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Abstract

Electric fields are integral to numerous industrial and scientific processes

that involve multiphase complex fluid systems; for example, electrocoales-

cence, electro-emulsification and dielectrophoretic manipulation in microflu-

idic devices. In these processes, electric fields deform, break and coalesce fluid

interfaces. These systems contain surface-active species, or surfactants, which

simultaneously transport to the interface. To engineer the system response,

the deformation, conditions for instability of the interface and the transport

of surfactant under electric fields needs to be quantified. In this thesis, we

analyze the response of liquid drops, and surfactant transport to interfaces

under electric fields. The impact is prediction of drop behavior in devices

and development of a unique tool to engineer and manipulate liquid-liquid

interfaces.

We first employ boundary integral computations to highlight the role of

convection of surface charges in the transition in breakup mode of a weakly

conducting drop suspended in another weakly conducting drop, under a uni-

form electric field. Accumulation of surface charges at the tips of the drop

results in an abrupt change from a breakup mode characterized by bulbous

lobes to one distinguished by the formation of conical tips. We next model

interaction between multiple conducting drops and disturbances in operating

conditions as temporal fluctuations in the electric field. We use small de-

formation theory and the boundary integral method to predict the transient

deformation and criterion for breakup of the drop under a random electric

field. We demonstrate that fluctuations in the external electric field increase

the average drop deformation, reduce the time for breakup, and soften the

transition from steady state to breakup. We then probe the addition of solu-

ble surfactants to the drop phase in terms of the effective viscosity of a dilute
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emulsion of such drops. Small amounts of added surfactant can greatly impact

the viscosity of the emulsion for certain regimes of surfactant transport and

depletion. We then proceed to develop an experimental platform to quantify

the transport of surfactants to an oil-water interface under electric fields. We

show that surfactants that form charge carriers in an oil phase show an en-

hanced transport under electric fields. Moreover, the field selectively affects

surfactant transport in the oil phase. In summary, using theory, computation

and experiment, we make significant contributions to underline the ability of

electric fields to manipulate liquid-liquid interfaces.
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Chapter 1

Introduction

Liquid-liquid interfaces are subjected to electric fields in applications like elec-

trospray mass spectrometry1,2, electrocoalescence3,4, electro-emulsification5,6,

electrospinning7, inkjet printing8,9, structuring colloidal particles at interfaces10–12

and microfluidic devices13–16. These systems typically comprise two immiscible

liquids, along with surface-active molecules, called ‘surfactants’ which adsorb

at the interface. Depending on the particular application, the interface may

deform, coalesce or rupture under the applied electric field, while the surfac-

tant molecules simultaneously transport to the interface. To achieve a desired

electric field-induced effect, it is important to accurately predict the response

of the interface to electric fields, and determine how the applied field impacts

surfactant transport.

The response of liquid interfaces to electric fields falls under the purview of

the fields of electrohydrostatics and electrohydrodynamics. If the two liquids

are perfect dielectrics, or if one is a perfect conductor and the other a perfect

dielectric, the electric field does not result in a fluid flow at steady state; the

phenomenon is called ‘electrohydrostatics’17–23. If both the liquids are weakly

conducting, or ‘leaky dielectric,’ the applied field generates a sustained fluid

motion at steady state, and the phenomenon is termed ‘electrohydrodynam-

1
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ics’23–27. From nearly a century ago, electric fields have been known to deform

and rupture fluid-fluid interfaces17–19,21,22. Based on energy arguments, it was

predicted that the interface would deform along the direction of the applied

field into prolate shapes20; however drops of oil suspended in another oil were

observed to deform perpendicular to the direction of the field, into oblate

shapes21. This phenomenon was explained in 1966, in a seminal work by G. I.

Taylor24. He formulated the ‘leaky dielectric’ model, where the oil phases were

assumed to have a small, yet finite electrical conductivity. For small applied

electric fields, Taylor predicted the condition where the drop would deform

to a prolate or an oblate shape, from the interfacial stress balance condition.

Subsequent work on electrohydrodynamics in the 60’s and 70’s involved exper-

iments under constant and oscillatory electric fields25,27, and including higher

order terms to Taylor’s small deformation theory28. However, small deforma-

tion theory was not able to predict the deformation under larger electric fields,

which were used in experiments; and research in this area slowed down a little.

The advance of computational power in the late 80’s renewed interest in

the area of electrohydrodynamics. Notably, the boundary integral method26,

and the finite element method29,30, were widely used to predict large deforma-

tions and breakup criteria of drops under electric fields. This allowed com-

parison with experiments, and a reasonable agreement was found29,31. In re-

cent years, a rigorous analysis of the transient deformation of a single drop

under electric fields, accounting for different physical processes has been per-

formed32–37. In particular, accounting for the convection of surface charges by

the electrohydrodynamic flow resulted in a very good match between experi-

ments and computations34.

The field of electrohydrodynamics received another boost in the early

2000’s when microfluidic devices became popular. Electric fields have been

incorporated in these devices to create, deform, sort and coalesce drops13–16.
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More recently, electric fields have been employed to structure colloidal particles

on drops10–12. In several of these applications, surfactants are added to bulk

phases to create stable interfaces. Consequently, there has been an interest in

modeling these interfaces in the presence of surfactants38–42. In the absence of

an external field, the surfactant undergoes diffusion from bulk phases to the

interface, and then an ad/desorption to/from the interface43–46. The intersec-

tion of electrohydrodynamics and surfactant transport is a rich, yet relatively

unexplored field of research. There are several fundamental questions that

need to be answered before a comprehensive model for electrohydrodynamics

of surfactant-laden interfaces can be established. The objective of this thesis is

to quantify the response of liquid drops, and surfactant transport to interfaces,

under electric fields via theory, computation and experiment. The impact is a

prediction of drop behavior in real devices, and development of electric fields

as a valuable tool to precisely engineer and manipulate liquid-liquid interfaces

and surfactant transport.

1.1 Background

1.1.1 Drops under electric fields

Consider an uncharged, neutrally buoyant spherical drop of a fluid with ini-

tial radius a0 suspended in another immiscible fluid, as shown in Figure 1.1.

The viscosity, permittivity and electrical conductivity of the fluids are denoted

by µ, ε and σ, respectively; the subscript ‘i’ denotes properties of the drop

phase fluid, and the subscript ‘o’ denotes properties of the medium phase fluid.

When a uniform electric field of strength E∗∞ is applied across this system, the

interface of the drop acquires charge due to charge polarization. Further, there

is a discontinuity in the distribution of electric field at the interface due to a
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mismatch in the electrical properties of the two fluids. Consequently, electric

stresses are generated at the interface, which act to deform the interface. The

electric traction acts in a nonuniform fashion along the interface. For small

applied fields, the difference between the normal component of the electric

traction in the medium phase and drop phase fluid ∼ cos2 θ. The traction is

maximum at points called the ‘poles’ (θ = 0, π) of the drop, and vanishes at

the ‘equator’ (θ = π/2, 3π/2) of the drop. If a perfectly conducting drop is

placed in a perfectly dielectric medium, the tangential component of the elec-

tric field, E∗t = 0. When the drop and the medium are both perfect dielectrics,

the interface does not acquire a charge under the electric field, hence the sur-

face charge density, q∗ = 0. Therefore, for a perfectly conducting or perfectly

dielectric drop in a perfectly dielectric medium, the tangential component of

the electric traction (∼ q∗E∗t ) vanishes and the drop always deforms along the

direction of the electric field into a prolate shape. There is no sustained fluid

motion in the deformed drop; this phenomenon is termed electrohydrostat-

ics17–23. An example of a conducting drop in a dielectric would be water drops

suspended in an oil, which is prevalent in oil refining processes3,4. Dielectric-

dielectric systems are encountered in electrospinning of polymer melts7. For

small values of the applied electric field strength, the steady deformation of

the drop, defined as D =
L−B
L+B

was calculated in 1962 by Allan and Mason21.

For a conducting drop in a dielectric,

D =
9

16
CaE, (1.1)

and for a perfectly dielectric drop suspended in a dielectric,

D =
9

16

(S − 1)2

(S + 2)2
CaE. (1.2)

Here, S = εi/εo is the ratio of permittivity of the drop phase to the medium

phase fluid, and the dimensionless group CaE = a0εoE
∗2
∞/γ is the electric cap-

illary number, defined as the ratio of electric stresses to capillary stress, with
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γ denoting the interfacial tension between the fluids. The theory developed by

Allan and Mason21 holds when CaE � 1. The drop deforms to a spheroidal

shape at this order.
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Figure 1.1: Schematic of the electric field induced prolate deformation of a
drop. The axis of symmetry, ϕ, is along the direction of the electric field, E∗∞.
The drop having viscosity µi, permittivity εi and conductivity σi is suspended
in a dielectric medium with viscosity µo, permittivity εo and conductivity σo.
The initially undeformed state of the drop is shown by the dashed curve. The
semi-major and semi-minor axis of the deformed drop are denoted by L and
B, respectively. The polar angle is denoted by θ.

In practice, perfect dielectric systems (σ = 0) are extremely difficult to

find. Even the most insulating system is characterized by a small, measur-

able value of electrical conductivity due to the presence of impurities and

trace amounts of water. For instance, the electrical conductivity of silicone oil

and castor oil ≈ O(10−12 − 10−11) S/m21. Some combinations of these fluids

were observed to elongate along the equator of the drop into oblate shapes21.

This observation was explained in 1966 by Taylor24 in his ‘leaky dielectric’

model. He postulated that the weak conductivity of the fluids allow the in-

terface to acquire charge under an electric field, which in turn gives rise to
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an electric traction having non-zero values for both the normal and tangential

components. The tangential component of the electric traction is balanced

by viscous shear stresses; thus a fluid flow is sustained in both phases even

when the drop assumes a steady deformed state, and the phenomenon is called

electrohydrodynamics. The deformation of the drop can be obtained from a

balance between the electric, viscous and capillary forces acting at the inter-

face, and for small applied field strengths, Taylor’s small deformation theory

predicts

DT =
9

16(2R + 1)2

[3R(3M + 2)(1−RS)

5(M + 1)
+R2(1− 2S) + 1

]
CaE, (1.3)

where M = µi/µo and R = σo/σi. Taylor’s theory is, again, valid for CaE � 1,

and predicts the drop deforms into a spheroidal shape: prolate if DT > 0,

oblate if DT < 0.

Under larger electric fields, the deformation is nonlinear in CaE
25–27,32.

Beyond a critical electric field strength, the drop undergoes an instability

and breaks up into smaller drops. Two broad breakup modes have been ob-

served32,33,47,48. In one mode, called ‘end-pinching’, the drop elongates to

cylindrical shapes, which develop necks that detach from the cylinder and

produce daughter drops having a size similar to the parent drop. The other

mode, called ‘tipstreaming’ is characterized by the formation of pointed con-

ical ends at the poles of the drop from which drops having size nearly three

orders of magnitude smaller than the parent drop are ejected. Clearly, the size

of the drops formed as a result of the instability depend on the breakup mode

of the drop. Predicting transient deformation, breakup conditions, and the

mechanism of breakup is important in applications to select an optimum op-

erating condition; consequently a lot of advances have been made in this front

through both experiments25,27,31,47,49,50 and computations26,29,30,32–35. Among

computational tools, the boundary integral method has been employed by sev-
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eral researchers to predict the transient, nonlinear deformation and breakup

criteria of the drops26,32,34. This method works efficiently when the system can

be described by a linear governing equation. The method involves rewriting

the governing equations across the control volume into integral representations

along the interface, hence reducing the dimensionality of the computational

space by one51. It should be noted that although the governing partial differ-

ential equations are linear, the free boundary problem for the evolution of the

interface is highly nonlinear.

An accurate prediction of the drop response requires careful analysis of the

time scales for charging of the interface, establishing fluid flow and interface

deformation. Recently, it was shown that the convection of the surfaces charges

by the induced electrohydrodynamic fluid flow, a phenomenon called surface

charge convection, needs to be taken into account for correctly predicting the

experimentally observed transient deformation34. The role of this phenomenon

in the breakup of ‘leaky dielectric’ systems has not been established previously.

This has been addressed in Chapter 2 of this thesis.

Determining the response of a single drop to an electric field is important

to understand the fundamental principles that dictate drop deformation and

breakup; however this knowledge has limited relevance in practical systems.

In applications like electrocoalescers and electro-emulsifiers, one deals with

multiple drops which interact with each other, as well as with walls and system

boundaries. Some studies have probed the effect of the interaction of two

drops on their relative orientation in a uniform electric field52–54; however

processes can be further complicated due to uncertainties like disturbances

in operating conditions. Consequently, even when the applied macroscopic

field, for example, the applied potential difference across the electrodes in

an electrocoalescer, is steady, the drop response could be drastically different

from that of a single drop or two drops under a uniform field. One strategy
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to model the behavior of these systems is to quantify drop response to a

randomly fluctuating external field, an approach that has been widely adopted

in predicting drop breakup and polymer extension in flow fields55–61. An equiv-

alent analysis for drops under electric fields is lacking. We present this analysis

in Chapter 3 of this thesis.

1.1.2 Surfactant at interfaces

In recent years, the field of electrohydrodynamics has grown to encompass

surfactant-laden interfaces37–40,42,47. Surfactant, or ‘surface-active’ molecules

contain a hydrophobic part and a hydrophilic part. Due to their amphiphilic

nature, when dispersed in a bulk phase, they migrate to the fluid-fluid interface

to minimize the free energy of the system. The interfacial tension reduces due

to surfactant adsorption. Surfactants are typically added to several processes

to stabilize fluid-fluid interfaces, but can also be naturally present in other

systems. For example, crude oil which is processed in electrocoalescers inher-

ently contains waxes, resins and naphthenic acids, which act as surfactants

and adsorb at the oil-water interface. In emulsification processes or microflu-

idic droplet based platforms, surfactants may be externally added to stabilize

drops, or reagents like proteins and enzymes may also act as surfactants.

Surfactant transport from bulk phases to an interface follows a two step

process43–46. Surfactant molecules close to the interface undergoes a reversible

adsorption and desorption from the bulk to the interface. This reduces the

local surfactant concentration near the interface, and surfactant in the bulk

diffuses to the interface across the established concentration gradient. Upon

surfactant adsorption, the interfacial tension of a fluid-fluid system decreases

from the clean interfacial tension value in the absence of surfactants, to an

equilibrium value which depends on the surfactant concentration in the bulk
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(C∗), and the chemical nature of the surfactant and the two fluids. The con-

centration of surfactant at the interface, Γ, can be measured by determining

the equilibrium interfacial tension as a function of the bulk surfactant concen-

tration, using the Gibbs’ adsorption equation,

Γ =
1

RT

∂γ

∂ lnC∗
, (1.4)

where R is the universal gas constant and T is the temperature. The Gibbs’

adsorption equation relates the two interfacial parameters (γ and Γ) to a bulk

parameter (C∗). The relationship between Γ and C∗, known as the adsorption

isotherm is used in conjunction with (1.4) to obtain the equation of state,

which relates γ and Γ. Knowledge of the equation of state and the adsorption

isotherm are necessary to model surfactant-laden interfaces under external

fields.

The presence of surfactants at interfaces is known to have an influence on

the breakup modes of drops under external flow fields62–66. The deformation

of a surfactant-laden interface, and interfacial flows due to the external flow

produce a nonuniform distribution of the surfactant at the interface. This

generates tangential Marangoni stresses at the interface, proportional to the

gradient in interfacial surfactant concentration. These extra stresses couple

with the capillary stress and viscous stresses to affect the breakup conditions

and breakup modes. An insoluble surfactant has been observed to facilitate

the formation of pointed tips in drops under extensional flows, which then

undergo breakup via tipstreaming. The size of the ejected drops depends

on the initial surfactant concentration62,66. Surfactant gradients also allow

the drop to be deformed to a larger extent before undergoing breakup, thus

changing the critical condition for breakup62. Solubility of surfactants can lead

to different observations for drops under flow fields, yielding results in between

the limit of an insoluble surfactant and no added surfactant. The specific
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response depends on the initial surfactant concentration, and mechanisms of

surfactant transport to the interface62,65,66. We discuss the effect of transport

of surfactants in the rheology of a dilute emulsion of spherical drops containing

soluble surfactant in chapter 4.

Under electric fields, experiments by Ha and Yang have shown that surfac-

tants change the breakup mode from end-pinching to tipstreaming for a certain

range in concentration; at concentrations outside this range, end-pinching is

the observed breakup mechanism47. More recently, we studied the breakup

of a drop of squalane in silicone oil in the presence of a poly-isobutylene suc-

cinimide surfactant (OLOA 11000). It was observed that the addition of the

surfactant changes the breakup mode of the squalane drop from tipstream-

ing to end-pinching40. While the surfactants used in both the studies were

soluble34,47, numerical studies for deformation of surfactant-laden interfaces

under electric fields are restricted to insoluble surfactants37–40,42. This is a

good first approximation for predicting surfactant effects due to electrohydro-

dynamics, given the already complex coupling of several phenomena occuring

in the process. In fact, accounting for Marangoni stresses due to nonuniform

distribution of an insoluble surfactant, Lanauze, Sengupta and co-workers were

able to qualitatively explain the change in experimentally observed breakup

mode from tipstreaming to end-pinching40. An inherent assumption in all

these computations is that the electric field does not change the adsorption

isotherm. However there are no experiments to justify this assumption.

The solubility of the surfactant needs to be considered in order to ac-

curately determine the time for breakup. This is exemplified in the work of

Lanauze, Sengupta and co-workers40. Figure 1.2 shows the transient defor-

mation of a squalane drop containing 0.12 wt% OLOA surfactant in silicone

oil obtained from experiments and computations, and is reproduced from that

work (Figure 8(a) of that paper). They show that including Marangoni stresses
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in the computations is required to predict the correct breakup mode, however

modeling the surfactant as insoluble gives an incorrect estimate of breakup

time. The breakup time predicted by the computations is nearly twice longer

than the actual breakup time observed in experiments. In applications, an

operator not only needs to know the size of the formed drops, but also the

time at which breakup will occur. Hence, modeling soluble surfactants under

electric fields is an essential problem. However, more fundamental questions

regarding the transport of soluble surfactants need to be answered before this

can be attempted. The transport of surfactants under an external electric

field has not been studied before. It needs to be determined if the surfactant

transport is influenced by an electric field. In chapters 5 and 6, we quantify

surfactant transport to oil-water interfaces under an external electric field.
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Figure 1.2: Experiment and computations illustrating the transient deforma-
tion of a squalane drop containing 0.12 wt% OLOA surfactant. Here the drop
is suspended in silicone oil and the applied field strength is 2.5 kV/cm.
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1.2 Structure of thesis

In this thesis, we address the gaps identified above, as indicated by the under-

lined text. In chapter 2, we quantify the deformation of a weakly conducting,

‘leaky dielectric,’ drop in a density matched, immiscible, weakly conducting

medium under a uniform DC electric field. We exclusively consider prolate

drops, for which the drop elongates in the direction of applied field. Fur-

thermore, we assume the drop and medium to have equal viscosities. Using

axisymmetric boundary integral computations, we delineate drop deformation

and breakup regimes in the CaE − ReE parameter space, where CaE is the

electric capillary number (ratio of the electric to capillary stresses); and ReE

is the electric Reynolds number (ratio of charge relaxation to flow time scales),

which characterizes the strength of surface charge convection along the inter-

face. For so-called ‘prolate A’ drops, where the surface charge is convected

towards the ‘poles’ of the drop, we demonstrate that increasing ReE reduces

the critical capillary number for breakup. Moreover, surface charge convec-

tion is the cause of an abrupt transition in the breakup mode of a drop from

end-pinching, where the drop elongates and develops bulbs at its ends that

eventually detach, to a breakup mode characterized by the formation of con-

ical ends. On the contrary, the deformation of ‘prolate B’ drops, where the

surface charge is convected away from the poles, is essentially unaffected by

the magnitude of ReE. This chapter has been published in the Journal of

Fluid Mechanics as an article67.

In chapter 3 (submitted to Physical Review Fluids), we shed light on the

response of drops in applications like electrocoalescence and electro-emulsification,

where factors like interactions with surrounding drops or disturbances in op-

erating conditions can produce a random field around a ‘test’ drop, even when

the applied macroscopic field is uniform. We quantify the transient defor-
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mation and breakup of a conducting drop suspended in a dielectric medium

and subjected to a fluctuating electric field. Specifically, the magnitude of

the field fluctuates randomly in time, while its orientation is fixed. Hence,

the deformation of the drop is axisymmetric about the direction of the field.

The temporal fluctuations are described by a stationary Markovian Gaussian

process, characterized by a mean, variance and correlation time. We first de-

velop a small deformation theory and predict that the fluctuations produce

a larger deformation than under a constant electric field of strength equal to

the mean of the fluctuating electric field. Next, we utilize boundary integral

computations to quantify the deformation and breakup of drops beyond the

small deformation regime. When the mean of the fluctuating field is greater

than the critical field for breakup under a steady field, we find that the average

time taken to undergo breakup is less than that under an equivalent steady

field. More interestingly, a certain fraction of drops are observed to undergo

breakup even when the mean field is less than the steady critical field. The

fraction of drops undergoing breakup and the range of mean electric field be-

low the steady critical where breakup is observed depends on the strength of

fluctuations of the electric field. An operating map is presented for the per-

centage of drops undergoing breakup as a function of the dimensionless mean

field for different strength of field fluctuations.

In chapter 4, we analyze the role of surfactant solubility and transport in

the rheology of emulsions. We calculate the effective viscosity of a dilute emul-

sion of spherical drops containing a soluble surfactant under a linear creeping

flow. It is assumed that convection of surfactant is small relative to diffusion,

and thus the Peclet number, Pe, is small. We calculate the effective viscosity

of the emulsion to O(Peφµo), where φ is the small volume fraction of the dis-

persed drops, and µo is the viscosity of the surfactant-free suspending fluid.

This O(Peφµo) contribution is a sensitive function of the bulk and interfacial
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surfactant transport. Specifically, soluble surfactants diffuse from the bulk to

the interface, and then adsorb to the interface. The ratio of the time scale for

bulk diffusion to the time scale for adsorption to the interface is quantified by

a Damkohler number, Da. The adsorption of surfactant to the interface may

cause a significant decrease in the bulk concentration, which is known as de-

pletion. The impact of depletion is characterized by two parameters: h, which

is a dimensionless depletion depth; and k, which is the ratio of the desorp-

tion time scale to the adsorption time scale. We analytically determine how

the O(Peφµo) contribution to the effective viscosity depends on h, k and Da.

Surprisingly, for certain regimes in the h−k−Da parameter space, we predict

the effective viscosity of the emulsion to be greater than Einstein’s result for

the viscosity of a suspension of rigid spheres. Large Marangoni stresses driven

by convective transport of soluble surfactant molecules are responsible for this

result. This chapter has been published in Rheologica Acta as an article68.

In chapter 5, we establish that electric fields can influence the transport

of oil-soluble surfactants to oil-water interfaces. We use a custom-built electri-

fied capillary microtensiometer platform to quantify the transport dynamics

of oil-soluble surfactants to oil-water interfaces. Dynamic interfacial tension

measurements reveal that the transport of a poly-isobutylene succinimide sur-

factant (OLOA 11000) is enhanced to an Isopar-water interface under a D.C.

electric field. On the contrary, the transport of a triblock copolymer sur-

factant (Pluronic L64) to a silicone oil-water interface is unaffected by the

electric field. The electrical conductivity measurements of the oils as a func-

tion of added surfactant show that the OLOA surfactant forms charge carriers

in Isopar, while no such charged species are formed by the Pluronic surfactant

in silicone oil. Analyzing the time scales of diffusion to the interface and trans-

port by electrophoresis under an electric field, we conclude that electrophoresis

of charge carriers is responsible for the field-enhanced transport of OLOA to
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the Isopar-water interface. Notably, this enhancement can be precisely tuned

by altering the field strength and temporal scheduling. For the first time, we

demonstrate electric fields as a new parameter to manipulate surfactant trans-

port to microscale fluid-fluid interfaces. This chapter has been published as

an article in Physical Review E 69.

In chapter 6 (submitted to the Journal of Colloid and Interface Science),

we extend the observations in chapter 5, and probe other surfactant systems

that form charged aggregates in the oil phase. The tendency of surfactant

aggregates to acquire charge depends on surfactant architecture, and the sol-

vent in which the surfactant is dispersed. In this chapter, we disperse two

surfactants with different architecture in Isopar-M, and using the electrified

microtensiometer platform, quantify the transport of surfactants to the oil-

water interface under a constant electric field. Electrical conductivity of the

oil with increasing surfactant concentration was measured to determine the

presence of charge carriers. The charging mechanism of the oil phase, and the

transport under an electric field was different for the two surfactants. At low

concentrations where the electrical conductivity of the two surfactants are in-

distinguishable, dynamic interfacial tension measurements under electric fields

can ascertain the presence of charge carriers in the oil phase. Experiments on

the transport of ionic surfactants in the aqueous phase did not show an electric

field-dependent effect because the electric field in the aqueous phase, which

scales as the ratio of conductivity of the oil to aqueous phase, is essentially

zero. This further confirms that the field-enhanced transport of oil-phase sur-

factants is due to electrophotresis of charge carriers. Moreover, the equilibrium

interfacial tension was not found to change under an electric field, suggesting

the adsorption isotherm is not a function of the field strength. We demon-

strate that dynamic interfacial tension measurements under electric fields is

a sensitive technique to detect the presence of charge carriers in a nonpolar
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fluid.

Finally, chapter 7 summarizes the major contributions and findings of this

thesis, and provides directions for future research to further develop electric

fields as a tool of manipulate fluid-fluid interfaces.

The chapters are written to be self-contained, hence there is some amount

of repetition in the introductory sections for some of the chapters.

The work presented in this thesis will bridge the gap between the fields

of electrohydrodynamics and surfactant transport to interfaces. This presents

the first quantification of surfactant transport under electric fields. The results

will direct further work in electrohydrodynamics of surfactant-laden interfaces.

Electric fields have been demonstrated to have an instantaneous and selective

control on surfactant transport, and can be tuned to engineer liquid-liquid

interfaces. The electrified microtensiometer platform developed here can be

used to determine how surfactant properties can be changed to elicit a de-

sired field-induced response and inform the molecular design of surfactants.

The knowledge of surfactant transport under electric fields obtained from the

experiments can be fed as transport and interface parameters into the com-

putational tools developed to model electrohydrodynamics of interfaces with

soluble surfactants.
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The role of surface charge convection

in the electrohydrodynamics and

breakup of prolate drops

2.1 Introduction

When an electric field is applied across a drop of fluid suspended in another

fluid, a jump in electric stress is generated at the interface due to a mismatch

in the electrical properties between the fluids. For perfectly conducting or

perfectly dielectric drops, suspended in a perfectly dielectric fluid, the resultant

electric traction solely acts normal to the interface, and is balanced by capillary

traction due to surface tension. The electric traction is nonuniform along the

interface, and consequently, the drop becomes elongated along the direction

of the applied field into a prolate shape17–20,22,23. For such systems, there is no

fluid motion at steady state, and this phenomenon is called electrohydrostatics.

The problem becomes more complicated if both the fluids are weakly

conducting, or leaky dielectrics. Drops of such fluids can also deform perpen-

dicular to the applied field into oblate shapes21. This was explained by Taylor

in his ‘leaky dielectric model ’24. The conductivity of such fluids is typically

17
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less than 10−9 S/m, which is, for example, very small compared to distilled

water, that has a conductivity of around 10−4 S/m. Since the conductivity is

not zero, however, as is the case with perfect dielectrics, charge carriers can be

transported from the bulk fluids to the interface under an electric field. The

characteristic time for a charge to reach the interface is given by the charge

relaxation time scale, te(i,o) = εi,o/σi,o, where ε is the permittivity and σ is the

conductivity, and the subscripts ‘i’ and ‘o’ refer to properties of the drop and

the medium, respectively. The action of the imposed field on the accumulated

charge at the interface generates a component of the electric stress tangential

to the interface, in addition to a normal component. This requires a tangen-

tial viscous stress to balance it, which is why a flow is generated. The flow

is sustained even if the system reaches a steady state, and this phenomenon

is therefore referred to as electrohydrodynamics23,24,70. A leaky dielectric drop

can deform into either a prolate or an oblate shape, depending on the proper-

ties of the drop and the medium.

Taylor’s small deformation theory predicts the steady state deformation

of the drop to be

DT =
9

16(2R + 1)2

[3R(3M + 2)(1−RS)

5(M + 1)
+R2(1− 2S) + 1

]
CaE, (2.1)

where, R = σo/σi is the ratio of conductivity of the medium to the drop,

S = εi/εo is the ratio of the permittivity of the drop to the medium; and

M = µi/µo is the ratio of viscosity of the drop to the medium, with µ denoting

the viscosity. Note that in his original paper, Taylor had used an inverse

definition of M,S and R. The steady state deformation is defined as DT =

(L−B)/(L+B), where L and B denote the semiaxes along and perpendicular

to the applied field, respectively (Figure 1). The electric capillary number,

CaE = εoa0E
∗2
∞/γ is the ratio of electric stress (εoE

∗2
∞) to capillary stress

(γ/a0), where a0 is the radius of the undeformed drop, and γ is the interfacial
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Figure 2.1: Schematic of electric field induced prolate deformation of a leaky
dielectric drop. The axis of rotational symmetry, ϕ, is along the direction of
the applied field. The drop of viscosity µi, permittivity εi and conductivity
σi is suspended in a fluid of viscosity µo, permittivity εo and conductivity σo.
Here, the charge relaxation time scale of the drop, te,i = εi/σi is smaller than
the charge relaxation time scale of the medium, te,o = εo/σo. Consequently,
the charging of the interface is controlled by the drop, and the induced flow is
directed from the equator (θ = π/2, 3π/2) to the poles (θ = 0, π). The curved
arrows denote the direction of fluid flow.

tension. The capillary number is calculated based on the medium properties.

The capillary number can also be defined as the ratio of the capillary time

scale, tc,o = µoa0/γ, which represents the time taken by the capillary force to

restore the drop to its undeformed state, to the flow time scale, tf,o = a0/U ,

where the velocity scale is obtained by balancing shear and electric stresses,

and is given by U = εoµoE
∗2
∞/a0. Taylor’s theory is valid for small values of

the capillary number, CaE � 1, and predicts that the drop deforms into a

spheroidal shape: prolate if DT > 0, and oblate if DT < 0.

Taylor’s small deformation theory qualitatively explains oblate and pro-

late deformations based on the properties of the fluids. It predicts accurate

values for the deformation at small CaE, however a quantitative match at

larger CaE with experiments is poor, with the theory underestimating the
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measured deformations25,27,50. The inclusion of higher order terms to Taylor’s

model28 does not resolve this discrepancy. Droplet deformation at larger CaE

has received attention in numerical studies to determine the steady state de-

formation, as well as breakup of drops26,29,30,32–34,71–74. At larger deformations,

the drop shape may substantially deviate from a spheroid26,32,34. Sherwood26

was the first to computationally study the steady shapes and breakup modes

of leaky dielectric prolate drops under creeping flow conditions (i.e., the flow

Reynolds numbers, Rei,o = ρi,oa0U/µi,o was assumed to be zero) using the

boundary integral method. In his study, the viscosity of the drop was consid-

ered to be equal to that of the medium, and the effect of R and S on the final

state of the drop was analyzed. Sherwood identified two modes of breakup:

end-pinching, where a drop elongates into a cylindrical thread, and develops

two or more lobes which eventually detach from the thread; and breakup by

pointed ends. He concluded that pointed ends are observed when the permit-

tivity of the drop is high compared to that of the medium, and end-pinching is

observed when the conductivity of the drop is higher than that of the medium.

Lac and Homsy performed boundary integral computations to investigate the

behavior of a leaky dielectric drop in a wider parameter space, by varying

M,S and R32. Both prolate and oblate deformations were considered in their

study, which identified various steady and unsteady shapes, some character-

ized by multiple lobes. The effect of fluid inertia was probed by some studies,

where finite values of Rei,o were considered29,30,75. These studies show that for

cases with realistic values of fluid properties and applied fields, where the flow

Reynolds number, Re ∼ O(1), inertia does not play a significant role in leaky

dielectric prolate drop systems.

Although the studies by Sherwood26, and Lac and Homsy32 dealt with

leaky dielectric drops, they neglected the effects of surface charge convection,

by effectively assuming that the interface is charged instantaneously, i.e., the
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charge relaxtaion time (te) is much smaller than the flow (tf ) and capillary (tc)

times. This assumption simplifies the analysis by decoupling the electrostatic

and fluid flow problems; however, in experiments the value of the charge re-

laxation time scale can be comparable to the flow and capillary time scales34.

Moreover, including a non-zero te is important to predict electrohydrodynamic

tipstreaming of films and drops of leaky dielectric fluids. The size of the drops

that are shed as a result of tipstreaming, and the charge carried by the daugh-

ter drops depend on te
33,73. Surface charge convection is quantified by the

electric Reynolds number, ReE(i,o) = te(i,o)/tf(i,o) = ε2i,oE
∗2
∞/µi,oσi,o

70. Experi-

ments have shown that charge convection affects the onset of electrorotation for

oblate drops, and possibly contributes to the hysteresis observed in the tran-

sition from axisymmetric to asymmetric shapes of the drops50. Computations

have demonstrated that surface charge convection leads to the development of

‘charge shocks’ near the equator of oblate drops, where steep gradients develop

in the surface charge density profile34,74. The effect of surface charge convec-

tion was also incorporated in some other works30,72,76. These studies concluded

that surface charge convection reduces the steady deformation of oblate drops;

enhances the steady deformation of prolate drops; and that accounting for sur-

face charge convection is important to characterize the transient dynamics of

the drop.

In this chapter, we demonstrate that surface charge convection plays a

more profound role for prolate drops than just enhancing the steady state

deformation, as has been previously reported30,72,76. Prolate drops can support

flows that are directed from the equator to the poles of the drop (Figure 2.1),

as well as flows from the poles to the equator. Through boundary integral

computations, we show that in the former case, surface charge convection can

lead to an abrupt transition in breakup mode from end-pinching to breakup

by the formation of conical ends. We mainly focus on drops having the same
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viscosity as the medium (M = 1) and study the breakup modes of the drops

as the electric Reynolds number is increased from zero to finite values.

2.2 Problem formulation

Consider an initially uncharged, weakly conducting drop of initial radius a0

suspended in a weakly conducting medium (Figure 2.1). The drop and medium

have the same density and same viscosity. A uniform DC field, E∗∞, is applied,

which induces flow in both the fluids. Prolate drops can experience flows

directed either from the equator (θ = π/2, 3π/2) to the poles (θ = 0, π) of

the drop, or vice versa. The direction of the fluid flow depends on the charge

relaxation time scales of the drop and the medium. If te,i < te,o, the flow is

from the equator to the poles (Prolate A, or ‘PRA,’ drops), and if te,i > te,o,

the flow runs from the poles to the equator (‘PRB’ drops). In this study,

we will predict the drops to deform into non-spheroidal shapes, with multiple

lobes. For such shapes, it is difficult to choose a semi-minor axis to quantify

the deformation of the drop, per Taylor’s definition. Hence, the deformation

is defined as Dasp = L/a0, where L denotes the half length of the drop, and is

equivalent to the semi axis along the electric field used in Taylor’s definition.

The effect of charge convection, characterized by ReE, on the breakup mode

of the drop is quantified.

The electrohydrodynamic problem requires in principal the calculation of

the electric field and the fluid flow inside and outside the drop, and the shape

of the drop with time. We employ the boundary integral method to solve this

problem. This requires the solution of the field and flow at the interface only,

thereby reducing the dimensionality of the problem and hence the computa-

tional cost77–79. Coupling between the electric field and fluid flow occurs at

the interface due to the convection of charge by the electrohyrdodynamic flow.
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Figure 2.2: Schematic showing the discretization of the undeformed drop,
the unit tangential (s) and normal (n) vectors, the continuous tangential
coordinate (s), and a fixed source point on the interface (x).

This is accounted for through the interfacial charge conservation equation. We

now present the governing equations. Henceforth, a superscript ‘* ’ denotes a

dimensional variable, and a lack of the superscript denotes a physical param-

eter, scale, dimensionless group, or the dimensionless version of a dimensional

variable.

2.2.1 Electric field

The first step is to solve for the electric field and electric stress at the interface.

The electric field is irrotational, and since the drop is electrically neutral,

Gauss’s law for electrostatics reduces to the Laplace equation for the inner

and outer electrostatic potentials, giving ∇∗2φ∗i,o = 0, with the electric fields

given by E∗i,o = −∇∗φ∗i,o32,34,80,81. The electric field in the medium satisfies

the condition E∗o = −∇∗φ∗o → E∗∞ at large distances from the drop. In

addition, the field also satisfies the interface conditions of continuity in the

tangential component of the electric field, and a jump in the normal electric

displacement due to the accumulation of interfacial charge32,34,80, namely,

E∗t,o = E∗t,i, (2.2)

and

εoE
∗
n,o − εiE∗n,i = q∗, (2.3)
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where E∗t(i,o) = E∗i,o · s is the tangential component of the inner and outer

electric fields, respectively, and s is a unit tangent vector, positive in the

counterclockwise direction. The normal component of the electric field is given

by E∗n(i,o) = E∗i,o · n, where n is a unit normal vector, positive in the outward

direction (Figure 2.2), and q∗ is the interfacial charge density.

We first non-dimensionalize the problem. Distance is non-dimensionalized

with the radius of the undeformed drop, a0. The magnitude of the applied

electric field, E∗∞, is used to normalize the electric fields. Surface charge density

is rendered dimensionless using εoE
∗
∞, and time is normalized by the capillary

time, tc = µoa0/γ. The fluid flow is driven by the electric stress acting at the

interface. Thus, the velocity scale is obtained by balancing the electrical stress

with the viscous shear stress, giving U = εoE
∗2
∞a0/µo. Using these scalings,

the Laplace equation is recast into a non-dimensional integral equation32,34,81

E∞ · n(x)− 1

4π

∮
A

r · n(x)

r3
(En,o(y)−En,i(y))dA(y) =

1

2
[En,o(x) +En,i(x)],

(2.4)

where r = y − x is the distance between an observer point y that can move

along the interface, and a fixed source point x on the interface. The integral

is taken over the surface area A of the drop. Equation (2.4) has two unknowns

En,o and En,i. Using the dimensionless form of (2.3), En,i = (En,o − q)/S, to

substitute for En,i, (2.4) can be written as34

S − 1

4πS

∮
A

r · n(x)

r3
En,o(y)dA(y) +

S + 1

2S
En,o(x) =

E∞ · n(x)− 1

4πS

∮
A

q(y)dA(y) +
1

2S
q(x).

(2.5)

To calculate the normal electric field, a knowledge of the surface charge

density is required. The interface is initially uncharged, and hence En,o and

subsequently En,i can be computed at t = 0.

After calculating the normal electric fields inside and outside the drop,

the tangential fields are obtained by an integral transformation of the Laplace
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equation in terms of the electrostatic potential, φo
34,82,

φo(x) = φ∞(x) +

∮
A

1

4πr
(En,o(y)− En,i(y))dA(y). (2.6)

The tangential field is obtained using Et,o = −∂φo/∂s and (2.2). Here, s is

the tangential coordinate measured from θ = 0 (Figure 2.2). From the normal

and tangential components of the electric field inside and outside the drop,

the jump in electric traction at the interface from inside the drop to outside

is evaluated as

[τE · n] =
1

2
[(E2

n,o−SE2
n,i)+(S−1)E2

t,o]n+Et,o(En,o−SEn,i)t = ∆pEn+qEt,ot,

(2.7)

where τE(i,o) = Ei,oEi,o − E2
i,oI/2 is the dimensionless form of the Maxwell

stress tensor, and εoE
∗2
∞ is the scale used to non-dimensionalize it. The jump

in normal component of the electric traction is denoted by ∆pE, and is called

the electric pressure, and the tangential component of the jump in electric

traction, which is responsible for maintaining a flow, is qEt,o.

2.2.2 Fluid flow

The flow of fluid is sustained by the tangential component of the electrical

stress. In this study, we assume creeping flow, Re = 0. Although in experi-

ments Re ∼ O(1)34, computations have shown that including fluid inertia at

Re ∼ O(1) makes little difference in the steady state deformations from the

results obtained using Re = 030,75. Thus, the flow satisfies the equation of

continuity, along with Stokes equations, which when cast as integral equations

in a dimenisonless form becomes83

uo(x) = − 1

8π

∮
A

∆f(y) · J(y, x)dA(y), (2.8)

where J denotes the free-space Green’s function for velocity, and

∆f =
2κmn

CaE
− [τE · n] (2.9)
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is the jump in hydrodynamic traction at the interface, where κm is the mean

curvature defined as30

κmn =
1

2

[ds
ds

+
n

r

dz

ds

]
, (2.10)

and CaE = εoE
∗2
∞a0/γ is the electric capillary number based on medium prop-

erties.

2.2.3 Interfacial charge conservation

After obtaining the interfacial velocity, the surface charge density is updated.

This is performed using the interfacial charge conservation equation23,70, which

reads in dimensionless form,

Sa
∂q

∂t
+ReE ∇s· (uoq) =

En,i
R
− En,o, (2.11)

where ReE = ε2oE
∗2
∞/µoσo is the electric Reynolds number based on medium

properties, and Sa = ReE/CaE is the Saville number, which is the ratio of the

charge relaxation time scale to the capillary time scale. The first term on the

left-hand side of (2.11) represents the transient charging of the interface, i.e.,

the charge relaxation. The second term accounts for surface charge convection,

and changes in the surface charge density due to dilation of the interface. This

term couples the electric field and fluid flow equations due to the presence of

uo. The terms on the right-hand side account for the Ohmic conduction of

charges from the bulk to the interface and vice versa. Finally, the interface is

updated using the dimensionless kinematic condition

dx

dt
= CaE(uo · n)n. (2.12)

2.2.4 Numerical scheme

Equations (2.5), (2.6) are (2.8) are solved sequentially via the boundary el-

ement method. The details of the numerical method have been provided in
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earlier34, and will therefore only be briefly discussed here. The field and flow

are assumed to be axisymmetric, allowing an analytical integration over the

azimuth, which reduces the surface integrals to line integrals over the contour

of the drop. The top half of the drop is partitioned into N elements. This

creates N+1 nodes, which are called source points, and whose coordinates are

denoted by x. All functions are interpolated as cubic splines with respect to

s. The integral over the entire contour is replaced by a sum of integrals over

each element. Singular terms in the integrands are subtracted out, and then

added back, following standard regularization techniques82. Gauss-Legendre

quadrature is used to evaluate the integrals, and the points at which the inte-

grand is evaluated are termed observer points, their coordinates being denoted

by y. After evaluating the field and flow equations, the surface charge density

(2.11) and the shape of the interface (2.12) are updated using the second order

Runge-Kutta method, and the deformation of the drop at every time instant is

calculated. The time step is chosen such that the volumetric flow rate across

the interface, which should be identically zero to conserve mass, is at most

O(10−6) for the initial 20 iterations. This ensures that the computations re-

main stable for the selected time step, and any instability occurs due to the

breakup of the drop. If the volumetric flow rate across the interface remains

O(10−6) or less, while the maximum value of the radial velocity keeps on de-

creasing, and reaches O(10−4) or less, we conclude that the drop has attained

a steady shape. If the volumetric flow rate slowly starts to increase, along with

an increase in the maximum value of the radial velocity, we conclude that the

drop shape is unsteady, and it will eventually break up. The boundary integral

method cannot track the interface after the drop breaks, and in this case, the

results are reported at a time instant very close to breakup, where the ratio

of volumetric flow rate across the interface to the initial volumetric flow rate

is O(102). For all our computations, the top half of the drop was divided into
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150 elements, and the time step size was taken to be 0.05. These values were

chosen after performing a convergence analysis, the results of which are given

in Appendix A.

2.3 Flow in prolate drops

At CaE � 1, and neglecting surface charge convection, ReE = 0, the elecro-

hydrodynamic problem has been solved analytically for DC electric fields24.

Depending on the ratios M,S and R, the drop can deform into prolate or

oblate shapes, or even remain spherical. Oblate drops only support flows di-

rected from the poles to the equator, whereas depending on the ratios, prolate

drops can support flows directed from the equator to the poles (PRA drops),

as well as flows directed from the poles to the equator (PRB drops). Figure 2.3

depicts various behaviors of the drop in the (R− S) space when M = 1. This

figure has been previously shown by other researchers25,32,53; it is reproduced

here to provide a context for our nonlinear computations.

When the charge relaxation time scale of the drop is smaller than that of

the medium (RS < 1), the charging of the interface is controlled by the drop.

The interface gets charged in a fashion depicted by the PRA region of Figure

2.3. This results in an electric stress, whose tangential component acts from

the equator to the poles, giving rise to fluid flow in that direction. Regardless

of the value of M , prolate A behavior occurs when RS < 1, in the region

below the dashed line. The locus of the solid line is25

RS = 1 +
5(1 +M)

16 + 19M

(R− 1)2

R
, (2.13)

and along this line the drop remains spherical. This line also demarcates

regions of oblate deformation from regions of prolate deformation. In the
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Figure 2.3: (R − S) parameter space diagram for M = 1. The solid line
distinguishes regions showing prolate deformation from regions showing oblate
deformation. Points along the solid line remain spherical under an applied
electric field (at small CaE). The dotted line separates drops showing prolate
A (PRA) behavior from drops showing prolate B (PRB) behavior. The four
symbols on the diagram represent the four systems considered in this study.
The curved arrows around the drops show the direction of the induced flow
in each of these regions. The electric field is applied from left to right, and is
shown by straight arrows above the drops.

region between the solid line and the dashed line, i.e., where

1 < RS < 1 +
5(1 +M)

16 + 19M

(R− 1)2

R
, (2.14)

the drop deforms into prolate shapes, but the flow is directed from the poles

to the equator. In this region RS > 1, and the charging of the interface is

controlled by the medium. The interface charge distribution now gives rise to

an electrical stress whose tangential component is directed from the poles to

the equator, thus resulting in a similar flow direction. These are the results

of small deformation theory, and give a first order estimate of the induced

flow direction. The flow profile is expected to deviate when deformations are



CHAPTER 2. 30

substantial and drop shapes become non-spheroidal. However, understanding

the flow direction at small CaE is important to draw conclusions on the mode

of breakup of prolate drops at larger CaE.

2.4 Results

The effect of surface charge convection on prolate A and prolate B drops is

studied. We are interested in understanding how charge convection affects

the breakup modes of these drops. The response of the drop depends on the

ratios of viscosity, permittivity and conductivity, i.e., M,S and R; hence the

computational parameter space is large. For the most part of this study, we

assume M = 1, and choose different combinations of S and R, so as to cover

different regions of the R − S parameter space. Here, we present results on

two prolate A drops, and two prolate B drops; the R and S values for these

drops are shown in Figure 2.3. Later, we provide a short discussion for cases

where M 6= 1.

2.4.1 Prolate A drops

The validity of our computational method with and without surface charge

convection was established previously34 by comparing the results of a system

with (M,S,R) = (1, 0.5, 100) to the results of Feng30. Here, we first choose

a system with (M,S,R) = (1, 1, 0.05), which corresponds to the filled circle

symbol in Figure 2.3, and was studied by Sherwood26 for the case ReE = 0.

This system deforms into a prolate shape and undergoes breakup at CaE =

0.28 for ReE = 0. Computations were performed at this value of CaE, with

ReE increasing from zero to finite values. The results are shown in Figure 2.4.

At ReE = 0, the drop initially stretches into a long cylinder. After some-

time, bulbs form at the two ends, being connected by a thin thread of the
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Figure 2.4: (a) Deformation, Dasp = L/a0 versus electric Reynolds number,
ReE at CaE = 0.28 and (M,S,R) = (1, 1, 0.05), showing the effect of surface
charge convection on the breakup mode of a prolate A drop. The breakup
mode changes from end-pinching to breakup by conical end formation over a
narrow range of ReE, as shown by the dashed region. The right panel shows
the shape of the drop just before breakup at (b) ReE = 0.08; and (c) at
ReE = 0.18, with the dotted circle representing the shape of the undeformed
drop. The arrow above the drops shows the direction of the applied electric
field.

fluid. As time progresses, the connecting thread of fluid develops more bulbs,

and forms a multi-lobed structure. Eventually, the bulbs pinch off from the

thread. This mechanism of breakup is called end-pinching. The shape of the

drop before breakup (Figure 2.4 (b)) is similar to the result of Sherwood26

(Figure 8 of that paper). As ReE is increased from zero, the mode of breakup

remains the same, and the drop elongates slightly more before finally breaking.

This trend continues until ReE = 0.14. At ReE = 0.15, the mode of breakup

changes dramatically: the ends form conical tips, instead of bulbous ends.

Increasing ReE further does not change the mode of breakup, but the final

deformation before breakup decreases. The only parameter that was changed
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in the computations was the electric Reynolds number, which quantifies the

strength of charge convection. Thus, surface charge convection changes the

breakup mode of this drop from end-pinching to the formation of conical ends

at an ReE between 0.14 and 0.15, and CaE = 0.28.

To understand why a transition in breakup mode takes place, consider

the jump in the electrical stress at the poles (θ = 0, π) of the drop. Here,

the tangential component of the electric field vanishes, and thus there is no

jump in the tangential electric stress (2.7). Substituting the condition for the

discontinuity in normal electric field at the interface, the electric pressure at

the poles is given by

[τE · n] = ∆pE =
q

2
(q + 2SEn,i), (2.15)

and it varies with the square of the surface charge density, q. The electric

pressure drives the drop to breakup, while the capillary stress tends to restore

its spherical shape. For the system being studied, the tangential velocity profile

(Figure 2.5(a)) suggests that the flow occurs from the equator to the poles of

the drop, and the radial velocity profile (Figure 2.5(b)) shows that the normal

component of the velocity is very small at all points on the interface, except

at the poles, where it rises sharply to values almost two orders of magnitude

higher than at other points on the interface. Thus, the formation of pointed

tips is accompanied by flow towards the tips of the drop.

We hypothesize that the transition in the breakup mode is caused by the

accumulation of surface charge at the poles due to increased charge convection

by the electrohydrodynamic flow at higher ReE. The evolution of the surface

charge density for a drop breaking via end-pinching (ReE = 0.1), and via

the formation of conical ends (ReE = 0.18, 1 and 10) is shown in Figure

2.6 (a). When the field is turned on, the interface starts acquiring charge.

Initially, the surface charge density evolves in a similar fashion for all the cases.
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Figure 2.5: Interfacial velocity profile for a prolate A drop (M,S,R =
1, 1, 0.05) just before breakup. Here, CaE = 0.28 and ReE = 0.18. The
drop breaks by the formation of pointed ends. (a) Dimensionless tangential
velocity profile. The inset shows the drop shape before breakup, the dashed
circle is the shape of the undeformed drop, and the dotted arrows above the
drop show the direction of flow. (b) Dimensionless radial velocity profile.

At this early stage of charging, the drop behaves as a perfect dielectric34,84,

because it takes a finite amount of time for the charges to reach the interface.

The strength of the fluid flow during this stage is low, and hence the surface

charge convection is negligible. Figure 2.6 (b) shows how the strength of the

charge relaxation and surface charge convection (the two terms in the LHS of

(2.11)) evolves with time. It follows that at early times, the strength of charge

relaxation is at least three orders of magnitude higher than the strength of

surface charge convection. During this time, charge relaxation is balanced

by the discontinuity in the normal component of the electric field, and the

surface charge density scales as q ∼ t

Sa

[ 1

R
− 1
]
. The inset in Figure 2.6

(a) shows the early time charging at the poles for different electric Reynolds

numbers. All the curves collapse when the dimensionless time is scaled by Sa.

This initial period lasts till t/Sa ≈ 0.1. After this, surface charge convection

can no longer be neglected, and the early time scaling for the surface charge

density no longer holds. The effect of charge convection is stronger for systems



CHAPTER 2. 34

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

S
u
rf
a
c
e
c
h
a
rg
e
d
e
n
it
y
,

Non-dimensional time,

S
tr
en
g
th
o
f
ch
ar
g
e
re
la
x
at
io
n
an
d
co
n
v
ec
ti
o
n

Charge relaxation

Surface charge convection

(b)(a)

10
-3

10
-2

10
-1

10
-2

10
-1

10
0
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Figure 2.7: (a) Evolution of surface charge density, and (b) jump in the normal
component of the electric and capillary stress at the pole (θ = 0). The solid
curve represents a drop breaking via end-pinching (ReE = 0.1), and the dashed
curve represents a drop breaking via the formation of conical ends (ReE =
0.18).

with a larger ReE (Figure 2.6 (b)). Thus, drops with different values of the

electric Reynolds number get charged differently after the initial period, and

the distribution of surface charge density is affected by the strength of surface

charge convection.
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Figure 2.7 shows the evolution of surface charge density, and the jump in

the normal electric and capillary stress at the poles of the drop, for the two

modes of breakup (end-pinching for ReE = 0.1 and conical ends formation

for ReE = 0.18). As time progresses, the surface charge density at the poles

increases for both the cases. After surface charge convection becomes com-

parable to the other terms in (2.11), the charge carriers are convected more

strongly to the poles for the system with a larger electric Reynolds number

(ReE = 0.18). This system shows a monotonic increase in the surface charge

density at the poles, and correspondingly, the electric pressure (Figure 2.7

(b)). To balance the electric pressure, the capillary stress also increases mono-

tonically, and as a result, the curvature at the pole increases. Eventually the

electric pressure dominates and the drop breaks via the formation of pointed

ends. In contrast, for ReE = 0.1, the surface charge density shows a maxima,

implying that the charge carriers are convected back from the poles to points

elsewhere on the interface. This suggests that there is a flow reversal occur-

ring after a particular time. The ends of the drop develop bulbs sometime

after this maxima occurs. The jump in the electric stress reaches a maximum

value, after which it decreases, allowing the capillary stress to dominate at

the poles. Here, the drop breaks at points on the interface where the charge

carriers accumulate. Therefore, the breakup mode depends on whether the

electric pressure or the capillary stress dominates at the poles.

The formation of conical tips and the evolution of the surface charge den-

sity and electric pressure at the tips resembles the onset of a conic cusping

singularity, which has been observed for conducting and dielectric, inviscid flu-

ids85,86; liquid metallic films in vacuum87; films of perfectly conducting fluids

in an insulating gas33; and perfectly dielectric drops in oils88, under a uniform

electric field. The characteristic feature of a conic cusping singularity is that

the temporal evolution of physical quantities, like the surface charge density,
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Figure 2.8: Evolution of the (a) curvature, and (b) surface charge density at
the tips of drops showing conical ends. Here, (M,S,R) = (1, 1, 0.05), and
CaE = 0.28.

fluid velocity, normal electric field, and the curvature, at the tips exhibit a

runaway behavior. These parameters tend to become infinitely large in a fi-

nite time. Figure 2.8 shows the evolution of the curvature and the surface

charge density at the tips for ReE = {0.18, 1}. Both these quantities show

a relatively slow growth until the onset of cusps, when they approach infin-

tely large values over a relatively short span of time. Further, for systems

showing a conic cusping singularity, the magnitude of the electric pressure

at the tips becomes much larger than the capillary force, as is exhibited in

Figure 2.7. Although previous computations predict leaky dielectric drops to

break via the formation pointed tips, an analysis of the evolution of physical

parameters and the curvature at the tip was not performed26,32. Hence, it is

unclear if the conical ends observed in those studies is conic cusping. Since the

flow in the drops is directed from the equator to the poles, Sherwood26 used

the term “tipstreaming” to describe the breakup by pointed ends. However,

tipstreaming necessitates the transition of cones to fine jets, followed by the

disintegration of the jet into drops of size orders of magnitude smaller than
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the parent drop33,71,73,89, and this transition was not observed in the studies

of Sherwood26, and Lac and Homsy32. Figures 2.7 and 2.8 indicate that the

system studied here undergoes a conic cusping singularity above a critical ReE.

In Figure 2.9, we present the results for the final drop state across the

CaE − ReE parameter space, again for (M,S,R) = (1, 1, 0.05). From the

expressions of ReE and CaE, the magnitude of the applied electric field and

the initial size of the drop are the two parameters that can be tuned to perform

this parameter sweep experimentally. We find that as CaE is increased, the

value of ReE at which the transition in breakup mode occurs reduces. Drops

breaking via end-pinching form a higher number of lobes before breaking as

CaE increases beyond the critical capillary number. For this system, breakup

via end-pinching occurs over a small region in the CaE −ReE space; thus, the

drop predominantly breaks via the formation of conical ends.

Next, we study another prolate A system with (M,S,R) = (1, 0.1, 0.1),

which corresponds to the filled star symbol in Figure 2.3, and was first exam-

ined by Lac and Homsy32 for ReE = 0 only. We again start with ReE = 0 and

probe the effect of increasing the electric Reynolds number. The results are

shown in Figure 2.10. The computations of Lac and Homsy32 predict a critical

capillary number of 0.342 for this system at ReE = 0. We find that the drop

breaks into two daughter drops at a critical capillary number of CaE = 0.35

at ReE = 0. The breakup mode observed by our computations is same as the

one observed by Lac and Homsy32 (Figure 5 of their paper). Further increas-

ing the capillary number does not alter the breakup mode, but the number of

lobes before breakup increases. This is due to the fact that the destabilizing

force is larger at higher capillary numbers. Thus, the drop can get elongated

to a larger extent, and be more prone to capillary instability. Similar to the

system depicted in Figure 2.9, this system has a transition in breakup mode

from end-pinching to conic cusping beyond a certain ReE; and shows breakup
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Figure 2.9: Final state of the drop in the CaE − ReE space for (M,S,R) =
(1, 1, 0.05). Three states are identified in this diagram: steady prolate shapes,
breakup by end-pinching, and conic cusping. The shapes have been normalized
by the half length of the drop at steady state or just before breakup. Thus,
drops that deform more appear thinner in this diagram. Drops attaining
steady states, or breaking via end-pinching deform more as ReE, CaE, or
both increases. For drops exhibiting conic cusping, the deformation just before
breakup decreases as ReE, CaE, or both increases.

via end-pinching over a larger region in the CaE − ReE parameter space as

compared to the system depicted in Figure 2.9. Surface charge convection also

reduces the critical capillary number for breakup; the drop exhibits conic cus-

ping at CaE = 0.32 when ReE = 5, which is lower than the critical capillary

number, CaE = 0.35, predicted at ReE = 0.

In summary, for PRA drops, our computations suggest that surface charge

convection abruptly changes the breakup mode from end-pinching to conic

cusping, and also reduces the critical capillary number for breakup. This is

a consequence of the transport of charges along the interface, which in these
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Figure 2.10: CaE−ReE parameter space plot for (M,S,R = 1, 0.1, 0.1). Three
states are identified in this diagram: steady prolate shapes, breakup by end-
pinching, and conic cusping. Refer to Figure 2.9 for details of the drop shape
illustration.

systems, takes place from the equator to the poles. Additionally, for both

systems, increasing ReE reduces the time at which breakup occurs.

2.4.2 Prolate B drops

We now consider prolate B drops, where small deformation theory predicts

the flow to be directed from the poles to the equator. The value of our calcu-

lations here is twofold. First, we demonstrate that surface charge convection

has a minor effect on the deformation of prolate B drops, as compared to

prolate A drops. This highlights the important point that surface charge

convection does not always lead to a significant change in drop deformation.

Second, our computed steady deformations for prolate B drops are shown to

compare favorably against predictions from slender-body theories81,90, which
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helps to assess the accuracy of the latter. Prolate B drops can be studied

in experiments by choosing a pair of fluids that have a large contrast in the

dielectric constant and conductivity. For example, a drop of squalane doped

with polyisobutylene succinimide surfactant (OLOA 11000) in a polystyrene

(PS) solution, dissolved in dimethylformamide (DMF) should show a prolate

B response when subjected to an electric field. A squalane drop doped with

30 pph OLOA is characterized by µi = 0.03 Pa s, εi ∼ 2, σi = 2.2 × 10−10

S/m40, and for a 15 wt% PS solution in DMF, µo = 0.035 Pa s, εo = 30.2,

σo = 7.6× 10−9 S/m91; yielding M = 0.86, S = 0.07 and R = 35.

We first study a system with (M,S,R) = (1, 50, 0.04), which corresponds

to the triangle symbol in Figure 2.3, and was examined by Lac and Homsy32

(Figure 16 of that paper). They found the system to become unstable at a

capillary number of 0.47 when ReE = 0, and the drop developed pointed ends

before breaking. Since the flow is from the poles to the equator, Lac and

Homsy32 did not categorize this mode of breakup as tipstreaming. We find

this system to become unstable at CaE = 0.46 when ReE = 0, and the poles

develop pointed ends. The tangential velocity profile shows the appearance

of stagnation points very close to the poles just before breakup (Figure 2.11

(a) inset). The interfacial flow is directed from the stagnation points to the

equator, as well as to the poles. Thus, charges are convected to the poles

of the drop. When surface charge convection is accounted for, at non-zero

ReE, the breakup mode does not change. Pointed ends are formed, there are

stagnation points very close to the poles, and the flow profile suggests surface

charge convection to the poles. The evolution of the curvature, surface charge

density and stress jumps at the tips suggest the onset of conic cusping both

at ReE = 0, and at finite values of ReE (Figure 2.11 (d), (e) and (f)). The

critical capillary number for breakup reduces, and the stagnation points move

farther away from the poles as ReE increases. Similar to PRA drops, the
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Figure 2.11: Dimensionless interfacial velocity for a prolate B system
(M,S,R = 1, 50, 0.04) just before breakup at CaE = 0.46 for (a) ReE = 0, (b)
ReE = 1, and (c) ReE = 3. Evolution of (d) the curvature, and (e) surface
charge density at the tip of the drop at ReE = {0, 1}. (f) Evolution of the
electric pressure and the jump in capillary stress at the tips for ReE = 1. The
insets in the velocity profiles show the shapes of the drop just before breakup,
with the dashed circles representing the shape of the undeformed drop.
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time at which the drops undergo breakup decreases as ReE increases. At the

highest values of ReE, the flow occurs from the equator to the poles, similar

to that for prolate A drops (Figure 2.11 (c)). A large value of ReE implies

that the charge relaxation time scale is slow compared to the flow time scale.

The flow sets up much faster than charges arrive at the interface. The drop

behaves as a perfect dielectric at initial times34,84, and the flow occurs from

the equator to the poles. The flow direction reverses as the interface acquires

charge. If however, the charge relaxation time scale is much slower than the

flow time scale, as is the case at large ReE, the inner fluid may transport

sufficient charge to the poles of the drop, so as to increase the electric pressure

and cause conic cusping before the flow can reverse. Thus, the flow direction

will be from the equator to the poles in this case.

We now consider a second PRB drop with M = 1, S = 0.03 and R =

50, shown by the square symbol in Figure 2.3. This system is most closely

resembled by a drop of squalane doped with 30 pph OLOA, suspended in

a 15 wt% PS solution in DMF. Here, the drop does not break even at the

largest capillary numbers tested. The steady prolate shape of the drop is

characterized by pointed ends, as shown in Figure 2.12. In this case, surface

charge convection increases the final steady deformation of the drop, but it

does not induce breakup. The strength of the induced flow is very weak, as seen

in the figure. The flow is directed from the poles to the equator, and there are

no stagnation points observed. At very high values of CaE, the drop assumes

long, stable, slender shapes with pointed ends. The evolution of the surface

charge density at the poles (Figure 2.12 (c)) shows that it does not diverge

like the drops exhibiting conic cusping, but instead attains a steady value,

implying that the conical tips observed for this drop are stable. Slender body

theories for perfect dielectric and leaky dielectric drops in a uniform electric

field predict stable drop shapes with conical ends81,90. These theories predict
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Figure 2.12: Deformation of a PRB drop, with (S,R) = (0.03, 50). (a) Defor-
mation versus electric capillary number at ReE = 0 (shown by ◦), ReE = 1
(shown by ×) and ReE = 10 (shown by +). The top insets show the steady
shape of the drop, and the dashed circle represents the undeformed drop.
(b) Dimensionless interfacial tangential velocity, uθ profile at steady state for
CaE = 58, ReE = 10. The inset shows the drop shape at steady state, and the
curved lines show the direction of the induced flow. The arrow above the drop
shows the direction of the applied electric field. (c) Evolution of dimensionless
surface charge density at the tip for CaE = 58, ReE = 10.

the slenderness of the drop, defined as the ratio of the equatorial radius of the

deformed drop to the half length of the drop, a/L (see inset to Figure 2.13)

to scale with the inverse 3/7-power of CaE, under large applied fields, i.e.,

for CaE � 1. Figure 2.13 shows the results of our computations at viscosity

ratios M = {0.1, 1}, both with and without surface charge convection. All

the three results closely obey the scaling a/L ∼ Ca−0.4285E predicted by the

slender body theories (shown by the black curve). Although the theories have

been developed under the assumptions of ReE = 0 and M � O(a/L)2, it

is interesting to note that the computations accounting for surface charge
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Figure 2.13: Slenderness of the drop as a function of the electric capillary
number for a system with (S,R) = (0.03, 50). The symbols correspond to the

results of our computations. The black line shows the curve a/L ∼ Ca
−3/7
E .

The inset shows a deformed drop with pointed tips. The equatorial radius is
a, and the half length of the drop is L.

convection and O(1) values of the viscosity ratio seem to closely follow the

predicted scaling.

In summary, our computations suggest that surface charge convection

does not affect the breakup mode of PRB drops. In these systems, its role is

to increase the final steady deformation of drops. For drops which ultimately

break into smaller drops, surface charge convection reduces the time at which

the drop undergoes breakup. Drops which deform into long, stable shapes

under strong electric fields closely follow slender body theories, which predict

the slenderness to scale as Ca
−3/7
E .
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2.5 Discussion

End-pinching and breakup by the formation of pointed ends have both been

observed in experiments on drops in electric fields. For highly conducting

drops (R < 10−4) suspended in oils, end-pinching has been reported to be the

mode of breakup21,25,31. For example, a drop of deionized water in castor oil,

with (M,S,R) = (1×10−4, 6.3, 1×10−5) at CaE = 0.2 and ReE = 0.1521; and

a deionized water drop in silicone oil, with (M,S,R) = (0.001, 28, 1 × 10−6)

at CaE = 0.22 and ReE = 32, break via end-pinching31. Breakup via the for-

mation of pointed ends has been observed for soap films22; sessile water drops

exposed to air92,93; sessile water drops suspended in oils22; leaky dielectric sys-

tems and polymer drops31; and sessile drops of dielectric liquids in air93. In

nearly all these studies, the formation of the pointed end, or the conic cusp is

followed by the ejection of a very fine jet of fluid, which then disintegrates into

drops, whose sizes are orders of magnitude less than the parent drop. While

our computations predict the onset of the conic cusp, the transition from the

cone to jet is not captured. The transition from cones to fine jets, or the process

of “electrohydrodynamic tipstreaming” has been resolved computationally for

films and drops of leaky dielectric fluids exposed to air33,73, and electrolytic

drops suspended in oils88,89. These studies accounted for the surface convec-

tion of charges, as well as the transient fluid inertia, by taking finite values

of the Ohnesorge number, Oh, which is the ratio of capillary to momentum

diffusion time scales. The evolution of curvature for a leaky dielectric drop

exhibiting tipstreaming shows a rapid growth over a very short span of time,

akin to conic cusping, which corresponds to the formation of a sharp tip. This

is followed by a period of slower growth and then a rapid decline in the curva-

ture due to the transition of the cone into a jet33. The sharpening of the tip is

accompanied by a rapid acceleration of fluid towards the tips, suggesting that
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accounting for transient fluid inertia, in addition to the convection of charges

might be important to capture the cone to jet transition. Our computations

account for the surface convection of charges, but not transient fluid inertia,

which possibly explains why the evolution of a jet is not observed. There is a

sharp transition in the breakup mode of the drop, from disintegration by the

formation of lobes to breakup characterized by the formation of cusps at the

ends. It will be interesting to understand the mechanism by which the cusps

undergo breakup.

From the two PRA drops we studied, it is clear that the critical values

of CaE and ReE at which the transition from end-pinching to conic cusping

occurs, and the operating space over which each breakup mode is observed,

depend on the system being studied, i.e., on the values of M,S and R. The

system shown in Figure 2.9 is predicted to show breakup via the formation of

pointed ends over most of the operating space. It is most closely resembled by

system ‘NN21’, of a 0.16 cm radius castor oil drop in silicone oil, studied by

Ha and Yang31. Their experimental system was reported to have (M,S,R) =

(0.874, 1.37, 0.1), and the drop was observed to break with pointed ends at

CaE = 1.23 and ReE = 35. For these parameters, our computations indeed

predict the appearance of pointed ends. In order to move into the region of

end-pinching for this system, we have to start with drops having a0 ∼ 10 cm or

higher. It is difficult to apply uniform fields to such large drops in practice; thus

for viable drop sizes, this system will show the formation of pointed ends. A

castor oil drop suspended in another silicone oil (system ‘NN17’), characterized

by (M,S,R) = (0.08, 1.37, 0.1) showed breakup via end-pinching at CaE = 1.1

and ReE = 4.331. Our computations indeed suggest that lowering CaE and

ReE will shift the breakup mode from pointed ends to end-pinching, provided

M,S and R remain constant. Systems ‘NN17’ and ‘NN21’ have the same

values ofR and S, however, M differs by an order of magnitude. It is important
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Figure 2.14: Effect of viscosity ratio on the deformation and breakup of a
prolate A drop. For this system, (S,R) = (1, 0.05), CaE = 0.28, with (a)
ReE = 0.05, and (b) ReE = 0.2.

to recall here that we consider a viscosity ratio M = 1 for most of this study.

Thus, one expects our results to be relevant to system ‘NN21’ (M = 0.874).

However, the relevance of our results to low viscosity (M � 1, e.g. system

‘NN17’) or high viscosity drops (M � 1) is questionable. The viscosity ratio

is known to have a great influence on the deformation and breakup of drops

in shear and extensional flows79. Figure 2.14 shows the result of changing the

viscosity of the drop on the deformation and breakup of a prolate A drop. Our

computations predict a more viscous drop to deform more before undergoing

breakup, and the strength of the interfacial flow to reduce for a more viscous

drop, both in agreement with the observations of Lac and Homsy32; however,

the breakup mode remains unchanged. Thus, for a prolate A drop, there is

a quantitative change in breakup, but the breakup mode remains the same

when there is a moderate change in M . The deformation of a prolate B drop

was found to be essentially unaffected by the viscosity ratio. For the system

with (S,R) = (0.03, 50), the deformation changed by 0.5 % when M was

varied over two decades. It is expected that the the boundaries demarcationg

regions of steady state, end-pinching and conic cusping in the CaE − ReE

parameter space will change when the viscosity ratio changes, but as Figure

2.14 suggests, a transition will be observed. A detailed study investigating

the effect of viscosity ratio on the transition in breakup mode is left as future

work.
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Weakly conducting oils like castor oil, silicone oil, squalane and polymers

like polystyrene and polyvinylidene fluoride dissolved in suitable solvents have

been used to perform experiments on leaky dielectric systems21,25,27,31,91. For

these systems, the conductivity and the dielectric constant can be changed to

different extents without altering the viscosity by doping with carbon black

particles94; and the conductivity can be independently changed at constant

viscosity and dielectric constant by doping with surfactants95,96. Thus, differ-

ent regions of the R − S parameter space (Figure 2.3) can be accessed with

leaky dielectric fluids. However, observing the predicted transition in breakup

modes in the same system might be difficult in experiments, because exper-

imentally feasible drop sizes and electric fields will restrict the system to a

subset of the CaE−ReE phase space, thus showing one of the breakup modes,

instead of a transition between the two modes. A potential way to observe

the transition for the same system is to work with higher molecular weight

oils, with viscosity of O(10) Pa s, or by increasing the conductivity of both

the phases by doping with surfactants, leaving the viscosity and dielectric

constants relatively unchanged. Increasing the viscosity or the conductivity

of the individual phases ensure that the transition occurs at electric fields of

O(kV/cm), with millimeter size drops. Preliminary calculations show that

for a drop of polydimethysiloxane (PDMS) in polyisobutylene (PIB), having

(M,S,R) = (1, 1, 0.05), the transition in breakup mode can be observed from

end-pinching, with a PDMS drop of initial radius 8 mm, subjected to a field

of 0.8 kV/cm, to breakup via conical ends with a drop of initial radius 80 µm,

subjected to a field of 8 kV/cm. However, the drop would take nearly an hour

to break because of the high viscosity of the fluids.
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2.6 Conclusion

We have quantified the effect of surface charge convection on the breakup

mode of weakly conducting prolate drops, using the boundary integral method.

Prolate drops can support two kinds of flows: directed from the equator to

the poles of the drop (prolate A, PRA drops), and flows from the poles to

the equator (prolate B, PRB drops). It has been shown that the breakup

mode of a prolate A drop changes from end-pinching to breakup via conical

ends beyond a critical ReE. The CaE − ReE parameter space map for two

different PRA systems (Figures 2.9 and 2.10) show that the critical parameters

at which the transition occurs depend on the system under consideration, i.

e., (M,S,R) values, however the transition is common to both PRA drops.

As such, this should be generic to PRA drops. Surface charge convection has

a less pronounced effect on PRB drops. The breakup mode of these drops

does not change with increasing ReE; however, the final steady deformation

increases when charge convection is included. Similar to PRA drops, charge

convection reduces the critical capillary number for breakup, and the time at

which breakup occurs.
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Deformation of a conducting drop in a

randomly fluctuating electric field

3.1 Introduction

When an electric field is applied around a drop of fluid of initial radius a0, sus-

pended in another immiscible fluid, there is a discontinuity in the electric field

distribution across the interface due to a mismatch in the electrical properties

of the two fluids. As a result, electric stresses are generated at the interface,

which deform the drop from an initial spherical shape. The electric stresses are

balanced by the capillary stress, which arise due to an interfacial tension, γ.

For perfectly conducting or perfectly dielectric drops suspended in a perfectly

dielectric liquid, the electric stresses are nonuniform along the interface, and

consequently the drop deforms along the direction of the applied field into a

prolate shape17–23. Understanding how drops respond to an applied electric

field is important in applications like electrospray mass spectrometry1, elec-

trocoalescence3,4 and electric field based emulsification5,6. For small values of

a uniform, direct current (D.C.) applied electric field, Allan and Mason21 pre-

dicted that the steady deformation of a conducting drop in a dielectric liquid,

50
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D is proportional to the square of the applied electric field, E∗∞,

D =
L−B
L+B

=
9

16
CaE, (3.1)

where L and B are the half lengths of the drop along and normal to the

direction of the applied electric field, respectively (Figure 3.1), and CaE =

a0εoE
∗2
∞/γ is the electric capillary number defined as the ratio of electric

stresses to capillary stress, with εo representing the dielectric constant of the

medium phase fluid. The electric capillary number can also be defined as the

ratio of the capillary time scale, tc = µoa0/γ which is the time scale for the

capillary stress to restore the drop to the undeformed state, to the flow time

scale, tf = a0/U , where the velocity scale, U = εoa0E
∗2
∞/µo is obtained by bal-

ancing the viscous shear to electric stresses, with µo denoting the viscosity of

the medium phase fluid. To O(CaE), the drop deforms to a spheroidal shape.

The small deformation theory given by (3.1) is valid for CaE � 1. At

larger field strengths, the drop deformation is nonlinear in CaE, and the shape

is non-spheroidal25,27,50. The inclusion of higher order terms to (3.1) is not

sufficient to predict the experimentally observed deformation28. The drop

ultimately breaks up to form smaller drops beyond a critical value of the

electric field. Numerical methods, particularly the boundary integral method

and the finite element method, have been employed to calculate the steady

nonlinear deformation of drops at larger CaE, and predict the breakup criteria

and breakup modes for both uniform26,29,32,34,48,71 and oscillatory25 external

fields. The manner in which the deformed state is attained, i.e., the transient

deformation of the drop, has also been established72,84,97,98.

Previous studies have predominantly focused on the transient deforma-

tion and breakup of a single drop subjected to a deterministic (uniform or

oscillatory) external electric field. In practical systems, the response of a drop

will be influenced by the interaction with surrounding drops, interaction with
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Figure 3.1: Schematic of the electric field induced deformation of a conducting
drop. The axis of symmetry, ϕ, is along the direction of the electric field, E∗∞.
The average magnitude of the electric field is Ec, and the fluctuations are
denoted by ε∗. The drop having viscosity µi, permittivity εi and conductivity
σi is suspended in a dielectric medium with viscosity µo, permittivity εo and
conductivity σo. The initially undeformed state of the drop is shown by the
dashed curve. The semi-major and semi-minor axis of the deformed drop are
denoted by L and B, respectively. The unit normal (n) and tangential (s)
vectors, the continuous tangential coordinate (s), the polar angle (θ), and a
fixed source point on the interface (x) are also shown.

walls, and disturbances in operating conditions. For instance, in equipment

like electrocoalescers or electro-emulsifiers, the surrounding drops will have dif-

ferent sizes and be randomly distributed around a given (‘test’) drop. Thus,

even when the applied macroscopic voltage (for example, the potential dif-

ference across the electrodes in an electrocoalescer) is steady, the behavior

of the test drop could be drastically different from the response of a single

drop under a deterministic field. An equivalent description of the dynamics

of drop deformation and breakup in such practical applications is to quantify

drop response to a randomly fluctuating external field. A similar approach

has been adopted to study drop fragmentation in mixers and packed beds via

experiments55,56,60, and simulations57–60. In particular, the fluid flow through
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a dilute fixed bed was modeled as an equivalent anisotropic Gaussian flow

field through a spectral expansion method, where the wave number vectors

were chosen from statistical distributions to realize a desired flow field. The

orientation of tracer polymers, extension of polymer molecules, and droplet

breakup in the simulated stochastic flow field was predicted57–60. An alter-

nate approach to model a stochastic external flow field was followed by Young

and co-workers61, where the random component of the flow was modeled as

an Ornstein-Uhlenbeck process using a mean, variance, and correlation time.

The response of the drop was quantified in terms of a probability distribution

function of the final deformation and breakup.

However, to the best of our knowledge, the dynamics of drop deformation

and breakup in a random electric field has not been studied before. Therefore,

in this chapter, we quantify the transient deformation and breakup of a drop

of conducting liquid suspended in a dielectric liquid when subjected to an elec-

tric field, the magnitude of which fluctuates randomly in time. We choose the

simplest system of a conducting drop, where no sustained fluid flow exists at

steady state, to elucidate how fluctuations affect deformation and the criterion

for breakup. Again, we emphasize the importance of this problem in the con-

text of practical applications like electrocoalescence and electro-emulsification.

A complete description would have to account for many-body hydrodynamic

and electrostatic interactions between drops, and spatial fluctuations in the

electric field. Nevertheless, our approach is a reasonable first step. We employ

small deformation theory and the boundary integral method to predict the

effect of fluctuations on the final state of the drop.



CHAPTER 3. 54

3.2 Modeling drop deformation and breakup

An uncharged drop of a conducting liquid with initial radius a0 is suspended

in a dielectric medium, as shown in Figure 3.1. The drop and medium phase

fluids are density and viscosity matched. The drop is subjected to an electric

field, the magnitude of which fluctuates randomly in time, but the direction

remains fixed. The electric field deforms the drop from its initial, spherical

state. We assume that the deformation is axisymmetric, and quantify effect

of fluctuations in the electric field on the transient deformation and criteria

for drop breakup. The problem requires the calculation of electric field dis-

tribution and fluid flow in the drop and medium phase fluids. Although at

steady state there is no fluid flow for conducting drops, the solution to the

flow problem is necessary to predict the transient deformation of the drop.

We present the governing equations in this section. Henceforth, a superscript

‘*’ denotes a dimensional variable, and a lack of the superscript denotes a

physical parameter, scale, dimensionless group, or the dimensionless version

of a dimensional variable.

3.2.1 Statistics of the fluctuating electric field

The external electric field, E∗∞, is composed of a constant part, Ec, and

a part whose magnitude fluctuates randomly in time, ε∗, i.e., E∗∞(t∗) =

(Ec + ε∗(t∗))êz, where êz is the unit vector along the direction of the field.

In practice, the fluctuations could be caused by the polydispersity of the sys-

tem, interaction with surrounding drops, interaction of the drop with walls,

or disturbances in operating conditions. Note that we only consider temporal

fluctuations of the field, and neglect spatial stochasticity. This assumption is

valid when the source of the fluctuations is solely temporal disturbances in

operating conditions, or when the concentration of drops in the system is rel-
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atively dilute, such that the center-to-center distance between drops is much

larger than their radius, and drops do not reorient or experience relative mo-

tion due to electrostatic interactions52. Instead of determining the contribution

of each of the possible factors to the fluctuations in the field, we assume that

the random temporal variation of the electric field is described by a stationary

Markovian Gaussian process (the Ornstein-Uhlenbeck process)61,99. Hence,

the evolution of ε∗ follows the stochastic differential equation

dε∗

dt∗
= −λ∗(ε∗ − g∗w(t∗)), (3.2)

where g∗w is the underlying Gaussian white noise driving the fluctuations and

λ∗ is the inverse correlation time. The fluctuations in the electric field are

specified by λ∗ and the statistics of g∗w. We non-dimensionalize (3.2) using Ec

to scale the electric field, and the capillary time, tc = µoa0/γ to scale time,

and obtain the dimensionless governing equation for the fluctuations in electric

field as

dε

dt
= −λ(ε− gw(t)). (3.3)

Here, λ = λ∗tc is the dimensionless inverse correlation time. The underlying

Gaussian white noise has the properties 〈gw(t)〉 = 0, and 〈gw(t)gw(t′)〉 =

2Gwδ(t − t′), where δ is the Dirac delta function, and 2Gw is the variance

of the white noise. A term in the angle brackets denotes an average over an

ensemble of initial distribution of the variable. The driven noise is generated

using an algorithm described by Fox99, after integrating (3.3) to obtain

ε(t) = ε0e
−λt +

∫ t

0

λe−λ(t−t
′)gw(t′) dt′, (3.4)

where, ε0 is an initial value of the fluctuation. At any given time, the driven

noise is Gaussian distributed, ε(t) ∼ N (〈ε0〉e−λt, Gwλ), where N (µ, ν) denotes

a normal distribution with mean µ, and variance ν. The distribution of initial
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value of the fluctuations, ε0, is given by

P(ε0) =
1√

2πGwλ
exp

{
− (ε0 − 〈ε0〉)2

2Gwλ

}
. (3.5)

We choose 〈ε0〉 = 0, so that the mean electric field is set by the constant part,

Ec, and fluctuations to the field is set by the variance of ε(t), i.e., Gwλ. The

driven noise has the properties

〈ε(t)〉 = 0, (3.6)

〈ε(t)ε(t′)〉 = Gwλ exp(−λ|t− t′|). (3.7)

where the term 〈...〉 denotes an average over an ensemble of initial distribution

of ε0, given by (3.5).

It follows from (3.7) that ε(t) is an exponentially correlated colored noise.

Further, the non-dimensional electric field follows a Gaussian distribution at

any given time, E∞ ∼ N (1, Gwλ). A simulated fluctuating electric field signal

is shown in Figure 3.2(a) for a specified variance, Gwλ = 0.1. The signal was

obtained by taking an average over 100 realizations of the algorithm over the

initial distribution given by (3.5). Comparing the statistics of the simulated

signal with the statistics predicted theoretically, i.e., E∞ ∼ N (1, Gwλ) at

t = 1, shows that averaging over 100 realizations over (3.5) is sufficient to

describe the fluctuating electric field (Figure 3.2(b)).

3.2.2 Small deformation theory

We first consider a slightly spheroidal deformation of the drop surface at small

values of the mean electric field (which corresponds to a small value of the

mean electrical capillary number). In this limit, the drop can be treated as a

sphere during the implementation of the boundary conditions84,98. Spherical

coordinates are employed and the axis of symmetry is taken along the direction
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Figure 3.2: (a) A simulated electric field with variance Gwλ = 0.1. The
solid line is an average over 100 realizations of the algorithm over the initial
distribution of ε0. The dashed line shows the mean value of the fluctuations.
(b) Probability density function of the numerically computed (circles) and
theoretically predicted (solid line) electric field at t = 1.

of the applied field. The electric field is irrotational, and since the drop is

electrically neutral, Gauss’s law reduces to the Laplace equation for the inner

and outer electrostatic potentials (φ∗i,o), giving

∇∗2φ∗i,o = 0, (3.8)

with the electric field calculated using E∗i,o = −∇∗φ∗i,o. The potential in the

drop phase, φ∗i is bounded at the center of the drop, and at far field, the

potential in the medium phase satisfies −∇∗φ∗o → E∗∞. The electric field

distribution in the drop and medium is obtained from the solution of (3.8)

with these boundary conditions, along with the interface conditions at the

surface of the drop, r∗ = a0, where the potential is continuous

φ∗i = φ∗o, (3.9)

and the jump in electric displacement follows[
− ε∇∗φ∗ ·n

]
= q∗(t∗). (3.10)

The term in the square brackets in (3.10) represents a difference between

inner and outer quantities, n is a unit normal vector, positive in the outward
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direction (Figure 3.1), and q∗ is the interfacial charge density, which is an

unknown. Hence, an additional interface condition to describe the continuity

of current across the interface is used. For a perfectly conducting drop, effects

of surface charge convection and charge relaxation can be neglected, and the

interfacial charge conservation equation reduces to23,70

[
σ∇∗φ∗ ·n

]
= 0. (3.11)

For a perfectly conducting drop, σi � σo, hence (3.11) predicts that the normal

electric field inside the drop phase, En,i = 0.

After solving the electric field distribution in the two phases, the Maxwell

electric stresses at the interface can be calculated using τ ∗Ei,o
= εi,oE

∗
i,oE

∗
i,o −

(E∗i,o·E∗i,o)I/2.

The flow field in the drop and medium phases is governed by the continuity

equation and the Navier-Stokes equation,

∇∗·u∗i,o = 0, (3.12)

and

ρi,o

[
∂u∗i,o
∂t∗

+ u∗i,o ·∇∗ u∗i,o
]

= −∇∗p∗i,o + µi,o∇∗
2

u∗i,o, (3.13)

where u is the velocity and p is the hydrostatic pressure.

We first non-dimensionalize the problem. The electric field is scaled with

the constant mean electric field, Ec. Distance is scaled with the radius of the

underformed drop, a0. The capillary time, tc, is used to normalize time. In-

terfacial charge density is rendered dimensionless using εoEc. Electric stresses

(εoE
2
c ) are chosen to scale stresses. The scale for velocity is obtained by balanc-

ing electric stresses and viscous stress at the interface, giving U = εoE
2
ca0/µo.

These scalings lead to the dimensionless momentum balance,

Rei,o
〈CaE〉

∂ui,o
∂t

+Rei,oui,o·∇ui,o = −∇pi,o +∇2ui,o, (3.14)



CHAPTER 3. 59

where Rei,o = ρi,oεoE
2
ca

2
0/µ

2
i,o is the Reynolds number, and 〈CaE〉 = a0εoE

2
c /γ

is the mean electric capillary number. We assume creeping flow, Rei,o � 1,

and further assume that Rei,o/〈CaE〉 � 1 to reduce the momentum balance

to

−∇pi,o +∇2ui,o = 0. (3.15)

Since the problem is axisymmetric, (3.15) can be solved using a streamfunction

ψ, which automatically satisfies the incompressibility (3.12). The streamfunc-

tion satisfies the biharmonic equation

D4ψi,o = 0, (3.16)

where D4 = D2(D2), and D2 = ∂2/∂r2+(sin θ/r2){∂/∂θ[(1/ sin θ)∂/∂θ]}. The

velocity is related to the streamfunction through

ui,o =∇×
[
ψi,o
r sin θ

êφ

]
, (3.17)

where êφ is the unit vector in the azimuthal direction. The flow field is subject

to the constraints that the velocity at the center of the drop is bounded, and

the far field condition in the medium, uo = 0 at r → ∞. The complete

solution requires four more interface conditions. At small field strengths where

〈CaE〉 � 1, the interface is only slightly deformed, and the instantaneous

shape can be described using84,98

ξ = 1 +
2

3
D(t)(3 cos2 θ − 1), (3.18)

where D(t) is the instantaneous deformation of the drop, defined as the ratio

of the difference in semi-major and semi-minor axis of the drop to the sum

of the semi-major and semi-minor axis. In the limit of small deformation

(〈CaE〉 � 1), the interface conditions

uθ,i = uθ,o (3.19)
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and

ur,i = ur,o =
1

〈CaE〉
dξ

dt
(3.20)

can be applied at r = 1, and the deformation subsequently calculated using

the interfacial stress balance equation, which in the absence of surfactant reads

(pi − po)n+ (τH,o −MτH,i) ·n+
[
τEi,o
·n
]

=
1

〈CaE〉
(∇s · n)n. (3.21)

Here, τH represents the deviatoric stress tensor, and ∇s · n is the curva-

ture of the interface where ∇s is the surface gradient operator, defined as

∇s = (I − nn)·∇. A detailed procedure of solution of the equations can be

found in Ref.98, and an overview of the procedure is presented in this work.

The general solution of the flow field is obtained from (3.16) and (3.17), and

the constants are rewritten in terms of the instantaneous deformation, D(t)

using the constraints of bounded flow at the drop center, far field condition, in-

terfacial velocity (3.19) and (3.20), and the tangential stress balance obtained

from (3.21). The normal stress balance is then used to obtain the governing

equation for transient deformation,

τ
dD
dt

+D = DDC(1 + ε(t)2), (3.22)

where τ =
(19M + 16)(2M + 3)

40(M + 1)
, M = µi/µo and DDC = 9〈CaE〉/16 is the

steady deformation of a conducting drop in a dielectric medium under a uni-

form D.C. electric field at small electric field strengths21,22. Integrating (3.22),

we obtain the instantaneous deformation of a conducting drop in a randomly

fluctuating field,

D(t) = DDC(1−e−t/τ )+
DDC
τ

∫ t

0

[
2ε(t′)e−(t−t

′)/τ + ε(t′)2e−(t−t
′)/τ
]
dt′. (3.23)

The first term on the right-hand side is the expression of the transient de-

formation of a drop under a uniform D.C. field when transient fluid inertia
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can be neglected, i.e., the flow is established instantaneously on the timescale

the interface deforms84,97,98. This predicts that the deformation monotonically

settles towards the steady state result given in (3.1) as t → ∞. The second

term represents the contribution of the fluctuations in the electric field to the

transient deformation. Note that fluctuations lead to D(t) being non-local in

time; the history of the electric field is remembered through the correlation

time. A closed form solution of D(t) cannot be obtained because a closed form

expression of ε(t) is not known. Therefore, we obtain the statistics (mean and

variance) of the instantaneous deformation as

〈D(t)〉 = DDC(1 +Gwλ)(1− e−t/τ ) (3.24)

and

var(D(t)) =
D2
DCGwλ

τ
(2 +Gwλ)(1− e−2t/τ ). (3.25)

Clearly, the mean deformation of a drop in a randomly fluctuating field is

greater than under a uniform D.C. field when the field strength is small, and

the difference in deformation increases with fluctuations in the field (Gwλ).

When the fluctuations vanish, i.e. Gwλ → 0, the electric field around the

drop assumes the form of a steady D.C. field. In this limit, we find that

〈D(t)〉 = DDC(1 − e−t/τ ), and var(〈D(t)〉) = 0, which is the expected result

for drop deformation under a steady electric field.

3.2.3 Boundary integral formulation

The nonlinear deformation at a larger value of the mean electric field, and pos-

sible breakup is predicted using the boundary integral method. This requires

the solution of the electric field and fluid flow at the interface only, thereby

reducing the dimensionality of the problem by one, and consequently reduc-
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ing the computational cost77–79. The Laplace equation (3.8) is recast into a

non-dimensional integral equation at the interface32,34,67,81,

S − 1

4πS

∮
A

r · n(x)

r3
En,o(y)dA(y) +

S + 1

2S
En,o(x) =

E∞ · n(x)− 1

4πS

∮
A

q(y)dA(y) +
1

2S
q(x).

(3.26)

where S = εi/εo is the ratio of dielectric constant of the drop to medium phase

fluid, r = y − x is the difference between an observer point y that can move

along the interface and a fixed source point x on the interface. The integral

is taken over the surface area, A of the drop. The normal electric field in the

drop phase is calculated using the dimensionless form of (3.11), En,i = REn,o,

where R = σo/σi is the ratio of electrical conductivity of the medium to drop

phase fluid. For a conducting drop in a dielectric, σi � σo, hence En,i = 0;

however in the computations, instead of prescribing En,i = 0, we specify a

very small value of R (≈ 10−10). The interface is initially uncharged, hence

the normal electric field can be computed at t = 0. The tangential field is

obtained by an integral transform of the Laplace equation in terms of the

electrostatic potential, φo
34,67,82

φo(x) = φ∞(x) +

∮
A

1

4πr
(En,o(y)− En,i(y))dA(y), (3.27)

and using the relation Et,o = −∂φo/∂s and (3.9). Here, s is the tangential

coordinate measured from θ = 0 (Figure 3.1), and Et,o = Eo·t. From the

distribution of the electric field in the drop and medium, the jump in electric

stresses at the interface is calculated, which in non-dimensional form reads

[τE·n] =
1

2
[(E2

n,o−SE2
n,i)+(S−1)E2

t,o]n+Et,o(En,o−SEn,i)t = ∆pEn+qEt,ot.

(3.28)

For a conducting drop, Et = 0, and En,i = 0, and (3.28) reduces to [τE·n] =

(E2
n,o/2)n.
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The Stokes equations (3.15) can be cast as an integral equation in dimen-

sionless form83, and when the drop and medium are viscosity matched this

yields

uo(x) = − 1

8π

∮
A

∆f(y) · J(y, x)dA(y), (3.29)

where J denotes the free-space Green’s functions for velocity, and ∆f(y) is

the jump in hydrodynamic stresses at the observer points on the interface,

calculated using (3.21).

After obtaining the electric field and interfacial velocity, the interfacial

charge is updated using the dimensionless form of (3.10),

q = En,o − SEn,i. (3.30)

Finally, the interface is updated using the dimensionless kinematic con-

dition

dx

dt
= 〈CaE〉(uo · n)n. (3.31)

3.2.4 Numerical scheme

An initial value for the fluctuations in the electric field, ε0, is chosen from the

distribution given by (3.5). Equations (3.26), (3.27) and (3.29) are solved se-

quentially. The details of the numerical scheme have been provided before34,67,

and are briefly reviewed here. The field and flow are assumed to be axisym-

metric, which allows an analytical integration over the azimuthal direction,

reducing surface integrals to line integrals over the contour of the drop. The

top half of the drop is divided into N elements, creating N + 1 nodes. The

nodes are called source points, and their coordinates are denoted by x (Figure

3.1). All variables of interest are interpolated as cubic splines with respect

to the arc length, s. The integral over the contour of the drop is expressed

as a sum of integrals over each element. Singular terms in the integrand are
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subtracted out, and then added back, following standard regularization tech-

niques82. The integrals are evaluated using Gauss-Legendre quadrature. The

points at which the integral is evaluated are referred to as observer points, and

their coordinates are denoted by y. After the electric field and fluid flow is

calculated, the surface charge density (3.30) and shape of the interface (3.31)

are updated, the latter using the second-order Runge-Kutta method, and the

deformation is calculated. The fluctuation in the electric field at the next time

step is then calculated from (3.4) using the algorithm given in Ref.99, and is

used to update the boundary value of E∞ in (3.26).

The time step of the Runge-Kutta method and N are chosen to ensure

that the volumetric flow rate across the interface, which should identically be

zero to conserve mass, is at most O(10−6) for the initial 20 iterations. This

ensures numerical stability of the computations. If the volumetric flow rate

across the interface remains O(10−6) or less, while the maximum value of the

radial velocity keeps on decreasing, and reaches O(10−4) or less, we conclude

that the drop has attained a steady shape. If the volumetric flow rate slowly

starts to increase, along with an increase in the maximum value of the radial

velocity, we conclude that the drop shape will be unsteady, and it will result

in break up. The boundary integral method cannot track the interface after

the drop breaks; in this case, the results are reported at a time instant very

close to breakup, where the ratio of volumetric flow rate across the interface

to the initial volumetric flow rate is 100. Some computations predicted drop

shapes that were not fore-aft symmetric. This occurred when the electric field

fluctuated by a large magnitude in one time step, causing numerical errors.

The results of these computations were discarded. For all our computations,

the top half of the drop was divided into 150 elements, and the time step size

was taken to be 0.02. These values were chosen after performing a convergence

analysis, the results of which are given in Appendix B.
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Table 3.1: Physical properties of the fluids used. The interfacial tension be-
tween the fluids is γ = 17 mN/m48. The drop phase corresponds to system
(G10) of Karyappa et al.48. Here εr denotes the dielectric constant.

Fluid σ (S/m) εr µ (Pa s) ρ (kg/m3)

Glycerol 7.8 ×10−2 40 0.76 1256

Castor Oil 4×10−11 4.9 0.79 970

After performing one computation for the final state of the drop using

a given initial value of ε0, the numerical scheme is repeated for several other

initial values of ε0 taken from the distribution (3.5). The transient deformation

of the drop, and the final state of the drop are reported as an average over

this ensemble of initial values of ε0. For this work, the computations were

performed for 100 different initial values of the fluctuation in the electric field.

3.3 Drop deformation and breakup

We select parameter values corresponding to a drop of glycerol with 5M sodium

chloride, having an initial radius a0 = 0.5 mm suspended in castor oil. The

physical properties of the system can be found in Ref.48, and are listed in

Table 3.1. For this combination of fluids, the ratios of physical properties

are M = 0.96, S = 8.16 and R = 5.1× 10−10. Since the two fluids are nearly

viscosity matched, we take M = 1 in the computations. At the highest electric

field strength chosen in this work, Rei = 6 × 10−3, Reo = 4 × 10−3, and for

any field Rei,o/〈CaE〉 < 10−2. This justifies the assumptions in reducing the

Navier-Stokes equation to the Stokes equations.
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3.3.1 Constant electric field

We first evaluate the response of the drop to a uniform D.C. electric field.

When the applied field is such that the electric capillary number CaE . 0.21,

the drop deforms to a steady spheroidal shape, as shown in Figure 3.3. The

steady deformation increases with an increase in CaE because of an increase

in the strength of the electric stresses. At CaE ≈ 0.21 the electric stresses

become large enough to overcome capillary stresses, and cause the drop to

undergo breakup. As shown in the inset of Figure 3.3, the drop breaks up with

the formation of pointed ends for all CaE > 0.21. This predicted critical CaE

for breakup is similar to the values reported earlier for conducting drops48,100.
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Figure 3.3: Deformation plotted as a function of the electric capillary number.
For drops that deform to a steady shape, the deformation corresponds to the
steady final deformation. For drops that undergo breakup, the deformation
corresponds to the deformation before breakup. The insets show the final
shapes of a drop that reaches a steady shape, and a drop that breaks up with
pointed ends. The vertical line demarcates the transition of the system from
a steady final state to breakup by pointed ends. The critical electric capillary
number for the transition is CaE ≈ 0.21.
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3.3.2 Comparison of small deformation theory to

boundary integral computations

We first predict the transient deformation of a drop under small electric fields,

and compare the results from boundary integral computations to the small

deformation theory. Figure 3.4 shows the result at a mean electric capillary

number, 〈CaE〉 = 0.01, and a variance in the fluctuations, Gwλ = 0.1. The

computations involve selecting an initial value for the fluctuations in the elec-

tric field, ε0, from the distribution given by (3.5), and calculating the transient

deformation for the chosen ε0. Each light gray curve in Figure 3.4 corresponds

to the computed transient deformation for a given ε0. After computing the

deformation for 100 different values of ε0, an average is taken over the en-

semble of initial distribution, and is shown by the solid curve. The mean

transient deformation, 〈D(t)〉 predicted by the small deformation theory in

(3.24) is shown by the dashed curve in Figure 3.4. The mean deformation

obtained from the boundary integral computations match the predictions of

the small deformation theory. Moreover, nearly all the transient deformation

curves obtained for a given ε0 from the computations lie within one standard

deviation from the mean predicted by the small deformation theory, shown by

the dash-dotted lines in Figure 3.4. This verifies that the numerical scheme

we use in the computations is accurate.

For comparison, the transient deformation of the drop under a steady

D.C. electric field at CaE = 0.01 is shown by the dotted line in Figure 3.4.

Both the computations and the small deformation theory predict that the final

steady deformation of the drop under a fluctuating electric field is greater than

the deformation under a constant field. The small deformation theory, (3.24),

predicts this difference in the final steady deformation to be proportional to

the fluctuations in the electric field. Comparing the final steady deformation,
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Figure 3.4: Transient deformation of the drop at a mean electric capillary
number 〈CaE〉 = 0.01 and variance in the fluctuations Gwλ = 0.1. The
light gray curves correspond to the transient deformation for a given initial
value of the fluctuation in electric field, ε0, calculated using boundary integral
computations. The solid curve is calculated as the average of the gray curves,
and represents the average transient deformation taken over 100 values of ε0.
The dashed curve corresponds to the average transient deformation, 〈D(t)〉,
calculated using the small deformation theory (3.24). The dash-dotted curves
predict the deformation one standard deviation from the mean, obtained from
the small deformation theory (3.25). The dotted curve shows the transient
deformation of the drop under a steady D.C. field at CaE = 0.01, calculated
using boundary integral computations.

we find that 〈D(t)〉 −DDC = 8× 10−4 ∼ O(DDCGwλ), as predicted by (3.24).

This difference increases as the fluctuations grow stronger. The fluctuations

increase as the variance of the underlying white noise, Gw, increases, or as the

correlation time λ−1 decreases. A higher variance increases the spread of the

electric field around the mean. A reduction in the correlation time implies

that the fluctuations have less memory of their history, and can suddenly

grow from values less than the mean to values greater than the mean. Hence,

the probability of the drop being exposed to larger fields increases with the
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strength of the fluctuations. The deformation of the drop scales quadratically

with the electric field, E2
∞; hence, the net effect of the fluctuations about

the mean field will not negate each other, and the mean deformation under a

fluctuating field will be different from that under a constant field. The drop

is exposed to fields both larger and smaller than the mean field, driven by the

fluctuations. On an average, the effects under the larger fields dominate, and

the mean final deformation of the drop is greater than the deformation under

a constant electric field. The net effect of fluctuations in the electric field is to

deform a drop more than a steady D.C. field.

3.3.3 “Low”mean electric capillary number

Next we calculate the deformation of the drop at a “low”mean electric capil-

lary number, where the small deformation theory is not valid, yet which are

smaller than the critical electric capillary number for breakup under a steady

field (CaE = 0.21). Figure 3.5(a) shows the transient deformation of a drop at

〈CaE〉 = 0.1 and Gwλ = 0.1. Akin to Figure 3.4, the light gray curves corre-

spond to computations for a given initial value of the electric field fluctuation

ε0, and the solid black curve represents the average transient deformation over

100 values of ε0. The dotted curve shows the transient deformation under a

steady D.C. electric field for CaE = 0.1. The computations were performed till

twice the time taken for the drop to reach steady state under a steady field.

For all values of ε0, the computations predict a steady deformation of the

drop. Similar to the observations at small deformation, the mean deformation

under a fluctuating electric field is greater than under a steady electric field.

This is further shown by plotting the probability density function of the final

deformation (D(t = 25)) of the drop (Figure 3.5(b)). The deformation scales

nonlinearly with the applied field, therefore the distribution function is not
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Gaussian. The dashed curve was obtained by fitting a mixture of two normal

distributions to the final deformation, and is shown in the figure to guide the

eye. Clearly, fluctuations in the electric field increase the mean deformation

of the drop.

3.3.4 “High”mean electric capillary number

The system considered undergoes breakup with pointed ends at CaE = 0.21

when subjected to a constant electric field. We investigate the system at

〈CaE〉 = 0.28 and Gwλ = 0.1 to determine the effect of fluctuations on

breakup. The transient deformation for a given ε0 is shown by the light gray

curves, and the average over 100 values of ε0 is shown by the solid curve in

Figure 3.6(a). The computations were performed till twice the breakup time

for the drop under a constant field, and predict breakup with pointed ends

for all values of ε0. The point where the curves terminate denotes the point

of breakup for a given ε0. The average transient deformation curve is plotted

till the mean breakup time obtained from the individual gray curves. The

average deformation of the drop before breakup is greater than the deforma-

tion under a steady electric field at all given times leading to breakup. More

prominently, the mean breakup time under a fluctuating electric field is less

than the breakup time under a steady field, as shown by the dotted curve in

Figure 3.6(a). The probability density function of the breakup time is shown

in Figure 3.6(b), with the breakup time under a constant field shown by the

solid line. The breakup time does not follow a universal distribution for dif-

ferent 〈CaE〉; hence, a mixture of two normal distribution functions was fit to

the probability density function and is shown by the dashed curve to guide

the eye. Fluctuations in the electric field act to increase the average deforma-

tion by subjecting the drop to fields greater than the mean, which increases
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Figure 3.5: (a) Transient deformation of a drop at 〈CaE〉 = 0.1 and Gwλ = 0.1.
The light gray curves correspond to the transient deformation for a given initial
value of the fluctuation in electric field, ε0, calculated using boundary integral
computations. The solid curve is calculated as the average of the gray curves,
and represents the average transient deformation taken over 100 values of
ε0. The dotted curve shows the transient deformation of the drop under a
steady D.C. field at CaE = 0.1. (b) Probability density function of the final
deformation of the drop. The dashed curve is a fit of a mixture of two normal
distributions to the probability density function. The solid line shows the final
deformation of the drop under a steady D.C. electric field. The top-right inset
shows the mean deformed steady state of the drop at t = 25, with the initial
state shown by the dashed circle for reference.

the rate of deformation. Although fluctuations also reduce the field from the

mean value, the additional deformation due to an exposure to higher fields
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dominate, and consequently the drop is driven to breakup faster than under

a constant field.
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Figure 3.6: (a) Transient deformation of a drop at 〈CaE〉 = 0.28 and Gwλ =
0.1. The light gray curves correspond to the transient deformation for a given
initial value of the fluctuation in electric field, ε0, calculated using boundary
integral computations. The solid curve is calculated as the average of the
gray curves, and represents the average transient deformation taken over 100
values of ε0. The dotted curve shows the transient deformation of the drop
under a steady D.C. field at CaE = 0.1. (b) Probability density function of
the breakup time of the drop. The dashed curve is a fit of a mixture of two
normal distributions to the probability density function. The solid line shows
the breakup time of the drop under a steady D.C. electric field. The top-right
inset shows the mean shape of the drop before breakup at the point where the
solid curve in (a) terminates, with the initial state shown by the dashed circle
for reference.
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3.3.5 “Intermediate”mean electric capillary number

We next study the system at mean electric capillary numbers slightly less than

the critical capillary number for breakup. Figure 3.7(a) shows the transient

deformation at 〈CaE〉 = 0.19 and Gwλ = 0.1. The drop is predicted to

reach a steady deformed shape under a constant electric field, the transient

deformation of which is shown by the dotted curve. When the field fluctuates,

there are two populations for the final state of the drop. For certain values

of the initial fluctuations in the field, ε0, the drop attains a deformed state at

a time which is twice the time to reach steady deformation under a constant

field. This set of drops is represented by the light gray curves in Figure 3.7(a).

For other values of ε0, the computations predict drop breakup by pointed ends.

This set is shown by the dark gray curves. The solid black curve represents the

average over the light gray curves, and is the average transient deformation of

the population of drops that do not undergo breakup throughout the time the

computations were performed. The dashed curve denotes the average transient

deformation of the population of drops that breakup with pointed ends. The

probability density function of the deformation of the drops is shown in Figure

3.7(b). For drops that attain a steady deformed state, the deformation at

t = 45, i.e., the time till which the computations were performed is taken,

and for drops that undergo breakup, the final deformation before breakup is

taken for calculating the probability distribution. The distribution is bimodal

with one peak corresponding to the mean deformation of drops that maintain

a stable deformed state, and another peak at the average deformation of the

drops before breakup.

At intermediate values of the mean electric capillary number, fluctuations

in the electric field can drive the field to values greater than the critical electric

field. Depending on the amount of time the drop is subjected to these larger
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Figure 3.7: (a) Transient deformation of a drop at 〈CaE〉 = 0.19 and Gwλ =
0.1 calculated using boundary integral computations. The light gray curves
correspond to the transient deformation for initial values of the fluctuation
in electric field, ε0, which predict steady deformation. The dark gray curves
correspond to the transient deformation for ε0 values that predict breakup.
The solid curve is calculated as the average of the light gray curves, and the
dashed curve is calculated as the average of the dark gray curves. The dotted
curve shows the transient deformation of the drop under a steady D.C. field
at CaE = 0.19. (b) Probability density function of the final deformation (for
drops reaching steady state) or final deformation before breakup (for drops
that undergo breakup). The dashed curve is a fit of a mixture of two normal
distributions to the probability density function. The insets show the mean
drop shape at steady state (t = 45) and just before breakup (the point where
the dashed curve in (a) terminates), with the shape of the undeformed drop
at t = 0 shown by the dashed circles for reference.
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electric fields, it may undergo breakup, or subsequently remain stable if the

fluctuations lower the field back to sub-critical values. All computations under

random fields were performed till a time which is twice the time for a drop

to reach steady state, or twice the time to undergo breakup under a constant

electric field. From Fig 3.7(a) it follows that some of the drops that are

predicted to attain a stable deformed state at t = 45 could undergo breakup

if the computations were run longer. The transition of the drop from a steady

deformed state to a state of breakup does not occur at a distinct electric

capillary number due to fluctuations in the electric field.

Droplet breakup at sub-critical capillary numbers was also observed in

model stochastic flow fields, and the criterion for breakup was found to de-

pend on the transient nature of the field [59, 60]. To quantify the effect of

the strength of fluctuations on the transition to bimodal states and breakup,

we plot the percentage of drops undergoing breakup as a function of 〈CaE〉

for different values of Gwλ. The percentage is calculated as the fraction of

the computations with a given initial fluctuation in the field (ε0) predicting

breakup. The result is shown in Fig. ??. When the external field is steady,

characterized by Gwλ = 0, there is a sharp transition at 〈CaE〉 = 0.21 from

steady deformation to drop breakup, as shown by the solid curve. Fluctua-

tions in the electric field soften this transition by instantaneously subjecting

the drop to an electric field greater than the critical value, even when the mean

field is sub-critical. As a result, instances of drop breakup are observed over

a range of 〈CaE〉, instead of a distinct critical 〈CaE〉 = 0.21. The fraction of

drops that undergo breakup at a given 〈CaE〉 increases with the strength of

fluctuations. Large fluctuations, quantified by a larger value of Gwλ have a

higher probability of driving the electric field to values greater than the critical

for a given 〈CaE〉, compared to weaker fluctuations. As shown in Fig. ??, at

〈CaE〉 = 0.18, 22% drops undergo breakup for Gwλ = 0.1, while 5% drops
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undergo breakup at the same 〈CaE〉 when Gwλ = 0.001. When Gwλ = 0.1,

all the drops were predicted to undergo breakup at 〈CaE〉 > 0.21. For weaker

fluctuations, not all drops are observed to undergo breakup within the time of

the computations. This fraction would eventually breakup if the computations

were allowed to run longer. Weaker fluctuations are characterized by a longer

correlation time, or a stronger memory of the fluctuation history. Hence,

when fluctuations reduce the field to sub-critical values, the field remains at

those values for a longer period of time. Consequently, for the drops where

this occurs, the breakup time for the individual drop would be longer. The

mean breakup time for the population that breaks up is still smaller than the

breakup time under constant fields. Moreover, since the mean field is greater

than the critical, all the drops would eventually undergo breakup.

3.4 Discussion

The softening in transition from steady deformation to drop breakup due to

increasing fluctuations in the electric field is analogous to the coil-stretch tran-

sition of polymers in an external flow field57,58,101–105. When subjected to an

external flow field, a polymer molecule gets stretched from an initial con-

figuration. The specific initial configuration of a polymer molecule, termed

molecular individualism101, is determined from a random thermal equilibra-

tion process, and dictates the rate of extension of the molecule. Similarly,

the transient deformation of a drop under a random electric field follows a

trajectory based on the initial random fluctuation, ε0; thus the time to reach

steady state or to breakup is different for an individual drop. The extension

of a polymer molecule depends on the strength and nature of the flow field.

In a pure extensional flow, a polymer molecule exhibits a sharp transition at

a critical value of the dimensionless flow strength from a coiled state, where
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Figure 3.8: Percentage of drops that undergo breakup as a function of the
mean electric capillary number for Gwλ = 0.001(♦), 0.01(�) and 0.1(◦). The
solid curve corresponds to a steady D.C. electric field. The dashed, dotted,
and dash-dotted curves are drawn to guide the eye. Based on the strength
of the fluctuations and 〈CaE〉, three final states are identified - all the drops
reach steady deformation; some drops reach steady state and some undergo
breakup; and all drops undergo breakup.

the extension is relatively low, to a stretched state characterized by a high

extension approaching the contour length. The molecule tends to align along

the extensional axis of the flow, and may be driven out of this axis by Brow-

nian motion into a coiled state. Beyond a critical value, the flow is strong

enough to overcome Brownian forces and result in a stretched configuration.

The addition of a rotational component to the external flow diminishes the

sharpness of this transition. In addition to Brownian forces, the vorticity of

the external flow can also drive the polymer away from the extensional eigen-

vectors of the flow into orientations where the flow exerts less stretching force,

thereby reducing the sharpness in transition. The fluctuations in the electric

field play a role analogous to Brownian forces and the rotational component
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of the flow field, by driving the electric field to values greater than the critical

field, even when the mean field is sub-critical, or to values smaller than the

critical field when the mean field is super-critical. As a result, the transition

from exclusively steady deformation to breakup occurs gradually over a range

of 〈CaE〉.

The source of fluctuations in real systems could be the presence of multiple

drops of different size at different positions with respect to the test drop, inter-

action with walls, or disturbances in operating conditions. The strength of the

fluctuations would depend on the polydispersity of the system, concentration

of drops, and the magnitude of disturbances. As such, determining operating

conditions based on the response of a single drop under a well-defined exter-

nal field can lead to unexpected results. For instance, in electrocoalescers,

where electric fields are employed to demulsify oil-water systems, an operating

electric would be set to maximize the frequency of collision of drops, with-

out causing breakup. The collision frequency, and the separation efficiency

increases with electric field strength106; hence, a natural choice is to set the

electric field to a large value, yet less than the critical field for breakup. We

show here that fluctuations can cause certain fraction of drops to breakup

even at sub-critical fields, which is undesirable for coalescence. The electric

capillary number scales as the square of the electric field, hence even at fields

sufficiently lower than the critical, drop breakup might occur. For the system

studied, drop breakup can start at 〈CaE〉 = 0.15 depending on the strength

of the fluctuations. This corresponds to a decrease in the critical electric

field for breakup from 4.1 kV/cm to 3.4 kV/cm. On the contrary, the effect

of fluctuations can be desirable in applications where emulsifying immiscible

liquids is the goal5. A lower electric field can be employed to create an emul-

sion. Conversely, at the same electric field, the emulsification can take place

faster because of the reduction in the average breakup time of drops under
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fluctuating fields.

3.5 Conclusion

We have studied the dynamics of a conducting drop suspended in a dielectric

liquid under a randomly fluctuating electric field. The transient deformation

of the drop was first predicted using a small deformation theory where the

mean electric capillary number is small (〈CaE〉 � 1). The mean deforma-

tion and variance in deformation were predicted, and the expressions were

found to match the results for drop deformation under a constant field in the

limit of zero fluctuations. Nonlinear deformation and breakup were predicted

using boundary integral computations, which were validated using the small

deformation theory.

The random electric field is specified by its mean, which sets 〈CaE〉,

and its variance, Gwλ, which denotes the strength of fluctuations. The net

effect of fluctuations at any 〈CaE〉 is to increase the deformation of the drop

compared to the deformation under a constant field. The extent of the increase

in deformation depends on the strength of the fluctuations. When 〈CaE〉 is

greater than the critical electric capillary number for breakup, the increased

deformation manifests as a decrease in the time taken for the drop to undergo

breakup. More interestingly, at 〈CaE〉 slightly less than the critical value,

there exists two populations of drops, one that attains a steady deformed

state and another that undergoes breakup. The range of 〈CaE〉 for which this

bimodal distribution is observed depends on the strength of the fluctuations.
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Effective viscosity of a dilute emulsion

of spherical drops containing soluble

surfactant

4.1 Introduction

The flow of emulsions of an immiscible fluid in another fluid is encountered

in food, petroleum, and pharmaceutical processing industries. Thus, it is

important to predict the rheological properties of these systems. Einstein107,108

was the first to calculate the effective viscosity of a dilute suspension of rigid

spheres in a Newtonian fluid, subjected to a linear creeping flow. He found

that the suspension behaves as a Newtonian fluid, with an effective viscosity

greater than the viscosity of the suspending fluid (µ). Specifically,

µE
µ

= 1 +
5

2
φ, (4.1)

where µE is the effective viscosity of the suspension, and φ is the volume frac-

tion of the suspended rigid spheres. Taylor109 obtained an expression for the

effective viscosity of a dilute emulsion of spherical drops of a Newtonian fluid

suspended in another Newtonian fluid by accounting for viscous dissipation of

80
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energy due to flow inside the drops. Taylor’s result is

µT
µ

= 1 +
(5M + 2

M + 1

)φ
2
, (4.2)

where µT is the effective viscosity of the emulsion, and M is the ratio of the

viscosity of the drop to the viscosity of the suspending medium. Einstein’s

expression is recovered from (4.2) in the limit M → ∞. Interestingly, for a

suspension of bubbles (M → 0) there is still a positive viscosity correction

due to interfacial tension. There have been numerous extensions to the works

of Einstein and Taylor; we will not attempt to survey the extensive literature

here.

Emulsions often contain surfactants, which are added to maintain stabil-

ity of the dispersed phase drops. Soluble surfactants diffuse from the bulk

phases to the interface, where a uniform distribution is maintained at equi-

librium. Under an external flow field, surfactants are transported from the

bulk to the interface by convection, in addition to diffusion. The relative rate

of surfactant transport by convection to diffusion in the bulk is characterized

by a Peclet number, Pe = Ga20/D, where G is a measure of the shear rate of

the ambient flow, a0 is the radius of the spherical drop, and D is the diffusion

coefficient of the surfactant in the bulk. Surfactant molecules very close to

the interface undergo adsorption from the bulk to the interface. Similarly,

an adsorbed surfactant molecule can desorb from the interface to the bulk.

Thus, surfactant exchange between the bulk and the interface is a reversible

adsorption-desorption, or a sorption process63,65. The adsorbed surfactants get

redistributed along the interface due to convection by the imposed flow, which

gives rise to a nonuniform distribution of surfactants, leading to Marangoni

stresses. This generates a Marangoni flow, which, in conjunction with diffu-

sion of surfactants along the interface, acts to reestablish a uniform surfactant

distribution. The relative rate of convection to diffusion of surfactants along
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the interface is measured in terms of a surface Peclet number, Pes = Ga20/Ds,

where Ds is the diffusion coefficient of the surfactant along the interface. There

have been a number of studies investigating the role of surfactants in emul-

sion rheology. Oldroyd110 accounted for the interfacial rheology, considering

a Boussinesq-Scriven interface, to derive an expression for the effective shear

viscosity of a dilute emulsion akin to equations (4.1) and (4.2). Palierne111

determined the linear viscoelastic modulus of emulsions of viscoelastic drops

in a viscoelastic medium, accounting for interfacial rheology. Although the

transport of surfactants was ignored in both these studies, the interfacial rhe-

ology, characterized by surface shear and dilatational viscosities, was supposed

to arise from the presence of surface active species at the interface. The effect

of insoluble surfactants and slight shape deformations of drops on emulsion

rheology has been the focus of several theoretical and computational stud-

ies112–116. A central conclusion of these investigations is that when surfactant

redistribution along the interface is significant, the emulsion shows a shear

thinning viscosity, and finite normal stress differences.

The solubility of surfactants, along with interfacial rheology, i.e. surface

shear and dilatational viscosities, was taken into account by Danov117. In

that work, an expression for the effective shear viscosity of a dilute emulsion

of spherical drops was derived and it was concluded that when the deviation

from equilibrium is small, the emulsion behaves as a Newtonian fluid, with an

effective shear viscosity greater than µT (4.2), and less than µE (4.1). How-

ever, that study considered the transport of surfactants from the bulk to the

interface by diffusion alone, and assumed the kinetics of surfactant adsorption

to be much faster compared to the flux due to diffusion at the interface. The

effects of bulk convection and kinetic exchange of surfactants at the interface

were not considered. Further, when surfactants are present in the drop phase,

their adsorption to the interface may significantly reduce the equilibrium bulk
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concentration, an effect known as depletion118. Significant depletion will affect

the interpretation of surface tension measurements in pendant drop appara-

tus119,120, and results in dramatic surface tension minima in multiphase fluid

systems involving finite volumes121,122. The impact of depletion on bulk rheol-

ogy of an emulsion has not been considered in detail; it is a goal of this study

to do so.

In this chapter, we calculate the effective viscosity of a dilute emulsion

of drops containing a soluble surfactant. The drops are assumed to remain

spherical, and the transport of surfactant by bulk convection is considered

weak, i.e., Pe is small. This holds true for millimeter size drops subjected to

small shear rates ≈ O(10−3)s−1. The surfactant is soluble only in the drop

phase, and does not partition to the medium. Surfactant exchange between the

drop and the interface is assumed to take place in a mixed diffusion-sorption

controlled regime. The solution of the concentration and velocity fields is

obtained as a regular perturbation expansion about the bulk Peclet number,

upto O(Pe). We demonstrate that the transport and kinetics of surfactant

adsorption, and surfactant depletion from the drop, can significantly affect the

viscosity of the emulsion. At certain regimes we predict an effective viscosity

greater than Einstein’s result for rigid spheres.

4.2 Soluble surfactant in drops

4.2.1 Problem setup

We consider an emulsion that is sufficiently dilute so that interaction between

drops can be ignored; and so we only need to consider an isolated spherical

drop of a Newtonian fluid with viscosity µ̂ in another Newtonian fluid with

viscosity µ, subjected to a linear creeping flow, characterized by a shear rate
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G. The radius of the drop is a0, and the interfacial tension in the absence

of surfactants is γ0. The drop is loaded with surfactant molecules, with an

initial bulk concentration Ci. The maximum packing surface concentration

of the surfactant at the interface is Γ∞. The densities of the drop, ρ̂, and

the medium, ρ, are assumed equal. Figure 4.1 shows a schematic diagram of

the problem, where the drop is subjected to a simple shear flow. We assume

that the drops are neutrally buoyant, so the center of the drop is taken to

be the origin of the coordinate system. We first formulate the problem in a

dimensionless form, choosing a0 as the length scale, Ga0 as the velocity scale,

µG as the scale for stresses, Ci as the scale for bulk concentration, Γ∞ as the

scale for interfacial concentration, and γ0 as the scale for interfacial tension.

Henceforth, a superscript ‘∗’ denotes a dimensional variable, and a lack of the

superscript denotes a physical parameter, scale, dimensionless group, or the

dimensionless version of a dimensional variable. We assume inertial effects to

be negligible, i.e., the Reynolds numbers in the drop (R̂e = ρ̂Ga20/µ̂) and the

medium (Re = ρGa20/µ) are assumed to be very small. Further, we assume the

drops to remain spherical under the imposed flow, i.e., the capillary number,

Ca = µGa0/γ0 � O(1). These assumptions are reasonable for small applied

shear rates and drops of small size. For example, a drop of water with radius

100µm in 500 cSt silicone oil, subjected to a shear rate of 10−3 s−1 will have

R̂e = 10−5, Re ∼ 10−6, and Ca ∼ 10−6. We examine the steady state solution

of the problem.

Surfactant transport

The surfactant molecules inside the drop are transported to the interface by

diffusion, as well as by convection due to the ambient flow. The surfactant

transport is governed by the convection-diffusion equation, which in dimen-
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Figure 4.1: Schematic of the drop with soluble surfactant subjected to a simple
shear flow.

sionless form reads,

Pe∇· (ûC) = ∇2C, (4.3)

where û is the dimensionless velocity in the drop, C is the dimensionless con-

centration in the drop, and Pe = Ga20/D is the bulk Peclet number, D being

the diffusion coefficient of the surfactant in the drop. Surfactant molecules

in the fluid film immediately next to the interface, or the sublayer, adsorb to

the interface; and adsorbed surfactant molecules can desorb from the interface

back to the drop. The surfactant concentration in the sublayer is controlled by

diffusion from the drop, and this diffusion flux is given by j∗d = −Dn̂ · ∇∗C∗s ,

where n̂ is the unit normal vector pointing out of the interface, and C∗s is the

sublayer surfactant concentration. Assuming that the surfactant molecules

form a monolayer at the interface, the adsorption-desorption flux, or the sorp-

tion flux, follows the kinetic expression j∗s = βC∗s (Γ∞ − Γ∗) − αΓ∗, where β

and α denote the kinetic rate constants of adsorption and desorption, respec-

tively, and Γ∗ is the surfactant concentration at the interface65. At equilibrium

j∗s = 0, and the expression for the sorption flux reduces to the Langmuir ad-

sorption isotherm,

Γ =
kCs

1 + kCs
, (4.4)

where Γ = Γ∗/Γ∞ is the dimensionless surfactant concentration at the inter-

face, Cs = C∗s/Ci is the dimensionless sublayer surfactant concentration, and
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k =
βCi
α

is the ratio of the desorption time scale (1/α) to the adsorption time

scale (1/βCi). Here, we consider the case where the surfactant exchange be-

tween the bulk and the interface is controlled both by diffusion and sorption,

i.e., j∗d = j∗s at the interface, which in dimensionless form gives,

−n̂ · ∇C = hDa{Cs(1− Γ)− k−1Γ}, (4.5)

where Da =
βCia

2
0

D
is a Damkohler number, which is the ratio of the bulk

diffusion time scale to the adsorption time scale, and h =
Γ∞
Cia0

is a dimen-

sionless depletion depth, which is a measure of the thickness of a layer adjacent

to the interface over which significant depletion of surfactant takes place. Al-

ternately, h = Γ∞A
∗/3CiV

∗, where A∗, and V ∗ are the area and volume of

the spherical drop, respectively. Thus, h can also be thought of as the ratio

of the minimum concentration of surfactant in the bulk required to populate

the interface at maximum packing to the initial concentration of surfactant in

the drop. This quantity is analogous to the parameter ζ in Alvarez et al.118,

and gives a measure of the extent of depletion.

At the interface, the adsorbed surfactant molecules also undergo transport

by convection and diffusion, and this is governed by the interfacial transport

equation65,123, which reads

∇∗s·(u
∗
sΓ
∗)−Ds∇∗2s Γ∗ = j∗n, (4.6)

where u∗s is the surface velocity, Ds is the surface diffusion coefficient, and j∗n is

the flux exchange term with the bulk. For a mixed diffusion-sorption controlled

exchange, j∗n = j∗d = j∗s . Thus, in dimensionless form, the interfacial transport

equation reads,

Pe∇s· (usΓ)− 1

Dr

∇2
sΓ = −1

h
n̂ · ∇Cs, (4.7)

where Dr = D/Ds. Finally, since the surfactant is confined in the drop

phase, we must account for a mass balance of the surfactant. Assuming
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that the interface is initially free of surfactant, the mass balance equation

is
∫
V ∗
CidV

∗ =
∫
V ∗
C∗dV ∗ +

∫
A∗

Γ∗dA∗, which in dimensionless form is

4π

3
=

∫
V

CdV + h

∫
A

ΓdA. (4.8)

Fluid flow

The fluid flow in the drop and the medium will satisfy the Stokes equations

when inertial effects are negligible. The fluid motion in the drop satisfies

∇ · û = 0,

M∇2û−∇p̂ = 0,

(4.9)

and the fluid motion in the medium satisfies

∇ · u = 0,

∇2u−∇p = 0,

(4.10)

where, (û, p̂) and (u, p) denote the dimensionless velocity and pressure in the

drop, and in the medium, respectively. The velocity and pressure fields at the

center of the drop are bounded. The velocity in the medium approaches the

far field velocity of the ambient linear flow, u∞ = G · x as x→∞. Here, G

denotes the dimensionless velocity gradient tensor of the ambient flow, and x

denotes the position vector measured from the center of the drop. In addition

to these boundary conditions, the following conditions must be satisfied at the

interface of the drop, r = |x| = 1,

û · n̂ = u · n̂ = 0, (4.11)

û = u, (4.12)

{σ · n̂− (σ : n̂n̂)n̂} − {σ̂ · n̂− (σ̂ : n̂n̂)n̂} = − 1

Ca
∇sγ, (4.13)
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where (4.11) is the kinematic boundary condition for a stationary interface,

(4.12) specifies the continuity of velocity at the interface, and (4.13) corre-

sponds to the tangential stress balance at the interface. Here, σ = −pI +

(∇u+∇u†), and σ̂ = −p̂I +M(∇û+∇û†) denote the dimensionless stress

tensor in the medium and the drop, respectively, and the superscript ‘†’ de-

notes the transpose of a tensor. The tangential stress balance neglects interfa-

cial rheology, i.e., the existence of an interfacial shear or dilatational viscosity,

by assuming an inviscid interface. The interfacial tension, γ, is related to the

surfactant concentration at the interface through an equation of state. Sur-

factant molecules have finite dimensions, hence there is an upper limit on the

number of molecules that can be accommodated in a monolayer. This is ac-

counted for in the von Szyskowski equation of state, γ = 1+E ln(1−Γ), where

E =
RTΓ∞
γ0

is the elasticity number, which signifies the sensitivity of γ to the

surfactant concentration at the interface. This equation of state neglects in-

teractions between the adsorbed molecules at the interface. Substituting the

von Szyskowski equation in (4.13) we get

{σ · n̂− (σ : n̂n̂)n̂} − {σ̂ · n̂− (σ̂ : n̂n̂)n̂} =
Ma

1− Γ
∇sΓ, (4.14)

where the Marangoni number, Ma = RTΓ∞/aoµG, signifies the ratio of

Marangoni stresses to viscous stresses, R is the universal gas constant, and T is

the temperature. The Marangoni number can also be written as Ma = E/Ca.

In assuming that Ca � O(1), we lose the freedom of satisfying the normal

stress balance condition at the interface, which, under this assumption, simply

states that the drop remains spherical124. Further, since the elasticity number

∼ O(0.1)65, the Marangoni number ≈ O(Ca−1) and is � O(1).
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4.3 Emulsion rheology

4.3.1 Regular perturbation expansions

The solution for the surfactant distribution in the bulk and along the interface

can be obtained by solving (4.3) and (4.7), subject to (4.5) and (4.8); and that

of the fluid flow in the drop and the medium can be obtained from (4.9) and

(4.10), subject to (4.11), (4.12), (4.14), and the respective boundary conditions

at the center of the drop and at the far field. The tangential stress balance

equation, and the governing equations for surfactant transport are nonlinear.

Moreover, the surfactant transport and fluid flow equations are coupled. To

enable an analytical solution, we examine the case of weak bulk convection

(small Pe), and proceed by taking regular perturbation expansions about the

Peclet number, upto O(Pe). We expand any variable of interest, say ψ, as

ψ = ψ0 + Peψ1 +O(Pe2), (4.15)

where ψ0 is the leading-order solution, or the equilibrium solution, and ψ1 is

the first order departure from equilibrium. At leading order, the surfactant

transport equations (4.3) and (4.7) are decoupled from the flow field. That is,

the flow does not affect surfactant distribution. The equilibrium solutions for

surfactant distribution in the bulk and along the interface are

C0 =
1

2
(1− 3h− k−1) +

1

2

√
(1− 3h− k−1)2 + 4k−1, (4.16)

Γ0 =
kC0

1 + kC0

. (4.17)

These expressions match the solution of the depleted bulk concentration in a

spherical drop at equilibrium by Alvarez and co-workers118 (equation (2) of

that paper). When a surfactant adsorbs from a phase of finite volume to the

interface, there can be three scales for the concentration. The first is the initial
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concentration of the surfactant in that phase, Ci, the second is the minimum

bulk concentration needed to populate the interface at maximum packing,

Cmin = Γ∞A
∗/V ∗, and the third is the ratio of desorption to adsorption rate

constants, Ccr = α/β, which is a measure of the critical concentration in the

bulk above which surfactant adsorption is significant. From these three concen-

tration scales, Alvarez and co-workers118 defined two independent parameters,

ζ = Cmin/Ci, and f = Cmin/Ccr to quantify the depletion of surfactants. The

parameters h and k in the present work arise naturally after non dimension-

alizing the governing equations, and are related to ζ and f as, h = ζ/3, and

k = f/ζ. Similar to Alvarez and co-workers118, we find that depletion can

only be neglected for very small values of h (< 0.01), or for larger values of

h, when k is small enough (k < 0.01), as shown in Figure 4.2. For any other

combination of (h, k), the surfactant depletion is significant. Particularly, in

the limits h → ∞ and k → ∞ the surfactant is severely depleted from the

drop.

The leading-order surfactant distribution profile at the interface is uni-

form, thus there are no Marangoni stresses acting at the interface. At leading-

order, the solution for the flow field is equivalent to the flow around a spherical

drop with no surfactants, which is124

û0 = Ω · x+
[ 5r2

2(M + 1)
− 3

2(M + 1)

]
E · x

− 1

(M + 1)
(E : xx)x, (4.18)

p̂0 =
21M

2(M + 1)
E : xx, (4.19)

u0 =G · x− M

(M + 1)r5
E · x

−
[ 5M + 2

2(M + 1)r5
− 5M

2(M + 1)r7

]
(E : xx)x, (4.20)
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Figure 4.2: Plot of the equilibrium bulk concentration of the surfactant in
the drop as a function of the dimensionless groups characterizing depletion.
The symbols correspond to real systems, with the 4 corresponding to water
drops with SDS in olive oil, ◦ corresponding to water drops with C10E8 in
silicone oil, ♦ corresponding to water drops with C12E8 in silicone oil, and
� corresponding to water drops with C14E8 in silicone oil. The parameters
quantifying these systems are listed in Table 4.1.

p0 = − (5M + 2)

(M + 1)r5
E : xx, (4.21)

where E =
1

2
(G+G†) is the rate of strain tensor, and Ω =

1

2
(G−G†) is the

vorticity tensor of the ambient flow.

At O(Pe) the surfactant transport and flow field equations are coupled.

The bulk surfactant transport equation is

∇2C1 =∇·(û0C0), (4.22)

and the interface surfactant transport equation is

∇s·(us,0Γ0)−
1

Dr

∇2
sΓ1 = −1

h
n̂ · ∇C1, (4.23)
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with the interface condition −n̂ · ∇C1 = hDa{Cs,1(1−Γ0)−Γ1(Cs,0 + k−1)},

and the mass balance condition
∫
V
C1dV +

∫
A

Γ1dA = 0.

The O(Pe) flow inside and outside the drop satisfies the continuity and

Stokes equations, with the kinematic condition and continuity of tangential

velocity at the interface. The interfacial stress balance equation has a con-

tribution from the Marangoni stresses due to the coupling of the flow and

surfactant equations, which leads to a nonuniform distribution of surfactants

at the interface. The balance is

{σ1 · n̂− (σ1 : n̂n̂)n̂}−{σ̂1 · n̂− (σ̂1 : n̂n̂)n̂}

= Ma(1 + Γ0 + Γ2
0)∇sΓ1. (4.24)

The first order corrections to the surfactant distribution are linearly coupled

to the flow field; thus the O(Pe) solution is

C1 = A (E : xx), (4.25)

Γ1 = B (E : n̂n̂), (4.26)

û1 =
[5D1

21
r2 +D2

]
E · x− 2D1

21
(E : xx)x, (4.27)

p̂1 = D1M(E : xx), (4.28)

u1 = −2D4

5r5
E · x+

[D3

2r5
+
D4

r7

]
(E : xx)x, (4.29)

p1 =
D3

r5
(E : xx). (4.30)

The O(Pe) contribution only involves the rate of strain tensor, and not the

vorticity tensor; hence, to O(Pe) the rotational part of the flow does not
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affect surfactant distribution. This would not be true at higher orders; e.g. at

O(Pe2) there would be contributions from terms bilinear in E and Ω, which

would generate normal stress differences in addition to an effective viscosity.

The constants A, B, Di depend on the parameters h, k, Da, Dr, Ma and M ,

and are listed in Appendix C.

4.3.2 Average emulsion stress

For a dilute emulsion of torque free drops, the average stress in the bulk, in

dimensional form, is given by125,126

Σ∗ = −p∗I + 2µE∗ + n̄S∗, (4.31)

where the first two terms represent the average stress in the medium phase in

the absence of drops, and the last term is the contibution of the drop phase to

the average stress. Here, n̄ is the number density of the dispersed phase drops,

and S∗ is the stresslet on a single drop, which arises due to the inability of

the drop phase to deform affinely with the suspending medium. The stresslet

is

S∗ =
1

2

∫
A

(x∗σ∗ · n̂+ σ∗ · n̂ x)dA− µ
∫
A

(u∗sn̂+ n̂u∗s)dA. (4.32)

The stresslet can be expanded as a regular perturbation in Pe, and the leading-

order and O(Pe) corrections can be calculated from the solution of the flow

field, (4.18)-(4.21), and (4.27)-(4.30). The final results are

S∗0 =
4πa30

3

(5M + 2

M + 1

)
µE∗, (4.33)

S∗1 =
4πa30

3

3Γ0DrMa(1 + Γ0 + Γ2
0)

5(M + 1)2

[
1−{

1 +
3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

}−1]
µE∗. (4.34)
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4.3.3 Effective viscosity

The effective stress is

Σ∗ =− p∗I + 2µ
[
1 +

φ

2

(5M + 2

M + 1

)
+

Peφ
3Γ0DrMa(1 + Γ0 + Γ2

0)

10(M + 1)2

{
1−(

1 +
3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

)−1}]
E∗, (4.35)

which is of a Newtonian form with an effective viscosity

µeff
µ

=1 +
φ

2

(5M + 2

M + 1

)
+

Peφ
3Γ0DrMa(1 + Γ0 + Γ2

0)

10(M + 1)2

[
1−{

1 +
3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

}−1]
, (4.36)

where µeff is the effective viscosity of the emulsion, and the volume fraction

φ = n̄
4πa30

3
. We predict the emulsion to exhibit a Newtonian behavior to

O(Pe). At equilibrium (Pe = 0), the flow does not couple with the transport

of surfactants, and the distribution of surfactants at the interface is uniform.

In this limit, we recover the result of Taylor (4.2). Due to weak convection, the

surfactant distribution at the interface is no longer uniform. This generates

Marangoni stresses, which is represented by the last term in (4.36), and results

in an effective viscosity greater than Taylor’s prediction, µT . Importantly,

while Pe is assumed small, it is not necessarily true that theO(Peφ) correction

will be smaller than the O(φ) correction since it depends on several other

parameters.

The viscosity of the emulsion depends on h = Γ∞/Cia0, k = βCi/α,

Da = βCia
2
0/D, Dr = D/Ds, Ma = RTΓ∞/a0µG and M = µ̂/µ. All these

parameters, except the viscosity ratio, are interfacial parameters, of which,

the rate constants of desorption and adsorption (α and β) and the surface

diffusion coefficient (Ds) are particularly difficult to measure. Consequently,
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experimental data quantifying these parameters is scarce, more so for sur-

factant adsorption to liquid-liquid systems as compared to air-liquid systems.

The kinetic parameters (α and β), and the maximum packing concentration at

the interface (Γ∞) can be measured from pendant drop apparatus to quantify

surfactant adsorption. In these equipments, the surfactant transport to the

interface is usually diffusion limited, thus only the ratio α/β is obtained by

fitting the adsorption data to an isotherm. Alvarez and co-workers127 investi-

gated the transport of a series of nonionic CiEj surfactants dissolved in water,

to a water-silicone oil interface. Some of the surfactants studied showed trans-

port in the mixed diffusion-sorption regime, thus α and β were individually

measured. The surface diffusion coefficient is more difficult to measure, and is

usually assumed to be the same as the bulk diffusion coefficient, D, or within

an order of magnitude of D128.

Table 4.1: List of transport parameters obtained from literature of surfac-
tants at oil-water interfaces127,128, dimensionless parameters which quantify
the effective viscosity of the emulsion, and the scaled effective viscosity of the
emulsion.

Drop: Water
Medium: Olive oil
Surfactant: SDS

Drop: Water
Medium: Silicone oil

Surfactant: C10E8

Drop: Water
Medium: Silicone oil

Surfactant: C12E8

Drop: Water
Medium: Silicone oil

Surfactant: C14E8

Ci (µM) 4 ×103 600 50 5
a0 (µm) 100 75 75 75

Γ∞ (µmol/m2) 1.94 2.25 2.25 2.25
D (m2/s) 5 ×10−10 3.7 ×10−10 3.8 ×10−10 3.9 ×10−10

α (1/s) 0.1 2.5 ×10−2 6.86 ×10−6 2.54 ×10−8

β (m3/mol s) 5.7 ×10−2 50 22.1 9.4
h 4.85 50 600 6 ×103

k 2.3 ×10−3 1.2 160 1.85 ×103

Da 4.5 ×10−3 0.45 1.64 ×10−2 7 ×10−4

Ma 2× 105 3.1× 105 3.1× 105 3.1× 105

M 1.2× 10−2 2× 10−3 2× 10−3 2× 10−3(µeff
µ
− 1
)
/φ 1.98 5.67 1.38 1.23

The effect of depletion of surfactants on the emulsion viscosity can be

studied by choosing different h and k. These parameters can be indepen-

dently changed for the same surfactant-fluid system by changing the initial

concentration of surfactant in the drop, or the radius of the drop. In practice,
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the extent to which these parameters can be changed will be restricted by the

requirement that Ci has to be smaller than the critical micellar concentration

of the surfactant, and that a0 must be small enough such that Ca � O(1).

Moreover it is not possible to study the effect of solely changing either of the

parameters quantifying depletion without also changing Da. Thus, among the

parameters (h, k,Da), one can be held constant, but changing either one of

the other parameters changes the third. In other words, it is physically not

possible to isolate and study the impact of any one of these three parameters

on µeff . Here, instead of mathematically varying the parameters in an ar-

bitrary fashion, we choose four different actual surfactant-fluid systems, with

different (h, k,Da) to study how the transport and kinetics of surfactant ad-

sorption, and depletion of surfactants influence the effective viscosity. The

systems chosen are: (i) water drops with sodium dodecyl sulphate (SDS) in

olive oil; (ii) water drops with C10E8 in silicone oil; (iii) water drops with C12E8

in silicone oil; and (iv) water drops with C14E8 in silicone oil, and are denoted

by the triangle, circle, diamond and square symbols, respectively, in Figure

4.2, and the inset in Figure 4.3. Their transport parameters are taken from

Dunér et al.128, and Alvarez et al.127, and are listed in Table 4.1, along with

values of the dimensionless parameters quantifying the effective viscosity. For

all the systems, the surface diffusion coefficient has been assumed to be the

same as the bulk diffusion coefficient, i.e., Dr = 1, and the convection in the

bulk is considered weak (Pe ∼ 0.01). The last row of table 4.1 lists the scaled

effective viscosity of the emulsion,
(µeff

µ
− 1
)
/φ. Surprisingly, the effective

viscosity of the water-C10E8-silicone oil system is greater than a suspension of

rigid spheres, for which
(µE
µ
− 1
)
/φ = 2.5.

TheO(Peφ) contribution to the effective viscosity originates due to Marangoni

stresses, which depends on the viscosity ratio, M , among other parameters.

Figure 4.3 shows the scaled effective viscosity of the emulsions as a function



CHAPTER 4. 97

of M . In experiments, M can be varied by changing the oil phase, or by

using different grades of the same oil, which keeps the chemical composition

constant. Although changing M may change the other dimensionless groups,

they have been assumed constant in Figure 4.3. We recover Einstein’s result

for highly viscous drops, i.e., when M → ∞. For certain combinations of

(h, k,Da), the viscosity of the emulsion of drops is greater than µE. Inter-

estingly, the effective viscosity of these systems is predicted to increase as the

drop phase fluid becomes less viscous. Although insoluble surfactants have

been reported to significantly affect the viscosity of dilute emulsions112–116, a

viscosity greater than Einstein’s has not been predicted before. This suggests

that the observed effect is due to the solubility of the surfactant.
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Figure 4.3: Scaled effective shear viscosity of a dilute emulsion as a function
of the viscosity ratio. The symbols correspond to the systems quantified in
Table 4.1, and shown in the inset. For all the systems, Dr = 1 and Pe = 0.01.
The solid line corresponds to the effective viscosity of a dilute suspension of
rigid spheres, as predicted by Einstein108.
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4.4 Discussion

Figure 4.4: Sketch of the drop containing soluble surfactants subjected to a
simple shear flow, decomposed as a linear combination of pure rotation and
an extensional flow. The solid arrows show the direction of the ambient flow
around the drop, the dashed arrows show the weakening of the flow around
the drop due to its inability to deform like a fluid element, and the dotted
arrows show the direction of the Marangoni flow.

For any emulsion, or suspension, the suspended drops or particles are un-

able to deform affinely with the suspending fluid, owing to a viscosity difference

and an interfacial tension. This causes an energy dissipation in the system,

ultimately resulting in an effective viscosity greater than the solvent viscosity.

A general linear flow can be decomposed as a combination of a rotational flow

and an extensional flow. Figure 4.4 shows the sketch of this decomposition

for a simple shear flow, where the axes of extension and compression of the

extensional component are at an angle ϕ = π/4, and ϕ = 3π/4, respectively,

to the direction of the imposed flow. The drop will rotate with the rotational

component of the flow. The straining component of the flow tends to stretch

the drop along the axes of extension, and work has to be done against the

interfacial tension and viscous forces in order to achieve this. This results in

a weakening of the ambient flow around the drop, and the dashed arrows in

the extensional part of the flow in Figure 4.4 depicts the fact that the drop
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resists stretching with the ambient flow. When surfactant molecules start ad-

sorbing to the interface, they are convected by the straining component of the

flow, from the axis of compression to the axis of extension. At O(Pe), the

rotational component of the flow does not affect the distribution of surfactant.

The straining component creates a nonuniform distribution in the surfactant

concentration at the interface, and generates a Marangoni flow from the ex-

tensional axis to the compressional axis to reestablish a uniform distribution.

This flow is depicted by the dotted arrows in Figure 4.4, and further resists

the straining component of the flow. Thus, more work needs to be done to

stretch the drop when a there is a nonuniform surfactant distribution at the

interface. Consequently, in the presence of convection, the effective viscosity

of the emulsion is greater than Taylor’s prediction for surfactant-free drops.

This is akin to the larger drag force experienced by a rising bubble or a settling

drop in the presence of surfactant. Here again, the ambient flow due to the

motion of the bubble or drop creates a nonuniform distribution of surfactant

at the interface, which generates a Marangoni flow in a direction opposite to

the ambient flow. A strong enough Marangoni effect can arrest the motion of

the dispersed phase124,129.

We attribute the prediction of an effective viscosity greater than Einstein’s

result to large Marangoni stresses, which are proportional to the Marangoni

number and the surface gradient in interfacial surfactant concentration. The

Marangoni number for all the systems is large ∼ O(105) (Table 4.1). Figure 4.5

shows the O(Pe) correction to the interfacial surfactant concentration. The

leading-order solution, Γ0 is uniform, hence, the Marangoni stresses will be

proportional to the nonuniformity in the distribution of Γ1. The largest gra-

dient in surfactant distribution corresponds to the largest Marangoni stresses,

and this is observed for the system which shows the largest effective viscosity.

In Figure 4.6, we show velocity vector plots of the flow field inside and
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Figure 4.5: Perturbation to the interfacial concentration distribution at
O(Pe). The solid line represents the water-SDS-olive oil system, the dashed
line represents the water-C10E8-silicone oil system, the dotted line represents
the water-C12E8-silicone oil system, and the dash-dot line represents the water-
C14E8-silicone oil system. The inset shows the straining component of the
ambient flow.

outside a drop, and compare this to the flow field around a rigid sphere, un-

der a simple shear flow. We choose two systems for the drop, one where the

effective viscosity is less than Einstein’s prediction (water-C14E8-silicone oil),

and another where the effective viscosity is greater than Einstein’s prediction

(water-C10E8-silicone oil). The rigid sphere corresponds to Einstein’s calcu-

lation. A rigid sphere satisfies the no slip condition at the interface, and its

surface velocity is purely rotational. Drops which maintain a steady state un-

der an imposed field will support a tangential velocity. For a system where

µeff < µE, the flow field around the drop is weaker than the ambient flow at

far field, but is stronger than that around a rigid sphere. The system with

µeff > µE shows regions of recirculation around the drop, suggesting that the
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Marangoni flow in these systems is strong enough to reverse the flow in the

vicinity of the drop. As a result, the flow around the drop is weaker than

the flow field around a rigid sphere, which gives rise to an emulsion viscosity

greater than that of a suspension of rigid spheres. From the O(Pe) solution of

the flow field, it follows that the Marangoni flow decreases with the viscosity

of the drop as 1/(λ + 1)2. This will become zero in the limit λ→∞. Hence,

the regions of recirculation become smaller as λ increases, and the flow field

around the drop eventually approaches that around a rigid particle. This ex-

plains the increase in effective viscosity for these systems with a decrease in

the viscosity of the drop phase fluid, as seen in Figure 4.3.

It is known that a dilute suspension of charged rigid spheres has an ef-

fective viscosity greater than Einstein’s prediction, which is referred to as the

“primary electroviscous effect” 130,131. Charged particles in solution are sur-

rounded a layer of counterions, called the Debye layer, which can be viewed as

a deformable microstructre. Under a weak imposed flow, the Peclet number

for transport of ions is small. There is a slight deviation from the equilib-

rium distribution of ions in the Debye layer. This generates Maxwell electric

stresses at the interface, which contributes to the effective viscosity of the

suspension. Moreover, the distorted Debye layer has a net charge, and the

action of an asymmetric electric field on this net charge can give rise to an

electroosmotic flow, which generates an extra stresslet, further increasing the

effective viscosity of the suspension132. For a dilute solution of charged, spher-

ical drops, Ohshima133 estimated the effective viscosity of the emulsion under

a weak shear flow. His calculations show that when the thickness of the Debye

layer is comparable to, or greater than the size of the drop, it is possible to get

an emulsion viscosity greater than µE. More recently, for drops of weakly con-

ducting fluids suspended in a weakly conducting medium, an effective viscosity

greater than µE was predicted for certain cases, under a combined action of
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Figure 4.6: Velocity vector for the the flow field: (a) around a rigid sphere
(µeff = µE), (b) inside and outside a drop for a system with µeff < µE (e.g.,
water-C14E8-silicone oil), and (c) inside and outside a drop for a system with
µeff > µE (e.g., water-C10E8-silicone oil) shown in the velocity-gradient plane.

an electric field and shear flow, in the absence of surfactants134. For soluble

surfactants, the distribution of surfactants in the bulk and along the interface

can be viewed as the microstructure. Analogous to the Debye layer around

a charged particle, an imposed flow will create a nonuniform distribution of

the surfactant, generating Marangoni stresses, and for certain cases this con-

tribution can result in an effective viscosity greater than a suspension of rigid

spheres. Any mechanism that reduces the nonuniformity in surfactant distri-

bution at the interface will weaken the stresslet associated with the Marangoni

flow, and reduce the effective viscosity. Figure 4.7 shows the effect of increas-
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ing the surface diffusion coefficient by an order of magnitude (Dr = 0.1) on

the effective viscosity for the systems shown in Figure 4.3. Surfactants at

the interface undergo stronger diffusion along the interface, reducing the gra-

dients in interfacial surfactant concentration, and consequently, the induced

Marangoni flow. All the systems have an effective viscosity lower than µE due

to stronger surfactant diffusion along the interface.
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Figure 4.7: Scaled effective shear viscosity of a dilute emulsion as a function of
the viscosity ratio. The symbols correspond to the systems quantified in Table
4.1, and shown in Figure 4.2. For all the systems, Dr = 0.1 and Pe = 0.01.
The solid line corresponds to the effective viscosity of a dilute suspension of
rigid spheres, as predicted by Einstein108.

Our analysis is valid when the drops remain spherical, do not interact, and

the imposed flow is weak. An experimental verification of this theory might be

challenging because of these restrictions. Thus, natural extensions to this work

are to consider the effects of shape deformation, drop interactions, and strong

imposed flows (large Peclet number). For a dilute suspension of charged rigid

spheres with thin Debye layers, Russel131 obtained a shear thinning response
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for the emulsion as the Peclet number increases. Under stronger imposed

flows, the rotational component of the flow will influence the microstructure,

in addition to the straining component, and will result in a non-Newtonian

response, including normal stress differences. The effective viscosity in the

presence of soluble surfactants is shown to depend on the transport and ki-

netic parameters of surfactant adsorption to liquid-liquid interfaces, and many

of these parameters are poorly characterized. Measurement of kinetic rate con-

stants of adsorption and desorption are limited because surfactant transport

in pendant drop based equipments is usually diffusion controlled. It has been

suggested that microscale interfaces, or convection in the bulk phase fluid, can

shift the transport mechanism for some systems to a mixed diffusion-sorption

controlled regime, enabling an estimation of these parameters135,136. The sur-

face diffusion coefficient is more difficult to measure. The usual practice is

to assume it to be the same as the bulk diffusion coefficient, however, experi-

ments to verify this assumption, or to study how Ds changes with the physical

properties of the system are lacking. Development of experimental techniques

to measure surfactant transport parameters to liquid-liquid interfaces is im-

perative to understand the rheology of emulsions with soluble surfactants.

4.5 Conclusion

We calculated the effective viscosity of a dilute emulsion of spherical drops

containing a soluble surfactant, accounting for weak bulk convection. When

surfactants are dissolved in the drop phase, they may get severely depleted

from the bulk, if the initial surfactant concentration, or the drop size is small.

At certain regimes of surfactant transport and depletion, Marangoni stresses

may be large enough to generate regions of recirculation around the drops,

resulting in an effective viscosity greater than Einstein’s prediction for the
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viscosity of a suspension of rigid spheres. Small amount of soluble surfactants

can therefore greatly affect emulsion viscosity.



Chapter 5

Electric fields enable tunable

surfactant transport to microscale

fluid interfaces

5.1 Introduction

Electric fields act across fluid-fluid interfaces in electrocoalescence4,137, inkjet

printing138,139, electroemulsification5,6,140, and microfluidic devices13–16. These

systems typically consist of drops of one fluid dispersed in another, with surfac-

tants adsorbing from the bulk phases to the interface. Electric fields give rise to

stresses at the interface. Depending on the strength of the field, the interface

may attain a deformed steady shape, or undergo an instability to form smaller

drops. Interface deformation, and mechanisms of instability for systems of pure

fluids, i.e., without added surfactant, has been well characterized23,24,26,32–37,73.

The limited existing work on the deformation of surfactant-laden interfaces un-

der electric fields is restricted to experiments and computations to predict drop

deformation and breakup38–41,47,141. An inherent assumption in the computa-

tions is that the surfactant is insoluble; therefore, the effect of electric field on

surfactant transport from bulk to the interface is not accounted for.

106
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Surfactant transport from bulk to a fluid-fluid interface in the absence of

electric field follows two transport processes43,44. Bulk surfactant diffuses to

the interface (diffusion), and surfactant near the interface undergoes ad/desorption

to/from from the interface (kinetic). The transport is known to be a func-

tion of bulk concentration, isotherm, local convection and interface geome-

try45,135,136,142–145. However, the impact of electric fields has not been deter-

mined. For oil-water interfaces, the electric field acts almost solely in the oil

phase because the electrical conductivity of deionized water is nearly O(106)

larger than most oils. Surfactants are frequently added to oils and non-polar

liquids in several applications. For example, OLOA 11000, a poly-isobutylene

succinimide surfactant, is added to motor oil to prevent soot formation in in-

ternal combustion engines, disperse pigments in oils for use in electrophoretic

displays, and even to prevent sparking during pumping of oils96,146,147. The

addition of surfactants to oils has been observed to increase the electrical con-

ductivity, both below and above the critical micellar concentration (CMC),

even when the surfactant is considered nonionic96,148. It is hypothesized that

below the CMC surfactant molecules form complexes with ionic impurities in

oil, which acquire charge by disproportionation148. An electric field will exert a

force on these charged species, and could influence their bulk transport. Thus,

the first step to accurately predict the deformation and breakup of surfactant-

laden interfaces under electric fields is to determine whether bulk surfactant

transport couples with electric fields.

In this chapter, we present the first experiments to quantify the transport

of oil-soluble surfactants to oil-water interfaces using a microscale capillary

tensiometer platform, under a D.C. electric field. Dynamic interfacial tension

was measured under different electric field strengths to determine the rate of

surfactant transport to the interface. We show that for a system whose electri-

cal conductivity increases on addition of surfactant, the transport is enhanced
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under electric fields. The rate of surfactant transport can be manipulated by

tuning the strength of the electric field. On the contrary, a system whose

electrical conductivity is unaffected by surfactant addition does not show any

coupling of surfactant transport with electric field.

5.2 Materials and methods

The surfactants chosen were a poly-isobutylene succinimide surfactant, com-

mercially known as OLOA 11000, donated by Chevron Oronite (San Ramon,

CA, USA), and a polyethylene-polypropylene block copolymer, Pluronic L64,

purchased from BASF. The surfactants were reported to have a molecular

weight of 950 and 2900 g/mol, respectively. Stock solutions of 0.62 mM OLOA

was prepared in Isopar-M, an alkane mixture purchased from Exxon Mobil,

and 3.71 mM Pluronic was prepared in 100 cSt silicone oil, purchased from

Gelest, Inc. The stock solutions were diluted to different concentrations for

the experiments. Deionized water was taken from a Barnstead UV Ultrapure

II purification system (resistivity of 18.2 MΩ cm).

The experimental setup is an electrified version of the microtensiometer

platform, which was developed by Alvarez et al.145. The schematic is shown

in Figure 5.1, with gravity pointing into the plane of the paper. Surfactant

solution is filled in a cell of rectangular cross-section (35 mm ×25 mm), 3D

printed using an acrylic material. Two electrodes are attached to opposite

walls of the cell, 25 mm apart. Voltages in the range 0.1− 2 kV were applied

using a voltage source, setting electric fields ∼ 0.04−0.8 kV/cm across the cell.

The electrodes have a hole of diameter 6 mm drilled through them. A glass

capillary containing deionized water is inserted through one of the walls of the

cell, and one electrode. All capillaries used were pulled using a micropipette

puller to diameters ∼ 70− 80 µm. The capillary is connected to a differential
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pressure transducer, with the other end connected to the opposite wall of the

cell. The other two walls have glass windows to enable viewing of the interface,

which is imaged using a camera attached to a Nikon microscope objective lens

(20 X), and a radius fitted using a Labview routine. The capillary is inserted

6 mm away from the wall near the camera. COMSOL simulations predict

the electric field lines to be unaffected by the wall when the gap between

the wall and the capillary is more than twenty capillary radii. This chosen

distance ensures that the capillary is within the field of view of the microscope

objective, and field lines are not affected by the cell wall.

2.5

Pressure 

transducer

Light sourceMicroscope

objective

Voltage source

2

1.5

1

0.5

0

Capillary with

drop phase (DI water)

Surfactant solution in oil

Electrode

To pressure  transducer

Electric field (            )

10 μm

Figure 5.1: Schematic of the experimental setup. Top left inset shows COM-
SOL simulations of electric field lines around a capillary of diameter 70 µm.

Surfactant transport is quantified by the dynamic interfacial tension, γ,

of the interface. This is obtained from the instantaneous measurement of
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the radius of curvature of the hemispherical interface, R∗, and the pressure

jump across the interface, ∆P ∗, using the Young-Laplace equation, γ = ∆P ∗×

R∗/2. The interface is maintained at a constant pressure head, and the change

in interfacial tension is primarily accounted for by the change in radius of

curvature of the interface. Under electric fields, the Laplace equation will

have an additional contribution from electric (Maxwell) stresses acting at the

interface, which scale as εoE
∗2
∞ , where εo is the permittivity of the oil, and E∗∞

is the field strength. The scaled normal stress balance equation at the interface

assumes the form ∆P = 2/R−CaE∆τE, where CaE = RεoE
∗2
∞/γ is the electric

capillary number, and ∆τE is the dimensionless normal electric stress jump

across the interface. For all field strengths and interface radii, CaE < O(10−4).

Thus, electric stresses were ignored while calculating the dynamic interfacial

tension. The low CaE also ensured that the interface remained hemispherical

at all field strengths studied.

5.3 Results and discussion

The principle of the instrument has been previously used to characterize trans-

port of surfactants from water to air-water136,145, and oil-water interfaces149,150,

with the aqueous surfactant solution in the cell. Here, we have the oil-soluble

surfactant in the cell, and water in the capillary; and quantify surfactant trans-

port from the oil phase to the oil-water interface. The interfacial tension of

pure Isopar-water was measured to be 52.5 ± 0.3, which is typical of alkane-

water interfaces149, and that of silicone oil-water was 40.3 ± 0.4 mN/m, in

agreement with reported values127. Under an applied electric field, the inter-

facial tension was not observed to change beyond the error of the instrument

(1 mN/m), for field strengths used in this study.

The transport and adsorption of OLOA in Isopar was measured to the
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Isopar-water interface at two different surfactant concentrations (4 µM and

10 µM), under different electric field strengths. A new interface was formed

by subjecting the drop phase in the capillary to a high pressure head, using

a solenoid valve. For a newly formed interface, the interfacial tension starts

decreasing from the clean interfacial tension value, and relaxes to a steady

state of 26.2 ± 0.3 mN/m for the 4 µM system, and 22.9 ± 0.3 mN/m for

the 10 µM system. The system is deduced to reach steady state when the

interfacial tension does not change by more than 1 mN/m for at least 1000

s. The dynamic interfacial tension of the 4 µM system is shown in Figure

5.2(a). For the experiments, data was collected at each millisecond; however,

for clarity, we show fifty data points spaced equally on a logarithmic scale

in the figure. The inset shows the dynamic interfacial tension for the last

1000 s under each electric field, with a shifted time axis, on a linear scale.

Surfactant transport is known to depend on the radius of curvature of the

interface145. In all the experiments, the pressure head was held constant at

the same value, ensuring the initial radius of curvature for all the interfaces

differed by < 5 µm. It follows that the time to reach steady state decreases

with increasing values of the electric field. Under a field of 0.4 kV/cm, the

system reaches steady state nearly four times faster than under no applied field.

The effect is more prominent at lower values of the electric field. Dynamic

interfacial tension curves for the 0.2 and 0.4 kV/cm nearly overlap with each

other, having slightly faster dynamics under 0.4 kV/cm. All the curves reach

the same steady state interfacial tension, indicated by the dashed line and

depicted in the inset. This suggests that the electric field has negligible effect

on the adsorption isotherm. The dynamic interfacial tension for 10 µM OLOA

showed a similar trend. Evidently, the transport of OLOA to the Isopar-water

interface is enhanced under electric fields.

In contrast, the transport of Pluronic to the silicone oil-water interface
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Figure 5.2: Dynamic interfacial tension for (a) 4 µM OLOA 11000 in Isopar-M,
and (b) 10 µM Pluronic L64 in 100 cSt silicone oil. The dashed line represents
the steady state interfacial tension. Inset: Dynamic interfacial tension for each
system during the last 1000 s under each electric field. The time axis has been
shifted so that all the curves fit in the same time range of 0 to 1000 s.
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was not influenced by the electric field (Figure 5.2(b)). For a 10 µM system,

the interfacial tension relaxes from the clean value and approaches steady

state. Even at the highest value of the field strength, the dynamic interfacial

tension curve overlaps the curve obtained in the absence of a field. As shown

in the inset, the interfacial tension did not completely relax to a steady state

value, however the slope of the curves flatten out, suggesting that the system

approaches steady state. Since the curves overlap each other throughout the

experiment, we conclude that similar to the OLOA system, the steady state

interfacial tension is unaltered by the electric field.

As a measure of the effect of electric field on surfactant transport, we plot

the time required for the interfacial tension to relax from the clean value to

a specific value, γt, for each system, as a function of the field strength. For

OLOA in Isopar, we choose γt = 35 mN/m, and for Pluronic in silicone oil,

γt = 30 mN/m. These values are chosen because they are roughly half the

value of the interfacial tension of the pure oil-water interface and the steady

state interfacial tension at the given surfactant concentration. For low bulk

surfactant concentrations, as has been chosen in this study, a specific value of

interfacial tension physically corresponds to the interface reaching a specific

surfactant coverage. The result is shown in Figure 5.3. For the OLOA sys-

tem, this time scale, t1/2 follows a power law scaling, with the exponents 0.41

and 0.52 for the 4 µM and 10 µM systems, respectively. The 10 µM system

reaches the same surfactant coverage faster than the 4 µM system at all field

strengths, in agreement with previous observations of faster diffusion from a

more concentrated bulk solution to an interface145. The power law scaling

with electric field is analogous to the effect of bulk phase convection on sur-

factant transport to fluid-fluid interfaces, rendered rigid due to large gradients

in interfacial surfactant concentration136. Convection in the continuous phase

reduces the effective boundary layer thickness for mass transport of the sur-
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factant, thus, the time scale for the surfactant to diffuse from the bulk to the

interface reduces. For Pluronic in silicone oil, the time scale does not change

on the application of an electric field, as is shown by the dotted line.
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Figure 5.3: Time required for the oil-water interface to reach an interfacial ten-
sion of 35 mN/m for OLOA 11000 in Isopar-M, and 30 mN/m for Pluronic L64
in silicone oil as a function of electric field. The dashed lines represent power
law scalings for OLOA in Isopar-M. The horizontal dotted line establishes that
the time scale is independent of field strength for Pluronic in silicone oil. The
filled symbols denote the time scale under zero electric field. Inset: Electrical
conductivity as a function of surfactant concentration. The arrow shows the
CMC of OLOA 11000 in Isopar-L151. The dashed line shows the linear depen-
dence of conductivity with concentration for OLOA in Isopar-M. The dotted
horizontal line shows the conductivity of Pluronic in silicone oil is indepen-
dent of surfactant concentration. The filled symbols denote the conductivity
of pure oils, without externally added surfactant.

The observed phenomena can be explained from the measurement of the

electrical conductivity of surfactant doped oils as a function of surfactant con-

centration, shown in the inset of Figure 5.3. The conductivity was measured

using a nonaqueous conductivity probe, DT 700 (Dispersion Technology). For

OLOA, the conductivity increases linearly, while for Pluronic, the conductivity
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does not change with surfactant concentration. The CMC of OLOA 11000 in

Isopar-L is reported to be around 140 µM151, and is shown by the arrow in the

inset. Assuming a similar CMC in Isopar-M, it follows that the conductivity

of the oil increases both above and below the CMC, implying the presence of

charged species even at concentrations below the CMC. Analogous to a pre-

vious study, we hypothesize that OLOA forms charged complexes with ionic

impurities present in Isopar below the CMC148.

The surfactant complex experiences an electric force qE∗∞, where q is

the charge of the complex. It moves with an electrophoretic velocity, UE =

qE∗∞/6πµol, where µo is the viscosity of the oil, and l is the characteristic

linear dimension of the complex. Assuming, q is equal to the charge of one

electron, and typical size of surfactant molecules l ≈ 5 nm95, UE ≈ 5× 10−3−

5 × 10−2 mm/s under the field strengths studied. For diffusion to spherical

interfaces, the length scale for diffusion, hs, depends on the radius of curvature

of the interface, bulk concentration and isotherm135. We do not measure the

equilibrium isotherm of OLOA at the Isopar-water interface, however, using

typical parameter values of equilibrium surfactant coverage for surfactants at

oil-water interfaces127, and the radii and bulk concentrations used in this study,

hs ≈ 0.35 − 3.5 mm. The time scale for the surfactant complex to migrate

this distance under an electric field is tE = hs/UE ≈ 7− 700 s. The diffusion

time scale is given by td = h2s/D, where D is the diffusion coefficient. For the

dilute bulk surfactant concentrations chosen in this study (≤ 5× 10−4 wt %),

we assume that the surfactant complexes do not interact with each other, and

estimate D using the Stokes-Einstein equation, D = kBT/6πµol, kB and T

being the Boltzmann constant and temperature, respectively152. Using this,

we estimate td ≈ 3.8 × 103 − 3.8 × 105 s. An electric Pectlet number can be

calculated as the ratio of the diffusion to electrophoretic time scale, PeE =

qE∗∞hs/kBT . For the field strengths used in this study, PeE ∼ 55 − 5500.
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Even at the smallest field, electrophoretic migration is faster than diffusion.

This manifests as an enhanced transport to the interface. Although a more

rigorous analysis involving an investigation of the dependence of hs on E∗∞,

and measurement of charge on the complex is required to explain the power

law coefficient, the migration of charged surfactant complexes under electric

fields at time scales faster than the diffusion time qualitatively explains the

results.

The Pluronic surfactant does not acquire charge in silicone oil, hence will

not experience electrophoretic migration under an electric field. The conduc-

tivity difference between the silicone oil and water is huge: ∼ O(106). As

a consequence, the tangential electric stresses at the interface is negligible,

eliminating any electrohydrodynamic flow. Surfactant motion due to dielec-

trophoresis is nearly O(10−3) slower than diffusion. Hence, the transport of

Pluronic to silicone oil-water interface is not influenced by the applied field.

The surfactant transport can be precisely controlled by temporal variation

of the field. This is demonstrated in Figure 5.4 for 4 µM OLOA in Isopar-M.

We performed an experiment which started under no external field. A field of

0.2 kV/cm was applied at 200 s, before steady state was reached. The trans-

port dynamics changes at the instant the field is turned on, and the dynamic

interfacial tension curve shifts from the curve obtained under zero field (for

all times) to the curve obtained under 0.2 kV/cm (for all times). Another

experiment was performed, which started under a field of 0.2 kV/cm, with the

field switched off at 100 s. Again, the dynamics changes instantaneously with

the field being turned off, and the curve shifts to the one obtained under zero

field. Similar control and precision was observed in experiments performed

at other field strengths, and for 10 µM OLOA, confirming that this is a ro-

bust phenomena. Note that Figure 5.4 shows data 10 s after a new interface

was formed; hence the curves do not start from the same value of interfacial
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tension.
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Figure 5.4: Dynamic interfacial tension for 4 µM OLOA 11000 in Isopar-M at
zero electric field (◦), 0.2 kV/cm (�), from zero field to 0.2 kV/cm at 200 s
(4), and from 0.2 kV/cm to zero field at 100 s (�). The arrows indicate the
time when the field was switched off or on.

For all experiments where the field was turned on at some point before

steady state, the time to shift from the curve under zero field to the curve under

an applied field is around 100 s. This is comparable to the electrophoretic

time, tE, assuming hs ∼ 1 mm, reaffirming that surfactant migration due

to electrophoresis is likely responsible for this phenomena. The time scale

to move from the curve under an applied field to a curve under zero field is

significantly smaller than the diffusion time assuming hs ≈ 1 mm.

Experiments performed with the direction of the electric field reversed

showed the same effect as shown in Figures 5.2 and 5.4. This is expected

because the interface is radially symmetric. Further, assuming dispropor-

tionation to be the charging mechanism, an equal number of positively and

negatively charged surfactant complexes will be formed. Hence, the transport
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will be enhanced, regardless of the direction of the electric field.

The phenomena observed in this work would be difficult to capture in

a pendant drop apparatus, which is traditionally used to measure surfactant

transport to fluid-fluid interfaces. That technique requires millimeter size

interfaces to accurately measure the dynamic interfacial tension. At such

length scales CaE ≈ 0.1 resulting in significant deformation, or even electric

field induced instability of the interface. This will significantly reduce the range

of field strength that can be studied in such devices. Further, the time scale

for adsorption to millimeter size interfaces is nearly an order of magnitude

slower than to the microscale interfaces used here145; hence a significantly

longer experiment would be needed to capture any effect. Although bulk

phase convection has been observed to enhance surfactant transport136 akin

to electric fields, the “on-off ”experiments shown in Figure 5.4 are more precise

due to the instantaneous scheduling of the electric fields.

5.4 Conclusion

We have reported robust and novel experiments to demonstrate electric fields

as a new parameter to precisely manipulate the rate of surfactant transport

to microscale oil-water interfaces. This phenomena should be generic to oil-

soluble surfactants which form charge carriers. The field enhanced transport

could enable new tools for controlled electrocoalescence of drops in nonpolar

media, or lab-on-chip methods for droplet manipulation in microfluidic devices.



Chapter 6

Dynamic interfacial tension

measurement under electric fields

allows detection of charge carriers in

nonpolar liquids

6.1 Introduction

Control and characterization of the transport of surfactants to fluid-fluid inter-

faces is a key aspect to formulation design. In the absence of external fields, the

transport and adsorption of a surfactant to an interface follows two simultane-

ous transport processes43–46. Surfactant molecules near the interface undergo

adsorption and desorption from the bulk to the interface. This reduces the

local surfactant concentration near the interface, establishing a concentration

gradient across the bulk phases. Surfactant molecules diffuse from the bulk to

the interface due to this concentration gradient. For an initially clean inter-

face, the interfacial tension decreases on surfactant adsorption from the pure

fluid-fluid interfacial tension, and relaxes to an equilibrium. The rate of sur-

factant transport is measured by the dynamic interfacial tension, and depends

119
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on the bulk concentration, isotherm, surfactant architecture and the geometry

of the interface45,127,135,142,145. For a given system and geometry, it has been

shown that the transport can be controlled using bulk convection136,143,144,

demonstrating the utility of external fields.

In nonpolar liquids, like oils, the addition of surfactants has been shown to

increase the electrical conductivity, even when the surfactant is nonionic95,148,153–157.

This is explained by the formation and stabilization of charged species due to

the amphiphilic nature of the surfactants. The origin of charge is thought

to be inverse micelles, with water trapped in the core of the micelle and sur-

rounded by the polar head groups of the surfactant. Two neutral micelles

undergo random collisions due to Brownian motion and exchange an ion (usu-

ally identified as a proton), producing two oppositely charged micelles. This

mechanism is known as disproportionation of charge95,148,151,156–159. Another

proposed mechanism for the origin of charge is the steric stabilization of ioniz-

able impurities in oils by surfactant aggregates154,160. If the added surfactant

is ionic, charges may arise due to partial dissociation of the surfactant155,158.

While the exact origin and constituents of charge is still debated, we have

shown in the previous chapter that the transport of charge-forming surfactant

aggregates in oil can be precisely manipulated using an external electric field.

A knowledge of the concentration of the charged species as a function of

the added surfactant concentration is used to determine the charging mecha-

nism in nonpolar media95. This is important in electrophoretic display tech-

nology157,161, neutralizing streaming currents to prevent sparks and explosions

in oil transport147, and preventing soot formation in internal combustion en-

gines162. Charge carrier concentration is usually determined by measuring the

electrical conductivity of the nonpolar solvent as a function of surfactant con-

centration. The conductivity depends on the size and concentration of the

charged species; thus, by estimating the size through dynamic light scattering
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(DLS)95,156, the concentration of charge carriers can be estimated. However,

most commercial surfactants are polydisperse, and DLS experiments detect

aggregates of all sizes. Estimating the concentration from an average value of

the aggregate size can lead to significant errors95. An alternate approach is to

measure the Debye length using electrochemical spectroscopy techniques95,96,

and relate it to the ionic strength of the solution, however interpretation of

the results can become complicated due to adsorption of the charged species

at electrodes95. Measurements of electrical conductivity is widely used to

detect the presence of charged species in oils. Commercially available non-

aqueous conductivity meters employed for this purpose can measure conduc-

tivity > 10−11 S/m. This puts a lower limit to the surfactant concentrations

that can be studied for the presence of charge carriers158,160. Developing a

more sensitive technique to detect charged species in oils, particularly at low

surfactant concentrations can help understand charging in nonpolar media.

In the previous chapter, using a custom-built electrified capillary mi-

crotensiometer, we have shown that electric fields can be used to manipu-

late surfactant transport from bulk oil phases to oil-water interfaces, when

the surfactant forms charged aggregates. In nonpolar fluids, the aggregation

of surfactant molecules may occur over a range of surfactant concentrations,

rather than at a distinct critical micellar concentration (CMC)156,163–166. The

tendency of the formed aggregates to acquire charge depends on the solvent in

which the surfactant is dispersed158, and size of the aggregates148,158, which in

turn is a function of surfactant architecture167–169. In the previous chapter, we

had dispersed two different surfactants in two different oils, and measured the

interfacial tension as a function of time, i.e., the dynamic interfacial tension,

to establish electric fields as a tool to manipulate surfactant transport in oils.

In this chapter, we use surfactants having different structures and charging

behavior in the same nonpolar medium, Isopar-M, to determine if dynamic in-
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terfacial tension measurements under electric fields can be used to distinguish

surfactants having different charging mechanisms.

Here, two surfactants with different architecture are dispersed in an alkane

mixture (Isopar-M), and the transport to an oil-water interface measured un-

der different electric fields. The electrical conductivity of the oil is measured

as a function of the surfactant concentration to determine the presence of

charged species. The results are compared to the results of OLOA transport

to the Isopar-water interface, discussed in the previous chapter. Next, the

transport of an ionic surfactant from the aqueous phase to the oil-water in-

terface is measured under electric fields. Finally, the effect of electric fields on

the equilibrium interfacial tension is established. We provide further evidence

that the coupling between surfactant transport and electric fields occurs due

to electrophoresis of charged species. Measurement of the dynamic interfacial

tension of oil-water interfaces is a sensitive tool to detect charged species in

oils, particularly at low concentrations, and holds promise in understanding

charging in nonpolar media.

6.2 Materials and methods

6.2.1 Materials

Isopar-M, an alkane mixture of dodecane and tridecane is obtained from Exxon

Mobil (Houston, TX) and used as received. Two surfactants having a rake (R-

M) and a double rake (DR-L) morphology are obtained from the Dow Chemical

Company (Midland, MI) and dispersed in the oil phase. Both these surfac-

tants are silicone polyether surfactants and have a polyethylene glycol (PEG)

functionality. The DR-L surfactant has an additional functionality of a dode-

cyl group. The structure of the two surfactants is shown in Figure 6.1, along
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with the structure of a poly-isobutylene succinimde (OLOA 11000) surfactant

for comparison to results of the previous chapter. The exact molecular weight

of the two rake surfactants was not known, but reported by the supplier to be

2 − 5 kDa and 4 − 15 kDa for the R-M and DR-L surfactants, respectively.

Hence, surfactant concentrations were reported as wt% in this work. Stock so-

lutions of 0.32 wt% R-M and 0.25 wt% DR-L were prepared in Isopar-M, which

were then diluted to different concentrations for the experiments. In addition,

100 cSt silicone oil was purchased from Gelest, Inc. For the aqueous phase,

deionized (DI) water was taken from a Barnstead UV Ultrapure II purifica-

tion system (resistivity of 18.2 MΩ cm). The ionic surfactant cetyltrimethy-

lammonium bromide (CTAB) was purchased from Sigma-Aldrich (St. Louis,

MO) at 99% purity, and dissolved in the aqueous phase at a concentration of

3.64× 10−4 wt% (10 µM), along with 5.84× 10−2 wt% (10 mM) sodium chlo-

ride. The critical micellar concentration (CMC) was reported by the supplier

to be 3.28−3.64×10−2 wt% (0.9−1 mM) in water, so the concentration used

was below the CMC.

6.2.2 Microtensiometer under electric fields

The experimental setup is an electrified version of the microtensiometer plat-

form, which was developed by Alvarez et al.145. It is similar to the setup

described in chapter 5, and is described in more detail here. The schematic of

the equipment is shown in Figure 6.2, with gravity pointing into the plane of

the paper. The device consists of a plastic cell with a rectangular cross-section

(25 mm ×20 mm), machined out of Delrin ®. The cell is 40 mm deep, and is

filled with the oil phase fluid. There are two ports drilled on opposite walls of

the cell. The ports are designed to be at the same height, although machining

inaccuracy can result in a height difference of around 10 µm. This translates
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Figure 6.1: Structure of (a) R-M (rake morphology), (b) DR-L (double rake
morphology) and (c) OLOA 11000. The structures of the rake surfactants
were provided by the supplier and that of OLOA 11000 was taken from Smith
and Eastoe.157.

to a hydrostatic pressure difference of 0.08 Pa, which is nearly O(10−5) smaller

than the capillary pressure, hence is negligible. A glass capillary containing

the aqueous phase fluid is inserted through one of the ports, and the other

port is connected to one end of a differential pressure transducer (Omega En-

gineering, PX409-001DWU5V). The other end of the pressure transducer is

connected to the end of the glass capillary using polyethylene tubing hav-

ing an internal diameter of 1 mm. For this study, the glass capillaries were
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pulled to diameters between 75−80 µm, using a PMP-102 micropipette puller

(Micro Data Instrument, Inc.). Capillaries used for pulling were purchased

from World Precision Instruments, Inc. (Sarasota, FL), and have an internal

diameter of 0.75 mm, and an external diameter of 1 mm.
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Figure 6.2: Schematic of the experimental setup. Gravity points into the plane
of the paper. Top left inset shows COMSOL simulations of electric field lines
around a capillary of diameter 70 µm.

An interface between the oil and aqueous phase fluids is pinned at the

tip of the capillary using a constant pressure head. This pressure head is gen-

erated using a water column attached to the capillary through the “normally

open” port of a three-way solenoid valve, using polyethylene tubing (internal

diameter of 1 mm). A high pressure head generated using a taller water col-

umn (≈ 35 cm) is connected to the “normally closed” port of the solenoid

valve. A new interface is generated by by pulsing the pressure head behind
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the capillary phase fluid and ejecting a drop. The transverse walls have glass

windows, which enable viewing the interface. The interface was imaged using

a Labview subroutine, with a camera (Point Grey Grasshopper) attached to

a Nikon microscope objective lens (20×). The captured image was analyzed

in situ by fitting a circle to the interface. The National Instruments Vision

toolbox was used for detecting the interface and fitting a radius.

The walls with ports for the capillary and the pressure transducer are

also provided with slots for the insertion of stainless steel electrodes. Voltages

in the range 0.1 − 0.8 kV were applied using a voltage source (Gamma High

Voltage), setting electric fields ∼ 0.05 − 0.4 kV/cm across the cell, along

the axis of the capillary. Switching the voltage on and off did not cause any

fluctuations in the signals obtained from the pressure transducer, verifying that

this range of voltage does not interfere with the electric signals of the pressure

transducer. An electric field larger than 0.4 kV/cm caused the contact angle

of the interface with the glass capillary to change due to electrowetting170.

Thus, fields larger than 0.4 kV/cm were not studied. COMSOL simulations

were used to predict the distribution of electric field lines in the cell around the

capillary. The simulations predict that electric field lines are not affected by

the walls of the cell when the gap between the wall and capillary is more than

20 capillary radii. To ensure that the capillary is within the field of view of the

camera, and the electric field lines are unaffected by the wall, it was placed at

a distance of 6 mm (75 capillary radii) from the wall near the camera.

6.2.3 Interfacial tension measurements

Surfactant transport is quantified by the dynamic interfacial tension, γ, of

the interface. This is obtained from the instantaneous normal stress balance
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across the interface, which can be written as

∆P ∗(t) =
2γ(t)

R∗(t)
−∆τ ∗E, (6.1)

where, ∆P ∗ is the Laplace pressure, R∗ is the radius of curvature of the inter-

face, and ∆τ ∗E is the jump in normal electric stresses at the interface, measured

as the difference between electric stresses outside and inside the interface. The

superscript, ∗, denotes a dimensional quantity. The electric stresses scale as

εoE
∗2
∞ , where εo is the permittivity of the reservoir phase fluid, and E∗∞ is

the applied electric field; and is used to non-dimensionalize stresses. Scaling

length with the capillary radius, Rc, and the Laplace pressure using the maxi-

mum capillary pressure (γ/Rc), the non-dimensional form of the normal stress

balance across the interface reduces to

∆P (t) =
2

R(t)
− CaE∆τE, (6.2)

where CaE = εoRcE
∗2
∞/γ is the electric capillary number, which is a ratio of the

electric stresses to the capillary pressure, and the terms without the superscript

denote equivalent dimensionless quantities. Here, R and ∆τE ∼ O(1), and

for the electric field strengths used in this work, CaE < O(10−4). Thus,

electric stresses were ignored from the normal stress balance, and the dynamic

interfacial tension was calculated using the Young-Laplace equation,

γ(t) =
1

2
∆P ∗(t)×R∗(t). (6.3)

The small value of the electric capillary number also ensures that the electric

field does not deform the interface, or cause any interfacial instability22,37,39,42.

To verify that the scaling is correct and electric stresses can be ignored

from the normal stress balance, the interfacial tension of oil-water interfaces

with no added surfactant was measured under the highest electric field chosen

in this study (0.4 kV/cm), and compared to the interfacial tension under no
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applied field. The result is shown in Figure 6.3, where the interfacial tension

was measured for at least 1000 s. The interfacial tension of Isopar-DI water

was measured to be 52±0.6 mN/m under no electric field, and 51.7±0.3 under

0.4 kV/cm; and that of 100 cSt silicone oil-DI water interface was measured

to be 39.9±0.4 mN/m under no field, and 39.5±0.4 mN/m under 0.4 kV/cm.

The measured values are in agreement with previously reported values127,149.

For experiments under electric fields, a new interface was formed while the

field was switched on, and the interfacial tension was measured using (6.3).

Notably, the difference between the measured interfacial tension under zero

field and the largest field applied is less than 1 mN/m, which is the error in

interfacial tension measurement of the technique69,145. The sudden application

of the electric field across an interface formed under zero field did not change

the interfacial tension. This shows that the interfacial tension of Isopar-DI

water and silicone oil-DI water interfaces with no added surfactant does not

change under electric fields of up to 0.4 kV/cm. A similar observation was

recently made for xylene-water interfaces under electric fields of up to 0.82

kV/cm171.

When surfactants are present, the interfacial tension of a new interface

starts at the value of clean oil-water interfacial tension in the absence of sur-

factants, which is nearly 52 mN/m for an Isopar-DI water interface. As the

surfactant adsorbs to the interface, the interfacial tension decreases and even-

tually relaxes to an equilibrium. Similar to the previous chapter, the interface

was deduced to reach equilibrium when the interfacial tension does not change

by more than 1 mN/m for a period of at least 1000 s69. During the experiments,

data was collected at every millisecond; however, for clarity, we first smooth

the data using a piecewise cubic Hermite interpolating polynomial, and show

50 data points spaced equally on a logarithmic scale in all the figures. For

a given surfactant concentration, the pressure head was held constant at the
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Figure 6.3: Interfacial tension of Isopar-DI water and 100 cSt silicone oil-DI
water under no field, and under 0.4 kV/cm.

same value, and changes in the interfacial tension occurred due to a decrease in

the radius of curvature of the interface. This ensured that the initial condition

for experiments conducted under different electric fields at a fixed surfactant

concentration was the same.

6.3 Results and discussion

6.3.1 Transport of oil-soluble surfactants

The transport of the rake (R-M) and double rake (DR-L) surfactants was

measured to the Isopar-DI water interface, and is shown in Figure 6.4. For

comparison, the transport of 4.8 × 10−4 wt% OLOA to the Isopar-DI water

interface, which was shown in the previous chapter, is also shown. This data

is reproduced from Figure 2(a) of that chapter, and corresponds to the dy-

namic interfacial tension of 4 µM OLOA. At this concentration of OLOA, the

interfacial tension of the Isopar-DI water interfaces relaxes to a steady state of
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26.3± 0.3 mN/m. The interface reaches steady state faster as the strength of

the applied electric field increases. Under a field of 0.4 kV/cm, the steady state

is reached nearly four times faster than under no applied field. The steady

state interfacial tension is statistically the same under all applied fields, as

indicated by the dashed line. The effect of electric field on surfactant trans-

port is more prominent at smaller values of the electric field. The dynamic

interfacial tension curves under 0.2 and 0.4 kV/cm nearly overlap each other,

although slightly faster dynamics was observed under 0.4 kV/cm. Clearly, the

transport of OLOA to the Isopar-water interface is enhanced under electric

fields.

The dynamic interfacial tension of 3.25 × 10−4 wt% DR-L is shown in

Figure 6.4(b) under different electric fields. For this system, the pressure head

was initially maintained at 1500 Pa. A smaller pressure head generated a very

flat interface (R∗(t)/Rc > 2) during the initial few minutes of the dynamics,

which results in a large error in the measurement of the radius of curvature

of the interface. The equilibrium interfacial tension at this concentration is

17.5± 0.6 mN/m. In the figure, the dynamic interfacial tension data is shown

until an interfacial tension of around 30 mN/m. At this value, the radius of

curvature of the interface is very close to the radius of the capillary, and the

interface gets ejected from the capillary tip if the pressure head is not reduced.

Once this interfacial tension was reached, the pressure head was reduced to 750

Pa, and data was collected until the system relaxed to equilibrium. During the

first 100 s, the transport of DR-L was only slightly enhanced by the electric

field. Beyond this time, there is clearly an enhancement of the transport under

electric fields. Under a field of 0.4 kV/cm, the interfacial tension reduced to

35 mN/m nearly three times faster than under no applied electric field. This

observation is similar to the electric field-enhanced transport of OLOA 11000

and DR-L to the Isopar-DI water interface (Figure 6.4(a) and (b)).
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Figure 6.4: Dynamic interfacial tension of (a) 4.8 × 10−4 wt% OLOA 11000,
(b) 3.25 × 10−4 wt% DR-L and (c) 1.6 × 10−4 wt% R-M in Isopar-M. The
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In contrast, the transport of R-M at a concentration of 1.6 × 10−4 wt%

was not affected by the electric field (Figure 6.4(c)). The dynamic interfacial

tension curves obtained under all electric fields nearly overlapped each other.

The equilibrium interfacial tension at this concentration was measured to be

34.3± 0.8 mN/m. The equilibrium was found to be nearly independent of the

electric field, similar to measurements for the transport of OLOA 11000 and

DR-L to the Isopar-DI water interface (Figure 6.4 (a) and (b)).

To further illustrate the effect of electric field on surfactant transport, the

time taken for the interfacial tension to drop to half the interfacial tension of

pure Isopar-DI water and the steady state interfacial tension at a given sur-

factant concentration, t1/2, was plotted as a function of electric field. At the

surfactant concentrations shown in Figure 6.4, this interfacial tension corre-

sponds to a value of 35 mN/m for OLOA, 36.5 mN/m for DR-L and 43 mN/m

for R-M. The result, shown in Figure 6.5, clearly demonstrates that electric

fields enhance the transport of OLOA and DR-L to the Isopar-water interface,

but does not affect the transport of R-M at 1.6×10−4 wt%. A one-way ANOVA

test performed to establish the statistical significance verifies this conclusion,

with the results shown in Table 6.1. For the data taken under an electric field,

the time scale, t1/2 for OLOA transport shows a power-law scaling, with an

exponent of 0.4, as shown by the dashed line in Fig 6.5. On the other hand,

for DR-L, t1/2 decreases linearly as the applied field strength increases. An

explanation for the observed trend in the time scale would require a detailed

analysis of the adsorption isotherm, and is left as future work.

The electrical conductivity of Isopar-M as a function of the concentration

of the two rake surfactants was measured, and is shown in Figure 6.6, along

with the conductivity for OLOA in Isopar-M to compare to the previous chap-

ter. The conductivity was measured using a nonaqueous conductivity probe

(DT 700, Dispersion Technology). This instrument has a resolution of 10−13
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Figure 6.5: Time required for the interfacial tension to drop to half the inter-
facial tension of pure Isopar-DI water and the steady state interfacial tension.
The filled symbols on the left show the time under no applied field. The dashed
and dash-dotted lines are best fit lines to the data for OLOA and DR-L, re-
spectively. The dotted horizontal line shows the time is independent of the
applied field strength for R-M.

Table 6.1: Results of a one-way ANOVA test for the null hypothesis that
the time to reach half the interfacial tension of pure Isopar-DI water and the
steady state interfacial tension, t1/2, does not change under an electric field.

Surfactant F statistic p value

OLOA 11000 33.39 1× 10−8

DR-L 27.46 3.6× 10−6

R-M 0.64 0.603

S/m; however considerable noise was observed in the data at low surfactant

concentrations (< 10−3 wt%), where the measured average conductivity was

< 10−11 S/m and the standard deviation was 25−50% the average value. The

conductivity at these low concentrations is comparable to the measured con-

ductivity of Isopar-M with no added surfactant, which is shown by the filled

symbol on the left axis in Figure 6.6. At higher concentrations, the electrical
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conductivity of Isopar-M increases linearly with the concentration of OLOA,

both above and below the reported CMC in alkanes and alkane mixtures hav-

ing a composition similar to Isopar-M (5× 10−3− 1.68× 10−2 wt%)151,159; and

nearly as the square root of the concentration of DR-L. There is no significant

increase in the conductivity with addition of R-M. The conductivity increases

by factor of 2 at a concentration of around 10−2 wt%, however, further addition

of surfactant did not systematically increase the conductivity.
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Figure 6.6: Electrical conductivity of Isopar-M as a function of concentration
of added surfactant. Symbols denote experimental measurements, and the
dashed lines show the trend in conductivity with surfactant concentration.
The filled symbol on the left axis denotes the conductivity of Isopar-M with
no added surfactant.

An increase in electrical conductivity with surfactant concentration is in-

dicative of the presence of charged species, which is attributed to water-swollen

inverse surfactant micelles, or ionic impurities in oils sterically stabilized by

surfactants95,148,151,154,155,157–160. It has been suggested that in nonpolar liq-

uids, a distinct CMC may not exist, and aggregation of surfactant molecules

into micelles in nonpolar solvents may occur either at a distinct concentra-
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tion, or gradually over a range of concentrations, depending on the polarity

of the surfactant molecule163–166. A linear increase in conductivity with con-

centration can be explained by disproportionation of charge by the collision of

two neutral aggregates - inverse micelles, or complexes of ionizable impurities

with surfactant molecules95,148,151,157–160. An increase in conductivity as the

square root of concentration is attributed to partial dissociation of ion pairs,

and has been observed with dioctyl sodium sulfosuccinate (NaAOT) in hex-

adecane at concentrations below the CMC155. The structure of DR-L does not

suggest any ionizable group. Further, conductivity measurements and prelimi-

nary experiments done with dynamic light scattering (DLS) did not reveal any

distinct CMC. Hence, instead of determining the constituents of charges, we

conclude that addition of both OLOA 11000 and DR-L to Isopar-M gives rise

to charged species, most likely by different charging mechanisms. An electric

field will act on these species and give rise to an electrophoretic transport,

in addition to the diffusive transport of the surfactant from the bulk to the

interface. This manifests as an enhanced transport, observed in the dynamic

interfacial tension measurement for OLOA and DR-L (Figure 6.4 (a) and (b)).

The difference in the observed scaling of t1/2 with E∗∞ for these two surfactants

could also be attributed to their different charging mechanisms in Isopar-M,

as evidenced by the conductivity data (Figure 6.6).

Notably, the electrical conductivity of Isopar-M at the concentrations of

the three surfactants studied in Figure 6.4 is not statistically different from

each other, or from the conductivity of Isopar-M with no added surfactant. As

such, a measurement of the conductivity alone at these lower concentrations

would lead to a conclusion of the absence of charge carriers. The three surfac-

tants, however, show a different response under an electric field. In particular,

the field-enhanced transport of OLOA and DR-L are indicative of the presence

of charged species which respond to the applied field. This demonstrates that
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at low surfactant concentrations, a measurement of the dynamic interfacial

tension of oil-water interfaces under electric fields is a sensitive tool to detect

the presence of charged species in oils.

The conductivity of Isopar-M increased by a factor of 2 with the addi-

tion of R-M at a concentration of around 10−2 wt%. Although there is no

significant increase in conductivity with further increase in the concentration,

the dynamic interfacial tension for both R-M and DR-L was measured around

this concentration to check for field-enhanced surfactant transport. The re-

sults are shown in Figure 6.7 (a) for 1.3× 10−2 wt% DR-L and Figure 6.7 (b)

for 8 × 10−3 wt% R-M. For both these systems, the interfacial tension was

observed to relax to values < 10 mN/m. At these low interfacial tensions, the

constant pressure head, ∆P ∗ needs to be reduced to nearly 400 Pa, which is

around four times the accuracy of the pressure transducer. This compromises

the accuracy of the measured interfacial tension. Consequently, an equilib-

rium interfacial tension was not measured at these concentrations. Instead,

the dynamics of surfactant transport was probed till the interfacial tension

reduced to around 20 mN/m for the DR-L system, and 17 mN/m for the R-

M surfactant. The transport of both surfactants at the higher concentration

was faster for all fields when compared to experiments performed at a lower

concentration (Figure 6.4). This is in agreement with previous observations of

faster transport of surfactants from more concentrated bulk solutions, when

the transport is in the diffusion limited regime127,135. Further, even under no

applied field, the interfacial tension relaxed to the measured limits relatively

fast, at around 600 s for DR-L and 80 s for R-M. Given the narrow range in

time for the decrease in interfacial tension, rather than measuring the transport

over a range of different electric field strengths, experiments were performed

which started under no applied field. A field of 0.2 kV/cm was then applied

at 70 s for DR-L and 15 s for R-M, analogous to the experiments performed
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with OLOA in Isopar-M in the previous chapter. For both the surfactants,

the transport dynamics changed instantaneously with the application of the

field. The dynamic interfacial tension curve shifted from the curve obtained

under no field at all times to the curve obtained under 0.2 kV/cm at all times.

Another experiment was performed where the measurement was started under

0.2 kV/cm, with the field being switched off at 50 s for DR-L, and 8 s for R-M.

Again, for both surfactants, the dynamics changed at the instant the field was

switched off, and the dynamic interfacial tension curve shifted from the one

obtained under 0.2 kV/cm at all times to the one obtained under no field at

all times. For both DR-L and R-M, an electric field enhanced the transport

at these higher concentrations.

The enhancement in transport of the DR-L surfactant at the higher con-

centration is expected, given a similar observation at a lower concentration. It

can be explained by the electrophoresis of charge carriers under electric fields,

the presence of which was indicated by the increase in Isopar-M conductivity

with addition of DR-L (Figure 6.6). On the contrary, the transport of R-M,

which was not affected by electric fields at a lower concentration (1.6 × 10−4

wt%), was influenced at 8 × 10−3 wt%. A field-enhanced transport for R-M

was also observed at an even higher concentration of 1.6×10−2 wt%, but is not

shown here. The conductivity of Isopar-M remained relatively constant with

increasing concentration of R-M, until around 10−2 wt%, where the conduc-

tivity almost doubled. This, coupled with the observation of a field-enhanced

transport around a similar concentration suggests the presence of charged

species, which most likely can be attributed to surfactant aggregates148,154,158.

Although further addition of surfactant did not show a systematic increase

in the conductivity, previous studies have shown that the aggregation of sur-

factants to micelles in nonpolar liquids can occur gradually over a range of

concentrations, depending on the polarity of the surfactant163,166. The ten-
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Figure 6.7: Dynamic interfacial tension of (a) 1.3× 10−2 wt % DR-L and (b)
8× 10−3 wt % R-M in Isopar-M, performed under no field (◦), 0.2 kV/cm (�),
no field to 0.2 kV/cm (4) and 0.2 kV/cm to no field (�). The arrows indicate
the time when the field was switched on or off.

dency of surfactant aggregates to acquire charge and give rise to conductivity

was shown to depend on the size of the aggregates148, which in turn depends
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on the surfactant architecture167–169. Thus, the formation of charge carriers,

charging mechanism, and coupling of electric fields and surfactant transport

in nonpolar liquids depends on the polarity and architecture of the surfactant

molecule. The transport of surfactants to oil-water interfaces can be precisely

manipulated using electric fields at these concentrations where the surfactant

forms charged aggregates.

We reiterate that the measurement of solely the electrical conductivity

of Isopar-M doped with R-M would not detect charge carriers, especially at a

concentration of 8×10−3 wt% because the conductivity till this concentration

is not statistically different from the conductivity of Isopar-M with no added

surfactant. Measurements of the dynamic interfacial tension for these low

conductivity systems is a more sensitive technique to ascertain the presence

of charge carriers, and detect changes in charge carrier concentration with the

addition of small amounts of surfactant. It is still unclear how the concen-

tration of charge carriers, or the charging mechanism can be determined from

the dynamic interfacial tension data or the observed scaling of t1/2 with E∗∞

obtained from these experiments. Nevertheless, dynamic interfacial tension

measurement under electric fields shows promise to understand charging in

nonpolar media, particularly at low surfactant concentrations.

6.3.2 Transport of ionic surfactants in aqueous phase

Next, the transport of the cationic surfactant CTAB from the aqueous phase

to the oil-water interface was studied under electric fields. A 3.64× 10−4 wt%

concentration of the surfactant was prepared in a solution of 5.84× 10−2 wt%

sodium chloride. The result is shown in Figure 6.8. The interfacial tension

relaxes to an equilibrium of 34.5 ± 0.7 mN/m, indicated by the dashed line.

Evidently, the transport of the cationic CTAB does not depend on the electric
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field. The electrical conductivity of deionized water is nearly O(106) larger

than Isopar-M. Adding salt further increases the conductivity. Due to the

large difference in conductivity, the aqueous phase can be considered to be

a conducting fluid. The electric field inside the aqueous phase scales as the

ratio of conductivity of the oil to aqueous phase, and is nearly zero22. Thus,

although cationic surface active species are present in the aqueous phase, there

is no electric field to drive the charged species to the interface. As a result,

the transport of surfactants from an aqueous phase to oil-water interfaces is

not affected by an electric field. This further verifies that the enhancement in

transport observed for oil-phase surfactants is caused by the electrophoretic

motion of charge carriers.
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Figure 6.8: Dynamic interfacial tension of 3.64×10−4 wt% CTAB in 5.84×10−2

wt% sodium chloride. The dashed line represents the equilibrium interfacial
tension.
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6.3.3 Equilibrium interfacial tension

Finally, the effect of electric field on the equilibrium interfacial tension at the

Isopar-DI water interface was measured. The result is shown in Figure 6.9

for OLOA 11000, DR-L, R-M and CTAB at a given concentration for electric

fields of up to 0.4 kV/cm. A one-way ANOVA test (Table 6.2) shows that

the value of the F statistic is O(1), and the p value is > 0.05 for all four

surfactants. Hence, it follows that the equilibrium interfacial tension does

not change under an applied electric field of up to 0.4 kV/cm. Although a

full adsorption isotherm was not measured, we conclude that the isotherm

parameters do not change under electric fields.
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Figure 6.9: Equilibrium interfacial tension of the surfactants plotted as a
function of the electric field strength. The dashed line denotes the interfacial
tension of an Isopar-DI water interface in the absence of added surfactant.
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Table 6.2: Results of a one-way ANOVA test for the null hypothesis that the
mean equilibrium interfacial tension does not change under electric field.

Surfactant F statistic p value

OLOA 11000 0.65 0.5823

DR-L 2.17 0.1265

R-M 0.95 0.4627

CTAB 0.38 0.7

6.4 Conclusion

The transport of surfactants which form charged aggregates in nonpolar liq-

uids is enhanced to oil-water interfaces under electric fields. The accelerated

transport occurs due to the electrophoretic motion of the charged species un-

der electric fields. The formation of charge carriers and the charging mech-

anism depends on the concentration, polarity and architecture of the surfac-

tant molecules. Two surfactants with different architecture were dispersed in

Isopar-M, and the transport was measured to an Isopar-water interface. The

DR-L surfactant, having a double rake morphology showed a field-driven trans-

port at both concentrations studied, analogous to the field-enhanced transport

of OLOA reported in the previous chapter. The R-M surfactant, with a rake

morphology showed a field-enhanced transport at the higher concentration

studied, and a field-independent transport at the lower concentration. The

transport of ionic surfactants in the aqueous phase was not influenced by an

electric field. The electric field in the aqueous phase is nearly zero due to the

large electrical conductivity of the aqueous phase compared to the oil phase.

This further verifies that the field-enhanced transport for the oil-phase surfac-

tants is due to electrophoresis of charged species. The equilibrium interfacial

tension did not change on the application of an electric field, suggesting the
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surfactant adsorption isotherm is not a function of the electric field.

At low surfactant concentrations, the electrical conductivity of oils is very

small. The sole measurement of the electrical conductivity could erroneously

suggest the absence of charged species in the nonpolar phase. We show that

at these low concentrations, measurement of the dynamic interfacial tension

of an oil-water interface under electric fields is a sensitive tool to detect the

presence of charge carriers, which would go unnoticed by conductivity mea-

surements. Notably, surfactants with different charging mechanisms show a

different dynamic response to the electric field. It remains to be determined

how the concentration of charge carriers, or the specific charging mechanism

can be determined from the dynamic interfacial tension data. Measuring the

adsorption isotherm to obtain pertinent length scales for surfactant transport,

and a rigorous analysis of the time scale to reach half the clean interfacial

tension and equilibrium interfacial tension value might offer useful informa-

tion. The charging of nonpolar phases at high surfactant concentrations, where

electrical conductivity can be confidently measured is relatively well explored,

but charging at low surfactant concentrations could potentially be understood

through dynamic interfacial tension measurements under electric fields.

Electric fields also show promise as a robust tool to selectively manipu-

late surfactant transport to oil-water interfaces. For example, in a dispersion

containing both DR-L and R-M, the transport of DR-L can be preferentially

enhanced by switching on an electric field, provided the concentration of R-M

is low. A careful molecular design of surfactant to control the range of concen-

trations where the surfactants form aggregates and acquire charge will enable

precise and selective manipulation of the transport of oil-soluble surfactants

using electric fields. Moreover, electric fields selectively act on surfactants in

the oil phase. Hence, these fields could be employed to preferentially transport

oil-soluble surfactants to oil-water interfaces in applications where surfactants
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from both the aqueous and oil phase are adsorbing to the interface. The

application of electric fields to surfactants dispersed in oil provides us with

an opportunity to precisely and selectively manipulate transport, and further

understand charging in nonpolar media.



Chapter 7

Conclusions

We have quantified the response of liquid drops, and surfactant transport to in-

terfaces, under electric fields. The response of the drops encompasses transient

deformation and identifying the critical condition and mechanism of breakup;

and quantifying surfactant transport entails measuring the dynamic interfacial

tension. In chapter 2, we highlighted that surface charge convection reduces

critical field strength for breakup, and changes the breakup mechanism of

leaky dielectric drops from end-pinching to breakup via conical ends. In chap-

ter 3, we demonstrated that fluctuations in the external electric field increases

the average drop deformation, reduces the time for breakup, and broadens the

transition from steady state to breakup. In chapter 4, we documented that

small amounts of soluble surfactant added to a drop phase can greatly affect

the viscosity of a dilute emulsion of such drops for certain regimes of surfac-

tant transport and depletion. In chapter 5, we demonstrated that electric fields

can be used to precisely manipulate the transport of oil-soluble surfactants to

oil-water interfaces. In chapter 6, we established that the measurement of

dynamic interfacial tension under electric fields is a sensitive technique to de-

tect the presence of charged species in nonpolar phases, particularly at low

surfactant concentrations.

145
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7.1 Impact

To design a system and select operating conditions, an engineer needs to know

the system response under different operating conditions, and understand the

tools that can be used to manipulate the process. In our computations to

predict the drop response under a uniform and random electric field, we have

provided phase maps in the space of relevant dimensionless parameters for the

final state of the drop. We explain the different modes of breakup and a tran-

sition in the breakup mechanism observed for weakly conducting drops. If the

effect of surface charge convection is neglected while modeling these systems,

the engineer might choose a certain operating condition expecting breakup via

end-pinching, but end up with much smaller drops during the process, due to

conic cusping. We demonstrate that fluctuations in the external field, caused

by drop interactions or disturbances in operating conditions can result in bi-

modal states of drop deformation, and result in breakup at sub-critical fields.

In electrocoalescers, the operator might decide to use a high, but sub-critical

field strength to maximize drop collisions and separation efficiency. However,

due to field fluctuations caused by interacting drops, one may end up with a

more emulsified system instead of achieving coalescence and separation. The

operating phase maps presented in this thesis will provide guidelines on the

parameters that can be tuned to yield a desired drop response in devices.

The control of surfactant transport to interfaces is central to formulation

design. We establish, using the electrified microtensiometer, electric fields as

a new tool that can precisely and selectively transport surfactants at oil-water

interfaces. For surfactants forming charged aggregates in the oil phase, turning

an electric field on will accelerate the surfactant transport to an interface.

This can be exploited to understand charging in nonpolar media. The electric

field-induced enhancement in transport is more precise than using an external
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flow field because electric fields can be scheduled instantaneously. Moreover,

the field-enhanced effect solely affects transport in oil phases. In systems

where multiple surface active species are adsorbing to an interface from both

an oil phase and the aqueous phase, electric fields can be used to control

the composition of the interface. A surfactant-laden interface has a specific

rheological response; thus, by controlling the species and amount of surfactant

at an interface, we can engineer interfaces with a specific interfacial mechanics.

The work presented in this thesis is a significant step forward in under-

standing the electrohydrodynamics of surfactant-laden interfaces, and devel-

oping tools to manipulate surfactant transport to interfaces.

7.2 Future work

We have the skills and tools to further develop the subject of surfactant-laden

interfaces under electric fields. The results in chapters 5 and 6 have shown

that electrophoresis of charged, surface active aggregates results in an en-

hanced transport to interfaces. More specifically, in chapter 6, we have shown

that the coupling of surfactant transport to electric fields depends on the sur-

factant architecture, and can be used to detect the presence of charge carriers

in the oil phase. An accurate determination of the electrophoretic time scale

(tE = 6πhsµol/qE
∗
∞) will help us understand better which surfactant or sys-

tem feature needs to be altered to evoke a specific response. The first step to

determine this is to measure the adsorption isotherm of surfactants, which en-

ables calculation of the depletion depth, hs. By choosing different surfactants

and electric field strengths, we can obtain a range of tE, and thus the electric

Peclet number PeE, and analyze how this affects the coupling between electric

fields and surfactant transport. Another means to change PeE is to control

the charge of the surface-active species. Surface-active ionic liquids172,173 hold



CHAPTER 7. 148

promise as candidates for charged surfactants in oil phases. The charging

mechanism for these surfactants are likely different from the surfactants used

in this work. Hence, studying the transport of these surfactants will also

elucidate how the charging mechanism influences surfactant transport under

electric fields.

From a more applied perspective, the transport of multiple surfactants

to an interface can be studied, where electric fields can be used to guide a

desired surfactant preferentially to the interface. The results in chapter 6

demonstrate that electric fields selectively enhance the transport of surfactants

in the oil phase, but do not influence the transport of even ionic surfactants

in the aqueous phase. In a system where surfactants from both an oil and

aqueous phase are adsorbing to an interface, electric fields can be used to

rapidly transport the oil-soluble surfactant to the interface. By controlling

the time and duration of application of the field, one could engineer interfaces

having different chemical compositions, resulting in interfaces with distinct

interfacial mechanics. Further, instead of using a constant electric field, the

effect of a time-varying field could be probed, as this is more relevant to

electrocoalescence3,4.

Chapter 6 also shows that interfacial tension measurements are a more

sensitive tool to determine the presence of charged species in a nonpolar

medium. A theoretical or computational model to analyze the transport of

surfactants under electric fields might be useful to estimate the charge or con-

centration of the charge carriers. One approach could be to assume a certain

charging mechanism, and solve for the mass transport of the surface active

species using a diffusion model, along with electrophoretic transport of the

species under electric field. This needs to be solved in conjunction with the

equation of state and adsorption isotherm to predict the dynamic interfacial

tension. Data from experiments can first used to obtain the equation of state
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and adsorption isotherm, and then be directly compared to the prediction

from the model. The charge and concentration of the species can be obtained

as fit parameters.

Finally, a new direction for the field is to account for the solubility of sur-

factant or interfacial rheology, or both, in developing computations for drop

deformation. This would first require measuring the interfacial mechanics un-

der electric fields to ascertain if electric fields change interface moduli. Effects

of interfacial rheology will manifest in the interfacial stress balance conditions.

Understanding how the mechanics of the interface affects drop deformation and

breakup will be useful in informing the design of both materials and operating

conditions of electrocoalescers and electro-emulsifiers.



Appendix A

Convergence tests for chapter 2

Here, we present a convergence analysis to select the number of elements, N ,

into which the top half of the drop is partitioned, and the time step size, ∆t.

For this analysis, we select the first PRA drop with (M,S,R) = (1, 1, 0.05)

at CaE = 0.28 and ReE = 0.15. We test three values each for N and ∆t.

The results of the computations for the different cases are shown in Figure

A.1. Changing the values of N or ∆t does not significantly alter the result.

Moreover, all the values tested predict the formation of conical tips to be the

mode of breakup, confirming that this is not a numerical artifact. We fixed

N = 150 and ∆t = 0.05 in all the computations presented in the main sections

of the paper.
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Figure A.1: Convergence results for a PRA drop with (M,S,R) = (1, 1, 0.05)
at CaE = 0.28 and ReE = 0.15. Deformation of the drop as a function of the
dimensionless time for (a) different values of N at ∆t = 0.05, and (b) different
values of ∆t at N = 150. Drop shapes before breakup for (c) different values
of N at ∆t = 0.05, and (d) different values of ∆t at N = 150.



Appendix B

Convergence tests for chapter 3

Here we present a convergence analysis to select the number of nodes, N , into

which the top half of the drop is partitioned, and the time step size, ∆t. For the

system considered here, (M,S,R) = (1, 8.16, 5.1×10−10), and the convergence

tests were performed for a uniform D.C. electric field at CaE = 0.24. The

results are shown in Figure B.1. Increasing N beyond 150, and reducing

∆t below 0.02 does not significantly change the predicted final deformation

before breakup. Moreover, all the chosen N and ∆t predict breakup with the

formation of pointed ends, confirming that this is not a numerical artefact. In

all our computations, we fixed N = 150 and ∆t = 0.02.
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Figure B.1: Convergence results for the system under a constant electric field
at CaE = 0.24. Final deformation before breakup for (a) different values of N
at ∆t = 0.02 and (b) different values of ∆t at N = 150.



Appendix C

Coefficients of the O(Pe) solution

Below are the expressions for the coefficients A, B andDi of theO(Pe) solution

to the bulk surfactant concentration, interface surfactant concentration, and

the flow field inside and outside the drop (equations (4.25) - (4.30)):

A =
3hΓ0

2(λ+ 1)

[
1 +

3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

]−1
(C.1)

B =
Γ0Dr

2(λ+ 1)

[
1−

{
1 +

3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

}−1]
(C.2)

D1 =− 21Γ0DrMa(1 + Γ0 + Γ2
0)

10(λ+ 1)2

[
1−{

1 +
3{2 + hDa(1− Γ0)}
DaDr(C0 + k−1)

}−1]
(C.3)

D2 = −D1

7
(C.4)

D3 =
2

7
D1 (C.5)

D4 = − 5

21
D1 (C.6)
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