
Nonlinear Optimization based frameworks

for Model Predictive Control,

State-Estimation, Sensitivity Analysis, and

Ill-posed Problems

SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

by

DAVID MOLINA THIERRY

M.S. CHEMICAL ENGINEERING, UNIVERSIDAD IBEROAMERICANA
B.S. CHEMICAL ENGINEERING, UNIVERSIDAD AUTONOMA DE PUEBLA

CARNEGIE MELLON UNIVERSITY

Pittsburgh, PA

Dec, 2019

Copyright c© 2019, David Molina Thierry

All rights reserved

Acknowledgments

This work is the result not only certain amount of effort put from my part, but it also
has been possible thanks to the contributions, comments and support from several other
people. Firstly, I would like to thank anybody taking the time to read this, because despite
this being too sentimental at times, these are my sincere thoughts.

I would like to thank the committee members for my defense, Prof. Aaron Johnson, Dr.
Bethany Nicholson, Prof. Erik Ydstie, Prof. Nick Sahinidis, and my advisor, Prof. Larry
Biegler; for their comments and criticism that has enriched a lot of this manuscript.

Then, I must thank my advisor, Prof. Larry Biegler; for the priceless mentoring that he
has offered me throughout the years. I believe that, I am typically a fairly obstinate person;
yet he managed to work around this and point me into the right directions. I can only hope
for me to be at least half as wise as he is, by the end of my career.

I would like to mention my fellow former and current group members. They have made
me grow as a professional and as a person. I would like to mention, John Eason and Wei
Wan; for their kindness and providing me with the always valuable voice of experience.
Saif Kazi, and Joyce Yu for all the nice times we had in the 3106 office. Can Ekici, Robert
Parker, Kuan-Han Li and Vibhav Dabadghao, for I really enjoyed the discussions we had.
Also, the postdocs Michael Short, Christina Schenk, and Cornelious Masuku; moreover all
the visiting people we had over the years including (but not limited to) Kai Liu, Flemming
Holtorf, Karsten Rätze, and Luis Ricardez, must be mentioned.

I would like to acknowledge the CAPD and the PSE community at CMU; including
my friends at the Gounaris’ group, i.e. Christopher Hanselman, Anirudh Subramanyam,
Akang Wang, Natalie Isenberg, Aliakbar Izadkhah, and Xiangyu Yin. Moreover, my friends
at Grossmann’s group, Qi Chen, Yixin Ye, David Bernal, and Can Li.

I am also thankful to Prof. Flores which is greatly responsible from introducing me to
Carnegie Mellon University; and Prof. Ortega and Prof. Galicia for their support and
encouragement at early stages of my career. In this note, a special mention must be made
to Prof. Grossmann for all his encouragement and inspiration, that eventually made me
decide on continuing the path of becoming a PhD student at Carnegie Mellon University.

I greatly acknowledge the funding from NETL and the IDAES project. I must admit that
being involved with IDAES was quite an experience, because of all the interactions and
collaborations with people from several national laboratories, universities and companies.

Finally, I thank my family for their support, and particularly my Mother Consuelo
Thierry for all her sacrifice, since none of this would have been possible otherwise.

David Paul Molina Thierry
Pittsburgh, PA

Dec 2019

ACKNOWLEDGMENTS

i

Abstract

The development of robust and efficient algorithms for nonlinear optimization is an im-
portant matter; because they make possible the solution of models with increasingly size
and complexity. In this context, the Interior Point Optimizer (IPOPT) has been proven to
be a competitive algorithm, because of its ability to handle large scale problems. However,
there are some specific situations in which convergence can not be guaranteed. For in-
stance the violation of a regularity condition given by the Linear Independence Constraint
Qualification (LICQ). This property is given in terms of the consistency of local lineariza-
tions of the set of constraints, i.e. the gradients. If the set of gradients of equality and active
bound inequality are linearly independent, then the LICQ holds. It turns out that if this
property is not satisfied, IPOPT would attempt to regularize the system by perturbing it,
with the hope to overcome regions of local inconsistency. However, if the LICQ does not
hold globally or if the system has severe ill-conditioned, the regularization strategies will
fail. Thus, we present the `1-exact penalty-barrier strategy to deal with this lack of regular-
ity. This works by penalizing the infeasibility with a parameter at the objective; and then
by reformulating the problem to obtain a higher dimensional problem, the LICQ property
holds at all points for which the new variables are nonzero. Thus achieving higher level of
robustness as opposed to the regular IPOPT.

Moreover, an unified framework for nonlinear model-based state-estimation and control
with parametric sensitivity is presented. Typically, control strategy of a processes is tied
to the ability to accommodate online computations; in this sense nonlinear optimization
strategies like Moving Horizon Estimation (MHE) and Model Predictive Control (NMPC)
are overlooked. Nevertheless, it has been proposed to use the parametric nature of these
optimization problems to create a scheme in which the bulk of computations is partitioned
into a background phase with all the most computationally expensive steps, and an online
phase, in which the sensitivity information is used to make inexpensive calculations for
the state estimate or controller input. These ideas have been put together into a Python
framework, that streamlines the creation of a state-estimation and control strategy with
the additional benefit of having parametric sensitivity embedded into it. This framework
works by using the Pyomo libraries to create optimization objects and automatically dis-
cretize the models given by the user. We demonstrate the effectiveness of the framework
in two problems of vastly different complexity. A benchmark distillation case study and
a Bubbling Fluidized Bed Reactor (BFB) for the capture of CO2. The results show that
sensitivity is effective for online implementations of the controller and it was seamlessly
enabled by our framework.

ii
ABSTRACT

Contents

Acknowledgments i

Abstract ii

Contents iii

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Research Statement . 3
1.2 Dissertation Outline . 6

2 Nonlinear Optimization and Sensitivity Analysis 7
2.1 Introduction . 7
2.2 Constraint Qualifications . 8
2.3 First and Second Order Optimality Conditions 11
2.4 Interior Point Algorithm - IPOPT . 14

2.4.1 Filter Line-Search . 18
2.4.2 IPOPT algorithm . 21

2.5 Parametric NLP sensitivity . 24
2.6 Reduced Hessians . 26
2.7 k aug . 28

3 `1−exact Penalty-Barrier Strategy for the Failure of Constraint Qualifications 31
3.1 Introduction . 31
3.2 Background of the `1-exact penalty-barrier method 32
3.3 Solution of the penalty-barrier problems . 35
3.4 Penalty update . 38
3.5 `1-IPOPT Phase algorithm . 40

3.5.1 Convergence test . 41
3.5.2 Filter line-search . 42
3.5.3 `1-exact penalty-barrier IPOPT algorithm 43

3.6 Numerical Results . 45
3.7 Conclusion . 54

CONTENTS

iii

4 Nonlinear Model Predictive Control and State-Estimation 55
4.1 Introduction . 55
4.2 Direct Transcription . 56
4.3 Moving Horizon Estimation . 57
4.4 Nonlinear Model Predictive Control . 64
4.5 Advanced-Step: MHE & NMPC . 69

5 CAPRESE: Framework and Case studies 77
5.1 Introduction . 77
5.2 Control Adaptation with Predictive Sensitivity Enhancement 80

5.2.1 Distillation column benchmark case study. 83
5.2.2 Bubbling Fluidized Beds . 84

5.3 Conclusions . 92

6 Conclusion 93
6.1 Summary and Contributions . 93
6.2 Recommendations for future work . 96

Bibliography 98

Appendix 106
.1 CUTEr test set . 106
.2 Example CAPRESE snippet . 106
.3 The BFB model . 138

.3.1 Reaction Kinetics . 141

.3.2 Hydrodynamic Empirical Correlations 143

.3.3 Gas Phase Properties . 145

.3.4 Heat exchanger correlations . 147
.4 BFB Nomenclature . 148

iv
CONTENTS

List of Tables

3.1 Results for Blend 1 (SP-RCSA) n =827, m =766 53
3.2 Results Blend 2 (SP-GRB) n =5142, m =4668 53

5.1 Timings for the optimization and sensitivity in CPU seconds, using Ipopt
3.12 and Intel i7-6700 CPUs. The bold letters are associated with the ideal
strategies required timings . 85

1 CUTEr set, part 1. 107
2 CUTEr set, part 2. 108
3 CUTEr set, part 3. 109
4 CUTEr set results, vanilla, part 1. 110
5 CUTEr set results, vanilla, part 2. 111
6 CUTEr set results, vanilla, part 3. 112
7 CUTEr set results, penalty mode ρ, part 1. 113
8 CUTEr set results, penalty mode ρ, part 2. 114
9 CUTEr set results, penalty mode ρ, part 3. 115
10 CUTEr set results, penalty mode ρ no Σ, part 1. 116
11 CUTEr set results, penalty mode ρ no Σ, part 2. 117
12 CUTEr set results, penalty mode ρ no Σ, part 3. 118
13 CUTEr set results, penalty mode ρL (linear), part 1. 119
14 CUTEr set results, penalty mode ρL (linear), part 2. 120
15 CUTEr set results, penalty mode ρL (linear), part 3. 121
16 CUTEr set results, penalty mode ρ0 (fixed), part 1. 122
17 CUTEr set results, penalty mode ρ0 (fixed), part 2. 123
18 CUTEr set results, penalty mode ρ0 (fixed), part 3. 124
19 CUTEr set results, penalty mode 1

ρ , part 1. 125
20 CUTEr set results, penalty mode 1

ρ , part 2. 126
21 CUTEr set results, penalty mode 1

ρ , part 3. 127
22 CUTEr set results, penalty mode 1

ρ no Σ, part 1. 128
23 CUTEr set results, penalty mode 1

ρ no Σ, part 2. 129
24 CUTEr set results, penalty mode 1

ρ no Σ, part 3. 130
25 CUTEr set results, penalty mode 1

ρL
(linear), part 1. 131

26 CUTEr set results, penalty mode 1
ρL

(linear), part 2. 132
27 CUTEr set results, penalty mode 1

ρL
(linear), part 3. 133

28 CUTEr set results, penalty mode 1
ρ0

, part 1. 134

LIST OF TABLES

v

29 CUTEr set results, penalty mode 1
ρ0

, part 2. 135
30 CUTEr set results, penalty mode 1

ρ0
, part 3. 136

vi
LIST OF TABLES

List of Figures

2.1 k aug’s elements . 29

3.1 Performance profiles for unmodified CUTEr test set 47
3.2 Performance profiles for CUTEr test set with a degenerate constraint 49
3.3 Performance profiles for permuted CUTEr test set with a degenerate constraint 50
3.4 Performance profiles for Mathematical Programs with Equilibrium Constraints

(MacMPEC) test set . 51

4.1 MHE-NMPC coupling . 73
4.2 MHE-NMPC controller scheme . 73

5.1 Diagram of MHE-NMPC classes and methods in CAPRESE. 85
5.2 Control input and state-tracking results for distillation case study. 86
5.3 BFB reactor, regions and discretization . 90
5.4 Approximation errors from model reduction: maximum relative state error

of the two proposed reduced models (right) and output response of the ref-
erence model (red line left axis, CO2 capture). 90

5.5 BFB results . 91

LIST OF FIGURES

vii

viii
LIST OF FIGURES

Chapter 1

Introduction

As in several other engineering disciplines, Chemical Engineering has an element of deci-

sion making based on mathematical models, created to reflect its real world counter part.

A great deal of the ongoing developments in this area are related to the expansion of the

comprehension of processes and phenomena, which are of particular interest to society.

Moreover, these processes can have vastly different scales: from molecular to plant; or

from milliseconds to years or even decades. Yet, arguably all of these can be represented

as variables in equations, drawing relationships between each other. Therefore, it is possi-

ble to claim that most developments in Chemical Engineering are linked to a mathematical

relationship, or a model.

At the same time as a new development in Chemical Engineering comes to existence

there is also new set of possible decisions to make. And, for many years practitioners have

pursued systematic ways to perform these decisions with the most confidence. Meanwhile

mathematicians have dealt with the optimization problem, which at its basic form seeks to

find the critical points of a set of variables given an objective, which is either minimized or

maximized. From this point in time, the leap towards the modern concept of optimization

has been substantial. More importantly, the overlap between engineering as a whole and

mathematical optimization has resulted into a long-prolific relationship, that keeps both

stakeholders satisfied, and researchers intrigued.

As the relationship of mathematical optimization and Chemical Engineering prospered,

there were (and are still ongoing) several significant applications that spawned throughout

the years, for example flowsheet synthesis, equipment sizing and costing, process control,

etc [1]. The community in charge of these developments largely embraced the state-of-art

CHAPTER 1. INTRODUCTION

1

of optimization algorithms and software. This is reflected in the strategies to handle the

aforementioned applications, e.g. decompose when the problem is intractable, linearize

whenever there is strong equivalency of the formulations, etc. Eventually, the capabilities

of the algorithms enabled fairly detailed models of processes into optimization. Such is

the case of nonlinear models and Nonlinear Programming (NLP).

Nonlinear programs have evolved to the point of providing high detail representations,

particularly for smooth and differentiable models. There is also the inclusion of sophisti-

cated techniques into state-of-art solvers that have been able to exploit structure and han-

dle large-scale problems [2], [3], [4], thus, increasing the range of applications of nonlinear

models within Chemical Engineering. Nevertheless, there still exist several challenges

from the modeling, and from the algorithmic point of view. For instance, the solution of

Mathematical Programs with Complementarity Constraints [5], [6], [7], which enables dis-

crete decisions to be modeled entirely with continuous variables, with the compromise of

lacking regularity conditions on the system of constraints. Also, related to this problem

is the solution of nonlinear programs with inconsistent linearizations of the constraints,

i.e. ill-posed NLPs [8], [9], [10]. Moreover, there is the implementation of concurrency

at the linear algebra level from the factorizations that take place during the optimization

[11], [12], and finally, extensions of parametric sensitivity to address changing active sets

and weaker conditions [13]. These are a rather small sample of the challenges found in

NLP. Ultimately, the optimization community is actively producing enhancements on the

state-of-art solvers, that will generate a more robust and efficient implementations, to solve

problems with increasingly more complexity.

Moreover, models that use algebraic representation of differential terms are extremely

valuable, since they enable decision making of transient processes. These naturally sug-

gest the possibility of designing optimal controllers by combining the models and the NLP

algorithms. This in turn, leads to a rapid growth of the range of dynamic optimization

applications. From parameter estimation frameworks [14], nonlinear state-estimation [15],

2
CHAPTER 1. INTRODUCTION

1.1 RESEARCH STATEMENT

[16]; and possibly the most popular instance of dynamic optimization problems, i.e. Non-

linear Model Predictive Control, which has seen rapid developments from real-time solu-

tion strategies [17], [18] to economic-driven objective functions [19], [20].

1.1 Research Statement

In this dissertation we first explore the ideas of expanding the robustness properties of

the interior-point solver IPOPT. Traditionally, the solutions of NLPs are identified by ana-

lyzing the relationships between the first and second-order information of the constraints

and objective function. This is assumed to be true because the geometry of the feasible set

can be captured by linearizations of the system of constraints. Moreover, this assumption

is only valid if the gradients of the equality and active inequality constraints are linearly

independent; thus, if this is not the case optimality can not be asserted. Within the interior-

point framework of IPOPT violation of this last requirement might happen during the so-

lution procedure, and as a result convergence cannot be guaranteed. In both theoretical

and practical senses, the posedness of the problem depends significantly on the properties

of the local linearizations of the constraints. As a result, IPOPT (and most NLP solvers in

general) require strategies to regularize the current iterate if such situation arises. Currently,

within IPOPT this is covered in an algorithm denominated Inertia correction, which seeks

to obtain a specific combination of positive, negative and zero eigenvalues of the iteration

matrix by perturbing the system with two positive scalars. It turns out that this strategy

has proved successful, especially when the case studies are not badly conditioned. More-

over, if the inconsistencies happen globally, i.e. at all points of the searchable space, then

the aforementioned strategy will not succeed.

This is the reason why in Chapter 3, the `1-exact penalty-barrier strategy within IPOPT

is presented. As an outline of this strategy, it is possible to construct problems which

penalize the equality constraints with a penalty parameter and combine them with the

logarithmic barrier strategy from the interior-point framework. Nominally, this problem

CHAPTER 1. INTRODUCTION

3

1.1 RESEARCH STATEMENT

is able to find stationary points of the original constrained, if the value of the penalty

parameter is above a critical value, which is not known a priori [21]. This exemplifies one

of the most notorious difficulties with this algorithm. Nevertheless in our implementation

we discuss a strategy to update the penalty based on the local curvature and linearizations

of the constraints and objective function. Subsequent testing revealed that this strategy is

competitive against the nominal version of IPOPT 3.12.9. The most relevant contribution of

this section is that a framework can be constructed in which ill-posedness in the constraint

sense can be overcome with a variation of the original optimization problem.

The second topic covered in this dissertation is the aggregation of ideas for control, state

estimation, and parametric sensitivity into a software framework particularly targeted to-

wards significantly-sized problems in the context of energy production. For this, Model

Predictive control (MPC) assumes that there exists a nominal model of a process of in-

terest, which is combined with the current information about its current state; then it is

possible to make predictions about optimal sequences of predicted states and inputs by

solving an optimization problem. Typically, assumptions are made to reduce the complex-

ity of the associated optimization problem. For example, one rather popular instance of

this problem considers linear constraints and quadratic objective function, which is the ba-

sis for Linear MPC (LMPC) and requires to solve Quadratic Programs (QPs). This strategy

is relevant because the complexity of the optimization problem is in direct conflict with

its online implementation, and in this sense solving QPs can be usually more accessible

than solving full NLPs. However, if the underlying model of the process is characterized

by significant nonlinearities, the LMPC might have reduced performance. Accordingly, a

Nonlinear MPC strategy is more appropriate; however for online applications one must

overcome the computational complexity of the solution of these problems.

Similar issues are found in the context of Nonlinear state-estimation strategies, which

are arguably as important as the control strategy. The core aspect of this problem is that

given a model of the process and sequence of measurements generated from its initial

4
CHAPTER 1. INTRODUCTION

1.1 RESEARCH STATEMENT

state, the respective sequence of states is to be determined. As an analogy to MPC, this

can also be formulated as an optimization problem whose solution represents the optimal

sequence of estimated states and disturbances; moreover the optimal linear state-estimator

is given by the Kalman-Filter; and similar to LMPC its effectiveness depends on the degree

of nonlinearities of the process. As an alternative, the Nonlinear state-estimator known as

the full-information estimator handles directly the nonlinearities, but for continuous pro-

cess it becomes increasingly intractable as the size of the problem grows at a constant rate

over time. Therefore, the concept of a moving horizon-window applied into this problem

gives inception to the Moving Horizon Estimator (MHE), which potentially has the same

limitations for online applications given its computational cost.

A strategy to overcome this online computational cost is given by nonlinear paramet-

ric sensitivity analysis. This enables the partition of the computation into two parts, on-

line and background, while retaining the properties of the optimal solution, and it is rele-

vant because the online computations are reduced to a set of matrix-vector multiplications,

which are typically much less expensive than the solution of an NLP.

All of these ideas were encapsulated into an unified framework for control-estimation-

sensitivity, i.e. the Control Adaptation with Predictive Sensitivity Enhancement (CAP-

RESE). The main motivation towards CAPRESE is to systematically enable the use of non-

linear models for the design of a controller, particularly for challenging energy applica-

tions, like CO2 capture. Moreover, the sensitivity elements of it enable the MHE-NMPC

strategies to be computed online, with computations on the order of seconds. CAPRESE

was built in Python, which is an accessible programming language for all potential new

users. Additionally, it uses Pyomo for the modelling of the process, thus providing access

to several state-of-art optimization solvers, and at the same time keeping everything in

a single environment. In CAPRESE the workflow starts by the creation of a Differential

Algebraic (DAE) model by the user which is automatically discretized by the pyomo.dae

library. Then CAPRESE creates an optimization object which is able to assemble the rele-

CHAPTER 1. INTRODUCTION

5

1.2 DISSERTATION OUTLINE

vant optimization problems, as well as the initialization strategies. Therefore, in Chapter

5, the CAPRESE framework is used to control a problem with significant size and nonlin-

earities in the context of CO2 capture for energy generation. It is shown that, even in the

presence of noise, the framework can generate a fast controller action with sensitivity and

be able to attain reasonable performance.

1.2 Dissertation Outline

As previously discussed, this dissertation presents two main issues; one related to nonlin-

ear optimization and the second to a framework for MHE-NMPC with parametric sensi-

tivity analysis. In Chapter 2, the preliminaries for the `1-exact penalty barrier algorithm

in IPOPT are presented, including the origins and relevance of constraint qualifications, an

outline of the IPOPT algorithm, and some useful post-optimality analysis issues. Chapter 3

presents the `1-exact penalty barrier algorithm in IPOPT for the failure of Constraint Qual-

ifications. It discusses several details on the underlying linear systems, penalty update,

overview of the algorithm, and results in a set of test problems including a modified ver-

sion of CUTEr test set with degenerate constraints, and a library that contains Mathemat-

ical Programs with Complementarity Constraints (MPCCs). Then, Chapter 4 discusses

some of the background on how Differential Algebraic Equations (DAEs) are handled in

this work. Moreover, the underlying concepts and robust stability properties of MHE and

NMPC are discussed. Finally, the advanced-step algorithms to enable online computations

of input and estimated state are discussed. Chapter 5 discusses the CAPRESE framework

and shows an application related to CO2 capture for energy generation, and presents the

performance of the CAPRESE framework alongside a example benchmark case study of a

distillation column. Finally the conclusions of this dissertation are laid out in Chapter 6.

6
CHAPTER 1. INTRODUCTION

Chapter 2

Nonlinear Optimization and Sensitivity

Analysis

2.1 Introduction

In this work we will be concerned with Nonlinear Programming (NLP) problem

minimize
x∈Rn

f (x)

subject to c (x) = 0,

x ≥ 0,

(2.1)

where it is assumed that f : Rn → R and c : Rn → Rm are C2 with Lipschitz continuous

second derivatives and n ≥ m. This problem appears in several engineering applications,

e.g., as the result of discretization of differential algebraic systems, parameter estimation,

etc.

The efficient solution of this problem has been the subject of several studies, that over

time have reduced the number of assumptions to be made in order to establish the con-

vergence of algorithms. Nevertheless, a solution of problem (2.1) is characterized by Tay-

lor’s series approximations of objective and constraint functions and the feasible set X .

For problem (2.1) the feasible set is X := {x ∈ Rn | c (x) = 0, x ≥ 0}. A point is feasible if

x ∈ X . Moreover, a feasible sequence of points that approaches x is given by {yk} such

that yk ∈ X and limk→∞ yk = x.

Before describing what constitutes a solution of (2.1), a fundamental property that relates

the feasible set and the constraint functions needs to be mentioned. This is the issue of the

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

7

2.2 CONSTRAINT QUALIFICATIONS

Constraint Qualifications.

2.2 Constraint Qualifications

The Constraint Qualifications (CQs) refer to properties of the algebraic set of constraints,

in particular its linearizations at neighborhoods of points. Though there are several CQs

with complex relationships among each other, for the purposes of this work, the Linear

Independence Constraint Qualification (LICQ) is the most relevant one. In order to define

it, the concept of active set needs to be considered.

Definition 1 (Active set and Active bound gradient). Consider a problem with bounds x ≥ 0,

the active set of bounds for a feasible point x,

A (x) = {i ∈ {1, 2, . . . , n} | xi = 0} , (2.2)

with nA = | A (x)|. Note that a problem might have variable upper and lower bounds, but without

loss of generality it is consider only the later. Then, let a matrix EA (x) ∈ Rn×nA such that

EA (x)T x = 0; (2.3)

in which the jth column of the matrix (EA,j) is given in terms of the columns of an identity matrix

of appropriate size, i.e. EA,j (x) = Ii(j) and i (j) is the jth element of A (x).

In other words, the active set for problem (2.1) contains the indices of the variables for

which the bounds are active, and there exists a matrix in which each column contains the

value of one at the position of a given active variable and zeroes anywhere else. As a

consequence, the LICQ can now be defined.

Definition 2 (Linear Independence Constraint Qualification). Consider a problem with equal-

ity constraints c (x) = 0 and bounds x ≥ 0. The linear independence constraint qualification holds

at the feasible point x if the combined gradients of equality constraints and active bounds (from

definition 1) are linearly independent. In other words, the matrix,[
∇c (x) EA (x)

]
(2.4)

8
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.2 CONSTRAINT QUALIFICATIONS

is full column rank.

Alternatively, the Jacobian matrix of the combined active set and equality constraint, i.e.

J ∈ R(m+nA)×n such that J (x)T := [∇c (x)EA (x)], must be full row rank. Satisfaction

of the LICQ guarantees that at a given feasible point, the local linearizations successfully

describe the geometric features of the feasible set; this is a fundamental feature required to

ensure local optimality. To show this, the definition of a limiting direction, tangent cone,

and the set of linearized feasible directions must be stated.

Definition 3 (Tangent cone). Let {yk} be a feasible sequence approaching x ∈ X and a sequence

of decreasing scalars {tk} (with limk→∞ tk = 0). Then there exist a vector w such that

lim
k→∞

yk − x
tk

= w, (2.5)

and w is said to be tangent to X . Furthermore, at the local solution x∗, the set of all the tangent

vectors is represented by TX (x∗).

Definition 4 (Set of linearized feasible directions). Consider a feasible point x and a problem

with equality constraints c (x) = 0, bounds x ≥ 0 and active set A (x). The set of linearized

feasible directions F (x) is given as follows:

F (x) =
{
p | ∇ci (x)T w = 0 ∀i ∈ {1, ...,m} , EA,i (x)T w ≥ 0 ∀i ∈ A (x)

}
. (2.6)

Thus, it is now possible to show the importance of the LICQ, given by the following

theorem.

Theorem 1 (Linearized feasible directions and tangent cone equivalence). If the LICQ holds

at the local solution x∗, then the linearized set of feasible directions and the tangent cone are equiv-

alent.

Proof. Let Z (x∗) be a matrix whose columns are a basis for the null space of J (x∗), i.e.

Z (x∗) ∈ Rn×(n−m−nA) such that J (x∗)Z (x∗) = 0, and is full column rank. Suppose there

is sequence of decreasing scalars {tk} such that limk→∞ tk = 0. The outline of the proof

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

9

2.2 CONSTRAINT QUALIFICATIONS

is to use the LICQ property and generate a feasible sequence that converges to x∗ and has

an arbitrary vector w such that w ∈ F (x∗) and w ∈ TX (x∗). First, consider the system of

equations
 c (yk)

EA (x∗)T yk

− tk
∇c (x∗)T w

EA (x∗)T w

Z (x∗)T (yk − x∗ − tkw)

 =

0

0

0

 , (2.7)

where it is assumed that w ∈ F (x∗). For a fixed nonnegative value of tk, the system (2.7)

has an unique solution. This is true because the gradient of (2.7) with respect to yk,[[
∇c (x∗) EA (x∗)

]
Z (x∗)

]
,

is nonsingular by the LICQ property and the construction of Z . Moreover, since w ∈

F (x∗), the second bracket in the first row of system (2.7) has the properties of (2.6); which

means that yk is feasible. Thus, the system (2.7) yields a feasible sequence for which yk →

x∗ as tk → 0. Finally, to prove that w ∈ TX (x∗), a first order Taylor’s series expansion on

bracketed term of the first row of (2.7) yields the following:
0

0

0

 =

∇c (x∗)T (yk − x∗) + o (‖yk − x∗‖)

EA (x∗)T (yk − x∗) + o (‖yk − x∗‖)

− tk
∇c (x∗)T w

EA (x∗)T w

Z (x∗)T (yk − x∗ − tkw)

 ,

=

∇c (x∗)T

EA (x∗)T

Z (x∗)T

 (yk − x∗ − tkw) + o (‖yk − x∗‖) ,

in which the matrix in the brackets is nonsingular. With this result and dividing by tk, the

following result is obtained

yk − x∗

tk
= w + o

(
‖yk − x∗‖

tk

)
.

In consequence, w ∈ TX (x∗).

10
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.3 FIRST AND SECOND ORDER OPTIMALITY CONDITIONS

The LICQ property enables the characterization of the tangent cone from first order

information of the constraints. This is important when analyzing a necessary condition

for optimality, e.g. ∇f (x∗)T w ≥ 0 ∀w ∈ TX (x∗), because if the LICQ holds, then

TX (x∗) = F (x∗), and a compact set of conditions for optimality can be deduced using

Taylor’s theorem. However, the failure of the LICQ disables such assertions; thus proving

optimality becomes difficult.

Finally, it is convenient to define a weaker CQ for later sections of this work, particularly

the Mangasarian-Fromovitz Constraint Qualification (MFCQ).

Definition 5 (Mangasarian-Fromovitz Constraint Qualification). Consider a problem with

equality constraints c (x) = 0 and bounds x ≥ 0. The MFCQ holds at the feasible point x if the

gradients of the equality constraints at x, ∇ci (x) , i ∈ {1, . . . ,m} are linearly independent and

given an active bound set A (x), if there exists a nonzero vector w such that,

∇ci (x)T w = 0 ∀i ∈ {1, ...,m} , and

EA,i (x)T w > 0 ∀i ∈ A (x) .
(2.8)

2.3 First and Second Order Optimality Conditions

After defining the necessary properties of the constraints that enables the use of first order

derivative information to delimit a solution of problem (2.1); a rather convenient set of

conditions can be used to assert local optimality. Thus, the solution of problem (2.1) is

characterized by triplet (x∗, λ∗, z∗) ∈ Rn × Rm × Rn of primal and dual variables. This

set of equations is known as the Karush-Kuhn-Tucker (KKT) conditions, and for a general

non-convex feasible set X and functions is necessary for local-optimality. This is stated in

the following definition.

Definition 6 (First Order KKT point). Assume that the LICQ holds, then vector x∗ is a KKT

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

11

2.3 FIRST AND SECOND ORDER OPTIMALITY CONDITIONS

point if there exists multipliers z∗ and λ∗, such that

g (x∗) +A (x∗)λ∗ − z∗ = 0 (stationarity), (2.9)

c (x∗) = 0, x∗ ≥ 0 (feasibility), (2.10)

z∗ ≥ 0 (nonnegativity of multipliers), (2.11)

x∗i · z∗i = 0 ∀i ∈ {1, 2, ..., n} (complementarity), (2.12)

where the gradients of objective function is denoted by g (x) := ∇f (x) and the transpose

of the Jacobian of the constraints is A (x) := ∇c (x).

To further assess the nature of a KKT point, it is also necessary to assess the curvature of

the Lagrange function. This is because at such point it might be the case that the directions

associated with the KKT conditions are not informative enough to assess whether a per-

turbation results in an increase or decrease of the objective function f (x). For this consider

the Lagrange function L : R2n+m → R,

L (x, λ, z) := f (x) + c (x)T λ− xT z. (2.13)

This function combines the information of objective and constraints, and it enables a more

compact notation of first and second order conditions. The second order conditions are

defined with respect to a subset of the optimal linearized feasible directions. For this,

the strictly active set is considered, i.e. bounds that are active and have strictly positive

multipliers, i ∈ A (x) and zi > 0. This is given as follows

C (x∗, z∗) =
{
w ∈ F (x∗) | A (x∗)T w = 0 ∀i ∈ {1, . . . ,m} , and

EA (x∗)T w = 0 ∀i ∈ A (x∗) with z∗i > 0
}

EA (x∗)T w ≥ 0 ∀i ∈ A (x∗) with z∗i = 0
}
.

(2.14)

With this the set of second order necessary conditions can be defined.

Definition 7 (Second Order Necessary Conditions (SONC)). Assume the LICQ holds, then

for a local optimal point x∗ and multipliers λ∗, z∗. Then, the following holds

wT∇2
xxL (x∗, λ∗, z∗)w ≥ 0 ∀w ∈ C (x∗, z∗) . (2.15)

12
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.3 FIRST AND SECOND ORDER OPTIMALITY CONDITIONS

In other words, at the optimal solution of problem (2.1), the Hessian of the Lagrange

function has nonnegative curvature along the feasible directions w ∈ C (x∗, z∗). It should

be noted that if the inequality of (2.15) is changed to a strict inequality, and w 6= 0 then the

definitions holds for a strict local solution; these conditions are known as Second Order

Sufficient Conditions or (SOSC). Furthermore, it is convenient to define an alternative way

of checking second order conditions. This can be done by assembling a projected Hessian

matrix, that under certain assumptions does not require checking for all possible directions

w ∈ C (x∗, z∗). For this purpose, strict complementarity must be defined.

Definition 8 (Strict Complementarity). Consider a local solution of problem (2.1); strict com-

plementarity holds if

z∗i > 0 ∀i ∈ A (x∗) . (2.16)

Definition 9 (Reduced Hessian). Consider a local solution of problem (2.1). If the LICQ and

Strict Complementarity hold; then the second order conditions can be verified by checking the prop-

erties of the reduced Hessian matrix,

HR = Z (x∗)T ∇2
xxL (x∗, λ∗, z∗)Z (x∗) , (2.17)

where Z (x∗) ∈ Rn×(n−m−nA) is a matrix whose columns are the basis for the null space of J (x∗)

(the same as in Theorem 1), i.e. J (x∗)Z (x∗) = 0. Note that under these assumptions any vector

w ∈ C (x∗, z∗) can be represented by w = Z (x∗)u for some u ∈ R(n−m−nA); in other words

C (x∗, z∗) is equal to the nullspace of J (x∗). Thus, it suffices to check the positive definiteness of

HR to satisfy SONC and SOSC.

The definitions for first and second order conditions are fundamental for solving NLP

problems, because most NLP solvers have been built with the intention to approximate

points in which these conditions hold. Nevertheless, generating such points is not a trivial

task, and there is still several efforts to generate more efficient and reliable algorithms in

the optimization community.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

13

2.4 INTERIOR POINT ALGORITHM - IPOPT

2.4 Interior Point Algorithm - IPOPT

Nonlinear programming theory and algorithms experienced a surge in popularity during

the 1960s. Over time two kinds of strategies to handle these problems emerged as the main

schools of thought, i.e. active set and interior point strategies. The main difference between

them is the way the active set of inequalities (bounds for problem (2.1)) is computed. In

particular, interior point approaches the active set of the solution asymptotically as op-

posed of having to determine it combinatorially. As NLP problems grew in size, interior

point strategies became increasingly appealing. Moreover, the development of large-scale

linear algebra packages became the landmark moment for the state-of-art interior point

solvers. One of the state-of-art solvers that has its roots in this developments is IPOPT.

IPOPT (Interior Point OPTimizer) combines the ideas of interior point with a filter line-

search to efficiently achieve global convergence . The primary idea is to solve sequences of

parametrized problems for which the bounds of problem (2.1) are moved into the objective

function. This is known as the barrier problem. The main feature of this new problem is

that the modified objective function (denominated barrier function) will remain bounded

as long as the current point resides inside the strict interior of the feasible region given by

the bounds. The barrier problem is given as follows,

minimize
x∈Rn

ϕµj (x) := f (x)− µj
n∑
i

lnx(i)

subject to c (x) = 0,

(2.18)

where µj ∈ R1
>0 is a strictly positive scalar denominated as barrier-parameter. The strategy

dictates that assuming that the Mangasarian-Fromovitz Constraint Qualification (MFCQ)

and SOSC hold for (2.1), solving (2.18) for a strictly decreasing sequence of barrier param-

eters, i.e. {µj} such that limj→0 µj = 0, will generate a differentiable trajectory of solutions

(x (µj) , λ (µj) , z (µj)) that asymptotically approaches (x∗, λ∗, z∗), that is the solution of

problem (2.1).

To solve (2.18), a globalized Newton algorithm is used directly on its set of first order

14
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.4 INTERIOR POINT ALGORITHM - IPOPT

optimality conditions (primal-dual equations) for a fixed value of the barrier parameter
g (x)− z +A (x)λ

c (x)

XZe− µje

 = 0, (2.19)

where the primal dual bound multiplier is defined as z (µj) ∈ Rn := µjX
−1e; and the

diagonal matrices for primal variables and bound multipliers are X := diag (x) and Z :=

diag (z). Moreover, to keep the barrier function bounded it is necessary to enforce strictly

positive primal and dual variables x, z > 0. Then, a Newton step on the primal-dual

equations leads to the following linear system
Hk Ak −I

ATk 0 0

Zk 0 Xk

dxk

dλk

dzk

 = −

gk − zk +Akλk

ck

XkZke− µje

 , (2.20)

where the subscript notation signals a function evaluated at a particular point, e.g. gk :=

g (xk); Hk := ∇2
xxL (xk, λk, zk) is the Hessian matrix of the Lagrangian, and

(
dxk, d

λ
k , d

z
k

)
∈

Rn × Rm × Rn are the search directions. The matrices associated with linear systems like

(2.20) are typically sparse, this suggest that sparse linear algebra techniques are generally

appropriate to deal with these kind of system. Moreover, it is rather desirable to factorize

a symmetric version of the matrix from (2.20), because indefinite symmetric sparse linear

solvers have several useful features, e.g. inertia calculation capabilities. The inertia of a

matrix K is defined as In (K) := (k+, k−, k0), where k+, k−, and k0 are respectively the

number of positive, negative and zero eigenvalues of matrix K. This property is essential

to determine whenever the search is attempted at points in which SOSC and LICQ do not

hold, and convergence can not be guaranteed.

Therefore, to obtain a symmetric form of the matrix in (2.20), one can pivot on the lower-

right block of the matrix in (2.20) to obtain the following linear systemWk Ak

ATk 0

dxk
dλk

 = −

gk − µjX−1
k e+Akλk

ck

 , (2.21)

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

15

2.4 INTERIOR POINT ALGORITHM - IPOPT

which has an indefinite symmetric matrix known as the Augmented KKT matrix, and the

augmented primal-dual Hessian matrix is defined by Wk := Hk + Σk and Σk := X−1
k Zk.

Additionally, the remaining vector is given as

dzk = µjX
−1
k e− zk − Σkd

x
k. (2.22)

Thus, enabling symmetric linear solvers with inertia computation capabilities allows to

correct situations in which the Hessian of the Lagrange has nonnegative curvature along

the search directions (violation of SOSC) and the gradients of the equality constraints are

linearly dependent (violation of LICQ). This is due to a relationship between the eigenval-

ues of the augmented KKT matrix, and the Hessian and Jacobian blocks.

Definition 10 (Inertia and SOSC relationship). Consider definition 9 of the reduced Hessian,

and let the augmented KKT matrix

Kk :=

Wk Ak

ATk 0

 . (2.23)

Suppose Ak is full column rank. If the reduced Hessian HR is positive definite, then the inertia

In (Kk) = (n,m, 0).

Definition 9 tacitly assumes the linear independence of the constraint gradients, other-

wise the inertia would have at least one zero eigenvalue or alternatively the matrix can

be detected to be singular. In either case, corrections to the inertia can be introduced by

perturbing directly the upper left block and the lower right block of Kk. Let δ, δc ∈ R1
≥0,

then the regularized system is shown below,Wk + δI Ak

ATk −δcI

dxk
dλk

 = −

gk − µjX−1
k e+Akλk

ck

 . (2.24)

Therefore, the inertia has to be monitored at every single iteration of IPOPT. Note that

if Kk becomes severely ill-conditioned and the perturbations, especially δc, might not be

16
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.4 INTERIOR POINT ALGORITHM - IPOPT

sufficient to correct the inertia of the matrix. The algorithm to compute the search direction

with the correct inertia is given in Algorithm 2.1.

Data: Constants 0 < δ
min
w < δ

0
w < δ

max
w ; δc > 0; 0 < κ−w < 1 < κ+

w < κ+
w ; κc ≥ 0, and

last perturbation made δlast ← 0.

IC.1 Factorize unperturbed matrix from (2.24). I.e. δ = δc = 0; get status;

if status = SymSolverSuccess and In (K) = (n,m, 0) then

Augmented KKT is nonsingular, ;

break ;

IC.2 if status = SymSolverSingular or nonzero eigenvalues k0 > 0 then

Iteration matrix might be singular, attempt to regularize ;

δc ← δcµ
κc
j ;

else δc ← 0;

IC.3 if δlast = 0 then δw ← δ
0
w;

else δ ← max
{
δ

min
w , κ−wδ

last
}

;

while true do

IC.4 Factorize perturbed matrix; get status ;

if status = SymSolverSuccess and In (K) = (n,m, 0) then

Success; δlast ← δ ;

break ;

IC.5 if δlast = 0 then δ ← κ+
w ;

else δw ← κ+
wδ;

IC.6 if δ > δ
max then Abort; start Feasibility Restoration. See remark. ;

end
Algorithm 2.1: Inertia correction

Most notably from Algorithm (2.1), the search direction will be accepted as long as the in-

ertia matches the requirement previously described. Then, if the factorization is accepted,

a step-size has to be determined particularly for primal variables. To this end, and as a

requirement of the interior point algorithm; the iterates must remain strictly inside the

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

17

2.4 INTERIOR POINT ALGORITHM - IPOPT

bounds, therefore the maximum step sizes that can be taken are given by the so called

fraction to the boundary rule, i.e.

αmax
k := max {α ∈ (0, 1] | xk + αdxk ≥ (1− τj)xk} ,

αzk := max {α ∈ (0, 1] | zk + αdzk ≥ (1− τj) zk} ,
(2.25)

where τj := max {τmin, 1− µj}. The determination of the step size αk is given by the

backtracking line-search algorithm.

2.4.1 Filter Line-Search

A key aspect of the Newton algorithm embedded into IPOPT, is the Filter Line-Search.

Though the Newton algorithm enables fast convergence to the solution, it requires to limit

itself to the neighborhood of the solution. This is one of the reasons why a globaliza-

tion strategy needs to be added to the solver. In most Newton-based NLP solvers the

choice is an instance of a Trust-Region or a Line-Search algorithm. On top of that, such

algorithms evaluate the quality of the search directions by using exogenous measures of

optimality, e.g. a merit function, for which which historically penalty functions were used.

These functions combine objective function and a product of the constraint violation and

a penalty parameter, however they require a mechanism to update such parameter which

is not a trivial task. As an alternative, IPOPT uses a filter, which a set of pairs of points of

barrier objective value and constraint violation that have been historically found through

the search. These form a region that is prohibited for exploration, and thus drive the opti-

mization towards more favorable points.

Consider the constraint violation θ (x) := ‖c (x)‖, then the filter set

Fk ⊆
{(
θk, ϕµj ,k

)
∈ R2 | θk ≥ θmax

}
, (2.26)

at iteration k contains a collection of points (θ, ϕµ) that have been previously explored and

they define a region of forbidden points.

18
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.4 INTERIOR POINT ALGORITHM - IPOPT

Then the backtracking line-search procedure attempts to find a step-size αk,l, given the

current point xk and search direction dxk by evaluating xk (αk,l) := xk+αk,ld
x
k , and checking

the following conditions:

• Switching

∇ϕµj (xk)
T dxk < 0, and αk,l

[
−∇ϕµj (xk)

T dxk

]sϕ
> δl [θ (xk)]

sθ . (2.27)

• Armijo Line search

ϕµj (xk (αk,l)) ≤ ϕµj (xk) + ηϕαk,l∇ϕµj (xk)
T dxk. (2.28)

• Sufficient decrease

θ (xk (αk,l)) ≤ (1− γθ) θ (xk) , or ϕµj (xk (αk,l)) ≤ ϕµj (xk)− γϕθ (xk) . (2.29)

These conditions require the following constants sϕ, sθ, δl ≥ 1 and ηϕ, γθ, γϕ ∈ (0, 1). In

IPOPT any trial point (θ (αk,l) , ϕµ (αk,l)) /∈ Fk is a candidate for testing the conditions

(2.27)—(2.29), otherwise the step-size is cut off (αk,l+1 = 1
2l
αk,l). Furthermore, after finding

a point acceptable to the filter, if condition (2.28) or (2.29) are not satisfied, the filter for the

next iteration is updated as follows as follows

Fk+1 := Fk ∪
{
θ (xk (αk,l)) ≤ (1− γθ) θ (xk) , and ϕµj (xk (αk,l)) ≤ ϕµj (xk)− γϕθ (xk)

}
.

(2.30)

For points that are not in the filter, conditions (2.27)-(2.29) have to be checked in a specific

succession. This can be summarized in Algorithm 2.2.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

19

2.4 INTERIOR POINT ALGORITHM - IPOPT

Data: Current iterate xk and search direction dkk, maximum step size αmax
k , constants

sϕ, sθ, δl ≥ 1 and ηϕ, γθ, γϕ ∈ (0, 1)

B.1 Initialize search. αk,0 ← αmax
k , l←, status← NotAcceptable, augmentFilter

← false ;

while status = NotAcceptable do

B.2 Compute new trial point. x (αk,l) := xk + αk,ld
x
k ;

B.3 Check acceptability to the filter

if (θ (αk,l) , ϕµ (αk,l)) ∈ Fk then

Reject step size; go to Second-order Correction, step B.5 ;

B.4 Check sufficient decrease

if Switching Condition holds, (2.27) then

if Armijo Condition holds, (2.28) then

accept step size; status← Acceptable ;

break;

else

if Sufficient Decrease Condition holds, (2.29) then

accept step size; status← Acceptable ;

augmentFilter← true ;

break;

B.5 Second-order Correction. Same as in [2] ;

B.6 Choose new trial step-size

αk,l+1 = 1
2l
αk,l ;

l← l + 1 ;

if αk,l < αmin
k then

Feasibility Restoration. Same as in [2]

end
Algorithm 2.2: Filter line-search

20
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.4 INTERIOR POINT ALGORITHM - IPOPT

2.4.2 IPOPT algorithm

Consider the residual norms for primal, dual, and complementarity

du inf := ‖g (x) +A (x)λ− z‖∞ , pr inf := ‖c (x)‖∞ ,

cmpl infµj := ‖XZe− µje = 0‖∞ , .
(2.31)

The overall NLP error is computed using the scaled versions of the previous norms.

Eµj (x, λ, z) := max

{
du inf
sd

,pr inf,
cmpl infµj

sc

}
, (2.32)

where the scaling factors sd, sc are defined below,

sd = max

{
smax,

‖λ‖1 + ‖z‖1
m+ n

}
/smax, (2.33)

sc = max

{
smax,

‖z‖1
n+m

}
/smax. (2.34)

and smax ≥ 1. Convergence for a particular barrier problem is achieved whenever the

overall NLP error is below a factor of the barrier parameter, i.e.

Eµj (xk, λk, zk) ≤ κεµj , (2.35)

for a positive scalar κε. Note that the convergence of the overall problem is checked for

(2.35) with µj = 0, i.e. E0 (xk, λk, zk) ≤ κεεtol. Therefore the overall IPOPT algorithm is

given in Algorithm 2.3.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

21

2.4 INTERIOR POINT ALGORITHM - IPOPT

Data: Starting point (x0, λ0, z0) with x0, z0 > 0; initial value for the barrier

parameter µ0 > 0 and δlastw ← 0; constants εtol, κθ, κε > 0, sθ > 1, sϕ ≥ 1,

γα ∈ (0, 1], γϕ, γθ ∈ (0, 1), ηϕ ∈ (0, 1
2).

A.1 Initialize. Initialize the filter F0, and τ0. Set iteration counters j ← 0, k ← 0.

status← NotConverged ;

while status = NotConverged do

A.2 Check convergence for the overall problem

if E0 (xk, λk, zk) ≤ εtol then status← Converged;

A.3 Check convergence for the barrier problem

if Eµj (xk, λk, zz) ≤ κεµj then

µj+1 ← max
{
εtol
10 ,min

{
κµµj , µ

θµ
j

}}
; set j ← j + 1 ;

Re-initialize filter Fk with (2.26) ;

A.4 Compute search direction

Compute
(
dxk, d

λ
k , d

z
k

)
from (2.24), using Algorithm 2.1 for some δ, δc ;

A.5 Backtracking line search

Compute step-size αk,l using Algorithm 2.2 ;

A.6 Accept the trial point

αk ← αk,l ;

Compute multiplier estimates (λk+1, zk+1)

A.7 Augment filter

if augmentFilter = true then Update the filter using (2.30);

else Fk+1 := Fk;
k ← k + 1

end
Algorithm 2.3: IPOPT main algorithm

22
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.4 INTERIOR POINT ALGORITHM - IPOPT

Remarks

Feasibility Restoration Phase. The feasibility restoration problem is stated as follows; find

a feasible point which is closest to a vector xR, and is given in the following problem

minimize
x∈Rn

‖c (x)‖1 +
ζ

2
‖DR (x− xR)‖22

subject to x ≥ 0,

(2.36)

where DR ∈ Rn×n is a diagonal matrix constructed in terms of the i−th element of xR.

The feasibility restoration problem is important for the convergence of IPOPT because it

acts as a work around situations in which the backtracking filter line-search generates step

sizes that are bellow the minimum step size. This consideration is key for the convergence

proofs of filter line-search [22]. The idea is to generate a point that is either not in the cur-

rent filter Fk, or is a local minimizer of some measure of the current infeasibility. In this

sense, problem (2.36) is a good candidate for such task, though it is not the only possible

strategy. In the event of the Restoration Phase being called; an equivalent form of problem

(2.36) would be attempted to be solved for a reference vector xR (which is typically the last

iterate xk, from which Restoration got called), with the same algorithm from IPOPT; that is

Algorithm 2.3, for some value of the barrier parameter and (possibly relaxed) tolerances.

At every iteration of the restoration phase the current iterate will be tested to verify that(
θresto, ϕresto) /∈ Fk; if this is not the case, then the iterate will accepted. Then, restora-

tion will end, and the algorithm will revert itself to its normal form. Note that problem

(2.36) needs to be formulated in terms of smooth functions (because the `1 norm is not

differentiable at zero), this can be done with the introduction of vectors p, n ∈ Rm and the

constraint c (x) = p− n as follows,

minimize
x∈Rn

(p+ n)T e+
ζ

2
‖DR (x− xR)‖22

subject to c (x)− p+ n = 0,

x ≥ 0; p, n ≥ 0,

(2.37)

where e ∈ Rm is a vector of all ones.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

23

2.5 PARAMETRIC NLP SENSITIVITY

2.5 Parametric NLP sensitivity

In this section we are concerned with a problem that contains a fixed vector of parameters

p ∈ Rnp . For example,

minimize
x∈Rn

f (x, p)

subject to c (x, p) = 0,

x ≥ 0,

(2.38)

where the objective and constraints are defined as f : Rn × Rnp → R, and c : Rn × Rnp →

Rm respectively; and are considered to be twice continuous differentiable with bounded

second derivatives. Such instances are typical in problems for which there is information

that has to be determined a priori. Assuming it is possible to solve problem (2.38), we

are interested in the properties of the solution (x (p) , λ (p) , z (p)) under perturbations of

the vector p. Let s ∈ R2n+m be the concatenated vector of primal-dual variables, sT :=[
xT , λT , zT

]
. Fiacco [23] establishes the existence of a first-order differentable function

s : Np → Ns (s∗) for some neighborhood of an initial parameter p0 such thatNp (p0) ⊂ Rnp ,

and a open set Ns ⊂ Rn × Rm × Rn containing s∗; by assuming first and second order

conditions, and the differentiability of the objective and constraints.

Theorem 2. For some p0, if there is a point x∗ for which the KKT theorem holds with some multi-

pliers λ∗ and z∗ (from definition 6); SOSC (strict inequality version of definition 7), strict comple-

mentarity (definition 8), and the LICQ (definition 2) hold. Then

• For p0, x∗ = x (p0) is an isolated local minimizer and the multipliers λ∗ and z∗ are unique,

in other words s∗ = s (p0).

• In the neighborhoodNp (p0), there exist a once continuously differentiable function s (p)T =[
x (p)T , λ (p)T , z (p)T

]
that satisfies the KKT and SOSC conditions, such that x (p) and an

locally unique minimum with multipliers λ (p) and z (p) for some p ∈ Np (p0)

• The LICQ and strict complementarity hold for x (p) for p ∈ Np (p0)

24
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.5 PARAMETRIC NLP SENSITIVITY

Proof. The proof is given in Theorem 2.1 [23].

The main result of this theorem is that it sets a framework for approximations of the

solution under parametric perturbations. Under the conditions of theorem 2, consider a

function that encapsulates the primal-dual equations of a local optimal solution s∗ = s (p0)

at p0,

B(x∗, λ∗, z∗, p0) :=

g (x∗, p0)− z∗ +A (x∗, p0)λ∗

c (x∗, p0)

X∗Z∗e

 , (2.39)

since B (s (p0) , p0) = 0; using the implicit function theorem yields the following result

∇sB (s∗, p0)T
ds∗

dp

T

+∇pB (s∗, p0)T = 0. (2.40)

A closer inspection of the terms in this equation reveals that the matrix ∇sB (s∗, p0)T is

similar to the one from (2.19), i.e. from the interior point primal-dual framework. I.e.

∇sB (s∗, p0)T :=

H (s∗, p0) A (x∗, p0) −I

A (x∗, p0)T 0 0

Z∗ 0 X∗

 , (2.41)

additionally the remaining matrices are given as follows

ds∗

dp

T

:=

dx∗

dp

T

dλ∗

dp

T

dz∗

dp

T

 , ∇pB (s∗, p0)T :=

∇xpL (s∗, p0)T

∇pc (x∗, p0)T

0

 . (2.42)

This suggest that in order to find ds∗

dp , one must solve the linear system (2.40) with np

right-hand-sides (∇pB (s∗, p0)T). Furthermore, from theorem 2 it is possible to construct a

Taylor’s series approximation of s (p) for some p ∈ Np (p0),

s (p) = s∗ +
ds∗

dp

T

(p− p0) + o
(
‖p− p0‖2

)
. (2.43)

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

25

2.6 REDUCED HESSIANS

This result suggests that an approximation for optimal solutions can be done using second

order information from the objective and constraint functions. However, this calculation

requires the factorization of the matrix from (2.41) and np backsolves to assemble the first

order derivative of s. Moreover, the set of assumptions of Theorem 2 will not hold at points

which the active set changes; thus limiting the application of (2.43) to a neighborhood that

is unknown a priori. In consequence, there exist weaker assumptions that account for such

cases with the trade-off that only directional derivatives can be computed [24].

2.6 Reduced Hessians

Computing reduced Hessians is not a trivial task, because as described in Definition 9, it

involves computing a null space basis of the active bound Jacobian. Nevertheless, it is pos-

sible to use optimality information to derive a convenient way of computing the reduced

Hessian without having to compute a null space basis. Suppose a local solution has been

found, and the conditions of Definition 9 hold, i.e. the LICQ and Strict Complementar-

ity. Furthermore, suppose there are no active bounds; then it is possible to partition the

variables into dependent and independent (plus bounded, i.e. variables which have an

active bound), i.e. x∗T =
[
xTD, x

T
I

]
such that xI ∈ Rm and xD ∈ Rn−m (for m < n). Thus

the following partitions of Hessian (H (x∗, λ∗) ∈ Rn×n) and gradients of the constraint

(A (x∗) ∈ Rn×m) matrices follows

A (x∗) :=
[
ATD AI

]
, H (x∗, λ∗) :=

HDD HDI

HID HII

 , (2.44)

where the blocks are sized accordingly to the partition of dependent (D) and indepen-

dent (I) variables. Thus the KKT system can be assembled for some search direction

26
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.6 REDUCED HESSIANS

(dxD , dxI , dλ) and right-hand-side vectors (rxD , rxI , rλ);
HDD HDI AD

HID HII AI

ATD ATI 0

dxD

dxI

dλ

 =

rxD

rxI

rλ

 , (2.45)

then it can be shown that setting rxD = 0, rxI = I ∈ R(n−m)×(n−m), and rxλ = 0, will

result in dxI := H−1
R ; where the I is the identity matrix of the appropriate size and HR is

the reduced Hessian matrix.

To show this consider the definition of the reduced Hessian matrixHR = Z (x∗)T H (x∗, λ∗)Z (x∗),

where Z (x∗) ∈ Rn×(n−m) is a matrix whose columns form a basis for the null space of the

constraint gradients, i.e. A (x∗)T Z (x∗) (x∗) = 0. Then, by setting the Z (x∗) matrix as

follows [25],

Z (x∗) :=

−A−TD ATI

I

 , (2.46)

and using the definition of the reduced Hessian matrix, with (2.44),

Z (x∗)T H (x∗, λ∗)Z (x∗) = AIA
−1
D HDDA

−T
D AI −AIA−1

D HDI −HIDA
−1
D AI +HII . (2.47)

Furthermore, pivoting on the AD blocks of the matrix of (2.45), results in the following

diagonal matrix
0 0 I

0 AIA
−1
D HDDA

−T
D AI −AIA−1

D HDI −HIDA
−1
D AI +HII 0

I 0 0

 . (2.48)

And, by setting rxD = 0, rxI = I , and rxλ = 0, it can be seen that the second row contains

the desired result.

This property is useful as a post-solution analysis, because it enables a relatively low-

cost computation of HR; as long as the partition x∗T =
[
xTD, x

T
I

]
is consistent with the

vector sizes. Finally, note that if the augmented primal-dual Hessian matrix (Wk := Hk +

Σk) is used instead ofHk, which is typically the case, then the reduced Hessian will contain

active bound information.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

27

2.7 K AUG

2.7 k aug

Both of the last two previous sections discuss post-optimality operations, that imply the

factorization on sparse matrices. Moreover, it can be seen the similarities between these

systems and the systems that are solved within IPOPT. Part of the performance expected

within IPOPT comes from the available sparse-symmetric-linear-solvers. As mentioned in

earlier sections these offer additional information with the factorization of the matrices, i.e.

the inertia, which is useful for determining the LICQ and SOSC properties of the system.

Among other properties, some of them are able to use concurrency to take advantage of

multi-core architectures, and thus reduce the amount of time for the factorizations, e.g.

MA97, and PARDISO [26]. However, one key difference from the systems used within

IPOPT is the presence of multiple right-hand-sides in the linear systems; for instance the

system of (2.44), with (n−m) right-hand-sides. In typical linear-algebra fashion, one need

only factorize once and re-use the factorization to find the corresponding solution vectors.

The aggregate of all these capabilities is reflected into the implementation of k aug, which

is shown in Figure 2.1.

Similarly as in the case of IPOPT, The linear systems within k aug are symmetric. For

instance, in the case of (2.41) and (2.42); by pivoting on the the block Z∗ of the matrix

∇sB (s∗, p0), the last row can be removed. This leads into the matrices

K :=

H (s∗, p0) + (X∗)−1 Z∗ A (x∗, p0)

A (x∗, p0)T 0

 , (2.49)

S :=

dx∗dp T
dλ∗

dp

T

 , R :=

∇xpL (s∗, p0)T

∇pc (x∗, p0)T

 ; and
dz∗

dp

T

= − (X∗)−1 Z∗
dx∗

dp

T

. (2.50)

And, thus the system (2.40) becomes

KS = −R, (2.51)

where the matrices have the following sizes, K ∈ R(n+m)×(n+m), S ∈ R(n+m)×np , and

R ∈ R(n+m)×np . It follows that after solving for the matrix S, it is possible to update the

28
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

2.7 K AUG

Iner�a Correc�on
Itera�ve-
Refinement
System Scaling

Solution
dot_sens
Reduced-
Hessian assembly
Eigen-
decomposi�on
Cholesky-
Factoriza�on

Post Pr.
Jacobians
Hessians
Assemble KKT
Reordering
Generate CSR

ASL

MA57

MUMPS

PARDISO

Linear
Solvers

Modules

Models

Figure 2.1: k aug’s elements

vector of primal and equality multipliers s̃ ∈ R(n+m) such that s̃T :=
[
xT , λT

]
, for small

parametric perturbations ∆p := p− p0,

s̃ (p) = s̃∗ + S∆p, (2.52)

where s̃∗ := s̃ (p0), i.e. the optimal solution for p0.

Moreover, there might be instances in which only a subset of the solution is required.

We define the vectors r (p) = ET s̃ (p) and r∗ = ET s̃∗ where r (p) , r∗ ∈ Rnr ; and the matrix

E ∈ R(n+m)×nr , which consists of concatenated unit vectors with 1’s at the positions of

r (p) in s̃ (p), and zeros otherwise. Depending on the values of np and nr we can exploit

the following update cases:

• For np ≤ nr, application of (2.52) leads to

r (p) = r∗ + ETS∆p, (2.53)

which requires np backsolves.

CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

29

2.7 K AUG

• For np > nr an alternative update can be performed. Multiplying (2.52) on both sides

by ET the update becomes: r (p) = r∗− (ETK−1)R∆p. Defining Sr ∈ R(n+m)×nr and

symmetry of K allows the solution of the system:

KSr = E, (2.54)

and the update of r (p) can be written as:

r (p) = r∗ − STr R∆p, (2.55)

which now requires nr backsolves.

In our implementation k aug computes both S and Sr. To obtain derivative information,

k aug uses the AMPL Solver Library (ASL) [27], and a sparse-symmetric-indefinite linear

solver, like MUMPS 5.1.2 [28] for the factorization. After computing the sensitivity matrix

and the realization of ∆p, dot sens an auxiliary module of k aug , performs a computa-

tion similar to (2.53) or (2.55), as previously described.

Finally, if the set of active bounds A (x∗) changes with the perturbation ∆p for prob-

lem (2.52), then this sensitivity approach needs to be modified. One option is the path-

following approach developed in [18], which allows for more general sensitivity pertur-

bations with changing active sets and even weaker regularity conditions. However, this

requires the solution of sequences of Quadratic and Linear Programs (QPs and LPs) to

compute directional derivatives and active sets. The current implementation of k aug

does not implement a strategy for changing active sets; nevertheless future versions of it

will take into account this situation. Finally, we note that k aug is able to compute Re-

duced Hessians in a similar way to the sensitivity matrices. This is done with a variation

of the symmetric version of system (2.45).

30
CHAPTER 2. NONLINEAR OPTIMIZATION AND SENSITIVITY ANALYSIS

Chapter 3

`1−exact Penalty-Barrier Strategy for the

Failure of Constraint Qualifications

3.1 Introduction

The state of art tools to solve nonlinear programming problems are mature enough, so that

they can handle large-scale instances with reasonable performance. In order to achieve

this, these solvers require several assumptions on the properties of the problem, particu-

larly on the consistency of local linearizations (as explained in Section (2.2)). However, it is

often difficult to verify beforehand that the problem satisfies these assumptions. Moreover

it is possible to reach regions in which small perturbations lead to violations of them [21].

Examples of problems with inconsistent linearizations include problems with bilinear

terms, like gasoline blending and network-flow [29]; Mathematical Programs with Com-

plementarity Constraints (MPCCs) [6] and discretized forms of high-index Differential-

Algebraic Equation (DAE) systems [30].

Thus, several NLP algorithms have been designed to work under weaker assumptions

that attempt to overcome these degeneracies. [10], presented a method that works by

computing normal steps towards feasibility by solving a trust-region problem, and then

a tangential steps from solving a perturbed primal-dual system with an iterative linear

solver. At the limit, even if the linearizations of the constraints are inconsistent, the algo-

rithm might still converge to local stationary points. [31], incorporated a SQP strategy with

exact penalty of the constraint violation and a line-search. Provided that the Hessian of the

Lagrangian is positive definite, this strategy has inherent regularizing properties. Never-

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 31

3.2 BACKGROUND OF THE `1-EXACT PENALTY-BARRIER METHOD

theless, the algorithm must allocate considerable effort to finding appropriate values of the

penalty parameter.

In terms of the typical NLP solvers, IPOPT (Section 2.4)is one of the most competitive

solvers available for large-scale optimization. At its core it employs a filter line-search

with an interior-point method to converge to the solution. Regarding the loss of regularity,

IPOPT uses inertia controlling mechanisms (Algorithm 2.1), which will detect the regions

of degeneracy and attempt to regularize the problem. Nevertheless, these mechanisms

compete with several factors of the problem that limit their success, like ill-conditioning

and numerical instabilities. It has been shown by [8] and [9] that the degeneracies can be re-

moved directly at the linear algebra level by analyzing the pivot sequence and perturbing

or removing null rows of the Jacobian block of the KKT matrix. However, the effectiveness

of this strategy are linked to the tuning parameters of the sparse-linear algebra libraries.

In this chapter we present a strategy that combines exact penalty and the filter line-

search and barrier algorithms within IPOPT to solve problems with inconsistent constraint

linearizations. The fundamental penalty-barrier problem will be introduced alongside a

strategy to adjust the value of the penalty parameter. Finally, numerical results for degen-

erate problems and Mathematical Programs with Complementarity Constraints (MPCCs)

will be presented.

3.2 Background of the `1-exact penalty-barrier method

The interior-point method from section 2.4 is effective in problems that attain regularity

conditions, though it is common to commit modelling errors or formulate problems with

pathological constraint inconsistencies. Then, the theoretical convergence properties [22]

cannot be guaranteed. In particular, it is required to make assumptions on the consistency

of the linearizations of the set of constraints. For instance the linear Independence Con-

straint Qualification (LICQ from Definition 2) or the Mangasarian-Fromovitz Constraint

Qualification (MFCQ from Definition 5).

32
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.2 BACKGROUND OF THE `1-EXACT PENALTY-BARRIER METHOD

Inconsistencies of the linearizations that are localized to the neighborhood of certain

points are attempted to be regularized with modifications to the search directions com-

puted within IPOPT (this is Algorithm 2.1). However, it is possible that either the modi-

fications are not successful, or a drastic performance loss is attained; therefore, it is desir-

able to find alternative strategies to overcome the inconsistencies on the set of constraint

of problems.

In the spirit of regularizing the problem, it is desirable to formulate the problem such

that the resulting problem requires weaker assumptions (e.g. MFCQ) and is steps towards

the solution can be readily computed, even at points when (2.1) is degenerate. To start,

consider penalizing the `1-norm of the constraints in the barrier objective function, it fol-

lows that this results in an unconstrained penalty-barrier problem,

minimize
x∈Rn

f (x)− µj
n∑
i

lnx(i) + ρ ‖c (x)‖1 (3.1)

where ρ ∈ R1
≥0 is the penalty parameter. Note that even though the `1-norm has been used,

it is possible to formulate this problem with a number of nonsmooth `p norms. Neverthe-

less, problem (3.1) can be reformulated as an equivalent smooth constrained problem with

the addition of two vectors of penalty-variables p and n ∈ Rm, that is,

minimize
x∈Rn; p,n∈Rm

f (x)− µj
n∑
i

lnx(i) + ρ (p+ n)T e

subject to c (x)− p+ n = 0,

p, n ≥ 0,

(3.2)

where e denotes a vector of all ones of the appropriate dimension. The resulting problem

is feasible and satisfies the MFCQ at points in which p, n > 0; however it has a higher

dimensionality because of the addition of the penalty-variables. Moreover, there is the

issue of the value of ρ, which in practice is critical for the convergence of (3.2) to solutions

of (2.1).

Thus it might be more suitable for problems where the constraint linearizations are not

consistent. However, the value of ρ is critical, because under the MFCQ and the SOSC

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 33

3.2 BACKGROUND OF THE `1-EXACT PENALTY-BARRIER METHOD

(Definition 7) , if ρ ≥ ρ∗, then a stationary point of (3.2) is also a KKT point of (2.1). Note

that the value of ρ∗ is not known beforehand; furthermore a large initial guess value of

ρ might result in numerical difficulties of the solution strategy, so it might be desireable

to gradually increase its value until ρ ≥ ρ∗. It should be noted that the solution of this

problem will require the bounds of the penalty variables to be moved in an additional

barrier term in the objective.

Remarks

Linear damping terms for penalties. In the case when variables have have general upper

and lower bounds (i.e. xlb(i) ≤ x(i) ≤ xub(i), x
lb
(i) ∈ [−∞,∞) , xub(i) ∈ (−∞,∞], xlb(i) ≤ xub(i)), the

barrier in the objective will contain the non-negative slacks
(
x(i) − xlb(i)

)
and

(
xub(i) − x

(i)
)

,

then the logarithmic barrier objective function is written with these terms instead, i.e.

ϕµj (x) := f (x)− µj
∑
i∈Ilb

ln
(
x(i) − xlb(i)

)
− µj

∑
i∈Iub

ln
(
xub(i) − x

(i)
)

+ dmpµj (x) ,

where the term dmpµj (x) corresponds to the linear damping term. For variables with a

single bound (as opposed of having both bounds), the damping term is required, because

the barrier terms might become unbounded. These damping terms are defined in terms

of the sets of indices of variables with lower and upper bounds Ilb, and Iub respectively.

Then, the linear damping term is defined as follows

dmpµj (x) := κdµj
∑
Ilb\Iub

(
x(i) − xlbi

)
+ κdµj

∑
Iub\Ilb

(
xub(i) − x

(i)
)
, (3.3)

for some positive nonnegative parameter κd. For the penalty formulation, clearly the in-

dices of variables p, n are in the set Ilb \ Iub, since they do not have upper bounds. Thus

the linear damping term for p, n is required, and it is also multiplied by 1/ρ if the inverse

mode is used.

34
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.3 SOLUTION OF THE PENALTY-BARRIER PROBLEMS

3.3 Solution of the penalty-barrier problems

In the direct form of the penalty-barrier problem in (3.2), new barrier (and damping) terms

need to be created in the objective to take into account the bounds of the penalty-variables.

As a result, the set of primal-dual equations include additional penalty-variable multipli-

ers zp, zm ∈ Rm, i.e.,

g (x)− z +A (x)λ

ρ e− zp − λ

ρ e− zn + λ

c (x)− p+ n

XZe− µje

PZpe− µje

NZne− µje

= 0, (3.4)

where the additional diagonal matrices are defined for the penalty-variables P := diag (p),

N := diag (n), and penalty-bound multipliers Zp := diag (zp), Zn := diag (zn); with

p, n, zp, zn ≥ 0. Moreover, note that the notation of section 2.3 is also being used here,

i.e. g (x) := ∇f (x) and ∇c (x) := A (x). By applying Newton’s method, the linearization

of (3.4) yields the full-space primal-dual linear system,

Hk 0 0 Ak −I 0 0

0 0 0 −I 0 −I 0

0 0 0 I 0 0 −I

ATk −I I 0 0 0 0

Zk 0 0 0 Xk 0 0

0 Zp,k 0 0 0 Pk 0

0 0 Zn,k 0 0 0 Nk

dxk

dpk

dnk

dλk

dzk

d
zp
k

dznk

= −

gk − zk +Akλk

ρe− zp,k − λk

ρe− zn,k + λk

ck − pk + nk

XkZke− µje

PkZp,ke− µje

NkZn,ke− µje

. (3.5)

The resulting linear system is larger than the system of (2.20), and its conditioning depends

on the value of ρ indirectly through the values of the multipliers of the penalty-variables.

By performing pivoting on the bottom right blocks and then on the rows that correspond

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 35

3.3 SOLUTION OF THE PENALTY-BARRIER PROBLEMS

to the relationship between the penalty parameter and the multipliers, it is possible to

decouple some of the rows and create a symmetric matrix that is similar to the matrix

in (2.21). For this let the primal-dual term matrices for the penalty-variables be Σp,k :=

P−1
k Zp,k and Σn,k := N−1

k Zn,k, then the augmented primal-dual penalty linear system is,Wk Ak

ATk −Σ−1
p,k − Σ−1

n,k

dxk
dλk

 =

−

 gk − µjX−1
k e+Akλk

ck − pk + nk + Z−1
p,k [ρPk − µje] + Z−1

n,k [−ρNk + µje]− λk [Σp,k + Σn,k]

 , (3.6)

and the remaining search directions are defined in terms of λ+
k := λk + dλk as follows,

dpk = Z−1
p,k

[
µje+ Pkλ

+
k − ρpk

]
, dnk = Z−1

n,k

[
µje−Nkλ

+
k − ρnk

]
,

d
zp
k = µjP

−1
k e− zp,k − Σp,kd

p
k, dznk = µjN

−1
k e− zn,k − Σn,kd

n
k .

(3.7)

The linear system of (3.6) is convenient due to its similar nonzero structure to (2.21). Fur-

thermore, it can be inferred that if the MFCQ hold for problem (2.1), as pk, nk → 0, (3.6)

reduces itself to the same terms of system (2.21), on the other hand, if pk, nk > 0, the lower-

right block of the matrix has a similar effect as the δc term in system (2.21). Thus, steps on

(3.6) can be taken as long as the problem remains infeasible, and regularization (δ) would

only be needed if the Newton step is in a direction of negative curvature.

Nevertheless, as feasible points are approached, the multipliers values will grow at the

same rate as the values of the penalty parameter; and there is the possibility of having

an unbounded penalty parameter if the MFCQ does not hold. Then every other quantity

that is either directly multiplied by the penalty parameter or involves the multipliers will

cause numerical difficulties. Therefore, an alternative strategy is to divide the penalty-

barrier problem by ρwith the expectation of attaining better numerical properties. In other

36
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.3 SOLUTION OF THE PENALTY-BARRIER PROBLEMS

words,

minimize
x∈Rn; p,n∈Rm

1

ρ

[
f (x)− µj

n∑
i

lnx(i)

]
+ (p+ n)T e

subject to c (x)− p+ n = 0,

p, n ≥ 0.

(3.8)

This form of the penalty-barrier problem was designated as inverse. The idea of this form is

to reduce the effects of the link between multipliers and penalty parameter. At the limit if

the penalty becomes unbounded, IPOPT will solve for a stationary point (not necessarily

feasible) of problem (2.1) without bounds on x. Otherwise if the problem converges to

a stationary point for which the penalty-variables are zero and the penalty-parameter is

bounded (KKT point of (2.1)). This effect can be seen in the primal-dual system of problem,

ρ−1 [g (x)− z] +Aλ

e− zp − λ

e− zn + λ

c (x)− p+ n

XZe− µje

PZpe− µje

NZne− µje

= 0, (3.9)

where the bracketed term in the first equation vanishes as ρ → ∞. The augmented lin-

ear system will also experience a similar effects on the KKT matrix and right-hand-side.

For the inverse form of the penalty-barrier problem, let the augmented Hessian matrix be

W k := ρ−1
[
∇2
xxf (xk) + Σk

]
+
∑n

i ∇2
xxci (xk)λ

(i)
k , so the Newton step on the set of primal-

dual equations is given as follows,W ρ,k Ak

ATk −Σ−1
p,k − Σ−1

n,k

dxk
dλk

 =

−

 ρ−1
[
gk − µjX−1

k e
]

+Akλk

ck − pk + nk + Z−1
p,k [Pk − µje] + Z−1

n,k [−Nk + µje]− λk [Σp,k + Σn,k]

 , (3.10)

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 37

3.4 PENALTY UPDATE

in which the structure remains almost the same as (3.6); however W k =
∑n

i ∇2
xxci (xk)λ

(i)
k

as ρ→∞.

dpk = Z−1
p,k

[
µje+ Pkλ

+
k − pk

]
, dnk = Z−1

n,k

[
µje−Nkλ

+
k − nk

]
,

d
zp
k = µjP

−1
k e− zp,k − Σp,kd

p
k, dznk = µjN

−1
k e− zn,k − Σn,kd

n
k ,

(3.11)

and

dzk = µjX
−1
k e− zk − Σkd

x
k. (3.12)

Remarks

LICQ of penalty-barrier problem. Consider a point x for which c (x) 6= 0 (i.e. p, n >

0), then the LICQ for problem (3.2)(or (3.8)) holds. To see this, it can be noted that the

gradients of the constraints of (3.2)(or (3.8)) is given as follows
A (x) EA(x)

−I 0

I 0

 . (3.13)

In this matrixEA(x) is always full-rank, and even ifA (x) is rank deficient, the whole matrix

remains full column rank.

Inertia of penalty-barrier KKT matrices. Despite the linear independence of the gradients

of the constraints in the penalty-barrier problems, it might be the case in which the inertia

of the associated KKT matrices is not correct (i.e. (n,m, 0)). Thus, the parameters δ, δc ∈ R≥0

are still necessary to perturb the KKT matrix. Moreover, this perturbation is done in the

same way of the inertia correction algorithm 2.1.

3.4 Penalty update

The penalty parameter ρ plays a critical role in this strategy as it characterizes a solution

and it defines the search direction. There will be a compromise between the quality of the

38
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.4 PENALTY UPDATE

solution and the numerical performance of the algorithm, so an appropriate update rule

must be selected. On the other hand, it is difficult to develop generalized update rules

for all kinds of problems, so a combination between heuristics and analytical rules will be

used.

The methodology of [32] was adapted to the form of the computed search directions in

this work. First, at step k consider a linearized model of the infeasibility of the original

problem,

mk (dx) :=
∥∥ATk dx + ck

∥∥
1
, (3.14)

the strategy is based on selecting a value of the penalty parameter so the predicted reduc-

tion of a quadratic model of the penalty-barrier objective function for a search direction dx,

is commensurate to the current norm of the infeasibility. For this the quadratic model of

the penalty-barrier objective function is given by,

qρ,k (dx) := ϕµj (xk) +∇ϕµj (xk)
T dx + dxTWkd

x + ρ mk (dx) , (3.15)

so that the predicted reduction quantified with the quadratic model function in terms of

a search direction dxk , for a particular search direction, i.e. predρ,k (d) := qρ,k (0) − qρ,k (d).

Thus, in order for a penalty parameter to be acceptable, the reduction has to be propor-

tional to the current infeasibility; in other words,

predρ,k (dxk) ≥ ρκρ ‖ck‖1 , (3.16)

for some scalar κρ ∈ (0, 1). This rule can be combined with the relations for the linearized

KKT conditions previously described. In particular, using the fourth row of (3.5) yields a

lower bound on the penalty parameter,

ρ ≥
∇ϕ (xk)

T dxk +
1

2
dxTk Wkd

x
k

(1− κρ) ‖ck‖1 −
(
p+
k + n+

k

)T
e
, (3.17)

with the vectors p+
k = pk+dpk and n+

k = nk+dnk . Given this result, an update of the penalty

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 39

3.5 `1-IPOPT PHASE ALGORITHM

parameter can be done by checking if ρ ≥ ρtrial and setting ρ = ρtrial + ερ otherwise, where

ρtrial :=
∇ϕ (xk)

T dxk +
γρ
2
dxTk Wkd

x
k

(1− κρ) ‖ck‖ −
(
p+
k + n+

k

)T
e
. (3.18)

Note that the parameter γρ ∈ {0, 1} was added so that whenever dxTk Wkd
x
k < 0, γρ = 0

otherwise γρ = 1.

This rule defines the update of the penalty parameter based on the current local infor-

mation. However, it is possible that for some problems the rate at which the penalty is

updated is not large enough. Therefore, an additional heuristic was imposed in order to

improve the rate of growth of the penalty parameter; and this is to double its value if there is

not sufficient progress towards feasibility measured by using the denominator of equation

(3.17),

ρ =

2 ρ if (1− κρ) ‖ck‖ −
(
p+
k + n+

k

)T
e < 0

unchanged otherwise
. (3.19)

This update will be checked whenever (3.18) is satisfied. Moreover, it was found that it is

desirable to limit this kind of update to certain range of values of the penalty parameter to

ensure numerical stability of the factorizations. Therefore this particular heuristic is only

performed if ρ ≤ ρ, which is determined by the user.

3.5 `1-IPOPT Phase algorithm

The `1-penalty strategies were implemented as an alternative to the feasibility restoration

algorithm of IPOPT. To enable this, it was required to change some of the modules within

IPOPT, mostly to include the effect the penalty in several of the quantities required during

the solution algorithm. Moreover, several options were included to change the behaviour

of the penalty updates.

In this section we discuss some of the highlights of the changes within the IPOPT frame-

work.

40
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.5 `1-IPOPT PHASE ALGORITHM

3.5.1 Convergence test

The overall NLP error in IPOPT is given in terms of the infinity norms of the residuals

of dual infeasibility (stationarity), primal infeasibility, and complementarity. For the `1-

penalty-barrier function; the residuals also contain the penalty-variables and their respec-

tive multipliers, i.e.

du inf :=

∥∥∥∥∥∥∥∥∥

g (x) +A (x)λ− z

ρ− e− zp

ρ+ e− zn

∥∥∥∥∥∥∥∥∥
∞

, pr inf := ‖c (x)− p+ n‖∞ ,

cmpl infµj :=

∥∥∥∥∥∥∥∥∥

XZe− µje = 0

PZpe− µje = 0

NZne− µje = 0

∥∥∥∥∥∥∥∥∥
∞

,

(3.20)

then the overall NLP error is based on the maximum value of scaled versions of these

quantities,

Eµj (x, λ, z, p, zp, n, zn) := max

{
du inf
sd

,pr inf,
cmpl infµj

sc

}
, (3.21)

and the scaling factors sd, sc are defined below,

sd = max

{
smax,

‖λ‖1 + ‖z‖1 + ‖zp‖1 + ‖zn‖1
3m+ n

}
/smax, (3.22)

sc = max

{
smax,

‖z‖1 + ‖zp‖1 + ‖zn‖
n+ 2m

}
/smax. (3.23)

for some smax ≥ 1. With these quantities, convergence for a particular barrier problem is

attained whenever the overall NLP error is below a factor of the barrier parameter, in other

words

Eµj (xk, λk, zk, pk, zp,k, nk, zn,k) ≤ κεµj , (3.24)

where κε is a positive constant. If such test is true, then the barrier parameter must be

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 41

3.5 `1-IPOPT PHASE ALGORITHM

decreased. Moreover, to determine convergence of the overall NLP problem, the test

E0 (xk, λk, zk, pk, zp,k, nk, zn,k) ≤ εtol has to be executed.

3.5.2 Filter line-search

As mentioned in the section 2.4.1 Newton based solvers attain fast convergence at the

neighborhood of the solution. However, starting in these neighborhoods is typically not

the case, thus an algorithm like the filter line-search is required. In this algorithm, the

quality of the step sizes is determined by evaluating the properties of linearizations of the

barrier function, and its acceptability to the filter set. It should be noted that an alternative

strategy to this is using a merit function. This scheme was used commonly in several non-

linear optimization strategies, and attempts to achieve a measure of combined optimality

and feasibility. Moreover, the typical merit function resembles the `1-penalty-barrier func-

tion from this work.

In the sense of the interior point method used here, the bounds of the penalty-variables p

and n need to be part of an additional barrier term, thus this leads to the strict1 `1-penalty-

barrier function, i.e.

Φρ
µj (x, p, n) :=

[
f (x)− µj

n∑
i

lnx(i)

]
+ ρ (p+ n)T e− µj

m∑
i

(
ln p(i) + lnn(i)

)
. (3.25)

Moreover, throughout the search the equality constraints in (3.2) are not necessarily equal

to zero. Thus, the measure of the penalty-infeasibility can be given as

Θ (x, p, n) := ‖c (x) + p− n‖ (3.26)

Thus, the filter for the `1-penalty-barrier phase is defined in terms of these quantities,

Fk ⊆
{(

Θk,Φ
ρ
µj ,k

)
∈ R2 | Θk ≥ Θmax

}
. (3.27)

With this definition and using definitions of αmaxk for the variables p and n as in (2.25),

the Filter line-search Algorithm 2.2 remains unchanged; except that now it depends on
1strict in the sense of having the logarithmic barrier terms for p and n

42
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.5 `1-IPOPT PHASE ALGORITHM

the value of ρ. This in turn implies that in the same way as the barrier parameter update

(µj), the filter need to be reset whenever a new value of ρ is assumed. This is necessary to

maintain the convergence properties of the Filter line-search as discussed in [22].

3.5.3 `1-exact penalty-barrier IPOPT algorithm

The new algorithm adds steps for the computations of the new penalty parameter in step

`A.5 and the subsequent update `A.9. Also; whenever the penalty parameter changes, it

also resets the filter.

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 43

3.5 `1-IPOPT PHASE ALGORITHM

Data: Starting point (x0, λ0, z0, p0, zp,0, n0, zn,0) with x0, z0, p0, zp,0, n0, zn,0 > 0;

µ0 > 0, ρ0 > 0, and δlastw ← 0; same constants as Alg. 2.3, κρ, ρ > 0

`A.1 Initialize. Initialize the filter F0, and τ0. Set iteration counters j ← 0, k ← 0.

status← NotConverged ;

while status = NotConverged do

`A.2 Check convergence for the overall problem

if E0 (xk, λk, zk, pk, zp,k, nk, zn,k) ≤ εtol then status← Converged;

`A.3 Check convergence for the barrier problem

if Eµj (xk, λk, zk, pk, zp,k, nk, zn,k) ≤ κεµj then

Update µj+1; set j ← j + 1; Re-initialize filter Fk with (3.27) ;

`A.4 Compute search direction
Compute

(
dxk, d

λ
k , d

z
k, d

p
k, d

zp
k , d

n
k , d

zn
k

)
from (3.6) or (3.10) accordingly, using

Algorithm 2.1 for some δ, δc ;

`A.5 Compute penalty parameter trial. I.e. ρtrial using (3.18) ;

`A.6 Backtracking line search

Compute step-size αk,l using Algorithm 2.2 ;

`A.7 Accept the trial point
αk ← αk,l ; Compute multiplier estimates (λk+1, zk+1, zp,k+1, zn,k+1)

`A.8 Augment filter
if augmentFilter = true then Update the filter using (2.30) (With p, n

quantities);

else Fk+1 := Fk;

`A.9 Update the penalty parameter

if ρ ≤ ρtrial then ρ← ρtrial; Re-initialize Fk with (3.27);

else if ρ ≤ ρ then Use (3.19) accordingly; Re-initialize Fk with (3.27);

;

k ← k + 1 ;

end
Algorithm 3.1: `1-IPOPT algorithm

44
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.6 NUMERICAL RESULTS

Remarks

Global convergence properties For a fixed value of the penalty parameter, the convergence

of this problem should follow from the proofs in section 4.3 of [22]. In this work it is

assumed boundedness and continuity of the functions, uniform positive definiteness of the

Reduced Hessian; and a lower bound on the minimum singular value of the matrix and

linear independence of columns of the matrix of constraint gradients. If this is satisfied,

then there exists a sequence of iterates that will eventually generate iterates that are feasible

and optimal. Moreover, this assumes that the filter is reset as µj is changed. By analogy

the same should be apply for ρ0.

3.6 Numerical Results

The `1–exact penalty strategies implemented within IPOPT and were compared against

the version of IPOPT as described in Section 2.4, that was designated as vanilla. For this,

the main `1-penalty strategies were the direct from eq. (3.2) and the inverse from eq. (3.8)

forms of the penalty-barrier objective function. Each of these strategies were tested with

different penalty parameter update rules, these include, quadratic (normal), linear, pure

Hessian (no Σ term in the augmented Hessian), and fixed update rules. In summary, the

`1-penalty phase was set-up to use 8 different kinds of update of the penalty parameter

and were tested against the vanilla IPOPT. The `1-penalty phase update modes were:

• direct-quadratic (ρ)

• direct-quadratic-no-Σk

• direct-linear (ρL, γρ = 0)

• direct-fixed (ρ0)

• inverse-quadratic (1/ρ)

• inverse-quadratic-no-Σk

• inverse-linear (1/ρL, γρ)

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 45

3.6 NUMERICAL RESULTS

• inverse-fixed (1/ρ0)

Rather than attempting to show that the proposed strategies outperform the original ver-

sion of IPOPT, the objective was to show the effect on the robustness of the algorithm.

All of the used IPOPT libraries were compiled with GCC and GFortran 7.4.0. For the

BLAS and LAPACK routines, the sequential version of the Intel MKL library v2018.1-163

[33] was used alongside MA57 [34] as the linear solver. All the relevant options for IPOPT

were set to their default values and all of the problems were compiled using AMPL [35] in

a Linux machine with a Intel(R) Xeon(R) E5-2440 CPU.

The first numerical case study is based on the CUTEr [36] set of problems. In this par-

ticular test, since it has been reported that IPOPT performs competitively, an augmented

version of IPOPT that switches from the regular to the `1-penalty strategy was tested. For

this, the regular IPOPT algorithm is applied at the beginning, and then it switches to the

`1-penalty strategy only after the first feasibility restoration is triggered. This provides a ref-

erence study in which the posedness of the problem is not known beforehand. To compare

the strategies, performance plots were constructed. The plots show the probability of a

particular strategy’s cumulative performance ratio based on iterations, i.e.

P (τ) =
1

N
size

{
p ∈ Problems :

(
ip,s

min {ip,s : s ∈ strategy}
≤ τ

)}
,

being at least τ of the best possible ratio [Dolanmore].

The results for the original CUTEr set are shown on Figure 3.1. From these results,

it can be noted that some of the `1-penalty strategies produce an increase of robustness,

except for the fixed penalty strategies, which performs worse than the vanilla strategy.

This effect can be associated with the capability of the `1-penalty strategies to solve some

problems like steenbrg and steenbrc, in which IPOPT detects degenerate Jacobians. As a

consequence vanilla IPOPT sets δc to a nonzero value, however several multipliers of the

constraints grow quickly to large values and then solver stops at feasible points with a

failure in the computation of the line-search step. The penalty strategies, on the other

hand; are able to compute steps that converge to stationary points consistently. The results

46
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.6 NUMERICAL RESULTS

of the original CUTEr set show that the `1-penalty strategies require more iterations as

opposed to the vanilla solver. Nevertheless the `1-penalty strategies can solve more than

99% of the problems.

1 20 40 60 80 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

P(
 ra

tio

) Strategy:
1/ (no x)
1/ (Linear)
(Linear)
0(Fixed)

1/

(no x)
1/ 0(Fixed)
vanilla_ipopt

Figure 3.1: Performance profiles for unmodified CUTEr test set

To further test the effect of degeneracies, a modified CUTEr set as proposed in [10] was

also tested. This can be constructed by splitting a single constraint from each one of the

base problems into two, which results in a feasible but degenerate set of problems, i.e. a

base constraint c1 (x) = 0 is replaced by,

c1 (x) = 0 , and c1 (x)− c2
1 (x) = 0. (3.28)

Then the modified CUTEr set was tested for all the strategies. For the following case

studies, the `1–exact penalty strategies were used immediately from the start of the op-

timization rather than engaging them after feasibility restoration is triggered. This is be-

cause the problems will be inconsistent everywhere and it will ensure that the advantages

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 47

3.6 NUMERICAL RESULTS

of the regularizing effect are fully exploited during the execution of the optimization algo-

rithm. Additionally, because the constraints (3.28) were selected and appended arbitrarily,

the positions of the variables and constraints at the internal level of the problems were

permuted to diminish the potential effects during the symbolic factorization stages within

IPOPT by using AMPL’s nl writer options. The results for the modified CUTEr unper-

muted and permuted (problems for which the order of the constraints and has been shuf-

fled) set are shown on Figures 3.2 and 3.3 respectively. Both plots show consistent results

when the strategies are compared among each other. The permuted tests show a marginal

increase of robustness of the `1-penalty strategies. On the other hand, both fixed penalty

approaches perform worse than any of the other strategies including vanilla. Moreover, the

direct (ρ, ρL and ρΣx) strategies are able to solve more problems that any other solver in the

tests, particularly the direct strategy with the linear update rule of the penalty parameter.

Approximately 95% of the problems can be solved with this strategy. Some example prob-

lems that fail with the vanilla approach but are solved with the direct penalty approach

include hs047, ssnlbeam, eigenc2 and the brainpc-x problems. At the same time, problems

like qpnboei1, steenbrf and gridnetc converge to feasible points at which the penalty param-

eter grows indefinitely with the direct penalty approaches; however, this is not experienced

by the inverse approaches, which are able to solve these problems to an acceptable level.

The results given by the modified CUTEr set suggest that redundant constraints can be

handled, as long as the `1–exact penalty strategy is used from the start. However, there are

situations in which the degeneracies arise as result of an intrinsic property of the problem

to be solved and they might not be captured by the previous test. With this in mind, a set

of Mathematical Programs with Equilibrium constraints (MPEC) was tested [37].

An MPEC is an optimization problem that involves variational inequalities, and they ap-

pear in several kinds of applications, most notably bilevel optimization problems. MPECs

can be reformulated into a Mathematical Program with Complementarity Constraints (MPCC),

48
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.6 NUMERICAL RESULTS

1 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P(
 ra

tio

) Strategy:
1/ (no x)
1/ (Linear)
(Linear)
0(Fixed)

1/

(no x)
1/ 0(Fixed)
vanilla_ipopt

Figure 3.2: Performance profiles for CUTEr test set with a degenerate constraint

MPCC : RegEq (0) :

min
x,y,z

f (x, y, z) min
x,y,z

f (x, y, z)

s.t. h (x, y, z) = 0, s.t. h (x, y, z) = 0,

g (x, y, z) ≥ 0, ⇐⇒ g (x, y, z) ≥ 0,

0 ≤ xi ⊥ yi ≥ 0 ∀i, xiyi = 0 ∀i,

x ≥ 0

y ≥ 0

(3.29)

where the last constraint of the MPCC implies that xi = 0 or yi = 0 or both ∀i, and

x ≥ 0, y ≥ 0. This kind of problem does not satisfy constraint qualifications, e.g. MFCQ at

all feasible points, so the corresponding multipliers might become unbounded [38]. This

creates a particularly difficult situation for standard NLP solvers. Under several assump-

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 49

3.6 NUMERICAL RESULTS

1 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P(

 ra
tio

) Strategy:

1/ (no x)
1/ (Linear)
(Linear)
0(Fixed)

1/

(no x)
1/ 0(Fixed)
vanilla_ipopt

Figure 3.3: Performance profiles for permuted CUTEr test set with a degenerate constraint

tions [6], the MPCCs can be attempted to be solved as a reformulated NLP, e.g. using

equality constraints to replace the complementarities and then coupling them with a re-

laxation parameter ε (RegEq(ε)), or by penalizing the constraint in the objective function.

Still, as the number of complementarities increases, the capability to solve these problems

becomes hindered. Therefore, the algorithms presented here might improve the chances of

dealing with difficult instances of MPCCs as they typically display improved robustness.

The problems from the MacMPEC library [ref] were used. For this, a reformulation of the

complementarity constraints with equalities without relaxation (RegEq(0)) was tested with

all the `1-penalty strategies previously described, starting directly into `1-penalty mode;

and then, performance profiles were constructed in Figure 3.4. In this test set, the vanilla

version of the algorithm is at the bottom in terms of robustness, then it is followed by

the fixed penalty strategies, which do not have an active penalty update rule, therefore

50
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.6 NUMERICAL RESULTS

hindering their performance.

Furthermore, this test library shows that both the inverse quadratic and linear update of

the penalty parameter solve the most problems. On the other hand, the direct strategies

result in large values of the penalty parameter and thus the values of the multipliers of

bounds and equality constraints are also large, then the line-search experiences difficulties

at almost feasible points. This situation is more favorable in the inverse mode, which has

values close to 1 for the equality multipliers; however, some problems experience similar

behavior with the multipliers of the bounds and the algorithm will eventually fail. Exam-

ples of this last situation is found in problems like pack-comp1c-16 and liswet1-inv-200. The

1 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P(
 ra

tio

) Strategy:
1/ (no x)
1/ (Linear)
(Linear)
0(Fixed)

1/

(no x)
1/ 0(Fixed)
vanilla_ipopt

Figure 3.4: Performance profiles for Mathematical Programs with Equilibrium Constraints

(MacMPEC) test set

results from the MacMPEC tests illustrate some of the limitations in terms of the numerical

issues that arise from the violation of the MFCQ.

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 51

3.6 NUMERICAL RESULTS

Finally, motivated by the results of the structured strategies presented in [9], and [8],

two blending problems were also solved. The premise of a blending problem is that given

a set of feeds with several qualifications, a blend with a set of specifications that minimizes

cost has to be created. This problem is an instance of the pooling problem which has more

complex forms and usually involve integer variables. A complication with the blending

problem formulation is that it involves bilinear terms that at certain points, creates a rank-

deficient Jacobian when the flows are zero. For instance, for a set of feed sources i ∈ I ,

tanks j ∈ J , products k ∈ K, and time horizon t ∈ {1, ..., NT }; the mass and the qual-

ity(property) balance is written as follows,

∑
k∈K

st,jk −
∑
i ∈I

st,ij + vt+1,j = vt,j , t ∈ {1, ..., NT } , j ∈ J (3.30)

∑
k∈K

qt,jst,jk −
∑
i∈I

qt,ist,ij + qt+1,jvt+1,j = qt,jvt,j , t ∈ {1, ..., NT } , j ∈ J, (3.31)

where st,lm represents the stream flow between nodes l and m (e.g. tank j to product

stream m), qt,j and vt,j are the stream qualities and tank inventories at period t. Points at

which the flow becomes zero are typically degenerate.

IPOPT and the `1-penalty strategies were tested in two instances of this kind of blending

problem. The results for the blending problems are shown on Tables 3.1 and 3.2. For both

problems it can be concluded that vanilla IPOPT is not as competitive as the rest of the `1-

penalty strategies because for no stationary point is found for either problem. Moreover,

the default regularization (δ based) allows to compute search directions, but the progress

towards stationary points is rather slow as the regularized Newton steps no longer attain

super-linear convergence. For these problems the direct penalty with either quadratic and

linear update rule require fewer iterations overall. The strategies with the fixed penalty

parameter can solve the problems but they require more iterations than the other strategies.

52
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

3.6 NUMERICAL RESULTS

Strategy Iter CPUs Objective Status

vanilla 18519 182 -5.22E+02 restoration failure

ρ 135 1.38 -5.22E+02 optimal

ρΣx 135 1.37 -5.22E+02 acceptable

ρ0 138 1.63 -5.22E+02 optimal

ρL 135 1.36 -5.22E+02 optimal

1/ρ 677 8.62 -5.18E+02 optimal

1/ρΣx 677 8.72 -5.18E+02 acceptable

1/ρ0 348 4.19 -5.18E+02 acceptable

1/ρL 677 8.61 -5.18E+02 optimal

Table 3.1: Results for Blend 1 (SP-RCSA) n =827, m =766

Strategy Iterations CPUs Objective Status

vanilla 37232 4460 -1.09E+02 restoration failure

ρ 1239 215 -8.96E+01 acceptable

ρΣx 1239 215 -8.96E+01 optimal

ρ0 18685 4260 -1.08E+02 acceptable

ρL 1239 215 -8.96E+01 acceptable

1/ρ 2512 310 -6.19E+01 acceptable

1/ρΣx 2512 310 -6.19E+01 acceptable

1/ρ0 2492 293 -1.07E+02 acceptable

1/ρL 2512 305 -6.19E+01 acceptable

Table 3.2: Results Blend 2 (SP-GRB) n =5142, m =4668

CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT
QUALIFICATIONS 53

3.7 CONCLUSION

3.7 Conclusion

Ill-posed problems lack regularity of local linearizations of the set of constraints. This

situation curtails the performance and robustness of state-of-the-art solvers like IPOPT.

The proposed `1-exact penalty-barrier approach has the advantage of satisfying the LICQ

until feasible points are reached. Moreover, combined with the update rule, it is possible

enhance the robustness properties of IPOPT.

Numerical testing has revealed that there is an increase of performance, though it is pos-

sible to construct problems with pathological behaviour that can lead to failures. Finally,

MPCCs were solved directly as NLP without introducing additional strategies to handle

the complementarities. This demonstrated that the presented algorithm can be useful for

degenerate problems.

54
CHAPTER 3. `1−EXACT PENALTY-BARRIER STRATEGY FOR THE FAILURE OF CONSTRAINT

QUALIFICATIONS

Chapter 4

Nonlinear Model Predictive Control and

State-Estimation

4.1 Introduction

In Chemical Engineering process models can typically be constructed from fundamental

understanding of the physics of the system of interest. This is what is commonly referred

as first-principles. Their importance is reflected in the fact that there are several useful

applications that combine these models and optimization, e.g. process design [39]. More-

over, transitioning to models that take into account the dynamic details of the processes

is key for predicting the behaviour of the process, and therefore opening the possibility of

using optimization to determine the best operational actions.

The availability of dynamic models comes with an increase of complexity, in terms of

the theoretical and practical aspects that have to be consider to handle them. Typically,

models are described by combinations of Differential and Algebraic Equations (DAE), for

instance the following semi-explicit DAE model

dζ

dt
= F (ζ, χ) ,

0 = G (ζ, χ) ,

ζ (0) = ζ0,

(4.1)

where two vectors of variables are considered, differential ζ ∈ Rnζ and algebraic χ ∈

Rnχ . Moreover, the right-hand-sides involved are the functions F : Rnζ × Rnχ → Rnζ

and G : Rnζ × Rnχ → Rnχ ; where it is assumed that ∇χG (ζ, χ) is nonsingular for some

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

55

4.2 DIRECT TRANSCRIPTION

ζ contained in an open set Nζ ⊂ Rnζ . As a consequence of embedding a model in the

form of (4.1) into an optimization problem, the continuous nature of the DAE model will

result into an infinite dimensional problem. Instead of using a variational approach, for

the rest of this work we consider discretizing the time domain. For this chapter we first

present a full-discretization approach in which all of the variables are considered, then the

background information for Model Predictive Control and State-Estimation, and finally an

implementation of an unified framework for them.

4.2 Direct Transcription

It is possible to discretize system (4.1) by approximating the variable vectors ζ and χ as

polynomials at specific points in time or collocation points. Consider partitioning the time

domain into Nf finite elements and Nc collocation points, additionally for a given finite

element i the Lagrange interpolating polynomial basis for the differential variable ζ has

the form

ζ (t) =

Nc∑
j=0

lj (τ) ζij , lj (τ) =

Nc∏
k=0,6=j

(τ − τk)
(τj − τk)

, t ∈ [ti−1, ti] , (4.2)

for some τ ∈ [0, 1], and collocation points τ0 = 0, τj < τj+1 for j = 0, . . . , Nc− 1. Assuming

that the polynomial approximation is exact at the j-th collocation points, then ζ (tij) = ζij

for some tij = ti−1 + τjh; moreover considering τj to have the value of the roots of an Nc-

th order polynomial, the integration of the differential term becomes exact. Furthermore,

since similar ideas can be used for the algebraic variable χ, then the DAE system can be

represented as follows,

56
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.3 MOVING HORIZON ESTIMATION

Nc∑
j=0

ζij
dlj (τk)

dτ
= F (ζik, χik) i ∈ {1, . . . , Nf} , k ∈ {1, . . . , Nc} ,

0 = G (ζik, χik) i ∈ {1, . . . , Nf} , k ∈ {1, . . . , Nc} ,

ζi+1,0 =

Nc∑
j=0

lj (1) ζij i ∈ {1, . . . , Nf − 1} ,

ζ1,0 = ζ0.

(4.3)

It can be noted the system of equations of (4.3) is an algebraic approximation of the original

DAE system, moreover optimization case studies with such systems embedded can now

be handled with traditional NLP solvers. Moreover, we present an optimal control strategy

that uses a DAE model as the basis for the formulation of NLPs that estimate the current

estate and control action for a process. To simplify notation though the rest of this Chapter,

we will consider that the discretized DAE (4.3) can be represented as a discrete-time system,

and the set of differential and algebraic variables are condensed into a single vector of

states. The first issue that will be covered is State-Estimation.

4.3 Moving Horizon Estimation

Dynamic processes rarely have states that can be measured directly. In reality, most of the

systems of interest only generate a set of measurements over a period of time. Thus, the

first step towards the creation of an optimal control strategy is the determination of the

states of the system given a set of measurements.

Consider a discrete-time model of a process,

x (k + 1) = f (x (k) , w (k)) ,

y (k) = h (z (k)) + v (k) ,
(4.4)

where the maps are the process model f : Rnx × Rnw → Rnx , and the measurement func-

tion h : Rn → Rny . At some time k ∈ Z≥0, the model generates measurements in the form

of a vector y ∈ Rny , for some unknown state and disturbance vectors x ∈ Rnx and w ∈ Rnw

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

57

4.3 MOVING HORIZON ESTIMATION

respectively. Moreover, it is considered that the measurements have noise, represented by

the vector v ∈ Rny . Assuming that both the model and the set of measurements is known,

it is natural to create a problem that minimizes the discrepancies between them; in other

words fits the data to the model. This is the primary idea of the full-information estimator,

which attempts to minimize the objective function in terms of the disturbance and noise;

V full
N

(
z0|N ,ωN

)
:= `x

(
z0|N − z0

)
+

N∑
i=0

`i
(
ωi|N , νi|N

)
(4.5)

for some initial and i−th stage cost continuous functions `x : Rnx → R and `i : Rnw×Rny →

R respectively; and initial state z0 ∈ X, where X is an invariant set. It can be noted that

this objective is formulated for N stages of time, starting from 0; where the variables of the

problem z ∈ Rnx , ω ∈ Rnw , and ν ∈ Rnv are used in place of the variables of the system

x,w and v respectively. Furthermore, the bold symbols represent a sequence of vectors,

e.g. w := {w (k)} for some k ∈ Z≥0. Combining the objective and model (4.4), yields the

optimization problem for the full-information estimator of size N

min
z0|N ,ωN

V full
N

(
z0|N ,ωN

)
:= `x

(
z0|N − z0

)
+

N∑
i=0

`i
(
ωi|N , νi|N

)
s.t. zl+1|N = f

(
zl|N , ωl|N

)
l ∈ {0, . . . , N} ,

y (l) = h
(
zl|N

)
+ νl|N l ∈ {0, . . . , N} ,

zl|N ∈ X l ∈ {0, . . . , N} ,

ωl|N ∈W, l ∈ {0, . . . , N} ,

(4.6)

where W is an invariant set for the disturbances. The name full-information reflects the fact

that the problem takes the full sequence of measurements from time k = 0. Though this

problem grows in size as k increases to the point of becoming impractical, it is conceptu-

ally important, because it sets the foundation for the stability properties of more tractable

estimators; i.e. the Moving Horizon Estimator (MHE).

The stability of the full-information estimator primarily assumes that the disturbances

and noise sequences satisfy a property of convergence. Then it is possible to show that the

58
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.3 MOVING HORIZON ESTIMATION

state estimate will approach to the real state asymptotically.

To discuss these properties, it is necessary to consider functions that have special prop-

erties as they are sampled over time.

Definition 11 (K,K∞ and KL functions). A function α : R≥0 → R≥0 is a K function if it is

continuous, strictly increasing, and zero when evaluated at zero. A function α : R≥0 → R≥0 is

a K∞ function if it is class K and it grows unboundedly, i.e. α (s) → ∞ as s → ∞. A function

β : R≥0 × Z≥0 → R≥0 is a KL function if it is continuous, and β (·, k) is a K function for every

k ∈ Z≥0 and for every s ≥ 0, β (s, ·) is nonincreasing and limk→∞ β (s, k) = 0.

These functions will be later useful to define the properties of the optimal control scheme

in the next section. Furthermore, the following notation will be used. The sup norm over

a sequence ‖w‖ = sup {‖w (k)‖ | k ∈ Z≥0}; and h (x) := {h (x (k))} for some k ∈ Z≥0.

The following analysis of stability for the full-information problem has been adapted

from [40]. To start the description of the properties of the system, it is required to assume

that perturbations to the system result in significant responses. This is related to the ability

to determine current and future sequences of states after the occurrence of given state, in

other words to assess the detectability of the system. There is not an unified definition of

detectability across the literature. In this work it is assumed that two different sequences of

states of the system are the result of the discrepancies of disturbances and noise besides

their initial state, whose influence decays over time. This is denominated as the incremen-

tally Input/Output-to-State Stability.

Definition 12 (Incrementally Input/Output-to-State Stability (i-IOSS)). Consider the system

(4.4); two initial states z1 and z2, and two disturbance sequences w1 and w2 that generate state

sequences x1 (z1,w1) and x2 (z2,w2). The system is Incrementally Input/Output-to-State Stable

(i-IOSS) if there exist functions β (·) ∈ KL and α1 (·) , α2 (·) ∈ K, and for all k ∈ Z≥0, the system

satisfies

‖x1 (k; z1,w1)−x2 (k; z2,w2)‖ ≤ β1 (‖z1 − z2‖, k)+α1 (‖w1 −w2‖)+α2 (‖h (x1)− h (x2)‖) ,

(4.7)

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

59

4.3 MOVING HORIZON ESTIMATION

where xi (k; zi,w) denotes a state that satisfies xi (k) = f (xi (k − 1) , wi (k − 1)) with xi (0) =

zi, and wi = {wi (0) , wi (1) , . . . , wi (k − 1)} for i ∈ {1, 2}, and k ∈ Z≥0.

Then, as mentioned earlier, the ability of converge to the true state as more data be-

comes available regardless of the initial reference state, serves as the primary definition of

stability of the full-information problem. Additionally, the disturbance and noise have to

be considered into this definition; this is summarized into the Robust Global Asymptotic

Stability definition.

Definition 13 (Robust Global Asymptotic Stability (RGAS)). Consider a noisy measurement

sequence given by y = h (x) +v. An estimate is considered to be Robust Global Asymptotic Stable

(RGAS) if for initial state z0, and bounded disturbance and noise sequences (w,v), there exists

functions δw (·) .δv (·) ∈ K such that for k ∈ Z≥0 the following holds

‖x (k;x0,w)− zk|N‖ ≤ βx
(
‖z0|N − z0‖, k

)
+ δw (‖w‖) + δv (‖v‖) , (4.8)

where zk|N , and its associated variables ωk|N and z0|N are given by the full-information problem

with some prior state information z0 for a window of size N .

What follows are definitions to set up the set of assumptions for the RGAS estimator;

these are useful to characterize the evolution of the disturbance sequence over time.

Definition 14 (Bounded sequence, B). A sequence w = {w (k)}, for k ∈ Z≥0 is bounded if

‖w‖ is finite. Moreover, the set of all the bounded sequences is given by B.

Definition 15 (Convergent sequence, C). A bounded sequence w = {w (k)}, for k ∈ Z≥0 is

regarded convergent if ‖w (k)‖ → 0 as k → ∞. Moreover, the set of all convergent sequences is

given by C.

Definition 16 (β−convergent sequence, Cβ). Consider a function β (·) ∈ KL, a bounded

sequence w = {w (k)}, for k ∈ Z≥0 is regarded as β−convergent if

‖w (k)‖ ≤ β (‖w‖, k) ∀k ∈ Z≥0. (4.9)

Furthermore, the set of all β−convergent sequences is given by Cβ .

60
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.3 MOVING HORIZON ESTIMATION

In order to attain an RGAS estimate; it is assumed that both sequences of disturbance

and noise belong to a class of convergent sequences.

Assumption 1 (β−convergent disturbances). The sequences of disturbance and measurement

noise w,v ∈ Cβ for some β (·) ∈ KL.

Moreover, the stage cost of the objective function (4.5) is assumed to be positive definite

in the dynamic sense, by being bounded by K∞ functions. As a consequence of these

two assumptions and the i-IOSS property of the system the subsequent lemma is useful to

prove the RGAS of the full-information estimator.

Assumption 2 (Positive definite stage cost). Let the functions γ
x
, γ

w
, γ

ν
, γw, γw, γν ∈ K∞.

All the stage costs are continuous and they satisfy the following inequalities

γ
x

(
‖z0|N − z0‖

)
≤ `x

(
z0|N − z0

)
≤ γx

(
‖z0|N − z0‖

)
,

γ
w

(
‖ωk|N‖

)
+ γ

ν

(
‖νk|N‖

)
≤ `i

(
ωk|N , νk|N

)
≤ γw

(
‖ωk|N‖

)
+ γν

(
‖νk|N‖

)
∀k ∈ Z≥0.

(4.10)

Lemma 1 ([40]). Consider an i-IOSS system following (4.4), that satisfies Assumptions 1 and 2.

Then the full-information estimator satisfies the following properties.

1. For functions πx, πw, πv ∈ K

‖x (k;x0,w)− zk|N‖ ≤ πx
(
‖z0|N − z0‖

)
+ πw (‖w‖) + πv (‖v‖) ,

for all k ∈ Z≥0

2. For k →∞,

‖x (k;x0,w)− zk|N‖ → 0.

Thus, it is possible to assert the RGAS of the full-information estimator with the folloing

theorem.

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

61

4.3 MOVING HORIZON ESTIMATION

Theorem 3 (RGAS full-information estimator). Consider a detectable system (i-IOSS property),

that follows (4.4). If it satisfies Assumptions 1 and 2, i.e. convergent disturbances and positive

definite stage costs respectively; then the Full-information estimator is Robust Global Asymptotic

Stable (RGAS).

Proof. As a consequence of both propositions of Lemma 1, it can be noted that a β (·) ∈ KL

function can be constructed such that

‖x (k;x0,w)− zk|N‖ ≤ β
(
πx
(
‖z0|N − z0‖

)
+ πw (‖w‖) + πv (‖v‖) , k

)
. (4.11)

Moreover, it is possible to show that any function β (·) ∈ KL has the property β (
∑n

i ai, k) ≤∑n
i β (nai, k) for some nonnegative coefficients ai. Thus, using this property on β (·); yields

the following result

‖x (k;x0,w)− zk|N‖ ≤ αx
(
‖z0|N − z0‖, k

)
+ αw (‖w‖, k) + αv (‖v‖, k) ,

where αx, αw, αv ∈ KL. Finally, without lost of generality, setting βx (·) := αx (·) , δw (·) :=

αw (·, 0), and δv (·) := αv (·, 0) gives the desired result, i.e. Eq. (4.8).

Though the assumption of convergent disturbance is restrictive, there are recent devel-

opments that indicate that a slight variation of the full-information objective and the i-IOSS

property can relax the assumption of convergent disturbance and noise [41]. Nevertheless,

with this properties it is possible to create practical versions of state estimators.

Regarding the stage costs, it is convenient to choose quadratic forms as follows,

`x (z0 − z0) := (z0 − z0)T Π−1
0 (z0 − z0) ,

`i (ωi, νi) := ωTi Q−1
i ωi + νTi R−1

i νi,
(4.12)

where the matrices Π0 ∈ Rnx×nx ,Qi ∈ Rnw×nw , and Ri ∈ Rny×ny are chosen to be pos-

itive definite. With these functions the full-information for an N−th sized sequence of

62
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.3 MOVING HORIZON ESTIMATION

measurements {y (0) , . . . , y (N)} and initial estimate z0 estimator problem is formulated

min
z0|N ,ωN

VN
(
z0|N ,ωN

)
:=
(
z0|N − z0

)T
Π−1

0

(
z0|N − z0

)
+

N∑
i=0

[
ωTi|NQ

−1
i ωi|N + νTi|NR

−1
i νi|N

]
s.t. zl+1|N = f

(
zl|N , ωl|N

)
l ∈ {0, . . . , N} ,

y (l) = h
(
zl|N

)
+ νl|N l ∈ {0, . . . , N} ,

zl|N ∈ X l ∈ {0, . . . , N} ,

ωl|N ∈W l ∈ {0, . . . , N} .

(4.13)

In practice, the full-information problem quickly becomes intractable, therefore online

implementations of this estimator in continuous processes is not possible. Instead, the

concept of a constant horizon window is used. The horizon window is the set of points

contained from the current time to N steps in the past, i.e. {k −N , . . . , k} where k is the

current time of the process. Thus, the estimator is specified to only include measurements

inside the current horizon window yk := {y (k −N) , . . . , y (k)}, and it is denominated the

Moving Horizon Estimator (MHE); which is written as follows

min
zk−N|k,ωk

VN
(
zk−N|k,ωk

)
:=
(
zk−N|k − zk−N|k−1

)T
Π−1
k−N|k−1

(
zk−N|k − zk−N|k−1

)
+

−1∑
i=−N

[
ωTk+i|kQ

−1
i ωk+i|k + νTk+i|kR

−1
i νk+i|k

]
+ νTk|kR

−1
0 νk|k

s.t. zk+l+1|k = f
(
zk+l|k, ωk+l|k

)
l ∈ {−N ,−N + 1, . . . ,−1} ,

y (k + l) = h
(
zk+l|k

)
+ νk+l|k l ∈ {−N ,−N + 1, . . . , 0} ,

zk+l|k ∈ X l ∈ {−N ,−N + 1, . . . , 0} ,

ωk+l|k ∈W l ∈ {−N ,−N + 1, . . . ,−1} ,

(4.14)

for some prior (from time k − 1) state-estimate zk−N|k−1 and covariance Πk−N|k−1. The

horizon window is shifted ahead every step in time, e.g. at time k+ 1 the horizon window

is {k + 1−N , . . . , k + 1}, such that the problem keeps a fixed size. This means that every

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

63

4.4 NONLINEAR MODEL PREDICTIVE CONTROL

subsequent problem should have similar complexity, however the compromise is that the a

horizon window ignores all past information (all data from {0, . . . , k −N − 1}). Therefore,

the term from the objective which is denominated as the arrival cost,

ϕa

(
zk−N|k − zk−N|k−1,Π

−1
k−N|k−1

)
:=
(
zk−N|k − zk−N|k−1

)T
Πk−N|k−1

(
zk−N|k − zk−N|k−1

)
,

attempts to under-bound the contribution of all the stage costs in the objective function

of the full-information problem up to the point k − N − 1, and it becomes the primary

consideration for attaining stability of the MHE.

Finally, note that the MHE problem (4.14) is formulated so that the resulting sequence of

states includes the most recent state zk|k, which ultimately can serve as the initial basis for

a Model Predictive Control scheme for computing inputs to the process.

4.4 Nonlinear Model Predictive Control

Typical Nonlinear Model Predictive Control (NMPC) formulations consider the existence

of a discrete-time model of a process that has unmeasured disturbances or model inaccu-

racies summarized by a vector w (k) ∈ Rnw (as in the MHE section), and an input vector

u (k) ∈ Rnu for some k ∈ Z≥0 as follows,

x (k + 1) = fw (x (k) , u (k) , w (k)) , (4.15)

where x (k) ∈ Rnx , and the mapping fw : Rnx × Rnu × Rnw → Rnx is the model for the

uncertain plant. Moreover, it is assumed that this model can be split into two terms, a term

for the nominal plant and a term that aggregates the disturbances as follows

x (k + 1) = fu (x (k) , u (k)) + gw (x (k) , u (k) , w (k)) , (4.16)

where the mappings are defined as follows, fu : Rnx × Rnu → Rnx and gw : Rnx × Rnu ×

Rnw → Rnx .

64
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.4 NONLINEAR MODEL PREDICTIVE CONTROL

Given a state at a particular time k, it is possible to use the nominal model of the plant

to generate predictions of future states, e.g. for N − 1 periods into the future

zl+1|k = fu
(
zl|k, υl|k

)
∀l ∈ {0, . . . , N − 1} ,

z0|k = x (k) ,
(4.17)

where the predicted state and input are zl ∈ Rnx and υl ∈ Rnu respectively. In the NMPC

framework, sequences of predicted states and inputs can be found such that they minimize

an objective function in terms of stage-cost functions forN periods of time. In other words,

JN (z) := ϕf (zN) +

N−1∑
i=0

L (zi, υi) , (4.18)

for some stage-cost function L : Rnx × Rnu → R and a terminal cost ϕf : Rnx → R.

Furthermore, if invariant sets Xf ⊆ X ⊆ Rnx , and U ⊆ Rnu ; the NMPC optimization

problem can be formulated as follows,

min
υk

JN (zk) := ϕf
(
zN |k

)
+
N−1∑
i=0

L
(
zi|k, υi|k

)
s.t. zl+1|k = fu

(
zl|k, υl|k

)
∀l ∈ {0, . . . , N − 1} ,

z0|k = x (k) ,

zl+1|k ∈ X l ∈ {0, . . . , N − 1} , zN |k ∈ Xf ,

υl+1|k ∈ U l ∈ {0, . . . , N − 1} .

(4.19)

Solving of problem (4.19) for a state x (k) will generate a sequence of predicted controller

inputs υk. Thus, it is possible to set u (k) := υ0|k. At the next sampling time, after the

solution of (4.19) for x (k + 1), the input of the process can be set in similar manner. This

effectively generates a feedback law in the form u (k) = hu (x (k)).

The stability properties of the NMPC have been established by several authors, e.g. [42],

[43], [17]. One key assumption is that problem (4.19) can be solved instantaneously, which

is restrictive in the sense that most practical applications have models that require a non-

negligible amount of time to be handled. Nevertheless, conceptually, we will assume that

this is the case; to construct the set of properties of such problem.

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

65

4.4 NONLINEAR MODEL PREDICTIVE CONTROL

Consider the same definitions of the K,K∞ and KL classes of functions from Definition

11 of the MHE section. Furthermore, any of the functions in these classes defined here will

be supposed as not related to the ones from the MHE section.

To assess the nominal stability of the NMPC, it suffices to show that the objective func-

tion using its associated feedback law is a Lyapunov function.

Definition 17 (Lyapunov Function). A function V : Rn → R is denominated Lyapunov func-

tion for system (4.17) with control law u (k) = hu (x (k)), if there exists functionsα1 (·) , α2 (·) , α3 (·) ∈

K, such that for every x ∈ X

V (x) ≥ α1 (‖x‖) ,

V (x) ≤ α2 (‖x‖) ,

∆V (x) = V (fu (x, hu (x)))− V (x) ≤ −α3 (‖x‖) .

(4.20)

Then, the assumptions required for the nominal stability are related to the properties

of the terminal and stage-cost functions of (4.19); these being decaying and bounded re-

spectively, when the closed-loop system is considered. This is the way, in which it can be

proved that in the absence of disturbance, the closed-loop system generates a Lyapunov

function.

Assumption 3 (Nominal Stability Assumptions). Consider the following requirements.

1. The terminal cost ϕf (z) is strictly positive for all z ∈ X \ {0}

2. There exists a local control law u = hf (z) such that fu (z, hf (z)) ∈ Xf , and

ϕf (fu (z, hf (z))− ϕf (z)) ≤ −L (z, hf (z)) ∀z ∈ Xf .

3. For αx (·) , αx (·) ∈ K; the stage cost L (z, hf (z)) satisfies

αx (‖z‖) ≤ L (z, υ) ≤ αx (‖z‖) .

Theorem 4 (Nominal Stability of NMPC). Consider problem (4.19), with its associated control

law u (k) = hu (x (k)), and suppose that Assumptions 3 hold. Then, its objective JN (x) is a

Lyapunov function.

66
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.4 NONLINEAR MODEL PREDICTIVE CONTROL

Proof. As given in [17].

Furthermore, to extend the stability proofs to the case of the system with disturbances,

the definition of Input-to-State Stability (ISS) are required; which is related to the property

of a system to generate state sequences that are increasingly bounded by their respective

disturbances. Then, the respective ISS-Lyapunov counterpart adds a term to account for

the disturbances.

Definition 18 (Input-to-State Stability (ISS)). Consider the system of (4.15) with u (k) =

hu (x (k)), and x (0) = x0 for x0 ∈ X. The system is said to be Input-to-State Stable (ISS), if

there exists functions β (·, k) ∈ KL, and γ (·) ∈ K such that for all k ∈ Z≥0, and w (k) ∈ W, the

following holds

‖x (k)‖ ≤ β (‖x0‖, k) + γ (‖w (k)‖) . (4.21)

Definition 19 (ISS-Lyapunov Function). A function V : Rn → R is denominated ISS-Lyapunov

function for system (4.15) with control law u (k) = hu (x (k)), if there exists functionsα1, α2, α3, σ ∈

K, such that for every x ∈ X, w ∈W

V (x) ≥ α1 (‖x‖) ,

V (x) ≤ α2 (‖x‖) ,

∆V (x) = V (fw (x, hu (x) , w))− V (x) ≤ −α3 (‖x‖) + σ (‖w‖) .

(4.22)

To account for the mismatch between the objective functions of the nominal and dis-

turbed models, the following term is defined

ε (x (k + 1)) := JN (x (k + 1))− JN (z (k + 1)) , (4.23)

it follows that this term is bounded by the mismatch term of equation (4.16); and this is

described in the following assumption

Assumption 4 (Upper bound on mismatch).

|ε (x (k + 1))| ≤ KJ‖gw (x (k) , u (k) , w (k)) .‖

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

67

4.4 NONLINEAR MODEL PREDICTIVE CONTROL

Further assumptions are made regarding the bounding of the mismatch function of (4.4),

and the stage-cost under disturbances. With these it follows that the system is ISS.

Assumption 5 (Robust Stability Assumptions). For a nominal control law u = hidu (x) and for

all k ∈ Z≥0:

1. There exists functions αg (·) , σg (·) ∈ K such that

‖gw (x (k) , u (k) , w (k))‖ ≤ αg (‖x (k)‖) + σg (‖w (k)‖) .

2. There exists a function α4 (·) ∈ K, and a positive constant M such that

−L (x (k) , u (k)) +M (αg (‖x (k)‖) + σg (‖w (k)‖)) ≤ −α4 (‖x (k)‖) + σg1 (‖w (k)‖) .

Theorem 5 (Robust ISS Stability of NMPC [17]). Consider problem (4.19), with its associated

control law u (k) = hu (x (k)), and suppose that Assumptions 3−5 hold. Moreover, let M ≥ KJ .

Then, its objective JN (x) is a ISS-Lyapunov function.

Proof. As shown in [17].

This implies that by attaining certain properties of the mismatch term, the closed loop

system will be robust and stable. In practical terms, the terminal and stage-cost are defined

in terms of quadratic functions with positive definite matrices P,Q ∈ Rnx×nx andR ∈ Rnu ,

i.e.

ϕf (z) := zTPz,

Li (zi, υi) := zTi Qizi + υTi Riυi.
(4.24)

These terms form the NMPC problem for a particular state of the plant x (k),

68
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.5 ADVANCED-STEP: MHE & NMPC

min
υk

JN (zk) := zTN |kPzN |k +

N−1∑
i=0

[
zTi|kQizi|k + υTi|kRiυi|k

]
s.t. zl+1|k = fu

(
zl|k, υl|k

)
∀l ∈ {0, . . . , N − 1} ,

z0|k = x (k) ,

zl+1|k ∈ X l ∈ {0, . . . , N − 1} , zN |k ∈ Xf ,

υl+1|k ∈ U l ∈ {0, . . . , N − 1} .

(4.25)

The remaining issue is the computational delays incurred by the solution of the NLPs

for MHE and NMPC. One way to address this is using the underlying properties of NLPs.

In particular, the properties with respect to parametric sensitivity.

4.5 Advanced-Step: MHE & NMPC

To deal with the computational delays of the solution of the NLPs associated with MHE

and NMPC it is possible to partition the computations into online and background; more-

over it is desired to minimize the amount of time online, so that the control action is com-

puted close to instantaneously. To do this, two main ideas have to be discussed, i.e. the

parametric nature of these problems and the predictions in the background.

Previously, in section 2.5, it is mentioned that any parametric information within the

NLP has to be set before the solution procedure. Moreover this parametric information

influences the solution in a specific way. And this functional dependency can be obtained

in an analytical form, as long as it satisfies certain assumptions about the first and second

order information of the problem, and the existence of a neighborhood for which the ac-

tive set remains constant. This is useful to make approximations of solutions for which

the values of the set of parameter has changed; in other words an initial solution can be

further analyzed to approximate perturbed solutions. In the context of MHE and NMPC,

such parametric nature is not ambiguous. Let us denote the MHE problem at time k as

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

69

4.5 ADVANCED-STEP: MHE & NMPC

E
(
y (k −N) , . . . , y (k) ,Πk−N|k−1, xk−N|k−1

)
, where the terms inside the parentheses are

the set of fixed information, i.e. parameters, from which it is assumed that y (k) is the most

relevant.For NMPC, the problem is denoted C (x (k)), where the only parametric informa-

tion is the set of states from the process. Furthermore, let the parameter vectors be defined

as follows pmhe
k := y (k) and pnmpc

k := x (k).

Suppose one wants to solve problems (4.14) and (4.25) beforehand (any time immediately

before k but after k − 1), then the pieces of unknown information at this point are given

by pmhe
k and pnmpc

k . One way to generate an approximation of that information is by using

predictions given the state and input vectors for k− 1 and the nominal model of the plant.

E.g.

zk|k−1 = fu (x (k − 1) , u (k − 1)) ,

yk|k−1 = h
(
zk|k−1

)
,

(4.26)

and set the respective parameter vectors to the value of the predictions pmhe
k|k−1 ← yk|k−1,

and pnmpc
k|k−1 ← zk|k−1. The NLPs can be attempted to be solved for these new values by the

time the process evolves to k. Then, the relevant sensitivity information can be computed,

i.e. the sensitivity matrices from (2.40), Sk|k−1. The aggregate of all these operations is

said to be the background calculations, i.e. everyone by the time the process reaches time

k. At time k, the real information is revealed and one can set pmhe
k|k , and p

nmpc
k|k to the real

measurement and state1 and perform an update given the sensitivity information and the

realization of parameters in the form of equation (2.43). For example, let sk|k be the solu-

tion vector (primal-dual variables) of the NLP of interest, then the update can be done as

follows

sk|k = sk|k−1 +
(
Sk|k−1

)T (
pk|k − pk|k−1

)
+ o

(
‖pk|k − pk|k−1‖2

)
, (4.27)

for the respective problems, i.e. either MHE or NMPC (e.g. smhe
k|k). The vectors are solution

s and parameters p; and sensitivity matrices S. This last calculation constitutes the entirety

1Though the real state of the plant is not typically known as described in section 4.3, one can set this vector

as the estimation from the solution of the MHE problem after it has been computed i.e. pnmpc
k|k := zk|k.

70
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.5 ADVANCED-STEP: MHE & NMPC

of the online computations, and because it is based on matrix-vector multiplications, it is

considered to be fairly inexpensive.

This scheme is denominated as Advanced Step, since it attempts to solve the NLPs ahead

of time; furthermore, the MHE and NMPC schemes that use that concept are denoted as

asMHE and asNMPC.

In practical sense, the sensitivity information and updates can be computed as part of

the post-optimality analysis done in Section 2.7 with k aug . In this context, we re-iterate

the fact that the sensitivity update can be limited to a subset of the solution vector of the

NLP. For this analysis let r (p) , r∗ ∈ Rnr ⊆ Rns denote the vector of relevant variables.

Then, it can be noted that for the asMHE the relevant variables corresponds to updates

of the estimated-state, i.e. rmhe := zk|k; while for asNMPC it corresponds to updates of

the predicted input rnmpc := uk|k. It follows that for asMHE, the size of the measurement

vector is larger than the state vector, and in consequence the dimension of the parameter

vector of asMHE is less than the one of the relevant vector, i.e. ny ≤ nx =⇒ np ≤ nr and

the update (2.53), i.e.

rmhe
k|k = rmhe

k|k−1 + ETmheS
mhe
k|k−1∆pmhe

k|k , (4.28)

is usually sufficient. Here ny offline backsolves to assemble Smhe
k|k−1 are required with only

nx online vector-vector products. On the other hand, for asNMPC typically the size of the

state vector is larger than the input; thus nx > nu =⇒ np > nr and (2.55) should be used,

this is

r
nmpc
k|k = r

nmpc
k|k −

(
S

nmpc
r,k|k−1

)T
R

nmpc
k|k−1∆p

nmpc
k|k . (4.29)

Here nu offline backsolves are required for Smhe
r,k|k−1 with only nu online vector-vector prod-

ucts. On a final note, these update strategies are typical but not necessarily true all the

time, i.e. it might be required to shift between each other depending the size of the mea-

surement, state, and input vectors.

Finally, we present the step-by-step algorithms for the MHE and NMPC schemes for

computing the feedback for a process. Two variations of the MHE-NMPC strategies are

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

71

4.5 ADVANCED-STEP: MHE & NMPC

presented:

• The idealized (no computational delay) version, i.e. ideal MHE (iMHE) and ideal

NMPC (iNMPC).

• The advanced-step (sensitivity-based) version, i.e. advanced-step MHE (asMHE) and

advanced-step NMPC (asNMPC).

The algorithms for the ideal step MHE and NMPC are described in Algorithms 4.1

(iMHE) and 4.3 (iNMPC) and their advanced step counterparts are described in Algorithms

4.2 (asMHE) and 4.4 (asNMPC). Moreover, a diagram of the relationship between the hori-

zon and prediction window between the two problems is showed in Figure 4.1, and a block

diagram showing the plant-controller layout is also shown in Figure 4.2.

For the advanced step algorithms 4.2 and 4.4, their particular differences are due to the

steps involved in the solution of the NLPs (4.14) and (4.25) for the predicted measurement

and state, and the computation of sensitivity matrices; which happen in the background

blocks. It is clear that the advanced step methods require more computations than the ideal

ones (mainly because of the sensitivity calculations); however most of these are carried out

in background, in advance of the current sampling time. The actual online computations

are related exclusively to the fast sensitivity updates (online blocks).

72
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.5 ADVANCED-STEP: MHE & NMPC

Current sampling
time

NMPCMHE

0 N–1

0

– 1–

–

Measurements

Estimated states

Predicted states

Predicted inputs

10 2 3 4 5 NN–1–5 –4 –3 –2 –1

...

...
...
...

...
...

Figure 4.1: MHE-NMPC coupling

Reference-
computa�on

measurements

es�mated states

control input

steady states and
inputs

set-points

Process

Controller
[NMPC]

State es�mator
[MHE]es�mated states and

disturbances

Figure 4.2: MHE-NMPC controller scheme

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

73

4.5 ADVANCED-STEP: MHE & NMPC

Data: At sampling time k, given horizon length N , measurement and noise

covariance matricesR and Q and a nominal “discrete” model f (·).

iM.1 At state k, with {y (k −N) , . . . y (k − 1)}measurement sequence, and prior

information zk−N|k−1 and Πk−N|k−1 ;

iM.2 Get y (k) ;

iM.3 Solve NLP (4.14) with the measurement sequence and prior information ,

E
(
y (k −N) , . . . y (k) ,Πk−N|k−1, zk−N|k−1

)
;

iM.4 Compute covariance Πk+1−N|k, keep estimate zk+1−N|k ;

iM.5 Set x (k)← zk|k ;

iM.6 Finish current sampling time’s computation, set k ← k + 1 ;

iM.7 Shift horizon (i.e. ignore oldest data point). Go to iM.1 ;
Algorithm 4.1: Ideal Step MHE (iMHE)

74
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

4.5 ADVANCED-STEP: MHE & NMPC

Data: Given horizon length N , measurement and noise covariance matricesR and

Q and a “discrete” nominal model f (·).

Background computations

asM.1 Ready with {y (k −N) , . . . y (k − 1)}measurement sequence, prior information

zk−N|k−1 and Πk−N|k−1, and state-input
(
zk−1|k−1, u (k − 1)

)
;

asM.2 Predict measurement yk|k−1 with nominal model (4.26) using previous state-input

tuplet
(
zk−1|k−1, u (k − 1)

)
;

asM.3 Solve NLP (4.14) with predicted measurement,

E
(
y (k −N) , ...yk|k−1,Π−N|k−1, x−N|k−1

)
;

asM.4 Compute sensitivity matrix, i.e. ETx Smhe
k|k−1 =

(
dz

dy

)
k|k−1

with (2.51) ;

/* Using optimal solution, with Ex defining the appropriate

subset of s̃ */

asM.5 Compute covariance Πk−N|k−1, keep estimate zk−N|k−1 ;

Online computations

asM.6 At sampling time k ;

asM.7 Get “real” measurement from the plant y (k) ;

asM.8 Using ∆pmhe
k|k := (y(k)− yk|k−1), compute the updated state estimate zk|k from

(4.28) ;

asM.9 Set x (k)← zk|k ;

asM.10 Finish current sampling time’s computation, k ← k + 1 ;

asM.11 Shift MHE horizon. Go to asM.1 ;

/* We assume it is possible to get u (k) */

Algorithm 4.2: Advanced Step MHE (asMHE)

CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

75

4.5 ADVANCED-STEP: MHE & NMPC

Data: Given steady states xs and us, horizon length N , Q and R matrices, and a

“discrete” nominal model f (·).

iN.1 At state k ;

iN.2 Get x (k)(Get zk|k) ;

iN.3 Solve NLP (4.25) for curent (estimated)state, C (x (k)) (C
(
zk|k
)
) ;

iN.4 Set u (k)← uk|k and inject into the plant ;

iN.5 Finish current sampling time’s computation, set k ← k + 1 ;

iN.6 Go to iN.1 ;
Algorithm 4.3: Ideal Step NMPC (iNMPC)

Data: Given steady states xs and us, horizon length N , Q and R matrices, and a

“discrete” nominal model f (·).

Background computations

asN.1 Ready with state-input tuplet
(
zk−1|k−1, u (k − 1)

)
;

asN.2 Predict state zk|k−1 for k with the model of (4.26) and
(
zk−1|k−1, u (k − 1)

)
;

asN.3 Solve NLP (4.25) for predicted state, C
(
zk|k−1

)
;

asN.4 Compute sensitivity matrix Snmpc
r,k|k−1 =

(
du

dz

)
k|k−1

, i.e. solve (2.54) ;

Online computations

asN.5 At sampling time k ;

asN.6 Get “real”(estimated) state from the plant x (k)(zk|k) ;

asN.7 Compute input with sensitivity uk|k with (4.29) ;

asN.8 Finish current sampling time’s computation, set k ← k + 1 ;

asN.9 Set u (k)← uk|k into the plant. Go to asN.1 ;
Algorithm 4.4: Advanced Step NMPC (asNMPC)

These algorithms are designed to minimize the online computations; and their imple-

mentation should requires bookkeeping of the information being generated from the pro-

cess and the subsequent updates. Furthermore, these algorithms were put into an unified

framework that includes data-management and sensitivity computations. As described in

the following Chapter.

76
CHAPTER 4. NONLINEAR MODEL PREDICTIVE CONTROL AND STATE-ESTIMATION

Chapter 5

CAPRESE: Framework and Case studies

5.1 Introduction

In this chapter, an unified framework for Nonlinear Model Predictive Control and State-

Estimation is presented. Moreover, problems with nontrivial dynamics are used as exam-

ples for control, in the context of CO2 capture from power generation processes. It can

be noted that the interest on simulating and controlling such processes is related to the

concerns of potential adverse situations, that are originated with the release of combustion

gases to the atmosphere, particularly CO2. High levels of CO2 in the atmosphere have

been associated with global warming effects [44]; therefore there have been efforts to de-

crease CO2 emissions by several countries. This can be seen particularly for power gener-

ation, as it is considered as the largest source of emissions globally [45]. As a consequence,

post-combustion carbon capture techniques are attractive, because they can potentially be

implemented in already existing sites, and they typically are more energy efficient than

other methods [46].

Within the scope of power-plant operations, the application of amine-based technology

can be useful to capture CO2 considering its range of concentration and the widespread

commercial applications of amines [47]. Nevertheless, CO2 capture systems incur an in-

crease in the price of production of electricity, so the optimization of CO2 capture tech-

nology is essential. Furthermore, recent studies show that solid sorbents are attractive for

removing CO2 from gas streams, because of reduced energy requirements for regenera-

tion and improved adsorption/desorption properties due to development of new materi-

als [48]. Consequently, efficient gas-solid contact operation using fluidized beds is desir-

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

77

5.1 INTRODUCTION

able [49] for several applications, including combustion, polymerization, gasification, etc.

However, fundamental design and optimization of these systems requires advanced com-

putational tools especially because of the complex hydrodynamics of the gas-solid flow

[50].

Early work by Kunii and Levenspiel [51] led to an approximate fundamental model for

Bubbling Fluidized Beds (BFB). In their model, the bed is effectively separated into regions

on which the hydrodynamic behavior is described by empirical correlations that lead to

workable designs. A more detailed model of the BFB for CO2 capture, based on Kunii’s

assumptions, was described by Lee et al. [52]. Their model considers axial variations, de-

tailed kinetics and thermodynamics, and it was implemented within an Equation Oriented

(EO) modeling environment. Additionally, transient models of fluidized bed reactors have

also been developed to aid in the creation of process control systems [53] [54]. Based on the

work of Lee et al. [52], Modekurti et al. [55] developed and validated a dynamic version

of the BFB model. This allowed various feedback control schemes to be compared. Most

notably a Linear Model Predictive Controller (LMPC) showed better performance under

disturbances than a regular PID controller.

In this context, LMPC has been shown to be relatively straightforward to implement

and effective for feedback control. However, as the BFB system is inherently nonlinear

and needs to operate to tight specifications over a range of input conditions and distur-

bances, LMPC might not have adequate performance [42]. Instead, control strategies that

rely on nonlinear dynamics are needed. For this the optimization strategies discussed in

the previous section are possible candidates, as their fundamental properties like robust

stability are well established. Another issue that is generated from the implementation

of fully nonlinear models are the computational delays associated with the solution of

the nonlinear optimization problems. Nevertheless, it is also been proposed to incorpo-

rate parametric sensitivity analysis as a way to drastically to minimize the delays from

the computations of the controller input. Furthermore, there have been recent studies for

78
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.1 INTRODUCTION

CO2 capture have addressed similar computational challenges, by means of model re-

duction as well as advanced-step nonlinear control algorithms. Yu et al. [56] compared

several model reduction techniques for both temporal and spatial domains of the same

BFB model for CO2 capture introduced by Lee. Using collocation on finite elements for the

spatial discretization leads to significant reduction in simulation time while providing ac-

curate results. Further reduction by means of a (temporal) eigenvalue analysis reveals that

the system states have large differences in time scales. In particular, the dynamics of the

states associated with the gas phase are faster than the solid phase. This last result is sig-

nificant because several differential states can be approximated as algebraic states (i.e., in

quasi-steady state), thus simplifying the discretized structure in the NMPC and MHE opti-

mization problems. Moreover, Yu and Biegler [57] recently extended this model reduction

approach to economic NMPC, and demonstrated its effectiveness on a related BFB carbon

capture system.

The aggregation of the concepts for modeling, design, and control of CO2 capture pro-

cesses have motivated the creation of a general modeling framework intrinsically linked

to optimization, along with features to address uncertainties in modeling, operations and

the market. Consequently, NETL’s Institute for the Design of Advanced Energy Systems

(IDAES) [58] is developing new open source tools modeling based on Python and Pyomo

[59] that enable optimization with efficient and robust state-of-art solvers. Pyomo provides

a flexible environment for optimization with inherent object-oriented aspects, along with

special tools for automatic discretization of general Differential-Algebraic Equation (DAE)

optimization. These advances also lead to a generic implementation of NLP strategies for

state estimation and control.

In this chapter, we introduce CAPRESE (Control and Adaptation with Predictive Sensi-

tivity Enhancements), a nonlinear optimization-based framework in Python for sensitivity-

based NMPC and MHE strategies for a general Pyomo DAE model. Following the fram-

work, we introduce the BFB model for CO2 capture. Then, the CAPRESE implementations

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

79

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

for two case studies, an initial benchmark distillation case study example and CO2 capture

through BFB control, are presented in the last section.

5.2 Control Adaptation with Predictive Sensitivity Enhancement

The Control Adaptation with Predictive Sensitivity Enhancement (CAPRESE) framework

was created with the intention of streamline the development of an MHE-NMPC controller

strategy for a generic process model. The overall estimation and control strategy and algo-

rithmic framework for CAPRESE is described in Section 4.5. CAPRESE takes into account

the difficulties that result from using Nonlinear Models vis-à-vis the potential computa-

tional delays, with the incorporation of parametric sensitivity strategies that minimize the

amount of online computations to only consider matrix-vector multiplications. Moreover,

it relais on state-of-art NLP solvers like IPOPT to carry out the solution of the resulting

NLP prolems; and then it takes advantage of the k aug framework to handle the required

sensitivity computations.

The CAPRESE environment is founded on the Python language, and Pyomo as the mod-

eling framework which handles the optimization related objects that are not directly in-

volved with the solution algorithms. As a result, it is also possible to enable automatic

discretization of differential algebraic models by means of the current dynamic optimiza-

tion tools within. These and the main classes within CAPRESE are summarized in Figure

5.1.

The model used by CAPRESE is required to be written with the automatic discretization

syntax expected by pyomo.dae [60]. Moreover, the user is expected to provide an initial

guess for the steady-state model. This initial guess is essential, as it is taken as the reference

point for the solution of most subproblems inside the framework.

In order to create a controller object, all the state, input and measurement information of

the model must first be declared explicitly and then passed to the object constructor. For

example, a simple CSTR [61] requires the declaration of states, controls, and bounds shown

80
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

in Listing 5.2.

Listing 5.1: Declaration of model states, measurements, etc.

s t a t e s = [”Ca” , ”T” , ” T j ”] # : C o n c e n t r a t i o n , Temperature , C o o l i n g Temp

measurements = [’T ’] # : R e a c t o r t e m p e r a t u r e

c o n t r o l s = [”u1”] # : C o o l i n g i n l e t Tempera ture

u bounds = {”u1” : (2 0 0 , 1000)}

s tate bounds = {”Ca” : (0 . 0 , None) ,

”T” : (2 . 0 E+02 , None) ,

” T j ” : (2 . 0 E+02 , None)}

r e f s t a t e = { (”Ca” , (0 ,)) : 0 .010}

These lists and dictionaries are then passed to the MHE-NMPC object with the model and

the desired sampling time, as shown in Listing 5.2.

Listing 5.2: MHE - NMPC object creation.

e = MheGen DAE(mod,

t sample ,

s t a t e s ,

cont ro l s ,

s t a t e s ,

measurements ,

u bounds=u bounds ,

r e f s t a t e = r e f s t a t e ,

var bounds=state bounds)

At this point, when an initial guess for the reference steady-state problem is given, the

CAPRESE framework computes the subsequent initialization points for the larger NLP

problems to be solved. This is a key feature of CAPRESE, since the solution of sequences

of NLPs can not be done effectively if no appropriate initial guesses are given. This also

implies that a careful data collection and communication has to be done, because there are

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

81

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

several models working at once to generate the controller input computation.

As a whole, CAPRESE attempts to unified the framerowks for model based control with

parametric sensitivity. It’s ongoing development is focussed on creating an user friendly

approach for modeling while keeping the elements of the underlying Differential Alge-

braic Models clearly laid out. In the next section, we discuss example case studies of

the CAPRESE framework, which have vastly different levels of complexity; nevertheless

the framework is able to compute the controller inputs while attaining reasonable perfor-

mance.

Case Study Results

To demonstrate the CAPRESE framework with both ideal and advanced step strategies,

we consider two case studies. The first tests the behavior of the advanced-step strategies

on a benchmark case study that involves a high-purity binary distillation column. This

is a typical process application that shows how this MHE-NMPC framework performs

with large, first principle DAE models. The second case study considers the CO2 cap-

ture process with the BFB model described in the second section. We note that for the

ideal strategies both NLPs (4.14) and (4.25) need to solved sequentially on-line. In contrast

the advanced step strategy solves NLP problems (4.14) and (4.25) strategy simultaneously

in background between sampling points. Also, sensitivity-based updates in Algorithms

asMHE and asNMPC are performed with negligible computation time. For the case

studies the specified sampling times (60s for Case Study 1, and 120s for Case Study 2)

provided ample time to solve these NLPs, as shown in Table 1. For applications where

additional CPU time may be needed, the advanced step approach has also been extended

to background solutions over multiple sampling times [18].

82
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

5.2.1 Distillation column benchmark case study.

For this case study, the distillation model is a dynamic MESH model presented in [62] and

later modified in [63] to index 1. The model considers the separation of a binary mixture of

methanol and n-propanol, with tray-by-tray mass and energy balances, Raoult’s Law for

thermodynamic equilibrium, and liquid flows from the trays determined by the Francis

weir formula. For a column with 40 trays, the DAE model has 84 differential equations.

It is assumed that the temperatures are measured for each tray and they have diagonal

covariance matrices with 0.0625I . As shown in Figure 5.2, the control problem has set-

points on the temperatures of tray 14 and 28 with diagonal weight matrices qii = 1× 10−5

and 1.0, respectively. The manipulated variables are the reboiler heat duty and the reflux

ratio. Here, nu = 2 (inputs), nx = 84 (states), ny = 40 (measurements), and because

ny ≤ nx, (4.28) is used in Step 8 in Algorithm 4.2.

The continuous time DAE model is transformed into a discrete time model using 3 point

Radau collocation. MHE and NMPC were run with the advanced step and the ideal strate-

gies (assuming no computational delay), with ten-step horizons (N = N = 10) and 60s

sampling times. These problems have 20672 variables and 19792 equations in the case of

MHE, and 19036 variables and 19016 equations for NMPC. Finally, random noise was in-

troduced on all the states at the plant with variance σ = 10−4. The results for this case

study are shown on Figure 5.2.

For state estimation the maximum relative error considers all the states of the problem.

It can be seen, that these errors remain small for most of the simulation. However, at the

setpoint change at sampling time 350, one of the states almost loses observability and the

relative error grows very quickly. Nevertheless, the advanced-step MHE follows similar

behavior as ideal MHE with only a small difference in performance. NMPC experiences

reasonably good performance, even under the presence of noise. Moreover, the advanced-

step NMPC follows the ideal case almost exactly. The average timings for this problem are

displayed in Table 5.1. Because the on-line computations require much less time than the

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

83

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

offline costs, the total computational delay for both asMHE and asNMPC amounts to only

1.19 CPU seconds. This is considerably less than the 57.29 CPU seconds required for the

ideal strategies. In future work we plan to further reduce the offline computational cost by

coupling the sensitivity matrix step with the reduced Hessian calculation.

5.2.2 Bubbling Fluidized Beds

The BFB model used here stems from the derivation presented in [56]. This model contains

mass and heat balances for the gas and solid phase inside the emulsion, cloud wake and

bubble regions shown in Figure 5.3. The modeling equations comprise a total of twenty

PDEs with time t and axial coordinate x as independent variables and several algebraic

equations, which describe the thermodynamics, kinetics, and hydrodynamics of the flu-

idized bed. The main differences from the model of [56] are the inclusion of a momentum

balance for the gas at the bubble region, i.e.:

∂mg

∂t
= −2vg

∂vg
∂x

∑
j

Mjcb,j − v2
g

∂ρg
∂x
− µg

∂2vg
∂x2

− ∂P

∂x
− (1− e) ρsgc (5.1)

and the expansion of the PDEs of the gas phase at the bubble region to separate the vg

partial derivative terms 1. The resulting system of Partial Differential Algebraic Equations

(PDAEs) can be written concisely as follows:

∂ζ̃

∂t
=
∂ζ̃

∂x
+ F̃

(
ζ̃, χ̃
)
, (5.2a)

0 = G̃
(
ζ̃, χ̃
)
, (5.2b)

ζ̃(0, x) = z̃0, (5.2c)

where the variables ζ̃ (t, x) ∈ Rnζ̃ and χ̃ (t, x) ∈ Rnχ̃ represent the set of differential and

algebraic states from the model. Similarly F̃ : Rnζ̃ ×Rnχ̃ →: Rnζ̃ and G̃ : Rnζ̃ ×Rnχ̃ →: Rnχ̃

represent the right hand side of the differential and algebraic equations. Finally, (5.2c)

represents the initial condition of the system. Note that the spatial boundary conditions

for the system of equations (5.2) are contained in the set of algebraic equations (5.2b).
1For the detailed model, please refer to the Appendix (Section .3) of this manuscript.

84
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

NMPCGen MHEGenDynGen

dot_sens

k_aug

ipopt

Model
Controller

Object

Classes

Solvers

(iNMPC, asNMPC) (iMHE, asMHE)

(Algorithms)

Figure 5.1: Diagram of MHE-NMPC classes and methods in CAPRESE.

Distillation BFB CO2

NMPC MHE NMPC MHE

Offline

NLP (Ipopt) 11.00 8.50 6.83 9.45

Red. Hessian (k aug) - 3.54 - 13.63

Sens. Matrix (k aug) 1.87 2.58 12.49 7.94

Online Sens. step (dot sens) 0.10 0.49 0.13 0.52

Table 5.1: Timings for the optimization and sensitivity in CPU seconds, using Ipopt 3.12

and Intel i7-6700 CPUs. The bold letters are associated with the ideal strategies required

timings

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

85

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

0 200 400 600 800 1000 1200

sampling time (60s)

0

0.005

0.01

|e
rr

or
|

(a) Max relative estimation error

advanced
ideal

0 200 400 600 800 1000 1200

sampling time (60s)

342

344

346

T
ra

y
29

 T
em

p
(K

) (b) State Tracking 1
advanced
set-point
ideal

0 200 400 600 800 1000 1200

sampling time (60s)

355

360

365

T
ra

y
14

 T
em

p
(K

) (c) State Tracking 2
advanced
set-point
ideal

0 200 400 600 800 1000 1200

samplint time (60s)

0

1

2

R
ef

lu
x

R
at

io

(d) Input 1
advanced
set-point
ideal

0 200 400 600 800 1000 1200

sampling time (60s)

1.6

1.8

2

R
eb

oi
le

r
H

ea
t

10 6 (e) Input 2

advanced
set-point
ideal

Figure 5.2: Control input and state-tracking results for distillation case study.

86
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

For the optimization problems defined by the NMPC and MHE, the simultaneous solu-

tion approach requires a fully discretized form of the model. Therefore, by first discretizing

equation (5.2) in space, the system collapses to a DAE system in time, i.e.:

dζ

dt
=F (ζ, υ) (5.3a)

0 =G (ζ, υ) , (5.3b)

ζ(0) =z0, (5.3c)

where the new variables ζ (t) and q (t) correspond to the spatially discretized versions of

the original differential and algebraic equations (e.g. ζ (t) = ζ̃ij (t) and χ (t) = χ̃ij (t) for

the i-th finite element and j-th collocation point in space), the functions F (·) and G (·) map

the newly discretized variables into corresponding right-hand-sides. Also, G (·) contains

additional equations from the discretization (e.g., spatial finite-element continuity for or-

thogonal collocation). Lastly, z0 is the initial condition for the spatially discretized model.

Subsequently, an additional temporal discretization of equation (5.3) results in a fully al-

gebraic representation of the DAE system, which has a larger number of equations and

variables.

Yu and Biegler [56] considered different time-scales among the differential states of the

BFB. In particular, the fast states of the model were associated with the states in the gas

phase. This was due to a combination of bubble phase hydrodynamics and the kinetics

associated with physisorption. Further identification of the time-scales enables a reduction

of the model by creating a partition of slow and fast differential states ζT =
[
ζTs ζTf

]
. Then

the time derivative term of the fast differential states (dζf/dt) in the system of equation

(5.3) is set to zero, ζf become algebraic states and equation (5.3) becomes:

ζs
dt

=F (ζs, ζf , χ) (5.4a)

0 =G (ζs, ζf , χ) , (5.4b)

ζs(0) =ẑ0, (5.4c)

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

87

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

where ẑ0 contains the initial conditions of the reduced (slow) set of states ζs. Assuming

that the matrix
[
∇TζfG ∇χGT

]
is non-singular, the system of eq. (5.4) will approximate

the dynamics of eq. (5.3). For this work, we tested the assumption of fast differential states

based on the observations from [56], in order to have the most robust working model.

BFB CO2 Capture: Results

For this case study, the BFB reactor was used to capture CO2 for different set-points. The

model for this problem posed several difficulties during the optimization stages of the

control framework. The is mostly due to the ill-conditioning of the working matrices as the

differential states of this model have significant differences in time scales. Approximating

some of the faster differential states as algebraic states helps to collapse these time scales

and create a simpler model at the possible expense of modeling accuracy. Inspired by the

observed results of [56], in which the states associated with the molar balances in the gas

region were found to have separate time-scales, two reduced models were created:

• rm1 converts the differential states associated with molar fluxes in the gas phase to

algebraic states.

• rm2 converts the molar fluxes and also the enthalpy and momentum fluxes of the

gas-bubble region to algebraic states.

Model rm1 achieves a 7.83% reduction of model size with respect to the original model.

A comparison with respect to the original model was analyzed by simulations in which

large step changes of the input over time were made at the 200th and 400th sampling time

respectively. At the given sampling times, the maximum relative errors between rm1 and

the original model are shown in Figure 5.4. We observe that the relative error remains less

than 5× 10−3 throughout the simulation.

In [56] it was observed that the dynamics of the energy and momentum balances for

the gas-bubble region are also fast, so these were also converted to algebraic states in rm2.

Model rm2 achieves a model reduction of 9.57% with respect to the original model. As

88
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

shown in Figure 5.4 it also displays a relative error as high as 6.5 × 10−3. In spite of the

slight error increase, rm2 yielded the least amount of failures during optimization of all the

tested models, which made it the selected working model for control and state estimation.

Once the reduced model was identified, an closed-loop MHE-NMPC study was set up

and solved. In this problem the CO2 capture percentage is used as reference to compute

steady-state trajectories of all differential states, such that full state tracking is performed

by the NMPC. For this, the amount of gas flowing into the bed was manipulated, and for

the state-estimation problem, we assume that the internal axial temperature and gas veloc-

ity can be measured. Random noise was added to all states in the plant with relative vari-

ance σ = 10−4. Also the corresponding covariance matrices for MHE are shown in a table

in Supplemental Information. The state tracking problem was solved using both the ad-

vanced and the ideal strategies for MHE and NMPC, with ten-step horizons (N = N = 10)

and 120s sampling times. These problems were fully discretized; Legendre collocation was

used in space with 5 finite elements and 3 collocation points, and Radau collocation was

used in time with 10 finite elements and 1 collocation point. The resulting NLPs have

32810 variables and 31300 equations for MHE, and 31160 variables and 31150 equations

for NMPC. Here, nu = 2 (inputs), nx = 150 (states), ny = 31 (measurements), and because

ny ≤ nx, (4.28) is used in Step 8 in Algorithm 4.2. The results and statistics for the frame-

work with the BFB for CO2 capture are displayed in Figure 5.5 and Table 5.1 respectively.

For state estimation the advanced-step MHE experiences larger amplitude error spikes

than ideal MHE. Nevertheless, these differences do not affect the performance of the over-

all controller, as the relative estimation error remains bounded during the simulation and

the noise on the states was handled effectively. The results show that both the ideal and

advanced step NMPC track the input with little difference in performance. Moreover, the

advanced-step schemes are able to reach the set-points with only small computational de-

lays. As displayed in Table 5.1, only 0.52 CPU seconds are required for MHE and 0.13 CPU

seconds for NMPC, with an overall 0.65 CPU seconds online cost. This is considerably less

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

89

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

Gas

Solid

Gas

Solid
Gas

Emulsion Cloud-wake Bubble

Bubble Emulsion

CloudGas
Solid

Spatial D
iscretization

Figure 5.3: BFB reactor, regions and discretization

0 100 200 300 400 500 600
sampling time (80s)

0

1

2

3

4

5

6

7

|m
od

el
 e

rr
or

|

10 -3

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
O

2
 C

ap
tu

re

Max relative model error and ref ouput

rm1
rm2
ref output

Figure 5.4: Approximation errors from model reduction: maximum relative state error of

the two proposed reduced models (right) and output response of the reference model (red

line left axis, CO2 capture).

90
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

5.2 CONTROL ADAPTATION WITH PREDICTIVE SENSITIVITY ENHANCEMENT

0 100 200 300 400 500 600 700 800 900 1000

sampling time (120s)

0

1

2

3

4

|e
rr

or
|

10-3 (a) Max relative estimation error

ideal
advanced

0 100 200 300 400 500 600 700 800 900 1000

sampling time (120s)

0.5

0.55

0.6

0.65

0.7

%
 C

O
2

ca
pt

ur
e

(b) State track

ideal
advanced
set point

0 100 200 300 400 500 600 700 800 900 1000

sampling time (120s)

80

100

120

140

160

180

G
as

 In
le

t (
km

ol
/s

)

(c) Input

ideal
advanced
set point

Figure 5.5: Max. relative estimation error, control input, state-tracking results.

CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

91

5.3 CONCLUSIONS

than the 29.91 CPU seconds required for the ideal strategies. This case study suggests that

sensitivity-based MHE and NMPC can be very efficient in significantly reducing compu-

tational delay, with little performance loss.

5.3 Conclusions

This study demonstrates a general framework for the implementation of Nonlinear Model

Predictive Control (NMPC) and Moving Horizon Estimation (MHE) using Pyomo for a

detailed Bubbling Fluidized Bed (BFB) reactor for CO2 capture. The BFB system is char-

acterized by a large PDAE model. Based on the observations of Yu et al. [56], it contains

several states with different time-scales. Thus, our proposed estimation/control frame-

work was applied and tested with a modified BFB model. Furthermore, the optimization-

based framework implements computations with minimal time delays, by means of the

advanced-step strategies [17]. This framework maintains MHE+NMPC delays to less

than a few CPU seconds with a negligible performance loss for the controller and state-

estimator, compared to the ideal strategies. Future work will take into account strate-

gies for sensitivity computations with changing active sets; and in increasing the perfor-

mance within the interior point optimizer, using parallel decomposition of the factoriza-

tion steps.

92
CHAPTER 5. CAPRESE: FRAMEWORK AND CASE STUDIES

Chapter 6

Conclusion

6.1 Summary and Contributions

In this dissertation, two main topics are covered. The first one is concerned with a strategy

within the NLP solver IPOPT, to handle problems that do not satisfy Constraint Qualifi-

cations (CQs). In this context, CQs are define the well posedness of the problem. And,

though there exist several kinds of CQs, the most relevant one is concerned with the linear

independence of the linearization of the set of equality and active inequality (bounds) con-

straints (LICQ). If such regularity condition is not satisfied, optimality as given by the set

of first-order optimality conditions can not be asserted. Moreover, in the practical sense, in

IPOPT global convergence can not be guaranteed, and any attempts to solve such problem

has a high chance of failure. This is the reason why IPOPT has built-in strategies that try

to overcome such possible situations in the local sense, i.e. the inertia correction. In this

strategy, perturbations are done to the iteration matrix such that the number of positive,

negative and zero eigenvalues (i.e. the inertia) is changed in an attempt to achieve the

specific value of it that guarantees the satisfaction of the LICQ. Despite this, there might

be instances in which such perturbations are effective; and, it can also be the case that the

gradients are globally dependent, i.e. dependent at all points of the search space. Thus

this strategy might not be sufficient by itself. To overcome this situations, the `1-exact

penalty-barrier strategy in IPOPT was introduced. In this strategy, the equality constraints

are penalized into the objective function with a penalty parameter. This form of the prob-

lem has a guarantee of attaining a stationary points of the original barrier problem, as long

as an sufficiently large value of the penalty parameter achieved [21]. Moreover, after re-

CHAPTER 6. CONCLUSION

93

6.1 SUMMARY AND CONTRIBUTIONS

formulating the exact penalty function to obtain a differentiable version of the problem;

two new vectors of variables are obtained. This problem has the remarkable guarantee of

satisfying the LICQ for all points for which the penalty variables are positive. Therefore

the complexity of the lack of regularity is traded for a problem with more variables and a

penalty parameter to be determined, but has a guaranteed constraint qualification. A strat-

egy to update the penalty parameter based on local curvature and linearized infeasibility

was presented, and the overall `1-exact penalty-barrier formulation was implemented into

IPOPT 3.12.9. Then, this strategy was tested with the CUTEr test set, for which degenera-

cies were introduced. And a test set that contains Mathematical Programs with Comple-

mentarity Constraints (MPCCs). From the results it is possible to conclude to main points:

a. In order to achieve optimality, it is critical to have an adaptive value of the penalty

parameter.

b. The presented strategies here grant an increase of robustness of the overall algorithm,

in other words more degenerate problems were solved as opposed to normal IPOPT.

c. In the case of MPCCs, the `1-exact penalty-barrier strategies perform better than nor-

mal IPOPT.

In addition to these results, we note that there are still case studies in which the penalty

formulation failed. These can be summarized as follows: Inadequate value of the penalty

parameter, unbounded value of the penalty parameter; and for a small value of the barrier

parameter, the existence of an excess of nearly active bounds, i.e. violation of the MFCQ.

Nevertheless, we highlight that the main contribution of this part we have presented a

strategy for interior-point that is able to attain better robustness properties, especially for

problems that do not attain certain CQs.

In the second part of this dissertation, we discuss the properties of nonlinear model

based state-estimation and control, these are the Moving Horizon Estimator (MHE) and

Nonlinear Model Predictive Control (NMPC); particularly with the intention of creating an

94
CHAPTER 6. CONCLUSION

6.1 SUMMARY AND CONTRIBUTIONS

unified software implementation for the design and testing of such controller. Moreover,

we show that by making use of parametric sensitivity, it is possible to enable the online im-

plementation of the controller that requires the solution fully nonlinear optimization prob-

lems. Thus, the Control Adaptation with Predictive Sensitivity Enhancement (CAPRESE)

was created. CAPRESE is a software implementation that encapsulates the computations

for control-estimation-sensitivity, using fully nonlinear optimization. This was done using

a combination of Python and Pyomo from which the optimization objects that represent

the MHE-NMPC tasks are created. This has the advantage that all the scripting and meta-

algorithms can be kept in Python; and users can create models that can be automatically

discretized by means of pyomo.dae. Moreover, we introduce the post-optimality software

k aug to handle computations of sensitivity matrices and Reduced Hessians, which are

critical for the online updates of MHE-NMPC; and is integrated into CAPRESE to achieve

a significant increase of performance, as opposed to the online solution of the underlying

NLPs. Then, the CAPRESE framework is used to control two case studies. A benchmark

distillation column model, which provides reasonable nonlinearities; and a Bubbling Flu-

idized Bed reactor for CO2 capture, in which a large model with significant nonlinearities

has to be controlled. The results are summarized as follows;

a. The combination of MHE and NMPC is able to produce a controller input that can

handle cases with significant noise.

b. Fully nonlinear optimization strategies can be enabled online by means of parametric

sensitivity with an almost insignificant impact of performance of the estimation and

control.

Finally, we can state that the main contribution of this section is that the foundation has

been laid out for an unified implementation of MHE-NMPC for state-estimation and con-

trol that can handle large-scale nonlinear model in online applications.

CHAPTER 6. CONCLUSION

95

6.2 RECOMMENDATIONS FOR FUTURE WORK

6.2 Recommendations for future work

IPOPT for failure of CQs.

a. Convergence analysis of the `1-exact penalty-barrier strategy. Though preliminary

results suggest that its convergence follows from the regular proofs for the filter line

search. A formal statement needs to be made, including a full set of assumptions;

and a study of situations in which the penalty parameter becomes unbounded.

b. Violation of CQs because of active variable bounds. This is one situation that might

be found in situations for which the barrier parameter is small enough. It is char-

acterized for having terms in the KKT matrix that start growing rapidly, and even

with added benefits of the `1-exact penalty strategy, successful solutions might not

be guaranteed.

c. Combination with Structured Regularization techniques. It might be possible to

attain more successes in solving locally degeneracies if the structured regularization

strategies from [9] are triggered whenever the barrier parameter is close to a certain

minimum threshold. This would generate an increase of performance in the already

discussed strategies.

d. ρ − µ strategy. In [38] and [64], a similar approach is suggested; in this way the

penalty parameter is related to the barrier parameter as follows

ρ =
1

2µ
.

In our framework, µ is updated following a monotonic update rule, which will en-

sure that ρ grows monotonically as well. However, the numerical performance of

this strategy is yet to be analyzed.

IPOPT (General)

96
CHAPTER 6. CONCLUSION

6.2 RECOMMENDATIONS FOR FUTURE WORK

a. Linear algebra structure exploitation. Several works have suggested and imple-

mented variations of this idea, e.g. [11], [65], and [12]. We suggest, implementing

a strategy that is able to take advantage of the blocked diagonal structure from dy-

namic optimization problems, so that multiprocessor architectures can be used and

thus provide faster solution times.

CAPRESE framework

a. Incorporation of the computation of terminal regions and penalties. For complete-

ness of the NMPC strategies a reliable computation of the terms for the terminal

function need to be included into the framework.

b. Adaptive Horizon. Another important aspect that would ensure a better perfor-

mance of the controller strategy is the choice of a horizon length N , which was not

analyzed in this work. However, there are systematic ways of calculating and adapt-

ing the appropriate horizon length, as the NMPC evolves over time [66].

c. Improved dynamic simulation strategies. It is not uncommon to formulate prob-

lems with high levels of variation of the time-scales. Which in turn results in stiffness

and difficulties during integration. Therefore, CAPRESE requires more sophisticated

strategies to attempt to adjust the strategy of simulation or provide diagnostics of the

kinds of potential issues with the models of interest.

d. Hybrid dynamics. The introduction of nonsmooth dynamics is of great value, be-

cause several industrial level applications have points where the derivatives are not

smooth. To handle these with reasonable performance Mathematical Programs with

Complementarity Constraints can be used in combination of a robust NLP solver,

like IPOPT. Nevertheless, there are several potential problematic issues found with

these kinds of dynamic complementarity problems. From the perspective of imple-

mentation, CAPRESE might be an effective place to start.

CHAPTER 6. CONCLUSION

97

BIBLIOGRAPHY

Bibliography

[1] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg, “Systematic methods for chemi-

cal process design,” 1997.

[2] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical programming,

vol. 106, no. 1, pp. 25–57, 2006.

[3] R. H. Byrd, J. Nocedal, and R. A. Waltz, “K nitro: An integrated package for nonlinear

optimization,” in Large-scale nonlinear optimization, pp. 35–59, Springer, 2006.

[4] N. Chiang, C. G. Petra, and V. M. Zavala, “Structured nonconvex optimization of

large-scale energy systems using pips-nlp,” in 2014 Power Systems Computation Con-

ference, pp. 1–7, IEEE, 2014.

[5] A. U. Raghunathan and L. T. Biegler, “An interior point method for mathematical

programs with complementarity constraints (mpccs),” SIAM Journal on Optimization,

vol. 15, no. 3, pp. 720–750, 2005.

[6] B. Baumrucker, J. Renfro, and L. T. Biegler, “Mpec problem formulations and solution

strategies with chemical engineering applications,” Computers & Chemical Engineering,

vol. 32, no. 12, pp. 2903–2913, 2008.

[7] B. Baumrucker and L. Biegler, “Mpec strategies for optimization of a class of hybrid

dynamic systems,” Journal of Process Control, vol. 19, no. 8, pp. 1248–1256, 2009.

[8] K. Wang, Z. Shao, Y. Lang, J. Qian, and L. T. Biegler, “Barrier nlp methods with struc-

tured regularization for optimization of degenerate optimization problems,” Comput-

ers & Chemical Engineering, vol. 57, pp. 24–29, 2013.

98
BIBLIOGRAPHY

BIBLIOGRAPHY

[9] W. Wan and L. T. Biegler, “Structured regularization for barrier nlp solvers,” Compu-

tational Optimization and Applications, vol. 66, no. 3, pp. 401–424, 2017.

[10] F. E. Curtis, J. Nocedal, and A. Wächter, “A matrix-free algorithm for equality con-

strained optimization problems with rank-deficient jacobians,” SIAM Journal on Opti-

mization, vol. 20, no. 3, pp. 1224–1249, 2009.

[11] J. Kang, Y. Cao, D. P. Word, and C. D. Laird, “An interior-point method for efficient

solution of block-structured nlp problems using an implicit schur-complement de-

composition,” Computers & Chemical Engineering, vol. 71, pp. 563–573, 2014.

[12] W. Wan, J. P. Eason, B. Nicholson, and L. T. Biegler, “Parallel cyclic reduction de-

composition for dynamic optimization problems,” Computers & Chemical Engineering,

vol. 120, pp. 54–69, 2019.

[13] V. Kungurtsev and J. Jaschke, “A predictor-corrector path-following algorithm for

dual-degenerate parametric optimization problems,” SIAM Journal on Optimization,

vol. 27, no. 1, pp. 538–564, 2017.

[14] M. Short, C. Schenk, D. Thierry, J. S. Rodriguez, L. T. Biegler, and S. Garcia-Muñoz,

“Kipet–an open-source kinetic parameter estimation toolkit,” in Computer Aided Chem-

ical Engineering, vol. 47, pp. 299–304, Elsevier, 2019.

[15] R. López-Negrete, S. C. Patwardhan, and L. T. Biegler, “Constrained particle filter

approach to approximate the arrival cost in moving horizon estimation,” Journal of

Process Control, vol. 21, no. 6, pp. 909–919, 2011.

[16] B. Nicholson, R. López-Negrete, and L. T. Biegler, “On-line state estimation of non-

linear dynamic systems with gross errors,” Computers & Chemical Engineering, vol. 70,

pp. 149–159, 2014.

[17] V. M. Zavala and L. T. Biegler, “The advanced-step nmpc controller: Optimality, sta-

bility and robustness,” Automatica, vol. 45, no. 1, pp. 86–93, 2009.

BIBLIOGRAPHY
99

BIBLIOGRAPHY

[18] J. Jäschke, X. Yang, and L. T. Biegler, “Fast economic model predictive control based

on NLP-sensitivities,” Journal of Process Control, vol. 24, no. 8, pp. 1260–1272, 2014.

[19] D. W. Griffith, V. M. Zavala, and L. T. Biegler, “Robustly stable economic nmpc for

non-dissipative stage costs,” Journal of Process Control, vol. 57, pp. 116–126, 2017.

[20] M. Yu and L. T. Biegler, “Economic nmpc strategies for solid sorbent-based co2 cap-

ture,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 103–108, 2018.

[21] S.-P. Han and O. L. Mangasarian, “Exact penalty functions in nonlinear program-

ming,” Mathematical programming, vol. 17, no. 1, pp. 251–269, 1979.

[22] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming:

Motivation and global convergence,” SIAM Journal on Optimization, vol. 16, no. 1,

pp. 1–31, 2005.

[23] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis for nonlinear program-

ming,” Annals of Operations Research, vol. 27, no. 1, pp. 215–235, 1990.

[24] D. Ralph and S. Dempe, “Directional derivatives of the solution of a parametric non-

linear program,” Mathematical programming, vol. 70, no. 1-3, pp. 159–172, 1995.

[25] L. T. Biegler, J. Nocedal, and C. Schmid, “A reduced hessian method for large-scale

constrained optimization,” SIAM Journal on Optimization, vol. 5, no. 2, pp. 314–347,

1995.

[26] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of linear equations

with pardiso,” Future Generation Computer Systems, vol. 20, no. 3, pp. 475–487, 2004.

[27] D. M. Gay, “Hooking your solver to AMPL,” tech. rep., Citeseer, 1997.

[28] P. R. Amestoy, I. S. Duff, and J.-Y. L’excellent, “Multifrontal parallel distributed sym-

metric and unsymmetric solvers,” Computer methods in applied mechanics and engineer-

ing, vol. 184, no. 2-4, pp. 501–520, 2000.

100
BIBLIOGRAPHY

BIBLIOGRAPHY

[29] I. Quesada and I. E. Grossmann, “Global optimization of bilinear process networks

with multicomponent flows,” Computers & Chemical Engineering, vol. 19, no. 12,

pp. 1219–1242, 1995.

[30] S. Kameswaran and L. T. Biegler, “Simultaneous dynamic optimization strategies: Re-

cent advances and challenges,” Computers & Chemical Engineering, vol. 30, no. 10-12,

pp. 1560–1575, 2006.

[31] R. H. Byrd, G. Lopez-Calva, and J. Nocedal, “A line search exact penalty method

using steering rules,” Mathematical Programming, vol. 133, no. 1-2, pp. 39–73, 2012.

[32] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Steering exact penalty methods for nonlinear

programming,” Optimization Methods and Software, vol. 23, no. 2, pp. 197–213, 2008.

[33] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, “Intel math ker-

nel library,” in High-Performance Computing on the Intel R© Xeon PhiTM, pp. 167–188,

Springer, 2014.

[34] I. S. Duff, “MA57—a code for the solution of sparse symmetric definite and indefinite

systems,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 118–

144, 2004.

[35] R. Fourer, D. M. Gay, and B. W. Kernighan, “Ampl. a modeling language for mathe-

matical programming,” 1993.

[36] N. I. Gould, D. Orban, and P. L. Toint, “Cuter and sifdec: A constrained and uncon-

strained testing environment, revisited,” ACM Transactions on Mathematical Software

(TOMS), vol. 29, no. 4, pp. 373–394, 2003.

[37] S. Leyffer, “Macmpec: Ampl collection of mpecs,” Argonne National Laboratory, 2000.

[38] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimiza-

tion,” SIAM review, vol. 44, no. 4, pp. 525–597, 2002.

BIBLIOGRAPHY
101

BIBLIOGRAPHY

[39] L. T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical

processes, vol. 10. Siam, 2010.

[40] J. B. Rawlings and L. Ji, “Optimization-based state estimation: Current status and

some new results,” Journal of Process Control, vol. 22, no. 8, pp. 1439–1444, 2012.

[41] L. Ji, J. B. Rawlings, W. Hu, A. Wynn, and M. Diehl, “Robust stability of moving hori-

zon estimation under bounded disturbances,” IEEE Transactions on Automatic Control,

vol. 61, no. 11, pp. 3509–3514, 2016.

[42] F. Allgiower and A. Zheng, “Nonlinear model predictive control,” Progress in Systems

and Control Theory, vol. 26, 2000.

[43] D. Mayne, “Nonlinear model predictive control: Challenges and opportunities,” in

Nonlinear model predictive control, pp. 23–44, Springer, 2000.

[44] K. Caldeira and M. R. Rampino, “The mid-cretaceous super plume, carbon dioxide,

and global warming,” Geophysical Research Letters, vol. 18, no. 6, pp. 987–990, 1991.

[45] J. G. Olivier, J. A. Peters, and G. Janssens-Maenhout, “Trends in global CO2 emissions

2012 report,” 2012.

[46] F. A. Rahman, M. M. A. Aziz, R. Saidur, W. A. W. A. Bakar, M. Hainin, R. Putrajaya,

and N. A. Hassan, “Pollution to solution: Capture and sequestration of carbon diox-

ide (co2) and its utilization as a renewable energy source for a sustainable future,”

Renewable and Sustainable Energy Reviews, vol. 71, pp. 112–126, 2017.

[47] A. B. Rao and E. S. Rubin, “A technical, economic, and environmental assessment

of amine-based CO2 capture technology for power plant greenhouse gas control,”

Environmental science & technology, vol. 36, no. 20, pp. 4467–4475, 2002.

[48] A. Samanta, A. Zhao, G. K. Shimizu, P. Sarkar, and R. Gupta, “Post-combustion co2

102
BIBLIOGRAPHY

BIBLIOGRAPHY

capture using solid sorbents: a review,” Industrial & Engineering Chemistry Research,

vol. 51, no. 4, pp. 1438–1463, 2011.

[49] F. Engstrom, J. M. Isaksson, and R. Kuivalainen, “Fluidized bed reactor,” Sept. 12

1989. US Patent 4,864,944.

[50] F. Taghipour, N. Ellis, and C. Wong, “Experimental and computational study of gas–

solid fluidized bed hydrodynamics,” Chemical Engineering Science, vol. 60, no. 24,

pp. 6857–6867, 2005.

[51] D. Kunii and O. Levenspiel, “Bubbling bed model. model for flow of gas through a

fluidized bed,” Industrial & Engineering Chemistry Fundamentals, vol. 7, no. 3, pp. 446–

452, 1968.

[52] A. Lee and D. C. Miller, “A one-dimensional (1-d) three-region model for a bubbling

fluidized-bed adsorber,” Industrial & Engineering Chemistry Research, vol. 52, no. 1,

pp. 469–484, 2012.

[53] K.-Y. Choi and W. H. Ray, “The dynamic behaviour of fluidized bed reactors for

solid catalysed gas phase olefin polymerization,” Chemical Engineering Science, vol. 40,

no. 12, pp. 2261–2279, 1985.

[54] J. R. Muir, C. Brereton, J. R. Grace, and C. J. Lim, “Dynamic modeling for simulation

and control of a circulating fluidized-bed combustor,” AIChE Journal, vol. 43, no. 5,

pp. 1141–1152, 1997.

[55] S. Modekurti, D. Bhattacharyya, and S. E. Zitney, “Dynamic modeling and control

studies of a two-stage bubbling fluidized bed adsorber-reactor for solid–sorbent CO2

capture,” Industrial & Engineering Chemistry Research, vol. 52, no. 30, pp. 10250–10260,

2013.

[56] M. Yu, D. C. Miller, and L. T. Biegler, “Dynamic reduced order models for simulating

BIBLIOGRAPHY
103

BIBLIOGRAPHY

bubbling fluidized bed adsorbers,” Industrial & Engineering Chemistry Research, vol. 54,

no. 27, pp. 6959–6974, 2015.

[57] M. Yu and L. T. Biegler, “Economic NMPC strategies for solid sorbent-based CO2

capture,” 10th IFAC International Symposium on Advanced Control of Chemical Processes

(ADCHEM 2018), no. 2, pp. 103–108, 2018.

[58] “IDAES website.” https://idaes.org/about/overview/.

[59] D. Woodruff, G. Hackebeil, C. D. Laird, B. L. Nicholson, W. E. Hart, J. D. Siirola, and

J.-P. Watson, “Pyomo v5. 0,” tech. rep., Sandia National Lab.(SNL-NM), Albuquerque,

NM (United States), 2017.

[60] B. Nicholson, J. D. Siirola, J.-P. Watson, V. M. Zavala, and L. T. Biegler, “pyomo.dae:

a modeling and automatic discretization framework for optimization with differen-

tial and algebraic equations,” Mathematical Programming Computation, vol. 10, no. 2,

pp. 187–223, 2018.

[61] R. López-Negrete, “Nonlinear programming sensitivity based methods for con-

strained state estimation,” PhD thesis, 2011.

[62] M. Diehl, Real-time optimization for large scale nonlinear processes. PhD thesis, 2001.

[63] R. Lopez-Negrete, F. J. D’Amato, L. T. Biegler, and A. Kumar, “Fast nonlinear model

predictive control: Formulation and industrial process applications,” Computers &

Chemical Engineering, vol. 51, pp. 55–64, 2013.

[64] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential unconstrained

minimization techniques, vol. 4. Siam, 1990.

[65] V. M. Zavala, C. D. Laird, and L. T. Biegler, “Interior-point decomposition approaches

for parallel solution of large-scale nonlinear parameter estimation problems,” Chemi-

cal Engineering Science, vol. 63, no. 19, pp. 4834–4845, 2008.

104
BIBLIOGRAPHY

BIBLIOGRAPHY

[66] D. W. Griffith, S. C. Patwardhan, and L. T. Biegler, “Quasi-infinite adaptive horizon

nonlinear model predictive control,” 2018.

BIBLIOGRAPHY
105

Appendix

.1 CUTEr test set

The list of problems taken into account for this work are presented on Tables 1 through

3. The results for the degenerate CUTEr set are presented on the Tables 4 through 30.

The results were generated triggering the `1-exact penalty mode when restoration phase is

called, note that the status code corresponds to the same codes from IPOPT.

.2 Example CAPRESE snippet

To illustrate the way the framework interacts with the user, this section contains example

code inside main loop of the controller(Python).

Listing 1: Iteration from the controller.

e . solve dyn (e . PlantSample) # : P l a n t

e . u p d a t e s t a t e r e a l () # Update t h e c u r r e n t s t a t e

e . update soi sp nmpc () # : To k e e p t r a c k o f t h e s t a t e o f i n t e r e s t .

e . update measurement () # Update t h e c u r r e n t measurement

e . compute y of fse t () # : Get t h e o f f s e t f o r y

i f i > 1 :

e . sens dot mhe ()

e . update state mhe (as nmpc mhe strategy=True)

106
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem n var eq con in con Problem n var eq con in con Problem n var eq con in con Problem n var eq con in con

gilbert 1000 2 0 swopf 83 79 14 smmpsf 720 241 23 hs042 4 3 0

bt11 5 4 0 dallasm 196 152 0 hs100lnp 7 3 0 optmass 66 45 11

hs046 5 3 0 himmelbj 45 17 0 gridnetf 7565 3845 0 sseblin 192 49 24

hs007 2 2 0 aug3d 3873 1001 0 lsnnodoc 5 5 0 hs028 3 2 0

hs114 10 4 8 bt5 3 3 0 bt12 5 4 0 batch 46 13 61

extrasim 2 2 0 allinitc 4 2 3 loadbal 31 12 20 hs050 5 4 0

model 1831 325 15 bt9 4 3 0 hs081 5 4 0 hs087 9 5 0

disc2 28 18 6 qpnboei1 384 10 339 dtoc1na 1485 991 0 hs080 5 4 0

eigenbco 110 56 0 trimloss 142 21 55 genhs28 10 9 0 hs062 3 2 0

catenary 496 167 0 dtoc1nd 735 491 0 hs071 4 2 1 trainh 20000 10003 0

tame 2 2 0 minc44 303 263 0 hs078 5 4 0 sawpath 593 591 196

dtoc1l 14985 9991 0 hs073 4 2 2 ncvxqp1 1000 501 0 steenbrb 468 109 0

fccu 19 9 0 hs039 4 3 0 avion2 49 16 0 gouldqp2 699 350 0

hager4 10000 5001 0 catena 32 12 0 gridnetc 7564 3845 0 zigzag 58 41 10

hs056 7 5 0 hs053 5 4 0 hs041 4 2 4 maratos 2 2 0

robot 14 10 0 ncvxqp4 1000 251 0 hs109 9 7 4 aljazzaf 3 2 0

bt13 5 2 1 ncvxqp7 1000 751 0 orthregb 27 7 0 reading3 202 102 1

optcdeg2 1199 801 0 hs006 2 2 0 prodpl0 60 21 9 orthrdm2 4003 2001 0

hs027 3 2 0 qpcstair 385 210 147 blockqp2 2005 1001 1 eigenaco 110 56 0

portfl2 12 2 0 reading1 10001 5001 0 hvycrash 201 151 0 dtoc5 9998 5000 0

blockqp4 2005 1001 1 spanhyd 81 34 0 linspanh 81 34 0 hs047 5 4 0

qpcboei1 384 10 339 aug3dc 3873 1001 0 eigena2 110 56 0 steenbrf 468 109 0

hs111lnp 10 4 0 portfl3 12 2 0 hs061 3 3 0 degenlpa 20 15 0

hs032 3 2 1 hs040 4 4 0 hs051 5 4 0 launch 25 10 20

mwright 5 4 0 sosqp1 20000 10002 0 ncvxqp8 1000 751 0 hs060 3 2 0

Table 1: CUTEr set, part 1.

APPENDIX

107

.2 EXAMPLE CAPRESE SNIPPET

Problem n var eq con in con Problem n var eq con in con Problem n var eq con in con Problem n var eq con in con

dualc5 8 2 277 dixchlng 10 6 0 bt4 3 3 0 smbank 117 65 0

orthrege 36 21 0 aug2d 20192 9997 0 hs99exp 28 22 0 bloweyc 2002 1003 0

hs111 10 4 0 gouldqp3 699 350 0 dixchlnv 100 51 0 hs112 10 4 0

try-b 2 2 0 sosqp2 20000 10002 0 dual3 111 2 0 hadamard 65 65 192

ssnlbeam 31 21 0 gridneth 61 37 0 dtoc1nc 1485 991 0 degenlpb 20 16 0

portfl6 12 2 0 optctrl3 119 81 1 hs048 5 3 0 himmelbk 24 15 0

hager2 10000 5001 0 hs079 5 4 0 ncvxqp2 1000 501 0 optcdeg3 1199 801 0

qpnstair 385 210 147 brainpc2 13805 13801 0 dual4 75 2 0 aug2dcqp 20200 9997 198

hs099 23 19 0 orthregc 10005 5001 0 steenbrg 540 127 0 deconvc 51 2 0

eigenc2 462 232 0 brainpc6 6905 6901 0 dtoc6 10000 5001 0 bt1 2 2 0

hs077 5 3 0 brainpc7 6905 6901 0 byrdsphr 3 3 0 hs107 9 7 8

blockqp3 2005 1001 1 hues-mod 10000 3 0 hager3 10000 5001 0 hager1 10001 5002 0

lch 600 2 0 orthrgds 10003 5001 0 bt2 3 2 0 hs35mod 3 2 1

csfi2 5 3 2 brainpc8 6905 6901 0 gridneti 61 37 0 gridnete 7565 3845 0

corkscrw 8997 6001 1000 brainpc0 6905 6901 0 eigenb2 110 56 0 blockqp5 2005 1001 1

ubh5 19997 14001 0 brainpc3 6905 6901 0 dtoc4 14997 9999 0 gausselm 1495 1241 2722

ncvxqp6 1000 251 0 cvxqp3 10000 7501 0 dtoc3 14997 9999 0 eg3 101 2 199

lotschd 12 8 0 brainpc5 6905 6901 0 gridnetd 5145 3845 0 aug2dc 20200 9997 198

dualc2 7 2 228 cvxqp2 10000 2501 0 hs119 16 9 0 ncvxqp3 1000 501 0

minperm 1113 1034 0 huestis 10000 3 0 portfl4 12 2 0 yao 2002 3 2001

aug3dcqp 3873 1001 0 brainpc1 6905 6901 0 cvxqp1 1000 501 0 hs026 3 2 0

bt8 5 3 0 brainpc4 6905 6901 0 bt3 5 4 0 bloweyb 2002 1003 0

qpcboei2 143 5 136 orthrgdm 10003 5001 0 steenbra 432 109 0 static3 434 97 0

kissing 127 43 861 orthregd 10003 5001 0 optctrl6 119 81 1 qpnboei2 143 5 136

alsotame 2 2 2 brainpc9 6905 6901 0 reading2 15003 10003 0 orthrega 517 257 0

Table 2: CUTEr set, part 2.

108
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem n var eq con in con Problem n var eq con in con

hs052 5 4 0 dtoc2 5994 3997 0

steenbrd 468 109 0 orthrds2 203 101 0

bloweya 2002 1003 0 eigencco 30 16 0

dualc1 9 2 214 lakes 90 79 0

dualc8 8 2 502 ncvxqp5 1000 251 0

portfl1 12 2 0 dual1 85 2 0

hs074 4 4 1 odfits 10 7 0

trainf 20000 10003 0 bt6 5 3 0

csfi1 5 3 2 clnlbeam 1499 1001 0

dual2 96 2 0 bt7 5 4 0

gridnetg 47 37 0 rk23 17 12 0

hong 4 2 0 hs054 6 2 0

dtoc1nb 1485 991 0 gridnetb 13284 6725 0

hs014 2 2 1 ubh1 17997 12001 0

sreadin3 10001 5002 0 dittert 327 265 0

optcntrl 29 21 1 blockqp1 2005 1001 1

steenbre 540 127 0 ncvxqp9 1000 751 0

dnieper 57 25 0 hs063 3 3 0

steenbrc 540 127 0 hs009 2 2 0

gridneta 8964 6725 0 hs067 10 8 14

prodpl1 60 21 9 ssebnln 192 73 24

aug3dqp 3873 1001 0 hs075 4 4 1

hs049 5 3 0

aug2dqp 20192 9997 198

fletcher 4 2 4

Table 3: CUTEr set, part 3.

APPENDIX

109

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 77 1.67E+01 2 swopf 23 4.73E-02 0 smmpsf 674 1.83E+00 0 hs042 10 1.51E-02 0

bt11 68 8.37E-02 0 dallasm 36 7.27E-02 1 hs100lnp 196 3.36E-01 0 optmass 23 3.72E-02 0

hs046 45 7.98E-02 1 himmelbj 3000 3.75E+02 gridnetf 32 1.44E+00 0 sseblin 81 2.01E-01 0

hs007 79 1.80E-01 0 aug3d 12 9.04E-01 0 lsnnodoc 1 3.96E-03 0 hs028 1 3.46E-03 0

hs114 141 2.33E-01 0 bt5 53 6.88E-02 0 bt12 37 4.84E-02 0 batch 33 5.33E-02 0

extrasim 11 1.83E-02 0 allinitc 163 2.12E-01 1 loadbal 15 2.32E-02 0 hs050 9 1.13E-02 0

model 35 1.61E-01 0 bt9 128 4.07E-01 0 hs081 23 4.17E-02 0 hs087 76 1.53E-01 0

disc2 3000 8.57E+00 -1 qpnboei1 331 1.65E+00 1 dtoc1na 6 4.11E-01 0 hs080 26 4.70E-02 0

eigenbco 495 2.45E+00 0 trimloss 67 2.20E-01 1 genhs28 1 3.79E-03 0 hs062 7 7.43E-03 0

catenary 282 2.55E+00 -2 dtoc1nd 22 5.41E-01 0 hs071 74 1.13E-01 0 trainh 615 5.03E+01 0

tame 9 1.36E-02 0 minc44 389 5.05E+00 0 hs078 24 3.29E-02 0 sawpath 3000 2.48E+02 -1

dtoc1l 6 3.24E-01 0 hs073 3000 4.34E+00 -1 ncvxqp1 197 1.05E+01 0 steenbrb 49 4.94E-01 0

fccu 8 2.18E-02 0 hs039 128 2.83E-01 0 avion2 93 1.58E-01 0 gouldqp2 15 4.75E-02 0

hager4 19 7.86E-01 0 catena 149 2.09E-01 0 gridnetc 33 9.14E-01 0 zigzag 31 5.11E-02 0

hs056 15 1.86E-02 0 hs053 13 2.76E-02 0 hs041 16 3.01E-02 0 maratos 19 3.78E-02 0

robot 127 1.69E-01 0 ncvxqp4 349 9.95E+00 0 hs109 103 2.34E-01 0 aljazzaf 29 3.97E-02 0

bt13 33 5.95E-02 0 ncvxqp7 233 1.45E+01 0 orthregb 67 1.28E-01 0 reading3 29 6.37E-02 0

optcdeg2 34 1.76E-01 0 hs006 2045 2.85E+00 1 prodpl0 17 2.69E-02 0 orthrdm2 14 3.64E+00 0

hs027 87 1.12E-01 0 qpcstair 205 1.02E+00 0 blockqp2 13 9.30E-02 0 eigenaco 5 2.18E-02 0

portfl2 8 1.35E-02 0 reading1 1235 9.08E+01 1 hvycrash 194 7.36E-01 0 dtoc5 7 1.63E-01 0

blockqp4 11 1.41E-01 0 spanhyd 20 3.80E-02 0 linspanh 15 2.66E-02 0 hs047 25 6.32E-02 -2

qpcboei1 178 7.75E-01 0 aug3dc 11 1.27E-01 0 eigena2 3 1.38E-02 0 steenbrf 992 2.82E+00 0

hs111lnp 87 3.29E-01 2 portfl3 10 1.65E-02 0 hs061 20 4.84E-02 0 degenlpa 73 1.33E-01 1

hs032 16 2.36E-02 0 hs040 7 1.18E-02 0 hs051 1 3.50E-03 0 launch 143 4.51E-01 2

mwright 156 2.99E-01 0 sosqp1 45 3.84E+00 0 ncvxqp8 210 1.15E+01 0 hs060 75 1.28E-01 0

Table 4: CUTEr set results, vanilla, part 1.

110
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 3.66E-02 0 dixchlng 24 3.40E-02 0 bt4 27 4.77E-02 0 smbank 17 2.83E-02 0

orthrege 85 2.79E-01 -2 aug2d 11 6.81E-01 0 hs99exp 53 7.99E-02 0 bloweyc 44 1.16E+01 0

hs111 638 1.33E+00 0 gouldqp3 18 1.00E-01 0 dixchlnv 72 2.38E-01 0 hs112 17 2.46E-02 0

try-b 46 1.04E-01 0 sosqp2 58 7.92E+00 0 dual3 19 2.00E-01 0 hadamard 6 2.03E-02 0

ssnlbeam 3000 4.32E+00 -1 gridneth 12 2.49E-02 0 dtoc1nc 17 8.39E-01 0 degenlpb 53 7.48E-02 0

portfl6 8 9.29E-03 0 optctrl3 79 1.83E-01 0 hs048 1 1.62E-03 0 himmelbk 214 5.48E-01 3

hager2 10 2.25E-01 0 hs079 159 1.99E-01 0 ncvxqp2 564 4.17E+01 0 optcdeg3 28 1.16E-01 0

qpnstair 288 1.54E+00 0 brainpc2 358 1.90E+04 -4 dual4 16 6.79E-02 0 aug2dcqp 32 1.93E+00 0

hs099 15 3.29E-02 0 orthregc 110 2.65E+03 0 steenbrg 159 2.61E+00 0 deconvc 166 5.46E-01 0

eigenc2 13 1.03E+00 -2 brainpc6 215 1.04E+01 -2 dtoc6 31 9.62E-01 0 bt1 48 6.06E-02 0

hs077 44 8.79E-02 0 brainpc7 242 7.08E+02 -2 byrdsphr 108 3.79E-01 0 hs107 92 2.10E-01 0

blockqp3 81 8.28E-01 0 hues-mod 85 3.61E+03 -4 hager3 10 3.89E-01 0 hager1 1 3.23E-02 0

lch 352 1.04E+01 0 orthrgds 158 3.64E+02 0 bt2 16 2.93E-02 0 hs35mod 15 2.02E-02 0

csfi2 102 1.74E-01 0 brainpc8 258 1.60E+03 -2 gridneti 18 3.93E-02 0 gridnete 12 7.49E-01 0

corkscrw 474 1.21E+01 0 brainpc0 15 3.85E+03 -4 eigenb2 4 1.57E-02 0 blockqp5 50 5.25E-01 0

ubh5 12 1.04E+00 0 brainpc3 302 2.29E+01 -2 dtoc4 3 1.92E-01 0 gausselm 1343 2.79E+01 0

ncvxqp6 350 8.48E+00 0 cvxqp3 58 5.46E+02 0 dtoc3 10 4.31E-01 0 eg3 19 4.80E-02 0

lotschd 33 5.04E-02 0 brainpc5 659 7.38E+02 -2 gridnetd 23 8.64E-01 0 aug2dc 17 7.53E-01 0

dualc2 19 3.88E-02 0 cvxqp2 32 2.99E+01 0 hs119 48 9.25E-02 0 ncvxqp3 455 2.82E+01 0

minperm 3000 9.40E+02 -1 huestis 95 3.62E+03 -4 portfl4 9 1.25E-02 0 yao 486 5.29E+00 0

aug3dcqp 24 3.85E-01 0 brainpc1 3000 1.42E+02 -1 cvxqp1 167 5.29E+00 0 hs026 33 4.79E-02 0

bt8 20 3.76E-02 0 brainpc4 274 1.50E+01 -2 bt3 12 3.24E-02 0 bloweyb 7 1.94E+00 0

qpcboei2 85 1.90E-01 0 orthrgdm 19 2.03E+00 0 steenbra 23 1.53E-01 0 static3 73 2.36E-01 4

kissing 483 7.21E+00 0 orthregd 18 2.02E+00 0 optctrl6 79 1.96E-01 0 qpnboei2 157 4.32E-01 0

alsotame 9 9.15E-03 0 brainpc9 319 2.85E+03 -2 reading2 15 8.09E-01 0 orthrega 123 6.51E-01 0

Table 5: CUTEr set results, vanilla, part 2.

APPENDIX

111

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 10 1.94E-02 0 dtoc2 86 2.46E+00 0

steenbrd 121 1.81E+00 0 orthrds2 78 2.32E-01 0

bloweya 169 2.86E+01 0 eigencco 30 4.69E-02 0

dualc1 24 6.53E-02 0 lakes 364 1.10E+00 0

dualc8 19 5.95E-02 0 ncvxqp5 386 7.93E+00 0

portfl1 9 1.36E-02 0 dual1 18 8.90E-02 0

hs074 12 3.19E-02 0 odfits 17 2.47E-02 0

trainf 53 2.20E+00 0 bt6 37 5.10E-02 0

csfi1 33 5.14E-02 0 clnlbeam 187 1.06E+00 0

dual2 15 6.83E-02 0 bt7 89 1.34E-01 0

gridnetg 25 5.40E-02 1 rk23 9 1.17E-02 0

hong 24 3.24E-02 0 hs054 9 1.36E-02 0

dtoc1nb 6 2.29E-01 0 gridnetb 9 7.02E-01 0

hs014 10 1.10E-02 0 ubh1 12 1.00E+00 0

sreadin3 12 5.49E-01 0 dittert 91 1.09E+00 0

optcntrl 44 6.64E-02 0 blockqp1 27 4.38E-01 0

steenbre 1636 3.80E+01 1 ncvxqp9 268 1.66E+01 0

dnieper 44 7.24E-02 0 hs063 17 2.15E-02 0

steenbrc 289 7.59E-01 -2 hs009 0 2.14E-03 0

gridneta 26 7.58E-01 0 hs067 11 1.45E-02 0

prodpl1 15 1.53E-02 0 ssebnln 150 6.81E-01 -2

aug3dqp 23 3.06E-01 0 hs075 13 3.19E-02 0

hs049 19 2.51E-02 0

aug2dqp 33 1.96E+00 0

fletcher 72 1.08E-01 0

Table 6: CUTEr set results, vanilla, part 3.

112
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 77 1.68E+01 0 swopf 20 6.84E-02 0 smmpsf 674 1.92E+00 0 hs042 10 1.53E-02 0

bt11 68 7.63E-02 0 dallasm 36 7.98E-02 1 hs100lnp 172 3.04E-01 0 optmass 23 3.68E-02 0

hs046 31 8.09E-02 0 himmelbj 3000 1.46E+01 -1 gridnetf 38 2.09E+00 0 sseblin 113 4.01E-01 0

hs007 66 1.35E-01 0 aug3d 12 6.35E-01 0 lsnnodoc 1 5.00E-03 0 hs028 1 4.01E-03 0

hs114 100 2.40E-01 0 bt5 53 7.20E-02 0 bt12 37 6.61E-02 0 batch 33 5.71E-02 0

extrasim 11 1.67E-02 0 allinitc 45 1.06E-01 0 loadbal 15 2.38E-02 0 hs050 9 1.40E-02 0

model 35 1.70E-01 0 bt9 70 1.77E-01 0 hs081 24 7.19E-02 0 hs087 76 1.17E-01 0

disc2 45 1.31E-01 0 qpnboei1 3000 5.39E+01 -1 dtoc1na 6 2.77E-01 0 hs080 16 4.04E-02 0

eigenbco 495 2.30E+00 0 trimloss 67 2.61E-01 0 genhs28 1 4.74E-03 0 hs062 7 8.94E-03 0

catenary 3000 1.22E+01 -1 dtoc1nd 22 3.77E-01 0 hs071 47 1.39E-01 0 trainh 100 8.26E+00 0

tame 9 5.44E-03 0 minc44 51 5.31E-01 0 hs078 24 3.80E-02 0 sawpath 3000 3.19E+02 -1

dtoc1l 6 3.06E-01 0 hs073 3000 4.44E+00 -1 ncvxqp1 312 1.40E+01 1 steenbrb 49 5.31E-01 0

fccu 13 3.88E-02 0 hs039 70 1.79E-01 0 avion2 93 1.71E-01 0 gouldqp2 15 4.79E-02 0

hager4 19 5.79E-01 0 catena 149 2.16E-01 0 gridnetc 39 4.17E+00 0 zigzag 31 5.64E-02 0

hs056 15 1.75E-02 0 hs053 17 4.30E-02 0 hs041 21 5.96E-02 0 maratos 78 2.10E-01 0

robot 115 2.93E-01 0 ncvxqp4 568 1.40E+01 0 hs109 60 1.66E-01 0 aljazzaf 29 3.48E-02 0

bt13 50 1.38E-01 0 ncvxqp7 262 1.60E+01 0 orthregb 47 1.33E-01 0 reading3 29 7.53E-02 0

optcdeg2 47 3.35E-01 0 hs006 2045 2.62E+00 1 prodpl0 17 2.46E-02 0 orthrdm2 14 3.77E+00 0

hs027 87 1.05E-01 0 qpcstair 813 5.47E+00 1 blockqp2 13 1.05E-01 0 eigenaco 5 2.81E-02 0

portfl2 8 1.30E-02 0 reading1 91 7.18E+00 0 hvycrash 616 2.76E+00 1 dtoc5 18 5.56E-01 0

blockqp4 11 8.77E-02 0 spanhyd 20 3.74E-02 0 linspanh 15 2.99E-02 0 hs047 31 8.14E-02 0

qpcboei1 286 1.51E+00 0 aug3dc 11 1.16E-01 0 eigena2 3 1.58E-02 0 steenbrf 326 1.94E+00 1

hs111lnp 97 2.26E-01 2 portfl3 10 1.42E-02 0 hs061 27 6.40E-02 0 degenlpa 84 2.08E-01 0

hs032 16 1.93E-02 0 hs040 7 9.98E-03 0 hs051 1 3.39E-03 0 launch 3000 3.23E+01 -1

mwright 125 1.92E-01 0 sosqp1 37 3.35E+00 0 ncvxqp8 367 3.21E+01 1 hs060 72 1.48E-01 0

Table 7: CUTEr set results, penalty mode ρ, part 1.

APPENDIX

113

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 4.18E-02 0 dixchlng 24 3.06E-02 0 bt4 261 7.49E-01 0 smbank 17 2.61E-02 0

orthrege 189 6.51E-01 1 aug2d 11 6.81E-01 0 hs99exp 91 2.41E-01 0 bloweyc 44 1.20E+01 0

hs111 3000 8.98E+00 -1 gouldqp3 21 1.56E-01 0 dixchlnv 72 2.67E-01 0 hs112 17 2.04E-02 0

try-b 30 6.94E-02 0 sosqp2 28 2.53E+00 0 dual3 23 3.01E-01 0 hadamard 6 2.89E-02 0

ssnlbeam 3000 4.41E+00 -1 gridneth 24 8.18E-02 0 dtoc1nc 17 8.63E-01 0 degenlpb 68 1.52E-01 0

portfl6 8 6.66E-03 0 optctrl3 79 2.09E-01 0 hs048 1 2.94E-04 0 himmelbk 1097 4.21E+00 0

hager2 10 2.46E-01 0 hs079 159 2.06E-01 0 ncvxqp2 447 2.35E+01 0 optcdeg3 43 3.01E-01 0

qpnstair 1300 1.29E+01 1 brainpc2 690 2.91E+02 1 dual4 16 7.32E-02 0 aug2dcqp 32 1.83E+00 0

hs099 24 6.90E-02 0 orthregc 110 3.48E+03 0 steenbrg 159 2.81E+00 0 deconvc 166 3.55E-01 0

eigenc2 45 1.96E+00 0 brainpc6 334 3.60E+01 1 dtoc6 58 1.86E+00 0 bt1 48 6.62E-02 0

hs077 97 2.55E-01 0 brainpc7 3000 6.96E+02 -1 byrdsphr 61 1.64E-01 0 hs107 3000 8.31E+00 -1

blockqp3 49 9.18E-01 1 hues-mod 105 4.95E+03 0 hager3 10 3.89E-01 0 hager1 1 3.16E-02 0

lch 695 2.21E+01 1 orthrgds 158 3.79E+02 0 bt2 23 6.46E-02 0 hs35mod 15 2.38E-02 0

csfi2 68 2.01E-01 0 brainpc8 544 6.31E+01 1 gridneti 90 3.68E-01 0 gridnete 31 1.67E+00 0

corkscrw 241 9.24E+00 0 brainpc0 1159 2.64E+03 1 eigenb2 4 2.24E-02 0 blockqp5 50 4.55E-01 0

ubh5 19 1.95E+00 0 brainpc3 2052 4.57E+02 1 dtoc4 3 1.49E-01 0 gausselm 1343 3.02E+01 0

ncvxqp6 867 3.93E+01 1 cvxqp3 58 7.06E+02 0 dtoc3 21 1.06E+00 0 eg3 19 5.61E-02 0

lotschd 39 8.57E-02 0 brainpc5 3000 4.91E+02 -1 gridnetd 50 2.04E+00 0 aug2dc 17 8.06E-01 0

dualc2 19 4.63E-02 0 cvxqp2 40 5.16E+01 0 hs119 50 1.37E-01 0 ncvxqp3 468 3.00E+01 0

minperm 85 2.16E+01 0 huestis 84 3.74E+03 2 portfl4 9 1.16E-02 0 yao 3000 4.17E+01 -1

aug3dcqp 24 3.15E-01 0 brainpc1 3000 2.16E+02 -1 cvxqp1 67 1.41E+00 0 hs026 33 5.49E-02 0

bt8 17 4.65E-02 0 brainpc4 295 2.84E+01 1 bt3 18 5.72E-02 0 bloweyb 7 1.73E+00 0

qpcboei2 85 2.00E-01 0 orthrgdm 19 2.48E+00 0 steenbra 23 1.68E-01 0 static3 73 2.72E-01 4

kissing 229 3.03E+00 0 orthregd 18 2.14E+00 0 optctrl6 79 2.06E-01 0 qpnboei2 456 2.25E+00 0

alsotame 9 1.49E-02 0 brainpc9 3000 4.47E+02 -1 reading2 15 8.80E-01 0 orthrega 92 6.18E-01 0

Table 8: CUTEr set results, penalty mode ρ, part 2.

114
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 17 3.44E-02 0 dtoc2 86 2.61E+00 0

steenbrd 121 1.70E+00 0 orthrds2 962 4.31E+00 1

bloweya 169 2.97E+01 0 eigencco 30 5.44E-02 0

dualc1 24 6.47E-02 0 lakes 435 1.36E+00 0

dualc8 19 6.76E-02 0 ncvxqp5 386 8.53E+00 0

portfl1 9 1.63E-02 0 dual1 18 1.06E-01 0

hs074 24 8.57E-02 0 odfits 17 2.17E-02 0

trainf 53 2.31E+00 0 bt6 26 6.59E-02 0

csfi1 46 1.19E-01 0 clnlbeam 187 1.19E+00 0

dual2 15 1.26E-01 0 bt7 45 1.11E-01 0

gridnetg 31 9.53E-02 0 rk23 9 1.64E-02 0

hong 24 3.63E-02 0 hs054 9 1.08E-02 0

dtoc1nb 6 2.59E-01 0 gridnetb 36 1.97E+00 0

hs014 10 1.75E-02 0 ubh1 20 1.52E+00 0

sreadin3 12 6.02E-01 0 dittert 91 9.55E-01 0

optcntrl 44 1.37E-01 0 blockqp1 34 5.91E-01 0

steenbre 1636 4.01E+01 1 ncvxqp9 327 2.46E+01 0

dnieper 44 8.02E-02 0 hs063 17 3.22E-02 0

steenbrc 97 5.49E-01 1 hs009 0 0.00E+00 0

gridneta 35 1.22E+00 0 hs067 11 2.09E-02 0

prodpl1 15 2.11E-02 0 ssebnln 3000 2.63E+01 -1

aug3dqp 23 2.83E-01 0 hs075 35 8.41E-02 0

hs049 19 2.89E-02 0

aug2dqp 33 1.88E+00 0

fletcher 61 1.98E-01 2

Table 9: CUTEr set results, penalty mode ρ, part 3.

APPENDIX

115

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 77 1.70E+01 0 swopf 20 6.65E-02 0 smmpsf 674 1.89E+00 0 hs042 10 1.57E-02 0

bt11 68 8.91E-02 0 dallasm 36 7.89E-02 1 hs100lnp 172 3.03E-01 0 optmass 23 4.09E-02 0

hs046 31 7.56E-02 0 himmelbj 3000 1.48E+01 -1 gridnetf 38 1.80E+00 0 sseblin 117 4.10E-01 0

hs007 66 1.52E-01 0 aug3d 12 6.26E-01 0 lsnnodoc 1 2.41E-03 0 hs028 1 4.09E-03 0

hs114 118 2.93E-01 0 bt5 53 7.48E-02 0 bt12 37 6.31E-02 0 batch 33 5.98E-02 0

extrasim 11 1.20E-02 0 allinitc 41 9.39E-02 0 loadbal 15 2.62E-02 0 hs050 9 1.00E-02 0

model 35 1.78E-01 0 bt9 70 1.61E-01 0 hs081 24 6.71E-02 0 hs087 76 9.70E-02 0

disc2 45 1.29E-01 0 qpnboei1 1815 1.21E+01 0 dtoc1na 6 2.52E-01 0 hs080 16 3.93E-02 0

eigenbco 495 2.25E+00 0 trimloss 63 2.45E-01 0 genhs28 1 4.33E-03 0 hs062 7 1.33E-02 0

catenary 3000 1.20E+01 -1 dtoc1nd 22 3.35E-01 0 hs071 60 1.53E-01 0 trainh 100 8.26E+00 0

tame 9 9.74E-03 0 minc44 51 5.31E-01 0 hs078 24 3.22E-02 0 sawpath 3000 7.20E+01 -1

dtoc1l 6 3.02E-01 0 hs073 3000 4.20E+00 -1 ncvxqp1 312 1.37E+01 1 steenbrb 49 5.13E-01 0

fccu 13 3.52E-02 0 hs039 70 1.81E-01 0 avion2 93 1.50E-01 0 gouldqp2 15 5.23E-02 0

hager4 19 5.74E-01 0 catena 149 2.07E-01 0 gridnetc 39 4.10E+00 0 zigzag 31 5.48E-02 0

hs056 15 1.83E-02 0 hs053 17 4.58E-02 0 hs041 22 5.13E-02 0 maratos 78 2.03E-01 0

robot 115 3.01E-01 0 ncvxqp4 568 1.38E+01 0 hs109 60 1.66E-01 0 aljazzaf 29 4.24E-02 0

bt13 50 1.33E-01 0 ncvxqp7 262 1.55E+01 0 orthregb 47 1.23E-01 0 reading3 29 7.34E-02 0

optcdeg2 47 3.33E-01 0 hs006 2045 2.61E+00 1 prodpl0 17 2.80E-02 0 orthrdm2 14 3.88E+00 0

hs027 87 1.15E-01 0 qpcstair 702 4.04E+00 0 blockqp2 13 1.06E-01 0 eigenaco 5 2.80E-02 0

portfl2 8 1.16E-02 0 reading1 91 6.30E+00 0 hvycrash 616 2.67E+00 1 dtoc5 18 5.64E-01 0

blockqp4 11 8.85E-02 0 spanhyd 20 4.33E-02 0 linspanh 15 2.34E-02 0 hs047 31 8.15E-02 0

qpcboei1 280 1.48E+00 0 aug3dc 11 1.10E-01 0 eigena2 3 9.34E-03 0 steenbrf 326 1.91E+00 1

hs111lnp 97 2.17E-01 2 portfl3 10 1.26E-02 0 hs061 27 6.52E-02 0 degenlpa 84 2.26E-01 0

hs032 16 1.90E-02 0 hs040 7 1.23E-02 0 hs051 1 1.20E-03 0 launch 3000 1.60E+01 -1

mwright 125 2.08E-01 0 sosqp1 37 3.19E+00 0 ncvxqp8 367 3.21E+01 1 hs060 72 1.26E-01 0

Table 10: CUTEr set results, penalty mode ρ no Σ, part 1.

116
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 3.71E-02 0 dixchlng 24 3.64E-02 0 bt4 261 7.31E-01 0 smbank 17 4.10E-02 0

orthrege 189 6.15E-01 1 aug2d 11 6.69E-01 0 hs99exp 91 2.33E-01 0 bloweyc 44 1.22E+01 0

hs111 3000 8.98E+00 -1 gouldqp3 21 1.53E-01 0 dixchlnv 72 2.85E-01 0 hs112 17 2.60E-02 0

try-b 30 5.18E-02 0 sosqp2 28 2.50E+00 0 dual3 23 3.05E-01 0 hadamard 6 2.18E-02 0

ssnlbeam 3000 4.30E+00 -1 gridneth 24 8.01E-02 0 dtoc1nc 17 8.63E-01 0 degenlpb 68 1.58E-01 0

portfl6 8 1.47E-02 0 optctrl3 79 1.84E-01 0 hs048 1 4.22E-03 0 himmelbk 1097 4.47E+00 0

hager2 10 2.40E-01 0 hs079 159 1.85E-01 0 ncvxqp2 447 2.40E+01 0 optcdeg3 43 2.88E-01 0

qpnstair 703 4.48E+00 0 brainpc2 690 2.80E+02 1 dual4 16 7.58E-02 0 aug2dcqp 32 1.85E+00 0

hs099 24 6.44E-02 0 orthregc 110 3.42E+03 0 steenbrg 159 2.85E+00 0 deconvc 166 3.50E-01 0

eigenc2 45 1.86E+00 0 brainpc6 334 3.86E+01 1 dtoc6 58 1.96E+00 0 bt1 48 6.26E-02 0

hs077 97 2.56E-01 0 brainpc7 3000 6.69E+02 -1 byrdsphr 61 1.78E-01 0 hs107 53 1.61E-01 0

blockqp3 49 8.81E-01 1 hues-mod 105 5.00E+03 0 hager3 10 3.71E-01 0 hager1 1 2.70E-02 0

lch 695 2.14E+01 1 orthrgds 158 3.98E+02 0 bt2 23 6.29E-02 0 hs35mod 15 2.09E-02 0

csfi2 68 1.95E-01 0 brainpc8 544 6.58E+01 1 gridneti 90 4.17E-01 0 gridnete 31 1.55E+00 0

corkscrw 221 7.99E+00 0 brainpc0 1159 2.63E+03 1 eigenb2 4 1.59E-02 0 blockqp5 50 4.59E-01 0

ubh5 19 1.87E+00 0 brainpc3 2052 4.55E+02 1 dtoc4 3 1.66E-01 0 gausselm 1343 3.07E+01 0

ncvxqp6 867 3.84E+01 1 cvxqp3 58 6.44E+02 0 dtoc3 21 1.09E+00 0 eg3 19 5.74E-02 0

lotschd 39 7.62E-02 0 brainpc5 3000 5.40E+02 -1 gridnetd 50 2.14E+00 0 aug2dc 17 9.09E-01 0

dualc2 19 4.79E-02 0 cvxqp2 40 4.67E+01 0 hs119 50 1.33E-01 0 ncvxqp3 468 3.05E+01 0

minperm 85 2.14E+01 0 huestis 84 3.69E+03 2 portfl4 9 1.69E-02 0 yao 3000 4.20E+01 -1

aug3dcqp 24 3.19E-01 0 brainpc1 3000 2.40E+02 -1 cvxqp1 67 1.41E+00 0 hs026 33 4.49E-02 0

bt8 17 3.89E-02 0 brainpc4 295 3.09E+01 1 bt3 18 5.68E-02 0 bloweyb 7 1.80E+00 0

qpcboei2 85 2.03E-01 0 orthrgdm 19 2.77E+00 0 steenbra 23 1.65E-01 0 static3 73 2.72E-01 4

kissing 157 2.17E+00 0 orthregd 18 2.51E+00 0 optctrl6 79 2.05E-01 0 qpnboei2 456 2.13E+00 0

alsotame 9 1.51E-02 0 brainpc9 3000 4.62E+02 -1 reading2 15 8.72E-01 0 orthrega 92 6.09E-01 0

Table 11: CUTEr set results, penalty mode ρ no Σ, part 2.

APPENDIX

117

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 17 4.24E-02 0 dtoc2 86 2.93E+00 0

steenbrd 121 1.74E+00 0 orthrds2 962 4.51E+00 1

bloweya 169 3.01E+01 0 eigencco 30 5.03E-02 0

dualc1 24 6.92E-02 0 lakes 435 1.43E+00 0

dualc8 19 5.64E-02 0 ncvxqp5 386 8.65E+00 0

portfl1 9 1.93E-02 0 dual1 18 1.14E-01 0

hs074 24 7.87E-02 0 odfits 17 2.80E-02 0

trainf 53 2.31E+00 0 bt6 26 7.68E-02 0

csfi1 48 1.36E-01 0 clnlbeam 187 1.26E+00 0

dual2 15 9.45E-02 0 bt7 45 1.12E-01 0

gridnetg 31 8.40E-02 0 rk23 9 1.71E-02 0

hong 24 2.49E-02 0 hs054 9 1.83E-02 0

dtoc1nb 6 2.70E-01 0 gridnetb 36 2.11E+00 0

hs014 10 1.64E-02 0 ubh1 20 1.60E+00 0

sreadin3 12 6.04E-01 0 dittert 91 9.47E-01 0

optcntrl 43 1.10E-01 0 blockqp1 34 6.38E-01 0

steenbre 1636 4.09E+01 1 ncvxqp9 327 2.50E+01 0

dnieper 44 8.20E-02 0 hs063 17 2.50E-02 0

steenbrc 97 5.84E-01 1 hs009 0 2.80E-05 0

gridneta 35 1.54E+00 0 hs067 11 1.96E-02 0

prodpl1 15 2.41E-02 0 ssebnln 3000 2.56E+01 -1

aug3dqp 23 3.02E-01 0 hs075 34 9.50E-02 0

hs049 19 2.30E-02 0

aug2dqp 33 1.91E+00 0

fletcher 48 1.56E-01 2

Table 12: CUTEr set results, penalty mode ρ no Σ, part 3.

118
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 96 2.11E+01 0 swopf 20 5.29E-02 0 smmpsf 674 1.85E+00 0 hs042 10 1.11E-02 0

bt11 68 8.47E-02 0 dallasm 36 7.68E-02 1 hs100lnp 170 2.84E-01 0 optmass 23 4.25E-02 0

hs046 34 9.07E-02 0 himmelbj 3000 1.43E+01 -1 gridnetf 38 1.76E+00 0 sseblin 117 4.02E-01 0

hs007 67 1.41E-01 0 aug3d 12 6.06E-01 0 lsnnodoc 1 3.89E-03 0 hs028 1 3.92E-03 0

hs114 118 2.88E-01 0 bt5 53 7.35E-02 0 bt12 37 6.27E-02 0 batch 33 6.23E-02 0

extrasim 11 1.53E-02 0 allinitc 41 9.17E-02 0 loadbal 15 2.32E-02 0 hs050 9 1.45E-02 0

model 35 1.69E-01 0 bt9 54 1.29E-01 0 hs081 24 6.62E-02 0 hs087 76 1.05E-01 0

disc2 45 1.32E-01 0 qpnboei1 1635 1.37E+01 1 dtoc1na 6 2.50E-01 0 hs080 16 3.76E-02 0

eigenbco 495 2.17E+00 0 trimloss 63 2.43E-01 0 genhs28 1 3.80E-03 0 hs062 7 1.32E-02 0

catenary 3000 1.14E+01 -1 dtoc1nd 22 3.40E-01 0 hs071 60 1.64E-01 0 trainh 100 8.79E+00 0

tame 9 1.39E-02 0 minc44 53 5.77E-01 0 hs078 24 2.44E-02 0 sawpath 3000 9.25E+01 -1

dtoc1l 6 3.06E-01 0 hs073 3000 4.29E+00 -1 ncvxqp1 312 1.36E+01 1 steenbrb 49 5.08E-01 0

fccu 13 2.94E-02 0 hs039 54 1.21E-01 0 avion2 93 1.69E-01 0 gouldqp2 15 4.92E-02 0

hager4 19 5.43E-01 0 catena 149 2.10E-01 0 gridnetc 43 5.42E+00 0 zigzag 31 4.58E-02 0

hs056 15 1.85E-02 0 hs053 15 3.42E-02 0 hs041 22 5.72E-02 0 maratos 74 1.70E-01 0

robot 122 3.24E-01 0 ncvxqp4 568 1.37E+01 0 hs109 60 1.47E-01 0 aljazzaf 29 4.15E-02 0

bt13 53 1.33E-01 0 ncvxqp7 262 1.55E+01 0 orthregb 47 1.14E-01 0 reading3 29 6.43E-02 0

optcdeg2 46 3.24E-01 0 hs006 2045 2.59E+00 1 prodpl0 17 1.93E-02 0 orthrdm2 14 3.60E+00 0

hs027 87 1.19E-01 0 qpcstair 642 3.53E+00 0 blockqp2 13 1.02E-01 0 eigenaco 5 2.69E-02 0

portfl2 8 1.37E-02 0 reading1 91 6.45E+00 0 hvycrash 616 2.52E+00 1 dtoc5 18 4.96E-01 0

blockqp4 11 8.82E-02 0 spanhyd 20 3.90E-02 0 linspanh 15 2.47E-02 0 hs047 31 6.76E-02 0

qpcboei1 264 1.36E+00 0 aug3dc 11 1.09E-01 0 eigena2 3 1.41E-02 0 steenbrf 94 4.36E-01 1

hs111lnp 97 2.13E-01 2 portfl3 10 1.55E-02 0 hs061 24 6.38E-02 0 degenlpa 88 1.98E-01 0

hs032 16 2.40E-02 0 hs040 7 1.16E-02 0 hs051 1 6.43E-04 0 launch 3000 1.53E+01 -1

mwright 133 2.23E-01 0 sosqp1 36 3.30E+00 1 ncvxqp8 367 3.27E+01 1 hs060 72 1.35E-01 0

Table 13: CUTEr set results, penalty mode ρL (linear), part 1.

APPENDIX

119

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 3.60E-02 0 dixchlng 24 3.44E-02 0 bt4 261 6.87E-01 0 smbank 17 2.54E-02 0

orthrege 200 6.52E-01 0 aug2d 11 6.79E-01 0 hs99exp 91 2.28E-01 0 bloweyc 44 1.17E+01 0

hs111 1271 4.10E+00 0 gouldqp3 26 1.77E-01 0 dixchlnv 72 2.61E-01 0 hs112 17 2.05E-02 0

try-b 30 6.30E-02 0 sosqp2 32 2.85E+00 0 dual3 23 2.78E-01 0 hadamard 6 2.24E-02 0

ssnlbeam 3000 4.24E+00 -1 gridneth 25 7.50E-02 0 dtoc1nc 17 7.21E-01 0 degenlpb 68 1.54E-01 0

portfl6 8 1.27E-02 0 optctrl3 79 1.93E-01 0 hs048 1 3.86E-03 0 himmelbk 1097 4.18E+00 0

hager2 10 2.52E-01 0 hs079 159 2.01E-01 0 ncvxqp2 447 2.33E+01 0 optcdeg3 43 2.99E-01 0

qpnstair 724 4.52E+00 0 brainpc2 690 2.71E+02 1 dual4 16 6.28E-02 0 aug2dcqp 32 1.76E+00 0

hs099 24 5.57E-02 0 orthregc 110 3.44E+03 0 steenbrg 159 2.73E+00 0 deconvc 166 3.58E-01 0

eigenc2 48 2.04E+00 0 brainpc6 334 3.69E+01 1 dtoc6 52 1.59E+00 0 bt1 48 6.56E-02 0

hs077 30 9.09E-02 0 brainpc7 3000 3.56E+02 -1 byrdsphr 61 1.60E-01 0 hs107 3000 8.17E+00 -1

blockqp3 49 9.12E-01 1 hues-mod 102 4.83E+03 0 hager3 10 3.51E-01 0 hager1 1 2.90E-02 0

lch 3000 1.20E+02 -1 orthrgds 158 4.18E+02 0 bt2 30 7.88E-02 0 hs35mod 15 1.92E-02 0

csfi2 68 2.00E-01 0 brainpc8 544 7.52E+01 1 gridneti 20 6.71E-02 0 gridnete 31 1.58E+00 0

corkscrw 259 9.66E+00 0 brainpc0 3000 3.09E+03 -1 eigenb2 4 2.59E-02 0 blockqp5 50 4.59E-01 0

ubh5 19 1.93E+00 0 brainpc3 2052 4.60E+02 1 dtoc4 3 1.42E-01 0 gausselm 1343 2.98E+01 0

ncvxqp6 867 3.90E+01 1 cvxqp3 58 7.43E+02 0 dtoc3 17 8.45E-01 0 eg3 19 4.05E-02 0

lotschd 38 7.50E-02 0 brainpc5 3000 4.90E+02 -1 gridnetd 41 1.68E+00 0 aug2dc 17 7.71E-01 0

dualc2 19 4.69E-02 0 cvxqp2 39 5.10E+01 0 hs119 52 1.37E-01 0 ncvxqp3 468 3.07E+01 0

minperm 85 2.15E+01 0 huestis 117 4.98E+03 2 portfl4 9 8.97E-03 0 yao 3000 4.03E+01 -1

aug3dcqp 24 3.25E-01 0 brainpc1 3000 1.69E+02 -1 cvxqp1 67 1.39E+00 0 hs026 33 4.30E-02 0

bt8 17 4.55E-02 0 brainpc4 295 2.67E+01 1 bt3 18 4.88E-02 0 bloweyb 7 1.67E+00 0

qpcboei2 85 2.07E-01 0 orthrgdm 19 2.32E+00 0 steenbra 23 1.64E-01 0 static3 73 2.30E-01 4

kissing 157 2.13E+00 0 orthregd 18 1.96E+00 0 optctrl6 79 2.01E-01 0 qpnboei2 533 2.71E+00 1

alsotame 9 1.44E-02 0 brainpc9 3000 3.85E+02 -1 reading2 15 8.65E-01 0 orthrega 126 7.89E-01 0

Table 14: CUTEr set results, penalty mode ρL (linear), part 2.

120
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 18 4.91E-02 0 dtoc2 86 2.59E+00 0

steenbrd 121 1.65E+00 0 orthrds2 512 2.21E+00 1

bloweya 169 3.06E+01 0 eigencco 30 5.30E-02 0

dualc1 24 6.97E-02 0 lakes 530 1.61E+00 0

dualc8 19 6.88E-02 0 ncvxqp5 386 8.48E+00 0

portfl1 9 9.95E-03 0 dual1 18 1.05E-01 0

hs074 24 6.77E-02 0 odfits 17 2.70E-02 0

trainf 53 2.31E+00 0 bt6 21 5.17E-02 0

csfi1 43 1.38E-01 0 clnlbeam 187 1.21E+00 0

dual2 15 9.63E-02 0 bt7 51 1.15E-01 0

gridnetg 28 7.75E-02 0 rk23 9 1.74E-02 0

hong 24 3.51E-02 0 hs054 9 1.49E-02 0

dtoc1nb 6 2.39E-01 0 gridnetb 36 2.03E+00 0

hs014 10 1.54E-02 0 ubh1 20 1.58E+00 0

sreadin3 12 6.30E-01 0 dittert 91 8.75E-01 0

optcntrl 49 1.37E-01 0 blockqp1 34 6.06E-01 0

steenbre 1636 4.06E+01 1 ncvxqp9 326 2.38E+01 0

dnieper 44 8.02E-02 0 hs063 17 2.77E-02 0

steenbrc 96 4.68E-01 1 hs009 0 1.63E-03 0

gridneta 40 1.48E+00 0 hs067 11 1.92E-02 0

prodpl1 15 2.06E-02 0 ssebnln 3000 2.51E+01 -1

aug3dqp 23 2.80E-01 0 hs075 37 9.29E-02 0

hs049 19 2.18E-02 0

aug2dqp 33 1.80E+00 0

fletcher 48 1.33E-01 2

Table 15: CUTEr set results, penalty mode ρL (linear), part 3.

APPENDIX

121

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 56 1.11E+01 0 swopf 22 6.43E-02 0 smmpsf 674 2.03E+00 0 hs042 10 1.41E-02 0

bt11 68 8.48E-02 0 dallasm 36 8.38E-02 1 hs100lnp 175 3.11E-01 0 optmass 23 4.32E-02 0

hs046 61 1.84E-01 0 himmelbj 3000 1.59E+01 -1 gridnetf 35 1.94E+00 0 sseblin 149 5.13E-01 0

hs007 52 1.31E-01 0 aug3d 12 6.93E-01 0 lsnnodoc 1 5.42E-03 0 hs028 1 6.03E-03 0

hs114 98 2.47E-01 0 bt5 53 8.38E-02 0 bt12 37 6.89E-02 0 batch 33 6.13E-02 0

extrasim 11 2.35E-02 0 allinitc 29 5.91E-02 2 loadbal 15 2.52E-02 0 hs050 9 1.47E-02 0

model 35 1.82E-01 0 bt9 149 4.29E-01 0 hs081 43 1.22E-01 0 hs087 76 1.07E-01 0

disc2 142 4.56E-01 0 qpnboei1 920 6.84E+00 2 dtoc1na 6 2.94E-01 0 hs080 28 6.76E-02 0

eigenbco 495 2.58E+00 0 trimloss 128 5.78E-01 0 genhs28 1 1.40E-05 0 hs062 7 1.45E-02 0

catenary 108 6.19E-01 2 dtoc1nd 22 5.67E-01 0 hs071 44 1.19E-01 0 trainh 367 3.45E+01 0

tame 9 1.07E-02 0 minc44 43 5.18E-01 0 hs078 24 2.99E-02 0 sawpath 3000 3.20E+02 -1

dtoc1l 6 3.56E-01 0 hs073 3000 4.45E+00 -1 ncvxqp1 3000 9.56E+01 -1 steenbrb 49 5.37E-01 0

fccu 10 3.39E-02 0 hs039 149 4.24E-01 0 avion2 93 1.77E-01 0 gouldqp2 15 5.01E-02 0

hager4 19 7.65E-01 0 catena 149 2.29E-01 0 gridnetc 35 1.18E+00 0 zigzag 31 5.16E-02 0

hs056 15 2.75E-02 0 hs053 14 3.96E-02 0 hs041 19 5.22E-02 0 maratos 146 3.73E-01 0

robot 105 2.90E-01 0 ncvxqp4 207 4.04E+00 0 hs109 74 1.90E-01 0 aljazzaf 29 4.78E-02 0

bt13 41 1.12E-01 0 ncvxqp7 240 1.06E+01 2 orthregb 50 1.35E-01 0 reading3 29 8.14E-02 0

optcdeg2 43 3.58E-01 0 hs006 2045 2.75E+00 1 prodpl0 17 2.59E-02 0 orthrdm2 14 4.02E+00 0

hs027 87 1.33E-01 0 qpcstair 258 1.63E+00 2 blockqp2 13 1.01E-01 0 eigenaco 5 2.28E-02 0

portfl2 8 1.44E-02 0 reading1 84 6.94E+00 0 hvycrash 250 9.88E-01 1 dtoc5 14 4.57E-01 0

blockqp4 11 9.84E-02 0 spanhyd 20 4.59E-02 0 linspanh 15 2.31E-02 0 hs047 130 3.76E-01 0

qpcboei1 264 1.56E+00 2 aug3dc 11 1.28E-01 0 eigena2 3 9.60E-03 0 steenbrf 382 1.78E+00 0

hs111lnp 78 1.73E-01 2 portfl3 10 2.21E-02 0 hs061 40 1.03E-01 0 degenlpa 87 1.97E-01 2

hs032 16 2.43E-02 0 hs040 7 1.26E-02 0 hs051 1 9.40E-05 0 launch 123 4.18E-01 2

mwright 145 2.74E-01 0 sosqp1 33 3.01E+00 0 ncvxqp8 1920 1.35E+02 2 hs060 70 1.34E-01 0

Table 16: CUTEr set results, penalty mode ρ0 (fixed), part 1.

122
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 5.12E-02 0 dixchlng 24 3.70E-02 0 bt4 102 3.27E-01 2 smbank 17 3.55E-02 0

orthrege 3000 1.75E+01 -1 aug2d 11 7.25E-01 0 hs99exp 156 4.58E-01 -2 bloweyc 44 1.21E+01 0

hs111 229 7.28E-01 0 gouldqp3 20 1.56E-01 0 dixchlnv 72 2.65E-01 0 hs112 17 2.01E-02 0

try-b 35 7.98E-02 0 sosqp2 37 3.39E+00 0 dual3 22 2.16E-01 0 hadamard 6 3.32E-02 0

ssnlbeam 3000 4.72E+00 -1 gridneth 17 5.40E-02 0 dtoc1nc 17 8.23E-01 0 degenlpb 56 1.28E-01 2

portfl6 8 1.45E-02 0 optctrl3 79 2.07E-01 0 hs048 1 3.33E-03 0 himmelbk 150 5.44E-01 0

hager2 10 2.66E-01 0 hs079 159 2.19E-01 0 ncvxqp2 268 7.26E+00 2 optcdeg3 35 2.60E-01 0

qpnstair 274 1.76E+00 2 brainpc2 279 6.34E+01 1 dual4 16 7.33E-02 0 aug2dcqp 32 1.87E+00 0

hs099 17 4.69E-02 0 orthregc 110 3.34E+03 0 steenbrg 159 2.81E+00 0 deconvc 166 3.71E-01 0

eigenc2 47 3.19E+00 0 brainpc6 3000 4.27E+02 -1 dtoc6 30 9.82E-01 2 bt1 48 6.81E-02 0

hs077 41 1.17E-01 0 brainpc7 3000 5.42E+02 -1 byrdsphr 86 2.21E-01 0 hs107 35 9.78E-02 2

blockqp3 185 2.84E+00 0 hues-mod 120 5.36E+03 2 hager3 10 3.87E-01 0 hager1 1 3.31E-02 0

lch 785 2.32E+01 0 orthrgds 158 3.88E+02 0 bt2 27 6.96E-02 0 hs35mod 15 2.03E-02 0

csfi2 68 2.28E-01 0 brainpc8 208 1.34E+01 1 gridneti 18 5.54E-02 0 gridnete 19 1.05E+00 0

corkscrw 1009 4.97E+01 0 brainpc0 3000 2.85E+03 -1 eigenb2 4 2.12E-02 0 blockqp5 50 4.64E-01 0

ubh5 15 1.67E+00 0 brainpc3 287 3.12E+01 1 dtoc4 3 1.61E-01 0 gausselm 1343 3.02E+01 0

ncvxqp6 316 5.96E+00 0 cvxqp3 58 6.96E+02 0 dtoc3 12 6.51E-01 0 eg3 19 5.13E-02 0

lotschd 32 6.00E-02 0 brainpc5 567 6.70E+01 1 gridnetd 26 1.16E+00 0 aug2dc 17 8.46E-01 0

dualc2 19 4.92E-02 0 cvxqp2 34 4.30E+01 0 hs119 65 1.74E-01 0 ncvxqp3 3000 1.04E+02 -1

minperm 92 2.36E+01 0 huestis 74 3.19E+03 2 portfl4 9 1.50E-02 0 yao 1386 1.99E+01 2

aug3dcqp 24 3.18E-01 0 brainpc1 3000 2.03E+02 -1 cvxqp1 508 1.27E+01 2 hs026 33 4.75E-02 0

bt8 14 4.11E-02 0 brainpc4 672 8.14E+01 1 bt3 14 4.43E-02 0 bloweyb 7 1.76E+00 0

qpcboei2 85 2.31E-01 0 orthrgdm 19 2.43E+00 0 steenbra 23 1.88E-01 0 static3 73 2.39E-01 4

kissing 187 2.69E+00 0 orthregd 18 2.27E+00 0 optctrl6 79 2.22E-01 0 qpnboei2 391 1.82E+00 2

alsotame 9 1.50E-02 0 brainpc9 1283 1.42E+02 1 reading2 15 9.85E-01 0 orthrega 105 7.12E-01 0

Table 17: CUTEr set results, penalty mode ρ0 (fixed), part 2.

APPENDIX

123

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 13 3.83E-02 0 dtoc2 86 2.65E+00 0

steenbrd 121 1.70E+00 0 orthrds2 1159 5.01E+00 2

bloweya 169 2.99E+01 0 eigencco 30 4.78E-02 0

dualc1 24 7.73E-02 0 lakes 754 2.33E+00 0

dualc8 19 6.95E-02 0 ncvxqp5 386 8.48E+00 0

portfl1 9 1.65E-02 0 dual1 18 1.01E-01 0

hs074 18 5.57E-02 0 odfits 17 2.07E-02 0

trainf 53 2.34E+00 0 bt6 26 6.82E-02 0

csfi1 31 7.10E-02 0 clnlbeam 187 1.21E+00 0

dual2 15 1.00E-01 0 bt7 75 1.89E-01 0

gridnetg 27 7.67E-02 0 rk23 9 1.07E-02 0

hong 24 3.74E-02 0 hs054 9 1.61E-02 0

dtoc1nb 6 2.68E-01 0 gridnetb 19 1.03E+00 0

hs014 10 1.70E-02 0 ubh1 15 1.24E+00 0

sreadin3 12 6.45E-01 0 dittert 91 9.46E-01 0

optcntrl 54 1.44E-01 0 blockqp1 31 5.76E-01 0

steenbre 1636 3.97E+01 1 ncvxqp9 519 2.28E+01 2

dnieper 44 7.96E-02 0 hs063 17 3.04E-02 0

steenbrc 3000 3.36E+01 -1 hs009 0 3.72E-03 0

gridneta 29 9.50E-01 0 hs067 11 2.07E-02 0

prodpl1 15 2.72E-02 0 ssebnln 149 5.23E-01 0

aug3dqp 23 2.87E-01 0 hs075 27 7.55E-02 2

hs049 19 2.51E-02 0

aug2dqp 33 1.90E+00 0

fletcher 21 6.18E-02 2

Table 18: CUTEr set results, penalty mode ρ0 (fixed), part 3.

124
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 97 2.05E+01 0 swopf 31 1.03E-01 0 smmpsf 674 2.14E+00 0 hs042 10 1.84E-02 0

bt11 68 8.34E-02 0 dallasm 36 7.52E-02 1 hs100lnp 169 3.16E-01 0 optmass 23 4.28E-02 0

hs046 30 7.97E-02 0 himmelbj 3000 1.54E+01 -1 gridnetf 52 4.63E+00 1 sseblin 73 3.02E-01 0

hs007 47 1.05E-01 0 aug3d 12 6.28E-01 0 lsnnodoc 1 2.57E-03 0 hs028 1 4.84E-03 0

hs114 129 3.65E-01 0 bt5 53 7.30E-02 0 bt12 37 6.32E-02 0 batch 33 7.00E-02 0

extrasim 11 1.58E-02 0 allinitc 46 1.05E-01 0 loadbal 15 3.01E-02 0 hs050 9 1.18E-02 0

model 35 1.70E-01 0 bt9 70 1.92E-01 0 hs081 28 9.94E-02 0 hs087 76 1.16E-01 0

disc2 54 1.61E-01 0 qpnboei1 1526 1.32E+01 0 dtoc1na 6 4.05E-01 0 hs080 16 4.26E-02 0

eigenbco 495 2.22E+00 0 trimloss 118 5.04E-01 2 genhs28 1 5.77E-03 0 hs062 7 1.52E-02 0

catenary 739 3.47E+00 0 dtoc1nd 22 4.59E-01 0 hs071 87 3.41E-01 0 trainh 3000 3.62E+02 -1

tame 9 1.09E-02 0 minc44 32 4.14E-01 0 hs078 24 3.85E-02 0 sawpath 3000 2.13E+02 -1

dtoc1l 6 3.02E-01 0 hs073 3000 4.32E+00 -1 ncvxqp1 234 8.41E+00 0 steenbrb 49 6.00E-01 0

fccu 12 3.70E-02 0 hs039 70 1.80E-01 0 avion2 93 1.80E-01 0 gouldqp2 15 5.13E-02 0

hager4 19 5.61E-01 0 catena 149 2.09E-01 0 gridnetc 49 1.83E+00 1 zigzag 31 6.15E-02 0

hs056 15 1.45E-02 0 hs053 14 3.63E-02 0 hs041 20 5.35E-02 0 maratos 48 1.41E-01 0

robot 725 3.40E+00 0 ncvxqp4 601 1.18E+01 0 hs109 62 1.93E-01 0 aljazzaf 29 4.57E-02 0

bt13 63 1.73E-01 0 ncvxqp7 665 3.01E+01 0 orthregb 38 9.32E-02 0 reading3 29 8.14E-02 0

optcdeg2 390 3.02E+00 0 hs006 2045 2.74E+00 1 prodpl0 17 1.62E-02 0 orthrdm2 14 3.84E+00 0

hs027 87 1.18E-01 0 qpcstair 537 3.91E+00 0 blockqp2 13 1.11E-01 0 eigenaco 5 2.34E-02 0

portfl2 8 1.38E-02 0 reading1 98 8.22E+03 -4 hvycrash 1129 6.55E+00 0 dtoc5 22 7.54E-01 0

blockqp4 11 8.65E-02 0 spanhyd 20 3.93E-02 0 linspanh 15 2.88E-02 0 hs047 59 2.10E-01 0

qpcboei1 965 7.73E+00 0 aug3dc 11 1.13E-01 0 eigena2 3 1.63E-02 0 steenbrf 74 4.09E-01 1

hs111lnp 112 2.67E-01 2 portfl3 10 1.61E-02 0 hs061 21 6.33E-02 0 degenlpa 87 2.56E-01 0

hs032 16 2.00E-02 0 hs040 7 1.23E-02 0 hs051 1 4.70E-03 0 launch 3000 3.33E+01 -1

mwright 143 2.62E-01 0 sosqp1 36 3.85E+00 0 ncvxqp8 1558 6.35E+01 0 hs060 68 1.39E-01 0

Table 19: CUTEr set results, penalty mode 1
ρ , part 1.

APPENDIX

125

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 3.79E-02 0 dixchlng 24 3.29E-02 0 bt4 81 2.89E-01 0 smbank 17 3.75E-02 0

orthrege 3000 1.64E+01 -1 aug2d 11 7.26E-01 0 hs99exp 56 2.05E-01 0 bloweyc 44 1.85E+01 0

hs111 126 3.69E-01 0 gouldqp3 30 3.49E-01 0 dixchlnv 72 4.62E-01 0 hs112 17 4.13E-02 0

try-b 32 7.64E-02 0 sosqp2 39 6.71E+00 0 dual3 25 9.22E-01 0 hadamard 6 4.53E-02 0

ssnlbeam 3000 4.40E+00 -1 gridneth 19 6.88E-02 0 dtoc1nc 17 1.44E+00 0 degenlpb 58 2.10E-01 0

portfl6 8 1.06E-02 0 optctrl3 79 2.17E-01 0 hs048 1 1.14E-02 0 himmelbk 161 1.41E+00 1

hager2 10 2.81E-01 0 hs079 159 2.25E-01 0 ncvxqp2 959 6.71E+01 0 optcdeg3 80 1.15E+00 1

qpnstair 594 4.55E+00 1 brainpc2 190 2.50E+01 1 dual4 16 9.47E-02 0 aug2dcqp 32 3.09E+00 0

hs099 21 6.42E-02 0 orthregc 110 3.09E+03 0 steenbrg 159 3.46E+00 0 deconvc 166 7.13E-01 0

eigenc2 29 1.66E+00 0 brainpc6 193 2.36E+01 1 dtoc6 40 1.84E+00 0 bt1 48 9.69E-02 0

hs077 25 7.14E-02 0 brainpc7 107 6.00E+00 1 byrdsphr 67 2.49E-01 0 hs107 3000 1.37E+01 -1

blockqp3 354 1.20E+01 0 hues-mod 123 5.71E+03 0 hager3 10 5.30E-01 0 hager1 1 5.38E-02 0

lch 918 2.85E+01 0 orthrgds 158 4.48E+02 0 bt2 22 6.79E-02 0 hs35mod 15 3.16E-02 0

csfi2 60 1.75E-01 0 brainpc8 160 1.06E+01 1 gridneti 27 1.24E-01 0 gridnete 26 2.68E+00 0

corkscrw 3000 2.56E+02 -1 brainpc0 36 2.44E+03 1 eigenb2 4 2.54E-02 0 blockqp5 50 6.36E-01 0

ubh5 18 2.10E+00 0 brainpc3 260 1.62E+01 1 dtoc4 3 2.06E-01 0 gausselm 1343 3.99E+01 0

ncvxqp6 780 1.71E+01 0 cvxqp3 58 5.68E+02 0 dtoc3 18 1.46E+00 0 eg3 19 8.70E-02 0

lotschd 37 7.46E-02 0 brainpc5 576 2.10E+03 1 gridnetd 47 4.19E+00 0 aug2dc 17 1.27E+00 0

dualc2 19 4.36E-02 0 cvxqp2 49 4.22E+01 0 hs119 42 1.86E-01 0 ncvxqp3 1011 8.00E+01 0

minperm 33 7.74E+00 0 huestis 3000 1.34E+05 -1 portfl4 9 2.72E-02 0 yao 362 8.03E+00 0

aug3dcqp 24 3.40E-01 0 brainpc1 3000 3.24E+02 -1 cvxqp1 187 4.17E+00 0 hs026 33 6.84E-02 0

bt8 17 4.80E-02 0 brainpc4 312 4.04E+01 1 bt3 17 5.81E-02 0 bloweyb 7 3.20E+00 0

qpcboei2 85 2.68E-01 0 orthrgdm 19 3.84E+00 0 steenbra 23 1.85E-01 0 static3 73 4.72E-01 4

kissing 1123 1.99E+01 0 orthregd 18 3.69E+00 0 optctrl6 79 2.56E-01 0 qpnboei2 3000 2.94E+01 -1

alsotame 9 1.75E-02 0 brainpc9 122 1.15E+01 0 reading2 15 1.09E+00 0 orthrega 136 1.64E+00 0

Table 20: CUTEr set results, penalty mode 1
ρ , part 2.

126
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 14 4.93E-02 0 dtoc2 86 3.49E+00 0

steenbrd 121 2.25E+00 0 orthrds2 3000 3.09E+01 -1

bloweya 169 4.03E+01 0 eigencco 30 7.95E-02 0

dualc1 24 8.53E-02 0 lakes 457 2.30E+00 0

dualc8 19 8.81E-02 0 ncvxqp5 386 1.07E+01 0

portfl1 9 1.28E-02 0 dual1 18 2.18E-01 0

hs074 21 8.00E-02 0 odfits 17 3.39E-02 0

trainf 53 2.94E+00 0 bt6 23 9.27E-02 0

csfi1 34 1.29E-01 0 clnlbeam 187 1.88E+00 0

dual2 15 1.54E-01 0 bt7 64 2.51E-01 0

gridnetg 38 2.26E-01 0 rk23 9 2.99E-02 0

hong 24 4.17E-02 0 hs054 9 1.60E-02 0

dtoc1nb 6 4.33E-01 0 gridnetb 24 2.20E+00 0

hs014 10 1.31E-02 0 ubh1 16 1.89E+00 0

sreadin3 12 8.57E-01 0 dittert 91 1.23E+00 0

optcntrl 43 1.73E-01 0 blockqp1 35 8.07E-01 0

steenbre 1636 5.12E+01 1 ncvxqp9 3000 1.87E+02 -1

dnieper 44 1.34E-01 0 hs063 17 3.65E-02 0

steenbrc 76 6.71E-01 1 hs009 0 4.12E-03 0

gridneta 42 4.40E+00 0 hs067 11 2.66E-02 0

prodpl1 15 3.74E-02 0 ssebnln 746 5.35E+00 0

aug3dqp 23 5.11E-01 0 hs075 30 1.11E-01 0

hs049 19 3.67E-02 0

aug2dqp 33 3.03E+00 0

fletcher 189 8.89E-01 0

Table 21: CUTEr set results, penalty mode 1
ρ , part 3.

APPENDIX

127

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 97 2.08E+01 0 swopf 25 8.74E-02 0 smmpsf 674 2.14E+00 0 hs042 10 1.56E-02 0

bt11 68 8.02E-02 0 dallasm 36 7.69E-02 1 hs100lnp 169 3.23E-01 0 optmass 23 3.48E-02 0

hs046 30 7.94E-02 0 himmelbj 3000 1.48E+01 -1 gridnetf 52 5.23E+00 1 sseblin 102 4.79E-01 0

hs007 47 1.05E-01 0 aug3d 12 6.31E-01 0 lsnnodoc 1 8.40E-05 0 hs028 1 5.33E-03 0

hs114 118 2.76E-01 0 bt5 53 7.00E-02 0 bt12 37 6.90E-02 0 batch 33 5.96E-02 0

extrasim 11 1.48E-02 0 allinitc 45 1.07E-01 0 loadbal 15 2.94E-02 0 hs050 9 1.06E-02 0

model 35 1.68E-01 0 bt9 70 1.85E-01 0 hs081 28 9.65E-02 0 hs087 76 1.18E-01 0

disc2 54 1.55E-01 0 qpnboei1 1531 1.27E+01 0 dtoc1na 6 3.61E-01 0 hs080 16 4.21E-02 0

eigenbco 495 2.17E+00 0 trimloss 314 1.49E+00 0 genhs28 1 5.17E-04 0 hs062 7 1.37E-02 0

catenary 739 3.46E+00 0 dtoc1nd 22 3.78E-01 0 hs071 115 4.71E-01 0 trainh 3000 4.19E+02 -1

tame 9 1.40E-02 0 minc44 32 4.04E-01 0 hs078 24 4.86E-02 0 sawpath 3000 1.97E+02 -1

dtoc1l 6 3.10E-01 0 hs073 3000 4.27E+00 -1 ncvxqp1 234 8.57E+00 0 steenbrb 49 5.70E-01 0

fccu 12 2.85E-02 0 hs039 70 1.91E-01 0 avion2 93 1.68E-01 0 gouldqp2 15 5.03E-02 0

hager4 19 5.70E-01 0 catena 149 2.13E-01 0 gridnetc 49 1.81E+00 1 zigzag 31 5.45E-02 0

hs056 15 2.26E-02 0 hs053 14 3.58E-02 0 hs041 20 5.67E-02 0 maratos 48 1.16E-01 0

robot 725 3.46E+00 0 ncvxqp4 601 1.18E+01 0 hs109 62 1.77E-01 0 aljazzaf 29 4.24E-02 0

bt13 78 1.99E-01 0 ncvxqp7 665 3.02E+01 0 orthregb 38 8.69E-02 0 reading3 29 7.80E-02 0

optcdeg2 390 3.09E+00 0 hs006 2045 2.52E+00 1 prodpl0 17 2.76E-02 0 orthrdm2 14 4.36E+00 0

hs027 87 1.16E-01 0 qpcstair 537 3.98E+00 0 blockqp2 13 1.02E-01 0 eigenaco 5 3.80E-02 0

portfl2 8 1.36E-02 0 reading1 98 8.20E+03 -4 hvycrash 1129 6.43E+00 0 dtoc5 22 9.89E-01 0

blockqp4 11 8.84E-02 0 spanhyd 20 4.52E-02 0 linspanh 15 3.04E-02 0 hs047 59 2.23E-01 0

qpcboei1 1065 7.94E+00 0 aug3dc 11 1.43E-01 0 eigena2 3 1.56E-02 0 steenbrf 74 4.57E-01 1

hs111lnp 112 2.62E-01 2 portfl3 10 2.59E-02 0 hs061 21 4.94E-02 0 degenlpa 87 3.18E-01 0

hs032 16 2.23E-02 0 hs040 7 1.23E-02 0 hs051 1 3.23E-03 0 launch 3000 3.27E+01 -1

mwright 143 2.66E-01 0 sosqp1 36 3.98E+00 0 ncvxqp8 1558 6.26E+01 0 hs060 68 1.26E-01 0

Table 22: CUTEr set results, penalty mode 1
ρ no Σ, part 1.

128
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 4.23E-02 0 dixchlng 24 3.77E-02 0 bt4 81 2.90E-01 0 smbank 17 3.66E-02 0

orthrege 3000 1.71E+01 -1 aug2d 11 7.11E-01 0 hs99exp 56 1.94E-01 0 bloweyc 44 1.72E+01 0

hs111 126 4.09E-01 0 gouldqp3 30 3.63E-01 0 dixchlnv 72 4.64E-01 0 hs112 17 1.43E-02 0

try-b 32 8.20E-02 0 sosqp2 39 6.70E+00 0 dual3 25 7.62E-01 0 hadamard 6 3.01E-02 0

ssnlbeam 3000 4.50E+00 -1 gridneth 19 5.30E-02 0 dtoc1nc 17 1.58E+00 0 degenlpb 58 1.60E-01 0

portfl6 8 1.65E-02 0 optctrl3 79 2.10E-01 0 hs048 1 6.83E-03 0 himmelbk 161 9.37E-01 1

hager2 10 2.70E-01 0 hs079 159 2.22E-01 0 ncvxqp2 959 6.62E+01 0 optcdeg3 80 9.82E-01 1

qpnstair 531 4.17E+00 1 brainpc2 190 2.39E+01 1 dual4 16 1.13E-01 0 aug2dcqp 32 2.68E+00 0

hs099 21 5.20E-02 0 orthregc 110 3.11E+03 0 steenbrg 159 3.45E+00 0 deconvc 166 5.06E-01 0

eigenc2 29 1.89E+00 0 brainpc6 193 2.37E+01 1 dtoc6 40 1.75E+00 0 bt1 48 7.65E-02 0

hs077 25 9.13E-02 0 brainpc7 107 6.07E+00 1 byrdsphr 67 2.10E-01 0 hs107 3000 1.11E+01 -1

blockqp3 354 1.18E+01 0 hues-mod 123 5.72E+03 0 hager3 10 4.82E-01 0 hager1 1 4.31E-02 0

lch 918 2.79E+01 0 orthrgds 158 4.45E+02 0 bt2 22 6.81E-02 0 hs35mod 15 4.21E-02 0

csfi2 60 1.86E-01 0 brainpc8 160 1.04E+01 1 gridneti 27 1.22E-01 0 gridnete 26 2.19E+00 0

corkscrw 3000 2.38E+02 -1 brainpc0 36 2.36E+03 1 eigenb2 4 2.53E-02 0 blockqp5 50 5.35E-01 0

ubh5 18 2.04E+00 0 brainpc3 260 1.58E+01 1 dtoc4 3 2.06E-01 0 gausselm 1343 3.95E+01 0

ncvxqp6 780 1.72E+01 0 cvxqp3 58 5.68E+02 0 dtoc3 18 1.21E+00 0 eg3 19 5.52E-02 0

lotschd 37 8.10E-02 0 brainpc5 576 2.05E+03 1 gridnetd 47 4.51E+00 0 aug2dc 17 8.80E-01 0

dualc2 19 5.36E-02 0 cvxqp2 49 4.58E+01 0 hs119 42 1.27E-01 0 ncvxqp3 1011 7.55E+01 0

minperm 33 7.66E+00 0 huestis 3000 1.35E+05 -1 portfl4 9 1.68E-02 0 yao 363 7.08E+00 0

aug3dcqp 24 3.50E-01 0 brainpc1 3000 3.37E+02 -1 cvxqp1 187 3.94E+00 0 hs026 33 7.37E-02 0

bt8 17 4.75E-02 0 brainpc4 312 4.10E+01 1 bt3 17 8.06E-02 0 bloweyb 7 2.62E+00 0

qpcboei2 85 2.15E-01 0 orthrgdm 19 4.24E+00 0 steenbra 23 2.12E-01 0 static3 73 4.15E-01 4

kissing 495 8.71E+00 1 orthregd 18 4.01E+00 0 optctrl6 79 2.54E-01 0 qpnboei2 3000 2.68E+01 -1

alsotame 9 1.05E-02 0 brainpc9 122 1.22E+01 0 reading2 15 1.18E+00 0 orthrega 136 1.51E+00 0

Table 23: CUTEr set results, penalty mode 1
ρ no Σ, part 2.

APPENDIX

129

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 14 5.06E-02 0 dtoc2 86 4.03E+00 0

steenbrd 121 2.21E+00 0 orthrds2 3000 3.12E+01 -1

bloweya 169 4.01E+01 0 eigencco 30 7.79E-02 0

dualc1 24 9.67E-02 0 lakes 457 2.48E+00 0

dualc8 19 1.01E-01 0 ncvxqp5 386 1.10E+01 0

portfl1 9 2.00E-02 0 dual1 18 1.90E-01 0

hs074 21 9.20E-02 0 odfits 17 3.38E-02 0

trainf 53 3.43E+00 0 bt6 23 7.52E-02 0

csfi1 34 1.30E-01 0 clnlbeam 187 1.83E+00 0

dual2 15 2.38E-01 0 bt7 64 2.25E-01 0

gridnetg 38 2.46E-01 0 rk23 9 1.67E-02 0

hong 24 6.03E-02 0 hs054 9 2.41E-02 0

dtoc1nb 6 5.37E-01 0 gridnetb 24 2.13E+00 0

hs014 10 3.01E-02 0 ubh1 16 1.84E+00 0

sreadin3 12 1.03E+00 0 dittert 91 1.19E+00 0

optcntrl 59 3.39E-01 0 blockqp1 35 8.92E-01 0

steenbre 1636 4.90E+01 1 ncvxqp9 3000 1.89E+02 -1

dnieper 44 1.25E-01 0 hs063 17 3.11E-02 0

steenbrc 76 6.07E-01 1 hs009 0 6.82E-03 0

gridneta 42 3.50E+00 0 hs067 11 2.82E-02 0

prodpl1 15 3.15E-02 0 ssebnln 780 5.83E+00 0

aug3dqp 23 4.10E-01 0 hs075 30 1.06E-01 0

hs049 19 3.75E-02 0

aug2dqp 33 2.68E+00 0

fletcher 284 1.37E+00 0

Table 24: CUTEr set results, penalty mode 1
ρ no Σ, part 3.

130
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 97 1.97E+01 0 swopf 25 8.55E-02 0 smmpsf 674 2.00E+00 0 hs042 10 1.85E-02 0

bt11 68 8.92E-02 0 dallasm 36 7.34E-02 1 hs100lnp 169 3.28E-01 0 optmass 23 4.28E-02 0

hs046 20 5.70E-02 0 himmelbj 3000 1.47E+01 -1 gridnetf 43 2.86E+00 0 sseblin 102 5.32E-01 0

hs007 47 1.05E-01 0 aug3d 12 6.09E-01 0 lsnnodoc 1 4.63E-03 0 hs028 1 1.56E-03 0

hs114 118 3.00E-01 0 bt5 53 7.67E-02 0 bt12 37 6.34E-02 0 batch 33 6.77E-02 0

extrasim 11 1.70E-02 0 allinitc 45 1.05E-01 0 loadbal 15 2.99E-02 0 hs050 9 2.02E-02 0

model 35 1.70E-01 0 bt9 52 1.35E-01 0 hs081 28 7.88E-02 0 hs087 76 1.23E-01 0

disc2 54 1.61E-01 0 qpnboei1 1466 1.24E+01 0 dtoc1na 6 3.08E-01 0 hs080 16 4.81E-02 0

eigenbco 495 2.18E+00 0 trimloss 201 8.89E-01 0 genhs28 1 2.47E-03 0 hs062 7 1.31E-02 0

catenary 352 1.79E+00 0 dtoc1nd 22 4.01E-01 0 hs071 115 4.48E-01 0 trainh 3000 4.05E+02 -1

tame 9 1.38E-02 0 minc44 32 3.98E-01 0 hs078 24 3.63E-02 0 sawpath 3000 2.10E+02 -1

dtoc1l 6 3.02E-01 0 hs073 3000 4.23E+00 -1 ncvxqp1 234 8.10E+00 0 steenbrb 49 6.11E-01 0

fccu 12 3.08E-02 0 hs039 52 1.36E-01 0 avion2 93 1.75E-01 0 gouldqp2 15 5.45E-02 0

hager4 19 5.72E-01 0 catena 149 2.13E-01 0 gridnetc 58 3.78E+00 0 zigzag 31 6.77E-02 0

hs056 15 1.83E-02 0 hs053 15 4.23E-02 0 hs041 20 5.67E-02 0 maratos 48 1.45E-01 0

robot 121 3.38E-01 0 ncvxqp4 601 1.16E+01 0 hs109 62 1.91E-01 0 aljazzaf 29 4.75E-02 0

bt13 79 2.13E-01 1 ncvxqp7 665 2.98E+01 0 orthregb 38 8.91E-02 0 reading3 29 9.50E-02 0

optcdeg2 190 1.58E+00 0 hs006 2045 2.61E+00 1 prodpl0 17 2.16E-02 0 orthrdm2 14 4.28E+00 0

hs027 87 1.18E-01 0 qpcstair 561 3.48E+00 0 blockqp2 13 1.12E-01 0 eigenaco 5 2.67E-02 0

portfl2 8 1.42E-02 0 reading1 98 8.25E+03 -4 hvycrash 1129 6.59E+00 0 dtoc5 22 8.01E-01 0

blockqp4 11 8.95E-02 0 spanhyd 20 5.35E-02 0 linspanh 15 2.75E-02 0 hs047 44 1.47E-01 0

qpcboei1 783 5.87E+00 0 aug3dc 11 1.43E-01 0 eigena2 3 1.63E-02 0 steenbrf 74 4.43E-01 1

hs111lnp 112 2.57E-01 2 portfl3 10 1.45E-02 0 hs061 21 5.05E-02 0 degenlpa 87 2.74E-01 0

hs032 16 2.37E-02 0 hs040 7 1.10E-02 0 hs051 1 1.52E-03 0 launch 3000 3.35E+01 -1

mwright 132 2.26E-01 0 sosqp1 36 4.31E+00 0 ncvxqp8 1558 6.53E+01 0 hs060 68 1.43E-01 0

Table 25: CUTEr set results, penalty mode 1
ρL

(linear), part 1.

APPENDIX

131

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 4.05E-02 0 dixchlng 24 4.31E-02 0 bt4 81 1.92E-01 0 smbank 17 2.95E-02 0

orthrege 3000 1.76E+01 -1 aug2d 11 7.56E-01 0 hs99exp 56 1.22E-01 0 bloweyc 44 1.19E+01 0

hs111 3000 1.46E+01 -1 gouldqp3 28 2.58E-01 0 dixchlnv 72 2.35E-01 0 hs112 17 2.47E-02 0

try-b 32 8.20E-02 0 sosqp2 39 7.01E+00 0 dual3 26 4.01E-01 0 hadamard 6 2.62E-02 0

ssnlbeam 3000 4.80E+00 -1 gridneth 19 7.08E-02 0 dtoc1nc 17 6.74E-01 0 degenlpb 58 1.30E-01 0

portfl6 8 1.22E-02 0 optctrl3 79 2.13E-01 0 hs048 1 4.10E-03 0 himmelbk 161 8.49E-01 1

hager2 10 2.76E-01 0 hs079 159 2.09E-01 0 ncvxqp2 959 5.09E+01 0 optcdeg3 62 5.95E-01 0

qpnstair 653 5.29E+00 1 brainpc2 190 2.74E+01 1 dual4 16 7.37E-02 0 aug2dcqp 32 1.77E+00 0

hs099 21 7.35E-02 0 orthregc 110 3.05E+03 0 steenbrg 159 2.77E+00 0 deconvc 166 3.45E-01 0

eigenc2 30 1.62E+00 0 brainpc6 193 2.50E+01 1 dtoc6 23 7.62E-01 0 bt1 48 4.98E-02 0

hs077 27 1.02E-01 0 brainpc7 110 7.10E+00 0 byrdsphr 63 1.68E-01 0 hs107 3000 7.96E+00 -1

blockqp3 354 1.14E+01 0 hues-mod 117 5.34E+03 1 hager3 10 3.48E-01 0 hager1 1 3.40E-02 0

lch 918 2.72E+01 0 orthrgds 158 4.65E+02 0 bt2 22 5.49E-02 0 hs35mod 15 1.90E-02 0

csfi2 60 1.63E-01 0 brainpc8 160 1.18E+01 1 gridneti 27 1.01E-01 0 gridnete 26 1.36E+00 0

corkscrw 3000 2.53E+02 -1 brainpc0 36 2.51E+03 1 eigenb2 4 1.28E-02 0 blockqp5 50 4.32E-01 0

ubh5 18 2.23E+00 0 brainpc3 260 1.56E+01 1 dtoc4 3 1.60E-01 0 gausselm 1343 2.94E+01 0

ncvxqp6 780 1.87E+01 0 cvxqp3 58 5.51E+02 0 dtoc3 16 8.02E-01 0 eg3 19 4.97E-02 0

lotschd 39 9.09E-02 0 brainpc5 576 2.12E+03 1 gridnetd 40 1.68E+00 0 aug2dc 17 7.92E-01 0

dualc2 19 5.28E-02 0 cvxqp2 49 4.39E+01 0 hs119 43 1.15E-01 0 ncvxqp3 1011 5.67E+01 0

minperm 33 8.25E+00 0 huestis 195 7.46E+03 2 portfl4 9 1.25E-02 0 yao 106 1.35E+00 0

aug3dcqp 24 3.78E-01 0 brainpc1 3000 1.73E+02 -1 cvxqp1 161 2.56E+00 0 hs026 33 5.12E-02 0

bt8 17 5.94E-02 0 brainpc4 312 2.64E+01 1 bt3 17 4.36E-02 0 bloweyb 7 1.70E+00 0

qpcboei2 85 2.42E-01 0 orthrgdm 19 2.29E+00 0 steenbra 23 1.62E-01 0 static3 73 2.37E-01 4

kissing 495 9.40E+00 1 orthregd 18 2.02E+00 0 optctrl6 79 1.76E-01 0 qpnboei2 3000 1.91E+01 -1

alsotame 9 1.62E-02 0 brainpc9 122 7.95E+00 0 reading2 15 8.69E-01 0 orthrega 142 9.60E-01 0

Table 26: CUTEr set results, penalty mode 1
ρL

(linear), part 2.

132
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 15 3.84E-02 0 dtoc2 86 2.52E+00 0

steenbrd 121 1.67E+00 0 orthrds2 270 1.08E+00 1

bloweya 169 2.93E+01 0 eigencco 30 5.36E-02 0

dualc1 24 6.31E-02 0 lakes 586 2.19E+00 0

dualc8 19 5.70E-02 0 ncvxqp5 386 8.34E+00 0

portfl1 9 7.00E-03 0 dual1 18 8.72E-02 0

hs074 20 4.42E-02 0 odfits 17 2.41E-02 0

trainf 53 2.27E+00 0 bt6 23 6.17E-02 0

csfi1 34 8.48E-02 0 clnlbeam 187 1.07E+00 0

dual2 15 8.99E-02 0 bt7 55 1.31E-01 0

gridnetg 38 1.52E-01 0 rk23 9 1.13E-02 0

hong 24 2.93E-02 0 hs054 9 1.43E-02 0

dtoc1nb 6 2.56E-01 0 gridnetb 24 1.33E+00 0

hs014 10 1.59E-02 0 ubh1 16 1.33E+00 0

sreadin3 12 6.05E-01 0 dittert 91 8.61E-01 0

optcntrl 57 1.95E-01 0 blockqp1 35 5.92E-01 0

steenbre 1636 3.92E+01 1 ncvxqp9 3000 1.50E+02 -1

dnieper 44 7.44E-02 0 hs063 17 2.78E-02 0

steenbrc 76 4.04E-01 1 hs009 0 1.64E-03 0

gridneta 38 1.97E+00 0 hs067 11 1.98E-02 0

prodpl1 15 2.02E-02 0 ssebnln 779 3.86E+00 0

aug3dqp 23 2.68E-01 0 hs075 26 6.07E-02 0

hs049 19 2.72E-02 0

aug2dqp 33 1.81E+00 0

fletcher 173 5.96E-01 0

Table 27: CUTEr set results, penalty mode 1
ρL

(linear), part 3.

APPENDIX

133

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

gilbert 85 1.89E+01 0 swopf 32 1.20E-01 0 smmpsf 674 2.04E+00 0 hs042 10 1.14E-02 0

bt11 68 9.66E-02 0 dallasm 36 7.92E-02 1 hs100lnp 184 3.70E-01 0 optmass 23 4.08E-02 0

hs046 42 1.10E-01 0 himmelbj 3000 1.62E+01 -1 gridnetf 54 4.22E+00 0 sseblin 55 2.17E-01 0

hs007 35 8.68E-02 0 aug3d 12 7.21E-01 0 lsnnodoc 1 4.90E-03 0 hs028 1 4.15E-03 0

hs114 80 1.98E-01 0 bt5 53 7.86E-02 0 bt12 37 5.65E-02 0 batch 33 4.88E-02 0

extrasim 11 1.83E-02 0 allinitc 36 9.05E-02 2 loadbal 15 3.19E-02 0 hs050 9 1.45E-02 0

model 35 1.87E-01 0 bt9 94 2.93E-01 0 hs081 62 1.97E-01 0 hs087 76 1.14E-01 0

disc2 106 3.64E-01 0 qpnboei1 464 3.43E+00 2 dtoc1na 6 3.07E-01 0 hs080 22 5.73E-02 0

eigenbco 495 2.56E+00 0 trimloss 153 8.20E-01 0 genhs28 1 4.56E-03 0 hs062 7 1.33E-02 0

catenary 225 1.32E+00 2 dtoc1nd 22 6.00E-01 0 hs071 36 1.21E-01 0 trainh 536 4.52E+01 0

tame 9 9.47E-03 0 minc44 22 2.66E-01 0 hs078 24 3.79E-02 0 sawpath 3000 2.64E+02 -1

dtoc1l 6 3.44E-01 0 hs073 3000 4.64E+00 -1 ncvxqp1 219 6.75E+00 2 steenbrb 49 5.39E-01 0

fccu 12 4.07E-02 0 hs039 94 2.99E-01 0 avion2 93 1.63E-01 0 gouldqp2 15 5.53E-02 0

hager4 19 7.26E-01 0 catena 149 2.50E-01 0 gridnetc 43 2.21E+00 0 zigzag 31 5.89E-02 0

hs056 15 1.88E-02 0 hs053 13 3.77E-02 0 hs041 36 1.09E-01 0 maratos 61 1.67E-01 0

robot 108 3.15E-01 0 ncvxqp4 261 5.77E+00 0 hs109 100 3.03E-01 0 aljazzaf 29 4.10E-02 0

bt13 31 9.12E-02 0 ncvxqp7 173 8.71E+00 2 orthregb 41 1.13E-01 0 reading3 29 8.51E-02 0

optcdeg2 40 3.32E-01 0 hs006 2045 2.71E+00 1 prodpl0 17 2.21E-02 0 orthrdm2 14 4.19E+00 0

hs027 87 1.20E-01 0 qpcstair 198 1.27E+00 2 blockqp2 13 1.12E-01 0 eigenaco 5 3.17E-02 0

portfl2 8 1.23E-02 0 reading1 92 8.53E+00 0 hvycrash 324 1.33E+00 1 dtoc5 13 4.39E-01 0

blockqp4 11 9.05E-02 0 spanhyd 20 4.09E-02 0 linspanh 15 3.12E-02 0 hs047 38 1.16E-01 0

qpcboei1 3000 1.95E+01 -1 aug3dc 11 1.24E-01 0 eigena2 3 1.32E-02 0 steenbrf 442 2.72E+00 1

hs111lnp 108 2.56E-01 2 portfl3 10 1.24E-02 0 hs061 32 9.06E-02 0 degenlpa 111 3.70E-01 2

hs032 16 1.35E-02 0 hs040 7 1.50E-02 0 hs051 1 4.23E-03 0 launch 571 3.49E+00 2

mwright 135 2.53E-01 0 sosqp1 33 3.34E+00 1 ncvxqp8 255 9.14E+00 2 hs060 70 1.48E-01 0

Table 28: CUTEr set results, penalty mode 1
ρ0

, part 1.

134
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT Problem iter CPUs STAT

dualc5 14 3.89E-02 0 dixchlng 24 3.52E-02 0 bt4 106 3.04E-01 0 smbank 17 2.40E-02 0

orthrege 160 6.72E-01 0 aug2d 11 7.50E-01 0 hs99exp 113 2.93E-01 -2 bloweyc 44 1.13E+01 0

hs111 3000 1.55E+01 -1 gouldqp3 29 2.81E-01 0 dixchlnv 72 2.44E-01 0 hs112 17 2.18E-02 0

try-b 33 7.74E-02 0 sosqp2 43 1.19E+01 0 dual3 32 6.33E-01 0 hadamard 6 2.36E-02 0

ssnlbeam 3000 4.85E+00 -1 gridneth 21 6.24E-02 0 dtoc1nc 17 6.82E-01 0 degenlpb 72 1.98E-01 2

portfl6 8 1.23E-02 0 optctrl3 79 1.99E-01 0 hs048 1 4.32E-03 0 himmelbk 172 6.81E-01 0

hager2 10 2.87E-01 0 hs079 159 2.11E-01 0 ncvxqp2 427 1.35E+01 2 optcdeg3 45 3.38E-01 1

qpnstair 232 1.49E+00 2 brainpc2 182 2.34E+01 1 dual4 16 6.79E-02 0 aug2dcqp 32 1.74E+00 0

hs099 20 5.48E-02 0 orthregc 110 3.51E+03 0 steenbrg 159 2.71E+00 0 deconvc 166 3.51E-01 0

eigenc2 58 3.64E+00 0 brainpc6 185 1.17E+01 1 dtoc6 56 1.82E+00 2 bt1 48 6.51E-02 0

hs077 34 1.26E-01 0 brainpc7 103 6.21E+00 1 byrdsphr 108 2.94E-01 0 hs107 29 8.63E-02 0

blockqp3 340 9.72E+00 0 hues-mod 104 4.61E+03 2 hager3 10 3.33E-01 0 hager1 1 3.26E-02 0

lch 685 2.14E+01 0 orthrgds 158 4.08E+02 0 bt2 22 5.57E-02 0 hs35mod 15 2.01E-02 0

csfi2 49 1.37E-01 0 brainpc8 171 1.09E+01 1 gridneti 27 1.19E-01 0 gridnete 33 1.56E+00 0

corkscrw 2092 1.22E+02 0 brainpc0 885 2.52E+03 1 eigenb2 4 2.04E-02 0 blockqp5 50 4.34E-01 0

ubh5 16 1.82E+00 0 brainpc3 253 1.67E+01 1 dtoc4 3 1.49E-01 0 gausselm 1343 2.91E+01 0

ncvxqp6 419 9.13E+00 0 cvxqp3 58 6.34E+02 0 dtoc3 12 6.19E-01 0 eg3 19 5.28E-02 0

lotschd 32 6.83E-02 0 brainpc5 533 4.68E+03 -4 gridnetd 29 1.03E+00 0 aug2dc 17 7.67E-01 0

dualc2 19 4.16E-02 0 cvxqp2 45 5.70E+01 0 hs119 48 1.20E-01 0 ncvxqp3 2228 6.57E+01 2

minperm 41 9.95E+00 1 huestis 86 3.85E+03 2 portfl4 9 1.55E-02 0 yao 73 9.33E-01 2

aug3dcqp 24 3.67E-01 0 brainpc1 3000 1.70E+02 -1 cvxqp1 59 1.19E+00 2 hs026 33 4.95E-02 0

bt8 17 4.96E-02 0 brainpc4 126 6.10E+00 1 bt3 16 4.00E-02 0 bloweyb 7 1.68E+00 0

qpcboei2 85 2.15E-01 0 orthrgdm 19 2.11E+00 0 steenbra 23 1.65E-01 0 static3 73 2.28E-01 4

kissing 281 4.40E+00 0 orthregd 18 1.90E+00 0 optctrl6 79 1.97E-01 0 qpnboei2 271 1.17E+00 2

alsotame 9 1.68E-02 0 brainpc9 111 5.27E+00 1 reading2 15 8.55E-01 0 orthrega 85 5.58E-01 0

Table 29: CUTEr set results, penalty mode 1
ρ0

, part 2.

APPENDIX

135

.2 EXAMPLE CAPRESE SNIPPET

Problem iter CPUs STAT Problem iter CPUs STAT

hs052 13 3.15E-02 0 dtoc2 86 2.48E+00 0

steenbrd 121 1.65E+00 0 orthrds2 3000 2.27E+01 -1

bloweya 169 2.87E+01 0 eigencco 30 5.19E-02 0

dualc1 24 6.38E-02 0 lakes 418 1.21E+00 0

dualc8 19 5.94E-02 0 ncvxqp5 386 8.15E+00 0

portfl1 9 1.06E-02 0 dual1 18 9.42E-02 0

hs074 17 4.37E-02 0 odfits 17 2.50E-02 0

trainf 53 2.18E+00 0 bt6 23 5.95E-02 0

csfi1 38 8.15E-02 0 clnlbeam 187 1.08E+00 0

dual2 15 9.19E-02 0 bt7 51 1.25E-01 0

gridnetg 25 7.82E-02 0 rk23 9 1.54E-02 0

hong 24 3.40E-02 0 hs054 9 1.42E-02 0

dtoc1nb 6 2.33E-01 0 gridnetb 29 1.55E+00 0

hs014 10 1.56E-02 0 ubh1 16 1.23E+00 0

sreadin3 12 5.93E-01 0 dittert 91 8.63E-01 0

optcntrl 58 1.78E-01 0 blockqp1 26 4.98E-01 0

steenbre 1636 3.89E+01 1 ncvxqp9 317 1.33E+01 2

dnieper 44 7.52E-02 0 hs063 17 2.78E-02 0

steenbrc 577 3.36E+00 0 hs009 0 2.57E-03 0

gridneta 37 1.56E+00 0 hs067 11 1.81E-02 0

prodpl1 15 2.48E-02 0 ssebnln 283 1.79E+00 0

aug3dqp 23 2.73E-01 0 hs075 25 6.46E-02 2

hs049 19 2.17E-02 0

aug2dqp 33 1.79E+00 0

fletcher 60 1.89E-01 0

Table 30: CUTEr set results, penalty mode 1
ρ0

, part 3.

136
APPENDIX

.2 EXAMPLE CAPRESE SNIPPET

i f i > 1 :

e . sens dot nmpc ()

e . update u (e . olnmpc)

e . pr int r mhe () # : P r i n t r e s u l t s MHE−s e n s

e . p r i n t r d y n () # : P r i n t r e s u l t s NMPC−s e n s

: S t a t e−e s t i m a t i o n MHE

e . preparation phase mhe (a s s t r a t e g y =True)

s t a t = e . solve dyn (e . lsmhe , tag=”lsmhe”)

i f s t a t != 0 :

sys . e x i t ()

e . sens k aug mhe () # : S e n s i t i v i t y m at r i x

e . pr ior phase () # : P r i o r−p h a s e and a r r i v a l c o s t

: C o n t r o l NMPC

e . preparation phase nmpc (a s s t r a t e g y =True , make predict ion=Fa lse)

stat nmpc = e . solve dyn (e . olnmpc , tag=”olnmpc”)

i f stat nmpc != 0 :

sys . e x i t ()

e . sens k aug nmpc () # : S e n s i t i v i t y mat r i x

e . print r nmpc () # : P r i n t t o NMPC r e s u l t s f i l e

e . cycleSamPlant (p l a n t s t e p =True) # : P l a n t c y c l e

e . p l a n t u i n j e c t (e . PlantSample , s r c k i n d=” d i c t ” , skip homotopy=True)

e . noisy plant manager (sigma =0.0015 , a c t i o n =”apply” , update leve l=True)

APPENDIX

137

.3 THE BFB MODEL

.3 The BFB model

This section contains a brief introduction to the Bubbling Fluidized Bed (BFB) model for

CO2 capture. The model used in this work is derived from the work of Yu and Biegler

[56], in which a one-dimensional BFB model is used to test model reduction techniques.

The CO2 capture is performed with an Amine impregnated solid sorbent, in which the the

following reversible reactions take place:

H2O(g)
 H2O(phys)

2R2NH + CO2,(g)
 R2NH
+
2 +R2NCO

−
2

R2NH + CO2,(g) +H2O(phys)
 R2NH
+
2 +HCO−3 .

The BFB model consist mainly of algebraic equations for kinetics, thermodynamics, hy-

drodynamic correlations, and a set of PDEs for the mass and energy balances. These PDEs

contain differential terms in space and time. For example, the molar flux in the bubble,

Ngb,i = δcb,i has the following PDE:

∂Ngb,i

∂t
= −

(
vg
∂cb,i
∂x

+ cb,i
∂vg
∂x

)
−Di

∂2cb,i
∂x2

− δKbc (cb,i − cc,i) +Kb,bulk/Ax, i ∈ {species}

(1)

where most notably, the dispersion term ∂2cb,i/∂x
2 was added from the previous version.

A similar modification was done to the energy balance , with the enthalpy flux term Hgb =

Tgbcpgδ (
∑

i cb,i) and the following PDE:

∂Hgb

∂t
= −cpg

(
vg
∑
i

cb,i
∂Tgb
∂x

+ Tgb

(
vgb
∑
i

∂cb,i
∂x

+
∑
i

cb,i
∂vg
∂x

))

− kg
∂2Tg,b
∂x2

− δHbc (Tg,b − Tg,c) +Hg,bulk/Ax, (2)

with the inclusion of the second partial derivative term and an expansion of the convective

term. Further PDEs include mass and energy balances for the remaining phases at each

region; i.e. gas-cloud, solid-cloud, gas-emulsion and solid-emulsion. Some of these equa-

tions and their differential terms are listed as follows:

138
APPENDIX

.3 THE BFB MODEL

Gas-cloud mass balance, Ngc,i = cc,ifcwδed:

∂Ngc,i

∂t
= δKbc,i(cb,i − cc,i)− δKce,i(cc,i − ce,i)− δfcw(1− ed)rgc,i, i ∈ {species} (3)

Gas-cloud enthalpy balance, Hgc = Tgcfcwedcpgδ (
∑

i cc,i):

∂Hgc

∂t
= δHbc(Tgb − Tgc)− δHce(Tgc − Tge)

− δfcw(1− ed)ρsaphp(Tgc − Tsc)− δfcw(1− ed)
∑
j

rgc,jcp,g,c,j(Tgc − Tref) (4)

Solid-cloud mass balance, Nsc,i = nc,ifcwδ (1− ed) ρs:

∂Nsc,i

∂t
= −∂Jcnc,i

∂x
−Ks,bulk,i−δρsKce,bs(nc,i−ne,i)+fcwδ(1−ed)rsc,1, i ∈ {species} (5)

Solid-cloud energy balance, Hsc = Tscfcwδ (1− ed) ρscps:

∂Hsc

∂t
= −∂Jchsc

∂x
−Hs,bulk − δρsKce,bs(hsc − hse)

+ fcwδ(1− ed)
∑
j

(rgc,jcp,g,c,j) (Tgc − Tref) + fcwδ(1− ed)ρsaphp(Tgc − Tsc) (6)

Gas-emulsion mass balance, Nge,i = ce,i (1− fcwδ − δ) ed:

∂Nge,i

∂t
= δKce,i(cc,i − ce,i)− (1− fcwδ − δ)(1− ed)rge,i −Kg,bulk,i, i ∈ {species} (7)

Gas-emulsion energy balance, Hge = Tgecpg (1− fcwδ − δ) ed (
∑

i ce,i):

∂Hge

∂t
= δHce(Tgc − Tge)− (1− fcwδ − δ)(1− ed)ρsaphp(Tge − Tse)

−Hg,bulk − (1− fcwδ − δ)(1− ed)
∑
j

rge,jcp,g,e,j(Tge − Tref) (8)

Solid-emulsion mass balance, Nse,i = ne,i (1− fcwδ − δ) (1− ed) ρs:

∂Nse,i

∂t
=
∂Jene,i
∂x

+Ks,bulk,i+δρsKce,bs(nc,i−ne,i)+(1−fcwδ−δ)(1−ed)rse,1, i ∈ {species}

(9)

APPENDIX

139

.3 THE BFB MODEL

Solid-emulsion energy balance, Hse = Tse (1− fcwδ − δ) (1− ed) ρsccps:

∂Hse

∂t
=
∂Jehse
∂x

+Hs,bulk + δρsKce,bs(hsc − hse)

+ (1− fcwδ− δ)(1− ed)
∑
j

rge,jcp,g,e,j(Tge−Tref) + (1− fcwδ− δ)(1− ed)ρsaphp(Tge−Tse)

+ πdxht∆ThxNxCr. (10)

At the reactor inlet (x = 0), the boundary conditions are taken from the gas introduced

into the bed; and at the outlet (x = L) the first derivatives related to dispersion terms in

the bubble are equal to zero:

cb,i

∣∣∣
x=0

= zg,in,i
Pin

R0 (Tg,in + 273.15)
, i ∈ {species} (11)

vg

∣∣∣
x=0

=
Fg,in

3600Ax

Pin
R0 (Tg,in + 273.15)

(12)

Tgb

∣∣∣
x=0

= Tg,in (13)

P
∣∣∣
x=0

= Pin (14)

∂Tgb
∂x

∣∣∣
x=L

= 0 (15)

∂cb,i
∂x

∣∣∣
x=L

= 0, i ∈ {species} (16)

∂vb
∂x

∣∣∣
x=L

= 0. (17)

Moreover, the mass and energy balances at the bottom of the bed (x = 0) generate an-

other set of boundary conditions for the sorbent loading and enthalpy.

Jene,j

∣∣∣
x=0

= Jcnc,j

∣∣∣
x=0

, j ∈ {species} (18)

Jehse,j

∣∣∣
x=0

= Jchsc,j

∣∣∣
x=0

, j ∈ {species} . (19)

Furthermore, with the over-flow configuration of the bed, the mass and energy balances

at the top (x = L) dictate another set of boundary conditions; these involve the fluxes of

140
APPENDIX

.3 THE BFB MODEL

solid Jc and Je, and the inlet conditions to the bed Fs,in, zs,in,j and hs,in:

Jene,j

∣∣∣
x=0

= Jcnc,j

∣∣∣
x=0

, j ∈ {species} (20)

Jehse,j

∣∣∣
x=0

= Jchsc,j

∣∣∣
x=0

, j ∈ {species} (21)

Je

∣∣∣
x=L

ne,j

∣∣∣
x=L

Ax + Fs,outzs,out,j = Jc

∣∣∣
x=L

nc,j

∣∣∣
x=L

Ax + Fs,inzs,in,j , j ∈ {species} (22)

Je

∣∣∣
x=L

hse,j

∣∣∣
x=L

Ax + Fs,ouths,out = Jc

∣∣∣
x=L

hsc,j

∣∣∣
x=L

Ax + Fs,inhs,in, j ∈ {species} (23)

The remaining algebraic equations account for the following aspects:

• Reaction Kinetics

• Hydrodynamic Empirical Correlations

• Gas properties

• Heat exchanger correlations

It should be noted that most of these equations must be written for each discretization

point in time and space. Thus the final size of the algebraic model passed to the solver has

a considerable size.

.3.1 Reaction Kinetics

The following equations describe the reaction rates found in the physisorption reactions:

r1c = k1c ∗ (P ∗ yc,c ∗ 105 −
nc,h
Ke1c

) (24)

r2c = k2c ∗ ((1− 2nc,n + nc,c
nv

) ∗ nc,h ∗ P ∗ yc,c ∗ 105 − (
1

Ke2c

nc,n + nc,c
nv

) ∗ nc,c) (25)

r3c = k3c ∗ ((1− 2nc,n + nc,c
nv

)2 ∗ (P ∗ yc,c ∗ 105)m1 − 1

Ke3c

nc,n + nc,c
nv

∗ nc,n
nv

) (26)

r1e = k1e ∗ (P ∗ ye,h ∗ 105 −
ne,h
Ke1e

); (27)

r2e = k2e ∗ (
1− 2ne,n − ne,c

nv
∗ ne,h ∗ (P ∗ ye,c ∗ 105)− 1

Ke2e
ne,c

ne,n + ne,c
nv

) (28)

r3e = k3e ∗ ((1− 2ne,n + ne,c
nv

)2 ∗ (P ∗ ye,c ∗ 105)m1 − 1

Ke3e

ne,n
nv

ne,c + ne,n
nv

) (29)

APPENDIX

141

.3 THE BFB MODEL

Then, the overall reaction rates are:

rgc,c =
nv ∗ r3c + r2c

1000
(30)

rge,c =
nv ∗ r3e + r2e

1000
(31)

rsc,c = r2c (32)

rse,c = r2e (33)

rgc,h = r1c/1000 (34)

rge,h = r1e/1000 (35)

rsc,h = r1c − r2c (36)

rse,h = r1e − r2e (37)

rgc,n = 0 (38)

rge,n = 0 (39)

rsc,n = nv ∗ r3c (40)

rse,n = nv ∗ r3e (41)

Then the corresponding equilibrium constants as functions of the temperature and pres-

sure are:

Ke1c ∗ P ∗ 105 = exp

(
−dH1

R0(Tsc + 273.15)
+
dS1

R0

)
(42)

Ke2c ∗ P ∗ 105 = exp

(
−dH2

R0(Tsc + 273.15)
+
dS2

R0

)
(43)

Ke3c ∗ P ∗ 105 = exp

(
−dH3

R0(Tsc + 273.15)
+
dS3

R0

)
(44)

Ke1e ∗ P ∗ 105 = exp

(
−dH1

R0(Tse + 273.15)
+
dS1

R0

)
(45)

Ke2e ∗ P ∗ 105 = exp

(
−dH2

R0(Tse + 273.15)
+
dS2

R0

)
(46)

Ke3e ∗ P ∗ 105 = exp

(
−dH3

R0(Tse + 273.15)
+
dS3

R0

)
(47)

142
APPENDIX

.3 THE BFB MODEL

And the kinetic constants:

k1c = A1 ∗ (Tsc + 273.15) ∗ exp

(
−E1

R0(Tsc + 273.15)

)
(48)

k2c = A2 ∗ (Tsc + 273.15) ∗ exp

(
−E2

R0(Tsc + 273.15)

)
(49)

k3c = A3 ∗ (Tsc + 273.15) ∗ exp

(
−E3

R0(Tsc + 273.15)

)
(50)

k1e = A1 ∗ (Tse + 273.15) ∗ exp

(
−E1

R0(Tse + 273.15)

)
(51)

k2e = A2 ∗ (Tse + 273.15) ∗ exp

(
−E2

R0(Tse + 273.15)

)
(52)

k3e = A3 ∗ (Tse + 273.15) ∗ exp

(
−E3

R0(Tse + 273.15)

)
(53)

.3.2 Hydrodynamic Empirical Correlations

The following equations encapsulate the behavior that governs the fluidized bed. These

equations comprise a more elaborated version of the work of Kunii and Levenspiel [52]:

(1− e) = (1− ed) ∗ (1− δ) (54)

Fluidization velocity

10 ∗ 1.75 ∗ (dpvmfρg,0)2

φse3
mfµ

2
g,0

+
10 ∗ 150 ∗ (1− emf)dpvmfρg,0

φ2
s ∗ e3

mfµg,0
=

10 ∗ d3
pρg,0(ρs − ρg,0)gc

µ2
g,0

(55)

Reynolds, Nusselt and Archimides numbers:

Ar =
d3
p ∗ ρg ∗ (ρs − ρg) ∗ gc

µ2
g

(56)

Nup = 0.03Re1.3
d (57)

Red =
vedpρg
µg

(58)

APPENDIX

143

.3 THE BFB MODEL

Size and velocity of bubbles:

vbr = 0.711 ∗
√
gc ∗ db (59)

db0 = 1.38 ∗ gc−0.2 ∗ ((vg(0)− ve(0)) ∗A0)0.4 (60)

dbe =
Dt

4
∗ (−g1 + g3)2 (61)

dbm = 2.59 ∗ (gc−0.2) ∗ ((vg − ve) ∗Ax)0.4 (62)

g1 = 2.56× 10−2 ∗

√
Dt
gc

vmf
(63)

g2 =
Dt ∗ (g1 + g3)2

4
(64)

g3 =

√
g2

1 +
4 ∗ dbm
Dt

(65)

(

√
dbu −

√
dbe√

db0 −
√
dbe

)
1− g1

g3 ∗ (

√
dbu −

√
g2√

db0 −
√
g2

)
1+

g1
g3 = exp

(
−0.3

x

Dt

)
(66)

db = dbu (67)

fc =
3
vmf
emf

vbr −
vmf
emf

(68)

fcw = fc + fw (69)

vb = 1.55 ∗ ((vg − vmf) + 14.1 ∗ (db + 0.005)) ∗ (D0.32
te) + vbr (70)

(1− emf)d0.1
p gc0.118(ρs − ρg)0.118x0.043 = 2.54ρ0.016

g µ0.066
g e0.090∗F (1− ed) (71)

ve ∗ d0.568
p ∗ gc0.663 ∗ (ρs − ρg)0.663 ∗ x0.244 = vmf ∗ 188 ∗ ρ0.089

g ∗ µ0.371
g ∗ exp (0.508 ∗ F)

(72)

There is also the upgraded empirical correlations that compute the mass and heat trans-

fer coefficients for the different regions:

Kbc,j = 1.32 ∗ 4.5 ∗
vmf
db

+ 5.85 ∗ (Dj × 10−4)0.5gc0.25

d
5/4
b

, j ∈ {species} (73)

Kce,j = 6.77 ∗

√
ed ∗ (Dj × 10−4) ∗ vbr

d3
b

, j ∈ {species} (74)

144
APPENDIX

.3 THE BFB MODEL

Hbc = 1.32 ∗ 4.5
vmfcbtcpg

db
+ 5.85

√
kg/1000 ∗ cbt ∗ cpg ∗ gc0.25

d
5/4
b

(75)

Hce = 6.78 ∗

√
edvbkg ∗ cct ∗ cpg

1000d3
b

(76)

Kce,bs = 3 ∗ (1− ed)ve
(1− δ)eddb

(77)

Nup =
1000 ∗ hp ∗ dp

kg
(78)

Kg,bulk,k = Kd

(∑
i

ce,i −
∑
i

cb,i

)
yb,k, k ∈ {species} (79)

Hg,bulk = Kd

(∑
i

ce,i −
∑
i

cb,i

)
cpgTgb (80)

Ks,bulk,k = −Ax
∂Jc
∂x

ne,k, k ∈ {species} (81)

Hs,bulk,k = −Ax
∂Jc
∂x

hse (82)

.3.3 Gas Phase Properties

The original model of [52] used Aspen properties for the computation of transport and

thermodynamic properties. Then, in the work of [56] these were either approximated with

regressions or simplifications. For example, the gas properties followed the ideal gas law,

and the gas viscosity and thermal conductivity were assumed to be constant. In this work

we follow the same methodology as the latter. Most notably, the gas diffusion coefficient

APPENDIX

145

.3 THE BFB MODEL

are given by the following relationships:

Dc = [0.1593− 0.1282 (P − 1.4) + 0.001 (Tge − 60) + 0.0964 (P − 1.4)2 (83)

− 0.0006921 (P − 1.4) ∗ (Tge − 60)− 3.3532× 10−6 (Tge − 60)2]
ye,h

ye,h + ye,n
+ (84)

[0.1495− 0.1204 ∗ (P − 1.4) + 0.0008896 ∗ (Tge − 60) + 0.0906(P − 1.4)2 (85)

− 0.0005857(P − 1.4)(Tge − 60)− 3.559× 10−6 ∗ (Tge − 60)2]
ye,n

ye,h + ye,n
(86)

Dh = (0.1593− 0.1282(P − 1.4) + 0.001(Tge − 60) + 0.0964(P − 1.4)2 (87)

− 0.0006921(P − 1.4)(Tge − 60)− 3.3532× 10−6(Tge − 60)2)
ye,c

ye,c + ye,n
+ (88)

(0.2165− 0.1743 ∗ (P − 1.4) + 0.001377 ∗ (Tge − 60) + 0.13109(P − 1.4)2 (89)

− 0.0009115 ∗ (P − 1.4) ∗ (Tge − 60)− 4.8394× 10−6(Tge − 60)2) ∗ ye,n
ye,c + ye,n

(90)

Dn = (0.1495− 0.1204(P − 1.4) + 0.0008896(Tge − 60) + 0.0906(P − 1.4)2 (91)

− 0.0005857(P − 1.4)(Tge − 60)− 3.559× 10−6 ∗ (Tge − 60)2)
ye,c

ye,h + ye,h
+ (92)

(0.2165− 0.1743(P − 1.4) + 0.001377(Tge − 60) + 0.13109(P − 1.4)2 (93)

− 0.0009115(P − 1.4)(Tge − 60)− 4.8394× 10−6 ∗ (Tge − 60)2) ∗
ye,h

ye,h + ye,c
(94)

Considering constant gas heat capacities; the enthalpies are:

hsc = 10−3 [(nc,h + nc,c) (cp,g,c,hTsc + dH1) + nc,c (cp,g,c,cTsc + dH2) +

nc,n (cp,g,c,cTsc + dH3)] + cpsTsc (95)

hse = 10−3 [(ne,h + ne,c) (cp,g,e,hTse + dH1) + ne,c (cp,g,c,cTsc + dH2) +

ne,n (cp,g,c,cTsc + dH3)] + cpsTse (96)

And gas molar flow:

Gb = vg ∗Ax ∗
∑
i

cb,i (97)

146
APPENDIX

.3 THE BFB MODEL

.3.4 Heat exchanger correlations

The terms in the energy balance related to the heat exchanger are computed using empir-

ical correlations for the heat transfer coefficients. Once again these depend on the hydro-

dynamic properties of the bubble and the solid.

kpa = (3.58− 2.5 ∗ ed) ∗ kg
kp
kg

0.46−0.46∗ed
(98)

τ = 0.44 ∗ dpgc
v2
mf (fn − ah)2

0.14 dp
dx

0.225

(99)

fn =
vg
vmf

(100)

fb = 0.33 ∗ (
v2
mf ∗ (fn − ah)2

dp ∗ gc
)0.14 (101)

hd = 2

√
kpaρscps(1− ed)

1000Πτ
(102)

Pr = 1000
cpg,mµg
kg

(103)

Nuh = 0.009 ∗Ar0.5 ∗ Pr0.33 (104)

Nuh =
1000 ∗ hl ∗ dp

kg
(105)

ht = fb ∗ hd + (1− fb) ∗ hl (106)

hhx,in = −0.2831− 2.9863× 10−6 ∗ (Phx,in − 1.3) + 7.3855× 10−5 ∗ (Thx,in − 60) (107)

∆Thx = Ttube − Tse (108)

ht ∗∆ThxCr = hw(Thx − Ttube) (109)

Thx = 33.2104 + 14170.15(hxh + 0.285) (110)

ρhx = 959.5222 + 0.002877(Phx − 1.3)− 1.0044496(Thx − 60) (111)

APPENDIX

147

.4 BFB NOMENCLATURE

Finally, the pressure drop inside the heat-exchanger tubes is given by a differential equa-

tion in the axial direction:
∂Phx
∂x

= ∆Phx + ρhx ∗ 10−5

Phx,N

∣∣∣
x=0

= Phx,in

(112)

.4 BFB Nomenclature

Ax: Total bed cross-sectional area (m2)

ap: Particle specific surface area (m2/kg)

Cr: Average correction factor for heat exchanger tubes

cb,t: Bubble region gas total concentration (kmol/m3)

cc,t: Cloud-Wake region gas total concentration (kmol/m3)

ce,t: Emulsion region gas total concentration (kmol/m3)

cb,j : Bubble region gas concentration for component j (kmol/m3)

cc,j : Cloud-Wake region gas concentration for component j (kmol/m3)

ce,j : Emulsion region gas concentration for component j (kmol/m3)

cps: Particle heat capacity (kJ/(kg K))

cpg: Bubble region gas molar specific heat capacity (kJ/(kmol K))

cp,g,e,j : Gas phase pure component molar specific heat capacity in Emulsion region

(kJ/(kmol K))

cp,g,c,j : Gas phase pure component molar specific heat capacity in Cloud-Wake region

(kJ/(kmol K))

Dj : Gas species diffusivity (m/s2)

dx: Heat exchanger tube diameter (m)

ed: voidage of emulsion region

Fg,in: Input flue gas flow (kmol/s)

Fs,in: Input solid sorbent flow (mol/s)

Fs,in: Output solid sorbent flow (mol/s)

148
APPENDIX

.4 BFB NOMENCLATURE

fcw: Cloud-Wake to bubble region volume ratio

Gb: molar flowrate of gas in bubbles (kmol/s)

Hg,bulk: Gas phase bulk flow heat transfer (kJ/(s m))

Hs,bulk: Solid phase bulk flow heat transfer (kJ/(s m))

Hbc: Bubble to Cloud-Wake gas heat transfer coefficient (kJ/(m3 K s))

Hce: Cloud-Wake to Emulsion gas heat transfer coefficient (kJ/(m3 K s))

Hgb: Gas-bubble enthalpy flux (kJ/(m3))

Hgc: Gas-cloud enthalpy flux (kJ/(m3))

Hge: Gas-emulsion enthalpy flux (kJ/(m3))

Hsc: Solid-bubble enthalpy flux (kJ/(m3))

Hse: Solid-bubble enthalpy flux (kJ/(m3))

hse: Sorbent specific enthalpy in Emulsion region (kJ/kg)

hsc: Sorbent specific enthalpy in Cloud-Wake region (kJ/kg)

ht: Overall heat transfer coefficient (kJ/(m2 K s))

hp: Convective heat transfer coefficient (kJ/(m2 K s))

hs,in: Output solid sorbent specific enthalpy (kJ/kg)

hs,out: Output solid sorbent specific enthalpy (kJ/kg)

Jc: Cloud-Wake region solids flux (kg/(m2 s))

Je: Emulsion region solids flux (kg/(m2 s))

Kce,bs: Cloud-Wake to Emulsion solids mass transfer coefficient (s−1)

Kce,1: Cloud-Wake to Emulsion gas mass transfer coefficient (s−1)

Kbc,1: Bubble to Cloud-Wake gas mass transfer coefficient (s−1)

Kg,bulk,j : Gas phase bulk flow mass transfer for component j (kmol/(m s))

Ks,bulk,j : Solid phase bulk flow mass transfer for component j (kmol/(m s))

Kce,bs: Cloud-Wake to Emulsion solids mass transfer coefficient (s−1)

L: Reactor length (m)

nc,j : Cloud-Wake region adsorbed species concentrations for component j (mol/kg)

APPENDIX

149

.4 BFB NOMENCLATURE

ne,j : Emulsion region adsorbed species concentrations for component j (mol/kg)

Ngb,i: Gas-bubble molar flux (mol/m3)

Ngc,i: Gas-cloud molar flux (mol/m3)

Nge,i: Gas-emulsion molar flux (mol/m3)

Nsc,i: Solid-cloud molar flux (mol/m3)

Nse,i: Solid-emulsion molar flux (mol/m3)

Nx: Number of tubes in heat exchanger

P : Bed pressure (bar)

Pin: Bed inlet pressure (bar)

rse,j : Emulsion region adsorbed species reaction rates (mol/(m3 s))

rsc,j : Cloud-Wake region adsorbed species reaction rates (mol/(m3 s))

rgc,j : Cloud-Wake region gas component reaction rates (kmol/(m3 s))

rge,j : Emulsion region gas component reaction rates (kmol/(m3 s))

Tse: Emulsion region solids temperature (K)

Tsc: Cloud-Wake region solids temperature (K)

Tgb: Bubble region gas temperature (K)

Tge: Emulsion region gas temperature (K)

Tgc: Cloud-Wake region gas temperature (K)

Tg,in: Input flue gas temperature (K)

x: Axial position inside the bed (m)

yc,j : Cloud-wake region gas mole fraction for component j

yb,j : Bubble region gas mole fraction for component j

ye,j : Emulsion region gas mole fraction for component j

zg,in,j : Input flue gas mole fraction for component j

zs,in,j : Input solid sorbent mole fraction for component j

zs,out,j : Output solid sorbent mole fraction for component j

δ: Volume fraction of bubbles in bed

150
APPENDIX

.4 BFB NOMENCLATURE

ρg: Gas density (kg/m3)

ρs: Solid density (kg/m3)

∆Thx: Heat exchanger temperature difference (K)

APPENDIX

151

