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Abstract
How can we model user behavior on social media platforms and social network-

ing websites? How can we use such models to characterize behavior on social media
and infer about human behavior and preferences at scale? Specifically, how can we
describe users that indulge in posting about risk-taking behavior on social media or
mobilize against a particular entity in a firestorm event on Twitter?

Online social network platforms (e.g. Facebook, Twitter, Snapchat, Yelp) pro-
vide means for users to express themselves, by posting content in the form of images
and videos. These platforms allow users to not only interact with content (liking,
commenting) but also to other users (social connections, chatting) and items (through
ratings and reviews), thus providing rich data with huge potential for mining unex-
plored and useful patterns. The availability of such data opens up unique opportuni-
ties to understand and model nuances of how users interact with such socio-technical
systems, while also contributing novel algorithms that can predict genuine user be-
havior and also detect malicious entities at such a large scale.

In this dissertation, we focus on two broad topics - (a) understanding user behav-
ior on social media platforms and (b) detecting fraudulent activities on these plat-
forms. For the first part, we concentrate on user behavior in two different settings -
(i) individual user behavior, where we analyze behavior of actions taken at individual
scale for example modeling how does individual’s expertise in e-commerce systems
(such as wine rating, movie rating) evolve over time? and how can that be used to
recommend the next product? The second sub-part (ii) focusses on user-based phe-
nomena, where multiple users are analyzed collectively to discover an interesting
phenomena, for example what are the characteristics of communication pattern be-
tween users participating in a firestorm event. In the second setting, we tackle the
problem of detecting fraudulent activities on social media platforms. We solve two
related sub-themes in the problem area, in the first sub area, we characterize vari-
ous fraudulent activities on social media platforms and propose anomaly detection
models to identify fraudulent users and activities. For the next sub-area we pro-
pose models that are not only confined to social media platforms, but can also be
extended to general settings. Overall, this thesis looks at two closely related prob-
lems i.e. modeling user behavior on social media platforms, and then using similarly
generated models to detect abnormal and potentially fraudulent behavior.
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CHAPTER 1

INTRODUCTION

Online social networking platforms (e.g. Facebook, Twitter, Snapchat, Yelp) provide means for
users to express themselves, by posting content in the form of images and videos. These plat-
forms also allow users to interact with content (liking, commenting), other users (social connec-
tions, chatting) and also the items (through ratings, and reviews). These social systems, besides
pumping in billions of dollars of value to the economy, has also affected contemporary modern
society. The importance of such systems can be seen in various spheres of human life such as
political, economic and social. All such social systems store each interaction occurring on their
platform, including all types of users’ interaction with any other element (users, items, ratings,
comments, etc.) on the platform. Storing these interactions provides us with huge and rich data,
which before existence of these platforms was rarely available.

Such type of rich data is not only limited to social networking systems, but exists on other
platforms as well. For example, even in healthcare systems, a patient’s medical diagnosis, drug
administered, etc. are stored and could be leveraged for developing insights into epidemics or
disease trajectory patterns. Another example is software development platforms, where multi-
ple users might collaborate with each other by posting their software code to repositories, and
insights derived from data could be used to make the platform more efficient for collaborations.
Other potential interesting domains where such platforms which capture rich data might exist
include financial domain (Robinhood, Venmo), e-commerce systems (Amazon, iTunes, Google
Play), livestreaming services (Twitch, YouTube Live), taxi-sharing systems (Uber, Lyft), vaca-
tion rental services (AirBnB) and many others.

Availability of such rich data at large scale for platforms that are governing key aspects of
human life provides us a unique opportunity for identifying various previously unexplored and
useful patterns. One key application of exploring interesting patterns in this data lies in the
field of computational social science. The existing sociological theories were developed over a
small sample of humans and it is uncertain as to how they scale given such rich longitudinal data
for different platforms. The availability of the interaction data allow us to argue about human
behavior through the lens of these omnipresent social and technical systems. Mining useful and
interesting patterns is also crucial to the platform owners as well. Their goal is to ensure that
users remain engaged and keep using the system. Discovery based on how users are using the
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system can allow the platform owners to redesign and introduce features which can increase
longevity of users on the platform.

A crucial application for discovering patterns of how users use the given systems is that it
allows us to generate models for normative behavior, which in turn could be leveraged to create
anomaly detection models. These models could be used to identify instances of fraudulent
behavior on these platforms, thus ensuring that systems are working and being used as they were
intended to be.

My thesis focuses on the following questions, all of which are fundamental to understand and
improve the use of such large social platforms:

• Q1. Characterizing User Behavior: How can we model user behavior on social media
platforms?

• Q2. Anomaly Detection: How can we differentiate the genuine user behavior from the
deviant user behavior? and further, identify suspicious/malicious actors?

These questions are closely related and are two faces of the same coin. Modeling user be-
havior on social networks helps in understanding the normal usage patterns on these platforms,
which are crucial to identify the deviation from this behavior, and hence identify suspicious
actors exhibiting anomalous behavior.

1.1 Overview and Contributions

1.1.1 Characterizing User Behavior
Large scale online platforms, such as Facebook, Twitter, Github provides us with an unprece-
dented opportunity to study user behavior on these platforms at this scale. The rise of such
platforms and growth in their membership offers us not only breadth of the data that we can
analyze (i.e. multiple different interactions) but also depth (i.e. analyzing the interactions over a
long time). As mentioned earlier, such rich data can be leveraged for both (i) testing and verify-
ing previously limitedly tested sociological theories, and (ii) provide redesign recommendations
and interventions to the platform owners. For this part of my thesis, I study various social and
recommendation platforms, including Twitter, BeerAdvocate, RateBeer, Snapchat. Further, we
segment this part of thesis into two parts. The first part deals with topics related to the dynamics
of user-based phenomenon, where we concentrate on how users collectively are part of a certain
phenomenon on online social platforms. For first part, we characterize such observed user based
phenomena on online platforms, and discover interesting patterns. In the second part, we con-
centrate not on the phenomena but on the individual entities that is the user, itself. For this part,
we concentrate on behavior that is individual centric, and not the overall phenomena they might
be exhibiting.

An interesting phenomena that exists on social media is firestorms i.e. a large amount of
negative attention directed at a particular entity in relatively short time. This negative attention
is generally due to some real-world event. In Chapter 1, we study if there is an impact of such
firestorms. We ground this problem in a social science theory on biographical consequences of
activism and study the mention networks formed during the firestorm. We were also interested in
understanding the demographic distribution of geocoded users on Twitter. In Chapter 2, we con-



ducted an analysis on US geotagged tweets, and correlated it with the demographic information
obtained from census data.

Online social media platforms often provide users with a way to express themselves. How-
ever, in certain situations, users often ending up participating in dangerous risk-taking activities
in offline world and post it online. We studied this behavior and presented models for identi-
fying such posts on social media. First, we focussed on characterizing and detecting dangerous
selfies in chapter 3. In Chapter 4, we concentrate on detecting distracted driving posts on social
networks. We propose multiple classifiers to detect both such phenomena. We use the proposed
classifiers to detect such dangerous content and then discover interesting insights about the en-
tire phenomena. Most of the recommender systems capture user preferences and item facets,
and some recent models also capture the temporal nature. However, one thing that has not been
accounted for is the individual expertise of the users. An individual’s taste might develop, and
hence their preferences towards certain items might change. In Chapter 5, we propose a recom-
mender system that captures individual expertise into account, while recommending products.

Contributions: In [160], we study and model the change in conversation network of participants
when they participate in a firestorm on Twitter. We discover that the mention network before and
after the firestorm are very similar to each other and very distinct from the week of the firestorm.
We further corroborate this observation via means of testing network level statistics. Using so-
ciological theory on biographical consequences of activism, we conclude that the firestorms on
Twitter does not have a lasting effect. In [188], we study how does demographics of a certain
region affect the amount of geospatial data created on Twitter and how can demographics be
used to estimate this number for every census tract in the US. We discover that our model involv-
ing various census demographic variables explains 40% of the variance. In [161], we analyze
the users who participate in voluntary risk-taking activities such as clicking dangerous selfies,
exposing themselves to potential physical harm. We propose multimodal deep-learning models
to predict if a particular selfie is dangerous or not, and achieve upto 82% accuracy. Continuing
the voluntary risk-taking activities, in [164], we propose a deep learning classifier to identify
distracted driving videos posted on online social media platform. We are able to achieve 92%
accuracy and identify the distracted driving content posted over entire month of data. We use this
data to argue about the cities in which such behavior is predominant. Additionally, we also model
the individual users and how do they gain experience in review websites using their ratings and
review text and use it to recommend products to users taking into account their expertise [209].
We achieved mean square error of 0.309 on RateBeer dataset, outperforming other baseline algo-
rithms. Similar results are obtained for other domain datasets such as BeerAdvocate, NewsTrust,
Amazon and Yelp.

Impact:

1. [160] won the Best Student Paper award at ASONAM, 2015.

2. [161] has been covered by more than 100 media outlets.

3. [161] has also been mentioned in numerous talks and educational programs conducted for
high schools in India, and also provided content for a TEDx talk on the same topic.

4. Prior work to [188], [159] done by same authors, was runner up for SBP Data Challenge.



5. [188] is one of the top cited papers in ICWSM 2015, having >80 citations.1

1.1.2 Anomaly Detection
Recently, these systems have been a target of abuse and fraud, which have resulted in major
societal implications. For example the growth in the number of fake reviews, fake news, fake
accounts has had implications on both the political and commercial facets of society [152]. De-
tecting such fraudulent activities has become is crucial for the society as well because of it’s
widespread effect on its workings. It is also equally important for web platforms to get rid of
the fraudulent activities on their websites to ensure that they work as they were intended to and
assure users of the trustworthiness of the platforms.

Fraud on Twitter has been widely studied, with special emphasis on catching fake followers.
However, there exist underground services that provide fake followers to paying customers. In
Chapter 6, we study multiple fake follower services and characterize the type of fake followers
in terms of their attributes they provide. Another similar type of market exist for providing fake
views to multimedia content. In Chapter 7, we study dwell time engagement patterns of views.
We propose parametric, interpretable models that not only help us understand normative en-
gagement behaviors but also identify fraudulent engagement. In Chapter 8, we study fraudulent
behavior in chatrooms of livestreams. We propose two-stage model to first identify chatbotted
livestreams, and then subsequently detect chatbots participating in those livestreams.

In Part V, we propose methods that are not specific to social network data but can be extended
to other settings. The popular methods for detecting lock-step suspicious behavior outputs a
block of users and their corresponding activities that are considered suspicious. However, none
of these methods provide a way to individually rank these entities based on their participation in
such lock-step behavior. In Chapter 9, we present a method to do this. We further also show-
case how different temporal features can be generated and used in fraud detection methods. An
important question is what to do with the ranked list of suspicious entities that is often provided
by any fraud detection algorithm. In Chapter 10, we propose a framework, where expert goes
through the list of anomalies and provides feedback. Our framework, uses this feedback to rerank
anomalies increasing precision and decreasing expert’s effort for providing feedback.
Contributions: In the second part, we propose methods for identifying and detecting malicious
actors on social media platforms. Further, we also propose anomaly detection models which
are not confined to such platforms and can also be used for any general data. We analyze the
underground Twitter follower market, discovering different types of link-fraud, and proposed
“hard to game” features to successfully detect customers of such market [255]. The proposed
method outperforms other baseline feature models with 0.98 precision and 0.95 recall. Contin-
uing the work on detecting fraudulent engagement, we propose interpretable models for dwell
time engagement on multimedia content posted on online social media platforms, and then use
those models to identify fraudulent engagement [158]. The entire end to end methodology is
shown in Figure 1.1, where we first propose individual parametric and interpretable models for
characterizing each piece of content posted. In the next step, using copula fusion approach, we
jointly model the parameters obtained from individual modeling of all the content samples in our

1As reported by Google Scholar on Nov 1, 2019



(a) Individual models (b) Group modeling (c) Anomaly detection

Abnormal 
Short Views

Late Peak 

Abnormal 
Short Views

Abnormal 
Full Views

Majority Full 
Views

(d) Dwell time anomalies

Figure 1.1: Proposed method [158] proposes (a) state-of-the-art parametric models for individual
sample dwell times for content which closely mirror empirical data, (b) flexible copula modeling
of aggregated multivariate parameter fits, (c) utilization of aggregate models for detecting dwell
time engagement anomalies which (d) reflect abnormal behaviors radically inconsistent with
most samples.

dataset. Finally, we use the joint model to identify anomalies, some of which we show in the
rightmost panel of the figure. We show that the proposed models are robust to synthetic attacks
of various types achieving high AUC greater than 0.9 and was able to successfully detect notable
cases of fraud.

In [127], we work on the problem of detecting chatbots on livestreaming platforms. We
propose a two stage detection mechanism where we first detect chatbotted streams and then work
on detecting constituent chatbots in those streams. Our proposed method has a 97.4% precision
over other baseline methods. For methods extending beyond social networks, we specifically
analyzed group-level fraudulent activities, where users often collaborate with each other to attack
machines, products (bringing the rating down), act as fake followers for an account. We proposed
an individual level scoring mechanism to score each actor based on their participation levels in
multiple such attacks [163]. We showed near perfect precision and recall over multiple datasets.
In [157], we proposed a framework that takes into account human feedback to improve anomaly
detection algorithms, while decreasing the human effort to provide feedback. We have also
proposed models for identifying insider threats based on modeling activity sequences on user
interaction with underlying software architectures [162]. We were able to outperform the existing
baseline methods in both reducing false positive rate and also reduce the expert effort of labeling.
Impact:

1. [157] won the Best Research Paper award at SDM, 2019

2. [157] has featured in KDD 2019 tutorial on rare category exploration.

3. [163] has been downloaded 1.9K times.

4. [163] has been mentioned in keynotes at HotSOS 2016

1.2 Thesis Organization
This document is structured as follows: In Chapter 2, we provide the basic background informa-
tion for commonly used ideas and techniques in this thesis. In the next 2 parts (II,III), I present



my work related to user behavior characterization on social media platforms). Following which,
I present my work on anomaly detection (IV,V). Finally I present conclusions and directions of
future work in Part VI.

On social media platforms, users generally participate in a movement or a phenomena col-
lectively. We try to characterize such user-based phenomena, where we are interested not in
the individual users but the collective behavioral patterns observed. The user-based phenomena
on social media is presented in Part II. This is different from the cases where it is more rele-
vant to model individual users themselves, and understand their behavior. We study and model
individual user behavior and present it in Part III.

In this thesis, we propose models and algorithms that detect fraudulent or anomalous activity
on social media platforms. For these methods, we leverage a certain type of activity or features
that are characteristic of the social media platforms, or the social media domain in general. We
present this in Part IV. However, we also propose algorithms that can be applied to multiple
domains, and not just necessarily social media domain. We present such methods in Part V.

Table 1.1: Overview of Thesis Structure

Modeling User Behavior on Social Technical Systems
Understanding User Behavior Anomaly Detection

User based
Phenomenon

(Part II)

Individual User
Modeling
(Part III)

Fraud in Social Media
(Part IV)

Beyond Social Media
(Part V)

Ch. 1 Understanding
firestorms [160]

Ch. 3 Detecting
dangerous selfies [161]

Ch. 6 Faces of Link
Fraud [255]

Ch. 9 Individual
Scoring in Group

Fraud [163]

Ch. 2 Measuring bias
in geocoded
tweets [188]

Ch. 4 Detecting
distracted driving

behavior [164]

Ch. 7 Modeling dwell
time fraud

engagement [158]

Ch. 10 Incorporating
Human Feedback in

Anomaly
Detection [157]

Ch. 5 Modeling user
experience for

recommendation [209]

Ch. 8 Detecting
chatbots on

Livestreaming
platform [127]

An overview of papers covered in this dissertation is shown in Table 1.2.
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CHAPTER 2

PRELIMINARIES AND BACKGROUND

We begin with an overview of platforms, notations and concepts that we will use through the
entire document. We will provide further necessary details, if needed, in each chapter.

2.1 Online Social-Technical Platforms

The thesis is focussed on characterizing and modeling user behavior on social and technical on-
line platforms. Hence, we start by defining the various social media platforms we use throughout
the thesis. We first focus on specific social networking platforms, and then give brief description
of various other type of platforms.

Online Platforms: For this document, we define an online platform is a online website where
users can interact with other users, or other elements (often representing another entity in offline
world).

Facebook: Facebook is an online social networking platform, where users connect with
other users forming friendship links. Users can post text, images and videos, which can be liked
or commented on by other users on the plaform. Further, Facebook also has pages (generally
referring to an organization) and groups, which can also create and post content.

Twitter: Twitter is a microblogging service, which is primarily used by it’s users to update
their peers through character limited text and images. Twitter is arguably also used to receive
news [153], and follow high-profile celebrities. Twitter allows for directed relationships i.e.
follower/followee relationship implying that it is not necessary for you following a user means
the user also follows you back.

Twitch: Twitch is a livestreaming social platform, which is used to watch and stream broad-
casts.Twitch is generally used by users to stream their gameplay or their lives, or lectures. Be-
sides the broadcast, Twitch also allows the viewers to engage in conversation over the stream
content through their chatstreams.

Snapchat: Snapchat is a messaging application that is used to share photos, videos and text.
The major feature of Snapchat is that the content shared on the platform is ephemeral i.e. it
will automatically get deleted after viewing or user defined timelimit. Snapchat also allows for
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directed relationships i.e. followers/ followee relationships. Besides messaging, Snapchat also
has a map-based feature called SnapMaps, where users can anonymously share their content with
location information, which appears on the map accessible by all users on the platform.

E-commerce systems: An e-commerce system (electronic commerce) allows users to sell or
buy products and services using a web based platform or a mobile application. These systems
generally allow users to also rate or review their purchases or products through text, images and
ratings. Examples of such system includes Amazon, Flipkart, Software Marketplace.

Online Rating system: An online rating system is very similar to e-commerce system, major
difference being that the platform itself does not allow for purchasing or selling of products.
Examples of such system include BeerAdvocate, RateBeer, Netflix, and Yelp.

2.2 Graphs
One of the key data structure used prominently in the thesis is a graph. A graph is broadly
defined as a set of nodes (also called as vertices) V and a set of edges E that connect nodes. In
our examples, nodes are often used to represent users or items, and edges are between different
users, or users and items and denote interactions in various forms.

Undirected graphs: The undirected graphs are used to define symmetric relationship be-
tween nodes. An edge exists between u ∈ V and v ∈ V if (u, v) ∈ E or (v, u) ∈ E . Examples
include friendship graph on Facebook, where the connection between nodes imply friendship
and edge exists only if both nodes agree of the friendship.

Bipartite graphs: A bipartite graph is a graph that is use to map the relations between two
disjoint and independent set of vertices U and W . We modify the previous graph notation in
case of a bipartite graph as follows: G = (U ,W , E). The two disjoint sets of nodes U and W
are generally nodes of different classes, i.e. V = U ∪ W and U ∩ W = ∅. As such edges in a
bipartite graph can be represented as, E = {(u, v) | u ∈ U , v ∈ W}. Such bipartite graphs can
be used to represent multiple online interactions such as users buying products on e-commerce
websites such as Amazon, users liking pages on social media websites on social platforms like
Facebook, users reviewing restaurants on reviewing services such as Yelp.

Directed graphs: A directed graph is used to represent data in applications where rela-
tionship between nodes is not symmetric. For example, on Twitter, following relation is non-
symmetric i.e. user A follows user B but that does not mean that user B does not follow user
A. Edges in a directed graph, unliked undirected graphs, are an ordered pair of vertices, where
(u, v) ∈ E does not imply that (v, u) ∈ E .

Subgraphs: A subgraph is only part of a graph that is defined over a subset of nodes and
edges in the entire graph. Given a subset V ′ ∈ V , we define the induced subgraph G ′ = (V ′, E ′) ⊆
G where E ′ = {(u, v) ∈ E | u, v ∈ V ′}. A subgraph is a graph which contains the all nodes in
the subset V ′ and all edges between these nodes.

Graphs as matrices: Graphs can be represented in the form of adjacency matrices. A uni-
partite graph G can be represented by X ∈ Rn×n where n is the number of vertices in G:

Xu,v =

{
1, if (u, v) ∈ E
0, otherwise



Figure 2.1: Illustration of a 3-mode Tensor X having dimensions I1× I2× I3, with a sub-tensor
Y .

A graph will be undirected if Xu,v = Xv,u∀{(u, v) | u ∈ V , v ∈ V}.
Similarly, a bipartite graph, G = {U ,W , E} can be represented by X ∈ Rn×m where |U| = n

and |W| = m.

Xu,v =

{
c((u, v)), if (u, v) ∈ E
0, otherwise

where c((u, v)) capture certain descriptive property (ratings, strength, count) of the edge.

2.3 Tensors
Another mathematical structure, we use extensively is tensor. We here discuss the basic definition
and notations related to tensors.

Tensor: A tensor is a multi-dimensional array of entries. The order is defined as the number
of dimensions, also called modes. Consider an N -order (or N -way) tensor X of size I1 × I2 ×
· · · × In. Each entry indexed by (i1, . . . , in) can be denoted by xi1,...,in . Each index in runs from
1 to the maximum length of the mode i.e. In. In is also known as the dimensionality of mode
n. Figure 2.1 shows an illustration of a tensor. A tensor is a useful mathematical tool used to
represent multidimensional data efficiently.

Sub-Tensor: A N -order subtensor Y of N -order tensor X is obtained by removing certain
slices from X .

Examples: To explain the applicability of tensor, we give certain ways a tensor can be used
to formulate interesting concepts in various domains.

• Social Network Friendships: A 3-order tensor X of the form user×user×date can be
used to represent as to on what date two users became friends. Each cell of the tensor has
the value xi1,i2,i3 , which is set to 1 if i1-th user became friends with i2-th user on i3-th date.

• E-Commerce: A 3-order tensor X of the form user×product×date can be used to repre-
sent on what date does a user buys/reviews/rates a product. Each cell of the tensor has the



value xi1,i2,i3 , which is set to either the number bought or rating given of the product i2 by
the user i1 at date i3.

• Network Traffic: A 3-order tensor X of the form sourceIP×destIP×port can be used to
represent the number of connections from source IP address to destination IP address on a
specific port. A single entry xi1,i2,i3 can be used to represent the total number of instances
when source IP i1 sent a packet to destination IP i2 on port i3.

2.4 Learning
The thesis also has couple of chapters that are focused on learning from the given data. We now
give a high-level overview of generalized learning framework that we use in this document.

Objective Functions: We generally use models to approximate the given data through a data
generating process, characterized by certain model parameters. The goal is to be able to identify
model parameters that allow us to approximate the observed data well. This “goal” is mathemat-
ically expressed through an objective function, which generally captures a form of relationship
of closeness between the approximated and observed data. For example, SVD minimizes the
Frobenius norm between our data and the model:

arg min
U,Σ,V

‖X−UΣVT‖2F

Regularization and Constraints: In many cases guided by the application domain, we
might want to include constraints and regularizations. A popular form of regularization is to
introduce sparsity in the learnt model parameters. This is achieved by adding l1 norm over the
parameters to the objective function.

Optimization: Given an objective function, the next step is to optimize or efficiently learn
parameters that minimize (or maximize, based on how it is defined) the given objective. Many
different optimization algorithms exist [271] and are generally chosen on the basis of meeting the
requirements of optimization problem, efficiency and convergence guarantees. With the advent
of deep-learning, stochastic gradient descent [31] is a really popular optimization algorithm. We
will discuss more of the optimization algorithms in depth in the relevant chapters.
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CHAPTER 3

MEASURING THE IMPACT OF FIRESTORMS

‘Firestorms,’ sudden bursts of negative attention in cases of controversy and outrage, are
seemingly widespread on Twitter and are an increasing source of fascination and anxiety
in the corporate, governmental, and public spheres. Using media mentions, we collect 80
candidate events from January 2011 to September 2014 that we would term ‘firestorms.’
Using data from the Twitter decahose (or gardenhose), a 10% random sample of all tweets,
we describe the size and longevity of these firestorms. We take two firestorm exemplars,
#myNYPD and #CancelColbert, as case studies to study them in detail. Then, taking
the 20 firestorms with the most tweets, we look at the change in mention networks of
participants over the course of the firestorm as one method of testing for possible impacts
of firestorms. We find that the mention networks before and after the firestorms are more
similar to each other than to those of the firestorms, suggesting that firestorms neither
emerge from existing networks, nor do they result in lasting changes to social structure.
To verify this, we randomly sample users and generate mention networks for baseline
comparison, and find that the firestorms are not associated with a greater than random
amount of change in mention networks.

On Twitter, firestorms (or Twitterstorms) have become an object of fascination and anxiety.
They are one of the major topics in discussions of Twitter in the realm of public relations and
brand management [221]. Individual events frequently receive media coverage, and the phe-
nomenon as a whole receives coverage as well; political comedian John Oliver did a segment
critiquing corporations’ use of Twitter on the September 15, 2014 episode of his HBO television
show, Last Week Tonight, featuring many examples of firestorms. Online magazine Slate dubbed
2014 the ‘Year of Outrage’ in an eponymous special feature, listing one example for every day of
the year (each with an accompanying tweet to illustrate the outrage) alongside reflection articles
such as ‘The Life Cycle of Outrage.’

The term ‘firestorm’ refers to an event where a person, group, or institution suddenly receives
a large amount of negative attention [229]. Any sudden controversy or expression of outrage
may be termed a firestorm, although we are interested in a firestorm as something more specific:



a case where the sudden negative attention is in response to a recent action or statement of the
target entity (rather than without a specific trigger, such as in a premeditated protest or prank) and
arises spontaneously (rather than through prior coordination, such as from a group prepared for
mobilization). Furthermore, we are interested in when this attention exhibits network effects: the
initial negative attention causes more people to learn of the action or statement, and these people
then contribute their own negative attention. Such cases are examples of negative word-of-mouth
dynamics. We focus on firestorms targeting public figures, businesses, and institutions, where
consequences are public; we do not consider firestorms targeting private individuals [240], as the
consequences there are in terms of the individuals’ experiences which we consider a different
topic.

The ultimate question is if participation in or consumption of firestorms has an effect outside
of Twitter, such as through purchasing decisions, voting behavior, attendance at protests, or even
participation in violence, either directly (by firestorm participants) or indirectly (by people in-
fluenced by firestorm participants). However, such information is impossible to collect directly
at scale, and difficult even to indirectly infer from Twitter data. Instead, we draw on literature
about the biographical consequences of activism [192] to ask, can we detect a change in firestorm
participants as a result of the event? We look specifically at social ties of firestorm participants
and form the research question: what is the relationship between social ties and firestorm par-
ticipation? I.e., do the people who participate in a firestorm know each other beforehand? Do
they communicate during? And do they continue to communicate after? If there is a discernible
change in social ties over the course of a firestorm, it suggests a social impact that could lead to
long-term consequences. On the other hand, if firestorms arise from existing social ties, it would
point to firestorms being a consequence rather than a cause of other action, and if there is no
relation to social ties, it would be inconclusive but, as social actions are embedded in networks
of social ties, it would suggest firestorms are of little importance.

3.1 Background and Related Work

3.1.1 Firestorms

There have been several papers directly on Firestorms. We summarize these in tables 3.1 and
3.2.

NAME ARTICLE(S)
Crises Bruns & Stieglitz 2012 [37], Park et al. 2012 [224], Rajasekera 2010 [235]
Scandals Bruns & Stieglitz 2012 [37]
Bad news Park et al. 2012 [224]
Firestorms Mochalova & Nanopoulos 2014 [202], Pfeffer et al. 2014 [229]
Shitstorms Stieglitz & Krüger 2014 [266]

Table 3.1: Similar terms to firestorms in literature.



YEAR FIRESTORM ARTICLE(S)
2009 Domino’s employees prank video [224]
2010 Toyota recall [68, 235, 265]
2011 Playstation Network hack and shutdown [221]
2012 #QantasLuxury campaign after labor dispute [37, 221, 229, 265]
2012 Papa Johns “lady chinky eyes” receipt [224]

Table 3.2: Firestorms considered in the literature.

Much of this literature is about the problem specification, with conclusions being very pre-
liminary. What has been found so far is that external events such as statements do affect the
firestorm [221, 266], but that there is a time lag in the diffusion of an apology [224], and that a
small number of users are responsible for the vast majority of the tweets [37] just as in Twitter
activity in general [119].

Twitter’s culture makes brands particularly vulnerable to firestorms. Van Dijck [284] dis-
cusses the “paradox of Twitter,” one aspect of which is that the thing that gives Twitter value for
marketers—the authenticity and openness of social interaction—is destroyed when marketers try
to intervene to capitalize on that value. Nitins and Burgess [221] write that early on, brands saw
social media as instant and free access to consumers around the world. But they failed to con-
sider the culture of social media, importing their standard one-to-many communication models.
They quickly found that consumers also now have the ability “to ‘talk back’ to companies—even
very large global corporations—[and] to do so in public; they can share their pleasure, or displea-
sure, with potentially millions of other consumers without significant effort,” and that they often
resented the intrusion of companies. Because of this, they continue, “Twitter users frequently de-
light in ‘gotcha’ moments”. Note that this scenario may be very different for certain celebrities
and brands who develop a strategy of appealing to iconoclasm, for whom frequent negative atten-
tion may be beneficial and Twitter may be an easy way to garner this (e.g., potentially Kenneth
Cole and Urban Outfitters).

In terms of modeling firestorms, there is relevant literature on ‘media hypes’ or ‘media
storms,’ and on news cycles. Vasterman [286] characterizes media hypes as being self-reinforcing,
potentially being driven less by external events after the triggering event and more by discussion
about itself [286, 298] until the issue is crowded out by another topic. Vasterman suggests a
smooth left-skewed distribution as a model, while Wein and Elmelund-Præstekær [298] find ev-
idence of a decreasing oscillatory pattern. For news cycles, Leskovec et al. [172] found a ‘saw-
toothed’ shaped increase followed by an exponential decay, which they were able to reproduce
in a simulation model that combined an imitation effect and a recency effect.

It is often assumed that firestorms have an effect, and are therefore important. However,
whether or not this is so is an open question. Kimmel and Kitchen [142] argue that while word-
of-mouth, including negative word-of-mouth, is significant in shaping consumer attitudes and
behavior, its power is also frequently oversold. They urge caution towards claims of the impact
of word-of-mouth on social media. More generally, the question of whether low-commitment
online protest and activism has an impact is hotly debated. Many argue that ‘slacktivism’ [203]



or ‘clicktivism’ [297] are not effective at achieving their aims, while others argue that ‘hashtag
activism’ [42] is better than nothing.

A more nuanced way of looking for an impact from firestorms is to consider the effects on
participants themselves. McAdam’s famous work [192] introduced the idea that participating
in activism has an impact on individuals, and even if the given activism itself is not successful,
it has ‘biographical consequences.’ Individuals influenced by earlier participation go on to do
further actions that are significant. Indeed, looking at activists rather than campaigns shows that
online activism plays a role in larger movements even when specific campaigns have no impact
[50], and this is important to consider when judging the effectiveness of online action [248].

In order to address our research question of the relationship between social ties and firestorm
participation, we look at mention networks. Merritt et al. [197] have shown in another context
that discussion is an effective proxy for friendship ties. We would go further to say that while
we cannot measure exposure from friendship data as in Myers and Leskovec [212] from the
available data, using mentions as the measure of social ties is a stronger mark of connection and
thus a more meaningful measure. This is different from Granovetter’s [92] concept of a strong
tie, but a mention is nonetheless a stronger tie than a following relationship and we would expect
its impact to be greater than just a follower relationship.

3.1.2 Twitter
Amidst the enormous recent academic literature involving Twitter [299], researchers are increas-
ingly beginning to appreciate that studying the microblogging platform is not necessarily the
same as studying human behavior in general [245, 283]. There are multiple barriers to general-
ization, including that Twitter demographics are non-representative [187, 200]; that the possibil-
ity of making money from link farming [83] or from selling bots to inflate metrics [60] means
there is widespread spam [277] that Twitter is not able to entirely or immediately filter out [276],
and this spam may distort research findings [83]; that there are idiosyncratic conventions of Twit-
ter [33, 129, 153] and a specific culture and ideology that is anti-establishment [221, 284] and, as
shown by what drives adoption, focused on celebrity culture [110]; that even beyond spam, the
Twitter social graph [77] has non-random patterns of adoption that potentially give it a topology
vastly different from that of the underlying social network [249]; that the most accessible channel
of data, the Streaming API, is unreliable within certain parameters [206], which causes difficulty
in studying meso- and macro-scale phenomena [36]; and that Twitter is itself neither globally
uniform [231] nor a static, stable environment across years [181, 284].

However, Twitter is host to many firestorms in itself. That is, there are frequent cases where a
tweet sets off a firestorm, where an apology is given via tweet, or where a protest is organized un-
der a hashtag. This, combined with how Twitter has become a critical channel of communicating
and cultivating brand reputation and identity [150, 221, 266], means that firestorm behavior on
Twitter is of interest in and of itself without needing to be representative of larger social behavior.

3.1.3 Specific firestorms
While we ultimately find 80 candidate examples of firestorms, we select two of them to examine
more closely. The first is #CancelColbert, a hashtag started by activist Suey Park in reaction to a



tweet quoting a skit on the satirical news program The Colbert Report, from American political
comedian Stephen Colbert. The hashtag took off, and was soon followed by a reaction against
the hashtag. We use it as an example of a firestorm that potentially comes from an already well-
connected community, as initially it would only have been users following Park who would have
seen her call to trend #CancelColbert.

Second is #myNYPD, a campaign started by the New York Police Department (@NYPDnews)
to collect positive stories about the NYPD. However, it was ‘hijacked’ and used it as an oppor-
tunity to highlight grievances around police brutality: alongside sarcastic comments about the
kindness of police, users posted pictures of NYPD officers grabbing, kicking, beating, and other-
wise abusing people. The campaign was widely considered a failure and embarrassment for the
NYPD, and is an excellent example of hashtag hijacking and public relations gone wrong.

3.2 Methodology

3.2.1 Firestorm Identification

As we note above, the link between activity on Twitter and larger societal phenomena is complex
and difficult to disentangle from all the confounding factors. Thus, while people take to Twitter
over practically every controversy or outrage, we decided that only firestorms that have some
substantive connection to Twitter would be meaningful to study with Twitter data. We developed
inclusion criteria, that a controversy first must have had some media mention, and second it must
meet at least one of the following conditions:

• The controversy began around a tweet or series of tweets;
• The entity at the center of the controversy posts a apology, retraction, non-apology, or

otherwise major statement on Twitter; or
• A specific hashtag, that we were able to find through searching through media, is associated

with the controversy.
We also choose to exclude cases where it is obvious that something sent from a professional

account was meant to be posted from a personal account, as we find that in such cases Twitter
users are generally more amused than angry. We include cases of social media account managers
failing to use proper discretion (i.e., intending to post what they did, but being mistaken that it
was appropriate).

We limit the period under consideration to the middle of September 2014, as per our data.
We only found several firestorms in 2009 and 2010, and no earlier examples, so we choose to
consider only firestorms in 2011 onwards.

3.2.2 Firestorms collection

Our search method consisted first of web searches for “Firestorms” and Twitter, “shitstorms”
and Twitter, and other variations; we went through any lists of “social media fails” we came
across; and lastly, searched through tags like “Twitter” and “PR” on technology- and culture-
oriented blogs and aggregation sites such as Buzzfeed, Mashable, and The Verge. We used other



aggregated lists, such as on KnowYourMeme.com, John Oliver’s segment, and the Slate feature
on the ‘Year of Outrage’. For each firestorm we collected the start date, the date of any apology or
retraction if it exists, and all hashtags and handles associated with the firestorm (some firestorms
are centered around a particular user, others around a hashtag).

3.2.3 Data Source
Our data source is an archive of the Twitter decahose, a random 10% sample of all tweets. This
is a scaled up version of Twitter’s Sample API, which gives a stream of a random 1% sample
of all tweets. As found by Morstatter et al. [206], the Sample API (unlike the Streaming API)
indeed gives an accurate representation of the relative frequencies of hashtags over time. We
assume that the decahose has this property as well, with the significant benefit that it gives us
more statistical power to estimate the true size of smaller events.

The decahose, like the Sample API, does not allow queries regarding the social graph, thus
preventing us from modeling individual exposure to information [239]. And because information
about when links were formed is not stored by Twitter, it is difficult to reconstruct the state of the
social graph at a previous point in time [77]. However, following the demonstration in [197], we
use mentions as a proxy for ties. We recognize that any given mention has only a 1/10 chance
of being in our data, but this means that we are, on average, capturing ties that consist of at least
10 mentions. Since many of the mention networks we find are fairly dense, keeping only ties
consisting of at least ten mentions would be justifiable even as a filtering strategy.

Figure 3.1: Histogram of peak sizes of collected firestorms, with a scaled fitted logspline. The
x-axis is the estimated volume of tweets reached on the peak day, and the y-axis is the number
of firestorms reaching that volume.

3.2.4 Data Extraction
We do pre-processing on the decahose data to simplify the computational task, extracting (1)
daily summaries of co-present entities and the user who posted that tweet (e.g., if @user tweets



Figure 3.2: Histogram of distribution of the number of days it took the collected firestorms to
decay to 90% of peak volume, with scaled fitted density.

“@alter #tag1 #tag2”, we would record the co-presence of @user, @alter, #tag1, and #tag2), and
(2) daily tabulations of hashtag and mention frequencies for all such entities in the data by day.
The aggregation by day is by the UTC timestamp in the tweets, which potentially splits firestorms
across days as experienced by firestorm participants. Fine-grained extraction may be appropriate
for future work. For each candidate hashtag or mention, we extracted the daily frequency from
-5 days (for a baseline) to +60 days (for a tail) from the start date. We found that the tails died
off well within 10 days, such that a smaller period would be sufficient for future extractions.

In addition to extracting frequency plots for all firestorms, and often for multiple entities
(hashtags and mentions) for each firestorm to see if the firestorm was better captured by one
entity or another, we extracted the full text and metadata of tweets for the 20 firestorms with
the highest volume of tweets on their respective peak days. For these 20 we also constructed
mention networks of all firestorm participants. This consisted of taking all usernames found
in the firestorms (i.e., all uses who included in at least one tweet with the entity by which we
identified the given firestorm) and extracting all mentions between them during the firestorm
(including tweets not containing the firestorm entity). We did not consider mentions by or of
users not participating in the firestorm. In order to do a pre- and post-firestorm comparison, we
similarly collected all mentions between firestorm participants going back to two weeks before
the firestorm, and forward to two weeks after the firestorm. We aggregated these into networks
by one-week intervals. In order for mentions of the target’s Twitter handle (when there is a clear
target) during the firestorm to not drown out other structure, we remove the node of the target
handle during the firestorm week. For consistency, we remove the target handle from other weeks
as well.

For spam filtering, we first did qualitative investigation of the data. Most of what we identified
were tweets that contained a URL and a string of unrelated hashtags, e.g.,

NEW F O L L O W E R S=&gt;[a URL here]
#DescribeYourCrushIn3Words,#Brentto600k,
#CancelColbert,#ULTRALIVE,#HowOldAreYou,Napier an

This led us to investigate a rule-based filtering system similar to that employed by Kwak et al.



[153]. However, as it turned out, spam tweets of this form accounted for less than half a percent
of the total volume of tweets. Investigating the top hashtags for that day revealed no overlap,
suggesting that the spam captured in our data was from spambots employing a minority strategy
of tweeting out all currently trending topics. Because the volume of spam was negligible, and
investigation showed the top tweeters in both of our case studies were indeed humans, we decided
to not employ any filtering.

3.3 Results

3.3.1 Firestorms
For each of the 80 firestorms, we identified the one entity that best represents the firestorm, the
number of tweets posted related to it in the first 7 days of the event, and the number of unique
users who participated in this event. The day on which maximum activity in number of tweets
was observed is referred to as the day of peak activity.

We found that most of our firestorms have an estimated peak volume of below 50,0001 (fig.
3.1). The outlier with over 200,000 tweets is #WhyImVotingUKIP, although we didn’t investigate
why this might have been so large compared to other firestorms.

By comparing the date of the initial event to the date of the peak, we can see how quickly the
firestorm reached peak activity; this was generally on the start date, for 64 out of the 80 cases.
We can see from figure 3.3 that the larger firestorms in our collection do not take longer to decay,
suggesting a phenomenon not tied to scale.

Figure 3.3: Boxplot of peak volume versus the days it took to decay to 90%.

As mentioned above, we focus on the 20 firestorms with the largest number of tweets on
their peak day. Brief descriptions of each of the firestorms, along with their respective numbers

1The estimate is number of tweets observed from the decahose multiplied by 10 (sampling rate)



of tweets and dates, is given in Table 3.3. We excluded from the table and from fig. 3.2 any
cases where the time to decay was more than 10 days. In such cases, the firestorm tweets did
not exceed one-tenth of the average total volume of the given entity; in such cases, the firestorm
likely would matter little to the target and may not even be noticeable, an indication that all things
called firestorms are not necessarily meaningful to call as such.

Figure 3.4: Estimated number of tweets with hashtag #myNYPD (case-insensitive) over 16 days
in 2014, plotted at the midpoints of bins with a width of 16.67 minutes. Ticks are at 6 hour
intervals, UTC. The number of tweets from users using the hashtag for the first time is used to
measure the number of new users. Since the total number of tweets is very close to this number,
we include the difference between the two, which are the tweets from returning users.

3.3.2 Case studies
The volumes of our two case studies, #CancelColbert and #myNYPD, are shown in figures 3.4
and 3.5 respectively. For these, we chose to show 16-day period because, after that, there was
negligible activity (there was also very little activity in #myNYPD after the first week, but we
included the same length of time for comparison). In both plots, the bimodal initial peak corre-
sponds to the hours from late night to early morning.

Since the number of new users is almost identical to that of the total tweet frequency, we also
provide a log-log plot of the distribution of tweets per user in figure 3.6 which shows a typical
heavy-tailed distribution (here we provide raw decahose numbers as scaling by 10 would lose
the head of the distribution, where most of the mass is).

For #CancelColbert, the first peak visible in the plot is the initial Twitter discussion after the
tweet from @suey park. Colbert discussed the campaign on his show on the night of March 31st
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Table 3.3: Top 20 firestorm events from Feb, 2011 to September, 2014, sorted by the number of
tweets.



Figure 3.5: Estimated number of tweets with hashtag #CancelColbert (case-insensitive) over 16
days in 2014, with other details identical to that in fig. 3.4.

in a segment entitled, “Who’s Attacking Me Now? - #CancelColbert”, but this had little impact.
The second peak is, interestingly, from April 10th, the day of a press release from CBS (later
also covered on The Colbert Report that night) announcing that Colbert would be leaving his
show to become the host of the famous American late-night show The Late Show. Much of the
content of that spike were jokes about #CancelColbert having worked. The vast majority of these
tweets were from users who had not participated in the initial firestorm (see fig. 3.4) and, further
analyzing the tweets, there were almost no additional mentions of the users who were heavily
mentioned before: @StephenAtHome has an estimated 14,190 mentions in the first 13 days and
1,610 in the next 13 days, and @suey park has an estimated 11,970 mentions in the first period
and only 980 in the second. This suggests far lower levels of interaction for the event that was
not a firestorm than in the event that was, a topic for future exploration.

In #myNYPD, the users with the highest tweet volume appear to be members of the public,
with the exception of @Copwatch, an activist network. The profiles with the highest indegree
(most mentions) is revealing: while @NYPDnews is most mentioned, with an estimated 15,180
mentions (almost all in the initial 13-day period), second-most is @OccupyWallStreetNYC, with
10,860, followed by @YourAnonNews with 5,620, @Copwatch with 4,390 and @VICE with
3,580. The frequent mentions of Occupy show linking back to recent police action at Zuc-
cotti Park against protestors from the Occupy Wall Street movement. The frequent mentions of
@VICE are tweets linking to an article 2 about the firestorm quickly published on the website of

2“Disastrous #myNYPD Twitter Campaign Backfires Hilariously,” https://news.vice.com/
article/disastrous-mynypd-twitter-campaign-backfires-hilariously

https://news.vice.com/article/disastrous-mynypd-twitter-campaign-backfires-hilariously
https://news.vice.com/article/disastrous-mynypd-twitter-campaign-backfires-hilariously


Figure 3.6: Distribution of tweets per user in the decahose (log-log scale).

Figure 3.7: Network of mentions between firestorm participants, in this case for #askJPM, ag-
gregated by week, before, during, and after the event.

Vice magazine, giving one possible example of a feedback loop between media and firestorms.

3.3.3 Mention networks
As discussed earlier, we create mention networks to study change in social interactions pre- and
post-firestorm. When investigating the mention networks, we saw a characteristic pattern: the
network of the week of the firestorm looked dramatically different from the others (fig. 3.7),
with far more concentration and far less of a distributed network structure. Some of the nor-
mally present conversational structure seemed to disappear. We investigated a number of global
network metrics (density, centralization, clustering coefficient/transitivity, reciprocity), but even
when a given metric changed across networks from week to week, the change was not so great
that 95% confidence intervals from week to week did not overlap. However, we found that there
were far fewer edges in common between the firestorm week and the other weeks. We measured
this formally with a Jaccard index (size of intersection divided by size of union) on the directed
edges of the mention networks.



Figure 3.8 shows the distributions over the 20 top firestorms between each pair of weeks;
we add vertical lines at the mode as it makes the difference more noticeable than lines at the
means, but t-tests for comparisons of means still show that the difference in means between a
non-firestorm week and a firestorm week is significant in all cases, and between any two non-
firestorm weeks is non-significant. Surprisingly, even the pre-firestorm weeks and post-firestorm
weeks were more similar to each other than to the firestorm, indicating that there is a minimum
underlying social structure of discussion, relatively constant in time, but from which a firestorm
departs.

The similarity between pre- and post-firestorm weeks’ mention networks, and the dissim-
ilarity between all of these networks and the firestorm mention networks, still does not show
whether or not a firestorm had an effect on the network structure. To investigate this, we con-
structed comparison ‘panels’ by randomly sampling from the decahose users who tweeted during
the week of the event but not about the firestorm itself. We again generated mention networks
across five weeks for these users. This time, we looked at the Jaccard indexes between weeks -1
and +1, and between weeks -2 and +2, and compared the distribution of these Jaccard indexes
from networks of randomly sampled users to networks of firestorm participants. We found that
the difference in means was not significant. That is, the way in which firestorms may change the
mention networks of participants is not significantly different from the churn in networks that we
would expect by random chance.

Figure 3.8: Distributions of the Jaccard index of edges between the mention networks two weeks
before, one week before, during, one week after, and two weeks after the firestorms. Vertical lines
are put at the mode of each distribution. The matrix is symmetric; this redundancy is provided
for ease in vertical comparisons. The figure shows that the networks after the firestorms resemble
much more the networks before the firestorm than during the firestorm.



3.4 Discussion
Our research question was about the relationship between social ties and firestorm participation.
We find first that the mention networks pre- and post-firestorm are more similar to each other
than to the mention network of the week of the firestorm. If firestorms emerged from existing
networks, we would expect to find more similarity between firestorm mention graphs and pre-
firestorm mention graphs. Conversely, if firestorms had created lasting links among participants,
we would expect to find more similarity between firestorm mention graphs and post-firestorm
mention graphs. Instead, we found low similarity between firestorms and other weeks. We
further find by comparison to a randomly sampled group that we cannot find the firestorm had
any discernible impact on patterns of discussion. Going back to our theoretical motivations, it
seems that at least among the firestorms we sample, we see no evidence of the type of social
change associated with action that has biographical consequences on participants. This suggests
that, at least along this dimension, firestorms should not be a source of anxiety for targets nor a
source of satisfaction for opponents; firestorms in general do not create the conditions to lead to
larger and more long-term actions, at least among the mass of participants.

3.5 Conclusion
We have identified that across events identified as ‘firestorms,’ there is a departure from otherwise
regular patterns of social interactions. Since both pre- and post-firestorm mention networks are
different from firestorm mention networks, but the pre- and post-firestorm networks are similar
to each other, it seems that the firestorms do not have a significant impact on communities. From
our theoretical background, this finding suggests that firestorms will generally have little long-
term impact. We believe that there are still interesting future research directions, including for
basic research, including:

• Distinguishing sarcasm using ties and temporal clues;
• Firestorms as subsets of the Twitter ecosystem with different spam dynamics;
• Event detection and decay modeling of a specific, emotional and social type of event;
• Feedback effects on firestorms of simultaneous media coverage;
• Identifying the target of negative statements; for example, negative #CancelColbert tweets

may be angry with Colbert or with the campaign.
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CHAPTER 4

UNDERSTANDING BIAS IN GEOCODED DATA

Geotagged tweets are an exciting and increasingly popular data source, but like all so-
cial media data, they potentially have biases in who are represented. Motivated by this,
we investigate the question, ‘are users of geotagged tweets randomly distributed over the
US population’? We link approximately 144 million geotagged tweets within the US,
representing 2.6m unique users, to high-resolution Census population data and carry out
a statistical test by which we answer this question strongly in the negative. We utilize
spatial models and integrate further Census data to investigate the factors associated with
this nonrandom distribution. We find that, controlling for other factors, population has no
effect on the number of geotag users, and instead it is predicted by a number of factors
including higher median income, being in an urban area, being further east or on a coast,
having more young people, and having high Asian, Black or Hispanic/Latino populations.

‘Geotagged’ or ‘geocoded’ tweets, where users elect to automatically include their exact
latitude/longitude geocoordinates in tweet metadata, provide data that are:

• High-quality: geotagging is automated, so there are fewer chances of data error such as
from user specification [91, 118];

• Precise: geotags are down to a ten thousandth of a degree in latitude and longitude;
• Richly contextual: geotags are connected to tweets with all their temporal, semantic, and

social content;
• Easily available, through the Streaming API;
• Large: using the Streaming API, a researcher can build a collection of tens of millions of

tweets.
Unsurprisingly, this makes them an enormously attractive source for studying a wide range of
human phenomena [123]. Existing works have used geotagged tweets to study

• mobility patterns [48, 310],
• urban life [62, 76],



• transportation [291],
• natural disasters, crises, and disaster response [151, 176, 205, 257, 272], and
• public health [82, 213, 272]

as well as the interplay between geography and
• language [66, 123, 143],
• discourse [171],
• information diffusion and flows [136, 285],
• emotion [201], and
• social ties [48, 264, 274].

Furthermore, maps of geotagged tweets tend to look remarkably similar to maps of population
density (figs.4.1 and 4.2; see also [171], even if there are differences at a finer scale (figs. 4.3a
and 4.3b). This naturally leads to the question: are Twitter users who send geotagged tweets
(henceforth, ‘geotag users’) randomly distributed over the population? This is a critical question
because, if users who elect to geotag are systematically different from people in general, the
results of studying geotagged tweets will not have external validity.

We used the Twitter API to get a collection of 144,877,685 geotagged tweets from the con-
tiguous US, from which we extract 2,612,876 unique twitter handles. We uniquely assign each
handle to a block group, a geographic designation of the US Census Bureau that is the smallest
geographic unit for which Census data is publicly available. We then link the counts of unique
geotag users per block group to the 2010 Decennial Census population counts per block group,
and create a statistical test for the null hypothesis that geotag users are randomly distributed over
the US population. We find sufficient evidence to reject this null. Using other Census data, we
then use a Simultaneous Autoregressive (SAR) model to test some candidate explanatory factors
and investigate what is nonrandom about this distribution. This is, to our knowledge, the first pa-
per to use statistical testing to establish population bias along multiple dimensions in geotagged
tweets across the entire United States.

4.1 Background and Related Work

Our study relates to an increasing body of work about biases in who and what is represented in so-
cial media data. The first work with Twitter data was by [200], who found an overrepresentation
of populous counties and an underrepresentation specifically of the Midwest, an undersampling
in counties in southwest with large Hispanic populations, an undersampling in counties in the
south and midwest with large Black populations, and an oversampling of counties associated
with major cities with large White populations. However, these findings come from interpreta-
tions of distributions and county-level cartograms, rather than from statistical testing, and they
rely on the user-defined ‘location’ field, which has been shown to have many inconsistencies
[91, 118]. Our study is on the one hand deeper because we use the far higher resolution of block
groups and carry out statistical tests, but on the other hand not as general because our findings
apply only to characteristics of geotag users within the US population rather than to geotag users
within the Twitter population, or to Twitter users within the US population. Also worth noting



Figure 4.1: Quintiles of population per square mile by ‘block group’ (see below) in the 2010
Decennial Census.

Figure 4.2: Quintiles of geotag users, uniquely assigned (see ‘mobile users’ below) per block
group, divided by block group area.

(a) Detail of fig.(4.1) for New York. (b) Detail of fig.(4.2) for New York.

is that Twitter has undergone large changes since the data used by [200], both in the governance
and management of the platform itself [284] and in patterns of user behavior [181].

More recently, [117] investigated urban biases across the US. Collecting 56.7m tweets from
1.6m users over a 25-day period in August and September 2013 and comparing it to Census



data, they use a method of calculating a reduced effective sample size in order to correct for
spatial dependencies. From this they calculate ratios of users per capita and find a bias towards
urban areas, with 5.3 times more geotagged tweets per capita in urban regions as in rural ones,
a magnitude even more pronounced in Foursquare data. [183] investigate biases across a num-
ber of factors, focusing on the Greater London area. Using work on forename-surname pairs
identifying gender, age and ethnicity, they parse usernames and other profile information to get
a collection of estimated names, which they then compare to the 2011 UK Census and find an
overrepresentation of young males, an underrepresentation of middle-aged and older females, an
overrepresentation of White British users, and underrepresentation of South Asian, West Indian,
and Chinese users, although tests of significance are not applied.

Coming from another methodological direction, a nationally representative survey study of
smartphone owners (n=1,178) by Pew [314] looks at the demographics of location service users.
Overall, 12% of those surveyed reported using what Pew terms ‘geosocial’ services (which in-
cludes geotagged tweets, and excludes informational services like Google Maps). Interestingly,
the survey finds the the most frequent users of geosocial services are those of lowest income and
middle income; those of lower income use it less, and those of upper income use it least. More
18-26 year olds use geosocial services than older users, and almost double the proportion of his-
panic (English- and Spanish-speaking) smartphone owners user geosocial services as compared
to white and black (both non-hispanic) smartphone owners. However, out of the respondents
who specified which geosocial services they use (n=141), most reported using Facebook (39%),
Foursquare (18%) or Google Plus (14%); only 1%, or 1 respondent, used Twitter’s geosocial ser-
vices (i.e., geotagged tweets), such that it is not possible to make inferences about geotag users
from the results of this study.

Our paper is answering the general call for stronger methodological investigations about the
nature of population representation in social media data [245, 283], as well as the specific call for
combining geographic data from user-generated sources with non-user-generated sources, such
as Twitter data with the Census [52].

4.2 Data Collection

4.2.1 Geo-Coded Twitter Data

From Twitter’s Streaming API, we collected 144,877,685 tweets from April 1 to July 1, 2013
using the geographic boundary box [124.7625, 66.9326]W × [24.5210, 49.3845]N . This covers
the contiguous US (i.e., the 48 adjoining US states and Washington DC but not Alaska, Hawaii,
or offshore US territories and possessions). Consequently, all our tweets are geo-coded with
lat/long GPS coordinates. As [204] report from the Twitter Firehose, about 1.4% of tweets are
geotagged; and elsewhere [206] they report the Streaming API is more likely to be biased when
the response to a query exceeds 1% of the total volume of tweets. Given also that North America
accounted for only 22.32% of geotagged tweets in their collection, a fraction consistent with
what [181] report finding in a collection of decahose data covering the time period we consider,
it is reasonable to assume that the use of the Twitter API to collect tweets geotagged in the US
covers all or nearly all of geotagged tweets within the given time frame and geographic bounds.



Since the distribution of geotagged tweets over geotag users is characteristically long-tailed
(fig. 4.4), with a minority of users sending out the majority of tweets, we decided that the
relevant quantity was the number of geotag users rather than the number of tweets. We identified
2,612,876 unique user accounts in our data, which is the basis of our analysis.
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Figure 4.4: The usual long-tailed distribution of the number of users who have tweeted a certain
number of tweets. Because of this skew, we focus on unique users alone, and ignore the volume
of tweets.

4.2.2 Geospatial Data

The contiguous US plus Washington DC include 215,7981 block groups (2010 specification)
which range in size from .002 square miles to 7503.21 square miles. Block groups are designed
by the Census Bureau to have roughly comparable population sizes. We verified this by noting
that, in log scale, the distribution of populations per block group has a symmetric distribution
and stable variance. Each block group has a unique identifier, the 12 digit FIPS Code, consisting
of identifiers for state (first two digits), county (next three digits), tract (next six digits), and
block group (last digit). For every state, the US Census Bureau provides geographic boundary
files (‘shapefiles’) that includes the GPS coordinates of the borders of every block group within
the state. We combined the shapefiles of the 48 contiguous states and the District of Columbia,
deleting 364 block groups representing bodies of water (identifiable by being coded as having

1Probably due to a rounding error in geographic calculations, we lost three small island block groups (2 in
Florida, 1 in New York), such that our n = 215,795.



zero area, and having a FIPS code ending in zero2). With Python code (utilizing the shapely
package) we identified the Census block group into which each tweet fell.

4.2.3 Socioeconomic Data
While the ideal would be to have rich and timely demographic data about the users who sent
the tweets in our data, this is not realistic to collect for 2.6m users. But by aggregating data
at the level of block groups, we can link Twitter data to the enormously rich demographic data
the Census Bureau makes available at this level. We primarily use data from the 2010 Decen-
nial Census, which we supplement with median income (not available in the Decennial Census)
estimates from the 2009-2013 American Community Survey. For this ACS data, there were
1,224 block groups with missing values for median income, few enough that we filled these out
as zeros rather than using imputation or smoothing. We also set 21 block groups with the value
“2,500-” to 2,500, and 2,651 block groups with the value “250,000+” to 250,000. The 2009-2013
ACS had 54 block groups in the contiguous US whose boundaries (and FIPS) codes were from
the 2000 Census, for which we found equivalent block groups in the 2010 Decennial Census to
which to map. While the ACS 1-year estimates are more timely, they are more sparse and only
at the county level [13], and we decided to prioritize the accuracy and completeness of values
in the Decennial Census for this analysis. We similarly decided to not use the ACS 2009-2013
estimates for population quantities as there was more missing data, and there was high correla-
tion between the 5-year estimates and 2010 Decennial Census figures across variables (generally
around .95). Still, prioritizing timeliness over completeness, and looking at the county level with
2013 ACS 1-year estimates, may be the focus in future analysis.

4.2.4 Mobile users
Our construct of interest is the number of potential geotag users, for which population is the
available proxy; there are cases where there are more geotag users than population, which points
to tourists or, more generally, mobile users, as a complicating factor [117].

[117] provide a useful review of techniques to uniquely assign users to a single geographic
region. They identify two candidate techniques: temporal, where a user must send at least two
tweets a set number of days apart in a region for the user to be located uniquely in that region, and
‘plurality rules,’ where the most frequently tweeted-from region is taken as the unique location
of the user. Checking the ‘location’ field fails because of the low quality of the information there
[118]. As one other option, [294] use the location of the first geotagged tweet sent by a user as
the location of the user. This is the simplest, but also has no motivation beyond convenience.

Despite the drawbacks of plurality not accounting for people local to two regions, our com-
parison is with the US Census which also does not account for this possibility. However, another
problem is that foreign tourists are not counted in the US Census (unlike domestic tourists, who
reside in some US block group), and of which there were 70m in the US in 20133. This is sub-
stantial when compared to the total 2013 US population of 316m4 (of which 307m are counted

2https://www.census.gov/geo/reference/gtc/gtc bg.html
3http://travel.trade.gov/view/m-2013-I-001/table1.html
4http://data.worldbank.org/indicator/SP.POP.TOTL



in the block groups we use). If many foreign tourists send geotagged tweets, it would introduce
unaddressed bias; since our data collection only had geotagged tweets in the US, short of mas-
sive additional data collection we are unable to identify foreign tourists (such as by looking at
the proportion of geotagged tweets outside of the US). This is a potential problem in our analysis
that may be a topic for clarification in future work.

Additionally, we filter users by the number of tweets, considering only those with a certain
number of tweets.5 As the distribution of tweets per user (fig. 4.4) is smooth and has no natural
break point, we arbitrarily pick 5 and 10 as cutoffs to use alongside all users.

4.3 Statistical Models

4.3.1 Random distribution over population
The basic relationship in which we are interested is between population and geotag users. In
order to make a concrete test for random distribution, we suggest a model where there is a linear
relationship between the population count and the number of users, i.e. users are drawn from the
population at a constant rate subject to some noise. We can imagine the noise is heteroskedastic,
which suggests the following data-generating process over population P , users U , and mean-zero
noise term ε:

U = αP + εP (4.1)

We transform both users and population to stabilize their variances, so this then becomes

logU = logα + logP + log
(

1 +
ε

α

)
(4.2)

Then, consider the linear model

logU = β0 + β1 logP + ε′ (4.3)

If eqn. (4.1) described the true data-generating process, from eqn. (4.3) we should get that
β̂1 = 1, and then exp(β̂0) would estimate the value of the proportion α. That is, the logα term is
the intercept of the regression of logP onto logU , and log

(
1 + ε

α

)
is a mean zero error term now

independent of P , and we have a null hypothesis H0 : β1 = 0. While this may seem unrealistic
as a null model, other quantities that we would believe are randomly distributed proportional
to population indeed match this. For example, we regressed log population onto log males and
found it to be meaningful (presented below under results). With this validation, we argue that the
model of eqn. (4.1) is a reasonable way of representing a quantity being randomly distributed
over the population. Note that our interest is not in fitting this specific model and interpreting the
parameters, but just having a way to test the null hypothesis of random distribution. Note also
that we originally sought to compare log population density to log geotag user density as a way
of treating measures on different block groups as equivalent (given that block groups are already
designed to somewhat control for the variance in population density), but found that it produced
excellent fits that did not disappear when the data was shuffled, suggesting that the dividing by
area created artifactual relationships.

5We thank an anonymous reviewer for this fruitful suggestion.



4.3.2 Model specification
For comparison with analyses of race and Hispanic populations [200, 314], we use Census vari-
ables6 P0030001 through P0030008 and P0040001 through P0040003. For comparison with
analyses by age [183, 314], we use P0120003 through P0120049 and aggregate across gender
into the same age bins as in [314]. Existing analyses by sex [183, 200, 314] is based on name-
based inference or survey data; we decided that, while the Census does have sex data, the even
distribution of sex across the US means that the sex ratio of a block group is not a meaningful
proxy for geotag users who live there. For comparison with analyses of urban and rural popula-
tions [117, 314], we use P0020002 through P0020005.7

Thus, in total, we include terms for populations, the black population, the Asian population,
the Hispanic/Latino population, the rural population, and respective populations of people ages
10-17, 18-29, 30-49, 50-64, and 65+. For all of these, we stabilize variance with a log transfor-
mation with add-one smoothing. We include median income [314], and test for a northern/eastern
effect by including the (demeaned) latitudes and longitudes of block group centroids, and for a
coastal effect by including terms for latitude and longitude squared.
Spatial autocorrelation: Discretization into uneven geographic units (as block groups certainly
are) can cause statistical artifacts. Specifically, if the divisions do not correspond to the contours
of the underlying spatial process (and there is little reason to believe they would), there will be
dependencies between proximate geographic areas, and not accounting for this can inflate the R2

statistic, shrink standard errors, and give misleadingly significant results. We use the standard
statistic for measuring spatial autocorrelation, Moran’s I,

I =
n∑

i

∑
j wij

∑
i

∑
j wij(Xi −X)(Xj −X)∑

i(Xi −X)2
(4.4)

This is the empirical covariance, appropriately normalized, of the values of variable X between
geographic units i and j. W = [wij] is an n× n matrix of weights, discussed below. Rather than
exploring autocorrelation in individual variables, we look for spatial autocorrelation in the resid-
uals of a linear model [15]. For management of spatial data and implementation of computation
and estimation for spatial models, we used the R package spdep [24, 25].
Weights Matrix: Measuring spatial autocorrelation requires a ‘weights matrix’ of adjacencies
between geographic units. There are multiple ways to generate this, and the choice of how to
do so represents a substantive decision based on the problem at hand [78]. However, given that
we do not know in advance the form of the spatial autocorrelation, in practice we can test for
autocorrelation over different choices of weights matrices to see which is most appropriate [16].
Thus, we consider the following weights matrices:

• Queen contiguity (regions sharing a corner or edge are adjacent, equivalent to 8-connectivity
in image processing);

• Rook contiguity (regions sharing an edge are adjacent, equivalent to 4-connectivity in im-
age processing)

6http://api.census.gov/data/2010/sf1/variables.html
7The Census API returned zero values for these, so we manually downloaded the variables of “P2. URBAN

AND RURAL” for each state individually from factfinder.census.gov.



• k-nearest-neighbors for k = {2, 3, 4, 5, 6, 7, 8}, calculated from the midpoints of block
groups.

For the contiguity cases, we consider both row-normalized (which normalizes the ‘effect’ of
each neighboring unit such that they sum to one) and binary (which gives greater possibility for
autocorrelation between a unit and its neighbors for units with more neighbors).

4.3.3 Spatial errors model
We model the relationship between population and geotag users using a Simultaneous Autore-
gressive (SAR) model, which is where one or more terms in the regression are correlated with
itself. The main autoregressive model assumes that the residuals of unit i are correlated with the
residuals of those units j adjacent to i, which is known in econometrics literature as a spatial
errors model. The adjacencies are indexed exactly by the terms of the weights matrix. This gives
the following two equations,

Y = Xβ + u (4.5)

u = λWu + ε (4.6)

where u are the correlated residuals, ε ∼ N (0, σ2I) are the uncorrelated error terms, and the
coefficient λ is the ‘spatial multiplier’ that captures the strength of the spatial autocorrelation
[14]. While there are other SAR models, we use spatial errors as the simplest to interpret and the
most appropriate for our purpose.

4.4 Results and Discussion

4.4.1 Observational Results
The block groups with the highest number of distinct users (before users are assigned uniquely)
are major international airports and major tourist attractions (table 4.1).8 The inclusion of several
international airports on the list suggests that geotagging tweets during the process of travel is a
common user behavior. There were some areas with zero population but nonzero users; out of
these, the ones with the highest counts of distinct users are mostly the same: major airports and
parks.9

Conversely, there were only 67 block groups from which nobody sent geotagged tweets;
only 30 of these also had no population (these were national forests, minor airports, areas off
highways, etc.). Of those that did have a population, the most populous was a block group with
a population of 4,854 within San Quentin State Prison in California. The second-most populous
block group is also a Corrections Department building in Texas, and third is a state prison in
California (although not all prisons lack geotag tweet users; the block group of Rikers Island in
New York has geotagged tweets from 22 users).

8Block groups may be looked up by their FIPS code at http://www.policymap.com/maps
9Interestingly, Central Park has a nonzero population (of 25), as do some airports. Some other tourist attractions

(e.g., Universal Studios) also appear.



Table 4.1: Block groups from which the most users have sent geotagged tweets.

FIPS code Users Description

32 003 006700 1 28,280 Las Vegas Strip
06 037 980028 1 23,100 Los Angeles Int’l Airport
32 003 006800 4 16,748 McCarran Int’l Airport
13 063 980000 1 15,481 Atlanta Int’l Airport
12 095 017103 2 15,392 Walt Disney World
36 081 071600 1 15,067 JFK Int’l Airport
11 001 006202 1 14,906 National Mall
36 061 014300 1 14,605 Central Park
06 059 980000 1 14,576 Disneyland
17 031 980000 1 13,610 Chicago Int’l Airport

Out of the 2,612,876 unique users we identified, 2,216,219 (84.82%) had a single block
group from which they tweeted most frequently. The others had ties for which block group
was the highest; for these users, we uniquely assigned them to one of their block groups by
randomization. We tried analyses on just the 84.82% as well, but found it made little substantive
difference in the results.

In the terminology of [104], the most active accounts belong to ‘non-personal users.’10 In
this case, the most active tweeter (44,624 tweets) seems to be a commercial service for travel,
the second-most active (35,025) is an automatic news updater in Florida, etc. Starting from the
13th most active tweeter, with 12,922 tweets, there were accounts that appeared on inspection
to be personal ones. As for number of block groups traversed, the top ‘traveler’ (23,547 block
groups) is the same as the top tweeter, and others are similarly non-personal users. Across block
groups, it is not until the 18th most mobile user, traversing 1,209 block groups, that there is a
personal user.

How much mobility is there between units? Figures 4.5 and 4.6 show respectively that while
there is minimal mobility between states, with only 22.39% of users sending geotagged tweets
from more than one state and only 7.83% send from more than 2. However, there is a great
deal of mobility between (possibly neighboring) block groups, with 65.24% of users sending
geotagged tweets from more than one block group.

How well does unique assignment do? As one check, we consider the ratio of geotag users to
population; there are 509 block groups where this ratio is greater than 1 (for users with 5 or more
tweets only, there are 353, and for users with 10 or more tweets only, there are 290), indicating
either the failure of population as proxy for potential geotag users or of the method of assigning
mobile users. As we found the block groups with the largest ratios to be airports, it seems to be
a case of the latter.

10They find that only 2.6% of geotag users are non-personal. This should be small enough to have no effect on
results, so we did not employ filtering. However, this may be considered in a future work.



Cumulative states tweeted from, across geotag users
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Figure 4.5: A full 77.61% of geotag users in our set tweeted only from one state, and having
tweeted from 5 or fewer states accounts for 99.21% of users.

4.4.2 Bivariate regression model
We first test our null hypothesis of a linear regression yielding a coefficient of 1 to the logarithm
of the population. Looking at the plot of the relationship of the logarithm of the two (fig. 4.7),
there is a faint linear relationship, although the slope does not appear to be 1. An OLS regression
fits slope β̂1 = .4916 (.002996) and intercept β̂0 = -1.219 (.02143),11 although we should recall
that the standard errors are not reliable under spatial autocorrelation.

Compare this plot to the plot of our test case mentioned earlier, the distribution of males
over the population, pictured in fig. 4.8. The true ratio of males to total population across the
block groups we consider is .4915; according to our model, the exponential of the intercept
should be this, and the coefficient of the log population term should be 1. Indeed, log(.4915)
is within the 95% confidence interval (log(.4914), log(.4962)), and 1 is just outside the 95%
confidence interval (.9980, .9994), but this is without accounting for how spatial autocorrelation
shrinks estimated standard errors. TheR2 value of this model is also impressive at .975, although
under spatial autocorrelation R2 is inflated thereby not interpretable. Overall, our model fits the
relationship of males to population exactly as we would expect it to fit to something randomly
distributed over the population.

Using this as a validation of our statistical test, we can strongly reject the null hypothesis that
β̂1 = 1 even without correcting for spatial autocorrelation. And the R2 value for this regression
is a paltry .109, too small to worry about being inflated. Thus, we can conclude that geotag users
are not randomly distributed over the US population, and indeed that the population count is not

11Filtering for only those users who have 5 or more tweets and for those users with 10 or more tweets, the
respective fitted slopes are .5192 (.002932) and .5136 (.2786).



Cumulative block groups tweeted from, across geotag users
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Figure 4.6: 34.76% of geotag users tweeted only from one block group. 27 or fewer block groups
were 95%, 50 or fewer block groups were 99%. One outlier at 23,547 excluded.

very informative about the number of geotag users.

Weights matrix and spatial autocorrelation.

Testing the residuals in our basic model for spatial autocorrelation using Moran’s I against all
weights matrices considered above, we find the results reported in table 4.2.

We found identical results of Moran’s I for binary weights matrices and row-normalized
weights matrices in the k-nearest neighbor case. For the two contiguity cases, row normalization
made a difference, and we list both values. In all cases, an asymptotic test against the expected
value of 0 was significant at p < .0001. The autocorrelation in the population-user model is
stronger than in the ‘null’ population-male model. It appears, then, that the spatial autocorrela-
tion is strong enough that the choice of weights matrix is not critical. For the population to user
model fit on counts of users with 5 or more tweets, or 10 or more tweets, the spatial autocor-
relation was similar (generally lower, but still higher than the autocorrelation of population vs.
male).

4.4.3 Spatial errors model
The maximum likelihood method of fitting a SAR model involves computing the log determinant
of the n×nmatrix |I−λW |, which is infeasible at our n of over 200,000. An alternative method
finds the log determinant of a Cholesky decomposition of (I − λW ), although this then requires
W to be a symmetric matrix [26]. Since all of the candidate weights matrices picked up spatial
autocorrelation at a significant level, we use a binary contiguity weights matrix. We tried both



Figure 4.7: Eliminating zero-count observations reduces the artifacts visible at x = 0 and y = 0
but does not substantially change the fit.

Rook and Queen, and they gave comparable fits, so we report only for Rook (table 4.3).
The spatial multiplier term is significant, although neither the coefficients nor the standard

errors are substantively different than the previous model. However, calculating Moran’s I on
the residuals of this model gives a value of -.02367, with a p-value of 1, meaning we have
successfully controlled for spatial autocorrelation.

We then investigate the full model specified above. We interpret this model in the standard
way: for a log transformed explanatory variables Xi, a 1 percent change will predict a βi percent
change in Y. We present the results of the regression on counts of only those users with 5 or
more tweets. This is shown in table 4.4.

As before, testing for spatial autocorrelation finds no significant amount, with a p-value of
1. Here we see that, after controlling for other factors, population loses its significance (this also
points to the benefits of using a SAR model, as under OLS the population term is significant).
The term for area included as a control is significant, with a one percent rise in block group
area predicting a 15.56% rise in geotag users. It seems here that size overcomes the effects of
population density (as mentioned above, block group population has stable variance only in log
scale even though block groups are designed to enclose populations of roughly comparable size).
Consistent with survey findings [314], a 1% larger Hispanic/Latino population predicts 1.533%
more geotag users. However, the effect size is smaller than either that of the Asian population
(a 1% rise predicting an 11.12% rise in geotag users) and, in contrast to survey findings, that of
the Black population (a 1% rise predicting a 4.29% rise in geotag users). This might point to
the Pew sample not including enough Twitter users, as there is an active Black community on
Twitter that is gaining scholarly attention [51, 74, 256]. The latitude, both in linear and quadratic
effects, is not significant; however, the longitude is significant, pointing first to block groups



Figure 4.8: The relationship between males and total population behaves exactly as we expected
of a quantity randomly distributed over the population, making it an effective null model against
which to compare the observed distribution of geotag users.

further east having more geotag users, and second (from the positive sign of longitude squared)
to a coastal effect where block groups on both the east and west coasts have more geotag users
than in the center of the US. While we tried to test for nonlinearity in income, inclusion of a
squared term for median income made the matrix computationally singular; however, inspecting
the bivariate relationship did not yield any evidence for a nonlinear effect, and the linear effect is
weak (a $10,000 rise in the median income predicts a 1.66% rise in the number of geotag users).
Consistent with findings about urban biases [117], we find that a 1% higher rural population
predicts a 5.72% decrease in the number of geotag users. Lastly, also consistent with survey
findings, 18-29 year olds are the most active geotag users, with a 1% higher population of this
age group predicting 39.16% more geotag users. There is also a strong negative effect for the
population of ages 50-64, with a one percent change predicting 17.93% fewer geotag users, but
the teenage population surprisingly predicts fewer geotag users. Also surprisingly, there was a
significant and positive effect from the population people 65 and older. These might be due to
more complex interactions such as mixed populations. As is usual with logarithmic dependent
variables, the intercept is not particularly interpretable as it would be a prediction for a block
group at the center of the US with a population of 1.

Running the SAR model using all users, instead of just those with 5 or more tweets, produces
similar results, except that log population is significant with coefficient -.04196 (.007858); this
suggests a nonlinear effect, and indeed, an added squared term for the log population came out
as significant and positive at .06329 (.0008394). This points to some noise for those people
who only ‘try out’ geotagged tweets but do not adopt their use that disappears if we maintain
a minimum tweet threshold. When running the model on only those users with 10 or more



Table 4.2: Selected Values of Moran’s I in residuals

Population vs Users Population vs Male

2nn .3699 .2336
4nn .3550 .2142
6nn .3398 .1996
8nn .3270 .1883

Rook
.4166 (b)
.3992 (rn)

.2125 (b)

.2201 (rn)

Queen
.4151 (b)
.3919 (rn)

.2097 (b)

.2154 (rn)

For the Rook contiguity case and the Queen contiguity case, binary (b) and row-normalized
(rw) weights gave different values.

tweets, results are again similar except the longitude squared term is no longer significant (p =
0.1870), and the latitude term becomes significant (p = 0.02017). This might be from the coasts
having more users who try out geotagged tweets for a longer period of time before choosing not
to continue. These subtle differences point to opportunities for modeling the demographics of
different types of users (as determined by number of geotagged tweets or other factors), although
we do not explore them more here.

4.5 Conclusion

Geotag users are not representative of the US population. Despite the volume of geotagged
tweets and their impressive coverage (there were only 67 block groups out of 215,795 with
no geotagged tweets), the users who send geotagged tweets are nonrandomly distributed over
the population in subtle ways. These include predicable and already established biases towards
younger users, users of higher income, and users in urbanized areas, as well as surprising biases
towards Hispanic/Latino users and Black users that, in the latter case, have not seen in large-
scale survey research. We also demonstrate an unsurprising but previously unreported coastal
effect, where being located on the east or west coast of the US predicts more geotag users.
Geotag users may not be a random sample of the population of any given block group, but given
the fine level of detail and large-scale demographic variability, the demographics of a block
group is a reasonable proxy for the demographics of geotag users located in that block group.
Certainly, even with complications of uniquely assigning mobile users, it is enough to establish
the nonrandom distribution of geotag users, and some candidate biases.

While from this study, we are unable to say whether or not geotag users are representative of
the Twitter population, the more interesting question we address is whether geotagged tweets can
be a useful proxy for the general population within the US. This is a critical question because
geotagged Tweets are an enormously popular source of data for studying a wide variety of social
and human phenomena. For future work, we emphasize that findings using geotagged tweets



Table 4.3: Spatial errors basic model, binary Rook contiguity

Dependent variable:

log(user + 1)

log(population + 1) .4401∗∗∗ (.002655)
Intercept −1.138∗∗∗ (.01890)

λ̂: .1107∗∗∗

LR test value: 73,375
Numerical Hessian ŝe(λ̂): 8.4241e−06

Log likelihood: −222,020.8
ML residual variance (σ2): .4206
Observations: 215,795
Parameters: 4
AIC: 444,050

Note: ∗∗∗p<.0001

should not be assumed to generalize, and conclusions should be restricted only to geotag users
with their population biases.

4.6 Future Directions
There are a number of directions for future work. One is to connect tweets to lower-resolution
and lower-accuracy but more current 2013 ACS 1-year county-level estimates. Others are to
see the effect of filtering out non-personal users, and to build ways to filter out foreign tourists
and better uniquely place geotag users in the block group that is likely to be their residence.
Modeling demographic differences between users of different levels of use is also possible with
this data. We have applied one spatial model, but spatial modeling is a rich area with many other
available techniques. For example, there are also relevant disease mapping models that break
down incidence by various demographic strata [26] that would be appropriate here, as well as
nonparametric models that might better capture irregular effects. Furthermore, we elected to not
consider the temporal aspect; there is work on spatio-temporal modeling [136, 183, 213, 272] but
it tends to be in the short-term window of a day or week. With reliable spatio-temporal models of
how the prevalence of geotagged tweets per block group changes over longer periods of time and
a better understanding of the demographic characteristics towards which geotag users are biased,
we may be able to create models to provide a rapid and high-resolution proxy for demographic
changes such as processes of gentrification, or urbanization, or urban decay; that is, utilize the
very biases of social media data to make inferences about larger phenomena.



Table 4.4: Spatial errors full model, binary Rook contiguity, users with >5 tweets only.

Dependent variable:

log(user + 1) s.e.

log(population + 1) -.01218 (.008081)
log(area) .1556∗∗∗ (.001760)
log(asian + 1) .1112∗∗∗ (.001576)
log(black + 1) .04292∗∗∗ (.001576)
log(hispanic + 1) .01533∗∗∗ (.002066)
latitude (demeaned) -.006992 (.0007052)
longitude (demeaned) .02306∗∗∗ (.0002739)
latitude2 -.0001641 (.00009505)
longitude2 .00008777∗∗∗ (.00001411)
median income ($10K) .01661∗∗∗ (0006857)
log(rural + 1) -.05722∗∗∗ (.001096)
log(ages 10-17 + 1) -.09831∗∗∗ (.003712)
log(ages 18-29 + 1) .3916∗∗∗ (.004423)
log(ages 30-49 + 1) .06362∗∗∗ (.006731)
log(ages 50-64 + 1) -.1793∗∗∗ (.006953)
log(ages 65 and up + 1) .09675∗∗∗ (.003940)
Intercept 1.3382∗∗∗ (.1916)

λ̂: .1009∗∗∗

LR test value: 36,577
Num. Hessian ŝe(λ̂): 0.0003456

Log likelihood: −207,923.5
ML resid. var. (σ2): .3755
Observations: 215,795
Parameters: 19
AIC: 415,890

Note: ∗∗∗p<.0001





Part III

Individual User Modeling

49





Hemank Lamba et al. ”From Camera to Deathbed: Understanding dangerous selfies on
social media.” Eleventh International Conference on Web and Social Media (ICWSM) 2017.

CHAPTER 5

DETECTING DANGEROUS SELFIES BEHAVIOR ON
SOCIAL MEDIA

Over the past couple of years, clicking and posting selfies has become a popular trend.
However, since March 2014, 127 people have died and many have been injured while
trying to click a selfie. Researchers have studied selfies for understanding the psychology
of the authors, and understanding its effect on social media platforms. In this work, we
perform a comprehensive analysis of the selfie-related casualties and infer various reasons
behind these deaths. We use inferences from incidents and from our understanding of
the features, we create a system to make people more aware of the dangerous situations
in which these selfies are taken. We use a combination of text-based, image-based and
location-based features to classify a particular selfie as dangerous or not. Our method ran
on 3,155 annotated selfies collected on Twitter gave 82% accuracy. Individually the image-
based features were the most informative for the prediction task. The combination of
image-based and location-based features resulted in the best accuracy. We have made our
code and dataset available at http://labs.precog.iiitd.edu.in/killfie.

With the rise in the amount and type of content being posted on social media, various trends
have emerged. In the past, social media trends like memes [81, 173, 262], social media ad-
vertising [198], firestorm [160], crisis event reporting [246, 247], and much more have been
extensively analyzed. Another trend that has emerged over social media in the past few years
is of clicking and uploading selfies. According to Oxford dictionary, a selfie is defined as a
photograph that one has taken of oneself, typically one taken with a smart phone or web cam
and shared via social media [5]. A selfie can not only be seen as a photographic object that
initiates the transmission of the human feeling in the form of a relationship between the pho-
tographer and the camera, but also as a gesture that can be sent via social media to a broader
population [250]. Google estimated that a staggering 24 billion selfies were uploaded to Google
Photos in 2015 [2]. The selfie trend is popular with millennials (ages 18 to 33). Pew research
center found that around 55% of millennials have posted a ”selfie” on a social media service [4].
The popularity of selfie trend is so massive that ”selfie” was declared as the word of the year in

http://labs.precog.iiitd.edu.in/killfie


Figure 5.1: Left: Selfie took by a group of individuals shortly before they drowned in the lake.
Right: Photograph of a girl taking a selfie on train tracks immediately before a train hit her.

2013 by Oxford Dictionary [3]. The virality of the selfie culture has also been known to cause
service interruptions on popular social media platforms. For instance, the selfie taken by Ellen
Degeneres, a popular television host, at the Academy Awards brought down Twitter website due
to its immense popularity [1].

Selfies have proved instrumental in revolutionary movements [34], and have also known to
help election candidates increase their popularity [18]. Many researchers have studied selfies for
understanding psychological attributes of the selfie authors [156, 234], investigating the effect of
selfies on social protests [34], understanding the effect of posting selfies on its authors [250], dan-
gerous incidents and deaths related to selfies [23, 126, 269] and using computer vision methods
to interpret whether a given image is a selfie or not [41].

Clicking selfies has become a symbol of self-expression and often people portray their ad-
venturous side by uploading crazy selfies [100]. This has proved to be dangerous [23, 126, 269].
Keeping in mind the hazardous implications of taking selfies at dangerous locations, Russian
authorities came up with public posters, indicating the dangers of taking selfies [99]. Similarly,
Mumbai police recently classified 16 zones across Mumbai as no-selfie zones [300]. Through the
process of data collection, we found 127 people have been killed since 2014 till September 2016
while attempting to take selfies. From 15 casualties in 2014 and 39 in 2015, the death toll due to
selfies has reached 73 till September 2016. It has been reported that the number of selfie deaths
in 2015 was more than the number of deaths due to shark attacks [6]. Some of the selfies that led
to casualties are shown in the Figure 5.1. Given the influence of selfies and the significant rise in
the number of deaths and injuries reported when users are taking selfies, it is important to study
these incidents in detail and move towards developing a technology which can help reduce the
number of selfie casualties.

In this work, we characterize the demographics and analyze reasons behind selfie deaths;
based on the obtained insights, we propose features which can differentiate potentially dangerous
selfie images from the non-dangerous ones. Our methodology is briefly explained in Figure 5.2.
Specifically, the major contributions of the paper are as follows:

• Data Characterization: We do a thorough analysis of the selfie casualties, and provide
insights about all the previous fatal selfie-related incidents.

• Feature Identification: We propose features that are easily extractable from the social
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Figure 5.2: A brief overview of our approach - Tweets tagged with a geolocation are analyzed us-
ing text, location and image-based features. Whereas tweets without a geolocation are analyzed
only using text and image-based features.

media data and learn signals which determine if a particular selfie is dangerous.
• Discriminative Model: We present a model that based on the proposed features can dif-

ferentiate between dangerous selfies and non-dangerous selfies.
• Real World Data: We test our given approach on a real-world dataset collected from a

popular social media website. We also test the efficacy of our approach in absence of
certain features, a situation which is possible while working on such real datasets.

Furthermore, we believe our contributions could lead to generation of tools or treatments that
can have a significant impact on reducing the number of selfie deaths.
Reproducibility: More detailed analysis of the selfie deaths is shown on our web page1, and our
code and the dataset is also available for download.

5.1 Related Work

The trend and culture of posting selfies on social media have been investigated widely over the
past few years. The popularity of selfies being posted on online social media has drawn a lot of
researchers from different fields to study the various aspects of the selfie trend. We present the
relevant work from major fields in this section.
The impact of selfies: Brager et al. studied the effect of a particular selfie on playing a part in
a revolutionary movement [34]. The authors specifically analyzed death of a young teenager in
Lebanon who died moments after taking a selfie near a golden SUV, that blew up. His death and
the specific selfie stirred the Western news media and spectators, revolutionizing the movement
- #NotAMartyr over the Internet. The authors argued that the practice of selfie-taking made the
young boy’s story legible as a subject of grievance for the Western social media audience. Porch
et al. analyzed how the selfie trend has affected women’s self-esteem, body esteem, physical
appearance comparison score, and perception of self [232]. Baishya et al. found the effect

1http://labs.precog.iiitd.edu.in/killfie/
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of selfies by candidate prime minister in Indian general elections was significant towards his
victory [18]. Lim et al. suggested that insights into the selfie phenomenon can be understood
from socio-historical, technological, social media, marketing, and ethical perspectives [174].
Psychology Studies: Qiu et al. analyzed the correlations between selfies and the personalities
according to Big Five personality test of the participants [234]. Authors used signals such as
camera height, lips position and the portrayed emotion to make predictions about their emotional
positivity, openness, neuroticism and conscientiousness. Li et al. proposed that people taking
selfies have narcissistic tendencies and the selfie-takers use selfies as a form of self-identification
and expression. The role of selfies was also analyzed in making the selfie-taker a journalist who
posts images on social media after witnessing events [146]. Senft et al. analyzed the role that
selfies play in affecting the online users. It further shows how selfie as a medium has a narcissistic
or negative effect on people [250].
Dangers of Selfie: An important theme, which is directly related to our paper is work related
to the dangers that trend of selfie taking puts a selfie-taker in. Lakshmi et al. explain how
the number of likes, comments and shares they get for their selfies are the social currency for the
youth. The desire of getting more of this social currency prompts youth to extreme lengths [156].
Flaherty et al. [71] and Bhogesha et al. [23] talk about how selfies have been a risk during inter-
national travel. Howes et al. analyzed the selfie trends as a cultural practice in the contemporary
world [126]. Authors particularly analyzed the case of spectators clicking selfies in the sport of
cycling. The spectators wanted to capture the moment but ended up in obstructing the path of cy-
clists, leading to crashes. Subrahmanyam et al. work is the closest to ours discussing the dangers
of taking a selfie [269]. Authors also provided statistical data about the number of deaths and
injuries. A noble initiative #selfietodiefor2 has been posting about the dangers of taking a selfie
in a risky situation. They use Twitter handle @selfietodiefor for sending out awareness tweets
and news stories related to selfie deaths.

Besides all the above-mentioned areas, researchers have also tried to distinguish selfies from
other images by use of automated methods [41]. A project called Selfie City has been investi-
gating the style of selfies in five cities across the world [189]. Using the dataset collected, they
explored the age distribution, gender distribution, pose distribution and moods in all of the selfies
collected. Researchers have also explored the use of nudging to alert a smart phone user about
the possible privacy leaks [295], a technique which can readily be applied to warn users of the
dangers of taking selfies in the present location/situation.

In this work, we study the dangerous impacts of clicking a selfie. Our work is the first in
trying to characterize all the selfie deaths that have occurred in the past couple of years. Till
now, there has been no research that proposes features and methods to identify dangerous and
non-dangerous selfies posted on social media, which is what we propose to do in this work.

5.2 Selfie Deaths Characterization

In our work, we define a selfie-related casualty as a death of an individual or a group of people
that could have been avoided had the individual(s) not been taking a selfie. This may even

2http://www.selfietodiefor.org/
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involve the unfortunate death of other people who died while saving or being present with people
who were clicking a selfie in a dangerous manner.

To be able to better understand the reasons behind selfie deaths, victims, and such incidents,
we collected every news article reporting selfie deaths. We used a keyword based extensive web
searching mechanism to identify these articles [268]. Further, we only considered those articles
as credible sources which were hosted on the websites having either their Global Alexa ranking
less than 5,000, or having a country specific Alexa rank less than 1,000. The earliest article
reporting a selfie death that we were able to collect was published in March 2014. Two annotators
manually annotated the articles to identify the country, the reason for death, the number of people
who died, and the location where the selfie was being taken.

Country Number of Casualties (N=127)
India 76
Pakistan 9
USA 8
Russia 6
Philippines, China 4
Spain 3
Indonesia, Portugal, Peru, Turkey 2
Romania, Australia, Mexico, South Africa,
Italy, Serbia, Chile, Nepal, Hong Kong

1

Table 5.1: Country-wise number of selfie casualties

Using our approach, we were able to find 127 selfie-related deaths since March 2014. These
deaths involved 24 group incidents, and others were individual incidents. By group incidents, it
is meant that multiple deaths were reported in a single incident. An example of this could be an
incident near Mangrul lake in the Kuhi district in India, where a group of 10 youth had gone for
boating in the lake. While they were trying to take selfie, the boat tilted, and 7 people died. We
count all such incidents as group incidents. Out of all the group incidents, 16 of the incidents
involved 2 individuals, 5 involved 3 people, 1 incident had 5 casualties, and there were 2 group
incidents claiming the lives of 7 people each. By analyzing selfie deaths - in terms of group and
individual deaths, it can be concluded that taking dangerous selfies not only puts the selfie-taker
at a risk but also can also be hazardous to the people around them. Although it is known that
women take more selfies than men [189], however, our incident analysis showed that men are
more prone to taking dangerous selfies, and accounted for roughly 75.5% of the casualties. Out
of all the deaths, 41 victims were aged less than 20 years, 45 were between 20 and 24 years of
age and 17 victims were 30 years old or above. This is consistent with our earlier finding that the
trend of taking selfies is really popular among millennials.

Studying the geographic trends of the selfie deaths, we observed that India accounted for
more than 51.76% of the overall incidents, out of which 87% were water-related casualties. In
the USA, 3 deaths occurred while trying to click a selfie with a weapon, followed by Russia
with 2 casualties. This might be a consequence of the open gun laws in both the countries.
Distribution of incidents according to the country is shown in Table 5.1.
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We looked at all the articles in our database to figure out what are the most common fac-
tors/reasons behind selfie deaths. Overall, we were able to find 8 unique reasons behind the
deaths. We found that most common reason of selfie death was height-related. These involve
people falling off buildings or mountains while trying to take dangerous selfies. Figure 5.3 shows
the number of casualties for various reasons of selfie deaths. From the plot, it can be observed
that for water-related causes, there were more group incidents. There were also considerable
number of incidents where the selfie-taker exposed himself to both the height related and water
body related dangers, thus we have analyzed such incidents separately. Twenty-seven individuals
who died in 14 incidents qualified for this category. The second most popular category was being
hit by trains. We found that taking selfies on train tracks is a trend. This trend caters to the belief
that posting on or next to train tracks with their best friend is regarded as romantic and a sign of
never-ending friendship.3

After analyzing selfie deaths, we can claim that a dangerous selfie is the one which can po-
tentially trigger any of the above-mentioned reasons for selfie deaths. For instance, a selfie being
taken on the peak of a mountain is dangerous as it exposes the selfie taker to the risk of falling
down from a height. To be able to warn more users about the perils of taking dangerous selfies,
it is essential to have a solution that can distinguish between the dangerous and non-dangerous
selfies. Motivated by the reasons that we found for selfie deaths, we formulated features which
would be ideal to provide enough differentiation between the 2 categories. In future sections, we
discuss in detail as to how we generated features for different selfie-related risks and develop the
classifier to identify selfies that are potentially dangerous.

5.3 Selfie Dataset Curation

We used Twitter for our data collection. Twitter is a popular social media website which allows
access to the data posted by its users through APIs. Twitter provides an interface via its Streaming

3http://www.dw.com/en/dangerous-trend-the-train-track-selfie/a-18932440



API to enable researchers and developers to collect data.4 Streaming API is used to extract tweets
in real-time based on the query parameters like words in a tweet, location from where the tweet
is posted and other attributes. The API provides 1% sample of the entire dataset [204]. We
collected tweets related to selfies using keywords like #selfie, #dangerousselfie, #extremeselfie,
#letmetakeaselfie, #selfieoftheday, and #drivingselfie.

We collected about 138K unique tweets by 78K unique users. The descriptive statistics of the
data are given in Table 5.2.

Total Tweets 138,496
Total Users 78,236
Total Tweets with Images 91,059
Total Tweets with geo-location 9,444
Total Tweets with Text besides Hashtags 112,743
Time of first Tweet in our Dataset Mon Aug 01
Time of last Tweet in our Dataset Tue Sep 27

Table 5.2: Descriptive statistics of Dataset collected for Selfies

Out of the 138,496 tweets collected, we only found 91,059 to have images in them. We
consider only those tweets for further analysis. However, it is not clear if all of those images
were actually selfies or not. To retain only the true selfie images, we build a classifier based on
image features to retain only the images that are selfies. We explain the classifier used below.
Preprocessing: We manually annotated 2,161 images as to determine whether they were selfies
or not. Out of the tagged images, we found that 1,307 (roughly 60%) were selfies, and remaining
854 were not selfies. Using the manual annotations as ground truth, we constructed a classifier to
discriminate between the selfies and non-selfies. The classifier was based on the transfer learning
based model called DeCAF proposed by Donahue et al. [59]. DeCAF model first trains a deep
convolutional model in fully supervised setting, and then various features from this network are
extracted and tested on generic vision tasks. The deep convolutional model is as mentioned in
Szegedy et al. [273]. The convolutional model has been trained and tested on the task of classify-
ing 1.2 million images in ImageNet LSVRC - 2010 contest into 1,000 classes. It obtained top-1
and top-5 error rates as 21.2% and 5.6% respectively. As specified in the DeCAF framework,
we use this trained model for the task of identifying if an image is a selfie image or not. This
approach is useful as the cost of annotating all images as to whether it is a selfie or not is saved,
and most convolutional deep learning models require enormous amounts of training data to train
effectively from scratch. Therefore by using DeCAF, we built on the generic features provided
by the original convolutional neural network. We found that algorithm gave 88.48% accuracy
with 10-fold cross validation.

Using the model trained on the annotated dataset, we obtained labels for all of the non-
annotated images. We found that out of 90K images (tweets with images or tweets hyper-linking
to images), 62K were actually selfies. These 62K tweet set contained only 6,842 tweets which
had a geolocation.

4https://dev.twitter.com/streaming/overview
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Figure 5.4: CDF Plots showing the difference in the distribution of height-related features for
dangerous and non-dangerous images. Left: Maximum Elevation in 5km radius and 5 sampled
locations (p-value:0.028). Center: Maximum difference in elevation of 10 points sampled in
1km radius with the elevation of the location (p-value: 7.09e-6). Right: Maximum Elevation
Difference of 10 points sampled in 1km radius (p-value: 1.22e-9).

5.4 Feature Set Generation

In this section, we discuss the features we use for our classifier to differentiate between dangerous
and non-dangerous selfies. Based on the analysis of selfie casualties we did in Section 5.2, we
design different features for every major possible selfie-related risk (see Figure 5.3). We analyze
each of the possible causes and consider what all features are possible in terms of tractability and
availability. We first review the location-based features.
Height Related Risks: From our dataset, we observed that 29 selfie deaths were because of
falling from an elevated location. We take this as an indication that taking selfies at an elevated
location is dangerous. Based on the location of the selfie, we want to generate features that tell us
if an image has been taken at an elevated location or not. To estimate the elevation of a location,
we used Google Elevation API.5

Taking only the elevation of a particular place is not be informative to tell if the location
is actually dangerous or not. For example, if a city is at a higher altitude, that does not make
it necessarily dangerous. However, sudden changes in the nearby terrain indicate that there is
a steep decrease in elevation, making the location dangerous. Google Elevation API returns
negative values for certain locations such as water body. We formulated the following features
based on the elevation of the location:

• Elevation of the exact location of the selfie: This feature was not informative as it captures
only the elevation of the location, and that does not necessarily mean a risk due to height.
This was validated by the fact that p-value of Kolmogorov-Smirnov (KS) 2 sampled test
was 0.12; which we can reject only in 15% confidence interval.

• Maximum Elevation of the surrounding area: To get a sense of the area surrounding the
exact location, we sample 10 locations in 1-km radius and return the maximum elevation
out of those. We choose the specified value of radius and number of locations because

5https://developers.google.com/maps/documentation/elevation/
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they returned the lowest p-value after applying 2-sample KS test for dangerous and non-
dangerous selfie distribution.

• Difference Elevation of the surrounding area: We calculate this as the maximum difference
between the elevation of our exact location and the sampled locations’ elevation. These
features capture the sudden elevation drop that might exist near the surrounding area. For
this feature, we sampled 5 locations in a 5-km radius for the same reason as mentioned
above.

• Maximum Elevation Difference in the surrounding area: Taking the maximum difference
between the highest elevation and lowest elevation of the sampled points helped us capture
the amount of elevation variation in the surrounding area.

We did not work with other possible statistics such as the average elevation or median elevation
as those statistics try to capture the center point or a single representative value of the distribution.
We are however interested in sudden elevation drops in the surrounding area, which will lie on
the extremes of the elevation distribution.

To evaluate the efficiency (or the discriminative power) of the above-mentioned features,
we plot the empirical cumulative distributions (CDF) of height-related dangerous selfies and
non-dangerous selfies. This can be seen in Figure 5.4. We can notice that for the 3 features,
the empirical CDF of dangerous and non-dangerous selfies are considerably different. The KS
test returned p-values:0.028 for Maximum elevation, 7.09e-6 for Elevation difference between
maximum elevation and our location and 1.22e-9 for Maximum elevation difference.
Water Related Risks: Another prominent reason of selfie casualties that we infer from Fig-
ure 5.3 is water-related risks. After analyzing the water-related incidents, we found that often
people took selfies while being in a water body or in close proximity to one. They ended up
drowning by losing their body balance and falling into the water body. To tackle water related
risks, we generate features based on the proximity of their location to a water body. Consider the
selfie in Figure 5.5(a) which has been taken in the middle of a water body. We mapped the exact
location of the selfie to Google Maps and considered 500 × 500 pixel image pertaining to level
13 zoom factor on Google Maps [7]. The image after this step looked like in Figure 5.5(b). We
applied image segmentation to identify the contour of all the water bodies shown in Figure 5.5(c).
To infer whether a given location is in close proximity to a water body or not, we use the mini-
mum distance to a water body from the location of the image as a feature. Since all the segmented
images were of maps with same scale and zoom factor, the distance was treated as pixel location
distance. Proximity to a small water body like a stream or a river might not make a selfie danger-
ous, therefore we also use fraction of the pixels in the segmented image (Figure 5.5(c)) to further
help us in distinguishing between dangerous and non-dangerous selfies.

We can observe from the Figure 5.6 that for both of the water features - minimum distance to
a water body and the fraction of water pixels in the segmented image, the distribution of water-
related dangerous and non-dangerous selfies is considerably different. We use 2-sampled KS test
to statistically confirm our observations. We obtained p-values of 1.18e-19 (minimum distance
to a water body) and 2.79e-19 (fraction of water pixels in the segmented image) indicating that
we can safely reject that the features are being generated from the same distribution.
Train/ Railway Related Risks: Besides water and height-related risks, another common reason
of selfie casualties is train-related risks which accounted for 11 casualties. We used Google



Figure 5.5: Segmentation Example: Different stages of processing to get the final segmented
image distinguishing between the water and land.
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Figure 5.6: CDF Plots showing the difference in dangerous and non-dangerous distributions for
water-related features. Left: Minimum distance to a water body. Right: Fraction of water pixels
in the segmented image

Places API to determine if there is a railway track or a railway station close to the location of
the selfie or not. We used the minimum distance between the location and the railway track
as a feature. Though this feature is not sufficient to distinguish between dangerous and non-
dangerous selfie, it still provides valuable information which when appended to other features
proves to be helpful in the classification task.
Driving/Road Related Risks: It is challenging to account for driving-related risks in all possible
contexts. The location of the selfie can provide information about how close a person is to a road.
Using only the location data is not sufficient to determine if the selfie-taker was driving at the
time of taking a selfie, or was standing in the middle of a busy road to take the selfie. However,
we still think that the minimum distance of the location of the selfie to the highway/road will be
informative in determining the ‘dangerousness’ of the selfie when used in conjuction with other
features.

For all the other reasons such as weapons, animal, electricity, it is difficult to find location



based insights, and thus impossible to find location based features. We rely on other signals
based on the text accompanying the selfie, and the content of the image to be able to derive
features which can provide insights about these reasons. For example, the presence of a weapon
or animal can be easily inferred from the image content. Below, we discuss the text-based and
image content-based features.
Text-based Features: The content of the tweet can be a useful source for indicating if the
image accompanying it is a dangerous selfie. Users tend to provide context to the image either
directly in the tweet text or through hashtags. We use both to generate our text-based features.
After removing the URLs, tokenizing the tweet content, and processing emojis, we obtain our
text input. We use TF-IDF over the set of unigrams and bigrams. For further enriching the
text feature space, we convert the text into a lower dimension embedded vector obtained using
doc2vec[167].
Image-based Features: Since an image could be dangerous due to various reasons, we cannot
simply apply a classifier to the actual pixels of the image. Classifying an image as to whether it
is dangerous or not requires more understanding of the context and the elements in the image.
Therefore, we first extract the salient regions in images and then generate captions for each of
those regions.

Figure 5.7: An example of the DenseCap on one of the images (Left) from our dataset. We use
the dense captions produced by DenseCap (Right) to come up with text based features over them.

To extract informative regions in images and for the caption-generating process, we used
DenseCap [133]. DenseCap is start-of-the-art deep learning based captioning technique for re-
gions in an image. It outperforms other models such as Full Image RNN, Region RNN on both
tasks of dense captioning and as well as image retrieval comfortably. The average precision on
the dense captioning task by DenseCap was 5.24, way higher than the closest competitor 4.88.
The architecture of DenseCap involves a fully convolutional layer, a fully convolutional localiza-
tion layer used for extracting ROI (regions of interest) and their features, a recognition network
for finding relevant ROI’s, and a language model to generate captions for the ROI. An example



of the output of the DenseCap on a selfie in our dataset is shown in Figure 5.7.
We treat the generated captions as the text describing the image in natural language. From the

text, we compute natural language features such as unigrams, bigrams to determine if the content
of the image is dangerous or not. We also convert the captions generated into a lower dimen-
sion vector in a similar fashion we did for text-based features. To empirically view the validity
of our approach, we plotted the 2-dimensional t-SNE (Stochastic Neighbor Embedding) [186]
mapping of the embedded doc2vec vectors in Figure 5.8. In the plot, we can see that the trian-
gles (dangerous selfies) are negative in the 1st vector components (X-axis), whereas the circles
(non-dangerous selfies) are largely positive. On the plot, we can imagine a line easily separating
most of the dangerous and non-dangerous selfies. Our entire feature space could be categorized
as shown in Table 5.3.
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Figure 5.8: t-SNE scatter plot of doc2vec output of generated captions for 50 randomly chosen
dangerous and non-dangerous selfies.

5.5 Experiment

5.5.1 Manual Annotation
From the selfie data set described in Section 5.3, we sampled a random set of 3,155 selfies with
geolocation for creating an annotated data set. We manually labeled the images to determine
whether they are dangerous or not. For the process of annotations, we asked questions such as,
whether the image depicted is dangerous or not? If yes, then what is the possible reason for
it being dangerous? And, whether text accompanying the image helped them in classifying if



Table 5.3: Location-based, Image-based and Text-based features used for classification of selfies.

Feature Type Feature

Location Based Features

Elevation of the location
Maximum Elevation
Difference between Maximum elevation out of sampled
points and elevation of the location.
Maximum elevation difference in the set of sampled points
Minimum Distance to water body
Fraction of water pixels in the segmented image
Distance to railway tracks
Distance to major roadway/highway

Image Based Features
TF-IDF of unigrams and bigrams on DenseCap captions
Doc2Vec representation of DenseCap captions

Text Based Features
TF-IDF of unigrams and bigrams on the Twitter text
Doc2Vec representation of Twitter text

image is dangerous or not, and so on. A screenshot of the tool is shown in Figure 5.9.6 We
asked 8 annotators to annotate the set of 3,155 selfies, randomly split into a common set having
400 images. The common set was annotated by every annotator, and the shared set was divided
equally among all the annotators. The inter-annotator agreement rate obtained on the common
set of 400 selfies, using the Fleiss Kappa metric [72] was 0.74. Fleiss kappa metric interpretation
reveals that the above value indicates substantial agreement between the annotators [165]. The
annotated dataset contained 396 dangerous and 2,676 non-dangerous selfies. Annotators were
unsure about the remaining selfies in our dataset. For the annotated images, we found that vehicle
related causes for a selfie being dangerous, like taking a selfie in a car, is the maximum, followed
by water related risks. Statistics about the risks that annotators perceived from the dangerous
images is given in Table 5.4. Annotators frequently found images to be dangerous in more than
one aspect. For such cases, we counted their labels for all the mentioned risk types. One striking
observation is that even though we didn’t find any selfie casualties due to road related incidents
in our research, it was identified as a potential risk by the annotators in as many as 29 dangerous
images (7%).

5.5.2 Classifier
Considering the annotations performed in the section above as ground truth, we evaluate the
performance of our classifier on the task of classifying a selfie as dangerous. The problem of
classifying dangerous selfies is a highly unbalanced problem. We have only 623 (roughly 9%)
dangerous selfies in comparison to the remaining 5,837 non-dangerous selfies. The imbalance
in the annotated data is a common problem in many machine learning applications. In these
cases, applying a classifier on the data as is, leads to a classification algorithm to simply predict
the majority class label for all the samples. To avoid this, many methods have been proposed

6The annotation tool we used is available at http://twitdigest.iiitd.edu.in:4000

http://twitdigest.iiitd.edu.in:4000


Figure 5.9: Screenshot of the annotation tool. We asked above questions to the annotators based
on a selfie image shown to them.

Table 5.4: Reasons marked by annotators for a selfie being dangerous.

Reason Number of Dangerous Selfies
Vehicle Related 120
Water Related 118
Height Related 86
Height and Water Related 55
Road Related 29
Animal Related 16
Train Related 8
Weapons Related 4



in the literature for balancing such data sets [113]. For our task, we experimented with random
down-sampling (randomly removing samples from majority class).

As mentioned earlier, our feature space can be easily divided into 3 categories - text, image,
and location-based. To compare all feature types, we build and test the classifiers for every pos-
sible combination of the features. For all our experiments, we perform 10-fold cross validation.
Furthermore, we use the grid search to find the ideal set of hyperparameters for each classifier
by doing a 3-fold cross-validation on the training set. We tested the performance of our method
using 4 different classification algorithms - Random Forests, Nearest Neighbors, SVM and De-
cision Trees. Each of the classifiers was trained and tested on the similar dataset and using the
same feature configuration. Table 5.5 lists the accuracy obtained by using various classification
techniques over different combinations of our feature space.

All the three features, when combined perform the best. This is also observed from the
Receiver Operator Characteristic (ROC) graph, shown in Figure 5.10. To obtain this curve, we
computed the probability of selfie being dangerous according to the best performing SVM model.
For every selfie, we only took the probability when the particular selfie was in the testing-set
when we were performing cross-fold validation. After sorting these probabilities, we generated
equi-spaced 300 threshold points between [0, 1], and marked any selfie above the threshold as
dangerous and rest non-dangerous. When the assigned labels were compared with the annotated
ground truth, we obtained true positive count and false positive count. All the feature permuta-
tions perform much better than the random baseline.

Table 5.5: Average accuracy (with standard deviation) for 10-fold cross validation over different
classification techniques and different feature configurations for the down sampled dataset.

SVM RandomForest Nearest Neighbors Decision Tree
Image Only 0.795± 0.044 0.774± 0.048 0.547±0.034 0.741± 0.039
Text Only 0.649± 0.047 0.533± 0.039 0.514± 0.017 0.536± 0.036
Location Only 0.638± 0.037 0.639± 0.033 0.596± 0.055 0.625± 0.034
Image + Location 0.794± 0.039 0.773± 0.023 0.559± 0.031 0.738± 0.040
Text + Location 0.679± 0.018 0.607± 0.041 0.51± 0.04 0.599± 0.03
Text + Image 0.811± 0.016 0.767± 0.031 0.566± 0.039 0.765± 0.054
Text + Image + Location 0.824± 0.039 0.779± 0.035 0.574± 0.032 0.750± 0.03

Multimodal features are important: Based on the results in Table 5.5, we can observe that
when all the classes of features are used, the accuracy is the highest. This validates our approach
of using multimodal features. It can also be seen that the combination of image and text features
perform better than the image and location features as seen by [43]. This might be indicative that
the context and the content of the selfies is a far better predictor than the location of the selfie.
Image features perform well: Further analyzing the results, we can clearly see that image-
based features perform the best out of all the classes of features. Therefore, even in the absence
of location of the selfie, a model based only on the image based features can perform relatively
well in finding dangerous selfies. This can be helpful in cases, where the user’s post is not
geocoded, or in an application case when location information is not available due to GPS being
turned off or unavailable.
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Figure 5.10: Receiver Operating Characteristic (ROC) curves corresponding to the statistical
models for identifying dangerous selfies. “Dangerous” selfie is the positive class.

5.6 Conclusions

In this paper, we create a novel dataset of reported selfie casualties to describe the subtleties of
the situations where such accidents may occur. Our work demonstrates the viability of using
selfies and content posted on Twitter as an instrument to quantify and characterize dangerous
selfies that may cause casualty to selfie-ers. Further, we present a multimodal classifier that uses
various features such as - text-, image-, and location-based features to identify dangerous selfies.
In this work, we demonstrate that measuring the multimodal subtleties (image, text, and location)
of selfie tweets available on social media can help to identify physical harm possibilities to selfie-
ers. We show that location-based features can be customized to detect the common reasons such
as water-related, height-related factors pertaining to selfie casualties. We adopt state of the art
deep learning techniques such as DenseCap to determine the content of the selfie. The approach
demonstrated in our work, suggests that even in absence of one or more of the above mentioned
features, technologies can be developed to identify dangerous selfies. We believe that there is an
opportunity to extend our approach for identifying selfie-ers who are at high risk of selfie-related
casualties.
Limitations: Our work explores a set of Twitter users, who are explicit about sharing selfies and
mention hashtags such as #selfies and #myselfie in their posts. However, we acknowledge that
these users may not be representative of the entire Twitter or general social media population.
There could be a section of users who may not be explicit about sharing selfies using hashtags
or keywords. We also acknowledge, that there may be a section of selfie-ers who may not be



sharing their selfies on social media. There might be an inherent selection bias towards selfie-ers
who prefer to use Twitter as a platform to share selfies.
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CHAPTER 6

DETECTING DISTRACTED DRIVING POSTS ON SOCIAL
MEDIA

In 2015, 391,000 people were injured due to distracted driving in the US. One of the
major reasons behind distracted driving is the use of cell-phones, accounting for 14% of
fatal crashes. Social media applications have enabled users to stay connected, however,
the use of such applications while driving could have serious repercussions - often leading
the user to be distracted from the road and ending up in an accident. In the context of
impression management, it has been discovered that individuals often take a risk (such
as teens smoking cigarettes, indulging in narcotics, and participating in unsafe sex) to
improve their social standing. Therefore, viewing the phenomena of posting distracted
driving posts under the lens of self-presentation, it can be hypothesized that users often
indulge in risk-taking behavior on social media to improve their impression among their
peers. In this paper, we first try to understand the severity of such social-media-based
distractions by analyzing the content posted on a popular social media site where the user
is driving and is also simultaneously creating content. To this end, we build a deep learning
classifier to identify publicly posted content on social media that involves the user driving.
Furthermore, a framework proposed to understand factors behind voluntary risk-taking
activity observes that younger individuals are more willing to perform such activities, and
men (as opposed to women) are more inclined to take risks. Grounding our observations
in this framework, we test these hypotheses on 173 cities across the world. We conduct
spatial and temporal analysis on a city-level and understand how distracted driving content
posting behavior changes due to varied demographics. We discover that the factors put
forth by the framework are significant in estimating the extent of such behavior.

Distracted driving is any non-driving activity that the driver engages in, which can lead to
visual (taking eyes off the road), manual (taking hands off the driving wheel) or cognitive (taking
the mind off driving) distractions [218]. Distracted driving is particularly risky: In 2015, fatal
crashes involving distracted drivers resulted in the deaths of 9 individuals and 1,000 injuries in
the US alone [216].



Usage of cell-phones while driving has been a primary reason for distraction-affected crashes,
resulting in 69,000 total crashes in 2015 [216]. Texting while driving can be particularly devas-
tating as it combines all three types of distractions (visual, manual, and cognitive) [39, 125, 177,
289]. Among cell-phone users, teenagers and young adults are especially at risk. Studies show
that 42% of high schoolers text multiple times while driving [137], and teenagers and young
adults comprise 36% of distracted drivers using cell phones [216].

We argue that social media use can have similar effects. Individuals spend 30% of their
weekly online time on social networking applications [85], with 78% of traffic coming from
smartphones [219]. For instance, an average Snapchat user spends 30 minutes daily on the
platform [263]. However, while many studies investigated the risk of using cell phones while
driving, prior work generally focused on texting and emailing; thus, the impact of social media
use remains relatively unknown.

We address this gap in our paper, by using large-scale data from Snapchat to develop a deep-
learning based classifier to classify a post as distracted driving content or not. Then, grounded
in Lyng’s edgework theory [184] (details in the next section), we investigate the extent to which
people create and post content while driving or while being in the passenger seat, 1 and char-
acterize the users and spatial and temporal patterns associated with higher incidence of such
content.

We discover that (1) a deep learning classifier trained on content has a good performance in
detecting distracted driving content, (2) distracted driving content posting behavior is widespread
- 23% of snaps posted are related to distracted driving. Further, by analyzing the spatial and
temporal patterns, we discovered that (3) distracted driving content is generally posted in night-
time and regional affects are visible in the temporal patterns of such behavior and (4) distracted
driving content posts are concentrated to only certain spots in the city. Finally, we also discovered
that age and gender play a key role in inferring who is more likely to participate in such risk-
taking behavior.

In summary, we make the following main contributions: (1) a classifier to detect distracted
driving content posting behavior on Snapchat; (2) an empirical study characterizing the extent of
distracted driving content behavior across 173 cities around the world, the types of users more
likely to engage in such behavior, and spatial and temporal patterns of distracted driving content
snaps in these cities.

Our results have implications for platform designers and policymakers. Our proposed deep-
learning based classifier can identify distracted driving content content posted on social media.
Furthermore, the spatial and temporal patterns and individual user characteristics we uncover
can inform the design of region-specific interventions for certain cities where such behavior
is common, and for specific times when users generate these posts; as well as the design of
individual-level interventions and educational campaigns for at-risk populations.

1Arguably a front-seat passenger creating social media content, e.g., a video, could also be a source of distraction
for the driver.



6.1 Development of Research Questions

Our work is grounded in two theoretical frameworks. First, Goffman’s dramaturgical theory [86]
describes how individuals may engage in risk-taking behavior to improve their peers’ impres-
sions of them, even when interacting through online social media platforms [122]. Goffman
introduced the term “impression management”, which has been widely used to explain how an
individual presents an idealized rather than a more authentic version of themselves [86]. In the
context of risk-taking behavior, Leary et al. [168] analyzed voluntary risk-taking activities such
as avoiding condoms, indulging in narcotics and steroid use, and reckless driving, and suggested
that such risk-taking activities are undertaken to improve the impression of individuals among
their peers [168]. Hogan [122] extended Goffman’s concept of impression management to on-
line social media websites and considered the online social media platforms as a stage that allows
users to control their impressions via status messages, pictures posted, and social media profiles.
Similarly, we expect that social media users could post distracted driving content. Therefore, we
ask our first research question:
RQ1. [Extent] What is the extent of distracted driving content posting behavior on Snapchat?

Second, Lyng’s edgework theory [184] characterizes voluntary risk-taking behavior (or, edge-
work) and identifies a range of individual and social factors that characterize the edgeworkers.
The framework defines edgework activities as those where there is a “clearly observable threat
to one’s physical or mental well-being”, such as rock-climbing, auto-racing, criminal behavior,
drug use, etc. Edgework theory is social psychological, resting on the idea that individuals in-
dulge in such activity to maintain the “illusion of control.” Treating illusory sense of control as
a factor, Lyng observed that edgework is more common among young people than among older
people and among males than females. Other studies have found similar evidence related to the
gender and age of the risk-takers [63, 168]. Building on this line of work, we also investigate
if the demographic factors put forward by edgework framework also hold for distracted driving
content posting behavior on Snapchat. We therefore ask:
RQ2. [Demographics] Which user demographic characteristics correlate with posting distracted

driving content?

Besides the individual characteristics, Lyng also noted that individuals who are under pres-
sure from external social forces are also more inclined to do edgework, as a way to exhibit
control over experiences that are potentially even more dangerous. We expect that different ge-
ographic locations can give indications about the culture in that particular part of the world and
hence the social forces at play. In addition, social media use is known to vary across geogra-
phies [120, 140, 280]. For example, Kim et al. [140] studied how cultural contexts influence
usage of social network sites among teenagers from US and Korea, finding that Korean partici-
pants used it for receiving acceptance from their peers, while US participants used the websites
only for entertainment purposes. Similar studies were carried out by Hochman et al. [120] and
Tifentale et al. [280], where they noticed different patterns across geographies in terms of photo-
sharing behavior. A better understanding of the geographic patterns can help in designing more
appropriate and effective interventions for the at-risk population in such regions. We, thus ask:
RQ3. [Spatial Analysis] How does distracted driving content posting behavior vary across

cities worldwide?



There is much variability in the temporal patterns of social media usage. For example, Golder
et al. [89] analyzed Facebook messaging pattern across universities and discovered temporal
rhythms. They showed that students across all universities followed a “weekday” and a “week-
end” pattern and further showed that students in the same university behaved similarly. Grinberg
et al. [97] discovered interpretable temporal patterns for mention of different terms related to
nightlife, coffee, etc. on Twitter and Foursquare checkins. Golder et al. [88] further analyzed
the temporal patterns of Twitter messages and were able to identify diurnal and seasonal mood
rhythms, such as observing that people were generally happier on weekends; and that the morn-
ing peak in the number of messages was delayed by 2 hours on weekends. We investigate whether
we can derive similar diurnal patterns for distracted driving content posting behavior, and ask:
RQ4. [Temporal Analysis] How does distracted driving content posting behavior vary with

time?

However, before we can begin to study distracted driving content posting behavior on Snapchat
empirically, we first need to be able to detect such behavior. A major component of our work
building a classifier to identify distracted driving content , where the content creator is driving or
is distracted while driving. A popular stream of work in the area of classifying videos is to apply
multiple image-based classifiers on the frames of the given video. To this end, He et al. [116]
proposed a deep learning model that learns the residual functions and out-perform previous com-
petitors in a widely popular ImageNet challenge. Zagoruyko et al. [311] further improved the
ResNet model and proposed a Wide Residual Network (WRN), which uses the increased width
of the network to improve accuracy. Xie et al. [303] modified the ResNet model by introducing
a new hyper-parameter called cardinality to better tune the depth and width of the model. We
use some of these architectures as candidate models for our deep learning classifiers. Among the
video classification approaches used for action recognition, an approach that operates on spatio-
temporal 3D CNNs stands out [109] by having high accuracy on standard action recognition
datasets such as Kinetics and UCF101. Based on the above insights, we explore the feasibility of
learning a robust classifier to distinguish between distracted driving content and non-distracted
driving content, asking:
RQ5. [Detection] How can we use Snapchat content to distinguish between distracted driving

and other videos? Moreover, how accurate is such a classifier?

6.2 Data Collection and Dataset

In this work, we study a widely used social media platform, Snapchat. Snapchat is a popular
platform that allows users to post multimedia content(snaps) that can be shared with other users
- visible by all or only by friends. Our dataset is based on SnapMap - a unique feature where any
content can be posted publicly anonymously. The content posted on Snap Map is automatically
geo-tagged and is shown in a localized region, though not giving the exact location.

2https://www.cia.gov/library/publications/the-world-factbook/appendix/
appendix-b.html

https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-b.html
https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-b.html


Table 6.1: A sub-sample of the cities selected for analysis.

City Economic Status2 Pop. Male (% age) Pop.(< 20)

Cape Town Developed 4.43M 48.90 0.329
London Developed 9.05M 49.80 0.247
Melbourne Developed 4.77M 49.00 0.241
New York Developed 8.58M 47.70 0.232
Rio De Janeiro Developing 13.29M 46.80 0.267
Riyadh Developing 6.91M 59.17 0.220

6.2.1 Data Collection
For obtaining the data through SnapMap, we leverage the underlying API to collect data across
173 cities. We select these cities such that they give us a wide coverage over the entire world
and they were constrained on having a minimum population of 200k each. Further, we filter out
cities where there is limited or restricted Snapchat usage (for example, Chinese metropolises). A
sampled list of some of the cities selected for this analysis, with certain attributes (that we use for
future analysis) is provided in Table 6.1. We utilize the shapefiles obtained from OpenStreetMap3

to precisely define the region enclosed by a city. In the absence of a city’s shapefile, we use its
bounding box values instead.

This overall city’s region/bounding box is divided into smaller tiles using a grid such that
each tile is 1km× 1km. A similar approach has been previously used in geographical studies on
Snapchat [135] which utilizes a tile of size 2.4km× 2.4km respectively. We periodically collect
snaps posted in each of these grid tiles, crawling each city once every 8 hours. The data collected
lists the time at which the snap was posted in Coordinated Universal Time (UTC), which we then
convert to the local time-zone of the corresponding city to allow for uniformity in the temporal
analysis.

Table 6.2: Brief description of the data collected.

Number of Snaps collected 6,431,553
Number of cities scraped 173

Time of first Snap 16-03-2019 00:00:00
Time of last Snap 15-04-2019 23:38:57

Most active city Riyadh (1,023,836)
Least active city Havana (114)

Most active day 13th April, 2019 (288K)
Least active day 30th March, 2019 (89K)
% Snaps deleted 2.98%

Overall, a brief statistics of the collected dataset is given in Table 6.2. We observed that
3https://www.openstreetmap.org

https://www.openstreetmap.org


204,874 snaps were deleted after posting and were not used in our analysis. Though our work is
concentrated on Snapchat, it can be easily extended to most social media platforms where users
post multimedia content (images/videos).

6.3 Detecting Distracted Driving Content

To be able to build a classification model, we need to have a ground truth dataset of snaps with
labels marking each as either distracted driving content or non-distracted driving content. We
built an annotation portal (details of the portal provided in Supplementary), and asked anno-
tators to provide labels for over 15K snaps, randomly sampled from our dataset. We annotate
each snap for distracted driving content or non-distracted driving content and ensure that at least
three annotators annotated each snap. We obtained a Fleiss-Kappa inter-annotator agreement
rate of 0.85, which signifies almost perfect agreement [73]. A snap was assigned a ground-truth
label of distracted driving content if two or more annotators agree that it is a distracted driv-
ing content snap. An anonymized example of distracted driving content snap can be viewed at
https://rebrand.ly/driving-snap. This snap is clearly dangerous as it is created by
an individual who is driving and hence is classified as an example of distracted driving.
Dataset. We randomly sample and split the manually annotated snaps into training and test set of
8,634 (6,392 negative, 2,242 positive) and 1,479 snaps (1,118 negative, 361 positive) respectively.
We train our model using 5 fold cross-validation on this so obtained dataset. The number of
positive samples (distracted driving) in our training dataset is much less than the number of
negative samples (non-distracted driving) which creates a class imbalance.

We experiment with two different kinds of classifiers - image-based and video-based. The
main distinction between both types of approaches is that the image-based classifiers first con-
verts the snap (a video) into frames, and then each frame is classified independently as either
distracted driving content or non-distracted driving content. Post classification of each frame,
various aggregation techniques (single and majority voting) are used to obtain a single label for
the entire snap. On the other hand, the video-based classification methods use the entire video as

Table 6.3: Performance of various classification methods, using different base architectures on
our ground truth dataset.

Type Architecture Accuracy Precision Recall F1 Score

Image-Based
(Single Voting)

ResNeXt-50 0.924± 0.005 0.780± 0.015 0.958± 0.01 0.859± 0.007
ResNet-34 0.919± 0.007 0.774± 0.02 0.948± 0.013 0.851± 0.009
WideResNet 0.926± 0.009 0.792± 0.030 0.948± 0.016 0.862± 0.012

Image-Based
(Majority
Voting)

ResNeXt-50 0.947± 0.001 0.902± 0.008 0.876± 0.011 0.888± 0.004
ResNet-34 0.942± 0.004 0.896± 0.02 0.860± 0.012 0.877± 0.005
WideResNet 0.947± 0.003 0.914± 0.011 0.868± 0.019 0.890± 0.006

Video-Based
ResNet-34 0.930± 0.008 0.860± 0.044 0.860± 0.033 0.857± 0.013
ResNeXt-101 0.941± 0.003 0.876± 0.015 0.880± 0.026 0.876± 0.008

https://rebrand.ly/driving-snap


an input.
Image Based Methods. We build our image-based methods over existing image-based deep
learning architectures. We leverage the best-performing classifiers that have achieved high accu-
racy on ImageNet Large Scale Visual Recognition Challenge [244]. The challenge consisted of
1.2M images covering 1,000 classes. Specifically, we experiment with ResNet-34 [116] (24.19%
top 1 error), ResNeXt-50 [303] (22.2% top 1 error) and WideResNet-50 (WRN) [311] (21.9%
top 1 error). The wide residual networks perform well as they decrease the depth of the net-
work and increase its width to increase the representational power of the residual blocks. We
pre-train these architectures on the ImageNet dataset, following which we fine-tune them on our
annotated dataset using transfer learning. Such a technique is based on transfer learning and is
efficient even when a small number of samples are used to fine-tune [312]. The number of train-
ing samples in our dataset after converting the videos to frames is 69,125, which is sufficient for
transfer learning. To solve the class imbalance issue, we use data augmentation techniques such
as random cropping and horizontal flipping to increase the number of driving frames shown to the
network during training. For converting the snaps (videos) to frames, we sample a frame every
second - every 30th frame per second (video’s original playback rate is 30fps). For each frame,
we obtain a label of whether it is distracted driving content or non-distracted driving content.
To obtain a single label for the entire snap, we use two aggregation techniques - (a) Majority
voting and (b) Single voting. For majority voting, we classify the entire snap to be distracted
driving content if the majority of the frames are assigned to distracted driving class, whereas for
single voting, we classify the entire snap as distracted driving content content if we classify even
a single frame as distracted driving content. We tune the hyper-parameters of these models using
5-fold cross-validation and report their accuracy, precision, recall and F1 score 4 on the test set
in Table 6.3.

To measure the robustness of the frame selection, we compare our frame sampling strat-
egy with that of a random frame sampling every second. We discover that the random frame
sampling-based approach performs worse than our frame sampling strategy (random sampling
has 93.8%, compared to our frame sampling’s 94.8% accuracy). Similarly, we also experiment
with different voting aggregation techniques - where a snap is assigned a label if more than 10%,
30%, 50%, 70% and 90% of the frames have the same label. We report these results in Figure 6.1.
Video Based Methods. For video-based classifiers, we again use state of the art architectures
for a video classification task. Karpathy et al. explored multiple ways to fuse temporal infor-
mation from consecutive frames using 2D pre-trained convolutions [138]. Similarly, Hara et
al. proposed spatiotemporal 3D CNNs for video classification [109]. They examined deep ar-
chitectures based on 3D Res-Net backbones for several datasets, achieving a top-5 accuracy of
85.7% on the Kinetics dataset[139]. The Kinetics dataset consists of more than 300K videos
with 400 class labels. To adapt these architectures for our classification task, we re-train two of
their pre-trained models, which are based on ResNet34 and ResNeXt-101 architectures over our
annotated dataset. Similar to the image-based methods, we utilize random cropping to solve the
class imbalance issue.

The image classifiers perform better than the video classifiers, as shown in Table 6.3. We
hypothesize that this might be because the image classifiers are pre-trained on the ImageNet

4We report the precision, recall and F1 score of the minor class in all our results



dataset, which allows the classifiers to gain a much better internal representation of outdoor
driving scenes. On the other hand, the Kinetics dataset on which the video classifier is pre-
trained contains labels for action recognition tasks which do not transfer well to our task. Another
reason why the video classifier does not perform as well as the image classifier is that the video
classifiers require large amounts of data to train properly which, due to manual annotation limits,
is not available for our dataset.

(a) (b)

Figure 6.1: Precision and Recall for distracted driving class for (a) Random frame and (b) Single
frame for different thresholds.

Training Details We train all our image-based models using Adam optimizer. The best
model was trained with learning rate of 0.01, batch size 16, and utilized weight decay for regu-
larization purposes. We train all the models for a maximum of 10 epochs with the total training
time of around 12 hours on 4 Nvidia GTX 1080Ti GPU.

For the video classifier models, we use SGD (Stochastic Gradient Descent) with momentum
and set the learning rate to 0.1. We use a batch size of 32 for the video classifiers and train
both the models for a maximum of 60 epochs each. We also use weight decay as a means of
regularization for the model.
Validation and Robustness of Classifier To validate the generalizability of our proposed method,
we create a held-out test set from our collected dataset (dataset that was not previously used in
any step of training). We randomly sampled 5,472 snaps from our collected dataset (1, 404 pos-
itive, 4, 068 negative). We did not place any geographic/temporal constraints on selecting these
posts. On this held-out set, we see that all methods achieve a high accuracy of at least 0.93, as
shown in Table 6.4.

In the above section, we show that our proposed deep learning approach that leverages the
content of the snap can be used to detect distracted driving content snaps successfully (RQ5).



Table 6.4: Performance of models on held-out set.

Type Architecture Accuracy F1-Score

Image-Based (Majority Voting)
ResNeXt-50 0.953 0.91
ResNet-34 0.948 0.894
WideResNet 0.951 0.904

Video-Based
ResNet-34 0.93 0.859
ResNeXt-101 0.942 0.859

6.4 Characterizing Temporal and Spatial Patterns

In this section, we first measure the extent of distracted driving content posting behavior across
various cities on the platform. Temporal patterns have proven to be useful for analyzing trends;
we perform temporal analysis on our dataset to understand when such type of behavior (posting
distracted driving content) is prevalent. Further, we conduct spatial analysis to explore interesting
patterns across and within each city to determine if such behavior is concentrated on certain parts
of the city or is spread across uniformly.

6.4.1 Extent of distracted driving content
Related to RQ1, we want to understand the extent of posting distracted driving content across
various cities. To measure this, we applied our deep-learning classifier built in the previous
section on all the snaps (6.43M) we collected. We discovered that around 23.56% of the snaps
in our dataset consisted of distracted driving content. Further, we analyzed which cities were
exhibiting such behavior the most, and present it in Figure 6.2.

We observe that middle-eastern (Riyadh, Baghdad) and Indian cities (Chandigarh, Amritsar,
Ahmedabad) were posting such content in high percentages (> 35%). Such behavior was found
to be lower in European and American cities, and we find that there is not even a single European
or American city in the list of top-20 cities. Moreover, the first American city (Fremont, CA) that
has a high percentage (22.26%) of distracted-driving content has only very few total numbers of
snaps (4,042).
Observation 1 (Regional Effect). The trend of posting distracted driving content on Snapchat
is predominantly higher in Middle-Eastern and cities in Indian sub-continent, as compared to
other cities across the world.

6.4.2 Temporal Analysis
We investigate how driving content posting behavior differs across time. In Figure 6.3(a), we
present the hour-wise distribution of (i) when users post distracted driving content, (ii) when
users post any form of content. We can see that the distracted driving content is approximately
a uniform fraction of all the posts across the day. Users are often more active during the night-
time (6PM-2AM), posting 73.51% more posts per hour in this period relative to the frequency
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Figure 6.2: The top 30 cities in our dataset ordered based on the ratio of driving snaps to the total
snaps.

of posting over other hours of the day. We observe a similar trend for driving snaps, where
the number of driving snaps posted per hour during the evening to night window is found to be
77.83% more than the rest of the day.

Further, to show that the driving snaps are a uniform fraction of the overall snaps, we compute
the correlation between the number of driving snaps posted and the number of total snaps posted
in every hour for the entire month of the data collected and find it highly correlated with a Pearson
correlation coefficient of 0.9545. We can also observe that a sharp drop in non-distracted-driving
content is not complemented with a similar drop in the distracted driving content posting. Due to
this, we observe a pattern of higher distracted driving content posting activity through the night,
and into the hours of the morning.
Observation 2 (Night-time Driving). The incidence of posting while driving behavior over the
night is more pronounced than other forms of content posting during the same hours.

We further investigate the different temporal patterns that exist across different cities. We
cluster the fraction of distracted driving snaps posted per hour over the entire week for each
city. Using silhouette score coefficient [242] and also Elbow method [279], we estimated the
number of clusters to be 3 for K-means clustering. We show the two-component T-SNE repre-
sentation [186], along with the cluster label for each city to show the efficacy of the clustering
in Fig 6.3 (b). From the figure, we can see that the clustering so obtained separates the cities
well. In the 3 clusters we obtained, we observed that first cluster corresponded to most European
cities (containing 80% of European cities we analyzed). The second cluster consisted only of In-
dian (7) and Middle-Eastern cities (12). The final cluster consisted of primarily American cities
(containing 86% of American cities we analyzed.
Observation 3 (Temporal Clustering). Temporal patterns exhibited by different cities can be
meaningfully clustered, and indicate overall geographical and cultural patterns.



(a) (b)

Figure 6.3: (a) Diurnal trends (for both the driving and non-driving content classes). The line
plots denote the regression fit of the trends. (b) Cities clustered according to their temporal
patterns.

(a) (b) (c)

Figure 6.4: Spatial analysis (frequency distribution plots) of three cities (from Table 6.1)

We can observe the presence of temporal patterns in distracted driving content posting be-
havior, which answers RQ4. This analysis could be used by platform designers or policy makers
to target cities at a specific time of the day by discouraging or warning users about this type of
behavior.

6.4.3 Spatial Analysis

Previously, spatial analysis on SnapMaps has been used to show that usage of Snapchat, while
posting publicly to maps has been concentrated [135]. We use spatial analysis to investigate these
insights further while focusing on distracted driving content posting behavior.

In Figure 6.4, we show the spatial distribution of distracted driving content snaps for three
popular cities ((a) Delhi, (b) Riyadh and (c) New York City). We can see that for these cities
the distribution is concentrated on small regions on the map. To measure if the distracted driv-
ing content snaps are concentrated or not, we model the distribution of the number of distracted



(a)
(b)

Figure 6.5: (a) Power-Law distribution fits the best for most of the cities, in comparison to other
candidate distributions. (b) Sample fits under Power-Law distribution shown for (top) Riyadh
and (bottom) Delhi.

driving content snaps per tile for each city with a known parametric family of distributions. Con-
centrated distracted driving content snaps will follow a power-law (PL) distribution, as compared
to uniform distracted driving content snaps which will follow a uniform distribution. We try to
fit multiple distributions (power-law, gaussian, log-normal, and exponential) on all cities per tile
to model distracted driving content content distribution. We discover that power-law distribution
fits better than all the other candidate distributions for the majority of the cities when compared
using log-likelihood and BIC metrics. We plot the percentage of instances for which power-law
distribution fits better than other candidate distributions in Figure 6.5(a). We also show power-
law distribution fit for two cities - Riyadh (top) and Delhi (bottom) and observe that the fits are
visually accurate.

Observation 4 (Concentrated Driving Content). For most of the cities across the world, the
distracted driving content posting behavior is geographically concentrated to only a few tiles
and not uniformly distributed across the city.

Another interesting pattern that we observe was that for certain cities, the distracted driving
content was observed to be higher on major roads. For example, in Riyadh’s heatmap (Fig-
ure 6.4(b)), we can see two major roads having a higher concentration of distracted driving
snaps. However, we cannot quantify this pattern across all cities as we do not have access to
underlying road and highway data and leave this pattern quantification as future work.

We discovered useful insights about distracted driving content posting behavior within and
across cities, thus answering RQ3. Such insights can be used to develop interventions based on
geographic areas.



6.5 Characterizing Users
For our investigation into the demographics of the user (RQ2), we aim to understand how the
demographics of a particular city affect the number of driving snaps.

6.5.1 Explanatory Variables
Most previous work in risk-taking has focused on two important characteristics of individuals
indulging in risk-taking activities [168, 184], namely gender and age. In this work, we extend
their work and investigate the role of gender and age in a user’s proclivity to create distracted
driving content. Therefore, we examine these two features - gender and age distribution for
each city. Additionally, since Snapchat is a popular Internet-based platform, it is imperative to
understand the economic influences that might affect the type of usage of the platform. Therefore,
we use the development status of a country in which the city is as one of the control variables.
We classify the countries of the world in our dataset as either developed or developing based
on the definition of developed nations given in CIA’s world factbook [8]. The economic status
of the city further acts as a proxy for various other additional variables for which data is less
readily available such as smartphone penetration, social media usage, and availability of public
transportation facilities. We also account for certain control variables such as the total number
of snaps posted in the city and the population of the city. We obtain the population estimate for
each city from worldpopulationreview.com, where we use the latest estimate available.
Similarly, we obtain the gender ratio statistic from the latest available census data that has been
aggregated on citypopulation.de. However, the website does not provide us with the
latest data for all the cities. In such cases, we take the latest gender ratio available and assume
that it remains constant for the city. For computing the age-distribution, we used the statistics
from citypopulation.de, and for cities where the data was not available - census data for
the respective country was obtained. It is possible that for statistics such as gender and age,
the statistics across cities might have been computed for different years. To account for this
discrepancy, we use age and gender variables as a percentage over the total population. Finally,
we did not include cities for which we did not have satisfactory census data, which left us with
130 cities.

6.5.2 Effect of Variables
We investigate the relationship between the variables mentioned above and the number of dis-
tracted driving snaps posted from each city, based on which we observe some interesting patterns.
From Figure 6.6(a), we can observe that the distracted driving snaps ratio for cities where the
gender ratio is in favor of males is roughly 77% more than that of the cities where the gender
ratio is in favor of females (t = 6.62, p < 0.001). Similarly, from Figure 6.6(b), we observe
that distracted driving snaps ratio posted in the developing cities is roughly 55% more than that
of the developed cities (t = 4.66, p < 0.001). In Figure 6.6(c), we present the scatter plot of
the population of a city (log scale) with the number of driving snaps posted. We can see that
there is a small negative slope, possibly implying that cities with the larger population have a
lower number of driving snaps. Interestingly, we note that the slope in the case of the ratio of the

worldpopulationreview.com
citypopulation.de
citypopulation.de


population below 0− 20 is positive (R2 = 0.078, p < 0.01), suggesting that cities with a higher
ratio of population in the age group of 0− 20 have a higher number of driving snaps.

(a) (b)

(c) (d)

Figure 6.6: Scatter plot of how number of driving snaps is affected by different variables: (a)
Gender Ratio: Ratio of Males to Females (b) Development status of the city (c) Population of
the city, (d) Ratio of population between ages 0 and 20

6.5.3 Statistical Model

We are interested in explaining the number of distracted driving snaps posted from every city.
We assume a linear relationship between the number of distracted driving snaps and the other
variables discussed previously. We transform all the count variables to log-scale to stabilize their
variances. The explaining variables (or independent variables) along with the dependent variable
we use to model are shown in Table 6.5. Besides the explaining variables - we also use the
number of total snaps as a natural control for the popularity of Snapchat in the city. We present
the results of the regression on all the 130 cities for which we were able to get satisfactory data
in Table 6.6.



Table 6.5: List of dependent variables used to estimate the number of driving snaps posted.

Variable Name Description Min. Max.

Independent Variables

log(Pop.+ 1) Population 12.35 17.19
Age < 20 % of pop. <20 15.0 46.7
20 < Age < 40 20 >% of pop. <40 19.4 58.3
40 < Age % of pop. >40 14.1 60.5
Male ratio Ratio of Male pop. 0.458 0.756
log(TS + 1) # Total Snaps 5.412 13.813

Dependent Variable

log(DS + 1) # Driving Snaps 2.08 12.89

Analyzing the results, we can see that the term Total Snaps (TS) introduced as a control
variable behaves as expected. The effect of the variable is significant and positively related,
with a one percent rise in the log number of snaps posted associated with a 1.21% rise in the
log number of distracted driving snaps. We can also see that the population of a city has a
significant negative effect. This could perhaps be explained by the fact that as the cities grow in
population, the traffic and congestion on the road also increases, leading to more time spent on
paying attention to the road as compared to that spent on a phone.

Connecting back to our RQ2, we want to figure out what demographics of users are more
inclined to indulge in distracted driving content posting behavior. We first investigate the role of
gender and its contribution to the number of distracted driving snaps across cities. It has often

Table 6.6: Regression models for number of distracted driving snaps (N=130).

Dependent variable
log(DS + 1)

Coeffs(Err.) LR ChiSq

Intercept −6.86(1.48)∗∗∗

Males 0.05(0.01)∗∗∗ 607.14∗∗∗

Age < 20 5.85(1.46)∗∗∗ 33.72∗∗∗

20 < Age < 40 1.92(1.56) 0.60
Age > 40 2.38(1.40). 2.89.

Developing 0.19(0.12). 81.48∗∗∗

log(Pop.+ 1) −0.21(0.03)∗∗∗ 51.53∗∗∗

log(TS + 1) 1.21(0.03)∗∗∗ 2269.99∗∗∗

R2 coefficient 0.9593

Note:∗∗∗p < 0.001, ∗∗p < 0.01, .p < 0.1



been shown that proclivity of taking risk is higher among males [168, 184]. We verify the same
hypothesis in our regression model, where we observe that the percentage of the male population
has a significant, positive, and large effect. A one percent increase in the male ratio would lead
to a 0.05% rise in the log number of distracted driving snaps.
Observation 5 (Role of Gender). Cities with higher male ratio are more likely to produce more
distracted driving snaps.

Another popular result of the edgework framework is that younger people are more likely
to participate and indulge in risk-taking activities. In our model, we introduced 3 variables as
percentage of individuals less than 20 years of age (Age < 20), between 20 and 40 years of age
(20 < Age < 40), and above 40 (Age > 40). We discovered that 20 < Age has a significant
positive effect on the number of distracted driving snaps posted in the city. However, the other
two variables did not have any significant effect. Though this result is significant, it is also
probably biased as Snapchat is a platform that is primarily used by young people; hence, there is
a possibility that this observation just might be capturing that effect.
Observation 6 (Role of Age). Cities with higher proportion of young people are more likely to
post distracted driving snaps than cities with higher proportion of older people.

Additionally, we see that there is an effect of whether the city is developed or developing
(Developing) on the number of distracted driving snaps that get posted. We discover that if a
city is in a developing nation, then there are higher chances of distracted driving snap posting
behavior. This is in accordance with the overall spatial and temporal pattern observed, the cities
being ranked consistently higher in distracted driving snap posting behavior were mostly cities
from developing countries.
Observation 7 (Effect of Development). Users from cities in developing world are more likely
to post distracted driving snaps.

6.6 Discussion

6.6.1 Research Questions
RQ1 relates to the extent of distracted driving snaps are posted on Snapchat across cities. The
question tries to estimate the prevalence of such type of risk-taking behavior on social media plat-
forms, thus quantifying the importance of studying such problems. We discovered that distracted
driving snaps form 23.56% of total snaps posted across 173 cities. Further, we also noticed that
such behavior is more prevalent in Middle-Eastern and sub-continent Indian cities(accounting
for 72.4% of distracted driving snaps overall). By answering RQ3, we investigated the spatial
patterns of distracted driving content posting behavior. We discovered that such content is posted
in certain regions of the city; and is not uniform across the city, thus, showing that distracted driv-
ing content posting behavior is concentrated. However, we were unable to analyze these hotspots
for the underlying demographic and geographical features to understand the reason behind such
concentration - largely due to the lack of data at that granularity. RQ4 is focused on determining
temporal patterns behind distracted driving content posting behavior. We made key observations
based on temporal analysis of the behavior across cities. We discovered that most of such content
is posted heavily during night-time. Further, we were also able to discover strong regional ef-



fects - where the clusters formed on clustering the fraction of snaps posted each hour of the week
segmented into clusters comprising majorly of European, American and Mid-Eastern cities.

One of the key frameworks proposed by sociologists to explain risk-taking literature has
been edgework. The framework, besides defining voluntary risk-taking behavior and applying it
to different settings, also proposed characteristics that define the users who are inclined to take
such risks. The observations made about such voluntary risk-takers was based on the concept
of an illusory sense of control, where a user feels that they have more control of the situation
than they actually do. The theory discovered that males and young people generally felt more of
such an illusory sense of control. We tested whether the theories put forward by the edgework
framework also hold for the case of distracted driving content posting behavior on social media
platforms. We attempted to answer this in RQ2. We discovered, in concurrence with the theory,
that males are more inclined to participate in such voluntary risk-taking behavior. Further, we
also discovered that younger people are more inclined to exhibit such behavior, another key
characteristic proposed by the framework. Another key point put forth by the theory was that
individuals who were of a social system that exhibited much larger control over their life ended
up participating in such behavior in seek of a high-stakes feeling of control over the situation.
We hypothesized that this could relate to the economic situation of a particular city - and tested
if individuals from developing regions (instead of developed) were more likely to participate in
risks or not. We discovered that we do see the effect of the economic status of the city. However,
we only treat economic status as a proxy for control; many other factors such as political and
cultural could be considered, which are hard to obtain and quantify.

Finally, to be able to answer any of the RQs as mentioned earlier, we needed to figure out how
can we detect if a particular snap is an example of distracted driving content or not. Due to the
large scale of our study, it is infeasible to label the entire dataset manually. Hence, we answered
RQ5 by proposing a deep learning classifier and were able to achieve high precision and recall.
Further, we even tested the robustness of the trained classifier to show that the proposed method
performs robustly on an held-out set.

6.6.2 Implications
Our paper provides a robust way of detecting if the content posted on Snapchat is an instance
of distracted driving content or not. Further, our results provide insights into the extent of such
behavior on a popular social media platform Snapchat, and spatial, temporal and demographics
related patterns. We believe that the platform owners and policymakers can leverage insights put
forward by our work to develop educational campaigns and interventions. We discuss some of
the suggestions below:
Location-Based: One of our key insights (Insight 1) was that distracted driving content posting
behavior is prevalent mostly in Middle Eastern and Indian cities. Thus, some of the educational
campaigns could be focused only on these regions and can be disseminated within the platform
itself. Another insight that could be crucial in designing platform-based interventions is that
such behavior is concentrated only in certain regions of cities. Combined with the proposed
deep learning classifier, such content from these hotspots can be analyzed if they are instances
of distracted driving or not, and not shown to the public. In the case of Snapchat specifically,
users post such content on SnapMaps to gain popularity from the general public; however, if



such content is not allowed to be posted on the platform from these regions, there is a possibility
that it might discourage the individuals from creating such content. However, this requires more
experimentation to determine if such a form of intervention can be useful or not.
Time-Based: Our work made a useful insight about nighttime driving, indicating that such con-
tent is generally posted late in the night (Insight 2). This insight could be leveraged to issue
educational notifications at that time of the day when such at-risk users could be active.
Demographics-Based: The major insights we draw from our regression analysis was the role
of age and gender in characterizing the users who participate in such behavior. We discovered
through insights 5 and 6 that young individuals and males are more likely to participate in such
behavior. If a platform has a way of inferring identities of their users, it could be leveraged in
combination with the other insights to create targeted interventions and educational campaigns
for these specific demographics.

We are aware that a social media platform has other constraints while issuing notifications,
such as the number of them, and restricting users not to share certain types of content, which
could potentially lead to violation of their freedom to express. However, a lot of the interven-
tions mentioned above methods and educational campaigns can be combined with the proposed
deep learning-based detection approach to give the platforms, access to multiple intervention
designs, thus providing flexibility to the platform. Since such interventions can also act in unin-
tended ways (such as suggesting risk-takers not to perform risk-taking behavior; hence, actually
motivating them), more analysis needs to be done before proceeding forward.

6.6.3 Threats to Validity
Like any quantitative study, our work is subject to threats to validity. We try to enumerate biases,
issues, and threats to the validity of our study by following a framework for inferring biases and
pitfalls while analyzing social data by Olteanu et al.[222]. First, our work is based on the data
collected on Snapchat, mostly through SnapMap. A key data issue is that of representativeness -
our collected data, though might not be geographically or temporally biased (since we collected
data across the world and for a large amount of time), it can still be that we are collecting data
disproportionately from regions that post more frequently publicly on SnapMaps rather than
Snapchat in general. Another representative issue is that we are linking Snapchat usage data with
that of census data in general; where Snapchat users might not be representative of the entire
cities population. We try to discount this representation bias by including appropriate control
variables, but still, some of the bias might exist in our analysis. Additionally, our dataset might
also contain temporal bias as during our one-month long data collection; it might be possible
that some cities might be observing festival-related holidays or some events. This might have
introduced a disproportion in the number of snaps collected from each city. A significant source
of data bias in our analysis is the use of census data. Firstly, we were not able to obtain data for
each city and thus had to omit certain cities from our analysis. Secondly, census data is obtained
from different years, and finally, the census data for different cities are taken from different
sources.

For the annotation required for training deep learning classifier, we used a limited number of
annotators, which might result in subjective interpretation. We attempted to mitigate this threat
by using majority voting and computing inter-annotator agreement rate. Finally, our statistical



modeling required multiple parameters that were related to the operationalization of theories that
exist in literature. Some of these parameters might not be capturing the factors that we intended
to capture or that the theories captured. It could be possible that our analysis might be applicable
only for Snapchat and might not generalize well for other platforms and also for other risk-taking
behavior.

6.7 Related Work

Besides the relevant theories and framing discussed in “Development of Research Questions”,
there are other related work that should be discussed. We discuss them here:
Recently, there have been some studies on analyzing risk-taking behavior on social media for
different voluntary activities. Lamba et al. covered a much broader case of dangerous selfies,
where users posted a perilous self-portrait in dangerous situations such as at an elevation, with
a firearm, or inside a water body[161]. They also showed that users often engage in risk-taking
activities while taking selfies to post on social media. Of the 232 deaths due to taking dangerous
selfies, 12 could be attributed to driving-related incidents. The authors presented deep-learning
models to distinguish between potentially dangerous and non-dangerous selfies [215]. Similarly,
Hart examined young individuals’ participation in posting nude self-portraits on Tumblr [111].
There has been a normative increase in individuals dabbling in risk-taking behavior as a result
of various other social media trends such as the Tide Pod Challenge [210], the Cinnamon Chal-
lenge [93], the Salt and Ice Challenge [243] and the Fire Challenge [10, 17]. However our work
is the first in analyzing the specific behavior of distracted driving content posting on social me-
dia. Further we extend the popular voluntary risk-taking edgework framework to social media
platforms.

6.8 Conclusions

In this work, we investigate the widespread prevalence of distracted driving content posting be-
havior. We specifically focus on a popular social media platform, Snapchat, and by analyzing
the publicly posted stories, we characterized the extent of distracted driving content that exists
on such platforms.

Our first contribution is proposing a deep learning based classifier to detect if a content posted
is distracted driving or not. Grounding our work in risk-taking literature, we aim to test out the
theories put forth by sociologists in terms of risk-taking behavior in the offline world in the
context of distracted driving content posting behavior on social media platforms and test them.
To this end, we proposed and answered multiple RQs related to extent, spatial, temporal and
demographic patterns of such behavior across 173 cities.

We made the following key observations related to the few RQs - the demographics such as
age and gender play a key role in the proclivity to post distracted driving content. Further, we also
discovered that there exists spatial and temporal patterns in distracted driving content behavior
posting across cities. We hypothesize that the insights derived from this study can be used to
design targeted intervention and educational campaigns to curb such risk-taking behavior.



Privacy and Ethics: We collect data from SnapMaps, a geographical interface for Snapchat,
which is publicly available. The data posted on the platform is already anonymized, and we
neither collect nor use any personally identifiable information for our analysis. For variables
extracted from the census, we only use the variables as is collected by the respective country’s
census department.
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CHAPTER 7

MODELING EXPERIENCE IN RECOMMENDATION
SYSTEMS

Current recommender systems exploit user and item similarities by collaborative filter-
ing. Some advanced methods also consider the temporal evolution of item ratings as a
global background process. However, all prior methods disregard the individual evolution
of a user’s experience level and how this is expressed in the user’s writing in a review
community. In this paper, we model the joint evolution of user experience, interest in
specific item facets, writing style, and rating behavior. This way we can generate individ-
ual recommendations that take into account the user’s maturity level (e.g., recommending
art movies rather than blockbusters for a cinematography expert). As only item ratings
and review texts are observables, we capture the user’s experience and interests in a latent
model learned from her reviews, vocabulary and writing style. We develop a genera-
tive HMM-LDA model to trace user evolution, where the Hidden Markov Model (HMM)
traces her latent experience progressing over time — with solely user reviews and ratings
as observables over time. The facets of a user’s interest are drawn from a Latent Dirich-
let Allocation (LDA) model derived from her reviews, as a function of her (again latent)
experience level. In experiments with five real-world datasets, we show that our model
improves the rating prediction over state-of-the-art baselines, by a substantial margin. We
also show, in a use-case study, that our model performs well in the assessment of user
experience levels.

Collaborative filtering algorithms are at the heart of recommender systems for items like
movies, cameras, restaurants and beer. Most of these methods exploit user-user and item-item
similarities in addition to the history of user-item ratings — similarities being based on latent fac-
tor models over user and item features [149], and more recently on explicit links and interactions
among users [101][296].

All these data evolve over time leading to bursts in item popularity and other phenomena
like anomalies[103]. State-of-the-art recommender systems capture these temporal aspects by
introducing global bias components that reflect the evolution of the user and community as a



whole[148]. A few models also consider changes in the social neighborhood of users[185]. What
is missing in all these approaches, though, is the awareness of how experience and maturity levels
evolve in individual users.

Individual experience is crucial in how users appreciate items, and thus react to recommen-
dations. For example, a mature cinematographer would appreciate tips on art movies much more
than recommendations for new blockbusters. Also, the facets of an item that a user focuses on
change with experience. For example, a mature user pays more attention to narrative, light ef-
fects, and style rather than actors or special effects. Similar observations hold for ratings of wine,
beer, food, etc.

Our approach advances state-of-the-art by tapping review texts, modeling their properties as
latent factors, using them to explain and predict item ratings as a function of a user’s experience
evolving over time. Prior works considering review texts (e.g., [155, 193, 208, 290, 293]) did this
only to learn topic similarities in a static, snapshot-oriented manner, without considering time at
all. The only prior work [194], considering time, ignores the text of user-contributed reviews in
harnessing their experience. However, user experience and their interest in specific item facets at
different timepoints can often be observed only indirectly through their ratings, and more vividly
through her vocabulary and writing style in reviews.
Use-cases: Consider the reviews and ratings by two users on a “Canon DSLR” camera about the
facet camera lens.
• User 1: My first DSLR. Excellent camera, takes great pictures in HD, without a doubt it brings honor

to its name. [Rating: 5]
• User 2: The EF 75-300 mm lens is only good to be used outside. The 2.2X HD lens can only be used

for specific items; filters are useless if ISO, AP,... are correct. The short 18-55mm lens is cheap and
should have a hood to keep light off lens. [Rating: 3]

The second user is clearly more experienced than the first one, and more reserved about the
lens quality of that camera model. Future recommendations for the second user should take
into consideration the user’s maturity. As a second use-case, consider the following reviews of
Christopher Nolan movies where the facet of interest is the non-linear narrative style.
• User 1 on Memento (2001): “Backwards told is thriller noir-art empty ultimately but compelling and

intriguing this.”
• User 2 on The Dark Knight (2008): “Memento was very complicated. The Dark Knight was flawless.

Heath Ledger rocks!”
• User 3 on Inception (2010): “Inception is a triumph of style over substance. It is complex only in a

structural way, not in terms of plot. It doesn’t unravel in the way Memento does.”
The first user does not appreciate complex narratives, making fun of it by writing her review
backwards. The second user prefers simpler blockbusters. The third user seems to appreciate the
complex narration style of Inception and, more of, Memento. We would consider this maturity
level of the more experienced User 3 to generate future recommendations to her.
Approach: We model the joint evolution of user experience, interests in specific item facets,
writing style, and rating behavior in a community. As only item ratings and review texts are
directly observed, we capture a user’s experience and interests by a latent model learned from
her reviews, and vocabulary. All this is conditioned on time, considering the maturing rate of a
user. Intuitively, a user gains experience not only by writing many reviews, but she also needs



Table 7.1: Vocabulary at different experience levels.

Experience Beer Movies News

Level 1 bad, shit stupid, bizarre bad, stupid
Level 2 sweet, bitter storyline, epic biased, unfair
Level 3 caramel finish, coffee roasted realism, visceral, nostalgic opinionated, fallacy, rhetoric

to continuously improve the quality of her reviews. This varies for different users, as some enter
the community being experienced. This allows us to generate individual recommendations that
take into account the user’s maturity level and interest in specific facets of items, at different
timepoints.

We develop a generative HMM-LDA model for a user’s evolution, where the Hidden Markov
Model (HMM) traces her latent experience progressing over time, and the Latent Dirichlet Al-
location (LDA) model captures her interests in specific item facets as a function of her (again,
latent) experience level. The only explicit input to our model is the ratings and review texts upto
a certain timepoint; everything else – especially the user’s experience level – is a latent vari-
able. The output is the predicted ratings for the user’s reviews following the given timepoint. In
addition, we can derive interpretations of a user’s experience and interests by salient words in
the distributional vectors for latent dimensions. Although it is unsurprising to see users writing
sophisticated words with more experience, we observe something more interesting. For instance
in specialized communities like beeradvocate.com and ratebeer.com, experienced users
write more descriptive and fruity words to depict the beer taste (cf. Table 7.5). Table 7.1 shows
a snapshot of the words used at different experience levels to depict the facets beer taste, movie
plot and bad journalism, respectively.

We apply our model to 12.7 million ratings from 0.9 million users on 0.5 million items in five
different communities on movies, food, beer, and news media, achieving an improvement of 5%
to 35% for the mean squared error for rating predictions over several competitive baselines. We
also show that users at the same (latent) experience level do indeed exhibit similar vocabulary,
and facet interests. Finally, a use-case study in a news community to identify experienced citizen
journalists demonstrates that our model captures user maturity fairly well.

Contributions: To summarize, this paper introduces the following novel elements:

a) This is the first work that considers the progression of user experience as expressed through
the text of item reviews, thereby elegantly combining text and time.

b) An approach to capture the natural smooth temporal progression in user experience factoring
in the maturing rate of the user, as expressed through her writing.

c) Offers interpretability by learning the vocabulary usage of users at different levels of experi-
ence.

d) A large-scale experimental study in five real world datasets from different communities like
movies, beer and food; and an interesting use-case study in a news community.



7.1 Overview

7.1.1 Model Dimensions

Our approach is based on the intuition that there is a strong coupling between the facet prefer-
ences of a user, her experience, writing style in reviews, and rating behavior. All of these factors
jointly evolve with time for a given user.

We model the user experience progression through discrete stages, so a state-transition model
is natural. Once this decision is made, a Markovian model is the simplest, and thus natural choice.
This is because the experience level of a user at the current instant t depends on her experience
level at the previous instant t-1. As experience levels are latent (not directly observable), a
Hidden Markov Model is appropriate. Experience progression of a user depends on the following
factors:
• Maturing rate of the user which is modeled by her activity in the community. The more

engaged a user is in the community, the higher are the chances that she gains experience and
advances in writing sophisticated reviews, and develops taste to appreciate specific facets.
• Facet preferences of the user in terms of focusing on particular facets of an item (e.g., narrative

structure rather than special effects). With increasing maturity, the taste for particular facets
becomes more refined.
• Writing style of the user, as expressed by the language model at her current level of experience.

More sophisticated vocabulary and writing style indicates higher probability of progressing to
a more mature level.
• Time difference between writing successive reviews. It is unlikely for the user’s experience

level to change from that of her last review in a short time span (within a few hours or days).
• Experience level difference: Since it is unlikely for a user to directly progress to say level 3

from level 1 without passing through level 2, the model at each instant decides whether the
user should stay at current level l, or progress to l+1.
In order to learn the facet preferences and language model of a user at different levels of

experience, we use Latent Dirichlet Allocation (LDA). In this work, we assume each review to
refer to exactly one item. Therefore, the facet distribution of items is expressed in the facet
distribution of the review documents.

We make the following assumptions for the generative process of writing a review by a user
at time t at experience level et:
• A user has a distribution over facets, where the facet preferences of the user depend on her

experience level et.
• A facet has a distribution over words where the words used to describe a facet depend on

the user’s vocabulary at experience level et. Table 7.2 shows salient words for two facets of
Amazon movie reviews at different levels of user experience, automatically extracted by our
latent model. The facets are latent, but we can interpret them as plot/script and narrative style,
respectively.

As a sanity check for our assumption of the coupling between user experience, rating behavior,
language and facet preferences, we perform experimental studies reported next.



Table 7.2: Salient words for two facets at five experience levels in movie reviews.

Level 1: stupid people supposed wouldnt pass bizarre totally cant
Level 2:storyline acting time problems evil great times didnt money ended simply falls pretty
Level 3: movie plot good young epic rock tale believable acting
Level 4: script direction years amount fast primary attractive sense talent multiple demonstrates
establish
Level 5: realism moments filmmaker visual perfect memorable recommended genius finish details
defined talented visceral nostalgia

Level 1: film will happy people back supposed good wouldnt cant
Level 2: storyline believable acting time stay laugh entire start funny
Level 3 & 4: narrative cinema resemblance masterpiece crude undeniable admirable renowned
seventies unpleasant myth nostalgic
Level 5: incisive delirious personages erudite affective dramatis nucleus cinematographic tran-
scendence unerring peerless fevered

7.1.2 Hypotheses and Initial Studies

Hypothesis 1: Writing Style Depends on Experience Level.
We expect users at different experience levels to have divergent Language Models (LM’s) —

with experienced users having a more sophisticated writing style and vocabulary than amateurs.
To test this hypothesis, we performed initial studies over two popular communities1: 1) Beer-
Advocate (beeradvocate.com) with 1.5 million reviews from 33, 000 users and 2) Amazon
movie reviews (amazon.com) with 8 million reviews from 760, 000 users. Both of these span a
period of about 10 years.

In BeerAdvocate, a user gets points on the basis of likes received for her reviews, ratings from
other users, number of posts written, diversity and number of beers rated, time in the community,
etc. We use this points measure as a proxy for the user’s experience. In Amazon, reviews get
helpfulness votes from other users. For each user, we aggregate these votes over all her reviews
and take this as a proxy for her experience.

We partition the users into 5 bins, based on the points / helpfulness votes received, each
representing one of the experience levels. For each bin, we aggregate the review texts of all
users in that bin and construct a unigram language model. The heatmap of Figure 7.1a shows
the Kullback-Leibler (KL) divergence between the LM’s of different experience levels, for the
BeerAdvocate case. The Amazon reviews lead to a very similar heatmap, which is omitted here.
The main observation is that the KL divergence is higher — the larger the difference is between
the experience levels of two users. This confirms our hypothesis about the coupling of experience
and user language.
Hypothesis 2: Facet Preferences Depend on Experience Level.

The second hypothesis underlying our work is that users at similar levels of experience have
similar facet preferences. In contrast to the LM’s where words are observed, facets are latent
so that validating or falsifying the second hypothesis is not straightforward. We performed a

1Data available at http://snap.stanford.edu/data/
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Figure 7.1: KL Divergence as a function of experience.

three-step study:

• We use Latent Dirichlet Allocation (LDA) [28] to compute a latent facet distribution 〈fk〉 of
each review.
• We run Support Vector Regression (SVR) [64] for each user. The user’s item rating in a review

is the response variable, with the facet proportions in the review given by LDA as features. The
regression weight wuek is then interpreted as the preference of user ue for facet fk.
• Finally, we aggregate these facet preferences for each experience level e to get the correspond-

ing facet preference distribution given by <
∑
ue
exp(wuek )

#ue
>.

Figure 7.1b shows the KL divergence between the facet preferences of users at different ex-
perience levels in BeerAdvocate. We see that the divergence clearly increases with the difference
in user experience levels; this confirms the hypothesis. The heatmap for Amazon is similar and
omitted.

Note that Figure 7.1 shows how a change in the experience level can be detected. This is not
meant to predict the experience level, which is done by the model in Section 7.3.

7.2 Building Blocks of our Model

Our model, presented in the next section, builds on and compares itself against various baseline
models as follows.



7.2.1 Latent-Factor Recommendation
According to the standard latent factor model (LFM) [147], the rating assigned by a user u to an
item i is given by:

rec(u, i) = βg + βu + βi + 〈αu, φi〉 (7.1)

where 〈., .〉 denotes a scalar product. βg is the average rating of all items by all users. βu is the
offset of the average rating given by user u from the global rating. Likewise βi is the rating bias
for item i. αu and φi are the latent factors associated with user u and item i, respectively. These
latent factors are learned using gradient descent by minimizing the mean squared error (MSE)
between observed ratings r(u, i) and predicted ratings rec(u, i): MSE = 1

|U |
∑

u,i∈U(r(u, i) −
rec(u, i))2

7.2.2 Experience-based Latent-Factor Recommendation
The most relevant baseline for our work is the “user at learned rate” model of [194], which
exploits that users at the same experience level have similar rating behavior even if their ratings
are temporarily far apart. Experience of each user u for item i is modeled as a latent variable
eu,i ∈ {1...E}. Different recommenders are learned for different experience levels. Therefore
Equation 7.1 is parameterized as:

receu,i(u, i) = βg(eu,i) + βu(eu,i) + βi(eu,i) + 〈αu(eu,i), φi(eu,i)〉 (7.2)

The parameters are learned using Limited Memory BFGS with the additional constraint that
experience levels should be non-decreasing over the reviews written by a user over time.

However, this is significantly different from our approach. All of these models work on the
basis of only user rating behavior, and ignore the review texts completely. Additionally, the
smoothness in the evolution of parameters between experience levels is enforced via L2 regular-
ization, and does not model the natural user maturing rate (via HMM) as in our model. Also
note that in the above parametrization, an experience level is estimated for each user-item pair.
However, it is rare that a user reviews the same item multiple times. In our approach, we instead
trace the evolution of users, and not user-item pairs.

7.2.3 User-Facet Model
In order to find the facets of interest to a user, [241] extends Latent Dirichlet Allocation (LDA)
to include authorship information. Each document d is considered to have a distribution over
authors. We consider the special case where each document has exactly one author u associated
with a Multinomial distribution θu over facets Z with a symmetric Dirichlet prior α. The facets
have a Multinomial distribution φz over words W drawn from a vocabulary V with a symmetric
Dirichlet prior β. Exact inference is not possible due to the intractable coupling between Θ and Φ.
Two ways for approximate inference are MCMC techniques like Collapsed Gibbs Sampling and
Variational Inference. The latter is typically much more complex and computationally expensive.
In our work, we thus use sampling.



Figure 7.2: Supervised model for user facets and ratings.

7.2.4 Supervised User-Facet Model

The generative process described above is unsupervised and does not take the ratings in reviews
into account. Supervision is difficult to build into MCMC sampling where ratings are continuous
values, as in communities like newstrust.net. For discrete ratings, a review-specific Multino-
mial rating distribution πd,r can be learned as in [175, 236]. Discretizing the continuous ratings
into buckets bypasses the problem to some extent, but results in loss of information. Other ap-
proaches [155, 193, 208] overcome this problem by learning the feature weights separately from
the user-facet model.

An elegant approach using Multinomial-Dirichlet Regression is proposed in [199] to incor-
porate arbitrary types of observed continuous or categorical features. Each facet z is associated
with a vector λz whose dimension equals the number of features. Assuming xd is the feature
vector for document d, the Dirichlet hyper-parameter α for the document-facet Multinomial dis-
tribution Θ is parametrized as αd,z = exp(xTd λz). The model is trained using stochastic EM
which alternates between 1) sampling facet assignments from the posterior distribution condi-
tioned on words and features, and 2) optimizing λ given the facet assignments using L-BFGS.
Our approach, explained in the next section, follows a similar approach to couple the User-Facet
Model and the Latent-Factor Recommendation Model (depicted in Figure 7.2).



Figure 7.3: Supervised model for user experience, facets, and ratings.

7.3 Joint Model: User Experience, Facet Preference, Writing
Style

We start with a User-Facet Model (UFM) (aka. Author-Topic Model [241]) based on Latent
Dirichlet Allocation (LDA), where users have a distribution over facets and facets have a distri-
bution over words. This is to determine the facets of interest to a user. These facet preferences
can be interpreted as latent item factors in the traditional Latent-Factor Recommendation Model
(LFM) [147]. However, the LFM is supervised as opposed to the UFM. It is not obvious how
to incorporate supervision into the UFM to predict ratings. The user-provided ratings of items
can take continuous values (in some review communities), so we cannot incorporate them into
a UFM with a Multinomial distribution of ratings. We propose an Expectation-Maximization
(EM) approach to incorporate supervision, where the latent facets are estimated in an E-Step us-
ing Gibbs Sampling, and Support Vector Regression (SVR) [64] is used in the M-Step to learn the
feature weights and predict ratings. Subsequently, we incorporate a layer for experience in the
UFM-LFM model, where the experience levels are drawn from a Hidden Markov Model (HMM)
in the E-Step. The experience level transitions depend on the evolution of the user’s maturing
rate, facet preferences, and writing style over time. The entire process is a supervised generative
process of generating a review based on the experience level of a user hinged on our HMM-LDA
model.

7.3.1 Generative Process for a Review
Consider a corpus with a set D of review documents denoted by {d1 . . . dD}. For each user,
all her documents are ordered by timestamps t when she wrote them, such that tdi < tdj for
i < j. Each document d has a sequence of Nd words denoted by d = w1 . . . .wNd . Each word
is drawn from a vocabulary V having unique words indexed by {1 . . . V }. Consider a set of U



users involved in writing the documents in the corpus, where ud is the author of document d.
Consider an ordered set of experience levels {e1, e2, ...eE} where each ei is from a set E, and a
set of facets {z1, z2, ...zZ} where each zi is from a set Z of possible facets. Each document d is
associated with a rating r and an item i.

At the time td of writing the review d, the user ud has experience level etd ∈ E. We assume
that her experience level transitions follow a distribution Π with a Markovian assumption and
certain constraints. This means the experience level of ud at time td depends on her experience
level when writing the previous document at time td−1.

πei(ej) denotes the probability of progressing to experience level ej from experience level ei,
with the constraint ej ∈ {ei, ei + 1}. This means at each instant the user can either stay at her
current experience level, or move to the next one.

The experience-level transition probabilities depend on the rating behavior, facet prefer-
ences, and writing style of the user. The progression also takes into account the 1) maturing rate
of ud modeled by the intensity of her activity in the community, and 2) the time gaps between
writing consecutive reviews. We incorporate these aspects in a prior for the user’s transition
rates, γud , defined as:

γud =
Dud

Dud +Davg

+ λ(td − td−1)

Dud and Davg denote the number of reviews written by ud and the average number of reviews
per user in the community, respectively. Therefore the first term models the user activity with
respect to the community average. The second term reflects the time difference between succes-
sive reviews. The user experience is unlikely to change from the level when writing the previous
review just a few hours or days ago. λ controls the effect of this time difference, and is set to
a very small value. Note that if the user writes very infrequently, the second term may go up.
But the first term which plays the dominating role in this prior will be very small with respect to
the community average in an active community, bringing down the influence of the entire prior.
Note that the constructed HMM encapsulates all the factors for experience progression outlined
in Section 7.1.

At experience level etd , user ud has a Multinomial facet-preference distribution θud,etd . From
this distribution she draws a facet of interest zdi for the ith word in her document. For exam-
ple, a user at a high level of experience may choose to write on the beer “hoppiness” or “story
perplexity” in a movie. The word that she writes depends on the facet chosen and the language
model for her current experience level. Thus, she draws a word from the multinomial distribution
φetd ,zdi with a symmetric Dirichlet prior δ. For example, if the facet chosen is beer taste or movie
plot, an experienced user may choose to use the words “coffee roasted vanilla” and “visceral”,
whereas an inexperienced user may use “bitter” and “emotional” resp.

Algorithm 1 describes this generative process for the review; Figure 7.3 depicts it visually in
plate notation for graphical models. We use MCMC sampling for inference on this model.

7.3.2 Supervision for Rating Prediction
The latent item factors φi in Equation 7.2 correspond to the latent facets Z in Algorithm 1.
Assume that we have some estimation of the latent facet distribution φe,z of each document after



Algorithm 1 Supervised Generation Model for a User’s Experience, Facets, and Ratings
1: for each facet z = 1, . . . , Z and experience level e = 1, . . . , E do
2: choose φe,z ∼ Dirichlet(β)

3: for each review d = 1, . . . D do
4: Given user ud and timestamp td
. Current experience level depends on previous level

5: Conditioned on ud and previous experience etd−1
, choose etd ∼ πetd−1

. User’s facet preferences at current experience level are influenced by supervision via α - scaled by hyper-
parameter ρ controlling influence of supervision.

6: Conditioned on supervised facet preference αud,etd
of ud at experience level etd scaled by ρ, choose

θud,etd
∼ Dirichlet(ρ× αud,etd

).
7: for each word i = 1, . . . , Nd do do
. Facet is drawn from user’s experience-based facet interests

8: Conditioned on ud and etd , choose a facet zdi ∼Multinomial(θud
, etd)

. Word is drawn from chosen facet and user’s vocabulary at her current experience level.
9: Conditioned on zdi

and etd , choose a word wdi
∼Multinomial(φetd , zdi

)

. Rating computed via Support Vector Regression with chosen facet proportions as input features to learn α
10: Choose rd ∼ F (〈αud,etd

, φetd ,zd〉)

one iteration of MCMC sampling, where e denotes the experience level at which a document
is written, and let z denote a latent facet of the document. We also have an estimation of the
preference of a user u for facet z at experience level e given by θu,e(z).

For each user u, we compute a supervised regression function Fu for the user’s numeric
ratings with the – currently estimated – experience-based facet distribution φe,z of her reviews as
input features and the ratings as output.

The learned feature weights 〈αu,e(z)〉 indicate the user’s preference for facet z at experience
level e. These feature weights are used to modify θu,e to attribute more mass to the facet for
which u has a higher preference at level e. This is reflected in the next sampling iteration, when
we draw a facet z from the user’s facet preference distribution θu,e smoothed by αu,e, and then
draw a word from φe,z. This sampling process is repeated until convergence.

In any latent facet model, it is difficult to set the hyper-parameters. Therefore, most prior
work assume symmetric Dirichlet priors with heuristically chosen concentration parameters. Our
approach is to learn the concentration parameter α of a general (i.e., asymmetric) Dirichlet prior
for Multinomial distribution Θ – where we optimize these hyper-parameters to learn user ratings
for documents at a given experience level.

7.3.3 Inference
We describe the inference algorithm to estimate the distributions Θ, Φ and Π from observed data.
For each user, we compute the conditional distribution over the set of hidden variables E and Z
for all the words W in a review. The exact computation of this distribution is intractable. We use
Collapsed Gibbs Sampling [96] to estimate the conditional distribution for each hidden variable,
which is computed over the current assignment for all other hidden variables, and integrating out
other parameters of the model.

Let U,E, Z and W be the set of all users, experience levels, facets and words in the corpus.



In the following, i indexes a document and j indexes a word in it.
The joint probability distribution is given by:

P (U,E,Z,W, θ, φ, π;α, δ, γ) =
U∏
u=1

E∏
e=1

Du∏
i=1

Z∏
z=1

Ndu∏
j=1

{

P (πe; γ
u)× P (ei|πe)︸ ︷︷ ︸

experience transition distribution

× P (θu,e;αu,e)× P (zi,j |θu,ei)︸ ︷︷ ︸
user experience facet distribution

× P (φe,z; δ)× P (wi,j |φei,zi,j )︸ ︷︷ ︸
experience facet language distribution

}

(7.3)

Let n(u, e, d, z, v) denote the count of the word w occurring in document d written by user
u at experience level e belonging to facet z. In the following equation, (.) at any position in a
distribution indicates summation of the above counts for the respective argument.

Exploiting conjugacy of the Multinomial and Dirichlet distributions, we can integrate out Φ
from the above distribution to obtain the posterior distribution P (Z|U,E;α) of the latent variable
Z given by:

U∏
u=1

E∏
e=1

Γ(
∑

z αu,e,z)
∏

z Γ(n(u, e, ., z, .) + αu,e,z)∏
z Γ(αu,e,z)Γ(

∑
z n(u, e, ., z, .) +

∑
z αu,e,z)

where Γ denotes the Gamma function.
Similarly, by integrating out Θ, P (W |E,Z; δ) is given by

E∏
e=1

Z∏
z=1

Γ(
∑

v δv)
∏

v Γ(n(., e, ., z, v) + δv)∏
v Γ(δv)Γ(

∑
v n(., e, ., z, v) +

∑
v δv)

Let mei−1
ei denote the number of transitions from experience level ei−1 to ei over all users in

the community, with the constraint ei ∈ {ei−1, ei−1 + 1}. Note that we allow self-transitions
for staying at the same experience level. The counts capture the relative difficulty in progressing
between different experience levels. For example, it may be easier to progress to level 2 from
level 1 than to level 4 from level 3.

The state transition probability depending on the previous state, factoring in the user-specific
activity rate, is given by:

P (ei|ei−1, u, e−i) =
m
ei−1
ei + I(ei−1 = ei) + γu

mei−1
. + I(ei−1 = ei) + Eγu

where I(.) is an indicator function taking the value 1 when the argument is true, and 0 other-
wise. The subscript −i denotes the value of a variable excluding the data at the ith position. All
the counts of transitions exclude transitions to and from ei, when sampling a value for the current
experience level ei during Gibbs sampling. The conditional distribution for the experience level
transition is given by:

P (E|U,Z,W ) ∝ P (E|U)× P (Z|E,U)× P (W |Z,E) (7.4)



Here the first factor models the rate of experience progression factoring in user activity; the
second and third factor models the facet-preferences of user, and language model at a specific
level of experience respectively. All three factors combined decide whether the user should stay
at the current level of experience, or has matured enough to progress to next level.

In Gibbs sampling, the conditional distribution for each hidden variable is computed based on
the current assignment of other hidden variables. The values for the latent variables are sampled
repeatedly from this conditional distribution until convergence. In our problem setting we have
two sets of latent variables corresponding to E and Z respectively.

We perform Collapsed Gibbs Sampling [96] in which we first sample a value for the expe-
rience level ei of the user for the current document i, keeping all facet assignments Z fixed. In
order to do this, we consider two experience levels ei−1 and ei−1 + 1. For each of these levels,
we go through the current document and all the token positions to compute Equation 7.4 — and
choose the level having the highest conditional probability. Thereafter, we sample a new facet
for each word wi,j of the document, keeping the currently sampled experience level of the user
for the document fixed.

The conditional distributions for Gibbs sampling for the joint update of the latent variables
E and Z are given by:

E-Step 1: P (ei = e|ei−1, ui = u, {zi,j = zj}, {wi,j = wj}, e−i) ∝

P (ei|u, ei−1, e−i)×
∏
j

P (zj |ei, u, e−i)× P (wj |zj , ei, e−i) ∝

m
ei−1
ei + I(ei−1 = ei) + γu

mei−1
. + I(ei−1 = ei) + Eγu

×∏
j

n(u, e, ., zj , .) + αu,e,zj∑
zj
n(u, e, ., zj , .) +

∑
zj
αu,e,zj

× n(., e, ., zj , wj) + δ∑
wj
n(., e, ., zj , wj) + V δ

E-Step 2: P (zj = z|ud = u, ed = e, wj = w, z−j) ∝
n(u, e, ., z, .) + αu,e,z∑

z n(u, e, ., z, .) +
∑

z αu,e,z
× n(., e, ., z, w) + δ∑

w n(., e, ., z, w) + V δ

(7.5)

The proportion of the zth facet in document d with words {wj} written at experience level e
is given by:

φe,z(d) =

∑Nd
j=1 φe,z(wj)

Nd

For each user u, we learn a regression model Fu using these facet proportions in each docu-
ment as features, along with the user and item biases (refer to Equation 7.2), with the user’s item
rating rd as the response variable. Besides the facet distribution of each document, the biases
< βg(e), βu(e), βi(e) > also depend on the experience level e.

We formulate the function Fu as Support Vector Regression [64], which forms the M -Step
in our problem:

M-Step: min
αu,e

1

2
αu,e

Tαu,e + C×

Du∑
d=1

(max(0, |rd − αu,eT < βg(e),βu(e), βi(e), φe,z(d) > | − ε))2



Table 7.3: Dataset statistics.

Dataset #Users #Items #Ratings

Beer (BeerAdvocate) 33,387 66,051 1,586,259
Beer (RateBeer) 40,213 110,419 2,924,127
Movies (Amazon) 759,899 267,320 7,911,684
Food (Yelp) 45,981 11,537 229,907
Media (NewsTrust) 6,180 62,108 134,407

TOTAL 885,660 517,435 12,786,384

The total number of parameters learned is [E × Z +E × 3]× U . Our solution may generate
a mix of positive and negative real numbered weights. In order to ensure that the concentration
parameters of the Dirichlet distribution are positive reals, we take exp(αu,e). The learned α’s are
typically very small, whereas the value of n(u, e, ., z, .) in Equation 7.5 is very large. Therefore
we scale the α’s by a hyper-parameter ρ to control the influence of supervision. ρ is tuned using
a validation set by varying it from {100, 101...105}. In the E-Step of the next iteration, we choose
θu,e ∼ Dirichlet(ρ× αu,e). We use the LibLinear2 package for Support Vector Regression.

7.4 Experiments

Setup: We perform experiments with data from five communities in different domains: Beer-
Advocate (beeradvocate.com) and RateBeer (ratebeer.com) for beer reviews, Amazon
(amazon.com) for movie reviews, Yelp (yelp.com) for food and restaurant reviews, and New-
sTrust (newstrust.net) for reviews of news media. Table 7.3 gives the dataset statistics3.
We have a total of 12.7 million reviews from 0.9 million users from all of the five communi-
ties combined. The first four communities are used for product reviews, from where we extract
the following quintuple for our model < userId, itemId, timestamp, rating, review >. New-
sTrust is a special community, which we discuss in Section 7.5.

For all models, we used the three most recent reviews of each user as withheld test data.
All experience-based models consider the last experience level reached by each user, and corre-
sponding learned parameters for rating prediction. In all the models, we group light users with
less than 50 reviews in training data into a background model, treated as a single user, to avoid
modeling from sparse observations. We do not ignore any user. During the test phase for a light
user, we take her parameters from the background model. We set Z = 20 for BeerAdvocate,
RateBeer and Yelp facets; and Z = 100 for Amazon movies and NewsTrust which have much
richer latent dimensions. For experience levels, we set E = 5 for all. However, for NewsTrust
and Yelp datasets our model categorizes users to belong to one of three experience levels.

2http://www.csie.ntu.edu.tw/ cjlin/liblinear
3http://snap.stanford.edu/data/, http://www.yelp.com/dataset challenge/



Table 7.4: MSE comparison of our model versus baselines.

Models Beer Advocate Rate Beer News Trust Amazon Yelp

Our model 0.363 0.309 0.373 1.174 1.469
(most recent experience level)

f) Our model 0.375 0.362 0.470 1.200 1.642
(past experience level)
e) User at learned rate 0.379 0.336 0.575 1.293 1.732

c) Community at learned rate 0.383 0.334 0.656 1.203 1.534
b) Community at uniform rate 0.391 0.347 0.767 1.203 1.526

d) User at uniform rate 0.394 0.349 0.744 1.206 1.613
a) Latent factor model 0.409 0.377 0.847 1.248 1.560
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Figure 7.4: MSE improvement (%) of our model over baselines.

7.4.1 Quantitative Comparison

Baselines: We consider the following baselines for our work, and use the available code4 for
experimentation.
a) LFM: A standard latent factor recommendation model [147].
b) Community at uniform rate: Users and products in a community evolve using a single “global

clock” [148][304][302], where the different stages of the community evolution appear at
uniform time intervals. So the community prefers different products at different times.

c) Community at learned rate: This extends (b) by learning the rate at which the community
evolves with time, eliminating the uniform rate assumption.

d) User at uniform rate: This extends (b) to consider individual users, by modeling the different
stages of a user’s progression based on preferences and experience levels evolving over time.

4http://cseweb.ucsd.edu/ jmcauley/code/



The model assumes a uniform rate for experience progression.
e) User at learned rate: This extends (d) by allowing each user to evolve on a “personal clock”,

so that the time to reach certain experience levels depends on the user [194].

f) Our model with past experience level: In order to determine how well our model captures
evolution of user experience over time, we consider another baseline where we randomly sample
the experience level reached by users at some timepoint previously in their lifecycle, who may
have evolved thereafter. We learn our model parameters from the data up to this time, and again
predict the user’s most recent three item ratings. Note that this baseline considers textual content
of user contributed reviews, unlike other baselines that ignore them. Therefore it is better than
vanilla content-based methods, with the notion of past evolution, and is the strongest baseline for
our model.
Discussions: Table 7.4 compares the mean squared error (MSE) for rating predictions, gener-
ated by our model versus the six baselines. Our model consistently outperforms all baselines,
reducing the MSE by ca. 5 to 35%. Improvements of our model over baselines are statistically
significant at p-value < 0.0001.

Our performance improvement is most prominent for the NewsTrust community, which ex-
hibits strong language features, and topic polarities in reviews. The lowest improvement (over
the best performing baseline in any dataset) is achieved for Amazon movie reviews. A possible
reason is that the community is very diverse with a very wide range of movies and that review
texts heavily mix statements about movie plots with the actual review aspects like praising or
criticizing certain facets of a movie. The situation is similar for the food and restaurants case.
Nevertheless, our model always wins over the best baseline from other works, which is typically
the “user at learned rate” model.
Evolution effects: We observe in Table 7.4 that our model’s predictions degrade when applied
to the users’ past experience level, compared to their most recent level. This signals that the
model captures user evolution past the previous timepoint. Therefore the last (i.e., most recent)
experience level attained by a user is most informative for generating new recommendations.

7.4.2 Qualitative Analysis

Salient words for facets and experience levels: We point out typical word clusters, with il-
lustrative labels, to show the variation of language for users of different experience levels and
different facets. Tables 7.2 and 7.5 show salient words to describe the beer facet taste and movie
facets plot and narrative style, respectively – at different experience levels. Note that the facets
being latent, their labels are merely our interpretation. Other similar examples can be found in
Tables 7.1 and 7.7.

BeerAdvocate and RateBeer are very focused communities; so it is easier for our model to
characterize the user experience evolution by vocabulary and writing style in user reviews. We
observe in Table 7.5 that users write more descriptive and fruity words to depict the beer taste as
they become more experienced.

For movies, the wording in reviews is much more diverse and harder to track. Especially for
blockbuster movies, which tend to dominate this data, the reviews mix all kinds of aspects. A
better approach here could be to focus on specific kinds of movies (e.g., by genre or production



Table 7.5: Experience-based facet words for the illustrative beer facet taste.

Experience Level 1: drank, bad, maybe, terrible, dull, shit

Experience Level 2: bottle, sweet, nice hops, bitter, strong light,
head, smooth, good, brew, better, good

Expertise Level 3: sweet alcohol, palate down, thin glass, malts,
poured thick, pleasant hint, bitterness, copper hard

Experience Level 4: smells sweet, thin bitter, fresh hint, honey
end, sticky yellow, slight bit good, faint bitter beer, red brown,
good malty, deep smooth bubbly, damn weak

Experience Level 5: golden head lacing, floral dark fruits, citrus
sweet, light spice, hops, caramel finish, acquired taste, hazy body,
lacing chocolate, coffee roasted vanilla, creamy bitterness, copper
malts, spicy honey

Table 7.6: Distribution of users at different experience levels.

Datasets e=1 e=2 e=3 e=4 e=5

BeerAdvocate 0.05 0.59 0.19 0.10 0.07
RateBeer 0.03 0.42 0.35 0.18 0.02
NewsTrust - - 0.15 0.60 0.25
Amazon - 0.72 0.13 0.10 0.05
Yelp - - 0.30 0.68 0.02

studios) that may better distinguish experienced users from amateurs or novices in terms of their
refined taste and writing style.
MSE for different experience levels: We observe a weak trend that the MSE decreases with
increasing experience level. Users at the highest level of experience almost always exhibit the
lowest MSE. So we tend to better predict the rating behavior for the most mature users than for
the remaining user population. This in turn enables generating better recommendations for the
“connoisseurs” in the community.
Experience progression: Figure 7.5 shows the proportion of reviews written by community
members at different experience levels right before advancing to the next level. Here we plot
users with a minimum of 50 reviews, so they are certainly not “amateurs”. A large part of the
community progresses from level 1 to level 2. However, from here only few users move to higher
levels, leading to a skewed distribution. We observe that the majority of the population stays at
level 2.
User experience distribution: Table 7.6 shows the number of users per experience level in each
domain, for users with > 50 reviews. The distribution also follows our intuition of a highly
skewed distribution. Note that almost all users with < 50 reviews belong to levels 1 or 2.
Language model and facet preference divergence: Figure 7.6b and 7.6c show the KL di-
vergence for facet-preference and language models of users at different experience levels, as
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Figure 7.5: Proportion of reviews at each experience level of users.

computed by our model. The facet-preference divergence increases with the gap between expe-
rience levels, but not as smooth and prominent as for the language models. On one hand, this is
due to the complexity of latent facets vs. explicit words. On the other hand, this also affirms our
notion of grounding the model on language.
Baseline model divergence: Figure 7.6a shows the facet-preference divergence of users at differ-
ent experience levels computed by the baseline model “user at learned rate” [194]. The contrast
between the heatmaps of our model and the baseline is revealing. The increase in divergence
with increasing gap between experience levels is very rough in the baseline model, although the
trend is obvious.

7.5 Use-Case Study

So far we have focused on traditional item recommendation for items like beers or movies. Now
we switch to a different kind of items - newspapers and news articles - tapping into the NewsTrust
online community (newstrust.net). NewsTrust features news stories posted and reviewed by
members, many of whom are professional journalists and content experts. Stories are reviewed
based on their objectivity, rationality, and general quality of language to present an unbiased and
balanced narrative of an event. The focus is on quality journalism.

In our framework, each story is an item, which is rated and reviewed by a user. The facets
are the underlying topic distribution of reviews, with topics being Healthcare, Obama Adminis-
tration, NSA, etc. The facet preferences can be mapped to the (political) polarity of users in the
news community.
Recommending News Articles: Our first objective is to recommend news to readers catering
to their facet preferences, viewpoints, and experience. We apply our joint model to this task,
and compare the predicted ratings with the ones observed for withheld reviews in the NewsTrust
community. The mean squared error (MSE) results are reported in Table 7.4 in Section 7.4.
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(a) User at learned rate [194]: Facet preference divergence with experience.
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(b) Our model: Facet preference divergence with experience.
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Figure 7.6: Facet preference and language model KL divergence with experience.



Table 7.7: Salient words for the illustrative NewsTrust topic US Election at different experience
levels.

Level 1: bad god religion iraq responsibility
Level 2: national reform live krugman questions clear jon led meaningful lives california
powerful safety impacts
Level 3: health actions cuts medicare nov news points oil climate major jobs house high
vote congressional spending unemployment strong taxes citizens events failure

Table 7.8: Performance on identifying experienced users.

Models F1 NDCG

User at learned rate [194] 0.68 0.90
Our model 0.75 0.97

Table 7.7 shows salient examples of the vocabulary by users at different experience levels on the
topic US Election.
Identifying Experienced Users: Our second task is to find experienced members of this com-
munity, who have potential for being citizen journalists. In order to find how good our model
predicts the experience level of users, we consider the following as ground-truth for user expe-
rience. In NewsTrust, users have Member Levels calculated by the NewsTrust staff based on
community engagement, time in the community, other users’ feedback on reviews, profile trans-
parency, and manual validation. We use these member levels to categorize users as experienced
or inexperienced. This is treated as the ground truth for assessing the prediction and ranking
quality of our model and the baseline “user at learned rate” model [194]. Table 7.8 shows the F1

scores of these two competitors. We also computed the Normalized Discounted Cumulative Gain
(NDCG) [128] for the ranked lists of users generated by the two models. NDCG gives geomet-
rically decreasing weights to predictions at various positions of ranked list: NDCGp =

DCGp
IDCGp

where DCGp = rel1 +
∑p

i=2
reli
log2 i

. Here, reli is the relevance (0 or 1) of a result at position i.
As Table 7.8 shows, our model clearly outperforms the baseline model on both F1 and

NDCG.

7.6 Related Work
State-of-the-art recommenders based on collaborative filtering [147][149] exploit user-user and
item-item similarities by latent factors. Explicit user-user interactions have been exploited in
trust-aware recommendation systems [101][296]. The temporal aspects leading to bursts in
item popularity, bias in ratings, or the evolution of the entire community as a whole is stud-
ied in [148][304][302]. Other papers have studied temporal issues for anomaly detection [103],
detecting changes in the social neighborhood [185] and linguistic norms [54]. However, none of
these prior work has considered the evolving experience and behavior of individual users.

The recent work[194], which is one of our baselines, modeled the influence of rating behavior



on evolving user experience. However, it ignores the vocabulary and writing style of users in
reviews, and their natural smooth temporal progression. In contrast, our work considers the
review texts for additional insight into facet preferences and smooth experience progression.

Prior work that tapped user review texts focused on other issues. Sentiment analysis over
reviews aimed to learn latent topics [175], latent aspects and their ratings [155][293], and user-
user interactions [296]. [193][290] unified various approaches to generate user-specific ratings of
reviews. [208] further leveraged the author writing style. However, all of these prior approaches
operate in a static, snapshot-oriented manner, without considering time at all.

From the modeling perspective, some approaches learn a document-specific discrete rat-
ing [175][236], whereas others learn the facet weights outside the topic model (e.g., [155, 193,
208]). In order to incorporate continuous ratings, [27] proposed a complex and computation-
ally expensive Variational Inference algorithm, and [199] developed a simpler approach using
Multinomial-Dirichlet Regression. The latter inspired our technique for incorporating supervi-
sion.

7.7 Conclusion
Current recommender systems do not consider user experience when generating recommenda-
tions. In this paper, we have proposed an experience-aware recommendation model that can
adapt to the changing preferences and maturity of users in a community. We model the per-
sonal evolution of a user in rating items that she will appreciate at her current maturity level.
We exploit the coupling between the facet preferences of a user, her experience, writing style
in reviews, and rating behavior to capture the user’s temporal evolution. Our model is the first
work that considers the progression of user experience as expressed in the text of item reviews.

Our experiments – with data from domains like beer, movies, food, and news – demonstrate
that our model substantially reduces the mean squared error for predicted ratings, compared to
the state-of-the-art baselines. This shows our method can generate better recommendations than
those models. We further demonstrate the utility of our method in a use-case study about identify-
ing experienced members in the NewsTrust community who can be potential citizen journalists.
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CHAPTER 8

UNDERSTANDING LINK FRAUD SERVICES

Most past work on social network link fraud detection tries to separate genuine users from
fraudsters, implicitly assuming that there is only one type of fraudulent behavior. But is
this assumption true? And, in either case, what are the characteristics of such fraudulent
behaviors? In this work, we set up honeypots, (“dummy” social network accounts), and
buy fake followers (after careful IRB approval). We report the signs of such behaviors
including oddities in local network connectivity, account attributes, and similarities and
differences across fraud providers. Most valuably, we discover and characterize several
types of fraud behaviors. We discuss how to leverage our insights in practice by engi-
neering strongly performing entropy-based features and demonstrating high classification
accuracy. Our contributions are (a) instrumentation: we detail our experimental setup and
carefully engineered data collection process to scrape Twitter data while respecting API
rate-limits, (b) observations on fraud multimodality: we analyze our honeypot fraudster
ecosystem and give surprising insights into the multifaceted behaviors of these fraudster
types, and (c) features: we propose novel features that give strong (>0.95 precision/recall)
discriminative power on ground-truth Twitter data.

What are the characteristics of fraudulent accounts in online social networks? Understanding
the behavior and actions of fraudsters is paramount to building effective anti-fraud algorithms.
While previous works in social network fraud detection have primarily focused on leveraging
signature properties of fraudsters including temporally synchronized behavior [22], excessively
dense [233] and oddly distributed [253] graph connectivity, uncommon account names [75] and
spammy links [95], our work focuses on establishing the veracity and applicability of these
assumptions. In doing so, we ask: do all fraudsters share the same signature behavior, or are
there multiple signatures? Since fraud detection is an adversarial setting in which fraudsters are
constantly adapting to in-place detection mechanisms, it is important to constantly monitor and
evaluate the strategies that fraudsters are employing to profitably perform ingenuine actions to
better inform future detection mechanisms.

We focus on one particular setting of social network fraud called link fraud which involves



the use of fake, sockpuppet accounts to create links, or graph connections, which represent fol-
lowership or support of target, customer entities. Fake links artificially inflate the follower count
of customer accounts, making them appear more popular than they actually are. These fake
links are deceptive to authentic users and hinder the performance of machine learning algorithms
which rely on authentic user input to recommend relevant and useful content to their userbase.

To study the behavior of these fake follower accounts, we employ the use of honeypots, or
dummy accounts on which we solicit fake Twitter followers sourced from various fraud service
providers. Honeypots enable us to have an clear signal of fake follower activity which is not
tainted by follows from real accounts. Upon setting up the honeypot accounts and purchas-
ing fake followers, we instrument a number of carefully engineered tracking scripts which poll
Twitter API to store details including account relationships and attributes over a period of time.
This allows us to collect a rich representation of the fraudster ecosystem which we subsequently
analyze.

In this work, we make and explore the following key observation:
Key Insight 1 (Fraud Multimodality). There are multiple types of link fraud which exhibit no-
tably different network structures and patterns in account attribute settings.

Specifically, we focus on studying and characterizing the network connectivity properties
and attribute distributions which are exhibited by fake followers involved in these different types
of fraud. We detail a number of further observations on how these types of behavior induce
different, odd network structures and suspicious patterns in account attributes. Figure 8.1 shows
the contrast in follower connectivity of a genuine account versus two distinct types of fraudsters.
Through our analysis, we additionally engineer strong features which enable us to discriminate
these fraudulent users from genuine ones using novel (first-order) follower entropy features.

Summarily, our work offers the following notable contributions:
• Instrumentation: We detail our experimental setup and data scraping tools which gather

a wealth of Twitter user information while respecting API rate limits.
• Observations on Fraud Multimodality: We discover that link fraud is not unimodal and

instead has multiple types, and identify and characterize two such types: freemium and
premium, with the possibility of more.

• Features: Based on the above observations, we carefully engineer novel, entropy-based
features which allow us to accurately discern fraudsters from genuine users in our ground-
truth Twitter dataset with near-perfect F1-score.

8.1 Related Work
We categorize related work into two categories: underground market studies and fraud detection
approaches.
Underground Markets: Prior works have shown the use of fake accounts for followers in social
media [277], phone-verified email accounts [278], Facebook likes [22], etc. These accounts
are often used to spread spam [79, 95] and misinformation [105, 106]. [227] estimates that
the fake follower market produces $360 million per year. Recently, several works have studied
the existence of underground online markets where these fraudulent actions can be purchased –
[207, 292] explore underground markets providing fake content, reviews and solutions to security
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Figure 8.1: Freemium (Fre) and premium (Pre) fraud types have different local network
structure and account attributes compared to genuine behavior. Nodes are colored by mod-
ularity class, and sized proportional to in-degree in (a)-(c). The associated, reordered adjacency
matrices are shown in (e)-(g) – the vertical line in each spyplot indicates the the central node.
Notice the block community structure in genuine followers compared to the star structure for
premium and near-clique structure for freemium followers. (d) shows differences in attribute
(language and follower) entropy over the various behaviors, showing how fraud patterns skew
attribute distributions away from genuine ones.

mechanisms. [277] studies several fraud providers over time and describes trends in pricing,
account names and IP diversity. [268] compares growth rates of accounts with legitimate and
fraudulent followers. [9] observes the varying retention and reliability of various fraud providers.
Comparatively, our work is the first to identify major social graph differences between fraud types
and across providers, and propose novel entropy-based features for capturing these behaviors.
Fraud Detection: [20, 170] use profile features to detect spammers on Twitter. [267] passively
analyzes accounts with promiscuous following behavior and builds a classifier using profile and
messaging features. [38, 309] aim to find fake accounts in social networks via a generative
stochastic model and a random-walk based method respectively – both assume small cuts be-
tween fake and genuine nodes. [22, 40] use graph-traversal based methods to find users with
temporally synchronized actions on Facebook. [130, 233, 253] propose spectral methods which
identify dense or odd graph structures indicative of fraud.

8.2 Know Thy Enemy: Characterizing Link Fraud

In this section, we discuss some preliminaries about instrumentation, data collection and relevant
metrics, and next illustrate numerous insights about network connectivity and account attributes
of link fraudsters.



Table 8.1: Honeypot account summaries.

Service Type Cost Followers
bought

Followers
delivered

Followers
remaining

fastfollowerz Premium $19 1000 1060 1059
1060 1059

intertwitter Premium $14 1000 1099 977
1102 974

devumi Premium $19 1000 1360 1358
1354 1354

twitterboost Premium $12 1000 1361 1361
1350 1350

plusfollower Freemium £9.99 1000 1094 748
1078 737

hitfollow Freemium £9.99 1000 926 623
937 638

newfollow Freemium £9.99 1000 884 600
883 589

bigfolo Freemium £9.99 1000 872 594
865 577

8.2.1 Setup and Data Collection

We first discuss how we identified and purchased followers from target fraud service providers,
and next detail the scraping task, followed by preliminaries.

Purchasing Fake Followers

There are a number of different fraud service providers easily accessible and available on the
web. We begin by identifying these services so we can purchase fake followers from them. To
identify these services, we used Google search and queried using keywords such as “buy Twitter
followers.” Combining the search results, we obtained a list of websites which claim to provide
these services.

From surveying the websites on this list, we notice there are several prevalent models of
service – we categorize these into two frameworks: premium and freemium. Premium services
offer customers multiple tiers of follower counts (1K, 5K, 10K, etc.) for various amounts of
money and ask only for the customer’s Twitter username and a form of payment. Freemium
services offer both a paid option as in premium services, but additionally offer a free option
which does not ask the user for money, but instead requires the user to provide their Twitter login
details to the service. In return for these details, the services promise to direct a small number of
followers to the account.

We next setup a pool of honeypot accounts by repeating the Twitter account creation process
a number of times using monikers from online screenname generators. We found that to create a
sizeable pool of honeypots, we needed to distribute the account creation over several IPs in order
to avoid phone verification prompts. Upon setting up the pool of honeypots, we purchased basic
follower packages from several premium and paid freemium services, avoiding rarely used ones



with low Alexa rank. Summarily, we bought 1K followers from 8 different services (4 freemium,
4 premium) to 2 honeypot accounts per service. We chose to purchase 2 honeypot accounts per
service instead of only 1 in order to examine the overlap dynamics of fake links to multiple
customers. The final list of the services we used, service types, costs and their follower counts
are summarized Table 8.1. Honeypots were created on the same day, and follower purchases
were all done at the same time. Furthermore, the honeypots attracted no followers by themselves
prior to the purchases. As a result, we posit that all followers of the honeypots are fake.

Instrumentation Details

Reproducibility: Code available at https://goo.gl/qMBWim.
We use the REST API to scrape data relevant to our operation from Twitter. As the API

heavily rate-limits various data resource types, it is only feasible to extract a limited amount of
information as an end-user. Prior to purchasing fake followers, we start a number of Python
scripts which poll the API and insert data into a Postgres database:
Honeypot account details: Every hour, we collect public details for each honeypot Twitter
account including number of friends and followees, number of favorites, number of Tweets,
language, etc.
Honeypot account follower IDs: Every 12 hours, we collect the list of follower IDs for each
honeypot. Since the honeypots were created with empty profiles, we can safely assume that all
followers to these accounts were fraudulent and purchased.
Honeypot account follower details: Every day, we extract public details for each of the accounts
in the honeypot follower list.
Honeypot account followers’ friends/followers IDs: Every day, we collect the list of friend and
follower IDs of the honeypot followers to examine their other connectivity.
Honeypot account followers’ friends/followers details: Every 3 days, we extract public details
for each of the friends and followers of the honeypot followers to gain more information about
them.

Account details requests are limited to 15 requests per 15 minute window, and each request
returns details for up to 100 accounts. Similarly, ID list requests are limited to 180 requests
per 15 minute window, and each request returns up to 5000 account IDs. Hence, it is relatively
easy to scrape the first-order honeypot account follower IDs and details without exceeding the
rate limit, but collecting details for the second-order followers is a bottleneck. Since the number
of nodes to collect information for can explode substantially even at the second-order, we limit
collection to ¡100K friends and followers for each of the given follower of the honeypot account.
We determine periodicity values empirically using back-of-the-envelope calculations. While this
data could be collected slowly using a single Twitter API key, we speed up the process by using
multiple keys and cycling keys upon resource exhaustion.

Preliminaries

In the remainder of our work, we conduct analysis on two types of networks: the ego network
and boomerang network.



Ego network: An ego network (or egonet) traditionally consists of a central node called the
ego, as well as the neighboring nodes and the relationships (edges) between them. Egonets can
essentially be considered as a local graphical representation of a node within the context of the
broader, global graph and depict how the surrounding nodes are connected. For our purposes, we
examine per-service egonets, where we consider the union of the individual egonets of both hon-
eypot accounts per service. Thus, in our case, each per-service egonet is actually comprised by
2 egos (the honeypot accounts), the union of both honeypots’ neighboring nodes (the purchased,
fake followers) and the relationships between them. The per-service egonet representation allows
us to both individually study the per-honeypot egonets as well as any interactions between them.
That is, if the two honeypots for each service have distinct sets of neighboring nodes, then their
per-honeypot egonets will also be distinct. Conversely, if any nodes are neighbors of both hon-
eypots, the associated per-honeypot egonets will be conjoined. Various levels of overlap suggest
differences with regards to how services reuse accounts to deliver fake links.
Boomerang network: Drawing conclusions from per-service egonet analysis can be deceiv-
ing in the sense that while it does give insights into the internal relationships between the fake
followers and honeypots, it does not consider the external relationships formed by the fake fol-
lowers. As such, it is unable to give us a full perspective on the utilization of these fake followers.
In order to gain the requisite perspective, we conduct analysis of the proposed boomerang net-
work. We define the per-service boomerang network to be comprised of the per-service egonet
in addition to the out-links of the follower nodes – the structure is reminiscent of a boomerang,
in that it is comprised of the nodes “1 step back and 1 step forward” with respect to the honeypot
account. Thus, the per-service boomerang network gives us an additional layer of information
on top of the per-service egonet: connections to the other accounts followed by the honeypot’s
fake followers.

We further use the density, bipartite density, transitivity and reciprocity metrics to summarize
and describe network structure, and overlap coefficient and multiple systems estimation (MSE)
to characterize network overlap.
Density: We define density as

#edges

#nodes · (#nodes − 1)

Density represents the fraction of existing to possible total edges, with density 1 indicating a
complete graph.
Bipartite density: We define bip. density between sets A and B as

#edges between A and B
(#nodes in A) · (#nodes in B)

Bipartite density captures the fraction of existing to possible edges between two sets of nodes,
with bipartite density 1 indicating a complete bipartite graph.
Transitivity: We define transitivity as

3 · #triangles

#connected triples



Transitivity denotes the degree of triadic closure, with transitivity 1 indicating that all connected
triples of nodes are also triangles.

Reciprocity: We define reciprocity as

#bidirectional edges

#edges

Reciprocity conveys the relative frequency of bidirectional edges, with reciprocity 1 indicating
that all edges are bidirectional.

Overlap coefficient: We define overlap coef. between A and B as

|A ∩ B|
min(|A|, |B|)

Overlap coefficient indicates the proportion of members that overlap between sets, with overlap
coefficient 1 indicating that A ⊆ B or B ⊆ A and 0 indicating A ∩ B = ∅.
Multiple systems estimation: We use MSE to estimate population size from two randomly
sampled sets A and B as

|A| · |B|
|A ∩ B|

Intuitively, ifA and B have low overlap, the total population size is much larger than if they have
high overlap.

Upon shifting our discussion to account attributes distributions, we use entropy as a means to
capture distributional skew.

Entropy: We define entropy for a distribution X with n outcomes (x1 . . . xn) as

−
n∑
i=1

P (xi) · log2 P (xi)

Entropy measures the unpredictability of a distribution in bits of information, with entropy of 0
bits indicating concentration of 100% probability on a single outcome, and entropy of log2 n bits
indicating uniform distribution of probability between n outcomes.

8.2.2 Network Observations

We first focus on studying the local network properties of fraudulent accounts. Targeting oddities
in network connectivity is a central theme in many link fraud detection approaches, as the mission
constraints of delivering fake links to customers necessarily affects graph structure. But what are
these changes? In this section, we leverage social network analysis tools to characterize effects
of fraud on the surrounding network structure, and show the similarities and differences between
premium and freemium fraud. We detail analyses on two types of induced subgraphs: the ego
network and more expansive boomerang network.



(a) fastfollowerz (b) intertwitter (c) devumi (d) twitterboost

(e) plusfollower (f) newfollow (g) hitfollow (h) bigfolo

Figure 8.2: Premium fraudsters (top) form overlapping stars whereas freemium ones (bot-
tom) form dense, near-cliques. Subplots show per-service egonets with honeypots in dark-red
– darker color and larger size indicates higher in-degree.

Ego Network Patterns

Figure 8.2 shows the per-service egonets for each of the 8 providers, with increased node size
and darkness corresponding to higher in-degree. The honeypots (egos) are the two large and dark
orange colored nodes in each subfigure. Cursory analysis reveals a notable difference in egonet
network structure between freemium and premium providers. We see that the premium egonets
(first row) have a star/bipartite structure: each honeypot node is the hub of a star, and the satellite
nodes overlap and are disconnected. Conversely, freemium egonets have denser, near-clique type
structure which suggests denser connectivity between the neighboring nodes.

The statistics for premium service egonets in Table 8.2 (top) further lend credence to the
visual differences we observe from Figure 8.2, giving us the following insight:
Insight 1 (Egonet Sparsity). Premium fake followers rarely follow each other, resulting in sparse
egonet structure. Freemium fake followers have dense egonet structure.

This is substantiated by the low density and node to edge ratios across premium providers. Of
these, fastfollowerz and intertwitter have an order of magnitude greater density than devumi

and twitterboost. This is substantiated by the 1:2 node to edge ratio in the former 2 providers
as compared to the near 1:1 ratios of the latter 2. fastfollowerz and intertwitter also have
marginally higher transitivity values compared to the 0 transitivity of devumi and twitterboost,
indicating that the former 2 have few triangles between the fake follower nodes whereas the latter
2 have none. We also observe no reciprocal links in these providers, indicating only one-way
relationships.



Table 8.2: Egonet summary statistics.

Service # Nodes # Edges Density Transitivity Reciprocity

Pr
em

iu
m fastfollowerz 1,066 2,289 .002 .001 .000

intertwitter 1,051 2,003 .002 .00006 .000
devumi 2,681 2,712 .0003 .000 .000
twitterboost 2,680 2,711 .0004 .000 .000

Fr
ee

m
iu

m plusfollower 920 51,868 .061 .288 .411
newfollow 755 37,052 .065 .294 .408
hitfollow 782 41,879 .068 .305 .416
bigfolo 749 36,043 .064 .294 .413

Conversely, the freemium statistics in Table 8.2 (bottom) support that freemium fake follow-
ers have dense egonet structures. Freemium providers are an order of magnitude denser than
the densest premium egonets – all 4 providers have 6-7% density. While not shown in inter-
est of space, the per-honeypot egonets were each found to have an even higher 11-14% density
individually. The 1:50 node to edge ratios substantiate this high density. We also notice that
transitivity values are much higher for freemium providers, suggesting that an unusually high
28-30% of wedges are also triangles. Given that density and transitivity are equal in random
graphs, the freemium egonets do not appear to be random, but are likely composed of dense
subregions which are themselves sparsely connected. The link structure reflects how freemium
providers trade follows between accounts (random partitions, biased selection, account simi-
larity, etc.) Furthermore, all 4 providers have similar, high reciprocity of 40-42% suggesting
frequent “follow-back” behavior.

Rationale: The freemium services accumulates a pool of free accounts, and hence trading fol-
lows enables each free user to gain some followers. As a result, such behavior creates a denser
subgraph, but are also used by providers to deliver the follower demands of paid customers and
turn a profit. Comparatively, premium providers are unable to use free users’ accounts and must
create fake accounts.

These insights pose an interesting question: as we expect fraudsters to act in a manner that
maximizes profit, what motivates the differences in structure between freemium and premium
providers? We propose an answer: If we consider that each account has a budget of edges it can
create without being suspended, it seems that premium providers greatly underutilize accounts
compared to freemium ones. This is because for fraudsters, delivering more links while avoiding
suspension is strictly better as it means that they can either serve more customers or artificially
inflate their own popularity.

Boomerang Network Patterns

Figure 8.3 shows 2 boomerang networks, one for bigfolo and twitterboost, each representative
of a different fraud strategy. Again, honeypot accounts are amongst the large, dark nodes with
high in-degree, and the lighter, smaller nodes are fake followers or their friends. Note that the
layout clusters nodes based on similar linkage, so groups of nodes visually close share connectiv-



Table 8.3: Boomerang network summary statistics.

Service # Nodes # Edges Bip. Density

Pr
em

iu
m fastfollowerz 40,486 491,458 .012

intertwitter 176,921 2,383,251 .013
devumi 67,893 2,495,586 .014
twitterboost 68,297 2,474,759 .014

Fr
ee

m
iu

m plusfollower 646,901 1,352,253 .002
newfollow 616,824 1,221,574 .003
hitfollow 558,100 1,172,248 .003
bigfolo 574,823 1,157,672 .003

ity properties. As with egonets, we again see a stark contrast in the boomerang structure of these
two providers. Figure 8.3a shows the dense internal connectivity of bigfolo’s fake followers (as
we saw in Figure 8.2h), in conjunction with the sparser and less compact external connectivity
to friends. Conversely, Figure 8.2d shows sparse internal connectivity between twitterboost’s
fake followers on the left, but dense near-bipartite external connectivity to the customers (includ-
ing honeypots) on the right.

Table 8.3 (top) gives summary statistics about premium boomerang networks, which sub-
stantiate the following:
Insight 2 (Boomerang Density). Premium fake followers are frequently reused to follow cus-
tomers, resulting in dense external connectivity in the boomerang network. Freemium fake fol-
lowers are less reused to follow customers, and hence have sparse external connectivity.

Interestingly, we see that the relative values of these statistics are inverted for the boomerang
networks from the egonets – unlike for egonets where the density metric was an order of mag-
nitude higher for freemium providers, the bipartite density in boomerang networks is instead an
order of magnitude higher for the premium providers.Note that the premium providers’ bipartite
density indicates that nearly 1-2% (a huge amount) of all possible edges between the fake fol-
lowers and their combined set of friends exists. The node to edge ratios are also much higher for
premium providers – fastfollowerz and intertwitter are 1:14, and devumi and twitterboost

are roughly 1:37 compared to only 1:2 for the freemium providers.
The freemium boomerang network statistics in Table 8.3 (bottom) again establishes the sec-

ond part of the insight. This is further substantiated by the observation that freemium providers
have an order of magnitude lower bipartite density than premium ones. We also observe that
freemium boomerang networks have higher number of nodes than the premium counterpart.
This is intuitive as freemium followers are otherwise genuine accounts, they have an expansive
set of true friends, whereas premium fake followers are all synthetic accounts.

Network Overlap Patterns

In our analysis thus far, we noticed that various providers have different levels of evident overlap
in the fake followers they deliver between their 2 honeypots. How extensive is this overlap? Do
these providers reuse accounts in the same ways? Furthermore, is there any overlap between the



(a) bigfolo (fre.) (b) twitterboost (pre.)

Figure 8.3: Freemium followers have dense internal and sparse external connectivity (top),
and vice versa for premium followers (bottom). Subplots show boomerang networks, with
darker node color and larger size indicating higher in-degree.

Table 8.4: Fraud providers have varying account reuse habits.

Service # Nodes Overlap Est. Pool # Nodes

Pr
em

iu
m fastfollowerz 1,064 .996 1,064

intertwitter 1,049 .953 1,051
devumi 2,679 .024 55,719
twitterboost 26,78 .024 55,677

Fr
ee

m
iu

m plusfollower 918 .815 954
newfollow 753 .765 798
hitfollow 780 .802 814
bigfolo 747 .774 791

followers across providers? Here, we shed light on these questions.

Intra-Network Patterns First, we study intra-network overlap, describing overlap between
the fake follower nodes within each service. Table 8.4 shows the overlap coefficients between
the honeypot followers for each service. Assuming the followers for each honeypot are randomly
sampled from the service’s account pool, we additionally compute the estimated total number of
fake accounts currently in the fraud provider’s hands using MSE.

The various degrees of overlap and commensurate estimates of pool size suggest the follow-



ing insight:
Insight 3 (Varying Delivery Structure). Service providers have varying methods for account
reuse in efforts to to distribute suspicion across their account pools.

We observe that the freemium providers tend to have a high, 0.8 overlap which results in an
estimated pool size slightly larger than either of the two sets of honeypot followers. However, the
premium providers have an interesting split which reveals that fastfollowerz and intertwitter

have very high, near 1.0 overlap, resulting in the pool size being roughly equal to each set of fol-
lowers. This indicates that the pool is reused almost exactly for multiple customers. Conversely,
devumi and twitterboost have near 0 overlap. As a result, we estimate that the pool size is
quite large, containing over 55K total fake accounts.

While we cannot be certain without further investigation, these providers likely have different
means of selecting and shifting the pool of active fake followers. For example, the pools used
in fastfollowerz and intertwitter may cycle between a number of different “sub-pools” based
on time, customer account features, or random choice. Conversely, the evidently much larger
estimated pool size for devumi and twitterboost suggests that they may each have a single,
large fixed pool of usable accounts from which followers are sampled regardless of other factors.

Inter-Network Patterns Thus far, we have established that providers reuse multiple follower
accounts across customers in order to turn a better profit. But how far does this reuse go? Are any
accounts responsible for delivering fake links to customers from different providers? To answer
these questions, we study the pairwise inter-network overlap of followers between providers.

Table 8.5 shows an 8× 8 matrix with the pairwise overlap coefficients. Given the number of
nonzero entries, we draw the following surprising insight:
Insight 4 (Collusion). Service providers seem to collaborate with and draw from each other to
commit fraudulent actions.

We notice that there is substantial overlap within the freemium and premium providers. While
fastfollowerz and intertwitter share no accounts with the other premium providers, devumi

and twitterboost have a .07 overlap. Comparatively, all 4 freemium providers have a large
0.6-0.7 overlap, indicating that most of their fake accounts are the same. Furthermore, the set
of followers for freemium and premium providers have 0 overlap, substantiating that follow-
ers in freemium providers are otherwise real accounts whereas those in premium providers are
synthetic.

Nonzero overlap between providers is an interesting finding – it is indicative of either a
willingness to share follower accounts between fraud providers, or commonality in leaked or
hijacked accounts. Upon further inspection, we notice a number of suggestive findings:

• Overlapping providers shared domain WHOIS protectors.
• Overlapping premium providers use the same Yoast SEO plugin and stylesheets.
• All freemium providers have two-column sites, advertised up to 30K followers, and priced

from £9.99.
• All fremium providers contained the line: “[service] is Not Affiliated With OR Endorsed

By Twitter.com.”



Table 8.5: Fraud providers share follower accounts.
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Pr
em

iu
m fastfollowerz 1.0 0 0 0 0 0 0 0

intertwitter 0 1.0 0 0 0 0 0 0
devumi 0 0 1.0 .07 0 0 0 0
twitterboost 0 0 .07 1.0 0 0 0 0

Fr
ee

m
iu

m plusfollower 0 0 0 0 1.0 .65 .69 .64
newfollow 0 0 0 0 .65 1.0 .64 .63
hitfollow 0 0 0 0 .69 .64 1.0 .63
bigfolo 0 0 0 0 .64 .64 .63 1.0

Table 8.6: Per-service entropy (in bits) over account attribute distributions.

Service Created (year) Def. Prof. Def. Prof. Image # Favorites # Followers # Friends # Lists # Statuses Geolocation Lang. Protected UTC Verified

Pr
em

iu
m fastfollowerz 1.37 .63 .01 3.65 2.73 2.73 2.99 3.8 .00 .06 .00 1.04 .00

intertwitter 2.99 .82 .94 4.04 3.54 2.63 2.53 4.31 .67 2.55 .56 1.97 .18
devumi 1.13 .97 .02 1.05 1.54 1.17 2.49 1.18 .00 .00 .00 1.42 .00
twitterboost 1.13 .97 .03 1.05 1.56 1.16 2.51 1.15 .00 .00 .00 1.41 .00

Fr
ee

m
iu

m plusfollower 1.82 .93 .73 4.18 3.76 3.38 2.73 4.40 .54 2.04 .30 1.70 .00
newfollow 1.68 .90 .75 4.20 3.70 3.32 2.64 4.37 .55 1.99 .28 1.62 .00
hitfollow 1.78 .93 .73 4.14 3.76 3.32 2.72 4.37 .52 2.01 .30 1.70 .00
bigfolo 1.88 .92 .75 4.20 3.74 3.34 2.72 4.40 .56 2.05 .32 1.71 .00

Max Entropy: 3.46 1.00 1.00 5.00 5.00 5.00 5.00 5.00 1.00 5.13 1.00 5.29 1.00

8.2.3 Attribute Observations

In this section, we study the similarities and differences in account attributes of fake followers.
Table 8.6 shows per-service, per-attribute entropy in bits for a variety of user attributes. The
account attributes include creation year, default profile and profile image booleans, favorites
count, followers count, friends count, lists count, statuses count, geolocation enabled boolean,
language identifier, protected statuses boolean, UTC timezone, and a Twitter verification boolean
which corresponds to high-profile, “famous” accounts. These attributes have varying outcome
spaces. Creation date has 11 possible years (2006-2016), since Twitter was founded in 2006.
Booleans have 2 possible outcomes (T,F). We encountered 35 different language identifiers and
39 UTC timezone settings. For count features, we logarithmically discretized the space into 32
bins from 1 to 1M to capture the wide range of activity levels. For each service, we aggregate
attribute values and compute the entropy over the outcomes. The table shows the actual sample
entropy in addition to the maximum possible (uniform) entropy. As previously mentioned, lower
entropy indicates high synchronicity between followers. Note that a difference in entropy of 1
bit corresponds to twice the predictability.

The most striking insight from Table 8.6 is as follows:
Insight 5 (Entropy Gap). Premium service providers deliver followers with low entropy, high



regularity attributes, whereas freemium service providers have more attribute disparity.
We notice that the premium providers have substantially lower entropy values in many at-

tributes versus freemium providers, and even near 0 entropy in other attributes like geolocation.
We elaborate on the specific differences next.

Account Creation

devumi, twitterboost and fastfollowerz have very low creation year entropy compared to
freemium providers. While both freemium and premium accounts tend to be created more re-
cently (perhaps because of higher suspension rate in older accounts), premium providers have a
heavy bias towards recently created accounts (>2014).

Profile Defaults

fastfollowerz has a much lower entropy than other providers in terms of default profile – we
found that >84% of these accounts did not have a default profile, whereas default profiles are
actually more common than not in freemium accounts. Surprisingly, fastfollowerz, devumi and
twitterboost also have near 0 entropy for profile image compared to the much higher entropy
for freemium providers. We find that premium followers almost always set a custom image,
suggesting that the information was fabricated or stolen from real users. Conversely, default
profile images are common for freemium service accounts – this is intuitive, most real users do
not fully customize their profiles.

Action Counts

devumi and twitterboost have much lower entropy for action counts (favorites, followers,
friends, lists and statuses) compared to freemium providers. fastfollowerz also exhibits lower
entropy. As Figure 8.1d shows, there is even more variation between premium providers. Figure
8.1d shows that intertwitter (P1 “smart”) follower counts are disparate and closer to genuine
users’ entropy, unlike other premium fraudsters (P2 “naı̈ve”) who behave robotically. Compara-
tively, freemium followers have lower follower count entropy compared to genuine ones, which
is intuitive as while the freemium follows are real accounts, their follower counts are not inde-
pendent from each other due to the follows traded between themselves. Figure 8.4 shows the
rank-frequency plots for follower counts for various follower types. The plots substantiate our
observations on entropy, and also show that different user types exhibit differences with regards
to power-law fit, which is expected for skewed distributions on social networks. While entropy
values in this paper are computed empirically using the samples from Table 8.2, accounts on real
networks have varying follower counts, leading to different entropy estimates even when drawn
from the same distribution.

We noticed similar patterns in entropy for status and favorite counts as well. The lower
entropy of action counts characteristic of premium providers stems from the variety of options
premium providers have for Twitter engagement – in addition to fake followers, the premium
providers also offer fake retweets and favorites services. Thus, premium providers are incen-
tivized to reuse accounts for multiple types of fraud, and when done naı̈vely result in high syn-
chrony in “serviceable” attributes.



(a) Gen. follow count (b) Fre. follow count

(c) P1 (“smart”) follow count (d) P2 (“naı̈ve”) follow count

Figure 8.4: Rank-frequency plots reveal different patterns in follower counts of various
follower types. Note that genuine follower counts in (a) reflect traditional power-law behavior
with a common exponent (∼ 1.2) and are linear in log-log scale. Freemium counts in (b) fit
similarly, despite with a slightly lower exponent (∼ 1.15). Comparatively, “smart” premium
counts in (c) fit a power law but with much higher exponents (∼ 1.66). Interestingly, we find that
“naı̈ve” premium followers do fit a power law, but have unnaturally low exponents (∼ .148) due
to their low entropy and highly concentrated, robotic behavior.

User Settings

fastfollowerz, devumi and twitterboost all have near 0 geolocation, language, and tweet pro-
tection entropy. Of these, all devumi and twitterboost accounts use the US English language
setting, have geolocation disabled and do not protect tweets. fastfollowerz has a slightly higher
language entropy of .06, but we found that all fastfollowerz accounts were either using US or
GB English, suggesting a heavy premium bias for English accounts. We also found that premium
followers almost entirely have USA timezones. “Smart” intertwitter followers’ high language
entropy from Figure 8.1d suggests an aim to better camouflage user attributes compard to the



(a) Premium (b) Freemium

Figure 8.5: Freemium followers have social media (Facebook, Instagram, Snapchat) focused
descriptions (right), whereas premium followers have wordy descriptions (left).

“naı̈ve” providers. Given that intertwitter also has some verified accounts, we hypothesize that
the accounts may be hijacked ones. This is in contrast with freemium providers, which have
much higher frequency of enabled geolocation, variance in language and protected tweets. Fig-
ure 8.1d also shows that freemium followers tend to appear similar to genuine ones as they are
otherwise real user accounts. However, we find that freemium followers have higher language
entropy than genuine ones, as freemium followers are spread over many languages whereas gen-
uine followers tend to disproportionately speak their followee’s language (i.e. if a user speaks
Spanish, most of his followers speak Spanish).

Furthermore, all 4 freemium providers and twitterboost/devumi have extremely similar
attribute entropy over their fake followers respectively, further substantiating Insight 4.

In addition to the attributes reported in Table 8.6, we also studied the 160-character user
description field. The description field essentially contains the high-level summary of what the
user aims to appear as to other Twitter users, and is thus interesting to analyze. We ask: what, if
any, are the differences between freemium and premium follower descriptions?

Figure 8.5 shows two wordclouds, aggregated over description text across all premium and
freemium followers respectively. Font size corresponds to relative frequency in the text. For
clarity, we remove common stopwords. We arrive at the following insight:
Insight 6 (Clout vs. About). Freemium followers tend to have descriptions focusing on social
media clout, whereas premium followers tend to talk about themselves.

Figure 8.5a (premium), has words like “musician,” “lover,” “writer” and “sports”, corre-
sponding to descriptive personal details – these are likely copied from genuine users. Conversely,
Figure 8.5b (freemium) has terms like “snapchat,” “youtube,” and “instagram”, as these users try
to increase clout by advertising their other, real social media pages, i.e., “follow me on snapchat.”

8.3 Assessing Discriminative Power of Entropy Features

Thus far, we have highlighted a number of distributional differences between fraudulent and
genuine users. Can we leverage these differences to discriminate user behaviors? In this section,
we evaluate a number of attribute features on their discriminative power in a supervised setting.



Figure 8.6: Leveraging all features together gives the best detection performance.

We classified the engineered entropy features from Table 8.6 into the following groups based
on feature type:

• Connection: # Followers, # Friends
• Activity: # Statuses, # Lists, # Favorites
• Profile: Default Profile (and Image), Verified, Created
• Geography: Language, UTC
• All: the union of all above features

Note that while we nominally refer to these features as above, they refer to the entropy of the
feature over account followers, rather than raw values of the account itself.

We evaluate these features using binary classification (genuine vs. fraudulent) as is tradi-
tionally done in practice. We use a Support Vector Machine (SVM) with radial basis function
(RBF) kernel and 10-fold cross validation as the classifier of choice, but any out-of-box clas-
sification method could be used. Our carefully assembled ground-truth dataset consists of 307
fraudulent users and 200 genuine users, whose features are computed over their followers. The
fraudulent accounts are a combination of premium and freemium honeypots as well as accounts
whose profiles have been listed on freemium providers’ websites as users of the service. We
define our fraudulent set over this multitude of account types with various properties in order
to demonstrate generality. The genuine accounts belong to well-known academics in machine
learning and data mining. We avoid using randomly sampled Twitter users, as previous works
have shown a non-trivial amount of fake accounts on Twitter which may excessively corrupt
our ground-truth genuine set. In practice, getting additional ground-truth labels is a very costly
endeavor and requires careful manual inspection for each individual case.



Figure 8.6 shows the relative performance of our feature groups in terms of overall precision
and recall. We notice that Connection features perform comparatively poorly, Profile and Activity
features perform better, Geography performs even better, and the combination All performs near-
ideal with .98 precision and .95 recall (much higher recall than supervised approaches which
use raw account features for Twitter spam classification [195]). Thus, we conclude that our
proposed entropy features are highly reliable in discerning genuine from fraudulent users. The
added benefit of using the entropy-based features is that it is much harder to control for from the
fraudster’s perspective – this is because while the fraudster has significant control over his own
account’s properties, he has limited ability to influence who follows him.

8.4 Discussion

The analysis in this work has a number of important implications on fraud detection in practice.
We detail these below.
Multimodal Detection: Using individual signatures to find one type of fraud tends to be at the
expense of finding other types. For example, clique detection primarily focuses on freemium
fraud, whereas bipartite core detection focuses on premium fraud. Using complementary meth-
ods is a promising strategy.
Importance of Time: Varying account reuse policies makes temporal granularity an important
consideration in graph-based fraud detection. While analysis on a low granularity graph can
reveal dense fraudulent structure in frequent reuse regimes, it may never do so for low reuse
regimes. Higher granularity can be useful in these cases.
Deceptive Account Attributes: Using individual account attributes to label fraudsters is of
limited use. Our work suggests that most freemium fraudsters are actually real users with real
profile attributes – they may be resistant to such detection schemes. Conversely, leveraging an
account’s follower’s attributes shows promise in bridging this gap.
Total vs. Partial Fraud: Different types of fraud may call for different penalties. While the
implication “has one fake link→ has all fake links” seems true for premium fraudsters, it is not
for freemium ones. Removing fake links vs. suspending fake accounts is a promising way to
penalize such fraudsters and minimize false positives.

The need for multimodal anti-fraud mechanisms suggests a shift in the detection paradigm
from drawing a two-class boundary between genuine and “one-hat-fits-all” fraudulent users, to a
more complex multiclass boundary between genuine, premium fraudulent, freemium fraudulent,
and other fraud types which may be discovered in the future.

8.5 Conclusion

In this work, we aimed to study the nature of modern link fraud regimes. To this end, we
setup honeypot accounts on Twitter, purchased fake followers for them from a variety of fraud-
provoding services, and carefully instrumented a data scraping process to capture their behaviors.
Specifically, we studied the local network connectivity of fake followers via the egonet and pro-
posed boomerang networks, as well as attribute distributions over profile features and account



actions. Our analyses showed that there are multiple types of link fraud (we discover at least
two: freemium and premium) with varying behaviors regarding internal and external network
connectivity, disparity in attribute homogeneity across followers, and differences in descriptive
word-usage in Twitter bios. Furthermore, we found fascinating evidence that service providers
have varying types of account-reuse policies and seem to collude with each other on a number
of fronts. Furthermore, we proposed the use of first-order entropy features taken across account
followers’ attributes to discern fraudulent from genuine accounts, and showed that these features
were able to attain near-perfect F1 score on our ground-truth dataset. Holistically, our work of-
fers several implications for practical fraud detection including multimodality of fraud behaviors,
the importance of temporally sensitive algorithms, usefulness of first-order versus zeroth-order
features, and disadvantages of account-based versus link-based fraud targeting.
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CHAPTER 9

MODELING DWELL TIME ENGAGEMENT FRAUD

Visual multimedia is one of the most prevalent sources of modern online content and
engagement. However, despite its prevalence, little is known about user engagement with
such content. For instance, how can we model engagement for a specific content or viewer
sample, and across multiple samples? Can we model and discover patterns in these inter-
actions, and detect outlying behaviors corresponding to abnormal engagement? In this
paper, we study these questions in depth. Understanding these questions has implications
in user modeling and understanding, ranking, trust and safety and more. For analysis,
we consider content and viewer dwell time (engagement duration) behaviors with images
and videos on Snapchat Stories, one of the largest multimedia-driven social sharing ser-
vices. To our knowledge, we are the first to model and analyze dwell time behaviors on
such media. Specifically, our contributions include (a) individual modeling: we propose
and evaluate the UM-DP, LM-DP and V-DP parametric models to describe dwell times of
unlooped/looped media and viewers which outperform alternatives, (b) aggregate model-
ing: we show how to flexibly summarize the respective joint distributions of multivariate
parametrized fits across many samples using Vine Copulas in the analog UM-AM, LM-
AM and V-AM models, which enable inferences regarding aggregate behavioral patterns,
and offer the ability to simulate real-looking engagement data (c) anomaly detection: we
demonstrate our aggregate models can robustly detect anomalies present during training
(0.9+ AUROC across most attack models), and also enable discovery of real dwell time
anomalies.

The recent years have brought about a tremendous increase in proliferation of visual multi-
media content in the form of images and videos. Internet users watch 1 billion hours of YouTube
video [29], share more than 95 million images and videos on Instagram [281], and spend an av-
erage of 30 minutes on Snapchat every day [282]. Dwell time, or engagement duration, is one
of the key means of implicitly describing user interactions with content. In contrast to explicit
features such as likes and follows, dwell time is not afflicted by low response rates and reporting
bias. Content with high dwell time is considered more interesting and valuable to viewers, and



(a) Individual model-
ing (b) Group modeling (c) Anomaly detection (d) Dwell time anomalies

Figure 9.1: Our work discusses (a) state-of-the-art parametric models for individual sample dwell
times which closely mirror empirical data, (b) flexible copula modeling of aggregated multi-
variate parameter fits, (c) utilization of aggregate models for detecting dwell time engagement
anomalies which (d) reflect abnormal behaviors radically inconsistent with most samples.

indicate user attentiveness and satisfaction. Dwell time has thus been used as a central feature
in content recommendation [141, 307, 308]. However, despite its value, prior work has left a
considerable gap in modeling and analysis of dwell times on visual multimedia.

With the insight that dwell time can influence recommendations, numerous online market-
places have spawned , offering customers ways to increase perceived engagement via paid in-
authentic “views”; searches for “buy Youtube views” or “buy Instagram views” show numerous
services offering bundles of 1 thousand views for as little as 10¢. Such inauthentic engage-
ment can disrupt recommendation algorithms, hurt advertiser profits, and increase user exposure
to bad content. Despite this, prior work towards detecting abnormal viewer engagement using
dwell times is nearly non-existent.

To bridge these gaps in behavior modeling and anomaly detection literature, we pose the
following research questions:

• RQ1. Individual Modeling: How can we describe the dwell time distribution for a given
content/viewer sample?

• RQ2. Aggregate Modeling: How can we jointly model dwell times across many con-
tent/viewer samples?

• RQ3. Anomaly Detection: Can such models help us detect dwell time engagement
anomalies?

Dwell times have primarily been studied in the context of documents like webpages [141,
305] and short articles [308]. To the best of our knowledge, ours is the first work that tackles
the problem of modeling dwell times on visual multimedia. Our context poses a number of
non-trivial challenges, including variety in varying content durations, media formats (looped
and unlooped content) and behavioral diversity. Moreover, the sheer scale of engagement data is
huge, necessitating scalable solutions for modeling. Our approach posits three core contributions,
mirroring RQ1-RQ3:

• C1. Individual Modeling: We propose concise, interpretable parametric models which
match empirical dwell time behaviors. Our proposed UM-DP (see Figure 9.1a), LM-DP

and V-DP models for characterizing looped/unlooped media dwell times consistently out-
perform alternatives in terms of goodness-of-fit via 2-sample test and log-likelihood.



(a) Unlooped Media (b) Looped Media (c) Viewers

Figure 9.2: Median dwell time ratios vs. number of views on (a) unlooped and (b) looped media,
and (c) viewers show outliers which exhibit excessively high dwell times compared to normal
engagement patterns of similar view-count peers.

• C2. Aggregate Modeling: We propose aggregate models for looped/unlooped media
(LM-AM/UM-AM) and viewer (V-AM) dwell times, which utilize copulas to preserve
multivariate dependency structures and model joint distributions of individual parameter
fits (see Figure 9.1b). These models parametrically approximate original data with constant
space, offer scalable inference, are temporally consistent and are also generative.

• C3. Anomaly Detection: We demonstrate that our aggregate models can be used to easily
discover those with abnormal engagement (see Figures 9.1c/d). Experiments show our
approach enables robust anomaly detection against simulated attacks (0.9+ AUROC in
most experiments), and detects anomalous dwell time engagement behaviors on real data.

Though our work uses viewing data from Snapchat, we expect that given the diversity and scale
of viewers and media settings that we consider, our findings should generalize on other visual
multimedia platforms which support similar visual content types.

9.1 Related Work

We discuss prior work in (a) temporal behavior modeling, and (b) detecting anomalous viewer-
ship.
Temporal behavior modeling. Prior work in dwell time modeling primarily focuses on recom-
mendation and prediction of webpages and text documents. [308] explores interpreting dwell
times as “pseudo-votes” for content recommendation of short-text documents; using a Log-
normal distribution to model dwell times. [305] discusses using dwell times for re-ranking
webpage results. [178] demonstrates that webpage features predicts the Weibull distribution
modeled dwell times of webpage visits. [47, 141] also discusses predicting dwell times on web-
pages and YouTube videos, respectively. Additionally, [30] proposed using gamma, weibull and
exponential distribution to model dwell times. Several works focus on modeling temporal behav-
iors other than dwell times. [134] and [67] propose using the Log-logistic distribution to describe



user interarrival times between search queries and forum comments. [287] uses a left-truncated
Log-logistic model to describe human phone-call durations. Significant amount of work has
been done in anomaly detection for time-series [108], however our work is not concerned with
modeling sequences, bur instead underlying distribution of dwell times.

Overall, unlike ours, none of the prior works (a) involve parametric dwell time modeling, (b)
tackle general visual multimedia, and (c) model both users and content.
Detecting anomalous viewership. Prior literature in detecting anomalous viewership is sparse.
[190] analyzed the fake view detection capacities of several video-sharing services including
YouTube, DailyMotion, and Vimeo under synthetic attack models, demonstrating that all services
were susceptible to simple attacks of fixed interarrival time views across IP addresses. [47]
propose using user, IP and video entropies in a supervised model to detect abnormal engagement;
however, their approach requires intensive manual labeling.[252] proposes using temporal view
features in a livestreaming setting to detect distributional anomalies, but is non-parametric and
does not expressly model dwell time behaviors, while being undefined for viewer and content
anomalies.

Overall, unlike ours, none of the prior works (a) utilize implicit dwell time rather than explicit
feedback, (b) tackle general visual multimedia, and (c) are unsupervised.

9.2 Data Description

Table 9.1: Dataset summary

Unique media samples 300 thousand
Images 208 thousand
Videos 92 thousand
Unlooped 102 thousand
Looped 198 thousand

Unique viewers 24 million

Total views 273 million

In this work, we study an industrial-scale media engagement dataset from Snapchat, one of
the largest social multimedia-driven content sharing services. Snapchat enables users to share
visual multimedia content to their “My Story,” which can be optionally exposed to the entire
userbase. Specifically, users can share ephemeral (purged in 24 hours) content (images or videos)
with duration of up to 10 seconds, and adjust loop settings to unlooped (views automatically
terminate upon completion) or looped (repeat indefinitely).

Our dataset consists of engagement associated with a large set of publicly posted “My Story”
contents, and of the associated viewers for a long-enough time period sufficiently accounting
for complete 24-hour observation of engagement with all samples1. Table 9.1 details several

1Due to privacy reasons, we obscure certain sensitive details (timeframes and certain axes values) while commu-
nicating our insights.



(a) Unlooped images (b) Unlooped videos

(c) Looped images (d) Looped videos

Figure 9.3: Aggregated dwell time ratio statistics for varying media types and durations inform
our modeling choices: treat images and videos similarly, and unlooped and looped content dis-
tinctly.



key summary statistics of our dataset. All content samples and viewers have 100+ associated
views/data-points, enabling us to draw reasonably reliable inferences about engagement.

9.3 Initial Observations

Before delving into details, we conduct several exploratory analyses to motivate and direct our
approach and give intuition for our subsequent modeling choices. Firstly, we aim to understand
dwell time behavior across the entire dataset, to determine patterns and anomalies in dwell times
across different content and viewers.

Since different content samples have varying durations, we normalize all dwell times with
respect to these in order to compare them. Henceforth, when we mention “dwell time,” we
consider instead the dwell time fraction or ratio. Thus, dwell time ratios of views on unlooped
media must lie in (0, 1], whereas dwell time ratios on looped content can lie on (0,∞).

Figure 9.2 shows quantized heatmaps of median dwell ratio of unlooped/looped media (9.2(a)
and 9.2(b), respectively) and viewers (9.2c) versus view count, with brighter colors indicating
logarithmically increasing density and darker colors denoting sparsity.Intuitively, sparsity in-
creases towards the right of each plot due to skewed view count distributions, and towards the
top of each plot, as few entities have high dwell ratios. Additionally, there are sparse entities in
all plots which have very low dwell ratios. In all cases, we observe well-defined regions of high
density.This suggests the following key observation, which motivates our modeling and anomaly
detection goals.
Key Observation 1 ((In)Consistencies in Visual Multimedia Dwell Times). There exist patterns
and anomalies in content and viewer dwell time engagement on visual multimedia.

Next, we consider collective differences between unlooped and looped media, and their im-
plications for dwell time modeling. Figure 9.3 shows the collective dwell ratios across our entire
dataset, for unlooped images and videos in 9.3(a-b), and their looped counterparts in 9.3(c-d).
The stark differences in distribution shape is apparent; unlooped dwell ratios are effectively cen-
sored at 1.0, where they achieve a second peak after a tapered drop. However, while looped dwell
ratios exhibit a similar decay and noticeable peak at the first view “completion,” (near mid-plot)
they show a decreasing but nonzero probability afterwards due to differences in feasible view
duration across the media types. This suggests the following:
Observation 1 (Looped/Unlooped Media Dwell Time Disparity). Looped and unlooped media
require characteristically different dwell time models, due to the differences in support over dwell
time ratios of (0, 1] and (0,∞), respectively.

Lastly, we consider the effect of different media type (image and video) on dwell ratios. By
comparing Figures 9.3(a)/(c) with 9.3(b)/(d), we can observe that images and videos actually
admit very similar dwell times. Despite videos being intuitively “richer” than images, the plots
mirror each other. Moreover, since we observe no significant differences in the “stickiness”
across the collective media type splits, we hypothesize that a significant portion of users’ decision
to engage with content may actually occur before the user accesses the content, for example due
to self-selection and preferences towards certain content. Our major takeaway regarding media
types is thus



Observation 2 (Image/Video Dwell Time Parity). Dwell time similarities across image and
video engagement suggest that they can be modeled characteristically similarly.

Given these observations, we next discuss our proposed parametric models for dwell time
distributions of individual content samples and viewers; parametric models are appealing due to
their conciseness and interpretability over nonparametric alternatives.

9.4 Individual Dwell Time Modeling

How can we parametrically model the dwell time distributions of multimedia content and view-
ers? In this section, we first propose “dwell processes” to generatively model the multimedia
content for both looped and unlooped media. Following this, we posit the same contributions for
viewers. In both cases, we give the intuition behind our modeling approaches, discuss efficient
parameter inference procedures and validate against alternatives using goodness-of-fit metrics.

9.4.1 Multimedia Content Modeling

Looped Content

We begin by discussing modeling of looped content. Views on such content are unbounded, and
dwell time ratios can range from (0,∞). Given our earlier insights regarding long-tailed dwell
times from collective analysis in Figure 9.3, we consider several suitable distributions that may
be able to model such shapes. In our preliminary analyses, we observed that the tails of many
samples matched quite closely with Log-logistic distribution, defined as
Definition 1 (Log-logistic (LL) Distribution). Let T be a non-negative continuous random vari-
able, such that T ∼ LL(α, β). The PDF and CDF of T are given by

fLL(t;α, β) =
(β/α)(t/α)β−1

(1 + (t/α)β)2
FLL(t;α, β) =

1

1 + (t/α)−β

where t ∈ [0,∞), and α(scale), β > 0(shape) are the parameters.
Note that the LL distribution admits the same support as our use-case for looped content, but

does not do so for unlooped content. We propose using the original, unmodified LL distribution
as the core of our LM-DP (Looped Media Dwell Process), which can be written generatively as
Definition 2 (Looped Media Dwell Process (LM-DP)). Sample each dwell time ratio ti ∼
LL(α, β).

Use of LL distribution over alternatives is justified for several reasons. LL is widely used
in survival modeling and has a hazard function implying that the longer a view has persisted,
the longer it will continue to do so [21]. Also, it has demonstrated success in modeling other
real-world temporal phenomena [67, 134] besides visual multimedia dwell times, and as we will
show below, it outperforms other candidate distributions in this task.
Inference of LM-DP. Inference of α and β cannot be computed in closed form. As a result, we
infer parameters using the Nelder-Mead simplex method [154], which maximizes likelihood via
iterative approximations, while converging quickly and accurately.



Validation of LM-DP. We validate the model both qualitatively (visually) in terms of empirical
versus simulated dwell time probabilities, and quantitatively via the Kolmogorov-Smirnov (KS)
2-sample test. In Figure 9.5, we illustrate the strong match in empirical dwell time distributions
and our superimposed model fits across several looped media samples of varying exposure dura-
tions, viewer counts and dwell time behaviors. For brevity, we show results only on 6 users, but
most others exhibited similar quality of fit. Observe that LM-DP is able to well-approximate the
peak and decay corresponding to view drop-offs reasonably well despite differences in distribu-
tion shapes across the samples, thus suggesting the appropriateness of our modeling choice.

To analyze the goodness-of-fit quantitatively, we perform KS tests comparing dwell times
that were (a) empirically observed, with (b) those simulated by LM-DP using parameters in-
ferred from MLE for each content sample. We compared LM-DP with four other alternative
distributions which have previously been used for dwell time modeling in other contexts. These
are CL-LN (Log-normal) [308], CL-IG (Inverse Gaussian) [107], CL-WB (Weibull) [178] and
CL-G (Gamma) [141]. Figure 9.4(a) shows the sorted p-values reported across KS tests over
samples reflecting the rejection probability for the null hypothesis H0 that the empirical data
and our simulated data are drawn from the same distribution. Assuming H0 is true, the p-values
should be uniformly distributed, manifesting as the 45° line. We observe that our proposed LM-
DP using LL performs the best, with the CL-LN model the next closest, CL-IG/CL-WB and
CL-G demonstrating significantly worse performance. Figure 9.4(b) further shows the percent-
age of samples that were fitted “successfully” (KS p < .05) given their view counts. Again, we
observe that LM-DP outperforms competitors, modeling the vast majority of samples success-
fully (over 90% for samples with ≈ 100 views). Note that since KS tests and p-values are highly
sensitive given large sample sizes (i.e. H0 would be rejected even for minute differences between
empirical and simulated data), the percent of successful fits decreases in all cases with high view
count; however, given the skewed distribution of view counts, high view count cases constitute
only a small fraction of the population. Table 9.2(LM-DP) further demonstrates the aggregated
percentage of samples for which LM-DP outperforms the alternatives, according to both KS test
p-values and negative log-likelihood (NLL) of the fitted models; note that these differences are
significant and persistent across hundreds of thousands of samples. Additionally, since all the

Figure 9.4: LM-DP outperforms alternatives:(a) sorted p-values from KS tests; the closer a model
curve to the 45° line, better the fit. (b) %age of samples where model fits were successful(p <
.05).



Figure 9.5: Proposed LM-DP (red) visually matches empirical dwell times (blue) across several
looped media samples of varying patterns.

Table 9.2: % of instances where proposed models outperforms alternatives (higher is better,
>50% implies superior performance).

LM-DP CL-LN CL-IG CL-WB CL-G

NLL 54.5% 82.4% 94.6% 93.7
KS 78.9% 86.2% 84.7% 86.7

UM-DP CU-LN CU-IG CU-WB CU-G

NLL 53.6% 78.2% 84.1% 85.5
KS 73.2% 86.7% 88.9% 90.2

V-DP CV-LL CV-IG CV-WB CV-G

NLL 93.6% 82.6% 99.1% 99.9%
K-S 52.8% 54.1% 81.1% 84.1%

models have same number of parameters, model complexity metrics are proportional to NLL and
hence we do not explicitly mention them.



Unlooped Content

Unlike for looped media, unlooped views can have a maximum dwell ratio of 1.0 given viewing
constraints (discussed in Observation 1). We observe that no typical continuous value distribu-
tions are able to handle this constraint on support natively. Therefore, we propose our UM-DP

(Unlooped Media Dwell Process) which significantly augments the LM-DP to handle this con-
straint. The model can be written generatively as
Definition 3 (Unlooped Media Dwell Process (UM-DP)). Sample each dwell time ratio ti as

1. ci ∼ Bernoulli(θ)

2. ti ∼

{
δ1(·) if ci = 1 [complete view]
TLL(α, β) if ci = 0 [truncated view]

where fTLL(t;α, β) = fLL(t;α, β)/Z is the PDF of right-truncated LL distribution on ti ∈
(0, 1), Z = FLL(t = 1;α, β) − FLL(t = 0;α, β) for normalization, and δ1(·) denotes a point
mass at 1.0.

The main idea behind UM-DP is that it considers separately the cases where (a) viewers make
a preemptive choice to consume the complete media content (due to friendship, self-selection,
etc.), and (b) viewers are less invested and drop off when they lose interest. Intuitively, this re-
flects a dichotomous choice in media consumption: sometimes, we “exploit” the media which
we highly suspect to be interesting given factors like interest in the poster, subscriptions , fasci-
nation with a content thumbnail, etc., and other times we “explore” other content whom we give
attention to in a fickle way. We note that UM-DP bears resemblance to hurdle models, which are
often used to model over-inflation of 0s in ecologicaldata[238]; such models pose a “hurdle” via
a Bernoulli probability, which when overcome allows a non-zero sample to be generated from
an auxiliary process. Our UM-DP places such a hurdle of probability θ on P (t = 1.0) to model
complete views, and with probability 1− θ we sample from the auxiliary TLL distribution such
that t < 1.0 for truncated views.
Inference of UM-DP. We infer parameters for UM-DP by maximizing the log-likelihood. The
overall log-likelihood is given by

`(θ, α, β) =
∑

θ logP (ti = 1.0) + (1− θ) log fTLL(ti;α, β)

We can infer θ by maximum likelihood by taking the proportion of empirically observed com-
plete views, i.e. θ̂ =

∑
1(ti = 1.0)/n over n total views. After filtering the complete views,

we can estimate the α, β parameters for TLL on the truncated views by maximizing likelihood
heuristically as in the LM-DP case.
Validation of UM-DP. Again, we validate the model both qualitatively and quantitatively. Fig-
ure 9.6 illustrates parity between empirical data and superimposed model fits across unlooped
media samples of varying durations, viewer counts and dwell time behaviors. We observe that
our proposed UM-DP is able to well-approximate both the completed views (far right), and main-
tains good performance in modeling the peak/decay corresponding to viewer drop-off despite
differences in distribution shapes.

Quantitatively, we again used KS tests and NLL to compare performance of UM-DP with
alternatives: CU-LN (Log-normal), CU-IG (Inverse Gaussian), CU-WB (Weibull) and CU-
G (Gamma). Technically, we used the truncated variants of these models in the same context



Figure 9.6: Our proposed UM-DP (red) visually matches empirical dwell time probabilities
(blue) across unlooped media samples with varying viewing patterns.

proposed in our UM-DP formulation. Figure 9.7 shows the sorted p-values across samples in
(a) and percentage of samples correctly fit against view count in (b); again, we observe that the
proposed UM-DP fits the majority of samples well (around 90% with ≈ 100 views) outperforms

(a) Sorted p-values (b) % of successful fits

Figure 9.7: UM-DP outperforms alternatives:(a) sorted p-values from KS tests; the closer a model
curve to the 45° line, better the fit. (b) %age of samples where model fits were successful(p <
.05).



Figure 9.8: Our proposed V-DP (red) visually matches empirical dwell times (blue) across sev-
eral looped media samples with varying viewing patterns.

the other models, with the CU-LN model the next closest, and CU-IG/CU-WB demonstrating
significantly worse performance. Table 9.2(UM-DP) further shows that UM-DP outperforms the
alternatives over aggregated percentage of samples better fit by both KS tests and log-likelihood
comparisons across fitted models.

9.4.2 Viewers

Modeling viewers has a distinct set of challenges. Most notably, we must model viewers across
time that they spend on looped and unlooped media both. Given the differences in support over
dwell time ratios over the two, this is non-trivial. Moreover, we must account for differences
in inherent propensities of viewers to watch unlooped and looped media. The alternatives to
accounting for these complexities in a single joint model are undesirable, as they would result in
having individualized models for each user across multiple content types and exposure durations,
greatly increasing model complexity and requiring many more samples for inference.

To overcome these challenges, we propose V-DP (Viewer Dwell Process), which aims to
unify the modeling of these heterogeneous phenomena. At the core of V-DP is the Log-normal
distribution, which we observed closely matched the tails of many viewers’ dwell time ratios.
The Log-normal distribution is defined as
Definition 4 (Log-normal Distribution (LN )). Let T be a non-negative continuous random vari-



able, such that T ∼ LN(µ, σ). The PDF and CDF of T are given by:

fLN(t;µ, σ) =
1

tσ
√

2π
e−

(log t−µ)2

2σ2 FLN(t;µ, σ) = Φ

(
log t− µ

σ

)
where t ∈ (0,∞), µ ∈ (−∞,∞) and σ > 0 are the mean and standard deviation of log T , and
Φ indicates the standard normal CDF.

Like LL, the LN distribution is also commonly used in survival analysis [57]. Both distribu-
tions have very similar shapes; however, LL typically has heavier tails. Intuitively, this disparity
in distributions between content-centric and viewer-centric modeling makes sense as viewers
have more associated “outgoing” views than contents have “incoming” ones, and proportionally
more of those views tend to be short. This would explain why viewer dwell time ratios exhibit
more probability in the head of the distribution with lighter tails, making LN a more suitable
option for the viewer modeling task than LL. Given this, we propose the V-DP as follows.
Definition 5 (V-DP). Sample each dwell time ratio ti as

1. li ∼ Bernoulli(ψ)
2. ci ∼ Bernoulli(θ)

3. ti ∼


LN(t;µL, σL) if li = 0 [LM view]
δ1(·) if li = 1, ci = 1 [UM comp. view]
TLN(µU , σU) if li = 1, ci = 0 [UM trunc. view]

where fTLN(t;µ, σ) = fLN(t;µ, σ)/Z is the PDF of right-truncated LN distribution on ti ∈
(0, 1), Z = FLL(t = 1;α, β) − FLL(t = 0;α, β) for normalization, and δ1(·) denotes a point
mass at 1.0.

Our proposed V-DP is a mixture of viewing processes between both looped and unlooped
content. The unlooped content has a max dwell time ratio of 1.0, and thus we sample views
to this content in a manner similar to UM-DP, with the exception of using TLN distribution.
Looped content has views with unbounded dwell time ratios, and thus we sample these views in
a manner similar to LM-DP, but using LN distribution. The mixture proportions are determined
by a parameter trading off propensity for looped versus unlooped media. Note that here, we
model views to content with different exposure durations in the same, dwell time ratio model.
Technically, though we describe the unlooped and looped views using a single LN variant each,
we are actually observing the convolution of the underlying varying duration distributions.
Inference of V-DP. We aim to maximize the log-likelihood in inferring parameters for V-DP.
The log-likelihood of is given by

`(ψ, θ, µU , σU , µL, σL | t) =
∑

ψ[θ logP (ti = 1.0)

+ (1− θ) log fTLN (ti;µU , σU)]

+ (1− ψ) log fLN (ti;µL, σL)

Consider n as the total number of views, and nU and nL as number of views on unlooped and
looped content (such that nU + nL = n). Then, we have ψ̂ = nU/n, and similarly if we consider
the number of complete views on unlooped snaps as nCU , then θ̂ = nCU/nU . To infer parameters
µL, σL for looped media views, we can use closed form estimators. To infer the LN parameters
µU , σU for unlooped snaps, we maximize the TLN log-likelihood using Nelder-Mead.



(a) Sorted p-values (b) % of successful fits

Figure 9.9: V-DP outperforms alternatives:(a) sorted p-values from KS tests; the closer a model
curve to the 45° line, better the fit. (b) %age of samples where model fits were successful (p <
.05).

Validation of V-DP. We validate V-DP both qualitatively and quantitatively. Figure 9.8 shows
several example fits of V-DP on sample viewers; observe that our formulation allows a flexible
fitting of various, complex distributional shapes which represent engagement with highly het-
erogeneous content using few parameters. Moreover, we compare V-DP with other candidate
models, which as in UM-DP and LM-DP, differ from V-DP in the central parametric distribu-
tion used. The candidate models CV-LL (Log-Logistic), CV-IG (Inverse Gaussian), CV-WB
(Weibull) and CV-G (Gamma), differing in replacement of LN distribution to respectively men-
tioned ones.

Quantitatively, we evaluate V-DP’s goodness-of-fit by using KS tests and NLL. We plot the
sorted p-values of V-DP and alternatives in Figure 9.9(a), demonstrating that V-DP’s p-value
curve is closest to the ideal and fits better than alternatives, with CV-LL coming in at a close
second. Figure 9.9(b) shows the percentage of viewers that are successfully fit with V-DP; here
too, we observe that V-DP fits for majority of the viewers (over 95% with≈ 100 views) with CV-
LL performing roughly on par at lower view counts, but trailing behind as view count increases.
Again, decrease in fit performance at high view count is encountered by all models due to KS
test sensitivity with large sample sizes. Table 9.2(V-DP) lists the aggregate percentage of cases
where V-DP performs better than other candidate models in both KS p-values and NLL; NLL
suggests significantly better fit performance using V-DP over the competitors.

9.5 Aggregate Dwell Time Modeling

Given parametric individual fits for each individual content or viewer sample, how can we iden-
tify patterns, normative behaviors and anomalies in dwell times of many content or viewer sam-
ples, respectively? How common is it to watch over 80% of an image or video? How common
is it for a viewer’s dwell times to be narrowly distributed around 5% and so on? To answer the
above questions, we need to model the parameters in aggregate, across many samples. However,
modeling the joint distribution of multivariate data is in general not trivial, posing challenges in



dependency estimation, inference and curse of dimensionality. In this work, we propose to flexi-
bly model joint distributions of parameters across many content and viewer samples respectively,
using a powerful statistical tool known as a copula [217]. Copulas allow for scalable, paramet-
ric, approximate inference of multivariate distributions. This second level of parametricity in our
modeling is advantageous, as it helps us better interpret inter-parameter dependency estimation,
enables quick normality scoring and likelihood estimation, and moreover is generative, letting us
actually simulate high-quality, realistic dwell time data.

9.5.1 Copula Modeling

Bivariate Modeling

Copulas are statistical tools, that explicitly model the dependency structure between given uni-
variate marginals to estimate bivariate joint distributions. Copulas have been extensively used in
finance [32], healthcare [211] and hydrology research [69]. We can define a bivariate copula as
follows:
Definition 6 (Bivariate Copula). A bivariate copula C is a dependency function, defined as
C : [0, 1]2 → [0, 1]. Given two random variables U and V and their marginal CDFs FU and FV ,
a copula C(FU(u), FV (v)) models the joint CDF, admitting a joint PDF of

fU,V (u, v) = fU(u) · fV (v) · c(FU(u), FV (v))

where c and f denote copula and marginal densities.
Technically, copulas are defined on uniform marginal CDFs. We can transform any random

variable Y to uniformity by using probability integral transform (PIT) or vice-versa (inverse
transform sampling). Various parametric forms of copula exist and can be used to capture differ-
ent dependencies (positive, negative, independent) between different types of random variables.
While bivariate copulas have demonstrated great empirical success in capturing dependencies
via a variety of parametric forms, the number of generalized multivariate parametric copulas (for
> 2 variables) are highly limited and inflexible in preserving pairwise dependencies, resulting in
poor estimation. Given that some of our proposed models are multivariate, we seek a better op-
tion: to model multivariate dependencies parametrically while also allowing for flexible pairwise
dependency modeling in high dimension, we propose the use of Vine copulas.

Multivariate Modeling

Vine copulas leverage the flexibility of parametric bivariate copulas to preserve bivariate statisti-
cal dependencies in higher-dimensional joint distributions. The dependency structure is modeled
by the composition of (a) a set of bivariate copula families, (b) the associated copula dependency
parameters, and (c) a nested tree structure to model the decomposition of joint distribution into
the bivariate copula and marginal densities, as follows [53]
Definition 7 (Vine copula). A vine copula on n random variables X1 . . . Xn has a joint PDF
defined by

fX1...Xn(x1 . . . xn) =
∏∏

ci,i+j|i+1,...,i+j−1 ·
∏

fk(xk)



where c and f denote associated copula and marginal densities.
Different tree structures have been proposed to model these dependencies ; in this work, we use
canonical vines (C-vines). C-vines decompose marginals and bivariate copula densities such
that every tree has a one-to-many structure:
Definition 8 (C-vine). A set of linked trees V = (T1, T2, Tn−1) is a C-vine on n elements if

1. T1 is a tree with nodesN1 = 1, . . . , n and a set of edgesE1 between a selected node a ∈ T1
and all other nodes b ∈ T1.

2. For i = 2, . . . , n− 1, Ti is a tree with Ei−1 nodes and edge set Ei such that a single node
in Ti is connected to all other nodes in Ti, and no other edges exist.

Inference. To select the appropriateC-vine structure, we use the procedure as mentioned in [53];
specifically the node with maximum absolute Kendall’s τ -correlation to other nodes is selected
as central node for each level tree. Given the structure, we maximize log-likelihood to infer
bivariate copulas and the associated parameters.

9.5.2 Multimedia Content

Below, we discuss how we conducted modeled aggregate modeling for looped and unlooped
media.

Looped Content

Since our LM-DP produces only 2 parameters for each content sample, a bivariate copula suffices
to model the two-parameter dependency. To do this, we used LM-DP to to fit parameters for all
looped media samples, and subsequently applied the PIT using the empirical CDFs for both α
and β describing the dwell ratio scale and shape. We then selected the bivariate copula (shown
in Figure 9.10(a)) which best maximizes the log-likelihood across a variety of parametric forms
discussed in [214], and inferred parameters using 30% of the samples; we call this model LM-
AM.

Unlooped Content

We obtained 3 parameters from UM-DP, θ, α, β which describe view completion rate and trun-
cated view dwell time ratio scale and shape. Given the multivariate setting, we inferred parame-
ters for a Vine copula (shown in Figure 9.10(b)), training on 30% of the samples as in the looped
case. We call this model UM-AM.

9.5.3 Viewers

In modeling individual viewer dwell ratios, our V-DP produced 6 parameters for each viewer:
ψ, θ, µL, σL, µU , σU , denoting propensity to view unlooped media, propensity to complete un-
looped views, and mean and standard deviation of the log dwell ratios for looped and truncated
unlooped views, respectively. Using a sample of 100K instances , we estimated and fitted a
C-vine. We call this model V-AM.



(a) LM-AM (Looped Media) (b) UM-AM (Unlooped Media)

Figure 9.10: Bivariate and C-vine copula structures can model joint densities parametrically. (a)
and (b) show our LM-AM and UM-AM dependency structures, respectively.

Table 9.3: Pearson correlation coefficients between parameters in original and simulated data.

Correlations (p0,p1) (p1,p2) (p0,p2)

Original −0.32 0.08 0.43
Simulated −0.31 0.10 0.41

9.5.4 Validation

To evaluate the performance of C-vine modeling in our usecase, we consider the following as-
pects:

• Q1. Dependency preservation: How well does C-vine approximate the original data
dependencies?

• Q2. Training size: How is C-vine modeling performance influenced by training size?
• Q3. Temporal consistency: How robust is C-vine modeling for similar data from two

different time-frames?
Given space constraints, we show experimental results only on UM-AM, noting that those

for LM-AM and V-AM are similar.

Dependency preservation

Here, we determine if dependency structure in original data is well approximated by the C-vine
model. To this end, we compare generated random samples from the simulated data on [0, 1]n

(n = 3 for UM-AM, used here) to the PIT-representation of training samples. We report the
pairwise Pearson correlations in Table 9.3, and show heatmaps of the pairwise dependencies in
Figure 9.11. We observe that correlations between all parameter pairs and density estimates are
closely approximated.



Training size

We also study the effects of training size on C-vine modeling performance. We experimented
by training the C-vine model using random samples of varying sizes from the entire set, and
sampling instances from the fitted models. To comparing samples from multivariate distributions,
we use kernel-based Maximum Mean Discrepancy (MMD) test as proposed in [94] (the KS test
is only suitable for univariate samples), to test the null hypothesis H0: simulated samples and
original data samples are from same distribution. We present the MMD test statistic for data
simulated using models with various training sizes in Table 9.4; results show that we are not
able to reject H0 in any case. Even when using only 10% training data, we observe that the
C-vine model closely approximates the original data distribution. Notice that the MMD statistic
decreases as training size increases, showing closer approximation towards the original data.

Temporal consistency

We next aim to validate that aggregate models produced from C-vine are temporally consistent,
in that they closely match across data taken from different time periods (we expect the underlying
behavior does not shift significantly). We fit another C-vine model using dwell time engagement
data from a different month than the data discussed here. We then compared the simulated data
from both C-vine models and evaluated similarity between the two. To this end, we perform
an MMD test between the two samples, obtaining a test statistic of 0.032, which does not let us
rejectH0, and thus we can say they are drawn from same distribution. We observe this visually in
Figure 9.12, where samples generated from both C-vines produce similar dependency structures
for each pair.

Figure 9.11: Aggregate C-vine models closely approximate real data. Pairwise dependency
heatmaps between original data (top) and simulated data (bottom) are visually close.

Table 9.4: MMD test statistics between original data and model-simulated data (lower is better).

Training Size 10% 20% 30% 40% 50%

MMD-Statistic 0.037 0.034 0.0334 0.333 0.30
Reject H0 No No No No No



Figure 9.12: C-vine models are robust and consistent over time. Pairwise dependency heatmaps
between simulated data from aggregate models trained on two different months (top and bottom)
are visually close.

9.6 Anomaly Detection
In the previous section, we introduced parametric copula-based models for aggregate content
and viewer modeling, demonstrating success in modeling the vast majority of samples while
preserving complex interactions between parameters. A natural line of evaluation is determining
effectiveness of such models in detecting anomalous engagement samples(i.e. samples which
have extremely low-likelihood according to the aggregate models); thus, we pose the following
questions.

• Q1. Robustness to contamination: Can our aggregate models robustly detect anomalies
under contamination?

• Q2. Qualitative efficacy: Do our aggregate models detect real engagement anomalies on
real data?

9.6.1 Robustness to contamination
We first study the performance of our aggregate model in detecting anomalies present in the
training data, known as contamination. This scenario is possible in unsupervised models, like
ours, as anomalous samples are not labeled and are also involved in individual and aggregate
modeling steps. Ideally, our models should be able to detect anomalies in training data with
high precision. To evaluate performance in such settings, we analyze our model’s ability to
successfully detect simulated attacks, by means of injecting artificial, anomalous samples in the
original data. We present results for only UM-AM given space constraints, but results for LM-
AM and V-AM were similar.

We consider 4 different contamination models (shown below) in which anomalies are gener-
ated (a) according to different attack models, and (b) constituting varying contamination ratios.
Model 1 (Complete Views): Anomalies have all fully complete views: dwell time ratios of 1.0,
Model 2 (Long Views): Anomalies have overly long views: dwell time ratios sampled uniformly
between 0.8-1.0, Model 3 (Short Views): Anomalies have overly short views: dwell time ra-
tios Gamma-distributed such that most dwell time ratios < 0.2, and Model 4 (Uniform Views):
Anomalies have random-length views: dwell time ratios sampled uniformly on 0.0-1.0. Also,
we consider varying contamination ratios of 1%, 2% and 5% anomalies in the training data. We
evaluate detection capacity via AUROC, which is reliable in imbalanced class settings like ours.
Results are shown in Table 9.5, and indicate extremely high detection performance. We observe
an AUC of 0.9+ across most scenarios, noting that higher contamination results intuitively result



Table 9.5: Anomaly detection performance (AUROC) under various anomaly contamination
%ages (higher is better).

Attack Model 1% 2% 5%

Model 1 (Full Views) 0.99 0.98 0.96
Model 2 (Long Views) 1.0 0.99 0.99
Model 3 (Short Views) 1.0 0.99 0.98

Model 4 (Uniform Views) 0.94 0.92 0.84

in lower AUC due to increased model corruption.

9.6.2 Effectiveness on real data
Next, we aim to evaluate whether our models can actually detect anomalous dwell time en-
gagement in real data. To this end, we selected the 1000 most normal and anomalous samples
according to log-likelihood, for each looped/unlooped content sample and viewer under LM-AM,
UM-AM and V-AM respectively, and compared the empirical CDFs of mean dwell times across
these entities. Intuitively, if our aggregate models were not detecting anomalous engagement,
the empirical CDFs would closely match. However, as Figure 9.13 shows, the curves are signifi-
cantly different for normal and anomalous samples identified by each model; note that the x-axis
is in log-scale, making the observed differences more significant. We observe clear differences
throughout the range of the CDF, and moreover discover the biggest differences near the extrem-
ities, suggesting our model does detects engagement anomalies. At the lower extremity of dwell
time ratios, we observe that the lowest anomalous samples dwell times were 3 − 5× smaller
than those of their normal counterparts. Likewise, at the upper extremity, the highest anomalous
sample dwell times were 2− 4× larger.

Manual inspection of several observed anomalous dwell time behaviors indicated signifi-
cant abnormalities: (1) One anomalous viewer had over 5000 views/day, with mean dwell ratio
< 0.03, and was adding more than 200 friends/day from an already staggering 3900, (2) several
anomalous looped media samples with over 500 views had mean dwell ratio of 10 − 15× the
duration, and (3) several unlooped media samples with 100-300 views had mean dwell ratios of
over 0.9; one sample with over 1000 views had a ratio of just 0.03. Figure 10(d) shows several
examples of unlooped content anomalies discovered by UM-AM (others excluded for brevity).
These anomalies could correspond to fake engagement, or possibly offensive or polarizing me-
dia. Overall, results demonstrate that our approach does empirically detect real-world anomalies
across aggregate models, and could be additionally correlated with other features to discern abu-
sive behaviors of various types.

9.7 Scalability
We briefly discuss scalability in terms of both individual dwell process fitting and aggregate
copula modeling. The major runtime cost in the former case is log-likelihood maximization for
fitting parameters of the relevant dwell process.Figure 9.14(a) shows that this procedure exhibits
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Figure 9.13: Our aggregate models detect real dwell time anomalies. The subplots show huge disparities
in the mean dwell time ratio distributions between anomalous and normal (a) unlooped media, (b) looped
media and (c) viewer samples.

(a) Individual fitting (b) PIT pre-processing (c) Copula inference

Figure 9.14: Our model inference is scalable: (a-c) show that individual fitting, copula prepro-
cessing via integral transform, and copula inference are all near-linear in sample size.

empirically linear runtime in the number of training samples. The runtime costs in the latter
case are incurred in conducting the PIT on original data samples for copula pre-processing, and
selecting ideal copula structure and parameters. Figures 9.14(b) and 9.14(c) show that these steps
admit linear and near-linear runtime respectively. Results are shown on UM-DP/UM-AM.

9.8 Conclusion

In this work, we provide the first comprehensive analysis of modeling dwell time engagement
on visual multimedia content. Studying such content is valuable, as its consumption constitutes
a significant portion of daily online activity, and has valuable applications in behavior modeling
and anomaly detection. We first discuss challenges and considerations in the modeling task,
including content heterogeneity and behavioral diversity. Our first contribution constitutes the
LM-DP, UM-DP and V-DP generative dwell time processes and inference procedures, which
enable individual modeling of content-centric and viewer-centric dwell time engagement. We
show that these models match empirical data visually and quantitatively according to KS tests
and outperform alternatives in both log-likelihood and KS tests. Our next contribution posits



the analog LM-AM, UM-AM and V-DP, which enable aggregate modeling of joint distributions
across individual fits using parametric bi/multivariate copulas. We demonstrate the flexibility of
such models in capturing high dimensional dependencies with limited training data, show that
they closely match original data both visually and quantitatively according to MMD tests, and
are temporally consistent. Our last contribution includes ramifications of our proposed models
for anomaly detection, in both robustness to contamination (0.9+ AUROC in most experiments)
and qualitative evidence in terms of anomalies detected on real engagement data.
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CHAPTER 10

DETECTING CHATBOTS ON LIVESTREAMING
APPLICATIONS

Livestreaming platforms enable content producers, or streamers, to broadcast creative con-
tent to a potentially large viewer base. Chatrooms form an integral part of such platforms,
enabling viewers to interact both with the streamer, and amongst themselves. Streams with
high engagement (many viewers and active chatters) are typically considered engaging,
and often promoted to end users by means of recommendation algorithms, and exposed
to better monetization opportunities via revenue share from platform advertising, viewer
donations, and third-party sponsorships. Given such incentives, some streamers make
use of fraudulent means to increase perceived engagement by simulating chatter via fake
“chatbots” which can be purchased from shady online marketplaces. This inauthentic en-
gagement can negatively influence recommendation, hurt streamer and viewer trust in the
platform, and harm monetization for honest streamers. In this paper, we tackle the novel
problem of automating detection of chatbots on livestreaming platforms. To this end, we
first formalize the livestreaming chatbot detection problem and characterize differences
between botted and genuine chatter behavior observed from a real-world livestreaming
chatter dataset collected from Twitch.tv. We then propose SHERLOCK, which posits a
two-stage approach of detecting chatbotted streams, and subsequently detecting the con-
stituent chatbots. Finally, we demonstrate effectiveness on both real and synthetic data:
to this end, we propose a novel strategy for collecting labeled, synthetic chatter dataset
(typically unavailable) from such platforms, enabling evaluation of proposed detection
approaches against chatbot behaviors with varying signatures. Our approach achieves .97
precision/recall on the real-world dataset, and .80+ F1 scores across most simulated attack
settings.

In recent years, livestreaming platforms such as Twitch, YouTube Live, Facebook Live, and
Ustream have grown to become dominant players in the content broadcasting space, command-
ing millions of broadcasters and tens of millions of daily active users [230]. These platforms
provide avenues for broadcasters, or streamers, to share creative content of various forms (e-



Figure 10.1: (Left) Livestreaming platforms offer chatrooms (top), which streamers can manipu-
late via chatbotting tools (bottom) that enable customization of chat interval, number of chatters
and even message contents. (Center) We propose SHERLOCK, a two-stage chatbot detection
approach based on stream (top) and user-level classification (bottom). (Right) We enable dis-
covery of chatbotted streams (top – notice genuine users asking for moderators to handle the
bots), and the constituent chatbots via discriminative features (bottom – large points indicate
high user density).

sports gameplay, live events, art, etc.) to a large audience. Each broadcasting session, or stream,
consists of two key components – the content being shared live to viewers, and a chatroom (Fig-
ure 10(left)), where viewers can chat and interact amongst themselves, and with the streamer.
These chatrooms provide a completely different community experience to viewers in contrast to
traditional media, providing an increased sense of participation and gratification [49].

Most livestreaming platforms recommend streams to would-be viewers based on prior and
current engagement metrics, which is effectively a function of viewership and chatroom activity.
Specifically, streams that garner high viewership and have active chatrooms are considered to be
likely interesting and engaging to new viewers, and are thus recommended to draw new view-
ers, amplifying preferential attachment effects. Moreover, streamers who produce such content
and draw such engagement are prime candidates for on-platform and off-platform monetization
via advertising revenue share, donations from viewers, and sponsorships from third-parties (i.e.
computer hardware companies for e-sports professionals). Such incentives lead some streamers
to resort to fraudulent methods to increase their viewership [191] and increase chatroom activity
[58]. Numerous online marketplaces like streambot.com and youtube-livebot.com
offer streamers the ability to increase their chatroom activity over sustained period of time, via
chatbots which simulate human-like chatter. Such fraudulent engagement has several adverse
effects: (a) honest streamers may not be as highly recommended as fraudsters and lose out on
potential engagement they may have otherwise garnered via preferential attachment, (b) viewers
and streamers have reduced trust in the platform to recommend and prioritize good content, (c)

streambot.com
youtube-livebot.com


the platform and third-party sponsors may lose money by partnering with fraudulent streamers
who reach much lesser human eyes than their metrics suggest. Despite these concerns, prior
work in mitigating chatbot abuse on livestreaming platforms is minimal – we seek to bridge the
gap in this work.

There are numerous challenges in this problem setting: (a) noisy data: livestreaming chat-
ter is full of messages with ill-formed sentences, containing spelling errors, “legitimate” spam
messages (copypasta), and emotes, limiting efficacy of text-based features to identify fraudulent
activity, (b) user-controlled fraud: most chatbotting services available on online marketplaces
allow streamers to control the bots (Figure 10), giving them the ability to decide when and how
much fake chatter should be introduced, and thereby complicating the attack space and hurting
detection generalizability, and (c) lack of ground-truth: as livestreaming platforms operate at
an extremely large-scale and do not reveal the chatbots they proactively ban from the service,
obtaining reliable ground truth for building machine learning models is non-trivial.

In this work, we tackle these challenges and more. To our knowledge, we are the first to study
the chatbot detection problem in the livestreaming setting. Specifically, our contributions are as
follows:

1. Problem formulation: We formalize the chatbot detection problem in the context of cha-
trooms of livestreaming platforms.

2. Dataset collection and characterization: We obtain real livestreaming chatlog data, and
compare the behaviors of chatbots and real users. We also discuss how to construct labeled
synthetic chatter datasets from livestreaming platforms, for a variety of attack models.

3. Proposed framework: We propose SHERLOCK which tackles chatbot detection in a two-
stage approach: detecting botted livestreams using a classification model (stage I), and
detecting constituent chatbots using a seeding and label propagation approach (stage II).
Overview of approach given in Figure 10(center).

We conduct several experiments to demonstrate that our proposed method is (a) effective:
we show that our approach outperforms alternatives in detection performance on real chatlog
datasets (.97 precision/recall) (Figure 10(bottom-right))(b) robust to different attacks: we show
consistently good performance in detecting chatbots across many attack configurations (≥ .80
F1 against most attack settings), and (c) scalable: our approach scales near-linearly on large
datasets, especially due to our two-stage task formulation. We make the code for SHERLOCK

available at https://github.com/shreya-03/Sherlock.

10.1 Related Work

We discuss prior work in (a) detecting chatbots, and (b) astroturfing in social media.
Detecting chatbots. Most prior work on chatbot detection consider chatbots as accounts that

spread malicious or spammy URLs [84, 98, 196]. [84] proposed a classifier based on entropy-
based features (message length, and inter-message delay) to detect chatbots on Yahoo chat sys-
tems. [196] used similar features to differentiate between bot and genuine users on various
instant messaging platforms in IM (instant messaging) settings (i.e. human is chatting only with
one user (bot/genuine)). Additionally, [98] proposes detecting chatbots based on the links they



post, using cues from spam classification literature to detect malicious URLs. However, all of
these methods are based on IM platforms, where chat messages are more directed towards other
chatters, and are primarily concerned with delivering a payload of a malicious URL. Our work
studies chatbots on livestreaming platforms, where bots are used with an alternative purpose of
increasing perceived chatter, and hence vary in their design and motive. Though many works
tackle bot detection on popular social media platforms, such as Twitter [253, 255], Facebook
[22], and software marketplaces [12, 163], they are characteristically different from our work as
they do not focus on detecting chatbots. Besides this, there is a lot of work in designing con-
versational agents [144], which is beyond the scope of this work as they aim at coming up with
creating realistic chatbots not for malicious purposes.

Astroturfing in social media. Social media websites have become a common target for
astroturfing, where users artificially inflate engagement to increase perceived popularity. Graph-
based factorization approaches to group nodes based on similarity or dense connectivity imply-
ing suspicious, large clusters have shown considerable success in detecting fraudulent activi-
ties [22, 130, 254]. Random-walk based methods have also been used to detect abnormal cuts
between suspicious and legitimate parts of a social graph [309]. Content-based methods use
textual features [12] or local engagement features (i.e. based on egonets) [11] to detect spam
and fraud. [70] also propose temporal methods focusing on finding anomalous patterns in mul-
tivariate time series. The closest work to ours is by [252], in which the author proposes an
unsupervised method to detect livestreaming viewbots. Despite rich literature in this space, none
of the prior works have focused on the problem setting of detecting chatbots on livestreaming
platforms.

10.2 Problem Statement

Each stream on a livestreaming platform generally consists of a chatroom panel located adjacent
to the live video player (Figure 10(Left)). Viewers must be signed in to participate in chat, and
the messages typed by any of the signed-in viewers appears in realtime as the user sends each
message. Each message is associated with the username of the author, as well as its timestamp.
All chat messages are textual (i.e. text, emojis, URLs). Messages are typically short, and have
a length cap to prevent single users from dominating the community chatroom with spam. Such
chatrooms typically allow users to reply to one another (via an “@handle” mechanism), inducing
a conversational aspect to the room. In this work, we leverage all available sources of information
above: Specifically, we collect data pertaining to a set of livestreams S. For each stream s ∈ S,
we collect the set of all messages Ms. We refer to messages on stream s that were posted by
user/chatter i as Ms,i, and the timestamp of the jth message from user i on stream s as ts,j,i.
Given these information sources, we aim to detect chatbots.

We note that considering all users in all streams is a computationally heavy and expensive
task. Moreover, it is difficult to claim in isolation whether any given message is from a chatbot
or real user, and even if a single user is a chatbot or not. We take a step back to consider that
instead of gauging whether each message or user is legitimate or not, we should first consider the
aggregate behavior of the parent stream. This is because it is unlikely to observe a single chatbot
in isolation, but far more likely to observe a number of chatbots orchestrating a coordinated



Table 10.1: Dataset Statistics

# of chatlogs 690
# of messages 439, 650
# of streamers 168
# of chatters 8, 885
Median stream duration 2.7 hours

activity inflation effort on a given stream. By focusing on a stream-level first, we can leverage
aggregate behaviors from many messages from many users jointly to infer whether the stream
appears to be botted or not. We formally define this task as follows:
Problem 1 (Chatbotted Stream Identification). Given a set of streams S, and corresponding
set of chatters Cs for each s ∈ S, find the set of chatbotted streams.

Upon obtaining the set of suspected chatbotted streams Scb, we can next focus only on this
subset to discern suspected chatbots from real chatters. We argue that while it is conceivable
that chatbots may exist in isolation in other streams, it is unlikely, and at best ineffective from
the streamer’s point of view. Moreover, since Scb is likely to be much smaller than S, we can
dramatically improve scalability by avoiding chatbot detection for determined “low-suspicion”
streams, and only focusing on the high-suspicion ones. The task that we pose for these is as
follows:
Problem 2 (Chatbot Identification). Given a suspicious chatbotted stream s ∈ Scb, and corre-
sponding set of individual chatters I, label each chatter i ∈ I as being part of the (disjoint) set
of real users Ir or chatbotted users Icb.

10.3 Data Description
In this work, we study Twitch, a dominant livestreaming platform with over 2.2M streamers and
15M unique daily viewers reported in 20181. Note that due to limitations on data collection and
labelling cost, it is unfeasible to work with their platforms. However we assume that a similar
method of providing chatbots is also used for other livestreaming platforms. We collected chatter
of 439K messages over a period of three months from August to October 2018 from chatrooms
of 690 randomly chosen Twitch streams. A brief description of the dataset collected is given in
Table 10.1.

Annotation. We manually annotated 183 chatlogs out of the 690 collected. The annotators
used cues such as relevance of text to the context, number of messages posted by accounts,
metadata and other similar signals to identify if a particular livestream was chatbotted or not, as
per knowledge from prior literature [252] and a survey of chatbotting services. The annotators
found 24 botted and 159 seemingly genuine streams. While annotation was possible, it took each
annotator roughly 104 hours to complete the task, clearly making annotation of the entire dataset
infeasible. Thus, for our further analysis, we use the 183 streams, with 78, 124 messages from
6, 167 genuine users and 23, 236 messages from 2, 739 chatbots.

1https://twitchadvertising.tv/audience/



(a) Number of messages distribution ECDF.
(b) Example of genuine and chatbotted streams.

Figure 10.2: (a): ECDF for median distribution on number of messages for genuine and chatbot-
ted streams. (b): Distribution of number of messages posted for randomly selected genuine and
chatbotted streams.

10.4 Initial Observations

Before proposing our approach, we conduct preliminary exploration of the dataset and try to
identify key statistics that can help us differentiate the genuine and suspicious streams/bots. In
this section, we describe the potential features we considered and point out the key insights we
obtained about genuine and fraudulent behavior.

Message frequency. Since bots are created with the purpose of increasing chatroom activity,
it is natural to assume that they will post more messages than the genuine users in a stream.
However, it could be contrary as well, that is if the users are fooled by the bots into believing
that bots are actually genuine accounts, it might happen that genuine users might keep up the
end of conversation and end up creating similar or more messages than the bot accounts. For
each stream, we compute the median of the number of messages posted distribution. We observe
that the number of messages for chatbotted streams is higher than that of genuine streams. We
show this by plotting the empirical cumulative frequency distribution (ECDF) in Figure 10.2(a).
Additionally, we observe that the median statistic is able to differentiate between chatbotted
streams and genuine streams with a Kolmogrov-Smirnov test p-value of 4.34 × 10−8. Based on
the above statistics, we make the following key observation:
Observation 3 (MESSAGE FREQUENCY). Chatbots tend to post more messages than genuine
users, with most chatbots posting messages with similar frequency.

Inter-message delays (IMD). IMDs have been used previously in literature to identify bot
behavior [70]. They have proved to be useful in identifying footprints of automation by scripting,
which tends to be regular and deterministic. We define IMDs for an entire stream as the difference
in time between each pair of consecutive messages from the same user, across all users for the
duration of the stream.



(a) Median IMD distribution ECDF.
(b) IMD distribution for all genuine (top) and botted
(bottom) streams

Figure 10.3: (a): ECDF for distribution of median on IMD for genuine and chatbotted streams.
(b): Distribution of IMD.

We plot the ECDF of median IMDs for each stream in Figure 10.3(a). We can observe that
ECDF differs significantly for genuine and chatbotted streams (KS Test p-value: 1.93× 10−19).
We also plot the PDF across all IMD for users in genuine streams and users in botted streams,
and show this in Figure 10.3(b). Based on the above plots, we make the following observation:
Observation 4 (INTER-MESSAGE DELAYS). Chatbotted streams have a higher IMD than gen-
uine streams. Chatbots have a consistent IMD showing that they are automated.

Message Spread. Since bots are designed to maintain engagement for extended periods
(rather than specific times), we hypothesize that they post throughout the duration of most chat-
botted streams. We investigate this empirically by counting the number of equal-duration time
intervals in which a particular user posts during the duration of the stream. To compute this, we
partition the stream into equal-duration intervals, and count the number of windows in which
each user posts a message. Intuitively, users who post consistently will appear in more windows.
Figure 10.4(a) shows the ECDF of the median of the number of windows per user distribution.
We note that the distribution for chatbotted and genuine stream is significantly different, cor-
roborated by a KS test with p-value of 7.34 × 10−7. Figure 10.4(b) shows examples of these
distributions for a chosen bot and genuine stream. We have the following observation:
Observation 5 (MESSAGE SPREAD). Chatbots’ message distribution is more spread out, and
on average, they post consistently throughout the stream.

Textual Cues. We additionally experimented with various features from text mining litera-
ture to determine if language used by chatbots is significantly different from that used by genuine
users. We compared tf-idf scores, conversational dynamics, and similarities in term usage within
chatbot and genuine user groups. Interestingly, we were not able to find any distinguishing
patterns for chatbots. This is likely due to (a) message text being extremely noisy and short,
(b) too much sparsity for conversation threads via “@handle” mechanism, and (c) most chatbot
marketplaces enable customers to upload a text file of quotes used by chatbots, making the text



(a) Median number of windows distribution ECDF.

(b) Number of windows per user distribution for all
genuine (top) and botted (bottom) streams

Figure 10.4: (a): ECDF for distribution of median on number of windows per user for genuine
and chatbotted streams. (b): Distribution of number of windows per user.

customizable and seemingly relevant to legitimate chatter on the stream. An illustrative example
of bot messages being short, noisy and indistinguishable from genuine messages is shown in
Figure 10(top-right).

10.5 Proposed Framework: SHERLOCK

We next propose SHERLOCK, a two-stage framework which solves Problems 1 and 2 as discussed
below.

10.5.1 Stage I: Detecting Chatbotted Streams

Given the set of streams S, we first aim to detect the chatbotted streams Scb. Based on ob-
servations from Section 10.4, we aim to featurize streams in a space that can best differentiate
chatbotted and genuine streams. We discuss our features below:

Number of messages. Observation 3 shows that chatbotted streams tend to have higher num-
bers of messages than genuine ones. Though many summary statistics can be extracted from
the number of messages distribution, we found that weighted top-k modes (most frequent val-
ues) worked well empirically, as they represented the k largest “peaks” in the distribution. We
were interested in capturing (possibly multiple) spikes in the distribution (for example, see Fig-
ure 10.2), which are generally associated with chatbotting activities. We used k = 3 to avoid
introducing noise. Further, we weighed each of the k peaks with the associated fraction of users,
allowing us to capture the intensity and overall contribution of the peak. Intuitively, peaks at large
number of messages, and with high fraction of users are the most suspicious. This produces 3
features.



IMD quantiles. Observation 4 reflects that chatbotted streams tend to have higher IMDs than
genuine ones. Moreover, many chatbots have spiky behavior which involves long lulls between
chat messages. To capture the spikes and the overall higher IMD of chatbots, we used higher
quantiles of the stream IMD distribution (60%ile, 70%ile, 80%ile, 90%ile).

Number of windows. Observation 5 posits that since chatbots send messages atypically, and
spread throughout the chat (rather than in quick conversations), they appear in higher numbers
of windows than genuine users. Thus, a stream with many chatbots will likely have a number of
window distribution with peaks associated with chatbot behaviors. Following the same rationale
as before, we take the weighted top-k modes, again using k = 3 to avoid noise.

Concatenating these, we arrive at a 10-dimensional feature space. Next, we train a supervised
model over this feature space and use the classifier to predict chatbotting propensity for any new,
unseen stream. We add those with a sufficiently confident predictions to Scb.

10.5.2 Stage II: Detecting Constituent Chatbots

Upon obtaining a set of chatbotted streams Scb, our goal for each stream s ∈ Scb, is to label
each user i ∈ I (relevant chatters) as belonging to real users Ir or chatbots Icb. We use a semi-
supervised learning approach for this stage; such approaches have been demonstrably useful in
tasks for which ground truth is limited. In the livestreaming case, collecting ground-truth for
individual users as chatbots is highly challenging, time-consuming and unscalable. Thus, we
employ a label propagation approach to identify chatbots.

Generating seeds. The success of our label propagation approach for classifying users nat-
urally depends on the goodness of the seed labels. If a stream s ∈ Scb has a sufficiently high
prediction score, we conjecture that Icb will be large compared to Ir. With this key assumption,
we consider certain regions of our feature space to identify seed users for whom we have “high
confidence” seed labels. We use heuristics based on our earlier observations to obtain these seed
labels. Specifically, our approach begins by bootstrapping seed sets using empirically observed
highly discriminative features (i.e. high confidence seeds):

Number of messages. Observation 3 notes that chatbots tend to post more messages than
genuine users. We denote number of messages sent by chatter i as mi.

Mean IMD. Observation 4 notes that chatbots tend to have longer IMDs than genuine users.
We denote chatter i’s mean IMD as di.

Subscription status. Many livestreaming platforms offer paid subscription models, where
users can pay to subscribe to a streamer. We assume that subscribers are genuine chatters, and
can thus be exonerated. We use ri to indicate chatter i’s subscription status.
Next, we refine the seeds by exploiting synchronicity over less discriminative features to gain
confidence in seed veracity; we use the following features:

Number of windows. The message spread of a chatter provides a strong signal if a particular
chatter is a bot or not. We count the number of unique windows a chatter i posts a message in
and denote it by wi.

IMD entropy. In addition to computing mean IMD, we also compute entropy of IMD. For
each chatter i, entropy of it’s inter message delay distribution is given by hi = H(IMDi).

This approach is summarized in Algorithm 2, which we describe next. We first consider



Algorithm 2 SEEDUSERS

Require: Number of messages vector, m, mean IMD vector d, number of windows vector w, IMD entropy vector
h, subscriber indicator vector r, synchrony threshold nsim

Ensure: Refined seed setsRcb,Rr

1: Project all users into a subset feature space: {m,d}
2: Remove outlier chatters in this subset feature space.
. Initialize candidate bot region

3: Rcb ← {i ∈ I |mi > µ(m) and di > µ(d)}
. Initialize candidate genuine user region.

4: Rr ← {i ∈ I |mi < µ(m) and di < µ(d)}
. Exonerate users with paid subscriptions.

5: S ← {i ∈ I |1(ri)
6: Rcb ← (largest cluster inRcb) \ S
7: Rr ← (largest cluster inRr) ∪ S
. Track # windows and IMD entropy in candidate bot region.

8: Create bounding box Bcb around clusterRcb.
9: W ← {} . multiset with freq. mW (·)

10: H ← {} . multiset with mH(·)
11: for chatter i in Bcb do
12: W ←W ∪ {wi}
13: H ← H∪ {hi}

. Augment chatbot seeds with too-synchronous users.
14: Wsync ← {w ∈ W |mW (w) ≥ nsim}
15: Hsync ← {h ∈ H |mH(h) ≥ nsim}
16: for chatter i ∈ I do
17: if wi ∈ Wsync and hi ∈ Hsync then
18: Rcb ← Rcb ∪ {i}
19: Rr ← Rr \ {i}
20: ReturnRcb,Rr

consider all users in I on m (number of messages) and d (mean IMD) (Line 1), as we empirically
observed that these features are highly discriminative. In this (d,m) space, we first remove
outliers (Line 2) in sparse regions due to low confidence about their status. Next, we initialize
sets Rcb and Rr with users who have jointly high, and jointly low values on the features; these
sets represent candidate bots, and candidate genuine chatters respectively (Lines 3-4). For users
in each Rcb and Rr, we next identify the largest cluster of candidate bots and genuine users (we
use X-Means clustering [225] as it automates choice of cluster count using information theoretic
measures), and add them to the seed set with respective labels (Lines 6-7). We further refine the
seeds by exonerating users where 1(ri).

Next, we refine Rcb and Rr. To do so, we first construct a bounding box Bcb around Rcb

(Line 8), which captures nearby users that may be missing in Rcb, but may still be suspicious.
We then consider the number of windows w and IMD entropy h feature values for these users,
as we empirically observed that many chatbots tend to share similar values (motivated by Ob-
servations 4-5). We identify the feature values that occur over users in Bcb with greater than a
given frequency nsim as supposed “peaks” or bot signatures. Given these, we add chatters in I
who have highly recurring feature values to Rcb, and also remove them from Rr if applicable.
In effect, our seeding process is a two-level clustering, where the first-level relies on exploiting



knowledge of suspicious regions in the (d,m) space, and the second-level relies on augmenting
this with non-region-specific synchronicity in the (w,h) space. We note that we considered seed-
ing via a single clustering stage in experimentation, but achieved poor results due to noisiness
induced by the less-discriminative features.

Propagating suspiciousness. Upon obtaining the seed sets Rcb and Rr, we constructed a
k-nearest-neighbors (kNN) graph between all chatters in I to represent their proximity in the
feature-space. Finally, we utilized a graph-based label propagation algorithm proposed in [313],
seeding nodes (users) with labels as applicable. We tuned parameters of the propagation algo-
rithm empirically to maximize performance.

10.6 Experiments

10.6.1 Baselines
Although no prior works are directly related to the problem we tackle on livestreaming chatbot
detection, we adapt certain spam detection approaches which use user similarity and textual
features for this setting.

Supervised Spam Classifier (SSC) [20]: We adapt the original work (used for Twitter spam
user classification) to our setting. For each user, various features like max, min, mean, median of
number of words, characters, URLs and IMDs are used to infer in a supervised fashion if user is
a chatbot or not. The method works at user-level and does not consider group effects/information
at stream level.

SynchroTrap [40]: SynchroTrap is an unsupervised method that operates on user groups;
hence, we apply it for each stream to identify constitutent chatbots. We construct edges between
any pairs by measuring a soft Jaccard similarity (values are considered similar if they are within
small ε) between every pair of users. The similarity is computed on two features – (i) IMD, and
(ii) number of messages for each user, for every window. We sum the two similarity scores and
construct a pairwise similarity graph. We cluster the matrix into two groups via KMeans, and
consider the chatbots as the one associated with the group that maximizes performance.

10.6.2 Results on Real Dataset
We evaluate SHERLOCK against the two adapted baselines. We evaluate all three methods at the
finest applicable granularity, on their eventual detection performance in detecting chatbots. Stage
I is applicable only for SHERLOCK, and we evaluate it’s performance using 5-fold cross valida-
tion. We discover that SHERLOCK correctly identifies 98.3% of streams, reporting a precision of
0.95. We run Stage II only on those streams that are marked as chatbotted in Stage I; thus, for a
misclassified genuine stream, all chatbots are false negatives, and vice versa. For SynchroTrap,
we evaluate on all 183 streams in our dataset. Similarly for SSC, we evaluate on all users. We
report precision/recall values for each method in their capability to identify chatbots in Table
10.2.

We find that SHERLOCK outperforms both SSC and SynchroTrap in precision and recall,
despite SHERLOCK only requiring stream-level labels and SSC requiring much harder to obtain



Table 10.2: Precision and Recall for SHERLOCK, SSC and SynchroTrap on real data.

Model
Genuine Class Bot Class

Precison Recall Precision Recall

SHERLOCK 97.4% 98.6% 97.0% 94.4%
SSC 92.6% 96.2% 90.0% 82.8%

SynchroTrap 74.1% 51.8% 35.4% 59.3%

user-level labels. We further conjecture that SSC would perform much worse if the chatbot text
was more intelligently generated, while our approach would remain unaffected, due to our text-
agnostic feature space. SynchroTrap (unsupervised), works at the stream-level and is unable to
leverage information from other streams, hence performing the worst.

10.6.3 Synthetic Dataset Generation

As real world data is not exhaustive, we perform a set of experiments on a variety of synthetic
datasets to test the performance of our approach in Stage I/II under unseen, adversarial settings.
We consider only our performance, given that SynchroTrap is shown to perform poorly in Table
10.2, and SSC only operates at user-level.

To generate a synthetic, labeled chatbotted livestreaming dataset, we performed the following
steps. Firstly, we hired a chatbot service provider and had them attack a dummy stream we
had setup ourselves. We avoided targeting others’ streams to avoid hurting their reputation.
We logged all timestamps relative to the beginning of the stream. We then collected chatlogs
with timestamps from a variety of popular, Twitch verified profiles which had high subscriber
count. Finally, to generate instances of “chatbotted” streams, we superimposed the original
(“legitimate”) and synthetic (“botted”) chatter, while maintaining respective relative timestamps
of both sets of messages. This is a reasonable construction strategy since most chatbots behave
independently of legitimate conversation dynamics. We additionally vary control parameters
configured through the service provider (the number of chatbots active, Nc, and the maximum
delay between consecutive messages dmax). By varying these two variables, we construct four
attack models:

• Controlled Chatters (CC): We fix Nc and vary dmax, mimicking an attack mode where
streamers use a constant number of chatbots and tweak delays over the stream.

• Rapid Increase (RI): We start with a small Nc and large dmax, and rapidly increase the
former and decrease the latter, until the former reaches a certain point. This mimicks
streamers trying to poorly emulate organic growth and prolonged engagement.

• Gradual Increase (GI): We consider a similar case as RI, but with longer delays between
changing Nc and dmax, mimicking a more patient attacker.

• Organic Growth (OG): We increase Nc over time, but at each increase, we revert to
a large dmax before decreasing it (in contrast to keeping dmax fixed or a given Nc as in
RI/GI), and eventually converging. This mimicks an intelligent attacker, trying to prevent



Table 10.3: F1 score of SHERLOCK across different classification and attack models (Stage I).

Classifier CC RI GI OG

Decision Tree 0.884 0.943 0.906 0.881
Random Forest 0.889 0.940 0.922 0.899

SVM 0.775 0.711 0.623 0.781
NN 0.842 0.927 0.902 0.892

NN-MLP 0.852 0.925 0.911 0.833
XGBoost 0.897 0.949 0.928 0.909

sudden growths in number of chat messages.
To create synthetic datasets, we consider the various (a) attack models {CC, RI, GI, OG},

(b) stream duration {0.5, 1, 1.5, 2, 2.5, 3 hours}, (c) ratio of botted to overall messages and (d)
ratio of chatbots to real users {40, 60, 80%}. We created multiple simulated attack chatlogs by
considering variants of {a,b,c} and {a,b,d}. This labeled dataset is also used to train the Stage I
classifier when classifying unseen streams.

10.6.4 Results on Synthetic Dataset

By considering various parameters, we generated 945 CC, 180 RI, 149 GI and 939 OG chatbotted
streams. For Stage I, we report performance of SHERLOCK using various traditional supervised
learning methods, for different attack models. For Stage II, we consider only streams classified as
chatbotted in Stage I. We study the effects of the various synthetic chatlog generation parameters
mentioned above.

Stage I: We evaluated performance of different supervised classification models over our fea-
ture set, and across varying attack models. We used the corrupted versions of legitimate streams
as the positive class, and the original legitimate streams as the negative class. All experiments
were conducted using 5-fold cross validation – Table 10.3 shows F1 score for the different clas-
sification and attack models.

We found that gradient boosted trees (XGBoost) performed the best amongst the tested meth-
ods. Moreover, we discovered that for all classifiers, the CC attack model is the most difficult,
while RI is the easiest. We conjecture that this is due to our model’s reliance on discriminating
IMD features, which are most variant throughout the stream under the CC model (unlike other
models, dmax never stabilizes in CC).

Stage II: We conduct analysis on all streams marked as botted by the best-performant Stage I
classifier. We study the effect of attack model, stream duration, and noise (both ratio of chatbots,
and ratio of bot messages). Figure 10.5 shows the collective results in terms of F1 score.

Effect of Attack Model. Unlike in Stage I, we find that the OG model is most challenging.
We conjecture that the OG model produces tremendous diversity in the user feature space given
many different chatbot configurations, and thus hurts the clustering and propagation steps the
most. The GI model proves the easiest to handle; the slow, staggered parameter changes produces
several close-by microclusters, which are well-handled by the label propagation.



(a) 40% of chatbots (b) 60% of chatbots (c) 80% of chatbots

(d) 40% of messages posted by
chatbots

(e) 60% of messages posted by
chatbots

(f) 80% of messages posted by
chatbots

Figure 10.5: Performance of SHERLOCK on various attack models (bar colors), stream durations
(bar groups), noise levels (columns) and noise types (bot users in (a-c), and bot messages in
(d-f)). SHERLOCK is robust to noise and performs consistently well across varying adversarial
configurations, with F1 scores generally over 0.80.

Effect of Duration. Figures 10.5(a-c) and (d-f) show that duration impacts performance min-
imally, with slight reduction for higher durations, likely due to increased IMD variety in genuine
behaviors.

Effect of Noise. We alter between two types of noise models, based on the bot message and
bot user ratios. In both cases, increasing the chatbot noise percentage improves performance
across various attack models and durations for most configurations. For example, F1 score im-
proves from 78.38(40%), to 91.39(60%), and 92.94(80%) for the 2-hour, CC model, bot user
noise setting (red bars in (a-c)). Naturally, higher chatbot signal accentuates the features we use
for chatbot seeding and label propagation, lending to better separation.

10.6.5 Scalability
Our two-stage approach is designed to scale naturally, as Stage II (more demanding) works on
a significantly reduced set of streams. We evaluate SHERLOCK’s scalability in terms of both
stages. For Stage I, we generate a synthetic dataset with varying number of streams and show
runtime in Figure 10.6(a). For Stage II, we measure time for seeding and propagation; despite
O(kn2) worst-case complexity for k neighbors and n users, Figure 10.6(b) shows near-linear
convergence in practice.

10.7 Conclusions
In this work, we tackle the problem of detecting chatbots on livestreaming platforms. Chatbot
detection is important due to its direct impact on recommendation, user trust and monetization



(a) Stage I (b) Stage II

Figure 10.6: SHERLOCK has near-linear runtime in (a) # streams (Stage I) and (b) # users (Stage
II).

for these services. We make several contributions in this paper: We are the first to introduce and
formalize the chatbot detection problem in the livestreaming setting. Next, we collect and an-
notate a real-world livestreaming chat dataset from Twitch.tv and compare and contrast genuine
and chatbot user behaviors, by identifying key differentiators. We additionally discuss a strategy
for obtaining realistic chatlogs with varying attack types and signatures, and employ it in our ex-
perimentation. Based on our observations, we propose SHERLOCK, a two-stage approach for de-
tecting chatbotted streams and users with limited supervision. Finally, we evaluate SHERLOCK’s
effectiveness on both - a real-world dataset (achieving .97 precision/recall), and a synthetically
generated dataset, showing robustness under various intelligent attack models (achieving 0.80+
F1 score across most settings), and also demonstrate near-linear empirical runtime.
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CHAPTER 11

INDIVIDUAL METRICS IN GROUP-BASED TEMPORAL
FRAUD DETECTION

Most user-based websites such as social networks (Twitter, Facebook) and e-commerce
websites (Amazon) have been targets of group fraud (multiple users working together for
malicious purposes). How can we better rank malicious entities in such cases of group-
fraud? Most of the existing work in group anomaly detection detects lock-step behavior
by detecting dense blocks in matrices, and recently, in tensors. However, there is no
principled way of scoring the users based on their participation in these dense blocks.
In addition, existing methods do not take into account temporal features while detecting
dense blocks, which are crucial to uncover bot-like behaviors. In this paper (a) we propose
a systematic way of handling temporal information; (b) we give a list of axioms that any
individual suspiciousness metric should satisfy; (c) we propose ZOORANK, an algorithm
that finds and ranks suspicious entities (users, targeted products, days, etc.) effectively
in real-world datasets. Experimental results on multiple real-world datasets show that
ZOORANK detected and ranked the suspicious entities with high accuracy, while outper-
forming the baseline approach.

User-based systems, such as web-services like Amazon, Twitter or corporate IT networks,
have become popular targets of fraud or attacks. A popular research problem is to detect the
spammers/fraudsters/attackers that are trying to attack a given system [22, 124, 131, 259]. Sim-
ilarly, in the social networks setting, there are multiple websites where anyone can buy fake
Facebook page-likes or Twitter followers. Review websites, such as Amazon, Yelp and app-
marketplaces, have also been targets for fake reviews. In all these cases, such fraudulent activities
take the form of “lockstep” or highly synchronized behavior: such as, multiple users liking the
same set of pages on Facebook, or multiple users following the same users almost at the same
time on Twitter [22]. Such behavior results in dense blocks in matrices/ tensors. The reason
behind these blocks is intuitive, as most of the fraudsters have constrained resources (accounts,
IP addresses, time, etc.) and they reuse their resources to add as many fraudulent activities as
possible to maximize their profits.



Various methods have been proposed to identify users exhibiting such behavior, which in-
volve finding dense blocks in tensors [124, 259] or clustering in subgraphs [22, 306]. However,
for security experts monitoring the systems, it is imperative to know which users are more suspi-
cious than other users, since it directs their attention to such users for further analysis or actions.
In this paper we propose a method that ranks entities effectively (see Figure 11.1) for a security
analyst to view. Consider Figure 11.2; all three users, A, B and C are participating in dense blocks
(as they are part of the 2 rectangles), however their contribution towards the suspiciousness of
each block is different. A core question we answer in our paper is as follows:
Informal Problem 1 (Individual Suspiciousness Metric). Given multimodal temporal data in
the form of (userId,productId,. . . ,timestamp), how can we find and score suspicious entities (e.g.
users/activities/products/days,etc.)?

In addition, almost all the social networking websites and services have timestamps associ-
ated with every user activity. However, very few approaches in the literature consider temporal
features [22]. These timestamps can be useful for detecting fraudsters. However, it is not clear
in dense block detection literature, in what ways can we incorporate the temporal information
available to us. In this paper we answer the following question:

Informal Problem 2 (Temporal data handling). Given data in the form of (cat 1, cat 2, . . . ,
timestamp), how can we generate features from timestamps useful for detecting fraudsters? Here
cat 1,cat 2 are any categorical features (generally userId, productId, activityId, ratings, etc.)

We propose ZOORANK, a novel approach for successfully scoring entities based on their
participation in suspicious dense blocks. We introduce a set of axioms that any ideal individual
scoring metric should satisfy. We show theoretically, that our proposed scoring function satisfies
the proposed axioms. Additionally, ZOORANK also provides a framework to make good use of
temporal information that generally exists in all the real-world datasets. As shown in Figure 11.1,
ZOORANK successfully finds suspicious users in multiple real-world datasets (Software Market-
place data and Reddit data) with high accuracy. Additionally, the suspicious users found by our
method showed clear anomalous patterns. In Figure 11.1(Bottom Left), we see that multiple
users are working in groups to target certain products. Similarly, in Figure 11.1(Bottom Right),
the suspicious users detected by our method show extremely regular and bot-like behavior re-
sulting in spikes in the inter-arrival time distribution (difference in seconds between consecutive
posts).

Our main contributions are as follows:
• Theory

Axioms: We propose a set of axioms that an individual scoring metric for measuring
contribution of a user towards a suspicious block should follow.

Metric: We propose an individual suspiciousness scoring metric.

Proofs: We further prove that our proposed individual metric follows all the proposed
axioms.

• Temporal Features: We provide a way of creating temporal features from the timestamp
information present in the data.

• Multimodality and Effectiveness: The proposed approach ZOORANK can take into ac-
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Figure 11.1: Effectiveness of ZOORANK on real world datasets. (Top Left) Perfect precision-
recall on software marketplace dataset. (Top Right) ZOORANK obtains good precision recall
on Reddit dataset. (Bottom Left) Top 100 suspicious users found by ZOORANK show high
synchronicity (formed groups) in rating and reviewing top suspicious products. (Bottom Right)
The suspicious users (bottom; red) detected by ZOORANK for Reddit dataset show irregular
spikes in inter-arrival time distribution, as compared to all the users (top; blue).



Figure 11.2: How to rank users based on their suspiciousness, matching human intuition (A >B
>C) ?



count various features, including temporal features. The approach detects suspicious enti-
ties in all modes of the data. We tested ZOORANK on various real-world datasets and were
able to find suspicious entities with high accuracy, revealing interesting fraud patterns.

Reproducability: Our code and link to the datasets used is available at https://goo.gl/
2G1DWE

11.1 Related Work

A lot of work exists in the literature which aims at finding dense blocks, but none of the methods
present a way of scoring the individual entities in dense blocks. Related work for the given paper
comes from the following major subtopics:

Detecting dense blocks: Densest-subgraph identification (i.e., the problem of finding a sub-
graph with maximum average degree) has been broadly studied in theory, including max-flow
based exact algorithms [87] and greedy approximation algorithms [44]. These theoretical re-
sults have been extended and applied to anomaly and fraud detection [124, 258] since dense
subgraphs (dense blocks) in real-world graph data tend to indicate fraudulent lock-step behavior,
such as follower-buying services in Twitter. Spectral methods, which make use of eigen and
singular value decomposition, also have been used for detecting dense subgraphs corresponding
to ‘cut-and-paste’ bibliography in patent graphs [233], lock-step followers [131] and small-scale
stealthy attacks [253] in social networks. Other approaches for dense-subgraph detection include
co-clustering [22] and belief propagation [223]. Recently, dense-block detection in multi-aspect
data also has been researched [132, 259] for spotting groups synchronized in multiple aspects,
such as IPs, review scores and review keywords. For our experiments, we use the best performing
dense subgraph detection method M-Zoom [259]. The existing methods, however aim at only
finding blocks, and do not provide a rank-list of users to inspect according to their suspiciousness.

Scoring Anomalies: Evaluating the anomalousness or suspiciousness of individuals is com-
plementary to detecting dense blocks, which correspond to group activities. A widely-used
approach is to detect outliers, i.e., observations that deviate greatly from other observations.
Outlier detection methods are divided into parametric methods assuming underlying data distri-
bution [19, 112] and non-parametric methods using local features, such as distances to neigh-
bors [145] and local density [35, 169]. For graph data, on the other hand, various approaches,
based on minimum description length [65, 102], neighborhood information [270], egonet fea-
tures [11] have been proposed for scoring nodes. Many methods do exist in the literature, which
use temporal information such as inter-arrival time [70, 288]. These features have been used to
successfully detect bot-like behavior [70].

Our proposed method ZOORANK scores each entity (individual-scoring) in any of the di-
mensions (multimodal) of the tensor based on the entity’s participation in the suspicious dense
blocks (dense-blocks). It provides ways of transforming temporal data into useful features and
thus handles both numerical and categorical features.

A comparison between ZOORANK and other algorithms is summarized in Table 11.1. Our
proposed method ZOORANK is the only one that matches all specifications.

https://goo.gl/2G1DWE
https://goo.gl/2G1DWE
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Dense Blocks X X X X X 3

Individual Scoring X X X 3

Numerical & Categorical Features X 3

Multimodal and Extensible X X 3

Temporal Features X X X X 3

Table 11.1: Comparison of other methods and their features

11.2 Preliminaries and Problem Definition

11.2.1 Problem Definition
Definition 1 (K-way timed tensor). A K-way timed tensor is a higher-order matrix containing
entries of the form (category 1, category 2, ....,category K, timestamp).

Many types of data including “like” data from Facebook (UserId, PageId, Timestamp), “fol-
low” data from Twitter (UserId, FolloweeId, Timestamp), activity log from an organization
(UserId, OperationId, Timestamp) or network data (Source IP, Source Port, Destination IP, Des-
tination Port, Timestamp) all can be formulated as a K-way timed tensor. We now give a precise
definition of the problem statements.
Problem 1 (Temporal Features Handling). Given a K-way timed tensor A, how can we effec-
tively transform the temporal features associated with A to generate a categorical tensor X?
Problem 2 (Individual-Suspiciousness). Given a L-way categorical tensor X of size N1×N2×
· · · × NL with non-negative entries, compute a score function fX (i) , which defines the suspi-
ciousness of entity i in the m(i)th mode of X with respect to the overall tensor X .

11.2.2 Block Level Suspiciousness Metrics
In this paper, we consider three block-level suspiciousness metrics although our proposed method
is not restricted to them. The metrics are Arithmetic (gari), Geometric (ggeom) and Density (gsusp).
Arithmetic computes the arithmetic average mass of a sub-block Y of a tensor X . Similarly,
Geometric metric is the geometric average mass of the block. The Density metric is the KL-
divergence (Kullback Leibler) between the distribution of the mass in the sub-block with respect
to the distribution of the mass in the tensor. These metrics are explained in the following sections.



Symbol Definition
X Input categorical L-way tensor
Y Dense block within tensor X
N i
Y Size of ith mode of block Y

m(i) Mode of entity i
ρY Density of block Y
CX Sum of the entries in X
CY Sum of the entries in Y
CY(i) Mass of entity i in Y
VY Volume of the block Y
g() Block suspiciousness scoring function
f() Individual-Suspiciousness scoring function
δY(i) Block level suspiciousness of entity i in block Y
B List of suspicious dense blocks
M Number of suspicious blocks to be considered

Table 11.2: Symbols and Definitions

11.2.3 Axioms
In this sub-section, we establish axioms that a good score function f = fX (i) should satisfy. The
suspiciousness of an entity should be based on its participation in dense blocks B. Hence, our
first two axioms govern the scores with respect to a single block Y ∈ B: our third axiom then
governs how the single-block scores are combined to form fX (i).

Let ρY be the density (i.e. mass divided by volume) of Y , and ρY(i) be the density of the
slice of Y defined by entity i. Similarly, let CY(i) denote the mass of that same slice. The entire
list of symbols is shown in Table 11.2.
Axiom 1 (Mass). If an entity a has more mass than entity b in a block and given the fixed size of
block in both the modes m(a) and m(b), then entity a is more suspicious. Formally

IF CY(a) > CY(b), AND Nm(a)
Y = Nm(b)

Y ,

THEN, δY(a) > δY(b)

This is represented in Figure 11.2, how entities are ranked by suspicion in the top right block
(User A > User B > Activity D).
Axiom 2 (Concentration). Given two entities a, b in different modes m(a),m(b), where number
of entities in one mode (N (m(a))

Y ) is less than the number of entities in the second mode (N (m(b))
Y ),

then for fixed density, entity a is more suspicious than entity b.
Formally,

IF N
m(a)
Y < N

m(b)
Y , And ρY = ρY(a) = ρY(b)

THEN, δY(a) > δY(b)

This is represented in Figure 11.2, consider the lower left block where (User C > Activity
E).



Axiom 3 (Monotonocity). If for every block, entity a has higher suspiciousness than entity b,
then entity a has higher overall suspiciousness.

Formally,

IF δY(a) > δY(b) ∀Y ∈ B
THEN fX (a) > fX (b)

11.2.4 Shortcomings of Other Metrics
While these axioms are simple and intuitive, many other candidate metrics are not able to satisfy
them. We consider some of them, and show why they fail.

Block Score: One simple metric to consider is the block suspiciousness score itself. The
metric is to assign each individual the maximum block suspiciousness score out of all the blocks
it is part of. The metric doesn’t change if the two entities have different contributions to the
block, and hence fails Axiom 1 (Mass) and Axiom 2 (Concentration).

SVD-score: Any matrix A can be decomposed using SVD decomposition as follows: A = UΣVT.
Each of the singular values in Σ represents the singular value related to a dense block that exists
in the dataset. The metric here is the score of the maximum component for each user. This metric
would again fail Axiom 1 (Mass) and Axiom 2 (Concentration).

Average δ-Block Score: Another proposed metric could be the average of all the contributions
by the given entity to all the suspicious blocks. The contribution to a block is computed as the
difference in the suspiciousness between the block and the block after removing the specified en-
tity. This statistic fails to satisfy Axiom 3 (Monotonocity) as if entity 1 has higher suspiciousness
in 2 blocks than entity 2, but entity 2 exists only in one of the blocks, then the mean statistic is
ambiguous.

From the above section, we can see that the metrics based on just the block statistics and the
basic metrics on the aggregation of the block statistics do not work. In the following section, we
present our approach.

11.3 Proposed Approach:ZOORANK

11.3.1 Temporal Feature Handling
As mentioned, any data from a social networking website or a web service can be represented
as a K-way timed tensor. We propose a way to handle such tensors by converting the numerical
timestamp mode into interpretable categorical features. We propose to generate 0th-order, 1st-
order, and temporal folding features.

• 0th-order features: The 0th order features bucketize the timestamp into number of days,
hours, minutes, etc. passed since the first observation was made. The temporal resolution
can be chosen by practitioners based on the typical level of temporal variation present in
their dataset.

• 1st-order features: Inter-arrival time is defined as the time interval between 2 consecutive
timestamps of the same user. [70] found that bots tend to display regular inter-arrival



time behavior such as performing an activity every exactly 5 minutes, due to automated
scripts. To capture this pattern, we propose 1st-order features, which is the log-bucketized
inter-arrival time between 2 consecutive operations of a user (generalizable to any entity).

• Temporal folding features: We propose another way to detect fraudsters showing periodic
behavior, which are common in bot-like behavior. For instance, a group of anomalous users
might try to perform multiple login activities only from Wednesday 10 PM to 11 PM, or
only on a specific day of the week. We work with 3 such features: 1) day of the week, 2)
hour of the day and 3) hour of the week. We call these features temporal folding features.

11.3.2 Proposed Metric
Our metric is based on the δ-contribution of each entity towards the block suspiciousness score.
We first define the δ-contribution for a given entity i in mode m(i) of a specific block Y ∈ B,
where B is a list of blocks. We denote this by δY(i)

Definition 2 (Entity’s Block-level Suspiciousness (δY(i))). We define δY(i) as the difference
between the suspiciousness score of block Y and block Y after removing entity i from the block
i.e., δY(i) = g(Y)− g(Y \ i)

We need to aggregate the δ-metric over the entire list of blocks B, in such a way that the given
axioms are satisfied. We propose two metrics both of which satisfy the given axioms. The first
metric is the sum of the δ-contributions, and the second is the maximum of the δ-contributions.
We define the maximum metric as follows:

fX (i) = max
Y∈B

(δY(i))

We empirically found that the maximum metric performs the best on the real-world datasets, and
hence for the rest of the paper, all references to the proposed metric is for the maximum version
of the metric.

11.3.3 Algorithm
After handling the temporal features, we produce a categorical tensor X . Algorithm 3 defines
the outline of ZOORANK. The first step is to compute suspicious blocks for the given tensor X .
To compute suspicious blocks, any existing method for block detection can be used.

We first find the M top suspicious dense blocks as determined by g (Line 1), where g is
one of the metrics defined in Section 11.2.2. These top M suspicious blocks are stored in the
list B. For every entity i that has occurred at least once in any of the blocks in B, we compute
the individual suspiciousness score function f . This score function captures the contribution of
a particular entity towards making the block suspicious. To do this, we compute the marginal
contribution of each node towards that block. This is equivalent to removing the entity i from
the block, and re-computing the suspiciousness score (Lines 6-7). The difference between the
new suspiciousness score and the original suspiciousness score is the marginal contribution of
entity i. We compute the marginal contribution of each entity i over all the blocks (Lines 4-8).
We define the individual suspiciousness score of the entity i as the maximum of the marginal



Algorithm 3 ZOORANK: Individual Suspiciousness Detection
Require: Tensor X , block scoring function g, number of blocks to consider M , mode j to consider
Ensure: Individual scores for each entity i over the entire tensor: fX (i)
1: B = ComputeDenseBlocks(X ,M, g)
2: for each entity i ∈ Nj do
3: δi = []
4: for Y ∈ B do
5: if i ∈ Y then
6: Create new block Y ′ by removing entries of entity i
7: Append (g(Y)− g(Y ′)) to δi
8: fX (i) = max(δi)

9: Sort and output fX (i)

contributions of entity i (Line 9). Another potential metric is to replace the maximization in Line
9 by the sum function. We conduct experiments with that metric as well.

This formulation of the scores fX (i) satisfies intuitively reasonable properties, namely our
axioms defined in Section 11.2.3:
Theorem 1. The scores fX (i) computed by Algorithm 3, using any of the metrics gari, ggeo, or
gsusp, satisfies Axioms 1 to 3.

Proof. :We first start by defining some of the standard block suspiciousness methods as follows:

gari(Y ,X ) = CY/(
∑
j

N j
Y/L)

ggeo(Y ,X ) = CY/(V
1/L
Y )

gsusp(Y ,X ) = VY · D(ρY ||ρX )

where D(ρY ||ρX ) = ρX − ρY + ρY log ρY
ρX

.

ZOORANK satisfies Axiom 1 (Mass)
If we fix the block’s dimensions N1

Y , . . . , N
L
Y , all 3 metrics above are strictly increasing in the

mass of the block (i.e. CY); this can be inferred directly from the form of gari and ggeo, and for
gsusp.

As CY(a) > CY(b), thus Y \ a has lower mass than Y \ b, and since g is strictly increasing in
mass (for fixed block dimensions), we get g(Y \ a) < g(Y \ b). Therefore:

δY(a) = g(Y)− g(Y \ a) > g(Y)− g(Y \ b)
= δY(b)

ZOORANK satisfies Axiom 2 (Concentration)
Using the same reasoning as above, it suffices to show g(Y \ a) < g(Y \ b). Note that Nm(a)

Y <

N
m(b)
Y ⇒ VY\a < VY\b (since removing from a smaller mode decreases the volume more).

Consider each metric gari, ggeo, and gsusp separately:



• case 1: gari.
Here Y \ a and Y \ b have the same sum of block dimensions, and CY\a = ρY · VY\a <
ρY · VY\b = CY\b so that gari(Y \ a) < gari(Y \ b).

• case 2: ggeo.
Note that ggeo(Y) = CY/(V

1/L
Y ) = ρY · VY/(V 1/L

Y ) = ρY · V
L−1
L

Y . Thus:

ggeo(Y \ a) = ρY · (VY\a)
L−1
L < ρY · (VY\b)

L−1
L = ggeo(Y \ b)

• case 3: gsusp.
gsusp(Y \ a) = VY\a · D(ρY ||ρX ) < VY\b · D(ρY ||ρX ) = gsusp(Y \ b)

ZOORANK satisfies Axiom 3 (Monotonocity)

fX (a) = max
Y∈B

δY(a) > max
Y∈B

δY(b) = fX (b).

11.4 Experiments

In this section, we conducted experiments to answer the following questions:
• Q1: How effectively does ZOORANK find suspicious entities across all modes?
• Q2: How generalizable is ZOORANK over different datasets?
• Q3: Does ZOORANK scale linearly with size of the data ?

11.4.1 Datasets
We used various real-world datasets including a software marketplace dataset, a dataset from a
popular social news aggregation website (Reddit), a dataset about Indian elections from Twitter,
and a research lab’s intrusion detection dataset.

• Software Marketplace Dataset (SWM): We used the SWM dataset that was used previ-
ously by [12]. The dataset contains the reviews for all the products (software) under the
entertainment category of the marketplace. The dataset contains 1,132,373 reviews from
966,839 unique users for 15,094 products. Each review has a rating from 1 to 5, and the
timestamp on which the review was posted. The dataset, thus is in the format (UserId, Pro-
ductId, Rating, Timestamp). Previous studies [12, 306] manually annotated ground truth
labels for suspicious users, which we considered as our ground truth.

• Reddit Dataset: Reddit is a social news aggregator website, which allows users to post,
comment on, upvote and downvote stories. The dataset was collected and analyzed by [70].
The dataset contains 1,020,834 user comments for 1,036 users. The Reddit dataset is in the
form (UserId, #Upvotes, #Downvotes, Length, Timestamp). The dataset has information
about ground truth suspicious user accounts.



• DARPA Intrusion Detection: The DARPA intrusion detection dataset contains a sample
of network data for the US Air Force laboratory1. The dataset contains records in the for-
mat (Source IP, Destination IP, Timestamp). Further, it also contains labels for anomalous
connections. For ground truth, we considered any source IP address that participates in at
least 10 such anomalous connections, and any destination IP address that participates in at
least 400 such connections. We altered this definition for ground truth thresholds and still
achieved similar results as mentioned in the paper.

• Indian Elections 2014 Dataset: We collected tweets from 2014 Indian Elections. We
crawled all the tweets from the 10% Sample API (Decahose). All the tweets contain the
top 5 hashtags on Indian Elections per week. We further considered only those users who
have at least 2 tweets in our dataset. This led us to a dataset of tweets from March, 2014
consisting of 10,786 users.

• Simulated Dataset: We also tested our approach on a simulated dataset. For simulation,
we used a realistic way of generating user-timestamps [70], then for each of the timestamp,
we added activities based on a Poisson distribution. We simulated 3 blocks, comprising
of 300, 400 and 200 genuine users respectively, where each block has different parameters
for the activity Poisson distribution. For the suspicious blocks, we simulated three blocks
for 50, 25 and 25 users respectively. The first block does the most popular activity over the
entire duration of the simulation and with random inter-arrival times. The second and third
block do the second most and third most popular activities at a steady inter-arrival time of
1 minute on a single day.

Experimental Settings: All our experiments were conducted on a machine on Intel(R)
Xeon(R) CPU W3530 @ 2.80 GHz and 24 GB RAM. For all our experiments, we choseM = 30
and used M-Zoom [259] for dense block detection. We created multiple tensors based on dif-
ferent resolutions of time features (such as day of week, hour of the day, Inter-arrival time (in
seconds, bucketized), etc.). However, we reported only the best accuracy obtained. The choice
of what tensor to use, what block-level metric to use, and what value of M is appropriate, is for
the practitioner to decide and depends on the type of data, on which the method is being applied.

11.4.2 Q1. Effectiveness of ZOORANK

To test the effectiveness of ZOORANK, we compare our ranking of the suspicious entities with
the ground truth suspicious users in our datasets. We further test the accuracy of our method
on the SWM dataset. For software marketplace, we experimented with different versions of
temporal features. Note that our algorithm achieves 100% accuracy in identifying suspicious
users in the SWM dataset. From Figure 11.3a, we observed that adding the inter-arrival time
feature increased the accuracy of the method. Our algorithm can rank entities in multiple modes;
hence, we also tried to rank the products on basis of their suspiciousness. Though we do not have
ground truth for which products were suspicious, we analyzed the top 5 suspicious products in
Table 11.3b. We used the number of reviews by ground truth fraudsters as an indicator for
suspiciousness. It can be observed that all the suspicious products are popular (high number of
total reviews) and have also been targeted significantly from fraudsters (high number of fraud

1https://www.ll.mit.edu/ideval/data/

https://www.ll.mit.edu/ideval/data/


users). We also noticed that most of the reviews by fraudsters were highly synchronized and a
large majority came on a single day (Figure 11.3c).
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Figure 11.3: ZOORANK is effective. (a) It gives nearly 100% accuracy while identifying suspi-
cious users in the SWM dataset. (b) ZOORANK marks products reviewed by known fraudsters as
suspicious. (c) Product #2 received nearly all of it’s reviews by fraud users on one single day.

11.4.3 Q2. Generalizability of ZOORANK

We tested our method on multiple real-world datasets. In Table 11.3, we present our accuracy
on each dataset. We observed that using maximum of the marginal contributions is better than
using sum for all of the cases. Further, we also compared our method with a baseline approach.
We define the following baseline:

Block Score: defined as the maximum of all block suspiciousness scores a block is part
of. From Figure 11.4, it can be observed that our approach clearly is better than the mentioned
approach.

Dataset F1-Score(SUM) F1-Score(MAX) Tensor
Reddit 0.62 0.67 User × Inter-Arrival Time (IAT)
SWM 0.98 1.0 User × Product × Rating ×Day × IAT

DARPA
(SrcIP Mode) 0.97 0.988 SrcIP × DstIP × Day × IAT

DARPA
(DstIP Mode) 0.29 0.37 SrcIP × DstIP × Hour × IAT

Table 11.3: ZOORANK is generalizable over multiple datasets, and multiple modes that exist in
the dataset.

For Indian elections data, we did not have any ground truth. We extracted the top 100 suspi-
cious users and evaluated them manually. The results for top 100 suspicious users are shown in
Figure 11.5. The user ids are sorted by their suspiciousness score, and plotted on the scatter plot



(a) Performance on DARPA (Source IP). (b) Performance on DARPA (Target IP).

(c) Performance on Reddit Dataset. (d) Performance on the Simulated Dataset

Figure 11.4: ZOORANK is generalizable. ZOORANK outperforms the baseline across different
modes (see (a) and (b)) and across multiple datasets (see (c) and (d))



along with top 100 suspicious hashtags. Figure 11.5 clearly shows groups of suspicious users.
It is evident that the first two users are “hashtag hijackers”. These two users tweeted spam mes-
sages with other hashtags but also focussed on generic hashtags related to the Indian elections.
Both of these users have an identical behavior, which imply they do follow “lock-step” behavior.
The second group of users were tweeting hashtags related to themselves and also generic hash-
tags related to the elections (“self-promoters”). We also spotted the user who tweets out all the
trending topics at regular intervals, possibly through automated scripts (“trending topic aggrega-
tor”). We believe that the remaining users are users who were discussing indian elections a lot
and were influencers in the political discussion. On further analysis, 20 users out of the 100 users
were already suspended by Twitter. Thus, our algorithm was able to identify users that were con-
sidered spam by Twitter but also users that were missed by Twitter algorithm (“self-promoters”)
but were clearly malicious.

Figure 11.5: ZOORANK identifies fraudulent suspicious behavior in Twitter: Top 100 suspi-
cious users, and top 100 products as identified by ZOORANK. We can notice clearly the groups
of suspicious users.



11.4.4 Q3. Scalability of ZOORANK

In this section, we evaluate the scalability of the ZOORANK. We measure the effect of number
of blocks, number of entries and effect of the density metric on the runtime of ZOORANK. To
study the effect of number of tuples, we generated the dataset with given number of entries in 3
dimensions, where cardinality of each dimension is 106. For all our results, we used arithmetic
metric and operated on the most suspicious 30 blocks. The results are shown in Figure 11.6a,
showing that our method scales linearly both in the data size and the number of blocks searched
for. For the effect of number of blocks, we generated a dataset with 104 records with the similar
number of entries in each dimension, and arithmetic suspiciousness metric was used.

(a) Number of Tuples. (b) Number of Blocks.

Figure 11.6: Scalability of ZOORANK (a) ZOORANK scales linearly with number of records.
(b) ZOORANK scales linearly with number of blocks we want to find.

11.5 Conclusions
In this paper, we proposed a set of axioms that a given individual suspiciousness scoring metric
should follow. We presented such a metric that satisfies all the proposed axioms. Specifically,
our contributions are as follows:

• Individual-Suspiciousness Metric: We propose a suspiciousness metric which scores
each entity participating in dense blocks. The proposed criteria fX (i) satisfies intuitive
axioms.

• Temporal Features: The proposed method provides ways to transform the numerical
timestamp mode to information rich categorical temporal features.

• Effectiveness: The proposed method ZOORANK was successfully tested on various real-
world datasets. It scored the suspicious entities with high accuracy, and also uncovered



interesting fraud patterns.
• Scalability: The method is linearly scalable with the size of the data and can be used for

big-data problems (see Figure 11.6).
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CHAPTER 12

INCORPORATING HUMAN FEEDBACK FOR ANOMALY
DETECTION

In many anomaly mining scenarios, a human expert verifies the anomaly at-the-top (as
ranked by an anomaly detector) before they move on to the next. This verification produces
a label—true positive (TP) or false positive (FP). In this work, we show how to leverage
this label feedback for the top-1 instance to quickly re-rank the anomalies in an online
fashion. In contrast to a detector that ranks once and goes offline, we propose a detector
called OJRANK that works alongside the human and continues to learn (how to rank)
on-the-job, i.e., from every feedback. The benefits OJRANK provides are two-fold; it
reduces (i) the false positive rate by ‘muting’ the anomalies similar to FP instances; as
well as (ii) the expert effort by elevating to the top the anomalies similar to a TP instance.
We show that OJRANK achieves statistically significant improvement on both detection
precision and human effort over the offline detector as well as existing state-of-the-art
ranking strategies, while keeping the per feedback response time (to re-rank) well below a
second.

Given an anomaly mining setting in which a human expert needs to verify the anomalousness
of instances as ranked by a detection algorithm, starting at the top of the ranked list, how can we
leverage the labels they produce along the way to re-rank the anomalies? How can we update the
ranking fast, without stalling the expert?

Anomaly detection has been mainly considered a stand-alone task that precedes any action-
taking. In most applications, however, post-hoc human validation is either mandatory or nec-
essary. For example, in auditing systems for insurance claims, expense invoices, tax returns,
etc., the anomalies may be indicative of errors or fraud. However, one cannot automatically de-
cline to pay-back the anomalous cases— errors must be located and fraudulent activities must be
verified by human experts. For surveillance systems such as user behavior tracking or systems
monitoring, anomalies may be indicative of malicious activities, however it may be undesirable
to automatically shut down the anomalous user accounts or the running processes before verifi-
cation. Similarly for knowledge discovery tasks, such as spotting new objects in sky images or



Figure 12.1: Illustration of OJRANK. Filled instances are true anomalies, unfilled are nominals,
color depicts similarity. Upon each feedback, OJRANK re-ranks the instances, aiming to (a) push
up similar True-Positives (red filled) & (b) ‘mute’ similar False-Positives (orange unfilled); (a)
helps reduce expert effort, and both (a,b) increase true positive rate.

novelties in particle physics experiments, it is also necessary for the human expert to validate
the anomalies before claiming a discovery. In these types of anomaly mining settings, the hu-
man expert essentially produces a label (true or false positive) through verification of each next,
yet-unverified top-1 instance.

In this work, our aim is to leverage each label feedback to update our detection model to
produce a new ranking. The idea is to interleave each feedback provided by the expert with a
re-ranking by the updated model, which potentially also changes the top-1 instance the expert
sees next. As such, this is a setting in which the detection model works alongside the expert, and
learns to (re)rank on the job or in other words learns while the expert is working.

The goals of the re-ranking are two-fold. First is to improve the detection performance within
the expert’s verification budget. For example, if an auditor has the capacity and time to validate b
invoices in a given day, the goal is to reach as high precision at b as possible. Intuitively, the more
the number of detected anomalies, the higher is the return (i.e., savings from error and fraud) on
investment (i.e., a day’s of expert’s work). Second goal is to reduce the expert’s verification
effort, which we define in terms of the similarity between consecutive instances expert gets to
verify. Intuitively, the more similar instances they see in sequence, the lower would be the context
switch and hence their verification effort. Besides those goals, the requirement is to update the
ranking fast so as not to stall the expert waiting to be presented with the next top-1 instance.
To these ends, we propose an On-the-Job (online) re-RANKing technique called OJRANK that
employs a ‘more-like-this’ strategy upon a true positive feedback and ‘less-like-this’ strategy on
encountering a false positive feedback, as illustrated in Figure 12.1 (see caption).

There exist related work on learning to rank from top-1 feedback for information retrieval
tasks [45, 46]. However, due to the applications being different, their goals differ. Specifically,



(a) Average rank of seven comparison methods over two sets of data; (left) BENCHMARK and
(right) CLUSTERED; with respect to two metrics of interest; precision@b and expert effort.

Metric
Baselines /
Datasets

AAD
[55]

OMD
Lin[260]

OMD
LLH[260]

OJR
MO

OJR
ALL

pr
ec

.
@

b BENCHMARK 0.015 0.5 0.5 0.005 0.008
CLUSTERED 0.003 0.007 0.027 0.003 0.003

ex
pe

rt
ef

fo
rt BENCHMARK 0.001 0.010 0.024 1e− 4 0.014

CLUSTERED 0.027 0.007 0.012 0.004 0.004

(b) p-values for Wilcoxon signed ranked test between OJRANK and baseline methods for pre-
cision@b and expert effort over two sets of data. Note that except two cases (shaded in gray),
performance gains are significant at 0.05.

Figure 12.2: OJRANK outperforms simple as well as state-of-the-art baselines significantly for
two metrics - precision@b and expert effort. (See §12.4 for details)



these work aim to learn from all the feedback to improve the performance of their final model.
As such, they focus on metrics on the quality of the post-feedback ranked list whereas we aim to
maximize precision on the instances labeled/verified by the expert. The two most related state-
of-the-art work on feedback-based anomaly ranking are AAD [55, 56] and OMD [260]. They
have used various loss functions and optimization algorithms for re-ranking anomalies based on
top-1 feedback, toward improving precision at the budget, but without any emphasis on expert
effort. OJRANK employs the same underlying tree-based ensemble detector as in these work and
outperforms both AAD and OMD in terms of both precision and (especially) expert effort, as
shown in Figure 12.2. We provide more details about the datasets and baselines in Section 12.4.
To summarize, the contributions of this paper can be outlined as follows.

• On-the-Job Learning to Re-rank Anomalies: We address the problem of learning to re-
rank anomalies on the job, i.e. while the expert is working toward verifying the top-ranked
anomalies. Each verification of the top-1 instance produces a label, which our proposed
OJRANK uses to update the ranking presented to the expert next. To this end, we employ
a pairwise learning to rank objective coupled with a carefully-designed online gradient
descent learning, where the update equation has a clear interpretation for the detection
task.

• Higher Precision, Lower Effort: We demonstrate that OJRANK employs a ‘more-like-
this’ update strategy upon receiving a true positive (TP) feedback, and a ‘less-like-this’
strategy upon a false positive (FP) feedback. Both help achieve higher detection precision
as they respectively boost TPs and mute FPs. At the same time, ‘more-like-this’ updates
enable similar anomalies to be pushed up in the rank order and shown consecutively, which
helps reduce expert effort.

• Time and Space Efficiency: OJRANK updates ranking after every label feedback, during
which the user stalls to be presented with the next top-1 instance to verify. We show that
OJRANK’s online updates take constant-time in complexity and are near-instantaneous
empirically, where the re-ranking is done within one fifth of a second on average. More-
over, OJRANK requires only linear space on the number of instances.

The code, datasets used in the experiments and supplementary information is available at https:
//ojrank.github.io.

12.1 Related Work

We discuss related work in two categories: active sampling (which carefully selects the instances
to be labeled) versus top-1 feedback (which simply selects the top instance—no strategy is in-
volved). We note that active learning (AL) and rare category discovery (RCD) fall under the for-
mer category, while on-the-job learning (OJL) is different and falls under the latter. Table 12.1
shows a quick comparison between OJRANK and various active sampling and top-1 feedback
methods. Detailed discussion follows.

Active Sampling: AL is the task of selecting a small budget of most informative instances
to be queried for labels, such that a model trained on those labeled instances achieves high
performance. AL for classification has employed various selection/sampling strategies such as
uncertainty, query-by-committee, variance reduction, etc. for the details of which we refer to a

https://ojrank.github.io
https://ojrank.github.io


Table 12.1: Qualitative comparison between OJRANK and related methods.

Properties Top-1 Feedback Online Model Updates Precision @ Budget Expert Effort
AL [61, 90, 121, 182, 220, 261] 7 7 7 7

RCD [114, 115, 226] 7 7 7 7

Ghani and Kumar [80] 7 7 3 3

Top-1L2R [45, 46] 3 3 7 7

AAD [55, 56] 3 7 3 7

OMD [260] 3 3 3 7

OJRANK 3 3 3 3

survey by Settles [251]. Others studied active sampling for learning-to-rank [61, 121, 182, 261]
and for anomaly detection [90, 220, 226]. A key difference is in how the queries are selected:
In active sampling they are strategically and carefully chosen; in OJL the query is always the
top-most yet-unlabeled instance (i.e., there is no active selection). The goals also differ: ac-
tive sampling aims to maximize the label-incorporated model’s final performance on unlabeled
examples, i.e. performance is measured after querying; in contrast OJL aims to maximize the
number of anomalous instances presented to user during querying.

Active sampling techniques have also been studied for rare category discovery (RCD) [114,
115, 226], which is a setting where anomalies are assumed to form multiple micro-clusters (i.e.
rare categories). The goal is also notably different from OJL’s, where they aim to identify at least
one example from each rare category by (strategically) querying the expert for as few labels as
possible in total.

Ghani and Kumar [80] studied interactively detecting errors in insurance claims, while also
aiming to reduce context switching costs for experts. They use a query selection heuristic that
first clusters the top-scoring instances based on similarity and ranks the clusters based on a com-
bination of measures. Instances from top-ranked cluster is then shown to the expert (helping
reduce context switch) until precision falls below a threshold upon which instances from the next
cluster are presented. Their model is never updated. In contrast, OJRANK boosts up instances
similar to a true-positive feedback in an online fashion.

Top-1 Feedback: Compared to active sampling, there has been relatively limited work on
learning-to-rank (L2R) problems where feedback is only given for the topmost instance of the
ranked list. Chaudhuri et al. [45, 46] proposed algorithms for well-known L2R loss functions
from the pointwise, pairwise and listwise families. However, they aim to maximize the resulting
performance over the entire ranked list after all feedback is collected, unlike in our setting, where
our goal is to maximize the overall number of anomalies presented to the expert during feedback.

On the anomaly ranking side, Das et al. [55] proposed AAD (Active1 Anomaly Discovery)
that partly share the same goal as OJRANK, that is to maximize the number of anomalies pre-
sented at the top (and partly not, as we also care about expert effort). After each feedback, AAD
solves an optimization program involving constraints between all of the previous expert-labeled
anomalies and nominals (i.e., updates are not online). As the number of pairs grows along with

1Here, their use of the term ‘active’ is misleading, as AAD does not employ any active sampling strategy for
querying—always the top-1 instance is labeled. We find OJL to be a more suitable name, as the expert verifies the
next top-1 instance sequentially as part of their job.



each feedback round, the all-pairs constraints increase the running time. The initial AAD method
was intended to work with LODA [228], a projection-based ensemble detection algorithm, which
is later extended [56] for tree-based ensembles like iForest [179] and HS-Trees [275]. AAD is
also sped up by intelligently replacing the all-pairs constraints by those relative to the instance
ranked at the τ th-quantile.

Most recently, Siddiqui et al. [260] proposed to optimize pointwise loss functions in an online
fashion upon each feedback via online mirror descent (OMD). AAD and OMD (and variants) all
aim to maximize the number of true anomalies shown to the expert. However, they do not put
any emphasis on expert effort, which takes into account the effort consumed while verifying
instances that is likely to decrease if the instances shown consecutively are similar.

12.2 Preliminaries and Problem Definition

12.2.1 Learning on-the-job Setup

We are given a dataset containing n instances D = {x1, . . . ,xn} in d dimensions, as well as an
anomaly detection model M that provides scores for the input instances {s1, . . . , sn}, the higher
the more anomalous. The instances are ranked in descending order of these scores.

The procedure of learning on-the-job proceeds in rounds. In each round, (a) the expert verifies
the top-1 instance with the highest score and reveals a label and (b) our OJRANK algorithm uses
this feedback to update the detection model M and hence the ranking of the instances. In the
next round, the expert is presented with the top-1 instance based on the updated ranking and so
on. This procedure continues for b rounds, where b specifies the expert’s budget (e.g., the number
of invoices an auditor has the capacity to analyze within a day’s work).

12.2.2 Family of Detection Models

Our proposed work can subsume any ensemble anomaly detection model M , where each ensem-
ble component provides a separate score and the overall anomalousness score of an instance is
the sum (or average) of those scores across components. Many state-of-the-art detectors fall into
this category such as LOF with feature bagging [166], LODA [228] with 1-d projections, and
various tree-based ensembles including iForest [180], HS-Trees [275], and RS-Forest [301].

Without loss of this generality, this paper adopts the iForest detector. We denote the number
of components (i.e., iTrees) in the ensemble by m. Each iTree is constructed over a random
subsample of the input dataD, by splitting the data at each internal node over a randomly selected
feature and a threshold. As anomalies are fewer in number and isolated from nominal instances,
they require fewer splits to reach a leaf node, hence are quickly isolated. Therefore, anomalous
instances are located at a shorter depth than nominal instances on average over all the trees in the
iForest.

We denote the number of leaves in tree t by Lt. Each instance is placed in exactly one of the
Lt leaves in each tree. The score of an instance u by the t-th tree is given by

s(t)u = 1/[ pathlen(l(t)u ) + h(cnt
l
(t)
u

) ] (12.1)



where l(t)u denotes the leaf in t which u falls into; pathlen captures its depth from the root, cnt
l
(t)
u

is the total number of instances it contains, and h function returns the expected path length
of unsuccessful searches in a Binary Search Tree (BST) constructed with the given number of
samples.

In this paper we work with the leaves representation denoted by su = [s
(1)
u . . . s

(m)
u ] where s

(t)
u

is a vector with entries i = 1 . . . Lt where

su[i] =

{
s
(t)
u , if i = l

(t)
u

0, otherwise
(12.2)

As such su is
∑m

t=1 Lt = l dimensional with exactly m nonzeros. We denote by S ∈ Rn×l the
scores matrix. As such, s = S · 1 contains all the anomaly scores.

12.2.3 Metrics of Interest and Problem Statement
In this work, we aim to improve two different metrics of interest.

First is the total number of true anomalies verified by the expert within their budget b. In
auditing systems, this would correspond to the number of erroneous (tax, insurance, reimburse-
ment) invoices caught among the ones they could analyze within a day’s work—others that could
not be analyzed need to be paid in full—as such, the more errors caught, the higher the savings
could be. This metric is essentially the precision at the budget, denoted precision@b.

The second metric of interest is related to the cognitive burden the expert would have due to
context switch. Intuitively, the more similar two instances analyzed in sequence are, the lower
the context switching costs would be for the expert. Since expert effort is not as well-established
a metric as precision, we define it as follows.
Definition 9 (expert effort). : Given the sequence of b instances {sπ(1), . . . , sπ(b)}, where π(r)
denotes the index of the instance ranked at the top in round r, we define:

expert effort =
b−1∑
r=1

1− sim
(
sπ(r), sπ(r+1)

)
, (12.3)

which is the similarity between consecutive instances verified by the expert. Here we employ
cosine similarity in the scoring space S. If two instances fall in the same leaves with high scores
(see Eq. (12.1)), these points are considered anomalous for the same reasons (in the same feature
subspaces). Intuitively, analyzing invoices containing similar type of anomalies would reduce
verification effort.

One can also argue for similarity in the input space X . This captures the insight that two
similar-looking invoices would be easier for the expert to process back to back. In the experi-
ments we show that OJRANK outperforms the baselines w.r.t. both similarities.

Having outlined the preliminaries and goals, our problem statement can be given as follows:
Problem 1 (On-the-Job Re-ranking). For rounds 1 . . . b :

• Obtain label for the top-1 instance from expert
• Update the detection model based on the feedback and re-rank instances

such that precision@b is maximized, total expert effort is minimized, and updates are fast.



We set up the model update problem as learning a ranking of the instances based on a
weighted sum of leaf scores. That is, we replace the sum s = S · 1 with

s = S ·w (12.4)

and aim to estimate w from expert feedback on-the-job.2

12.3 Proposed Approach: OJRANK

We formulate the on-the-job re-ranking problem as an online learning-to-rank task. To this end,
we adopt a pairwise learning to rank objective with a convex cross entropy loss.

Given training examples 〈(u, v), puv〉 ∈ T where puv is the desired probability of instance u
being ranked above instance v, we aim to find the weight vector that minimizes the cross entropy
loss over all the training pairs:

min
w

f =
∑

(u,v)∈T

−puv log(p̂uv)− (1− puv) log(1− p̂uv) (12.5)

where p̂uv is the estimated probability based on our current estimate of w, and is acquired using
the logistic function:

p̂uv =
e(su−sv)

1 + e(su−sv)
, where su = s[u] = Su ·w (12.6)

Updating w leads to updating estimated probability p̂uv and moving it closer to the desired
probability puv.

OJRANK re-ranks the anomalies after obtaining the feedback on top-1 instance u from the
expert. It has two major components: (1) Generating pairs - as the cross entropy loss function
is pairwise, we pair u for which we received feedback with other instances, which we choose
by either sampling or using the historical instances labeled in the previous rounds, and (2) Opti-
mization - which involves updating w via optimizing the loss function over the generated pairs,
which is then used to re-compute the scores s in the following round. The top-1 instance from
the updated ranking is presented to the expert for feedback. The steps of the algorithm are given
in Algorithm 4.

12.3.1 Generating pairs
After each round of feedback, we obtain label from the expert for a single instance u - we pair
this instance with other instances v to create pairs.

Using history: We pair u with each previously labeled instance v with an opposite label to
that of u. This allows us to establish a clear ordering amongst paired instances - indicating which
instance should be ranked higher. For example, if u is anomalous (nominal), we pair it with
nominal (anomalous) instances v, hence we are certain that u should be ranked higher (lower)
than v.

2Using leaves representation provides us with the capacity to weight l different feature subspaces (that each leaf
corresponds to) rather than m different trees, the former allowing a larger granularity as l > m.



By sampling: During initial feedback rounds, it is possible that there are no instances in
the history that have opposite label to that of u. To handle such cases, we sample v from unla-
beled instances such that we maximize the probability of obtaining oppositely labeled instances.
Specifically, we skew the probability of sampling from unlabeled instances such that chances of
getting oppositely labeled instances increase. This is done by (i) truncating the sample space – if
u is anomalous (nominal), we sample from bottom (top) half of the ranked list and (ii) sampling
an instance with probability inversely (directly) proportional to its score. In particular, when u is
anomalous we use the sampling probability proportional to 1/sv for instance v. If u is nominal,
we sample v (after normalizing the scores s̄v ∈ [0, 1]) with probability proportional to (cs̄v+1)1/c

with c = −0.99 to increase the chances of sampling an anomalous v. The polynomial scaling for
the latter is to account for the fewer number of anomalies in the data.

We give priority to generating pairs using history rather than sampling, as sampling could
lead to pairing identically labeled instances. Therefore, we place an upper limit k on the number
of sampled pairs and only when the number of pairs generated from history is less than (small)
k, we sample the remaining pairs (lines 9, 14 in Algo. 4).

Besides the pairs (u, v), we also need to provide desired probability puv for each pair as input
to the objective function in (12.5). For v that has been sampled from history and u anomalous
(nominal), we set puv to be the maximum (minimum) of all the current estimated probability
values among all pairs (lines 8 and 13). For example, if u is anomalous (v is nominal), we
set puv = p̂az where a is the highest scored instance and z is the lowest scored instance (line
4). Here, we are certain about the ordering among the (u, v) instances, thus we set the desired
probability to maximum so as to push u in the correct direction quickly. On the other hand, when
v is obtained by sampling, there is still a chance that we might have generated identically labeled
instances. In that case, we aim to avoid the mistake of pushing u in opposite direction by a high
magnitude. Therefore, for sampled pairs we nudge the current estimate of probability between
u and v by only a (small) factor of δ, i.e., puv = (1± δ)p̂uv, the sign depending on whether u is
anomalous or nominal (lines 10, 15).

12.3.2 Optimization

We now have training instances in the form of 〈(u, v), puv〉 ∈ P = P̃H ∪ PS , generated using
history and via sampling as explained in the previous subsection. Next, we are interested in
solving the optimization problem in (12.5), i.e., find w such that the cross entropy loss over all
pairs in the training set is minimized. The gradient update equation is written as

wt = wt−1 − η ·
∑

(u,v)∈P

(p̂uv − puv)(Su − Sv) . (12.7)

Relation of gradient updates to precision and effort: Importantly, these gradient updates
are interpretable and have clear impact on the expert effort and the true positive rate. Consider
the case where u is anomalous and v is nominal: by construction, we know that puv > p̂uv. Each
coordinate in w represents the relative importance of a leaf (i.e., subspace) in a tree. Looking at
the update, we can observe that all the coordinates that are responsible for making u anomalous,
i.e., those with a magnitude in Su significantly higher than those in Sv, will increase in weight.
Therefore, the updated w will push u, as well as other anomalous instances similar to u (i.e.,



Algorithm 4 Proposed OJRANK

Require: Ensemble (in our implementation iForest) scores S ∈ Rn×l; Initial weights w ∈ Rl; Budget b; Scale
factor δ; Num. pairs to sample k

1: s = S ·w; round = 0 . Initialize
2: while round < b do
3: yu ←label from expert for u := arg max(s) . Top-1 feedback

/* Setting Up (Generating Pairs)*/
4: a← arg max(s), z ← arg min(s)
5: PH = ∅, PS = ∅ . Historical and Sampled sets
6: if yu = 1 then . True anomaly (positive)
7: for v ∈ HN do
8: add 〈(u, v), p̂az〉 to PH

9: for v ∈ sample(s, yu, (k − |HN |)+) do
10: add 〈(u, v), (1 + δ)p̂uv〉 to PS

11: else . False positive
12: for v ∈ HA do
13: add 〈(u, v), (1− p̂az)〉 to PH

14: for v ∈ sample(s, yu, (k − |HA|)+ do
15: add 〈(u, v), (1− δ)p̂uv〉 to PS

/* Optimization (Updating weights)*/
16: t = 0; wt = wt−1 ← w . Initialize with w from last round
17: η = 0.1, γ = 0.75, ε = 10−8, batch size = 100, Tmax = 1000
18: repeat
19: P̃H ← get next SGD batch(PH , batch size)

20: for 〈(u, v), puv〉 ∈ P̃H ∪ PS do
21: if (u, v) ∈ PS then c← 1(Su > 0) else c← [1 . . . l]
22: wt+1[c]← wt[c]− γ(wt[c]−wt−1[c])

− η(Su[c]− Sv[c])(p̂uv − puv)

23: t← t+ 1
24: until t ≥ Tmax OR f(wt+1)− f(wt) ≤ ε
25: w := wt+1, s = S ·w . Rescore according to the updated w
26: if yu == 1 thenHA := HA ∪ u elseHN := HN ∪ u
27: round← round + 1

those that share the same high-scoring leaves with u) higher to the top; contributing to reduced
effort and increased precision. In contrast, puv < p̂uv when u is nominal, in which case updates
will tend to push u and other similar instances down in ranking, contributing to reduced false
positive rate.

Coordinate selection: One caveat with the gradient updates is the set of sampled pairs,
which may contain identically-labeled (u, v) pairs. In those cases, the updates will nevertheless
enforce a (wrong) ordering between them. For example, if u is nominal and we sampled v
nominal as well, updates will tend to increase weights on coordinates of v that have higher
magnitude than those of u (e.g., different leaf in the same tree), causing v (and nominals similar
to v) climb higher in the list, which is undesirable. We circumvent this issue by updating only
the non-zero coordinates of u for sampled pairs (as shown in line 21).

Online updates and acceleration: Note that w0 is set to the latest w from the previous round
(lines 16, 25), and the updates are only over the newly generated pairs P for the top-1 labeled
instance u in the current round (line 20). As such, OJRANK stands on online gradient-based



learning.
Specifically, we employ batch stochastic gradient descent (SGD). Each batch is selected from

the pairs that are created using history (line 19) and combined with the (at most k) sampled pairs.
We also use the momentum-based SGD to accelerate the descent (hence, the response time). The
momentum-based update equation (line 22) is similar to Eq. (12.7), which is obtained by adding
γ fraction (momentum factor) of the gradient from the previous step to the current gradient update
vector. Finally, all relevant parameters are listed in line 17 of Algo 4 and our implementation is
open-sourced at https://ojrank.github.io.

12.4 Evaluation

Table 12.2: Summary statistics for two sets of data used in experiments: (left) BENCHMARK and
(right) CLUSTERED.

BENCHMARK DATASETS CLUSTERED DATASETS
Name n Anom. % Name n Anom. %
abalone 1920 1.51 vowels 2821 1.77
ann 3251 2.24 optdigits 592 4.22
cardio 1700 2.64 letters 2433 2.05
ecoli 336 2.67 sensor 16257 0.92
glass 214 4.20 segment 1090 4.58
mammography 11183 2.32 statlog 1665 3.00
shuttle 12345 7.02 vehicle 495 6.06
wbc 378 5.56 svmguide 544 9.19
yeast 1191 4.61
lympho 148 4.05
musk 3062 3.16
thyroid 3772 2.46
wine 129 7.76
vertebral 240 12.5

In this section, we evaluate our proposed OJRANK approach in comparison with five base-
lines as listed in §12.4.1. Experiments are conducted over two types of datasets, introduced in
§12.4.2. We then present the results with respect to three performance metrics of interest in
§12.4.3: precision@b, expert effort and speed (i.e., online response time).

12.4.1 Baselines

We compare OJRANK with two state-of-the-art techniques that addressed the problem of online
re-ranking of anomalies from top-1 feedback, as discussed in related work (§12.1). We also
compare with the offline baseline as well as two variants of OJRANK explained below.

• AAD [55]: See §12.1 and Table 12.1.

https://ojrank.github.io


• OMD [260]: See §12.1 and Table 12.1. We compare to both versions based on the type of
loss used – (a) OMD-Lin (linear loss) and (b) OMD-LLH (log-likelihood loss).

• Offline: Static top-b instances based on the initial ranking by the detector, no re-ranking
over rounds.

• OJR-MO: Mistake-Only variant; we run online model updates only when top-1 feedback
is a false positive.

• OJR-ALL: All coordinates variant; we do not scale the sampling probabilities–increases
the risk of identically-labeled pairs (ilp)–and perform no coordinate selection for sampled
pairs–enforces a ranking among ilp.

All compared methods use the same underlying iForest detectors. We report performance results
averaged over 10 different runs of iForest. AAD and OMD are run with the author-recommended
parameters. We set budget b equal to the number of true anomalies in each dataset.

Table 12.3: precision@b on BENCHMARK DATASETS. Per dataset rank provided in parentheses
(the lower the better). Average rank across datasets given in the last row. Symbols N and M
denote the cases where OJRANK is significantly better than the baseline w.r.t. the Wilcoxon
signed rank test, respectively at (p<0.01) and (p<0.05).

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
abalone 0.52± 0.00(5.0) 0.52± 0.00(5.0) 0.52± 0.00(5.0) 0.56± 0.02(1.0) 0.52± 0.01(3.0) 0.54± 0.02(2.0) 0.51± 0.02(7.0)

ann 0.75± 0.03(3.0) 0.73± 0.03(4.0) 0.52± 0.32(5.0) 0.39± 0.05(6.0) 0.78± 0.03(1.0) 0.76± 0.04(2.0) 0.19± 0.07(7.0)
cardio 0.64± 0.02(4.0) 0.65± 0.02(2.0) 0.60± 0.06(5.0) 0.55± 0.04(6.0) 0.65± 0.01(3.0) 0.69± 0.04(1.0) 0.38± 0.04(7.0)
ecoli 0.72± 0.06(1.0) 0.57± 0.08(3.0) 0.70± 0.10(2.0) 0.44± 0.05(6.0) 0.56± 0.09(4.0) 0.51± 0.10(5.0) 0.42± 0.04(7.0)
glass 0.11± 0.00(4.5) 0.11± 0.00(4.5) 0.17± 0.17(1.0) 0.11± 0.00(4.5) 0.11± 0.00(4.5) 0.11± 0.00(4.5) 0.11± 0.00(4.5)

mammography 0.58± 0.02(3.0) 0.56± 0.02(5.0) 0.56± 0.01(4.0) 0.41± 0.02(6.0) 0.60± 0.01(2.0) 0.62± 0.01(1.0) 0.25± 0.05(7.0)
shuttle 0.96± 0.04(5.0) 0.94± 0.03(6.0) 0.97± 0.01(4.0) 0.98± 0.00(1.0) 0.97± 0.01(3.0) 0.98± 0.00(2.0) 0.89± 0.03(7.0)

wbc 0.71± 0.06(1.0) 0.66± 0.03(3.0) 0.67± 0.05(2.0) 0.53± 0.05(6.0) 0.60± 0.03(4.0) 0.59± 0.05(5.0) 0.50± 0.03(7.0)
yeast 0.27± 0.05(5.0) 0.25± 0.05(6.0) 0.18± 0.04(7.0) 0.34± 0.02(3.0) 0.35± 0.01(2.0) 0.36± 0.04(1.0) 0.34± 0.01(4.0)

lympho 0.92± 0.08(6.0) 0.93± 0.08(3.0) 0.60± 0.11(7.0) 0.93± 0.08(3.0) 0.93± 0.08(3.0) 0.93± 0.08(3.0) 0.93± 0.08(3.0)
musk 1.00± 0.00(3.0) 0.99± 0.00(4.0) 0.99± 0.01(6.0) 0.99± 0.02(5.0) 1.00± 0.00(1.5) 1.00± 0.00(1.5) 0.97± 0.03(7.0)

thyroid 0.81± 0.02(4.0) 0.77± 0.01(5.0) 0.82± 0.02(2.0) 0.69± 0.03(6.0) 0.82± 0.02(3.0) 0.86± 0.01(1.0) 0.54± 0.03(7.0)
wine 0.42± 0.19(1.0) 0.27± 0.13(3.0) 0.28± 0.35(2.0) 0.09± 0.03(5.5) 0.09± 0.03(5.5) 0.09± 0.03(5.5) 0.09± 0.03(5.5)

vertebral 0.33± 0.04(1.0) 0.31± 0.06(2.0) 0.05± 0.05(4.0) 0.05± 0.02(3.0) 0.05± 0.02(5.5) 0.05± 0.02(5.5) 0.04± 0.02(7.0)
Avg. Rank 3.32 3.96N 4.00N 4.43M 3.21 2.86 6.21N

Table 12.4: precision@b on CLUSTERED DATASETS. Per dataset rank provided in parentheses
(lower is better). Average rank provided in the last row. Symbol N denote the cases where
OJRANK is significantly better than the corresponding baseline w.r.t. the Wilcoxon signed rank
test at (p<0.01).

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
vowels 0.78± 0.09(2.0) 0.58± 0.09(4.0) 0.09± 0.26(7.0) 0.45± 0.04(5.0) 0.77± 0.06(3.0) 0.80± 0.05(1.0) 0.17± 0.06(6.0)

optdigits 0.08± 0.13(1.0) 0.07± 0.13(2.0) 0.01± 0.03(7.0) 0.04± 0.03(5.0) 0.06± 0.04(3.0) 0.05± 0.03(4.0) 0.03± 0.02(6.0)
letters 0.62± 0.12(1.0) 0.51± 0.12(3.0) 0.21± 0.28(5.0) 0.16± 0.06(6.0) 0.53± 0.12(2.0) 0.47± 0.17(4.0) 0.05± 0.01(7.0)
sensor 0.95± 0.04(1.0) 0.95± 0.03(2.0) 0.48± 0.38(6.0) 0.52± 0.12(5.0) 0.95± 0.03(4.0) 0.95± 0.03(3.0) 0.14± 0.08(7.0)

segment 0.48± 0.20(1.0) 0.40± 0.14(2.0) 0.00± 0.00(6.5) 0.02± 0.02(5.0) 0.25± 0.15(3.0) 0.04± 0.03(4.0) 0.00± 0.00(6.5)
statlog 0.93± 0.02(2.0) 0.91± 0.01(5.0) 0.92± 0.01(4.0) 0.90± 0.01(6.0) 0.93± 0.01(1.0) 0.92± 0.01(3.0) 0.87± 0.03(7.0)
vehicle 0.31± 0.14(1.0) 0.29± 0.07(2.0) 0.12± 0.03(4.0) 0.11± 0.03(6.0) 0.13± 0.04(3.0) 0.11± 0.03(5.0) 0.09± 0.02(7.0)

svmguide 0.12± 0.04(1.0) 0.11± 0.01(2.0) 0.10± 0.03(3.0) 0.10± 0.00(5.5) 0.10± 0.00(5.5) 0.10± 0.00(5.5) 0.10± 0.00(5.5)
Avg. Rank 1.25 2.75N 5.31N 5.44N 3.06N 3.69N 6.50N



12.4.2 Datasets
We evaluate performance over two types of datasets as listed in Table 12.2; namely, (1) BENCH-
MARK DATASETS: a set of 14 real-world datasets and (2) CLUSTERED DATASETS: 8 datasets
generated from multi-class classification datasets, as described below.
BENCHMARK DATASETS: The first data collection contains 14 real-world datasets from a publicly-
available outlier detection dataset repository [237].
CLUSTERED DATASETS: OJRANK learns well from feedback when there are other points sim-
ilar to the feedback instance, i.e., when instances form (micro)-clusters. Learning from an ex-
treme outlier would be very limited, as there are no other points in the dataset that are similar to it,
hence no other instances can benefit from the feedback. To create such a setting, we synthetically
generate 8 datasets by modifying multi-class datasets from the UCI repository.

From each multi-class dataset, we first select two classes at random, with the intuition that
the instances within each class would be clustered. Instances from the remaining classes are
designated as nominals. In case of too many remaining classes, 3 of them are randomly selected.
We next downsample the selected two classes to equal number so that the percentage is consistent
with the usual anomaly detection settings. We designate the downsampled instances from the first
class as “anomalies” and those from the other as “rare nominals”. The detector is likely to rank
both as anomalous, yet from the expert’s point of view, they would correspond to true and false
positives, respectively. Here, “rare nominals” represent rare yet uninteresting group of instances.
This setup allows us to directly test the ability of the methods in learning to boost/mute instances
from these respective classes upon expert feedback.

Table 12.5: List of CLUSTERED DATASETS. We list the type of instances and from what class were they
sampled.

Dataset # Instances Anom. % Description
Vowels 2821 1.77 Anomaly (Class 4[25])

Rare Nominals (Class 8[25])
Frequent Nominals (Class 2,3,6)

Optdigits 592 4.22 Anomaly (Class 8[25])
Rare Nominals (Class 2[25])

Frequent Nominals (Class 1,3,5)
Letters 2433 2.05 Anomaly (Class 25[50])

Rare Nominals (Class 7[50])
Frequent Nominals (Class 20, 3, 15)

Sensor 16257 0.92 Anomaly (Class 8[150])
Rare Nominals (Class 5[150])

Frequent Nominals (Class 1, 7, 9)
Segment 1090 4.58 Anomaly (Class 1[50])

Rare Nominals (Class 2[50])
Frequent Nominals (Class 5, 6, 7)

Statlog 1665 3.00 Anomaly (Class 2[50])
Rare Nominals (Class 4[50])

Frequent Nominals (Class 1, 3, 5, 7)
Vehicle 495 6.06 Anomaly (Class 0[30])

Rare Nominals (Class 3[30])
Frequent Nominals (Class 1, 2)

Svmguide 544 9.19 Anomaly (Class +3[50])
Rare Nominals (Class -3[50])

Frequent Nominals (Class -2, -1, 1, 2)

Summary statistics for the CLUSTERED DATASETS are given in Table 12.2. Details for the
mapping of classes to above categories are provided in Table 12.5. We also share these generated



datasets at our aforementioned URL.

Table 12.6: Expert effort on BENCHMARK DATASETS. Per dataset rank shown in parentheses
(lower is better). Average rank is in the second last row (effort in S space). Average rank for
effort in X space also given in last row. Symbols N(p<0.01) and M(p<0.05) denote the cases
where OJRANK is significantly better than the baseline w.r.t. Wilcoxon signed rank test.

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
abalone 0.59± 0.02(3.0) 0.65± 0.02(7.0) 0.60± 0.03(5.0) 0.60± 0.08(4.0) 0.54± 0.04(1.0) 0.56± 0.03(2.0) 0.65± 0.03(6.0)

ann 0.49± 0.02(1.0) 0.70± 0.02(5.0) 0.65± 0.21(4.0) 0.92± 0.02(7.0) 0.60± 0.02(3.0) 0.60± 0.02(2.0) 0.92± 0.02(6.0)
cardio 0.69± 0.01(1.0) 0.83± 0.03(5.0) 0.72± 0.03(2.0) 0.89± 0.03(6.0) 0.77± 0.02(4.0) 0.73± 0.03(3.0) 0.90± 0.03(7.0)
ecoli 0.96± 0.02(1.0) 1.10± 0.02(7.0) 0.98± 0.02(2.0) 1.09± 0.02(5.0) 1.07± 0.02(4.0) 1.07± 0.04(3.0) 1.10± 0.02(6.0)
glass 1.12± 0.00(7.0) 1.12± 0.00(6.0) 1.09± 0.07(1.0) 1.12± 0.00(3.5) 1.12± 0.00(3.5) 1.12± 0.00(3.5) 1.12± 0.00(3.5)

mammography 0.57± 0.01(2.0) 0.70± 0.01(5.0) 0.60± 0.01(3.0) 0.82± 0.02(6.0) 0.60± 0.02(4.0) 0.57± 0.02(1.0) 0.83± 0.02(7.0)
shuttle 0.20± 0.03(2.0) 0.65± 0.04(5.0) 0.20± 0.01(1.0) 0.81± 0.02(7.0) 0.35± 0.01(4.0) 0.26± 0.01(3.0) 0.70± 0.03(6.0)

wbc 0.91± 0.02(1.0) 1.00± 0.01(5.0) 0.92± 0.02(2.0) 1.00± 0.01(6.0) 0.99± 0.01(4.0) 0.98± 0.01(3.0) 1.00± 0.01(7.0)
yeast 0.86± 0.03(4.0) 0.91± 0.03(6.0) 0.91± 0.02(7.0) 0.81± 0.03(3.0) 0.77± 0.01(2.0) 0.77± 0.02(1.0) 0.88± 0.01(5.0)

lympho 1.20± 0.00(2.0) 1.20± 0.00(5.0) 1.19± 0.00(1.0) 1.20± 0.00(5.0) 1.20± 0.00(5.0) 1.20± 0.00(5.0) 1.20± 0.00(5.0)
musk 0.20± 0.01(1.0) 0.47± 0.03(5.0) 0.22± 0.01(2.0) 0.48± 0.03(7.0) 0.26± 0.02(4.0) 0.24± 0.01(3.0) 0.48± 0.02(6.0)

thyroid 0.48± 0.02(2.0) 0.66± 0.04(5.0) 0.48± 0.02(1.0) 0.80± 0.03(7.0) 0.59± 0.03(4.0) 0.51± 0.03(3.0) 0.76± 0.02(6.0)
wine 1.06± 0.04(1.0) 1.10± 0.01(3.0) 1.06± 0.05(2.0) 1.11± 0.00(7.0) 1.11± 0.00(5.0) 1.11± 0.00(6.0) 1.10± 0.00(4.0)

vertebral 0.89± 0.06(1.0) 0.95± 0.02(2.0) 1.00± 0.02(3.0) 1.02± 0.00(5.0) 1.02± 0.00(7.0) 1.02± 0.00(6.0) 1.02± 0.00(4.0)
Avg. Rank 2.07 5.07N 2.57M 5.61N 3.89M 3.18M 5.61N

Avg. Rank (Orig. Space) 2.00 4.75N 3.07M 5.57N 3.86M 3.11M 5.64N

Table 12.7: Expert effort on CLUSTERED DATASETS. Per dataset rank provided in parentheses
(lower is better). Average rank is in the second last row. Average rank for effort in X space
also given in last row. Symbols N(p<0.01), M(p<0.05) and O(p<0.1) denote the cases where
OJRANK is significantly better than the baseline w.r.t. Wilcoxon signed rank test.

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
vowels 0.63± 0.06(1.0) 0.85± 0.03(4.0) 0.97± 0.13(7.0) 0.90± 0.02(5.0) 0.69± 0.02(3.0) 0.67± 0.02(2.0) 0.94± 0.01(6.0)

optdigits 1.02± 0.03(2.0) 1.03± 0.01(7.0) 1.03± 0.01(4.0) 0.99± 0.02(1.0) 1.03± 0.00(6.0) 1.03± 0.00(5.0) 1.02± 0.01(3.0)
letters 0.72± 0.06(1.0) 0.89± 0.04(4.0) 0.91± 0.14(5.0) 0.92± 0.04(6.0) 0.84± 0.06(2.0) 0.86± 0.07(3.0) 0.98± 0.01(7.0)
sensor 0.45± 0.05(1.0) 0.65± 0.06(4.0) 0.72± 0.22(5.0) 0.92± 0.01(7.0) 0.55± 0.05(3.0) 0.52± 0.06(2.0) 0.88± 0.05(6.0)

segment 0.71± 0.14(1.0) 0.83± 0.07(3.0) 1.01± 0.01(7.0) 0.80± 0.03(2.0) 0.88± 0.07(4.0) 0.95± 0.02(6.0) 0.95± 0.03(5.0)
statlog 0.52± 0.01(1.0) 0.66± 0.03(5.0) 0.54± 0.02(2.0) 0.69± 0.03(6.0) 0.60± 0.02(4.0) 0.56± 0.02(3.0) 0.69± 0.03(7.0)
vehicle 0.88± 0.07(1.0) 0.95± 0.04(3.0) 0.99± 0.01(7.0) 0.94± 0.02(2.0) 0.97± 0.02(5.0) 0.97± 0.02(4.0) 0.98± 0.02(6.0)

svmguide 0.95± 0.04(5.0) 0.97± 0.01(7.0) 0.95± 0.02(6.0) 0.88± 0.01(1.0) 0.94± 0.01(4.0) 0.92± 0.01(3.0) 0.91± 0.02(2.0)
Avg. Rank 1.62 4.62N 5.38N 3.75M 3.88N 3.50M 5.25N

Avg. Rank (Orig. Space) 2.25 4.12N 4.38O 4.00O 4.12O 3.88O 5.25M

12.4.3 Results
We analyze performance results over both datasets w.r.t. (a) precision@b, (b) expert effort and (c)
runtime per update. We also present a sensitivity analysis of OJRANK w.r.t. two input parameters
in Algo. 4; δ and k.

Precision@b: Table 12.3 and Table 12.4 provide precision across BENCHMARK DATASETS and
CLUSTERED DATASETS, respectively. On each dataset, we show the average precision and stan-
dard deviation over 10 different runs of iForest. Rank of each method per dataset is in parentheses
(in case of ties, average of the ranks are assigned to each tied method). Finally, the last row gives
the average rank per method across all datasets (lower is better).



Figure 12.3: precision@b remains reasonably stable upon varying (left) δ and (right) k (2 input
parameters to OJRANK). Each line corresponds to one of all 14+8 datasets in Table 12.2.

The precision magnitudes differ quite a bit among datasets, therefore we perform a rank
test to compare the methods statistically. Specifically, the Wilcoxon signed rank test between
OJRANK and each baseline shows that OJRANK significantly outperforms its two variants and
the offline baseline at p<0.01 on both BENCHMARK and CLUSTERED datasets. (Actual p-values
can be found in Figure 12.2 (b).) In fact, notice that Offline is ranked at the bottom in both setups,
demonstrating the value of learning on-the-job. OJRANK is also superior to AAD, respectively
at p<0.05 and p<0.01. We find no significant difference (p=0.5) between OMD variants and
OJRANK on BENCHMARK DATASETS. On the other hand, OJRANK significantly outperforms
all baselines including OMD on CLUSTERED DATASETS, showcasing its ability to learn from
feedback on clustered instances.

We illustrate how the number of true discovered anomalies change over rounds with the
expert on several datasets from BENCHMARK DATASETS and CLUSTERED DATASETS in Fig-
ure 12.4 and Figure 12.5, respectively.

Expert effort: Next we analyze the results on expert effort on BENCHMARK DATASETS in Ta-
ble 12.6 and on CLUSTERED DATASETS in Table 12.7. The differences between OJRANK and
baselines become apparent especially on this metric. Notice that OJRANK yields significantly
better expert effort than all of the baselines at p¡0.05. (See Figure 12.2 (b) for the actual p-values.)

As given in Defn. 12.3, expert effort utilizes similarity in the anomaly scoring space S.
Recall that one could also argue for similarity in the original input space X . To this end, we
also report (only) the average rank (for brevity) per method across all datasets based on effort
utilizing similarity in X space, shown in the last row of Tables 12.6 and 12.7. Here, we observe



(a) ecoli (b) wbc

(c) wine (d) vertebral

Figure 12.4: Number of anomalies shown by each method over feedback rounds for several
BENCHMARK DATASETS.



(a) letters (b) segment

(c) vehicle (d) svmguide
Figure 12.5: Number of anomalies shown by each method over feedback rounds for several
CLUSTERED DATASETS.



the same trends on BENCHMARK DATASETS. OJRANK also outperforms all the baselines on
CLUSTERED DATASETS at (a slightly higher) p<0.1. The somewhat better effort the baselines
achieve in this setup is because they show consecutive instances from the “rare nominal” cluster
or from the same larger nominal clusters. This querying of similar instances achieves reduced
effort, however at the expense of poor precision (as observed from Table 12.4).
Overall comparison: The ideal method for on-the-job re-ranking is the one that achieves high
precision and enables low effort at the same time. To compare all the methods in both grounds,
Figure 12.2 (a) presents a scatter plot of the avg. rank w.r.t. precision@b versus avg. rank w.r.t.
expert effort for each setup. It is easy to see that OJRANK is closest to the top (denoted by
the target symbol on the plots), especially on CLUSTERED DATASETS, where the differences are
significant as discussed in the previous subsections.
Response time to update: An important requirement for the kind of applications considered in
this work is fast response time; since the expert is to wait between feedbacks to be presented
with the updated top-1 instance. In Figure 12.6, we show the distribution of per-round update
time (avg.’ed over 10 iForests) over all rounds with boxplots. For brevity, results for a subset
of BENCHMARK DATASETS are shown. Moreover, only the state-of-the-art baselines (AAD and
OMD) and OJRANK are compared.

The key take-aways are two: OJRANK takes less than one fifth of a second to provide a
model update on average – which would be near instantaneous for a human expert. In addition,
the update time has low variance from round to round and from dataset to dataset (unlike e.g.,
AAD).

Figure 12.6: Avg. runtime per update on several (left) BENCHMARK & (right) CLUSTERED

datasets. OJRANK’s response time is less than one fifth of a second, with low variance.

12.4.4 Sensitivity Analysis

We conclude experiments with an analysis of OJRANK’s sensitivity to its input parameters; scal-
ing factor δ and number of pairs k to sample. We tested over small values of the parameters so
as not to stray far away from the original ranked list upon a single feedback. As shown in Figure
12.3, performance remains nearly stable for most datasets. We use and recommend δ = 0.1 and
k = 5.



12.5 Conclusion
In this work we addressed the problem of how to leverage the label revealed by an expert on
the top-1 instance to quickly re-rank the anomalies in an online fashion. The proposed approach
OJRANK works alongside the expert and continues to learn on-the-job from every top-1 feed-
back. To this end, OJRANK leverages a cross entropy based pairwise learning to rank objective
along with accelerated online gradient updates. These updates correspond to a ‘more-like-this’
strategy on true positive feedback – boosting other similar instances up the list, and a ‘less-like-
this’ strategy on false positive feedback – muting other similar false positives. We show that
OJRANK not only increases precision but also decreases expert effort over two different classes
of datasets, and significantly outperforms the offline and state-of-the-art baselines over both met-
rics. Finally, OJRANK has constant time complexity with instantaneous response time to update,
and linear space requirement on the number of instances.
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CHAPTER 13

CONCLUSIONS

In this thesis, we worked on problems related to characterizing and modeling large scale user be-
havior on social and technical platforms in aim to discover interesting patterns and find anoma-
lous cases. The works contributing to this thesis can be broadly categorized into two sub-topics:
(1) characterizing and modeling user behavior, and (2) anomaly detection. We study human be-
havior on large scale online social media platforms from two perspectives - the first perspective is
based on characterizing interesting phenomena observed on online platforms. In such phenom-
ena, the entity of interest is the phenomena itself, which is a resultant of behavior of multiple
users. In contrast, the second perspective we study is about modeling behavior at an individual
level. In such problems, the entity of interest is user, and we cover characteristics and model
each user’s behavior.

13.1 Contributions

13.1.1 User-based Phenomena on Social Media
• Understanding firestorms: Chapter 3 measures the effect of firestorms on the attacked

entity. The work bases hypothesis on famous sociologicial theory - biographical conse-
quences of activism. We operationalize the theory by comparing the mention network
between the users participating in firestorms. We discover that mention networks before
and after the firestorms are very similar, and they are highly distinct from the week of
the firestorm; and this was something further corroborated by network-level statistics. We
performed this for 20 firestorm events.

• Bias in Geocoded tweets: In Chapter 4, we study the bias that might exist in geotagged
content posted on online social media platforms. We analyze 144 million geotagged tweets
and link them with high resolution Census population data. We use spatial models to
analyze various demographic factors that contribute to geocoded content. We discover that
with the use of spatial models, we are able to explain 42 percent of the variance in the data.
We observed that the actual population does not have an effect on number of geotagged
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users, but having higher median income, being in an urban area, having more young people
and having high Asian, Black, and Latino population does.

13.1.2 Individual User Modeling
• Detecting dangerous selfie behavior on social media: Chapter 5 characterizes the prob-

lem of voluntary risk-taking on online social media platforms. In this work, we specifically
studied the behavior of posting dangerous selfies. We propose a multimodal classifier that
takes into account three classes of features - location, image and text features to success-
fully identify if the given selfie posted is dangerous or not. We were able to report 82%
accuracy, outperforming other unimodal feature based classifiers.

• Detecting distracted driving posts on social media: In Chapter 6, we continue study-
ing risk-taking behavior on social media websites in the form of distracted driving content
posted. We propose a deep learning classifier to detect distracted driving content, and
were able to achieve 94% accuracy. Further, we tested previously limitedly tested socio-
logical theory, edgework framework describing characteristics of voluntary risk takers at a
large scale. We conclude that the theory still holds - young males are more likely to post
distracted driving content.

• Modeling experience in recommendation systems: Chapter 7 focusses on modeling ex-
perience of users in recommender systems. The work is hypothesized on that as user
interacts with the recommendation system, their preferences evolved and become more
nuanced. The changed preferences can be considered as experience. We propose a su-
pervised graphical model which models user preferences over time using the ratings and
reviews. We show that the method had a mean square error of 0.363, outperforming other
baseline models. We also showed the efficacy of the approach on multiple e-commerce
datasets such as BeerAdvocate, RateBeer, Amazon and Yelp.

13.1.3 Identifying Fraud on Social Media
• Understanding Link Fraud Services:In Chapter 8, we characterize the multi-faceted na-

ture of link fraud on Twitter. We bought followers from multiple follower delivery services
and analyzed the varied, heterogeneous nature of followers so delivered. Additionally, we
proposed entropy based machine learning classifier to identify customers who engage in
link fraud.

• Modeling Dwell Time Engagement Fraud: Chapter 9 focussed on modeling dwell time
behavior on visual multimedia content posted on online social platforms. We propose
parametric, interpretable models for modeling individual and joint models of dwell time
behavior. Furthermore, we also use these models for anomaly detection.

• Detecting Chatbots on Livestreaming applications: In Chapter 10, we propose models
to detect chatbots on livestreaming platforms. We propose a 2-stage classifer where in the
first step we identify chatbotted livestreams, and then in the next step we detect constituent
chatbots. We showed that the proposed method is robust under different chatbot attack
models and outperforms baselines.



13.1.4 Anomaly Detection Beyond Social Media
• Individual metrics for group-based temporal fraud: We propose a new metric for scor-

ing individual entities participating in group-based fraud attacks in Chapter 11. Our con-
tributions encompass two things - (1) leveraging temporal patterns to enhance group level
fraud detection and (2) metric for counting each individual’s contribution to a group level
attack. We were able to show the efficacy of the method for different online social media
platforms.

• Incorporating human feedback for anomaly detection: In Chapter 12, we propose a
novel way of incorporating expert’s feedback to re-rank list of outliers. We propose a
learning to rank based method which reduces false positive rate of the anomaly detection
model and also decreases expert’s effort in verifying the anomalies.

13.2 Impact
Besides the above contribution, I below list the notable academic and press-related impact of the
works presented in this document.

13.2.1 Academic Impact
• OJRANK (Chapter 12) won the Best Research Paper award at SDM, 2019.
• Work presented in Chapter 3 won the Best Student Paper award at ASONAM, 2015.
• OJRANK (Chapter 12) was featured in KDD 2019 tutorial on rare category exploration.
• Precursor to the work presented in Chapter 4[159] was runner up for SBP Data Challenge.

The work itself is one of the top cited papers in ICWSM 2015, having more than 80 cita-
tions.

13.2.2 Practical Impact
• Work presented in Chapter 3 was covered by Pittsburgh Post Gazette.
• Work presented in Chapter 5 has been covered by more than 100 media outlets.
• Work presented in Chapter 5 has been presented at multiple universities, and also con-

tributes significantly to a TEDx talk on the same topic.
• ZOORANK (Chapter 11) has been downloaded 1.9K times, and was mentioned in keynote

at HotSOS 2016.





CHAPTER 14

FUTURE WORK

The work presented in this thesis is preliminary step of utilizing large dataset presented by online
social platforms to find interesting patterns and develop user behavior models. Building on the
success of thesis, there are three different streams of future work that could be seen as next logical
step for this dissertation. The first stream focuses on stream of computational social science, and
involves studying online social platforms from sociological perspective and argue about the role
they play in our society. The next stream is centered on cybersecurity applications, and involves
developing robust algorithms for fraud detection on social media that can handle both evolving
and adversarial nature of fraud. Finally, we hope to extend previously developed methods and
also develop new methods for analyzing large scale archival data that exists in other interesting
domains.

14.1 Computational Social Science

Building on the work in [160, 161, 188], a promising direction is to continue analyzing large-
scale online platform data, model user behavior and, through the lens of these social and technical
platforms argue about their role in human society. Specifically, I want to look at the following
directions:

14.1.1 Causal Inference

Most social-media-based predictive studies are only focused on correlation. However, given that
the implication of these studies are huge and could potentially impact society at large, it is neces-
sary to argue about whether the factors discovered to predict the behavior are causal or not. One
of the promising direction lies in studying voluntary risk-taking behavior. Specifically, investi-
gating the impact of social feedback on the intensity of participation in risk-taking activities.
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14.1.2 Polarization and Social Media

The role of social media platforms in the recent US elections and other political events has been
under scrutiny. One aspect of that discussion has been on the role of echo chambers, and thus
polarization. In the current literature, there are two opposing schools of thought - one that postu-
lates that social media platforms increase polarization through echo chambers; and another that
argues that these platforms decrease polarization by allowing cross interaction between different
ideologies. How can we characterize the role of online social media platforms in increasing or
decreasing polarization? How can we model user’s change in behavior after interacting with the
platform itself?

14.2 CyberSecurity

While already impactful, my work on modeling abnormal dwell time engagement and detecting
fraudulent users and reviews and ratings on e-commerce systems is only the first step. There are
many more social platforms, where fraudsters have very different modus operandi to cheat the
platform for their personal gains. Furthermore, the field of cybersecurity is ever-evolving, with
fraudsters often improving their evasion techniques to fool the detection algorithm. Thus, it is of
utmost importance to researchers to keep on developing new techniques to detect newer type of
fraud. Specifically, I am excited to work on the following topics:

14.2.1 Adversarial Data Mining

In the domain of cybersecurity, as mentioned earlier, adversaries continuously adapt their be-
havior to evade data mining models. Existing detection methods cannot typically adapt to these
changes. One theme of research I will pursue in the future is developing robust adversary-
sensitive data mining algorithms.

14.2.2 Human-in-the-loop anomaly detection

: One critical limitation of existing machine-learning-based fraud detection methods is the ab-
sence of a human in the loop - the entire framework ends at an output of instances sorted by their
outlier score. However, the process requires more scrutiny, since applications typically have
such high impact that they require expert verification. In prior work, I proposed a framework
that takes into account the expert feedback on highly scored anomalies, and used that to reduce
the false positive rate of the anomaly detector as well as the expert’s effort. There are multiple
possible extensions to the existing framework, which I will explore in the future - e.g. extending
the current case of individual anomaly detection to the case of group anomalies and the case of
multiple annotators.



14.3 Extending to other domains
Finally, one of my goals is to expand my research into new domains. As described above, an-
alyzing large-scale archival data from online communities, while building on socio-cognitive
theories, allow us to model novel behavioral patterns and answer interesting questions. As such,
there are fascinating opportunities in software engineering, healthcare, ridesharing gig economy,
non-profits, etc. One of the natural extension is to study software engineering domain, by ana-
lyzing data available through GitHub, and other code sharing websites. Yet, another interesting
domain is to consider gig working platforms and introduce how can we better allocate gigs to en-
sure fairness among the gig-workers. Collaborating with practitioners in these various domains
can enable us to answer these questions effectively.
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[211] José MR Murteira and Óscar D Lourenço. Health care utilization and self-assessed health:
specification of bivariate models using copulas. Empirical Economics, 41(2), 2011.

[212] Seth A. Myers and Jure Leskovec. The bursty dynamics of the Twitter information net-
work. In WWW ’14: Proceedings of the 23rd International Conference on World Wide
Web, pages 913–924, 2014. ISBN 978-1-4503-2744-2.

[213] Ruchit Nagar, Qingyu Yuan, C. Clark Freifeld, Mauricio Santillana, Aaron Nojima, Rumi
Chunara, and S. John Brownstein. A case study of the New York City 2012-2013 influenza
season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
J Med Internet Res, 16(10), Oct 2014. doi: 10.2196/jmir.3416.

[214] Thomas Nagler. Vinecopula. https://cran.r-project.org/web/packages/
VineCopula/VineCopula.pdf, 2018.

[215] Vedant Nanda, Hemank Lamba, Divyansh Agarwal, Megha Arora, Niharika Sachdeva,
and Ponnurangam Kumaraguru. Stop the killfies! using deep learning models to identify
dangerous selfies. In Companion of the The Web Conference 2018 on The Web Conference

http://www.aclweb.org/anthology/W/W14/W14-2509
http://dx.doi.org/10.1145/2567948.2576952
https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf
https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf


2018, pages 1341–1345. International World Wide Web Conferences Steering Committee,
2018.

[216] NCSA. Distracted driving 2015: traffic safety facts research note (rep. no. dot hs 812
381), 2017.

[217] R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

[218] NHTSA. Policy statement and compiled faqs on distracted driving, 2017.

[219] Nielsen. 2016 nielsen social media report https://www.nielsen.com/content/
dam/corporate/us/en/reports-downloads/2017-reports/2016-
nielsen-social-media-report.pdf, 2017. URL https://www.
nielsen.com/content/dam/corporate/us/en/reports-downloads/
2017-reports/2016-nielsen-social-media-report.pdf.

[220] Nir Nissim, Aviad Cohen, Robert Moskovitch, Asaf Shabtai, Mattan Edry, Oren Bar-
Ad, and Yuval Elovici. Alpd: Active learning framework for enhancing the detection of
malicious pdf files. In JISIC, pages 91–98. IEEE, 2014.

[221] Tanya Nitins and Jean Burgess. Twitter, brands, and user engagement. In Katrin Weller,
Axel Bruns, Jean Burgess, Merja Mahrt, and Cornelius Puschmann, editors, Twitter and
society, pages 293–304. Peter Lang, 2014.

[222] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kiciman. Social data:
Biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2:13, 2019.

[223] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a
fast and scalable system for fraud detection in online auction networks. In WWW, pages
201–210. ACM, 2007.

[224] Jaram Park, Meeyoung Cha, Hoh Kim, and Jaeseung Jeong. Managing bad news in social
media: A case study on Domino’s pizza crisis. In Proceedings of the Sixth International
AAAI Conference on Weblogs and Social Media, pages 282–289, 2012.

[225] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient estimation
of the number of clusters. In ICML, 2000.

[226] Dan Pelleg and Andrew W. Moore. Active learning for anomaly and rare-category detec-
tion. In NIPS, pages 1073–1080, 2004.

[227] Nicole Perloth. Fake twitter followers become multimillion-dollar business,
April 2013. URL http://bits.blogs.nytimes.com/2013/04/05/fake-
twitter-followers-becomes-multimillion-dollar-business/. [On-
line; posted 5-April-2013].
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[265] Stefan Stieglitz and Nina Krüger. Analysis of sentiments in corporate Twitter communi-
cation: A case study on an issue of Toyota. In ACIS 2011: Australiasian Conference on
Information Systems, 2011.
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