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Abstract

Model predictive control (MPC) has been a very successful advanced process control tech-
nique for many applications especially in process industries because of its ability to handle
hard constraints and multiple inputs and outputs. However, the presence of uncertainty
deteriorates the performance of nominal MPC, and a robust model predictive control be-
comes necessary. The existing development of robust (nonlinear) MPC has yet to be widely
applied in industry, mainly due to conservatism of the algorithm and also the impractical-
ity of implementation; thereby robust NMPC has been mostly conceptual until a scenario-
based robust NMPC recently emerged. A scenario tree is generated to represent the evo-
lution of states with respect to uncertain parameters, and a multistage stochastic program-
ming formulation has been employed to continuously solve for the optimal control action
in a moving horizon fashion. This is a good place to start, however, many challenges still
remain and need to be addressed. This thesis develops easily implementable robust NMPC
strategies which provide performance guarantees and computational efficiency.

One of the major issues of multistage NMPC approaches is computational complex-
ity. Due to the construction of the scenario tree, multistage NMPC models are inevitably
larger than their nominal counterparts, and their size grows exponentially with respect to
the number of uncertain parameters and the length of robust horizons. To solve this is-
sue, we present an efficient parallelizable advanced-step multistage NMPC (as-msNMPC)
approach, which explicitly deals with two types of uncertainty: model parameters and
unmeasured noise. The first type is attended to by incorporating multistage scenario trees
and the second by applying nonlinear programming (NLP) sensitivity. The framework
of as-msNMPC has been demonstrated on two examples with robust performance and
significantly faster online computation compared to benchmark methods.

We also conduct a stability analysis for the newly constructed robust NMPC schemes.
Based on Lyapunov stability theory, we show that the origin is asymptotically stable un-
der standard NMPC if the model is perfect. And when additive disturbance is present, the
system is robustly stable to a neighborhood around the origin. When the system allows
both types of uncertainty, we first show that recursive feasibility can be ensured for fully-
expanded multistage NMPC under mild assumptions. With both advanced-step and ideal
multistage NMPC, we then show that robust stability can be achieved with input-to-state
practical stability (ISpS).

Last but not least, a sensitivity-assisted multistage NMPC (samNMPC) algorithm has
been proposed to deal with the size of the multistage formulation on a linear algebra
level. A block-bordered-diagonal structure of the KKT matrix naturally arises with the
multistage NLP problem, and Schur complement decomposition can be performed to de-
couple scenarios. In this case, we can approximate many scenarios with the solution to
the nominal scenario. In addition, we apply a scenario generation technique to determine
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which scenario is most likely to violate constraints. We then formulate an approximate
multistage formulation that has a much smaller problem size. The tracking performance
of samNMPC and exact multistage NMPC have been compared and similar performance
has been reached with only a fraction of the computational effort of the exact multistage
formulation.
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Chapter 1

Introduction

1.1 Motivation

Decision-making under uncertainty is a growing field that has attracted much attention

in recent years. In a dynamic system with model-based approach, one often requires to

make an educated and optimized decision promptly within a limited time. In a real-world

scenario, perfect information regarding the model is rarely available hence uncertainty

occurs naturally. In addition, one should also take into account constraints arising from

safety perspectives, physics limitations, and quality requirements. Achieving this goal in

an uncertain environment has been a challenging topic in advanced process control.

One of the popular modern control strategies is model predictive control (MPC). MPC

has been successful for many applications in the process, automotive and aerospace indus-

tries [5], mainly because of its effectiveness in respecting constraints and multiple-input-

multiple-output (MIMO) systems. MPC replaces the off-line feedback control law with an

on-line control action by solving an optimization problem. MPC is particularly advanta-

geous when an off-line control law is difficult or impossible to obtain [6]. An excellent

review paper on the history of industrial applications of MPC can be found in [5]. In par-

ticular, Nonlinear Model Predictive Control (NMPC), the nonlinear counterpart of MPC,

is gaining more attention because of its capability to capture detailed nonlinear dynamics

of the system throughout the entire state space.

While under suitable conditions NMPC has some inherent robustness [7, 8], its perfor-
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mance is impaired under the influence of uncertainty. More recently, robust MPC has

gained much attention, especially for systems that require satisfaction of stability and per-

formance metrics under model variations and noise signals [9]. To meet both robust sta-

bility and performance requirements, Bemporad and Morari classify two ways to design a

robust MPC controller: formulating an optimal control objective and uncertainty set that

leads to robust stability, or explicitly applying robust contraction constraints to guarantee

stability. Min-max MPC [10] and tube-based MPC [11] follow these two options, respec-

tively.

As one of the earliest robust MPC schemes, min-max MPC seeks to optimize the cost

for the worst-case uncertainty in the plant while satisfying constraints for all uncertainty

cases. This approach is conservative due to the lack of feedback mechanism such that

future-available new information cannot be exploited; hence the system is likely to reach

infeasibility. In order to resolve this issue, feedback min-max MPC [12] is introduced to

take into account future disturbances and consequently avoid the infeasibility problem.

But the computational cost for feedback min-max can be prohibitively high for long hori-

zons. Alternatively, tube-based MPC incorporates an ancillary controller, which forces the

evolution of the uncertain system to stay within a tube centered around the nominal tra-

jectory [11]. However, compared with its linear version, tube-based nonlinear ancillary

control law is extremely difficult to compute offline. A modified tube-based robust NMPC

[13] is proposed with an online control sequence with guaranteed system stability and

constraint satisfaction, but does not ensure optimal performance under uncertainty.

Stochastic programming-based methods provide an alternative approach to solve robust

MPC problems. A scenario-based stochastic MPC is developed for linear systems with

multiplicative disturbances, where the A and B matrices are functions of disturbances [14].

An air separation problem is studied under plant-model mismatch by a multi-scenario for-

2
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mulation with some robust stability analysis [15]. However, this approach does not take

advantage of the degrees of freedom of the control variables; hence it’s relatively conserva-

tive. A multistage NMPC scheme is proposed to improve on that, where a major assump-

tion is that a discretized scenario tree represents the uncertainty evolution throughout the

entire horizon [16]. This framework has low conservatism because future control actions

act as recourse variables to counteract the effects of uncertainty. More recently, an inex-

pensive prediction of worst-case parameter realizations has been developed along with

fast, heuristic multi-stage methods for worst-case NMPC [17]. In addition, the two-stage

stochastic MPC framework has been applied to a battery management study to illustrate

its superior performance over deterministic MPC [18].

For conventional multi-stage NMPC, the scenario tree structure inevitably increases the

problem size and raises the challenge of solving the control problem online, especially

when the dimensionality of the tree becomes large. The resultant delayed availability of

control actions might contribute to system instability or suboptimal control performance

[19]. Efficient solution of multistage stochastic programs can be enabled through paral-

lelizable decomposition methods [20], where primal decompositions perform iterations

on stages and dual decompositions iterate on scenarios. Recent decomposition algorithms

for multistage NMPC include decompositions for each scenario, with QPs solved in an

inner layer, and with a non-smooth Newton iteration in an outer loop to satisfy non-

anticipativity constraints [21]. However, dual decomposition relaxes the non-anticipativity

constraints, which may result in different control inputs for different subproblems. A pri-

mal decomposition method is proposed that ensures the feasibility of non-anticipativity

constraints [22, 23]. Alternately, a parallelizable primal-dual interior-point method is pre-

sented that exploits the structure of the problem, but is limited to two-stage robust MPC

with linear dynamics [24]. More recently, the optimal cost-to-go functions of different sce-
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narios are approximated by neural networks and a semi-batch reactor example has been

studied [25]. Though online implementation is faster than the original multistage method,

the neural network-based approach requires tuning of the reduced length of robust hori-

zon, which is cumbersome and may introduce large constraint violations if not done care-

fully. Finally, an online scenario generation method is introduced to approximate multi-

stage NMPC with far fewer scenarios, but only by optimizing a worst case cost function

[26].

1.2 Research problem statement

The goal of this thesis is to provide systematic and real-time enabled approaches to ob-

tain robust and stable system behaviors under uncertainty using NMPC. We seek to ex-

tend the current state-of-the-art robust NMPC approaches with meaningful uncertainty

descriptions, and with controllers of verified stability properties. And we propose meth-

ods that significantly reduce computational efforts while keeping the control performance

on a par with the current best available approaches, which allows real-time implementa-

tion. Through the help of control and optimization theory, certain problem structures asso-

ciated with multistage NMPC have been exploited to accelerate the algorithm remarkably.

To make robust NMPC more accessible to researchers and developers, we also make our

codes and package open-source so it becomes possible to use robust NMPC formulations

without taking a long detour.

1.3 Thesis outline

This thesis is organized as follows:

Chapter 2 introduces the basic terminology in order to understand a control system.

4
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1.3 THESIS OUTLINE

Lyapunov stability theory is presented as the foundation of stability analysis throughout

this thesis. Also the history and evolution of MPC has also been covered.

Chapter 3 presents an overview of solution strategies for solving constrained dynamic

optimization problems, which are used for optimal control applications. After transcribing

a dynamic optimization problem to an nonlinear programming problem, a suitable solver

can then be used. This chapter also covers the basic concepts in NLP and NLP sensitivity,

that is further extended in the rest of the thesis for perturbed solutions.

Chapter 4 proposes a parallelizable advanced-step multistage NMPC, which provides

a non-conservative robust control solution that explicitly addresses two types of uncer-

tainty: model parameters and unmeasured noise. Type 1 uncertainty is attended to by

incorporating scenario trees and Type 2 uncertainty is addressed by applying NLP sensi-

tivity. A scenario tree is constructed to represent the evolution of states with respect to dif-

ferent Type 1 uncertainty realizations. Non-anticipativity constraints (NAC) are enforced

among branches of the tree that share the same root state. On top of that, the concepts

of advanced-step and multistage scenario trees are integrated to achieve a better online

performance.

Chapter 5 focuses on the stability properties of NMPCs under different uncertainty ex-

posure. The nominal stability is proved for standard NMPC (ideal NMPC) and advanced-

step NMPC when the model is perfect and there is no disturbance. However, when un-

certainty is present, one resorts to robust stability such as input-to-state stability (ISS), or

input-to-state practical stability (ISpS). This chapter also goes into detail about proving

recursive feasibility and robust stability for ideal and advanced-step multistage NMPC.

Chapter 6 develops a computationally efficient approach called sensitivity-assisted mul-

tistage NMPC (samNMPC) that emulates the multistage NMPC with scenario generation.

The exact multistage NMPC formulation generally needs to take on a large NLP due to

CHAPTER 1. INTRODUCTION

5



1.3 THESIS OUTLINE

its model construction, especially when the number of scenarios grows exponentially with

respect to the number of uncertain parameters and the number of robust horizons. Sam-

NMPC considers an approximate formulation to the conventional multistage NMPC such

that the number of scenarios in the optimization problem is only proportional to the num-

ber of active inequality constraints, which is often much less expensive in comparison. At

the same time, it also considers the weighted sum of stage costs for all scenarios by per-

forming a NLP sensitivity calculation. SamNMPC has been implemented in CasADi and

has demonstrated potential to promote the use of robust NMPC for many applications.

Chapter 7 concludes the thesis with its main contributions and also gives an outlook on

directions for future work.

6
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Chapter 2

Nonlinear model predictive control and

stability concepts

2.1 Introduction

This chapter introduces the fundamental concepts of stability analysis and basic NMPC

concepts. It covers the state-space representation of the controlled system as well as generic

system assumptions, Lyapunov stability theory and standard setpoint tracking NMPC.

These existing frameworks facilitate future discussions towards the design of robust NMPC

controllers in later chapters.

2.2 Notations and definitions

Consider the dynamics of the plant by a discrete-time system:

xk+1 = f(xk, uk, dk) (2.1)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu are the system states and controls, and dk ∈ D ⊂ Rnd is

the vector of disturbances defined at time step tk where k ≥ 0 is the time index. Note that

the set X is called a region of attraction in this chapter.

We use R,R+,Z and Z+ to represent the real and non-negative real, and the integer

and non-negative integer numbers, respectively. Let | · | and ‖ · ‖ denote the Euclidean

vector norm and the corresponding induced matrix norm. The sequence of disturbance is
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denoted by d , [d0, d1, d2, . . . ] and the truncated sequence at time k ∈ Z+ is denoted by

dk = [d0, d1, . . . , dk−1, 0, . . . ]. And for a given sequence, ‖d‖ , supk∈Z+
{|dk|}.

Definition 1. [27] A function f(·) : Rn → R is continuous in Rn if for any x1, x2 and all ε > 0,

there exists a δ > 0 such that ‖x1 − x2‖ < δ ⇒ ‖f(x1)− f(x2)‖ < ε.

A continuous function f(·) : Rn → R is Lipschitz continuous in Rn if for any x1, x2 there exists

a finite L > 0 such that ‖f(x1)− f(x2)‖ < L‖x1 − x2‖.

Definition 2. [28] A continuous function α(·) : R+ → R+ is a K function if α(0) = 0, α(s) >

0, ∀s > 0 and it is strictly increasing.

A continuous function α(·) : R+ → R+ is a K∞ function if it is a K function and α(s)→∞ as

s→∞.

A continuous function β(·, ·) : R+ × Z+ → R+ is a KL function if β(s, k) is a K function in s

for any k ≥ 0 and for each s ≥ 0, β(s, ·) is nonincreasing and β(s, k)→ 0 as k →∞.

Definition 3. (Stable equilibrium point) The point x = 0 is called a stable equilibrium point of

(2.1) if for all k0 ∈ Z+ and ε1 > 0, there exists ε2 > 0 such that |xk0 | < ε2 ⇒ |xk| < ε1 for all

k ≥ k0.

We then make the following assumptions for the system (2.1):

Assumption 4. (System assumptions)

• The system function f(·, ·, ·) : Rnx ×Rnu ×Rnd → Rnx is continuous, with an equilibrium

point at the origin, i.e. f(0, 0, 0) = 0.

• The set X is closed and bounded, and contains the origin in its interior. And the set X is

positive invariant and the set A ⊆ X is closed and positive invariant for system (2.1).

• The set U is closed and bounded, and contains the origin in its interior.

• The set D is a known compact set containing the origin.

• The states xk of the system can be measured at each sampling time.

8
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2.3 Lyapunov stability theory

To understand Lyapunov stability theory, a useful analogy is energy in a passive mechan-

ical system (e.g. a pendulum). The total energy for a pendulum system is the sum of the

kinetic and potential energies, which monotonically decreases as time proceeds because

of friction. Eventually, the system reaches equilibrium when the total energy decays to

zero and the pendulum stops at the bottom. Following a similar trajectory, if one can find

a real-valued function (i.e. Lyapunov function) that is positive and decreasing except at

the origin, then it can be proved that the state converges to the origin. Lyapunov stability

theory establishes the foundation of stability properties of NMPC.

For the clarity of the discussion, we refer to the case in the absence of uncertainty as

nominal stability, and the case that considers the effect of uncertainty as robust stability.

2.3.1 Nominal stability

First we have a controlled system (2.1) in absence of uncertainties, i.e. dk = 0 for k ∈ Z+.

The system now becomes

xk+1 = f(xk, uk, 0) = f̃(xk, uk) (2.2)

Definition 5. (Control invariant set) A set X ⊆ Rnx is control invariant for x+ = f(x, u), u ∈ U

if there exists a u ∈ U such that f(x, u) ∈ X for all x ∈ X.

Definition 6. (Asymptotic stability) Suppose Assumption 4 holds for system (2.2), the set A is

asymptotically stable in X for system (2.2) if there exists a KL function β(·) such that ∀x0 ∈ X,

|xk| ≤ β(|x0|, k), ∀k ≥ 0 (2.3)

Definition 7. (Lyapunov function) Suppose Assumption 4 holds for system (2.2), a function V (·) :

X → R+ is called a Lyapunov function in X for system (2.2) if there exist a feedback control law
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h(x) and K∞ functions α1, α2 and α3 such that, ∀x ∈ X

V (x) ≥ α1(|x|) (2.4a)

V (x) ≤ α2(|x|) (2.4b)

∆V (x) = V (f(x, h(x)))− V (x) ≤ −α3(|x|) (2.4c)

Theorem 8. Under Assumption 4, if system (2.2) admits a Lyapunov function, then the system

(2.1) is asymptotically stable on X.

Details of Theorem 8 and its proof can be found in Appendix B in [28].

2.3.2 Robust stability

We now extend the concept of Lyapunov functions to system (2.1) with disturbances. The

robust stability property concerns with the boundedness of the state in terms of a bounded

disturbance sequence. To analyze the robustness of a controlled system, we introduce the

input-to-state stability (ISS) property. Inspired by input-to-state stability for continuous-

time nonlinear systems [29, 30], ISS has been extended to discrete-time nonlinear systems

in [31], and more recently has been used as a unifying framework to analyze stability of

NMPC in [32].

Definition 9. (Robust positive invariant (RPI) set) [28] Consider that Assumption 4 holds for

system (2.1), a set A ⊆ X is a robust positive invariant (RPI) set for system (2.1) if for all x ∈

A, d ∈ D, there exists a u ∈ U such that f(x, u, d) ∈ A .

Definition 10. (Input-to-state stability (ISS)). Under Assumption 4, the system (2.1) is input-to-

state stable (ISS) in X if there exists aKL function β(·) andK function σ(·) such that, ∀x ∈ X, d ∈

D,

|xk| ≤ β(|x0|, k) + σ(‖d‖) ∀k ≥ 0 (2.5)

10
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This definition of ISS shows that the norm of the state is asymptotically bounded by

σ(‖d‖), which also implies that if the disturbance sequence is zero, then the origin is

asymptotic stable. Similar to asymptotic stability, we seek a form of Lyapunov function

that ensures ISS.

Definition 11. (ISS Lyapunov function) A function V : X → R+ is an ISS-Lyapunov function

in X for system (2.1) if there exist K∞ functions α1(·), α2(·), α3(·) and K function σ(·) such that,

∀x ∈ X, d ∈ D

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.6a)

V (f(x, u, d))− V (x) ≤ −α3(|x|) + σ(|d|) (2.6b)

Theorem 12. (ISS-Lyapunov function implies ISS). Under Assumption 4, if the system (2.1) ad-

mits a continuous ISS-Lyapunov function in A, then the system (2.1) is ISS in A.

Details of proof to Theorem 12 can be found in [31].

We then employ a more general definition of input-to-state stability as the input-to-state

practical stability (ISpS). ISpS was first introduced in [33], and it then has provided an

appropriate framework to analyze the stability of uncertain nonlinear discrete-time system

in [34].The term ”practical” means a neighborhood of the origin, instead of the origin itself,

can be ensured.

Definition 13. (Input-to-state practical stability (ISpS)). [32] Under Assumption 4, the system

(2.1) is input-to-state practical stable (ISpS) in X if there exists a KL function β(·), K function

σ(·) and a constant c ≥ 0 such that, ∀x ∈ X, d ∈ D,

|xk| ≤ β(|x0|, k) + σ(||d||) + c ∀k ≥ 0 (2.7)
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The constant c is a non-vanishing term that reflects the system (2.1) may not evolve to the

origin, but only to a compact neighborhood of the origin. Note that if c = 0 ISpS reverts to

ISS in X. Again, we seek a sufficient condition to ensure ISpS by forming a Lyapunov-like

function.

Definition 14. (ISpS Lyapunov function) A function V : X→ R+ is an ISpS-Lyapunov function

in X for system (2.1) if there exist K∞ functions α1(·), α2(·), α3(·), K function σ(·) and a couple

of constants c1, c2 ≥ 0 such that, ∀x ∈ X, d ∈ D

α1(|x|) ≤ V (x) ≤ α2(|x|) + c1 (2.8a)

V (f(x, u, d))− V (x) ≤ −α3(|x|) + σ(|d|) + c2 (2.8b)

Theorem 15. (ISpS-Lyapunov function implies ISpS) Under Assumption 4, if the system (2.1)

admits a continuous ISpS-Lyapunov function in A and f(·) is continuous, then the system (2.1) is

ISpS in A.

Details of the proof to Theorem 15 can be found in [34].

2.4 Basic NMPC

Rooted in optimal control, Model Predictive Control (MPC) is a form of advanced modern

control that optimizes the control performance of a dynamic system, of which a model is

used to forecast the future system behavior. An implicit feedback control is then generated

by MPC through solving a mathematical programming problem. A typical application to

use a feedback controller is to drive the system output trajectory to a predefined setpoint,

which is commonly referred to as setpoint tracking and is the main focus of this thesis.

12
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MPC obtains the control action by solving a finite horizon open-loop optimal control

problem online at each time step. It differs from the classical control in which an off-line

feedback control law is precomputed (which provides the optimal control for all states).

The solution of MPC consists of an optimal control sequence, of which the first step is im-

plemented to the plant. MPC is particularly useful when an off-line control law is difficult

or impossible to obtain [6]. A great advantage of MPC is that the open-loop optimization

problem can be solved fast enough to allow the implementation of the feedback control,

which is especially true with the development of modern computing infrastructure.

We study a plant with a nonlinear behavior in the form of continuous-time nonlinear

differential equations,
dx

dt
= F (x, u) (2.9)

In order to achieve the best closed-loop control performance, we need to solve the follow-

ing infinite horizon, constrained optimal control problem. The objective is to minimize a

cost-to-go function which has the form

V∞(x, u(·)) =

∫ ∞
0

Φ(x(t), u(t))dt (2.10)

where x(t) and u(t) satisfy (2.9). We now have the optimal control problem P∞(x):

V 0
∞(x) = min

u(·)

∫ ∞
0

Φ(x(t), u(t)) (2.11a)

s.t. ẋ = F (x, u) (2.11b)

x(0) = x0 (2.11c)

x(t) ∈ X, u(t) ∈ U ∀t ∈ R+ (2.11d)

where the optimal cost-to-go function is denoted as V 0
∞(x). Assume the stage cost function

ϕ(·) is positive definite, the goal of P∞(x) is to converge the system states to the origin.
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The optimal control sequence u0
∞(·;x) for problem P∞(x) with the given initial state

measurement x is very difficult to compute. First, solving a infinite-dimensional function

in a mathematical programming setting is challenging; second, the semi-infinite time in-

terval [0,∞] may impose some numerical complexities.

In order to have a tractable P∞(x), we use a discrete-time difference equation instead

of its continuous-time counterpart for a practical computer implementation. The discrete-

time infinite horizon MPC problem becomes Pk∞(x):

V k
∞(x) = min

zl,vl

∞∑
l=0

ϕ(zl, vl) (2.12a)

s.t. zl+1 = f(zl, vl) ∀ l = 0 . . .∞ (2.12b)

z0 = xk (2.12c)

zl ∈ X, vl ∈ U ∀ l = 0 . . .∞ (2.12d)

where f(zl, vl) =
∫ tl+1

tl
F (z(t), v(t))dt and vl is constant over t ∈ [tl, tl+1). Details of deriva-

tion will be discussed in Chapter 3.

At time k, the beginning state of the plant is xk that acts as the initial condition for (2.12),

which computes an optimal trajectory over the entire infinite horizon. At time k + 1, since

no new horizon enters the system, the same trajectory can be used (excluding the first

step) and still remains optimal. This is often referred to as Bellman’s principle of optimality.

See the bottom diagram of Fig. 2.1 for illustration. As a result, recursive feasibility holds

for Pk∞(x) because Pk∞(x), k ∈ Z+ has feasible solutions as long as P0
∞(x) can be solved.

Under the assumption of perfect model and no uncertainties, the cost-to-go function V k
∞(x)

decreases as k increases, which satisfies Definition 7 as a Lyapunov function candidate to

guarantee asymptotic stability [35, 36].

Even though more recent work [37] shows that it is possible to solve infinite horizon

optimal control problem online for linear systems with certain limitations, it still remains

14
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Figure 2.1: Adapted from [4]. Finite horizon and infinite horizon MPC optimal trajectory

for a constant setpoint (perfect model without uncertainties).

an open issue for nonlinear systems. Actually it turns out that the infinite horizon problem

can be approximated by a finite horizon problem [38]. For an infinite horizon problem with

no uncertainties or model errors, the open-loop and closed-loop trajectories are the same,

hence it only requires solving once. For finite horizon MPC, on the other hand, it needs to

execute in every time instant, yet finite horizon is still much more viable [39].

At time k, one obtains the optimal state trajectory for a finite horizon Hp. For a per-

fect model without disturbances, the predicted state at k + 1 will be realized in the plant

precisely. However, the optimal trajectory from k + 1 to k + 1 + Hp may not follow the

previously optimal trajectory from k to k + Hp because of the new interval between step

k + Hp and k + 1 + Hp that is missing at time k for the finite horizon MPC problem. See

the top diagram in Fig. 2.1 for a finite horizon MPC.

For a finite horizon control problem, in order to guarantee the closed-loop stability, one
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can add to the objective function a terminal cost φ(·) which is a global control Lyapunov

function [40]. In the case where a global control Lyapunov function is unavailable, one can

find a local control Lyapunov function defined in a neighborhood of the origin, which is

also referred to as the terminal region Xf [41]. In this case, one can write the finite horizon

problem PN (x) with a finite horizon N with terminal cost and region as,

min
zl,vl

φ(zN ) +
N−1∑
l=0

ϕ(zl, vl) (2.13a)

s.t. zl+1 = f(zl, vl) ∀ l = 0 . . . N − 1 (2.13b)

z0 = xk (2.13c)

zl ∈ X, vl ∈ U ∀ l = 0 . . . N − 1 (2.13d)

zN ∈ Xf (2.13e)

In the discrete-time formulation, we denote zl ∈ Rnx and vl ∈ Rnu as the predicted

state and control variables, respectively. l = 0, 1, ..., N − 1 is the horizon index within the

finite prediction horizon N . f(·) : Rnx × Rnu → Rnx is the discretized dynamic function.

The tracking stage cost is represented by ϕ(·) : Rnx × Rnu → R+, which characterizes the

deviation from the setpoint. The terminal cost is denoted by φ(·) : Rnx → R+. For each

time step k, (2.13) is solved with the optimal control sequence as {v∗0, v∗1, ..., v∗N−1}, in which

the first step is injected to the plant, i.e. uk = v∗0 . Then the plant evolves with k = k + 1

and the procedure repeats. This is also commonly referred to as moving horizon or receding

horizon.

There are alternative terminal conditions for stabilizing finite horizon MPC [41]. One

case would be to use dual-mode predictive control, in which there is only terminal region

but no terminal cost. The receding horizon controller is applied until the system reaches
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the terminal region, inside of which a linear stablizing controller is employed [42]. In ad-

dition, one can assume that the finite horizon N is long enough by analyzing the turnpike

property [43], which is difficult for nonlinear systems. Alternatively, one could argue that

imposing terminal constraints and costs are unnecessary [44]. More recently, one could

adaptively update the finite horizon length to approximate the infinite horizon NMPC

problem [45]. In practice, one generally assumes N is long enough and drop the terminal

conditions in for implementation purposes.
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Computational strategies

As mentioned in Chapter 2, MPC obtains the control action by solving a mathematical

programming problem online. This chapter starts by describing the generic dynamic opti-

mization problem class, which includes the optimal control problem of interest. For non-

linear optimal control problems, one relies on numerical solutions since closed-form so-

lutions are almost impossible to obtain. We introduce solution strategies and numerical

methods as toolboxes to facilitate that. In particular, the direct method transcribes the dy-

namic optimization problem to a nonlinear programming (NLP) problem, which we can

then resort to a NLP solver such as IPOPT. A brief introduction of interior point algorithm

and NLP sensitivity are also reviewed.

3.1 Dynamic optimization

Many applications in science and engineering deal with nonlinear differential-algebraic

(DAE) models, which includes aerospace systems, chemical processes, economics and fi-

nance, robotics systems and many others. Consider a generic form of DAE-constrained

dynamic optimization problem:

min

∫ tf

t0

Φ(x, y, u, p)dt (3.1a)

s.t.
dx

dt
= F (x, y, u, p), x(t0) = x0 (3.1b)

18
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c(x, y, u, p) = 0 (3.1c)

g(x, y, u, p) ≤ 0 (3.1d)

where x, y, u represent differential variables, algebraic variables and control inputs, re-

spectively, and p is the parameter vector; F (·) and c(·) are differential equations and al-

gebraic equations, respectively. g(·) denotes the extra constraints which can be variable

bounds. The goal of dynamic optimization is to minimize some performance metrics de-

noted by Φ(·) for a specified interval [t0, tf ].

A model in dynamic optimization generally comes from first-principles, though more

recently machine learning based (i.e. data-driven) models also come into play. For a chem-

ical process, the differential equations are for the system dynamic behavior (e.g. mass and

energy balance), and the algebraic equations ensure constitutive relations such as physics

and thermodynamics. A common application of dynamic optimization is optimal control

[46].

While formulating a dynamic optimization problem as (3.1) is fairly straightforward,

solving one may be difficult. A special case is linear optimal control, where one has a linear

differential equation and quadratic cost function, commonly known as Linear-Quadratic-

Regulator (LQR). LQR computes an analytical solution to the optimal control gain by solv-

ing Riccati differential equation, and stability of LQR can be proved in [47].

As for nonlinear optimal control problems, one generally does not have analytic so-

lutions as in linear quadratic control, hence numerical solutions are sought after. There

are two realms of numerical methods that solve dynamic optimization problems: indirect

method and direct method.

The indirect method, or variational approach derives from Pontryagin’s maximum prin-

ciple [48], where the first order necessary condition for optimality is solved. For prob-
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lem with equality constraints only, the optimality condition can be formulated as a set of

differential-algebraic equations. This DAE system has boundary conditions at both t0 and

tf . The resulting two-point boundary value problem can be solved with different approaches,

such as single shooting, invariant embedding, multiple shooting, or discretization method

(e.g. collocation on finite elements). On the other hand, handling path inequalities is

tricky in indirect methods as reasonable initial guesses for state and adjoint variables are

often difficult to find. For a detailed presentation of this material, readers are referred to

[27, 49, 50].

Motivated by the inconvenience of indirect method, the direct method converts a dy-

namic optimization problem to a nonlinear programming (NLP) problem. Since integrals

or differential equations cannot be directly handled by NLP solvers, the continuous dy-

namics need to be discretized and reformulated as algebraic equations. Direct methods

are generally separated into two categories: sequential and simultaneous methods.

3.1.1 Single shooting and multiple shooting

The single shooting method, or sequential method, only discretizes the control variables and

the corresponding solution techniques are also called control variable parameterization.

The control inputs after discretization are represented by piecewise constants or piecewise

polynomials. By selecting a set of controls, the process model can be integrated with a DAE

solver with a given initial condition (i.e. ”shoot” as an initial value problem). The DAE

models in the optimization problem are essentially replaced by its gradient information

with respect to the controls, which are provided either with direct or adjoint sensitivity

equations. Then the error in the boundary condition is evaluated, and a NLP solver is

used to obtain a new guess of controls. This method keeps iterating between solving a

NLP for a control trajectory and solving a DAE with that new guess, until the boundary
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condition is met.

Sequential methods are straightforward to construct. However, it requires repeated nu-

merical integration with the DAE solver, which is time-consuming for large-scale systems.

In addition, it has also been reported to have difficulties handling stiff or unstable systems

[51, 52].

In order to reduce the numerical unstability of single shooting, multiple shooting ap-

proach is introduced where the entire domain is partitioned into smaller intervals such

as [t0, t1], [t1, t2], ..., [tN−1, tf ] (i.e. ”shoot” not that far), and DAE model is integrated in

each interval [53]. Unlike the single shooting where only control variables are discretized,

multiple shooting discretizes both control variables and the initial condition for state vari-

ables in each segment, and gradient information are obtained for both types of variables.

In addition, a continuity constraint is needed between two consecutive segments to ensure

states are continuous across intervals.

Because of the additional variables and constraints for each shooting interval, multi-

ple shooting approach inevitably faces an increase in the problem size. Fortunately, as a

direct outcome of applying this formulation, the Jacobian matrix for Newton iteration is

actuallly sparse. It also allows the inequality constraints on state and control variables to

be imposed directly at each segment. Moreover, multiple shooting approach reportedly

provides significant improvement on stability compared to single shooting [54].

3.1.2 Direct transcription

Unlike the shooting methods in the preceding subsection where a set of differential equa-

tions are ”propagated”, direct transcription method, also known as simultaneous approach,

removes the iteration between a DAE integrator and a NLP solver but rather directly cou-

ples the dynamic optimization problem with the NLP solution (hence ”simultaneous”). It
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fully discretizes both state and control variables of the DAE system, where a large-scale

NLP problem is formed and its solution is represented by piecewise polynomials.

The simultaneous approach has many advantages. It can solve problems with path con-

straints and instabilities, and it also allows constraints on state and control variables ex-

plicitly. Additionally, it avoids integrating DAE system as intermediate steps, which could

be computationally intensive. On the other hand, it transcribes the dynamic optimization

problem to a large-scale NLP problem with many variables and degrees of freedom, where

a special NLP solver is called for (which we will explain in detail in the following section).

In this thesis we focus on direct transcription method, where transcription and collocation

are used interchangeably.

The direct transcription method follows a full discretization methodology, where a con-

tinuous time horizon is represented by orthogonal collocation on finite elements. The con-

trol variable is usually parametrized as piecewise constant or piecewise linear within finite

elements. For the differential state, suppose that the state variable is represented by a poly-

nomial of order K + 1 (i.e. highest possible degree is K), the polynomial can be written as

a power series as below, or B-splines [51, 55]:

x(t) = α0 + α1t+ α2t
2 + . . .+ αKt

K (3.2)

We can then choose K + 1 interpolation points in element i and approximate the dif-

ferential variables x(t) using Lagrange interpolation polynomials lj(·) for the reason of

exactness at collocation points. For t ∈ [ti−1, ti], τ ∈ [0, 1],

t = ti−1 + hiτ, (3.3a)

x(t) =
K∑
j=0

lj(τ)xij (3.3b)

where lj(τ) = ΠK
k=0, 6=j

τ−τk
τj−τk with τ0 = 0, τj < τj+1. In addition, i = 1, ..., NFE is the index
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of finite elements and j = 0, ...,K is the index of the collocation points. By definition, τj is

the ”intermediate” point that satisfies x(tij) ≡ xij , where tij = ti−1 + τjhi.

Now the ODE equation (3.1b) can be substituted with (3.3b) where t is a collocation

point tik = ti−1 + τkhi. Since dx(tik)
dt = f(xik, tik), for k = 1, ...,K,

K∑
j=0

xij
dlj(τk)

dτ
= hif(xik, tik) (3.4)

Similarly, the algebraic variables can be treated as Lagrange polynomials of order K+ 1,

y(t) =

K∑
j=0

lj(τ)yij (3.5)

We would also need to add continuity constraints across element boundaries. As a re-

sult, the original dynamic optimization model (3.1) is now translated to the following NLP

formulation and can be solved using off-the-shelf solvers.

min ϕ(xik, yik, uik, pik) (3.6a)

s.t.
K∑
j=0

xij
dlj(τk)

dτ
= hif(xik, yik, uik), x0,0 = x0, (3.6b)

c(xik, yik, uik, pik) = 0 (3.6c)

g(xik, yik, uik, pik) ≤ 0 (3.6d)

xi+1,0 = xiK (3.6e)

i = 0, ..., NFE − 1, k = 1, ...,K (3.6f)

3.2 Nonlinear optimization

After transcribing a dynamic optimization problem using simultaneous methods, we now

seek an efficient NLP solver. Among nonlinear optimization algorithms, the interior point

CHAPTER 3. COMPUTATIONAL STRATEGIES

23



3.2 NONLINEAR OPTIMIZATION

algorithm is especially preferrable for large-scale optimal control problems [56]. For the

purpose of this thesis, an interior point algorithm implementation IPOPT [57] is applied

to solve nonlinear optimization problems. This section will first introduce the theoretical

foundation of NLP, then briefly cover the interior point algorithm, and finally discuss NLP

sensitivity, which will be used extensively throughout this thesis.

3.2.1 Nonlinear programming theory

Consider a generic NLP formulation as follows,

min
x

F (x; p) (3.7a)

s.t. c(x, p) = 0, (3.7b)

g(x, p) ≤ 0 (3.7c)

where x ∈ Rn is the decision variable and p ∈ Rp is the parameter. The objective function

is F (·) : Rn → R, the equality constraint is c(·) : Rn → Rme , and the inequality constraint

is g(·) : Rn → Rmi . I = {1, ...,me} and J = {1, ...,mi} are the index sets for equality

constraints and inequality constraints, respectively.

In order to find the optimal solution of (3.7), let’s first define the basic concepts in non-

linear programming. For convenience of notation, we denote the feasible region F =

{x|c(x, p) = 0, g(x, p) ≤ 0}.

Definition 16. (Local solution, [27, 58])

• x∗ is a local solution of (3.7) if x∗ ∈ F and there exists a neighborhood N of x∗ such that

F (x) ≥ F (x∗) for all x ∈ N (x∗) ∩ F

• x∗ is a strict local solution of (3.7) if x∗ ∈ F and there exists a neighborhood N of x∗ such

that F (x) > F (x∗) for all x ∈ N (x∗) ∩ F and x 6= x∗
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Definition 17. (Active set, [58]) For inequality constraint, the active set J (x) for any feasible x is

J (x) = {j | gj(x) = 0}. In contrast, the inequality constraint j ∈ J is inactive if strict inequality

is satisfied gj(x) < 0.

Definition 18. (LICQ, [58]) Given a point x and its active set J (x), the linear independence

constraint qualification (LICQ) holds when the constraint gradients

∇ci(x, p), i ∈ I,

∇gj(x, p), j ∈ J (x).

(3.8)

are linearly independent.

Definition 19. (Lagrange function) The Lagrange function of (3.7) can be written as:

L(x, ν, η, p) = F (x, p) + c(x, p)T ν + g(x, p)T η (3.9)

where ν ∈ Rme and η ∈ Rmi are multipliers of equality and inequality constraints, respectively.

Definition 20. (KKT conditions, [27, 58]) Suppose x∗ is a local minimum of (3.7), and some

constraint qualification holds at x∗, then there exist Lagrange multipliers ν and η such that,

∇xL(x∗, ν, η, p) = 0 (3.10a)

c(x∗, p) = 0 (3.10b)

g(x∗, p) ≤ 0 (3.10c)

g(x∗, p)T η = 0 (3.10d)

η ≥ 0 (3.10e)

where (3.10d) are complementarity conditions. The Karush-Kuhh-Tucker (KKT) conditions are also

referred to as the first-order necessary conditions.

An important observation is that it may have many sets of multipliers (ν, η) or none that

satisfy (3.10) for a given KKT point x∗ of (3.7). However, if LICQ is satisfied, it implies that

the multipliers (ν, η) are unique.
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Definition 21. (SC, [58]) Given a local solution x∗ of (3.7) and multipliers (ν, η) that satisfy

(3.10), the strict complementarity condition (SC) holds if ηj − gj(x∗, p) > 0 for each j ∈ J (x∗).

Equivalently, ηj is strictly positive when the corresponding inequality constraint becomes active.

After introducing the first-order conditions for optimality, we now take a look at second-

order conditions.

Definition 22. (SOSC, [58]) The second-order sufficient condition (SOSC) holds if KKT condi-

tions (3.10) are satisfied for x∗ and multipliers (ν, η), and also

qT∇xxL(x∗, ν, η, p)q > 0 for all q 6= 0 (3.11)

is satisfied under the following condition,

∇ci(x∗, p)T q = 0, i ∈ I,

∇gj(x∗, p)T q = 0, j ∈ J (x∗) if ηj > 0,

∇gj(x∗, p)T q ≤ 0, j ∈ J (x∗) if ηj = 0.

(3.12)

then x∗ is a strict local solution for (3.7).

Definition 23. (SSOSC, [59]) The strong second order sufficient condition (SSOSC) holds if KKT

conditions (3.10) are satisfied for x∗ and multipliers (ν, η), and also

qT∇xxL(x∗, ν, η, p)q > 0 for all q 6= 0 (3.13)

is satisfied under the following condition,

∇ci(x∗, p)T q = 0, i ∈ I,

∇gj(x∗, p)T q = 0, j ∈ J (x∗) if ηj > 0.

(3.14)

then x∗ is a strict local solution for (3.7).

We also introduce a generalization of LICQ as follows:
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Definition 24. (MFCQ,[58]) The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds

at the KKT point x∗ if,

∇xci(x
∗, p)T q = 0, i ∈ I,

∇xgj(x
∗, p)T q < 0, j ∈ J (x∗).

(3.15)

and the gradients of equality constraints {∇ci(x∗, p), i ∈ I} are linearly independent.

MFCQ is a weaker version of LICQ, which implies the boundedness of Lagrange multi-

pliers (ν, η) that satisfy KKT conditions (3.10).

3.2.2 Interior point algorithm

The interior-point method, also referred to as barrier method, has been seen as a powerful

tool to solve large-scale nonlinear programming problems. One successful barrier method

implementation is IPOPT [57]. The problem under consideration (3.7) is reformulated as:

min
x

F (x; p) (3.16a)

s.t. c(x, p) = 0, (3.16b)

x ≥ 0 (3.16c)

where (3.16) can be obtained by adding nonnegative slack variables. For an optimal control

problem, x includes all the state and control variables, and p is the parameter vector.

IPOPT handles the inequality constraints implictly by a barrier function in the objective

and solves the following problem:

min
x

F (x; p)− µ
nx∑
i=1

ln(xi) (3.17a)

s.t. c(x, p) = 0. (3.17b)
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Given a barrier parameter µ > 0 but negligibly small, the primal-dual system of opti-

mality conditions of (3.17) are solved directly at p0,

∇xL(x∗, λ∗, υ∗; p0) = ∇xF (x∗; p0) +∇xc(x
∗; p0)λ∗ − υ∗ = 0

c(x∗; p0) = 0

X∗V∗e = µe

(3.18)

In order to solve (3.18), Newton’s method is applied to obtain the search direction. Given a

current iterate [xk, λk, υk]
T , a linearization of (3.18) leads the search direction [dxk , d

λ
k , d

υ
k ]T ,


∇xxL(sk(µ; p)) ∇xc(sk(µ; p)) −I

∇xc(sk(µ; p))T 0 0

V(µ; p) 0 X(µ; p)



dxk

dλk

dυk

 = −


∇xL(sk(µ; p))

c(xk(µ; p))

XkVke− µe

 (3.19)

with V = diag(υ),X = diag(x), and eT = [1, .., 1].

After solving a sequence of problems (3.19) with µ→ 0, the solution of (3.17) approaches

the solution of the original NLP (3.16). The primal and dual optimal solution vector is

s(µ; p)T = [x(µ; p)T , λ(µ; p)T , υ(µ; p)T ].

3.2.3 NLP sensitivity

Theorem 25. (NLP Sensitivity) [59, 60]. If F (·) and c(·) of the parametric NLP problem (3.16)

are twice continuously differentiable in a neighborhood of the nominal primal and dual solution

s∗(p0) and this solution satisfies the strong complementarity (SC), linear independence constraint

qualifications (LICQ) and strong second order sufficient conditions (SSOSC) then,

• s∗(p0) is an isolated local minimizer of P(p0) and the associated Lagrange multipliers are

unique.

• For p in a neighborhood of p0 there exists a unique, continuous and differentiable vector

function s∗(p) which is a local minimizer satisfying SSOSC and LICQ for P(p).
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• There exists a positive Lipschitz constant LS such that |s∗(p)− s∗(p0)| ≤ LS |p− p0| where

| · | is the Euclidean norm.

• There exists a positive Lipschitz constant LJ such that the optimal cost values JN (p) and

JN (p0) satisfy |JN (p)− JN (p0)| ≤ LJ |p− p0|.

Theorem 25 can also be extended to Mangasarian-Fromovitz constraint qualification

(MFCQ), which is less restrictive, but requires a more complex sensitivity step. Details

of this extension are described in [61] and are beyond the scope of this dissertation.

When SC, LICQ and SSOSC are satisfied at s(µ; p0), we apply Theorem 25 to (3.19) and

solve the following linear system for the sensitivity,

M(s(µ; p0))∆s = −N(s(µ; p0); p) (3.20)

where

M(s(µ; p0)) =


∇xxL(s(µ; p0)) ∇xc(s(µ; p0)) −I

∇xc(s(µ; p0))T 0 0

V (µ; p0) 0 X(µ; p0)

 is called the KKT matrix,

and N(s(µ; p0); p) =


∇xL(s(µ; p0); p)

c(x(µ; p0); p)

0

.

We write the optimal solution with perturbed parameter as,

s(0; p) = s∗(µ; p0) + ∆s+O(||p− p0||2) +O(µ) (3.21)

A first-order approximation solution is computed as,

s̃(p) = s∗(µ; p0) + ∆s (3.22)

Then the difference between the optimal solution and approximate solution of the orig-

inal problem (3.16) is,

|s(p)− s̃(p)| = O(||p− p0||2) (3.23)

CHAPTER 3. COMPUTATIONAL STRATEGIES

29



3.2 NONLINEAR OPTIMIZATION

Assume the differentiability and Lipschitz continuity of the optimal solution, a positive

Lipschitz constant Ls exists such that

|s(p)− s̃(p)| ≤ Ls|p− p0|2 (3.24)

This approximate solution ∆s can be computed either by sIPOPT [62] (an extension of

IPOPT) or with assistance of CasADi [63] for an update of p using the previous solution at

p0.

The NLP sensitivity provides a great opportunity for optimal control applications where

a control input is imminently needed and an accurate solution is not required. Three sig-

nificant applications of NLP sensitivities are advanced-step NMPC [64], advanced-step

multistage NMPC [65] and samNMPC [66], all of which will be explored in this disserta-

tion.
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Chapter 4

Advanced-step multistage nonlinear model

predictive control

Nonlinear model predictive control (NMPC) has been popular in many applications, espe-

cially when constraint satisfaction is critical. However, due to plant-model mismatch and

disturbances, robust NMPC generally faces three challenges: robust performance, real-

time implementation, and stability. This chapter mainly addresses the first two issues.

In this chapter, we propose an efficient parallelizable advanced-step multistage NMPC

(as-msNMPC) controller that exploits the structure of scenario trees and is robust to two

types of uncertainties. In the background, as-msNMPC precomputes possible control ac-

tions one step ahead as parallelizable subproblems. Depending on whether unmeasured

noise is present, the online computation step selects the corresponding control with pos-

sibly additional NLP sensitivity correction. The performance of as-msNMPC is demon-

strated on two case studies and compared with the performance of several other robust

NMPC schemes.

The work presented in this chapter has been largely published in [65].
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4.1 Current robust NMPC techniques

We represent the dynamics of the plant under uncertainty by the following discrete-time

model:

xk+1 = f(xk, uk, dk) + wk (4.1)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu are the plant states and controls, and dk ∈ D ⊂ Rnd ,

wk ∈ W ⊂ Rnx are the parametric disturbances and bounded additive noise, defined

at time step tk where k ≥ 0 is the time index. Without loss of generality, the mapping

f : Rnx+nu+nd → Rnx with f(0, 0, 0) = 0 represents the nominal model.

Sources of uncertainty are divided into two distinctive categories. Type 1 uncertainty is

denoted as dk: model parameters that may be uncertain and will be realized before the next

step. Type 2 uncertainty, denoted aswk, is unmeasured noise, e.g. process and measurement

noise, which will not be realized within one sampling time, if ever. wk often contributes to

the discrepancies between predicted states and actual states. In the following section, we

deploy different techniques to handle both error types explicitly. Let’s first start with the

existing techniques.

4.1.1 Standard NMPC

The basic concepts of standard NMPC can be found in [67] and Section 2.4. After obtaining

the current state xk at tk from the measurements, one solves for a sequence of states and

controls for the next N steps. We use zl and vl to represent the state and control variables

in the controller at tk+l, respectively.

Standard NMPC neglects both uncertainties. Given the plant dynamics as (4.1), we write

the standard NMPC as the following nonlinear programming (NLP) problem:

min
zl,vl

φ(zN , d̄N−1) +
N−1∑
l=0

ϕ(zl, vl, d̄l) (4.2a)
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s.t. zl+1 = f(zl, vl, d̄l) l = 0, ..., N − 1 (4.2b)

z0 = xk (4.2c)

zl ∈ X, vl ∈ U, zN ∈ Xf (4.2d)

The stage cost is given byϕ(·, ·, ·) : Rnx+nu+nd → R and terminal cost is φ(·, ·) : Rnx+nd →

R. For a control problem with a setpoint tracking objective, the stage cost and terminal cost

terms are often quadratic. The constraints (4.2b) represent the dynamic model used in the

standard NMPC controller, which keeps the model parameter at its nominal value d̄l for

all stages. (4.2c) sets the initial state of the controller at the current plant state xk at tk. The

last constraint (4.2d) denotes the bound constraints, where X and U are domains for state

and control variables, respectively. Xf ∈ X where Xf is the terminal region.

After solving the optimization problem (4.2) for standard NMPC, the control action in-

jected into the plant at time step k is the first stage of control profile uk = v∗0 . Later this

feedback control law is also referred to as uk = h(xk) with h : Rnx → Rnu . After one

time step, the plant evolves as in (4.1) with one step forward at tk+1, the new state xk+1 is

obtained, and the procedure repeats.

Depending on the problem size, it often requires a non-trivial amount of time to solve

(4.2) in order to obtain the control action v∗0 . The time difference between measuring the

state information and injecting the control action for the same step is referred to as computa-

tional delay. Avoiding this delay is the key advantage to advanced-step multistage NMPC,

which will be discussed in Section 4.2.

Finally, the rolling horizon nature of standard NMPC provides some inherent robustness

[7, 8], but its performance deteriorates under uncertainty. We therefore summarize several

robust NMPC schemes that handle uncertainty explicitly.
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4.1.2 Ideal multistage NMPC

The main idea behind multistage NMPC is to explicitly account for the model uncertain

parameters and their evolution and propagation throughout the time horizon. Similar

problem settings have been established in stochastic programming literature, where a sce-

nario tree is utilized to capture the uncertainty evolution. The ideal multistage NMPC is

built upon the basic scenario tree structure. To distinguish from Section 4.2, with ideal

multistage NMPC (ideal-msNMPC) we assume computational delay is neglected so that

the control inputs can be injected to the plant immediately.

Conventionally, two major assumptions are made:

1. Each uncertain parameter follows a discretized probability distribution with a finite

set of values.

2. The resolution of uncertain parameters occurs before the next time step, which qual-

ifies the nature of uncertain parameters to be exogeneous [68].

The prediction horizon N for NMPC problems is generally long enough to lead to ap-

plication of multistage stochastic programming [20]. Consistent with the terminology in

stochastic programming, the zeroth control variable v0 is commonly referred to as the here-

and-now decision, and the remaining control variables (vl,∀l ≥ 1) are wait-and-see decisions,

which are often referred to as recourse actions (i.e. future decision variables that compen-

sate for the realized uncertainty of the current step). In fact, different realizations result

in different recourse variables in order to achieve the corresponding objective. Further

discussion of this topic is beyond the scope of our paper and can be found in [20, 69].

Consider the state of the plant at the current step tk at the root node of the tree, and

that the system has one uncertain parameter that can take |Q| representative values from

its probability distribution. Following the canonical examples in stochastic programming
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[16], we also choose |Q| = 3 where Q = {max, nominal, min}. As a result, three distinctive

states will be reached at tk+1, which represents all possible states with respect to three

possible uncertain parameter realizations (without considering additive noise). As the

process moves forward in time, the states evolve with 9 states at tk+2, and then 27 states at

tk+3, as seen in Fig. 4.1 for a prediction horizon of three. Note that a scenario is defined as

a sequence of states from the root node to a leaf node.

If the total length of prediction horizon is N , the number of states at the end of the

prediction horizon is |Q|nd·N , where nd is the dimensionality of the uncertain parameter

vector. By construction, the scenario tree captures every possible uncertainty evolution

profile from tk to tk+N . However, since N needs to be long enough to match plant time

constraints in MPC applications, the number of states at N grows exponentially. Hence,

the resulting optimization problem size explodes.

Figure 4.1: Prediction horizon N = 3, the

fully-branched 27-scenario tree.

Figure 4.2: Prediction horizon N = 3,

the fully-branched 27-scenario tree with

non-anticipativity constraints (NACs).
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When implementing the control action, regardless of the number of scenarios, there is

only one control action v0 that can be injected into the plant at time tk. Owing to the

construction of the scenario tree, the controls needn’t be the same for every step and every

scenario; they only need to be the same if they act on the same state (e.g. in Fig. 4.2,

v1
0 = v2

0 but v1
1 and v6

1 are not restricted to be the same). Before the uncertain parameters are

realized, the system requires the control action to be determined. Hence, constraints that

enforce the same control action for scenarios that stem from the same state node are called

Non-Anticipativity Constraints (NACs). Since the number of NACs also grows exponentially

with respect to N , the NLP problem rapidly becomes intractable. See (5.17) for multistage

NMPC formulation for a fully expanded tree.

In order to obtain an online-tractable problem formulation, [16] apply a robust horizon

to limit scenario tree branching up to a shorter horizon (e.g. Fig. 4.3 shows a truncated

scenario tree with robust horizon of two). A robust horizon Nr means that the scenario

tree develops in the same way as the fully-expanded scenario tree up to tNr ; after tNr , the

uncertain parameters remain at their last values in robust horizon throughout the rest of

the prediction horizion. In fact, for all c ∈ C, dcNr−1 = dcNr
= dcNr+1 = ... = dcNp−1. The

benefit of applying robust horizons is that the number of scenarios is significantly reduced

to |C| = |Q|nd·Nr instead of |Q|nd·N withNr � N . While the truncated form of scenario tree

will not capture every evolution of uncertainty within N as the fully-expanded scenario

tree, a justification could be that all controls for all stage index l > 0 will be recalculated in

the moving horizon setting, considering that only the immediate control is implemented

to the plant. Frequently, the branches that are neglected by applying a robust horizon have

less impact on MPC applications. As developed in [16], the optimization formulation for

ideal multistage NMPC (assuming no computational delay) is shown as (4.3) (also denoted

as P idN ).
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Figure 4.3: Robust horizon Nr = 2, the 9-scenario tree with prediction horizon Np = N .

J idN (xk) = min
zcl ,v

c
l

∑
c∈C

pc
(
φ(zcN , d

c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )
)

(P idN (xk))

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) l = 0, ..., N − 1 (4.3a)

zc0 = xk (4.3b)

vcl = vc̄l if zcl = zc̄l (4.3c)

dcl−1 = dcl for l = Nr, . . . N − 1 (4.3d)

zcl ∈ X, vcl ∈ U, zcN ∈ Xcf , dcl ∈ D (4.3e)

∀c, c̄ ∈ C (4.3f)

The optimal objective for (4.3) is denoted as J idN (xk), where the parameter xk is the cur-

rent state of the plant at tk and N is the length of prediction horizon. zcl , v
c
l , d

c
l represent

the state, control and parametric disturbance at stage l and scenario c. (4.3c) is the NAC

constraint, where scenario c and c̄ share the same control if the corresponding states of c
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and c̄ are the same at stage l.

4.1.3 Min-max NMPC

Min-max MPC [10, 12] has been seen as an effective robust MPC scheme. The name min-

max comes from the two-layer operator, where the inner layer (max operator) rules on the

worst case and the outer layer (min operator) optimizes the cost function for the selected

(worst) scenario. One unified control profile applies to all scenarios, and same constraints

are enforced for every scenario including the worst scenario.

The same scenario tree structure of ideal multistage NMPC is used for min-max NMPC.

One major difference between ideal multistage NMPC to min-max NMPC is the objective,

where ideal multistage NMPC optimizes a weighted average performance for all scenarios,

yet min-max NMPC only optimizes the performance for the worst-case scenario.

The NLP problem is defined as:

min
zcl ,vl

max
c

φ(zcN , d
c
N−1) +

N−1∑
l=0

ϕ(zcl , vl, d
c
l ) (4.4a)

s.t. zcl+1 = f(zcl , vl, d
c
l ) l = 0, ..., N − 1 (4.4b)

zc0 = xk (4.4c)

zcl ∈ X, vl ∈ U, zcN ∈ Xcf , c ∈ C, dcl ∈ D (4.4d)

where C is the set of scenarios.

In practice, problem (4.4) is reformulated and solved as a standard single level optimiza-

tion problem. A scalar variable is introduced to serve as the upper bound in the form of

constraints to replace the max operator. The reformulation can be written as:

min
zcl ,vl,µ

µ (4.5a)

s.t. φ(zcN , d
c
N−1) +

N−1∑
l=0

ϕ(zcl , vl, d
c
l ) ≤ µ, l = 0, ..., N − 1 ∀c (4.5b)
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zcl+1 = f(zcl , vl, d
c
l ) (4.5c)

zc0 = xk (4.5d)

zcl ∈ X, vl ∈ U, zcN ∈ Xcf , c ∈ C, dcl ∈ D (4.5e)

4.1.4 Robust NMPC with explicit back-off constraints

Another strategy of optimizing under uncertainty is robust NMPC with backoff constraints.

One can directly modify the original inequality constraints in the standard NMPC formu-

lation (4.2) with backoff terms so that the same problem structure is maintained.

To explain this in mathematical form, we first re-write the bound constraints in standard

NMPC formulation (4.2d) as the following equivalent expression:

g(zl, vl) ≤ 0 l = 0, ..., N (4.6)

where g(·, ·) : Rnx+nu → RB , and B is defined as the number of bound constraints (i.e.

inequality constraints) in the formulation (4.2d). By adding backoff terms, (4.6) would

become:

g(zl, vl) + b ≤ 0 l = 0, ..., N (4.7)

where term b ∈ RB is the backoff term. In this way, the problem of handling model uncer-

tainty is converted to calculation of the backoff term offline such that the original inequality

constraints (4.6) are satisfied online with pre-determined probability threshold. If the prob-

ability is set to be 1, then it can be interpreted that the constraints are met even for the

worst scenario. Generally, the backoff term is nonnegative, implying that the feasible re-

gion of the problem needs to be tightened to guarantee robustness. The case of negative

backoff terms, where the inequality constraints can be relaxed, is not in the scope of this

work. For discussions regarding negative backoff terms, one can refer to [70].
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The offline procedure to obtain the backoff term is by performing open-loop Monte Carlo

simulation, i.e. there is no feedback from the real-time plant data to the controller except

for the initial state value x0. The updated optimization problem becomes:

min
zl,vl

φ(zN , d̄N−1) +
N−1∑
l=0

ϕ(zl, vl, d̄l) (4.8a)

s.t. zl+1 = f(zl, vl, d̄l) (4.8b)

z0 = xk (4.8c)

g(zl, vl) + b ≤ 0 l = 0, ..., N (4.8d)

After obtaining the back-off term from the offline Monte Carlo simulation, on-line NMPC

(4.9) is solved at each sampling time with updated initial values from plant. In practice,

only the first control action matters because the plant only implements the first step. In

order to monitor feasibility strictly on plant behavior, a soft penalty is applied to all steps.

The online NMPC formulation is as below:

min
zl,vl

φ(zN , d̄N−1) +

N−1∑
l=0

ϕ(zl, vl, d̄l) +M

N∑
l=0

δl (4.9a)

s.t. zl+1 = f(zl, vl, d̄l) (4.9b)

z0 = xk (4.9c)

g(zl, vl) + b ≤ δl l = 0, ..., N (4.9d)

δl ≥ 0 l = 0, ..., N (4.9e)

The following procedure (Algorithm 1) demonstrates the steps to obtain the back-off

term within NMPC framework. More detailed methodologies to compute the back-off

term can be found in [71].
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Algorithm 1: Robust NMPC with backoff terms from Monte Carlo

1 Initialize b = 0 and obtain the offline optimal control trajectory u(t) by solving (4.8)

2 Apply control profile u(t) to perform Monte Carlo simulation with known uncertainty

probability distribution, and obtain state profiles.

3 Calculate the backoff term b∗ for g(zl, vl) from the largest boundary violation

magnitude in the Monte Carlo simulation result.

4 if ||b∗ − b||2 ≤ ε (tolerance) then

5 go to step 9;

6 else

7 update (4.8) with the new backoff term b = b∗, obtain the new offline optimal

control profile and go back to step 2;

8 end

9 Apply b to solve the online optimization (4.9) to see the optimization performance and

constraint satisfaction.

4.1.5 Perfect information

As the name suggests, perfect information assumes that the controller obtains the uncer-

tainty information a priori up to certain steps ahead of the current step. In other words,

the perfect information NMPC controller uses a model in accordance with the plant up to

certain steps, after which the controller keeps the same uncertain parameter values.

Since uncertainty cannot be predicted, the perfect information NMPC does not carry a

practical implementation. However, its performance provides a meaningful benchmark

that no robust NMPC strategies can surpass. Hereby the research focus of practical robust

NMPC is to get as close as possible to the performance of perfect information.

The optimization formulation that is solved at every time step for each scenario c ∈ C is
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written as:

min
zl,vl

φ(zcN , d
c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l ) (4.10a)

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ), l = 0, ..., N − 1 (4.10b)

zc0 = xk (4.10c)

zcl ∈ X, vcl ∈ U, zcN ∈ Xcf , dcl ∈ D, c ∈ C (4.10d)

Notice that the perfect information formulation does not need to have NACs because

the uncertainty is assumed known, thus (4.10) can be solved in a parallel fashion as each

scenario is independent.

4.2 Advanced-step multistage NMPC scheme

4.2.1 Advanced-step and NLP sensitivity

To directly tackle nontrivial delays from the solution of NMPC problem (4.2), advanced-step

NMPC was designed to separate the computational workload into two parts: background

and online, and ultimately have negligible computation delays online [64]. Advanced-step

NMPC (asNMPC) also carries the same nominal and robust stability properties of standard

NMPC, which will be discussed and proved in Chapter 5.

In order to apply either advanced-step NMPC or advanced-step multistage NMPC, NLP

sensitivity is used to have a quick perturbed solution. A brief NLP sensitivity recap is pro-

vided here. Assuming the dynamic optimization problem of interest can be reformulated

as a canonical NLP formulation as follows:

min
x

F (x; p) (4.11a)

s.t. c(x, p) = 0, x ≥ 0 (4.11b)
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where x represent all the primal variables, and p is the parameter. Assume the original

NLP has the parameter value p0. If we send (4.11) to a solver using the barrier method

such as IPOPT [57], instead of solving (4.11) directly, IPOPT forms barrier subproblems as

this:

min
x

F (x; p)− µ
nx∑
i=1

ln(xi) (4.12a)

s.t. c(x, p) = 0. (4.12b)

where µ ≥ 0 is called the barrier parameter. (4.12) is free of inequality constraints. Under

certain conditions, the solution of (4.12) converges to (4.11) as µ → 0. As a result, the

optimal solution is denoted as s(µ; p0).

Given a barrier parameter µ > 0 but negligibly small, first order approximation of KKT

conditions of (4.12) are solved directly at p0,

∇xL(x∗, λ∗, υ∗; p0) = ∇xF (x∗; p0) +∇xc(x
∗; p0)λ∗ − υ∗ = 0

c(x∗; p0) = 0

X∗V∗e = µe

(4.13)

with V = diag(υ),X = diag(x), and eT = [1, .., 1]. The primal and dual solution vector is

s(µ; p)T = [x(µ; p)T , λ(µ; p)T , υ(µ; p)T ]. When LICQ, SSOSC and SC are satisfied at s(µ; p0),

we apply Theorem 25 to (4.13) and solve the following linear system for the sensitivity,

M(s(µ; p0))∆s = −N(s(µ; p0); p) (4.14)

where M(s(µ; p0)) =


∇xxL(s(µ; p0)) ∇xc(s(µ; p0)) −I

∇xc(s(µ; p0))T 0 0

V (µ; p0) 0 X(µ; p0)

 is the KKT matrix,

andN(s(µ; p0); p) =


∇xL(s(µ; p0); p)

c(x(µ; p0); p)

0

with s(0; p) = s(µ; p0)+∆s+O(||p−p0||2)+O(µ).

CHAPTER 4. ADVANCED-STEP MULTISTAGE NONLINEAR MODEL PREDICTIVE CONTROL

43



4.2 ADVANCED-STEP MULTISTAGE NMPC SCHEME

An approximate solution is computed as s̃(p) = s∗(µ; p0) + ∆s, and sIPOPT computes

this approximate solution for an update of p using the previous solution at p0.

The main benefit of the sensitivity step is to save unnecessary computational effort by

avoiding recalculation of the KKT matrix. The formation and factorization of the KKT

matrix is the most expensive step of the NLP algorithm. By reusing the KKT matrix from

the previous session at p0, the sensitivity update spares solving an NLP from scratch. The

reduced online computational workload is critical in real-time implementation of NMPC.

The readers are referred to section 3.2.3 for more details regarding NLP sensitivity.

4.2.2 Advanced-step multistage NMPC (as-msNMPC)

Literature studies [16, 17, 18, 19, 21, 22, 24] on ideal multistage NMPC assume that the non-

linear optimization problem by a multistage scenario tree is solved without computational

delay. In reality, there are limited resources to allow online computations, and the mul-

tistage scenario problem size is inevitably larger than its counterpart of standard NMPC,

even with a short robust horizon. Instead, we exploit the recursive and decomposable na-

ture of the scenario tree structure such that the advanced-step concept can be integrated

seamlessly.

To illustrate the decomposition of scenario tree, consider the ideal 9-scenario tree in Fig.

4.3. At time tk, with the current state xk and control uk from a previous calculation, obtain-

ing three predicted states {x1
k+1|k, x

2
k+1|k, x

3
k+1|k} is straightforward, and every predicted

state becomes the root node for a subtree starting at tk+1 with prediction horizon N − 1, as

shown in Fig. 4.5. Each subtree problem is mutually independent and can be solved sepa-

rately. In addition, the subtree problem size is also smaller than the original tree problem

approximately by |Q|−nd , and will take less time to solve.

After decomposing the scenario tree, the next question is how to make the control action
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Figure 4.4: Robust horizon Nr = 2, the 9-

scenario tree with prediction horizon N .

(same as Fig. 4.3)

Figure 4.5: Example of advanced-step

multistage NMPC transforming the orig-

inal 9-scenario tree in Fig. 4.3

uk available at tk. Here, one has a priori knowledge of the finite set of uncertain parameters.

At tk the uncertainty in model parameters dcl takes values of dj where j ∈ Qnd follows from

the Cartesian product for possible values for each dj .

With a priori knowledge of uncertainty selections, one can pre-compute the correspond-

ing library of control actions for tk+1 in parallel. Fig. 4.5 shows the number of uncertain

parameters nd = 1 and dk takes values {dmax, dnom, dmin} (i.e. |Q|nd = 3). Consequently, if

only Type 1 uncertainty appears, the plant evolves as one of the predicted states. On the

other hand, if both Type 1 and 2 uncertainties appear in the system, a sensitivity correc-

tion using (4.14) is applied to the background solution to include unmeasured noise. In

this way, as-msNMPC applies NLP sensitivity to approximate the corrected solution, as
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shown in the as-msNMPC algorithm below.

Background:

• Given xk and uk, predict the states at tk+1 for all dck values as xck+1|k. Solve |Q|nd

individual problems P idN−1(xck+1|k).

• Solving problems P idN−1(xck+1|k) is independent and separable, so this step can be

parallelized to ensure fast solution of background problem.

Online:

• At tk+1, the actual state xk+1 is observed.

Without Type 2 error, the actual state belongs to the set of background predictions

xk+1 ∈ {xck+1|k, c ∈ C}. The only online step is to select the corresponding solution

from the realized dj and to repeat the background calculation at tk+1.

• With Type 2 error, the actual state will not correspond to the background predictions.

Instead, uk+1 is obtained from the sensitivity-based correction step (4.14). Once cor-

rected, advance one step and repeat the background calculation at tk+1.

4.2.3 Discussion on performances of as-msNMPC and ideal-msNMPC

By decomposing the same scenario tree into a set of subtrees, one can solve the subtree

problems in the background, as in as-msNMPC. However, by construction, the solutions to

ideal-msNMPC and as-msNMPC are not identical. As in Fig. 4.4 and Fig. 4.5, the effective

robust horizon for as-msNMPC is one step shorter than the one of ideal-msNMPC Nas
r =

N ideal
r − 1. Similarly, for prediction horizon, Nas = N ideal − 1. Hence, the implemented

first control from as-msNMPC and ideal-msNMPC controllers are similar not the same

assuming that one structure of the scenario tree is used for both controllers.
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On the other hand, one could achieve identical performance between as-msNMPC and

ideal-msNMPC under Type 1 only uncertainty, with a modified construction. If the sub-

trees for as-msNMPC have the same robust and prediction horizon lengths as the tree for

the ideal case, i.e. Nas
r = N ideal

r and Nas = N ideal, then one of the subproblems solved in

as-msNMPC is the same as that for ideal-msNMPC. However, in this case, each subprob-

lem has exactly the same size as that of ideal-msNMPC, which may become less advanta-

geous if the background computational resource is limited.

4.3 Case studies

4.3.1 CSTR example

Consider the nonlinear CSTR benchmark problem [1], where the dynamics are described

by the following four differential equations:

dcA
dt = F (cA0 − cA)− k1cA − k3c

2
A

dcB
dt = −FcB + k1cA − k2cB

dTR
dt = F (Tin − TR) + kWA

ρcpVR
(TK − TR)− k1cA∆HAB+k2cB∆HBC+k3c2A∆HAD

ρcp

dTK
dt = 1

mKcpK
(Q̇K + kWA(TR − TK))

(4.15)

where the reaction rate ki follows the Arrhenius law, ki = k0,ie
−EA,i

R(TR+273.15) . State variables

are [cA, cB, TR, TK ], which are concentrations of component A and B, reactor temperature

and coolant temperature, respectively. The control inputs are the inlet flow rate normalized

by the reactor volume F = V̇in/VR, and the heat removed by the coolant Q̇K .

The initial condition and constraints of the state variables are described in Table 4.2. And

the upper and lower bounds of the manipulated variables are listed in Table 4.3.

The control task is to track a predefined set-point for the desired product concentration

cB . The setpoint is set to be crefB = 0.5 for t ≤ 0.3h and crefB = 0.7 for t > 0.3h. The
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Parameter Value Unit

k0,1 1.287 · 1012 h−1

k0,2 1.287 · 1012 h−1

k0,3 9.043 · 109 Lmol−1h−1

EA,1/R 9758.3 K

EA,2/R 9758.3 K

EA,3/R 8560 K

∆HAB 4.2 kJmol−1

∆HBC −11.0 kJmol−1

∆HAD −41.85 kJmol−1

ρ 0.9342 kgL−1

cp 3.01 kJkg−1K−1

cpK 2.0 kJkg−1K−1

A 0.215 m2

VR 10.0 L

mk 5 kg

Tin 130.0 ◦C

kW 4032 kJh−1m−2K−1

cA0 5.1 molL−1

Table 4.1: Parameter values of the CSTR, adapted from [1, 2]

uncertain system parameters are activation energy for the third reaction EA,3(t) and/or

the inlet flow concentration cA0(t). Note that both uncertain parameters are time-variant
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State Init. cond. Min. Max. Unit

cA 0.8 0.1 5.0 molL−1

cB 0.5 0.1 5.0 molL−1

TR 134.14 50 140 ◦C

TK 134.0 50 180 ◦C

Table 4.2: Initial conditions and state constraints

Control Init. cond. Min. Max. Unit

F 18.83 5 100 h−1

Q̇k -4495.7 -8500 0 kJh−1

Table 4.3: Bounds on the manipulated variables

and of known distribution. The stage cost to be minimized is defined as below:

ϕl = (cBl − c
ref
Bl )2 + r1∆F 2

l + r2∆Q̇2
Kl (4.16)

where crefB is predefined setpoint for cB , and ∆Fl = Fl−Fl−1 and ∆Q̇K = Q̇Kl− Q̇Kl−1 are

the difference between consecutive steps after discretization for flow rate and cooling rate,

respectively. The second and third terms are generally referred to as the penalty terms for

control movements, and their corresponding penalty coefficients are r1 = 10−7 and r2 =

10−11. We choose the prediction horizon for the controller being N = 40 steps with a zero

terminal constraint zcN = zss(d
c
N ) so that φ(zcN ) = 0. The final results are obtained after 120

runs with the entire control time period being 0.6 hours. All computational experiments

are modeled in AMPL, and solved using IPOPT 3.12 with Intel i7-6700 Quad-Core CPU

3.40 GHz.
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The robust horizon is set to be Nr ≤ 2 in all robust NMPC schemes for uncertainties

cA0 and EA,3. For nd = 1, Nr = 2 the 9-scenario structure applies to the ideal-msNMPC,

perfect information and the worst case schemes. With as-msNMPC the corresponding

three 3-scenario structures are solved and can be trivially parallelized. For the case with

nd = 2, Nr = 2, an 81-scenario tree is solved by ideal-msNMPC and nine 9-scenario trees

are solved by as-msNMPC.

In the following subsections, three groups of case studies are performed. First, section

4.3.1.1 compares different robust NMPC schemes under uniform and non-uniform param-

eter distribution. Next, section 4.3.1.2 presents similar performances between as-msNMPC

and ideal-msNMPC under Type 1 only and Type 1 + 2 uncertainty. Finally, section 4.3.1.3

tests the constraint satisfaction on different robust NMPC controllers, including both as-

msNMPC and ideal-msNMPC.

4.3.1.1 Robust NMPC schemes results

Uniform distribution

We present case studies where five robust NMPC controllers are applied and compared.

In this section, the uncertain parameter is activation energy EA,3, and the level of un-

certainty is set to be ±10% with respect to its nominal value. The uncertainty in the

plant is assumed time-varying such that for each horizon dk can take any value from

{max, nominal, min}. The performances of standard NMPC, min-max NMPC, back-off,

perfect information and ideal-multistage NMPC, are presented and compared in Table 4.4.

The performance is gauged based on an averaged accumulated cost of 10 random runs.

Each accumulated cost is the implemented stage costs accumulated over 120 runs, i.e.∑120
k=1(cBl − crefBl )2. Then we repeat this procedure for 10 random seeds of uncertainty

realizations and record the averaged accumulated costs. In the case of back-off, Monte
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Carlo simulation is performed with 200 random seeds. Each random seed corresponds

to a sequence of uncertainty realizations for the full horizon N , where at each time EA,3

takes its -10%, nominal and +10% value with equal probability. Then the back-off term is

determined as the maximum constraint violation magnitude.

The averaged accumulated cost and CPU seconds are listed in Table 4.4 for both 3-

scenario and 9-scenario cases for five robust schemes. Standard NMPC, where EA,3 re-

mains at its nominal value, is indifferent to scenario trees. Due to time-varying uncer-

tainty in the plant, standard NMPC suffers from significant plant-model mismatch, which

results in the highest tracking error among all the formulations. At the same time, standard

NMPC also violates state constraints, which will be elaborated in Section 4.3.1.3.

# Scenarios Standard Perfect Min-max Back-off Ideal-ms

Costs
3 0.21432 1.10159

1.63201
0.37350

9
1.70659

0.15349 1.10191 0.24160

CPUs
3 0.1208 0.2712

0.1777
0.3057

9
0.1315

0.1170 0.7936 0.6393

Table 4.4: Averaged accumulated stage costs and CPU seconds for standard, perfect in-

formation, min-max NMPC, back-off and ideal-multistage NMPC under 3-scenario and

9-scenario tree structure for uncertainty is d = EA,3 ± 10%.

The perfect information case gives the best performance among all formulations as shown

in Table 4.4. In fact, 9-scenario behaves even better than 3-scenario because 9-scenario as-

sumes two steps of perfect information on uncertainty are obtained, instead of one step in

the 3-scenario case. Despite its desirable performance, perfect information is an unrealis-

tic situation which postulates that the controller is able to predict the future uncertainty
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realization. However, the objective value of the perfect information case provides a lower

performance bound for all other robust NMPC schemes.

Both min-max and back-off approaches stay robust despite uncertainties. In the case

of min-max NMPC, there is only one control profile minimizing the worst cost scenario.

While constraints are satisfied for all possible scenarios, the feasible region is shrunk and

hence the controller behaves cautiously. In comparison, the back-off constraint approach

appears to be more conservative and sacrifices even more performance. On the computa-

tional side, back-off outperforms other methods due to a single-scenario on-line compu-

tational load, while min-max increases on-line efforts because of its larger multi-scenario

problem.

Lastly, ideal-multistage NMPC formulation is able to get closer to perfect information

compared to min-max NMPC and back-off. Multistage NMPC applies non-anticipativity

constraints to control variables only within the robust horizon, leaving the future manip-

ulated variables as recourse variables to counteract future uncertainties. These extra de-

grees of freedom decrease model conservatism and consequently achieve a lower cost.

Computationally, ideal-msNMPC inevitably increases the on-line CPU seconds owing to

the multi-scenario model and additional non-anticipativity constraints; this is remedied

by the advanced-step multistage approach.

Non-uniform distribution

In the previous case study, we assume that each scenario is of equal probability 1
|C| .

However, that is not always the case in reality. We now explore two non-uniform dis-

tributions: symmetric and skewed. The symmetric case represents a discretized Gaussian

distribution, i.e. a higher probability (0.5) for the nominal scenario and lower probability

(0.25) for the other two closer to the tail. The skewed case represents the distribution where
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one of the scenario closer to the tail has a higher probability (0.5) while the other two are

of lower probability (0.25). To compare with the results of the uniform distribution, we

keep the same 3-scenario structure among all distributions, i.e. every distribution has the

same three discrete values (−10%, 0% and +10%) but different probability values as shown

in Table 4.5. The uniform distribution is the same with the ones in the previous sections.

The CPU time in the case of non-uniform distribution is similar to that of the uniform

distribution shown in Table 4.4.

Parameter probability

distribution
Standard Perfect Multistage Min-max Back-off

1.70659 0.21432 0.37350 1.10159 1.63201

0.82820 0.15506 0.27143 0.92928 1.77445

4.55494 0.55056 0.70611 1.63751 0.76611

Table 4.5: Averaged accumulated tracking error (cost) for standard, perfect information,

multistage, min-max and back-off under 3-scenario tree structure for uncertainty is EA,3

when the parameter probability distribution is uniform, symmetric and skewed. The gray

column implies infeasible solver status with the corresponding formulation.

Table 4.5 shows a consistent trend that multistage NMPC demonstrates a clear advan-

tage over other robust NMPC approaches regardless of the uncertain parameter proba-

bility distribution. It is not too surprising that standard NMPC fails to stay feasible in

all three cases. Min-max and back-off formulations, as two other robust NMPC methods,

show varying degrees of conservatism with respect to the uncertain parameter probability
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distribution. Multistage NMPC formulation still achieves the realistically minimal track-

ing error - closest to the error in perfect information case.

After establishing the argument that ideal-multistage NMPC is a non-conservative ro-

bust NMPC scheme, we now conduct comparison studies of ideal-multistage and advanced-

step multistage NMPC.

4.3.1.2 Ideal multistage and advanced-step multistage

Type 1 uncertainty only

We first consider model parameter uncertainty without unmeasured disturbances. Two

case studies have been conducted with the model parameter being cA0 or EA,3, where

the range for cA0 is ±30% and it is ±5% for EA,3. Figs. 4.6 and 4.7 compare the time

trajectories for state variables cA, cB and control variable F for both multistage NMPCs.

From Figs. 4.6 and 4.7 and we see that both as-msNMPC and ideal-msNMPC satisfy state

and control variable constraints. Moreover, state and control profiles for as-msNMPC and

ideal-msNMPC are reasonably close to each other, and both approaches manage to reach

the setpoint for cB . Note that the oscillation does not die out due to the fact that both

uncertainties vary at each time step.

A comparison of the averaged accumulated cost of four robust schemes with respect

to two different uncertain parameters is presented in Table 4.6. Note that all four robust

NMPC schemes ensure constraint satisfaction under uncertainty. The accumulated cost in

the table is calculated by averaging the current stage cost (i.e.
∑120

k=1 ϕ(xk, uk.dk)) in 10 ran-

dom runs. As expected, the perfect information scheme achieves the lowest tracking error

for both uncertainties, although it cannot be implemented in practice. By using multistage

formulations, both ideal-ms and as-ms obtain similar performance and both of them have

significantly smaller error compared to the worst case. As expected, the worst case ap-
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Figure 4.6: Comparison of as-msNMPC with ideal-msNMPC with Type 1 uncertainty for

d = cA0 ± 30%.

Figure 4.7: Comparison of as-msNMPC with ideal-msNMPC with Type 1 uncertainty for

d = EA,3 ± 5%.
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proach achieves robustness with the highest tracking errors among all methods. Table 4.6

demonstrates that using ideal-ms or as-ms approach reduces the controller conservatism

while maintaining solution robustness.

Tracking costs for uncertain parameter(s) cA0 EA,3

ideal-ms 0.1387 0.0749

as-ms 0.1402 0.0759

perfect info 0.0669 0.0599

worst case 0.2560 0.2009

Table 4.6: Accumulated stage costs of robust NMPC schemes with robust horizon Nr = 2,

d = [cA0 ± 30%, EA,3 ± 5%].

In addition, both uncertain parameters cA0 and EA,3 are considered simultaneously in

the model to demonstrate a real-life example. With each dk containing three possible real-

izations, the number of branches per node is 9. As a result, an 81-scenario tree is generated

for Nr = 2. Fig. 4.8 shows consistent trajectories for state and control variables for ideal-

msNMPC and as-msNMPC, even with the substantial increase in tree size.

Costs CPUs (parallel (est.))

ideal-ms 0.1490 17.8s (17.8s)

as-ms 0.1667 9.8s (1.1s)

Table 4.7: Tracking and computational performance of ideal-msNMPC and as-msNMPC

for d = (cA0, EA,3)

A quantitative comparison between ideal-msNMPC and as-msNMPC for two uncertain

parameters can be found in Table 4.7. The averaged tracking error column shows that the
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Figure 4.8: Comparison of as-msNMPC with ideal-msNMPC with Type 1 uncertainty for

d = (cA0, EA,3).

ideal-ms and as-ms have similar performance. However, as-msNMPC requires 9.8 CPUs

in total off-line computation, and only 1.1 CPUs when solved in parallel. On the other

hand, ideal msNMPC requires even longer off-line computation time (17.8 s). Therefore,

parallel as-msNMPC is able to provide background solutions within a much shorter sam-

pling time, and the online step merely selects the corresponding solution. In comparison,

ideal-msNMPC solves the entire problem online which requires significant online CPU

time and delays the availablity of control actions.

Type 1 and 2 uncertainty

We now introduce additional noise for xk and compare the as-msNMPC and ideal-

msNMPC approaches. Since both uncertain model parameters and unmeasured noise are

present, background solutions must be adjusted using sensitivity updates.

To simulate the noise wk, white noise is introduced to the system with standard devi-
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ation σ as a fraction of all states xk. In Fig. 4.9, we can see as-msNMPC performs very

closely to ideal-msNMPC at low noise levels (2.5%). With increasing levels of noise, be-

havior of as-msNMPC is similar to ideal-msNMPC, but with degrading resemblance. In

Fig. 4.10, we observe similar trends for d = EA,3, where as-msNMPC and ideal-msNMPC

behaviors are almost identical.

Figure 4.9: Comparison of as-msNMPC with ideal-msNMPC with respect to different lev-

els of noise for d = cA0.

Table 4.8 compares computational effort between as-msNMPC and ideal-msNMPC for

Type 1 and 2 uncertainty by averaging 10 random runs. Here, as-msNMPC reduces online

computational effort by over two orders of magnitude compared to ideal-msNMPC, where

the entire computation takes place online. With further parallelization of the background

solutions in as-msNMPC, total (offline + online) computational time also decreases signif-

icantly. Moreover, the as-msNMPC framework has the potential for further reduction on
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Figure 4.10: Comparison of as-msNMPC with ideal-msNMPC with respect to different

levels of noise for d = EA,3

large-scale problems with high-dimensional uncertainties in the noisy case as well.

CPU seconds as-ms ideal-ms

Online 0.006s 0.954s

Background+Online 0.960s 0.954s

Parallel Background (est.)+Online 0.320s 0.954s

Table 4.8: Comparison of averaged online computational effort per instance, for d = cA0

and Nr = 2

4.3.1.3 Feasibility study

Finally, we study the robustness of different NMPC control strategies with both Type 1

and 2 uncertainties, especially in terms of constraint satisfaction. One can often trade off
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|gcupA | |gcupB | |gTup
R
| max obj avg obj min obj

Standard 1.5576 0.3376 0.1192 8.1711 1.7066 0.1297

Min-max 0 0 0 1.2598 1.1019 0.8254

Ideal-ms 0 0 0 0.3019 0.2416 0.1716

As-ms 0 0 0 0.4518 0.3660 0.2622

Table 4.9: Normalized Bound constraint violation (represented by gconstraint name) and cost

function values by different NMPC schemes with Type 1 uncertainty for d = EA,3 ± 10%.

|gcupA | |gcupB | |gTup
R
| max obj avg obj min obj

Standard 1.5518 0.3591 0.1177 3.7450 1.5723 0.1274

Min-max 0 0 0 1.3236 1.0929 0.8075

Ideal-ms 0.0026 0 0 0.3248 0.2456 0.1855

As-ms 0.0027 0 0 0.4625 0.3627 0.2696

Table 4.10: Normalized Bound constraints violation and cost function values by different

NMPC schemes with Type 1+2 uncertainty for d = EA,3 ± 10% and σ = 5%.

between robustness and performance of controllers because conversatism usually comes

along with robust controllers, and it will inherently hurt control performance. Simul-

taneously achieving both is often difficult, if not impossible. Hence, the performances

(both robustness and tracking objectives) of ideal-msNMPC and as-msNMPC are com-

pared against two baseline NMPCs: standard NMPC and min-max NMPC.

Table 4.9 illustrates the constraint violations as well as corresponding objective val-

ues for each NMPC controller when only Type 1 uncertainty is present. The first three

columns represent the normalized violation value for its corresponding constraint. For
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instance, the normalized infeasibility for the upper bound of cA is determined by |gcupA | =

max | c
actual
A −cupA

cupA
|where cactualA is the actual state value in the computed trajectory and cupA is

the upper bound for that state. Note that infeasibility only considers the state and control

variables which are implemented in the plant, i.e. only the first step. In addition, only

the constraints that are active are listed in the table. The next three columns represent the

maximum, average and minimum objective values among all the sample runs. Tables 4.9

and 4.10 are obtained by running 10 random simulations.

As expected, with Type 1 uncertainty alone, standard NMPC has the most infeasibility

both in number of constraints and in the magnitude of violation. Furthermore, standard

NMPC also has a much higher cost compared with other NMPCs. Among three robust

NMPC schemes, ideal-ms and as-msNMPC manage to stay lower on objective values than

min-max strategy, and all three robust NMPC schemes are able to satisfy all constraints.

Similar trends are observed in Table 4.10, where both Type 1 and 2 uncertainty are

present. Standard NMPC is still the most costly NMPC controller in terms of constraint

violation and objective function. Min-max NMPC is able to stay feasible, but with a loss

in the tracking performance. Because of the added noise, ideal-ms and as-ms now observe

slight infeasibility on cA upper bound, and the tracking objectives of both are only slightly

affected by the additive noise.

4.3.2 Quadtank example

Consider the quadtank problem [3], with dynamics described as follows:

dx1

dt
=− a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1

A1
u1 (4.17a)

dx2

dt
=− a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2

A2
u2 (4.17b)

dx3

dt
=− a3

A3

√
2gx3 +

(1− γ2)

A3
u2 (4.17c)
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dx4

dt
=− a4

A4

√
2gx4 +

(1− γ1)

A4
u1 (4.17d)

where xi denotes the water level of tank i, ui represents the flow rate of pump i, Ai is

the cross-sectional area of tank i, ai is the cross-sectional area of outlet port of tank i, and

γi ∈ (0, 1) are the valve parameters. The two uncertain parameters in the model are γ1, γ2.

Table 4.11: Model parameter values, adapted from [3]

Ai(cm
2) ai(cm

2)

i = 1 50.27 0.233

i = 2 50.27 0.242

i = 3 28.27 0.127

i = 4 28.27 0.127

The goal is to track the water levels in both lower tanks (tank 1 and 2 in Fig. 4.11)

to be x1s = x2s = 14cm. Assuming the valve parameters are nominal, γ1 = γ2 =

0.4, then the corresponding setpoints are xs = [14cm, 14cm, 14.2cm, 21.3cm]T and us =

[43.4mL/s, 35.4mL/s]T .

The stage cost is computed by:

ϕl = (x1l − x1s)
2 + (x2l − x2s)

2 + 0.01(∆u2
1l + ∆u2

2l) (4.18)

where ∆u1l = u1l − u1l−1, and ∆u2l = u2l − u2l−1.

Due to the characteristics of the pump and the range of water levels of each tank, the

following input and state constraints are applied:

umin = [0mL/s, 0mL/s]T .

umax = [60mL/s, 60mL/s]T .
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Figure 4.11: Quad Tank [3]

xmin = [7.5mL/s, 7.5mL/s, 3.5mL/s, 4.5mL/s]T .

xmax = [28mL/s, 28mL/s, 28mL/s, 28mL/s]T .

We also introduce pulses of predefined state values at time interval k to reinitialize con-

troller tracking. See Table 4.12 for the predefined values.

Table 4.12: Predefined state values

k x1 x2 x3 x4

0 x1max x2max x3s x4s

50 x1max x2s x3max x4s

100 x1max x2s x3s x4max
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4.3.2.1 Type 1 uncertainty only

First, we compare the performance of ideal-ms and as-ms NMPC without unmeasured

noise. The uncertain parameters are γ1 and γ2, for both of which, the max, nominal and

min values are [0.5, 0.4, 0.3].

From Figs. 4.12 - 4.14, we observe that with only Type 1 uncertainty, the performances of

as-msNMPC and ideal-msNMPC are very close. For a quantitative comparison, Table 4.13

presents accumulated stage costs averaging for 10 random runs andNr = 2. The values are

mainly dominated by the scale of state variables at transition, but the difference between

ideal-ms and as-ms is insignificant. It is also observed that as-msNMPC may sometimes

outperform ideal-msNMPC, which is plausible.

Tracking costs for uncertain parameter(s) γ1 γ2 (γ1, γ2)

Ideal-ms 267.65 274.69 309.67

As-ms 269.72 239.92 298.00

Ideal-ms (σ = 5%) 267.68 274.67 309.54

As-ms (σ = 5%) 269.67 239.82 298.49

Table 4.13: Accumulated stage costs of ideal-msNMPC and as-msNMPC with only Type

1 uncertainty (top two rows) and with both Type 1 and 2 uncertainty (bottom two rows),

with Nr = 2

4.3.2.2 Type 1 and 2 uncertainty

We now introduce additional noise in the system, and NLP sensitivity is used to update

the actual controls. As in the CSTR example, σ for the measurement noise is defined as

a fraction of the state variables. The bottom rows of Table 4.13 compare the tracking per-
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Figure 4.12: States and controls trajectories of as-msNMPC and ideal-msNMPC for Type 1

uncertainty d = γ1

formance of as-msNMPC and ideal-msNMPC when the level of noise is 5%, and they

preserve the trend for the Type 1 only case.

To compare the online and total computational resources needed for as-ms and ideal-ms

NMPC, Table 4.14 shows that as-msNMPC partitions the majority of the workload in the

background, and the online computation is two orders of magnitude less than the total

computation, which is consistent with our findings from the first case study.
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Figure 4.13: States and controls trajectories of as-msNMPC and ideal-msNMPC for Type 1

uncertainty d = γ2

CPU seconds as-ms ideal-ms

Online 0.002s 0.205s

Background+Online 0.181s 0.205s

Parallel Background (est.)+Online 0.062s 0.205s

Table 4.14: Comparison of Averaged Online Computational Effort for d = γ1, Nr = 2

4.4 Conclusions and remarks
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Figure 4.14: States and controls trajectories of as-msNMPC and ideal-msNMPC for Type 1

uncertainty d = [γ1, γ2]

In this chapter, we have proposed an advanced-step multistage NMPC framework that

is robust to two types of uncertainties and virtually free of computational delay. This

framework separates NMPC computations into two parts: the background solution car-

ries most of the computational endeavors by solving one step ahead, and the sensitivity-

based correction updates the control injected into the plant. In addition, in the presence

of unmeasured noise, as-msNMPC obtains an approximate solution to ideal-msNMPC by

updating the background predicted solution with NLP sensitivity information.

To demonstrate the advantages of advanced-step multistage NMPC over standard NMPC

and conventional robust NMPC methods, CSTR and quadtank examples have been inves-

tigated. In the case of CSTR, ideal-multistage NMPC outperforms standard NMPC, min-
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max NMPC and back-off approaches in terms of low conservatism and constraint satis-

faction. Additionally, advanced-step multistage NMPC emulates ideal-multistage NMPC

and extends its robustness with respect to two types of uncertainties. Similar observations

can be drawn with the quadtank case study.

We have shown that advanced-step multistage NMPC directly addresses the first two

challenges of robust NMPC: control performance and real-time implementation. Stability

property is covered by the next chapter, in which a detailed analysis of ideal multistage

NMPC and advanced-step multistage NMPC is performed.
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Chapter 5

Stability analysis for NMPC and its variants

Earlier in Chapter 2, Lyapunov stability theory has been introduced as basic tools for sta-

bility analysis. In this chapter, we are designing robust NMPC algorithms such that the

closed-loop stability can be guaranteed by solving open-loop optimal control problem. We

will start by analyzing the stability of standard NMPC, where the model is perfect and

there is no plant-model mismatch. Then we move on to the cases with two separate types

of uncertainty and their corresponding robust NMPC strategies. To be consistent with

Chapter 4, the same definition of Type 1 and 2 uncertainty is used throughout this chapter.

When only Type 2 uncertainty is present, robust stability of ideal and advanced-step stan-

dard NMPC is established based on ISS. When Type 1 uncertainty also enters the system,

one needs to rely on ideal and advanced-step multistage NMPC scheme. Under suitable

assumptions, both ideal and advanced-step multistage NMPC have demonstrated input-

to-state practical stability properties with the presence of two types of uncertainty.

To recap, we consider the discretized system dynamics following this form in this chap-

ter:

xk+1 = f(xk, uk, dk) + wk (5.1)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu represent the state and control variable at time k, and

dk ∈ D ⊂ Rnd , wk ∈ W ⊂ Rnx denote the parametric disturbances and bounded additive

noise (i.e. Type 1 and 2 uncertainty) at time k.
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5.1 Ideal standard NMPC

A nominal NMPC, also called standard NMPC, solves the following finite horizon NLP

problem of prediction horizon N at each step k:

JN (xk) = min
zl,vl

φ(zN ) +

N−1∑
l=0

ϕ(zl, vl) (P idN (xk))

s.t. zl+1 = f(zl, vl) l = 0, ..., N − 1 (5.2a)

z0 = xk (5.2b)

zl ∈ X, vl ∈ U, zN ∈ Xf (5.2c)

where ϕ(·), φ(·) represent the stage cost and terminal cost, respectively. X and U are do-

mains for state and control variables, and Xf is the terminal region.

To recall the implementation of rolling horizons in MPC, at each step k, (5.2) is solved

to obtain a sequence of optimal control actions, of which the first step is implemented

to the plant as uk = h(xk). In particular, h(·) : Rnx → Rnu is also referred to as the

implicit feedback control law generated by MPC. Then the system advances one step and

the process repeats.

The term ”ideal” here specifically refers to the case where the feedback control law can

be computed and implemented instantaneously without any delays. This may not be true

for many applications with nonlinear dynamics. Nevertheless, stability analysis of ideal

NMPC paves the road for the design and analysis of other NMPCs.

For standard NMPC, uncertainties are not considered in the model as shown in (5.2). In

the rest of this section, we first show the nominal stability for standard NMPC when the

model is perfect and there is no plant-model mismatch, and then prove the robust stability

of ISS with the presence of uncertainty.
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5.1.1 Nominal stability

To prove the asymptotic stability, one needs to find a Lyapunov function that satisfies Defi-

nition 7. For MPC applications, a natural choice of Lyapunov function is the value function

acting as the objective function in (5.2). Suppose Assumption 4 (system assumption) holds,

addition assumptions are made to the model:

Assumption 26. (Nominal stability assumptions of ideal NMPC)

• There exists a local control law u = hf (x) defined on Xf such that f(x, hf (x)) ∈ Xf , ∀x ∈

Xf and φ(f(x, hf (x)))− φ(x) ≤ −ϕ(x, hf (x)).

• ϕ(x, u) satisfies αp(|x|) ≤ ϕ(x, u) ≤ αq(|x|) where αp(·) and αq(·) are K functions.

• φ(x) satisfies α′p(|x|) ≤ φ(x) ≤ α′q(|x|) where α′p(·) and α′q(·) are K functions.

Theorem 27. (Nominal stability of ideal NMPC) [72] Suppose Assumption 26 holds for (5.2) and

u = h(x) is the feedback control law computed by (5.2), then JN (x) is a Lyapunov function and

the closed-loop system is asymptotically stable.

Proof. 1. The lower bound (2.4a) can be shown, which follows from Assumption 26.

JN (xk) ≥ ϕ(xk, h
id(xk)) ≥ α1(|xk|) (5.3)

2. Since having a terminal constraint Xf guarantees the recursive feasibility of the so-

lutions [28, 41], if the optimal control sequence of P idN (xk) is {v0, v1, ..., vN−1}, then

{v0, v1, ..., vN−1, uf} is a feasible solution for P idN+1(xk). Using this admissible control

sequence, we extend the prediction horizon by one and show that,

J̄N+1(xk) = JN (xk)− φ(zN ) + φ
(
f(zN , hf (zN ))

)
+ ϕ(zN , hf (zN ))

≤ JN (xk)

(5.4)
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It is easy to see that if using the optimal control sequence (instead of an admissible

one), JN+1(xk) ≤ J̄N+1(xk) ≤ JN (xk). By deduction,

JN+1(xk) ≤ JN (xk) ≤ · · · ≤ φ(xk) ≤ α2(|xk|) (5.5)

3. Since the model is perfect, the actual state appears exactly as the prediction, i.e.

xk+1 = f(xk, uk). The descent property of Lyapunov function is shown,

JN (xk+1)− JN (xk) = JN (xk+1)− JN+1(xk) + JN+1(xk)− JN (xk)

≤ JN (xk+1)− JN+1(xk)

≤ −ϕ(xk, h
id(xk))

≤ −α3(|xk|)

(5.6)

where the first inequality holds because of (5.4), and the second inequality stands be-

cause of recursive feasibility (solution of PN+1(xk) is also feasible for PN (xk+1)). This

proves that ideal NMPC is asymptotically stable.

5.1.2 Robust stability

Now we study the robust stability property of ideal NMPC under the presence of uncer-

tainties and disturbances. The inherent robustness associated with nominal NMPC exists

under the assumption that the presence of uncertainties do not result in the loss of feasibil-

ity in the problem formulation [73]. This can be achieved by reformulating the inequality

or bound constraints as soft constraints and penalizing the constraint violations in the ob-

jective. For additional details, the readers are referred to [74, 75].

In this section, we only consider Type 2 uncertainty (i.e. w) in the system,

xk+1 = f(xk, uk) + wk (5.7)
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where ideal NMPC predicts the future states as x̂k+1 = f(xk, uk) and uk = hid(xk) is the

feedback control law generated by ideal NMPC.

We define the mismatch term for the value function as,

ε(xk+1) = JN (xk+1)− JN (x̂k+1) (5.8)

Assumption 28. (Robust stability assumptions of ideal NMPC)

• The value function J idN (x) is Lipschitz continuous with a Lipschitz constant LJ > 0 (see

Definition 1)

Theorem 29. (Robust stability of ideal NMPC) [72] Suppose Assumption 26 holds for (5.2) and

u = hid(x) is the feedback control law computed by (5.2), then JN (x) is an ISS-Lyapunov function

and the closed-loop system is ISS-stable.

Proof. Since the first two parts of the proof to Theorem 27 are still valid, we focus on prov-

ing the descent property of neighboring cost functions. Notice that with Type 2 uncertainty,

we denote the actual future state as xk+1 and next step state predicted by ideal NMPC as

x̂k+1, we have

JN (xk+1)− JN (xk) = JN (xk+1)− JN (x̂k+1) + JN (x̂k+1)− JN (xk)

= ε(xk+1) + JN (x̂k+1)− JN (xk)

≤ ε(xk+1)− ϕ(xk, h
id(xk))

≤ LJ |xk+1 − x̂k+1| − ϕ(xk, h
id(xk))

≤ LJ |wk| − ϕ(xk, h
id(xk))

≤ −α4(|xk|) + σ1(|wk|)

(5.9)

The first inequality holds because of Assumption 26 and recursive feasibility (similar as

(5.6)), and the rest follows from Assumption 28.

CHAPTER 5. STABILITY ANALYSIS FOR NMPC AND ITS VARIANTS

73



5.2 ADVANCED-STEP STANDARD NMPC

Unlike the nominal stability case where asymptotic stability of the origin is guaranteed,

ISS implies that the system evolves to a compact set around the origin, in which the size of

the compact set depends on |w|. Note that in the nominal case, robust stability defaults to

nominal stability with M = 0. The readers are referred to [64, 73, 76] for details.

5.2 Advanced-step standard NMPC

Although ideal NMPC poses nice stability properties, online implementation still remains

a challenge: it requires a solution to the optimal control problem almost immediately after

new states are measured. This is especially computationally intensive for large-scale non-

linear applications. This delayed control action could deteriorate performance and may

also cause instability of the closed-loop [19, 77, 78].

In order to reduce the online computational footprint of solving nonlinear MPC, advanced-

step NMPC (asNMPC) was introduced [64]. The essence of asNMPC is to separate the com-

putational workload into two parts: background and online, and ultimately have negligible

computation delays online. The background problem solves the future optimal control

problem in advance using the presumptive initial states from model prediction, whereas

the online problem leaves with corrections with respect to the actual plant states. This

distinction between background and online computations becomes beneficial because the

online correction is much faster than solving the background problem [64]. This controller

design allows one sampling time to be used as the computational resource to solve the

background problem, which is assumed to be sufficient within the scope of this thesis. A

similar assumption is made such that the online update can be obtained within a negligible

amount of time.

AsNMPC assumes that at tk, we compute the predicted states and controls one step
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ahead for tk+1 using the known dynamics. We denote the predicted initial states as xk+1|k.

When the actual states xk+1 are observed at tk+1, control variables are correspondingly

updated using NLP sensitivity. The following problem is solved at tk for asNMPC:

JadN (xk) = min
zl,vl

φ(zN ) + ϕ(xk, h
ad(xk)) +

N−1∑
l=0

ϕ(zl, vl) (PadN (xk))

s.t. zl+1 = f(zl, vl) l = 0, ..., N − 1 (5.10a)

z0 = f(xk, h
ad(xk)) (5.10b)

zl ∈ X, vl ∈ U, zN ∈ Xf (5.10c)

The predicted states and controls are obtained as {z∗0 , ..., z∗N , v∗0, ..., v∗N−1}, where v∗0 is the

predicted control. At tk+1, the actual state is obtained using (5.1), uk+1 is updated using

an NLP sensitivity correction based on v∗0 and the difference between the prediction and

realization (i.e. xk+1 − xk+1|k); the approximate feedback law is denoted as had(·). The

concept of NLP sensitivity has been discussed in Chapter 3.2.3. As discussed in [61], the

inequality (bound) constraints for states in (5.10c) are also softened as l1 penalty terms in

order to guarantee robustness.

Note that PadN (xk) is equivalent to the extended horizon problem for the ideal case with

precomputed advanced-step control law P idN+1(xk, h
ad(xk)) [64].

In this section, we again only consider Type 2 uncertainty (i.e. w) in the system,

xk+1 = f(xk, uk) + wk (5.11)

At tk, the predicted states for the future step are xk+1|k = f(xk, h
ad(xk)) that can be com-

puted by solving PadN (xk), where uk = had(xk) is the approximate feedback control com-

puted at the previous step (i.e. the optimal solution of PadN (xk−1)) with sensitivity updates

when xk is realized at tk.
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Advanced-step NMPC also carries the same nominal and robust stability properties of

standard NMPC. In the nominal case where w = 0, then xk+1 = xk+1|k. Thus the feedback

controls computed by standard NMPC and advanced-step NMPC are identical as long as

the initial feedback control u0 is consistent between ideal and advanced-step NMPC. In

this way the nominal stability property also follows for advanced-step NMPC.

To facilitate the discussion, we define two mismatch terms, which represent the error

introduced by Type 2 uncertainty and by NLP sensitivity, respectively.

εad(xk+1) := JadN (xk+1)− JN+1(xk+1) (5.12a)

εs(xk+1) := JN+1(xk+1)− JN+1(xk+1|k) (5.12b)

Despite the different subscript, the value functions JadN (·) and J idN+1(·) actually refers to the

same horizon length because of the equivalence between PadN (xk) and P idN+1(xk, h
ad(xk)).

In particular, JadN (xk+1) := JN+1(xk+1, h
ad(xk+1)). Then we can compare these two terms

directly: JadN (xk+1) is a suboptimal cost function with the advanced-step control, whereas

the optimal cost function is J idN+1(xk+1, h
id(xk+1)). In other words, (5.12a) can be written

as:

εad(xk+1) = JadN (xk+1)− JN+1(xk+1)

= JN+1(xk+1, h
ad(xk+1))− JN+1(xk+1)

= J(xk+1, h
ad(xk+1))− J(xk+1, h

id(xk+1))

(5.13)

(5.12b) can also be written as:

εs(xk+1) = J(xk+1)− J(xk+1|k)

= J(xk+1, h
id(xk+1))− J(xk+1|k, h

id(xk+1|k))

(5.14)

For the convenience of reading, the subscript is now omitted for the rest of this subsec-

tion. Additionally, J(·) refers to J id(·) unless otherwise specified.
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Theorem 30. From Theorem 25 and (3.24), with p0 = xk+1|k and p = xk+1 = xk+1|k + wk,

there exists a local positive Lipschitz constant Lads such that the approximation error of control laws

between ideal NMPC and advanced-step NMPC satisfies |hid(xk+1)− had(xk+1)| ≤ Lads |wk|2.

Proof of Theorem 30 can be found at [64].

Assumption 31. (Robust stability assumption of advanced-step NMPC)

• The value function JadN (x) is Lipschitz continuous with a Lipschitz constant LJ > 0

Theorem 32. (Robust stability of advanced-step NMPC) Under Assumptions, the cost function

JadN (x) obtained from the solution of PadN (x, u) with u = had(x) is an ISS-Lyapunov function

under Type 2 uncertainty, thus the resulting closed-loop system is ISS stable.

Proof. Under Theorems 25 and 46 and Assumption 31, there exist positive Lipschitz con-

stants LJ , Lh, Lads such that

εad(xk+1) ≤ LJ(|xk+1 − xk+1|+ |hid(xk+1)− had(xk+1)|)

≤ LJL
ad
s |wk|2

εs(xk+1) ≤ LJ(|xk+1 − xk+1|k|+ |hid(xk+1)− hid(xk+1|k)|)

≤ LJ(1 + Lh)|wk|

In particular, the last inequality stands from |hid(xk+1)− hid(xk+1|k)| ≤ Lh|wk|.

By comparing the cost functions of neighboring problems JadN (xk+1) and JadN (xk) using
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defined error terms,

JadN (xk+1)− JadN (xk) = J(xk+1, h
ad(xk+1))− J(xk, h

ad(xk))

= J(xk+1, h
ad(xk+1))− J(xk+1) + J(xk+1)− J(xk+1|k)

+ J(xk+1|k)− J(xk, h
ad(xk))

= εad(xk+1) + εs(xk+1) + J(xk+1|k)− J(xk, h
ad(xk))

≤ εad(xk+1) + εs(xk+1)− ϕ(xk, h
ad(xk))

≤ LJL
ad
s |wk|2 + LJ(1 + Lh)|wk| − ϕ(xk, h

ad(xk))

≤ − α5(|xk|) + σ2(|wk|)

(5.16)

The first inequality holds because of recursive feasibility in which PN+1(xk, h
ad(xk)) pro-

vides a feasible solution of PN+1(xk+1|k), and the last two inequalities follow from M ≥

LJ(1 + Lh + Lads |wk|) > 0. Then the value function JadN (xk) is an ISS-Lyapunov function,

and the resulting system is ISS-stable.

5.3 Ideal multistage NMPC

To develop stability properties for both ideal and advanced-step multistage NMPC, simi-

lar studies [2, 79] have looked into the recursive feasibility and stability properties of ideal

multistage NMPC. In this section, these concepts are extended to Type 1, 2 input-to-state

practical stability (ISpS) for both ideal-msNMPC and as-msNMPC. Similar to [79], the sta-

bility results are only applied to fully-expanded multistage formulation where Nr = N .

These limitations are stated below in Assumption 33.

We introduce a new set of concepts and assumptions of stability properties with Type 1

and 2 stability, then discuss ISpS attributes of ideal-multistage NMPC, and we also develop

ISpS properties of advanced-step multistage NMPC.
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5.3.1 ISpS with Type 1 uncertainty

Recursive feasibility of multistage NMPC is equivalent to terminal states of each scenario

remaining in a control invariant terminal set at the end of the prediction horizon [79].

Assumption 33. (Recursive feasibility assumptions of fully-expanded ideal-msNMPC (Nr = N ),

adapted from [79])

• (Lipschitz continuity) The model dynamics and both stage cost and terminal cost are twice

differentiable in x and u and Lipschitz continuous in all arguments, and they satisfy

∀j ∈ Qnd , f(0, 0, dj) = 0, ϕ(0, 0, dj) = 0, and φ(0, dj) = 0

where Q = {max, nominal, min}

• (Constraint set) The state bounds X, and terminal region Xf ∈ X are closed, and control set

U is compact. All sets contain the origin.

• (Common terminal region) For all j ∈ Qnd , ∃ a common Xf that is control invariant for

xk+1 = f(xk, uk, d
j
k) and uk ∈ U, ∀xk ∈ Xf

Remark 34. The set of common terminal region is not empty because at least {0} ⊆ Xf . Addition-

ally, note that the choice of the common terminal region is not necessarily unique. In this study,

Xf =
⋂

j∈Qnd

Xjf , in which Xjf is defined as the control invariant set for system x+ = f(x, u, dj)

with some j ∈ Qnd and ∀x ∈ Xjf .

Under the restrictions of Assumption 33, Problem P idN (xk) (4.3) can be rewritten as Prob-

lem P fiN (xk) for the fully-expanded ideal-msNMPC problem:

JfiN (xk) = min
zcl ,v

c
l

∑
c∈C

pc
(
φ(zcN , d

c
N ) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )
)

(PfiN (xk))

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) l = 0, ..., N − 1 (5.17a)

zc0 = xk (5.17b)
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Figure 5.1: The 9-scenario fully-expanded tree with each scenario’s terminal region.

vcl = vc̄l if zcl = zc̄l (5.17c)

zcl ∈ X, vcl ∈ U, zcN ∈ Xf , ∀c, c̄ ∈ C, dcl ∈ D (5.17d)

In this section, unless otherwise specified, JfiN (xk) is often written as JN (xk).

To facilitate the discussion, we define pjl as the probability (weight) from zl to zl+1 =

f(zl, vl, d
j
l ), where j ∈ Qnd , l = 0, 1, ..., N − 1.

It is known that, ∑
j∈Qnd

pjl = 1, ∀ l (5.18)

We can then calculate the probability (weight) pc for all scenarios c ∈ C in this way:

pc =

N−1∏
l=0

pjll (5.19)

where scenario c can be represented as c = {j0, j1, ..., jN−1}. For example, in Fig. 5.1, we

calculate p1 = pmax0 ∗ pmax1 = 1
3 ∗

1
3 = 1

9 for the scenario 1 under uniform distribution.
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In this chapter, we assume pjl = pjl′ for l, l′ = {0, 1, ..., N − 1}. As a result, pc remains the

same for all horizons k. Note that pc and pc
′

for c, c′ ∈ C are not necessarily the same.

In this section, superscript fi related to (5.17) is suppressed for brevity (i.e. JN refers to

JfiN ).

Theorem 35. (Recursive feasibility of ideal multistage NMPC) Suppose Assumption 33 holds,

then problem PfiN (x) is recursively feasible: x ∈ XN implies x+ = f(x, u, dj) ∈ XN , ∀j ∈ Qnd

Proof. (modified from Proposition 4 [79], Theorem 3.9 and Proposition 3.14 [28] and Defi-

nition 3 [34]).

Let XN be the set of initial conditions where PfiN (x) is feasible. That is, XN is the admis-

sible state set that can be steered to the terminal region Xf in N steps.

Select Xf =
⋂

j∈Qnd

Xjf , then ∀j ∈ Qnd let Xj0 := Xjf and define

Xj1 = {x ∈ X |∃ u ∈ U : f(x, u, dj) ∈ Xj0 }

By Assumption 33 and Remark 34, each terminal set Xjf is control invariant. Since Xj0 :=

Xjf , each Xj0 is also control invariant. By construction, for each parametric disturbance

j ∈ Qnd , Xj1 is the set of all states that can be routed into Xj0 . Then Xj1 ⊇ Xj0 for each

j ∈ Qnd .

Define

X1 =
⋂

j∈Qnd

Xj1

Since
⋂

j∈Qnd

Xj1 ⊇
⋂

j∈Qnd

Xj0 = X0, thus X1 ⊇ X0.

By induction, XN ⊇ XN−1 ⊇ ... ⊇ X1 ⊇ X0 = Xf . Hence, for i ≥ 0, Xi is a control

invariant set for all j ∈ Qnd and corresponding fj(·). If x ∈ XN , then x+ ∈ XN−1 ⊆ XN .

Now suppose x ∈ XN , and we have the optimal control for scenario c is u∗c(x) =

{vc0, vc1, ..., vcN−1} for problem PfiN (x). Each control policy will drive x into X0 = Xf in
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N steps. Since Xf is control invariant, the control sequence {vc0, vc1, ..., vcN−1, uf} is feasible

for problem PfiN+1(x). A graphic illustration is represented in Fig. 5.1. This proves the

recursive feasibility property. �

Definition 36. (Type 1 Robustly Positive Invariant) A set X ⊆ X is a Type 1 robustly positive

invariant (RPI) set for system x+ = f(x, u, d) if x+ ∈ X holds for ∀x ∈ X , and ∀d ∈ D.

Definition 37. (Type 1 Input-to-State Practical Stability) The system x+ = f(x, u, d) is ISpS in

X if there exists a KL function β, a K function γ and c0 ≥ 0 such that for all d ∈ D,

|xk| ≤ β(|x0|, k) + γ(|d|) + c0, ∀ k ≥ 0, ∀x0 ∈ X (5.20)

Definition 38. (Type 1 ISpS-Lyapunov function) [80] A function V (·) is called an ISpS-Lyapunov

function for system x+ = f(x, u, d) if there exist an RPI set X , K functions α1, α2, α3 and σ, and

c1, c2 ≥ 0 such that, ∀x ∈ X , ∀w ∈W and ∀d ∈ D,

V (x) ≥ α1(|x|) (5.21a)

V (x) ≤ α2(|x|) + c1 (5.21b)

∆V (x, d) = V (f̂(x, h(x), d))− V (x)

≤ −α3(|x|) + σ(|d|) + c2 (5.21c)

where h(x) is the feedback control law.

Assumption 39. (ISpS assumptions of ideal-msNMPC)

• For each parametric disturbance j ∈ Qnd , there exists a local control law u = hf (x) defined

on Xjf such that f(x, hf (x), dj) ∈ Xjf , ∀x ∈ Xjf , and φ(f(x, hf (x), dj), dj) − φ(x, dj̄) ≤

−ϕ(x, hf (x), dj),∀x ∈ Xjf .

• For each parametric disturbance j ∈ Qnd , the stage cost ϕ(x, u, dj) satisfies αp(|x|) ≤

ϕ(x, u, dj) ≤ αq(|x|) + σq(|d|) where αp(·), αq(·) and σq(·) are K functions.
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• The solution of ideal-msNMPC satisfies LICQ and SSOSC such that Theorem 25 applies.

Theorem 40. (adapted from [31, 73]) Let X be a robustly invariant set for system x+ = f(x, u, d)

that contains the origin and let V (·) be a Type 1 ISpS-Lyapunov function for this system, with

Assumptions 33 and 39 satisfied, then the resulting system is Type 1 ISpS in X .

Proof. Let xk+1 = f(xk, uk, d̂k), where d̂k ∈ D is the realized value of dj where j ∈ Qnd for

tk with associated weight pj .

Based on Theorem 35, recursive feasibility is guaranteed and the control sequence for

each scenario {vc0, vc1, ..., vcN−1, hf (zN )} from the optimal solution of PfiN (xk) is feasible for

problem PfiN+1(xk). By applying this suboptimal solution and writing the corresponding

value function as J̃N+1(xk), the following is valid from Assumption 39:

J̃N+1(xk)− JN (xk)

=
∑

c∈CN+1

pc(φ(zcN+1, d
c
N ) + ϕ(zcN , v

c
N , d

c
N )− φ(zcN , v

c
N ))

≤ 0 (5.22)

Define E(JN (xk, uk)) =
∑

j∈Qnd pjJN (f(xk, uk, d
j
k)) as the weighted optimal value func-

tions to |Q|nd individual subtree problems where uk is implemented at xk. We can then

write

E(JN (xk, uk)) +
∑
j∈Qnd

pjϕ(xk, uk, d
j
k) =

∑
j∈Qnd

pj(JN (f(xk, uk, d
j
k)) + ϕ(xk, uk, d

j
k))

≤ J̃N+1(xk)

≤ JN (xk) (5.23)

where the first inequality follows because E(JN (xk, uk)) is composed of optimal solutions

to the same subtree problems appearing in J̃N+1(xk, uk) only differing in the current stage

at xk; and the second inequality follows from (5.22).
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Next, we show the difference between the value function for a realized xk+1 and a

weighted one is bounded:

JN (xk+1)− E(JN (xk, uk)) =
∑
j∈Qnd

pj
(
JN (xk+1)− JN (f(xk, uk, d

j
k))
)

≤
∑
j∈Qnd

pjLJ |f(xk, uk, d̂k)− f(xk, uk, d
j
k)|

≤
∑
j∈Qnd

pjLJLf |d̂k − djk|

≤ σ0(|d̂k|) + cd (5.24)

where cd =
∑

j pjLJLf |d
j
k|. Theorem 25 and Assumption 39 corroborate the first inequal-

ity, and Assumption 33 satisfies the second inequality.

Finally, from the above relations we can show the descent property:

JN (xk+1)− JN (xk)

= JN (xk+1)− E(JN (xk, uk)) + E(JN (xk, uk))− JN (xk)

≤ σ0(|d̂k|) + cd −
∑
j∈Qnd

pjϕ(xk, uk, d
j
k)

≤ −α6(|xk|) + σ0(|d̂k|) + cd (5.25)

The result proves that ideal-msNMPC is ISpS-stable when Type 1 uncertainty is present.

�

Note that Type 1 ISpS reverts to nominal (asymptotic) stability when d̂k = djk = d̄k (see

(6.17)) and thus |d̂k − djk| = 0, meaning that every scenario in ideal-msNMPC becomes

the nominal scenario. In this case, the ideal multistage NMPC defaults to nominal NMPC

with asymptotic stability.
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5.3.2 ISpS with Type 1 and 2 uncertainty

Definition 41. (Type 1, 2 Robustly Positive Invariant) A setX ⊆ X is a Type 1, 2 robustly positive

invariant (RPI) set for system x+ = f(x, u, d) + w if x+ ∈ X holds for ∀x ∈ X , ∀d ∈ D and

∀w ∈W .

Definition 42. (Type 1, 2 Input-to-State Practical Stability) The system (6.23b) is ISpS in X if

there exists a KL function β, a K function γ and c0 ≥ 0 such that for all d ∈ D, w ∈W,

|xk| ≤ β(|x0|, k) + γ(|d|+ |w|) + c0, ∀ k ≥ 0, ∀x0 ∈ X (5.26)

Definition 43. (Type 1, 2 ISpS-Lyapunov function) A function V (·) is called an ISpS-Lyapunov

function for system (6.23b) if there exist an RPI setX ,K functions α1, α2, α3 and σ, and c1, c2 ≥ 0

such that, ∀x ∈ X , ∀d ∈ D, and ∀w ∈W,

V (x) ≥ α1(|x|) (5.27a)

V (x) ≤ α2(|x|) + c1 (5.27b)

∆V (x, d, w) = V (f̂(x, h(x), d) + w))− V (x)

≤ −α3(|x|) + σ(|d|+ |w|) + c2 (5.27c)

Lemma 44. [31, 73] Let X be a robustly invariant set for system (6.23b) that contains the origin

and let V (·) be a Type 1,2 ISpS-Lyapunov function for this system, then the resulting system is

ISpS in X .

To consider both Type 1 and 2 uncertainty, we make the following distinctions that the

realized states xk+1 with djk are

xk+1 = f(xk, uk, d
j
k) + wk (5.28)

with the corresponding predicted states xjk+1|k = f(xk, uk, d
j
k) and uk = hid(xk).
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The future mismatch is defined as follows,

wk = xk+1 − xjk+1|k (5.29)

We define the mismatch term for the total costs as the objective of the formulation,

ε(xk+1) = JN (xk+1)− JN (xjk+1|k) (5.30)

Theorem 45. (Robust ISpS Stability of ideal-msNMPC) Under Assumptions 33 and 39, the ob-

jective function JN (x) of ideal-msNMPC formulation is a Type 1, 2 ISpS-Lyapunov function and

the resulting system is ISpS-stable under Type 1 and 2 uncertainties.

Proof: From Theorem 25 and Assumption 39, there exists a local positive Lipschitz con-

stant LJ such that ∀x ∈ X ,

|ε(xk+1)| ≤ LJ |wk|. (5.31)

We compare the costs of the neighboring problems PfiN (xk) and PfiN (xk+1) and introduce

the effect of disturbances through ε(xk+1), where we consider the optimized values from

(5.17),

JN (xk+1)− JN (xk) = JN (xjk+1|k)− JN (xk) + JN (xk+1)− JN (xjk+1|k)

≤ −α6(|xk|) + σ3(|d̂k|) + cd + LJ |wk|

≤ −α6(|xk|) + σ4(|d̂k|+ |wk|) + cd

∀d̂k ∈ D, ∀wk ∈ W. Again, the constant can be computed as cd =
∑

j pjLJLf |d
j
k|. The

descent property holds for any qualified xk+1 from Theorem 40 and (5.29). The result

hereby proves that ideal-msNMPC is Type 1 and 2 ISpS-stable. �
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5.4 Advanced-step multistage NMPC

We now extend the stability discussions to advanced-step multistage NMPC. First, we

write the formulation of the optimization problem in as-msNMPC as PasN (xk) which can

be seen as (5.17) with an additional constraint (5.32c) for the predicted states at tk+1 using

the advanced-step control action.

JasN (xk, h
as(xk)) = min

zcl ,v
c
l

∑
c∈C

pc
(
φ(zcN , d

c
N ) +

N−1∑
l=0

ϕ(zcl , v
c
l )
)

(PasN (xk))

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) l = 1, ..., N − 1 (5.32a)

zc0 = xk (5.32b)

zc1 = f(xk, h
as(xk), d

c
k) (5.32c)

vcl = vc̄l if zcl = zc̄l (5.32d)

zcl ∈ X, vcl ∈ U, zcN ∈ Xf , dcl ∈ D, ∀c, c̄ ∈ C (5.32e)

Similarly, the realized states are represented by xk+1 = f(xk, h
as(xk), d̂k) + wk for d̂k ∈

D, in which the predicted states are xask+1|k = f(xk, h
as(xk), d̂k) using the advanced-step

control law has(xk).

We define two mismatch terms, which represent the error introduced by noise and by

NLP sensitivity, respectively.

εas(xk+1) := JasN (xk+1)− JN (xk+1) (5.33a)

εs(xk+1) := JN (xk+1)− JN (xask+1|k) (5.33b)

Lemma 46. (Error Bound of sensitivity) [64] From Theorem 25 with p0 = xk+1|k and p =

xk+1 = xk+1|k + wk, the approximation error between as-msNMPC and ideal-msNMPC satis-

fies |has(xk+1)− hid(xk+1)| ≤ Lh|wk|2 with a local positive Lipschitz constant Lh.
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Theorem 47. (Robust Stability of as-msNMPC) Under Assumptions 33 and 39 the cost function

JasN (x) obtained from the solution of PasN (x, u) with u = has(x) is an ISpS-Lyapunov function

under Type 1 and 2 uncertainties. Thus the resulting closed-loop system is ISpS stable.

Proof: Under Theorems 25 and 46, there exist positive Lipschitz constants LJ , Lh, Lash such

that for all x ∈ X

εas(xk+1) ≤ LJ |hid(xk+1)− has(xk+1)|

≤ LJL
as
h |wk|2

εs(xk+1) ≤ LJ(|xk+1 − xask+1|k|+ |h
id(xk+1)− hid(xask+1|k)|)

≤ LJ(1 + Lh)|wk|

We now compare the consecutive cost functions JasN (xk+1) and JasN (xk) using defined

error terms,

JasN (xk+1)− JasN (xk)

= JasN (xk+1)− JN (xk+1) + JN (xk+1)− JN (xask+1|k) + JN (xask+1|k)− J
as
N (xk)

= εas(xk+1) + εs(xk+1) + JN (xask+1|k)− J
as
N (xk)

Similar to Theorem 40, using uk = has(xk) we can show that JN (xask+1|k) − JasN (xk) ≤

−α7(|xk|) + σ5(|d̂k|) + cd, hence

JasN (xk+1)− JasN (xk) ≤ M |wk| − α7(|xk|) + σ5(|d̂k|) + cd

≤ −α7(|xk|) + σ6(|d̂k|+ |wk|) + cd

where the last two inequalities follow from M ≥ LJ(1 + Lh + Lash |wk|) > 0. This proves

that as-msNMPC is Type 1 and 2 ISpS-stable. �

Remark 48. When wk = 0, as-msNMPC satisfies Type 1 ISpS, as with ideal-msNMPC. Also

similar to ideal-msNMPC, when d̂k = djk = d̄k are valid, Type 1 ISpS reverts to asymptotic

stability.

88
CHAPTER 5. STABILITY ANALYSIS FOR NMPC AND ITS VARIANTS



Chapter 6

Sensitivity-assisted Robust Nonlinear Model

Predictive Control with Scenario Generation

We consider an approximation modeling and solution strategy to address multistage stochas-

tic programs for robust NMPC, which we call sensitivity-assisted multistage NMPC (sam-

NMPC). This approach is based on worst-case scenario generation and sensitivity-based

approximations for stage costs in the objective function, which leads to an accurate approx-

imate representation of the multi-stage NMPC problem. Moreover, computational costs of

this formulation scale independently of the number of disturbance variables. Our novel

decomposition method is illustrated on a CSTR case study with two uncertain parame-

ters. Compared to competing approaches, the proposed formulation delivers the robust

performance of multi-stage NMPC with significantly less computational cost.

6.1 SamNMPC algorithm

We start with the following discrete-time nonlinear dynamic model:

xk+1 = f(xk, uk, dk)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu are state and control variables at time step k, and

dk ∈ D ⊂ Rnd represents the time-varying model parameter. As a typical choice, each

element of dk can take three possible values: {max, nominal, min}.
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The sensitivity-assisted multistage NMPC (samNMPC) is built upon the same scenario

tree as in regular multistage NMPC, combining with a sensitivity-based approximation

algorithm that avoids the growing size of the online optimization problem with respect to

number of uncertain parameters. We start by describing conventional multistage NMPC.

6.1.1 Multistage NMPC

Multistage NMPC [16] has been developed at the intersection of stochastic programming

and modern control. A scenario tree is formed to represent the state evolutions for all pos-

sible uncertain model parameters. In practice, a robust horizonNr (shorter than prediction

horizon N ) is also applied to manage a tractable problem size. A scenario tree with robust

horizon Nr = 1 can be seen as Fig. 6.1, where zcl , v
c
l , d

c
l denote the state, control variables,

and parameter at stage l and scenario c, respectively. Note that the dashed bracket depicts

the non-anticipativity constraint (NAC). NACs are required within the robust horizon to

enforce the same control variable for every scenario originating from the same node (state).

To translate Fig. 6.1 to an optimization problem with prediction horizonN , the following

formulation is solved for each horizon k

JN (xk) = min
zcl ,v

c
l

∑
c∈C

pc
(
φ(zcN , d

c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )
)

(6.1a)

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) l = 0, ..., N − 1 (6.1b)

zc0 = xk (6.1c)

vcl = vc
′
l {(c, c′)|zcl = zc

′
l } (6.1d)

dcl−1 = dcl for l = Nr, . . . N − 1 (6.1e)

zcl ∈ X, vcl ∈ U, zcN ∈ Xcf , dcl ∈ D (6.1f)

∀c, c′ ∈ C (6.1g)
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Figure 6.1: An example of typical scenario tree in multistage NMPC when Nr = 1 and

nd = 1

where the objective function (6.1a) contains a weighted terminal costs φ(·, ·) and the inte-

gration of stage costs ϕ(·, ·, ·) over time. (6.1d) denotes the non-anticipativity constraint

(NAC) and (6.1e) shows the same uncertain parameter is used for the rest of prediction

horizon outside of robust horizon.

6.1.2 NLP sensitivity of multistage NMPC

To explore sensitivity properties for multistage NMPC optimization problem (6.1), we ap-

ply a barrier NLP solver such as IPOPT [57]. We can rewrite (6.1) as the following generic

parametric program P(p):

min
x

F (x; p) s.t. c(x, p) = 0, x ≥ 0 (6.2)
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where the variable vector x includes all primal variables in (6.1), and p0 and p1 represent

the parameter in the current scenario and in perturbed scenarios, respectively. IPOPT

handles the inequality constraints implicitly through a barrier function in the objective,

with parameter µ and solves the following problem:

min
x

F (x; p)− µ
nx∑
i=1

ln(xi) s.t. c(x, p) = 0. (6.3)

After solving a sequence of problems (6.3), with µ → 0 and p = p0 the solutions of (6.3)

approach the solution of (6.2) with x∗ = x(p0). Now to see how x∗ varies with respect to

perturbations of p, we cite the following property:

Theorem 49. (NLP Sensitivity) [59, 60]. If f(·, ·), ϕ(·, ·) and φ(·) of the parametric NLP prob-

lem (6.2) are twice continuously differentiable in a neighborhood of the nominal (primal and dual)

solution s∗(p0) and this solution satisfies the linear independence constraint qualifications (LICQ),

strong second order sufficient conditions (SSOSC) and strict complementarity (SC), then the solu-

tion s∗(p0) is differentiable in p.

Moreover, for µ > 0 but negligibly small, the primal-dual optimality conditions (i.e.

KKT conditions) of (6.3) are solved directly at p0,

∇xL(x∗, λ∗, υ∗; p0) = ∇xF (x∗; p0) +∇xc(x
∗; p0)λ∗ − υ∗ = 0

c(x∗; p0) = 0

X∗V∗e = µe

(6.4)

with V = diag(υ),X = diag(x), and eT = [1, .., 1]. The Lagrange function is

L(x, λ, υ) , F (x) + c(x)Tλ− xTυ (6.5)

The primal-dual solution vector is s(µ; p)T = [x(µ; p)T , λ(µ; p)T , υ(µ; p)T ]. Applying Theo-

rem 49 and the implicit function theorem to differentiate (6.4) leads to the following linear
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system for sensitivity of s.

M(s(µ; p0))∆s = −N(s(µ; p0); p) (6.6)

where

M(s(µ; p0)) =


∇xxL(s(µ; p0)) ∇xc(s(µ; p0)) −I

∇xc(s(µ; p0))T 0 0

V(µ; p0) 0 X(µ; p0)

 is called the KKT matrix,

and

N(s(µ; p0); p) =


∇xL(s(µ; p0); p)

c(x(µ; p0); p)

0

with s(0; p) = s(µ; p0)+∆s+O(||p−p0||2)+O(µ).

When LICQ, SSOSC, and SC are satisfied at s(µ; p0), M(s(µ; p0)) is nonsingular and the

sensitivities ∆s can be computed as ∆s = −M(s(µ; p0))−1N(s(µ; p0); p) by a backsolve if

the factorized form of M(s(µ; p0)) is available.

6.1.2.1 Block-border structure of linear KKT system

In fact, there is an inherent structure with multistage NMPC problems can be exploited to

obtain a faster sensitivity update. To facilitate the discussion, the following notations are

used in this section:

• nc is the number of scenarios minus one

• n is the number of primal variables in each scenario

• m is the number of constraints in each scenario

• mNAC is the total number of NAC constraints

In order to detect this structure, one first writes the KKT matrix of the original primal-
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dual system as

M =


H A −I

AT 0 0

V 0 X

 (6.7)

with the Hessian of Lagrange function (6.5)H = ∇xxL(x, λ, υ) , A = ∇c(x) is the transpose

of Jacobian.

This version of KKT matrix is nonsymmetric, which limits the type of linear solvers that

can be used. One can rewrite (6.6) with a symmetric KKT matrix, H + Σ A

AT 0


 ∆x

∆λ

 = −

 ∇xL(x, λ, υ; p)

c(x; p)

 (6.8)

with Σ , X−1V is obtained from eliminating the last row of the original primal-dual

system (6.7). Note that the KKT matrix on the left hand side is evaluated at p0.

If one applies NLP sensitivity to multistage NMPC problem (6.1), one can decouple the

system between scenarios and write its KKT matrix as

 W A

AT

 =



W0 A0 Ñ0

W1 A1 Ñ1

. . . . . .
...

Wnc Anc Ñnc

AT
0

AT
1

. . .

AT
nc

ÑT
0 ÑT

1 . . . ÑT
nc



(6.9)

where nc = |C| − 1 is the last index of scenarios where |C| is the number of scenarios.
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W = H + Σ is the augmented Hessian for the entire problem. After partitioning, Wc =

∇xcxcL(x, λ, υ)+X−1
c Vc is the augmented Hessian for scenario c. Wc is symmetric because

the partial Hessian is symmetric and the second term X−1
c Vc is a diagonal matrix.

We also decompose the Jacobian with respect to the set of NAC constraints. M is the

index set for all the constraints (i.e. |M| = m ∗ |C|). Note M̂ = {1, ...,mNAC} is the index

set for NACs andM =M\M̂. Then the Jacobian of multistage NMPC problem also have

a structure based on NACs.

A =

[
∇ci(x) ∇cj(x)

]
(6.10)

where i ∈M and j ∈ M̂. Then we obtain Ac = ∇xcci(x) and Ñc = ∇xccj(x)

By rearranging,

W0 A0 0 0 0 0 0 0 Ñ0

AT
0 0 0 0 0 0 0 0 0

0 0 W1 A1 0 0 0 0 Ñ1

0 0 AT
1 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0 Wnc Anc Ñnc

0 0 0 0 0 0 AT
nc

0 0

ÑT
0 0 ÑT

1 0 . . . . . . ÑT
nc

0 0



(6.11)

the linear system (6.8) can be rewritten in the following block-bordered-diagonal (BBD)
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form (i.e. arrowhead),

K0 . . . N0

K1 . . . N1

...
...

. . .
...

Knc Nnc

NT
0 NT

1 . . . NT
nc





∆s0

∆s1

...

∆snc

γ


= −



r0

r1

...

rnc

0


(6.12)

where Kc =

 Wc Ac

AT
c 0

, ∆sc =

 ∆xc

∆λc

, rc =

 ∇xcL(x, dc)

c(xc, dc)

 for each c ∈ C.

xc = [zc0, v
c
0, z

c
1, v

c
1, ..., z

c
N−1, v

c
N−1, z

c
N ]T denotes the primal variables associated with sce-

nario c, and λc for the Lagrange multipliers associated with scenario c.

In (6.12),Nc represents the NAC constraint that contains scenario c, whereNc = [Ñc, 0]T ∈

Rn+m×RmNAC∗nu and nu is the number of control variables in each scenario. Since all sce-

narios are constructed with the same variable and same horizon length, n and m are the

same across all scenarios. Both Nc and Ñc are very sparse, where the only nonzero ele-

ments are 1’s and -1’s of the corresponding control variables for NAC. Additionally, γ in

(6.12) is the Lagrange multiplier of NAC (6.1d) in the dimension γ ∈ RmNAC∗nu .

Since each Wc is symmetric, each individual Kc is also symmetric by design. This allows

the same type of linear solvers for full-space systems to also apply to the individual system

after decomposition.

6.1.2.2 Schur complement decomposition

As the complexity of the linear sensitivity system increases and the total number of scenar-

ios nc gets large, solving (6.12) as a full-space system may become prohibitively expensive.

To exploit a bordered block diagonal structure such as the one in (6.12), we make use of

Schur complement decomposition strategy.
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The first step is to permute all the Kc blocks into the bottom row which effectively can-

cels the bottom NAC blocks,

∑
c∈C

(NT
c K

−1
c Nc)γ = −

∑
c∈C

(NT
c K

−1
c rc) (6.13)

where the Schur complement S is formed as,

S =
∑
c∈C

(NT
c K

−1
c Nc) (6.14)

Then the multipliers for NACs can be solved as

γ = −S−1
∑
c∈C

(NT
c K

−1
c rc) (6.15)

Finally, the remaining unknowns can be solved as

Kc∆sc = −(rc +Ncγ), ∀c ∈ C (6.16)

∆sc is the sensitivity with scenario c ∈ C, which can then be used to calculate a perturbed

solution for that scenario as s̃c(p) = sc(p0) + ∆sc. This step is trivially parallelizable.

More importantly, in the case of multistage NMPC, each block Kc is comprised of the

variables in its individual scenario, where the only variables that prevent this block to be-

come completely independent are the ones in NACs. These NAC blocks are permuted

and hereby decide the size of the Schur-complement. Since (6.15) can only be solved in

serial, the computational overhead grows with respect to the increasing number of cou-

pling variables. When the overhead is small, Schur complement decomposition strategy

significantly ourperforms its full-space counterpart [81, 82]. For multistage NMPC specif-

ically, the amount of coupling variables between blocks is only determined by the number

of control variables in robust horizon, which is generally small. This provides an excit-

ing opportunity to apply Schur complement to solve linear systems formed by multistage

NMPC converted NLP problems.
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Solving a single bordered block diagonal linear system with the help of Schur-complement

can be orders of magnitude faster than solving a NLP problem. It would expedite the al-

gorithm even further if (6.16) is solved in parallel.

One problem remains: what would be the best way to form a such structured KKT

system? If one solves a multistage NMPC problem by a NLP solver such as IPOPT, the

KKT matrix in (6.12) can be formed and evaluated at the optimal solution of the multistage

NLP problem. But a multistage NLP is expensive to solve due to its many scenarios. In

order to approximate a solution of the exact multistage NLP, one can rely on the structure

of its KKT matrix. If an approximate linear system to (6.12) can be formed without solving

the exact multistage problem, we may also have an approximate solution to the original

multistage NMPC. To do that, a single-scenario problem is solved with its single-scenario

KKT matrix propagating to the rest of the scenarios. The next section provides details for

this procedure.

6.1.3 Nominal NMPC

Standard NMPC (or nominal NMPC) considers only the nominal model in the controller,

and it solves the following one-scenario problem:

min
zl,vl

φ(zN , d̄N−1) +

N−1∑
l=0

ϕ(zl, vl, d̄l) (6.17a)

s.t. zl+1 = f(zl, vl, d̄l) l = 0, ..., N − 1 (6.17b)

z0 = xk (6.17c)

zl ∈ X, vl ∈ U, zN ∈ Xf (6.17d)

Problem (6.17) has a smaller problem size than Problem (6.1), so it is more computation-

ally efficient, but it also loses the robustness guarantee of full-multistage NMPC due to

plant-model mismatch [65].
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If one applies NLP sensitivity to the standard NMPC problem (6.17), one obtains

K0∆s0 = −r0 (6.18)

where K0 =

 W0 + Σ0 A0

AT
0 0

, ∆s0 =

 ∆x0

∆λ0

, r0 =

 ∇x0L(x0, d0)

c(x0, d0)

.

By solving the nominal NMPC problem, the solution to Problem (6.17) can be used to

form the sensitivity system (6.12). If we apply the following approximation Kc = K0 to

(6.12), we can then solve for the approximate sensitivity solution,

∆sc =


∆zc

∆vc

∆λc

 =


z̄c − z0

v̄c − v0

λ̄c − λ0

 (6.19)

which provides perturbed solutions for all scenarios s̃(p). This computation is particularly

efficient since the KKT matrix of the nominal NMPC problem (i.e. K0) has already been

factored and easily reusable in (6.13) and (6.16).

6.1.4 Critical scenarios

The remaining component of the algorithm deals with feasible performance under uncer-

tainty. Robustness of multistage NMPC is often enforced by considering scenarios with

extreme-value parameters (i.e. max or min). If one can predict which parameter values

are likely to violate constraints, then the scenarios associated with these values should be

treated differently in (6.1) than scenarios where the chances of violating constraints are low.

We call the former critical scenarios, and the latter non-critical scenarios. To determine critical

scenarios we apply the approach in [26] to the following dynamic model and constraints:

xk+1 = f(xk, uk, dk), xk ∈ X, uk ∈ U, (6.20)
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and discretize the uncertainty description (i.e. {max,nominal,min}) to develop a scenario

tree. At the current state of the plant xk, critical scenarios are then determined by solving

the following optimization problem:

maxdl gj(zl, vl, dl),

s.t. zl+1 = f(zl, vl, dl), l = 0, . . . , N − 1

z0 = xk

(6.21)

where the inequality constraints gj(·, ·, ·) represent the state variable bounds x ∈ X and j

denotes the index of inequality constraints. If a fixed trajectory of (zl, vl)l=0,...,N−1 is used,

and strict monotonicity is assumed for the reduced gradients dgj/d(dl), then the analytic

solution is easily implemented by setting dl to appropriate upper or lower bounds at t

for each stage l and for each inequality constraint gj . Based on a reference trajectory for

(zl, vl)l=0,...,N−1, one decides the critical value (max or min) of each uncertain parameter

based on the following criteria:

For l ∈ Nr,

dwcl,m = arg maxd∈D∇dgj |Tl,(zl,vl,dl)|refdl

=


dminl,m , if d(gj)

d(dm) |l,(zl,vl,dl)|ref ≤ 0

dmaxl,m , otherwise
for m = 1, ..., nd

(6.22)

and the number of critical scenarios is bounded by the number of active inequality con-

straints, which in practice is much smaller than the full-size multistage tree, which consists

of 3ndNr scenarios [26].

We then classify the whole set of scenarios C = {0} ∪ Ĉ ∪ C, as

• Ĉ - critical scenarios where active inequalities may be encountered

• {0} - nominal scenario
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• C - non-critical scenarios with the primal variables (z̄cl , v̄
c
l ) determined from sensitiv-

ity, where gj(z̄cl , v̄
c
l ) ≤ 0 is expected to hold.

Figs. 6.2 and 6.3 illustrate how the nominal and critical scenarios appear as part of the

full multistage scenario tree.

Figure 6.2: A example scenario tree where nd = 1, Nr = 1. Ĉ = {1} is the critical scenarios

set with dashed lines.

One key advantage of this framework is to dynamically update the critical scenarios in

each horizon. Practically,

• If one constraint gj is insensitive to some uncertainty parameter dm, i.e. | d(gj)
d(dm) | < ε,

it indicates that critical scenarios associated with this constraint, if any, need not be

considered for dm.

• At each time step k in NMPC, active constraints are reevaluated at the updated tra-

jectory (zl, vl), together with corresponding worst case parameter values for that con-
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Figure 6.3: A example scenario tree where nd = 2, Nr = 1. Ĉ = {1, 8} is the critical

scenarios set with dashed lines.

straint.

• Based on the active constraint gj , a set of worst case parameter values dwc is selected,

and the corresponding critical scenarios c ∈ Ĉ are included in the final NLP, while

the non-critical scenarios c ∈ C will be approximated by (6.12) through sensitivity.

6.1.5 Approximate multistage problem

The resulting approximate problem is given by

min
zl,vl

∑
c∈Ĉ∪{0}

pc
(
φ(zcN , d

c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )
)

+
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∑
c∈C

pc
(
φ(z0

N + ∆zcN , d
c
N−1) +

N−1∑
l=0

ϕ(z0
l + ∆zcl , v

0
l + ∆vcl , d

c
l )
)

(6.23a)

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) c ∈ Ĉ ∪ {0}, l = 0, ..., N − 1 (6.23b)

zc0 = xk c ∈ Ĉ (6.23c)

vcl = vc
′
l {(c, c′)|zcl = zc

′
l } c, c′ ∈ Ĉ ∪ {0} (6.23d)

zcl ∈ X, vcl ∈ U, zcN ∈ Xf (6.23e)

where Ĉ and C are critical and non-critical scenarios, respectively, and ∆zcl ,∆v
c
l are ob-

tained from the sensitivity step (6.12) based on the nominal scenario.

The NLP problem (6.23) can be considered as a partially linearized version of prob-

lem (6.1), where the non-critical scenarios are no longer constrained by the inequalities,

nonlinear equalities and NAC constraints. Instead, the state and control variables of non-

critical scenarios are represented approximately as a combination of state and control vari-

ables of nominal scenarios and the corresponding perturbation terms calculated by (6.16).

Yet, NACs pertinent to non-critical scenarios are still satisfied under (6.12). Additionally,

the weighted sum of stage and terminal costs of each scenario in (6.1) still remains such

that samNMPC optimizes an expected performance, the same way as the exact multistage

problem. By this controller design, non-critical scenarios only appear in the objective func-

tion and do not increase the number of variables and constraints in the NLP problem.

Thus, it reduces the problem size while still finding an approximate solution to multistage

NMPC.

6.1.6 The overall approach for samNMPC

At time step k,

1. Solve Problem (6.17) to get the nominal solution and evaluate K0.
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2. Solve (6.12) using Kc = K0 to get [∆zc,∆vc]T .

3. Find the worst case dwc from (6.22) and form the critical scenarios set Ĉ

4. Solve (6.23) with all scenarios, where the stage costs for non-critical scenarios are

represented by sensitivity solutions

5. Set u(k) = vc0, c ∈ Ĉ ∪ {0} and inject into the plant

6. k = k + 1, and go to Step 1

6.1.7 Implementation

The samNMPC method is implemented in CasADi [63]. CasADi is an open-source soft-

ware toolkit for dynamic optimization problems with state-of-the-art implementation of

automatic differentiation (AD). It has become widely used among developers of algo-

rithms for nonlinear optimization problems because of its flexibility over algebraic model-

ing languages like AMPL. Similar to AMPL, it also includes high-level interfaces to numer-

ical codes for nonlinear programming such as IPOPT. CasADi is written in self-contained

C++ code and it also has front-ends to scripting languages Python and Matlab for easy

prototyping.

At each step, after solving the nominal NLP using IPOPT [57], the optimal nominal

solution is stored as well as the factorization of the nominal KKT matrix K0. In addi-

tion, a group of sparse matrices {Nc, c = 0, 1, ..., nc} needs to be generated based on the

number of NACs. The factorization of K0 can be reused to solve (6.13) - (6.16). Using

Schur-complement decomposition avoids solving a large linear system by decoupling into

smaller ones with possibility of further parallelization. The linear systems incurred by sen-

sitivity calculations are solved by MA27 from the Harwell Subroutine Library (HSL) [83],

and the interface to MA27 is available in CasADi under linear solver class linsol.
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6.2 Case studies

The scenario generation algorithm has been applied to a benchmark CSTR example.

dcA
dt = F (cA0 − cA)− k1cA − k3c

2
A

dcB
dt = −FcB + k1cA − k2cB

dTR
dt = F (Tin − TR) + kWA

ρcpVR
(TK − TR)−

k1cA∆HAB+k2cB∆HBC+k3c2A∆HAD

ρcp

dTK
dt = 1

mKcpK
(Q̇K + kWA(TR − TK))

(6.24)

The system has four states [cA, cB, TR, Tk] and two controls [F, Q̇K ]. The control objective is

to track the setpoint of cB as cB = 0.5mol/L in the first 20 steps, and cB = 0.7mol/L for the

rest. The stage cost is computed asL =
∑

l(cBl−c
ref
B )2+r1∗(Fl−Fl−1)2+r2∗(Q̇Kl−Q̇Kl−1)2.

The uncertainty parameters in this case study are EA,3 and cA0. Note that the uncertain

parameter may change between time steps, but can only choose among a finite set of three

values.

The inequalities for this problem are the variable bounds for the state and control vari-

ables, where the bounds on control variables are hard constraints. From the sensitivity

analysis on each state constraint, we observe that cB and TK are insensitive to both un-

certainties EA,3 and cA0, which means that the perturbation of both parameters will not

affect the value of cB and TK (within the robust horizon). On the other hand, for the first

step only, cA is sensitive to cA0 and TR is sensitive to both EA,3 and cA0. This implies that

when EA,3 is uncertain, the worst EA,3 value is determined by the sign of dTR
d(EA,3) |(xl,ul,d0l ).

When cA0 is uncertain, the worst parameter value is determined by the signs of both

dcA
d(cA0) |(xl,ul,d0l ) and dTR

d(cA0) |(xl,ul,d0l ). Also, Nr = 1 for all the cases studied here.
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6.2.1 Single uncertain parameter d = EA,3 ± 10%

For this case, the only uncertain parameter in the system is the activation energy d = EA,3

and its three possible values are {max,nom,min}. From the sensitivity analysis we know

that the only affected state is TR and the sensitivity dTR
d(EA,3) |(xl,ul,d0l ) is computed to deter-

mine the worst case parameter value. From the case study, the sign of dTR
d(EA,3) |(xl,ul,d0l ) is

usually negative, which renders the worst case value for dwc = EminA,3 . In this case, scenario

generation multistage has only two scenarios (instead of three scenarios in conventional

multistage and min-max problems).

Table 6.1 provides an overall performance comparison for different robust NMPC schemes

by averaging 10 random parameter realizations in the plant. The integrated error is com-

puted as the integral of tracking errors for realized states with respect to time. The CPU

seconds are recorded as wall time for different algorithms. Fig. 6.4 plots trajectories of

state and control variables, and objective functions for different NMPC controllers in one

sample run.

Fig. 6.4 shows a close resemblance of tracking performance between multistage and

sensitivity-assisted multistage (samNMPC), especially in terms of state trajectories and ob-

jective values where two lines overlap almost entirely. This observation is also supported

by the similar tracking errors of conventional and approximate multistage in Table. 6.1

for the one parameter case. At the same time, samNMPC requires less computation than

conventional multistage NMPC. In particular, the sensitivity step, obtained by solving a

linear system, only comprises 3% of the total computational time which presents a very

light computational footprint compared to solving NLPs.

For the other controller schemes, nominal NMPC seems to have a lower tracking error

on average along with fast computing, but it often suffers from non-robust control perfor-

mance. For instance, Fig. 6.4 shows that both cA and TR violate the upper bound of state
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constraints. On the other hand, min-max NMPC is able to stay robust, but performs more

conservatively, which is also corroborated by the trajectories of objective functions shown

in Fig. 6.4.
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Figure 6.4: Trajectories for state and controls for different robust NMPC schemes with

d = EA,3.
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Table 6.1: Average performances (10 random runs) of robust NMPC schemes with robust

horizon Nr = 1, d = [EA,3 ± 10%] (top) and d = [cA0 ± 30%, EA,3 ± 10%] (bottom).

min-max multistage nominal samNMPC

3c Error 0.3077 0.1435 0.1238 0.1406

CPUs 0.367 0.251 0.0611 0.178

9c Error 0.2158 0.2429 0.3135 0.1457

CPUs 0.839 0.926 0.0806 0.366

6.2.2 Two uncertain parameters d = EA,3 ± 10%, d = cA,0 ± 30%

For this section, both uncertainties are considered, which renders a scenario tree of 9 sce-

narios. Similarly, the sensitivity analysis leaves the problem size of sensitivity-assisted

multistage (samNMPC) the same as with 3 scenarios. For the min-max and multistage

formulation, the problem size is as large as 6500 variables due to the consideration of all 9

scenarios so that the computational time is relatively long.

Again, for the two uncertain parameter case, sensitivity-assisted multistage (samNMPC)

and conventional multistage perform closely in terms of state and control trajectories. Most

importantly, samNMPC achieves a robust tracking performance with only a fraction of

computational resources (again, linear algebra calculations only cost 0.023 second, which

contributes to less than 10% of the total computational time). Unsurprisingly, nominal

NMPC suffers from large constraint violations, while min-max NMPC also behaves quite

close to multistage NMPC in this example.
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Figure 6.5: Trajectories for state and controls for different robust NMPC schemes with

d = EA,3, cA0.
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6.3 Conclusions

We present an approximation algorithm (samNMPC) that resembles the robust multi-stage

NMPC performance but with far less computation effort. The conventional multi-stage

NMPC problem size grows exponentially with respect to the number of uncertain param-

eters and robust horizon; hence it becomes difficult to solve online. By separating all sce-

narios into critical and non-critical categories, one can contain the size of the optimization

problem. Only the critical scenarios are added to the problem, whereas the non-critical sce-

narios are represented by the nominal scenario with sensitivity corrections. In this way, the

optimization problem size is only determined by the number of critical scenarios, which

is much smaller than the entire scenario tree in traditional multistage NMPC formula-

tions. We apply this approximation strategy to a CSTR benchmark problem, where two

case studies with one and two uncertain parameters are explored. SamNMPC achieves ro-

bustness and similar tracking performance with respect to conventional multistage NMPC

with only a fraction of computational effort.
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Chapter 7

Conclusions

7.1 Summary and contributions

This thesis has pushed forward the state-of-the-art of robust NMPC under two distinct

types of uncertainties. A cohesive and structured framework has been created to design a

robust NMPC strategy that is performance-driven, stability-guaranteed, and computation-

ally efficient. To achieve that, optimal control theory and nonlinear optimization theory are

intertwined to help further the application of robust NMPC and make better decisions.

Chapter 1 briefly covers the history of MPC and the general background of advanced

control in a process industry. Specifically, many research efforts have been directed to

design robust MPC controllers in the past decades. The main challenges are robustness,

performance and computation. The meaning of robustness is twofold: robust stability and

robust to constraints. As a robust controller, it also needs to achieve the desired tracking

performance, same as any other controller, but under the influence of uncertainties. And

all of these should be accomplished with a tight computational budget. To make the goal

possible, advanced toolboxes are required.

Chapter 2 establishes the fundamental definitions and concepts of stability analysis and

basic NMPC ideas. In particular, Lyapunov stability theory is introduced and discussed,

as well as the nominal stability and robust stability definitions, which are the building

blocks for examining stability properties of different variants of NMPC. Additionally, for

the reason of computational convenience, infinite horizon MPC evolves to finite horizon
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MPC and becomes the canonical form of MPC that is widely used at the current time.

Chapter 3 describes the general class of dynamic optimization problem and several as-

pects of solution strategies. Dynamic optimization problems appear in a variety of in-

dustries and applications, but they cannot be solved directly with integrals or differential

equations. A common practice is to discretize the continuous-time dynamics equation to

an algebraic form and send that to an NLP solver instead. In particular, the discretization

method that uses orthogonal collocation over finite elements has shown high accuracy

and numerical stability, and it is used throughout this dissertation. To understand an NLP

problem, basic NLP concepts are introduced. In this thesis, IPOPT has been applied as the

default NLP solver. Additionally, NLP sensitivity strategies are introduced to obtain fast

approximate solutions for perturbed problems.

Chapter 4 proposes a new design for a robust NMPC controller - advanced-step mul-

tistage NMPC. Two types of uncertainty are present in the system: Type 1 uncertainty is

the model parameter that can be realized within one sampling time and is handled by the

multistage structure; Type 2 uncertainty is the process or measurement noise that is gener-

ally not realized and is corrected by the NLP sensitivity updates. A scenario tree is formed

to monitor the Type 1 uncertainty evolution, with non-anticipativity constraints (NAC)

within robust horizons as complicating constraints. The sensitivity-based method enables

multistage NMPC with the adjustment with respect to Type 2 uncertainty. It also allows

the control action to be computed one time step ahead, which gives the solver more time to

solve for a large multistage problem. Several robust NMPC schemes are also implemented

in comparison: standard NMPC, ideal multistage NMPC, min-max NMPC, NMPC with

back-off constraints, and perfect-information NMPC. The major contributions of this chap-

ter are listed as follows:

• Proposed a parallelizable advanced-step multistage NMPC (as-msNMPC) frame-
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work

• Compared ideal multistage NMPC with state-of-the-art robust NMPC approaches

for 3-scenario models under uniformly distributed parameter for a CSTR example

• Demonstrated the effect of different robust horizon lengths and different parameter

distribution

• Conducted a feasibility study for robust NMPC schemes with the constraint satisfac-

tion metrics

• Studied the tracking and computational performances for a quadtank case study

with both Type 1 only and Type 1+2 uncertainty

• Demonstrated a similar tracking performance between ideal multistage NMPC and

advanced-step multistage NMPC, and a significant improvement in online compu-

tational efforts by using as-msNMPC over ideal-msNMPC for both CSTR and quad-

tank examples

Chapter 5 extends the stability analysis to ideal multistage NMPC and advanced-step

multistage NMPC. When there is no plant-model mismatch or disturbance in the system,

ideal standard NMPC is proven to be asymptotically stable and the system converges to

the origin. However, assume Type 2 uncertainty enters the system, the system is only able

to converge to a compact neighborhood of the origin, in which the size of the neighborhood

is dependent on the size of the Type 2 uncertainty. On the other hand, assume Type 1 and

2 uncertainties are both present, one needs to introduce a new set of definitions of robust

stability to handle both types. The contributions of Chapter 5 are listed as follows:

• Analyzed the nominal and robust stability for standard NMPC and advanced-step

NMPC with respect to Type 2 uncertainty

• Adapted and proved recursive feasibility property of ideal multistage NMPC

• Proposed an extended Input-to-state practical stability (ISpS) definitions under Type

CHAPTER 7. CONCLUSIONS

113



7.1 SUMMARY AND CONTRIBUTIONS

1 and 2 uncertainties

• Proved that the ideal multistage NMPC is ISpS stable under Type 1 only and Type 1

+ 2 uncertainty

• Proved that the advanced-step multistage NMPC is ISpS stable under Type 1 + 2

uncertainty

Chapter 6 presents an approximation algorithm to multistage NMPC problems. Multi-

stage NMPC are known to have a large NLP problem due to its multi-scenario structure.

More importantly, non-anticipativity constraints (NAC) become the only coupling con-

straints that prevent scenarios from being independent and separable. Once the scenar-

ios are decoupled, the problem of each invidual scenario becomes parallelizable and also

more manageable. SamNMPC takes advantage of the block-bordered-diagonal structure

that comes naturally with multistage NMPC problems, and solves its linear sensitivity

system with Schur complement decomposition. After obtaining the Schur-complement,

the sensitivity of each scenario can be solved separately and in parallel. This sensitivity re-

sult is combined with the worst-case scenarios generated by performing scenario criticality

check, such that an approximate multistage NLP is formed with much fewer scenarios and

variables.

• Proposed an algorithm sensitivity-assisted multistage NMPC (samNMPC) to ap-

proximate solutions to the original multistage NMPC

• Extended the application of NLP sensitivity beyond advanced-step NMPC and per-

turbations on initial conditions of states, to any number of parameters in the model

• Applied Schur complement decomposition to solve multistage NMPC problems

• Applied a scenario generation technique to select critical scenarios whose number is

only proportional to the number of active inequality constraints

• Compared the tracking performance and computational time between samNMPC
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and exact multistage NMPC with both one and two uncertain Type 1 parameters on

a CSTR system

• Implemented a preliminary version of NLP sensitivity assistance tools in CasADi

that helps prototyping multistage NMPC and samNMPC

7.2 Recommendations and future work

After summarizing the work that has been done, we now discuss some interesting topics

within the general realm of this thesis that are worth exploring in the future.

7.2.1 Extensions on samNMPC framework

The current implementation of samNMPC is in CasADi, and with the extensibility and

flexibility of CasADi there are many things that can be done.

By the time this thesis is written, samNMPC framework has been able to run two modes

with multistage NMPC. Given a dynamic optimization model (e.g. CSTR example) and a

control objective (e.g. a setpoint), samNMPC can use this information to generate four types

of NMPC controllers: nominal NMPC (standard NMPC), min-max NMPC, exact multi-

stage NMPC, and samNMPC, while the last three require a set of possible values for the

uncertain parameters along with their probabilities. This encourages researchers to ex-

plore the possible gains in robustness and performance of using a multistage formulation

without too much hassle.

However, as of right now the implementation has been preliminary and yet user-friendly.

Future work is needed to extend samNMPC to a fully-functional multistage NMPC pack-

age. Compared with general-purpose modeling and optimization packages such as Pyomo

[84] and acados [85], samNMPC focuses on NMPC under uncertainty with multistage for-
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mulations and its variations. The following features would be useful to add:

– A swift transition between exact and approximate multistage NMPC is desired. If an

exact multistage NMPC is permitted within the time limit, an exact formulation will

be performed. Otherwise, the approximate multistage NMPC can be employed.

– Implement advanced-step multistage NMPC within samNMPC, which provides an-

other option for online computational performance.

– A new algorithm advanced-step samNMPC can be implemented, which is an in-

terplay between advanced-step multistage NMPC of Chapter 4, and samNMPC of

Chapter 6. In this case, the online computation remains almost the same, but the

background solution is now provided with the approximate multistage NMPC with

scenario generation technique. This would result in reductions in both online and

background CPU time.

7.2.2 Terminal conditions of multistage NMPC

In Chapter 5, we have discussed that the robust stability of ideal multistage NMPC and

advanced-step multistage NMPC can be guaranteed by applying terminal costs and ter-

minal region. Additionally, in order to analyze the recursive feasibility property of ideal

multistage NMPC, a common terminal region is assumed to exist for all scenarios. How-

ever, calculating such terminal constraints and costs is not straightforward.

One of the key assumptions to ensure recursive feasibility (e.g. Assumption 26) is that

there exists a stablizing controller in the control invariant terminal region such that once

the state of the system enters the terminal region, a control law can be applied to keep

states stay within the terminal region. To compute such a controller, an infinite-horizon

LQR to the linearized system has been proposed [86]. In this case the terminal cost is the

cost-to-go function of LQR, i.e. φ(x) = xTPx, where P satisfies the discrete-time Riccati
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equation

ATPA− P − (ATPB)(BTPB +R)−1(BTPA) +Q = 0 (7.1)

where A = ∂f(0,0)T

∂x , B = ∂f(0,0)T

∂u and Q and R are corresponding weights of states and

controls in the objective. This also provides the gain matrix K = (R + BTPB)−1BTPA

and the linear control law is uf (x) = −Kx.

The terminal region is determined by the largest region centered around the origin

where the LQR can stabilize the original nonlinear system. Recent developments have

been working on finding the size of the terminal region by finding bounds of the higher

order nonlinear terms of the system through simulation [45].

One can certainly extend the LQR approach to find the common terminal region for

multistage NMPC. With the parametrized nonlinear functions in different scenarios, one

may resort to the parametrized LQR.

7.2.3 Decision-dependent Type 1 uncertainty in multistage NMPC

By far, the nature of Type 1 uncertainty considered in this thesis has been exogenous, which

means that the true value of parameters are revealed independent of control decisions. In

general, only exogenous uncertainties have been studied in the field of multistage NMPC,

and problems with exogenous uncertainties have also been the focus of the stochastic pro-

gramming community [68, 87, 88]. Another class of Type 1 uncertainty are called endoge-

nous, where the realizations of parameters are dependent on the decisions [89]. There

are at least two ways that the decisons can influence the parameters: one by altering the

probability distribution of the parameter, and the other by changing the time at which pa-

rameters are realized [90]. For a robust control problem, one may find it more relevant

to solve the first case where the parameter probability distribution is dependent on the

control variables.
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Let’s start with the dynamics model with Type 1 uncertainty that has the following form:

xk+1 = f̂(xk, uk, dk) (7.2)

Assuming we know a priori dk can be expressed as some function of uk as dk = d(uk), then

we can rewrite (7.2) as,

xk+1 = fd(xk, uk) (7.3)

In the case with standard NMPC (i.e. with only one scenario), there is no apparent differ-

ence between solving exogenous and endogenous nominal NMPC. The stability properties

of ideal NMPC should also be extended to the decision-dependent standard NMPC.

For multistage NMPC, as with classic multistage NMPC of exogenous Type 1 uncer-

tainty, a finite number of representative values (for instance, 3) are taken from the proba-

bility distribution, and they are denoted as dk ∈ {d(uk), d(uk), d̄(uk)}. In this case, three

models can be represented as {fd(·), fd(·), fd̄(·)}. Here, decision-dependent multistage

NMPC can be treated as multi-model multistage NMPC, in which each model may not

share the functional form with others. Computationally, decision-dependent ideal multi-

stage NMPC can be solved using the same solution strategy with decision-independent

multistage NMPC. In terms of controller stability, it remains an open question whether ro-

bust stability can be extended considering that the recursive feasibility may not be ensured.

For discussions regarding multi-model in MPC, readers are referred to [91].
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