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Abstract

Processing of conversations is a core technique in conversational AI. However, current speech

recognition solutions, even the state-of-the-art systems, model a single, isolated utterance, not an

entire conversation. These systems are therefore unable to use potentially important contextual

information that spans across multiple utterances or speakers in a conversation. This thesis fo-

cuses on designing an End-to-End speech recognition system that processes entire conversations.

To achieve this goal, I propose three novel techniques: 1) an efficient way to preserve long con-

versational contexts by creating a context encoder that maps spoken utterance histories to a single

context vector; 2) an effective way to integrate conversational contexts into End-to-End models

using a gating mechanism; and 3) various methods to encode conversational contexts by using

previously spoken utterances and augmenting with world knowledge using external linguistic

resources (e.g. BERT, fastText). I show accuracy improvements with three different large cor-

pora, Switchboard (300 hours), Fisher (2,000 hours), and Medical conversation (1,700 hours),

and share the analysis to demonstrate the effectiveness of my approach. This thesis will provide

insight into designing conversational speech recognition systems and spoken language under-

standing systems, which are becoming increasingly important as voice-driven device interfaces

become mainstream.
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Chapter 1

Introduction

1.1 Motivation

As voice-driven interfaces to devices become mainstream, many real-world applications that

can recognize and translate spoken language are becoming increasingly important. Especially,

conversational AI applications, such as spoken dialog systems, AI assistants, and audio/video

recorded meeting summarization, require a machine to recognize and understand long conversa-

tions.

Figure 1.1: Processing of conversations of spoken dialog systems.
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Conversational automatic speech recognition (ASR) that takes a spoken audio input and gen-

erates transcription is a core technique in such applications (in Figure 1.1). Compared to general

speech recognition, conversational speech recognition techniques require to recognize not just

a single isolated utterance, but multiple utterances in the entire conversation. The focus of this

thesis is on conversational speech recognition.

In a long conversation, there exists global conversational-level consistency, especially in

terms of conversation topic and tendency that the same or semantically related words and phrases

occurring across utterances. For example, when the user requested to play specific music in the

conversation with AI assistants, requests or questions related to the music tend to be followed,

and in the conversation between doctor and patients, medical terms such as medicine or disease

names tend to be spoken. Even in the chit-chat types of conversation, the same words/phrases

tend to be re-used. Therefore, an utterance can be more recognizable based on the previous ut-

terance history, and modeling such conversational context is the key to conversational speech

recognition tasks.

Figure 1.2: Current ASR solution in processing conversations.

However, current automatic speech recognition (ASR) solutions, even state-of-the-art sys-

tems, are modeling fragments, not entire conversations. As Figure 1.2 shows, to make building

systems computationally feasible, long conversations are typically split into shorter blocks with

2



utterance-level audio and systems that are built at such individual, isolated utterance level. This

modeling process makes the model lose important conversational context information, which can

help improve speech recognition performance.

There have been many studies that have attempted to use global, conversational level context

information [1, 2, 3, 4, 5, 6] and modeling entire conversations, or entire documents and has been

shown the importance of exploiting context information in processing a conversation or docu-

ment. All of these models were however developed on text data for dialog models or language

models. Such a language model that captures long context information is trained separately and

then the context information can be added to the ASR system only as a post-fix by re-scoring

with the ASR outputs. The conversational ASR systems based on such disjoint components do

not fully exploit the useful context information.

The recent End-to-End speech recognition approach [7, 8, 9, 10, 11, 12, 13] integrates all

available information within a single neural network model, and directly transcribes speech to

text. Unlike the traditional speech recognition systems that are complicated and composed of

multiple components: pronunciation models, acoustic models, language models, the End-to-End

speech recognition models do not use a disjoint training procedure and are optimized towards the

final objectives. This property of End-to-End modeling motivates us to include conversational

context information within the End-to-End speech recognition model and optimize towards final

objective of interest.

1.2 Thesis Statement

With the previous motivations, I propose a novel End-to-End conversational speech recognition

framework that processes entire conversations with modeling “conversational context”. I de-

fine “conversational context”, higher knowledge that spans across multiple utterances, which is
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helpful to process long conversations. The main objective of this thesis is to show that:

Learning a long conversational context beyond utterance level

is feasible and useful for better processing of long conversations.

To achieve this goal, I address the following main research questions:

• How to preserve long conversational contexts?

• How to integrate conversational context information?

• How to encode conversational context information?

• How to validate the effectiveness of the conversational context?

The thesis also shows accuracy improvements with three different large corpora, Switchboard

(300 hours), Fisher (2,000 hours), and Medical conversation (1,700 hours), and present my anal-

ysis to demonstrate the effectiveness of my proposed framework.

1.3 Thesis Contributions

To the best of my knowledge, this is the first work to model entire conversations, rather than

isolated utterance, by combining acoustic and language information in End-to-End manner. My

thesis shows that modeling entire conversations is feasible and useful for better processing of

long conversations.

The technical contributions of this thesis are the followings:

1. An improved way to build End-to-End speech recognition models - I jointly train the

End-to-End ASR with CTC and Seq2Seq objectives to achieve better accuracy and faster

convergence than vanilla End-to-End ASR. My joint CTC/Seq2Seq End-to-End ASR ap-

proach has been available publicly [14] and it has used and extended in many other follow

up studies [15, 16].

4



2. An efficient way to preserve long conversational contexts by creating a context en-

coder that maps spoken utterance histories to a single context vector - I serialize

the training utterances based on their onset time, then shuffle them at dialog-level. I

extract/detach/cache context embeddings similar to a truncated backpropagation through

time (BPTT). My proposed method allows to model entire conversations with the compu-

tational efficiency and avoiding GPU memory issues.

3. An effective way to integrate conversational contexts into End-to-End models using

a gating mechanism - I create a gated contextual decoder that can recognize the current

utterance conditioning on the context information. I introduce a contextual gating mecha-

nism to integrate multiple types of embeddings: word, speech, and conversational context

embeddings effectively. My proposed gated decoder method can decide how to weigh dif-

ferent embeddings and can shape information flow using multiplicative interactions and

can achieve better accuracy performance rather than simple concatenation method.

4. Various methods to encode conversational contexts by using previously spoken utter-

ances and augmenting with world knowledge using external linguistic resources - I

create a conversational context encoder to map the multiple preceding utterance histories

into a fixed-length context vector. My proposed context encoding methods can also use

either the generated sentences or the true preceding utterance during training similar to

a sampling strategy. My methods are augmented world knowledge by using the external

word (fastText) and/or sentence embeddings (BERT) so that it can represent conversational

context better. My methods can also model an interaction between two speakers based on

speaker-turn information by using speaker-specific cross-attention that can look at the out-

put of the other speaker side as well as the output of the current speaker.

5. Analytical methods to demonstrate the effectiveness of my conversational context

models - In addition to simply comparing the Word Error Rate (WER) with standard End-

to-End speech recognition systems, I also compare the performance of my model with the
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context vector generated from Oracle utterances and Random utterances. This method can

verify that my model’s benefit does not come from randomness or regularization. I also

create a “conversational similarity” scoring function that shows my context models work

well where the historical utterances and the current utterance are similar to each other

which confirms the hypothesis of my thesis.

1.4 Thesis Outline

Chapter 2 will review previous work for two main End-to-End speech recognition approaches:

Connectionist Temporal Classification (CTC) and Attention-based Encoder-Decoder (Seq2Seq)

and context modeling approaches. I will review the strengths and weaknesses of the two ap-

proaches. This will give motivation of my proposed End-to-End speech recognition approach,

joint CTC/Seq2Seq model in Chapter 3. I show my model provides fast convergence as well

as improved accuracy than the previous End-to-End speech recognition system. In Chapter 4,

I present my proposed conversational End-to-End automatic speech recognition (ASR) systems

that model entire conversations. I show two novel methods: 1) an efficient way to preserve long

conversational contexts by creating a context encoder that maps spoken utterance histories to

a single context vector, and 2) an effective way to integrate conversational contexts into End-

to-End models using a gating mechanism. In Chapter 6, I present various methods to encode

conversational contexts by using previous spoken utterances and augmenting with world knowl-

edge using external linguistic resources (e.g. BERT, fastText). I also show a method that can

look at the output of the other speaker side as well as the output of the current speaker to learn

an interaction between two speakers based on speaker-turn information. In Chapter 7, I show a

series of experiments on three different large corpora, Switchboard (300 hours), Fisher (2,000

6



hours), and Medical conversation (1,700 hours). I will share my analyses to demonstrate the

effectiveness of my proposed framework, and in which conditions my context model works well.

I will finally close up with a conclusion and future work in Chapter 9.
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Chapter 2

Background

This chapter first reviews the conventional architecture for conversational speech recognition sys-

tems (Section 2.1). We discuss the limitations of the current systems, and give motivations for the

overall thesis topic, End-to-End learning on entire conversations. Second, we review two main

End-to-End learning approaches: CTC and Seq2Seq models, and their complementary character-

istics (in Section 2.2). These reviews motivate us for proposing my joint CTC/Seq2Seq models

in Chapter 3. Then, we review several literatures that attempts to model context information, and

discuss their limitations which gives motivation for Chapter 4 and 6. Finally, we review popular

methods to integrate different types of input resources effectively: Attention/Gating mechanism

(in Section 2.4). This gives motivations to propose my gated contextual decoder described in

Chapter 5.

2.1 Conversational ASR

Figure 2.1 shows the multiple steps of the system building process for typical conversational

ASR.
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Figure 2.1: Overall system building process of typical conversational ASR.

Segmentation

The long audio file is first split into multiple, small chunk of segments/utterances. The segments

are then shuffled and the ASR model is trained on such shuffled, isolated utterances assuming

that each utterance is independent of each other. This segmentation/shuffling procedure makes

training the speech recognition models computationally feasible. I will show that training the

speech recognition models on an entire conversation is computationally infeasible by conduct-

ing a simple experiment in Chapter 4. For example, 5 minutes long audio file is split into 30

sequential 10-sec long short audio clips.

Feature computation

Once we obtain multiple audio clips and each audio clip is processed and converted to a sequence

of frames of features. For example, log-mel Filterbanks (Fbanks), Mel-Frequency Cepstral Coef-

ficients (MFCCs) [17], Perceptual Linear Prediction (PLP) [18], and Power-normalized Cepstral

Coefficients (PNCC) [19] by a signal processing frontend.
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Modeling

Figure 2.2 shows the overall architecture of traditional ASR models.

Figure 2.2: The overall architecture of traditional ASR.

Let we have a dialog d, and the dialog is split into N number of segments. Let xn =

(x1, ..., xT ) is T -length of the sequence of acoustic feature of n-th utterance. Letwn = (w1, ..., wU)

is U -length of the sequence of words or characters or sub-words of n-th utterance. The typical

ASR system models the probability distributions of a sequence of words w, given a sequence

of acoustic feature x, and it is decomposed into two terms using Bayes’ rule, an acoustic model

p(x|w) and a language model p(w):

p(w|x) =
p(x|w)p(w)

p(w)
∝ p(x|w)p(w) (2.1)

The parameter of these models p(x|w) and p(w) trained separately.

Acoustic Models

The acoustic model is using deep neural networks and hidden Markov models (HMM) [20].

Deep Neural Network (DNN) [21, 22, 23, 24, 25], Convolutional Neural Network (CNN) [26,

27, 28, 29], or Long Short-Term Memory (LSTM) which is variants of Recurrent Neural Network

(RNN) [30, 31, 32, 33, 34] are used to map an acoustic frame xt into a phonetic state posterior
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qt at each input time t (in Equation 2.2):

p(qt|xt) = AcousticModel(xt) (2.2)

Prior to this acoustic modeling procedure, the output targets of the neural network models, the

frame-level phonetic state sequence q1:T , is generated by HMM and Gaussian Mixture Model

(GMM) in an ad-hoc training methods. GMM models an acoustic feature at the frame-level x1:T

and the HMM estimates the most probable phonetic state sequence q1:T . The acoustic model is

optimized with the cross entropy error which is phonetic classification error per frame.

Pronunciation Dictionary

w = PronunciationDictionary(q) (2.3)

The pronunciation dictionary maps between the phonetic sequence q, which is a minimal unit of

sounds, and the word sequence w (in Equation 2.3). For example, English words are represented

as 39 different phonemes, or triphones which considering the left and the right phoneme contexts.

The pronunciation dictionary enables to find the word from acoustics fast by constraining the

search space of decoder, however, it assumes the several limited phonemes can cover all variety

of pronunciations of a word ( across all different accents, speaking styles, etc). The pronunciation

dictionary is generally handcrafted with linguistic expertise and rarely updated, in case of rare

words or new words, such pronunciation is not available. Even worse, for second- and third-tier

languages, such pronunciation resources may be unavailable or limited.

Language Models

p(wu|w<u) = LanguageModel(w<u) (2.4)
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The language model p(w) is modeling the most probable word sequences independent of the

acoustics (in Equation 2.4 [1]. The RNN or LSTM (typically) is widely used for the architecture

of the language models since they can capture long term dependencies rather than traditional n-

gram models, which is based on Markovian assumption and limited to conditioning on a specific

n-range of word history. The language model is also optimized separately with the different

objective, perplexity. This disjoint procedure limits the other components, the acoustic model,

cannot fully exploit the linguistic information or linguistic context information.

Decoder

Once all the separate models are optimized, the decoder tries to find the best hypothesis for each

utterance that gives the highest probability. The decoder combines all other components the

acoustic model, language model, and pronunciation dictionary to find the best single utterance w

given acoustic inputs x.

ŵ = argmaxwp(x|w)p(w) (2.5)

Post-processing

The multiple hypotheses ŵ1, · · · , ŵN of the dialog d are then passed to the spoken language un-

derstanding (SLU) or dialog modules which are also optimized disjointly. This post-processing

performed by separately trained models and then the user’s specific request finally is completed

in such subsequent modules such as language model.

However, with such a system building process of typical conversational ASR, the systems

cannot model the context information, which is beyond the utterance-level, because they model

a single, isolated utterance (in Equation 2.2 and 2.4). Although modeling dialog-level context

information can be helpful in processing a long conversation since there exists global coherence

as we discussed in Chapter 1, this context information is only modeled in post-processing models,
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such as SLU, dialog module. This limitation motivates us for the overall my thesis topic, and

proposing a novel conversational ASR that models entire conversations.

2.2 Previous Approaches: End-to-End ASR

In this section, we review an End-to-End speech recognition approaches that motivate us to opti-

mize the ASR model with the context information jointly. we also review the strengths and weak-

nesses of two main End-to-End approaches that motivate us for proposing joint CTC/Seq2Seq

models 3 which provide better performance and fast convergence.

End-to-end speech recognition is a recently proposed approach that directly transcribes speech

to text without requiring predefined alignment between acoustic frames and characters [8, 9, 10,

12, 13, 35, 36, 37]. As we described in the previous section, the traditional hybrid approach,

Deep Neural Networks - Hidden Markov Models (DNN-HMM), factorizes the system into sev-

eral components trained separately (i.e. acoustic model, context-dependent phone model, pro-

nunciation dictionary, and language model) based on conditional independence assumptions (in-

cluding Markov assumptions) and approximations [21, 38]. Unlike such hybrid approaches, the

End-to-End model learns acoustic frames to grapheme mappings in one step towards the final

objective of interest, and attempts to rectify the sub-optimal issues that arise from the disjoint

training procedure.

Figure 2.3: The End-to-End ASR directly transcribes from a sequence of acoustic features with
a single neural network based on the data-driven methods.

Recent work in End-to-End speech recognition can be categorized into two main approaches:
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Connectionist Temporal Classificaiton (CTC) [7, 8, 9, 10] and Attention-based Encoder-Decoder

[12, 13, 35, 36]. Both methods address the problem of variable-length input and output se-

quences.

2.2.1 Connectionist Temporal Classification (CTC)

The key idea of CTC [7] is using intermediate label representation π, allowing repetitions of

labels and occurrences of a special blank label,−, which represents emitting no label. CTC trains

the model to maximize P (y|x), the probability distribution over all possible label sequences

Φ(y′):

P (y|x) =
∑

π∈Φ(y′)

P (π|x) (2.6)

where y′ is given modified label sequence y′ (blank symbol inserted between labels) for

allowing blanks in the output.

CTC is applied on top of Recurrent Neural Networks (RNNs), which is interpreted as the

label distribution including the blank. The probability of label sequence P (π|x) is computed by

product of the probability of each label based on the conditional independent assumption:

P (π|x) =
T∏
t=1

qt(πt) (2.7)

where qt(πt) denotes the activation of πt-th unit in RNN output layer q at time t, representing

the probability of t-th label of π.

By forward-backward algorithm, CTC can be computed efficiently as in Equation 5.2. αt(u)

is forward variable representing total probability of all possible prefixes(y′1:u) that end with u-th

label, and βt(u) is backward variable (y′u:U ) vice versa. The network can then be trained with
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standard backpropagation by taking the derivative with respect to qt(k) for any k label as in

Equation 5.3. (Let lab(y′, k) = {k : y′u = k})

P (y|x) =

|y′|∑
u=1

αt(u)βt(u)

qt(y′u)
(2.8)

∂

∂qt(k)
P (y|x) =

1

qt(k)2

∑
u∈lab(y′,k)

αt(u)βt(u) (2.9)

By relying on conditional independence assumption, the probability of prefix α and the prob-

ability of postfix β can be calculated in a dynamic programming method and CTC achieves fast

convergence speed during the training. This characteristic is also well suited in speech recogni-

tion task where the alignment between input and output should be monotonic, rather than other

tasks without such restriction, i.e. machine translation task.

However, such conditional independent assumption limited CTC cannot explicitly model the

inter-label dependencies. This is not true in real world since the output labels, words, or charac-

ters are close related each other. This property limits the CTC to model linguistic information.

Consequently, CTC requires to incorporate the lexicon or separately trained language models

disjointly in order to alleviate this issue. This is similar to traditional hybrid framework [9, 10].

2.2.2 Attention-based Encoder-Decoder (Seq2Seq)

Unlike CTC approach, Attention model directly predicts each target without requiring interme-

diate representation or any assumptions, so that it has been shown improvement in CER when

no external language model used over CTC [36]. The model emits each label distribution at

u conditioning on previous labels as in Equation 2.10. The framework consists of two RNNs:

Encoder and AttentionDecoder, so that it is able to learn two different lengths of sequence based

on cross-entropy criterion. Encoder transforms x, to high-level representation h = (h1, · · · , hL)

as in Equation 2.11, then AttentionDecoder produces probability distribution over characters, yu,
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conditioned on h and all the characters seen previously y1:u−1 as in Equation 2.12. Here a spe-

cial start-of-sentence(sos)/end-of-sentence(eos) token is added to target set, so that the decoder

completes to generate the hypothesis when (eos) is emitted.

P (y|x) =
∏
u

P (yu|x, y1:u−1) (2.10)

h = Encoder(x) (2.11)

yu ∼ AttentionDecoder(h, y1:u−1) (2.12)

Attention mechanism helps decoding procedure by integrating all the inputs h into cu based

on attention weight vector au ∈ RL
+ over input L identifying where to focus at output step u. As

following equations 2.13 - 2.16, au can be computed by softmax of energy eu,l from two types

of attention mechanisms: content-based and location-based [12]. Both are depending on (1) the

decoding history, su−1, and (2) the content in input, h. Location-based attention mechanism

additionally uses convolutional features f from (3) the previous attention vector au−1.

eu,l =



content-based:

wT tanh(Wsu−1 + V h+ b)

location-based:

fu = F ∗ αu−1

wT tanh(Wsu−1 + V h+ Ufu,l + b)

(2.13)
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au,l =
exp(γeu,l)∑
l exp(γeu,l)

(2.14)

cu =
∑
l

au,lhl (2.15)

su = Reccurency(su−1, cu, yu−1) (2.16)

where w,W, V, F, U, b are trainable parameters, γ is sharpening factor [12], and * denotes

convolution.

In practice, the approach has two main issues. (1) The model is weak in noisy corpus. Atten-

tion model easily affected by additive noise and generate misalignments because the model does

not have any constraint that the alignment is monotonic. (2) Another issue is that it is hard to train

from scratch on larger input sequences via purely data-driven method. To make training faster,

the author [12, 36] constrains the attention mechanism to only consider inputs within narrow

range. However, this modification may limit the model’s capability to extract useful information

from long character sequence.

2.3 Previous Approaches: Context Modeling

2.3.1 Context Modeling in Language Models

In the language model trained only on text data, several recent studies have attempted to use

document-level or dialog-level context information to improve language model performance.

Recurrent neural network (RNN) based language models [1] have shown success in outperform-

ing conventional n-gram based models due to their ability to capture long-term information.

Based on the success of RNN based language models, recent research has developed a variety

of ways to incorporate document-level or dialog-level context information [2, 3, 4, 5]. Mikolov

et al. proposed a context-dependent RNN language model [2] using a context vector that is

produced by applying latent Dirichelt allocation [39] on the preceding text. Wang et al. pro-
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Figure 2.4: Context modeling in language models in conversational ASR pipelines.

posed using a “bag-of-words” to represent the context vector [3], and Ji et al. proposed using

the last RNN hidden states from the previous sentence to represent the context vector [4]. Liu

et al. proposed using an external RNN to model dialog context between speakers [5]. All of

these models have been developed and optimized on text data, and therefore must still be com-

bined with conventional acoustic models, which are optimized separately without any context

information beyond sentence-level.

The recent study [40] attempted to integrated such a dialog session-aware language model

with acoustic models (as in Figure 2.4). Their proposed session-aware language model explic-

itly learn dialog-level context information. By re-scoring with session-aware LM, they showed

improved WER on SWBD tasks. However, this approach is still disjoint training procedure, so

that the context information is only added as a post-fix, and is not fully exploited.

2.3.2 User-specific Context Modeling in End-to-End ASR

Several recent studies have considered incorporating the context information within a sequence-

to-sequence based End-to-End speech recognition models [41, 42]. Pundak, et al. proposed

Contextual LListen, Attend, and Spell (CLAS) that can be jointly optimized with the context in-

formation. They create a list of bias phrases, such as “talk to”, “play rihanna music”,
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“call demetri mobile”, “talk to trivia game”, and use attention mechanism to

encode the context. They showed significant WER improvements over the disjoint procedure.

In contrast with my thesis work which focuses on incorporating conversational context in-

formation for processing a long conversation, their methods rely on a strong assumption that the

prior knowledge to get the list of bias phrases for specific tasks, contact names, song names,

voice search, dictation, is exist at inference time.

2.4 Previous Approaches: Gating Mechanism

Gating mechanism is widely used to control information flow or integrate different types of

information [30, 43].

The input gate, output gate, and forget gate in LSTM model are popular examples

of usage of gating mechanism. The gate mechanism generates a value between 0 to 1 by using

sigmoid function. This generated gate value is multiplied with network hidden representation

and control the information flow. Consequently, it alleviates the gradient exploding or vanishing

problem in the vanilla RNN models, and it enables to learn long dependencies. Learning Hidden

Unit Contribution (LHUC) [44] is another example that is using a gating mechanism to amplitude

the hidden units. Swietojanski, et al. proposed LHUC to learn the speaker-specific hidden unit

contributions and has been shown the performance improvement in speaker adaptation tasks.

Gating-based approaches have been also used for fusing various types of representations [45,

46, 47]. It has been shown better performance than merely concatenating representation because

it can decide how to weigh among the different representations and its increased representation

power using multiplicative interactions.

In genre classification task and image search task, [45, 46] attempted to integrate word repre-

sentation and visual representation by using gating mechanism on over the two different types of

representation. [47] proposed to use language-specific gating mechanism for language universal

speech recognition models, which enable to recognize multiple languages. The internal repre-
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sentation of neural network architecture can be modulated with a gating mechanism conditioned

on the language identity in a language-specific way.
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Chapter 3

Multi-task learning of CTC/Seq2Seq

In this chapter, I first describe the complementary characteristics of two main End-to-End ap-

proaches: CTC and Seq2Seq models (in Section 2.2). I then propose a joint CTC/Seq2Seq

End-to-End ASR framework to overcome the shortcomings of the existing two main approaches

CTC and Seq2Seq and to improve convergence speed as well as accuracy performance [48, 49].

3.1 Complementary Characteristics of CTC and Seq2Seq

As we detailed discussed in Chapter 2, CTC based End-to-End ASR framework generates the

output sequences which has the same length of input frame length by allowing repetition and

blank symbols (Figure in 3.1).

CTC based End-to-End ASR framework has been shown strength in fast convergence speed.

By relying on conditional independence assumption similar to Hidden Markov Models, the prob-

ability of prefix α and the probability of postfix β can be calculated in a dynamic programming

method and CTC achieves fast convergence speed during the training. This characteristic is also

Ill suited in speech recognition task where the alignment between input and output should be

monotonic, rather than other tasks without such restriction, i.e. machine translation task.

However, such conditional independent assumption limited CTC cannot explicitly model the
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Figure 3.1: Previous CTC based End-to-End framework

inter-label dependencies. This is not true in real-world since the output labels, words, or charac-

ters are close related to each other. This property limits the CTC to model linguistic information.

Consequently, CTC requires to incorporate the lexicon or separately trained language models

disjointly in order to alleviate this issue. This is similar to a traditional hybrid framework [9, 10].

On the other hand, Seq2Seq based End-to-End ASR framework generates the output se-

quence conditioning on an attended h which is a weighted sum of h (high-level input feature

representation) by an attention mechanism (Figure in 3.2.

As we detailed discussed in Chapter 2 as Ill, the biggest strength of SeqSeq based End-to-End

ASR framework is the ability to learn label dependencies similar to the language model within a

single network and optimized jointly without any conditional independent assumption.

However, Seq2Seq based End-to-End ASR framework has two main issues. (1) The model

is weak in noisy speech data. The attention model is easily affected by noises, and generates

misalignments because the model does not have any constraint that guides the alignments to

be monotonic as in DNN-HMM and CTC. (2) Another issue is that it is hard to learn from

scratch on larger input sequences via purely data-driven methods. To make training faster, the

authors [11, 12] constrains the attention mechanism to only consider inputs within a narrow

range. However, this modification may limit the model’s capability to extract useful information
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Figure 3.2: Previous Sequence-to-Sequence based End-to-End framework

from long character sequences.

3.2 Joint learning of CTC/Seq2Seq

The main idea of my joint CTC/Seq2Seq ASR model is to use both CTC and Seq2Seq objective

function within a multi-task learning framework (MTL). I share the encoder network with both

objective functions simultaneously. The shared encoder transforms our input sequence x1:T into

high level features h, the location-based attention decoder generates the output target sequence

w1:U .

Figure 3.3 illustrates the overall architecture of my joint CTC/Seq2Seq ASR framework. My

proposed joint CTC/Seq2Seq based End-to-End framework: the shared encoder is trained by

both CTC and attention model objectives simultaneously.

Unlike the Seq2Seq model, the forward-backward algorithm of CTC can enforce monotonic

alignment between speech and label sequences. We therefore expect that my framework is more

robust in acquiring appropriate alignments in noisy conditions.
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Figure 3.3: My proposed Joint CTC/Seq2Seq based End-to-End framework

Another advantage of using CTC as an auxiliary task is that the network is learned quickly.

In my experiments, rather than solely depending on data-driven attention methods to estimate the

desired alignments in long sequences, the forward-backward algorithm in CTC helps to speed

up the process of estimating the desired alignment without the aid of rough estimates of the

alignment which requires manual effort.

Let we have T -length acoustic input feature sequences x, and corresponding U -length output

label (word or characters) sequences w.

The CTC loss to be minimized is defined as the negative log likelihood of the ground truth

output sequence w∗, i.e.

LCTC ,− ln
∑

π∈Φ(w)

p(π|x) (3.1)

where π is the label sequence allowing the presence of the blank symbol, Φ is the set of all

possible π given u-length w.

The Seq2Seq loss to be minimized is defined as the negative log likelihood of the ground
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truth output sequence w∗, i.e.

LS2S , − lnP (w∗|x) = −
∑
u

lnP (w∗u|x, w∗1:u−1) (3.2)

where w∗1:u−1 is all the previous labels.

The proposed joint CTC/Seq2Seq objective is minimizing the loss Ljoint which is the com-

bination of the CTC loss LCTC and the Seq2Seq loss LS2S. With a tunable parameter, λ : 0 ≤

λ ≤ 1, the model regularizes the weight of the loss from CTC objective and cross entropy of

Seq2Seq model:

L|o〉\t = λLCTC + (1− λ)LS2S (3.3)

Both CTC and the attention-based encoder-decoder networks are also used in the inference

step. The final hypothesis is a sequence that maximizes a weighted conditional probability of

CTC and attention-based encoder-decoder network [15]:

w∗ = argmax{γlogpCTC(w|x)

+ (1− γ) log pS2S(w|x)}
(3.4)

3.3 Experiments

3.3.1 Datasets

WSJ and CHiME-4

I performed three sets of the experiment: clean speech corpus, WSJ0 (15 hours), WSJ1 (81

hours), [50, 51], and noisy speech corpus, CHiME-4 (18 hours) [52].

The CHiME-4 corpus was recorded using a tablet device in an everyday environment - a
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cafe, a street junction, public transport, and a pedestrian area. As input features, I used 40 mel-

scale filterbank coefficients, with their first and second order temporal derivatives to obtain a

total of 120 feature values per frame. Evaluation was done on (1) ”eval92” for WSJ, and (2)

”et05 real isolated 1ch track” for CHiME-4. Hyperparameter selection was performed on the

(1) ”dev93” for WSJ, and (2) ”dt05 multi isolated 1ch track” for CHiME-4. All of my experi-

ments I do not use any language model and lexicon information. For Seq2Seq model, I use only

32 distinct labels: 26 characters, apostrophe, period, dash, space, noise, and sos/eos tokens. CTC

model uses the blank instead of sos/eos, and MTL model uses both sos/eos and the blank.

3.3.2 Training and Decoding

My model used 4 layers of 320 Bidirectional Long Short-Term Memory Networks(BLSTM)

[30, 31] in the encoder, and 1 layer of 320 LSTM in the decoder. The top two layers read every

second of hidden states of the below network, thereby the encoder reduced the utterance length

by the factor of 4, L = T/4. 10 centered convolution filter of width 100 was used in the location-

based attention to extract the feature from the previous step alignment. I use the sharpening

factor γ = 2. Linear projection layer is followed by each BLSTM layer.

The AdaDelta algorithm [53] with gradient clipping [54] was used for optimization. All the

weights are initialized with the range [-0.1, 0.1] of uniform distribution. For my MTL, I tested

three different task weights, λ: 0.2, 0.5, and 0.8.

For decoding, I used a beam search algorithm similar to [55] with the beam size 20 to mini-

mize the cost. I adjusted the cost by adding length penalty, length(hyp) ∗ 0.3 for CHiME-4 and

length(hyp) ∗ 0.1 for WSJ experiments. Note that I do not use any lexicon or language model.

My framework for these experiments is implemented with Chainer library [56].
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3.3.3 Results

In Table 3.1 shows the Word Error Rate (WER) results of CTC only, Seq2Seq only, and my

proposed joint CTC/Seq2Seq End-to-End model on the clean dataset WSJ0 and WSJ1.

Table 3.1: Comparison of Character Error Rate (% CER): CTC, Seq2Seq, and my Joint
CTC/Seq2Seq on WSJ1, and WSJ0 tasks.

Model(train) CER(valid) CER(eval)

WSJ-train si284 (80hrs) dev93 eval92

CTC 10.06 12.45

Seq2Seq(content-based) 10.85 8.27

Seq2Seq(location-based) 10.88 8.07

MTL(λ = 0.2) 10.86 8.16

MTL(λ = 0.5) 9.93 7.43

MTL(λ = 0.8) 10.46 7.26

WSJ-train si84 (15hrs) dev93 eval92

CTC 31.23 24.69

Seq2Seq(content-based) 31.00 22.10

Seq2Seq(location-based) 24.15 16.32

MTL(λ = 0.2) 23.73 15.69

MTL(λ = 0.5) 22.45 15.12

MTL(λ = 0.8) 25.77 15.92

The WER results showed that my joint CTC/Seq2Seq End-to-End model significantly out-

performed over both CTC or Seq2Seq only models. My joint CTC/Seq2Seq End-to-End model

shows 7.0 - 9.5% and 6.6 - 9.9% relative improvements on validation and evaluation set, respec-

tively.

In Table 3.1 shows the Word Error Rate (WER) results of CTC only, Seq2Seq only, and

my proposed joint CTC/Seq2Seq End-to-End model on the noisy dataset CHiME-4. My joint

CTC/Seq2Seq End-to-End model again significantly outperformed over both CTC or Seq2Seq
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Table 3.2: Comparison of Character Error Rate (% CER): CTC, Seq2Seq, and my Joint
CTC/Seq2Seq on noisy CHiME-4 tasks.

Model(train) CER(valid) CER(eval)

CHiME-4-tr05 multi (18hrs) dt05 real et05 real

CTC 37.16 48.84

Seq2Seq(content-based) 45.15 55.80

Seq2Seq(location-based) 36.16 48.31

MTL(λ = 0.2) 35.71 47.95

MTL(λ = 0.5) 33.56 46.85

MTL(λ = 0.8) 32.71 45.13

only models.

We also observed that the benefit from my joint CTC/Seq2Seq increased in noisy conditions,

and when larger weights on CTC loss (i.e. λ = 0.8) achieved the best performance in CHiME-4,

while λ = 0.5 showed the best performance in clean WSJ0.

One noticeable thing is that my framework outperformed over both CTC and Seq2Seq models

even in the clean corpus. One possible reason is that CTC can train the encoder maintaining a

balance between acoustics and transcription information because CTC does not explicitly use

character inter-dependencies.

Apart from the robustness, my proposed joint CTC/Seq2Seq End-to-End model can be also

very helpful for accelerating learning the desired alignment.

Figure 3.4 shows the learning curve of different models, CTC only, Seq2Seq only, and my

proposed joint CTC/Seq2Seq End-to-End model with (λ = 0.2, 0.5, 0.8) over training epoch.

The character accuracy on the validation set of CHiME-4 is calculated by edit distance. Note

that the accuracy of Seq2Seq and my proposed joint CTC/Seq2Seq End-to-End model were

obtained with a given gold standard history. As shown in Figure 3.4, the CTC only model
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Figure 3.4: Comparison of the learning curve: CTC, Seq2Seq, and my Joint CTC/Seq2Seq.

converged the fast however its character accuracy is worse than the other models, Seq2Seq only,

and my proposed joint CTC/Seq2Seq End-to-End model as I expected. I observed that Seq2Seq

only model converged the slowest even though the character accuracy is similar to my proposed

joint CTC/Seq2Seq End-to-End models. I also observed that when I use large λ giving more

weight on CTC loss, the network learns fast and converges early. This result demonstrates the

effectiveness of using CTC as an additional objective function to boost the convergence speed as

I hypothesized.

In addition to comparing the learning curve between different End-to-End ASR models to

demonstrate the effectiveness of using CTC as an additional objective function, I also visualize

the learned attention alignments between input and output at different training epoch stages to

analyze. From this analysis, I demonstrate why my proposed joint CTC/Seq2Seq End-to-End

model outperformed over the Seq2Seq only models in addition to the benefit of convergence

speed improvement. Since we are visualizing the actual attention weights, I only show Seq2Seq

models and my proposed joint CTC/Seq2Seq End-to-End model.

Figure 3.5 shows the attention alignments between characters (y-axis) and acoustic frames
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(x-axis) of Seq2Seq only model across over training epoch (1,3,5,7, and 9). All alignments are

for the utterance (F05 440C0207 CAF REAL) in noisy CHiME-4 evaluation set.

Figure 3.5: Visualization of the alignment between input frames and output characters of
Seq2Seq only model.

We first observed that Seq2Seq only model could not learn the alignment properly and

showed distorted alignment. I found that such distorted alignments resulted in a negative im-

pact on the overall WER results.

Figure 3.6 shows the attention alignments between characters (y-axis) and acoustic frames (x-

axis) of my proposed joint CTC/Seq2Seq End-to-End model across over training epoch (1,3,5,7,

and 9). All alignments are for the same utterance (F05 440C0207 CAF REAL) in noisy CHiME-

4 evaluation set.

Figure 3.6: Visualization of the alignment between input frames and output characters of my
proposed joint CTC/Seq2Seq End-to-End model.
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We observed that my proposed joint CTC/Seq2Seq End-to-End model learned the desired,

monotonic alignment in relatively early training stage (5th epoch), while Seq2Seq only model

could not learn the desired alignment. From this result I found that using CTC as an additional

objective function helps the model to learn our desired, monotonic alignment even without any

manual techniques, such as windowing restrictions.

3.4 Summary

We have introduced a novel, general method for robust and fast End-to-End speech recognition

based on multi-task learning approach with CTC and Seq2Seq models. My method improves

robustness via training shared-encoder using auxiliary CTC objective. Moreover, it significantly

speeds up learning the desired alignment without any manually restricting the range of inputs

even in longer sequences. My method has outperformed both CTC and the Seq2Seq model

on a speech recognition task in real-world noisy conditions as well as clean conditions. In the

next chapters 4 6, I will show conversational End-to-End ASR based on the Joint CTC/Seq2Seq

model.
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Chapter 4

Conversational End-to-End ASR

The recent progress in End-to-End speech recognition systems that we discussed in Section

2promises to integrate all available information (e.g. acoustic, language resources) into a single

model, which is then jointly optimized. It seems natural that conversational context informa-

tion should thus also be integrated into the End-to-End models to improve recognition accuracy

further.

Current End-to-End ASR solutions, even state-of-the-art systems, are still formulated as an

optimization problem over isolated utterances, not entire conversations. These systems are there-

fore unable to use potentially important contextual information that spans across multiple utter-

ances.

In this chapter, I present a novel conversational End-to-End ASR system that process entire

conversations with a technique to preserve long conversational contexts, and present my context-

aware End-to-End ASR models.

4.1 Preserving Conversational Context

In this section, I first demonstrate why we cannot treat an entire conversation as an single ut-

terance to preserve conversational context information similar to the language model training. I
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then show my technique to preserve such conversational context information efficiently by using

extract, detach, cache, the context embeddings on serialized training minibatches.

4.1.1 Naive Solution: Concatenation of Utterances

The simplest solution would be treating an entire conversation as an single utterance to preserve

conversational context. Similar to the previous work, context modeling in language models, that

we reviewed in Chapter 2, we can simply concatenate multiple utterances and train the model

on those data. However, the input sequences of speech frame and the output label sequences are

too large to train the model so that it is computationally infeasible. For example, one second of

speech input has more than 30 frames and 10 character labels, so 20 minute-long conversation

may have more than 36k frames 12k characters which is huge, unable to fit in GPU memory.

Even worse, it will result in poor parallelization due to severely variable-length between different

dialogs. Therefore, we need to extract some sort of embeddings as “context” from such huge

data. The detailed methods how we extract the context embeddings will be discussed in Chapter

6.

Figure 4.1: BPTT on entire conversation is computationally infeasible.

We conducted a simple experiment to show why back-propagating through time (BPTT) on
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entire conversation is computationally infeasible. Figure 4.1 shows the consumption of GPU

memory for computing the minibatch that has different number of utterances. Grey bar shows

the normal way how we train the model with the minibatch that has a single utterance, and 30

size of minibatch can work well on 11G single GPU. However, when we are concatenating just 3

or 4 utterances, we got out-of-memory issue. Therefore, we need to detach the computational

graph for the context embeddings and cache the context embeddings until needed. This can be

seen a similar process to truncated back-propagation through time (BPTT).

4.1.2 Extract/Detach/Cache Context Embedding on Serialized Dataset

Dataset Serialization

Figure 4.2: Extract/Detach/Cache context embedding on serialized utterances based on their
onset time in dialog.

In order to keep track the context embeddings over each minibatch iteration during the train-

ing procedure, I create minibatches with serialized utterances based on their start time in dialog.

I only apply randomization at dialog level. Unlike a minnibatch for typical ASR contains ran-

domly shuffled utterances, our minibatch contains the utterances from each different dialogs, and

the next minibatch contains the next utterances of the same dialogs as the previous minnibatch,

and so on.

Figure 4.2 shows a simple example how I create minibatches to keep track the context em-
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beddings. For example, let we have two dialogs A and B, and we want to create minibatch size

of 2. We then choose the first utterance from dialog A, “Hello”, and also the first utterance from

dialog B, “How can I help you?” based on their start time within the dialog to create the first

minibatch. For the next minibatch (2nd), we choose the second utterance from dialog A, “How

are you?” and the second utterance from dialog B “I have a question” and put in the second

minibatch. In this way, we can keep the order of the original conversation and track the context

embeddings even during the training time.

This serialization may hurt the efficient parallelization since each minibatch may have the

utterances with severely variable input and output lengths. This is because we should not control

the order of utterance to track the context information, unlike in practical we try to use similar or

same length of utterances to make a minibatch for reducing the dummy computation of the gap

across the utterances. This issue can be alleviated by using some segmentation algorithm that

tries to segment the long audio with the similar length of chunks.

We assume that we already have the segmentation information and audio files are already

segmented, we may be able to extend to process the entire audio in similar way even without

segmentation information by using voice activity detection algorithm [57].

Extract/Detach/Cache Context Embeddings

As I shown in previous section, the backpropagation through time (BPTT) on the entire con-

versation is computationally infeasible. As my solution, I propose to extract the context

information in a single, fixed-dimensional vector. I call it as context embeddings in this thesis.

Conversational context embedding can be encoded in two categories: acoustic conversational

context and linguistic conversational context. In this thesis I focus on linguistic conversational

context by using previous spoken utterances. I propose various way to encode linguistic conver-

sational context in Chapter 6 and will discuss it further later.

Another important key technique is detach the computational graph for the context. At

38



every minibatch computation, after I extract the context embedding, we need to detach

the computational graph. We can consider this context embedding for the current minibatch

as an additional new input values which contains context information for the next minibatch

computation. This is similar process to truncated backpropagation through time.

We then cache the context embeddings and pass them to the next minibatch computation.

We have a single context embedding per each dialog per minibatch (utterance). The context

embedding for each dialog should be passed to the next utterance of the same dialog, in case

of the order of utterances are changed within minibatches the utterances as seen in Figure 4.3, I

additionally store the dialog identities of the minibatch so that we can pass the correct context

embedding to the next minibatch properly.

Figure 4.3: In case of the order of utterances are changed within minibatch, we additionally keep
track the dialog ID.

Efficient Minibatch Creation

After the minibatch computations of a dialog finished, I release the cached context histories and

reset the model states. Since the number of utterance (segmentation) is vary among the different

dialogs, the reset time might be different per each dialog. For making training procedure simple,

I try to group the dialog that has similar number of utterances and make a series of minibatches

using the utterances of those dialogs. In this way, we wait until the series of utterances of the

dialog groups are processed, then reset the model states, and release the cached context histories.
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Algorithm 1 The overall procedure of creating serialized dataset given size of minibatch m and
number of GPU k.

1: procedure CREATEDIALOGGROUPS([uttr], m, k)
2: [sorted uttr] = sort([uttr]) by utterance’s start time and dialog id
3: [dialogIDs] = sort(dialogIDs) by its number of utterances
4: initialize [dialog-group]
5: while [dialogIDs]:
6: initialize [uttr-batch]
7: for dialogID in dialogIDs :
8: uttr = dequeue([sorted uttr], dialogID)
9: enqueue(uttr-batch, uttr)

10: if dialogIDs not in [sorted uttr]:
11: enqueue(dialog-group, [uttr-batch])
12: dialogIDs = dequeue([dialogsID], m× k)
13: return [dialog-group]

For the training the model using multiple GPUs, we should consider data parallelism care-

fully in my approach. Assume there are k-number of GPUs on a machine and we want to create

m-size of minibatch per each GPU. Given the model to be trained, each GPU will maintain a

complete set of model parameters independently as well as minibatch data.

The usual way of data parallelism is that: for each iteration, 1) select (m × k) utterances

randomly, 2) divide the utterances in the batch into k portions, and 3) distribute one to each GPU

randomly.

However, in my approach, not for each iteration, but for a series of iteration (at dialog level),

1) I first select (m × k) dialogs that have same or similar number of utterances, 2) divide the

dialogs into k portions, 3) distribute one to each GPU, and 4) for each iteration, select m utter-

ances from the m dialogs in each GPU independently with our serialized way (as described in

previously).

Overall procedure is described as follows:
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Algorithm 2 The overall procedure of our minibatch creation including data parallelism for the
Multi-GPU computation

1: procedure CREATEUTTRMINIBATCH([dialog-group], m, k)
2: shuffle [dialog-groups]
3: if multi-GPU then:
4: for dgroup in [dialog-groups]:
5: for dbatch in dgroup:
6: split dialogs into k
7: distribute one (m-dialogs) to each GPU
8: [uttr-batch] += unpack(dbatch)
9: else:

10: for dbatch in [dialog-groups]:
11: [uttr-batch] += unpack(dbatch)
12:
13: end if
14: return [uttr-batch]

4.2 Vanilla Context-Aware End-to-End ASR

In this section, I describe my proposed vanilla conversational End-to-End ASR that incorporates

the context embeddings which is forwarded from previous minibatch (utterance) computation

based on serialized dataset (in Section 4.1). As we discussed in previous Chapter 3, the recent

progress in End-to-End speech recognition systems promises to integrate all available informa-

tion (e.g. acoustic, language resources) into a single model, which is then jointly optimized. It

seems natural that such conversational context information should thus also be integrated into

the End-to-End models to improve recognition accuracy further. I formulate my vanilla conver-

sational End-to-End ASR as follows.

Let we have a dataset consists of D-number of dialogs, {d1, d2, · · · , dD}. Let each dialog

dd has N -number of segments which is the pair of acoustic features x and word or character

(subword) sequences w, dd = ((x,w)1, · · · , (x,w)N). We have variable input and output lengths

for each segment n. Let xn is T -length of sequence of acoustic features xn = (x1, · · · , xT ) and

let wn is U -length of sequence of words wn = (w1, · · · , wU). Let we have a context embedding,

c.
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I use Seq2Seq framework (in Chapter 2 and 3) as a basis and extend the decoder sub-network.

Figure 4.4: Overall architecture of my conversational End-to-End ASR models.

Figure 4.4 shows the standard End-to-End ASR that I use as basis. The standard End-to-End

system is modeling only each utterance (x,w)n. The T -length acoustic input x1:T is forwarded

and mapped to h1:T̂ , high-level input features in Encoder, and usually we subsample original

length from T to T̂ by a factor of 4. The Decoder network takes h and and generates w

with attention mechanism. The whole network parameters are optimized towards maximizing

probability of wn given xn:

θ = maxθ
∑
U

logP (wnu |xn1:T , ŵ
n
<u; θ) (4.1)

We now have an additional input, c, context embedding which is generated from previous

utterance. In my vanilla conversational End-to-End model, I simply use a single preceding utter-
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ance, (x,w)n−1, to obtain the context embedding cn for n-th utterance modeling.

enc = ContextEncoder((x,w)n−1) (4.2)

My proposed conversational end-to-ennd ASR is modeling each utterance conditioning on the

context embedding cn, and the whole network parameters are optimized towards maximizing

probability of wn given xn and cn:

θ = maxθ
∑
U

logP (wnu |xn1:T , ŵ
n
<u, e

n
c ; θ) (4.3)

4.3 Experiments

4.3.1 Dataset

300 hours of Switchboard task (SWBD)

I investigated the accuracy performance of my proposed conversational end-to-end ASR mod-

els on the Switchboard LDC corpus (97S62) which has a 300 hours training set. Note that in

this experiment I did not use the Fisher dataset. I split the Switchboard data into two groups,

then used 285 hours of data (192 thousand sentences) for model training and 5 hours of data (4

thousand sentences) for hyper-parameter tuning. Evaluation was carried out on the HUB5 Eval

2000LDC corpora (LDC2002S09, LDC2002T43), which have 3.8 hours of data (4.4 thousand

sentences), and I show separate results for the Callhome English (CH) and Switchboard (SWB)

evaluation sets. I denote train nodup, train dev, SWB, and CH as our training, development, and

two evaluation datasets for CH and SWB, respectively. Table 4.1 shows the number of dialogs

per each dataset.

I sampled all audio data at 16kHz, and extracted 80-dimensional log-mel filterbank coeffi-

cients with 3-dimensional pitch features, from 25 ms frames with a 10ms frame shift. I used
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Table 4.1: Experimental dataset description: SWBD datasets.

training validation evaluation

SWBD SWBD SWBD CallHm

dialogs 2,402 34 20 20

utters./dialog 80 118 92 131

83-dimensional feature vectors to input to the network in total. I used 49 distinct labels: 26 char-

acters, 10 digits, apostrophe, period, dash, underscore, slash, ampersand, noise, vocalized-noise,

laughter, unknown, space, start-of-speech/end-of-speech, and blank tokens.

Note that no pronunciation lexicon was used in any of the experiments.

4.3.2 Training and decoding

Model

In this experiment, I used joint CTC/Seq2Seq End-to-End speech recognition architecture [48,

49] with ESPnet toolkit [14] as I described in previous Chapter 3. I used a CNN-BLSTM encoder

as suggested in [15, 58]. I followed the same six-layer CNN architecture as the prior study, except

I used one input channel instead of three, since I did not use delta or delta delta features. Input

speech features were downsampled to (1/4 x 1/4) along with the time-frequency axis. Then,

the 4-layer BLSTM with 320 cells was followed by the CNN. I used a location-based attention

mechanism [12], where 10 centered convolution filters of width 100 were used to extract the

convolutional features.

The decoder network of both my proposed models and the baseline models was a one-layer

LSTM with 300 cells. My dialog-context aware models additionally requires one-layer with

300 hidden units for incorporating the context vector with decoder states, and attention network

with 2402-dimensional output layer to generate the context vector. I also built a character-level

RNNLM (Char-RNNLM) on the the same Switchboard text dataset. The Char-RNNLM network
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was a two-layer LSTM with 650 cells, trained separately only on the training transcription. This

network was used only for decoding. Note that I did not use any extra text data other than the

training transcription.

The AdaDelta algorithm [53] with gradient clipping [59] was used for optimization. I used

λ = 0.5 for joint CTC/Attention training. I bootstrap the training my proposed dialog-context

aware End-to-End models from the baseline End-to-End models. For decoding of the models, I

used joint decoder which combines the output label scores from the AttentionDecoder, CTC, and

Char-RNNLM by using shallow fusion [15]:

y∗ = argmax{ log patt(y|x)

+ α log patt(y|x)

+ β log prnnlm(y)}

(4.4)

The scaling factor of CTC, and RNNLM scores were α = 0.3, and β = 0.3, respectively. I

used a beam search algorithm similar to [55] with the beam size 20 to reduce the computation

cost. I adjusted the score by adding a length penalty, since the model has a small bias for shorter

utterances. The final score s(y|x) is normalized with a length penalty 0.1.

The models were implemented by using the Chainer deep learning library [60], and ESPnet

toolkit [14, 48, 49].

4.3.3 Results

I evaluated both the End-to-End speech recognition model which was built on sentence level data

(sentence-level end2end) and my proposed conversational End-to-End ASR models which lever-

aged conversational context information within and beyond the utterance level (conversational-

context aware end2end).

Table 4.2 shows the WER of my baseline, my conversational End-to-End ASR models, and

several other published results those were using character level output units and only trained on
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Table 4.2: Word Error Rate (% WER) of baseline and my conversational End-to-End ASR mod-
els (vanilla) on the Switchboard dataset.

Models CH WER (%) SWB WER (%)

sentence-level end2end
Seq2Seq A2C [61] 40.6 28.1

CTC A2C [9] 31.8 20.0

CTC A2C [62] 32.1 19.8

sentence-level end2end
My baseline (CTC/Seq2Seq) 34.4 19.0

dialog-context aware end2end
My method (a) 34.1 18.2

My method (b) 33.2 18.6

300 hours Switchboard training data.

As shown in Table 4.2, I obtained a performance gain over my baseline sentence-level end2end

by using the conversational context information. My proposed method (a) performed best on

SWB evaluation set showing 4.2% relative improvement over my baseline. My method (b) per-

formed best on CH evaluation set showing 3.4% relative improvement over my baseline.

Table 4.3: Substitution rate (% Sub), Deletion rate (% Del), and Insertion rate (% Ins) for the
baseline and my proposed model.

Model Test Sub Del Ins WER

% % % %

Baseline CH 23.9 5.8 4.7 34.4

Proposed model(a) CH 23.9 5.9 4.3 34.1

Proposed model(b) CH 22.8 6.3 4.1 33.2

Baseline SWB 13.1 3.4 2.5 19.0

Proposed model(a) SWB 12.5 3.4 2.2 18.2

Proposed model(b) SWB 12.6 3.6 2.4 18.6

I also analyze the WER results by decomposing it into the insertion, deletion, and substitution
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rates. In Table 4.3 shows the insertion, deletion, and substitution rates. I observed that the largest

factor of WER improvement was from the substitution rates rather than deletion or insertion.

In addition to the WER results, I show the three example utterances which are adjacent and

manually chosen from evaluation dataset. In Table 4.4, second column is the preceding utterance,

and the last column shows the current utterance. In the first example, the groundtruth word is

the bolded word “sauna” which is relatively rare term than “saw”. The baseline model cannot

predict it, however, my conversational End-to-End ASR model can predict correctly. When we

take a look at the preceding sentence, there exist semantically related words were appeared, and

my proposed model might benefit from the context information this past utterance. In the second

example, the groundtruth word is the bolded word “comfortable”. The baseline model cannot

predict it again, however, my conversational End-to-End ASR model can predict correctly. In

the previous utterance exists semantically related words were appeared, and my proposed model

might benefit from the context information this past utterance.

Table 4.4: Comparison of reference transcription, and two hypotheses of the baseline and my
proposed conversational end-to-ennd ASR models.

Model previous sentence current sentence

REF yes it is so hot in the building have you ever been in it it is like a sauna
base yeah if when he said that is like just so hot in ours belly have ever been but it is like i saw
Ours yeah if when he is in this like it is so hot in the belief I have never been but it is like a sauna

REF if we go we like check into a to a to a hotel but i know but it is much more comfortable
base if we go we like check until the law that you know to do i know that is much more comes of one
ours if we go we like check into a law if it does a job hotel i know that is much more comfortable

4.4 Summary

In this chapter, I described my proposed efficient way to preserve a long, conversational context

information over the entire conversations based on extract/detach/cache context embed-

dings on serialized minibatch sets by utterance start time in dialog. I also described my proposed

conversational End-to-End ASR models that explicitly use conversational context embeddings
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which is beyond utterance-level information and that can be optimized in an End-to-End manner

towards minimizing the current utterance prediction error. My conversational End-to-End ASR

model was shown to outperform previous End-to-End models trained on utterance-level data,

even when I just use a single previous utterance. In the next chapters, we will discuss a more

effective way to integrate the context embeddings within our conversational End-to-End ASR

model in Chapter 5, and various ways to encode context embedding better in Chapter 6.
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Chapter 5

Gated Contextual Decoder

My vanilla conversational context End-to-End models have been shown promising results as seen

in Chapter 4 by jointly learning conversational context information based on my End-to-End

ASR architecture (in Chapter 3). In this chapter, I explore the way to integrate conversational

context embeddings ec more effectively by using gating mechanism. In Section 5.1, I show the

example of usage of gating mechanism that was motivated us to use in my conversational End-

to-End ASR models. In Section 5.2, I will describe both the naive way - concatenation and gated

contextual decoder to fuse context embedding in to the decoder network.

5.1 Integrating Different Types of Representation

As we already discussed in Chapter 2, gating mechanism is widely used to integrate different

types of information [30, 43]. In this section, I show my language-specific gating mechanism

[47] as an example of gating mechanism to integrate different types of representation. This

previous work motivate us to propose gated contextual decoder.

The way how to use gating mechanism in [47] is as follows: The outputs of each hidden layer

in ASR models are processed by a series of language-dependent gates before being passed to the

next layer in the model. Specifically, one-hot language indicator vector dl for each language l
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is created. Then the gate value based on the language indicator vector dl and the current output

values of hi, the ith hidden layer were computed, as

g(hi, dl) = σ(Uhi + V dl + b) (5.1)

where U, V , and b are trainable parameters. The gated hidden activations are then calculated as

ĥi = g(hi, dl)� hi (5.2)

Finally, ĥi and dl are concatenated and input to the next layer.

h̃i = [ĥi : dl] (5.3)

If the dimensions of hi and dl are n and m, respectively, each gating layer requires (n + m) x n

additional parameters.

Figure 5.1: Comparison of the % WER performance improvement (relative) over different types
of gating mechanism.

The Figure 5.1 shows the comparison of the WER performance improvement over different

types of gating mechanism. The leftmost bar shows the result of simply concatenation with

the one-hot language vector dl. The next three bars show the performance of different gating

functions driven by the current hidden state, the language identity, or both, respectively. Finally,

the rightmost bar shows the approach shown in Equations 5.2-5.3. The Figure 5.1 shows that the
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best performance was obtained when gating is applied to every layer (not shown).

The gating mechanism enable to effectively modulate the internal representation. This finding

motivates us to use gating mechanism to fuse conversational context embeddings. I will describe

the details in the next Section 5.2.

5.2 Conversational Context Fusion in Decoder

In this Section, I show how to integrate the conversational context embeddings which is for-

warded from previous minibatch as discussed in Section 4.1 into my model and trained jointly in

an End-to-End manner.

5.2.1 Naive Solution: Concatenation of Context/Word/Speech Embeddings

Figure 5.2: Decoder network of End-to-End ASR that takes conversational context embeddings.

If we look at the detail of decoder part, as in Figure 5.2, it has attention mechanism to identify

which input is more focused on at each output prediction. This attention mechanism takes h,

high-level input features, and previous attention weights au−1, and previous decoder states su−1.

Then the attention mechanism generates attended h, which is generally called as context vector,

but to avoid confusion with my conversational context embedding, I call it as speech embedding.

51



The LSTM decoder, takes two different types of embeddings, 1) speech embeddings es, the

attended input, and 2) word embeddings ew, from previous output token. I extend this decoder,

since we now have “context embedding” ec from previous spoken utterances (in Equation 5.4.

So, my LSTM decoder takes this embedding as an additional input. we will discuss how we

encode a single, fixed dimensional, context embeddings in Chapter 6. The network parameters

are optimized towards maximizing probability of w given x and ec (in Equation 5.5).

ec = ContextEncoder((x,w)n−1) (5.4)

θ = maxθ
∑
U

logP (wu|x1:T , ŵ<u, ec; θ) (5.5)

The simplest way to use the additional input, context embeddings, would be concatenation

with other embeddings, speech embeddings, previous word embedding, as illustrated in Figure

5.3.

Figure 5.3: Concatenation of context/word/speech embeddings
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5.2.2 Gated Contextual Decoder

Rather than simple concatenation methods as discussed in previous section, I propose to use

gating mechanism to integrate three different types of embeddings: context, word, speech. The

gating mechanism has been successfully used for fusing different types of representations, i.e.

word and visual representation in genre classification task or image search task [45, 46], and for

learning different langauges in speech recognition task [47]. The gating mechanism decides how

to weigh different types of embeddings, and we can shape information flow using multiplicative

interactions. I first concatenate three embeddings, then take sigmoid to get gating value between

0 to 1 (in Equation 5.6).

g = σ(ec, ew, es) (5.6)

e = g � (ec, ew, es) (5.7)

su = LSTM-Decoder(e, su−1) (5.8)

This gating value g is then product with original embeddings, and generates the final gated em-

beddings (in Equation 5.7). This new embeddings e are forwarded into LSTM decoder (in Equa-

tion 5.8).

Figure 5.4 illustrates my proposed contextual gating mechanism.

5.3 Experiments

In this section, I evaluate my proposed conversational End-to-End ASR with gated contextual

decoder on 300 hours of Switchboard (SWBD) task. The detailed dataset description is already

discussed in 4.3.1.
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Figure 5.4: My contextual gating mechanism in decoder network of End-to-End ASR to integrate
context/word/speech embeddings

5.3.1 Output Units

In this study, I use word+character (WordChar), rather than character output units.

Word+Character units

I first explore the use of word and character for the output units of my model. Direct acoustics-

to-word (A2W) models train a single neural network to directly recognize words from speech

without any sub-word units, pronunciation model, which significantly simplifies the training and

decoding process [63, 64, 65, 66, 67]. In addition, A2W models can learn more semantically

meaningful conversational context representations rather than a single character unit. Also it

allows us to exploit the pre-trained external resources like word/sentence embeddings where the

unit of representation is generally words. While these benefits, A2W models require more train-

ing data compared to conventional sub-word models and additional efforts are needed to handle

out-of-vocabulary(OOV) words. In order to mitigate these issues, I first restrict the vocabulary to
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10k frequently occurring words. I then additionally use character units and start-of-OOV (sunk),

end-of-OOV (eunk) tokens to make my model generate a character by decomposing the OOV

word into a character sequence. For example, the OOV word, rainstorm, is decomposed into

(sunk) r a i n s t o r m (eunk) and the model tries to learn such a character sequence rather than

generate the OOV token. The WordChar contains roughly 10k units (10,034) units including

the words (10,000) and the characters (34). By using this output units, we were able to obtain

better performed A2W baseline over standard models which use word only.

5.3.2 Architecture

The model architecture is also same as my vanilla End-to-End ASR models (described in Sec-

tion 4.2), except that we have additional gating mechanism to incorporate the context embed-

ding more effectively. This gating mechanism requires additional parameters to be trained. The

amount of parameters are depend on the dimension of context embeddings, previous output token

embeddigns, and speech embeddings, in this experiment requires additional 2 million trainable

parameters.

For the architecture of the End-to-End speech recognition, I used joint CTC/Seq2Seq End-to-

End ASR [48, 49] as I proposed in Chapter 3. As suggested in [15, 58], the input feature images

are reduced to (1/4×1/4) images along with the time-frequency axis within the two max-pooling

layers in CNN. Then, the 6-layer BLSTM with 320 cells is followed by the CNN layer. For the

attention mechanism, I used a location-based method [12]. For the decoder network, I used a

2-layer LSTM with 300 cells.

The training procedure and decoding procedure is same as in the previous experiment setup

4.3.2.
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5.3.3 Results

In Table 7.7 summarizes the Word Error Rate (% WER) results of Switchboard (300hr) with

WordChar output units. The * mark denotes our estimate for the number of parameters used in

the other systems.

Table 5.1: Comparison of word error rates (% WER) of baseline and my proposed conversational
End-to-End ASR with gated contextual decoder on SWBD task.

Model #params. LM SWB CH

Other A2W End-to-End systems

CTC [65] Word output, phone pretrain. n/a 7 14.6 23.6

My End-to-End ASR systems

My baseline Char output 23M 7 19.0 34.4

My baseline WordChar 32M 7 17.9 30.6

My Context models

vanilla WordChar 33M 7 17.3 30.3

vanilla + gate WordChar 35M 7 17.2 29.8

I first present the other systems, my baseline system that use the word level output units, and

then my conversational systems. Unlike other systems, note that my system does not use any

phonetic information [65].

I first observed that my new baseline with my proposed output unit set WordChar per-

formed better than the old baseline that using character level outputs. As shown in Table 5.1,

the new baseline with WordChar obtained 5.7% and 11.0% relative WER improvements on the

evaluation set, SWB and CH, respectively.

Secondly I observed that my vanilla conversational End-to-End ASR model obatained 3.3%

and 1.0% further, relative WER improvement over my new improved baseline. This result again

confirmed the finding that incorporating context embedding generated from previous utterance

helps the current utterance prediction.

I also observed that using gated contextual decoder to incorporate the context embeddings
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shows the improved WER results. As shown in this Table 5.1, my proposed conversational End-

to-End ASR with gated contextual decoder obtained slightly further WER improvement on the

evaluation set.

5.4 Summary

In this chapter, I described my proposed effective way to integrate the context embeddings and

my proposed WordChar output sets. By using my proposed gated contextual decoder and

my proposed WordChar output sets, I obtained further WER improvements over the previous

vanilla conversational End-to-End ASR models that we discussed in the previous Chapter 4. In

the next chapters, I will propose a more effective and better way to encode the context embed-

dings in Chapter 6.
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Chapter 6

Conversational Context Encoder

We have discussed how we can preserve conversational context during training without GPU

memory issue and integrate context embedding into the ASR models in an End-to-End manner.

In this Section, we will discuss how to encode conversational context embedding from previous

spoken utterances.

6.1 Context Encoder

As Figure in 6.1, I create an additional sub-network in my End-to-End ASR that generates con-

versational context embedding, ec, from previous spoken utterances. The conversational context

embedding, ec, is a single, fixed-length vector that encodes conversational context information.

Figure 6.1: My context encoder generates conversational context embedding from previous spo-
ken utterances
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I propose various types of context encoder, based on four kinds of criteria:

• Selection of history of unit and its representation: we can select either word-level or

sentence-level as an each input of context encoder.

• Augmentation with “world knowledge”: we can augment with “world knowledge” by us-

ing external word/sentence embeddings which is trained on massive amount of text data.

• Aggregation of multiple history unit: context encoder may take multiple past utterances,

not just a single preceding utterance. We can use various ways i.e. mean-pooling/LSTM/Attention

in the context encoder to aggregate these histories.

• Sampling strategy: similar to sampling strategy used in previous word embedding, we can

choose either model outputs or groundtruth for the histories to avoid overfitting.

In the following subsections, I will describe details of various types of context encoder.

6.1.1 Utterance History Unit and Representations

We can select either word-level or sentence-level as an each input of context encoder. Each his-

tory unit can be represented as one-hot vector simply, or output token level (word/subword/character)

multinomial distributions from the model output or embedding representation by re-using the

embedding layer in decoder network.

6.1.2 Aggregation of Multiple Utterance History

I also explore the way to encode context embeddings by using multliple utterance history, not

just use a single utterance like vanilla model (in Chapter 4 and Chapter 5.

Since my context encoder may take multiple past utterances, not just a single preceding

utterance, I consider various ways i.e. mean-pooling/LSTM/Attention to aggregate these his-

tories. Figure 6.2 shows the simplest way to aggregate multiple word-level inputs by using

mean-pooling.
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Figure 6.2: My vanilla context encoder with word-level input and mean-pooling method

I first investigate the effect of the number of utterance history being encoded. I tried different

N = [1, 5, 9] number of utterance histories to learn the conversational-context embeddings. Fig-

ure 6.3 shows the relative improvements in the accuracy on the Dev set (7.2.3) over the baseline

“non-conversational” model.

Figure 6.3: The relative WER improvement on validation set with different number of utterance
history.

First I observed that more history helps to improve performance generally. However, as I
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increase the number of history, I observe the benefit diminishes when we are using concatena-

tion of multiple context embedding. One possible explanation is the number of parameters to

be trained increased and it makes the model hard to be learned properly. In the rest of my ex-

periments, I therefore decided not to use concatenation method to integrate the multiple histories

since it is not scalable. I also decided to use 10 historical utterances in the rest of my experiments

because I found that it performed best when we are using additional attention mechanism instead

of mean-pooling. The detailed results will be described in Chapter 7.

6.1.3 Sampling Strategy

Similar to sampling strategy [68] which is widely used in Seq2Seq model for generating previous

word embedding, I also consider an utterance level sampling strategy. Since the model does not

have access to groundtruth utterance history at inference time and the model predictions itself

are always used to encode context, the model may suffer from these mismatch between training

and inference. To reduce this mismatch, we choose previous utterances from the groundtruth or

from the model outputs for input of context encoder at training time.

I conducted experiments with various sampling ratio, [0.0, 0.2, 0.5, 1.0] to choose model out-

puts. Figure 6.4 shows the relative WER improvement on validation set with the sampling strat-

egy with various ratio [0.0, 0.2, 0.5, 1.0] to choose model outputs.. I observed that a sampling

rate of 0.1 or 0.2 performed best slightly empirically. In the rest of my experiments, I therefore

decided to use 0.1.

6.2 Augmentation with “World Knowledge”

Learning better representation of conversational context is the key to achieve better processing

of long conversations and it requires massive amount of training data. However, the annotated

conversational speech corpus is more expensive to obtain, in contrast with the textual corpus,
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Figure 6.4: The relative WER improvement on validation set with sampling strategy with various
ratio [0.0, 0.2, 0.5, 1.0] to choose model outputs.

we typically use thousands of hours annotated corpus even in the industry [69]. For example, in

case of the text corpus which is widely used in building language model, BookCorpus [70] and

English Wikipedia have 800 million and 2,500 million words, while in case of annotated speech

corpus which is widely used in building ASR, Fisher and Switchboard has 2,000 hours of speech

recordings and 20 million words in transcriptions. The context embeddings trained only on the

transcription is therefore limited to learn rich context information.

In order to address such issues, I propose to use external word or sentence embeddings that

are pre-trained on large textual corpora to augment “world knowledge”. As the input of my con-

text encoder described in conversational End-to-End speech recognition framework (in previous

sections), I use publicly available, external word or sentence embeddings rather than training for

the embeddings from scratch with only on limited amount of the transcription.

Another advantage of using pre-trained embedding models is that we do not need to back-

propagate the gradients across contexts, making it easier and faster to update the parameters for
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learning a conversational context representation.

There exist many word or sentence embeddings which are publicly available. The neu-

ral word/sentence embeddings can be broadly classify into two categories: (1) non-contextual

word/sentence embeddings, and (2) contextual word/sentence embeddings.

Non-contextual word embeddings, such as Word2Vec [2], GloVe [71], fastText [72], maps

each word independently on the context of the sentence where the word occur in. Although it is

easy to use, it assumes that each word represents a single meaning which is not true in real-word.

Contextualized word embeddings [73, 74, 75], sentence embeddings, such as deep contextu-

alized word representations [74], Pre-training of Deep Bidirectional Transformers for Language

Understanding (BERT) [73], encode the complex characteristics and meanings of words in vari-

ous context. Such word/sentence embeddings learned on large text corpora, including BooksCor-

pus (800 million words) and English Wikipedia (2,500 million words). Especially, the BERT

model has been used in the form of transfer learning and it has been shown the state-of-the-art

performance in a variety of downstream tasks (11 NLU tasks), such as sentence pairs in para-

phrasing, hypothesis-premise pairs in entailment, question-passage pairs in question answering,

text classification, sequence tagging, sentimental analysis.

6.2.1 External Word Embeddings: fastText

Figure 6.5: My context encoder with external word embeddings (fastText)

I explore both types of embeddings to learn conversational context embeddings as illustrated
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in Figure 6.5 and Figure 6.6. The first method is to use word embeddings, fastText, to gen-

erate 300-dimensional embeddings from the one-hot vector of preceding utterance histories or

distribution over output tokens as we discussed in previous subsection.

6.2.2 External Sentence Embeddings: BERT

Figure 6.6: My context encoder with external sentence embeddings (BERT)

The second method is to use the sentence embeddings, BERT. It is used to a generate single

786-dimensional sentence embedding from the preceding utterances and then merge into a single

context vector.

Since my model uses a restricted vocabulary which is different from the external embedding

models, we need to handle out-of-vocabulary words. For fastText, words that are missing in the

pretrained embeddings we map them to a random multivariate normal distribution with the mean

as the sample mean and variance as the sample variance of the known words. For BERT, I use

their provided tokenizer to generates byte pair encodings to handle OOV words.

Using this approach, we can obtain a more dense, informative, fixed-length vectors to encode

conversational context information, ec to be used in next utterance prediction.

6.3 Speaker-specific Cross-Attention

If we have access of the speaker identity information for each utterance, then we can consider

turn-change information or interaction between two-speakers to process the two-party conversa-
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tions better. For example, we can track and learn the interaction of the two speakers based on

the history of what other speaker said and the history of what current speaker said. The overall

architecture of my proposed model is described in Figure 6.7. Specifically, my model works as

follows.

Figure 6.7: My context encoder with LSTM and Attention mechanism for learning the interaction
of two-speaker conversations

I create a queue for each speaker to store the history of utterance embeddings so that the

utterance embeddings can be stored separately. I then use an attention mechanism to generate

speaker-specific conversational context embedding given the history of what other speaker said

and the history of what current speaker said. Note that, based on what current speaker is, I swap

the queues properly. I propose two methods to generate the attended context embeddings.

6.3.1 Attention Over Each Speaker’s Utterance History

First method is simply using an additional attention mechanism over the utterance embeddings.

Given the N -size of the utterance history for speaker A, eu−Ak−N , · · · , e
u−A
k−1 , the conversational-
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embedding, att eAk , is generated as follows:

GA
k = tanh(WeAk−N :k−1 + b) (6.1)

αAk = softmax(wTGA
k + b) (6.2)

att eAk =
∑
N

aAk � eAk−N :k−1 (6.3)

where W, b are trainable parameters. eBk is generated in the same way.

6.3.2 Cross-attention Between Two Speakers’ Utterance History

Second method is using LSTMwith an attention mechanism. Inspired by the matchLSTMmodel

which has been widely used in question answering tasks and natural languge inferance (NLI)

[76, 77], we consider to track the interaction between two speakers sequentially, by attending

what other speaker said at each utterance timestamp. The idea of the matchLSTM is to attempt

to take the question (premise) and the passage (hypothesis) along with an answer pointer [78]

pointing to the start and the end of the answer to make predictions. The matchLSTM tries to

obtain a question-aware representation of the passage, by attending over the representations of

the question tokens for each token in passage.

The key difference in my work is that the question (premise) is a sequence of utterance-

embedding from other speaker (what other speaker said), and passage (hypothesis) is a sequence

of utterance-embedding from current speaker (what current speaker said). The embedding of

what current speaker said takes into consideration the alignment between the what current

speaker said and what other speaker said.

By using matchLSTM over the first simple attention method, there are two benefits -

• First, the model is able to handle a longer utterance-history

• Second, the model can learn the interaction between the two speakers, as the matchLSTM

can potentially track the flow of the conversations.
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Specifically, the attended conversational embedding at i-th utterance-history step is generated

as follows:

GA
ki

= tanh(WeBk−N :k−1 + VeAi + UhAi−1 + b)

αAki = softmax(wTGA
ki

+ b)

where W,V,U,∈ Rh×h, b ∈ Rh, b ∈ R are trainable parameters. Each hidden state hi−1 ∈ Rh

comes from the output of the matchLSTM that is fed the following zi as input.

zAi = [eAi , e
B
k−N :k−1 � αAki ]

hAi = matchLSTM(zAi ,h
A
i−1)

Using a LSTM, there are N such h-dimensional hidden states, and I take the final hidden states

for my attended conversational context embedding:

att eAk = hAk−1

6.4 Training of Context Encoder

My proposed context encoder can be trained towards minimizing the current utterance prediction

error in an End-to-End manner. Figure 6.8 shows the training process of my context encoder.

The acoustics and words of current utterance, and contexts from past utterances are forwarded

into my End-to-End ASR, the loss for the current utterance prediction is then calculated. This

loss back-propagated through over entire history of the utterance (or utterance embeddings). The

current method is only using linguistic contexts, it can be easily extended to use acoustic contexts

as well. We will discuss this in Chapter 9, as future work.
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Figure 6.8: My context encoder is designed to be trained over all (or window) of past utterances

6.5 Summary

In this chapter, I proposed various types of my context encoder to encode context embedding

better. I also describe how my context encoder is trained over all (or window) over the utterance

histories in an End-to-End manne. In the next Chapter 7, I will investigate the WER results

across the different types of context encoder in details.
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Chapter 7

Experiments to Three Large-Scale

Conversational Speech Recognition Tasks

We have discussed how we can preserve and integrate the conversational context information

and how to encode conversational context embedding from previously spoken utterances. In

this chapter, I will show my conversational End-to-End ASR models improve accuracy on three

large scale conversational speech recognition tasks and share the analyses to demonstrate the

effectiveness of my conversational End-to-End ASR models.

7.1 Datasets

I evaluate my conversational End-to-End ASR models on three different large scale conversa-

tional speech recognition tasks: Switchboard (300h), Fisher (2,000h), and Medical task (1,700h).

In Table 7.1, 7.2, 7.3, I describe statistics of training, validation, evaluation sets of each task, the

number of utterances, the number of dialogs, the number of words, the average number of utter-

ances per a dialog, the average number of words in an utterance.
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7.1.1 Switchboard

I first use the Switchboard (SWBD) LDC corpus (97S62) task [79]. Switchboard is a cor-

pus of recorded telephone conversations. The task involves transcribing conversations between

strangers discussing topics such as sports and politics. The total training dataset has 300 hours

of recording, so I split 300 hours of training data into two sets: 285 hours of data for the model

training, and 5 hours of data for the hyper-parameter tuning. I evaluate the model performance

on the HUB5 Eval2000 which consists of the Callhome English (CH) and Switchboard (SWBD)

(LDC2002S09, LDC2002T43).

Table 7.1: The description of the dataset for the Switchboard task.

training validation evaluation

SWBD SWBD SWBD CallHm

# of words 3,007,098 49,204 18,418 20,847

# of utterances 192,656 4,000 1,831 2,627

# of dialogs 2,402 34 20 20

utters/dialog 80 118 92 131

words/utter 15.6 12.3 10.1 7.9

7.1.2 Fisher

I also use the Fisher dataset, which is also recorded telephone conversations [80]. Compared to

the Switchboard task, the Fisher task has a larger number of participants and they made calls

of speaking to other participants, whom they typically do not know, about assigned topics. The

Fisher dataset has around 2,000 hours of training data. The Fisher data includes 285 hours of

SWBD training set as well. I evaluate the model on the same evaluation sets as the Switchboard

task: the Callhome (CH) and Switchboard (SWBD).
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Table 7.2: The description of the dataset for the Fisher task.

training validation evaluation

Fisher SWBD SWBD CallHm

# of words 20,409,563 49,204 18,418 20,847

# of utterances 1,505,869 4,000 1,831 2,627

# of dialogs 11,698 34 20 20

utters/dialog 129 118 92 131

words/utter 13.6 12.3 10.1 7.9

7.1.3 Medical task

Table 7.3: The description of the dataset for the Medical task.

training validation evaluation

Medical Medical Medical

# of words 16,423,024 54,868 127673

# of utterances 2,069,594 6,726 15,111

# of dialogs 13,701 45 100

utters/dialog 151 149 151

words/utter 7.9 8.2 8.4

In addition to the above well-known speech corpora, I also evaluate my models on a medical

conversational task. The task involves transcribing conversations between a doctor and a patient

in a real and noisy environment in the hospital. Unlike the Switchboard or Fisher tasks, there are

no assigned topics, the conversation is recorded under their real diagnosis. This dataset is from

UPMC, Pittsburgh hospital, which is unique, not publicly available. The Medical task is more

challenging than the Switchboard/ Fisher, because the transcriptions, segments, and alignments
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are noisy. This dataset has never been used for speech recognition experiments before, so there

are no other benchmark results. The Medical dataset has 1,700 hours of the training dataset.

7.2 Models

In this section, I will describe the architecture and the input/ output of my models for the exper-

iments. The models are implemented using the PyTorch deep learning library [81], and ESPnet

toolkit [14, 48, 49]. To build my baseline, I follow the recipe of ESPnet toolkit, except our

decoder network has two layers instead of a single layer.

7.2.1 Input Features

All of my experiments in this study, I use an 83-dimensional feature vector for each input frame.

From the audio data sampled at 16kHz, the feature vector consists of 80-dimensional log-Mel

filterbank coefficients and 3-dimensional pitch features as suggested in [82].

7.2.2 Output Units

In this study, I use a word+character (WordChar). I explore the use of word and character for

the output units of my model. Direct acoustics-to-word (A2W) models train a single neural net-

work to directly recognize words from speech without any sub-word units, pronunciation model,

which significantly simplifies the training and decoding process [63, 64, 65, 66, 67]. In addition,

A2W models can learn more semantically meaningful conversational context representations

rather than a single character unit. Also, it allows us to exploit the pre-trained external resources

like word/sentence embeddings where the unit of representation is generally words. While these

benefits, A2W models require more training data compared to conventional sub-word models

and additional efforts are needed to handle out-of-vocabulary(OOV) words. In order to mitigate

these issues, I first restrict the vocabulary to 10k frequently occurring words. I then addition-

74



ally use character units and start-of-OOV (sunk), end-of-OOV (eunk) tokens to make my model

generate a character by decomposing the OOV word into a character sequence. For example, the

OOV word, rainstorm, is decomposed into (sunk) r a i n s t o r m (eunk) and the model tries to

learn such a character sequence rather than generate the OOV token. The WordChar contains

roughly 10k units (10,034) units including the words (10,000) and the characters (34). By using

these output units, we were able to obtain better performed A2W baseline over standard models

that use the word only.

7.2.3 Architecture

For the architecture of the End-to-End speech recognition, I used joint CTC/Seq2Seq End-to-End

ASR [48, 49] as I proposed in Chapter 3. As suggested in [15, 58], the input feature images are

reduced to (1/4 × 1/4) images along with the time-frequency axis within the two max-pooling

layers in CNN. Then, the 6-layer BLSTM with 320 cells is followed by the CNN layer. For the

attention mechanism, I used a location-based method [12]. For the decoder network, I used a

2-layer LSTM with 300 cells. In addition to the standard decoder network, my proposed models

additionally require extra parameters for gating layers in order to fuse conversational context

embedding to the decoder network compared to baseline. I denote the total number of trainable

parameters in Table 7.7.

7.3 Training and Decoding

For the optimization method, I use AdaDelta [53] with gradient clipping [59]. I used λ = 0.5

for joint CTC/Seq2Seq training (in Eq. 3.3) and γ = 0.3 for joint CTC/Seq2Seq decoding (in

Eq.3.4). I bootstrap the training of my proposed conversational End-to-End models from the

baseline End-to-End models. To decide the best models for testing, I monitor the development

accuracy where I always use the model prediction in order to simulate the testing scenario. At
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inference, I used a left-right beam search method [55] with the beam size 10 for reducing the

computational cost. I adjusted the final score, s(y|x), with the length penalty 0.5.

7.4 The Word Error Rate results

7.4.1 The Word Error Rate (% WER) results of my End-to-End ASR base-

lines

Switchboard task

In Table 7.4 summarizes the Word Error Rate (% WER) results of the Switchboard (300hr) with

WordChar output units. The * mark denotes my estimate for the number of parameters used in

the other systems.

Table 7.4: Comparison of word error rates (% WER) of Switchboard task of my End-to-End
ASR baseline systems and other End-to-End ASR systems.

Model #params. LM SWB CH

Other End-to-End ASR systems

CTC [62] Char output 53M 3 19.8 32.1

CTC [65] Word output, phone pretrain n/a 7 14.6 23.6

Seq2Seq [83] BPE-1k, layer-wise pretrain *150M 7 13.1 26.1

LF-MMI [84] Char output, data augment 26M 3 13.0 23.6

Seq2Seq [85] BPE-1k, data augment 360M 7 7.2 14.6

My End-to-End ASR systems

My baseline Char output 23M 7 19.0 34.4

My baseline Wordchar output 32M 7 17.9 30.6

I first show the WER of the other systems, and then my baseline systems. Unlike other

systems, my systems have relatively smaller model parameters and do not use any phonetic in-

formation [65, 86], any external language model [62, 65, 86, 87], or any data augmentation [85],
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or any additional, complex training procedure (i.e. layer-wise pretraining [83] or hierarchical

multi-task learning [87] or MBR training [88]).

Fisher task

Table 7.5 shows the WER results of the Fisher (2,000hr) task with WordChar output units.

Table 7.5: Comparison of word error rates (% WER) of the Fisher task of my End-to-End ASR
baseline systems and other End-to-End ASR systems.

Model #params. LM SWB CH

Other End-to-End ASR systems

CTC [62] Char output n/a 3 10.2 17.7

CTC [65] Word output, phone pretrain n/a 7 8.8 13.9

LF-MMI [84] Char output, data augment 26M 3 12.0 21.9

Seq2Seq [89] Char output 120M 7 8.6 17.8

Seq2Seq [88] Char output, MBR n/a 7 8.3 15.5

My End-to-End ASR systems

My baseline wordchar output 32M 7 14.4 21.9

Unlike other systems, my systems again have relatively smaller model parameters and do not

use any phonetic information [65], any external language model [62, 84], or any data augmenta-

tion [84], or MBR training [88]).

Medical task

Table 7.6 shows the WER results of the Medical (1,700hr) task with WordChar output units.

This dataset is from UPMC, Pittsburgh hospital, which is unique, not publicly available, so there

are no other benchmark results.
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Table 7.6: The word error rates (% WER) of the Medical task of my End-to-End ASR baseline
systems.

Model #params. LM Medical

My End-to-End ASR systems

My baseline Wordchar output 32M 7 22.6

7.4.2 The WER results of my conversational End-to-End ASR models

In Table 7.7 summarizes the Word Error Rate (% WER) results of Switchboard (300hr) with

Wordchar output units.

Table 7.7: Comparison of word error rates (% WER) of my baseline and my proposed conversa-
tional End-to-End ASR on the SWBD task.

Model #params. LM SWB CH

my baseline 32M 7 17.9 30.6

My Context End-to-End ASR

Vanilla Context 33M 7 17.3 30.3

+ Gate 35M 7 17.2 29.8

+ BERT Context 34M 7 15.5 29.0

+ LSTM-Attn for 2spk 34M 7 15.6 28.5

I show the improved WER results by adding each of the individual components that we dis-

cussed in previous sections. The vanilla and vanilla + gatemodels use one-hot vectors

for encoding conversational context, with standard decoder and with the gated decoder, respec-

tively. The + BERT model uses BERT external language model for encoding conversational

context with the gated decoder. The + LSTM-Attention model uses 2 speaker information

as described in Chapter 6 in addition to use BERT external language model for encoding con-

versational context with gated decoder. As shown in this Table 7.7, my best model gets around

12.8% relative improvement on the Switchboard (SWBD) evaluation set and 6.9% relative im-
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provement on the CallHome (CH) evaluation set. I observed that the simple vanilla model only

obtained 2.6 - 3.9% relative improvement, however, when I augmented world knowledge by us-

ing an external language model to encode conversational context, my model obtained significant

relative improvements (12.8%, and 6.9%).

Figure 7.1: % WER on SWBD evaluation set over different proposed context encoder methods

I also investigate the effect of the number of utterance history being encoded. I tried differ-

ent N = [1, 5, 10] number of utterance histories to learn the conversational context embeddings.

Typically increasing the number of utterance histories improves accuracy. However, I also ob-

served that the improvement diminished when I used 9-utterance history in case of using the

concatenation. It is possible that the increased number of trainable parameters of the concatenate

model makes it harder for the model to train. I use 10-utterance histories to encode conver-

sational context embedding in the rest of the experiments. The WER over different types of

proposed context encoder is also illustrated in Figure 7.2.

Table 7.8 and 7.9 show the WER results on a larger dataset, Fisher (2,000 hours), and Medical

(1,700 hours). As seen in these Tables, my proposed approach outperformed over baseline in
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Figure 7.2: % WER on CallHome evaluation set over different proposed context encoder meth-
ods

Table 7.8: Comparison of word error rates (% WER) of baseline and my proposed conversational
End-to-End ASR on the Fisher dataset.

Model #params. LM SWBD CH

My End-to-End ASR systems

My baseline Wordchar output 32M 7 14.4 21.9

My context End-to-End ASR Wordchar output 34M 7 13.2 21.5
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large dataset consistently.

[90] is a conversational speech recognition model that relies on an extensive system com-

bination for the acoustic model at senone and word levels, followed by N-best rescoring with

multiple language models in a confusion network, and adding backchannel penalties. It uses

twice the number of parameters as my baseline, and multiple acoustic models and language

models to produce the best score on this task thus far, to the best of my knowledge. My baseline

does not use an external LM like [62], or Minimum Bayes Risk Training like [88].

Table 7.9: Comparison of word error rates (% WER) of baseline and my proposed conversational
End-to-End ASR on Medical dataset.

Model #params. LM Medical

My End-to-End ASR systems

My baseline Wordchar output 32M 7 22.6

My context End-to-End ASR Wordchar output 34M 7 21.7

7.5 Statistical Significance

To understand the “statistical significance” of WER improvement using my conversational End-

to-End ASR models, I performed a significant test on the WER results of three tasks: SWBD,

Fisher, Medical tasks. I used a compute-wer-bootci tool, bootstrap method for statistical

significance test proposed in [91] which is provided in the Kaldi library [92]. This tool calculates

the confidence intervals that provide a range of reliability defining how reliable it is an observed

improvement from my conversational models. Based on the boostrap technique that extracts

WER for a number of replications (104) of the same size of test sets, they also provide the

“probability of improvement”, which is the relative number of bootstrap sample WERs which

favor my models.
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The formulation of ∆W , the difference in the number of errors of two systems: baseline and

conversational model, on the same test sets is as follows:

∆W = W base −W conv (7.1)

=

∑
i(e

base
i − econvi )∑

i ni
(7.2)

where ebasei econvi is the word error count of utterance i with two systems, baseline and conversa-

tional model, ni is a total number of the word in utterance i.

Based on this ∆W , the probability of improvement (poi) is then computed as follows:

poi = P (∆W < 0) (7.3)

=
1

B

B∑
b=1

Θ(−∆W b) (7.4)

where Θ(x) is the step function, which is one for x > 0 and zero otherwise.

Table 7.10: Probability of improvement of my conversational models over baselines based on
95% confidence intervals.

Task SWBD Fisher Medical

Training set size (hours) 300 2,000 1,700

# dialogs in Training set 2.4k 11.7k 13.7k

# utters in Test set 4k 4k 15k

# dialogs in Test set 40 40 98

WER of Baseline (%) 24.28 18.17 22.60

WER of Context model (%) 22.08 17.37 21.70

Relative Improvement (%) 9.8 5.1 4.0

Probability of Improvement (%) 100.00 100.00 100.00

Table 7.10 shows the WER results of baselines and my context models on three tasks: SWBD,
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Fisher, and Medical tasks, and with bootstrap statistical significant test results. I found that the

empirically observed differences in WER performance between baseline and my context model

are due to a genuine advantage of my system over the baseline, not just an effect of chance. I

also observed that the probability of improvement is 100.00 % in all my context models. In this

test, I use 95% confidence intervals based on standard error and bootstrap B = 104 [91].

7.6 Summary

In this chapter, I showed my conversational context End-to-End ASR models improves WER

on three different conversational speech recognition tasks: SWBD, Fisher, Medical tasks. I

observed that my conversational End-to-End ASR model outperforms over baseline consistently

and statistically significant. In the next Chapter 8, I share several in-depth analyses results to

understand my models better.
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Chapter 8

Analytic Methods for Conversational

Context Models

I have shown my thesis idea that including conversational context into End-to-End ASR can help

to improve WER on three large scale conversational speech recognition tasks and it is statisti-

cally significant. In this chapter, I will share in-depth analyses to understand my conversational

End-to-End ASR models better. I conducted several in-depth analyses to answer the following

questions: ”How my conversational End-to-End ASR models work?”, ”In which condition my

models work well or not?”, ”Which historical utterances my models attend to more?”, ”How

does the strength of the AM affect the impact of my context models?”, and ”How do large &

small training datasets affect the impact of my context models?”. I will also show and com-

pare several examples of reference and the hypotheses transcriptions from the baseline and my

context models. For the rest of my experiments of the in-depth analyses, I used my best per-

formed conversational End-to-End ASR model which is using the 10 historical utterances with

the speaker-specific attention mechanism and using the BERT pre-trained LM for encoding the

conversational context to augment “world knowledge”. The models used for the in-depth analy-

ses were trained on 300 hours of the training dataset. Note that the “context model” in the rest

of the sections refers to my best performed conversational End-to-End ASR model. I also used
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“context LM” in the several in-depth analyses and checked the perplexity relative improvement.

The “context LM” has the same model architecture as “context model” but the encoder network is

completely removed. These ablation studies are for better understanding our linguistic “context

model” by ruling out the AM effect.

8.1 Analysis of Context Models

In this section, I analyze in which conditions my context model work well. In the first two sub-

sections 8.1.2, and 8.1.3, I will show that my context model works well when 1) the historical

utterances are similar to the current utterance and 2) the historical utterances are more informa-

tive. In subsections 8.1.4, and 8.1.5, I will show my context models tend to attend to a longer

utterance. In 8.1.6, and 8.1.7, I will show that the improvement provided by my linguistic context

model is reduced as the acoustic model part gets stronger due to large training datasets. In 8.1.9,

I will show the substitution, deletion, and insertion rate in WER.

8.1.1 Comparison of Oracle and Random Context Embeddings

In addition to simply comparing WER performance, I show my analysis to demonstrate the

effectiveness of my conversational End-to-End ASR first. I validate the effect of my context

embeddings on performance improvement.

To do so, I generated two context embeddings: Oracle and Random. In general, my model

always uses previously spoken utterances from the model output at inference time. For Oracle

context embeddings, I used the ground-truth transcriptions as an input of context encoder instead

of Model output. For Random context embedding, I generated random output tokens and

forwarded it to the context encoder as illustrated in Figure 8.1. I then compared WER of my con-

versational End-to-End ASR and checked how WER changes as different context embeddings.

As in Figure 8.1, the Oracle case performed best as I expected, while the Random case was
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Figure 8.1: Context Encoder with different input at inference time: oracle/ random/ model out-
puts

even worse than the baseline which does not use any context information. The Model output

case, our general usage, outperformed over the baseline and the Random case. This implies that

the accuracy benefit of my proposed method is coming from actually learning the conversational

context, not just from randomness or regularization.

Figure 8.2: Comparison of % WER of different inputs of my context encoder at inference time:
oracle/random/ model outputs
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8.1.2 Analysis of Conversational Similarity of Historical Utterances

I first analyze whether the similarity between historical utterances and currently predicted utter-

ance affects the impact of my context model. I develop a conversational similarity score function,

s(i) that measures how similar utterance iwith historical utterances in the same dialog. I used the

[1 - 10] historical utterances and calculate the Cosine similarity between the current utterances. I

then used an average of 10 cosine similarities as my conversational similarity score for utterance

i, s(i). Before calculating the Cosine similarity, I mapped each utterance to a single vector by

using BERT sentence embedding. I followed a standard way to generate the sentence embedding

from the pre-trained BERT model by using an average of each output tokens from the last layer.

Mathematically it can be written as,

s(i) =
1

n

n∑
j=1

ei · ei−j
||ei||||ei−j||

where, ei, ei−j is BERT sentence embeddings of current utterance and historical utterances, n is

the number of historical utterances the model uses to predict the utterance i.

Figure 8.3 shows the relationship between conversational similarity score and perplexity rel-

ative improvement of my context model over baseline. I used the transcriptions of the evaluation

sets and split utterances into three chunks in its similarity score s(i): Low, Medium, and High.

Each chunk represents a third of the utterances in the test data, roughly. Then, I checked the

relative improvement in the perplexity of my context LM over baseline LM for each chunk of ut-

terances. The mean values of conversational similarity of the Low, Medium, and High were 0.4,

0.5, and 0.6, respectively. As shown in Figure 8.3, I observed that my context model performs

better when historical utterances and current, predicted utterances are similar. I also observed

that my context LM which is trained on 300 hours of Fisher dataset shows the largest relative

improvement over baseline LM, the red line (Fisher) is above the other lines (SWBD and Med-

ical). However, the effect of the conversational similarity score shows similar trends across all
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Figure 8.3: Comparison of performance improvement of my context model with different con-
versational similarity score in three tasks: SWBD, Fisher, and Medical

the tasks.

8.1.3 Analysis of Informativeness of Historical Utterances Based on TF-

IDF

I also analyze whether an average of the informativeness score of historical utterances affects

the impact of my context model. I first develop the informativeness score for each utterance,

info(u). The informativeness score function measures how many rare words contain in the ut-

terance u. This is based on ‘TermFrequency-InverseDocumentFrequency’ (TF-IDF [93]) which

is one of the popular term-weighting schemes in searches of information retrieval, text mining,

and user modeling [94].

Mathematically, the informativeness score for each utterance is an average log inverse fre-

quencies of all the words that appear in the utterance. The frequency of each word measures how

frequently a word occurs in the training transcripts. The info score function based on TF-IDF

89



for the utterance u is defined as follows:

TF-IDFuttr(wi) = frequencyu(wi)/ log(frequencytrain(wi)) (8.1)

info(u) =
1

k

k∑
i=1

TF-IDFuttr(wi) (8.2)

where freq(wi) is a frequency of word wi, count(wi) is the number of times word wi appears in

the training transcriptions, info(u) is an informativeness score of utterance u, and k is a number

of the word in utterance u. Note that the score is normalized for the utterance length. I then

analyze the average of the informativeness score of [1 - 10] historical utterances in the same

dialog.

Figure 8.4: Comparison of performance improvement of my context model with different TF-
IDF scores in three tasks: SWBD, Fisher, and Medical

Figure 8.4 shows the relationship between the average of the informativeness score of his-

torical utterances and the perplexity relative improvement of my context model over baseline. I

used the transcriptions of the evaluation sets and split utterances into three chunks in its infor-
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mativeness score: Low, Medium, and High. Each chunk represents a third of the utterances in

the evaluation set, roughly. Then, I checked the relative improvement in the perplexity of my

context LM over baseline LM for each chunk of utterances. The mean values of the informative-

ness score of each of low, medium, and high were [6.9, 8.3, 9.2] (SWBD task), [7.4, 8.7, 10.1]

(Fisher task), [7.8, 8.7, 9.6] (Medical task), respectively. As shown in Figure 8.4, I observed that

my context model performs better when historical utterances have more rare words.

8.1.4 Analysis of Attention Weights of Context Models

I next analyze how the model’s attention work and where the model tends to attend. I used the

utterance length and split utterances of the evaluation set into three chunks: Short, Medium, and

Long. Each chunk represents a third of the utterances in the evaluation set, roughly. Then, I

checked the average of the attention weights of each chunk. The mean values of the utterance

lengths of each of the Short, Medium, and Long were [2.4, 8.8, 25.5] (Eval2000), and [2.5,

7.6, 22.9] (Medical task), respectively. In this analysis, I used the attention weight over the 10

historical utterances. As shown in Figure 8.5 my context model tends to attend longer utterances.

I also analyze how the recency of historical utterances affects on models’ attention weight.

I grouped historical utterances based on its recency from 1 to 10 (higher is older), and checked

the average of attention weights of each group. As shown in Figur 8.6, I found that the recency

of historical utterances is not strongly related to attention weights.

These results from the analytic methods confirm our previous hypothesis that the context

models tend to attend more a longer historical utterance. However, I found that there is no clear

correlation between the recency of the historical utterances and the model’s attention weights

[95].
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Figure 8.5: Comparison of models’ attention weights on different lengths of historical utterances
in three tasks: SWBD, Fisher, and Medical

Figure 8.6: Comparison of models’ attention weights on the recency of historical utterances in
three tasks: SWBD, Fisher, and Medical tasks
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8.1.5 Visualization of Attention Weights Over Historical Utterances with

Examples

Figure 8.7, and 8.8 visualize the attention weights over the historical utterances and correspond-

ing transcript. The example (in 8.7 is selected from the eval2000 when the model predicts the

utterance (en 4574-a 042366-042850 deliver the papers to a guy that is in a certain location in

the immigration area and then). The example (in 8.8 is selected from the Medical evaluation set

when the model predicts the utterance (98164 pt-052172-052323 uh naprosyn can mask).

The dark color represents higher attention weight. The results consistently show that my

model tends to focus more on a long utterance, rather than a short utterance, i.e. jeez, oh, well

maybe etc, in all three tasks.

Figure 8.7: The visualization of the attention weights over [1-10] historical utterances. The
example is selected from the eval2000 set.

8.1.6 Analysis of Impact of the Strength of AM (Encoder Network) on Im-

provements of Context Models

In this subsection, I analyze how does the strength of the acoustic model part (encoder sub-

network) affects the impact of my linguistic context model. As shown in Table 7.10 in the
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Figure 8.8: The visualization of the attention weights over [1-10] historical utterances. The
example is selected from the Medical evaluation set.

previous chapter 7, my context models significantly improve the recognition accuracy in three

large-scale conversational speech recognition tasks: SWBD, Fisher, and Medical tasks, however,

I observed that the WER relative improvement provided by my context models slightly reduced

in Fisher and Medical tasks compared to the SWBD task. I hypothesized that the large training

data set produces a strong AM affect the impact of my linguistic context model in Fisher/Medical

tasks. To validate this hypothesis, I built three sets of baseline and context models with three

different strengths of AM part and checked the relative performance improvement provided by

my context models. First, I built LM and context LM which is completely ruled out the AM

and checked the perplexity relative improvement. Second, I built the baseline ASR model and

context End-to-End ASR model with weak AM by reducing the encoder layers from 6 to 1 and

checked the WER relative improvement. Third, I showed the WER relative improvement of the

standard baseline and standard context model with the strong AM (6 encoder layers).

Figure 8.9 shows the results of three relative improvements: 1) in the perplexity of context

LM which is ruled out AM completely, 2) in WER of context ASR with weak AM, and 3)

in WER of context ASR with strong AM. The results showed that the benefit of my linguistic

context model gets smaller as the AM gets stronger.
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Figure 8.9: The effect of the strength of AM on my linguistic context model

8.1.7 Analysis of Impact of Large & Small Training Datasets on Improve-

ments of Context Models

To confirm the training data size affects the improvement of my context models, I made the

Fisher/Medical datasets in a size similar to the SWBD and performed the same experiments.

Figure 8.10 shows the effect of the size of the training dataset on my context model. I observed

improved benefit of my context LM and context ASR (LM+AM) in small datasets (blue bars).

Overall, my linguistic context model performs less effectively with a large training dataset

due to the strength of the AM from the large training dataset.

8.1.8 Analysis of Domain-Specific Task (Medical Task) with Speaker Iden-

tity

In this subsection, I performed several additional analyses on Medical task to understand how

my context model works in domain-specific tasks.

I analyzed the gains of my context models with respect to speaker identity information. Fig-

ure 8.11 shows that the relative WER improvement of my context models with the different
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Figure 8.10: The effect of the size of the training dataset on my context model

major speaker (doctor and patient) of the historical utterances in Medical tasks. I split utterances

of the evaluation set into two chunks: DR, PT. The DR group represents the case that there are

more historical utterances spoken by the doctor, and the PT group represents the case where

more historical utterances spoken by the patient. I observed that my context model performed

better when the historical utterances were spoken by the doctor. This result may indicate that my

context model can help predict answers to questions by the doctor. Figure 8.12 shows that the

relative WER improvement of my context models with the different speaker (doctor and patient)

of the current utterance. I observed that my context model performed better at predicting the

utterances spoken by doctor.

I also compared the WERs of two models: one is trained on Fisher (2,000 hours) + Medical

training datasets (1,700 hours) and the other is trained on only Medical training datasets (1,700

hours). I observed that the models trained only on Medical training data outperformed by 2.3%

relative improvement over the models trained on Fisher (2,000 hours) + Medical training datasets

(1,700 hours).
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Figure 8.11: Comparison of performance improvement of my context model with different major
speaker identity (doctor and patient) of the historical utterances.

Figure 8.12: Comparison of performance improvement of my context model with different
speaker identity (doctor and patient) of the current utterance.
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8.1.9 Error Analysis: Substitutions, Deletions, and Insertions error rates

Table 8.1 shows the substitution, deletion, and insertion rates in WER result on SWBD, Fisher,

Medical tasks. I observed that the largest factor of WER improvement was from the substitution

rates rather than deletion or insertion.

Table 8.1: Substitution (% Sub), Deletion (% Del), and Insertion (% Ins) error rates of baseline
and my context models in three different tasks: SWBD, Fisher, and Medical tasks.

Task WER Sub Del Ins

SWBD task - SWBD

Baseline 17.9 12.3 3.9 1.7

My Context model 15.6 10.6 3.3 1.7

SWBD task - CallHome

Baseline 30.6 20.7 6.5 3.3

My Context model 28.5 19.5 5.9 3.2

Fisher task - SWBD

Baseline 14.4 9.6 3.1 1.6

My Context model 13.2 8.7 2.8 1.7

Fisher task - CallHome

Baseline 21.9 14.8 4.6 2.6

My Context model 21.5 14.1 4.7 2.6

Medical task

Baseline 22.6 12.8 5.6 4.2

My Context model 21.7 12.2 5.5 4.0

Decoding with the External Language Model

I analyze how do joint training and disjoint training with conversational context affect the impact

of my context models. I first built the conversational context language models separately by us-

ing the same context encoder and contextual gated decoder on each training transcript: SWBD,
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Fisher, Medical. I then decoded my baseline End-to-End ASR models with the conversational

context language models. During the beam-search, I performed the shallow fusion of the lan-

guage model. Table 8.2 shows the WER results of my baseline End-to-End ASR models decoded

with the external language model. I only observed that the improvement by the shallow fusion

of external LM is minimal (0.6 - 2.0 % relative improvement in the SWBD task). These results

indicate that joint training with the conversational context is important to obtain a significant

improvement by conversational context information. This result also suggests that the accu-

racy gain of my conversational End-to-End ASR is coming from avoiding errors due to acoustics

rather than errors due to language model history by joint training with the conversational context.

Table 8.2: The WER results of baseline models with the external language model.

SWBD Fisher Medical

Task ext. CLM (SWBD/CH) (SWBD/CH) Medical

Baseline 7 17.9/30.6 14.4/21.9 22.6

Baseline 3 17.8/30.0 14.3/22.1 22.6

Contex model 7 15.6/28.5 13.2/21.5 21.7

8.2 Examples

Figure 8.13, and 8.14, show examples from SWBD tasks, and Figure 8.15, and 8.16, show ex-

amples from the Medical dataset. Each column shows reference utterances, the hypothesis of

the baseline model, and the hypothesis of my conversational model in chronological order. The

final row shows the corresponding conversational similarity score as I described in the previous

section 8.1.2. The higher similarity score represents that the historical utterances and the current,

predicted utterance are more similar.

Figure 8.13 shows the first example which was selected from eval2000 evaluation set. The
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Figure 8.13: Examples of reference, the hypothesis from baseline, and my conversational End-
to-End ASR selected from eval2000 evaluation set.

blue words, “you guys”, in the reference column represent targets. The baseline model could not

predict it (“he goes”), while my context model could predict it correctly. As seen in the preceding

utterance “oh boy you guys been all”, the current prediction may benefit from the repeated word

in utterance history. I also observed that the similarity score of the hypothesis of my context

model is slightly higher than the one of the baseline.

Figure 8.14: Examples of reference, the hypothesis from baseline, and my conversational End-
to-End ASR selected from eval2000 evaluation set.

Figure 8.14 shows the second example which was selected from eval2000 evaluation set.

The blue word in the reference column is “specialization”. The baseline could not predict it

(“fushaliziation”), while my model could predict it correctly. Even though the preceding hypoth-

esis was partially correct (“specializat”), the current prediction of my context model may benefit

from these partial words in the historical utterances.

Figure 8.15 shows the third example which was selected from eval2000 evaluation set.

The blue word in the reference column is “joints” and baseline could not predict it (“john”),

while my model could predict it well. As seen in the preceding utterances, the current prediction

may benefit from the semantically related words in utterance history, i.e. doctor, muscle.

Figure 8.16 shows another example that was selected from the medical task. The blue word in

the reference column is “uh naprosyn”. The “naprosyn” is a medicine used to relieve pain from
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Figure 8.15: Examples of reference, the hypothesis from baseline, and my conversational End-
to-End ASR selected from eval2000 evaluation set.

Figure 8.16: Examples of reference, the hypothesis from baseline, and my conversational End-
to-End ASR selected from the Medical task.

various conditions such as headache, muscle aches, and dental pain. The “naprosyn” appeared

155 times in training transcriptions which has 16,423,024 words in total. Even though it is hard

to model such rare, and medical terms, my context model could predict it well. As seen in the

preceding utterances, the current prediction of my context model may benefit from the historical

utterances (i.e. had a fever, and motrin) with the “world knowledge”.

Figure 8.17: Examples of reference, the hypothesis from baseline, and my conversational End-
to-End ASR selected from the Medical task.

Figure 8.17 shows the example which was selected from the medical task. The blue word in

the reference column is “psoriasis” which is a skin condition in which skin cells build up and
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form scales and itchy, dry patches. The p of “psoriasis” is silence syllable and “psoriasis” only

appeared 1,629 times in training transcriptions which has 16,423,024 words in total so that it is

hard to model the word. The baseline could not predict it (“with the rise it”), while my context

model could predict it well. As seen in the preceding utterances, the current prediction may

benefit from the related words (“ultraviolet lights”).

Figure 8.18: Examples of reference, hypothesis from baseline, and my conversational End-to-
End ASR selected from the Medical task.

As in Figure 8.18, the blue word in the reference column is “plegridy” which is a treatment

name related to a central nervous system. The “plegridy” appeared 42 times in training tran-

scriptions which has 16,423,024 words in total. Even though it is hard to model such extremely

rare, and medical terms, my context model could predict it well. As seen in the preceding ut-

terances, the current prediction may benefit from the related words (“brain”) in utterance history

with “world knowledge”.

8.3 Summary

In this chapter, I provided various analytic methods to demonstrate the effectiveness of my con-

versational End-to-End ASR models, in addition to the improved WER. I performed the experi-

ments and analyses on three different tasks: SWBD, Fisher, Medical tasks and I observed that my

model performs well when the historical utterances and current, predicted utterance are similar

and when the historical utterances have more informative rare words. I also found that my model
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tends to attend a longer historical utterance. Although the improvement provided by my context

model reduces with a large training dataset (> 1,700 hours) due to the strength of the acoustic

model from the large training dataset, it is still statistically significant and meaningful. In the

next Chapter 9, I will conclude the results and discuss future work.
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Chapter 9

Conclusions

In this chapter, I will conclude my thesis and discuss future directions of the conversational

speech recognition systems.

9.1 Thesis Conclusions

In this thesis, I have shown that modeling entire conversations, rather than isolated utterances, in

End-to-End manner helps to process a long conversation. To prove my thesis idea, I identified

challenges that arise in modeling entire conversations and motivation of my thesis (in chapter 1).

I first presented my joint CTC/Seq2Seq End-to-End ASR models that achieved better recogni-

tion accuracy and faster convergence than vanilla End-to-End ASR by jointly training the model

with CTC and Seq2Seq objectives (in chapter 3). I then showed an efficient way to preserve

long conversational contexts while training the model without having a GPU memory issue by

extracting/detaching/caching conversational context embeddings on serialized utterance-based

minibatches (in chapter 4). Next, I showed the effective way to integrate conversational context

embeddings into End-to-End ASR by using the gating mechanism (in chapter 5). I also showed

various methods to encode conversational context embeddings by using previous spoken utter-

ances and augmenting with world knowledge using external linguistic resources (i.e. BERT) (in
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chapter 6). I showed that my conversational End-to-End ASR models improve recognition ac-

curacy on three different large-scale conversational speech recognition tasks, Switchboard (300

hours), Fisher (2,000 hours), and Medical conversation (1,700 hours) (in chapter 7). I also shared

several in-depth analyses to demonstrate the effectiveness of my conversational End-to-End ASR

models (in chapter 8).

To the best of my knowledge, this is the first work to model entire conversations, rather than

isolated utterance, by combining acoustic and language information in End-to-End manner. My

thesis shows that modeling entire conversations is feasible and useful for better processing of

long conversations.

9.2 Future Work

In this final section, I highlight a few promising areas to advance this thesis work. I hope this the-

sis work can inspire researchers in the direction of conversational speech recognition and spoken

language understanding and pioneer a new class of End-to-End learning systems of conversa-

tions.

9.2.1 Acoustic Conversational Context

My approach can be easily extended to use “acoustic” conversational context, such as emotions,

speaking style, background noise, music, and other non-verbal cues, in addition to the current

“linguistic” conversational context. As an input of my context encoder, we can use the previ-

ous encoder outputs or even raw acoustic features instead of using the previous decoder output

tokens. The context encoder should be able to learn an acoustic context embedding as special

intents which is beneficial to improve overall accuracy performance.
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9.2.2 From Audio to Semantics

My approach can potentially be applied to any task, from audio to semantic understanding (i.e.

spoken language understanding, audio/video summarization, and question answering) and opti-

mize the model in an End-to-End manner. We should leverage on a long, acoustic and linguistic

context in these tasks. Conventional spoken language understanding systems consist of two

main components: an automatic speech recognition module and a natural language understand-

ing module. Rather than optimizing these two components independently, we should optimize

jointly so that the system can focus more on errors that matter for the understanding tasks, not

errors of filler words. Evidence has recently been shown that optimizing directly for the semantic

understanding task may yield better results [96, 97].
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