The dependency model extraction function uses the

request flow and the response flow to identify dependency primitives formed by a local component and

its dependent components. The flow ratio profiling function models the flow conservation relationship

between the request flow and the response flow using an adaptive flow ratio. The anomaly detection

function uses the deviation of flow ratios and changes of the local interaction behavior to detect anomalies.

The anomaly localization function analyzes the changes in flow ratios of multiple components and uses

the pattern of changes in different dependency primitives for identifying the faulty component locally.

VM

Physical Host

VM VM

DMFDL Agent

Dependency

Model Extraction

Flow Ratio

Profiling

Anomaly Detection

Traffic Flow

Monitor

Anomaly Localization

Figure 7.1: The operation diagram of DMFDL for anomaly detection and localization
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7.2 Traffic Flow Monitor

DMFDL agents take each component as a black box and monitor network traffic flow outside the compo-

nent. DMFDL considers only TCP traffic flow as it constitutes the majority of the network traffic in Cloud

applications. We filter out control packets that do not contribute to the communication flow of requests

and responses. Packets that do not contain TCP payload are treated as control packets, such as pure SYN,

FIN, ACK, and RST. Data packets containing TCP payload carries useful data for requests and responses.

For each component service, DMFDL agent monitors the following metrics in the interval (t−∆Tf , t) (∆Tf

is the sampling interval):

• Input request flow: the number of request data packets arrived at the local component.

• Output response flow: the number of response data packets departing from the local component.

In Cloud applications, a component usually has multiple dependent components. If the local compo-

nent contains any dependent component(s), the DMFDL agent also monitors the data flow between each

dependent component and the local component.

• Output request flow: the number of outgoing request data packets from the local component to the

dependent component.

• Input response flow: The number of incoming response data packets from the dependent component

to the local component.

Figure 7.2 shows the network traffic flow for a local component A. In a interval (t− ∆Tf , t), we denote

the input request flow as XA(t) and the output response flow as YA(t). For its dependent component B,

the output request flow is denoted as XAB(t) and the input response flow is denoted as YAB(t). DMFDL

further analyzes the relationship between the input request flow and the output response flow for anomaly

detection at local component and its subsystem.

Local VM 

Service A

Input request flow !"#$%

Input response flow &"' #$%

Output request flow !"'#$%

Output response flow &"#$%

Dependent 

VM Service B

Figure 7.2: The traffic flow monitor for a component service A
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7.3 Anomaly Detection

In this section, we first present the flow ratio model to characterize the service performance. Then we

show how to use the flow ratio for anomaly detection.

7.3.1 Flow Ratio Model

Given any component in normal operation, request data packets are followed by corresponding response

data packets within an acceptable time limit, which corresponds to the maximum service target as defined

in service level agreement (SLA). Ideally, we can inspect payload to find out the exact response time and

check the correctness of packet contents. However, the inspection of packet content is challenging in high

speed channels and packets cannot be easily parsed in encrypted applications.

If we pick the sampling interval ∆Tf = SLA, we observe that request data packets and corresponding

response data packets fall into the same interval. When there is an anomaly at the local component

or its subsystem, the local response time increases and exceeds the SLA target. the incoming request

data packets and corresponding outgoing response data packets cannot be fall into the same monitoring

interval. FlowBox [45] used the flow ratio to characterize the relationship, which is defined as the output

response flow over the input request flow within a sampling interval. The flow ratio R(t) is defined as the

number of outgoing response data packets Y(t) over the number of input data packets X(t) in a sampling

interval (t− ∆Tf , t).

R(t) =
Y(t)
X(t)

When a local component and its subsystem components have performance anomaly, it takes much longer

to respond to user requests or it cannot respond to requests properly. The flow ratio is supposed to

decrease as incoming request data packets are not responded with a sampling interval. DMFDL shows

the importance of the sampling interval in order to use the flow ratio for anomaly detection. FlowBox

shows that the flow ratio varies significantly even in normal operation. The variability existing in the flow

ratio prevents us from capturing the relationship between the input request flow and the output response

flow in normal operation. If the sampling interval is too small, it may produce high false positive in

anomaly detection. A large sampling interval obfuscates the difference in flow ratios between normal

and abnormal operations. It misses real performance anomalies and causes false negative in anomaly

detection. We select a proper sampling interval to balance the false positive and false negative.

In complex Cloud applications, it is not trivial to determine a proper sampling interval for each com-

ponent service. First, different types of requests and responses contain different number of data packets.

Given a component service A, there are NA different types of requests. We denote the number of data
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packets for a request of type i as xi, and the number of data packets for its response as yi. Within an

observation interval (t − ∆Tf , t), the number of requests of type i is λi(t). The flow ratio during each

interval can be represented as

R(t) =
Y(t)
X(t)

=
Z(t) + ∑NA

i=1 λi(t) ∗ yi

W(t) + ∑NA
i=1 λi(t) ∗ xi

In above equation, Z(t) is the number of response data packets for requests observed before the current

sampling interval; W(t) is the number of request data packets that are not responded in the current

interval yet; λi(t) is a parameter characterized by the workload behavior. It is difficult to capture the

dynamics of the flow ratio for each service. From [14], we learn that the flow ratio converges as ∑NA
i=1 λi(t)

is larger, where ∑NA
i=1 λi(t) is the number of requests arrived in the current sampling interval that are

responded within the same interval. The Z(t) and W(t) are negligible in normal and stable state as most

requests are returned within the same interval: ∑NA
i=1 λi(t) ∗ yi � Z(t) and ∑NA

i=1 λi(t) ∗ xi � W(t). The

flow ratio in normal operation can be simplified as:

RN(t) =
Y(t)
X(t)

=
Z(t) + ∑NA

i=1 λi(t) ∗ yi

W(t) + ∑NA
i=1 λi(t) ∗ xi

≈ ∑NA
i=1 λi(t) ∗ yi

∑NA
i=1 λi(t) ∗ xi

In abnormal operation, most requests cannot have its responses returned within the same interval (e.g.,

∑NA
i=1 λi(t) ≈ 0). The flow ratio in an abnormal sampling interval is simplified as

RA(t) =
Y(t)
X(t)

=
Z(t) + ∑NA

i=1 λi(t) ∗ yi

W(t) + ∑NA
i=1 λi(t) ∗ xi

≈ Z(t)
W(t)

As the workload is higher, there are more samples in a sampling interval. As a result, the flow ratio

capture the normal service behavior more accurately. A low workload usually causes less samples in the

sampling interval for computing the flow ratio. The variability of requests and responses cannot model

the service behavior in normal operation. The flow ratio depends on the following factors:

• When a service is more complex, the variability of flow ratio across time is larger.

• When the workload mix is more dynamic, the variability of flow ratio across time is larger.

• When the workload intensity increases, the variability of the flow ratio is smaller.

However, the flow ratio proposed in FlowBox is time-ignorant. The flow ratio describes the relationship

between requests and responses in a sampling interval in normal operation. But in abnormal operation,

responses are no longer for requests in the same interval. For example, some responses in the current

interval correspond to those requests in previous time intervals. We cannot predict how the flow ratio

changes in abnormal operation. It may be either lower or higher than the flow ratio in normal operation,
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Algorithm 4: DMFDL sampling interval selection

input : For a virtual component service A, the time series of input request flow XA(t) and output
response flow YA(t) during normal operation. A list of optional sampling intervals
∆Ti(i = 1, 2, · · · )

output: The proper sampling interval ∆Tf .
1 for the sampling interval ∆Ti do
2 Compute the flow ratios using the sampling interval ∆Ti during normal operation: R(t);
3 Compute the mean of the flow ratio µi and the standard deviation σi;
4 Compute the relative deviation;
5

Ki =
σi
µi

6 end
7 for i = 2 to n do
8 if ‖Ki − Ki−1 ≤ th then
9 break;

10 end
11 end
12 The proper sampling interval is: ∆Tf = ∆Ti;

and it may be similar to the flow ratio in normal operation. It depends on Z(t) and W(t). The flow

ratio may be against our expectation that the ratio between the number of response data packets over

the number of request data packets should be lower as requests take longer to be processed in abnormal

operation. It is because W(t) is not negligible in abnormal operation. If we know the value of W(t), we

could remove it from Y(t) and the resulting flow ratio would be accordant with our expectation.

In each sampling interval, some response data packets are not for those requests in the current window.

It is difficult to predict or control the workload of each component in Cloud applications. The possible

solution is to properly increase the window size under lower workload to have more samples in the

window. The flow ratio could more accurately characterize the normal service behavior. If the workload

intensity for a component is high enough, we choose the ideal sampling interval size as the maximum

acceptable response time for the underlying service.

It is not trivial to specify the service level target (SLA) for each component. DMFDL gives another

algorithm 4 to automatically determine the proper sampling interval for the flow ratio model. To obtain

the proper sampling interval, DMFDL chooses among a set of optional sampling intervals, and selects the

proper sampling interval as the interval that achieves stable flow ratio in normal operation.

Training stage

DMFDL trains the system under normal operation for a certain period to obtain the normal profile RN(t)

for the flow ratio of each component. Based on the distribution of the flow ratio in the training stage,
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DMFDL determines two thresholds for the flow ratio in normal operation: a lower bound Rlb and an

upper bound Rub. If the flow ratio in a sampling interval is either below the lower threshold or above the

upper threshold, DMFDL consider the flow ratio in the interval as suspicious.

When the service is normal, the flow ratio in most sampling intervals falls within the normal range:

Rlb ≤ R(t) ≤ Rub. In each interval (t− ∆Tf , t), DMFDL first checks the latest flow ratio R(t).

If R(t) > Rub, it means that there are more response data packets than request data packets. The

reason is that many response data packets are for those requests in previous intervals before the current

interval. It infer that the service may be abnormal before this interval.

If R(t) < Rlb, it means there are less response data packets than request data packets in the current

window. There are two possible causes:

• The service is still normal, but a lot of requests arrive at the end of the current interval and most

of their response data packets are not responded within the same interval. But the response data

packets would be responded within the next interval.

• The service is abnormal, requests take much longer to be processed. As a result, most of their

response data packets cannot be responded within the same interval. The response time is much

larger than the SLA.

To differentiate between these two cases, DMFDL further uses the input request flow and the output re-

sponse flow in the current interval to make a decision. DMFDL starts to aggregate input request flow and

the output response flow from the suspicious interval until the flow ratio becomes no longer suspicious.

• If the suspicious flow ratio is caused by the first cause, many requests are not responded within

the current interval. But they would be responded within the next interval, The flow ratio becomes

normal again in the next interval.

• If the suspicious flow ratio is caused by anomaly, the response time is much larger than the sampling

interval. The requests in the current interval would not be observed within the upcoming interval

as well. As a result, the flow ratio may still be suspicious in several upcoming intervals. As a result,

DMFDL observes a contiguous sequence of suspicious flow ratios until the service is normal again.

7.3.2 Detection Algorithm

In a dynamic system, it is not unusual to have occasional upward or downward spikes in the flow ratio

even when the service is normal. As a result, the flow ratio can fall outside the normal profile sometimes.

It is easy to produce some false positives if the detection algorithm is based on the flow ratio within a
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single interval. However, a sustained observation of suspicious flow ratios are unusual and the service

probably has performance anomaly. Rather than putting threshold directly on the aggregate flow ratio,

DMFDL triggers anomaly alert based on the behavior of flow ratios within a recent decision window. In

real time, DMFDL uses a moving window of Wd flow ratios to capture the pattern of the flow ratio. In

DMFDL, the ratio deviation Sd(t) is defined as the sum of the deviations in the decision window.

Sd(t) =
Wd−1

∑
i=0

[
R(t− i)− RN

]
DMFDL compares the flow ratio deviation in current decision window with profiled flow ratio deviation

in normal operation. DMFDL decides whether the system state is suspicious if the ratio deviation exceeds

the profiled normal threshold.

DMFDL uses a window of latest W states and combines it with the dependency model to trigger

anomaly alert: (1) The number of suspicious interval exceeds a tolerable threshold; (2) There are depen-

dent components no longer has data flow communication with the local component. The procedure of

DMFDL anomaly detection is described in Algorithm 5.

7.4 Anomaly Localization

DMFDL performs component-level anomaly localization in a distributed way. Each DMFDL agent ana-

lyzes the possible source of anomaly locally in the local component and its dependent components. Each

DMFDL agent reports the local result to a central administrator, and the DMFDL administrator combines

all local results together and determines the faulty component.

7.4.1 Local Interaction Behavior Characterization

Due to the fault propagation, the flow ratio of a local component decreases due to three possible causes:

(1) the upstream components; (2) the local component itself; or (3) the local component’s subsystem. If

the local component has dependent components and the local anomaly is caused by the upstream compo-

nents of the local component, the interaction between the local component and its dependent components

is still normal. If the local anomaly is caused by the local component or its subsystem components, the

interaction between the local component and its dependent components are affected due to anomaly prop-

agation. DMFDL agents use the interaction between the local component and its dependent components

to determine whether the local anomaly is caused by the upstream components, the local component, or

its subsystem components.
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Algorithm 5: DMFDL anomaly detection

input: XA(t), YA(t), W, DW, LBA(t), UBA(t), CXA(t), CYA(t), µA(t)
1 Initialization: CXA(t) = 0, CYA(t) = 0, R(t) = µA(t);
2 for each timestamp t do

3

{
CXA(t) = CXA(t) + XA(t)
CYA(t) = CYA(t) + YA(t)

;

4 if CX(t) == 0 then
5 RA(t) = RA(t− 1);
6 else
7 Compute the flow ratios: RA(t) =

CY(t)
CX(t) ;

8 if RA(t) >= LBA(t) then

9

{
CXA(t) = 0
CYA(t) = 0

;

10 end
11 end
12 if RA(t) >= UBA(t) then
13 RA(t) =

RA(t−1)+RA(t)
2 ;

14 end
15 if ∑t

i=t−W (RA(i)− µA(t)) ≥ FA(t) then
16 S(t) = 1;
17 end
18 if ∑t

i=t−W (RA(i)− µA(t)) ≥ FA(t) then
19 SA(t) = 1;
20 end
21 if ∑t

i=t−DW (SA(t)) ≥ DW/2 then
22 Trigger an anomaly alert for service A;
23 end
24 end
25 ;

DMFDL agents characterizes the local interaction behavior between the local component and each de-

pendent component using the request flow ratio and the response flow ratio. For a dependent component

B, the request flow ratio R(XA, XAB, t) is defined as the ratio between the output request flow XAB(t) and

the local input request flow XA(t). The response flow ratio R(YA, YAB, t) is defined as the ratio between

the local output response flow YA(t) and the input response flow YAB(t).

R(XA, XAB, t) =
XAB(t)
XA(t)

, R(YA, YAB, t) =
YA(t)
YA(t)

,

DMFDL agents use the request flow ratio and the response flow ratio for anomaly localization at each

component of Cloud applications.
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7.4.2 No Dependent Component

When the local component has no dependent component, the anomaly is caused by either the fault at the

local component or the fault at its upstream tier. DMFDL cannot report any localization result due to lack

of information about upstream components. In an extreme case where the DMFDL agent observes only

input request flow but without output response flow, the flow ratio decreases to 0 and the DMFDL agent

reports that the local component is faulty.

7.4.3 Single Dependent Component

When the local component has a single dependent component, DMFDL analyzes different causes and

their difference for localization analysis.

1. If the anomaly is caused by upstream components, it does not affect the interaction between the

local component and the dependent component. The request flow ratio and the response flow ratio

do not change.

2. If the anomaly is caused by the local component, the local input request flow decreases due to TCP

propagation and the local output response flow also decreases as the local response time increases.

The dependent component still processes requests normally and returns responses to the local com-

ponent. But those responses wait longer at the local component. The response flow ratio usually

increases compared to normal operation.

3. If the anomaly is caused by the dependent component or its subsystem components, the local com-

ponent is write-blocked when it tries to send requests to the dependent component. The request

flow ratio decreases. After receiving responses from the dependent component, the local component

returns those responses to upstream components normally. The response flow ratio is still normal.

From above analysis, when both the request flow ratio and the response flow ratio have big changes

compared to normal operation, the DMFDL agent determines the local component as faulty. If the request

flow ratio and the response flow ratio almost do not change, the DMFDL agent determines that the local

component and its dependent component as normal. If the request flow ratio changes and the response

flow ratio almost does not change, the DMFDL agent determines that the dependent component as faulty.

7.4.4 Distributed Dependency Primitive

In distributed dependency setup, dependent components are usually independent from each other. The

local component still works properly if some dependent components are still normal. For a local compo-
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nent with a distributed set of dependent components, the sum of output request flow to all dependent

components should almost equal the local input request flow. The sum of input response flow should

almost equal the local output response flow.

1. If the anomaly is caused by its upstream components, the interactions between the local component

and all dependent components are still normal. The request flow ratios and response flow ratios of

all dependent components almost do not change.

2. If the anomaly is caused by the local component, the local fault has similar impact on the output

request flow to all dependent components. The requests that should be directed to its dependent

components wait longer at the local component. The responses that should be returned from the

local component wait longer at the local component. The request flow ratios and response flow

ratios of all dependent components should change similarly.

3. If the anomaly is caused by a dependent component or its subsystem components, requests that

should be sent to the faulty dependent component wait longer at the local component. The requests

that are destined to other normal dependent components are still distributed normally. Therefore,

less requests arrived at the local component are directed to the faulty component. The request

flow ratio of the faulty dependent component decreases, and the request flow ratios of normal

dependent components increase. Most responses returned from the local component are coming

from normal dependent components. The response flow ratio of the faulty dependent component

increases compared to that in normal operation. The response flow ratios of other normal dependent

components decrease.

From above analysis, when the request flow ratio of a dependent component decreases and its response

flow ratio increases, the DMFDL agent determines the dependent component as faulty. When the request

flow ratios and response flow ratios of all dependent components change similarly compared to those in

normal operation, the DMFDL agent determines the local component as faulty.

7.4.5 Concurrent Dependency Primitive

In concurrent dependency primitive, the local component sends requests to all dependent components

concurrently. A faulty dependent component affects the interaction between the local component and all

dependent components. DMFDL analyzes the effect of three different causes for the local component with

a concurrent set of dependent components.
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1. If the anomaly is caused by its upstream components, the interactions between the local component

and all dependent components are still normal. The request flow ratios and response flow ratios

almost do not change.

2. If the anomaly is caused by the local component, requests arrived at the local component take longer

to reach its dependent components. The request flow ratios of all dependent components change

similarly. It also takes longer time for the local component to return responses back to the upstream

components after receiving responses from all dependent components. The response flow ratios of

all dependent components change similarly as the impact on all dependent components are similar.

3. If the anomaly is caused by a faulty dependent component in the concurrent set, the local component

is write-blocked when it tries to send requests to the faulty dependent component due to the TCP

propagation. The local waiting time increases, and the request flow ratio of the faulty dependent

component changes the most. The request flow ratios of other normal dependent components also

change, but not as much as the faulty dependent component. When the local component receives

responses from normal dependent components, it still waits for responses from the faulty dependent

component. The response flow ratio of normal dependent components changes much more than the

response flow ratios of the faulty dependent component.

From above analysis, when the request flow ratios and the response flow ratios of all dependent com-

ponents change with similar scale compared to those in normal operation, the DMFDL agent determines

the local component as faulty. If the request flow ratios and the response flow ratios of all dependent

components almost do not change, the DMFDL agent determines that the local component and its sub-

system components are normal. If the request flow ratio of a dependent component changes much more

than those of other dependent components, and the response flow ratio of changes less than those of other

dependent components, the DMFDL agent determines the dependent component as faulty.

7.4.6 Composite Dependency Primitive

In composite dependency primitive, the local component sends requests to all dependent components

sequentially. A faulty dependent component usually delays the interaction between the local component

and those dependent components that execute after the faulty component.

1. If the anomaly is caused by its upstream components, the interactions between the local component

and all dependent components are still normal. The request flow ratios and response flow ratios of

all dependent components almost do not change.
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2. If the anomaly is caused by the local component, requests take longer to reach its dependent com-

ponents. The request flow ratios of all its dependent components change with similar scale. It also

takes longer time for the local component to return responses after receiving responses from all

dependent components. The response flow ratios of all dependent components change similarly.

3. If the anomaly is caused by a dependent component or its subsystem components in the composite

set. The local component is write-blocked when it tries to send requests to the faulty dependent

component due to the TCP propagation. The requests that should be sent to the faulty dependent

component wait longer time at the local component. The request flow ratio of the faulty depen-

dent component changes more than that of dependent components that execute before the faulty

dependent component. As the faulty dependent component takes longer to process requests, it also

takes longer time for the local component to call dependent components that execute after the faulty

component. The request flow ratios of dependent components that execute after the faulty compo-

nent change more than that of the faulty component. The delay between the input response flow

from those dependent components that execute before the faulty component and the local output

response flow changes. The response flow ratios of dependent components that execute before the

faulty dependent component change more than that of the faulty dependent component.

From above analysis, if the request flow ratios and the response flow ratios of all dependent compo-

nents change with similar scale compared to those in normal operation, the DMFDL agent determines the

local component as faulty. If the request flow ratios and the response flow ratios almost do not change, the

DMFDL agent determines the local component and its subsystem components as normal. If the request

flow ratio of a dependent component changes much more than that of dependent components that execute

before it, and the response flow ratios of dependent components execute before it changes much more

than those of dependent components that execute after it, the DMFDL agent determines the dependent

component and its subsystem components as faulty.

Each DMFDL agent reports only the localization result of the local component and its dependent

components. Finally, DMFDL has a central administrator summarize localization results of all agents and

determines the faulty component in Cloud applications.

7.5 Experimental Evaluation

the performance of DMFDL using modern Cloud applications. We focus on 2 aspects: (I) How does the

flow ratio changes under varying workload scenarios in different Cloud applications? (II) How effective is
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DMFDL in detecting various kinds of performance anomalies in different Cloud applications? (III) How

effective is DMFDL in finding out the root cause of performance anomalies?

7.5.1 Flow Ratio Stability Analysis

The sampling interval is important to use the flow ratio for modeling the service performance normal

operation. We use varying sampling intervals to compute the flow ratio in different Cloud applications.

CloudSuite Web Search Application

Figure 7.3 shows the flow ratio of different components with different sampling intervals under varying

workload intensity in CloudSuite web search application. The flow ratio becomes more stable as the sam-
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Figure 7.3: The stability of flow ratio with different sampling intervals under varying workload intensity
in CloudSuite web search application

pling interval increases. The flow ratio of all components suffers very large fluctuation as the sampling

interval ∆Tf ≤ 200ms as the standard deviation is almost as large as the mean flow ratio. But the mean

flow ratio is almost stable when the sampling interval ∆Tf ≥ 500ms across varying workload intensity.

Comparatively, the sampling interval has a larger impact on the flow ratio of the index component solr0

than the flow ratio of its dependent component solr6. It is because the response time of the index com-

ponent has much larger variance. The flow ratio of component solr6 is stable enough as the sampling

interval increases ∆Tf ≥ 100ms. It is because the response time of component solr6 is usually smaller than

100ms. The result of other dependent components of solr0 is similar to solr6.

Olio Web Application

The stability of the flow ratio is important for performance anomaly detection and localization under

different workload scenarios. Figure 7.4 shows the flow ratio of different components in the Olio web
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application with different sampling intervals under varying workload intensity. The flow ratio becomes
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(a) The flow ratio at component lb0
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(c) The flow ratio at component ap2
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Figure 7.4: The stability of flow ratio with different sampling intervals under varying workload intensity
in Olio web application

more stable as the sampling interval increases. The flow ratio of all components suffers large fluctuation as

the sampling interval ∆Tf ≤ 100ms as the standard deviation is almost as large as the mean flow ratio. But

the mean flow ratio is stable when the sampling interval ∆Tf ≥ 200ms across varying workload intensity.

For two application servers (ap1 and ap2), the flow ratio has very large fluctuation when ∆Tf < 500ms.

It is stable with small fluctuation when ∆Tf ≥ 500ms. Comparatively, the sampling interval has a larger

impact on the flow ratio of components lb0, ap1, and ap2 than on the flow ratio of component sq0. It is

because the response time of the load balancer and two application servers has much larger variance. The

flow ratio of database component sq0 is stable enough as the sampling interval changes. It is because the

response time of component sq0 is usually smaller than 10ms.

MediaWiki Application

Figure 7.5 shows the flow ratio at multiple components (lb0, ap1, bap1, sq0) with different sampling in-

tervals under varying workload intensity in MediaWiki application. The flow ratio becomes more stable
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(a) The flow ratio at component lb0
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(b) The flow ratio at component ap1
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(c) The flow ratio at component bap1
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Figure 7.5: The stability of flow ratio with different sampling intervals under varying workload intensity
in MediaWiki application

as the sampling interval increases. The flow ratio of all components suffers very large fluctuation as

the sampling interval ∆Tf ≤ 100ms as the standard deviation is almost as large as the mean flow ratio.

But the mean flow ratio is almost stable when the sampling interval ∆Tf ≥ 200ms across varying work-

load intensity. For two application servers (ap1 and ap2), the flow ratio has very large fluctuation when

∆Tf < 500ms. It is stable with small fluctuation when ∆Tf ≥ 500ms. Comparatively, the sampling interval

has a larger impact on the flow ratio of components lb0, ap1, and ap2 than the flow ratio of components

bap1, bap2, and sq0. It is because the response time of the load balancer and two application servers has

much larger variance. For the two computational servers (bap1 and bap2), the flow ratio is already stable

enough as ∆Tf ≥ 50ms. The flow ratio of database component sq0 is stable enough as the sampling

interval changes. It is because the response time of component sq0 is usually smaller than 10ms.

In summary, the sampling interval is important parameter to obtain stable flow ratio to model service

performance in normal operation. A small sampling interval results in unstable flow ratio as requests can-

not have corresponding responses within the same interval. The obtained flow ratio has large fluctuation,

and it obfuscates the difference in flow ratio between normal and abnormal operation. A large sampling
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Figure 7.6: The flow ratio for resource fault detection in CloudSuite web search application

interval is more likely to produce stable flow ratio with small fluctuation. The flow ratio would be good

for anomaly detection. However, an excessively large sampling interval would cover the abnormal behav-

ior as most requests have their responses within the same interval even their response time is abnormal.

DMCDL automatically selects the smallest sampling interval that achieves a stable-enough flow ratio for

anomaly detection.

7.5.2 Resource Fault Detection

Figure 7.6 shows the flow ratio at component solr0 of CloudSuite web search application. Figure 7.7 shows

the flow ratio at the load balancer lb0 in Olio web application. Figure 7.8 shows the flow ratio at the load

balancer lb0 of the MediaWiki application.

• During the CPU fault, the component becomes slower in processing arriving requests. The response

time increases, and the flow ratio decreases.

• During the memory fault, each request requiring access to memory suffers much longer delay as

other processes keep spinning on “malloc()/free()” functions. When other processes free memory,

the component gets enough memory to process the request and return the response. When other

processes request for memory, the component gets stuck due to lack of memory. The input flow and

output flow suffer frequent fluctuations during this fault.

• During the network fault, outgoing packets wait longer at the local network interface. The response

time increases, and the output response flow no longer follows the input request flow within the

normal sampling interval.
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Figure 7.7: The flow ratio for resource fault detection in Olio web application
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Figure 7.8: The flow ratio for resource fault detection in MediaWiki application

• During the disk fault, the request gets stuck and the server cannot process requests. In the Cloud-

Suite web search application, requests have to fetch data from disks. When the disk fault causes

disk read/write operation to be blocked, the component cannot return any response for incoming

requests. The output flow is always 0 and it forces client connections to close. The flow ratio be-

comes very low. For MediaWiki and Olio, their requests involve very few disk accesses, and the disk

fault has lower impact on the flow ratio.
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Figure 7.9: The flow ratio for performance bug detection in CloudSuite web search application

7.5.3 Common Software Fault Detection

Figure 7.9 shows the flow ratio at component solr0 when two software bugs are injected to two components

in CloudSuite web search application. The bug SOLR-5935 is injected to the component solr0 during 120-

180s, and solr2 during 480-540s. The bug SOLR-5216 is injected to component solr0 during 300-360s, and

solr2 during 760-820s.

• The bug SOLR-5935 at the component solr0 causes some threads to fall into the deadlock. The

component cannot return responses for incoming requests. Requests wait in the component until

the deadlock is released. The bug SOLR-5935 at solr2 does not necessarily cause the local service

down. It takes longer to process incoming requests.

• The bug SOLR-5216 at the local component solr0 causes java processes to hang out. The component

cannot process incoming requests. Requests have to wait at the component until java processes

recover. The bug SOLR-5216 at the dependent component solr2 does not necessarily cause the local

service down. As all the dependent components form a concurrent dependency primitive. The local

component waits for responses from all dependent components until timeout. Finally, solr0 sends

incomplete responses to clients.

Figure 7.10 shows the flow ratio at the load balancer lb0 when common software faults are injected to

different components of Olio web application. Figure 7.11 shows how flow ratio changes at component

lb0 when common performance bugs are injected at different components of MediaWiki application.

• Bug HTTPD-48905: the bug injected into the load balancer lb0 causes some child processes to hang.

Those hanged processes cannot be able to return responses for incoming requests, but other normal
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Figure 7.10: The flow ratio for performance bug detection in Olio web application
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Figure 7.11: The flow ratio for performance bug detection in MediaWiki application

processes still work correctly. Many incoming requests no longer have responses going out. The

flow ratio decreases compared to normal operation.

• Bug Nginx-62418: the bug injected into the Apache load balancer lb0 causes local child processes

to crash. The component cannot be able to return responses for incoming requests. Requests have

to wait at the component until the deadlock is released. After Nginx worker processes at ap1 crash,

the load balancer directs requests to the other server ap2. The flow ratio decreases but less obvious

compared to the bug at the load balancer because most incoming requests are handled by the normal



CHAPTER 7. DMFDL: DEPENDENCY MODEL-BASED FLOW RATIO ANALYSIS FOR ANOMALY
DETECTION AND LOCALIZATION 92

application server.

• Bug MySQL-40968: the bug causes MySQL process to hang without any error message. The com-

ponent would not be able to return any response for incoming requests. Requests have to wait in

the component until the TCP connection timeout. The Nginx application servers returns incom-

plete response to the load balancer, which further sends responses back to clients. The output flow

decreases a lot during the faulty period. The flow ratio decreases

7.5.4 Anomaly Detection Performance

We show the performance of DMFDL for anomaly detection in different Cloud applications: CloudSuite

web search application in Figure 7.12, Olio application in Figure 7.13, MediaWiki application in Fig-

ure 7.14. We perform a large number of experiments under varying workload intensities. During the

experiment, we inject different kinds of faults into different components. We compare DMFDL with two

other black-box anomaly detection methods LFD [32], and FlowBox [45].
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(b) The detection recall

Figure 7.12: The detection performance of DMFDL and other methods in CloudSuite web search applica-
tion.

We observe that both DMFDL and FlowBox achieves high detection precision and low false positive

for different faults. DMFDL also achieves lowest false negative for different faults. FlowBox has high false

negative while detecting CPU and network faults. We check into those cases and found that FlowBox

misses many CPU and network faults when the workload intensity is low. When the workload intensity

is very low, the limited capacity is enough to process requests. Another reason is that a lower workload

intensity causes the common flow ratio to be more unpredictable. But with the adjusted flow ratio,

DMFDL still detects it well. LFD has the worst detection performance for all different faults. The main

reason is that it selects the highest correlation between the user-space CPU utilization and other resource

utilization as the metric to characterize the service performance. It is prone to high false positive and high
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(a) The detection precision
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(b) The detection recall

Figure 7.13: The detection performance of DMFDL and other methods in Olio web application
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(a) The detection precision
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(b) The detection recall

Figure 7.14: The detection performance of DMFDL and other methods in MediaWiki application

false negative. There are two main reasons. One is that if the server does not use too much user-space CPU

utilization, the correlation is not meaningful. The other reason is that some resource utilization metrics

are still highly correlated with the user-space CPU utilization even when the server has different faults.

Figure 7.15 shows the mean detection latency for different kinds of faults in the CloudSuite web search

application. The error bar denotes the standard deviation of the detection latency. DMFDL and FlowBox

achieves consistently small detection latency. LFD has much longer delay at detecting memory, network

and software faults. It is because LFD uses a long-time window for computing the correlation. The fault

usually causes LFD correlation to decrease gradually and the sliding window has to move long enough

to trigger anomaly alert.

7.5.5 Anomaly Localization Case Study

In this section, we show how DMFDL does anomaly localization when performance anomalies are injected

at different components in Cloud applications.



CHAPTER 7. DMFDL: DEPENDENCY MODEL-BASED FLOW RATIO ANALYSIS FOR ANOMALY
DETECTION AND LOCALIZATION 94

�	��
�����

����"
������

��� ���
������

�
���
�����

���� ���
������

�

��

��

��

��


��
��


��
��
���
��
��
��
��
"�
��
�


�
� ��� ��! ��


(a) The detection latency in CloudSuite
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(b) The detection latency in Olio
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(c) The detection latency in MediaWiki

Figure 7.15: The detection latency of DMFDL and other methods in different Cloud applications

0 100 200 300 400 500 600 700 800
Time (s)

0

1

2

3

4

5

R
eq

ue
st
 F
lo
w
 R
at
io

   fault 
 at solr0

   fault 
 at solr2

   fault 
 at solr4

   fault 
 at solr6

solr1/solr0
solr2/solr0

solr3/solr0
solr4/solr0

solr5/solr0
solr6/solr0

solr7/solr0

Figure 7.16: The request flow ratio for anomaly localization in CloudSuite web search application

CloudSuite Web Search Application

Figure 7.16 shows the request flow ratio analysis at the index component solr0 when faults are injected to

solr0 (120− 180s), solr2(300− 360s), solr4(480− 540s), and solr6(660− 720s).

When the fault is injected to solr0, the service time of solr0 increases. But it has similar impact on the
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(f) The response flow ratio at ap1

Figure 7.17: The request/response flow ratio for anomaly localization in Olio web application

interaction between the local component and all its dependent components. The request flow ratios of all

dependent components change almost similarly and concurrently. When the component solr2 is faulty, its

response time increases. It also causes requests to wait longer at the local component solr0, and the request

flow ratios of other normal dependent components also change. The interaction between component solr2

and the local component solr0 is affected the most and the request flow ratio of solr2 decreases much more

than that of other normal dependent components. The same localization analysis applies when faults are

injected to solr4 and solr6.

Olio Web Application

Figure 7.20 shows the request flow ratio analysis and response flow ratio analysis of different components

when faults are injected to lb0 (120− 180s), ap1 (300− 360s), ap2 (480− 540s), and sq0 (660− 720s).

When the fault is injected to component lb0, the service time of lb0 increases. The requests wait
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at lb0 for longer time before they are distributed to backend application servers. The fault at lb0 has

similar impact on the two application servers when they interact with lb0. The request flow ratios of two

application servers decrease simultaneously with similar scale. The fault does not impact the interaction

between application servers and the database. The request flow ratios and the response flow ratios of the

database at two applications servers are not impacted.

When the fault is injected to component ap1, the requests that should be distributed to ap1 wait longer

at the load balancer because of TCP propagation. The fault does not impact the interaction of ap2 with lb0,

and requests are scheduled to ap2 normally. Most requests that arrive at lb0 are scheduled to ap2 during

the fault. At the load balancer, the request flow ratio of ap1 decreases, but the request flow ratio of ap2

increases. The ap1 return responses at a much slower speed than ap2, and most responses returned from

lb0ap1 are from ap2. The response flow ratio of ap1 increases, and the response flow ratio of ap2 decreases.

The fault causes queries from ap1 to sq0 to take longer time due to TCP propagation. At component ap1,

the request flow ratio of sq0 decreases. When sq0 sends responses back to ap1, it also takes longer for ap1

to return responses to lb0. The response flow ratio of sq0 increases. The agent of ap2 does not detect an

anomaly, and the fault does not impact the interaction between ap2 and sq0. The request flow ratio and

the response flow ratio of sq0 at ap2 is not impacted by the fault. A similar analysis applies if a fault is

injected to component ap2.

When the fault is injected to sq0, the interaction between lb0 and ap1, ap2 is not impacted. At component

lb0, the request flow ratios and the response flow ratios of two application servers are not impacted. The

DMFDL agent of lb0 determines that component lb0, ap1, ap2 are normal. The requests that should be sent

to sq0 wait longer at the two application servers. The request flow ratios of sq0 at ap1 and ap2 decrease

compared to those in normal operation. The response flow ratios of sq0 are not impacted in this case.

MediaWiki Application

In MediaWiki application, there are three components (bap1, bap2, sq0) forming a composite dependency

primitive with components (ap1 and ap2). Figure 7.18 shows the request flow ratio and the response flow

ratio at different components when faults are injected to component ap1 (120-180s), bap1 (300-360s), bap2

(480-540s), and sq0 (660-720s) in MediaWiki application.

When component ap1 is faulty, DMFDL agents for component lb0, ap1, and sq0 detect anomalies. The

agent of lb0 further checks the request flow ratio and response flow ratio. The request flow ratio of both

dependent components does not show obvious change. But the response flow ratio of ap1 increases.

DMFDL agent of lb0 pinpoints its dependent component ap1 as faulty. DMFDL agent of ap1 checks the

request flow ratio and response flow ratio of all dependent components. The request flow ratio and



CHAPTER 7. DMFDL: DEPENDENCY MODEL-BASED FLOW RATIO ANALYSIS FOR ANOMALY
DETECTION AND LOCALIZATION 97

0 200 400 600 800
Time (s)

0.0

0.5

1.0

R
eq

ue
st
 F
lo
w
 R
at
io  fault 

at ap1
 fault
at bap1

 fault 
at bap2

 fault 
at sq0

ap1 ap2

(a) The request flow ratio at component lb0

0 100 200 300 400 500 600 700 800
Time (s)

0

2

4

R
es
po

ns
e 
Fl
ow

 R
at
io  fault 

at ap1
 fault 
at bap1

 fault 
at bap2

 fault 
at sq0

ap1 ap2

(b) The response flow ratio at component lb0

0 100 200 300 400 500 600 700 800
Time (s)

0

5

10

15

R
eq
ue
st
 F
lo
w
 R
at
io  fault 

at ap1
 fault
at bap1

 fault 
at bap2

 fault 
at sq0

bap1 bap2 sq0
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(e) The request flow ratio at component ap2
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(f) The response flow ratio at component ap2

Figure 7.18: The request/response flow ratio for anomaly localization in MediaWiki application

response flow ratio of all dependent components decrease simultaneously. DMFDL pinpoints the local

component ap1 as faulty. DMFDL agent ap2 does not detect the anomaly, and there is no change in the

request flow ratio and the response flow ratio for all its dependent components. DMFDL agent of sq0 does

not perform localization as sq0 does not have any dependent component.

When component bap1 is faulty, DMFDL agents of component lb0, ap1, ap2, and bap1 detect anomalies.

The agent of lb0 further checks the request flow ratio and response flow ratio. The request flow ratio of

both dependent components and the subsystem almost does not show obvious change. DMFDL agent of

lb0 cannot pinpoint any component as faulty. The agent of ap1 checks the request flow ratio and response

flow ratio of all dependent components. The request flow ratio of all dependent components changes

simultaneously, but the request flow ratio of bap2 and sq0 changes much more than that of bap1. The

response flow ratio of all dependent components almost does not change. DMFDL agent of ap1 pinpoints

the dependent component bap1 as faulty. Similarly, DMFDL agent of ap2 also pinpoints bap1 as faulty.
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DMFDL agent of bap1 does not perform localization as bap1 does not have any dependent component.

When component bap2 is faulty, DMFDL agents of component lb0, ap1, ap2, and bap1 detect anomalies.

The agent of lb0 further checks the request flow ratio and response flow ratio. The request flow ratio of

both dependent components almost does not change. The request flow ratio and the response flow ratio of

its subsystem almost does not decrease. DMFDL agent of lb0 cannot pinpoint any dependent component.

The agent of ap1 checks the request flow ratio and response flow ratio of all dependent components. The

request flow ratio of dependent component bap1 does not decrease. The request flow ratio of bap2 and

sq0 decreases, but the request flow ratio of sq0 decreases much more than that of bap2. The response flow

ratio of sq0 does not decrease. The response flow ratio of bap1 decreases much more than that of bap2. It

shows that the delay between when bap1 returns responses to ap1 and when ap1 returns responses back to

its upstream components increases a lot. DMFDL agent of ap1 pinpoints bap2 as faulty. Similarly, DMFDL

agent of ap2 also pinpoints bap2 as faulty. DMFDL agent of bap2 does not perform localization as bap2

does not have any dependent component.

When component sq0 is faulty, DMFDL agents of component lb0, ap1, ap2, and sq0 detect anomalies.

The agent of lb0 further checks the request flow ratio and response flow ratio. The request flow ratio of

both dependent components almost does not change. DMFDL agent of lb0 cannot pinpoint any compo-

nent. The agent of ap1 checks the request flow ratio and response flow ratio of all dependent components.

The request flow ratio of dependent components bap1 and bap2 almost does not change. The request flow

ratio of sq0 decreases a lot. It shows that sq0 is probably faulty. The response flow ratio of sq0 decreases

a little, but the response flow ratio of bap1 and bap2 decreases much more than that of sq0. It shows that

the delay between when sq0 returns responses to ap1 and when ap1 returns responses to its upstream

components increases a lot. DMFDL agent of ap1 pinpoints sq0 as faulty. Similarly, DMFDL agent of ap2

also pinpoints sq0 as faulty. DMFDL agent of sq0 does not perform localization as sq0 does not have any

dependent component.

7.5.6 Anomaly Localization Performance

To get the performance of DMFDL in anomaly location, we run extensive experiments under varying

workload conditions with multiple different faults randomly injected into these applications. We compare

the performance of DMFDL with FChain in anomaly localization.

We show the detection precision and recall of both DMFDL and FChain in localizing faults in differ-

ent applications: CloudSuite web search application in Figure 7.19, Olio web application in Figure 7.20,

MediaWiki application in Figure 7.21.
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DMFDL combines the dependency model and the flow ratio model in anomaly localization. Rather

than relying simply on the chronological order of changing points of different components. We show

that the causal execution order is important and the flow ratio scale change is more accurate in anomaly

localization. DMFDL has much lower false negative than FChain for all different faults. When DMFDL
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(b) The localization recall

Figure 7.19: The localization performance of DMFDL and other methods in CloudSuite web search appli-
cation
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(b) The localization recall

Figure 7.20: The localization performance of DMFDL and other methods in Olio web application

pinpoints the wrong dependent component, it also represents a miss in anomaly localization. The main

reason is that the fault propagates very quickly due to high throughput communication between compo-

nents that interact with each other.

7.5.7 Overhead Analysis

DMFDL has lower overhead than DMADL as it just counts the number of data packets. It does not need

to store any TCP flows in memory. So it has even lower overhead than DMADL. DMFDL has less than

0.5% overhead and negligible memory overhead under varying workload intensities.
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(b) The localization recall

Figure 7.21: The localization performance of DMFDL and other methods in MediaWiki application

7.6 Summary

The adaptive flow ratio model characterizes the relationship that the output response flow should changes

with the input request flow in scale. Whenever, DMFDL observes the flow ratio decreases abnormally out

of acceptable range, it triggers anomaly alert. However, it could produce false positive for components in

applications where the relationship between output response flow over input request flow varies a lot. It

is a future challenge to address this problem to deal with more dynamic applications.



Chapter 8

DMCDL: Dependency Model-based Flow

Correlation Analysis for Anomaly Detection and

Localization

In this chapter, we present DMCDL, a dependency model-based flow correlation analysis for detecting and

localizing anomalies in multi-tier Cloud applications. DMCDL has agents distributed on physical hosts. It

does not require domain knowledge from either component operating systems or underlying applications.

DMCDL monitors network traffic at virtual network interface and conducts performance analysis in real

time. Multi-tier Cloud applications run together on multiple components, and these components have

complex interactions and behaviors depending on specific application service. DMCDL makes use of the

relationship that the response data packets always follow the request data packets within a time frame

corresponding to the maximum acceptable service latency as defined in the Service Level Agreement

(SLA) given any component service in normal operation. The number of observed response data packets

should closely follow the number of request data packets within SLA in normal operation. This is true for

any component service with different configurations under dynamic workloads. It is violated in abnormal

operation as the response time exceeds the SLA. DMCDL uses the Pearson correlation to characterize the

relationship between the number of request data packets and the number of response data packets. VDEP

[2] introduces three dependency primitives as a basis to characterize the complex interaction behavior

among multiple components in distributed applications: Composite dependency, Concurrent dependency,

and Distributed dependency. DMCDL combines the correlation analysis and the local dependency model

for anomaly detection. DMCDL further pinpoints the faulty component by following the propagation

path of anomalies. For each local component, DMCDL uses the interaction between the local component

101
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and its dependent components to determine the source of anomaly locally.

8.1 DMCDL overview

DMCDL consists of 5 major functions: traffic flow monitoring, dependency model extraction, flow cor-

relation analysis, anomaly detection, and anomaly localization. The operating flow of these functions

in DMCDL is shown in Figure 8.1. Flow monitoring function captures the network traffic flow outside

components and analyzes only data packets. The dependency model extraction function uses the number

of request and response data packets to identify the execution sequence of dependent components. The

flow correlation function models the service performance with the Pearson correlation between request

and response flow using an appropriate sampling interval in normal operation. The anomaly detection

function compares the flow correlation with normally-profiled flow correlation and combines it with the

dependency model to detect performance anomalies in Cloud applications. The anomaly localization

function further analyzes the request/response flow correlation and combines it with the dependency

model to pinpoint the faulty component in a decentralized fashion.

VM

Physical Host

VM VM

DMCDL Agent

Dependency

Model Extraction

Flow Correlation

Analysis

Anomaly Detection

Traffic Flow

Monitor

Anomaly Localization

Figure 8.1: The operation diagram of DMCDL for anomaly detection and localization

8.2 Traffic Flow Monitor

For each component service, DMCDL agents monitor the traffic flows in the corresponding virtual net-

work interface in each sampling interval (t − ∆Tc, t) (∆Tc is the sampling interval). DMCDL uses the

same network traffic flow monitor as DMFDL in Figure 7.2 for each component. At a local component
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A, we denote the input request flow as XA(t) and the output response flow as YA(t). For its dependent

component B, the output request flow is denoted as XAB(t) and the input response flow is denoted as

YAB(t). DMCDL uses the Pearson correlation analysis between the input request flow and the output

response flow for performance anomaly detection at the local component.

8.3 Anomaly Detection

DMCDL models the flow conservation relationship using traffic flow correlation analysis. DMCDL agents

uses the flow correlation for anomaly detection at each component of Cloud applications.

8.3.1 Traffic Flow Correlation

DMCDL agents first find a proper sampling interval ∆Tc. The sampling interval should maximize the

probability that request data packets and their response data packets are observed within the same interval

when the service runs in normal operation. However, it should also minimize the above probability in

abnormal operation.

Given a request arrived at time tq ∈ (t− ∆Tc, t) and its response time is τ:

• If τ ≥ ∆Tc, the request data packets and its response data packets would never be observed and

counted within the same monitoring interval. The indicator function of the request data packets and

corresponding response data packets in the same monitoring interval is

p = 0

• If τ < ∆Tc, the indicator function of whether the request data packets and its response data packet

are observed and counted within the same monitoring interval is p.

p =


1, if tq ∈ (t− ∆Tc, t− τ).

0, if tq ∈ (t− τ, t).

First, we derive the probability that request data packets and its response data packets are observed in

the same monitoring interval in normal operation. We assume that the arrival time of the first data packet

of requests tq in the interval (t− ∆Tc, t) follows a certain distribution fa(x).

fa(x) = P(tq = x), x ∈ (t− ∆Tc, t)

We assume the response time of requests in the interval (t− ∆Tc, t) follows distribution gn(τt), and its

cumulative distribution function Gn(τt). The probability that request data packets and its response data
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Algorithm 6: DMCDL Sampling Interval Selection Algorithm

input : For a component service A, the time series of input request flow XA(t) and output
response flow YA(t) during normal operation. A list of optional sampling intervals
∆Ti(i = 1, 2, · · · )

output: The proper sampling interval ∆Tc.
1 for the sampling interval δTi do
2 Compute the flow correlation using the sampling interval ∆Ti during normal operation: ρ(t);
3 Compute the mean of the flow correlation µi and the standard deviation σi;
4 Compute the relative deviation: Ki =

σi
µi

;
5 end
6 for i = 2 to n do
7 if ‖Ki − Ki−1 ≤ Kth and Ki−1 ≤ Kσ then
8 break;
9 end

10 end
11 The proper sampling interval is: ∆Tc = ∆Ti;

packets are observed in the same monitoring interval in normal operation

pn(t) =
∫ ∆Tc

0
P(tq = t− x) ∗ P(τt ≤ x)dx =

∫ ∆Tc

0
fa(t− x) ∗ Gn(x)dx

When there is an anomaly, we assume the response time of requests in the interval (t− ∆Tc, t) follows a

certain distribution ga(τt), and its cumulative distribution function is Ga(τt). The probability that request

data packets and its response data packets are observed in the same monitoring interval during abnormal

operation is

pa(t) =
∫ ∆Tc

0
P(tq = t− x) ∗ P(τt ≤ x)dx =

∫ ∆Tc

0
fa(t− x) ∗ Ga(x)dx

The proper sampling interval in ∆Tc must maximize the difference between the probability function pn(t)

in normal operation and the probability function pa(t) in abnormal operation.

∆Tc = arg max [pn(t)− pa(t)]

It is not trivial to specify the service level target (SLA) for each component service or solving the

above optimization problem without knowing those distribution functions. DMCDL uses Algorithm 6 to

determine the proper sampling interval for the flow correlation. To obtain the proper sampling interval,

DMCDL selects the proper sampling interval that achieves stable flow correlation in normal operation.

DMCDL uses the selected sampling interval ∆Tc to model the relationship between the input request flow

and the output response flow.

In normal operation, the input request flow XA(t) and the output response flow YA(t) has high corre-

lation coefficients. In abnormal operation, the system slows down and the output response flow no longer

follows the input request flow in the same sampling interval. The flow correlation decreases in presence of
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anomalies. DMCDL makes use of the flow correlation ρ(XA, YA, t) between the input request flow XA(t)

and the output response flow YA(t) within a window of W samples for anomaly detection.

ρ(XA, YA, t) =
∑W−1

t=0

(
XA(t)− XA(t)

) (
YA(t)−YA(t)

)
√

∑W−1
t=0

(
XA(t)− XA(t)

)2
√

∑W−1
t=0

(
YA(t)−YA(t)

)2

8.3.2 Detection Algorithm

To deal with real time detection of anomalies, we apply a sliding window strategy in our detection

algorithm. The sliding window strategy is frequently used in data streaming and it assumes that the recent

data is closely related to historical data in normal operation. It discards old samples from the window and

adds new samples into the window. We update parameters for anomaly detection dynamically. DMCDL

adapts to dynamic system for online anomaly detection.

We first train the system in normal operation for a period and learns each component’s normal cor-

relation profile. The normal correlation profile is characterized with its mean and standard deviation. In

the detection phase, it continues to detect whether there are anomalies with data points in the upcoming

window. Within each window, there are two parts of data samples. The first part consists of data points

from historical normal operation called the reference set. The second part consists of data points from

latest period waiting for evaluation called the test set. We compute the correlation of data points in each

window. To quantify whether the correlation is normal or not, we maintain a normal profile for the corre-

lation. If the obtained correlation is within the latest normal profile, the evaluated data points in the test

set are normal. We should continue to update normal profile and include the data points from the test

set to the latest reference set. If the obtained correlation exceeds the latest normal profile, then the data

points in the test set is suspicious. In this case, we continue to evaluate the new data points using histori-

cal normal profile after sliding the window. Through updating the current window profile regularly, the

sliding window strategy enables the online fault detection to adapt to the time-varying behavior of the

system. Now we are going to describe our algorithm in detail. We denote the correlation window size as

W, and the sliding window step size as SW.

Suppose the ith window contains the data samples from ti−W to ti, the reference set contains the latest

(W− SW) data samples when the system runs in normal operation Sre f and the test set contains SW latest

data points for evaluation Stest. We also have the local correlation profile µi and σi. In the current window,

we compute the correlation ρ(X, Y, ti).

If the current correlation stays within the normal profile (i. e., the correlation is within λ times of the

standard deviation σi from the mean correlation µi): ρ(X, Y, ti) ∈ (µi − λσi, µi + λσi), the data in the test
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set Stest is normal. Otherwise, we consider the recent data in Stest is suspicious.

DMCDL updates the normal profile only when the data in the test set Stest is normal. It uses exponen-

tially weighted moving average (EWMA) to update the correlation profile.

µi+1 = αµi + (1− α)ρ(X, Y, ti)

σi+1 = αµi + (1− α)max(|ρ(X, Y, ti)− µi|, σi)

Here, α is the weighting parameter on the historical profile. However, as we update the standard deviation

σ, we use the maximum value of the difference and the historical deviation. After evaluation, we slide the

window to include data points from ti to ti+SW into the test set for new evaluation.

DMCDL agent uses a look-back window to confirm whether the component really has performance

anomalies or not. DMCDL triggers anomaly alert if the number of suspicious detection in the look-back

window exceeds a tolerable threshold. Otherwise, it has to wait for more detection to confirm anomalies.

We give the detailed algorithm for anomaly detection based on correlation analysis between the num-

ber of incoming request data packets and outgoing response data packets in Algorithm 7

Algorithm 7: Anomaly Detection

input : Given a local component A and its m dependent components S = {Ad1, Ad2, · · · , Adm}
output: Detection result for the local component A

1 It selects a sampling interval ∆TA to monitor the number of incoming request data packets and
outgoing response data packets. The sampling interval ∆TA should approximate the maximum
acceptable response time at the local component.;

2 It monitors the number of request data packets arrived at component A: XA(t), and the number of
response data packets departed from component A: YA(t).;

3 It uses a window of latest WA samples for detecting anomalies;
4 if ∑WA

t=1 XA(t) > 0 and ∑WA
t=1 YA(t) == 0 and ∑WA−1

t=1 XA(t) > 0 then
5 state(t) = −1;
6 Anomaly Alert: A does not return responses for requests;
7 else
8 if ∑WA

t=1 RA(t) >= µA(t) + kAσA(t) then
9 suspicious(t) = −1 ;

10 else
11 suspicious(t) = 1 ;
12 end
13 if ∑WA

t=1 suspicious(t) <= THA then
14 state(t) = −1;
15 Anomaly Alert: A’s response time is abnormal;
16 else
17 state(t) = 1;
18 end
19 end
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8.4 Anomaly Localization

Previous methods build the dependency graph for the whole application in order to locate the faulty

component. In our case, we do not need a centralized method to build the dependency graph for the

whole application. The DMCDL agents distributed on physical hosts uses the local dependency model

and flow correlation analysis for anomaly localization.

8.4.1 Local Interaction Behavior Characterization

Due to the fault propagation, the flow correlation at a local component decreases due to three possible

causes: (1) the upstream components of the local component; (2) the local component itself; or (3) the local

component’s subsystem. As the flow correlation at the local component is affected by its upstream com-

ponents or its dependent components, it is usually difficult to determine the state of the local component.

Each DMCDL agent does localization only for the dependent components of the local component.

If the local component has dependent components and the local anomaly is caused by the upstream

components of the local component, the interaction between the local component and its dependent com-

ponents is still normal. If the local anomaly is caused by the local component or its subsystem compo-

nents, the interaction between the local component and its dependent components are affected due to

anomaly propagation. DMCDL uses the local interaction between the local component and its dependent

components to determine whether the state of dependent components.

DMCDL characterizes the local interaction behavior between the local component and each of its de-

pendent components using the request flow correlation and the response flow correlation. For a dependent

component B in Figure ??, the request flow correlation ρ(XA, XAB, t) is defined as the pairwise correlation

between the output request flow XAB(t) and the local input request flow XA(t). The response flow corre-

lation ρ(YA, YAB, t) is defined as the pairwise correlation between the input response flow YAB(t) and the

local output response flow YA(t).

ρ(XA, XAB, t) =
∑W−1

t=0

(
XA(t)− XA(t)

) (
XAB(t)− XAB(t)

)
√

∑W−1
t=0

(
XA(t)− XA(t)

)2
√

∑W−1
t=0

(
XAB(t)− XAB(t)

)2

ρ(YA, YAB, t) =
∑W−1

t=0

(
YA(t)−YA(t)

) (
YAB(t)−YAB(t)

)
√

∑W−1
t=0

(
YA(t)−YA(t)

)2
√

∑W−1
t=0

(
YAB(t)−YAB(t)

)2

In order to find out the faulty component locally, DMCDL extracts the dependent component which

is the first dependent component to execute among all dependent components. DMCDL needs to extract

the first dependent component because the delay between the time when a request arrives at the local
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component and the time when a local component further calls the first dependent component would

increase if there is an anomaly at the local component or its subsystem components. If the request

flow correlation decreases and drops out of normal correlation profile, DMCDL agent infers that local

component is faulty. Otherwise, the local anomaly is caused by its upstream components.

8.4.2 No Dependent Component

The local component has no dependent component. The local flow correlation decreases due to two

different cases: a fault at the local component or at its upstream components. DMCDL agent does not have

monitoring data for its upstream components, it is difficult to decide the real cause of the local anomaly.

If the DMCDL agents of its upstream components do not trigger anomaly alert, the local component is

faulty. In an extreme case where the DMCDL agent observes only input request flow but without output

response flow, the flow correlation is constantly 0 and DMCDL reports that the local component is faulty.

8.4.3 Single Dependent Component

The local component has a single dependent component. In order to find out the root cause for the

anomaly. We discuss several different cases:

1. When its upstream component(s) is faulty, the local service time and its subsystem response time

are not impacted. The request flow correlation and response flow correlation are still similar as in

normal operation.

2. When the local component is faulty, requests arrived at the local component take longer to reach its

dependent component. The correlation between the local input request flow and the output request

flow to its dependent component decreases. It also takes longer time for the local component to

send responses back to the upstream components after receiving responses from the dependent

component. The correlation between the input response flow from the dependent component and

the output response flow from the local component decreases.

3. When the dependent component is faulty, requests that should be sent to the dependent component

are write-blocked due to the TCP propagation. The local waiting time increases. The correlation

between the input request flow and the output request flow to the dependent component decreases.

The responses arrived at the local component are sent back to the upstream components normally.

The correlation between the input response flow from the dependent component and the output

response flow from the local component is still normal.
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DMCDL uses the correlation between the input request flow and the output request flow, and the corre-

lation between the output responses flow and input response flow to perform the localization analysis at

the local component.

8.4.4 Distributed Dependency Primitive

The local component has 2 or more dependent components, and they form a distributed dependency

primitive. In distributed dependency primitive, the input request flow equals the sum of output request

flows to dependent components, and the output response flow equals the sum of input response flows

from dependent components.

• When the upstream component(s) is faulty, the local component still interacts with dependent com-

ponents normally. The request flow correlations and response flow correlations of all dependent

components are still normal.

• When the local component is faulty, requests arrived at the local component take longer to reach its

dependent components. The request flow correlations of all dependent components decrease with

similar scale. It also takes longer time for the local component to send responses back to upstream

components. The response flow correlations of all dependent components decrease with similar

scale as well.

• When a dependent component is faulty, the local component is write-blocked when it tries to send

requests to the faulty dependent component due to TCP propagation. Most requests arriving at the

local component are processed by other normal dependent components. The request flow correla-

tions of non-faulty dependent components are still normal or even higher. Most responses returned

from the local component are returned by non-faulty dependent components. The response flow

correlations of non-faulty dependent components are still normal or even higher. But the response

flow correlation of the faulty dependent component decreases.

However, this may not always hold. In some cases, the scheduling policy is important in request flow

correlation and response flow correlation of dependent components. The number of requests from the

local component to its dependent components may or may not be proportional to the number of requests

arrived at the local component.
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8.4.5 Composite Dependency Primitive

For a local component with multiple composite dependent components, DMCDL analyzes different causes

and respective behavior for local anomaly localization.

• When an upstream component(s) is faulty, the local component still sends requests and returns

responses normally. The flow correlation of all dependent components is still normal.

• When the local component is faulty, requests take longer to reach its dependent components. The

request flow correlations of all dependent components decrease with similar scale. It also takes

longer time for the local component to send responses back to upstream components. The response

flow correlations of all dependent components decrease with similar scale.

• When a dependent component is faulty, the local component is write-blocked when it tries to send

requests to the faulty dependent component due to TCP propagation. The local waiting time in-

creases, and the request flow correlation of the faulty dependent component decreases. Requests

arrived at the local component take longer to reach those dependent components that run after the

faulty dependent component. The request flow correlation of those dependent components that run

after the faulty component decreases. The request flow correlations of those dependent components

that run before the faulty component almost do not change. The responses returned by dependent

components that run after the faulty dependent component are sent back to upstream components

normally. The response flow correlations of dependent components that run after the faulty de-

pendent component do not change. The responses returned by dependent components that run

before the faulty dependent component take longer to be returned by the local component. The re-

sponse flow correlations of dependent components that run before the faulty dependent component

decreases compared to normal operation.

8.4.6 Concurrent Dependency Primitive

For a local component with multiple concurrent dependent components, DMCDL analyzes different

causes and respective behavior for local anomaly localization.

• When an upstream component(s) is faulty, the local component still sends requests and returns

responses normally. The flow correlation of all dependent components is still normal.

• When the local component is faulty, requests arrived at the local component take longer to reach

its dependent components. The request flow correlation of all dependent components decreases
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with similar scale. It also takes longer time for the local component to send responses back to the

upstream components. The response flow correlation of all dependent components decreases with

similar scale.

• When a dependent component is faulty, the local component is write-blocked when it tries to send

requests to the faulty dependent component due to TCP propagation. The local waiting time in-

creases, and the request flow correlation of the faulty dependent component decreases. When a

request arrived at the local component causes more than one request to its dependent components,

the local component has to wait for responses from all dependent components before sending subse-

quent requests to its dependent components. The request flow correlation of all dependent compo-

nents decreases, but the request flow correlation of the faulty dependent component decreases much

more. When the local component receives responses from non-faulty dependent components, it still

has to wait for responses from the faulty dependent component before returning responses back

to its upstream components. The response flow correlation of non-faulty dependent components

decreases much more than the response flow correlation of the faulty dependent component.

DMCDL has a central administrator which summarizes the reported localization results from each

DMCDL agent and pinpoints the faulty component for Cloud applications.

8.5 Experimental Evaluation

Our experimental evaluation covers three different aspects: (1) We show the stability of the flow correla-

tion under varying workload intensity; (2) We evaluate DMCDL in detecting various kinds of performance

anomalies using different fault models; (3) We evaluate DMCDL in locating anomalies injected into dif-

ferent components. (4) We evaluate the overhead of DMCDL.

8.5.1 Sampling Interval Selection

Figure 8.3 shows the mean flow correlation and its standard deviation with different sampling intervals

under varying workload intensity. A larger sampling interval gives more stable flow correlation with

smaller standard deviation under varying workload intensity. After the sampling interval increases to

a critical limit, the impact on the mean flow correlation and the standard deviation is negligible. An

excessively large sampling interval results in high flow correlation even when the system response time

is larger than the acceptable time limit. We pick the sampling interval when it achieves a stable flow

correlation and a standard deviation small enough.



CHAPTER 8. DMCDL: DEPENDENCY MODEL-BASED FLOW CORRELATION ANALYSIS FOR
ANOMALY DETECTION AND LOCALIZATION 112

CloudSuite Web Search Application

Figure 8.2 shows the flow correlation at the index component (solr0 and one of the backend component

solr6) with different sampling intervals under varying workload intensity in CloudSuite web search appli-

cation. The flow correlation increases as the sampling interval increases for the index component solr0, and

all its dependent components. At component solr0, the flow correlation is high enough as the sampling

interval ∆Tc ≥ 1000ms. The flow correlation suffers high fluctuation as its response has larger fluctuation.

For its dependent component solr6, the flow correlation is high enough as ∆Tc ≥ 20ms. It is because the

response time of component solr6 is usually smaller than 10ms. The flow correlation of other dependent

components is also high and has very small fluctuation (solr1-solr5), which is similar to that of solr6.
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Figure 8.2: The stability of flow correlation with different sampling intervals under varying workload
intensity in CloudSuite web search application

Olio Web Application

Figure 8.3 shows the flow correlation of different components in Olio web application with different

sampling intervals under varying workload intensity. The flow correlation increases as the sampling

interval increases for components lb0, ap1, and ap2. At the load balancer, the flow correlation is stable

enough as the sampling interval ∆Tc ≥ 500ms. For two application servers (ap1 and ap2), the flow

correlation is larger than 0.8 as ∆Tc ≥ 200ms. The flow correlation of database component sq0 is stable

enough as the sampling interval changes. It is because the response time of component sq0 is usually

smaller than 10ms.
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(a) The flow correlation at component lb0
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(b) The flow correlation at component ap1
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(c) The flow correlation at component ap2
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(d) The flow correlation at component sq0

Figure 8.3: The stability of flow correlation with different sampling intervals under varying workload
intensity in Olio web application

MediaWiki Application

Figure 8.4 shows the flow correlation at multiple components (lb0, ap1, bap1, sq0) with different sampling

intervals under varying workload intensity in MediaWiki application. The flow correlation increases as the

sampling interval increases for components lb0, ap1, and bap1. But after Wc > 500ms, the flow correlation

even decreases at different components as the interval increases. At the load balancer, the mean flow

correlation is highest when the sampling interval ∆Tc = 500ms. For two application servers (ap1 and

ap2), the flow correlation is larger than 0.6 as ∆Tc ≥ 500ms. For the two computational servers (bap1

and bap2), the flow correlation is already high and stable enough as Wc ≥ 20ms. The flow correlation of

database component sq0 is stable enough as the sampling interval changes. It is because the response time

of component sq0 is usually smaller than 10ms.

In summary, the sampling interval is important parameter to obtain high and stable flow correlation to

model service performance in normal operation. A small sampling interval results in low flow correlation

as well as large fluctuation as responses do not correspond to requests within the same interval. The
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(b) The flow correlation at component ap1
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(c) The flow correlation at component bap1
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Figure 8.4: The stability of flow correlation with different sampling intervals under varying workload
intensity in MediaWiki application

obtained flow correlation is not high and stable enough to be used for profiling service performance in

normal operation. A large sampling interval is more likely to produce high and stable correlation as most

responses correspond to requests within the same interval. It does not mean the larger is the sampling

interval, the flow correlation is higher and more stable. DMCDL automatically selects a smallest sampling

interval that achieves high and stable flow correlation for anomaly detection.

8.5.2 Correlation Window Selection

After selecting the proper sampling interval to collect the input and output traffic flow, it is also important

to pick a proper window size (a proper number of samples) to compute the flow correlation.

CloudSuite Web Search Application

Figure 8.5 shows the mean flow correlation (with 95% confidence interval) with different window sizes

under varying workload intensity in CloudSuite web search application. For the index component solr0,

the flow correlation is low and not stable with small window size (Wc ≤ 20). In comparison, the flow
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(b) Flow correlation at component solr6

Figure 8.5: The stability of flow correlation with different correlation windows under varying workload
intensity in CloudSuite web search application

correlation of solr6 is not that sensitive to the window size. It is because the response time of the index

component usually has larger fluctuation than that of its back-end components.

Olio Web Application

Figure 8.6 shows the mean flow correlation and the 95% confidence interval with different correlation

window sizes under varying workload intensity of different components in application. A small correla-

tion window requires less samples in order to compute the flow correlation. But the flow correlation is

lower and has larger fluctuation. It poses a threat for detecting anomalies. For different components in

Olio application, a window of more than 20 samples is good enough to obtain the flow correlation for

modeling the service performance in normal operation.

MediaWiki Application

Figure 8.7 shows the flow correlation of different components with different correlation windows under

varying workload intensity in MediaWiki application. The flow correlation is stable enough with different

window sizes in MediaWiki application. The mean flow correlation is high across varying workload

intensity and has small fluctuation.

In summary, the window size is important to obtain a reasonable flow correlation to model the normal

performance, although the flow correlation is not that sensitive to the window size in most cases. A

small window sizes has the advantage of less samples and thus less computational cost. But the obtained

flow correlation may not be high and stable enough to be used for profiling service performance in

normal operation. A large window is more likely to produce high and stable correlation as there are

more samples to use. But it also means higher computational cost and larger detection latency. From
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(a) Flow correlation at component lb0
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(b) Flow correlation at component ap1
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(c) Flow correlation at component ap2
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(d) Flow correlation at component sq0

Figure 8.6: The stability of flow correlation with different correlation windows under varying workload
intensity in Olio web application

all above experiments with different applications, a correlation window of size Wc ≥ 25 is good enough

for the flow correlation analysis. Users could choose a larger window for their own needs. DMCDL

automatically selects a window size as the maximum of 40 samples or the number of samples within a

second for a component: Wc = max(40, 1/∆Tc).

8.5.3 Resource Fault Detection

Figure 8.8 shows the flow correlation at solr0 of CloudSuite web search application. Figure 8.9 shows the

flow correlation at the load balancer lb0 in Olio web application. Figure 8.10 shows the flow correlation at

the load balancer lb0 in MediaWiki application.

• CPU fault: the CPU fault is injected during the time period 120− 180s. The injected component

becomes slower in processing arriving requests. The response time of requests increases. The flow

correlation decreases as less input request flow and output response flow are correlated within a

sampling interval.
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(a) Flow correlation at component lb0
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(b) Flow correlation at component ap1
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(c) Flow correlation at component bap1
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(d) Flow correlation at component sq0

Figure 8.7: The stability of flow correlation with different correlation windows under varying workload
intensity in MediaWiki application
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Figure 8.8: The flow correlation for resource fault detection in CloudSuite web search application

• Memory fault: the memory fault is injected into the system during the time period 300 − 360s.

During the memory fault, each request requiring to access the memory suffers much longer delay.

However, as other processes keep spinning on “malloc()/free()” functions on the memory. When

other processes free the memory, the load balancer gets enough memory to process the request and
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Figure 8.9: The flow correlation for resource fault detection in Olio web application
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Figure 8.10: The flow correlation for resource fault detection in MediaWiki application

return the response. When other processes request for memory allocation, the service process gets

stuck due to memory bottleneck. The input flow and output flow suffer frequent fluctuations during

the memory fault.

• Network fault: the network fault is injected into the system during the time period 480 − 540s.

During the network fault, each outgoing packet waits longer at the local network interface. The

response time increases, the output response flow no longer follows the input request flow within

the normal sampling interval 500ms.

• Disk fault: the disk fault is injected into the system during the time period 660− 720s. The disk

fault causes the subsystem to be locked. The request gets stuck and the server cannot process any

request. During the fault, the load balancer cannot return any response for incoming requests. The
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Figure 8.11: The flow correlation for performance bug detection in CloudSuite web search application

output flow is always 0 and it forces client connections to close. The flow correlation is low enough.

8.5.4 Common Software Fault Detection

Figure 8.11 shows the correlation coefficient between the input request flow and the output response

flow at component solr0. The SOLR-5935 bug is injected at component solr0 during 120− 180s, and at

component solr2 during 480− 540s. The SOLR-5216 bug is injected at component solr0 during 300− 360s,

and at component solr2 during 760− 820s.

• Deadlock bug: the SOLR-5935 bug at component solr0 causes local solr threads to fall into deadlock.

The component would not be able to return responses for incoming requests. Requests have to wait

in the component until the deadlock is released. The SOLR-5935 bug at the dependent component

solr2 does not necessarily cause the local service down. It takes longer to return responses for

incoming requests. The number of outgoing responses per second is much lower than the number

of incoming requests per second at the local component solr0.

• Service hang bug: the SOLR-5216 bug at component solr0 causes the solr process to hang. The

component would not be able to return responses for incoming requests. Requests have to wait in

the component until the deadlock is released. The SOLR-5216 bug at the dependent component solr2

does not necessarily cause the local service down. As all dependent components form a concurrent

dependency primitive, the component solr2 cannot return responses. The local component waits

until the timeout. Finally, the component solr0 returns incomplete responses back to clients.

Figure 6.11 shows the flow correlation for performance bug detection in Olio web application. Fig-

ure 8.12a shows the flow correlation at the load balancer lb0 and Figure 8.12a shows the flow correlation
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(a) DMCDL detection result at lb0
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(b) DMCDL detection result at ap1

Figure 8.12: The flow correlation for performance bug detection in Olio web application

the application server ap1.

• Bug HTTPD-48905: the bug injected into the Apache load balancer lb0 causes many child processes

to hang. The hanged child processes cannot process incoming requests. Most incoming requests

have to wait in the component until being processed by remaining normal child processes. It takes

longer to return responses for incoming requests. The flow correlation decreases.

• Bug Nginx-62418: the bug injected into the Nginx application server 1 ap1 causes Nginx worker

processes to crash. The component cannot be able to return responses for incoming requests. Re-
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Figure 8.13: The flow correlation for performance bug detection in MediaWiki application

quests have to wait in the component until worker processes recover. The load balancer lb0 still

directs requests to the other application server ap2. The flow correlation does not decrease as most

incoming requests are handled by the normal application server and responses are also returned by

the normal application server. The same discussion applies to the case where the bug is injected to

the Nginx application server 2 ap2.

• Bug MySQL-40968: the bug at the database component sq0 causes the MySQL process to hang

without any error message. The component would not be able to return any response for incoming

requests. Requests have to wait in the component until the MySQL process recovers. The output

flow is always 0 during the faulty period. The flow correlation decreases to 0 and DMCDL triggers

alert at component sq0.

Figure 8.13 shows the flow correlation at component ap1 by DMCDL in MediaWiki application.

• Bug HTTPD-48905: the bug injected into the Apache application server 1 ap1 causes some child

processes to hang. The hanged child processes cannot process any request. The Apache is still able

to spawn new child processes to handle incoming connections and requests. Those requests waiting

to be processed by hanged processes would not get their responses. Most incoming requests have

to wait in the component until being processed by remaining normal child processes or new child

processes. The number of responses no longer changes with the number of requests, and the flow

correlation decreases.

• Bug HTTPD-57628: the bug injected into the Apache application server 1 ap1 causes child processes

to crash after they finish processing a high number of requests. The child processes run much
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slower than normal operation. It causes the response time to increase significantly. The number of

responses no longer changes with the number of requests, and the flow correlation decreases.

• Bug MySQL-40968: the bug injected at the database component sq0 causes the MySQL process to

hang without any error message. The database component would not be able to return any response

for queries from ap1 to sq0. Requests have to wait in the system until MySQL is normal again. The

output flow is always 0 during the faulty period. The flow correlation decreases to 0 and DMCDL

triggers alert at component ap1.

• Bug MySQL-87164: the bug injected into the database sq0 causes MySQL to run much slower than

normal operation. The queries sent from ap1 to sq0 experience much higher response time. The local

response time of ap1 also increases as a result. The flow correlation decreases at ap1.

8.5.5 Anomaly Detection Performance

We run extensive experiments under varying workload scenarios. In each experiment, we inject different

kinds of faults randomly into different components. We show the performance of DMCDL for anomaly

detection for various Cloud applications: CloudSuite web search application in Figure 8.14, Olio applica-

tion in Figure 8.15, MediaWiki application in Figure 8.16. We compare DMCDL with two other black-box

anomaly detection methods LFD [32], and FlowBox [45].
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(b) The detection recall

Figure 8.14: The detection performance of DMCDL and other methods in CloudSuite web search applica-
tion

We observe that both DMCDL and FlowBox achieves high detection precision and low false positive for

different faults. LFD has the worst detection performance for all different faults. The main reason is that it

selects the highest correlation between the user-space CPU utilization and other resource utilization as the

metric to characterize the service performance. It is prone to high false positive and high false negative.
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(a) The detection precision
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(b) The detection recall

Figure 8.15: The detection performance of DMCDL and other methods in Olio web application
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(a) The detection precision
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(b) The detection recall

Figure 8.16: The detection performance of DMCDL and other methods in MediaWiki application

There are two main reasons. One is that if the server does not use too much user-space CPU utilization,

the correlation is not meaningful. The other reason is that some resource utilization metrics are still highly

correlated with the user-space CPU utilization even when the server has different faults.

Figure 8.17 shows the mean detection latency for different kinds of faults in the CloudSuite web search

application. The error bar denotes the standard deviation of the detection latency. FlowBox achieves

consistently small detection latency. DMCDL and LFD have longer delay at detecting memory, network

and software faults. It is because LFD uses a longer time window for computing the correlation coefficient.

The fault causes the correlation coefficient to decrease gradually and the window has to move long enough

to include certain amount of abnormal samples to trigger anomaly alert.

8.5.6 Anomaly Localization Case Study

In this section, we evaluate DMFDL for anomaly localization in different Cloud applications when perfor-

mance anomalies are injected at different components.



CHAPTER 8. DMCDL: DEPENDENCY MODEL-BASED FLOW CORRELATION ANALYSIS FOR
ANOMALY DETECTION AND LOCALIZATION 124

�	��
�����

����"
������

��� ���
������

�
���
�����

���� ���
������

�

��

��

��

��


��
��


��
��
���
��
��
��
��
"�
��
�


	
� ��� ��! ��


(a) The detection latency in CloudSuite
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(b) The detection latency in Olio

�
��
�� ��

�����#
��� ��

���!���
��� ��

�����
�� ��

����!���
��� ��

�

��

��

��

��

��

�
��
��
���

��
�

��
��
#�
��
�

��
� ���!	�" ��

(c) The detection latency in MediaWiki

Figure 8.17: The detection latency of DMCDL and other methods in different Cloud applications
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Figure 8.18: The request flow correlation for anomaly localization in CloudSuite web search application

CloudSuite Web Search Application

Figure 8.18 shows the request flow correlation at component solr0 when faults are injected to solr0 (120−

180s), solr2 (300− 360s), solr4 (480− 540s), and solr6 (660− 720s).

When the fault injected at component solr0, the service time of solr0 increases. But it has similar
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impact on the interaction between the local component and its dependent components. The request flow

correlation of dependent components decreases almost similarly and concurrently. When component

solr2 is faulty, its response time increases. It also causes requests to wait longer at component solr0,

and the request flow correlation of other normal dependent components also decreases. The interaction

between component solr2 and component solr0 is affected the most and the request flow correlation of solr2

decreases much more than that of other normal dependent components. The same localization analysis

applies to fault at solr4 and solr6.

Olio Web Application

Figure 8.19 shows the request flow correlations and response flow correlations at different components

of Olio web application when faults are injected to lb0 (120-180s), ap1 (300-360s), ap2 (480-540s), and sq0

(660-720s). The load balancer is configured with the session-based scheduling policy. The load is equally

distributed to two application servers. DMCDL detects faults obviously when there are faults at the load

balancer,

• Figure 8.19a shows the request flow correlation at component lb0. The fault at lb0 causes requests

to stay longer time at the load balancer. The request flow correlation of component ap1 and ap2,

and the correlation between the local input request flow and the sum of output request flow to both

dependent components (denoted as “subsystem”) decreases as well. The fault at ap1 causes arrived

requests at lb0 to wait longer time when it tries to send requests to ap1. The delay between the input

request flow and the output request flow to ap1 increases, and it causes the request flow correlation

of ap1 to decrease. The fault at ap2 causes arrived requests at lb0 to wait more time when it tries

to send requests to ap2. The delay between the input request flow and the output request flow to

ap2 increases, and it causes the request flow correlation of ap2 to decrease. The fault at sq0 does not

affect the waiting time and service time at lb0. The delay between the input request flow and the

output request flow to its dependent components.

• The request flow correlation of ap1 and ap2 does not decrease. Figure 8.19c shows the request

flow correlation at component ap1. The fault at lb0 causes requests to spend more time at the

load balancer. The input request flow at ap1 may be affected, but the interaction between ap1 and

its dependent components is almost not affected. The request flow correlation of its dependent

components (bap1, bap2, sq0) decreases a bit. When ap1 is faulty, the local input request flow waits

longer before the causal request flow to dependent components. The request flow correlation of

all dependent components decreases a lot. When ap2 is faulty, the interaction between ap1 and its
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(b) The response flow correlation at lb0
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(c) The request flow correlation at ap1
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(d) The response flow correlation at ap1
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(e) The request flow correlation at ap2

0 200 400 600 800
Time (s)

0.0

0.5

1.0

R
es
po

ns
e 
Fl
ow

 C
or
re
la
tio

n

 fault 
at lb0

 fault 
at ap1

 fault 
at ap2

 fault 
at sq0

sq0

(f) The response flow correlation at ap2

Figure 8.19: The request/response flow correlation for anomaly localization in Olio web application

dependent components is still normal. The request flow correlation of ap1’s dependent components

is normal.

The fault at sq0 causes longer waiting time at ap1 when ap1 tries to send requests to sq0. The request

flow correlation of sq0 decreases a lot compared to normal operation. The other two dependent

components bap1 and bap2 are still normal and ap1 still interacts normally with them. The request

flow correlation of bap1 and bap2 is normal.

MediaWiki Application

In MediaWiki application, there are three components (bap1, bap2, sq0) forming a composite dependency

primitive with components (ap1 and ap2). The faults are injected to component ap1 (120-180s), bap1 (300-

360s), bap2 (480-540s), and sq0 (660-720s).
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(a) The request flow correlation at lb0
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(b) The response flow correlation at lb0
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(c) The request flow correlation at ap1
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(e) The request flow correlation at ap2
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Figure 8.20: The request/response flow correlation for anomaly localization in MediaWiki application

Figure ?? shows the request flow correlation and Figure ?? shows the response flow correlation at

different components. When component ap1 is faulty, DMCDL agents for component lb0, ap1, and sq0

detect anomalies. The agent of lb0 further checks the request flow correlation and response flow corre-

lation. The request flow correlation of ap1 decreases much more than the other dependent component

ap1. DMCDL agent of lb0 pinpoints its dependent component ap1 as faulty. The agent of ap1 checks the

request flow correlation and response flow correlation of all dependent components. The request flow

correlation and response flow correlation of all dependent components decrease. DMCDL pinpoints the

local component ap1 as faulty. The agent of sq0 does not perform localization as sq0 does not have any

dependent component.

When component bap1 is faulty, DMCDL agents for its upstream component lb0, ap1, ap2, and bap1

detect anomalies. The agent of lb0 further checks the request flow correlation and response flow corre-

lation. The request flow correlation of both dependent components and the subsystem almost does not
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decrease. DMCDL agent of lb0 pinpoints the subsystem as faulty. The agent of ap1 checks the request flow

correlation and response flow correlation of all dependent components. The request flow correlation of all

dependent components decreases, but the request flow correlation of bap2 and sq0 decreases much more

than that of bap1. The response flow correlation of all dependent components almost does not decrease.

DMCDL agent of ap1 pinpoints the dependent component bap1 as faulty. Similarly, DMCDL agent of ap2

also pinpoints bap1 as faulty. DMCDL agent of bap1 does not perform localization as bap1 does not have

any dependent component.

When component bap2 is faulty, DMCDL agents for its upstream component lb0, ap1, ap2, and bap1 de-

tect anomalies. The agent of lb0 further checks the request flow correlation and response flow correlation.

The request flow correlation of both dependent components decreases simultaneously. The request flow

correlation and the response flow correlation of its subsystem almost does not decrease. DMCDL agent

of lb0 reports the local component lb0 as normal, and its subsystem as faulty. The agent of ap1 checks

the request flow correlation and response flow correlation of all dependent components. The request flow

correlation of dependent components bap1 does not decrease. The request flow correlation of bap2 and sq0

decreases, but the request flow correlation of sq0 decreases much more than that of bap2. The response

flow correlation of sq0 does not decrease. The response flow correlation of bap1 decreases much more than

that of bap2. It shows that the delay between when bap1 returns responses to ap1 and when ap1 returns

responses back to its upstream components increases a lot. DMCDL agent of ap1 pinpoints bap2 as faulty.

Similarly, DMCDL agent of ap2 also pinpoints bap2 as faulty. DMCDL agent of bap2 does not perform

localization as bap2 does not have any dependent component.

When component sq0 is faulty, DMCDL agents for its upstream component lb0, ap1, ap2, and sq0 detect

anomalies. The agent of lb0 further checks the request flow correlation and response flow correlation.

The request flow correlation of both dependent components decreases simultaneously. The request flow

correlation and the response flow correlation of its subsystem almost does not decrease. DMCDL agent

of lb0 reports the local component lb0 as normal, and its subsystem as faulty. The agent of ap1 checks

the request flow correlation and response flow correlation of all dependent components. The request flow

correlation of dependent components bap1 and bap2 does not decrease. The request flow correlation of

sq0 decreases a lot. It shows that sq0 or its subsystem component is probably faulty. The response flow

correlation of sq0 decreases a little, but the response flow correlation of bap1 and bap2 decreases much

more than that of sq0. It shows that the delay between when bap2 returns responses to ap1 and when ap1

returns responses back to its upstream components increases a lot. DMCDL agent of ap1 pinpoints sq0 as

faulty. Similarly, DMCDL agent of ap2 also pinpoints sq0 as faulty. DMCDL agent of sq0 does not perform

localization as sq0 does not have any dependent component.
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8.5.7 Anomaly Localization Performance

To get the performance of DMCDL in anomaly localization, we run extensive experiments under varying

workload conditions with different faults randomly injected into components of these applications. We

compare the performance of DMCDL with FChain in anomaly localization.

We show the precision and recall of both DMCDL and FChain in localizing faults in different appli-

cations: CloudSuite web search application in Figure ??, Olio web application in Figure 8.19, MediaWiki

application in Figure ??.

DMCDL combines the dependency model and the flow correlation analysis in anomaly localization.

Rather than relying simply on the chronological order of changing points of different components. We

show that the causal execution order is important and the flow correlation change is more accurate in

anomaly localization. DMCDL has much lower false positive than FChain for all different faults. The
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(b) The localization recall

Figure 8.21: The localization performance of DMCDL and other methods CloudSuite web search applica-
tion
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(b) The localization recall

Figure 8.22: The localization performance of DMCDL and other methods in Olio web application
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(b) The localization recall

Figure 8.23: The localization performance of DMCDL and other methods in MediaWiki application

main reason is that the fault propagates very quickly due to high throughput communication between

components that interact with each other.

8.5.8 Overhead Analysis

DMCDL has lower overhead than DMADL as it only counts the number of data packets. It does not need

to store any TCP flows in memory. So it has even lower overhead than DMADL. In varying workload

intensities, DMCDL achieves less than 0.5% CPU overhead and negligible memory overhead.

8.6 Summary

The flow correlation analysis characterizes the relationship that the output response flow usually follows

the input request flow within an acceptable time limit. The correlation coefficient evaluates how strong

the relationship is linear. In real cloud applications, the request flow correlation is more obvious than the

response flow correlation. We show that they together captures the performance of each component and

can be used for anomaly localization.



Chapter 9

Performance Comparison

In previous chapters, we show the performance of DMADL, DMFDL, and DMCDL in detection of com-

mon resource bottleneck faults and software performance anomalies. In this chapter, we evaluate our

non-intrusive methods using extensive chronic faults. Different from resource bottleneck faults or com-

mon software performance bugs. Chronic software fault could hide in the system for a long time before

it causes serious performance degradation. Early detection of chronic software faults is important for

further debugging and system recovery. We evaluate our methods (DMADL, DMFDL, and DMCDL) in

detection of chronic software faults. After evaluation using extensive chronic faults, we do comparative

analysis of DMADL, DMFDL, and DMCDL in anomaly detection and localization.

9.1 Case Study of Extensive Chronic Faults

We study extensive chronic faults in target software components using the Olio application. The appli-

cation and software setup we used for extensive chronic fault evaluation are shown in Figure 9.1. We

adjust the client workload to reach medium capacity on the whole system. The workload intensity is

then kept steady till the end of the experiment. All experiments use the same workload configuration to

maintain consistency. For each chronic fault in our evaluation, we repeat it for 5 times to avoid the effect

of accidental factors in evaluation and ensure the correctness and consistency of our evaluation result.

9.1.1 Apache HTTP Server

We show the comparative analysis of DMADL, DMFDL, and DMCDL in detection of extensive chronic

faults in Apache HTTP server.

131
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Load Balancer

Apache 2.2.15

Application Server 2

Nginx 1.12.1 + PHP 5.3.9
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Application Server 1
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Images, Media

File System
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VM (ap1)

VM (lb0)

Figure 9.1: The software detail for extensive chronic fault detection

Slow Memory Leakage

Many chronic faults cause memory leakage (Apache #25667, #35404, #43223, #44975, #53435, #55296,

#56271, #497077, #849272) or high memory utilization (Apache #33899, #44026, #44783, #61222) in Apache

HTTP server. These faults are caused by software bugs or bad memory-related configurations. Chronic

memory leak could exist in the system for a long time before it causes serious performance degradation.

The memory leak is injected to the Apache web server from time 116s at a speed of 335 KB/s. At the

beginning of the memory leak, the component still has enough free memory to handle client connections

and requests. When the memory leakage uses up all free memory, the system no longer has available

memory to handle client connections and it has to swap data from memory to the disk. The output flow

has many periodical spikes during the faulty period. In this case, requests have to wait a longer time and

the response time increases. The Apache http server maintains many child processes to handle requests in

the prefork module. Each process handles one request at a time and a few idle processes are maintained

as slack to cater to request spikes. The critical amount of leaked memory causes some child processes to

crash because of memory allocation failures. There are fewer processes to handle requests as there are

fewer memory available. The server fails to respond quickly and the response time of requests increase

gradually. When the memory leak reaches a critical threshold, the system completely crashes and restarts.

Figure 9.2 shows the detection result of our methods. The memory fault injection lasts for 565 seconds.
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(b) DMADL fault detection result
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(c) DMFDL fault detection result

0 100 200 300 400 500 600 700
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
or
re
la
tio

n

alert
fault injection

(d) DMCDL fault detection result

Figure 9.2: Chronic memory fault detection in Apache HTTP server

The memory leak causes spikes in the mean response time after time 200s. DMADL observes a few spikes

in the mean response time at the beginning, but it does not trigger anomaly alert as it has to confirm

that the frequent spikes are not caused by dynamic workload. DMADL detects the fault at time 309s.

The detection latency reaches 193 seconds. The flow ratio decreases as the response time increases and

DMCDL detects shortly after a few spikes. DMFDL triggers alert at time 222s, and the detection latency

is much smaller (i.e., 106s). DMCDL does not detect the memory fault as the flow correlation does not

decrease during the faulty period.

Child Process Failure

Many chronic faults cause child processes to crash or hang in Apache HTTP server (Apache #10266,

#47370, #50702, #59798, #60071, #98979, #119128, #641968). The Apache “prefork” module has many child

processes running. It cannot cause a complete server failure when some child process crash. If a child

process is processing a request at the time of crash, the server will fail to respond to that request. But

other processes are still working properly and returning responses. The server tries to spawn a new child

process to process requests if the number of forked child processes has not reach the maximum. When

the number of crashed child processes reaches a critical threshold, there is performance degradation as

the server cannot fork enough processes.

The Apache server is in prefork module and it forks new processes to handle new connections. From
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(b) DMADL fault detection result
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(d) DMCDL fault detection result

Figure 9.3: Chronic concurrent fault detection in Apache HTTP server: child process hang failure

time 116s, child processes start to crash at a speed of 1 process per second. Figure 9.3 shows the de-

tection result of our methods for the chronic Apache concurrency fault. At the beginning of fault, the

Apache server can fork new processes to process requests when there are child processes crash. Those

hanged processes cannot return responses. DMADL observes timeout requests a short time after the fault

injection. But those timeout requests account for only a small part of the load, and most requests are

still being processed properly. So the flow ratio and flow correlation does not show significant changes.

DMFDL and DMCDL do not detect the fault at the beginning. After the number of forked child processes

reach the allowed maximum value, the server cannot fork new processes to replace hanged processes. The

input and output flow start to decrease. The server has limited capacity to process a few requests, many

requests have to wait in the server. Most input request flow cannot have the output flow within the same

sampling interval. The flow ratio decreases and the flow correlation decreases. DMFDL and DMCDL

detects the fault after a critical number of child processes hang in the Apache server.

In real scenarios, the child processes may crash faster or slower than our setup. If there is a high

workload and a segmentation fault, all child processes could crash at once. In this case, the server cannot

process any request. DMADL could observe a large number of timeout requests. There is only input

flow but without any output flow. The flow ratio and the flow correlation decrease to 0 at once. All

our methods could detect such a fault with a short delay. If child processes crash slowly under a certain
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Figure 9.4: The detection latency at different process hang rates.

condition, DMCDL and DMFDL may not be able to detect it at the beginning. They only detect the fault

when a critical number of child processes hang. But DMADL could detect the fault much earlier as it

starts to see timeout requests for those hanged processes. Figure 9.4 shows the detection latency of our

methods when child processes crash at different speeds in Apache.

Some software faults in Apache fail to terminate some idle child processes on time. The idle child

processes consume resource that can be better used by active child processes for processing requests. The

mean response time does not increase because of non-terminated idle child processes. The flow correlation

and flow ratio also do not show any change under these faults. DMADL, DMFDL, and DMCDL cannot

detect such kind of faults.

CPU Usage Spikes

Many chronic faults cause high CPU occupancy rate in the Apache http server (Apache #5225, #37680,

#52858, #57544, #57800, #117832). The CPU usage spikes are caused by unexpected user operations or

software bugs. We emulate the high CPU usage by running some CPU-intensive processes with the

Apache component. We start to inject the CPU contention from time 116s. As time goes, we start more

processes competing for CPU cycles and the Apache child processes suffer higher competition.

Figure 9.5 shows the detection result of our methods for the chronic Apache concurrency fault that

cause CPU spikes. The fault injection period lasts for 500 seconds. During the faulty period, the server

processes requests slower and the requests have a larger response time. DMADL triggers alert shortly

after the injection (i.e., 32 seconds) as the mean response time increases from around 5ms to around

40ms. Many requests cannot have corresponding responses within the acceptable time limit. The flow
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.5: Chronic concurrency fault detection in Apache HTTP server: CPU usage spikes

ratio decreases and DMFDL triggers alert with a smaller detection delay (i.e., 18 seconds) than DMADL.

DMCDL triggers alert with 27 seconds delay as the flow correlation also decreases.

Apache Truncated Response Fault

Some chronic faults cause the truncated response body in the Apache web server (Apache #27292, #50481,

#56176, #57476, #61147,#908583, #1569081). Some faults cause truncated response content if the response

size is too large and Apache returns an HTTP 206 status code. They can be detected by parsing the

HTTP response partial content code. For some special faults, the Apache web server still responds with

an HTTP 200 status code. They are caused by improper function of Apache modules returning a partial

response just ends up corrupting the response. The truncated response fault is injected to the Apache web

server from time 116s and the fault lasts for 500 seconds. The response time does not increase and it may

decrease instead as there are less response data to transmit from the server.

Figure 9.6 shows the detection result of our methods for the chronic Apache semantic fault that causes

truncated response content. DMADL fails to detect the truncated response fault as the estimated mean

response time does not increase and there are no timeout requests. The number of outgoing response data

packets decreases compared to normal operation. The flow ratio decreases and DMFDL detects the fault

shortly after the fault injection (i.e., 8 seconds delay). The flow correlation also decreases at fault injection

and DMCDL also detects the fault with a delay of 22 seconds). The DMFDL and DMCDL perform better
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.6: Chronic semantic fault detection in Apache HTTP server: truncated response fault

than DMADL in this case.

However, other faults result in malformed or corrupted response content, but the sizes of responses do

not change. The response time, the flow ratio, and the flow correlation fail to detect such faults as long as

malformed responses are sent out from the component within the acceptable time limit. Clients continue

to behave normally on receiving a corrupted or malformed response.

Increasing Queuing Latency

Some chronic faults are not necessarily caused by memory or concurrent faults. They can be caused by

human or operator mistakes, such as improper configuration of parameters in the operating system (e.g.,

the queue length in the network stack or server configuration scripts (e.g., the number of server processes).

These chronic faults do not cause service performance degradation immediately. These faults start to affect

the service performance under certain workload conditions or human operations. They cause the service

response time to increase gradually and their effects are usually negligible at the beginning.

We emulate such chronic faults by gradually increasing the waiting time in the network queue. We

start to increase the waiting time of each outgoing packet in the network by 5ms in the Apache component.

We gradually increase the waiting time of each outgoing packet by 1ms per second until the waiting time

reaches 900ms. The fault injection lasts for 500s. During the faulty period, each packet going out of the

Apache server component has to wait longer. It first causes requests going to its subsystem to wait and it
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also causes more responses wait at the output queue.
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(b) DMADL fault detection result
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(d) DMCDL fault detection result

Figure 9.7: Chronic semantic fault detection in Apache HTTP server: gradually increasing queue latency

Figure 9.7 shows the detection result of our methods for the chronic Apache semantic fault that causes

gradually increasing latency in the output queue of the component. The mean response time increases,

and DMADL detects the fault shortly after the injection (i.e., 7 seconds) with the estimated mean response

time increases from 5ms to around 20ms. The response time increases and there are less responses going

out in each sampling interval. The flow ratio has a larger variance and it detects the fault with a larger

detection delay (i.e., 17 seconds) compared to DMADL. DMCDL detects the fault as all responses wait

longer at the Apache component and the output flow no longer changes with the input flow within the

same sampling interval. DMCDL detects the fault with a larger latency of 26 seconds.

9.1.2 Nginx Application Server

We show the comparative analysis of DMADL, DMFDL, and DMCDL in detection of extensive chronic

faults in Nginx application server.

Slow Memory Leakage

Many chronic faults cause memory leakage (Nginx #568 #871, #996, #1482, #1509, #1587) in the Nginx

server. These bugs are usually caused by loaded modules or improper server configurations. Chronic
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memory leak could exist and hide in the system for a long time before the Nginx server experiences

performance degradation.

The memory leak is injected to the Apache web server from time 116s at a speed of 3485 KB/s. At the

beginning of the memory leak, the component still has enough free memory to handle client connections

and requests. As the leakage progresses, the Nginx server has no enough memory available and Nginx

worker processes have to swap data to the disk. A critical amount of leaked memory causes worker

process to hang due to memory allocation failures. The server fails to respond quickly and the response

time of requests increase gradually. When the memory leak reaches a critical threshold, the system

completely crashes and restarts.
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.8: Chronic memory fault detection in Nginx HTTP server

Figure 9.8 shows the chronic Nginx memory fault detection result of our methods. The memory fault

injection lasts for 514 seconds. The memory leak causes spikes in the mean response time after time 300s.

DMADL triggers alert at time 315s. The detection latency reaches 99 seconds. The flow ratio decreases as

the response time increases and DMFDL triggers alert at time 309s, and the detection latency is shorter

(i.e., 93 seconds). The flow correlation decreases and DMCDL triggers alert after time 400s with a detection

delay of 325 seconds.
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Worker Process Failure

Many chronic faults in Nginx cause worker processes to crash or hang (Nginx #912, #822, #192). The

Nginx server has a master process and one or multiple worker processes. Each worker process could

process a large number of simultaneous connections. If a server has more than one worker processes, it

does not crash completely when a worker process crashes. If the worker process is processing a request

at the time of crash, the server fails to respond to that request. The client connections being handled by

the crashed process are also affected and cannot have responses any more. But other worker processes

still work normally and corresponding client connections still receive normal service. But it causes perfor-

mance degradation gradually as each remaining normal worker process has to handle more simultaneous

connections. If more worker processes crash, the service performance degradation is more obvious and

our methods could detect the fault easier.

We configure Nginx application server 1 (ap1) with 1 master process and 2 worker processes, and each

worker process could handle 1024 connections. The first worker process crashes at time 116s, and the

second worker process crashes at time 366s. After both worker processes crash, there is no worker process

to handle any connections at component ap1.
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.9: Chronic concurrency fault detection in Nginx HTTP server: worker process failure

Figure 9.9 shows the detection result of our methods for the chronic Nginx concurrency fault that cause

worker process failure. The input flow and the output flow decrease when the first worker process crashes.



CHAPTER 9. PERFORMANCE COMPARISON 141

But the load recovers very soon as the remaining normal worker process starts to handle new connections

and the server still processes requests as in normal operation. There is no output flow but only very

few input flows after both worker process crash. After the fault injection ends, the server starts to send

responses for those queuing requests. But most of the requests are already directed to the application

server 2. There is almost no workload to the application server 1. DMADL triggers anomaly alert 13

seconds after the first worker process crashes. Those connections that are being handled by the crashed

worker process would no longer be responded by the server. But after that, new incoming connections

are handled by the remaining normal worker process. It shows that the server still works normally after

the first worker process crashes. However, after the second worker process crashes, the server has no

worker process to handle any connections any more. All requests are not responded and DMADL detects

timeout requests. DMFDL does not trigger any anomaly alert when the first worker process crashes. It is

because only the other worker process is still processing requests normally. The flow ratio does not show

significant change. When the last remaining normal worker process crashes, the server cannot return

responses. The flow ratio decreases to 0 until the end of fault injection. The flow correlation also does not

decrease when the first worker process crashes. It triggers alert as both worker processes crash at time

478s. After the fault injection ends, the server starts to process those requests queued inside the server

and the correlation recovers for a short time. But there is almost no requests going to the server as most

requests are sent to application server 2 (ap2). The flow correlation and flow ratio does not recover as

there is almost no input flow or output flow.

Partial Content Error

Some chronic faults cause the HTTP 206 partial content error in responses (Nginx #683, #1014, #1304, #549,

#1357, #1550) in the Nginx HTTP server. These faults are caused by slice module closing client connection

unexpectedly or unknown errors in transferring HTTP responses. They can be detected by parsing the

HTTP response status code. For some special faults, the Nginx web server still responds with an HTTP

200 status code. The 206 partial content fault is injected to the Nginx HTTP server at time 116s and the

fault lasts for 500 seconds.

Figure 9.10 shows the detection result of our methods for the chronic Nginx semantic fault that causes

HTTP 206 partial content error in HTTP responses. The response time does not increase and it may

decrease instead as there are less response data to transmit from the server. DMADL fails to detect the

truncated response fault as the estimated mean response time does not increase and there are no timeout

requests. The number of outgoing response data packets decreases compared to normal operation. The

flow ratio decreases and DMFDL detects the fault shortly after the fault injection (i.e., 8 seconds delay).
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(a) Network traffic: input and output flow
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.10: Chronic semantic fault detection in Nginx HTTP server: HTTP 206 partial content fault

The flow correlation also decreases at fault injection and DMCDL also detects the fault with a delay of 22

seconds). The DMFDL and DMCDL perform better than DMADL in this case.

9.1.3 MySQL Database Server

We show the comparative analysis of DMADL, DMFDL, and DMCDL in detection of extensive chronic

faults in MySQL database server.

Slow Memory Leakage

Many chronic faults result in memory leaks (MySQL #56924, #66740, #72885, #83047, #86082, #87501,

#852477) or high memory utilization (MySQL #68287, #68514, #68980, #77403) in the MySQL database.

The faults are mostly caused by clients’ big queries or bugs in the software code. We inject a memory leak

into the MySQL component for 6649KB/s. At the beginning of the memory leak, the component still has

enough memory to handle connections and requests. When the memory leak uses up all free memory,

the nginx server has no enough memory to handle connections and the worker processes have to swap

data to the disk. In this case, requests have to wait a longer time and the response time increases. When

the memory leak reaches a critical threshold, the system crashes and restarts. The server fails to respond

quickly and the response time of requests increase gradually.
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(a) Network traffic: input and output flow
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(b) DMADL fault detection result
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(c) DMFDL fault detection result

0 100 200 300 400 500 600 700
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
or
re
la
tio

n

alert
fault injection

(d) DMCDL fault detection result

Figure 9.11: Chronic memory fault detection in MySQL database server

Figure 9.11 shows the detection result of our methods for a chronic MySQL memory fault. The memory

leak fault injection lasts for 537 seconds. The memory leak causes spikes in the mean response time.

DMADL detects many timeout requests triggers alert at time 164s. The detection latency is about 48

seconds. The flow ratio decreases as the response time increases and DMFDL triggers alert at time 186s,

and the detection latency is a little longer (i.e., 70 seconds). The flow correlation decreases and fluctuates

between 0 and 0.9. DMCDL triggers alert at time 160s with a detection latency of 44 seconds.

The performance of the MySQL server degrades as the memory leak happens. When the memory

contention is not high enough, the response time of MySQL queries is almost not affected. The mean

response time, the flow ratio, and the flow correlation coefficient is not affected much as a result. When a

critical amount of memory is leaked, the database is unable to maintain caches due to memory allocation

failures. The response time increases dramatically and all our methods could detect them.

CPU Usage Spikes

Many chronic faults cause high CPU occupancy rate and slow queries in the MySQL database (MySQL

#34312, #65778, #76402, #87637). The CPU usage spikes are caused by unexpected user operations or

MySQL software bugs. We emulate high CPU usage by running some CPU-intensive processes with the

MySQL component. We start to inject the CPU contention from time 116s. As time goes, we create more

processes competing for CPU cycles and the MySQL process suffers higher competitions.
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(a) Network traffic: input and output flow
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.12: Chronic concurrency fault detection in MySQL database server: CPU usage spikes

Figure 9.12 shows the detection result of our methods for the chronic MySQL concurrency fault that

cause high CPU usage. The fault injection lasts for 500s. During the faulty period, the server processes

requests slower and queries have a larger response time. DMADL detects the fault as the mean response

time increases gradually from less than 1ms to around 20ms. The response time increases gradually,

and less requests have corresponding responses within the same interval. The flow ratio and the flow

correlation decreases until the response time reaches a critical limit. The flow ratio decreases slowly and

DMFDL detects the fault with a larger detection delay (i.e., 68 seconds) than DMADL. DMCDL detects

the chronic fault with the largest detection latency (i.e., 124 seconds).

Poor Service Performance

Many chronic faults cause performance degradation and slow queries in the MySQL (MySQL #15815,

#36525, #37633, #67252, #71130, #80989, #86215, #88834). They are not always related to CPU usage spikes,

and they are caused by problems with MySQL threads. We emulate poor service performance in the

MySQL database by limiting the CPU usage of MySQL threads and they compete for limited CPU cycles

to process queries. We start to limit the CPU usage of threads from time 116s. As time goes, we put a

lower limit on the CPU usage of MySQL threads and competition among MySQL threads increases. The

fault injection lasts for 500s.

Figure 9.13 shows the detection result of our methods for the chronic MySQL concurrency fault that
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(a) Network traffic: input and output flow
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(b) DMADL fault detection result
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(c) DMFDL fault detection result
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(d) DMCDL fault detection result

Figure 9.13: Chronic concurrency fault detection in MySQL database server: poor service performance

cause poor service performance but not CPU usage spikes. During the faulty period, the server processes

requests slower and the queries have a larger response time. DMADL detects the fault shortly after the

injection (i.e., 26 seconds) as the mean response time increases from less than 1ms to around 40ms. The

response time increases and less requests have corresponding responses within the same interval. The

flow ratio decreases and DMFDL detects the fault with a larger detection delay (i.e., 53 seconds) than

DMADL. DMCDL fails to detect the faults as most requests are still responded correctly and the output

flow still changes with the input flow. The flow correlation has high values in this case.

We find that four chronic faults in MySQL result in incorrect response data. One of these faults also

results in user data corruption. These faults have no effect on response time and the server appears to

behave correctly. The response size does not change, but the content is corrupted. The flow ratio and flow

correlation do not change as well. Our methods cannot detect such kind of faults.

9.2 Overall Anomaly Detection Performance

Here we show their overall detection and localization performance of different methods in Cloud appli-

cations in Figure 9.14. The error bar shows the 95% confidence interval. DMADL achieves the best per-

formance in anomaly detection and smallest detection latency as well. DMFDL, DMCDL, and FlowBox

achieve similar detection precision and recall. LFD has the worst detection performance. It is especially
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(c) The detection latency

Figure 9.14: The performance of different methods for anomaly detection in Cloud applications

obvious for memory-related and disk-related faults. The component performance starts to fluctuate, and

it also affects the input and output flow a lot. It is hard to tell whether it is caused by fluctuating workload

or service performance. In this case, the correlation varies a lot. It is hard to determine a single threshold

to achieve good detection performance. The high recall is because when there is disk or memory faults,

other resource usage metrics could still show high correlation with user-space CPU utilization.

9.3 Overall Anomaly Localization Performance

Figure 9.15 shows the overall performance of our dependency model-based methods with FChain. The

error bar shows the 95% confidence interval. DMADL has the best localization performance and recall. It

shows the estimated mean response time and the dependency model accurately models the performance

at each component. The component impact reflects how the faulty component impacts the performance

at its upstream components. The DMCDL and DMFDL use the relationship between input request flow

and output request flow to dependent components and the relationship between output response flow

and the input response flow from dependent components to characterize the interaction between the local

component and its dependent components together with the dependency model. FChain compares the
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chronological changing order of different components and follows the dependency path to pinpoint the

faulty component as the one which shows the earliest change. It pinpoints all components that do not

have dependency path. We show that the anomaly could propagate to other components that does not

have dependency path but involve in the local dependency model.
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Figure 9.15: The performance of different methods for anomaly localization in Cloud applications

9.4 Discussion

We evaluate our non-intrusive anomaly detection methods through three different classes of chronic faults

in common software systems: memory, concurrency, and semantic faults. The results show our methods

can detect most of these faults. Our methods have low monitoring overhead of less than 0.3% CPU usage

and negligible memory cost.

For most injected chronic software faults, DMADL could almost detect them with a very small latency.

DMFDL and DMCDL have a larger detection latency because the flow ratio and correlation start to have

abnormal changes only the response time exceeds a critical threshold. DMCDL has the largest delay as it

uses a correlation window that containing many samples. The flow correlation decreases obviously only

after there are enough abnormal samples.

Many chronic concurrency faults in Apache, Nginx and MySQL cause the server to fail to send re-

sponses or increase the server response time. The DMADL, DMFDL, and DMCDL method detects these

faults with almost 100% accuracy. Some chronic concurrency faults are not detected as they either have no

effect on response times (sending incorrect data to clients) or do not change the size of responses. All our

methods fail to detect chronic semantic faults that cause incorrect response data. They can be detected

through intrusive log analysis or feedback from clients.



Chapter 10

Conclusion

We develop a decentralized application of non-intrusive methods for performance anomaly detection and

localization in Cloud applications. At each component, the service response time is a key metric repre-

sentative of service performance. But it is difficult to obtain the service response time without intrusive

logging operations. Many existing methods infer the service performance through resource utilization

metrics. We propose to characterize the performance of each component from two perspectives: (1) its

interaction behavior with other components; (2) the responsiveness of the component service. We propose

DMADL to estimate the service response time using the data packets of incoming requests and outgoing

responses. For services whose response times are difficult to estimate, we propose DMFDL and DMCDL

to model a behavior that the response flow always follows the request flow at each component using the

flow ratio and the flow correlation. Our non-intrusive methods incorporate the dependency model to

characterize the interaction behavior among components. The experimental results show the effectiveness

of our methods in anomaly detection and localization of faulty components in Cloud applications.

Our agents run the localization analysis for each component using the local dependency model. Com-

pared to methods that use the global application topology, we break the localization problem into sub-

problems, and each agent solves in a distributed fashion. Our methods are effective and have lower

complexity because of two main reasons. First, each agent only considers the local interaction behav-

ior between the local component and its dependent components. The faulty propagation from other

components does not change the local interaction behavior when all components involved in the local

dependency model are normal. This insight helps us filter out those normal components quickly and re-

duces computation in localization of faulty components in Cloud applications. Earlier methods based on

the resource utilization cannot process locally and in distributed fashion as the fault propagation changes

the resource usage of all components in the application. Second, our methods analyze how a faulty com-

148
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ponent affect the local interaction behavior under different dependency primitives. With this information,

we avoid isolated analysis of each component. Existing methods do not consider the dependency prim-

itive among components in anomaly detection. We find that a faulty dependent component affects the

resource usage and behavior of other components. Tracking resource utilization without the considera-

tion of dependent components leads to either false positive or false negative in anomaly detection. The

dependency model helps us in localization of faulty components.

We show the advantages and disadvantages of our proposed methods. All our methods rely on the

traffic flows for inferring service performance. The random behavior of each individual request has a

negative impact on the performance of our methods. Under high workload intensities, the behaviors of

individual requests are multiplexed together, and our methods are able to characterize the performance

of most requests. Under low workload, the characterization of the behavior is challenging due to the ran-

domness of individual requests. Therefore, our methods behave better under medium to high workloads.

DMADL works well in most cases as the estimated response time characterizes how fast the component

responds to users’ requests. It assumes that the mean response time do not change abruptly in any

component. For components whose mean response time varies significantly in normal operation, DMADL

cannot be used for detecting anomalies. DMADL detects most of faults that slows down the service

operation. But for faults that do not necessarily cause unacceptable response time, such as partial content

fault, DMADL does not work well. In DMADL, the mean response time of a component incorporates

the subsystem response time. It is difficult to separate the fault propagation impact from subsystem

components. When two interacting components have faults at the same time, DMADL cannot locate both

of them at the same time as DMADL prefers to choose the one with higher impact in the response time.

DMFDL and DMCDL perform well when the response flow follows the request flow within a specified

sampling interval. The sampling interval is critical to the performance of DMCDL and DMFDL. DMFDL

does not work well for components with a very small response time. The sampling interval should also

be small to properly model the service performance as specified in DMFDL and DMCDL. DMFDL uses

the flow ratio between the output response flow and the input request flow. A smaller interval causes less

request data packets to be considered in each interval. The flow ratio suffers the effect of randomness in

individual requests and cannot represent the service performance. In this case, DMCDL performs better

as it correlates all samples in a window to see their performance. For a component with small service

response time, DMADL and DMCDL performs significantly better than DMFDL.

DMFDL and DMCDL do not capture well the behavior of components at which the ratio between

the number of response data packets and the number of request data packets varies significantly. For

example, when a component provides both uploading and downloading service of large files, the output
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response flow does not always change with the input request flow. In this case, neither the flow ratio

nor the flow correlation is meaningful to reflect the service performance. DMADL method is preferred

and performs much better for those components. Based on the advantages and disadvantages of our

individual method, an alternative method for automating the model selection process could be developed

to improve anomaly detection and localization of faulty components. Our methods allow understanding

the behavior of each component in Cloud environments. Many Cloud applications are developed using

microservices. Multiple applications can access the same microservice. Cloud operators are managing

extremely large hybrid Cloud environment. The performance of a Cloud application is closely related to

other applications. It is no longer effective to view and analyze problems in each application separately

and independently. Our work provides insights for a performance management framework where the

behavior of individual components is modeled by the local dependency model.

The main aim of this work is to explore non-intrusive methods for performance anomaly detection and

localization in IaaS Cloud applications. Although we conduct extensive experiments with several different

Cloud applications, there are still some limitations and further work.

The adaptive learning process is an important part of our methods to model the behavior of com-

ponents in normal operation. For each component, the multiplexing of different types of requests is an

important factor in the performance of our methods. This is true in most cases except for some special

occasions when users have identical behavior. For example, those online shopping websites may suffer

burst workloads for best-discounted products during holidays or discounting seasons. Each component

in the application process all requests of a single type. The behavior of components can be completely

different from their behavior in the past. The learned model cannot recognize the behavior of components

and make false decisions. To solve this problem, our methods can learn the pattern of the system during

special periods and consider the pattern as an exception for anomaly detection and localization.

All our experiments run in a clean and well-controlled environment. The virtual machines are running

on separate physical hosts. In production situations, multiple virtual machines may run on the same

physical host. The performance of virtual machines may interfere with each other because of resource

contention. The resource contention among virtual machines should be considered to deploy in a more

realistic environment. We also do not consider the security perspective of proposed methods.

We do not evaluate our dependency extraction algorithm using situations where a component has

different dependency primitives with different subsets of dependent components. Although our method

still works, the time complexity of the dependency extraction process increases quadratically with the

number of dependent components. The process has up to O(N2) time complexity where N is the number

of dependent components as the algorithm is for each pair of dependent components.
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