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Abstract

The overall objective of this research is to monitor occupants in indoor settings using their

footstep-induced floor vibration. Some of the current sensing approaches for occupant monitoring

include vision-based, radio-frequency-based, pressure-based, and mobile-based sensing. However,

maintenance and installment requirements, such as dense deployment and requiring the occupants

to carry a device, limit their application. To overcome these limitations, we have introduced

vibration-based sensing as a sparse and non-intrusive alternative for occupant monitoring which

does not require carrying a device. The intuition behind this sensing approach is that occupant

footsteps cause floor vibration waves which travel through the structure and reach our sensors.

These vibrations can be used for extracting information about the occupants (e.g., location and

presence). However, because these vibration waves travel through the structure, they are also

affected by the structural characteristics which result in various research challenges for occupant

monitoring. In this dissertation, I have focused on three research contributions which are based on

structure-related challenges.

First, we present a floor-vibration-based occupant detection approach which enables detection

across different structures through “model transfer”. The structural effects on the signals results

in footstep models being different in different structures which consequently adds to the labeled

data and calibration requirements. To address this challenge, we characterize the effect of the

structure on the footstep-induced floor vibration responses to develop a physics-driven model

transfer approach that enables step-level occupant detection across structures. Specifically, our

model transfer approach projects the data into a feature space in which the structural effects

are minimized. By minimizing the structure effect in this projected feature space, the footstep
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models mainly represent the differences in the excitation types and therefore are transferable across

structures. In other words, in this projected space, a footstep model trained in a source structure

in which labeled data is available can be used for target structures in which no labeled data is

available. By only requiring labelled data from a few source structures, this approach significantly

reduces the labeled data and calibration requirements. We analytically show that the structural

effects are correlated to the Maximum-Mean-Discrepancy (MMD) distance between the source

and target marginal data distributions. Therefore, to reduce the structural effect, we minimize the

MMD between the distributions in the source and target structures. We evaluated the robustness

of our approach through field experiments in three types of structures. Our evaluation consists

of training a footstep model in a set of structures and testing it in a different structure. As the

performance metric, we have utilized F1 score which is the harmonic mean of the precision and

recall rate and has been commonly used for evaluating classification algorithms. Across the three

structures, the evaluation results show footstep detection F1-score of up to 99 percent for our

approach, corresponding to 29X improvement compared to a baseline approach which does not

transfer the model.

Second, we characterize dispersive wave propagation to localize occupants using their footstep-

induced floor vibrations and without extensive calibration. To localize the footsteps, we utilize the

Time Differences of Arrival (TDoA) and the propagation velocity of the footstep-induced vibration

waves. To this end, the main challenges are: 1) the vibration wave propagation in the floor is

of dispersive nature (i.e., different frequency components travel at different velocities) and 2) due

to floor heterogeneity, these wave propagation velocities vary in different structures as well as in

different locations in a structure. These challenges result in signal distortions which in turn reduce

the TDoA and propagation velocity estimation accuracy and lead to large localization inaccuracies

or calibration requirements. We present a “decomposition-based dispersion mitigation technique”

which extracts specific components (which have similar propagation characteristics) for localization.

Further, we introduce an “adaptive multilateration approach” that employs heuristics to constrain

the search space and robustly locate the footsteps when the propagation velocity is unknown. We

evaluated our approach using field experiments in 3 different types of buildings (both commercial
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and residential) with human participants. The results show an average localization error of 0.34

meters, which corresponds to a 6X reduction in error compared to a baseline method (which will be

defined in the thesis). Furthermore, our approach resulted in standard deviation of as low as 0.18

meters, which corresponds to a 8.7X improvement in precision compared to the baseline approach.

Third, we model the obstruction effect on the footstep-induced floor vibration waves to enable

robust occupant localization in obstructive indoor settings. obstructions such as walls and furniture

add mass to the structure which affect the structural characteristics, the wave propagation velocity,

and in turn, reduce the localization performance. To address this challenge, we localize footsteps

by considering different velocities between the footsteps and sensors depending on the existence

and mass of obstruction on the wave path. Specifically, we 1) detect and estimate the mass of the

obstruction by characterizing the wave attenuation rate, and 2) use this estimated mass to find the

propagation velocities for localization by modeling the velocity-mass relationship through the lamb

wave characteristics. Finally, we leverage these propagation velocities to locate the footsteps (and

the occupants) using our non-isotropic multialteration approach. In field experiments, we achieved

average localization error of 0.61 meters, which is 1) the same as the average localization error

when there is no obstruction and 2) 1.6X improvement compared to a baseline approach which

does not consider the effect of the obstruction.
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Chapter 1

Introduction

1.1 Motivation

The objective of this research is to develop a framework for monitoring occupants inside build-

ings using their footstep-induced structural vibration. Monitoring occupants in indoor settings

involves tracking their information such as presence and location. This information is impor-

tant in many smart building applications such as efficient energy management [1, 2] and se-

nior/healthcare [3, 4]. Knowing the presence and location of the occupants in different rooms

of the building enables efficient assignment of the heating and cooling. Furthermore, detecting

and localizing the occupant footsteps is useful for estimating gait-health-related features such as

step time, stride length, and step frequency. These features can then be used for predicting and

tracking the progression of many medical conditions [5–7]. Current sensing approaches for oc-

cupant monitoring include vision-based [8, 9], RF-based [10–12], pressure-based [13, 14], and

mobile-based [15–19] sensing approaches. These application of these approaches are limited due

to installation andmaintenance requirements. Vision-based sensing is sensitive to visual occlusions

such as furniture and column which exist in indoor settings. Non-wearable RF-based approaches

and pressure-based approaches require dense deployment for step-level occupant monitoring. Mo-

bile approaches require the occupants to carry or wear a device which limits their application in

applications such as senior/healthcare.
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To overcome these limitations, we have introduced vibration-based sensing for occupant moni-

toring. This approach is robust to visual occlusions, enables sparse sensing, and does not require

the occupants to carry a device. The intuition behind this approach is that footsteps cause vibrations

in the floor. These vibrations travel through the structure and reach our vibration sensors at different

times. These structural vibrations contain occupant information which can be utilized for moni-

toring them in a step-level manner. However, by travelling through the structure, these vibration

signals are also affected by the underlying structure characteristics which introduces challenges for

extracting information from them. In the next section, I will discuss the main structure-induced

research questions and challenges that are investigated in this dissertation.

1.2 Research Questions

The high-level research question that we answer is: “How canwe detect and locate the occupants

using the floor vibrations caused by their footsteps?” This high-level research question can be

divided into the following sub-questions:

• “How tomodel the structural effect on footstep-induced vibration responses to enable footstep

modelling across different structures?”

Due to structure-dependent vibration characteristics, a footstep model trained through su-

pervised learning in one structure is not accurate in other structures. In other words, the

distribution of the vibration data is different across various structures and hence, the footstep

model does not transfer well between them. Furthermore, acquiring labeled data in every

structure and possibly different locations in the same structure is costly and difficult. We have

addressed this challenge in the context of occupant detection by introducing a model transfer

approach which projects the data in a space with reduced structural effect. Lower structural

effect means that in this projected space, the footstep model mainly represents the excitation

differences and is similar across structures (i.e., transfers well between them).

• “How to characterize the dispersive wave propagation in the floor to localize occupants

without extensive calibration?”
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The wave propagation in the floors is dispersive (i.e., different frequency components have

different propagation velocity). Signal distortion due to dispersive floor characteristics results

in drastically dissimilar signal shapes for the same footstep signals measured from multiple

sensors. Thus, the comparison of those signals become difficult, which leads to inaccurate

Time-Difference-of-Arrival (TDoA) estimation and occupant localization. Furthermore,

wave propagation velocities are important parameters in multilateration for estimating the

footstep location, but they are unknown and differ greatly across different locations of the floor

and also across different buildings due to structural heterogeneity. Unknown propagation

velocity either requires extensive calibration, which is time-consuming and costly, or adds to

the dimension (i.e., number of unknowns) of themultilateration (which is a highly non-convex

problem) and results in large localization errors.

Wemitigate the effect of the dispersion by decomposing the signal into frequency components

and localize the footsteps using various components. By separating signals into different

components each of which has similar wave propagation characteristics, we reduce the

dispersion-induced signal distortions. To eliminate the need for velocity calibration, we

introduce an adaptive multilateration approach which employs heuristics about the space

configuration to define a novel formulation to be minimized across a constrained search

space (i.e., footstep location and propagation velocity). By constraining the search space,

we reduce the effect of non-convexity (which might result in erroneous local minima) to

robustly estimate locationwhen the propagation velocity is unknown and changes for different

locations.

• “How to model the effect of obstructions on the footstep responses to improve the sensing

sparsity?”

Obstructions such as walls and furniture affect the wave propagation characteristics which in

turn cause localization errors. We have observed that the obstruction mass is one of the key

factors that affect the wave propagation velocity and reduce the localization accuracy. There-

fore, to overcome the obstruction challenge, we localize footsteps by considering different
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velocities between the footsteps and sensors depending on the existence and mass of obstruc-

tion on the wave path. Specifically, we 1) detect and estimate the mass of the obstruction by

characterizing the wave attenuation rate and 2) use this estimated mass to find the propaga-

tion velocities for localization by modeling the velocity-mass relationship through the lamb

wave characteristics. Then, we leverage these obstructed propagation velocities to locate the

footsteps (and the occupants) using our non-isotropic and grid-search-based multilateration

approach which estimates the footstep location when the propagation velocities between the

footstep and different sensors are different..

1.3 Dissertation Overview

The structure of this dissertation is as follows: in Chapter 2, I discuss our vibration-based

data acquisition and impulse detection procedures which are common in all of the applications.

In Chapter 3, I answer the first research question by discussing our model transfer approach.

In Chapter 4, I discuss the dispersive wave propagation research question and our solution. In

Chapter 5, I address the obstruction effect research question to enable occupant localization in

obstructed indoor environments. Finally, in Chapter 6, I provide a brief summary of this dissertation

and discuss the future research directions.
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Chapter 2

Structural Vibration Sensing

For vibration data acquisition, we measure the vertical floor vibrations which is a mixture of

footsteps, other impulsive excitations (such as falling objects, door shutting, etc.), and background

noise (such as fan, machinery, and sensor noise). The details of our sensing approach are discussed

in Section 2.1. To ensure that we analyze the footstep-induced part of the signals, we first need to

detect and extract them in the signals. To this end, we first separate the impulsive excitations from

the stationary background noise. To this end, we use the assumption that these impulsive vibration

signals are of higher variation than the background noise and perform an anomaly detection to

separate them. The details of this procedure is discussed in Section 2.2 and an example is presented

in Figure 2.2. Then, we classify the extracted impulsive vibration events into footsteps and non-

footsteps, which is discussed in Section 3.

2.1 Vibration Data Acquisition

The structural vibration is measured using geophone sensors placed on the floor at different

locations. Compared to accelerometers, geophones are low-cost and low-distortion sensors which

convert the velocity of the floor vibration to voltage. Generally, the footstep-induced vibrations

have low energy and amplitude. Therefore, to improve their resolution, the vibration signals are

then amplified using an op-amp [20]. Higher signal resolution results in more information and
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more robust and accurate monitoring. Empirically, we have found that a 200-2000X amplification

rate provides high signal resolution and avoids signal clipping. Of course, this ratio also depends

on the underlying structure and its stiffness.

Then, the vibration signals are digitized and transferred to a Personal Computer (PC) for

further analysis. To transfer the data, we have two options: 1) wired sensing system (presented

in Figure 2.1a) and 2) wireless system (presented in Figure 2.1b). The wired sensors transfer the

data through wires and are generally suitable in applications for which fine-grained synchronization

is necessary (e.g., occupant localization). On the other hand, wireless sensors transfer the data

through radio and are suitable for other applications due to the their implementation ease. Batteries

or power plugs are used for powering these sensors. Power plugs are better suited for a long-term

deployment as they do not require maintenance and replacement (like batteries). However, they are

harder to implement as they require configuring the sensors considering the available power plugs

and also increase the wiring requirements.

(a) Our Wired System (b) Our Wireless System

Figure 2.1: The Sensing Unit. The geophone measures the velocity of vertical vibration on the
floor which then will be amplified, digitized, and transferred to a PC for further analysis. Part (a)
and (b) show our wired and wireless sensing units.

2.2 Impulse Detection

To extract the impulsive vibration events, we conduct a chi-squared hypothesis test. The main

intuition is that the variance of the impulsive event signal is larger than the variance of the ambient
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Figure 2.2: An Example of Footstep-induced Floor Vibration Signals Measured by a Geophone.

noise signal. To this end, we use the Chi-squared test that determines whether the signal has

the same variance as the ambient noise. In other words, the Chi-squared test evaluates the null

hypothesis H0 : σ2
w = σ

2
n (i.e., signal is a noise) against the alternative hypothesis H1 : σ2

w > σ2
n

(i.e., signal is an impulsive event), where σ2
w is the variance of the signal window and σ2

n is the

variance of the ambient noise. We use the sliding window on the signal and conduct the hypothesis

test for each window to detect impulsive vibration events. We have empirically chosen one tenth

of a second as the window size to ensure that the beginning part of the footstep vibration signal is

detected. The reason behind choosing the Chi-squared test is that the variance of the ambient noise

signal follows a scaled Chi-squared distribution. Specifically, assuming normally distributed and

independent noise measurements, the following statistics (i.e., χ2-statistics) for each window has a

Chi-squared distribution [21]

χ2
w = (m − 1)

s2
w

σ2
n
, (2.1)

where m is the number of samples in the signal window, and sw is the sample variance of the signal

within the window.

We continuously and incrementally [22] learn and update the population variance of the ambient

noise, σ2
n , from the sensed data using the following equations.

µn[h] = µn[h − 1] +
1
h
(xn[h] − µn[h]) (2.2)
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σ2
n [h] =

(h − 1)σ2
n [h − 1] + (xn[h] − µn[h − 1])(xn[h] − µn[h])

h
, (2.3)

where xn[h] is the hth measurement for ambient noise signal, µn[h] and σ2
n [h] are the updated mean

and variance of the ambient noise signal after adding the hth measurement.

When the signal form deviates from the ambient noise, the corresponding statics, χ2
w, also

deviates from the chi-square distribution. Thus, for every signal window, we compare the χ2
w-

statistics with χ2
α, which is the statistic value corresponding to the significance levels of α (i.e.,

the probability of having samples with χ2-statistics higher than χ2
α given the null hypothesis).

Specifically, we reject the H0 if χ2
w ≥ χ2

α [21]. The significance level is the false positive rate

of the test (i.e., the probability of rejecting the null hypothesis when it is true). In this work, we

empirically choose the significance value of 0.01. The windows in which the null hypothesis is

rejected correspond to the vibration events.
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Chapter 3

Footstep Modelling across Structures using

Model Transfer

The objective of footstep modelling is to distinguish vibrations caused by the footsteps from

the ones caused by other impulsive excitations. Conventionally, a set of labelled data (footsteps

and non-footsteps) are used to train a footstep model through supervised learning. However, the

vibration responses are affected by the underlying structure. Therefore, the footstep models trained

in one structure do not transfer and will be unable to distinguish the footsteps and non-footsteps

in other structures. Thus, labelled data is required in different structures (and different locations

in the same structure) which is costly and time-consuming to acquire. To address this challenge,

we introduce a model transfer approach which first models the structural effect and then finds a

projected space in which the structural effect on the data is minimized. In the projected space, the

models are similar across structures and hence transfer well. Our model transfer approach does

not require labelled data in every structure and hence reduces the labelled data requirement. In

this section, we first review the related literature in Section 3.1. Then, we discuss the physical

intuition behind our approach including our analytic physical characterization of model transfer

in Section 3.2. Then, we describe our step-level occupant detection approach in Section 3.3 and

evaluate it in Section 3.4.
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3.1 Literature Review

In recent years, footstep-induced floor vibration sensing has been used for many occupant mon-

itoring applications such as occupant localization [23–26], activity monitoring [27–29], occupant

identification [30], and occupant balance estimation [31]. In this paper, we introduce a model trans-

fer approach for step-level occupant detection using this sensing approach. Here, we first discuss

the current floor-vibration-based occupant detection approaches and their limitations. Then, we

review the literature for model transfer (sometimes also referred to as transfer learning).

3.1.1 Conventional Learning Approaches for Floor-Vibration-Induced Oc-

cupant Detection

The current floor-vibration-based approaches for occupant detection use signal processing and

machine learning approaches to distinguish the footsteps from the non-footstep excitations. Some

examples of these approaches include: 1) statistics-based signal analysis, using features such

as kurtosis [32, 33], Chi-squared [24, 34], and auto-correlation [35], 2) matched filtering [25,

36], and 3) supervised learning (e.g., neural networks [37] and support vector machines [38]).

However, these approaches require calibration in every structure or at every noise level. For

example, the statistics-based approaches require a thresholdwhichmay change in various structures.

Furthermore, the matched filtering and supervised learning approaches require labelled data in

every new structure, as well as various locations in the same structure. Due to these calibration

requirements, these approaches are difficult and expensive to implement in real applications.

3.1.2 Transfer Learning

Model transfer or transfer learning has been introduced in machine learning to reduce labeled

data requirements. The idea behind transfer learning for vibration-based occupant detection is to

use the labeled vibration data in a specific structure (source) to train a footstep model in other

structures (target) in which only unlabeled data is available. In the literature, this specific context

corresponds to transductive transfer learning [39]. Similar to model transfer, unsupervised learning
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approaches assume no labeled data in the structure. However, they do not utilize the labeled

data in the other structures (i.e., source structures) which results in lower model performance.

Furthermore, semi-supervised and supervised learning algorithms assume that at least some labeled

data is available for the structure [40]. The main categories of transductive transfer learning are

instance-based and feature-based approaches.

Instance-Based Transductive Transfer Learning. The main idea behind the instance-based

approaches is to assign higher weights to a subset of the source instances which are more likely to

happen in the target structure for model training [41–44]. Therefore, these approaches assume an

overlap between the source and target data distribution in the original data space. In our application,

various structures have drastically different signal characteristics that typically do not overlap in the

original data space and hence instance-based transfer is not suitable.

Feature-Based Transductive Transfer Learning. The feature-based approaches aim to find

a feature space (i.e., the projection of the original data) in which the distributions of data in the

source and target share similarities [45–49]. It is possible to find such a feature space even if in the

original data space the source and target distributions are different and therefore, these approaches

are more suitable for our problem. To demonstrate this point, we consider a set of input vibration

responses YS ∈ R
ns×nb and YT ∈ R

nt×nb for the source and target structures where ns and nt are

the number of samples in the source and target structures and nb is the length of each input vector.

Assuming ns = nt and to ensure similarity in the projected space, we aim to find the solutions

for YSW = YTW where W ∈ Rnb×nd projects the source and target data into a nd-dimensional

feature space. Here, without loss of generality, we consider the simplest case of nd = 1. Existence

of solutions for this equation means that regardless of the differences in the original data space, the

source and target distributions in the projected feature space share similarities. We can rewrite the

equation as a homogeneous set of simultaneous equations (YS −YT)W = 0. This set of equations

always have non-trivial solutions as long as there are more unknowns than equations (nb > n) [50].

This condition is generally true in our application as the length of the sample vectors (e.g., the

number of bins in frequency domain representation) are much higher than the number of samples.

This proof shows that there exists a projected space in which the source and target distribution
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share similarity. However, this similarity does not ensure separable classes (e.g., footsteps and

non-footsteps) nor high performance of the model in the projected feature space.

Furthermore, the current feature-representation-based approaches only ensure that the marginal

distribution of the data are similar across the source and target structure. In other words, there is no

guarantee that in the projected feature space the source structure features for the footsteps are close

to the target structure features for the footsteps and the non-footsteps close to the non-footsteps.

Therefore, even after projection, the footstep models are not necessarily transferable across various

structures. To overcome these limitations, we reduce the structural effect which ensures that the

footstep models in the projected feature space mainly represent the excitation characteristics. To

this end, we utilize physical insights to 1) characterize the structural effect on the floor vibration

response and its distribution and 2) introduce amodel transfer approachwhich reduces the structural

effect to make the footstep models useful across various structures. By mainly representing the

excitation effect, the features for footsteps in the source and target structure are close to each other

and similarly, the features for non-footsteps are close in source and target structures. Hence, in the

projected feature space, the footstep models are transferable across various structures.

3.2 Analytic Physical Characterization of Model Transfer for

Occupant Detection

Our approach models the footstep floor vibrations to distinguish the signals caused by them

from the ones caused by non-footsteps. These floor vibrations depend on the underlying structure

and therefore the the footstep models trained in one structure are significantly different from other

structures. In this section, we first describe the excitation mechanism and the structural effects by

showing a set of footstep and balldrop signals in two structures. Then, we characterize the structural

effect on the vibration responses to transfer the models across various structures.

Structure-Dependent Excitation Mechanism. Intuitively, impulsive excitations cause defor-

mations in the floor structure. The floor is then restored to its original position due to the elasticity

of the structure. The repeated cycle of applied force and restoration force results in a deformation
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cycle and oscillations in the floor structure, which are commonly referred as “vibrations”. Var-

ious excitations result in different deformation patterns and hence vibration signals. Therefore,

if we have labeled footstep and non-footstep signals from a structure, we can train a classifier to

distinguish them.

However, the vibration signals are also affected by the underlying structure and its characteristics.

To illustrate this point, Figure 3.1 shows sample balldrop and footstep signals from two structures.

Figures 3.1a-3.1b show the balldrops and Figures 3.1c-3.1d show the footsteps. In each structure, the

footstep and balldrop are different in shape which enables training the footstep model. However,

the differences between the footstep and the balldrop are not consistent in these two structures.

Therefore, the model we train using the labeled signals from one of the structures is not applicable

to the other structure. To better understand this problem and our solution, in the rest of this section,

we first analytically describe the effect of the structure and the excitation type on the vibration

signals. Then, we show that our model transfer approach minimizes the effect of the structural

differences on the vibration signals. This minimization enables us to use the same footstep model

from the source structure for footstep prediction in the target structure.
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Figure 3.1: Sample Signals of Balldrop and Footstep Impulses in Two Structures. The differences
between the footstep and the balldrop are not consistent in these two structures. Therefore, the
model trained in one structure is not suitable in the other structure.

Structural Effect Formulation. To transfer the models across structures, we first formulate

the structural effects on the vibration responses through the convolution theorem assuming Linear
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Time-Invariant (LTI) system [51]. Specifically, in frequency domain, a specific sample (e.g., ith)

can be described as,

Yi = HiXi (3.1)

where Yi ∈ R
nb×1 is the vibration frequency representation in which nb is the number of frequency

bins and R is the set of real numbers, Xi ∈ R
nb×1 is the input force spectrum, and Hi ∈ R

nb×nb

is the frequency response function (FRF) of the structure which can be described as the following

diagonal matrix.

Hi =

©«

h1

h2

. . .

hnb

ª®®®®®®®®¬
. (3.2)

Minimizing the Structural Effect. The vibration responses depend on the structure and the

excitation, as shown in Equation 3.1. Therefore, by minimizing the structural effect, the trained

model mainly represents the excitation effect and transfers across structures. To this end, in

the rest of this section, we show that the structural effect is correlated to the Maximum-Mean-

Discrepancy (MMD) distance between the source and target structure in a given kernel space. This

insight implies that by minimizing the MMD distance between the source and target distributions,

we achieve our objective of minimizing the structural effect which enables transferring models

across the structures.

To show the aforementioned correlation, we analytically describe the MMD distance with

respect to the structural effects. MMD is a non-parametric distribution distance metric which

does not require an intermediate density estimate and hence does not require distribution type

assumption [52, 53]. Given the datasets S = {Ys
i } and T = {Yt

i } from the source and target

structures respectively, the empirical estimate of the MMD can be described as in [54]

M MD(S,T, φ) =

 1
ns

ns∑
i=1

φ(Ys
i ) −

1
nt

nt∑
i=1

φ(Yt
i )


H

(3.3)

where φ is a kernel-induced featuremap, ns and nt are the number of samples in the source and target
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structures, Ys
i and Yt

i are the ith samples in the source and target structures, and ‖.‖H is the norm

in the Reproducing Kernel Hilbert Space (RKHS). RKHS is a Hilbert space with two properties:

1) the feature map of every point is in the feature space and 2) it has reproducing property meaning

that for the values of the functions can be evaluated through an inner product [55]. The kernel

matrix can be defined as K = [φ(Yi)
Tφ(Yj)] to rewrite the Equation 3.3 through the kernel trick

as in [48]

M MD(S,T,K) = tr(KL) (3.4)

where K ∈ R(ns+nt )×(ns+nt ) is the kernel matrix for the dataset consisting of the data from both the

target and source structures. The submatrices forming the kernel matrix are shown in Equation 3.5.

K =

KS,S KS,T

KT,S KT,T

 (3.5)

where KS,S ∈ R
ns×ns and KT,T ∈ R

nt×nt are the kernel matrices between the source samples and

target samples, respectively. Furthermore, KS,T ∈ R
ns×nt and KT,S ∈ R

nt×ns are the kernels across

the samples in source and target structures. L ∈ R(ns+nt )×(ns+nt ) is a matrix of coefficients which is

found by

Lij =


1
n2
s

Yi,Yj ∈ S
1
n2
t

Yi,Yj ∈ T

− 1
nsnt

otherwise

(3.6)

Knowing that the trace of a product of two matrices can be rewritten as the sum of element-wise

product of them, we can use the Equations 3.5 and 3.6 to rewrite Equation 3.4 as,

M MD(S,T,K) =
1
n2

s
KS,S +

1
n2

t
KT,T −

2
ntns

KT,S (3.7)

The distance defined by Equation 3.7 is correlated to the structural effects. To show this, we

first describe the kernel matrix in terms of the input force spectrum and the frequency response

function. For better understanding, we start with the simpler case of assuming a linear kernel for

which φ(Yi) = Yi. In this case, theMMDdistance from Equation 3.3 is equivalent to the Euclidean
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distance between the mean of the source and target samples in the original data space. Using the

expression in Equation 3.1, the linear kernel matrix for a set of n samples can be found using

K = XTHTHX (3.8)

where H ∈ Rnb×(nb×n) and X ∈ R(nb×n)×n are matrices containing the FRF and input force spectrum

for all the samples and can be described as

H =
(
H1 H2 ... Hn

)
(3.9)

X =

©«

X1

X2

. . .

Xn

ª®®®®®®®®¬
. (3.10)

The next step is to rewrite Equation 3.7 in terms of the structural and input responses using the

kernel matrix in Equation 3.8. Assuming that the input matrix is similar for the source and target

structures (i.e., XT = XS = X) and using the kernel description from Equation 3.8, we can rewrite

Equation 3.7 as

M MD(S,T) =
1
n2

s
XTHT

S HSX −
2

ntns
XTHT

S HTX +
1
n2

t
XTHT

THTX. (3.11)

Equation 3.11 can be rewritten in the following format.

M MD(S,T) = XT(
1
n2

s
HT

S HS −
2

ntns
HT

S HT +
1
n2

t
HT

THT)X (3.12)

Equation 3.12 represents the distance between the source and the target structure data distributions.

The termHT
S HT shows the cross-similarity between the structure FRFs. According to this equation,

the MMD between the source and target distributions is negatively correlated to the cross-similarity

of the structures. In other words, assuming that the norms of HS and HT are fixed, lower distance
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corresponds to higher cross-similarity between the structures and lower structural effect.

To generalize this derivation to other kernels, we use the more general description of the kernel,

K = [φ(Yi)
Tφ(Yj)]. In this case, we rewrite Equation 3.8 as

K = φM(HX)TφM(HX) (3.13)

where φM is a function which maps each column of the matrix using the φ mapping. Using this

definition of the kernel matrix, we rewrite Equation 3.11 as

M MD(S,T, φ) =
1
n2

s
φM(HSX)TφM(HSX)−

2
ntns

φM(HSX)TφM(HTX)+
1
n2

t
φM(HSX)TφM(HSX).

(3.14)

By defining φM X(H) = φM(XH), equation 3.14 can be rewritten in the following format.

M MD(S,T, φ) =
1
n2

s
φM X(HS)

TφM X(HS) −
2

ntns
φM X(HS)

TφM X(HT) +
1
n2

t
φM X(HS)

TφM X(HS).

(3.15)

In equation 3.15, φM X(HS)
TφM X(HT) represents the cross-similarity of a projected version of the

structure FRFs. Equation 3.15 shows that the MMD between the source and target structure is

negatively correlated to the projected version of the cross-similarity of the structures, assuming

that the norms of φM X(HT) and φM X(HS) are fixed. Therefore, to reduce the structural effects,

our model transfer projects the data into a feature space in which the MMD between the source and

target data distributions is minimized.

However, just minimizing the MMD might not be satisfactory because: 1) it might result in a

trivial solution for which there is zero distance between the distributions and all the data points are

projected to the origin and 2) in these derivations, we assume that the data is noise-free which is not

the case in real applications. In these cases, we might end up in a projected feature space in which

the footstep and non-footsteps are mixed and not distinguishable. When introducing our method,

we will discuss other objectives which will be combined with distribution distance minimization

to overcome these limitations.

Footstep Models Before and After Projection. Due to the reduced structural effect, in the
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projected feature space the trained models mainly represent the excitation effects and hence transfer

well between the structures. In other words, in the projected feature space, the footsteps and non-

footsteps from the source and target structures are close to the other footsteps and non-footsteps,

respectively. Figures 3.2a and 3.2b show the data from a target and source structure before and

after projection. Before projecting the data, the distance between the data distributions caused by

the structural effect is significant. Therefore, the footsteps models in the target source structures are

not similar. In this figure, the frequency feature A and B are the log amplitudes of the fft at 42 and

260 Hz. These specific frequencies are chosen for better illustration of the model transfer intuition.

Furthermore, we use the log transform of the fft amplitudes to reduce the right-skewness of the data

and improve the model training. After the projection, this structural effect and the distance between

the distributions are reduced. Thus, the model trained in the source structure well represent the

data in the target structure.

Target Structure

Source Structure

Target Footstep 
Model

Source Footstep 
Model

(a) Before Projection

Target Structure

Source Structure

Source and Target 
Footstep Model

(b) After Projection

Figure 3.2: The Structural Effect Before and After Projection. Part (a) shows that before projection
the distance between the distributions caused by the structural effects results in major differences
in the footstep model. However, part (b) shows the distributions after projection where the footstep
models are aligned.
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3.3 Model Transfer for Step-Level Occupant Detection Across

Structures

In this section, we describe our floor-vibration-based approach for step-level occupant detection

across different structures through model transfer. Our approach has two main modules: 1) impulse

detection module which measures the structural vibration and distinguishes possible footstep-

induced vibration signals from the background noise and 2) structure-informed model transfer

module which utilizes the data from the source structure to train a footstep model in the target

structure. An overview of the approach is presented in Figure 3.3. The impulse detection has

been discussed in Section 2. However, as shown in Figure 3.4, the separated impulses include both

footsteps and other impulsive vibration events. The next modules distinguish the footsteps from

other impulsive excitations.

3.3.1 Structure-Informed Model Transfer

Themain objective of the structure-informedmodel transfer module is to use the labelled data in

the source structures to develop a footstepmodel in the target structure. Thismodel distinguishes the

footsteps from the other impulsive excitations and therefore, enables step-level occupant detection.

This objective is achieved by 1) extracting the frequency features, 2) projecting the features from

the source and target structures to a new feature space in which the structural effect is reduced, 3)

train a footstep model using the labelled source data in the projected feature space, and 4) predict

the sample labels in the target structure by combining the predictions of the models from different

source structures.

Frequency Feature Extraction

Our model transfer approach takes the frequency representation of the vibration signals as the

original data features. As shown in Equation 3.1, in the frequency domain, the excitation and

structure effect can be simply separated using matrix multiplication which enables the formulation

of the relationship between the MMD and the structural effect. Therefore, we develop the features
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Figure 3.3: SystemOverview. Our approach consists of Impulse Detection and Structure-Informed
Model Transfer. The figures on the left conceptually shows the steps of our approach. The red
arrows relate the conceptual figures to the different steps shown in the flow chart. The black arrows
in the flowchart show the relationship between different steps.
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Figure 3.4: An Example of Impulse Detection. This figure shows that the detected impulses can
be footsteps or other impulsive excitations such as a door closing.

formodel training using the frequency domain representationwhich ismore suitable for our problem

compared to time domain and time-frequency domain representations.
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However, directly using the frequency representation estimated throughFast-Fourier-Transform (FFT)

has two limitations. First, the overall amplitude of the measured signals shows howmuch the signal

is attenuated which is location-dependent and does not represent the excitation type. Therefore,

before estimating the FFT of the signal, we normalize the signals to ensure the same energy for all

the signals by multiplying the signal by constant/
√∑

s2
i in which si is the ith element of the signal.

Second, the frequency data distribution is right-skewed which is caused by the fact that the values

of signal amplitude in each frequency are positive. This right-skewness results in a data distribution

which is less similar to Gaussian distribution and reduces the classifier training performance. To

reduce this right-skewness and improve the classifier training, we perform the log transform of the

frequency data by finding the logarithm of the signal amplitude in each frequency [56].

Structure-Based Data Projection

The objective of structure-based data projection is to find a a feature space in which structural

effects are minimized while keeping the footsteps and non-footsteps separable. Due to reduced

structural effects in this projected feature space, the footstep models trained in various structures are

similar and successfully transfer between the structures. In real-life applications, minimizing only

the structural effects might not be enough for model transfer because of the noise in the data and

the possibility of ending up with a trivial solution. In these situations, even though the projected

feature space has lower structural effect, the footsteps and non-footsteps are not separable and this

results in low model performance. In the following sections, we further discuss the structural effect

minimization objective and then address the aforementioned limitations by adding additional terms

to the objective function using the Semi-Supervised Transfer Component Analysis (SSTCA) [48]

model transfer framework.

Minimizing the Structural Effect. To minimize the structural effect, the Maximum-Mean-

Discrepancy (MMD) across the source and target structures is minimized. In Equations 3.12

and 3.15, we have shown that theMMDbetween the source and target data distributions is correlated

to the structural effect in the kernel space. MMD is a non-parametric distribution distance metric

which does not make distributional assumptions about the data. Hence, it is more suitable to our
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problem compared to alternative approaches (e.g., KL-divergence) because the distribution of the

vibration data is unknown [57]. This MMD can be defined as tr(KL), where K is the kernel matrix

for the dataset consisting of the data from the target and source structures and L is a coefficient

matrix. To find a feature space with lowest structural effect, instead of assuming a fixed kernel,

we can solve for the kernel matrix minK�0tr(KL) through semi-definite programming (SDP) [54].

However, there are three limitations using this formulation:

1. SDP is computationally expensive.

2. for each new unseen test sample in the target structure, a new kernel matrix needs to be

computed which adds to the computational cost.

3. to reduce the dimension of the final projected feature space (and consider a subspace with

lower structural effects), additional dimensionality reduction approach (such as PCA) is

necessary [48].

To overcome these limitations, an alternative representation of the objective function is formed

based on the SSTCA model transfer approach [48]. Assuming positive definite (and hence invert-

ible) kernel, we can decompose K and rewrite the objective function as

minKtr((KK−1/2)(K−1/2K)L) (3.16)

This decomposition is generally known as an empirical kernel map [58]. We decomposeKK−1/2 =

K̄K̄−1/2W̃ where K̄ ∈ R(ns+nt )×(ns+nt ) is a fixed kernel matrix (e.g., linear, RBF, etc.) and

W̃ ∈ R(ns+nt )×(ns+nt ) is a weight matrix. This decomposition holds as K, K̄, K−1/2, and K̄−1/2 are

positive definite and invertible. Similarly, we decompose K−1/2K = W̃TK̄−1/2K̄. Based on these

decompositions, the objective function is rewritten as

minW̃tr((K̄K̄−1/2
)W̃W̃T(K̄−1/2K̄)L) (3.17)

22



Next, we simplify the equations by defining W = K̄−1/2W̃, which results in

minWtr((K̄WWTK̄)L) (3.18)

Finally, the cyclic property of the trace can be used to rewrite the equation as

minWtr(WTK̄LK̄W) (3.19)

This new representation addresses the limitations of the previous objective function. First, this

representation enables finding a close-form solution which is computationally inexpensive as it does

not require solving the SDP, as will be described later. Second, for new samples, the corresponding

kernel values can be computed and added to the kernel matrix and there is no need to resolve the

optimization problem. Finally, the dimensions of W can be defined as R(ns+nt )×m to project the

kernel data into a m-dimensional feature space. Therefore, additional dimensionality reduction

approach might not be necessary.

However, only minimizing the distance between the distributions is not enough for successful

model transfer. First, the derivation in Equations 3.3 to 3.15 is based on the assumption that the

data is noise-free. Existence of noise in real life applications might result in noise-governing low-

variance projected features spaces. Second, it results in the trivial solution for which all the data

points are projected to the origin (i.e., zero distance between the distributions). In these cases, we

end upwith a feature space in which the footsteps and non-footsteps are mixed and not separable. To

avoid these challenges, additional terms are added to the objective function. Specifically, to avoid

the challenges regarding the trivial solution and noisy data, a term is added to preserve the distance

pattern of the samples (i.e., to ensure that the neighbor samples in the original data space are close

to each other after projection). Furthermore, to improve the classification accuracy, another term

is added to utilize the source label data by maximizing the dependence between the labels and the

projected data. The following sections discuss these additional terms, the final objective function,

and the close-form solution to the objective function.

Maintaining the Data Variation. In the cases of trivial solution and noisy data, we might
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end up in projected spaces in which data has low variance. In these low-variance spaces, even

though the distance between the distributions is small, the footsteps and non-footsteps are mixed

and inseparable which in turn results in low classification accuracy. Therefore, the second term

in SSTCA aims to maintain the variation and the distance pattern of the data through locality

preservation. The intuition is that, if there are two samples, Yi and Yj, which are neighbors in

the original data space, they should be close to each other after projection. To ensure locality

preservation, first, the data is considered as a graph with affinity of mi j = exp(−d2
i j/2σ

2). This

affinity is then used to form N = (Yi,Yj) which is the set of sample pairs that are k-nearest

neighbors of each other. Then, we can minimize

∑
i,j∈N

mi j

[WTK̄
]

i −
[
WTK̄

]
j

2
(3.20)

where
[WTK̄

]
i −

[
WTK̄

]
j

2
is the distance between the samplesYi andYj the projected feature

space, respectively. Equation 3.20 can be rewritten as

tr(WTK̄LK̄W) (3.21)

where L = D −M, M = [mi j] and D is a diagonal matrix with entries dii =
∑n

j=1 mi j .

Using the Label Information. To improve the classification accuracy, the third objective

aims to take advantage of the labelled data in the source structure. To this end, SSTCA maxi-

mizes the dependence of the projected data and the labels using Hilbert-Schmidt Independence

Criterion (HSIC) which is a non-parametric approach for estimating the dependence between two

sets [59]. Specifically, SSTCA considers the HSIC between the original dataset containing all of

the data in source an target, D, and the label set, L, is

HSIC(D,L) =
1

(n − 1)2
tr(CK̄CKL) (3.22)

where KL is a kernel matrix representing the label dependence, C is a centering matrix defined as

C = I − (1/ns + nt)11
T, and n is the number of all the samples in the source and target structure
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and is equal to ns + nt . Furthermore, KL can be described as

K̃L = γKl + (1 − γ)Kν (3.23)

where [Kl]i j is the kernel value between the ith and j th sample labels in the labelled source data,

Kν = I, and γ is a trade-off parameter. It has been shown empirically that γ = 0.5 works well on

all the datasets [48]. Replacing the kernel matrix definition from Equation 3.19 in Equation 3.22

and removing the constant coefficient results in

HSIC(D,L) =WTK̄CK̃LCK̄W. (3.24)

Updating the Objective Function and Finding a Solution. Finally, the three objectives shown

in Equations 3.19, 3.21, 3.24 are combined to form the SSTCA optimization problem [48] which

is
minimize

W
tr(WTK̄LK̄W) + µtr(WTW) +

λ

n2 tr(WTK̄LK̄W)

subject to WTK̄CK̃LCK̄W = I
(3.25)

where λ ≥ 0 is a trade-off parameter and n2 = (ns + nt)
2 is a normalization term in which ns

and nt are the number of samples in the source and target structures. Furthermore, tr(WTW)

is the regularization term which aims to control the complexity of W and avoid overfitting. The

solutions of this problem are the eigenvectors of (K̄(L + λL)K̄ + µI)−1K̄CK̃LCK̄ [48]. The

steps of structure-informed data projection is summarized in Algorithm 1. These eigenvectors are

the dimension components which can be used for projecting the data. Furthermore, the order of

the corresponding eigenvalues shows how well the data projected using the dimension components

satisfy the objective function. Therefore, to project the data into a m-dimensional feature space,

we choose the m eigenvectors with leading eigenvalues for data projection. The number of the

projected data dimensions m affect the performance of the model transfer and is evaluated in the

evaluation section.
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Algorithm 1 The Structure-Informed Data Projection
1: Y← [Ys; Yt]
2: ns ← size(Ys,1); nt ← size(Yt,1)
3: Estimate K̄(Y) (e.g., for linear kernel K̄(Y) = YYT)
4: for i, j ≤ ns,nt do
5: if Yi,Yj ∈ S then
6: Lij ←

1
n2
s

7: else if Yi,Yj ∈ T then
8: Lij ←

1
n2
t

9: else
10: Lij ← −

1
nsnt

11: end if
12: end for
13: M = [mi j] ← exp(−d2

i j/2σ
2) . For k-nearest neighbors

14: D = [dii] ←
∑n

j=1 mi j . D is Diagonal
15: L ← D −M . Laplacian Matrix
16: Estimate the label kernel [Kl]i j .
17: Kν ← I
18: K̃L ← γKl + (1 − γ)Kν . Label Dependence Matrix
19: C← I − (1/ns + nt)11

T

20: eig((K̄(L + λL)K̄ + µI)−1K̄CK̃LCK̄)
21: return the first m eigenvectors
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Footstep Classifier Training in Source

To distinguish the footstep-induced vibrations from vibration caused by non-footsteps, we utilize

binary classifiers. Without loss of generality, we use Support Vector Machine (SVM), a common

classification approach that does not make distributional assumptions about the data. Instead,

SVM maximizes the distance (i.e., margin) of the sample points to the decision boundary [40].

After finding the suitable W, we project the source and target data by finding the WK̄. In this

projected space, the structural effects on the vibration data is minimized and the source and target

data distributions are similar. Therefore, the SVM classifier is trained on the labeled projected data

from the source structure(s) and is used for predicting the target structure data labels. The output of

the SVM classifier for each vibration sample is a score whose value and sign represent the distance

of the sample to the decision boundary and whether the sample is a footstep or a non-footstep,

respectively.

Multi-structure Sample Labeling

When there are more than one source structures available, each one of them is used for data

projection and developing SVM classifiers for the target structure. To improve the accuracy and

robustness of footstep classification (and occupant detection), we combine the scores across these

classifiers. To this end, we add the SVM scores for target samples from these classifiers from all the

source structures. The sign and magnitude of the final score represents the predicted label (footstep

or non-footstep) and the prediction confidence.

3.4 Occupant Detection Evaluation

To evaluate the performance of our model transfer for step-level occupant detection, we have

conducted a set of experiments with two human participant in real-world structures. We first

introduce the experimental setup and define the metrics used for evaluation. For evaluation, we first

present and analyze the step-level occupant detection results based on the whole approach (as shown

in Figure 3.3) which combines the results of multiple source structures. We also aim to analyze the
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model transfer part without combining the results for multiple sources to show that transferring the

model improves the classification performance regardless of the choice of the source structure. To

this end, we evaluate the model transfer performance for single source structure cases. Finally, we

also evaluate the approach for the sensitivity to the number of available data in the target structure

and in the source structures, as well as the sensitivity to the dimension of the projected feature

space.

3.4.1 Experimental Setup in Three Buildings

To explore the effect of using various types of structure as the source and target structure,

we have conducted experiments in three types of structures, as shown in Figure 3.5. These three

structures, located in Pittsburgh, PA, include: 1) a wooden floor in the third floor of the Baptist

senior care, 2) a concrete hallway on the ground level of the Porter hall, which is a campus building

at Carnegie Mellon University, 3) and a metal deck floor on the second floor of the Vincentian

senior care facility. The first observed natural frequency of these structures are 16.02, 23.83, and

14.84 Hz, respectively. We obtain these natural frequency estimations using the Basic Frequency

Domain (BFD) or “peak-picking” approach [60], where we identify the first observed natural

frequency as the first peak in the Fourier transform of ambient vibration data. The varying natural

frequency of the three structures reinforces that their vibration responses will vary and justifies

the use of our model transfer approach. Furthermore, to evaluate how accurate our approach is in

distinguishing footsteps from other impulsive excitations, we collected footsteps as well as other

impulsive excitations, such as door closings, dropping objects (ball and keychain) on the floor, and

hammer striking in the experiments. Specifically, we included 220, 100, and 290 footsteps and 130,

70, and 190 non-footsteps in Baptist, Porter, and Vincentian, respectively. The impact locations

are within the 5 meters around the sensor. Figure 3.6 presents the experimental setup used for all

the structures.
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Figure 3.6: Experimental Setup. This figure shows the sensor configuration and the footstep trace
utilized in all the structures.

3.4.2 Evaluation Metric and Model Parameters

As the performance metric, we have utilized the F1 score which has been commonly used for

evaluating classification algorithms. The F1 score is the harmonic mean of the precision and recall

rate and can be found through the following equation [61]:

Recall =
True Positives

True Positives + False Negatives
(3.26)

Precision =
True Positives

True Positives + False Positives
(3.27)
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F1 = 2 ·
precision · recall
precision + recall

(3.28)

where True Positives mean the number of correctly detected footsteps, False Positives mean the

number of non-footstep which are by mistake detected as footsteps, and False Negatives mean the

number of missed footstep events. The F1 score is estimated using the k-fold cross-validation

approach using k = 10. Using the fitcsvm MATLAB function [62], the training of the SVM model

for 300 samples takes approximately 0.009 seconds using a Macbook pro with 8 GB Ram and 2.7

GHz Intel Core i5. With respect to the SVM parameters, the regularization term C (or the box

constraint) is empirically set as 1. We have used a simple linear kernel to ensure that the SVM

model does not overfit to the data in the source structure. Further, the software divides the input

data by an appropriate scale factor which is estimated using a heuristic procedure before applying

the kernel [62].

3.4.3 Overall Footstep Classification Robustness

In this section, we evaluate the accuracy and robustness of the overall footstep classification

approach. To this end, we discuss and compare the robustness of our approach with two baseline

approaches in three structures. The two baseline approaches utilize the time-domain (TD) and

frequency-domain (FD) representations of the signal. Both TD-based and FD-based baseline

approaches first train an SVM classifier in one structure and then test the model in a different

structure (i.e., without model transfer). Then, each sample in the target structure is labeled by

combining the SVM scores from multiple sources.

Figure 3.7a shows the comparison of the F1 score for each structure as the target. For the results

of each structure, the other two structures are the source structures. For example, the Baptist results

represent the case with Baptist as the target structure and Porter and Vincentian as the source

structures. Based on these results, in Baptist nursing home, our approach has resulted in 0.96

F1-score which is equivalent to 9.25X and 7.5X reduction in classification error over the TD-based

and FD-based approaches which results in 0.63 and 0.7 F1 score, respectively. Similarly, in Porter
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Hall, our approach results in 0.97 F1-score compared to 0.71 and 0.76 F1-score using the TD-based

and FD-based approach which is equivalent to 9.7X and 8X reduction in error, respectively. Finally,

in Vincentian nursing home, our approach results in F1-score of 0.99 compared to the F1-score of

0.71 and 0.84 using the TD-based and FD-based approaches, equivalent to 29X and 16X reduction

in error, respectively.

These higher improvements in Vincentian is due to larger separation between the footsteps and

non-footsteps in this structure. To explore this effect, we define a separation metric as the mean of

µ f −µn f where µ f and µn f are themean of the fft of footstep and non-footstep samples, respectively.

This separation metric is 0.029 in Vincentian compared to 0.019 in Baptist and 0.018 in Porter. The

models trained in the structures with smaller separation metric contain more information about the

lower-confidence samples which are closer to the decision surface compared to the models trained

in structures with larger separation metric. Therefore, the models trained in Baptist and Porter

which have smaller separation metric perform well in the Vincentian which has larger separation

metric. This effect will be described in more detail in Section3.4.4 which discusses model transfer

with one source structure.

To providemore detail, Figures 3.7b and 3.7c show the evaluation results for recall and precision

rate, respectively. These figures show that the baseline approaches generally have higher recall rate

than precision rate. Specifically, the recall rate is between 0.92 and 1 for TD-based and between

0.84 and 1 for FD-based approaches. In comparison, the precision rate is between 0.48 and 0.58

for the TD-based and between 0.59 and 0.72 for FD-based approach. High recall rate and low

precision rate implies that the baseline approaches cause a large number of false positives and

detect non-footsteps as footsteps. This high false positive rate is caused by the higher variation in

the footstep-induced excitations which results in distribution imbalance between the footstep and

non-footsteps. In this case, the model will be biased toward classifying the samples as footsteps

because the higher-variance footstep class account for more of the data space than the lower-

variance non-footstep class. In comparison, our approach results in recall rate of 0.98, 0.94, and 1

and precision rate of 0.95, 1, and 0.98 for Baptist, Porter, and Vincentian, respectively. Consistent

improvement in the F1-score in all the three structures shows that our approach is more robust to
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the changes in the structure. Furthermore, the combined high recall and high precision rates using

our approach shows that it is more robust to the footstep variations.
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Figure 3.7: The Evaluation Results in Three Structures. Part(a)-(c) compare the F1-score, recall
rate, and precision rate using our transfer-based approach with two methods which utilize the time-
domain and frequency-domain signals in the source without transfer to predict the sample labels in
the target structure.

3.4.4 Model Transfer Evaluation for Different Source Structures

By reducing structural effects through ensuring similar data distribution in the target and source

structures, the structure-informedmodel transfer enables footstepmodelling and classification in the

target structure with no labelled data. In this section, we focus on the model transfer performance by

comparing the results of our approach with the TD and FD-based baseline approaches when there

is only one source structure. Figures 3.8a-3.8c shows the results in Baptist, Porter, and Vincentian,

respectively.

Figure 3.8a shows the F1-scores for the Baptist as the target structure. It can be seen that

when the source structure is Vincentian, our approach achieves a F1-score of 0.95 compared to

0.61 and 0.65 using the TD-based and FD-based approaches, respectively, which is a 7.8X and 7X

improvement in error. On the other hand, when the source structure is Porter, our approach results

in F1-score of 0.89 compared to 0.64 and 0.68 using the TD-based and FD-based approaches,

equivalent to 3.3X and 2.9X improvement in error.

Figure 3.8b shows the F1-scores for the case with Porter as the target structure. Our approach
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achieves a F1-score of 0.98 compared to 0.67 and 0.76 using the TD-based and FD-based approaches

which is equivalent to 16.5X and 12X improvement in error when the source structure is Baptist.

On the other hand, when the source structure is Vincentian, our approach results in F1-score of

0.94 compared to 0.73 and 0.74 using the TD-based and FD-based approaches which correspond

to 4.5X and 4.3X improvement in error, respectively.

Figure 3.8c shows the F1-scores for the case with Vincentian as the target structure. In this

case, when the source structure is Baptist, our approach results in a F1-score of 0.99 compared to

0.67 and 0.79 using the TD-based and FD-based approaches which is equivalent to 33X and 21X

improvement in error. On the other hand, when the source structure is Porter, our approach results

in F1-score of 0.98 compared to 0.73 and 0.8 using the TD-based and FD-based approaches, which

is equivalent to 13.5X and 10X improvement in error, respectively.

The first observation in these results is that themodel performance is higher when theVincentian

is the source structure compared to when it is the target structure. As discussed in the previous

section, the reason behind this effect is the larger separation between the footsteps and non-footsteps

inVincentian. Specifically, the separationmetric is 0.029 inVincentian compared to 0.019 inBaptist

and 0.018 in Porter. Models with smaller separation metric contain more information about the

low-confidence samples which are closer to the decision surface. Therefore, the models trained

in Baptist and Porter perform well in Vincentian (which is shown by f1-score of 0.99 and 0.98,

respectively). However, the models trained in Vincentian have lower performance in Baptist and

Porter (shown by f1-score of 0.95 and 0.94, respectively).

The second observation is that using theBaptist as the source and Porter as the target outperforms

using the Porter as the source and Baptist as the target. This is true even though the separation

metric is similar in Baptist and Porter. The reason behind this observation is that the heterogeneity

of the wooden floor in Baptist results in higher variance in the data distribution. To explore this

effect, we defined a metric as the mean of the σ/µ where σ and µ are the standard deviation and

the mean of the frequency representation (FFT) of the samples in each structure. The values of

this metric are 1.29, 1.06, and 1.05 in Baptist, Porter, and Vincentian, respectively. The higher

value of the metric show the higher data variance and heterogeneity of the data from Baptist.
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Therefore, the model trained in Baptist is more informative than the model trained in Porter and

works well in Porter (f1-score of 0.98), whereas the model trained in Porter has lower performance

in Baptist (f1-score of 0.89).
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Figure 3.8: The F1 Score using One Structure as the Source. Part(a)-(c) compare the F1-score for
our transfer-based approach with the baseline approaches when different source targets are utilized.

Using more than one source structure improves the robustness of the results. In other words, the

combined source structure case outperforms the source structure with lower model performance;

however, the improvement over the source structure with higher performance is not substantial.

Specifically, for Baptist, Vincentian, and Porter, the f1-scores are 0.96, 0.99, and 0.97 when using

two source structures, 0.89, 0.98, and 0.94 when using the source structure with lower performance

which is equivalent to 2.75X, 2X, and 2X improvement, respectively. However, the f1-scores

when using the source structure with the higher performance are 0.95, and 0.99, and 0.98 for

Baptist, Vincentian, and Porter which are equivalent to 1.25X, 0X, and -1.5X change in the error,

respectively.

In summary, although model transfer performance depends on the source structure, our model

transfer approach results in 0.89-0.99 F1-score and 2.9X-33X improvement in the error compared to

the baseline approaches in different cases of source and target structures. Therefore, our approach

successfully transfers the footstep model between the structures.
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3.4.5 Sensitivity to the amount of target data

The amount of the available data in the target structure potentially affects the performance of

the model transfer approach. To evaluate this effect, we have first kept 10 percent of the target data

as the test data. Then, among the rest of the target data, we randomly choose varying amount of the

remaining target data (unlabeled) and use it with the source data (labeled) for training. The trained

model is then used for labelling the test samples and finding the F1-scores.

Figures 3.9a- 3.9c show the results of this evaluation. As expected, having a dataset with more

target data results in higher F1-scores in the target structure because it better represents the target

structure data distribution in model transfer. Specifically, in Baptist, Porter, and Vincentian, the F1-

score is increased from 0.87 and 0.91, and 0.95 to 0.97, 0.97, and 0.99, respectively. The number of

samples necessary to reach to the maximum accuracy is 240, 55, and 85 samples in Baptist, Porter,

and Vincentian, respectively. The reason behind the need for more target data in Baptist is the

higher variance of the target data distribution caused by higher structural heterogeneity in Baptist as

discussed in the previous section. Higher structural heterogeneity results in different characteristics

for the impulse signals in different locations of the structure. Therefore, more samples are necessary

to represent the data distribution in the Baptist location.

Furthermore, having more target data decreases the variance of the estimated F1-scores and

hence increases the robustness of the footstep model in the target structure. These variances for

Baptist, Porter, and Vincentian are reduced from 0.07, 0.11, and 0.03 to 0.03, 0.04, and 0.016,

respectively. These evaluation results can be used for determining the amount of target data

necessary for different applications.

3.4.6 Sensitivity to the amount of source data

One of the factors affecting the performance of the model transfer approach is the amount of

the data which is available in the source structure. To evaluate this effect, we have randomly kept a

varying amount of the source data and estimated the F1-scores in the target data. Furthermore, to

find the variance of the F1-score, we have repeated the analysis for 10 subsets of the source data.
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Figure 3.9: The Sensitivity of the F1-score to the Amount of Data in the Target Structures. Part (a)-
(c) show the results for the case with Baptist, Porter, and Vincentian buildings as the target structure,
respectively. As expected, these figures show that in general, increasing the amount of target data
results in better performance (i.e., higher F1-score) and lower standard deviation of F1-scores.

Figures 3.10a-3.10c show the results of evaluation. For the sake of comparison, these figures also

present the same evaluation for the TD-based and FD-based baseline approaches.

Having a dataset with more source data generally results in higher F1-scores in the target

structure because it better represents the source structure data distribution. In Vincentian, the

F1-score is increased from 0.83 from cases with 15 samples to 0.98 for cases with 150 samples,

respectively. In Porter, the F1-score is increased from 0.83 from cases with 15 samples to 0.95 for

cases with 150 samples, respectively. As discussed in the previous section, Vincentian and Porter,

which are the source structures for Baptist results are less heterogeneous. Therefore, high accuracy

is achieved even with lower number of source samples for Baptist.

Furthermore, having more source data decreases the variance of the estimated F1-scores and

hence increases the robustness of the footstep model in the target structure. These variances for

Baptist, Porter, and Vincentian are reduced from 0.03, 0.1, and 0.065 for cases with 15 source

samples to 0.007, 0.01, and 0.007 for cases with 150 samples. These results show that using 50 or

more samples from the source structure results in the F1-score greater than 0.9.

3.4.7 Sensitivity to the Projected Feature Space Dimension

An important factor in the model transfer performance is the number of dimensions in the

projected feature space. The dimension components for model transfer approach are ordered
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Figure 3.10: The Sensitivity of the F1-score to the Amount of Data in the Source Structures.
Part (a)-(c) show the results for the case with Baptist, Porter, and Vincentian buildings as the target
structure, respectively. As expected, these figures show that in general, increasing the amount of
source data results in better performance (i.e., higher F1-score) and lower standard deviation of
F1-scores.

with respect to the objective function. Therefore, the effect of the number of dimensions on

model transfer is a trade-off between better satisfaction of the objective function and higher model

flexibility. On the one hand, as we add to the number of dimensions, we add components for which

the objective function is less satisfied and this might decrease the model performance. On the other

hand, using more dimensions can potentially result in higher model flexibility and performance.

We evaluated the model performance through finding the F1-score in the target structure using

different numbers of dimensions. Figures 3.11a-3.11c show the results of this evaluation. The

general trend of F1-score in all the three structures shows an initial increase which is caused by

higher model flexibility using more dimensions. However, after the initial increase, the F1-score

for Vincentian and Baptist decrease, whereas in Porter hall, the F1-score does not show significant

change.

To understand this trend, the cumulative normalized eigenvalues are depicted in Figure 3.12.

As discussed when describing Equation 3.25, these eigenvalues show how well the data projected

using a specific dimension components satisfy the objective function. To make the eigenvalues

comparable across the structures, we normalized them through dividing them by the summation

of the eigenvalues for each structure. The range of the normalized eigenvalues is between 0 and 1

where higher values show higher contribution of the dimension component. This figure shows that
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Figure 3.11: The Sensitivity of the F1-score to the Number of Dimensions. Part (a)-(c) show the
results for the casewith Baptist, Porter, andVincentian buildings as the target structure, respectively.

the first few dimensions has more contribution compared to Baptist and Vincentian. For example,

4 initial dimensions count for 0.82 of the total value in Porter. The corresponding values for the

same number of dimensions in Baptist and Vincentian are 0.76 and 0.68. The higher contribution

of the initial components with lower noise results in a model which is less affected by the later

noisier dimensions. Therefore, in Porter, the performance of the model does not decrease by adding

more dimensions. Furthermore, the largest decrease is happening in Vincentian where the initial

dimensions show the lowest contribution.

Furthermore, for Baptist, the trend is mostly decreasing after the initial part. However, there is

an outlier with low F1-score for the case of 4 dimensions which means that the fourth basis projects

the data into a feature space in which the footsteps and non-footsteps are not separable. This effect

is caused by higher noise in the wooden floor which results in some errors in the model transfer. In

this paper, to ensure good performance in all the structures, we have chosen the first two dimensions

for model transfer.

3.4.8 Sensitivity to the Signal-to-Noise-Ratio (SNR)

The existence of environmental and measurement noise can affect the model performance. To

evaluate this factor, we have studied the relationship between the Signal-to-Noise-Ratio (SNR) and

the model F1-score. Specifically, we compare this relationship for our model transfer approach

with the ones using the TD and FD-based approaches. For each impulsive event, SNR values are
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Figure 3.12: Dimension Contribution through Normalized Eigenvalue.

computed as the ratio of the summed squared magnitude of the event signal to that of the noise

(of the same length) and is described in decibel (db). Higher SNR values indicate high level

of event signal and low level of noise, and vice versa. The noise consists of ambient vibration

measurements which does not include impulsive excitation and footstep events. Figure 3.13 shows

the F1-score for 10 different levels of SNR. The results show that our approach outperforms other

approaches in all the SNR ranges with F1-scores between 0.91 and 1.00. In comparison, the

baseline TD-based and FD-based approaches result in F1-score ranges of [0.4, 0.63] and [0.05,

0.92], respectively. Consistent improvement in the performance using our approach compared to

the baseline approaches shows that our approach is more robust to the changes in the SNR.
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Figure 3.13: Sensitivity to the SNR. This figure shows that our model transfer higher F1-score
compared to the baseline approaches in various SNR ranges.
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Chapter 4

Characterizing Dispersive Wave

Propagation without Prior Calibration

In this chapter, we characterize dispersive wave propagation for occupant localization purpose.

Wave propagation in a floor structure is of dispersive nature. In other words, the wave propaga-

tion properties change across various wave frequency components. Dispersion results in signal

distortions which make analyzing the signal challenging. Specifically, for occupant localization,

this signal distortion results in inaccurate TDoA estimation and localization. Further challenge for

occupant localization is that the wave propagation velocities are unknown and different across struc-

tures which result in a time-consuming and costly calibration phase. To address these challenges,

we characterize dispersive wave propagation to develop a vibration-based occupant localization

approach which addresses dispersion without requiring calibration. In this section, we first review

the related literature in Section 4.1. Then, we describe our localization approach in Section 4.3 and

evaluate it in Section 4.4.

4.1 Literature Review

The occupant localization using footstep-induced floor vibrations can be seen as a source

localization problem in dispersive media. Here, we explore the existing approaches and remaining
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research gap for vibration-based occupant localization.

4.1.1 Dispersion-Induced Signal Distortion Reduction

Floor structures are dispersive which causes waves of different frequency to travel at different

speed. This results in signal distortions which decrease the accuracy of TDoA estimation and

localization (see Section 4.2 for details). The two main approaches to mitigate such distortions

are physics-based approaches [63–66] and signal-based approaches [67–72]. The physics-based

approaches require a priori information (e.g., stiffness and mass) of the underlying structure to

estimate dispersion curves. However, their application is limited in real environments as this infor-

mation varies for different structures and requires extensive calibration. Signal-based approaches

address dispersion by decomposing the signals using time-frequency representations (TFR) and do

not require detailed prior information about the floor.

Among the TFR approaches, wavelet decomposition has been successfully utilized for im-

pulsive excitations (such as footstep-induced vibration) because it is suitable for representing

non-stationary signals [23, 68–71, 73, 74]. The main wavelet-based approaches for source lo-

calization either utilize: 1) the ridge [68, 69, 71, 74] (i.e., peak amplitude in scale-time plane)

which is difficult to robustly estimate in real floors with environmental noise or 2) highest energy

scale components [23, 73] which potentially have large noise (ambient vibration) because this scale

might correspond to the fundamental frequency of the floor. Therefore, these approaches are not

well-suited for source localization and result in large errors. To improve localization, We introduce

a new approach which directly chooses the components with the highest localization performance

for signal recovery (localization performance will be described in Section 4.3.2).

4.1.2 Source Localization

Source localization problems consider signals induced by a source of unknown location and

received in several sensors at known locations to find the source location. Source localization is

of vital importance in several domains such as sonar [75, 76], mobile communications [77, 78],
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wireless sensor networks [79, 80], structural health monitoring [81–83], and robotics [84, 85].

Existing approaches include beamforming, fingerprinting, and multilateration.

Beamforming delays/shifts the received signals based on an assumed waveform and propaga-

tion velocity and then finds the location by identifying the time-shift that maximizes the similarity

in the delayed signals [83, 86–88]. These approaches in general focus on propagation in ho-

mogeneous media where the propagation velocity is well known (e.g., sound in air). In these

approaches, unknown propagation velocity and dispersion-related signal distortions would result

in large localization errors.

Fingerprinting (or signature-based) approaches are an alternative when the propagation char-

acteristics are unknown. These approaches first construct a database of received signals for source

excitation in different known locations through site surveying. For every new excitation, the mea-

sured signals will be compared to the signals in the database to find the location corresponding to

the most similar signal [89–91]. Unfortunately, the site surveying can be a time-consuming and

laborious process, especially for fine-grained localization.

Range-based localization estimates the range between the source and sensors and leverage

such information for estimating source location. Two methods introduced for range estimation are

Received Signal Strength (RSS)-based and Multilateration. RSS-based [92–94] methods estimate

the range between the source and the sensors based an attenuation pattern for wave propagation.

However, these methods do not perform well in real floors for which such attenuation pattern is

not previously known or accurately modeled by a parametric model (such as exponential models

as assumed in [94]). This becomes more problematic especially when reflections can create

constructive or destructive interference. Multilateration, on the other hand, leverages the differences

in time of arrival for signals received by different sensors, referred to as TDoA, to estimate the

location of the source [74, 95–102]. For a specific value of TDoA between two sensors, the possible

solutions (i.e., source locations) form a hyperbola. The location of the source can be estimated

by adding more sensors and their TDoAs, which result in more hyperbolas, and then finding their

intersection. In this regard, a cost function for each potential source location is defined as the error

between 1) the distance difference between the potential source location and the known sensor
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locations and 2) their expected distance difference computed from the TDoA and wave propagation

velocity. The solution of multilateration is obtained by minimizing this function. In this paper,

we adopted the multilateration approach as it locates the source in a fine-grained manner without

laborious site surveying and does not assume a known waveform.

A key challenge in multilateration is that if the wave propagation velocity is unknown and

varies across different locations and buildings, which is often the case in practice, it increases

the number of unknowns and the non-convexity of the multilateration cost function. The severe

non-convexity of the cost function makes finding the global minimum difficult. Therefore, we

introduce an adaptive multilateration approach that is more robust to irrelevant local minima by

incorporating space configuration information to heuristically limit the search space.

4.2 ThePhysicsBehindFootstep-inducedDispersiveWaveProp-

agation

Our localization approach utilizes wave propagation in floor structures. In this section, we

provide a brief background of the physics behind footstep-induced structural vibration and describe

the main challenges we address: 1) dispersion-related signal distortions and 2) unknown wave

propagation velocity across different locations due to floor heterogeneity.

The impact due to each footstep strike is of an impulsive nature. These impulses result

in deformation (and restoration due to elasticity) in the floor. This combined deformation and

restoration results in waves propagating outward from the footstep location through the floor.

These waves are plate waves (i.e., lamb waves) because building floors are generally solid plates

with free boundaries on top and bottom and the ratio of wavelength to thickness of the floor is

large in our application [103]. As an example, if the wave have a frequency component of 100 Hz

and wave propagation at a velocity of 300 m/s, the wavelength is equal to 3 meters, which is much

larger than the common floor thickness (on the order of 0.2-0.3 meters).

However, lamb wave propagation in floor structure is of a dispersive nature, which causes

different frequency components to have different phase velocities [104, 105]. Due to this dispersion
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effect, the same footstep will induce dissimilar signals in sensors in different parts of the floor. In

other words, dispersion introduces distortion in the vibration signal, which makes vibration-based

occupant localization a challenging task. Figure 4.1 shows a simple and intuitive illustration of

dispersion to better understand how it distorts the signals. In this figure, we assume that the wave

consists of two linearly attenuative sinusoidal components of 2 and 8 Hz. Figures 4.1a and 4.1b

show the waves propagated through a non-dispersive medium in which wave propagation velocity is

the same for all frequency components. Figures 4.1c and 4.1d show the waves propagated through

a dispersive medium in which wave propagation velocities are different for different frequency

components. Figures 4.1a and 4.1c show the wave measured at a closer sensor and Figures 4.1b

and 4.1d show the resulting wave measured at a further sensor. As shown in these figures, in a

non-dispersive medium, the waves arrive at a later time (with delay of ∆) in the further sensor,

but the shape of the signal is the same as the one measured at the closer sensor. In contrast, in

the dispersive medium, the further sensor observes the more dispersed waves, and for the same

excitation, the shape of the received signals are different for the two sensors. The difference is

caused by the different delays for these two components (∆1, ∆2). For example, the maximum

cross-correlation values between the two sensor measurements decrease from 1 to 0.69 when the

floor becomes dispersive.

In real life applications, these effects are aggravated due to reasons such as having more fre-

quency components, different attenuation rates, and noise [23]. These dispersion-related distortions

make it difficult to estimate the TDoA between different sensors, thereby decreasing the localization

accuracy.

Furthermore, lamb wave propagation velocity (for each frequency component) depends on

structural and material characteristics, such as modulus of elasticity, density, Poisson’s ratio, and

slab thickness [106]. Due to structural heterogeneity, these characteristics (and thus the propagation

velocity) vary greatly across different sections of the floor and different buildings. To handle this

velocity variations, we assume that heterogeneous floors are locally isotropic. In other words, the

structural characteristics and wave propagation velocity differ across different footstep locations;

however, in the vicinity of each footstep location, these characteristics (and propagation velocity
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Figure 4.1: Dispersion Illustration: This figure illustrates how dispersion distorts the shape of the
received signals by considering two attenuative sinusoidal components. These distortions decrease
the localization accuracy. The red lines show the arrival time of sinusoidal components.

to the sensors) are assumed to be similar. Then to eliminate extensive calibration to obtain

wave propagation velocity in different footstep locations, we introduce our adaptive multilateration

approach in the next section.

4.3 Adaptive Occupant Localization in Dispersive Medium

Our fine-grained floor vibration-based occupant localization approach has two main modules:

1) Footstep Detection; 2) Dispersion-invariant TDoA Estimation; and 3) Locally Adaptive Footstep

Localization. We have discussed Footstep Detection in detail in Sections 2 and 3. After detect-

ing footsteps, in the Dispersion-invariant TDoA Estimation module, our approach mitigates the

dispersion-induced signal distortion through signal decomposition and then estimates the TDoAs

for different components. Section 4.3.1 provides more details on the dispersion mitigation ap-

proach. Finally, in the Locally Adaptive Footstep Localization module our method selects a subset

of sensors which are closest to the footstep to further reduce signal distortion effects and estimates

component-level footstep location using our adaptive multilateration approach. Then, it selects a

subset of components with best multilateration performance and averages these component-level

location estimations to obtain the final estimation of the footstep location. The details of this
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module are discussed further in Section 4.3.2.
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Figure 4.2: Occupant Localization Approach Overview

4.3.1 Dispersion-invariant TDoA Estimation

To mitigate dispersion-related signal distortion, we decompose the vibration signal using a

time frequency representation (TFR) and extract scale components from each sensor data [23].

Separately analyzing each component, which has similar wave propagation characteristics (e.g.,

phase velocities), mitigates the effects of dispersion as shown in Figure 4.3. This figure shows

the signals received in two sensors from the same footstep excitation. After decomposition (and

extracting a specific component), the shapes of the signals become more similar to each other

(the maximum cross-correlation value increases from 0.49 to 0.95, which corresponds to 1.9X

improvement in similarity) and show more clear peak correspondence.
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Figure 4.3: An Example of Dispersion Mitigation by Signal Decomposition. This figure shows
that the decomposed signals (bottom) are more similar, and the peaks clearly correspond with each
other the improvement compared to the raw signals (top) received in two sensors for the same
excitation.

Decomposition-based Dispersion Mitigation To decompose the signal, we use wavelet trans-

form, which is well suited for non-stationary signals such as impulses and footsteps [69, 70, 107] (as

discussed in Section 4.1.1). We decompose the signal into frequency components using contin-

uous wavelet transform. Mathematically, continuous wavelet decomposition of signal x can be

represented as,

T (a, b) = w(a)
∫ +∞

−∞

x(s)Ψ∗b,a(s)ds (4.1)

in which w(a) is a weighting function and Ψb,a(s) is the dilated and time-shifted version of the basis

function (mother wavelet Ψ(s)), which can be represented as,

Ψb,a(s) = Ψ
(

s − b
a

)
(4.2)

inwhich b is the unit of translation in time and a is the amount of dilation (commonly called a scale.).

This dilation (i.e., scale) is inversely proportional to the frequency components of the signal. In

other words, higher scales correspond to lower frequency components and the relationship between

them can be described using [107],

Fa =
Fc

aδ
(4.3)
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in which δ is the sampling frequency (Hz), Fa is the (pseudo-)frequency (Hz) corresponding to

scale of a, and Fc is the center frequency of the wavelet (Hz).

Mexican hat wavelet is chosen as the mother wavelet as it is a good representation of the

footstep-induced vibration signals due to its similarity in shape [108]. To reduce the computational

cost of performing the continuous wavelet transform, we choose a limited range of scales. To limit

the range (while keeping the useful information in the signal), we use two notions: 1) floor vibration

signals caused by footsteps typically contain frequencies below 100 Hz [109] and 2) geophones are

naturally a second-order high pass filter for frequencies less than 10 Hz [110, 111] (i.e., when the

frequency decreases from 10Hz to 1Hz, the geophone’s response may become 100 times weaker).

Therefore, we choose the range of 10-100Hz for wavelet decomposition. Using Mexican hat

wavelet, for sampling frequency of 25 kHz, which we used for evaluation, this range translates to

a scale range of 64 to 640. We have observed in our prior experiments that footwear can affect

the frequency range. For example, high heels are more similar to impulses (e.g., ball drops) than

flat-bottom shoes and hence, generally result in higher frequency components compared to, for

example, someone wearing flat-bottom shoes [30]. However, while we did not control the footwear

of the subjects, there was little variation in the footwear of the experimental subjects (all variants

of flat-bottom shoes). The defined range works well for the structures and footwear we consider in

Section 4.4. This range can be modified to accommodate different applications with different floor

types or footwear with different response frequencies.

TDoA Estimation To estimate the TDoAs between different pairs of sensors for every scale

components, we utilize a threshold-based method[27]. This method detects the first peaks of the

signals, which correspond to the wave arrival time at each sensor location. Note that the wave

arrival time does not provide the time of flight because the start time (i.e., time of footstep excitation)

is unknown. Instead, the TDoA is obtained by comparing the wave arrival times of each sensor

pairs. We have chosen the peak detection method over the cross-correlation to compute the TDoA

because it is less affected by signal distortions due to multipath and reflections [112]. The peaks are

determined using the anomaly detection approach, which assumes that the signal has a Gaussian

distribution for the background noise (i.e., when there is no footstep). This assumption is then used
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to find the threshold for detecting an anomaly (i.e., time of arrival for a footstep event). We chose

3σ as a threshold, in which σ is the standard deviation of the decomposed background noise, to

allow 1% detection false alarm. This threshold value is adjustable according to the application.

4.3.2 Locally Adaptive Footstep Localization

To enable footstep localization in different structures and heterogeneous floors, we present a

locally adaptive multilateration approach which robustly estimates the footstep location when the

propagation velocity is unknown. We take a two-step approach to first obtain the component-level

location estimation through sensor selection and adaptive multilateration and then combine those

results to make the system-level location estimation.

Sensor Selection The key intuition behind choosing the closest sensors is that the less distance

waves propagate through the floor, the less it gets affected by the floor’s attenuative characteristics.

This in turn results in higher SNR, less signal distortion, and consequently more accurate TDoA

and location estimation. To choose the closest sensors, we utilize the relative time of arrival for

footstep signals to reach different sensors. We first sort the detected times of arrival for first peaks

for different sensors obtained in the previous module and then select the sensors with earlier times

of arrival. Note that each scale component may lead to different set of “closest sensors” due to the

errors in the first peak detection; however, the components with such erroneous peak estimations

often lead to large localization errors and get filtered out through the component selection in the

next module. Assuming unknown wave propagation velocity, at least four sensors are necessary

for localizing the footsteps. Using more sensors has the potential to reduce the noise and improve

the accuracy; however, including additional sensors means including the sensors further away from

the footstep (because of our sensor selection approach), which result in more attenuated signals

and lower localization accuracy. Thus, in this paper, we use four sensors, whose performance is

compared with systems with different number of sensors in Section 4.5.3.

Adaptive Multilateration These selected sensors and their corresponding TDoAs are then

utilized in our adaptivemultilateration approach to estimate the location of the footstep for each scale

component (component-level location estimation). Our approach does not require prior knowledge
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on wave propagation velocity; therefore, it can adapt to different locations in a heterogeneous

floor (with different structural characteristics).

The main challenge in achieving the adaptive localization is the large search space for solutions,

due to the model flexibility (e.g., extra unknown parameters on wave propagation velocity). As

discussed in Section 4.2, we assume different propagation velocities across different locations (i.e.,

heterogeneous floor) and samevelocity between each footstep and the sensors (i.e., locally isotropic).

However, due to the non-convexity of the problem, deviation from local isotropy assumption causes

the multilateration to get stuck in local minimas and therefore result in large localization errors.

To make the multilateration approach more robust, we employ heuristics on physical space

configurations to constrain the solution search space (i.e., possible locations and velocities). We

constrain the search space by considering the propagation velocities for which every pair of hy-

perbolas have an intersection in the room boundary. As discussed in Section 4.1.2, the possible

locations of a footstep for specific TDoA between two sensors and propagation velocity form a

hyperbola. Ideally, these hyperbolas from multiple sensor pairs meet at one intersection, which

is the solution of multilateration; however, signal noise and errors in TDoA estimation lead to

hyperbolas that meet at multiple points or do not intersect. To this end, we define the localization

cost function as: 1) the area of the polygon between intersections of hyperbolas when all pairs of

hyperbolas intersect in the room boundary or 2) an arbitrarily large value when they do not intersect

(e.g., ∞). This cost function is then minimized across different propagation velocities to robustly

estimate the location of footsteps.

The advantages of our approach are that: 1) it does not require wave propagation velocity to be

known and fixed and 2) constraining search space makes it less-prone to vastly out of range local

minima. Figures 4.4a-4.4c visualize an example of the multilateration procedure. These figures

show the hyperbolas for three different velocities (100, 150, and 200 m/s), where the true velocity

is 200 m/s. For each velocity, we construct the hyperbolas and find their intersections. We can see

from the figures that by minimizing the area, its center point (found by averaging the intersection

locations) gets closer to the actual location of the footstep (represented by a star sign). In other

words, the case with minimum area between intersections also has the lowest localization error.
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Figure 4.4: AnExample of the Solution Procedure. The footstep location can be found by changing
the velocity values and finding the velocity value which minimizes the area between intersections.
Parts a-c show an example of such a procedure for three values of wave propagation velocity. We
can see that the case with minimum area between intersections also has the lowest localization
error.

Our approach uses a closed-form formulation for constructing the hyperbolas, finding their

intersections, and forming the polygon between the intersections. In the closed-form formulation,

for a specific value of wave propagation velocity, the hyperbola between a pair of sensors is defined

in the following format [113].

x =
pix + p j x

2
+ Xcosα − Y sinα (4.4)

y =
piy + p jy

2
+ Xsinα + Ycosα (4.5)
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where α is the rotation angle of the hyperbola, [x, y] are the coordinates of the hyperbola, and pix ,

piy, p j x , and p jy are the coordinates of the sensors i and j. Also,

cosα =
pix − p j x

2c
; sinα =

piy − p jy

2c
; X = a ∗ cosh(θ); Y = b ∗ sinh(θ) (4.6)

in which θ is a parameter which can range [−∞,+∞]. Furthermore, a, b, and c are defined as,

a =
vτji

2
; b =

√
c2 − a2; c =

1
2

p j − pi


2 (4.7)

in which v is the propagation velocity and τji is the time difference of arrival between the ith and

j th sensor. Using this formulation, one of the sensors is considered as the anchor sensor and a

hyperbola is found between the anchor sensor and every other sensor. We then use a grid-search

based method [114] to find the intersections of the hyperbolas.

The final step of our solution is to minimize the area of the resulting polygons across a range

of velocity values. Let the intersections between different pairs of hyperbolas which are in the

boundary of the room be stored in an array called P in which Pk = [xk, yk]. Then the optimization

objective is defined as

minv
©«

√

1
2
∑3

k,l=1 ‖Pl − Pk ‖
2
2 i f |P | = n(n−1)

2

∞ i f |P | , n(n−1)
2

ª®®¬ (4.8)

where, ‖Pl − Pk ‖2 is the Euclidean distance between the k th and lth intersections, |P | is the

cardinality (number of elements) in the set P, and n(n−1)
2 is the number of different combinations of

two hyperbolas (each representing one intersection) when there are n hyperbolas. By minimizing

this cost function, we ensure that: 1) all pairs of hyperbolas intersect in the room boundary and

2) the area between these intersections is minimized. The center of the smallest area, found by

averaging the intersection locations, is the component-level location estimation.

Component Selection andLocationAveragingFinally, we choose a subset of component-level

location estimations and use their average as the final footstep location estimation. By averaging
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several estimated locations, we reduce the effect of noise and outliers. The components with best

localization performance are selected (i.e., components with lowest values of minimum localization

cost function value as defined in Eq. 4.8. The lower minimum localization cost function means that

the localization has been more successful (i.e., higher localization performance). In ideal scenarios

and when there is no noise in the TDoAs, the minimum of this cost function is equal to zero (high

localization performance). However, having noise in the TDoAs results in a larger minimum of

cost function, as the hyperbolas might not intersect at one point. Therefore, we choose a subset

of component-level estimated locations which result in lowest minimum localization cost function.

The number of the estimated locations to be included in the subset poses a trade-off. On one hand,

utilizing more scale components reduces the effect of noise and improves localization. On the

other hand, including scale components with large noise decreases the localization accuracy. In

this paper, we utilize eight scale components based on empirical evaluation, which is discussed

further in Section 4.5.5.

4.4 Footstep Localization Evaluation

To understand the system performance, we conducted a set of experiments with human partic-

ipants. We first introduce the sensor configuration (Section 4.5). Next, we present and analyze

the footstep localization accuracy and robustness using our approach (in Sections 4.5.1- 4.5.4).

Then, we explore the effect of decomposition-based dispersion mitigation on localization (in Sec-

tion 4.5.5). Finally, we validate our locally adaptive localization approach using experiments in

categorically different structures (in Section 4.5.6- 4.5.8).

4.5 Experimental Setup

To evaluate our localization approach, we utilize a sensing system which measures the footstep-

induced vibration using nine floor-mounted geophones [111]. As discussed in Section 4.3.2,

four sensors are necessary for localization in a real applications. However, to explore the effects
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of different number of sensors on localization performance, we deliberately installed a dense

configuration. The collected signals are amplified by the orders of 200-2000X using an op-amp

to improve the resolution of signals while reducing the amount of signal clipping. Higher signal

resolution in turn improves TDoA and localization accuracy. After amplification and depending on

the structure type and footstep strike energy, the effective sensing range of our system for footstep

detection is up to 20 meters in diameter. Amplified signals are then digitized and transferred to a

server using a 24 bit A/D converter. Figure 2.1 shows one of the sensing units. Sampling frequency

is chosen as 25 kHz to ensure enough time resolution for accurate TDoA estimation.

The experiments include having three subjects walk in three buildings of different structural

types to show that our approach is robust to different structures. All the subjects wear variants of

flat-bottom footwear. The chosen structures represent common types of structures for residential

and commercial buildings and include a non-carpeted concrete hallway on the ground level of

the campus building at Carnegie Mellon University (with the first observed natural frequency of

23.83 Hz), a carpeted metal deck floor on the second floor of a senior care facility (with the first

observed natural frequency of 14.84 Hz), and a wooden floor in the second floor of a residential

building (with the first observed natural frequency of 16.02 Hz). The tested areas did not include

obstructions such as structural walls underneath or beams. Twenty walking traces, each consisting

of six footsteps, are collected from each structure. The averages and standard deviations of subjects

walking speed are 1.09 and 0.115 m/s for subject 1, 0.66 and 0.03 m/s for subject 2, and finally

0.84 and 0.06 m/s for subject 3. Figure 4.5 presents the sensor configuration and footstep locations.

Figure 4.6 shows the 3 experiment locations with our system set up. The dimensions of sensor

configuration represent hallways in common residential and commercial buildings. Furthermore,

to obtain the ground truth, the locations of the footsteps were taped on the floor and the participants

were asked to walk on these locations.

4.5.1 Overall Localization Accuracy Evaluation

To evaluate the accuracy of our approach, we compare the overall localization errors in all

three structures using our approach and a baseline approach. The baseline approach is a method
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Figure 4.5: Experimental Setup. This figure shows the sensor configuration and the location of
footstep excitations. The database includes 20 traces of six footsteps.

Figure 4.6: Experiment Locations. Part (a) shows a concrete non-carpeted hallway on the ground
level in the campus building of Carnegie Mellon University. Part (b) is a hallway on the second
floor of a senior care facility with a concrete metal deck floor. Finally, Part(c) is a room with a
wooden floor on the second floor of a residential building.

commonly used for localization which utilizes the raw signal for TDoA estimation and then per-

forms multilateration through Nonlinear Least Square (NLS) solution. The metric used for this

purpose is the Euclidean distance of the actual location of the footstep from the estimated location.

Table 4.1 and Figure 4.7 show the overall results of this comparison for all three structures’ data

combined. Based on these results, our approach results in 0.41 meters average accuracy which is

equivalent to approximately 5X improvement over the conventional approach which has 2.04 me-

ters of accuracy. Similarly, our approach results in 0.23 meters standard deviation which is 6.70X

precision improvement over the conventional approach. Similarly, our approach results in 3.08X
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Figure 4.7: Localization Accuracy of Our Approach. This figure compares the accuracy of our
localization approach with a baseline approach. Median of the results using our approach is 0.38
meters which shows 3.08X improvement over the baseline approach.

and 11.38X improvement in the median and 25-75 percentile of the localization error, respectively.

This level of occupant localization accuracy and robustness makes our approach more suitable for

smart building applications.

4.5.2 Robustness to Sensor-Footstep Distance

Sensor-footstep distance is an important factor in localization performance. To evaluate this

factor, we use four sensors and evaluate the errors for footsteps of different locations. The metric

used to define the sensor-footstep distance is the root mean square (RMS) of the the Euclidean dis-

tances of the footstep to each sensor. Furthermore, we consider two different sensor configurations

to evaluate whether it is important for the footstep to be inside the polygon formed by the sensors.

The first configuration consists of S4, S5, S7, and S8 and considers the three footsteps outside the

polygon formed by the 4 sensors, as shown in Figure 4.5. Figure 4.8a depicts the changes in local-

ization error for this configuration with respect to the defined metric. The correlation coefficient

of 0.82 shows that there is a strong linear relationship between the distances and the localization

error. The positive slope of 1.44 shows that higher distances result in lower localization accuracy.

Table 4.1: Localization Results (For All Three Structures)

Mean St. Dev. Median Quartile
Conv. Approach 2.04 1.54 1.17 2.96
Our Approach 0.41 0.23 0.38 0.26
Improvement 4.98X 6.70X 3.08X 11.38X
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The second configuration consists of S1, S2, S7, and S8. As can be seen in Figure 4.5, for this

configuration all the footsteps are inside the sensor polygon. Figure 4.8b presents the changes in the

localization error with varying sensor to footstep distances in this sensor configuration. In this case,

compared to the results outside the polygon, both the slope (i.e., 0.16) and the correlation coefficient

(i.e., 0.05) are smaller. Inside the polygon, the localization results are not as significantly affected

by the distances as outside the polygon. For example, in the cases outside the polygon, increasing

the distance from 2meters to 2.6 meters causes the error to increase from 0.6 to 1.5 meters; whereas,

for a similar range of distances (2.3 meters to 2.6 meters) and for the cases inside the polygon, the

error increases from 0.53 meters to 0.64 meters. Finally, Figures 4.8b and 4.8c show that as the

sensors are further apart (Figure 4.8b), the average localization errors are larger (0.53-0.83 meters)

than when we apply the sensor selection algorithm (Figure 10c, 0.2-0.49 meters). The reason is

that our sensor selection algorithm chooses the closest sensors from the footstep location.

Increasing the distance the wave propagates through the floor results in more attenuation of

the signal which in turn causes larger localization errors. Therefore, selecting the sensors closest

to the footstep for localizing the footsteps improves the performance of localization approach and

therefore is adopted in this paper (discussed in Section 4.3.2). In addition, choosing the sensor

configuration (and the distance between the sensors) depends on the desirable localization accuracy

(which is application-dependent). For example, in our setup and according to Figures 4.8b and 4.8c,

a 5 meters by 2 meters sensor configuration achieves 0.63 meters accuracy whereas a 2.5 meters

by 2 meters achieves 0.34 meters localization accuracy. This means that, for example, six sensors

are required to achieve approximately 0.63 meters accuracy in a 10 meters by 2 meters hallway (or

six sensors to cover an 8 meters by 8 meters room). The required number of sensors increase if the

desired localization accuracy is 0.34 meters.

4.5.3 Robustness to the Sensor Configuration

The number of sensors and the distances between them affect localization accuracy and is

important for sensor selection, as described in Section 4.3.2. Generally, the trade-off is: 1) having

more sensors mitigates the effect of noisy sensors and increases localization accuracy; 2) high
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Figure 4.8: Effect of Distance between Footsteps and Sensors on Localization Accuracy. This
figure shows that footsteps out of the polygon (Part (a)) are generally more sensitive to distance than
the footsteps inside the polygon (Part (b) and (c)). Furthermore, as the sensor selection chooses the
closest sensors, Part (c) shows the smallest the localization errors.

footstep-sensor distance decreases the localization accuracy. To evaluate this effect, we fix the

location of the footstep and increase the number of sensors. We employ two approaches for sensor

selection: first, to mitigate the effect of distance, we randomly choose the subset of sensors; and

second, to choose the optimal set of sensors using our approach, we choose the additional sensors

based on the same principle (i.e., minimum distance to the footstep), as described in Section 4.3.2.

Figure 4.9a shows the localization errors using the randomized sensor selection. The localization

error decreases when the number of sensors increases up to six sensors, and then the error increases

afterwards. Specifically, using four sensors results in 0.99 meters average localization error;

whereas, using six sensors and eight sensors results in 0.84 and 1.22 meters average localization

error. When we have a lower number of sensors, having sensors far from the footstep affects
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the localization results significantly. Due to randomized sensor selection, this is likely to happen

and therefore utilizing four sensors results in the higher localization error than using six. On

the other hand, if we have many sensors (e.g., eight) some of the sensors will be far from the

footstep (regardless of the selection) and this results in large errors. Therefore, using the randomized

sensor selection, six sensors result in minimum localization error.

Figure 4.9b shows the localization errors using our sensor selection approach. In this case,

by increasing the number of sensors, average localization error generally increases. Specifically,

average localization error increases from 0.30meters using 4 sensors to 1.02meters using 8 sensors.

The reason lies in our sensor selection algorithm which finds the closest sensors to the footstep

location. In the four-sensor case, we choose the closest sensors to the footstep, which results in low

localization error. Additional sensors will be further from the footstep and generally increase the

localization error. Another observation in this figure is that the standard deviation of localization is

decreased when we are using eight sensors instead of seven sensors. A similar trend is observed for

cases with five and six sensors. This is because, in our experiments, the distance of the ith and the

(i + 1)th furthest sensors from the footstep where i = 5, 7 are similar to each other, while for for i =

4, 6 the distances are significantly different (e.g., the 7th and the 8th furthest sensors are around the

equal distance from the footstep while 6th and the 7th furthest sensors have different distances from

the footstep). Therefore, adding the 7th sensor further away from the other 6 sensors increased the

estimation uncertainty compared to using 6 closest sensors, while adding the 8th sensor decreased

the estimation uncertainty since it adds more sensors without increasing the sensor distance from

the 7th sensor.

4.5.4 Robustness to Signal-to-Noise-Ratio (SNR)

To evaluate how our approach performs for different levels of noise, we investigate the rela-

tionship between localization performance and SNR relation. For each footstep event, SNR values

are found by finding the ratio of the summed squared magnitude of the footstep-induced vibration

signal to that of the noise (of the same length) and is described in decibel (db). The noise consists of

ambient vibration measurements which does not include impulsive excitation and footstep events.
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Figure 4.9: Effect of Number of Sensors on Localization Accuracy. Part (a) is the localization
results for randomized sensor selection and Part (b) shows the localization results using our sensor
selection approach. The difference in the optimal number of sensors is because our approach
chooses the closest sensors and therefore, the additional sensors will be further from the footstep
and increase the localization error.

To evaluate SNR and to separate the effect of SNR from the effect of distance, we use four sensors

and localize footsteps at the same location. The overall SNR value for the system is computed as

the average SNR of all the sensors. To consider the effect of different ranges of SNR, we have

utilized two sensor configurations with two levels of sensing density.

The dense configuration consists of S4, S5, S7, and S8 and the sparse configuration consists of

S1, S2, S7, and S8 as shown in Figure 4.5. For the dense case, the Figure 4.10a depicts the sensitivity

of localization error with respect to the average SNR values. For this range of SNR values, the

low correlation coefficient of 0.05 shows that localization error does not change significantly for

different SNR values. The reason is that the energy (and resolution) of the footstep signals that are

received is enough for accurate localization.

The sparser configuration consists of S1, S2, S7, and S8 (as shown in Figure 4.5). The analysis

for this case is presented in Figure 4.10b. As discussed in Section 4.5.2, the sparse configuration

generally shows larger localization errors due to the larger footstep-sensor distance. Furthermore,

the effect of SNR values on the localization error is more significant (with correlation coefficient of

-0.19). The reason lies in the fact that, due to higher distance, the footsteps can have lower energy

and SNR values (lower than 12 db) for which the localization errors are large. However, low values

of correlation coefficients for both cases show that our approach is robust to the noise level with

SNR values above 12 db.
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Figure 4.10: Effect of SNR on Localization Accuracy. Parts (a) and (b) show the results for
the denser and sparser sensor configurations, respectively. Because in the dense configuration the
footsteps are generally received with high energy, the effects of SNR is negligible. However, in the
sparse, configuration, lower SNRs are possible and the decreasing trend of localization error with
SNR is more significant.

Table 4.2: Localization Improvement due to Different Signal Decomposition Methods (using NLS
localization approach)

Original DecEn DecSNR DecCost (ours)
Error Error Improv. Error Improv. Error Improv.

Mean 2.03 1.96 1.04X 1.84 1.10X 0.99 2.05X
St. Dev. 1.57 1.78 0.88X 1.81 0.87X 1.33 1.18X
Median 1.14 0.81 1.41X 0.71 1.61X 0.46 2.48X
Quartile 3.04 3.73 0.82X 3.16 0.96X 0.57 5.33X

4.5.5 Dispersion Mitigation Evaluation

By focusing on the same set of frequency components in all the sensors, the wavelet-based signal

decomposition approach mitigates the dispersion-related distortions and improves the localization

accuracy. Figure 4.11, Table 4.2, and Table 4.3 compare the localization accuracy for the decom-

posed and raw signals. We estimate the location error using the Euclidean distance between the

actual location and the estimated location of footsteps. In this figure, ‘Raw’ shows the results for the

original signal; ‘DecEn’ shows the results for the extracted signals using the highest energy scales;

‘DecSNR’ shows the results for the extracted signals using the highest SNR scales; and finally,

‘DecCost’ shows the results for the extracted signals using the scale which result in the minimum
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Table 4.3: Localization Improvement due to Different Signal Decomposition Methods (using our
adaptive multilateration approach)

Original DecEn DecSNR DecCost (Ours)
Error Error Improv. Error Improv. Error Improv.

Mean 0.82 0.6 1.37X 0.53 1.55X 0.34 2.41X
St. Dev. 0.4 0.4 1.00X 0.48 0.83X 0.18 2.22X
Median 0.79 0.55 1.44X 0.4 1.98X 0.32 2.47X
Quartile 0.59 0.27 2.19X 0.36 1.64X 0.21 2.81X

localization cost. Specifically, this figure shows that, regardless of the multilateration solution ap-

proach (our adaptive approach or conventional nonlinear least square (NLS)) or the decomposition

approach (highest energy scale (DecEn), highest SNR scale (DecSNR), or minimum localization

cost scale (DecCost)), decomposing the signal improves the localization accuracy. Specifically,

it decreases the localization error median between 1.41X and 2.48X (i.e., 41-148 percent1) and

between 1.44X and 2.44X (i.e., 44-144 percent) using NLS and our solution approach, respectively.
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Figure 4.11: Localization Accuracy Evaluation: This figure shows the localization accuracy
improvement achieved through signal decomposition. Part (a) displays the results using NLS and
Part (b) displays the results using our adaptive solution approach. As can be seen, regardless
of the localization and decomposition(i.e., component extraction) approach, signal decomposition
improves the accuracy of localization.

An important factor that needs to be decided is the number of scales which are used for occupant

localization. The trade-off here is that: 1) using the average of estimated locations for several

scale components reduces the effect of noisy estimations and outliers and improves localization

performance; however, 2)including scale components that contain large level of noise will result in

1As an example, the percentage value in this case is found by calculating (1.14 − 0.46)/0.46 which corresponds to
the percentage of increase in localization error for the baseline compared to our approach.
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large localization error (even after averaging). Figure 4.12 presents this trade-off and shows how

the localization accuracy changes with the number of scale components for three structures. It can

be seen that, for all three structures, the localization error is relatively similar for 5 to 10 scales.

Therefore, choosing any of these numbers does not change the localization accuracy significantly.

In this work, we empirically choose 8 scale components to estimate the footstep location through

finding the average of estimated locations.
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Figure 4.12: Sensitivity to the Number of Scales: This figure shows the changes in the localization
performance for different number of utilized scale components. The localization error is minimum
for cases with 6-8 components and is fairly similar for cases with 5-10 components used in all the
structures. Therefore, we use eight scale components for final estimation of footstep location.

4.5.6 Robustness to Floor Heterogeneity

To validate the robustness of our approach in heterogeneous floors, we compare the performance

of our approach with a baseline approach for footsteps in six locations (as shown in Figure 4.5). The

baseline approach utilizes the raw signals for TDoA estimation and NLSmultilateration solution, as

mentioned in Section 4.5.1. This comparison is presented in Figure 4.13 and Tables 4.4-4.5. These

results show that our approach outperforms the baseline approach in all the locations. The average

localization accuracy using our approach is 0.21-0.5 meters. Compared to the baseline approach,

these averages correspond to 3.9X-9.6X improvement. Similarly, our approach reduces the standard

deviation (corresponding to the localization precision) by 1.9X-14.3X in different locations. Low
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localization error and consistent improvement in all the locations show that our approach performs

well in real-world heterogeneous floors.

Table 4.4: Localization Accuracy for Locations 1, 2, and 3 (shown in Figure 4.5)

L1 L2 L3
Base Ours Imp. Base Ours Imp. Base Ours Imp.

Mean 0.82 0.21 3.9X 1.00 0.25 4.0X 1.41 0.29 4.9X
St. Dev. 0.21 0.11 1.9X 0.70 0.10 7.0X 0.63 0.11 5.7X
Median 0.88 0.20 4.4X 0.71 0.25 2.8X 1.14 0.29 3.9X
Quart. 0.31 0.16 1.9X 0.37 0.09 4.1X 0.37 0.10 3.7X

Table 4.5: Localization Accuracy for Locations 4, 5, and 6 (shown in Figure 4.5)

L4 L5 L6
Base Ours Imp. Base Ours Imp. Base Ours Imp.

Mean 2.55 0.44 5.8X 3.44 0.36 9.6X 2.94 0.50 5.9X
St. Dev. 1.70 0.2 8.5X 1.57 0.11 14.3X 1.68 0.25 6.7X
Median 3.84 0.44 8.7X 4.26 0.37 11.5X 1.82 0.46 4.0X
Quart. 3.2 0.27 11.9X 1.55 0.09 17.2X 3.42 0.22 15.5X
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Figure 4.13: Localization Errors for Different Locations.

4.5.7 Robustness in Different Structures

To evaluate the robustness of our approach in different structures, we localized occupants in

three structures, as described in section 4.5. Figure 4.14 and Table 4.6 compares the localization

accuracy using our approach with that of a baseline approach in each structure. The first structure
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is a non-carpeted wooden floor on the second level of a residential building in Pittsburgh, PA. For

this case, our approach resulted in 5.97X (i.e., 497 percent) improvement in the average localization

accuracy, as well as 7.24X (i.e., 624 percent) improvement in localization precision. The second

structure we evaluated is a carpeted concrete metal deck floor on the second level of a senior

care facility in Pittsburgh, PA. For this structure, our approach improves the average localization

accuracy and precision by an order of 4.66X (i.e., 366 percent) and 7.24X (i.e., 624 percent).

The last structure we evaluated is a non-carpeted concrete floor on the ground level of a university

campus building in Pittsburgh, PA. In this structure, our approach results in 4.22X (i.e., 322 percent)

and 6.08X (i.e., 508 percent) improvement in localization accuracy and precision.

In summary, We improve the localization accuracy between 4.22 and 5.97 times the baseline

approach in different structures and also improve the localization precision between 6.08 and 8.72

times. The consistent improvement in a range of structures further shows that our approach is

robust to structural differences.

Table 4.6: Localization Results for the Three Structures

Structure 1 Structure 2 Structure 3
Base Ours Imp. Base Ours Imp. Base Ours Imp.

Mean 2.03 0.34 5.97X 2.33 0.5 4.66X 1.90 0.45 4.22X
St. Dev. 1.57 0.18 8.72X 1.52 0.21 7.24X 1.52 0.25 6.08X
Median 1.15 0.32 3.59X 1.72 0.46 3.74X 1.15 0.43 2.67X
Quart. 3.05 0.21 14.52X 2.74 0.27 10.15X 2.92 0.29 10.07X

4.5.8 Calibration Evaluation

In this section, we compare our locally adaptive approach with a calibration-based approach

which assumes a fixed wave propagation velocity in the floor and obtains its value through a calibra-

tion before the run-time occupant localization (fixed-velocity approach) [23]. Figure 4.15 shows

the average localization accuracy of the fixed-velocity approach for different wave propagation

velocity calibrations and compares it to our adaptive approach. Our approach does not require

the wave propagation velocity as an input and hence its localization errors does not change for

varying velocity inputs (and hence it is represented by the flat line). However, the performance
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Figure 4.14: Evaluating Our Localization Approach in Different Structures. Part (a), Part (b), and
Part (c) evaluates our approach in a non-carpeted wooden floor, a carpeted metal deck floor, and a
non-carpeted concrete floor on ground level, respectively. Consistent improvement of localization
performance in all the structures suggests that our locally adaptive localization approach is robust
in different structures.

of the fixed-velocity approach depends on the assumed velocity input. This figure shows that the

fixed-velocity approach results in theminimum localization error of 0.39meters when the calibrated

wave propagation velocity is equal to 152.4 m/s. On the other hand, our approach (with adaptive

velocity) results in 0.34 meters of localization error and, as it does not depend on the velocity, it is

shown with a constant line. Therefore, our approach outperforms the fixed case regardless of the

assumed wave propagation velocity. The reason is that the assumption of a fixed velocity for all

the footstep locations does not hold in real-world floors which contain spatial structural variations.

Our approach does not make such an assumption and thus can better deal with these structural

variations.
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Figure 4.15: Comparing the Adaptive and the Fixed-Velocity Localization Approaches. This figure
shows that, regardless of the assumed propagation velocity, our adaptive localization approach
outperforms the fixed-velocity approach.
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Chapter 5

Modeling the Obstruction Effects on the

Vibration Responses

In this section, we characterize the effects of obstructions on footstep-induced floor vibrations to

enable obstruction-invariant indoor occupant localization. As mentioned in Chapter 4, prior works

have explored non-intrusive human foot-step location estimation using structural vibrations [24].

These approaches assume that the wave propagation velocities between the footstep and the sensors

are similar (i.e., isotropic behaviour) and thus, is suitable for open spaces. However, in real life

structures, there are various types of obstructions (e.g., walls, furniture, etc.) which affect the

floor structural properties and hence the wave propagation velocity [115]. In turn, these changes

in propagation velocity can significantly reduce the occupant localization accuracy. Therefore, to

maintain the localization accuracy, the prior works require multiple sensors with unobstructed wave

propagation path to footsteps in every room which increases the instrumentation and maintenance

costs.

We introduce an obstruction-invariant footstep-vibration-based occupant localization approach

which considers different wave propagation velocity between the footstep and various sensors

depending on the existence and the mass of the obstruction. The main challenges are that 1) the

relationship between the wave propagation velocity and the obstruction mass is unknown and

structure-dependent and 2) for each footstep, the existence and the mass of obstruction on the
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vibration wave path is also unknown. To overcome these challenges, we first characterize the

frequency-dependent attenuation of the footstep-induced vibrations to find the existence and mass

of the obstruction on the path between the footstep and each sensor using the signal energy. Then,

we employ the lambwave propagation characteristics to model the velocity-mass relationship which

is suitable for various structures. This relationship enables finding the obstructed velocities which

we then use to locate the occupants using a non-isotropic multilateration approach. To validate

the system performance, we use field experiments in multiple structure with human participants.

In the rest of this chapter, we first discuss the related works and how our work is distinguished

from them (in Section 5.1). Then, we discuss the physical intuition behind lamb wave propagation

characteristics and how it is affected by the addition of obstruction mass (in Section 5.2). Next,

we discuss our obstruction-invariant occupant localization approach (in Section 5.3). Finally,

we describe our evaluation procedure, including the experiments we conducted and the analysis

results (in Section 5.4).

5.1 Literature Review

In this section, we explore the related work and the remaining research gap for different aspects

of vibration-based occupant localization in obstructed indoor settings. We first discuss the existing

approaches for analyzing the addition of mass on the floor. Then, we describe the general source

localization and the vibration-based occupant localization approaches.

5.1.1 MassAddition forWavePropagation and Structural VibrationControl

Existence of mass on the floor affects the structural dynamic properties as well as the vibration

wave propagation characteristics. Based on this effect, adding a series ofmasses (andmass dampers)

in designated locations on the floor have been used to control the structural vibrations and noise of

the floors [116–119]. The main goal of this process is to modify the modal characteristics of the

floor to attenuate the vibration noise and improve the living condition for the residents. Further,

the effect of mass on wave propagation velocity has been studies for guiding and focusing flexural
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lamb waves via adding elastic metamaterial masses [120, 121]. However, these approaches are

not suitable in our problem. First, they are focused on the forward problem of how the addition

of mass affects the structural vibrations, whereas our problem is an inverse problem (i.e., finding

mass based on the structural vibration). Second, they develop a physical model which is difficult

in real-life floors for which the structural parameters and configuration are often unknown and

uncertain. To overcome these limitations, we introduce a physics-guided, data-driven approach to

1) estimate the obstruction mass using the structural vibration and 2) characterize the relationship

between the obstruction mass and wave propagation velocity.

5.1.2 Floor-Vibration-Based Occupant Localization

The objective of the floor-vibration-based occupant localization is to estimate the unknown

footstep location using the vibration signals received in multiple sensors of known location. The

main current approaches for occupant localization include classification-based approaches, TDoA-

based approaches, and physical-model-based approaches. The classification approach aims tomatch

the signals received in various locations to a set of signals from known locations [122]. TDoA-

based approaches leverage the fact that the vibration waves caused by the footsteps arrive at different

sensors at different times. A common approach to leverage these TDoAs is multilateration [23,

24, 123, 124]. Multilateration is based on the fact that the possible locations of the footstep

given a specific Time Difference of Arrival (TDoA) between two sensors and wave propagation

velocity form a hyperbola. Having more sensors results in additional TDoAs and hyperbolas whose

intersection is the footstep location. Alternatively, the sign of the TDoAs can be used to locate the

footstep by recurrent division of the search space [125].

However, obstructions such as walls and furniture affect the wave propagation characteristics.

This effect results in either extensive calibration requirements, higher sensing requirements, or

reduced localization performance for the classification-based and TDoA-based approaches. The

physical-model-based approaches compare the vibration measurements with the physical model

predictions to estimate the occupant location. Hence, they potentially can handle the obstruction

effect by including it in the physical model [26, 126]. However, these approaches require knowing
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the structural characteristics for modeling which might not be known in many buildings. In

this paper, based on lamb wave properties, we characterize the relationship between the wave

propagation velocity and the obstruction mass to enable TDoA-based occupant localization. This

approach does not require extensive calibration or knowing the structural characteristics.

5.2 ThePhysicsBehindObstructionEffect onFootstep-Induced

Vibration Wave Propagation

We utilize the footstep-induced floor vibrations to localize the occupants in obstructive indoor

settings. In this section, we provide a brief background of the physics of the footstep-induced floor

vibration wave propagation and how it is affected by obstructions such as walls and furniture. The

footsteps cause elastic vibration waves in the floor which travels outward from the footstep location.

These elastic vibration waves can be formulated as Lamb waves because 1) the floors are plates

with free surfaces on the top and bottom and 2) due to the low frequency nature of the footstep

vibrations, the ratio of wavelength to floor thickness is large in our application [24, 103].

The Effect of Obstruction Mass on the LambWave Attenuation Rate: The attenuation rate

of the Lamb waves depends on the floor mass and the frequency (i.e., higher frequency components

show higher attenuation rate) [127]. The addition of the obstruction results in larger mass which

in turn results in additional frequency-dependent attenuation. In other words, obstructions cause

different levels of energy reduction across various frequency components of the vibration wave.

For a specific component, this attenuation can potentially be used to estimate the obstruction mass

by modeling the relationship between the obstruction mass and the component energies. However,

these component energies also depend on the footstep force and thus, it is difficult to find out if the

energy reduction is caused by the addition of the mass or a lighter footstep. To negate the effect of

the footstep force, we instead model the relationship between the obstruction mass and the ratios of

the different frequency component amplitudes. The main intuitions are: 1) the obstruction-induced

wave attenuation rate is frequency-dependent and 2) for the small displacements caused by the

footsteps, the structure behaves linearly and hence increasing the footstep force results in a similar
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increase in all the frequency component amplitudes (e.g., if the footstep force is twice as large,

the amplitude of all the frequency components is approximately twice as large). Therefore, by

considering the frequency amplitude ratios, we keep the effect of the obstruction while negating

the effect of the footstep force. Figure 5.1 shows the changes in a sample ratio for different mass

levels (ratio of frequency amplitude at 10 Hz over the amplitude at 60 Hz). This figure shows

that addition of the mass results in higher ratio which means that the attenuation at 60 Hz is more

significant than the attenuation at 10 Hz.
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Figure 5.1: The Effect of the Obstruction Mass on the Frequency Amplitude Ratios (ratio of
frequency amplitude at 10 Hz over the amplitude at 60 Hz).

The Effect of Obstruction Mass on Lamb Wave Propagation Velocity: In general, Lamb

waves show two infinite sets of propagation modes: symmetric (S) and anti-symmetric (A). How-

ever, for low frequency footstep-induced vibrations, only the S0 and A0 modes can exist and among

them, the A0 modes are most pronounced in magnitude (while S0 modes are barely visible and

hence negligible) [128]. For asymmetrical modes of low frequency (i.e., long flexural waves), the

wave propagation velocity is estimated using [129]

V2 =
4
3
ξ2 f 2 λ + µ

λ + 2µ
µ

ρ
(5.1)

where µ and λ are the Lamé constants which describe the material properties, 2 f is the thickness

of the plate, ξ is the wavenumber, and ρ is the material density. This equation shows that for

given floor thickness and material properties, the wave propagation velocity depends on 1) the floor
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mass which can be affected by the obstruction mass and 2) the frequency (i.e., is dispersive). We

use these two principles in designing our obstruction-invariant occupant localization approach, as

will be discussed in Section 5.3.1. Figure 5.2 shows that adding more mass results in lower wave

propagation velocity. This is shown by reduced ratio of the obstructed velocity to the unobstructed

velocity (which does not change across mass levels).
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Figure 5.2: The Effect of the Obstruction Mass on the Wave Propagation Velocity.

Figure 5.3 shows an intuitive illustration of the effects of the obstruction on thewave propagation

attenuation and velocity. This figure shows the footstep caused by an occupant walking and two

sensors of the same distance to the footstep. To reach one of these sensors, the footstep-induced

vibration wave propagates through an obstruction. The frequency domain representations of the

vibration signals show the frequency-dependent nature of obstruction-induced attenuation. For

example, the frequency component of 140 Hz has higher attenuation than the component of 60

Hz. In this figure, we have normalized both signals to have the same maximum to reduce the

differences caused by footstep force. On the other hand, the time domain representations of the

signals show that the vibration waves reach the obstructed sensor later than the unobstructed sensor.

Considering the same footstep-sensor distance, we can conclude that the wave propagation velocity

is lower for the obstructed case. This observation is in line with the lamb wave propagation

characteristics mentioned in Equation 5.1. These observations and principles form the cornerstone

of our obstruction-invariant occupant localization approach which is discussed in Section 5.3.
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Figure 5.3: The Obstruction Effect Intuition.

5.3 Obstruction-Invariant Occupant Localization

Our approach improves robustness to obstructions by accounting for velocity differences when

obstructions of different mass are present. To this end, the approach consists of three main modules:

1) footstep detection, 2) obstruction characterization, and 3) step-level localization. The different

stages of this approach are presented in Figure 5.4. We have discussed Footstep Detection in detail

in Sections 2 and 3. The other modules will be discussed in the following sections.

5.3.1 Obstruction Characterization Module

Our obstruction characterization module first detects and estimates the obstruction mass and

then finds the wave propagation velocities when the wave propagates through the obstruction.

Based on the lamb wave propagation characteristics, this propagation velocity is frequency-

dependent (aka, the dispersion effect [23, 24]) and depends on the obstruction mass, as discussed in

Section 5.2. Therefore, we first decompose the signal into scale components using a time frequency

representation and select a subset of scale components with high energy in all the sensors. Then, for

each chosen scale component, we estimate the wave propagation velocity knowing the obstruction
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Figure 5.4: Obstruction-Invariant Occupant Localization Approach.

mass.

Obstruction Mass Estimation

To detect and estimate the obstruction mass, we characterize the wave attenuation rates caused

by the obstruction. Based on the discussion in Section 5.2, we characterize the relationship between

the obstruction mass and the ratios of the amplitude of various frequency components (which are

estimated using fft [130]). Further, for the small displacements caused by the footsteps, the structure

behaves linearly and thus, we assume a linear relationship between the frequency amplitude ratios
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and the mass levels. However, considering the ratios between various frequency components results

in a large number of ratio features which in turn increase the chance ofmodel over-fitting. Therefore,

we first choose a subset of the ratios for training a mass-ratio model. To this end, we first divide

the footstep vibration data into training, validation, and test sets. Then, using the training data, we

choose a subset of the ratios which have 1) low standard deviation across the samples in the training

set (to improve the robustness) and 2) large correlation coefficient with the mass levels (to ensure

the linearity and improve accuracy). Then, among the chosen ratios, we employ a greedy wrapper

approach to select the ratio features which result in lower validation error [131]. These remaining

feature are then used for training a linear model which is used for detecting and predicting the

obstruction mass using the footstep-induced vibration events in the test set. This model is trained

for the footsteps that happen in a specific location (e.g., the entrance of the apartment in real-life

applications).

Wavelet Decomposition

To characterize the dispersive (i.e., frequency-dependent) wave propagation velocities, we

have decomposed the signal using the wavelet transform which is suitable for analyzing and

decomposing non-stationary signals (e.g., impulsive signals such as footsteps) [24, 73]. The

wavelet decomposition can be described as [107],

T (a, b) = w(a)
∫ +∞

−∞

x(s)Ψ∗b,a(s)ds (5.2)

in which w(a) is a weighting function and Ψb,a(s) is the dilated and time-shifted version of the basis

function which is called the mother wavelet Ψ(s). In this paper, we have chosen the Mexican hat

wavelet as the mother wavelet because it provides a good representation of the footstep-induced

vibration signal characteristics [108]. To select the range of the scales to be analyzed, we have

used two notions: 1) geophones are second-degree high pass filters for frequencies lower than 10

Hz [110] and 2) the bandwidth of geophone is 240 Hz [111]. Therefore, the range of the scales we

have used for this analysis is between 25 and 300 (i.e., approximately 20 and 250 Hz for sampling
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rate of 25.6 kHz and Mexican hat wavelet).

Scale Component Selection

Using all the scale components for localization is not suitable because 1) it is computation-

ally expensive and 2) it decreases the localization performance because the obstruction-induced

attenuation potentially causes low-energy scale components with low Signal-to-Noise-Ratio (SNR)

which result in large localization errors. Therefore, to overcome the additional obstruction-induced

attenuation, we choose a subset of the scale components with high energies in all the sensors for

localization. Specifically, we first average the scale component energies across the sensors and then

choose the n components with the highest average energy. Choosing the n is an important part of

this process. On the one hand, choosing higher n results in reduced effect of noise and outliers. On

the other hand, choosing scales of low energy results in large errors in location estimation. This

trade-off will be discussed in more detail in Section 5.4.4. In this paper, we have empirically chosen

n = 2.

Obstructed Wave Propagation Velocity Estimation

We estimate the propagation velocity of the vibration wave travelling through an obstruction

based on Lamb wave propagation characteristics. Specifically, based on Equation 5.1, we estimate

the obstructed velocity as the ratio of the unobstructed velocity for a given scale (or frequency)

component through
V2

obs

V2
unobs

=

4
3ξ

2 f λ+µ
λ+2µ

µ
ρa+mobs

4
3ξ

2 f λ+µ
λ+2µ

µ
ρa

(5.3)

where µ and λ are the Lamé constants which describe the material properties, 2 f is the thickness

of the plate, ξ is the wavenumber, ρa is the mass of the floor per unit of area, mobs is the mass of the

obstruction, and Vobs and Vunobs are the obstructed and unobstructed velocities. We can simplify

this equation because 1) we use specific decomposed scale components and hence the wavenumber

is constant, 2) the Lamé constants depend on the Poisson ratio and the modulus of elasticity and

hence do not change with obstruction, and 3) we assume that the obstruction does not affect the
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effective thickness of the floor because it simply sits on the floor or has minimal connection to

the floor and hence, there is no significant structural integrity (which is true for most common

obstructions such as furniture and non-load-bearing partition walls). Therefore, we have

Vobs

Vunobs
=

√
ρa

ρa + mobs
. (5.4)

Using Equation 5.4, we estimate the obstructed velocity based on the unobstructedwave propagation

velocity, the mass of obstruction, and the mass per unit of area of the floor. The unobstructed

velocity can be estimated either using additional unobstructed sensors or during the time that the

obstruction is not present (through either calibration or our prior calibration-free approach [24]).

Further, the mass of the obstruction and the floor can be estimated using the specification sheets

and the available structural drawings. Designing an approach to automatically estimate these mass

factors is part of our future work plan. Further, in this paper, we have focused on characterizing the

effect of mass because we have observed that it is one of the most important factors affecting the

wave propagation velocity in our preliminary experiments. We plan to characterize other factors

such as footstep-sensor distance and the obstruction area in future work.

5.3.2 Obstruction-Invariant Footstep Location Estimation Module

This module performs step-level and obstruction-invariant occupant localization using our non-

isotropic multilateration approach which considers different wave propagation velocities between

the footsteps and sensors based on the obstruction mass on the wave path. To this end, we first

estimate the Time of Arrivals (ToA) for the vibration signals using an energy-based approach.

Then, we utilize these ToAs and the propagation velocities (estimated in Section 5.3.1) for step-

level localization through a non-isotropic multilateration approach. We perform this location

estimation for the scale components selected in Section 5.3.1 and combine their estimations to find

the step-level occupant location.
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Energy-Based TDoA Estimation

To find the TDoA between the signals, we have estimated the time where a certain per-

centage of the energy of footstep-induced vibration happens for each sensor. Generally, current

approaches for estimating the TDoA are either threshold-based [24, 27] or similarity-based (e.g.,

cross-correlation) [84]. This energy-based approach is more robust than the current approaches

because it is less affected by 1) missing peaks compared to the peak-based approaches and 2)

signal distortions caused by reflections, dispersion, and multipath compared to the similarity-based

approaches [112]. In this paper, we have empirically chosen 15% of the energy of the footstep

signals as the time of arrival of the signals.

Non-Isotropic Multilateration and Component-based Location Averaging

Our non-isotropic multilateration formulation, which is able to consider various propagation

velocities in different directions, has two main steps: 1) the simulation step and 2) the filtering step.

The objective of the simulation step is to find the possible TDoA ranges caused by a footstep. To

this end, we first define a Possible Location Set (PLS) for the footstep (e.g., inside the boundary

of the room). Then, we estimate the sensor-footstep distances for various locations inside the PLS.

Finally, we estimate the TDoAs for various sensor pairs for a given wave propagation velocity

array. This wave propagation velocity array contains the velocities between the footstep location

and each one of the sensors and is achieved from Section 5.3.1. Therefore, the simulation step

results in a Possible TDoA Set (PTS) for locations in PLS. The objective of the filtering step is to

find the locations in the PLS which result in TDoAs similar to the measured TDoAs. Specifically,

we first find the actual TDoA values for various sensor pairs (as discussed in Section 5.3.2) and

then, filter the TDoAs in PTS which are similar to the actual TDoAs. Finally, we find the locations

in PLS which correspond to the remaining TDoAs in PTS. The detailed steps of our non-isotropic

multilateration is presented in Algorithm 2. Finally, to improve the accuracy and robustness of our

location estimation approach, we average multiple location estimations from the scale components

selected in Section 5.3.1.
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Algorithm 2 The Non-Isotropic Multilateration Approach
1: Define the Possible Location Set (PLS) of the Footstep . Simulation Step ↓
2: for PLSi in PLS do
3: for Sj in sensor-locations do
4: di j =

Xi − Sj


2
5: ToA j = di j / v j
6: end for
7: T DoAi = ToA − ToA[1]
8: Possible TDoA Set (PTS)← T DoAi
9: end for
10:
11: Estimate the actual pairwise TDoAs (AT) . Filtering Step ↓
12: Define Required-Number-of-Estimations (RNE), init-thresh, update-thresh;
13: thresh← init-thresh
14: while number-of-estimations < RNE do
15: for PTSi in PTS do
16: if PTSi + thresh < AT < PTSi + thresh then
17: E LS← PLSi
18: end if
19: end for
20: number-of-estimations← number of elements in E LS
21: thresh += update-thresh
22: end while
23: Estimated Location← mean(ELS)
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5.4 Obstruction-Invariant Occupant Localization Evaluation

To understand the performance of our obstruction-invariant occupant localization approach, we

conducted a set of experiments with human participants in real-world structures. We first introduce

the experimental setup in Section 5.4.1. Then, we validate the performance of our obstruction-

invariant occupant localization approach. This evaluation consists of the general performance as

well as the performance of different modules of the approach (in Sections 5.4.2- 5.4.6). Finally, we

evaluate the sensitivity of our approach to the changes in the footstep-sensor distance, mass level,

scale components, and structure (in Sections 5.4.7- 5.4.10).

5.4.1 Experimental Setup

To evaluate our approach, we have utilized a sensing system which measures the floor vibra-

tion via a geophone. Geophone is a sensor which converts the vertical velocity of the floor to

Voltage [111]. Figure 2.1 shows a sample sensing node. The collected signals are amplified

approximately 200-2000X. After amplification and depending on the structure type and footstep

strike energy, the effective sensing range of our system for footstep detection is up to 20 meters in

diameter. Amplified signals are then digitized and transferred to a server using a 24-bit A/D con-

verter. To ensure enough time resolution for accurate TDoA estimation, we have chosen sampling

frequency of 25kHz.

Sensing Configuration: For the experiments, the subject walks in two different structures to

show that our approach is robust in across structures. The structures include a non-carpeted concrete

floor on the ground level of a campus building in Carnegie Mellon University and a non-carpeted

an elevated wood framed mock floor. The difference between the natural frequencies of these

structures (i.e., 23.83 and 29.5 Hz, respectively) make them suitable to show the robustness of our

approach over various structures. Figure 5.6 shows the two experimental locations. To mimic the

effect of the obstruction mass, we have used a plastic bin filled with sand. Based on the amount of

the sand, we have achieved different levels of additional mass between 0 and 60 kg. For each of the

13 mass levels considered, we have collected 5 traces of four steps from each structure. To focus on
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the effect of the obstruction, these four step locations are chosen inside the polygon created by the

sensors. The reason is that for steps outside this polygon, multilateration performance decreases

quickly and hence the results become too uncertain to effectively and accurately study the effect of

the obstruction [24]. To obtain the ground truth, we have taped the locations of the footsteps on the

floor and asked the subjects to walk on these locations.

Figure 5.5: The Sensing Configuration.

Unobstructed Velocity: Our obstruction characterization module aims to find the obstructed

velocity as a ratio of the unobstructed velocity. This ensures that our approach is able to localize

footsteps across various structures. To find the unobstructed velocity, in our prior work, we

have introduced a multilateration solution approach which estimates the location and propagation

velocity simultaneously [24]. However, the objective of this work is to study the obstruction effects

and therefore, to reduce the uncertainties in estimating the propagation velocities, we calibrate

for the velocity which results in the minimum localization error in a set of experiments with no

obstruction [23].

5.4.2 Overall Footstep Localization Evaluation

To evaluate the performance of our obstruction-invariant occupant localization approach, we

compare our localization errors with a baseline approach. The baseline approach 1) averages the
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Figure 5.6: Experimental Locations

estimations across all the scale components (“AllScale” approach), 2) does not account for the

effect of the obstruction (“NoVelCorrect” approach), 3) utilizes a Nonlinear Least Square (NLS)

ToA-based multilateration (“ToAMult” approach). Further, we compare our approach with the

unobstructed case (i.e., there is no obstruction). The localization error metric is the Euclidean

distance between the actual and estimated locations. As shown in Figure 5.7, our approach results

in 0.63 meters average error which is equivalent to 1.7X improvement over the baseline approach

which has 1.07 meters error. Further, the unobstructed approach has 0.63 meters average error

which is similar to our approach. These results show that our obstruction-invariant localization

approach 1) successfully negates the effect of the obstruction and results in similar performance to

the unobstructed approach and 2) outperforms the baseline approach.

5.4.3 Mass Estimation Evaluation

In this section, we evaluate the performance of our mass estimation module. To this end, we

first discuss the mass estimation performance and then study its sensitivity to the number of chosen

features.
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Figure 5.7: The Overall Performance of Our Obstruction-Invariant Occupant Localization Ap-
proach.

Mass Estimation Performance

As we discussed in Section 5.3.1, our approach predicts the mass through the ratios between

the amplitude of the different frequency components of the vibration signals. To evaluate this

approach, we compare the its results with a baseline approach which trains a linear regression

model using all the components of the frequency representation of the vibration signals (instead of

the ratios). As shown in Figure 5.8a, in the first structure, our approach results in average mass

estimation error of 12.7 kg, whereas the baseline approach results in average error of 29.4 kg.

This is equivalent to 2.3X improvement in the performance. Moreover, our approach results in

estimation standard deviation of 8 kg compared to 23kg using the baseline approach (i.e., 2.9X

improvement). In the second structure, as shown in Figure 5.8b, our approach results in average

mass estimation error of 3.6 kg which is 4X improvement over the baseline approach which result

in 14.8 kg error. With regards to the standard deviation, our approach result in 3.9 kg compared

to 14.6 kg using the baseline approach (i.e., 3.7X improvement in robustness). These results show

that our mass estimation is both more accurate and robust compared to the baseline approach. In

general, the results are better in the second structure. This is because the second structure is a

wooden floor and has lower mass. Therefore, the effect of the additional mass is more significant

and easier to quantify.
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(b) St2: Wooden Floor

Figure 5.8: The Mass Estimation Evaluation.

Mass Estimation Sensitivity to the Number of Chosen Scales

An important factor for mass estimation performance is the number of chosen ratio features.

As discussed in Section 5.3.1, we choose a subset of the ratio features for mass estimation to reduce

1) the chance of over-fitting and 2) the computational cost of the model training. To evaluate

the sensitivity of our mass estimation approach to this factor, we have estimated the test error for

the ratio feature subsets of various size, as shown in Figure 5.9. Based on this figure, the mass

estimation performance is robust and consistent when the size of the ratio feature subsets is less

than 25. In this paper, we have chosen subset size of 4 for mass estimation to minimize the mass

estimation error while reducing the computational cost.
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Figure 5.9: Sensitivity of the Mass Estimation Approach to the Number of Chosen Ratio Features.

85



5.4.4 Scale Component Selection Evaluation

As discussed in Section 5.3.1, the existence of obstruction results in additional attenuationwhich

reduces the Signal-to-Noise (SNR) ratio and hence the localization performance. To overcome this

effect, our scale selection approach chooses a subset of scale components with high energies. We

first evaluate how the scale selection affects the performance of our obstruction-invariant occupant

localization approach (in Section 5.4.4). Then, we discuss the sensitivity of our approach to the

number of chosen scale components in Section 5.4.4.

Scale Component Selection Performance

To validate the effect of our scale selection approach, we compare our results with the AllScale

approach which averages the location estimation across all the scales. In comparison, our approach

averages the location estimation over two of the scale components with the highest energy. The

rest of the localization procedure is similar for both of the considered approaches. As shown in

Figure 5.10, our scale selection approach results in 0.61 meters average localization error which

is 1.3X improvement over the AllScale approach which results in 0.8 meters error. These results

show that our scale selection approach chooses a suitable subset of scale components for occupant

localization.
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Figure 5.10: Scale Selection Evaluation
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Localization Performance Sensitivity to the Number of Chosen Scales

One of the factors that affects the performance of our obstruction-invariant localization approach

is the number of the scale components. The trade-off is that: 1) choosingmultiple scale components

reduces the effect of erroneous and noisy location estimations (by averaging several estimations);

however, 2) considering estimations from very low energy signals which mostly contain noise

results in lower localization performance. To evaluate this factor, we have evaluated the localization

performance across different number of scales. Figure 5.11 shows this evaluation and the trade-off

regarding the number of scale components. It can be seen that the localization performance is

similar for cases with 2-20 scales. Therefore, in this paper, we empirically average over the location

estimations of 2 scale components for footstep localization to ensure accurate localization while

reducing the computational cost of the localization.
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Figure 5.11: The Sensitivity of The Approach to the Number of Chosen Scales.

5.4.5 Obstructed Wave Propagation Velocity Estimation Evaluation

In this section, we study the effect of the Obstructed Wave Propagation Velocity Estimation

module. To this end, we compare our localization results with the NoVelCorrect approach which

does not consider the effect of the obstruction on the wave propagation velocity. Similar to the
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previous sections, the rest of the localization procedure is similar between our approach and the

NoVelCorrect approach. As shown in Figure 5.12, our approach results in 0.61 meters average

error which is equivalent to 1.2X improvement over the NoVelCorrect approach which results in

0.72 meters error. This improvement in performance shows that our wave propagation velocity

estimation approach is effective in reducing the obstruction-induced propagation velocity changes.
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Figure 5.12: Obstructed Wave Propagation Velocity Estimation Evaluation

5.4.6 Non-Isotropic Multilateration Evaluation

Our non-isotropicmultilateration approach enables occupant localization when there is different

wave propagation velocities between the footstep and various sensors. To evaluate this approach,

we compare our results with ToAMult which is a Nonlinear Least Square (NLS) based approach

based on the Time of Arrival (ToA) of the vibration signal in the sensors. For the ith sensor,

ToAMult defines the following cost function:

Ci = ‖x − pi‖2 − vi(ti − t f ) (5.5)

where x is the location of the footstep, pi is the location of the sensor, vi is the propagation velocities

between the footstep and the sensors, ti is the vibration wave ToAs for the sensors, and finally t f

is the time that the footstep happens. There will be four equations for four sensors and the overall
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objective function is,

min
x,t f

√∑
i

C2
i (5.6)

Knowing the wave propagation velocities, Equation 5.6 can be solved for 3 unknowns: the 2-d

footstep location (x) and the footstep occurrence time (t f ). Further, this formulations is a bounded

nonlinear least-squares problem which can be solved using a trust region reflective algorithm [132].

Figure 5.13 shows the results of this evaluation. Based on this figure, our approach results in

average localization error of 0.61 meters error which is 2X improvement compared to the ToA-

based approach (with average error of 1.23 meters meters). The reason behind this improvement is

that adding the t f as an unknown increases the dimension of the problem which in turn increases

the likelihood of the NLS approach getting stuck in a local optimum. In comparison, our approach

performs a grid search to find the globally optimum solutionwhile keeping the online computational

cost lowby separating the offline simulation and online filtering step. The performance improvement

shows that our non-isotropic multilateration approach is suitable for the real-life obstructed floors.
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Figure 5.13: Localization Performance of the Non-Isotropic Multilateration.

5.4.7 LocalizationPerformanceSensitivity toChanges in theFootstep-Sensor

Distances

Sensor-footstep distance is an important factor in the localization performance. To evaluate this

factor, we find the localization errors for footsteps across different locations. Generally, the furthest
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sensor has the most effect on the localization error because 1) higher travelling distance between

the sensor and the footstep means higher signal distortions and 2) the furthest signals generally

have lower SNR which in turn results in lower localization performance. Therefore, to evaluate

the effect of distance, the footstep-sensor distance for each footstep is found as the maximum of

the Euclidean distances between the footstep and various sensors. Figure 5.14 shows the results of

this evaluation for our approach. As expected, the correlation coefficient of 0.63 shows that larger

distances result in higher localization error. Specifically, our approach results in errors of 0.31-0.94

meters for the 2.4-3.4 maximum norm distance range.
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Figure 5.14: Localization Performance Sensitivity to the Footstep-Sensor Distance.

5.4.8 Localization Performance Sensitivity to Changes in the Obstruction

Mass

Changing the obstruction mass results in changes in the wave propagation velocity which in

turn, affects the localization performance. To evaluate this effect, we have conducted experiments

with 12 levels of obstruction mass (each 5 kg between 0 and 60 kg). The localization results for

these different added mass levels are presented in Figure 5.15. Based on this figure, our approach

outperforms the baseline approach for all the mass levels. Further, the improvements are generally

more significant for cases with higher added mass. For example, when there is 5 kg of added

mass, our approach outperforms the baseline by 0.25 meters. However, this number is increased to

0.38 meters when there is 60 kg of added mass. The reason is that the higher added mass cause
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more significant changes in the wave propagation velocity which, in turn, reduce the localization

accuracy of the baseline approach. However, our approach considers this obstruction-induced

velocity changes and therefore is less affected by the additional mass. This consistent improvement

across all the mass levels shows that our approach efficiently negates the effect of the obstructions.
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Figure 5.15: The Sensitivity of Our Obstruction-Invariant Occupant Localization Approach to the
Obstruction Mass.

5.4.9 Localization Performance Sensitivity to The Scale Components

In this section, we evaluate the improvement resulted from our obstruction-invariant occupant

localization approach across various scales. The baseline approach 1) does not account for the

obstruction masses and 2) utilizes the ToAMult approach discussed in Section 5.4.6. For this

analysis, we have focused on the scale range of 25 to 300 which corresponds to 20-250 Hz for

the Mexican hat wavelet. This range is decided by sensing specifications of the Geophone sensor,

as discussed in Section 5.3.1. As shown in Figure 5.16, our approach outperforms the baseline

approach across all the scales. This shows that our obstruction-invariant occupant localization

approach is more robust across all the scale components.

5.4.10 Obstruction-InvariantOccupantLocalizationEvaluationAcross Struc-

tures
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Figure 5.16: Localization Performance across Various Scales. This figure shows that our approach
outperforms the baseline approach in all the scales.

By leveraging the lamb wave propagation characteristics, our obstruction-invariant occupant

localization is robust across various structures. To evaluate this robustness, we have performed

experiments in two different structures. For each structure, we have compared the performance

of our approach with the baseline and the unobstructed approach. Figure 5.17a shows the results

for the first structure which is a non-carpeted concrete slab on the ground level of a campus

building in Carnegie Mellon University in Pittsburgh, PA. This figure shows that our approach

results in 0.61 meters average localization error which is equivalent to 1.6X improvement over

the baseline approach which results in 0.97 meters average error. Further, in this structure, our

approach has comparable results with the unobstructed approach which results in 0.62 meters

average error. Figure 5.17b show the results for the second structure which is a non-carpeted

elevated mock wooden floor. In this structure, our approach results in 0.65 meters which is

equivalent to 1.8X improvements compared to the baseline approach average localization error

which is 1.17 meters. Despite the slightly higher localization errors (which is possibly caused

by noisy nature of wooden floor vibrations [24]), our approach results in comparable localization

performance to the unobstructed approach with 0.65 meters average error. These results shows that

our obstruction-invariant occupant localization approach is robust to the changes in the structure

which in turn, shows that it is practical in real-life applications.
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(a) St1: Concrete Slab Floor
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(b) St2: Wooden Floor

Figure 5.17: Localization Performance in Different Structures
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Chapter 6

Conclusion

In this chapter, I present a brief summary of this dissertation, the key results, and contributions

of the projects that constitute this document. Further, I discuss the future work directions and list

my publications during PhD.

6.1 Concluding Remarks

The overall objective of this research is to monitor occupants in the indoor settings using their

footstep-induced floor vibration. Compared to current sensing approaches, our floor-vibration-

based approach enables non-intrusive and sparse sensing. However, the footstep-induced vibration

waves propagate through the structure which will result in various research challenges. In this dis-

sertation, I have focused on three main structure-related research challenges: 1) the footstep model

changes across various structures (in Chapter 3), 2) the dispersive vibration wave propagation (in

Chapter 4), and 3) the obstruction effects on the vibration responses (in Chapter 5).

In Chapter 3, I present a step-level occupant detection which enables detection across different

buildings using footstep-induced floor vibrations. To ensure successful transfer across various

structures, this approach first projects the original frequency-based features into a feature space in

which the structural effects are minimized. We have shown that reducing structural effects can be

achieved through minimizing the Maximum-Mean-Discrepancy (MMD) between the source and
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target data distributions. Then, a footstep model is trained in this projected feature space using

the labeled data from the source structure to predict the samples in the target structure where no

labeled data is available. By not requiring any labeled data in the target structure, our model transfer

approach significantly reduces the calibration requirements. We have evaluated our approach in

three structures and through comparing with Time-Domain-based and Frequency-Domain-based

approaches which do not transfer the data. The evaluation shows that: 1) our approach results in

up to 29X and 16X improvement compared to the baseline TD-based and FD-based approaches,

respectively; 2) when there is only one source structure, our approach outperforms the baseline

approaches by up to 3.3X, 4.5X, and 13.5X across the three target structures; 3) our approach

requires 240, 55, and 85 samples in the target structures to reach to the maximum accuracy;

4) using 50 or more samples from the source structure results in the F1-score greater than 0.9;

5) our approach results in consistent improvement in the performance across different ranges of

SNR and hence is more robust to the SNR.

In Chapter 4, I introduce a robust and fine-grained occupant localization approach based on

the footstep-induced floor vibrations for dispersive and heterogeneous floors. The main challenges

are signal distortions due to dispersion and wave propagation velocity variation in different floor

locations due to heterogeneity. We address dispersion-related signal distortions by decomposing

the signal using wavelet transform and extracting specific components with similar propagation

characteristics. We have chosen the components which result in highest localization performance.

Moreover, we address the velocity variation by introducing an adaptive multilateration solution

which does not require prior knowledge of the wave propagation velocity in the floor. Our evalua-

tions show that: 1) regardless of the multilateration and decomposition (i.e., component extraction)

approach, signal decomposition improves the accuracy of localization (e.g., 2.41X improvement

in localization using our decomposition method compared to using the raw signal); 2) our locally

adaptive localization approach for heterogeneous floors outperforms the baseline approach in dif-

ferent locations of the same structure with average errors of 0.21-0.5, which shows up to 9.6X

improvement; 3) our approach performs well across different structures (with errors as low as 0.34

meters location estimation error, which corresponds to 6X reduction compared to the baseline
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approach); 4) our approach does not assume a constant propagation velocity (i.e., adaptive) and

therefore outperforms the calibration-based approach which assumes a fixed velocity.

In Chapter 5, I present an obstruction-invariant occupant localization approach using footstep-

induced floor vibrations. Conventional vibration-based occupant localization approaches map

the Time Differences of Arrivals (TDoA) between multiple sensors pairs to the footstep location

by assuming similar wave propagation velocities between the footstep and the sensors. This

assumption, although true in open spaces, does not always hold in real-life situations with various

types of obstruction (walls, furniture, etc.). These obstructions add to the mass of the floor on

the path of the vibration waves which in turn affect the wave propagation velocity and reduces

the occupant localization performance. To overcome the obstruction effect, we characterize 1) the

frequency-dependent attenuation rate of the footstep-induced vibrations to find the existence and

mass of the obstruction and 2) the mass-velocity relationship based on the lamb wave properties

to estimate the wave propagation velocities between the footstep and various sensors knowing the

obstruction mass. Finally, we introduce a non-isotropic multilateration approach to leverage these

propagation velocities and the TDoA values across the signals for step-level occupant localization.

Our approach resulted in a 0.61 meters average location estimation error, which corresponds to a

1.6X improvement compared to the baseline that does not account for obstructions. Further, our

approach results in the same localization performance compared to the case with no obstruction

which shows that it effectively negates the effect of the obstruction.

In summary, our footstep-induced vibration sensing provides a sparse and non-intrusive alterna-

tive occupant sensing and monitoring in future smart buildings. Further, to enable such monitoring

without extensive calibration, we have introduced physics-guided learning approaches. In the next

section, we discuss some of the main research directions and opportunities that this work opens up.

6.2 Future Work

In this dissertation, we have addressed some of themost pressing research challenges in occupant

monitoring using footstep-induced vibrations. However, there are multiple research directions for
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future work, including:

• In Chapter 3, we have focused on designing a model transfer approach which detects footsteps

from other sources of excitation across different structures. This work can be extended in

multiple directions. For example, future work will focus on extending this model transfer

approach to design an occupant activity monitoring which is robust across multiple people.

This new direction adds the highly complex human factor to the problem. For example,

different people might do the same activity (e.g., vacuuming) differently. This human factor

is difficult to model and adds to the research challenges.

• As discussed in Chapter 4, the occupant localization approach performs well when the

footsteps are inside the polygon formed by the sensors. However, the performance drops

when footsteps outside the polygon are considered. As part of our future work, we plan to

update the algorithm to improve its performance outside the sensor polygon. Further, the

discussed projects only localize one footstep at a time and do not consider a trace of footsteps

from one person. However, in real life situations, people tend to walk in certain traces (e.g.,

they do not tend to suddenly turn around). To further improve the accuracy and robustness

of occupant localization, we will incorporate tracking to consider a trace of footsteps.

• In Chapter 5, we focus on the obstruction mass as the main factor affecting the attenuation

and wave propagation velocity. However, there are other factors (e.g., structural stiffness and

obstruction shape) which might affect these characteristics. Further, the mass effect on the

attenuation requires calibration. Future work will 1) study the obstruction effects on other

vibration characteristics and 2) reduce the calibration requirements.

• Physicians use gait temporal parameters for diagnosis and prognosis of various medical

conditions such as dementia, chronic obstructive pulmonary disease, andmuscular dystrophy.

As part of our future work, we aim to characterize the human gait using their footstep-induced

vibration responses to enable monitoring the progress of these medical conditions. Further,

other smart infrastructure applications will be explored (e.g., energy management and space

utilization).
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6.3 Publications during PhD

Under Review Journal Papers

[1] MostafaMirshekari, JonathonFagert, Shijia Pan, Pei Zhang, andHaeYoungNoh. Obstruction-

Invariant Occupant Localization using Footstep-Induced Floor Vibrtions. Under Review in

Sensors.

[2] Jonathon Fagert, Mostafa Mirshekari, Shijia Pan, Linda Lowes, Megan Lammarino, Pei

Zhang, and Hae Young Noh. Gait Balance Symmetry Estimation Using Footstep Induced

Structural Floor Vibrations. Under Review in Mechanical Systems and Signal Processing.

[3] AsimSmailagic, PedroCosta, AlexGaudio, KartikKhandelwal,MostafaMirshekari, Jonathon

Fagert, Devesh Walawalkar, Susu Xu, Adrian Galdran, Pei Zhang, Aurelio Campilho, and

Hae Young Noh. O-MedAL: Online Active Deep Learning for Medical Image Analysis.

Under Review in Data Mining and Knowledge Discovery.

Journal Papers

[1] MostafaMirshekari, Jonathon Fagert, Shijia Pan, Pei Zhang, and Hae YoungNoh. Step-Level

Occupant Detection across Different Structures through Footstep-Induced Floor Vibration

using Model Transfer. accepted in Journal of Engineering Mechanics.

[2] Shijia Pan, Mostafa Mirshekari, Jonathon Fagert, Carlos Ruiz, Hae Young Noh, and Pei

Zhang. Area occupancy counting through sparse structural vibration sensing. IEEEPervasive

Computing, 18(1):28–37, 2019.

[3] MostafaMirshekari, Shijia Pan, Jonathon Fagert, EveM Schooler, Pei Zhang, and Hae Young

Noh. Occupant localization using footstep-induced structural vibration. Mechanical Systems

and Signal Processing, 112:77–97, 2018.

[4] Shijia Pan, Mostafa Mirshekari, Jonathon Fagert, Ceferino Gabriel Ramirez, Albert Jin

Chung, Chih Chi Hu, John Paul Shen, Pei Zhang, andHaeYoungNoh. Characterizing human
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activity induced impulse and slip-pulse excitations through structural vibration. Journal of

Sound and Vibration, 414:61–80, 2018.

[5] Shijia Pan, Tong Yu, Mostafa Mirshekari, Jonathon Fagert, Amelie Bonde, Ole J Meng-

shoel, Hae Young Noh, and Pei Zhang. Footprintid: Indoor pedestrian identification through

ambient structural vibration sensing. Proceedings of the ACM on Interactive, Mobile, Wear-

ableand Ubiquitous Technologies, 1(3):89, 2017.

[6] Shijia Pan, Susu Xu, Mostafa Mirshekari, Pei Zhang, and Hae Young Noh. Collaboratively

adaptive vibration sensing system for high fidelity monitoring of structural responses induced

by pedestrians. Frontiers in Built Environment, 3:28, 2017

Peer-Reviewed (Journal-Level) Conference Papers
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International Conference on Machine Learning and Applications (ICMLA), pages 481–488.

IEEE, 2018.

[2] Shijia Pan, CeferinoGabriel Ramirez,MostafaMirshekari, JonathonFagert, Albert JinChung,
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tap & swipe tracking on ubiquitous surfaces. In Information Processing in Sensor Networks

(IPSN), 2017 16th ACM/IEEE International Conference on, pages 197–208. IEEE, 2017.

Other Conference Papers
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