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Abstract

As semiconductor manufacturing progresses to smaller process nodes, it is becoming increas-

ingly difficult to climb the yield learning curve rapidly. The rate of yield learning dictates

the growth and success of the semiconductor industry, and must be accelerated to fulfill

competitive time-to-market, time-to-money and time-to-volume requirements.

Software-based diagnosis plays a crucial role in yield learning. Diagnosis comprehends

the test response of a failing circuit to determine the location, and sometimes, in addition,

characterize the nature of a defect affecting the failing circuit. Besides identifying likely fail-

ure mechanisms and increasing the quality of chip testing, the feedback provided by diagnosis

is used to select chips for physical failure analysis (PFA). PFA aims to visually examine a

chip to characterize a defect, prevent similar defects in the future and, consequently, improve

the design and manufacturing of a chip.

However, PFA is often destructive, time- and cost-intensive, and not always successful.

Diagnosis, on the other hand, is non-invasive and time- and cost-effective; moreover, it assists

PFA and guides yield learning. The advantages of diagnosis, coupled with the diminishing

performance of PFA with advancing technology, make it an encouraging facilitator for rapid

yield learning.

Therefore, the objective of diagnosis must be logic-level defect characterization to mini-

mize (and ideally eliminate) the need for PFA, and accelerate yield learning. Logic character-

ization of a defect includes the derivation of its physical location and precise logic behavior.
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In this dissertation, a comprehensive diagnosis methodology is developed to actualize the

aforementioned objective.

The developed methodology comprises of three methods. LearnX/MD-LearnX is a

physically-aware method that employs (a) the X-fault model to avert the elimination of

a correct defect candidate and (b) machine learning to build a candidate-ranking model

that learns the hidden correlations between the tester response and the defect candidates to

pinpoint the correct candidate.

PADLOC, which stands for Physically-Aware Defect LOcalization and Characterization,

improves the physical location of a back-end defect (i.e., a defect that affects one or more

interconnects and resides outside a standard cell) returned by LearnX/MD-LearnX by par-

titioning the defective net into physical subnets and identifying the subnets that influence

defect excitation. In addition, PADLOC deduces the precise impact of a defect on the circuit

functionality by examining its surrounding circuitry.

NOIDA, which stands for NOise-resistant Intra-cell Diagnosis Approach, pinpoints the

location of a defect within a failing standard cell implicated by LearnX/MD-LearnX. In

contrast to prior work that typically constructs/employs a fault dictionary, NOIDA ascertains

the location as well as the behavior of a front-end defect (i.e., a defect that resides inside a

standard cell) by monitoring the logical activity of its intra-cell neighborhood. Additionally,

NOIDA is resistant to circuit-level noise that may originate from potentially inaccurate

transistor-level simulation.

Results from numerous experiments reveal that our diagnosis methodology outperforms

state-of-the-art commercial diagnosis. LearnX/MD-LearnX reports fewer defect candidates

than commercial diagnosis for 69.4% silicon fail logs without losing accuracy. PADLOC

implicates a smaller physical area for a defect for 47.2% silicon fail logs and attains at most

44X improvement. NOIDA reports an ideal diagnosis for 38.0% more front-end defects, when

compared to leading-edge commercial diagnosis. In the presence of noise, NOIDA achieves
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an ideal diagnosis 7.6X more often.

In summary, this dissertation endeavors to characterize a defect residing in a logic chip

in terms of its precise physical location and logic behavior, which, consequently, most likely,

enables rapid yield learning. The deployment of machine learning to pinpoint the correct

candidate in LearnX/MD-LearnX, and the investigation of the neighborhood of a defect to

determine its exact physical location and logic behavior in PADLOC and NOIDA are the

novel components of this dissertation, and the reasons for its superiority over the state-of-

the-art.
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Chapter 1

Introduction

More than 50 years ago, it was predicted (rather, observed) that the transistor density of

an integrated circuit (“chip”) would double every year [1]. Ten years later, the prediction,

popularly known as the Moore’s law, was revised to doubling every two years [2]. Robert

Dennard, around the same time, observed that the chip power density remains constant

with decreasing transistor sizes [3]. His postulation, widely known as Dennard scaling, has

been one of the primary propellants of Moore’s law. In conjunction with Dennard scaling,

it implies that the energy efficiency (performance per watt) would double even faster than

two years.

Moore’s law (along with Dennard scaling) has since then become a de facto standard

in the semiconductor industry [4–6]. Moore’s law has been the driving force behind the

technological advancements for semiconductor industry growth. Numerous inventions and

breakthroughs have been sustaining Moore’s law to advance semiconductor manufacturing,

resulting in an increased chip performance and/or improved power efficiency [6–8]. These

innovations include (and are not limited to):

• Decreased transistor sizes, where the transistor density (measured in terms of the

number of transistors per mm2), for instance, has proliferated from less than 500 in
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the early 1970s [9–11] to more than a 100M in 2019 [12–17].

• Creative transistor structures such as non-planar transistors (e.g., a fin field effect

transistor (FinFET) [17–20] and a gate-all-around FET (GAAFET) [21,22]).

• New materials, such as the use of hafnium instead of silicon dioxide as a transistor

gate dielectric in a 45nm process node [23], and using germanium instead of silicon to

build a transistor [24–26].

• Three dimensional monolithic and heterogeneous integration [27–31].

• Next-generation lithography strategies such as optical proximity correction (OPC) [32],

phase shift mask [33], multiple patterning [34–40], and extreme ultraviolet lithography

(EUV) [40–42].

• Novel processor microarchitectures [43–46].

Unfortunately, the increase in the density and complexity of a chip, which causes an

increase in its performance (and energy efficiency), is also accompanied by significant man-

ufacturing challenges.

As a consequence, the task of fabricating a working chip has become extremely difficult

to accomplish. Human and equipment errors, contaminants, interactions between the design

and the manufacturing process, and/or a complication at any fabrication step can introduce

a defect into a manufactured chip. A defect is an unforeseen physical irregularity in a

manufactured chip that may lead to its failure. A systematic defect stems from some flaw in

the design, deficiency in the manufacturing process, or interactions between the design and

the process. A random defect, in contrast, arises due to intermittent equipment excursions

or contaminants in the fab.

Besides manufacturing defects, poor design, environmental factors such as temperature

and humidity, wearout and process variations can render a manufactured chip inadequate.
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The proportion of working chips fabricated is called yield. Yield loss is further aggravated

by diminishing time-to-volume, time-to-market and time-to-money requirements of the semi-

conductor industry.

Various strategies are used to identify and characterize the sources of yield loss, and

consequently, increase yield. The process of rectifying sources of yield loss to improve chip

design and manufacturing is called yield learning.

In-line defect inspection [47, 48], for example, optically examines a wafer to identify

imperfections in a chip during manufacturing. However, with shrinking technology, its ef-

fectiveness to locate a defect is decreasing because it only inspects the wafer surface, which

means that only the defects that are visible on the wafer can be identified by an in-line

inspection equipment. In addition, not all defects captured by in-line inspection are “killer”

defects1 [49, 50]. Moreover, its use is limited due to its cost, throughput and ineffectiveness

to determine the nature of a defect (i.e., whether it is an open, short, etc.).

Specialized test structures such as comb drives, serpentine structures and ring oscillators

are custom designed to easily observe specific defect mechanisms [51–53]. They are trans-

parent to failure and can provide quick feedback early in the yield learning phase to make

modifications in the manufacturing process. However, such structures are elementary and

do not reflect the range of layout patterns used in random logic; hence, their use is limited

to evaluating the process parameters in the early stages of yield learning. During volume

production, on the other hand, test structures are only deployed in the scribe lines between

customer chips, and thus their ability to find defects is restricted.

Bitmap analysis of a memory is yet another way to identify sources of yield loss during

the early/intermediate phases of yield learning [48, 54]. A bitmap visually represents the

location of the failing bits within a memory. Because of their regular architecture, memories

are transparent to failure; the configuration of a bitmap can be investigated to find the root

1A killer defect causes a chip to malfunction.
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cause of failure. One advantage of using a memory as a yield learning vehicle is that, in

contrast to custom test structures, they may undergo all the processing steps in the entire

fabrication flow. Even then, however, because of their regularity, memories utilize only the

first few process layers. As a result, they are unable to catch defects in the upper metal

layers. In addition, due to their regular design, memories contain limited layout patterns,

and hence are unfit to monitor the defects resulting from diverse layout geometries typically

found in random logic.

An alternative to memory is a logic test chip that is implemented using a standard

automated place-and-route tool [55–62]. Short-flow logic test chips, that may contain diverse

layout patterns and are fabricated using a subset of metal layers, face a similar drawback as

memories – they are ineffective in identifying a source of yield loss that may otherwise be

detected if the entire manufacturing flow is employed. Full-flow logic test chips (including

legacy designs retrofitted for the latest technology node), on the other hand, utilize all the

process layers and thus are more suited to analyze/monitor yield during the later stages of

yield ramp.

Finally, manufacturing test is used to pinpoint the sources of yield loss in a logic test chip

and the random logic used in a customer chip. Specifically, the knowledge of how a chip fails

manufacturing test is used to identify the location and nature of a defect to increase yield.

This process, known as software-based diagnosis (or simply, diagnosis), is the first step in

failure analysis (FA). Diagnosis offers several advantages (which are discussed in detail later

in Section 1.1). For example, diagnosis makes in-line inspection more effective; the outcome

of diagnosis can be correlated with the in-line inspection data to discern killer defects.

Additionally, a statistically significant number of diagnoses can be correlated to discover

the underlying yield detractor(s). The corresponding chips can then be physically inspected

to verify and characterize the yield detractors. As opposed to diagnosis that is expeditious

and non-invasive, physical failure analysis (PFA) is time-consuming and destructive. Nev-
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ertheless, PFA provides indisputable confirmation of the presence of a defect and explores

its underlying physical cause. It aims to provide a critical understanding of how a defect is

introduced in the manufacturing process and thus is crucial to yield learning. The feedback

obtained from physical failure analysis is used to prevent similar defects in the future, and

consequently, amend the design and/or manufacturing process to increase yield.

This dissertation concentrates on employing manufacturing test to identify the sources

of yield loss that influence the random logic in a chip (a customer or a logic test chip). In

other words, the focus is on logic defect diagnosis, i.e., the analysis and comprehension of

the test failure data to determine the location and the behavior of a defect that affects the

logic sub-circuit of a chip, to identify logic yield limiters. The role of diagnosis is especially

significant during (a) yield ramping, when logic test chips are deployed and/or customer

chips are manufactured prematurely; (b) high-volume manufacturing of customer chips for

continuous yield learning/monitoring; and (c) yield excursion (i.e., when yield plummets

abruptly from its stable value), when diagnosis can be exploited to uncover the underlying

source of yield loss and, consequently, stabilize yield.

The next section, Section 1.1 details the role of manufacturing test and diagnosis in

failure analysis that, in turn, facilitates yield learning and monitoring. It also lays the

groundwork for the work developed in this disseration. Section 1.2 previews the diagnosis

methodology developed and highlights the superior performance achieved by our diagnosis

methodology when compared to state-of-the-art commercial diagnosis. Section 1.3 presents

the organization of the rest of this dissertation.

1.1 Diagnosis Guided Yield Learning

Figure 1.1 illustrates a simplified flow that depicts the role of manufacturing test and diag-

nosis in yield analysis, learning and monitoring. The flow is partitioned in two parts – the
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Chip design and 
manufacturing

Manufacturing test

Diagnosis

Volume diagnosisChip exposure

Heat/photon/electron 
based localization

Physical and
chemical analysis

Logic characterizationPhysical characterization

Figure 1.1: A simplified flow depicting the role of manufacturing test and diagnosis in guiding

yield analysis, learning and monitoring.

“right” part of the flow (in blue) characterizes a defect at a logic level and the “left” part of

the flow focuses on the physical level. While logic characterization focuses on identifying the

logic properties of a defect such as its logic behavior and x − y − z location in the circuit,

physical characterization aims to uncover the physical features of a defect such as its shape,

size, composition and root cause. Each step of the flow depicted with a dashed outline de-

notes that it is a destructive process. The remaining steps depicted with a solid outline are

non-destructive in nature.

The flow begins with the design and manufacturing of a chip. Process-design interac-
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tions, design marginalities, and/or complications at any step of the convoluted and precisely

regulated fabrication flow can introduce one ore more defects in a produced chip. It should

be recalled that the focus of this dissertation is on defects that affect the logic sub-circuit

of a chip; thus, the flow of Figure 1.1 will be discussed while considering only defects that

affect the logic.

The next step is manufacturing testing2, where a set of input values called test patterns

are applied to a logic circuit and the observed circuit response to each pattern is compared

with the expected correct response. A circuit that fails testing is classified as defective.

Thus, test functions as a binary filter – it is used to differentiate the good chips from the

malfunctioning ones. However, testing is not perfect; some good chips can be categorized

as defective and vice versa. The fraction of good chips that fail testing is called test yield

loss. This misclassification is generally due to factors such as a test equipment error and an

unsuitable test environment for the circuit under test. The proportion of defective chips that

pass testing is termed as defect level. This misclassification, where a defective chip escapes

test, is due to the inability of a testing approach to detect a defect.

Ideally, a testing technique should detect all possible defects that could render a chip

malfunctioning. However, defects are unpredictable, and design- and process-dependent.

It is thus impractical to track the sheer number of ways in which a defect may manifest.

Testing is made tractable through the use of fault models. A fault model is an abstraction

from actual defects at a high level. It is a set of assumptions that describes the behavior

of a defect and/or its impact on the circuit. Because a fault is defined at a higher level of

abstraction than a defect, many defects can map to a single fault. In this way, fault modeling

mitigates the complexity of generating a test for each possible defect.

2We will focus here on manufacturing testing, which is performed after manufacturing and before chips
are shipped to a customer. Other types of testing include characterization testing, which is performed to find
design errors and determine the exact operating conditions of the design before fabrication, and acceptance
testing, which is carried out by a customer.
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Fault models can be defined at different levels of abstraction such as logic (or standard-

cell), circuit (or transistor) and physical layout levels. For example, the single stuck line

(SSL) fault model (also known as the stuck-at fault model) assumes that a signal in the logic

circuit is permanently stuck at either logic-0 or logic-1. The wired-AND (wired-OR) bridge

fault model assumes that logic-0 (logic-1) at one of the bridged signals overrides logic-1

(logic-0) at the other bridged signal [63,64]. The X-fault model assumes an unknown value

(X) at a potential defect location [65]. The aforementioned models are defined at the logic

level. The transistor stuck-closed (stuck-open) fault model, which is defined at the circuit

level, assumes a transistor to be conducting (non-conducting) permanently [66,67].

A variety of fault models at different abstraction levels with varying complexity exist

in the literature to represent ever-evolving defects. Notable examples include the input-

pattern [68–70], voting bridge [71, 72], cell-aware [73–78], inductive [79, 80], path-delay [81]

and transition [82,83] fault models.

An alternative approach to increase the quality of a test set is to specify/measure the

thoroughness of a test set. For example, the N -detect metric requires at least N detections

for each stuck-at fault in the circuit [84,85]. The gate-exhaustive test metric generates a test

set such that each standard cell in the circuit is exhaustively tested3 [86, 87].

After a high-quality test set is generated (while considering different fault models and

test metrics) using an Automatic Test Pattern Generation (ATPG) tool, the next step in the

yield learning flow (shown in Figure 1.1) is diagnosis. Diagnosis is a software-based process

to determine the possible locations (often called candidates) and the corresponding defect

types within a failing chip by analyzing and understanding the observed circuit response.

The quality of diagnosis is typically measured by the number of candidates identified, the

corresponding implicated physical area (i.e., the layout area occupied by the candidates

3The gate-exhaustive test metric is equivalent to the input-pattern fault model applied at the standard-cell
level.
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suspected by diagnosis), and whether the candidate set contains an actual defect location.

Numerous methods have been proposed in the past to enhance the quality of diagnosis. A

cause-effect approach compares the tester response with a set of simulated faulty behaviors to

find candidates [88–103]. However, because the defect universe is expanding with advancing

technology, it is unreasonable to simulate faults that represent all possible defects that could

affect a chip. Design size, defect multiplicity and defect behavior variability further restrict

the practical applications of a cause-effect approach.

An effect-cause approach, on the other hand, follows an orthogonal approach – it analyzes

the observed circuit response to deduce candidates [91, 104–114]. An effect-cause technique

such as path tracing [108–110], by itself, however, suffers from poor resolution; because it is

cautious about removing a correct candidate, several incorrect candidates are implicated as

well.

Methods that include [115–145] use a combination of a cause-effect and an effect-cause

approach to benefit from both types of methods. Those techniques usually perform diagnosis

in three steps – an effect-cause technique to identify the failing region, simulation of faults

within the failing region, and a candidate-scoring procedure to determine possible candidates.

Layout information can further be utilized to pinpoint a physical location of a defect residing

outside a standard cell [142–161] or within a cell [80, 162–181].

Besides the development of a better algorithm, the effectiveness of diagnosis can also be

improved via targeted test generation to distinguish diagnostic candidates [182–212] and/or

by altering the design itself [59, 212–216].

The next step in the flow of Figure 1.1 is volume diagnosis, where diagnosis results for

a population of failing chips are statistically examined to find yield-limiting design and/or

manufacturing issues, in hope of determining if a significant percentage of chips are failing

due to a common root cause [144, 217–232]. Chips with yield-limiting defects can then be

further inspected to unearth the physical characteristics of a defect.
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In addition to assisting/accelerating the subsequent failure analyses, volume diagnosis

provides useful information to improve test and diagnosis as well. For example, it can be

used to estimate defect-type distribution, which can then be used to reduce test escapes via

adaptive testing [233–235]. In [236], diagnosis data is used to find the efficiency of new and

existing fault models and test metrics, instead of relying on time-consuming test set silicon

experiments. It has also been shown that information obtained from diagnoses can be used

to estimate defect density and size distributions (DDSDs) for each metal layer to understand

the impact of random defects [237, 238]. In [239], diagnosis is used to predict chip defect

level and monitor chip quality. In [240–243], the effectiveness of Design-for-Manufacturability

(DFM) guidelines is evaluated using volume diagnosis results.

The steps of Figure 1.1 discussed up to this point enable logic characterization of a

defect. The next sequence of steps seeks to physically characterize a defect and investigate

its underlying origin.

Based on the output of volume diagnosis, selected chips are further analyzed. The first

step towards physical characterization of a defect is exposing the chip, i.e., removing the

connections between the chip and its packaging, while ensuring that the chip is electrically

functioning. The process of exposing a chip so that it can be inspected visually is called

decapsulation (or delidding) [244, 245]. Decapsulation can be accomplished by acid [246],

plasma [247,248], laser [249–251] or thermo-mechanical [252,253] based methods.

The next step is to isolate the defect location reported by (volume) diagnosis via mechan-

ical, thermal, optical, or electron probing methods. For example, fluorescent microthermal

imaging (FMI) studies the temperature-dependent fluorescence emitted by a film coated

on the surface of a chip to detect a defect [254–257]. Techniques such as laser-induced

voltage alteration (LIVA) [258] and laser-assisted device alternation (LADA) [259] study

the interactions of a defect with photons. Other popular probing methods include pho-

ton emission microscopy (PEM) [260], optical beam induced current (OBIC) [261], opti-
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cal beam induced resistance change (OBIRCH) [262], thermally induced voltage alteration

(TIVA) [263], electron beam induced current (EBIC) [264,265], and charge-induced voltage

alteration (CIVA) [266]. In general, those methods are non-destructive in nature, and their

goal is to further pinpoint and/or verify the defect location implicated by diagnosis.

Once the presence of a defect is confirmed by non-destructive means, the chip is physically

inspected to determine the physical cause of the underlying failure. The investigation begins

with a process known as deprocessing (also called delayering) [244], where process layers

are carefully removed one at a time until the layer where the defect is suspected is reached.

Deprocessing is essentially the reverse of the manufacturing process. An alternative to chip

deprocessing is chip cross sectioning, where the chip is grinded and polished perpendicular

to its surface to expose all the layers and the transistors simultaneously [244].

Deprocessed or cross-sectioned chips are then inspected via a microscope to observe

the physical features of a defect. Defect images can be analyzed, documented and stored

to comprehend the physical root cause. Several chip microscopy techniques exist in the

literature that aid in the understanding of the physical characteristics of a defect. Some

of the popular physical inspection methods include scanning electron microscopy (SEM)

[267, 268], scanning probe microscopy (SPM) [269], and transmission electron microscopy

(TEM) [268, 270–272]. Chip sample preparation and physical inspection are not necessarily

carried out in sequence only once. Defect images obtained from physical inspection can

be utilized to guide the process of sample preparation until the defective region of interest

is reached. The defective region can further be analyzed via techniques such as energy-

dispersive X-ray spectroscopy [273] to chemically characterize the defect, or specifically,

identify the atomic structure and composition of a contaminant causing the defect.

Although physical failure analysis (PFA), i.e., the collective process of preparing the chip

sample, and physically and chemically inspecting the prepared sample for defect characteri-

zation, is a time-consuming, meticulous and invasive process, it provides irrefutable evidence
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of the existence of a defect. In addition, the knowledge of the physical and chemical proper-

ties of the defect can suggest useful information regarding its origin or root cause. Corrective

actions can then be taken to adjust the design or the manufacturing process to increase yield.

High diagnosis quality is thus extremely important for improving design, test and manu-

facturing of a chip. An inaccurate diagnosis, for example, can direct volume diagnosis to find

false correlations within diagnosis results, which, in turn, can steer PFA to physically inspect

incorrect locations. The destructive and resource-intensive nature of PFA constrains it to

being performed on only a small number of chips and considerable amount of resources can

be wasted if diagnosis is inadequate. Additionally, PFA is becoming challenging because of

increasing chip density and decreasing critical defect size with advancing technology. There-

fore, a highly effective diagnosis methodology makes PFA more successful, and more cost-

and time-efficient.

To summarize, diagnosis is an invaluable engine that critically impacts the

• derivation of DDSDs for each metal layer to understand the effect of random defects

on yield,

• construction of a pareto of likely failure mechanisms that decrease yield,

• quality of an adaptive test set that reduces test escapes,

• comprehension of the relative performance of new and existing fault models and test

metrics to optimize test quality and cost, and

• success rate and the efficiency of PFA.

As a consequence, diagnosis, in all likelihood, accelerates/facilitates yield analysis, learn-

ing and monitoring.
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1.2 Dissertation Overview

Determining the location of a defect is the traditional objective of diagnosis. Ideally, diag-

nosis should go beyond localization to characterizing both the nature and root cause of a

defect. Because diagnosis is non-invasive, has a quick turnaround time, is becoming useful for

other applications, and, more importantly, plays a vital role in aiding yield analysis, learning

and monitoring (illustrated in Figure 1.1 and described in Section 1.1), it is imperative that

diagnosis continue to improve and move toward characterization.

Therefore, the goal of diagnosis should be twofold.

1. Accurately pinpoint the x− y − z layout location of a defect.

2. Precisely derive the logic behavior of a defect, i.e., deduce the precise impact of a defect

on circuit behavior (with minimal assumptions), and identify the defect type.

The accomplishment of the aforementioned two objectives of diagnosis accelerates the

overall flow of Figure 1.1. For example, the onus of characterization of a defect that is

typically on cost- and time-intensive PFA can be shared by cost- and time-effective diagnosis

that adheres to the above-mentioned goals. An ideal diagnosis would thus minimize the need

for PFA, thereby, further enabling rapid yield analysis.

Numerous methods have been recommended in the literature to enhance the quality of

diagnosis. Diagnosis quality can essentially be improved in three ways – better algorithms,

better tests and/or better design. Diagnosis methods that develop new algorithms can

further be differentiated based on the type of fault model exploited at the logic level (whether

a binary error or an unknown value is assumed at a candidate location), the scoring technique

employed (deterministic vs. statistical), how precisely a defect is localized (i.e., whether a

defect candidate is reported at a logic, back-end layout or front-end layout level), and whether

multiple defects affecting a single chip can be analyzed/identified adequately.
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To the best of our knowledge, no prior diagnosis methodology simultaneously focuses

on the two objectives of an ideal diagnosis method, i.e., accurate defect localization at a

physical-level as well as precise defect behavior identification at a logic-level.

A comprehensive diagnosis methodology is presented in this dissertation that attempts

to accomplish each of the two goals of diagnosis. The focus is on improving the quality of

diagnosis via designing a better algorithm; approaches that manipulate a test set or alter

the design itself complement and strengthen our work [59,182–216].

Our developed methodology can be divided into three stages. Specifically,

• LearnX [274] is a physically-aware diagnosis methodology that focuses on accurate de-

fect localization. Besides employing the widely used (temporary) stuck-at fault model

to identify “simple” defects, LearnX takes the advantage of the X-fault model [65]

to locate a defect that misbehaves arbitrarily. The X-fault model allows an error

to propagate conservatively and thus (likely) precludes the elimination of a correct

candidate.

Additionally, instead of manually devising a candidate ranking procedure by intuition

and/or domain knowledge that may or may not work for ever-changing defects, machine

learning is exploited to construct a data-driven ranking model that learns the hidden

correlations between the observed circuit response and the (fault simulation response

of the) correct candidate. Moreover, it utilizes design layout information to find the

candidates that are physically feasible to identify their defect types.

Simulation-based experiments conducted for four different designs demonstrate the po-

tential of LearnX. LearnX identifies the correct candidate for 97.3% fail logs, which is

10.5% better than leading-edge commercial diagnosis. In addition, LearnX returns an

ideal diagnosis (i.e., a single correct candidate) significantly more often than commer-

cial diagnosis. Specifically, LearnX reports an ideal diagnosis for 67.9% fail logs, which
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is 67.5% better than one commercial tool and almost double the second commercial

tool.

Moreover, significance of LearnX is affirmed by diagnosing 2,400 silicon fail logs from

a design fabricated in an advanced process technology. It is revealed that LearnX

returns an ideal resolution for 46.9% fail logs, which is almost twice more than what

commercial diagnosis achieves. Additionally, LearnX returns 7.1 fewer candidates per

fail log, on average.

The effectiveness of LearnX is further corroborated by inspecting 19 failing chips that

are PFA’ed. LearnX is able to correctly locate a defect in each failing chip, while

reporting fewer candidates than state-of-the-art commercial diagnosis. It is observed

that LearnX returns an ideal diagnosis for 52.9% fail logs, which is 12.6% better than

commercial diagnosis.

The experiment results thus far underscore the performance of LearnX when a single

defect affects a failing chip. A diagnosis methodology called MD-LearnX [275], which

builds on LearnX, is developed to effectively tackle multiple defects in a failing chip.

MD-LearnX employs the X-fault model as well to avoid the effects of error masking and

unmasking that are prominent due to the interaction of multiple defects, and deploys

machine learning to identify the best candidate for each defect.

A thorough simulation-based experiment is conducted to assess the capability of MD-

LearnX to identify multiple defects, where a total of 28,000 faulty circuits with varying

defect multiplicities and behaviors are created and analyzed. Three metrics, namely,

diagnosability (i.e., proportion of injected defects that are correctly located), precision

(i.e., proportion of reported defects that are correctly identified) and home run (i.e.,

when a single correct candidate is reported for each injected defect), are employed to

measure the performance of MD-LearnX.
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It is observed that MD-LearnX achieves an average diagnosability and precision of 0.78

and 0.7, respectively, which is 15.4% and 57.0% better than leading-edge commercial

diagnosis. MD-LearnX delivers a home run for 40.0% of fail logs, which is twice as

often as commercial diagnosis.

The efficacy of MD-LearnX is impressive for large values of defect multiplicity. Specif-

ically, when the number of injected defects is at least five, the diagnosability of MD-

LearnX is 22.8% higher than commercial diagnosis, on average. MD-LearnX returns a

correct candidate for each reported defect 2.4X more often than commercial diagnosis.

Moreover, MD-LearnX delivers a home run for 6.8% fail logs; however, commercial

diagnosis returns an ideal diagnosis for less than 0.3% of fail logs.

The capability of MD-LearnX to diagnose multiple defects is further demonstrated

with a silicon experiment, where 17 failing chips that are suspected to be affected by

multiple defects are diagnosed. It is seen that MD-LearnX returns fewer candidates

than commercial diagnosis for 88.2% of the fail logs, without sacrificing accuracy.

Moreover, MD-LearnX reports 8.5 fewer candidates per fail log, on average.

• PADLOC, which stands for Physically-Aware Defect LOcalization and Characterization,

specializes in accurate physical localization and behavior derivation of a back-end de-

fect (i.e., a defect that affects one or more interconnects and resides outside a stan-

dard cell) [146]. It analyzes the back-end defect candidates reported by LearnX/MD-

LearnX. PADLOC partitions a candidate net into one or more segments by analyzing

the topology of the net and its physical neighbors, and examines the logical activity

on the adjacent segments to deduce defect excitation conditions.

Results from a comprehensive simulation-based experiment reveal that PADLOC pin-

points a defect accurately for 96.5% fail logs, which is 10.3% better than state-of-the-art

commercial diagnosis. More impressive, however, is the physical resolution attained by
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PADLOC. It is observed that the average bounding circle diameter, which is defined as

the diameter of the smallest circle enclosing the suspected layout regions, for PADLOC

is 61.2, and is 33.0% better than commercial diagnosis.

A silicon experiment is also conducted to demonstrate the capability of PADLOC.

Silicon failure data corresponding to 2,400 failing chips fabricated in an advanced

process technology is examined. The analysis reveals that PADLOC reports a smaller

bounding circle for 68.8% of fail logs, when compared with commercial diagnosis. In

addition, the bounding circle diameter for PADLOC is 120.3, on average, which is

32.7% smaller (i.e., better) than commercial diagnosis.

PADLOC is further validated by inspecting 36 failing chips that are PFA’ed. PADLOC

is able to physically locate a defect in each failing chip correctly, while suspecting

a smaller layout region than state-of-the-art commercial diagnosis. It is seen that

PADLOC improves bounding circle diameter for 47.2% of fail logs, and achieves up to

44X improvement.

• NOIDA (NOise-resistant Intra-cell Diagnosis Approach) concentrates on diagnosing a

front-end defect, i.e., a defect that resides inside a standard cell [162]. It analyzes the

standard cell candidates reported by LearnX/MD-LearnX. Rather than relying on an

existing fault model or creating a new model via potentially inaccurate SPICE models,

NOIDA derives the precise impact of a defect within the standard cell by monitoring

the logical activity of its physical intra-cell neighborhood. The output of NOIDA is a

set of intra-cell candidates, where each candidate is characterized with respect to its

physical location inside the cell and its likely behavior.

A comprehensive simulation experiment is conducted to study the effectiveness of

NOIDA. NOIDA is evaluated on over 34,000 front-end defects that are distributed

over 115 standard cells within a 7nm standard-cell library.
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When each defective cell is exhaustively tested, NOIDA accurately diagnoses 96.6% of

defects, which is an improvement of 17.7% over state-of-the-art commercial diagnosis.

In addition, NOIDA reports an ideal diagnosis for 50.5% more defects.

When each defective cell is tested with a test set generated by a commercial ATPG tool,

it is observed that the average accuracy for NOIDA is 100.0%, which is 21.8% better

than commercial diagnosis. Among the defects diagnosed with a single candidate,

NOIDA is correct for 38.0% more fail logs.

More importantly, NOIDA is robust to circuit-level noise (that might stem from approx-

imate SPICE modeling) compared to leading-edge commercial diagnosis. Experiment

results indicate that NOIDA correctly diagnoses 78.5% of the front-end defects, which

is more than twice as often as commercial diagnosis. NOIDA returns an ideal diagnosis

for 13.2% defects, which is 7.6X times commercial diagnosis.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 describes LearnX, a physically-

aware diagnosis methodology that concentrates on defect localization. It discusses LearnX

while assuming that a single defect is residing in a failing chip. Chapter 3 extends that discus-

sion to multiple defects, and presents a diagnosis methodology called MD-LearnX. Chapter 4

sheds light on PADLOC (Physically-Aware Defect Localization and Characterization), which

specializes in characterizing a back-end defect candidate reported by LearnX/MD-LearnX

with respect to its physical location and logic behavior. Chapter 5 elucidates NOIDA (Noise-

resistant Intra-cell Diagnosis Approach), which pinpoints a physical location and derives the

behavior of a defect candidate within a standard cell that is suspected to be failing as re-

ported by LearnX/MD-LearnX. Each chapter critiques related prior work, and motivates

the need for the development of the corresponding diagnosis methodology. The superior
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performance attained by each diagnosis method over leading-edge commercial diagnosis is

demonstrated with extensive simulation-based and silicon experiments. Finally, Chapter 6

emphasizes the main contributions of our work and provides promising directions for future

work.
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Chapter 2

LearnX: A Deterministic-Statistical

Single Defect Diagnosis Methodology

The goal of software-based diagnosis is to determine the location, and ideally, the precise

logic behavior of a defect. This goal is accomplished in multiple stages in this dissertation.

This chapter focuses on the first stage of diagnosis, which is defect localization. This chapter

describes a two-phase, physically-aware diagnosis method called LearnX to effectively localize

a defect (and determine its type) in a failing chip.

The first stage of diagnosis, in particular, is significant because it affects the performance

of the subsequent stages. The output of LearnX is used as an input to the back-end and the

front-end layout analysis techniques (called PADLOC [146] and NOIDA [162], respectively)

developed in this dissertation. As a result, any loss in the accuracy of LearnX directly

impacts the effectiveness of PADLOC and NOIDA. Thus, the quality of defect localization

achieved by LearnX is crucial to the success of our overall diagnosis methodology.

As alluded to earlier, LearnX is two-phase diagnosis approach. The first phase attempts

to diagnose a defect that manifests as a well-established fault behavior (e.g., the stuck-at or

bridge fault models). The second phase uses machine learning to build a model (separate for
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each defect type) that learns the characteristics of defect candidates to distinguish correct

candidates from incorrect ones.

The rest of the chapter is organized as follows. Section 2.1 reviews prior work in the area

of diagnosis (specifically, defect localization1), and motivates LearnX. Section 2.2 provides

a detailed overview of the two phases of LearnX to identify a defect in a failing chip. The

efficacy of LearnX is demonstrated via several experiments, which are described in Section

2.3. Finally, Section 2.4 summarizes the discussion on LearnX.

2.1 Prior Work

Numerous algorithms have been proposed over the years to improve the diagnosability of a

failed circuit. Diagnosis algorithms can be broadly categorized into cause-effect and effect-

cause techniques. Cause-effect based approaches build a database of simulated faulty behav-

iors and compare them with the observed tester response [88–103]. The database containing

fault simulation responses is typically referred to as a fault dictionary. A primary advantage

of employing such an approach is that it characterizes a defect with respect to its location

and logic behavior. However, a fault dictionary based method is limited by at least the

following three factors, and is hence impractical (if used, by itself, on the entire design).

• The size of the dictionary, which is proportional to the size of the design and the

number of fault models employed.

• The compute time to construct the dictionary, where each targeted fault needs to be

simulated.

• The fidelity of the selected fault models.

1Prior work related to the characterization of a back- and a front-end defect is scrutinized in Section 4.1
and Section 5.2, respectively.
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Although the approaches presented in [91–103] can reduce the memory requirements of

storing the dictionary by compressing the fault simulation responses, and the approaches

presented in [276, 277] can reduce the fault simulation time via graphic processing units

(GPUs), the practicality of a cause-effect method heavily relies on the accuracy of the chosen

fault models. Smaller process nodes increase manufacturing complexity and chip density,

which results in new defect types and failure mechanisms. As a consequence, the detection,

let alone diagnosis, of a defect becomes challenging. Furthermore, a cause-effect method, by

design, is incapable of effectively diagnosing an unmodeled defect.

An effect-cause technique, on the other hand, adopts an orthogonal path. An effect-cause

technique analyzes the faulty behavior, and deduces one or more defects that adequately

explains the observed tester response [91, 104–114]. Popular effect-cause techniques include

back-coning [278] and path tracing [108–110]. Back-coning analyzes the logic fan-in cone of

each failing output to identify likely failing regions in a circuit. Path tracing is an upgraded

version of critical path tracing [111–113] and the algorithm developed in [114]. The techniques

of [111–114] are however restricted to single stuck-at faults, i.e., they assume a single signal

in the design to be faulty. Path tracing follows a conservative approach and is guaranteed

to include all signals which could be defective, even for multiple defects.

The following rules are followed during path tracing.

• If a cell output is reached and all the cell inputs are non-controlling, tracing continues

from each input.

• If a cell output is reached and one or more cell inputs are controlling, tracing continues

from all the controlling inputs.

• If a fan-out branch is reached, tracing continues from the stem.

The example circuit of Figure 2.1 is used to illustrate back-coning and path tracing. The

figure shows the state of the circuit for a failing pattern, p(abcde) = 00111. The value at
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Figure 2.1: Example to illustrate back-coning and path tracing.

each signal is also shown in the figure. Assume that the output z is a failing output. The

value at z is represented as v/v
′
, where its correct (defective) value is v (v

′
). Back-coning

from output z includes the signals {z, h2, i, h, g1, g2, g, c2, b, c, d, e}. Path tracing from

output z includes the signals {z, i, g2, g, c2, c, d}.

Contrary to back-coning, potential defect locations implicated by path tracing can be

different for each failing pattern. In the path tracing procedure [108–110], all signals en-

countered during tracing each failing pattern and from each failing output are probable

defect locations. Path tracing typically finds many candidates, but the identified candidates

overall represent a small fraction of all signals in the design.

An effect-cause technique scales well with design size and is guaranteed to include each

defect location that assists in error propagation to at least one design output, even for

multiple defects. However, such an analysis does not direct its efforts in identifying the

behavior of a defect. In addition, because of its conservative nature, the diagnostic resolution

for an effect-cause method is poor (i.e., it reports a large number of signals).

Various algorithms have also been put forward that benefit from using a combination of

effect-cause and cause-effect analyses [108, 115–145]. That is, fault simulation is performed

on the logical signals that are identified from an effect-cause method. One group of methods
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use the notion of a composite signature [108,115,124–130].

The motive of a composite signature based approach is to create a signature that sub-

sumes the possible behavior of a defect. A composite signature is formed by combining the

signatures of more than one fault (typically, a stuck-at fault). For example, a composite

response of a bridge fault between signals A and B is created by taking a union of the re-

sponses of the four stuck-at faults associated with the bridged signals [124–127]. A composite

response of an open fault is constructed by taking a union of the responses of the stuck-at

faults at the stem and the fan-out branches of a signal [108, 115]. A composite response

can be generated from more than one candidate fault type as well [115]. A composite fault

model typically generates a large set of candidates because there is no criterion to eliminate

a candidate based on the number of mismatches between the response of the candidate and

observed response.

Another group of methods that utilize the combination of effect-cause and cause-effect

analyses perform per-test diagnosis [115,131–144]. Such techniques are collectively referred to

as STAT (Single-Test-At-a-Time) techniques in [141]. Each failing pattern is independently

used to generate candidates. A minimal set of candidates is then derived using some criterion.

For example, in [136, 137], for each failing pattern, an effect-cause analysis (path tracing,

for example) first identifies a region in the design where a defect could reside. Stuck-at

faults in the identified region are then examined to determine the faults that explain that

failing pattern. Such patterns are classified as SLAT (Single-Location-At-a-Time) patterns

in [136,137]. A minimal set of stuck-at faults that collectively explains all the SLAT patterns

is then derived.

The fundamental problem with logic-based diagnosis approaches is that they cannot

pinpoint a physical location of a defect. To improve defect localization, diagnosis needs to

use additional information other than the logic design itself. Design layout, which contains

the coordinate information of every standard cell, pin and net, can be incorporated in the
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diagnosis flow to enhance the quality of diagnosis. Hence, in addition to the information

provided by logic diagnosis, physically-aware diagnosis [142–161] can further localize a defect

by identifying potential defect locations and/or by improving the diagnostic resolution (both

logical and physical [279]). For example, a pair of nets identified as a bridge defect by logic-

based diagnosis is likely inaccurate if the two nets are never in close proximity [125,142–144,

161, 278, 280]. In addition, a net identified as an open by logic-based diagnosis may span

various metal layers while physically-aware diagnosis may improve physical resolution by

eliminating some of the metal layers as a possible defect location [145,147,148,150,153–155,

158,159,161]. Back-end layout analysis techniques, which concentrate on further improving

the physical resolution for a candidate by taking advantage of its neighborhood topology

and/or various circuit parameters, are further scrutinized in Section 4.1.

Prior work discussed up to this point are based on binary error models, i.e., fault models

that assume an erroneous value of 0 or 1 at a candidate location (such as the stuck-at fault

model). However, not all defects (e.g., byzantine bridges [72] and opens [147]), even for a

subset of failing patterns, necessarily behave like a stuck-at fault.

To resolve this shortcoming and avoid eliminating an actual defect location, the X-fault

model [65] can be employed to represent the fault effect. X-fault simulation is similar to

stuck-at simulation except that instead of modeling a faulty 0 or 1 at a defect location, an

unknown value (X) is assumed. Fault effects modeled as unknown values conservatively

propagate from a defect location through the circuit to the outputs. Outputs with an X

are assumed to be potentially erroneous. The X-value simulation of a candidate is said to

explain a failing pattern observed on the tester if the erroneous circuit outputs are subsumed

by the set of simulated outputs that possess an X value. The X-fault model has been utilized

to locate a defect in [65,281–284].

Candidates obtained from diagnosis are then typically ranked by comparing the response

of the candidate with the observed circuit response. For example, the STAT algorithm
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presented in [141] uses evidence theory [285, 286] to rank candidates. In [108, 115], the

candidates are ranked based on the amount of matches and mismatches between the observed

and the candidate. The ranking is rather straightforward. Each candidate is represented by

three metrics.

f(c) =

|EXPp|,
∑
p∈P

|TFSF p
o |,

∑
p∈TFSFp

|TPSF p
o |

 (2.1)

where, EXPp denotes the set of failing patterns explained by a candidate c, P denotes

the total number of test patterns, TFSF p
o represents the set of Tester-Fail-Simulation-Fail

(TFSF) outputs for pattern p, TPSF p
o represents the set of Tester-Pass-Simulation-Fail

(TPSF) outputs for pattern p, and TFSFp denotes the set of TFSF patterns.

The set of candidates are then sorted by decreasing |EXPp| and
∑

p∈P |TFSF p
o |, and

increasing
∑

p∈TFSFp
|TPSF p

o | (in that order).

On the other hand, the work of [138,139] represents each candidate as a set of four metrics

as follows.

f(c) =

(∑
p∈P

|TFSF p
o |,
∑
p∈P

|TPSF p
o |,
∑
p∈P

|TFSP p
o |,
∑
p∈P

min(|TFSF p
o |, |TPSF p

o |)

)
(2.2)

where, TFSP p
o represents the set of Tester-Fail-Simulation-Pass (TFSP) outputs for pat-

tern p.

The set of candidates are then sorted by increasing α, where α is the fourth element of

the tuple shown in Equation 2.2, decreasing
∑

p∈P |TFSF p
o |, and increasing

∑
p∈P |TPSF p

o |

and
∑

p∈P |TFSP p
o |.

Commercial diagnosis tools employ a scoring formula as well. While the diagnosis tools

offered by Cadence [287] and Synopsys [288] calculate the score of each candidate using
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Equation 2.3, the diagnosis software offered by Mentor Graphics [289] computes the score

for each candidate using Equation 2.4.

f(c) =

∑
p∈P |TFSF p

o |∑
p∈P |TFSF

p
o |+ β

∑
p∈P |TPSF

p
o |+

∑
p∈P |TFSP

p
o |

(0 < β ≤ 1) (2.3)

f(c) = 70
F

F + P
+ 10

F

F + 100P
+ 10

F

F + 1000P
+ 10F (2.4)

where,

F =
|EXPp|

maxi |EXPp(i)|
|
⋃

iEXPp(i)|
|FP |

P =
|TPSFp|
|PP |

where, maxi |EXPp(i)| is the maximum number of failing patterns explained by any

candidate, ∪iEXPp(i) is the set of failing patterns explained by all the candidates, FP is

the set of failing patterns in the applied test set, and PP is the set of passing patterns in

the applied test set.

The scoring methods described in [108, 115–117, 120, 123, 125–127, 129, 134, 135, 138, 139,

141–144, 290–292], including the expressions shown in Equations 2.1 through 2.4 are based

on a binary error fault model (i.e., where the error is assumed either 1 or 0). However, as

reasoned earlier, the use of such a fault model might yield an incorrect set of candidates

to begin with. Moreover, although the methods discussed in [65, 281–284] are based on

the X-fault model, but due to its inherent flexibility and generality in deriving candidates,

accuracy is achieved at the cost of resolution in those methods. More importantly, prior

scoring methods use various candidate-ranking heuristics to identify the best candidates.

They are independent of the type of the defect, and hence cannot capture the characteristics
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specific to each defect type. Additionally, prior ranking expressions are created by intuition

and domain knowledge, and hence are not guaranteed to work for every defect type, design

and/or process node.

Conversely, instead of using an ad-hoc scoring technique, a data-driven scoring model can

discover (or learn) latent correlations between the correct candidate and the tester response,

and possibly achieve better diagnosis accuracy and resolution. The scoring model can be

built separately for each defect type to capture its unique characteristics.

It is thus not surprising that machine learning (ML) has been applied in the area of test,

diagnosis and yield analysis. Specifically, in the area of diagnosis, prior work can be divided

into three categories. The first category exploits machine learning before diagnosis begins,

to make diagnosis more efficient [293–298]. For instance, the works of [294, 295] utilize a

random forest to assess the effectiveness of diagnosis a priori so that diagnosis resources

can be allocated smartly. In [296, 297], different ML algorithms such as linear regression,

the k-nearest neighbors algorithm, a support vector machine and a decision tree are used to

predict the precise amount of test data necessary to obtain an accurate diagnosis. The work

of [298] identifies a systematic defect from the test data by using hierarchical clustering.

The second category of methods applies machine learning during diagnosis, to make

diagnosis more effective. For instance, a multi-class support vector machine is employed

in [299, 300] to locate a defect in a failing chip, where each class represents a fan-out free

region in the design. A large design can be divided into smaller partitions to reduce memory

and runtime overhead. In [301], a random forest is used to predict whether a failing chip is

affected by a bridge defect. In that work, several features for each candidate are extracted

from the design and the test data. The features identified from a logic description of the

design aim to differentiate a bridge from other defect types. For example, one feature

checks if the bridged nets drive a parity cell; a short between the inputs of a parity cell

is equivalent to a stuck-at fault at its output, and thus adds ambiguity to bridge defect
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prediction. The features extracted from the test data indicate how well the simulation

response of a bridge candidate matches with the observed tester response. The approach

proposed in [302] accomplishes a similar objective of defect classification by training a neural

network. However, the methods presented in [301, 302] do not identify the defect location,

which means they do not improve candidate-level resolution. Machine learning has been

effective in diagnosing scan chain failures as well [303,304].

The third category of methods applies machine learning after diagnosis to aid subsequent

failure analysis and possibly accelerate yield learning [158,159,221–232,242,243,305–308]. For

example, a support vector machine is used in [306–308] on volume diagnosis data to improve

the resolution of each individual diagnosis. In addition to the typical features identified from

the test data such as the number of TFSF, TPSF and TFSP patterns and outputs, the novel

component of that work is the inclusion of physical features associated with defect excitation

such as the number of failing and passing neighborhood states for a candidate. The work

of [231, 232] attempts to find failure-causing layout geometries by clustering layout regions

suspected by diagnosis, which, in turn, can aid in identifying a potential systematic defect.

An expectation-maximization algorithm is employed in [242,243] to pinpoint the Design-for-

Manufacturing (DFM) rule whose violation causes a chip to fail, and in [225, 230, 305] to

find the failure root-cause distribution of the failing population. The latter has also been

estimated using statistical hypothesis testing in [159,227] and a supervised learning method

in [226].

Because LearnX applies machine learning during diagnosis, each aforementioned method

that is executed before diagnosis and after diagnosis complements LearnX. Except the work

presented in [299, 300], where resolution is limited to a fanout-free region and hence inad-

equate for subsequent failure analysis, prior methods that apply machine learning during

diagnosis do not improve resolution at a candidate-level, and hence strengthen LearnX. For

instance, the methods introduced in [301,302] predict the type of a defect, but not the defect
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candidate itself. Additionally, the approach proposed in [303,304] target scan chain defects,

whereas LearnX attempts to locate a defect that resides in a logic circuit. Thus, those

methods enhance LearnX as well.

To summarize, numerous diagnosis algorithms have been put forward over the years to

improve defect localization. Cause-effect based approaches build a database of simulated

faulty behaviors and compare them with the observed tester response. Effect-cause based

approaches deduce one or more defects by examining the observed circuit behavior. Modern

approaches incline towards employing a combination of these analyses to improve diagnosis

quality. Such an approach either uses a composite fault model or performs per-test diagnosis.

However, a defect that causes multiple faulty signals can escape diagnosis based on a binary

error model. Instead, the X-fault model can be used to represent the fault effect to avoid

discarding an actual defect location. Additionally, ad-hoc scoring heuristics are designed

in prior work to rank candidates to improve logical resolution, and are thus not assured to

work consistently and effectively. On the other hand, machine learning has been successfully

exploited in various areas of test, diagnosis and yield learning, and offers a viable alternative

for candidate prediction.

2.2 Diagnosis Methodology

An enhanced diagnosis procedure is extremely important for improving design, test and

manufacturing of a chip. It makes volume diagnosis, and subsequently, PFA more effective

in their ability to pinpoint and verify the most probable cause of yield loss. LearnX is a step

in that direction.

To address the shortcomings associated with different aspects of diagnosis discussed in

Section 2.1, this section describes a single-chip diagnosis methodology that we term LearnX.

Salient features of LearnX include:
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1. It is a physically-aware diagnosis approach that utilizes layout information to identify

not only the defect location but also its physical defect type (e.g., interconnect open,

interconnect bridge and cell-internal defect). It should be noted that LearnX com-

plements/strengthens approaches like [146, 162] where physical resolution is improved

using layout neighborhood analysis.

2. Instead of just using a deterministic fault model where an erroneous value of either

0 or 1 is assumed, it employs the X-fault model as well because it is immune to

error masking. As a result, it allows an error to propagate from a defect location

conservatively, which likely avoids removing a correct candidate.

3. It applies machine learning to generate a scoring model to uncover the hidden cor-

relations between a candidate and the tester response for identifying the candidate

that best represents a defect. Specifically, a supervised learning algorithm is used to

distinguish the correct candidate from incorrect ones.

4. It is applicable to defects exhibiting arbitrary misbehaviors.

Figure 2.2 shows the overview of LearnX. LearnX is a two-phase diagnosis methodology.

The first phase (detailed in Section 2.2.1) aims to identify a defect that mimics the behavior

of classic fault models such as the stuck-at, the bridge (specifically, the AND-type, the OR-

type and the dominating bridge) and the open fault model (where a net is assumed to be

stuck at the opposite value of the expected value for each pattern) through a set of strict

rules. These strict rules must ensure that (a) the actual defect behavior and location are

accurately captured by one of the identified candidates and (b) the minimum number of

candidates are reported.

The defects that do not satisfy these rules are diagnosed using the steps outlined in the

second phase of the methodology (detailed in Section 2.2.3). Such defects are identified
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Figure 2.2: An overview of the proposed diagnosis methodology, LearnX. The sequence of

steps in each phase are marked with a different color.

to have a non-trivial behavior and cannot be modeled using the fault models employed

in Phase 1. The two main steps in Phase 2 are (a) fault simulation using the X-fault

model [281], which aims to capture the complex behavior of a defect with relatively high

accuracy, and (b) machine learning classification to distinguish between the correct and

the incorrect candidates. Section 2.2.2 overviews the application of machine learning, and
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specifically, supervised learning, in the context of candidate classification.

2.2.1 Phase 1

The first step in Phase 1 of LearnX is path tracing [108–110]. For each failing pattern, path

tracing starts from each erroneous circuit output and traces back through the circuit towards

the inputs, deducing the potential defective (logical) signals along the way. Physical defect

locations corresponding to each implicated logical location are then extracted from layout

analysis. Specifically, the topology and the physical neighborhood of each net are examined

to identify probable open and bridge defect locations [146].

Next, for each failing pattern, a stuck-at fault at each candidate location is simulated to

find faults that explain that pattern. Sets of stuck-at faults are selected using the minimum

set-cover algorithm such that faults in each cover explain all the failing patterns.

Each candidate cover is classified into one of the following four fault types according to

its behavior.

1. Stuck: When the cover contains only one (stuck-at) fault, the cover is classified as

Stuck. Here, the candidate location is also checked against the pre-extracted set

of likely defect locations to examine if an open or a bridge defect is feasible at this

location.

2. Cell: If the cover consists of fault(s) (of either one or both polarities) at the output

of a standard cell, the cell driving the fault location is analyzed further to determine

whether a cell defect is possible. This analysis, referred to as the cell consistency check,

is based on the realistic assumption that excitation of a cell-internal defect is highly

correlated to the input logic values applied to a cell [132,142–144,171]. Cell consistency

check is discussed in detail in Section 4.1.2.
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3. Bridge: When the cover comprises of faults corresponding to two physically adjacent

nets, the candidate cover is classified as Bridge.

4. Open: If the cover consists of more than one fault affecting the same signal, i.e., if the

cover comprises of faults at the stem and/or one or more of its fan-out branches, the

cover is classified as Open. The cover is also validated against the physical feasibility of

being an open defect location. Additionally, physical neighbors of the net are monitored

to check the existence of a dominant driver.

Next, a set of features for each candidate cover is extracted according to its fault type.

Phase 1 particularly deals with defects that strongly reflect the characteristics of a stuck-

at, a cell, a wired-OR, a wired-AND, a dominant bridge fault, or an open fault (where a

net is assumed to be stuck at the opposite value of the expected value for each pattern).

The extracted features considered are summarized in Table 2.1. It should be noted that for

candidate covers of size greater than one, feature derivation is based on the stuck-at faults

that constitute the cover.

Based on the features shown in Table 2.1, rules are constructed for each fault type to

identify a defect that mimics the behavior of well-known fault models. The designed rules

are shown in Table 2.2. These rules are chosen based on the test and manufacturing domain

knowledge. Specifically, for fault type,

1. Stuck: The rules imply that the fault simulation response is identical to the observed

response on the tester.

2. Cell: The first two rules imply that each failing pattern is explained by the cell fault.

The third rule examines the cell for consistency. Specifically, if the sets of logic values

established on the cell inputs for Tester-Fail-Simulation-Fail (TFSF) and Tester-Pass-

Simulation-Fail (TPSF) are disjoint, then the candidate is deemed consistent.
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Fault type Feature Feature description∑
p∈P |TFSF p

o | Number of TFSF outputs∑
p∈P |TPSF p

o | Number of TPSF outputs

Stuck
∑

p∈P |TFSP p
o | Number of TFSP outputs∑

p∈P |TFSF p
o | Number of TFSF outputs∑

p∈P |TFSP p
o | Number of TFSP outputs⋃

p∈TFSFp
Sp
cell Set of failing states for the cell inputs

Cell
⋃

p∈TPSFp
Sp
cell Set of passing states for the cell inputs∑

p∈P |TFSF p
o | Number of TFSF outputs∑

p∈P |TFSP p
o | Number of TFSP outputs⋃

p∈TFSFp
Sp
bridge Set of failing states for the bridged nets

Bridge
⋃

p∈TPSFp
Sp
bridge Set of passing states for the bridged nets∑

p∈P |TFSF p
o | Number of TFSF outputs∑

p∈P |TPSF p
o | Number of TPSF outputs

Open
∑

p∈P |TFSP p
o | Number of TFSP outputs

P is the number of patterns in the applied test set.

TFSF p
o is the set of TFSF outputs for a pattern, p.

TPSF p
o is the set of TPSF outputs for a pattern, p.

TFSP p
o is the set of TFSP outputs for a pattern, p.

Sp
cell is the set of logic values established on the cell inputs for a pattern, p.

Sp
bridge is the set of logic values established on the bridged nets for a pattern, p.

Table 2.1: Features extracted from the test data for Phase 1.

3. Bridge: The first two rules imply that each failing pattern is explained by the faults

at the bridge location. The third rule ensures that the bridged nets have opposite

polarities for TFSF patterns, while the fourth rule confirms if the nets have same

polarities (i.e., bridge is not excited) for TPSF patterns.

4. Open: The rules imply that the fault simulation response and the observed circuit

response are the same.
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Fault type Rules∑
p∈P |TFSF p

o | =
∑

p∈P |TF p
o |∑

p∈P |TPSF p
o | = 0

Stuck
∑

p∈P |TFSP p
o | = 0∑

p∈P |TFSF p
o | =

∑
p∈P |TF p

o |∑
p∈P |TFSP p

o | = 0

Cell
⋃

p∈TFSFp
Sp
cell

⋂ ⋃
p∈TPSFp

Sp
cell = ∅∑

p∈P |TFSF p
o | =

∑
p∈P
|TF p

o |∑
p∈P |TFSP p

o | = 0⋃
p∈TFSFp

Sp
bridge ∈ {{01}, {10}, {01, 10}}

Bridge
⋃

p∈TPSFp
Sp
bridge ∈ {∅, {00}, {11}, {00, 11}}∑

p∈P |TFSF p
o | =

∑
p∈P |TF p

o |∑
p∈P |TPSF p

o | = 0

Open
∑

p∈P |TFSP p
o | = 0

Table 2.2: Rule criteria for Phase 1.

A candidate that satisfies the rules tabulated in Table 2.2 is deemed correct. If no

candidate of a failing chip complies with these rules, it is passed on to the second phase of

the diagnosis flow that especially deals with defects having complex behavior.

Before presenting Phase 2, Section 2.2.2 discusses how machine learning, and specifically,

supervised learning, can be leveraged for candidate classification.

2.2.2 Supervised Machine Learning

Figure 2.3 illustrates a high-level overview of how machine learning (supervised machine

learning, in particular) is applied here to accomplish candidate prediction.

The first step for building a machine learning model in this context is to generate vir-

tual fail logs. Numerous fail logs are created by injecting and simulating realistic defect



2.2. DIAGNOSIS METHODOLOGY 37

behaviors. Bridge, open and cell2 defects with known and arbitrary behaviors are considered

when creating virtual fail logs. Each fail log is then diagnosed by LearnX (up to the step

named “feature extraction” in Figure 2.2) to obtain an initial set of candidates. Features are

extracted for each candidate by comparing its simulation response with the observed tester

response (i.e., the simulation response of the injected defect). Because the location of an

injected defect is known a priori, each candidate is then labeled either as correct or incorrect.

The resulting dataset consisting of the features and label (i.e., whether a candidate is correct

or not) for each candidate is referred to as the training dataset.

A supervised learning algorithm examines the training dataset to build a prediction

model. Given an undiagnosed fail log, a set of candidates is obtained by following the

flow of Figure 2.2 up to the step named “feature extraction”. The generated prediction

model classifies each candidate as correct/incorrect. A commonly used machine learning

method called a random forest [309] is utilized in this work. A random forest can be used

for classification as well as regression. Because our objective is to find whether a candidate

represents an actual defect or not, we use a random forest as a classifier.

A random forest is an ensemble learning method that constructs a “forest” of decision

trees during training. A decision tree is built by labeling its each node with a decision or a

condition that is used to partition the tree into smaller data sets. The process of splitting the

tree continues until the data subset only contains the samples of the same class (or when some

other stopping criterion is met). Decision trees are straightforward and easy to interpret,

but face a few limitations. A decision tree is not robust; a small change in the training

data can lead to a large number of mispredictions. Moreover, it is prone to overfitting,

i.e., it does not generalize well from the training data. A random forest addresses these

shortcomings. A random forest is a combination of multiple trees, where each tree is trained

2Realistic cell-internal defects are simulated at a transistor-level to obtain a cell-level defect response. A
fail log is then produced by simulating the design with the modified cell function.
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Figure 2.3: An overview of how supervised machine learning is applied in LearnX.

with a different subset of training samples and a different subset of features. Classification

is (usually) performed by taking a majority vote over a set of classifications produced by the

forest of trees.

A learning algorithm, including a random forest, has certain parameters (called hyperpa-

rameters) that can be adjusted to optimize its prediction effectiveness. The hyperparameters

of a random forest include the number of trees, the depth of each tree and the random fea-

ture selected at each node for partitioning the tree. A common approach for hyperparameter

tuning is cross validation.
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Note that the training dataset is highly imbalanced. For each injected fault, there is only

one correct candidate. Therefore, it is entirely possible that the default classification/decision

threshold of 0.5 (which corresponds to majority voting for a random forest algorithm) is not

optimum. The analysis of a receiver operating characteristic (ROC) curve and a precision-

recall (PR) curve are two common techniques to derive the optimum threshold. A ROC

curve illustrates the variation of the true positive rate3 (also called the recall) with the false

positive rate4 for various thresholds. A PR curve, on the other hand, shows the trade-off

between precision, which is the proportion of the instances that are truly positive among the

ones classified as positive, and recall, for various thresholds. A PR curve is preferred over a

ROC curve when the total number of positive instances is far fewer than the total number

of negative instances [310]. Therefore, a PR curve is used here to find the optimum decision

threshold for a random forest.

Figure 2.4 illustrates the effect of increasing threshold on precision and recall. In this

work, the optimum threshold for each trained forest is found by maximizing the F1-score [310]

(plotted with a black dotted line in Figure 2.4), which is defined as the harmonic mean of

precision and recall.

2.2.3 Phase 2

Phase 2 begins similarly to Phase 1 with path tracing. Next, each candidate is simulated

for each failing pattern using the X-fault model [65]. The resulting simulation responses are

compared to the tester response to find candidates that explain that pattern. The X-value

simulation of a candidate is said to explain a failing pattern if the erroneous circuit outputs

are subsumed by the set of simulated outputs that possess an X value. Then, sets of X

faults are selected using the minimum set-cover algorithm such that faults in each cover

3True positive rate, or recall, is defined as the ratio of positive instances that are correctly classified.
4False positive rate is defined as the ratio of negative instances that are incorrectly classified.
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Figure 2.4: Selecting the optimum decision threshold that maximizes the harmonic average

between precision and recall (known as the F1-score).

collectively explain all the failing patterns.

Each candidate cover is further analyzed using stuck-at simulation. Specifically, for each

failing pattern, stuck-at faults at the locations corresponding to the X faults in a cover are

simulated. The stuck-at fault responses are then compared to the observed circuit response

to find the fault that best explains that pattern. Here, the criterion for best explaining a

pattern is that the hamming distance between the fault simulation response and observed

test response is minimum. Thus, each candidate, up to this point, is characterized by a cover

of X faults and a cover of stuck-at faults.

The next step in Phase 2 of LearnX is assigning a fault type (Stuck, Cell, Bridge,

and Open) to each candidate, which is accomplished in exactly the same way as Phase 1,

and is described in Section 2.2.1.

Next, a set of features for each candidate is extracted using test and manufacturing

domain knowledge. The pattern-level features are shown in Table 2.3, and the output-

level features are shown in Table 2.4. The extracted set of features are specific properties

of a candidate that aim to distinguish a correct candidate from an incorrect one. Each

feature value is calculated by comparing the test outputs/patterns observed on the tester
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Feature Feature description

|TFSFp|/|TFp| Ratio of the number of TFSF patterns to the
number of TF patterns

|TFSFp|/|SFp| Ratio of the number of TFSF patterns to the
number of SF patterns

|TPSFp|/|TPp| Ratio of the number of TPSF patterns to the
number of TP patterns

|TPSFp|/|SFp| Ratio of the number of TPSF patterns to the
number of SF patterns

|TFSPp|/|TFp| Ratio of the number of TFSP patterns to the
number of TF patterns

|TFSPp|/|SPp| Ratio of the number of TFSP patterns to the
number of SP patterns

Table 2.3: Pattern-level features extracted from the test data for Phase 2. Six features for

each type of simulation are identified, resulting in a total of 12 pattern-level features.

and predicted by simulation. Unlike other scoring methods in the literature, the features used

here are derived from both the X-fault and the stuck-at fault simulation of a candidate5, and

are thus believed to capture a more complete picture. In addition, the features extracted here

are more detailed. For example, instead of recording the total number of TPSF outputs over

patterns that fail during simulation, the number of TPSF outputs are counted separately

for TFSF and TPSF patterns (rows 3-4 and 9-10 in Table 2.4, respectively). Similarly, the

number of TFSP outputs are noted separately for TFSF and TFSP patterns as well.

The next step in Phase 2 is to classify whether a candidate is correct or not using machine

learning. As described in Section 2.2.2, a commonly used machine learning algorithm called

a random forest [309] is utilized for this purpose. Specifically, four different random forests

are generated – one for each fault type, with the objective of learning specific attributes

pertaining to each fault behavior. Figure 2.5 illustrates the overall flow for training four

5Twenty-two features listed in Tables 2.3 and 2.4 are extracted for each type of simulation, resulting in
a total of 44 features.
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Feature Feature description∑
p∈TFSFp

|TFSF p
o |/
∑

p∈P |TF p
o | Ratio of the number of TFSF outputs for

TFSF patterns to the number of TF outputs∑
p∈TFSFp

|TFSF p
o |/
∑

p∈P |SF p
o | Ratio of the number of TFSF outputs for

TFSF patterns to the number of SF outputs∑
p∈TFSFp

|TPSF p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSF outputs for

TFSF patterns to the number of TP outputs∑
p∈TFSFp

|TPSF p
o |/
∑

p∈P |SF p
o | Ratio of the number of TPSF outputs for

TFSF patterns to the number of SF outputs∑
p∈TFSFp

|TFSP p
o |/
∑

p∈P |TF p
o | Ratio of the number of TFSP outputs for

TFSF patterns to the number of TF outputs∑
p∈TFSFp

|TFSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TFSP outputs for

TFSF patterns to the number of SP outputs∑
p∈TFSFp

|TPSP p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSP outputs for

TFSF patterns to the number of TP outputs∑
p∈TFSFp

|TPSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TPSP outputs for

TFSF patterns to the number of SP outputs∑
p∈TPSFp

|TPSF p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSF outputs for

TPSF patterns to the number of TP outputs∑
p∈TPSFp

|TPSF p
o |/
∑

p∈P |SF p
o | Ratio of the number of TPSF outputs for

TPSF patterns to the number of SF outputs∑
p∈TPSFp

|TPSP p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSP outputs for

TPSF patterns to the number of TP outputs∑
p∈TPSFp

|TPSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TPSP outputs for

TPSF patterns to the number of SP outputs∑
p∈TFSPp

|TFSP p
o |/
∑

p∈P |TF p
o | Ratio of the number of TFSP outputs for

TFSP patterns to the number of TF outputs∑
p∈TFSPp

|TFSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TFSP outputs for

TFSP patterns to the number of SP outputs∑
p∈TFSPp

|TPSP p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSP outputs for

TFSP patterns to the number of TP outputs∑
p∈TFSPp

|TPSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TPSP outputs for

TFSP patterns to the number of SP outputs

Table 2.4: Output-level features extracted from the test data for Phase 2. Sixteen features

for each type of simulation are identified, resulting in a total of 32 output-level features.
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Figure 2.5: Overview of the flow employed for creating a machine learning model for each

fault type.

machine learning models, one for each fault type (specifically, Stuck, Cell, Bridge and

Open).

Each random forest is trained using virtual test responses generated through fault injec-

tion and simulation. Hyperparameters of each trained model are tuned using cross validation.

Because only one correct candidate exists for each virtual fail log, the training data is highly

imbalanced. Therefore, an optimum decision threshold for each random forest is derived

using a PR curve. The process of creating a learning model is explained in Section 2.2.2.

Each learned model inherently acts like a scoring framework, and assigns a probability

(or a “score”) to each defect candidate. The score assigned to each candidate represents the

likelihood of a candidate being correct. Any candidate whose score is more than the decision
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threshold is deemed a correct candidate.

To summarize, LearnX is a two-phase diagnosis methodology that characterizes a defect

with respect to its physical location and behavior. The first phase diagnoses a defect through

a set of rules that are aimed towards identifying a defect that mimics known fault behaviors.

Undiagnosed defects are then analyzed using the second phase, where machine learning

(along with the X-fault model that propagates error conservatively to avoid eliminating a

correct candidate) is applied to learn characteristics that differentiates correct candidates

from incorrect ones.

2.3 Experiments

This section describes two experiments to validate LearnX: one is a defect injection and

simulation experiment using four different designs (Section 2.3.2) and another that uses real

silicon failure data (Section 2.3.3).

The diagnostic metrics that are used to quantify the effectiveness of LearnX are discussed

in Section 2.3.1. In each experiment, the flow of Figure 2.2 is used to analyze a fail log, where

the steps illustrated in Figure 2.5 are used to create a learning model for each fault type

(namely, Stuck, Cell, Bridge and Open). To gauge the performance of LearnX, each fail

log is also analyzed with state-of-the-art commercial diagnosis, where only the top-scoring

candidates are considered at its output.

2.3.1 Diagnostic Metrics

A diagnosis methodology should ideally (a) report a single candidate that correctly represents

the defect residing in a failing chip, and (b) identify the type and characterize the logic

behavior of the reported candidate. It should be recalled that LearnX is the first stage

of our diagnosis methodology and concentrates on defect localization. LearnX reports a
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candidate at the logic level6. It filters out any candidate that is physically infeasible (e.g.,

a bridge defect between two nets that are physically distant from each other is unlikely). It

can also differentiate between a dominant bridge and an open defect candidate by tracking

the logic values of the neighbors of the “victim” net.

To that end, the following metrics are employed to evaluate the effectiveness of LearnX.

• Accuracy: A defect is said to be accurately diagnosed if its location matches with

the location of one of the reported candidates. Specifically, a cell defect is deemed

accurate if diagnosis reports the corresponding standard cell; an open defect is regarded

accurate if the net associated with the defect is correctly suspected; and a bridge defect

is considered accurate if both the bridged nets are correctly identified.

• Resolution: Resolution is defined as the number of defect candidates suspected by

diagnosis7.

• Home run: A diagnosis approach is said to hit a home run when an ideal diagnosis

outcome is returned, i.e., when a single correct candidate is reported. Specifically,

home run is equal to one when a defect is accurately identified and its resolution is

one, and zero otherwise.

2.3.2 Simulation Experiment

For assessing LearnX, a simulation-based experiment is performed using four different de-

signs. One is an Advanced Encryption Standard (AES) core that provides AES-128 encryp-

tion (henceforth referred to as “AES”) [311], the second design is an IWLS’05 benchmark

6PADLOC and NOIDA, the remaining two stages of our diagnosis methodology, further analyze the
output of LearnX. Specifically, PADLOC (NOIDA) focuses on localizing a back-end (front-end) defect at
the physical level, that is, it implicates a region in the design layout for a defect candidate, and derives its
precise logic behavior. PADLOC (NOIDA) is described in detail in Chapter 4 (Chapter 5).

7A candidate of type Bridge, which consists of two nets, is counted as a single candidate instead of two.
Thus, the corresponding resolution is equal to one.



2.3. EXPERIMENTS 46

that implements the Data Encryption Standard (DES) algorithm called des perf (hence-

forth referred to as “DES”), the third design is the L2 cache of the OpenSPARC T2 pro-

cessor (called “L2B”) [312], and the fourth design is an ITC’99 benchmark circuit called

“B18”8 [313]. Each circuit is synthesized, and placed and routed using a 45nm technology

library [314].

For each design, the following fault types are considered to model realistic defect behav-

iors.

1. Two-line bridge defects: A variety of bridge fault models including the wired-bridge

model (AND-type, OR-type and the dominating bridge) and the biased voting model

[72] are adopted to model a bridge defect. In the biased voting model, the voltage of

the bridged nets depends on the relative strengths of the standard cells driving the

bridged nets and the surrounding circuitry. This voltage can be interpreted as either

logic-1 or logic-0 based on the switching threshold of the receiver cell inputs. As a

result, an error can manifest at one of the nets for some failing patterns, at the other

bridged net for some other failing patterns, and even at both the nets simultaneously

for some failing patterns. Potential bridge net pairs are extracted from the design

layout via geometric proximity analysis [146].

2. Open defects: The voltage at the floating net is influenced by various factors such as

the driving strength of the net, the threshold voltages of the receiver cell inputs, and

logic values at the neighboring interconnects [145–155]. The voltage can be interpreted

differently by each receiver standard cell. Here, to model this unpredictable behavior,

an open defect is modeled in two ways; by creating a composite fault signature from

the stuck-at faults of both the polarities (at each defect location), and by assuming

that a (possibly different) subset of the fan-out branches are erroneous at an open

8B18 consists of two copies of a subset of the Viper processor and six copies of a subset of the Intel 80386
processor.
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defect location for each sensitizing pattern [147]. Open defect locations are extracted

from the layout by examining the topology of each net [146].

3. Cell defects: Open, bridge and transistor defects are injected into the layout of each

standard cell. (Defect injection procedure inside a cell is further explained in Section

5.4.2.) Each resulting cell-level defect response is then simulated at the logic level to

produce a “fail log”.

Each defect behavior is modeled using fault tuples [315,316]. For each design, a total of

7,000 virtual fail logs are created. A test set that achieves 100.0% stuck-at fault efficiency is

generated using a commercial ATPG tool. Each faulty circuit is simulated at the logic level

using FATSIM [317] to produce a “tester response”.

For each design, out of 7,000 fail logs, 1,000 are used to create the training dataset. Thus,

6,000 fail logs are used for the test dataset. Each fail log is diagnosed using LearnX and two

state-of-the-art commercial diagnosis tools. All three diagnosis techniques are evaluated on

the criteria described in Section 2.3.1.

Table 2.5 shows the number of fail logs diagnosed by Phase 1 and Phase 2 for each design

and for each injected defect type. It is clearly seen that each fail log associated with a cell

defect is diagnosed by Phase 1. The percentage of defects diagnosed by Phase 2 varies from

37.5% for L2B to 45.4% for AES. Specifically, the percentage of bridge defects analyzed by

Phase 2 varies from 56.3% for L2B to 64.0% for AES. The variation in the number of open

defects examined by Phase 2 is more; while Phase 2 inspects 56.2% of open defects for DES

and L2B, it analyzes 72.3% of open defects for AES. On average over all designs, 40.5% of

defects are diagnosed by Phase 2. Among these defects, 60.4% are bridge defects and 61.3%

are open defects.

Section 2.3.2.1 and Section 2.3.2.2 discuss the performance of Phase 1 and Phase 2,

respectively. Section 2.3.2.3 summarizes the overall effectiveness of LearnX.
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Phase 1 Phase 2

Design Bridge Open Cell Total Bridge Open Cell Total

AES 720 554 2000 3274 1280 1446 0 2726

DES 792 876 2000 3668 1208 1124 0 2332

L2B 875 877 2000 3752 1125 1123 0 2248

B18 783 792 2000 3575 1217 1208 0 2425

Table 2.5: Number of defects of each type diagnosed by Phase 1 and Phase 2 for four designs.

2.3.2.1 Phase 1

Figures 2.6 through 2.9 show the histograms of the resolution achieved by Phase 1 for the

four designs examined. The x-axis shows the resolution and the y-axis shows the number

of fail logs. The percentage of fail logs accurately diagnosed for a particular resolution is

shown at the top of its corresponding plot-bar. The top half of each figure (i.e., above y =

0) shows the distribution of the number of fail logs that are correctly diagnosed while the

bottom half shows the distribution of the inaccurately diagnosed fail logs. The percentage

of fail logs diagnosed accurately by each diagnosis technique is shown above the plot in each

figure.

Observations specific to each design are as follows.

1. AES: Figure 2.6 reveals that the average accuracy for Phase 1 is 98.2%, which is 0.9%

(15.0%) more than Tool 1 (Tool 2). In addition, Phase 1 attains perfect resolution for

44.5% of fail logs, of which 97.8% are correct. On the other hand, Tool 1 (Tool 2) is

97.7% (81.7%) correct among the defects diagnosed with perfect resolution. Moreover,

Phase 1 (and Tool 2) delivers a home run (i.e., returns an ideal diagnosis) for 43.5%

of fail logs, which is 4.1% better than Tool 1.

2. DES: It is observed from Figure 2.7 that Phase 1 correctly locates a defect for 99.1%

of fail logs, while Tool 1 (Tool 2) correctly locates a defect for 97.9% (81.3%) of fail
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Figure 2.6: Resolution distribution attained by LearnX (Phase 1) for the design “AES”.
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Figure 2.7: Resolution distribution attained by LearnX (Phase 1) for the design “DES”.

logs. Phase 1 attains an ideal resolution for 38.5% of fail logs, which is 6.5% better

than Tool 1. Additionally, Phase 1 hits a home run for 38.1% of fail logs, which is

9.2% higher than Tool 1. Although Phase 1 returns a single candidate for 40.4% fewer
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Figure 2.8: Resolution distribution attained by LearnX (Phase 1) for the design “L2B”.
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Figure 2.9: Resolution distribution attained by LearnX (Phase 1) for the design “B18”.

fail logs when compared to Tool 2, the likelihood of a single candidate being correct is

99.0% for Phase 1 and 78.8% for Tool 2.

3. L2B: Figure 2.8 shows that the accuracy achieved by Phase 1 is 99.3% and correctly
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diagnoses 2.4% (14.8%) more fail logs than Tool 1 (Tool 2). Phase 1 attains a resolution

of one for 69.0% of fail logs, an improvement of 27.1% over Tool 1 and 2X more often

than Tool 2. More importantly, Phase 1 delivers a home run for 68.6% of fail logs,

while Tool 1 (Tool 2) delivers for 52.9% (30.0%). Moreover, Phase 1 returns at most

three candidates for 92.0% of fail logs, which is 17.0% (13.6%) higher than Tool 1 (Tool

2).

4. B18: Figure 2.9 shows that the average accuracy for Phase 1 is 99.0%, which is an

improvement of 4.1% (18.1%) over Tool 1 (Tool 2). Phase 1 achieves perfect resolution

for 60.3% of fail logs with an accuracy of 99.0%. On the other hand, Tool 1 (Tool 2)

attains perfect resolution for 48.5% (44.5%) of fail logs, out of which 94.0% (78.9%)

are correct.

Table 2.6 reiterates the superior performance of LearnX (Phase 1). Table 2.6 reports the

accuracy and home run achieved by Phase 1 and commercial diagnosis, per defect type, for

each design. For each design, the improvement attained by Phase 1 over Tool 1 and Tool 2

is also shown in the table.

Phase 1 is observed to be especially effective in localizing a bridge defect, in comparison

to commercial diagnosis. The minimum accuracy improvement over Tool 1 and Tool 2 is

4.1% and 59.8%, respectively, for AES; the maximum improvement is 20.8% over Tool 1 and

2.4X over Tool 2 for B18. Additionally, the minimum enhancement in home run is 23.9%

over Tool 1 and 2X over Tool 2 for AES; the maximum enhancement is 28.9% and 11X over

Tool 1 and Tool 2, respectively, for L2B.

For open defects, the performance of Phase 1 seems to be similar to (or better than)

Tool 1 in terms of accuracy; while the accuracy for L2B is on par, Phase 1 is observed to be

the most effective for B18. More importantly, Phase 1 returns an ideal diagnosis more often

than Tool 1, where the improvement varies from 9.7% to 44.4%.
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Accuracy (%) Home run (%)

Design Diagnosis method Bridge Open Cell Bridge Open Cell

LearnX (Phase 1) 91.9 99.6 100.0 82.9 38.4 39.6

Tool 1 88.3 99.5 100.0 66.9 35.0 34.5

Tool 2 57.5 77.6 97.6 41.4 32.5 30.7

Improvement over Tool 1 4.1 0.1 0.0 23.9 9.7 29.0

AES Improvement over Tool 2 59.8 28.4 2.5 101.7 -38.6? 14.8

LearnX (Phase 1) 96.6 99.3 100.0 83.8 22.8 29.5

Tool 1 91.5 98.9 100.0 67.3 17.8 26.6

Tool 2 43.4 84.6 94.9 35.7 73.6 26.9

Improvement over Tool 1 5.6 0.4 0.0 24.5 28.1 10.9

DES Improvement over Tool 2 122.6 17.4 5.4 134.7 -69.0† 9.7

LearnX (Phase 1) 97.8 99.3 100.0 93.7 61.8 60.6

Tool 1 87.4 99.3 100.0 72.7 51.9 44.6

Tool 2 49.6 96.8 98.2 8.5 36.0 36.8

Improvement over Tool 1 11.8 0.0 0.0 28.9 19.1 35.9

L2B Improvement over Tool 2 97.2 2.6 1.8 1002.4 71.7 64.7

LearnX (Phase 1) 95.8 99.7 100.0 89.9 48.9 53

Tool 1 79.3 98.2 100.0 70.2 32.2 41.3

Tool 2 39.8 94.3 96.8 27.6 46.5 32.6

Improvement over Tool 1 20.8 1.5 0.0 28.1 44.4 28.3

B18 Improvement over Tool 2 140.7 5.7 3.2 225.7 5.2 62.6

?Although Phase 1 seemingly returns a single correct candidate for 38.6% fewer fail
logs than Tool 2, the likelihood of a candidate being correct when a single candidate
is reported is 99.0% for Phase 1, and 75.1% for Tool 2. Thus, Phase 1 returns a
correct single candidate much more often.
†Although it appears that Phase 1 returns a single correct candidate for 69.0%
fewer fail logs than Tool 2, the possibility of a candidate being correct when a single
candidate is reported is 97.0% for Phase 1, and 85.1% for Tool 2. Thus, Phase 1
returns a correct single candidate more often.

Table 2.6: Accuracy and home run for each defect type achieved by LearnX (Phase 1) and

two commercial tools for each of the four designs analyzed.
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One point of note is the amount of variation seen in the number of ideal diagnoses

returned by Phase 1 and Tool 2 for open defects. While Tool 2 appears to be better for AES

and DES, Phase 1 is more effective for L2B and B18. However, the accuracy for Tool 2 is

much lower. Further investigation reveals that a significant number of diagnoses are incorrect

when a single candidate is returned by Tool 2. In other words, the probability of a single

candidate being correct is lower for Tool 2. Specifically, for AES, Tool 2 diagnoses 75.1%

of fail logs correctly with a resolution of one, while Phase 1 diagnoses 99.0%. Similarly, for

DES, among the fail logs diagnosed with perfect resolution, 85.1% of fail logs are accurate

when Tool 2 is used while 97.0% of fail logs are accurate when Phase 1 is used. A subsequent

failure analysis method can be misguided if a supposedly ideal diagnosis is incorrect. As a

result, significant PFA resources can be exhausted/misused, likely hindering yield learning.

For cell defects, Phase 1 is more productive than Tool 1 and Tool 2 as well. In addition

to correctly locating a defect for each fail log, Phase 1 hits a home run more often than Tool

1 and Tool 2 for each design. The range of the improvement in home run obtained by Phase

1 over Tool 1 is 10.0% to 35.9%, and over Tool 2 is 9.7% to 64.7%.

2.3.2.2 Phase 2

Figures 2.10 through 2.13 show the histograms of the resolution achieved by Phase 2 for the

four designs examined. Observations specific to each design are as follows.

1. AES: It can be observed from Figure 2.10 that Phase 2 correctly locates a defect for

97.7% of fail logs, while Tool 1 (Tool 2) correctly locates a defect for 88.3% (62.7%)

of fail logs. Phase 2 attains an ideal resolution for 98.4% of fail logs, which is 2.2X

times Tool 1 and 40.8% better than Tool 2. Additionally, Phase 2 hits a home run

for 96.4% of fail logs, which is 2.4X (2.1X) more often than Tool 1 (Tool 2). Further

investigation reveals that Phase 2 returns at most four candidates for all the fail logs.
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Figure 2.10: Resolution distribution attained by LearnX (Phase 2) for the design “AES”.
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Figure 2.11: Resolution distribution attained by LearnX (Phase 2) for the design “DES”.

2. DES: Figure 2.11 reveals that the average accuracy for LearnX (Phase 2) is 96.4%,

which is 36.0% (80.5%) more than Tool 1 (Tool 2). In addition, Phase 2 attains perfect

resolution for 94.5% of fail logs, of which 96.3% identify the correct candidate. On the



2.3. EXPERIMENTS 55

1 2 3 4-5 6-8 >8
Resolution (No. of defect candidates)

500

0

500

1000

1500

2000

No
. o

f f
ai

l l
og

s

92

78 67 100

66

64
74 88 71 53

54 68 84 93
87 73

Inaccuracy: 9.6%
Accuracy: 90.4%

Inaccuracy: 34.1%
Accuracy: 65.9%

Inaccuracy: 27.3%
Accuracy: 72.7%

LearnX Tool 1 Tool 2

Figure 2.12: Resolution distribution attained by LearnX (Phase 2) for the design “L2B”.
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Figure 2.13: Resolution distribution attained by LearnX (Phase 2) for the design “B18”.

other hand, Tool 1 (Tool 2) is 61.3% (47.8%) correct among the defects diagnosed

with perfect resolution. Moreover, Phase 2 delivers a home run (i.e., returns an ideal

diagnosis) for 91.0% of fail logs, which is 3.7X (2.9X) times Tool 1 (Tool 2). Further
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analysis shows that Phase 2 returns at most three candidates for all the fail logs.

3. L2B: Figure 2.12 shows that the average accuracy for Phase 2 is 90.4%, which is

an improvement of 37.2% (24.3%) over Tool 1 (Tool 2). LearnX achieves an ideal

resolution for 92.1% of fail logs with an accuracy of 91.5%. On the other hand, Tool

1 (Tool 2) attains perfect resolution for 69.5% (28.5%) of fail logs, out of which 65.5%

(53.7%) identify the correct candidate. Additionally, Phase 2 reports at most five

candidates for all the fail logs.

4. B18: Figure 2.13 shows that the accuracy achieved by Phase 2 is 94.9% and correctly

diagnoses 29.5% (41.6%) more fail logs than Tool 1 (Tool 2). Phase 2 attains a res-

olution of one for 93.0% of fail logs, which is an improvement of 80.2% over Tool 1

and 2.8X more often than Tool 2. More importantly, Phase 2 delivers a home run for

88.2% of fail logs, while Tool 1 (Tool 2) delivers for 32.9% (17.0%). Moreover, Phase 2

returns at most three candidates for all the fail logs (except one, where the resolution

is six).

Table 2.7 reiterates the effectiveness of the combination of the X-fault model and machine

learning to pinpoint the correct candidate in Phase 2. Table 2.7 shows the accuracy and

home run attained by LearnX (Phase 2) and commercial diagnosis, per defect type, for each

design. For each design, the enhancement of LearnX (Phase 2) over Tool 1 and Tool 2 is

also reported in the table.

It is evident from Table 2.7 that the improvement in accuracy and home run over com-

mercial diagnosis is significant for both defect types9.

For bridge defects, the accuracy improvement obtained by Phase 2 over Tool 1 varies

from 23.2% to 91.1%. The minimum improvement in accuracy over Tool 2 is 62.7% (for

L2B); in addition, Phase 2 correctly diagnoses a bridge defect at most 2.6X times Tool 2

9Each cell defect is diagnosed successfully in Phase 1 and hence, none is analyzed in Phase 2.
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Accuracy (%) Home run (%)

Design Diagnosis method Bridge Open Bridge Open

LearnX (Phase 2) 96.6 98.5 95.5 97.2

Tool 1 78.4 97.0 14.1 63.2

Tool 2 37.4 85.1 21.1 68.0

Improvement over Tool 1 23.2 1.5 577.3 53.3

AES Improvement over Tool 2 158.3 15.7 352.6 42.9

LearnX (Phase 2) 94.3 98.6 91.7 90.3

Tool 1 53.0 90.2 10.5 38.7

Tool 2 38.4 69.6 25.0 37.8

Improvement over Tool 1 77.9 9.3 773.3 133.3

DES Improvement over Tool 2 145.6 41.7 266.8 138.9

LearnX (Phase 2) 90.6 90.3 89.7 79.0

Tool 1 47.4 84.3 21.7 69.3

Tool 2 55.7 89.7 5.7 24.9

Improvement over Tool 1 91.1 7.1 313.4 14.0

L2B Improvement over Tool 2 62.7 0.7 1473.7 217.3

LearnX (Phase 2) 94.7 95.1 93.1 83.4

Tool 1 60.6 86.1 15.0 51.0

Tool 2 40.2 94.0 7.2 26.9

Improvement over Tool 1 56.3 10.5 520.7 63.5

B18 Improvement over Tool 2 135.6 1.2 1193.1 210.0

Table 2.7: Accuracy and home run for each defect type achieved by LearnX (Phase 2) and

two commercial tools for each of the four designs analyzed.

(for AES). The number of ideal diagnoses reported by Phase 2, in comparison to commercial

diagnosis, is more impressive. Phase 2 hits a home run at least 4.1X (3.7X) times Tool 1

(Tool 2), and at most 8.7X (15.7X) times Tool 1 (Tool 2).

For open defects, the range of the enhancement in accuracy over Tool 1 (Tool 2) is 1.5%

to 10.5% (0.7% to 41.7%). Phase 2 delivers at least 14.0% (42.9%) more home runs than

Tool 1 (Tool 2), and up to 2.3X (3.2X) more often than Tool 1 (Tool 2).
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Furthermore, Table 2.7 reveals that Phase 2 is relatively more effective in identifying a

bridge defect than an open defect. Specifically, Phase 2 correctly diagnoses 57.1% (1.2X)

more fail logs associated with a bridge defect than Tool 1 (Tool 2). On the other hand, the

accuracy (that is averaged over the four designs analyzed) for Phase 2 for open defects is

95.6%, an improvement of 7.0% (13.0%) over Tool 1 (Tool 2). In addition, Phase 2 delivers

a home run 6X more often than Tool 1 and Tool 2 for bridge defects, and 57.1% (2.1X) more

than Tool 1 (Tool 2).

2.3.2.3 Results Summary

Experiment results presented in Sections 2.3.2.1 and 2.3.2.2 demonstrate the superior perfor-

mance of Phase 1 and Phase 2, respectively. This section summarizes the overall effectiveness

of LearnX in comparison to commercial diagnosis, irrespective of its phases.

Figure 2.14 illustrates the accuracy achieved by LearnX for the four designs examined

and compares it with commercial diagnosis. The horizontal axis shows the accuracy for each

design and for each diagnosis approach. The vertical axis represents each design. Four sets

of values/percentages, one for each design, show the improvement in accuracy attained by

LearnX over Tool 1 and Tool 2.

It can be seen from Figure 2.14 that the maximum improvement over Tool 1 is observed

for B18 (specifically, 12.7%), and over Tool 2 for DES (specifically, 39.0%). The accuracy

for LearnX is at least 96.0% (for L2B) and at most 98.0% (for DES). On the other hand, the

accuracy for Tool 1 ranges from 85.3% to 93.2%, and Tool 2 ranges from 70.5% to 81.3%.

Figure 2.15 highlights the number of ideal diagnoses reported by LearnX and commercial

diagnosis for the four designs examined. The home run attained by LearnX varies from

58.7% to 74.5%. The improvement in the number of ideal diagnoses over Tool 1 (Tool 2) is

maximum for DES (L2B), where LearnX returns an ideal diagnosis for 91.2% more fail logs

when compared to Tool 1, and up to 3X times Tool 2.
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Figure 2.14: Accuracy achieved by LearnX and commercial diagnosis.
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Figure 2.15: Home run achieved by LearnX and commercial diagnosis.

High accuracy and home run imply that there is less ambiguity introduced in the diagnosis

results. In other words, there is less uncertainty of whether a candidate represents a defect or
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not. Consequently, volume diagnosis can estimate a failure root cause with more assurance,

which could lead to higher PFA success rate, and possibly, accelerate yield learning.

When the runtime (wall clock time or elapsed real time, to be precise) of LearnX is

compared with commercial diagnosis, it is observed that, on average, LearnX is 27.4% slower

than Tool 1 and 44.8% faster than Tool 2. This comparison, however, does not include

the one-time cost (per design) of training the machine learning models. For instance, for

the largest design, AES, it takes 2.2 hours to create all the four machine learning models,

out of which, a majority of time (89.4%) is consumed for generating the training datasets.

That being said, it should be noted that LearnX is implemented here to demonstrate its

effectiveness (in terms of the diagnostic metrics discussed in Section 2.3.1) instead of its

runtime efficiency. One of the future goals is to optimize the runtime of LearnX.

2.3.3 Silicon Experiment

The significance of LearnX is further demonstrated using an industrial design fabricated in

an advanced process node. The setup for the conducted experiment is described in Section

2.3.3.1. It conveys basic information about the design and the silicon failure data that is

available to study the effectiveness of LearnX. The results of the experiment are discussed

in Section 2.3.3.2 to explore how LearnX fares in the real world.

2.3.3.1 Setup

LearnX is evaluated using an industrial chip that is manufactured in a 14nm technology.

The chip measures 12 mm2 in size and is divided into 12 partitions. Each partition consists

of approximately 3.5 million gates. Each partition is tested using approximately 825 test

patterns10 that have been generated using a commercial ATPG software. Fail logs corre-

sponding to 2,400 failing chips are analyzed in this experiment. Thirty-six failing chips have

10The size of the test set obtained for each partition ranges from 806 to 857.
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been PFA’ed.

The LearnX flow illustrated in Figure 2.2 is applied to each fail log. Each fail log is also

analyzed by commercial diagnosis11, where only the top-scoring candidates are considered as

its output. Each diagnosis technique is gauged using the diagnosis metrics defined in Section

2.3.1. The resolution for each diagnosis method is calculated for each failing chip, while the

accuracy and home run are also compared for the 36 PFA’ed chips.

2.3.3.2 Results

Figure 2.16 reports the distribution of resolution produced by LearnX and commercial diag-

nosis for 2,400 fail logs. The horizontal axis shows the resolution and the vertical axis shows

the number of fail logs. It is observed from Figure 2.16 that among 2,400 fail logs, LearnX

returns an ideal resolution for 1,127 (46.9%) fail logs. On the other hand, commercial diag-

nosis returns a resolution of one for 576 (24.0%) fail logs, which is almost half of LearnX. In

addition, LearnX reports a resolution of at most three for 1,805 (75.1%) fail logs, which is

59.0% more than commercial diagnosis.

Figure 2.17 reports the resolution for each fail log obtained by each diagnosis method.

The figure is divided into two plots to better visualize the variation in the resolution. The

x-axis represents the fail logs and the y-axis shows the attained resolution in each plot.

Figure 2.17(a) sorts the fail logs by commercial diagnosis resolution, and includes the fail

logs whose commercial diagnosis resolution is less than 15. Figure 2.17(b) sorts the fail logs

for which commercial diagnosis returns at least 15 candidates. Note that the scale of both

the axes in both the plots is different. The x-axis varies from 0 to 2086 in Figure 2.17(a),

and from 2087 to 2399 in Figure 2.17(b). The y-axis ranges from 1 to 14 in Figure 2.17(a),

and from 15 to 319 in Figure 2.17(b).

It is clearly seen from Figure 2.17 that the resolution for LearnX is better than or identical

11The available data conforms to Tool 1 and hence, the diagnosis quality attained by LearnX is compared
with Tool 1 only.
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Figure 2.16: Resolution distribution attained by LearnX for 2,400 silicon fail logs.

to commercial diagnosis. Specifically, LearnX returns 4.3 candidates per fail log, on average,

while commercial diagnosis returns 11.4 candidates. This means that LearnX reports 7.1

or 62.3% fewer candidates per fail log. The maximum resolution obtained for commercial

diagnosis is 319, which is three times the maximum resolution for LearnX. Figure 2.17 further

shows that LearnX enhances the resolution for 1,716 (71.5%) fail logs. In addition, LearnX

improves the resolution by 40.8%, if averaged over all the fail logs; the average improvement

goes up to 57.1%, if the resolution improvement is averaged over the fail logs where resolution

is indeed enhanced.

Among 2,400 failing chips, 36 failing chips are PFA’ed. Out of these 36 failing chips, 19

are suspected to have a single defect. The rest of the 17 chips are analyzed by MD-LearnX

in Section 3.3.3.

PFA confirms that LearnX (and commercial diagnosis) correctly pinpoints the correct

candidate for each of the 19 failing chips. More importantly, LearnX achieves superior

resolution and home run without sacrificing accuracy. Figure 2.18 reports the resolution
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Figure 2.17: Resolution comparison for LearnX and commercial diagnosis for each silicon

fail log. The fail logs are divided in two groups based on commercial diagnosis resolution for

an aesthetic reason: (a) fail logs with commercial diagnosis resolution of less than 15, and

(b) fail logs with commercial diagnosis resolution of at least 15.
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Figure 2.18: Resolution comparison for LearnX and commercial diagnosis for each failing

chip that is PFA’ed and suspected to have a single defect.

obtained by each diagnosis method for each of the 19 failing chips.

Figure 2.18 reveals that LearnX returns fewer defect candidates than commercial diag-

nosis for 10 (52.6%) fail logs, while returning the same candidates for other fail logs, without

losing accuracy. On average, LearnX identifies 1.8 candidates per fail log, which is 2.4 fewer

candidates than commercial diagnosis. The maximum resolution attained by commercial

diagnosis is 17, which is more than four times the maximum resolution for LearnX. In addi-

tion, LearnX improves the resolution by 30.4%, if averaged over all the fail logs, and 57.8%

if averaged over the ones where resolution is enhanced. Furthermore, LearnX hits a home

run for 52.9% of fail logs, i.e., 12.6% more fail logs, than commercial diagnosis.
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2.4 Conclusion

A single-chip diagnosis methodology called LearnX is described that characterizes a defect

with respect to its physical location and behavior. LearnX is a two-phase methodology.

In the first phase, defects that mimic traditional fault models are identified using a set of

rules derived from test data. In the second phase, a machine learning classifier is created

that differentiates correct and incorrect candidates by learning from the candidate features

extracted from the test data. The features are derived by comparing the tester response

with the fault simulation response of a candidate. In contrast to a traditional diagnosis

approach, the X-fault model, in addition to the stuck-at fault model, is employed to capture

a comprehensive depiction of the impact of a defect on the circuit.

Several experiments are conducted to evaluate the performance of LearnX. Simulation-

based experiments are carried out for four different designs with 6,000 faulty circuits each

(that are created using a variety of realistic defect behaviors including byzantine bridges and

opens). The experiments demonstrate the potential of LearnX. LearnX achieves an average

accuracy of 97.3%, while two state-of-the-art commercial diagnosis tools achieve 88.1% and

76.0%. Thus, LearnX identifies the correct candidate for at least 9.2% more fail logs than

commercial diagnosis.

In addition, LearnX returns a single candidate for 70.1% fail logs, an improvement of

46.7% and 41.5% over commercial tools. When the number of diagnoses with high resolution

(i.e., when at most three candidates are reported) are analyzed, it is observed that LearnX

returns a resolution of three or less for a majority of fail logs (specifically, 89.3%). More

importantly, LearnX hits a home run (i.e., when a single candidate is identified correctly)

significantly more often than commercial diagnosis. LearnX delivers a home run for 67.9%

of fail logs, which is 67.5% better than one commercial tool and almost double the second

commercial tool.
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Moreover, significance of LearnX is substantiated by diagnosing 2,400 silicon fail logs from

a design fabricated in an advanced process technology. It is revealed that LearnX returns an

ideal resolution for 46.9% fail logs, which is almost twice as often as commercial diagnosis.

Additionally, LearnX returns 7.1 fewer candidates per fail log, on average. LearnX enhances

the resolution for 71.5% of fail logs, and achieves an average resolution improvement of

40.8%.

The effectiveness of LearnX is further corroborated by inspecting 19 failing chips that

are PFA’ed. LearnX is able to correctly locate a defect in each failing chip, while

reporting fewer candidates than state-of-the-art commercial diagnosis. LearnX

returns fewer defect candidates than commercial diagnosis for 52.6% fail logs. On average,

LearnX identifies 2.4 fewer candidates per fail log. Furthermore, LearnX delivers a home

run for 52.9% of fail logs, which is 12.6% better than commercial diagnosis.

High diagnosis resolution and accuracy mean that a subsequently applied volume diag-

nosis approach will generate a more precise pareto of probable yield loss failure mechanisms,

thus likely enabling rapid yield learning.
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Chapter 3

MD-LearnX: A

Deterministic-Statistical Multiple

Defect Diagnosis Methodology

Software diagnosis is a process of locating and characterizing a defect in a failing chip. It

is the cornerstone of failure analysis that consequently enables yield learning and monitor-

ing. Chapter 2 elucidates LearnX, a diagnosis methodology that focuses on pinpointing the

location of a defect (and its physical fault type) in a failing chip. LearnX is a two-phase

physically-aware approach. In the first phase, a defect that resembles a traditional fault

model is identified through a set of strict rules. In the second phase, supervised machine

learning is used to determine the correct candidate.

Results presented in Section 2.3 demonstrate the superior performance of LearnX for

single-defect diagnosis when compared with leading-edge commercial diagnosis. However,

with decreasing feature sizes, and increasing interconnect density and manufacturing com-

plexity, more chips are failing due to multiple defects, particularly when systematic defects

(that arise from unforeseeable process-design interactions) are the dominant yield limiters
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Process Failing chips diagnosed No. of

Chip type node (nm) with multiple defects (%) failing chips

High-volume chip 55 11.7 1,201

Test chip 14 15.6 1,375

Test chip 28 29.8 1,952

Test chip 14 32.2 11,727

High-volume chip 130 32.6 328

High-volume chip 90 35.5 9,536

Test chip 110 37.7 5,416

High-volume chip [136,137] 130 41.0 453

High-volume chip – 49.8 353

Test chip 28 53.9 167

[318] 55 60.0 209

Table 3.1: Summary of silicon test data from chips manufactured across various process

nodes and organizations highlighting the percentage of failing chips affected by multiple

defects.

(either in the early stages of yield learning or due to yield excursion).

To evidence the importance of multiple-defect diagnosis, silicon test data from tens of

thousands of failing chips manufactured by various organizations in process nodes ranging

from 130nm to 14nm is collected and analyzed. The results are summarized in Table 3.1.

The first column (“Chip type”) specifies whether the silicon data is obtained for a test chip

or high-volume manufacturing chip. The second column shows the process node in which

a chip is fabricated. Each fail log that is obtained is examined using commercial diagnosis.

The third column shows the percentage of failing chips that are suspected to be affected

with more than one defect. The fourth column (“No. of failing chips”) specifies the size

of the dataset analyzed. The table is sorted by the third column in ascending order of the

percentage of failing chips diagnosed with more than one defect.

Table 3.1 reveals that the frequency of a failing chip diagnosed with multiple defects

is significant. Specifically, 33.1% of failing chips exhibit behavior consistent with multiple
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defects, on average. Moreover, for the dataset corresponding to the last row, diagnosis

suggests that there is a strong indication of multiple defects for 60.0% of the failing chips.

Increasing number of chips with multiple defects thus warrants the need of a diagnosis

technique that is capable to adequately identify multiple defects.

To that end, a single-chip diagnosis methodology that we term MD-LearnX is developed

and described in this chapter. It builds on LearnX (hence the name “MD-LearnX”, where

“MD” indicates multiple defects) to effectively tackle the task of locating more than one

defect, and in turn, aid in accelerating the design and process development.

MD-LearnX is a three phase, physically-aware diagnosis approach. The first phase iden-

tifies a defect that mimics well-known fault models. The second and the third phases utilize

the X-fault model and machine learning to identify correct candidates. While the second

phase focuses on identifying multiple non-interacting defects, the third phase is proficient in

finding multiple interacting defects.

LearnX/MD-LearnX serves as the foundation for the subsequent diagnosis methods,

called PADLOC and NOIDA, developed in this dissertation. The goal of PADLOC and

NOIDA is to physically localize, and logically characterize a back-end and a front-end de-

fect, respectively. The performance of LearnX/MD-LearnX, thus, has a cascade effect on

the effectiveness of PADLOC and NOIDA – inadequate defect localization by LearnX/MD-

LearnX causes incompetent defect characterization by PADLOC and NOIDA. Thus, the

quality of defect localization achieved by LearnX/MD-LearnX is critical to the success of

our overall diagnosis methodology. Results reported in Section 2.3 show that LearnX outper-

forms state-of-the-art commercial diagnosis for single defects. MD-LearnX aims to replicate

the same for multiple defects.

The rest of the chapter is organized as follows. Section 3.1 reviews prior work related to

multiple-defect diagnosis and motivates MD-LearnX. Section 3.2 provides a detailed overview

of the three phases of MD-LearnX to locate multiple defects in a failing chip. The efficacy of
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LearnX is demonstrated via several experiments that are described in Section 3.3. Finally,

Section 3.4 summarizes the overall contributions of this work.

3.1 Prior Work

Several methods have been suggested over the years to examine multiple defects. Compared

to the diagnosis of a single defect, characterizing each defect in a chip affected by multiple

defects is challenging, primarily due to two reasons. First, erroneous values propagating from

more than one defect location can interact with each other, resulting in either error masking

(where one error blocks the propagation of another) or error unmasking (where one error

assists the propagation of another). Figure 3.1 illustrates error masking and unmasking. In

Figure 3.1(a), the error on input B of a 2-input AND cell blocks the propagation of error

manifested at input A. In Figure 3.1(b), the error on input B assists the propagation of

error manifested at input A.

The second challenge in multiple-defect diagnosis is that the solution search space is

exponential in design size and defect multiplicity (unknown beforehand), which makes finding

an optimum solution extremely difficult.

Multiple-defect diagnosis approaches in the literature can be divided into different cate-

gories. The first category of methods (e.g., [115, 131–144, 319]) perform per-test diagnosis.

0/1

1/0

0/0
0/1

0/1

0/1A

B
Z

A

B
Z

(a) (b)

Figure 3.1: Example to illustrate (a) error masking and (b) unmasking.
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Such methods have been reviewed in Section 2.1. Essentially, those methods rely on iden-

tifying a defect via failing patterns that can be explained by a single stuck-at fault. Such

failing patterns are called SLAT (Single-Location-At-a-Time) [136, 137] patterns, or type-1

patterns [320]. In those methods, an initial set of candidates that explain each type-1 pattern

is first derived. Then, a final set of candidates that collectively explain all the type-1 patterns

is identified using a set-cover and/or an ad-hoc candidate-scoring technique. The drawback

of those methods is that they are successful only when multiple defects affect a failing chip

such that only one of the defect locations is sensitized for a failing pattern. However, such

patterns can be limited and/or find an incorrect location due to a considerable number of

interactions among errors manifesting at multiple defect locations.

In addition to considering type-1 patterns, the approaches presented in [174, 318, 321–

325] also take into account failing patterns where (binary) errors propagating from multiple

locations do not interfere with each other. Such failing patterns are referred to as type-

2 patterns [320]. Thus, those methods restrict themselves in identifying multiple, non-

interacting defects. However, as defect multiplicity increases, the likelihood of error masking

or unmasking increases. As a consequence, the number of type-1 and type-2 patterns may

decrease and may not be sufficient for an effective diagnosis.

The approach presented in [174,324,325] goes a step further. That approach begins with

deriving a set of candidates (stuck-at faults, in particular) that collectively explains each

type-1 and type-2 pattern. Candidate covers of minimum size are then analyzed with type-3

patterns. (Any failing pattern that is neither type-1 nor type-2 is designated as a type-3

pattern.) A scoring procedure is then designed to rank the covers.

The second category of methods follows an incremental approach to diagnose multiple

defects [320, 326–329]. In incremental diagnosis, stuck-at faults that explain each type-1

pattern are first identified. Each stuck-at fault in then injected in the circuit, one by one, to

produce a modified circuit that corresponds to each identified fault. The procedure to find
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type-1 patterns and the corresponding set of faults that explain each type-1 pattern is again

applied to each modified circuit. The process is repeated until all the failing patterns have

been explained. Various heuristics have been put forward to accelerate the aforementioned

approach. For example, each stuck-at fault in an iteration can be ranked based on the

number of failing and passing patterns it explains; the highest ranked fault can be then

selected to alter the circuit for the next iteration. However, an inaccurate solution may be

derived if an incorrect fault is chosen at any iteration. In addition, incremental diagnosis

performs numerous multiple fault simulations. As a result, an incremental diagnosis method

does not scale well with design size and defect multiplicity.

Contrary to the extensive enumeration and simulation of all possible sets of faults (ex-

ample methods that implement such an approach include [330–332]), the third category of

methods guide their effort in exploring the exponential search space via optimization meth-

ods [333–336]. For example, a Particle Swarm Optimization (PSO) algorithm is employed

in [333, 334] to locate multiple defects. However, PSO does not guarantee that an optimal

solution will be identified. In addition, numerous multiple fault simulations are still needed

to search the solution space and hence, such methods are impractical for large industrial

designs.

The fourth category of methods avoids explicit fault simulation to identify multiple de-

fects [337–343]. For each failing pattern, each candidate location in a design is scored based

on its ability to propagate an error to a design output while considering error masking and

unmasking. Each method then, iteratively and greedily, selects the most likely set of defect

locations based on a candidate ranking procedure.

For example, the approach presented in [337] tracks the number of failing outputs ex-

plained by each fault in the circuit for each failing pattern using a procedure similar to path

tracing, while taking error masking and unmasking into account. The fault with the high-

est score, i.e., the fault that explains the most number of failing outputs across all failing
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patterns, is then selected as a candidate. The scores of the remaining faults are updated to

find a candidate that can explain the most number of remaining unexplained failing outputs.

This process continues until all the outputs have been explained. However, in any iteration,

if there are multiple faults that have the same score, they are analyzed separately. As a

result, the number of such analyses can increase exponentially in each iteration, rendering

that approach nonviable because of large time and memory overhead, and poor diagnostic

resolution. Furthermore, the approach presented in [337] does not utilize passing patterns

or layout information to improve the quality of diagnosis.

The work of [341–343] avoids explicit simulation of multiple faults as well. It begins with

identifying potential defective signals using path tracing [108–110]. Because path tracing is

conservative, some candidates derived from path tracing a failing pattern may cause a passing

output to fail in spite of the other defective signals in the circuit. Thus, that approach devises

a method to eliminate those candidates by utilizing the X-fault model. The work of [344]

uses a similar technique but is limited to only stuck-at faults.

The approach of [341–343] then analyzes and compares the fault effects of each candidate

defect on the failing circuit. It examines the error propagation paths of each candidate

defect, while considering the errors manifesting at other locations. Minimally-sized groups

of candidates are then selected to explain the failing patterns, which are subsequently ranked

based on their responses to a passing pattern. However, the diagnosis time and the memory

usage needed to analyze each possible error propagation path increase rapidly with design

size and defect multiplicity.

The works of [345–349] also utilize X values to model the unknown behavior of a defect.

The X-fault model assumes an unknown (X) value at a potential defect location and allows

error to propagate conservatively. A primary advantage of employing the X-fault model is

to avoid the inherent problem of error masking and unmasking in multiple-defect diagnosis.

However, the approaches described in [345–349] are limited to the scenarios when multiple
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defects that affect a failing chip are logically/structurally close to each other.

Furthermore, prior work discussed up to this point and the methods presented in [290,330,

350–352] use various candidate-ranking heuristics to identify the correct candidates. How-

ever, such heuristics are explicitly developed based on intuition and/or domain knowledge,

and thus are not guaranteed to work for every defect mechanism, design and/or process node.

On the contrary, a candidate scoring procedure implicitly derived from test fail data can un-

cover the hidden correlations between a correct candidate and the observed circuit response,

which otherwise could have been overlooked by manually constructed scoring models [274].

Thus, an alternative to rank candidates is machine learning.

Machine learning has been successfully applied in chip testing [353]. Specifically, in the

area of diagnosis, machine learning has been used to optimize test data collection to make

diagnosis more efficient [293–296,296,298], improve the accuracy and resolution of diagnosis

itself [274,299–304], and pinpoint yield-limiting layout geometries by analyzing a volume of

diagnosis data [221,225,230–232,305]. Prior work that deploys machine learning to boost the

performance of diagnosis is surveyed in detail in Section 2.1. To the best of our knowledge,

except our work of [274] that is presented in Chapter 2, machine learning has not been

exploited during diagnosis for candidate prediction. (The technique presented in [306–308]

analyzes a volume of diagnoses to predict a correct candidate, and thus complements MD-

LearnX.)

3.2 Diagnosis Methodology

To address the drawbacks of prior work related to multiple-defect diagnosis discussed in

Section 3.1, a single-chip diagnosis methodology called MD-LearnX is developed. Notable

features of MD-LearnX include:

1. In addition to using a deterministic fault model (where the erroneous value is either



3.2. DIAGNOSIS METHODOLOGY 75

logic-0 or logic-1), the X-fault model is employed as well to prevent the elimination

of a correct candidate. X-values stemming from more than one location in a design

cannot obstruct the propagation of another error, thus circumventing one of the main

drawbacks of multiple-defect diagnosis (that of error masking and unmasking).

2. As opposed to manually developing a complex candidate-scoring heuristic to identify

the best candidate, MD-LearnX utilizes machine learning to create a scoring model

that learns the latent correlations between a correct candidate and the tester response.

3. MD-LearnX uses design layout information to identify the physical defect type (e.g., in-

terconnect open, interconnect bridge and cell internal defect) and behavior of each can-

didate. Back-end and front-end layout analysis techniques [146,162] further strengthen

MD-LearnX by improving its physical resolution.

4. MD-LearnX is applicable to defects exhibiting arbitrary misbehaviors. Unlike [321],

it can effectively handle multiple byzantine defects without exhaustive enumeration of

all fault combinations at a possible open defect location.

It should be noted that an approach that improves the quality of diagnosis by ma-

nipulating the test-set by either reordering, selecting or adding test patterns complement

MD-LearnX [209,210].

Figure 3.2 shows the overview of MD-LearnX. It is a three-phase diagnosis methodology.

The sequence of analysis steps involved in each phase are marked with a different color

in Figure 3.2. The first few steps common in each phase are discussed in Section 3.2.1.

The first phase (Section 3.2.2) focuses on finding defects that mirror the behavior of well-

established fault models. Such defects are henceforth referred to as class-1 defects. Phase

2 (Section 3.2.3) aims to identify a defect whose behavior deviates from that of each fault

model considered in Phase 1 and whose error propagation path does not interfere with errors

stemming from other defect locations for each failing pattern. Such defects are henceforth
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Figure 3.2: Overview of the proposed three-phase diagnosis methodology, MD-LearnX. The

sequence of steps in each phase are marked with a different color.



3.2. DIAGNOSIS METHODOLOGY 77

referred to as class-2 defects. Finally, any failing chip left undiagnosed is analyzed in Phase

3 (Section 3.2.4). Such a failing chip is affected by multiple defects where errors manifesting

from at least two defects interact with each other such that no single candidate can explain

the observed response for at least one failing pattern.

Table 3.2 summarizes the class and multiplicity of defects targeted by each phase of MD-

LearnX. The first and the second columns show the number of class-1 and class-2 defects.

The third column shows whether the errors manifesting at more than one defect location

interfere (i.e., block or assist) with each other. The fourth column shows the phase of MD-

LearnX.

Each row in Table 3.2 represents the type of multiple defects that each phase endeavors

to diagnose. Phase 1 aims to identify one or more class-1 defects (i.e., defect behaviors that

echo classic fault models), where the propagation paths of errors stemming from more than

one defect location are disjoint for each failing pattern. Phase 2 targets one or multiple,

non-interacting defects, where the behavior of each defect deviates from classic fault models.

If at least one class-1 defect and at least one class-2 defect reside in a failing chip, then Phase

1 and Phase 2 are employed if the errors originating at defect locations do not interact with

each other for any failing pattern, and Phase 3 is employed if the errors interact for at least

one failing pattern.

Class-1 defects Class-2 defects Error propagation paths MD-LearnX phase

≥1 0 Phase 1
0 ≥1 Phase 2
≥1 ≥1 Disjoint for each failing pattern Phase 1 and Phase 2

Overlapping for at least
≥1 ≥1 one failing pattern Phase 3

Table 3.2: Class and multiplicity of defects targeted by each phase of MD-LearnX.
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3.2.1 Phase 1-3 steps

MD-LearnX begins with path tracing [108–110], where it traces back from each failing output

for each failing pattern to infer potential defective signals. Path tracing has been illustrated

in Figure 2.1. Path tracing guarantees that it will find a defect location that aids in error

propagation to at least one design output, even for multiple defects. It is however possible

that an error stemming from a defect location only hinders error propagation from other

defect locations to a design output. A defect location that cannot be sensitized for any

failing pattern thus cannot be identified by path tracing; however, it is infeasible to locate

such a defect besides explicitly considering all the defect locations in the design.

For each failing pattern, an X fault is simulated at each candidate location (one at a time)

to identify faults that can explain1 that pattern. Each such explained pattern is classified as

a type-1 pattern. It should be noted that a type-1 pattern is defined in the literature with

respect to a (temporary) stuck-at fault, not an X fault [136,137,320]. However, as discussed

in Section 3.1, the X-fault model is not susceptible to error masking, and possibly averts the

elimination of a candidate that represents an actual defect.

Each failing pattern is further analyzed to find a group of locations such that (a) their

error propagation paths are disjoint, and (b) they can collectively explain that failing pattern.

Each such pattern is classified as a type-2 pattern. This procedure is performed with respect

to both stuck-at and X fault simulation. (A failing pattern is analyzed multiple times so

that the final cover consisting of defect candidates resulting from the next couple of steps is

optimal.) The remaining failing patterns, if any, are classified as type-3 patterns.

Next, physical defect locations associated with logical candidates that explain a type-1

or type-2 pattern are extracted from the design layout by examining their topology and

the physical neighborhood. Each logical candidate is then mapped to a physical defect

1An X fault ‘explains’ a failing pattern when the set of simulated outputs that possess an X value
subsume the erroneous circuit outputs.
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candidate while keeping track of the set of failing patterns it explains. For example, if a

logical candidate a explains pattern t1, candidate b explains pattern t2, and a and b form a

physical bridge pair, then the defect candidate (a, b) explains both the patterns t1 and t2.

Possible candidate fault types considered in this work are Stuck, Cell, Bridge and Open.

The procedure of classifying a candidate into one of four fault types is further explained in

Section 2.2.1.

The next step is to determine covers consisting of defect candidates via the set-cover

approach such that (a) the size of a cover is minimum, i.e., a cover consists of a minimum

number of defect candidates, and (b) defect candidates in a cover collectively explain each

failing pattern that is either type-1 or type-2.

If each failing pattern is classified as either type-1 or type-2, that is, there are no type-3

patterns, it implies that the chip under diagnosis is affected by defects with disjoint error

propagation paths for each failing pattern. The design (and the tester response) can essen-

tially be partitioned such that each individual defect is diagnosed independently either in

Phase 1 or Phase 2, as discussed in Sections 3.2.2 and 3.2.3, respectively.

3.2.2 Phase 1

As alluded to earlier, Phase 1 focuses on diagnosing defects that mimic the behavior of

traditional fault models. Specifically, a set of strict rules are constructed for each candidate

fault type to identify the correct cover of candidates. A defect candidate of a cover is deemed

correct if it satisfies the rules (and hence represents a class-1 defect). The rules created for

each fault type are identical to the ones created for LearnX (Section 2.2.1). The rules are

more formally presented in Table 2.2, and described here briefly in Table 3.3.

Defect candidates of a cover that do not comply with the rules are further analyzed in

Phase 2, which is especially geared towards the diagnosis of class-2 defects. It should be

noted that the covers with the least number of class-2 defects are passed on to Phase 2 (by
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Fault type Rule

Stuck Candidate passes for each passing pattern.

Cell Cell passes consistency check [142–144,171].

Bridged nets have opposite polarities for failing patterns.
Bridged nets have the same polarity for the passing patterns that

Bridge sensitize one of the nets to a design output.

Open Candidate passes for each passing pattern.

Common rule: Candidate explains each failing pattern. Here, a stuck-at fault is
said to explain a failing pattern if the outputs that failed during simulation are
identical to the observed failing outputs that are reachable from the fault location.

Table 3.3: Rules for each candidate fault type in Phase 1 of MD-LearnX.

virtue of Occam’s Razor).

3.2.3 Phase 2

A defect candidate, at this point of diagnosis, has the following properties; (a) it portrays

behavior that cannot be modeled by the fault models employed in Phase 1, and (b) an error

disseminating from the candidate location does not block or assist in error propagation of

other possible defects in the circuit for any failing pattern. The primary objective of Phase

2 is to apply machine learning to discern the correct candidate for each defect.

Specifically, a frequently used supervised machine learning algorithm called a random

forest [309] is used to classify a candidate as correct/incorrect. Forty-four features are ex-

tracted from the test data by comparing the test patterns and outputs observed on the

tester and predicted by simulation. The features are derived from the stuck-at and the X

fault simulation of a defect candidate, and likely, completely, represents its behavior. The

designed features are the same as the ones used in LearnX (Chapter 2) and are listed in

Tables 2.3 and 2.4.

The procedure of feature extraction is similar to Phase 2 of LearnX as well, albeit with
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one notable difference. It should be recalled that Phase 2 of MD-LearnX identifies multiple

defects whose fault effects do not intervene with each other. Thus, for each defect candidate,

only the outputs that are reachable from its location are considered during feature extraction.

For each fault type (Stuck, Cell, Bridge and Open), a separate model is trained so

that distinct characteristics relevant to each defect behavior can be learned. Training data

is generated from diagnosing numerous virtual fail logs that are created by injecting and

simulating single defects in the circuit. Hyperparameters of each model are optimized using

cross-validation. Because only a single candidate can represent an actual defect, the training

dataset is highly imbalanced. An optimum decision threshold for each trained model is thus

selected using the Precision-Recall curve [274, 310]. Each defect candidate (according to its

fault type) is then adjudged correct/incorrect by the corresponding trained ML model. The

training procedure is similar to Phase 2 of LearnX and is explained in detail in Section 2.2.2.

Finally, a cover of defect candidates is said to represent actual defects when each defect

candidate in the cover is deemed correct by either Phase 1 or Phase 2.

3.2.4 Phase 3

If there exists at least one type-3 pattern, it implies that the chip under diagnosis is affected

by multiple defects with overlapping error propagation paths for at least one failing pattern.

In Phase 3, machine learning classification is applied at two different levels; first, at a

defect level, where defect-type specific learning models built using the approach outlined in

Phase 2 (Sections 2.2.2 and 3.2.3) classify each defect candidate as correct/incorrect, and,

second, at a cover level, where the entire cover is predicted as correct/incorrect.

However, there are a few differences when defect-level classification is applied in Phase

3. First, a candidate cover is only simulated for type-1 and type-2 patterns up to this point,

and not type-3 or passing patterns. Thus, among the 44 features presented in Table 2.3 and

Table 2.4, 32 features that correspond to the failing patterns are used to train a defect-level
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ML model in Phase 3. The features are shown in Table 3.4. Second, the training data

is created from analyzing virtual fail logs that are produced by injecting and simulating

multiple defects in the circuit. Third, in order to be conservative and avoid eliminating a

correct candidate cover, a cover is analyzed further if at least one of its component defect

candidates is predicted correct by the machine learning model built for the corresponding

fault type. Each cover is then simulated for the remaining patterns (type-3 as well as passing

patterns).

Next, machine learning is utilized at a candidate cover level to predict a cover of defect

candidates as correct or incorrect. A single random forest is trained using the steps similar

to that described in Section 2.2.2, with the difference being that each training instance is a

candidate cover here. A cover is then said to represent actual defects when it is predicted

correct by the machine learning model.

It should be noted that unlike [320, 326–329], multiple-fault simulation is performed

here to extract features, and not explore the exponential search space. Unlike the work

of [115, 131–144, 318, 319, 321–323], type-3 patterns are used here to further improve the

quality of diagnosis.

3.3 Experiments

Two experiments are conducted to validate MD-LearnX: one is a defect injection and simu-

lation experiment using four different designs (Section 3.3.2), and another that uses silicon

failure data (Section 3.3.3). The diagnostic metrics that are employed to evaluate the per-

formance of MD-LearnX are discussed in Section 3.3.1. The effectiveness of MD-LearnX is

compared with leading-edge commercial diagnosis in the experiments. In each experiment,

the flow illustrated in Figure 3.2 is used to diagnose a fail log. Each fail log is also examined

by commercial diagnosis, where only the top-scoring candidate for each suspected defect is
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Feature Feature description

|TFSFp|/|TF p| Ratio of the number of TFSF patterns to the
number of TF patterns

|TFSFp|/|SF p| Ratio of the number of TFSF patterns to the
number of SF patterns

|TFSPp|/|TF p| Ratio of the number of TFSP patterns to the
number of TF patterns

|TFSPp|/|SP p| Ratio of the number of TFSP patterns to the
number of SP patterns∑

p∈TFSFp
|TFSF p

o |/
∑

p∈P |TF p
o | Ratio of the number of TFSF outputs for

TFSF patterns to the number of TF outputs∑
p∈TFSFp

|TFSF p
o |/
∑

p∈P |SF p
o | Ratio of the number of TFSF outputs for

TFSF patterns to the number of SF outputs∑
p∈TFSFp

|TPSF p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSF outputs for

TFSF patterns to the number of TP outputs∑
p∈TFSFp

|TPSF p
o |/
∑

p∈P |SF p
o | Ratio of the number of TPSF outputs for

TFSF patterns to the number of SF outputs∑
p∈TFSFp

|TFSP p
o |/
∑

p∈P |TF p
o | Ratio of the number of TFSP outputs for

TFSF patterns to the number of TF outputs∑
p∈TFSFp

|TFSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TFSP outputs for

TFSF patterns to the number of SP outputs∑
p∈TFSFp

|TPSP p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSP outputs for

TFSF patterns to the number of TP outputs∑
p∈TFSFp

|TPSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TPSP outputs for

TFSF patterns to the number of SP outputs∑
p∈TFSPp

|TFSP p
o |/
∑

p∈P |TF p
o | Ratio of the number of TFSP outputs for

TFSP patterns to the number of TF outputs∑
p∈TFSPp

|TFSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TFSP outputs for

TFSP patterns to the number of SP outputs∑
p∈TFSPp

|TPSP p
o |/
∑

p∈P |TP p
o | Ratio of the number of TPSP outputs for

TFSP patterns to the number of TP outputs∑
p∈TFSPp

|TPSP p
o |/
∑

p∈P |SP p
o | Ratio of the number of TPSP outputs for

TFSP patterns to the number of SP outputs

Table 3.4: Features extracted from the test data for Phase 3. Sixteen features for each type

of simulation are identified, resulting in a total of 32 pattern-level features.
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considered at its output.

3.3.1 Diagnostic Metrics

Ideally, a diagnosis methodology should correctly report a single candidate and deduce the

precise logic behavior for each defect in a failing chip. MD-LearnX concentrates on the

former, i.e., accurate defect localization. The latter, i.e., defect characterization in terms of

its behavior, is the focus of Chapters 4 and 5.

The following metrics are used to compare the efficacy of MD-LearnX with commercial

diagnosis.

• Diagnosability [341–343]: Diagnosability is defined as the ratio of the number of defect

locations that are correctly identified to the number of defects in a (virtual) failing

chip. Thus, the ideal value of diagnosability is one, when each defect is accurately

located by diagnosis.

• Precision: Precision is defined as the ratio of the number of defect locations that are

correctly identified to the number of defect locations returned by diagnosis. Higher the

precision, better is the quality of diagnosis.

• Home run: The definition of home run is adapted here from its description in Section

2.3.1 to accommodate multiple defects. Diagnosis is said to hit a home run when

diagnosis is perfect, i.e., when a single correct candidate is reported for each defect

affecting a failing chip. Mathematically, home run is equal to one when diagnosability

and precision are simultaneously equal to one, and zero otherwise.

3.3.2 Simulation Experiment

A simulation-based experiment is performed for evaluating MD-LearnX using the four designs

analyzed in Section 2.3.2, namely, an AES core (or simply, “AES”), an IWLS’05 benchmark
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referred to as “DES”, the L2 cache of the OpenSPARC T2 processor called “L2B”, and an

ITC’99 benchmark circuit termed as “B18”. Realistic physical defect behaviors associated

with bridge, open and cell defects (including byzantine bridges [72] and opens [147]) are

utilized.

For each design and defect multiplicity, 1,000 virtual fail logs are generated by uniquely

and randomly selecting the location and the behavior of each injected defect. For each

design, an additional 1,000 fail logs are used to produce the training dataset (for Phase 3),

while ensuring that each multiple fault injected is different. Each fail log is diagnosed using

MD-LearnX and two state-of-the-art commercial diagnosis tools. The criteria established in

Section 3.3.1 are used to evaluate each diagnosis technique.

The rest of this section is organized as follows. Section 3.3.2.1 compares the quality of

diagnosis stemming from MD-LearnX and commercial diagnosis for each of the four designs

analyzed. Section 3.3.2.2 summarizes the performance of MD-LearnX over all the designs.

3.3.2.1 Results

Figures 3.3 through 3.6 show the probability density distribution of diagnosability achieved

by MD-LearnX and commercial diagnosis for different designs. A density plot can be thought

of as a smoothed histogram that is symmetrical about its axis, and displays the density of

the distribution using the width of the plot. Thus, a wider distribution at a particular value

indicates more density at that value. A density plot is preferred over a box plot because

while the latter only displays the quartiles of the distribution, the former depicts the entire

distribution.

In each figure, the horizontal axis represents the injected defect multiplicity and the

vertical axis shows the distribution of diagnosability. Each figure contains three density

plots for each defect multiplicity, one for each diagnosis technique. A solid black line across

each plot indicates the mean of the distribution of diagnosability.
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It is evident from the shapes of each plot in Figures 3.3-3.6 that MD-LearnX is more

effective than commercial diagnosis. Observations specific to each design are as follows.

1. AES: Figure 3.3 reveals that the average diagnosability of MD-LearnX is 0.77, which

is an improvement of 17.7% over Tool 1 and 2X times Tool 2. On average, MD-LearnX

diagnoses more than half (52.9%) of the fail logs with a diagnosability of one, which is

20.9% more than Tool 1 and 3X times Tool 2. For multiple defects (i.e., when defect

multiplicity is more than 1), the diagnosability of MD-LearnX decreases to 0.73, but its

relative effectiveness increases. Specifically, the diagnosability of MD-LearnX is 20.4%

and 2.3X times better than Tool 1 and Tool 2, respectively, for multiple defects. MD-

LearnX correctly locates each injected defect in 46.4% of fail logs when the injected

defect multiplicity is at least two, which is 26.7% more than Tool 1 and 5X times Tool

2. Although MD-LearnX is unable to correctly identify any defect for 7.9% of fail logs,

commercial diagnosis is inadequate more often; specifically, Tool 1 and Tool 2 report

a diagnosability of zero for 18.8% and 5.4X more fail logs, respectively.

2. DES: It is observed from Figure 3.4 that the diagnosability of MD-LearnX is 0.60, on

average, while the average diagnosability of Tool 1 (Tool 2) is 0.55 (0.42). MD-LearnX

achieves an ideal diagnosability for 31.8% of fail logs, 3.3% (50%) more fail logs than

Tool 1 (Tool 2). When the failing circuit is affected by five or more defects, MD-LearnX

performs even better. Specifically, the improvement in ideal diagnosability over Tool

1 is 19.0% and over Tool 2 is 96.5%. Moreover, Tool 1 (Tool 2) cannot locate any

defect correctly for 12.3% (40.5%) of fail logs, which is 30.0% more than (4.3X times)

MD-LearnX.

3. L2B: Figure 3.5 shows that MD-LearnX attains an average diagnosability of 0.63,

which is an improvement of 25.9% over Tool 1 and 2.7X times Tool 2. MD-LearnX

returns a diagnosability of one for 44.7% of fail logs, which is 2.2X (2.7X) times more
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Figure 3.3: Probability density distribution of diagnosability for the design “AES”.

often than Tool 1 (Tool 2). The effectiveness of MD-LearnX in diagnosing at least

five defects is noteworthy – on average, the improvement in diagnosability over Tool

1 (Tool 2) is 38.9% (11.4X), and MD-LearnX correctly identifies each injected defect

38X (120X) times more often than Tool 1 (Tool 2).

4. B18: It is seen from Figure 3.6 that the average diagnosability of MD-LearnX is

0.66, and is 0.5 and 0.29 for Tool 1 and Tool 2, respectively. MD-LearnX achieves

a diagnosability of one for 45.0% of fail logs, which is 2X (2.6X) times Tool 1 (Tool

2). For multiple defects, the improvement in average diagnosability over Tool 1 (Tool

2) increases to 35.8% (2.7X). Additionally, MD-LearnX returns ideal diagnosability

2.8X (4.2X) more often than Tool 1 (Tool 2) for multiple defects. MD-LearnX is quite

effective when defect multiplicity is equal to or more than five; it accurately locates

each injected defect for 28.2% of fail logs, which is 36X (28X) times Tool 1 (Tool 2).

Figures 3.7-3.10 compare the probability density distribution of precision attained by

MD-LearnX with commercial diagnosis for different designs. The difference in the shapes

of each plot in each figure illustrates the superior performance of LearnX over commercial

diagnosis. Observations specific to each design are as follows.
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Figure 3.4: Probability density distribution of diagnosability for the design “DES”.
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Figure 3.5: Probability density distribution of diagnosability for the design “L2B”.
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Figure 3.6: Probability density distribution of diagnosability for the design “B18”.
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1. AES: Figure 3.7 reveals that the average precision of MD-LearnX is 0.66, which is an

improvement of 95.1% over Tool 1 and 2.2X times Tool 2. On average, MD-LearnX

diagnoses 32.3% of fail logs with a precision of one, which is 2.4X times both the tools.

For multiple defects (i.e., when defect multiplicity > 1), the precision of MD-LearnX is

2.1X (2.5X) times Tool 1 (Tool 2). MD-LearnX does not report an incorrect candidate

for 27.3% of fail logs when the injected defect multiplicity is at least two, which is 5.2X

(5.6X) times more often than Tool 1 (Tool 2).

2. DES: It is observed from Figure 3.8 that the precision of MD-LearnX is 0.56, on

average, while the average precision of Tool 1 (Tool 2) is 0.28 (0.24). MD-LearnX

achieves an ideal precision (i.e., when precision is equal to one) for 25.9% of fail logs,

which is 3.8X (3.3X) times Tool 1 (Tool 2). When defect multiplicity is at least two,

each candidate reported by MD-LearnX is correct for 21.2% of fail logs, while the

number of such fail logs is only 3.3% (2.7%) for Tool 1 (Tool 2). When a failing circuit

is affected by five or more defects, MD-LearnX performs even better. Specifically, the

improvement in ideal precision over Tool 1 is 5.7X and over Tool 2 is 17X.

3. L2B: Figure 3.9 shows that MD-LearnX attains an average precision of 0.74, which is

an improvement of 45.0% over Tool 1 and is 4.4X times Tool 2. MD-LearnX returns a

precision of one for 57.8% of fail logs, which is 82.2% more than Tool 1 and 6.8X times

Tool 2. When defect multiplicity is at least five, the average precision of MD-LearnX

is 41.6% more than Tool 1 and 9.4X times Tool 2; the ideal precision is 70.5% more

than Tool 1 and 11X times Tool 2.

4. B18: It is seen from Figure 3.10 that the average precision of MD-LearnX is 0.61,

which is 57.6% and 2.3X times better than Tool 1 and Tool 2, respectively. MD-

LearnX achieves a precision of one for 36.1% of fail logs, which is 2.4X (2.9X) times

Tool 1 (Tool 2). For multiple defects, the improvement in average precision over Tool
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Figure 3.7: Probability density distribution of precision for the design “AES”.
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Figure 3.8: Probability density distribution of precision for the design “DES”.

1 (Tool 2) increases to 60.5% (2.4X). Additionally, MD-LearnX returns ideal precision

2.6X (3.1X) more often than Tool 1 (Tool 2) for multiple defects.

Next, the capability of LearnX to accomplish a perfect diagnosis, i.e., when each defect

residing in a failing chip is correctly identified with a single candidate, is investigated. Figure

3.11 reports the number of home runs hit by MD-LearnX for different defect multiplicities

for the four designs analyzed. Figure 3.11 consists of four plots, one for each design. It is

seen from Figure 3.11 that MD-LearnX achieves impressive improvement over commercial

diagnosis. Figure 3.11 reveals the following for each design.
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Figure 3.9: Probability density distribution of precision for the design “L2B”.
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Figure 3.10: Probability density distribution of precision for the design “B18”.

1. AES: It is observed from Figure 3.11(a) that MD-LearnX delivers a home run for

24.2% of fail logs, on average, which is 2.7X (3.7X) times Tool 1 (Tool 2). When

defect multiplicity is greater than or equal to five, the number of perfect diagnoses by

MD-LearnX reduces to 6.6%, but reports a perfect diagnosis 6.7X (130X) more often

than Tool 1 (Tool 2).

2. DES: Figure 3.11(b) shows that MD-LearnX hits a home run for 14.6% of fail logs,

which is 3.2X times Tool 1 and 2.6X times Tool 2. For multiple defects, MD-LearnX

hits a home run for 8.4% of fail logs, while commercial diagnosis hits for less than 1.0%.
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Figure 3.11: Home run of MD-LearnX compared with commercial diagnosis for (a) AES,

(b) DES, (c) L2B, and (d) B18.

When defect multiplicity is at least five, while commercial diagnosis virtually does not

return any perfect diagnosis, MD-LearnX delivers a home run for 2.3% of fail logs.

3. L2B: It is seen from Figure 3.11(c) that the number of perfect diagnoses returned by

MD-LearnX is 30.4%, and by Tool 1 (Tool 2) is 7.8% (4.0%). When defect multiplicity

is greater than or equal to five, while commercial diagnosis virtually does not return

any perfect diagnosis, MD-LearnX hits a home run for 13.3% of fail logs.

4. B18: Figure 3.11(d) reveals that MD-LearnX delivers a home run for 20.2% of fail

logs, which is 3.6X (5X) times Tool 1 (Tool 2). For defect multiplicity greater than

one, the number of perfect diagnoses returned by MD-LearnX is 20 times commercial

diagnosis. When the number of injected defects is at least five, MD-LearnX hits a

home run for 5.2% of fail logs, and commercial diagnosis does not hit a single home

run.
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Furthermore, MD-LearnX is evaluated based on its ability to estimate the defect mul-

tiplicity. Figure 3.12 shows the probability density distribution of the number of defects

estimated (y-axis) by MD-LearnX and commercial diagnosis for each injected defect multi-

plicity (x-axis). A solid black line across each plot indicates the median of the distribution

of estimated defect multiplicity.

It can be seen from Figure 3.12 that the median estimated defect multiplicity is close

to the ideal value for smaller values of injected defect multiplicity. MD-LearnX correctly

predicts the number of defects for 62.4% of fail logs when the actual defect multiplicity is at

most four, which is an enhancement of 18.4% over Tool 1 and 77.8% over Tool 2.

Figure 3.12 expectedly, however, reveals that the likelihood of misprediction increases for

larger values of injected defects. Specifically, when the number of injected defects is at least

five, MD-LearnX accurately estimates the defect multiplicity for 17.8% of fail logs, compared

to 15.3% by Tool 1 and 6.6% by Tool 2. Moreover, the number of correct estimations by
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Figure 3.12: Distribution of defect multiplicity estimated by MD-LearnX and commercial

diagnosis.
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MD-LearnX decreases to 3.2%, when the actual defect multiplicity is 10, which is 25.0%

more than and 2.3X times Tool 1 and Tool 2, respectively.

On average, MD-LearnX correctly determines the defect multiplicity for 40.1% fail logs,

which is 17.6% (91.8%) more than Tool 1 (Tool 2).

When the runtime of MD-LearnX is compared with commercial diagnosis, it is observed

that, on average, MD-LearnX is 25.2% slower than Tool 1 and 59.7% faster than Tool 2.

This comparison does not include the one-time cost (per design) of creating the machine

learning models for phases 2 and 3. For instance, for the largest design, AES, it takes 5.7

hours to learn the models. However, the primary goal here is to show the effectiveness (in

terms of the diagnostic metrics discussed in Section 3.3.1) rather than the runtime efficiency

of MD-LearnX. One of the future goals is to optimize the runtime of MD-LearnX.

3.3.2.2 Results Summary

Figure 3.13 illustrates the average diagnosability (i.e., the proportion of defects located cor-

rectly) attained by MD-LearnX for the four designs examined, irrespective of the number of

injected defects, and compares it with commercial diagnosis. The x-axis shows the diagnos-

ability for each design and for each diagnosis approach. The y-axis represents each design.

The values/percentages displayed besides the plot-bars for Tool 1 and Tool 2 emphasize the

improvement in diagnosability attained by MD-LearnX.

It can be seen from Figure 3.13 that the maximum improvement by MD-LearnX over

Tool 1 is observed for B18 (specifically, 21.5%), and over Tool 2 for L2B (specifically, 66.5%).

The diagnosability of MD-LearnX is at least 0.75 (for DES) and at most 0.85 (for AES). On

the other hand, the diagnosability ranges from 0.64 to 0.76 for Tool 1, and from 0.45 to 0.52

for Tool 2.

Figure 3.14 reports the average precision (i.e., the proportion of defect candidates that

are correctly identified to the number of candidates suspected) achieved by MD-LearnX
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Figure 3.13: Diagnosability achieved by MD-LearnX and commercial diagnosis.

and commercial diagnosis for the four designs examined. The precision attained by LearnX

varies from 0.62 to 0.77. The enhancement in precision attained by MD-LearnX over Tool 1

(Tool 2) is maximum for DES (L2B). Specifically, each candidate reported by MD-LearnX

is correct for up to 78.3% more fail logs than Tool 1, and 2.8X times Tool 2.

Figure 3.15 accentuates the number of perfect diagnoses (i.e., when each defect residing

in a failing chip is correctly identified with a single candidate) reported by MD-LearnX and

commercial diagnosis for the four designs examined. The home run attained by MD-LearnX

varies from 0.32 to 0.47. MD-LearnX returns a perfect diagnosis for at least 91.8% more fail

logs than and at most 2.2X times Tool 1; it hits a home run for at least 57.1% more fail logs

and at most 4X more often than Tool 2.

Results from a simulation-based experiment presented in Section 3.3.2 and summarized

in this section demonstrate the superior performance of MD-LearnX over state-of-the-art

commercial diagnosis. High diagnosability, precision and home run imply that there is



3.3. EXPERIMENTS 96

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Precision

AES

DES

L2B

B18

66.8%
76.6%

78.3%
77.0%

40.9%
181.9%

51.2%
102.5%

MD-LearnX Tool 1 Tool 2

Figure 3.14: Precision achieved by MD-LearnX and commercial diagnosis.
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Figure 3.15: Home run achieved by MD-LearnX and commercial diagnosis.
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less ambiguity of whether a candidate represents a defect. Consequently, a more precise

distribution of likely yield detractors can be derived, which could lead to higher PFA success

rate, and possibly, accelerated yield learning.

3.3.3 Silicon Experiment

The diagnosis potential of MD-LearnX is further substantiated by using an industrial design

fabricated in an advanced process node. The setup for the conducted experiment is described

in Section 3.3.3.1. It conveys basic information about the design and the silicon failure data

that is available to study the effectiveness of MD-LearnX. The results of the experiment are

discussed in Section 3.3.3.2 to explore how MD-LearnX performs in the real world.

3.3.3.1 Setup

MD-LearnX is applied to actual failing chips to evaluate its performance. The silicon failure

data comes from the same design that is used to evaluate LearnX in Section 2.3.3. The

MD-LearnX flow illustrated in Figure 3.2 is applied to each fail log. Each fail log is also

analyzed by commercial diagnosis, where only the top-scoring candidates for each implicated

defect are considered as its output. Note that the available failure data complies to Tool 1

and hence, the diagnosis quality attained by MD-LearnX is compared with Tool 1 only.

3.3.3.2 Results

The number of defect candidates reported by MD-LearnX are compared with commercial

diagnosis for 36 failing chips that have been PFA’ed. For each of the 36 fail logs, it is seen

that MD-LearnX (and commercial diagnosis) correctly localizes the defects that are PFA’ed.

More importantly, MD-LearnX returns fewer defect candidates than commercial

diagnosis, on average, without sacrificing accuracy. Figure 3.16 compares the number
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Figure 3.16: Number of candidates returned by MD-LearnX and commercial diagnosis for

36 failing chips that are PFA’ed.

of defect candidates (y-axis) returned by MD-LearnX and commercial diagnosis for each fail

log (x-axis) for which the PFA results are available.

Figure 3.16 reveals that MD-LearnX returns fewer defect candidates than commercial

diagnosis for 25 (69.4%) fail logs, while returning the same candidates for other fail logs,

without losing accuracy. On average, 5.3 fewer candidates per fail log are returned, with

maximum improvement being 88.2%. Commercial diagnosis reports a maximum of 46 can-

didates for a fail log, while MD-LearnX returns a maximum of 20 candidates.

Furthermore, for the 17 fail logs diagnosed with multiple defects, the improvement is

more profound. Specifically, 8.5 fewer candidates per fail log are returned, on average. In

addition, MD-LearnX reports fewer candidates for 15 (88.2%) fail logs.
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3.4 Conclusion

In this chapter, a single-chip diagnosis methodology called MD-LearnX is described to effec-

tively diagnose multiple defects. It is a physically-aware, three-phase diagnosis methodology.

Phases 1 and 2 focus on diagnosing a chip affected by a single defect, or multiple defects

that do not interact with each other. While Phase 1 centers on finding a defect that echoes

the behavior of classic fault models via a set of deterministic rules, Phase 2 concentrates on

identifying a defect through machine learning. A scoring model (separate for each fault type)

that learns the hidden correlations between the tester response and the correct candidate is

created to identify the correct candidate.

Phase 3, on the other hand, is adept in diagnosing a chip affected with multiple interacting

defects. First, similar to Phase 2, it applies machine learning at a defect candidate level using

failing patterns that can be explained by multiple, non-interacting defect candidates. Then,

it employs machine learning at a candidate cover level using the passing and the remaining

failing patterns to identify the cover of defect candidates that corresponds to actual defects.

A comprehensive simulation-based experiment is conducted to assess MD-LearnX, where

a total of 28,000 faulty circuits with varying defect multiplicities and behaviors are created

and analyzed. Three metrics, namely, diagnosability (i.e., proportion of injected defects

that are correctly located), precision (i.e., proportion of reported defects that are correctly

identified) and home run (i.e., when a single correct candidate is reported for each injected

defect), are employed to measure the performance of MD-LearnX. The effectiveness of MD-

LearnX is also compared with two leading-edge commercial diagnosis tools (that are referred

to as Tool 1 and Tool 2).

The proposed methodology achieves an average diagnosability of 0.78, which is 15.4% and

58.2% better than Tool 1 and Tool 2, respectively. The average precision for MD-LearnX is

0.7, and is an improvement of 57.0% (2X) over Tool 1 (Tool 2). Additionally, MD-LearnX
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hits a home run for 40.0% of fail logs, which is twice as often as commercial diagnosis.

The efficacy of MD-LearnX is impressive for large values of defect multiplicity. Specifi-

cally, when the number of injected defects is at least five, the diagnosability of MD-LearnX is

22.8% higher than Tool 1 and 2.3X times Tool 2, on average. MD-LearnX returns a correct

candidate for each reported defect 2.4X (6.2X) more often than Tool 1 (Tool 2). Moreover,

MD-LearnX delivers a home run for 6.8% of fail logs; however, commercial diagnosis returns

a perfect diagnosis for less than 0.3% of fail logs.

The capability of MD-LearnX is further demonstrated with a silicon experiment, where 36

fail logs whose PFA results are available are diagnosed. It is seen that MD-LearnX returns

fewer candidates than commercial diagnosis for 69.4% of the fail logs, without sacrificing

accuracy. Moreover, MD-LearnX reports 5.3 fewer candidates per fail log, on average.

Software diagnosis, which is the first step in failure analysis, is the backbone of yield

learning and monitoring. High diagnosis quality can effectively guide and accelerate PFA,

likely facilitating yield ramp. This chapter, in particular, focuses on the localization of a

defect in a failing chip. The next chapter, Chapter 4, describes a methodology that directs

its efforts in improving the physical resolution as well as deriving the precise logic behavior

for a back-end defect.
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Chapter 4

PADLOC: Physically-Aware Defect

Localization and Characterization

Chapter 2 introduces a diagnosis methodology called LearnX that focuses on identifying

the location of a defect affecting a failing chip. MD-LearnX, that is presented in Chapter

3, builds on LearnX to effectively localize multiple defects in a failing chip. In addition

to localizing a defect, LearnX and MD-LearnX identify the defect type of a candidate as

well. However, as detailed in Chapter 1, the ultimate goal of diagnosis should be to logically

characterize a defect. In other words, a diagnosis methodology should derive the precise logic

behavior of the defect (in contrast to just finding the defect type) in addition to pinpointing

its physical location. Furthermore, LearnX and MD-LearnX use design layout information

to identify physically-feasible candidates in the logic netlist but do not endeavor to localize

a defect beyond that.

To logically characterize a defect in terms of its behavior and further improve its physical

location (in terms of its x − y − z location in the layout), a methodology called PADLOC

(Physically-Aware Defect LOcalization and Characterization) is developed and is the focus

of this chapter. PADLOC further physically localizes a defect identified by LearnX/MD-
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LearnX by finding the subnets that are more likely to correspond to the actual defect.

Additionally, it logically characterizes a defect by deriving its behavior based on the activity

of its neighborhood (i.e., the nets that are physically close and logically related). PADLOC

is applicable to back-end defects; front-end (i.e., intra-cell) defects are the focus of Chapter

5.

The rest of the chapter is organized as follows. Section 4.1 discusses prior work related

to the logic behavior derivation and physical localization of a back-end defect. The details of

how PADLOC deduces the behavior and pinpoints the physical location of a defect are de-

scribed in Section 4.2. Results from a simulation-based and silicon experiment are presented

in Section 4.3, where it is demonstrated to be more effective in diagnosing a defect than

the state-of-the-art. Finally, Section 4.4 concludes this chapter by highlighting the overall

contributions of this work.

4.1 Prior Work

Several papers have been published over the years that improve the quality of diagnosis via

back-end layout analysis1. For example, diagnosis techniques of [145, 147–155] are centered

on open defects, while the techniques presented in [156, 157] focus on bridge defects. The

approaches presented in [158–161] are applicable to both open and bridge defects, but do

not focus on deriving the precise logic behavior of a defect.

The unpredictability of defects requires the use of a more generalized approach to defect

diagnosis, or a multitude of “defect-based” approaches. But the disadvantage of using a

set of defect-based approaches is the possibility that some defect behavior is missed. One

general approach, referred to as DIAGNOSIX, is described in [142–144]. It is one of the first

physically-aware diagnosis methods that is applicable to any defect type and handles defects

1Methods that improve the quality of diagnosis via front-end layout analysis are critiqued in Section 5.2.
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exhibiting arbitrary misbehaviors as well. Instead of correlating observed defect behavior

with fault models to characterize a defect, it derives the defect behavior by analyzing the

logic activity of the nets surrounding its location.

Section 4.1.1 discusses defect-based approaches proposed in the literature and evaluates

their merits and demerits. Section 4.1.2 describes DIAGNOSIX in detail, and lays the

foundation of PADLOC.

4.1.1 Defect-based Approaches

Various techniques have been proposed in the literature that improve the diagnosis of open

and bridge defects using circuit and layout parameters such as the state of the neighboring

nets, coupling capacitances between a net and its neighbors, threshold voltages of the receiver

standard cells and internal capacitances of the driver cells.

Techniques such as [158] extract features prone to bridge defects from layout using Design

Rule Check (DRC) and Design for Manufacturability (DFM) guidelines. Potential bridge

locations can also be derived using proximity analysis where a net can form a bridge with

any net that is adjacent to it or within its line-of-sight [125,142–144,161,278,280]. Another

approach is to find pairs of nets that are capacitively coupled via circuit parasitics. However,

these approaches only focus on localizing a bridge defect, not identifying its behavior.

Work in [156] uses a voting bridge fault model [71] to diagnose a bridge defect. In the

voting bridge fault model, the voltage at the shorted point is assumed to be influenced by

the resistance of the pull-down and pull-up networks of the bridged nets. The voltage at the

shorted point is then compared with the logic threshold of the standard cells driven by the

bridged nets to determine if the voltage should be interpreted as logic-0 or logic-1. It should

be noted that, in the voting bridge fault model, the logic threshold of each receiver gate is

assumed fixed and identical (equal to VDD/2). However, the logic threshold voltage of a cell

can vary depending on the type of the cell and process node. The biased voting bridge fault
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model [72] goes a step further and takes into account the fact that the voltage at the bridged

point can be interpreted differently by each receiver cell.

However, both the voting bridge fault models are limited to modeling strong bridge

defects, i.e., they don’t model resistive bridges. Work in [157], on the other hand, is adept

in diagnosing resistive bridges as well. That method employs the resistive bridge fault

model [354] and considers the logic threshold voltage of each receiver cell, driving strength

of the cells driving the bridged nets and bridged resistance to identify the defect behavior.

However, the main drawback of such fault model based approaches is that the behavior of a

defect is assumed to be restricted to the behaviors considered in the underlying fault model.

Additionally, extracting accurate parasitics may not be feasible, especially for advanced

nanometer technologies. Specifically, as technology advances, an increase in design size and

circuit density results in an increase in the number of parasitics and more importantly their

complexity, which significantly impacts the performance of an electromagnetic field solver

required to obtain accurate parasitics [355,356]. Inaccurate estimation of the parasitics can

thus lead to inaccurate characterization of the defect, which could subsequently misdirect

PFA to inspect incorrect die locations, leading to a considerable amount of valuable resources

being exhausted unnecessarily.

Regarding the diagnosis of an open defect, tracing a candidate net during PFA can be

an expensive task depending on several factors including its length and number of metal

layers it resides in. To improve localization of an open defect, each single via in the design is

considered as a potential defect location in [158]. In [159], in addition to various via-related

features such as single, multiple, stacked and stress vias, long nets having minimum width

with nets on either side at minimum spacing [357] are also considered prone to open defects.

A “segment” model is presented in [147,161], where each net is partitioned into segments

such that each segment drives a different set of receiver cells. Partitioning in this way

improves physical localization because only smaller parts of a net require examination via



4.1. PRIOR WORK 105

PFA instead of the entire net. Moreover, net segmentation models an open defect more

realistically. Figure 4.1 illustrates net segmentation to extract likely locations for an open

defect. Figure 4.1 shows the topology of a net with three fan-out branches. The net is being

driven by the standard cell, D, and drives three cells, R1, R2 and R3.

Each net polygon in Figure 4.1 is numbered from 1 to 8. Each row in the table shown

below the net topology represents a segment and consequently, an open defect location.

The first column (“Segment”) shows the polygons that comprise each segment. The second

Segment Receiver cells driven

1 R1, R2, R3

2, 3 R3

4, 5 R1, R2

6 R2

7, 8 R1

1

2

3

4

5 6

7

8

Driver 
cell 𝐷

Receiver 
cell R1

Receiver 
cell R2

Receiver 
cell R3

Metal 1

Metal 2

Figure 4.1: Illustration of net partitioning into segments such that each segment drives a

distinct set of receiver cells [147,161].
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column (“Receiver cells driven”) shows the set of standard cells being driven by each segment.

It can be seen that five open defect locations are identified using the technique of [147,161].

Thus, net segmentation extracts likely locations of an open defect and improves physical

localization by reducing the PFA search area from the entire net to one (or more) smaller

net segments.

Work of [153] goes a step further in physically localizing an open defect, specifically an

open via defect. Because a single net segment in [147, 161] could consist of multiple vias,

work of [153] aims to pinpoint the exact via responsible for the observed failure by inspecting

the nets that are physically close to its location. It should be noted that segments driving

the same set of receiver cells but surrounded with a different set of physical neighbors are

not differentiated.

Another segment model is proposed in [150] (and subsequently employed in [149,151,152]

for diagnosis), where each net is divided into segments according to the topology of the

physically adjacent nets. Figure 4.2 illustrates that segment model. It shows how a change

in the topology of the surrounding nets partitions Net A into seven different segments.

However, in that work (and in [145]), various circuit-level parasitics are used to determine

(1) (2) (3) (4) (5) (6) (7)

Net A

Metal 1

Metal 2

Figure 4.2: Net segmentation based on the topology of the net and its physical neighbors

[149].
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the voltage at the floating net. Specifically, it calculates the voltage from parasitic capaci-

tance that exists between the floating net segment and its physically adjacent nets, and the

trapped charge on the floating net. The technique of [148] improves upon [145,150] by taking

into account the internal capacitances and the logic threshold voltages of the receiver cell(s).

In addition to using these circuit parameters, the technique of [149] analyzes the effect of

process variations while the work in [152,358] incorporates gate leakage information to find

the voltage of the floating net.

However, as reasoned earlier, methods that rely on approximate SPICE models to ex-

tract parasitics from a design are not desirable as the voltage estimated by them could be

incorrect, especially at smaller process nodes, where the impact of variations induced by the

manufacturing process and equipments is significant [359].

Another approach that focuses on the diagnosis of an open defect, which is described

in [154,155], is based on the idea that the logic value at the candidate location is a (weighted)

majority function of the logic values at its neighbors, where each weight is calculated based

on the length of the neighbor and its distance from the candidate location. However, the

effect of the logic threshold of the receiver cells is not taken into account.

In summary, prior work on defect-based approaches discussed up to this point focuses on

localizing a defect and/or match the behavior of a defect candidate with a fault model (that

could itself be inaccurate because of process variations and inexact SPICE models). But the

limited fault models used only capture a subset of the behaviors exhibited by the known

defects [360]. The arbitrary nature of a defect necessitates the need to instead derive the

behavior of a defect with minimal assumptions. Work in [142–144] is a step in that direction.

It is a more generalized approach and is discussed next.
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4.1.2 DIAGNOSIX

DIAGNOSIX [142–144] is a comprehensive physically-aware diagnosis approach that finds

potential defect locations without using a particular fault model, and derives a customized

fault model that represents the defect behavior at each location. In that work, a candidate

is assumed to be controlled by the nets surrounding its location. This observation is quite

conservative and holds true for a variety of defects that includes bridge, open, and cell

defects. The nets near the candidate are collectively referred to as its neighborhood, and

includes all nets that are in physical proximity to the candidate, the inputs of the cell

driving the candidate, and the side-inputs of the cells being driven by the candidate. The

logic values established in the neighborhood of a candidate form its neighborhood state.

The neighborhood state can also be dynamic in nature for sequence- and timing-dependent

defects. Thus, in DIAGNOSIX, the excitation of a defect at candidate location is assumed

to be a function of its neighborhood state.

Design layout is analyzed to find the physical neighbors of a net. Specifically, every

neighboring net within some carefully-chosen distance d of the candidate is considered a

physical neighbor of that candidate. Note that only intra-layer proximity is used to identify

physical neighbors in that work.

In addition to physical neighbors, the inputs of the standard cell driving a candidate

and the side-inputs of a standard cell being driven by the candidate are also considered to

influence the logic value at the candidate location.

Figure 4.3 illustrates how DIAGNOSIX identifies the neighborhood of a net. Net A has

two physical neighbors – net B and net C. Net C and net E drive net A, and D is the

side-input of the cell being driven by net A. Thus, four nets are identified to be in the

neighborhood of net A.

Neighborhood states for each candidate are collected for Tester-Fail-Simulation-Fail (TFSF)

and Tester-Pass-Simulation-Fail (TPSF) patterns, and are referred to as failing and passing
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A A

B

A

C

A

B

C

E

D

Metal 1 Metal 2 Metal 3

Figure 4.3: Example illustrating the neighborhood identified by DIAGNOSIX for net A

states, respectively. Here, a TFSF (TPSF) is a pattern that fails (passes) on the tester and

detects either of the stuck-at faults at the candidate location. For a candidate to be deemed

consistent, the sets of neighborhood states for TPSF and TFSF patterns should be disjoint.

In other words, if the neighborhood state for a candidate is the same for any pair of TPSF and

TFSF patterns, then the candidate has demonstrated inconsistency. In DIAGNOSIX, a can-

didate is eliminated from further consideration based on inconsistency. Consistency has been

shown to be an effective method for improving resolution in [132,142–144,233,306–308,361].

Table 4.1 illustrates the consistency check for two candidates A and B. Assume that the

neighborhood for each candidate consists of three nets. Column 1 shows the test pattern

index and column 2 shows whether a pattern is TFSF or TPSF. Columns 3 and 4 show the

neighborhood state for candidates A and B, respectively. It is evident from Table 4.1 that

candidate B is consistent because the sets of failing and passing neighborhood states are

disjoint. Candidate A, on the other hand, is inconsistent because a same neighborhood state

is established for a TPSF and a TFSF pattern (specifically, T1 and T2, respectively).

Because it is assumed that the excitation of a defect candidate is controlled by its neigh-

borhood, a customized fault model can be derived from the test data (example data is shown
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Pass/fail pattern Neighborhood state Neighborhood state
Test pattern behavior for A for B

T1 TPSF 000 100
T2 TFSF 000 001
T3 TFSF 001 010
T4 TFSF 010 101
T5 TFSF 010 110
T6 TPSF 100 000
T7 TPSF 100 011
T8 TPSF 100 111

Table 4.1: Illustration of consistency check. Candidate A is inconsistent because the state

000 is established for a TPSF and a TFSF pattern. Candidate B is consistent because the

failing states and the passing states are distinct.

in Table 4.1) that corresponds to the behavior of that candidate. In other words, the logical

conditions that excite a defect can be identified. This is orthogonal to a fault model based

approach where the candidate behavior is checked against the assumed model.

In DIAGNOSIX, the defect behavior is derived using Boolean minimization, where each

state corresponding to a TFSF (TPSF) pattern is considered a “minterm” (“maxterm”)2.

For example, in Table 4.1, if the neighbors of B are denoted as N1, N2 and N3, the behavior

of the consistent candidate B is derived to be N ′
2N3 +N2N

′
3, which implies that B fails when

N2 and N3 have opposite logic values. Accurate derivation of the defect behaviors affecting

a population of failing chips can then be utilized to estimate the defect-type distribution of

the population, which, in turn, likely accelerates PFA and yield learning.

DIAGNOSIX can be improved in several ways. First, the candidates reported by DIAG-

NOSIX are logical signals. However, the net that corresponds to the logical signal can be long

and can span various metal layers. Examining a long net spread over a large area increases

PFA effort. Thus, it is beneficial to improve the physical resolution [279] by identifying a

2A neighborhood state not exhibited by any pattern is treated as a “don’t care”.
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net segment that is more likely to correspond to the actual defect location.

Second, not all neighbors of a net are relevant to defect excitation. Figure 4.4 illustrates

this point for a bridge defect. Each segment in Figure 4.4 is assigned a name, and is denoted

by ‘segment name(net name)’. As shown, S5(N2) and S6(N3) are physical neighbors of

S1(N1) and S4(N1), respectively. Consider a bridge defect (shown as a resistor) involving

segments S1(N1) and S5(N2). DIAGNOSIX assumes that neighbor S6(N3) can influence the

faulty value of N1, irrespective of the defect location. However, the logic value of S6(N3) is

less likely to influence the value at the bridged subnets because S6(N3) is not physically close

to the defect location. Net N3 can affect the faulty value of N1 only when there is a bridge

defect involving S4(N1). Thus, identification of relevant neighbors of a defect candidate can

improve the physical resolution.

Similarly, Figure 4.5 illustrates this observation for an open defect. Consider an open

defect located at S3(N1), depicted as missing metal material with a red 6. DIAGNOSIX

assumes that the physical neighbors of N1 will control the value of the open net. However,

the value at the floating net can only be influenced by the physical neighbors downstream

from the defect location. Thus, contrary to the assumption by DIAGNOSIX, S6(N3) is

S2(N1)

S
3
(N

1)

S1(N1)

S4(N1)

S5(N2)

S6(N3)Metal 1

Metal 2

Figure 4.4: Example showing how all neighbors of a net, as identified from DIAGNOSIX,

are not relevant to excite a bridge defect.
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Driver 
cell D

Receiver 
cell R2

Receiver 
cell R1

S1(N1) S2(N1)

S6(N3)S
3(

N
1)

S4(N1)

S5(N2)Metal 1

Metal 2

Figure 4.5: Example showing how all neighbors of a net, as identified from DIAGNOSIX,

are not relevant to excite a bridge defect.

unlikely to play a role in deciding the value at the floating segment.

The first limitation of DIAGNOSIX can be addressed by partitioning a net into segments.

Each segment would have its own set of neighbors. The partitioning would not only decrease

the size of neighborhood, but also improve the physical resolution and further localize a

defect. The criterion used for dividing each net into segments depends on the surrounding

circuitry and is explained in the next section (Section 4.2). The choice of criterion would

address the second shortcoming associated with DIAGNOSIX.

4.2 Diagnosis Methodology

The discussion of prior work associated with the diagnosis of back-end bridge and open

defects using various layout and circuit parameters in Section 4.1 showed that no technique

is proficient in the two main components of an ideal diagnosis approach simultaneously –

physical localization and logic behavior derivation. PADLOC is a step in this direction.
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Specifically, PADLOC has the following features.

1. It physically localizes a back-end defect using minimal layout information. A candidate

net is partitioned into smaller subnets based on its topology and the topology of its

physical neighbors to enhance physical localization.

2. Unlike prior work, it avoids the use of potentially inaccurate circuit parameters and

parasitics to find the logic value at a defect location.

3. Instead of relying on traditional fault models or designing a new fault model, it derives

the behavior of a defect based on its neighborhood. It monitors the logical activity on

the surrounding nets to deduce the conditions that could produce the observed circuit

response.

4. It is applicable to (localized) back-end defects that exhibit a variety of misbehaviors.

Figure 4.6 shows an overview of PADLOC. The input to PADLOC is a set of (back-end)

defect candidates that have been identified by a physically-aware logic diagnosis methodology

such as LearnX/MD-LearnX. The first step, referred to as neighborhood-based net segmen-

tation in Figure 4.6, aims to physically localize a defect. Here, the topology of a defect

candidate and its physical neighborhood are examined to pinpoint the layout area where

the defect could reside. The next step, called segment neighborhood identification, identifies

the subnets relevant to the activation of a defect. A consistency check is then performed on

each candidate segment to identify segments that portray consistent pass-fail behavior. The

amount of inconsistency may be adjusted to eliminate a candidate. The output of PADLOC

is a set of candidate segments, where each candidate is described with respect to its defect

type, logic behavior and physical location in the design.
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Neighborhood-based net 
segmentation

Correct candidate segments

Segment neighborhood 
identification

Segment-level consistency 
check

Back-end defect candidates 
from LearnX/MD-LearnX

Figure 4.6: An overview of the proposed back-end diagnosis methodology, PADLOC.

4.2.1 Neighborhood-based Net Segmentation and Segment Neigh-

borhood Identification

In PADLOC, to physically localize a bridge defect, each net is divided into segments such

that each segment has its own set of physical neighbors. Two segments are said to be

physically close to each other if (a) they are within some distance d3 from each other, and

(b) there is an unhindered line-of-sight between them.

3d is a user-defined parameter that depends on various factors including the metal interconnect pitch and
the minimum metal layer width.
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N1

N1

S3

S8N2 S9

S1 S2

S4

S5 S6 S7

S10 N3

N4S12S11

N4

S13

S14
Metal 1

Metal 2

Figure 4.7: Illustration of net partitioning into segments for localizing bridge defects.

Segment Physical neighborhood

S1 S9

S2 -
S3 S3

S4 -
S5 -
S6 S10

S7 -

Table 4.2: Physical neighborhood for each segment of net N1 (illustrated in Figure 4.7) for

bridge defect diagnosis.

Segment partitioning and neighborhood identification is illustrated in Figure 4.7. Each

segment in Figure 4.7 is assigned a name Si. The name of the net corresponding to each

segment is shown besides the segment. Net N1 is partitioned into seven segments S1 − S7

such that each segment has a different physical neighborhood. The physical neighborhood

of each segment of N1 is given in Table 4.2. It should be noted that although there is a

line-of-sight between the segments S7 and S12, they may or may not be classified as physical

neighbors, depending on the user-defined distance parameter d.

Given a bridge defect candidate, each net involved in the bridge defect can be partitioned



4.2. DIAGNOSIS METHODOLOGY 116

into different segments as illustrated in Figure 4.7. The layout region where a bridge defect

likely resides is thus the area between each pair of physically close segments. For example,

if logic diagnosis returns (N1, N2) as a possible bridge defect candidate, then it is likely that

the defect is located in the layout region between segments S1 and S9. The implicated layout

region can further be reduced via consistency check, which is discussed in Section 4.2.2.

To improve the physical localization of an open segment, a net is divided into segments

such that (a) each segment drives a unique set of receiver standard cells, and (b) each segment

has a unique physical neighborhood4. The physical neighborhood of each segment comprises

of all the physical neighbors of the downstream segments and the segment itself. This is

because the voltage at the floating node is not only influenced by the nets adjacent to it,

but also (possibly) by the nets in the vicinity of the downstream segments.

Segment partitioning and neighborhood identification for net N1 is illustrated in Figure

4.8. Net N1 is being driven by cell D, and drives two cells, R1 and R2. Using the approach

outlined above, PADLOC identifies eight segments S1 − S8 for net N1. The physical neigh-

borhood of each segment of N1 is shown in Table 4.3. Note that the neighborhood of any

segment upstream to an open defect location is unlikely to affect its value. For example, S11,

which is adjacent to S5, is less likely to affect the logic value at segment S3, S4, S6, S7 or S8.

Given an open defect candidate, the corresponding net can be divided into different

segments as illustrated in Figure 4.8. By combining the net segmentation and neighborhood

information from the pass-fail behavior of each receiver cell (that is known from a physically-

aware logic diagnosis approach such as LearnX/MD-LearnX), relevant segments where the

open defect could be present can be identified. The number of segments, and consequently

the layout region, can further be reduced through consistency check, which is discussed in

Section 4.2.2.

4It should be noted that a via that satisfies these conditions is also considered as a likely location of an
open defect.
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N1
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N2

Driver 
cell D

Receiver 
cell R2

Receiver 
cell R1N4
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S1 S2 S4
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S5
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Metal 1
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Figure 4.8: Illustration of net partitioning into segments for localizing open defects.

Segment Physical neighborhood

S1 S10, S11, S13, S14

S2 S11, S13, S14

S3 S13

S4 S13

S5 S11, S14

S6 S14

S7 S14

S8 -

Table 4.3: Physical neighborhood for each segment of net N1 (illustrated in Figure 4.8) for

open defect diagnosis.

Thus, by breaking up a net into segments based on the topology of its physical neigh-

borhood and the net itself, PADLOC identifies relevant segments that most likely relate to

a defect and influence its excitation.

Recall that there are two components of a neighborhood of a net – physical and logical. In

DIAGNOSIX, the logical neighborhood of a net consists of the inputs of the cell driving the

net and the side-inputs of the cells being driven by the net. However, the logical neighbors
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D
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R2

R3

AO22

N3
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S5S1

S3

S2
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Figure 4.9: An example defective circuit illustrating the identification of relevant logical

neighbors.

play different roles for different defect types. For example, the voltage of bridged nets

depends on the logic values of the inputs of the cells driving the bridged nets and the state

of the surrounding circuit, and is not influenced by the side-inputs of the receiver cells [72].

An example circuit shown in Figure 4.9 illustrates the process of identifying logical neigh-

bors that are more likely to be involved with an open defect. Suppose that the topology of

net N1 in the layout of the circuit is similar to that shown in the schematic in Figure 4.9.

Further suppose that partitioning the net associated with an open defect candidate results

in five segments, S1 − S5. For an open defect (strong open) at segment S3 (net N1), two

observations are made. First, the inputs of cell D cannot influence the logic value at the

floating part of S3 because the output of D is disconnected from it. Second, as S3 drives

the cells, R2 and R3, only side-inputs of those two cells would form its logical neighborhood.

Thus, in this case, the logical neighborhood of S3 consists of the nets {N3, N4, N5, N6}.

Furthermore, each side-input of a basic cell such as AND, NAND, OR, NOR should have

a non-controlling logic value to propagate an error due to an open defect to the cell output.

This reasoning can be extended to non-basic cells as well. For example, for the AO22 cell
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(that has been mapped to basic gates) shown in Figure 4.9, N4 can be discarded as a logical

neighbor of S3 because it is one of the inputs of the AND cell (within R3) and its value should

be logic-1 to propagate the error through that cell. However, the other two side-inputs of

cell R3, N5 and N6, remain as logical neighbors of S3 because either one of them (or both)

can be logic-0 to propagate the error through the OR cell to the output of R3.

Thus, for the defective circuit shown in Figure 4.9, the logical neighborhood of segment

S3 consists of N3, N5 and N6. On the other hand, DIAGNOSIX identifies nets N2, N3, N4,

N5 and N6 along with the inputs of cell D as the logical neighbors. Thus, in addition to the

decrease in the size of the neighborhood (which means fewer nets need to be monitored), nets

pertinent to activating an open defect are deduced. Identifying the neighborhood that most

likely influences the logic value at the defect location is important from a yield perspective as

well. Defect behaviors from diagnosing numerous failing chips can be correlated to estimate

the probability of a defect exhibiting a specific misbehavior, which can then be used to

employ adaptive testing, and correct design, test and manufacturing issues to improve yield.

4.2.2 Segment-level Consistency Check

After determining the neighborhood for each candidate segment, the next step in PAD-

LOC is deriving its neighborhood states for the TFSF and TPSF patterns. The notion of

obtaining the neighborhood states and performing the consistency check that is pioneered

in DIAGNOSIX for a logical signal (and described in Section 4.1.2) is adapted here for a

(physical) net segment.

In PADLOC, a neighborhood state for a segment consists of the set of logical values

established by a pattern on the segments in its neighborhood. Neighborhood states obtained

for the TFSF patterns are called the failing states, while the states identified for the TPSF

patterns are called the passing states. Because the underlying assumption in PADLOC is

that the logic value at a defect location is a function of its neighborhood, a segment is deemed
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inconsistent if the same neighborhood state occurs for a pair of TFSF and TPSF patterns.

Mathematically, a consistent segment has disjointed sets of failing and passing states. Based

on the amount of inconsistency, i.e., the number of neighborhood states that are failing as

well as passing, a segment could be eliminated as a candidate. Each candidate can also be

assigned a score based on the size of its neighborhood, the number of failing and passing

states, etc. Candidate ranking is further explored in Chapter 6.

4.3 Experiments

This section describes two experiments to validate PADLOC: one is a defect injection and

simulation experiment using four different designs (Section 4.3.2) and another that uses real

silicon failure data (Section 4.3.3). The diagnostic metrics that are used to quantify the

effectiveness of PADLOC are discussed in Section 4.3.1.

In each experiment, each fail log is analyzed using PADLOC as follows. The input to

PADLOC is a set of defect candidates reported by LearnX using the steps outlined in Figure

2.2. For each fail log, segments and their corresponding neighborhoods are identified for each

defect candidate. Passing (failing) neighborhood states are derived for each candidate and

for each TPSF (TFSF) pattern. Finally, a candidate segment is deemed correct if it is found

to be consistent. For a bridge defect, the output of PADLOC is the set of layout regions

between two consistent, physically-close segments. For an open defect, PADLOC reports the

layout region corresponding to each consistent segment.

4.3.1 Diagnostic Metrics

As noted in Section 1.2, a diagnosis methodology should accomplish two objectives. First,

it should accurately pinpoint the area where the suspected defect resides. Second, it should

identify the type of a defect and derive its precise logic behavior.
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PADLOC focuses on accomplishing each objective5. Note that, while PADLOC charac-

terizes a defect in terms of its logic behavior, the effectiveness of logic characterization of

a defect can only be realized in subsequent failure analysis, and remains the focus of the

future work. For instance, a statistically-significant volume of diagnoses can be effectively

correlated to determine the defect behavior distribution, if the logic behavior of a defect

candidate is precisely derived. As a result, the underlying root cause of yield loss can be

identified without any significant PFA effort, which, consequently, propels yield learning.

Here, the performance of PADLOC is compared with two advanced commercial diagnosis

tools and evaluated using the following three metrics.

1. Physical accuracy: This metric measures whether a defect resides in the layout region

suspected by a diagnosis approach.

2. Bounding circle diameter [161]: Bounding circle diameter quantifies the physical diag-

nostic resolution for a circuit (and the corresponding test set). Here, bounding circle

diameter is defined as the diameter of the smallest circle that contains the layout region

suspected by diagnosis. It estimates the area over which the candidates are distributed

in the layout. In [161], it is argued that the cost of performing PFA is directly propor-

tional to the layout area over which the candidates are scattered. Thus, this metric

can directly be used to determine if a failing chip is suitable for PFA.

3. Area union [279]: This metric quantifies physical resolution as well. It calculates the

area of the geometric union of the layout region suspected for each candidate segment.

It subsumes any overlapping area among candidates.

Both the physical resolution metrics are normalized with respect to the metal-1 pitch of

a technology process.

5The goal of correctly identifying the type of a defect is attained by LearnX and MD-LearnX.



4.3. EXPERIMENTS 122

1.5

1.5

0.5

2

r = 4.03

Figure 4.10: A simple example illustrating the computation of two diagnostic metrics, bound-

ing circle diameter and area union.

Figure 4.10 illustrates the computation of bounding circle diameter and area union. Sup-

pose that the layout region implicated by PADLOC is a set of three segments (shown in

color). The dimensions of each segment and the enclosing circle are shown in the figure. The

two metrics, bounding circle diameter and area union, are calculated as follows.

Bounding circle diameter = (4.03)(2) = 8.06

Area union = (1.5)(0.5) + (2)(0.5) + (1.5)(0.5) = 2.5

4.3.2 Simulation Experiment

The setup for the comprehensive defect injection and simulation experiment employed to

evaluate PADLOC is described in Section 4.3.2.1. In Section 4.3.2.2, the quality of diagnosis

achieved by PADLOC is compared with LearnX to study the improvement in physical resolu-
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tion and effect on physical accuracy. To gauge the performance of PADLOC, it is compared

with state-of-the-art commercial diagnosis (Section 4.3.2.3). Section 4.3.2.4 summarizes the

experiment results to emphasize the improvement in diagnosis quality attained by PADLOC.

4.3.2.1 Setup

For validating PADLOC, a simulation-based experiment is performed using four different

designs. One is an Advanced Encryption Standard (AES) core that provides AES-128 en-

cryption (henceforth referred to as “AES”) [311], the second design is an IWLS'05 benchmark

that implements the Data Encryption Standard (DES) algorithm called des perf (henceforth

referred to as “DES”), the third design is the L2 cache of the OpenSPARC T2 processor

(called “L2B”) [312], and the fourth design is an ITC’99 benchmark circuit called “B18” [313].

Each circuit is synthesized, and placed and routed using a 45nm technology library [314].

To mirror a real scenario, a pool of defective circuits is created by injecting bridge and

open defects into the layout of each design. The location of a bridge defect is identified using

geometric proximity analysis6. An injected bridge can be a bridge between two nets (or vias)

that run parallel to each other or a bridge between the corners of two adjacent nets (or vias).

In addition to injecting net open defects, different types of vias such as single vias, multiple

vias and stacked vias are considered as possible locations for injecting an open defect.

Virtual fail logs are generated using a mixed-signal simulation tool called SLIDER [362,

363]. In SLIDER, a circuit-level simulation is performed for the circuitry surrounding a

defect, while a logic-level simulation is performed for the rest of the circuit. For each design

and for each defect type (i.e., bridge and open), 1,000 virtual fail logs are produced. The

test set that is used to simulate each defective circuit is generated using a commercial ATPG

software.

6Likely bridge locations can also be derived using Design Rule Check (DRC) rules, Design-for-
Manufacturability (DFM) guidelines and capacitive coupling methods.
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4.3.2.2 Comparison with LearnX

In this experiment, the quality of diagnosis achieved by PADLOC is compared with LearnX

[274]. LearnX is a physically-aware diagnosis methodology that reports defect candidates

at a logic level. For a candidate of type Bridge, LearnX reports the corresponding pair of

bridged nets along with the layout region where the nets are physically close to each other.

PADLOC, on the other hand, reports the layout region between every pair of consistent

segments that are adjacent. For a candidate of type Open, LearnX divides the correspond-

ing net into partitions such that each partition drives a unique set of receiver cells, and

identifies the partition that could explain the observed circuit response. PADLOC further

divides each partition into segments based on the topology of the neighborhood, performs

a consistency check on each segment and reports a set of consistent segments at the end.

Because PADLOC focuses on the layout analysis of back-end defect candidates, candidates

of type Cell reported by LearnX are examined using another approach called NOIDA [162],

which is the focus of Chapter 5.

Figures 4.11, 4.12, 4.13 and 4.14 plot the probability density distribution of bounding

circle diameter and area union for AES, DES, L2B and B18, respectively, when bridge

defects are diagnosed by PADLOC and LearnX.

A density plot can be thought of as a smoothed histogram. Thus, a wider distribution at

a particular value indicates more density at that value. In each figure, the y-axis shows the

distribution of bounding circle diameter and area union for each diagnosis technique shown

on the x-axis. A dashed line across each density plot shows the mean of the distribution,

while a dotted line shows the median. The physical accuracy, defined in Section 4.3.1,

attained by each diagnosis approach is displayed at the top of each figure.

Observations specific to each design regarding bridge defect diagnosis are as follows.

1. AES: (Figure 4.11) The average physical accuracy for PADLOC is 98.1%, which is
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the same as LearnX. The mean (median) diameter of the bounding circle for PAD-

LOC is 21.2 (4.4), which is 4.7% (1.3%) better than LearnX. In addition, PADLOC

reports smaller bounding circle diameter for 2.0% of fail logs. The mean (median) area

union for PADLOC is 12.4 (3.7), which is 11.1% (4.7%) better than LearnX. Moreover,

PADLOC reports smaller area union for 2.7% of fail logs.

2. DES: (Figure 4.12) PADLOC and LearnX attain an average physical accuracy of

97.1%. The mean bounding circle diameter for PADLOC is 22.0, an improvement of

13.1% over LearnX. Moreover, PADLOC reports smaller bounding circle diameter for

3.8% of fail logs. The mean area union for PADLOC is 22.2, which is 13.1% better

than LearnX. Moreover, PADLOC reports smaller area union for 4.6% of fail logs.

3. L2B: (Figure 4.13) The physical accuracy achieved by PADLOC and LearnX is 96.7%.

The mean bounding circle diameter for PADLOC is 32.9, an improvement of 4.2% over

LearnX. In addition, PADLOC reports a smaller enclosing circle for 2.1% of fail logs.

The mean (median) area union for PADLOC is 35.2 (7.6), which is 15.1% (4.0%) better

than LearnX. Moreover, PADLOC reports smaller area union for 2.4% of fail logs.

4. B18: (Figure 4.14) Both LearnX and PADLOC locate the defect correctly for 97.5% of

fail logs. The mean bounding circle diameter for PADLOC is 16.1, which is 11.2% less

(i.e., better) than LearnX. Additionally, PADLOC reports a smaller bounding circle

for 2.4% of fail logs. The mean (median) area union for PADLOC is 11.2 (3.4), where

the improvement over LearnX is 17.9% (3.4%). In addition, PADLOC reports smaller

area union for 2.6% of fail logs.

The following common observations can be drawn regarding the diagnosis of a bridge

defect (Figures 4.11-4.14).

1. For each design, it is observed that the average physical accuracy achieved by PADLOC



4.3. EXPERIMENTS 126

and LearnX is identical when a bridge defect is diagnosed. This is because a pair of

bridged segments returned by LearnX always passes the consistency check. Thus, if

LearnX is able to identify the correct bridge defect, PADLOC cannot eliminate the

segments associated with the defect.

2. Because diagnosis is not perfect, an open defect candidate (in addition to the correct

bridge candidate) can sometimes be returned by LearnX while diagnosing a bridge

defect. Such an open candidate (or, one or more of its segments) can be deemed incon-

sistent by PADLOC, which could result in an improvement in the physical resolution.

Thus, PADLOC not only improves the physical resolution of a failing chip affected by

a bridge defect without losing accuracy, but also (possibly) eliminates a candidate of

an incorrect defect type, and thus instilling more confidence in the diagnosis result.

Figures 4.15-4.18 compare the performance of PADLOC and LearnX for open defects. In

general, compared to LearnX, a slight loss in accuracy results in a significant improvement

in the average physical resolution for PADLOC, which is reflected in the shapes of the

distribution of bounding circle diameter and area union. Figures 4.15 through 4.18 reveal

the following for each design.

1. AES: (Figure 4.15) The average physical accuracy for PADLOC is 97.6%, which is

1.3% less than LearnX. The mean (median) bounding circle diameter for PADLOC is

99.3 (106.5), which is 24.3% (27.6%) better than LearnX. In addition, PADLOC reports

smaller bounding circle diameter for 42.6% of fail logs, where the highest reduction in

bounding circle diameter over LearnX is 99.4%. The mean (median) area union for

PADLOC is 70.9 (25.2), which is 39.6% (80.0%) improvement over LearnX. Moreover,

PADLOC implicates smaller area union than LearnX for 46.6% of fail logs, with LearnX

reporting area union at most 500X times PADLOC.
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2. DES: (Figure 4.16) PADLOC attains an average accuracy of 97.5%, which is 1.4% less

than LearnX. The mean (median) bounding circle diameter for PADLOC is 77.0 (37.2),

which is 17.0% (22.7%) less (i.e., better) than LearnX. Additionally, PADLOC reports

a smaller bounding circle for 33.0% of fail logs, where the maximum improvement

in bounding circle diameter over LearnX is 98.9%. The mean (median) area union

for PADLOC is 36.1 (15.6), which is 28.4% (43.0%) better than LearnX. In addition,

PADLOC reports smaller area union than LearnX for 39.3% of fail logs, where the

maximum decrease in area union is 99.2%.

3. L2B: (Figure 4.17) The physical accuracy achieved by PADLOC is 92.4%. PADLOC

diagnoses 1.9% fewer fail logs correctly when compared with LearnX. The mean (me-

dian) bounding circle diameter for PADLOC is 131.8 (49.6), an improvement of 6.8%

(24.1%) over LearnX. In addition, PADLOC reports smaller bounding circle diameter

for 34.6% of fail logs, and reduces bounding circle diameter by up to a factor of 65.

The mean (median) area union for PADLOC is 143.9 (21.8), which is 17.5% (44.0%)

better than LearnX. Moreover, PADLOC reports smaller area union than LearnX for

38.6% of fail logs, where area union is decreased by at most 100X.

4. B18: (Figure 4.18) PADLOC correctly locates the defect for 95.4% of fail logs, which

is 1.6% less than LearnX. The mean (median) bounding circle diameter for PADLOC

is 95.6 (32.2), which is 23.0% (58.5%) better than LearnX. Additionally, PADLOC

reports a smaller bounding circle than LearnX for 44.9% of fail logs, with the maximum

decrease in bounding circle diameter being 99.7%. The mean (median) area union for

PADLOC is 60.1 (11.7), which is 39.7% (71.4%) better than LearnX. In addition,

PADLOC reports smaller area union than LearnX for 48.4% of fail logs, and decreases

area union by up to a factor of 625.

The performance of PADLOC primarily depends on the effectiveness of two steps, namely,
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neighborhood identification and consistency check. The possibility of how a correct candidate

can be eliminated by either of these steps is as follows.

1. Neighborhood identification: The physical neighborhood of a segment is identified

using geometric proximity and line-of-sight analysis. It is possible that the derived

neighborhood does not capture all the defect activation conditions. One of the ways

this can happen is that the distance d for searching a physical neighbor of a candidate,

which is possibly determined by technology and design parameters, is not carefully

selected. For example, its value is chosen to be equal to two times the minimum metal

width in [142–144] and five times in [150].

If d is too small, a portion of the neighborhood relevant to defect excitation might

not be included, which in turn could result in the elimination of a correct candidate.

On the other hand, if the size of the neighborhood is too large, it may result in the

identification of neighbors that are irrelevant, which in turn could result in incorrect

derivation of defect behavior and consequently, incorrect deduction of the failure root

cause.

2. Amount of (in)consistency: It should be recalled that a candidate is eliminated

from further analysis based on the cardinality of the intersection set of passing and

failing neighborhood states. An aggressive heuristic would discard a candidate if the

cardinality of the intersection set is non-empty; a conservative heuristic would remove

a candidate if the set of failing states is a subset of the passing states.

Here, an aggressive heuristic is employed, which results in a significant improvement

in the physical resolution, albeit with a slight loss in physical accuracy. An alternative

is to instead derive a data-driven heuristic that exploits machine learning to find the

right balance between physical accuracy and resolution.
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Improving the performance of PADLOC by focusing on these two aspects remains as

future work and is further discussed in Chapter 6.

In summary, PADLOC correctly finds the defect location for 96.5% of the fail logs, when

averaged over different designs. The enhancement in the physical resolution for PADLOC

is substantial, albeit with a slight loss in its physical accuracy of 0.8%. The mean (median)

diameter of the bounding circle for PADLOC is 15.6% (28.7%) better than LearnX. PADLOC

reports a smaller bounding circle for 20.1% of fail logs, while decreasing bounding circle

diameter by up to a factor of 300. When compared to LearnX, PADLOC improves the mean

(median) area union by 26.4% (37.0%). PADLOC implicates smaller area union for 22.5%

of fail logs, where area union is decreased by at most 625X.

On average, the runtime performance overhead for PADLOC is 0.35s per fail log, which

means PADLOC adds less than 5% runtime overhead to LearnX. The runtime overhead can

be decreased by storing the logic state of the internal nets beforehand, which can, however,

be achieved at the cost of memory.
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Figure 4.11: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “AES”, when bridge defects are diagnosed by PADLOC and LearnX.
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Figure 4.12: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “DES”, when bridge defects are diagnosed by PADLOC and LearnX.
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Figure 4.13: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “L2B”, when bridge defects are diagnosed by PADLOC and LearnX.
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Figure 4.14: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “B18”, when bridge defects are diagnosed by PADLOC and LearnX.
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Figure 4.15: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “AES”, when open defects are diagnosed by PADLOC and LearnX.
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Figure 4.16: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “DES”, when open defects are diagnosed by PADLOC and LearnX.
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Figure 4.17: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “L2B”, when open defects are diagnosed by PADLOC and LearnX.
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Figure 4.18: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “B18”, when open defects are diagnosed by PADLOC and LearnX.
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4.3.2.3 Comparison with Commercial Diagnosis

In this experiment, PADLOC is compared with two state-of-the-art commercial diagnosis

tools to demonstrate its potential. For each commercial diagnosis tool, the portion of the

suspected design layout corresponding to a top-scoring candidate is considered as its final

output.

Figures 4.19 through 4.26 plot the probability density distribution of two diagnostic

metrics, bounding circle diameter and area union, attained by PADLOC and commercial

diagnosis. The physical accuracy, defined in Section 4.3.1, achieved by each diagnosis ap-

proach is displayed at the top of each figure. It can clearly be seen from the shapes of

the distribution of bounding circle diameter and area union shown in Figures 4.19-4.26 that

PADLOC achieves significantly higher physical resolution than commercial diagnosis.

Observations specific to each design regarding bridge defect diagnosis are as follows (Fig-

ures 4.19 through 4.22).

1. AES: (Figure 4.19) The average physical accuracy for PADLOC is 98.1%, which is 7.6%

(27.9%) more than Tool 1 (Tool 2). The mean (median) diameter of the bounding circle

for PADLOC is 21.2 (4.4), which is just 14.3% (3.3%) of the mean (median) bounding

circle diameter for Tool 1, and 14.5% (4.3%) for Tool 2. In addition, PADLOC reports

smaller bounding circle diameter than Tool 1 (Tool 2) for 64.0% (64.5%) of fail logs.

The mean (median) area union for PADLOC is 12.4 (3.7), which is only 6.5% (3.4%)

of the mean (median) area union for Tool 1 and 9.4% (6.5%) of the mean (median)

area union for Tool 2. Moreover, PADLOC implicates smaller area union for 64.0% of

fail logs when compared to commercial diagnosis, where PADLOC reduces area union

by at most 9000X.

2. DES: (Figure 4.20) PADLOC attains an average physical accuracy of 97.1%, which

is 15.6% (22.6%) better than Tool 1 (Tool 2). The mean (median) diameter of the



4.3. EXPERIMENTS 139

PADLOC Tool 1 Tool 20

50

100

150

200

250

>300

Bo
un

di
ng

 c
irc

le
 d

ia
m

et
er

Physical
Accuracy: 98.1%
Mean: 21.2
Median: 4.4

Physical
Accuracy: 91.2%
Mean: 147.7
Median: 133.5

Physical
Accuracy: 76.7%
Mean: 146.6
Median: 102.2

(a)

PADLOC Tool 1 Tool 20

100

200

300

>400

Ar
ea

 u
ni

on

Physical
Accuracy: 98.1%
Mean: 12.4
Median: 3.7

Physical
Accuracy: 91.2%
Mean: 190.7
Median: 108.7

Physical
Accuracy: 76.7%
Mean: 132.1
Median: 57.0

(b)

Figure 4.19: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “AES”, when bridge defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.20: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “DES”, when bridge defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.21: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “L2B”, when bridge defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.22: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “B18”, when bridge defects are diagnosed by PADLOC and commercial

diagnosis.
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bounding circle is 22.0 (4.1), which is 11.3% (5.5%) of the mean bounding circle diam-

eter for Tool 1, and 17.5% (12.0%) of the mean for Tool 2. Additionally, PADLOC

reports a smaller bounding circle for 63.3% (56.6%) of fail logs, in comparison with

Tool 1 (Tool 2).

The mean (median) area union for PADLOC is 22.2 (3.7), which is 13.4% (6.5%) of

the mean (median) area union for Tool 1 ,and 13.6% (21.0%) of the mean (median)

area union for Tool 2. In addition, PADLOC reports smaller area union than Tool 1

(Tool 2) for 63.8% (55.3%) of fail logs.

3. L2B: (Figure 4.21) The physical accuracy achieved by PADLOC is 96.7%. PADLOC

correctly diagnoses 16.8% (43.3%) more fail logs than Tool 1 (Tool 2). The mean (me-

dian) bounding circle diameter for PADLOC is 32.9 (7.2), whereas the mean (median)

bounding circle diameter of Tool 1 is 4.9X (8X) and the mean (median) bounding circle

diameter of Tool 2 is 11.8X (48.5X) times PADLOC. In addition, PADLOC reports a

smaller bounding circle for 49.5% (88.8%) of the fail logs, when compared to Tool 1

(Tool 2).

The mean area union reported by PADLOC is 35.2, which is approximately 1/4th

(1/10th) of the mean for Tool 1 (Tool 2). The median area union for PADLOC is 7.6,

which is approximately 1/6th (1/30th) of the median for Tool 1 (Tool 2). Moreover,

PADLOC reports smaller area union than Tool 1 (Tool 2) for 46.3% (85.4%) of fail

logs.

4. B18: (Figure 4.22) PADLOC identifies the defect correctly for 97.5% of fail logs, while

Tool 1 (Tool 2) identifies the defect correctly for 83.1% (78.7%) of fail logs. The mean

(median) bounding circle diameter for PADLOC is 16.1 (3.8), which is 11.3% (4.3%)

of the mean bounding circle diameter for Tool 1, and 9.2% (2.6%) of the mean for Tool

2. Additionally, PADLOC reports a smaller bounding circle than Tool 1 (Tool 2) for
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60.7% (80.7%) of fail logs.

The mean (median) area union for PADLOC is 11.2 (3.4), which is 8.8% (6.3%) of

the mean (median) area union for Tool 1 and 7.1% (3.9%) of the mean (median) area

union for Tool 2. In addition, PADLOC reports smaller area union than Tool 1 (Tool

2) for 60.3% (80.4%) of fail logs.

Thus, PADLOC achieves high physical accuracy (between 96.7% - 98.1%) for a failing

chip affected with a bridge defect, whereas the maximum accuracy that a commercial tool

can attain is 91.2%. Besides that, the enhancement in the physical resolution for PADLOC

is significant. Specifically, when averaged over the four designs examined, the mean bounding

circle diameter for PADLOC is 1/7th (1/9th) of the mean for Tool 1 (Tool 2). For Tool 1

(Tool 2), only 19.3% (16.1%) of fail logs have bounding circle diameter less than or equal to

the median bounding circle diameter for PADLOC.

Observations specific to each design regarding open defect diagnosis are as follows (Fig-

ures 4.23 through 4.26).

1. AES: (Figure 4.23) PADLOC correctly locates the defect for 97.6% of fail logs, while

Tool 1 (Tool 2) correctly locates the defect for 94.4% (82.3%) of fail logs. The mean

(median) diameter of the bounding circle for PADLOC is 99.3 (106.5), which is 3/5th

(2/3rd) of the mean (median) bounding circle diameter for Tool 1. PADLOC reports a

smaller bounding circle for 63.4% (33.7%) of fail logs, in comparison with Tool 1 (Tool

2).

The slightly improved statistical properties of physical resolution for Tool 2 (when

compared to PADLOC) come at a huge cost; specifically, the accuracy for Tool 2 is

15.3% less than PADLOC.

The mean (median) area union for PADLOC is 70.9 (25.2), which is 42.4% (17.9%)

of the mean (median) area union for Tool 1 and 74.3% (58.1%) of the mean (median)
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area union for Tool 2. Additionally, PADLOC reports smaller area union than Tool 1

(Tool 2) for 68.4% (39.6%) of fail logs.

2. DES: (Figure 4.24) PADLOC attains an average physical accuracy of 97.5%, which

is 7.3% (29.8%) better than Tool 1 (Tool 2). The mean (median) diameter of the

bounding circle is 77.0 (37.2), which is 50.8% (47.6%) of the mean (median) bounding

circle diameter for Tool 1. Additionally, PADLOC reports a smaller bounding circle

than Tool 1 for 68.0% of fail logs. The mean (median) area union for PADLOC is

36.1 (15.6), which is 35.1% (27.7%) of the mean (median) area union for Tool 1. In

addition, PADLOC reports smaller area union than Tool 1 for 75.0% of fail logs.

Although Tool 2 reports a smaller median bounding circle diameter and area union

than PADLOC, Tool 2 is inaccurate more often. Specifically, Tool 2 inaccurately

diagnoses 29.8% more fail logs than PADLOC.

3. L2B: (Figure 4.25) The average physical accuracy for PADLOC is 92.4%, which is

7.3% (1.3%) more than Tool 1 (Tool 2). The mean (median) diameter of the bounding

circle for PADLOC is 131.8 (49.6), while the mean (median) for Tool 1 is 1.5X (2.6X)

times PADLOC and the mean (median) for Tool 2 is 2.5X (6.7X) times PADLOC. In

addition, PADLOC reports smaller bounding circle diameter than Tool 1 (Tool 2) for

45.2% (63.5%) of fail logs.

The mean (median) area union for PADLOC is 143.9 (21.8), whereas the mean (me-

dian) for Tool 1 is 1.4X (1.9X) times PADLOC and the mean (median) for Tool 2 is

1.8X (5.2X) times PADLOC. Moreover, PADLOC implicates smaller area union for

39.3% (61.5%) of fail logs when compared to Tool 1 (Tool 2).

4. B18: (Figure 4.26) The physical accuracy achieved by PADLOC is 95.4%. PADLOC

diagnoses 8.8% (3.0%) more fail logs correctly than Tool 1 (Tool 2). The mean (median)
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bounding circle diameter for PADLOC is 95.6 (32.2), whereas the mean (median)

bounding circle diameter of Tool 1 is 1.6X (3.6X) and the mean (median) bounding

circle diameter of Tool 2 is 1.6X (3.7X) times PADLOC. In addition, PADLOC reports

smaller bounding circle diameter than Tool 1 (Tool 2) for 62.1% (64.7%) of fail logs.

The mean area union for PADLOC is 60.1, which is 42.8% (50.1%) of the mean for

Tool 1 (Tool 2). The median area union for PADLOC is 11.7, which is approximately

1/5th (1/6th) of the median for Tool 1 (Tool 2). Moreover, PADLOC reports smaller

area union than Tool 1 (Tool 2) for 66.7% (69.7%) of fail logs.

Thus, PADLOC achieves high physical accuracy (between 92.4% - 97.6%) for a failing

chip affected with an open defect, where the minimum and maximum improvement over

a commercial tool is 1.3% and 29.8%, respectively. Besides that, the enhancement in the

physical resolution for PADLOC is remarkable. Specifically, when averaged over the four

designs analyzed, the mean bounding circle diameter for PADLOC is 60.8% (62.8%) less

than the mean for Tool 1 (Tool 2). For Tool 1 (Tool 2), only 26.0% (39.3%) of the fail logs

have bounding circle diameter less than or equal to the median bounding circle diameter

attained by PADLOC.

Two defect mechanisms commonly encountered in advanced process nodes are via mis-

alignment and high via resistance [364]. When defects due to a misaligned via are diagnosed,

it is observed that the physical accuracy achieved by PADLOC is 96.3%, which is 11.2%

(22.6%) more than Tool 1 (Tool 2). The mean bounding circle diameter for PADLOC is

25.1, which is 6.6X (8.7X) times smaller than Tool 1 (Tool 2). The mean area union for

PADLOC is 23.0, which is 7.3X (9.1X) times smaller than Tool 1 (Tool 2).

When defects due to high via resistance are analyzed, it is revealed that PADLOC pin-

points 94.9% of defects correctly, which is 5.3% (12.8%) more than Tool 1 (Tool 2). The

mean bounding circle diameter for PADLOC is 101.7, which is 1.6X times smaller than both
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Figure 4.23: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “AES”, when open defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.24: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “DES”, when open defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.25: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “L2B”, when open defects are diagnosed by PADLOC and commercial

diagnosis.
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Figure 4.26: Probability density distribution of (a) bounding circle diameter and (b) area

union for the design “B18”, when open defects are diagnosed by PADLOC and commercial

diagnosis.
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the commercial tools. The mean area union for PADLOC is 82.8, which is 1.7X times smaller

than Tool 1 and Tool 2.
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4.3.2.4 Results Summary

Experiment results presented in Section 4.3.2.2 demonstrate the advantages of PADLOC,

when compared to LearnX. It is revealed that PADLOC correctly finds the defect location for

96.5% of fail logs, when averaged over different designs and defect types. With a little impact

on physical accuracy when compared to LearnX (specifically, 0.8%), the enhancement in the

physical resolution (quantified using two metrics, bounding circle diameter and area union)

for PADLOC is appreciable. The mean (median) bounding circle diameter for PADLOC is

15.6% (28.7%) less than LearnX. PADLOC reports a smaller bounding circle for 20.1% of

fail logs, while reducing bounding circle diameter by at most 300X. In addition, the mean

(median) area union for PADLOC is 26.4% (37.0%) better than LearnX. PADLOC implicates

smaller area union for 22.6% of fail logs, and decreases area union by up to a factor of 625.

In Section 4.3.2.3, PADLOC is pitted against state-of-the-art commercial diagnosis to

investigate its potential. It is revealed that PADLOC prevails over commercial diagno-

sis. Figure 4.27 highlights the improvement in the physical accuracy (in comparison to

leading-edge commercial diagnosis) obtained by PADLOC for the four designs examined.

The horizontal axis shows the accuracy attained by each diagnosis approach for each design.

The vertical axis represents each design. The increase in the percentage of fail logs that are

correctly diagnosed is shown in the figure besides each plot-bar corresponding to commercial

diagnosis.

It is observed from Figure 4.27 that the maximum improvement over Tool 1 is produced

for B18 (specifically, 13.0%), and over Tool 2 for DES (specifically, 26.0%). The accuracy for

PADLOC is at least 95.5% (for L2B) and at most 98.5% (for DES). On the other hand, the

accuracy for Tool 1 ranges from 84.5% to 92.8%, and Tool 2 ranges from 77.2% to 85.7%.

Figure 4.28 and Figure 4.29 illustrate the mean bounding circle diameter and area union,

respectively, reported by PADLOC and commercial diagnosis for the four designs analyzed.

Because a smaller value of each physical resolution metric is preferable, the inverse of each
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Figure 4.27: Physical accuracy achieved by PADLOC and commercial diagnosis.
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Figure 4.28: Bounding circle diameter achieved by PADLOC and commercial diagnosis.
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metric is plotted to better visualize the effectiveness of PADLOC. Thus, in Figures 4.28 and

4.29, a longer plot-bar implies better physical resolution.

It is observed from Figure 4.28 that the improvement in bounding circle diameter over

Tool 1 (Tool 2) is maximum for DES (L2B). The mean bounding circle diameter for PADLOC

is at least 2.2X times (for L2B) and at most 3.5X times (for DES) better than Tool 1. The

mean bounding circle diameter for PADLOC is at least 89.7% better than (for DES) and at

most 4.4X times (for L2B) smaller than Tool 2.

Figure 4.29 reveals that the enhancement in area union over Tool 1 (Tool 2) is maximum

for DES (B18). The average area union for PADLOC is at least 93.3% better than (for L2B)

and at most 4.6X times (for DES) smaller than Tool 1. The mean area union for PADLOC

is at least 2.7X (for AES) and at most 4.3X times (for B18) better than Tool 2.

When averaged over all the four designs, PADLOC achieves a physical accuracy of 96.5%,

which is 10.3% (20.1%) better than Tool 1 (Tool 2). In addition, the physical resolution for
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Figure 4.29: Area union achieved by PADLOC and commercial diagnosis.
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PADLOC is impressive. The mean (median) bounding circle diameter for PADLOC is 61.2

(13.2), and is 37.4% (12.1%) of the mean (median) for Tool 1 and 33.0% (11.5%) of the mean

(median) for Tool 2. PADLOC reports smaller bounding circle diameter than Tool 1 (Tool

2) for 59.4% (60.6%) of fail logs. For Tool 1 (Tool 2), only 18.5% (24.4%) of the fail logs

have bounding circle diameter less than or equal to the median bounding circle diameter for

PADLOC. The mean (median) area union for PADLOC is 48.8 (7.8), and is 1/3rd (1/11th) of

the mean (median) for Tool 1 and 1/3rd (1/13th) of the mean (median) for Tool 2. PADLOC

reports smaller area union than Tool 1 (Tool 2) for 60.3% (61.7%) of fail logs.

4.3.3 Silicon Experiment

In addition to the simulation experiment presented in Section 4.3.2, the value of PADLOC is

demonstrated using an industrial design fabricated in an advanced process node. The setup

for the conducted experiment is described in Section 4.3.3.1. It conveys basic information

about the chip and the available silicon failure data that is used to study the effectiveness

of PADLOC. The results of the experiment are discussed in Section 4.3.3.2 to explore how

PADLOC fares in the real world.

4.3.3.1 Setup

PADLOC is assessed using an industrial chip that is manufactured using a 14nm process.

The chip, that measures 12 mm2 in size, is divided into 12 partitions, where each partition

consists of approximately 3.5 million gates. Each partition is tested using approximately

825 test patterns that have been generated using a commercial ATPG software. Fail logs

corresponding to 2,400 failing chips, of which 36 have been PFA’ed, are analyzed in this

experiment. The PADLOC flow overviewed in Figure 4.6 is applied to each fail log. Each

fail log is also examined by commercial diagnosis7, where only the top-scoring candidates

7The available data conforms to only one of the commercial diagnosis tools (Tool 1).
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are considered as its output. Each diagnosis technique is gauged using the diagnosis metrics

defined in Section 4.3.1. The physical accuracy for each diagnosis method is compared for

the 36 chips for which PFA results are available, while the physical resolution is calculated

for all the 2,400 failing chips.

4.3.3.2 Results

Figure 4.30 shows the probability density distribution of two diagnostic metrics, bounding

circle diameter and area union, computed for PADLOC and commercial diagnosis.

Figure 4.30(a) reveals that the mean bounding circle diameter for PADLOC is 120.3,

an improvement of 32.7% over commercial diagnosis. The median bounding circle diameter

for PADLOC is 38.4, which is less than one third of the median computed for commercial

diagnosis. In addition, PADLOC reports a smaller enclosing circle for 68.8% of fail logs, and

attains 5X improvement, on average.

It is seen from Figure 4.30(b) that the mean area union for PADLOC is 145.2, while

the mean area union for commercial diagnosis is 83.5% more than that. Additionally, the

median area union for PADLOC is less than half of the median computed for commercial

diagnosis. Furthermore, PADLOC reports smaller area union for 70.3% of fail logs, and

achieves 9X enhancement, on average.

Among 2,400 failing chips, 36 failing chips are PFA’ed. PFA confirms that PADLOC

correctly pinpoints the correct candidate for each failing chip. More importantly,

PADLOC attains superior physical resolution without sacrificing accuracy. Figures 4.31 and

4.32 plot bounding circle diameter and area union, respectively, for each failing chip for

which PFA results are available. The index of each fail log is shown on the horizontal axis,

while the vertical axis shows the logarithmic value of the diagnostic metric for each fail log.

Figure 4.31 shows that the median bounding circle diameter for PADLOC is 134.9, which

is 25.3% better than commercial diagnosis. PADLOC improves bounding circle diameter for
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Figure 4.30: Probability density distribution of (a) bounding circle diameter and (b) area

union when 2,400 silicon failures are analyzed by PADLOC and commercial diagnosis.
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Figure 4.31: Bounding circle diameter for 36 failing chips that are PFA’ed.
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Figure 4.32: Area union for 36 failing chips that are PFA’ed.



4.4. CONCLUSION 159

17 (47.2%) fail logs. Among the fail logs for which PADLOC reports smaller bounding

circle diameter, PADLOC achieves 6X improvement, on average, and attains at most 44X

improvement over commercial diagnosis.

Figure 4.32 indicates that the median area union for PADLOC is 102.8, which is 38.1%

better than commercial diagnosis. PADLOC reports a smaller value of area union for 26

(72.2%) fail logs. Among these 26 fail logs, PADLOC attains 3X average improvement, and

achieves at most 16X improvement over commercial diagnosis.

The biggest takeaway here is that PADLOC is 100.0% accurate in localizing a

defect in each failing chip, while reporting significantly better physical resolution

than commercial diagnosis.

4.4 Conclusion

This chapter describes a comprehensive physically-aware methodology for defect diagnosis

we call PADLOC (Physically-Aware Defect LOcalization and Characterization). PADLOC

focuses on physical localization and behavior derivation of a back-end defect (i.e., a defect

that resides outside a standard cell). Specifically, it identifies the precise x−y−z location of

a defect using minimal layout information. It analyzes the topology of the net(s) involved in

a defect and its physical neighborhood to pinpoint the subnets that are likely to correspond

to a defect. It avoids the use of possibly unreliable extracted parasitics to derive the logic

value at a defect location. Instead, it deduces the behavior of a defect based on its physical

and logical neighborhood.

A thorough simulation-based experiment is designed to assess the performance of PAD-

LOC. Results from simulation experiments for 8,000 defects reveal that PADLOC achieves

an accuracy of 96.5%, which is 10.3% and 20.1% better than two state-of-the-art commercial

diagnosis tools. More impressive, however, is the physical resolution attained by PADLOC.
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Two metrics, bounding circle diameter, which is defined as the diameter of the smallest circle

enclosing the layout regions suspected by diagnosis, and area union, which is defined as the

area of the geometric union of the implicated layout regions, are employed in this work to

quantify physical resolution. It is observed that the average bounding circle diameter for

PADLOC is 61.2, and is 33.0% of the mean computed for the better-of-the two commercial

tools. The average area union for PADLOC is 48.8, which is at least 29.5% of the mean area

union for commercial diagnosis.

A silicon experiment is also conducted to demonstrate the capability of PADLOC. Silicon

failure data corresponding to 2,400 failing chips fabricated in an advanced process technology

is examined. The analysis reveals that PADLOC reports smaller bounding circle diameter

as well as area union for 68.8% and 70.3% of fail logs, respectively, when compared with

commercial diagnosis. In addition, the bounding circle diameter for PADLOC is 120.3, on

average, which is 32.7% smaller (i.e., better) than commercial diagnosis.

PADLOC is further validated by inspecting 36 failing chips that are PFA’ed. PADLOC

is able to physically locate a defect in each failing chip correctly, while suspecting a smaller

layout region than state-of-the-art commercial diagnosis. It is seen that PADLOC improves

bounding circle diameter for 47.2% of fail logs, and achieves at most 44X improvement.

Locating a defect correctly while implicating a smaller layout region guides a volume

diagnosis approach effectively to identify the failing root cause responsible for yield loss.

Improved physical localization likely increases the percentage of failing chips that are suitable

for PFA. This is because more failing chips would have their suspected defective areas less

than the threshold determined by PFA [161]. Thus, a higher percentage of failing chips

can be PFA’ed efficiently, which translates to decreased PFA cost. Additionally, enhanced

defect localization accelerates PFA because a smaller layout region needs to be searched for

a defect, which in turn, likely, facilitates rapid yield learning.
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Chapter 5

NOIDA: Noise-resistant Intra-cell

Diagnosis

Chapter 2 presents LearnX, a physically-aware diagnosis methodology that concentrates on

locating a defect in two phases. A defect that mirrors the behavior of a common fault model

such as the stuck-at and the wired bridge fault model is identified in Phase 1. A defect that

exhibits non-trivial behavior is diagnosed in Phase 2 using a machine learning model that

learns the hidden correlations between a correct candidate and the observed circuit response.

While LearnX focuses on localizing a single defect affecting a failing chip, Chapter 3 dis-

cusses MD-LearnX that focuses on localizing multiple defects. MD-LearnX is a three-phase

diagnosis methodology. In MD-LearnX, Phases 1 and 2 identify non-interacting defects.

Phase 3, on the other hand, is proficient in identifying multiple, interacting defects.

Chapter 4 introduces PADLOC, which acts upon the output of LearnX/MD-LearnX

to physically localize and derive the logic behavior of a defect. It enhances the physical

resolution for a defect by partitioning a candidate into segments based on its topology and the

topology of its neighborhood. It determines the precise behavior of a defect by investigating

the logical activity of its surrounding circuitry.
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However, PADLOC is specifically developed for inspecting a back-end defect, i.e., a defect

that affects one or more interconnects in a design. With advanced technology nodes, there

has been an increasing number of front-end (i.e., within a standard cell) defects. Conven-

tional diagnosis approaches typically fail to localize such defects. In addition, circuit-level

noise can change the tester response in an unexpected way, and can decrease the quality of

diagnosis. This work attempts to address these concerns. That is, a noise-resistant diagnosis

methodology, called NOIDA (NOise-resistant Intra-cell Diagnosis Approach), is developed

to effectively diagnose a front-end defect. NOIDA analyzes the intra-cell physical neighbor-

hoods surrounding likely defect locations to locate an intra-cell defect. Defect behavior is

derived based on the neighborhood, instead of querying a pre-computed fault dictionary.

Thus, while PADLOC focuses on identifying the physical location and the logic behavior of

a back-end defect, NOIDA centers on executing the same for a front-end defect.

The rest of the chapter is organized as follows. Section 5.1 motivates the need for a front-

end defect-diagnosis methodology. Section 5.2 discusses prior work related to the physical

localization of a front-end defect. It also motivates NOIDA and reasons the need to design

a diagnosis approach that is robust to circuit-level noise. The details of how NOIDA derives

the behavior and pinpoints the physical location of a defect within a cell are described in

Section 5.3. Results from a comprehensive simulation-based experiment are presented in

Section 5.4, where NOIDA is shown to be more effective in diagnosing a defect than state-

of-the-art commercial diagnosis. Finally, Section 5.5 concludes this chapter by summarizing

the overall contributions of this work.

5.1 Motivation

Diagnosis methods reviewed and discussed in Section 2.1, Section 3.1 and Section 4.1 focus

on localizing (and sometimes, characterizing) a back-end defect, and by extension, differenti-
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ating between a back-end and a front-end defect. That is, such a diagnosis method is unable

to pinpoint the location of a defect within a standard cell, and reports either an interconnect,

a standard-cell pin or the cell itself as a possible candidate.

However, identifying the location of a defect within a failing standard cell is equally

important due to the following reasons.

1. Standard-cell failing frequency

Decreasing feature sizes and increasing complexity of the manufacturing process has led to

an increased number of front-end defects. Several PFA results, based on technologies ranging

from 160nm to 14nm, have been disclosed in the literature where a front-end diagnosis

approach assisted in identifying the root cause of the failure within a cell [74, 175–179].

To further demonstrate the importance of front-end diagnosis, silicon test data from

thousands of failing chips manufactured by various organizations in process nodes ranging

from 55nm to 14nm is collected and analyzed. The results are summarized in Table 5.1.

The first column (“Chip type”) specifies whether silicon data is obtained for a test chip or

high-volume manufacturing chip. The second column shows the process node in which a

chip is fabricated.

Each fail log obtained is diagnosed using a commercial diagnosis software. The third

column shows the percentage of chips where the top-scoring candidate is uniquely classified

as a cell candidate. Thus, the values shown in this column (likely) guarantee the existence

of a front-end defect. The fourth column, on the other hand, shows the percentage of chips

where one of the top-scoring candidates reported by commercial diagnosis is categorized as a

cell candidate (i.e., a front-end and a back-end candidate are assigned the same (top) score

by diagnosis). Thus, there is some ambiguity of whether a standard cell is failing or not in

these failing chips. The fifth column (“Total”) specifies the size of the dataset analyzed.

Table 5.1 reveals that the frequency of a failing chip being affected with a front-end defect

is high. For example, for the dataset associated with the third row, up to 85.6% of the failing
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No. of failing chips

Process Strong indication Weak indication
Chip type node (nm) of a cell defect (%) of a cell defect (%) Total

Test chip 14 8.8 70.4 11,727
High-volume chip 55 10.2 63.0 1,201
Test chip 28 17.9 85.6 167
Test chip 14 40.1 50.0 1,375

Table 5.1: Summary of silicon test data from chips manufactured across various process

nodes and organizations highlighting the percentage of failing chips affected by a front-end

defect.

chips may be failing due to an intra-cell defect. For the dataset corresponding to the fourth

row, diagnosis suggests that there is a strong indication of a cell-internal defect for 40.1%

of the failing chips. Increasing number of front-end defects in advanced process nodes thus

warrants the need of a front-end diagnosis technique.

2. The use of large standard cells

Figure 5.1 shows the bounding circle diameter (as a measure of physical area) of each

cell in a commercial 14nm standard-cell library1. The x-axis represents the standard cells

that are numbered from 0 to 2245. The y-axis shows the bounding circle diameter for each

cell. The metric, bounding circle diameter is chosen because it directly influences the cost

of PFA (Section 4.3.1).

Each standard cell is categorized as either “Primitive”, “Complex” (i.e., a custom-

designed cell that is logically constructed from a combination of more than one primitive

cell, but is physically smaller than the combination due to its efficient transistor-level im-

plementation), and “Sequential” (i.e., a cell that implements sequential logic). Figure 5.1 is

divided into three groups, where each group corresponds to a standard cell category.

It is observed from Figure 5.1 that 51.5% of the cells in the library implement custom

1Physical-only cells such as filler and decap cells are excluded.
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Figure 5.1: Physical area (quantified by bounding circle diameter and normalized by the

metal-1 pitch) of each cell in a 14nm commercial standard-cell library.

logic, while 19.1% of the cells are sequential. The maximum bounding circle diameter for a

custom-designed cell is 35.3, primitive cell is 30.2, and sequential cell is 70.1. It should be

recalled from Figure 4.31 (in Section 4.3.3) that the minimum bounding circle diameter for

a failing chip affected with a back-end defect is 1.2, which is 58X smaller than the biggest

cell in this library and 8X smaller than the smallest library cell. In addition, bounding circle

diameter for 73.1% (24.8%) of the back-end candidates is smaller than the biggest (smallest)

cell in the library.

Chapter 4 investigates how a back-end layout analysis methodology like PADLOC can

successfully enhance physical resolution down to a small portion (“segment”) of an inter-

connect, which, in turn, could decrease the layout area to be searched during PFA. As a

consequence, the time and the cost to perform PFA could decrease, which could lead to

faster and efficient yield learning.
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Thus, if a diagnosis approach is not able to localize a defect within a standard cell, it

will increase the cost of PFA significantly. Increasing use of big standard cells in a design

with advancing technology thus warrants the need for a diagnosis technique that specializes

in locating a defect within a standard cell, which, in turn, reduces the area to be searched

during PFA. Furthermore, PFA can become more efficient and cost-effective if a defect inside

a standard cell can be identified. This is because a failing chip affected by a front-end defect

can be de-layered down to the process layer where the defect is found to likely reside, and

all the higher layers could be ignored.

3. Statistical analysis to deduce the underlying root cause

Defect types including poly-contact shorts, poly-contact opens, poly-active shorts, and

fin-related defects such as gate oxide shorts can only exist within a standard cell. Those

defects would not be identified using a back-end diagnosis technique. Thus, a diagnosis

technique is needed that is adept in characterizing a defect inside a standard cell.

Additionally, volume diagnosis statistically correlates diagnoses of a number of failing

chips to deduce yield-limiting design/manufacturing issues. A traditional yield-learning

method (that is based on the outcome of a back-end diagnosis technique) will fail to identify

a systematic failure mechanism affecting a standard cell and could misdirect PFA to inspect

an incorrect location in a failing chip. As a result, a considerable amount of PFA resources

may be wasted, which likely slows down yield learning.

Therefore, the development of an effective front-end diagnosis technique is imperative to

accelerate yield analysis and learning. The next section, Section 5.2, reviews prior work re-

lated to the identification of a front-end defect. It also discusses why a generalized approach,

instead of a fault model based approach, to defect diagnosis is required, and, subsequently,

lays the foundation for NOIDA.
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5.2 Prior Work

Many approaches have been put forward over the years to diagnose front-end defects. Work

in [163–165] assumes a fault model for defects within the transistor-level description of a

cell. Three types of defects are considered in that work – transistor stuck-open defects,

transistor resistive-open defects, and bridge defects between each pair of nets in a cell. For

each defect type considered in that work, the schematic of a cell is altered by replacing each

transistor with a logic sub-circuit. The mapping from a transistor to an equivalent logic sub-

circuit is achieved using complex transformation rules and is different for each defect type.

A transistor-level cell schematic is thus transformed into a logic netlist (which is separate

for each defect type) such that an intra-cell defect in the original transistor-level netlist has

an equivalent logic-level fault in the modified logic netlist. Transformation is applied to cells

that adhere to the following criteria: the stuck-at fault simulation response at the output of

a cell should match the observed circuit response. A logic-level diagnosis tool can then be

used on the modified netlist to find the defective cells, and in turn the intra-cell defects.

One main drawback of using the approach presented in [163–165] is that the diagnostic

accuracy largely depends on the fault models and the transformation rules. Another dis-

advantage is that a different model is required for each defect type, which means unknown

defect types may go undiagnosed. In addition, that technique is limited to only three defect

types; defects such as transistor stuck-closed and net (resistive) open defects are not tar-

geted. Furthermore, precise physical localization of a cell-internal defect is unlikely because

cell layout information is not utilized during diagnosis.

Other works that do not locate a defect using a physical netlist of a cell include [166,

167], where a failing transistor is reported using the transistor stuck-open fault model; and

[168, 169], where critical path tracing [111–113] is utilized at the transistor level to identify

candidate defect locations in a pre-layout schematic netlist of the candidate cell.
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An approach is proposed in [170] that focuses on diagnosing an intra-cell bridge defect.

Logic-level diagnosis is first used to identify a list of candidates. Each fan-in and fan-out

cell corresponding to each candidate location is deemed a candidate cell. Possible locations

for a bridge defect in each candidate cell are then identified from a defect extractor tool

[79, 278, 365–367]. Next, a pool of defective circuits is created by injecting and simulating

a bridge defect at each extracted location. Each defective circuit is then transformed into

its equivalent logic sub-circuit [368]. Finally, logic-level diagnosis is utilized to find the logic

sub-circuit that explains the tester response, and consequently, the corresponding intra-cell

bridge defect. That technique uses a similar idea that is described in [163–165] and hence

faces similar drawbacks; its effectiveness mainly depends on how accurately a front-end defect

is modeled with a logic fault. It is also limited to the behaviors corresponding to a strong

bridge defect. Furthermore, its capability is influenced by the veracity of defect extraction

and circuit-level simulation.

In [132,142–144,171], possible defective cell locations are identified based on the realistic

assumption that the excitation of a cell-internal defect is highly correlated to the input logic

values applied to a cell. Logic values at the inputs of each candidate cell are collected for

Tester-Fail-Simulation-Fail (TFSF) patterns, that is, patterns that fail on the tester and

propagate the error effects from the defect location to the circuit outputs; and Tester-Pass-

Simulation-Fail (TPSF) patterns, that is, patterns that pass on the tester but propagate the

error effects from the defect location to the circuit outputs. Such input-value combinations

will henceforth be referred to as cell-level failing and passing patterns. Cells with inconsistent

input conditions, i.e., input conditions that appear in both cell-level passing and failing

patterns, are discarded from further analysis. This form of consistency checking is a special

case of the approach described in Section 4.1.2. For the remaining consistent cells, the input

conditions are matched with a fault dictionary. The fault dictionary is created by performing

a switch-level simulation of various intra-cell defects. However, only transistor defects and
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physically-feasible bridge defects are considered in that work; defects such as net open defects

(resistive or otherwise) are not targeted. In addition, the use of a fault dictionary implies

that an unknown defect would remain undiagnosed.

The methodology described in [172–174] follows a similar approach as [171]. It employs

consistency check to find an initial set of candidate cells and then compares the cell input

conditions with a fault dictionary to identify the fault that explains the observed circuit

response. In contrast to the work of [171], it performs transistor-level simulation (with

extracted parasitics) for each potential defect to build the dictionary [369]. Realistic defect

locations are extracted from the layout as well. However, it restricts itself to diagnosing an

intra-cell bridge, a transistor stuck-open and an intra-cell (resistive) contact open defect.

Moreover, similar to the work of [170], the quality of diagnosis greatly depends on possibly

inaccurate defect extraction and transistor-level simulation.

Work presented in [73–78] builds a fault dictionary as well using transistor-level simula-

tion. Relative to other fault model based approaches discussed up to this point, it expands

the front-end defect universe considered to create a fault model. It models an open defect

at any netlist component (i.e., a net, via or a contact), a bridge defect between two adjacent

components and a transistor defect, with varying strengths. The fault model has been used

for cell-internal diagnosis in [175–179]. However, similar to the works of [170, 172–174], the

efficacy of the approach used in [175–179] relies on the accuracy of the SPICE models and

fortuitous identification of an unseen defect.

Authors in [180] propose a DFM-aware fault model where probable defect locations within

a cell are identified using DFM guideline violations (instead of using extracted parasitics).

A DFM guideline represents a vulnerability in the manufacturing process and its violation is

thus more likely to cause a defect. In [79,80,366,367], on the other hand, possible defects are

identified at the process-level by taking into account prior statistical information on defect

likelihood that is obtained from the manufacturing process. Each defect is then mapped to a
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faulty behavior at the circuit-level. The method outlined in [181] goes one abstraction level

below by modeling a defect at the contamination2 level itself. However, these techniques

face similar drawbacks to any other model-based approach.

Methods reviewed up to this point either devise a new fault model or employ an existing

model to diagnose a front-end defect. A model-based approach stores pre-computed defect

behaviors in a fault dictionary. While a fault dictionary is impractical to use during back-end

diagnosis due to its space and time complexities, it is tractable during front-end diagnosis

because the fault simulation responses are generated and stored for a library of standard

cells (and not for the entire design, which is much larger in size) once per technology (and

not per design). In addition, fault models enable defect behavior characterization. However,

as technology progresses, new materials and fabrication steps are employed, which results

in new defect mechanisms. New defect mechanisms (e.g., fin-related defects in FinFET-

based circuits [370]) can create misbehaviors that are not sufficiently captured by existing

fault models [371]. Thus, the unpredictability of defects necessitates the need for a more

generalized approach to defect diagnosis.

Even if fault models accurately captured the typical behaviors of the targeted defects,

circuit-level noise can cause deviations between the predicted behavior and the behavior

observed on the tester. Various sources of noise exist in digital circuits that include process

variation, crosstalk signal noise, power supply noise, and substrate-coupling noise [372]. De-

viations between the observed and the predicted behavior can also result from inaccurate

SPICE models used for defect extraction and transistor-level simulation employed for for-

mulating fault models. Depending on the amount of deviation, a weak logic value at a cell

output, due to an intra-cell defect, can be interpreted as a logic-1 or a logic-0 by a receiver

cell (depending on its switching threshold, which too is affected by noise), and can result in a

2A contamination is defined as an accidental particle that is deposited on a chip during manufacturing,
which may or may not induce a defect.
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tester response that is not predicted by the corresponding fault. Thus, circuit-level noise and

the resulting ambiguity in signal logic values warrant the need for a noise-resistant front-end

diagnosis approach.

5.3 Diagnosis Methodology

The discussion of prior work associated with the diagnosis of a defect within a standard cell

using various layout and circuit parameters in Section 5.2 suggests that an ideal front-end

diagnosis approach should possess the following characteristics:

1. Physical localization of a defect within a standard cell (in terms of its x−y−z location).

2. Defect modeling with minimal assumptions.

3. Characterization of a defect with respect to its behavior.

4. Robust to circuit-level noise

NOIDA attempts to fulfill the aforementioned objectives. NOIDA circumvents the prob-

lem of potentially inaccurate defect modeling observed in prior work by avoiding the use of

a fault dictionary. Instead, it derives the defect behavior by analyzing the logic activity of

the intra-cell nodes surrounding the likely defect location. Here, a defect is assumed to be

localized and controlled by the circuitry in close proximity. This assumption holds true for

a variety of defects including intra-cell bridge, open and transistor defects. The nodes near

a candidate are collectively referred to as its neighborhood; the logic values applied to the

nodes in the neighborhood form a neighborhood state. Changes in neighborhood state over

time can be recorded for sequence- and timing-dependent defects. The output of NOIDA

is a set of intra-cell candidates, where each candidate is a tuple consisting of its physical

location and its likely behavior (and consequently, its defect type).
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Figure 5.2 shows an overview of NOIDA. The input to NOIDA is a set of candidate

cells that have been deduced by a logic diagnosis methodology such as LearnX/MD-LearnX.

The flow begins by deriving all the possible locations for an intra-cell defect within each

candidate cell. Cell-level passing and failing patterns are then identified by performing a

transistor-level simulation of “stuck-at” faults at each candidate node. The next step, called

intra-cell node neighborhood identification, identifies the physical neighborhood for each can-

didate. A consistency check is then performed on each candidate node to identify nodes that

portray consistent pass-fail behavior. Consistent candidate nodes are then mapped to one or

more defect candidates, depending on the custom fault model extracted by NOIDA. Defect

candidates can then be ranked using critical area, DFM violations, etc.

5.3.1 Intra-cell Node Identification

A physical transistor-level description of a cell (such as its physical layout and SPICE netlist

with extracted parasitics) is used to identify intra-cell nodes. There are different ways to

identify the nodes in a cell. In a SPICE netlist, for example, each location where more than

one SPICE component (such as transistors and extracted parasitics) is connected is deemed

a node.

The schematic of an inverter is used to illustrate node identification in Figure 5.3. The

circuit consists of six resisters, R1 − R6, ten capacitances C1 − C10 and two transistors

M1−M2. There are ten internal nodes identified for this cell, namely, {A, A1, A2, Z, M1 : g,

M1 : d, M1 : s, M2 : g, M2 : d, M2 : s}.
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Figure 5.2: An overview of the proposed front-end diagnosis methodology, NOIDA.
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Figure 5.3: A schematic view of an inverter cell with parasitics extracted. Parasitics affecting

power rails are not shown for clarity.

5.3.2 Transistor-level Fault Simulation

Each intra-cell node is faulted at the opposite value of the expected value for each cell-level

failing and passing pattern3. This is achieved by adding a near-zero resistor between each

node and VDD (or GND, depending on the fault value) in the SPICE netlist. The altered

SPICE netlist is then simulated with an analog simulator for the cell-level failing and passing

patterns. Each simulation response is digitized using the following criteria: the logic value

at a cell output is deemed a logic-1 (logic-0) if the output voltage is more (less) than half of

the supply voltage. This logic threshold value depends on the process technology and can

be specified by the user. The cell-level passing (failing) patterns for which a faulted node

3The cell-level failing and passing patterns, which have been defined in Section 5.2, can be obtained via
any logic-level diagnosis technique.
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produces and propagates an error to the cell output are the cell-level TPSF (TFSF) patterns

for the faulted node. Each faulted node with at least one cell-level TFSF pattern is adjudged

an initial diagnosis candidate.

Figure 5.4 illustrates fault simulation of the intra-cell node, M2 : g (shown with a green

oval around it in the figure), for the input pattern A = 0. The analog voltage obtained at

each intra-cell node from fault simulation is shown in a dotted yellow box. The expected

voltage at each node for the applied pattern is shown in a dashed blue box. Because the

error is propagated to a cell output (the simulated and the expected cell output voltages are

0V and 1V, respectively), the applied pattern would be deemed a cell-level TPSF (TFSF)

pattern if it is a cell level passing (failing) pattern.

5.3.3 Intra-cell Node Neighborhood Identification

The core assumption in NOIDA is that the activation of a cell-internal defect is influenced

by the nodes in its neighborhood. The behavior of a defect can then be determined by

identifying the neighborhood that controls defect activation. If the SPICE netlist with

extracted parasitics is used, then the neighborhood of a node constitutes all nodes that are

coupled to it by capacitors. This is a reasonable way to identify neighbors and adheres to

the localization assumption. For the inverter illustrated in Figure 5.3, the neighborhood for

each node is shown in Table 5.2.

Neighborhood of a node can also be computed by using Design Rule Check (DRC) rules,

Design-for-Manufacturability (DFM) guidelines and geometric proximity analysis [125,142–

144,158,161,278,280].
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Figure 5.4: Analog voltage obtained at each intra-cell node when an inverter is simulated

by adding a near-zero resistor between M2 : g and VDD (to emulate M2 : g stuck-at 1) for

A = 0.

5.3.4 Intra-cell Node Consistency Check

Analog voltages at each cell-internal node are stored during fault simulation (Section 5.3.2).

Each value is then converted into its logic equivalent by using the same logic threshold value

mentioned in Section 5.3.2. Once the analog value at each node is digitized, the procedure of

determining the neighborhood state for a node for a pattern is similar to DIAGNOSIX and

PADLOC (Section 4.1.2 and Section 4.2.2, respectively). For static defects, the neighborhood

state for a candidate is the set of logical values established on the neighborhood nodes for the

pattern applied. For sequence-dependent defects, the neighborhood state tracks the logical

values for two or more patterns.
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Intra-cell node Intra-cell neighborhood

A –
A1 –
A2 M1 : d, M2 : d, Z
M1 : d M1 : g, M1 : s, A2

M1 : g M1 : d, M2 : s
M1 : s M1 : d, M2 : g
M2 : d M2 : g, M2 : s, A2

M2 : g M2 : d, M2 : s, Z
M2 : s M1 : d, M2 : g
Z M2 : g, A2

Table 5.2: Intra-cell neighborhood for each intra-cell node in the inverter that is illustrated

in Figure 5.3. Each neighbor of a node is capacitively coupled to it.

For instance, the neighborhood state for node M2 : g for the pattern A = 0 is 000, which

is calculated after digitizing the values that are obtained from the transistor-level simulation

illustrated in Figure 5.4.

The neighborhood state for each intra-cell candidate is analyzed for cell-level TPSF and

TFSF patterns. If the neighborhood state for a candidate is the same for any pair of cell-level

TPSF and TFSF patterns, then the candidate has demonstrated inconsistency.

For instance, if the failing state (i.e., the neighborhood state established for a cell-level

TFSF pattern) for node M2 : g in the inverter schematic shown in Figure 5.3 is 000 and its

passing state (i.e., the neighborhood state established for a cell-level TPSF pattern) is 001,

then M2 : g is deemed consistent. However, if the passing state is 000 as well, then it is

adjudged inconsistent.

5.3.5 Intra-cell Candidate Selection and Ranking

Each candidate that is found to be consistent is further examined. Because the underlying

assumption in NOIDA is that the neighborhood governs the value at a defect location, a
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customized fault model can be extracted for each candidate that characterizes its behavior.

A candidate node (or a group of nodes, if the suggested behavior resembles that of a bridge

or a transistor defect, for example) is then mapped to a defect candidate. Thus, in contrast

to prior work, NOIDA infers the behavior of a defect and consequently its type from its

neighborhood.

Next, a minimal group of defect candidates are selected that can jointly explain the cell

output(s) for each failing pattern. Each candidate cover can then be ranked based on the

amount of consistency of its constituent candidates and the number of unexplained passing

patterns (i.e., cell-level TPSF patterns). A defect candidate in a cover can also be graded on

the basis of its likelihood of representing a real defect. For example, a weighted critical area

based approach is suggested in [80] to measure the probability of a defect. DFM guidelines

can also be utilized to identify likely intra-cell defect candidates [180].

To summarize, NOIDA assumes that the behavior of a defect is influenced by the circuitry

within some distance d surrounding it. It derives the defect behavior by analyzing the nodes

surrounding its location, instead of being limited to a pre-computed fault dictionary. In

contrast to prior work that essentially employs a lookup table to search for a fault that

matches the observed behavior, NOIDA utilizes an “effect-cause” approach where the cell

response is examined to find a group of candidates that collectively explains the observed

behavior. As a consequence, NOIDA is competent to localize a defect whose behavior cannot

be predicted by an existing front-end fault model. More importantly, no assumptions are

made regarding the number of intra-cell nodes affected by a defect, or the number of defects.

The performance of NOIDA primarily depends on the effectiveness of two steps, namely,

intra-cell node neighborhood identification and consistency check. The possibility of how a

correct candidate can be eliminated by either of these steps is as follows.

1. Neighborhood identification:As described in Section 5.3.3, there are different meth-

ods to identify the physical neighborhood of a node. For example, if the neighborhood
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of a node is assumed to consist of all nodes that are capacitively coupled to it, then the

effectiveness of NOIDA depends on the accuracy of the potentially inexact extracted

capacitances. If geometric proximity is used to find the neighborhood of a node, then

it is possible that, depending on the size of the neighborhood, irrelevant neighbors (if

the neighborhood size is too large) or only a subset of neighborhood (if the size is too

small) is identified.

2. Amount of (in)consistency: The amount of (in)consistency can be modulated for

candidate elimination. It should be recalled that a node is eliminated from further

analysis based on the cardinality of the intersection set of passing and failing neighbor-

hood states. As pointed out in Section 4.3.2.2, an aggressive approach would eliminate

a candidate if a failing state is identical to any passing state. A conservative approach,

on the other hand, would discard a candidate if every failing state matches a passing

state. It considers the feasibility of a failing state being incorrect due to factors such as

an inaccuracy arising from estimating voltages at each node from a SPICE simulation

and imprecise identification of the neighborhood of a node. Naturally, a conserva-

tive approach yields more candidates and hurts physical resolution, while increasing

the likelihood of retaining the correct candidate. The trade-off among the amount of

consistency, physical accuracy and physical resolution should be carefully analyzed for

optimum effectiveness.

Improving the performance of NOIDA by focusing on these two aspects remains as future

work and is further discussed in Chapter 6.

5.4 Experiments

This section describes several experiments that are conducted to validate NOIDA and com-

pare its potential with commercial diagnosis. NOIDA is evaluated on a FinFET-based 7nm
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standard-cell library [373].

The rest of this section is organized as follows. Section 5.4.1 discusses the diagnostic

metrics employed to measure the quality of diagnosis achieved by NOIDA. Section 5.4.2

describes the setup for the experiments conducted. Section 5.4.3 presents the experiment

results when an exhaustive test set is used for diagnosis. The consequences of using a test set

generated by a commercial intra-cell ATPG tool are investigated in Section 5.4.4. Section

5.4.5 studies the effect of introducing noise to the tester response on the quality of diagnosis.

5.4.1 Diagnostic Metrics

The output of NOIDA is a set of consistent intra-cell defect candidates, where each candidate

is a tuple consisting of its physical location (x− y− z location) and its likely behavior. The

output of commercial diagnosis is regarded here as a set of highest-ranked candidates among

the reported candidates.

As discussed in Section 1.2, a diagnosis methodology should ideally report a single correct

candidate that precisely represents and captures the behavior of the defect. Thus, the

following metrics are employed to evaluate the effectiveness of NOIDA. The output of NOIDA

is also compared with state-of-the-art commercial diagnosis software to discover its capability.

• Physical accuracy: It is a binary measurement of whether the location and the type

of an intra-cell defect is correctly pinpointed by diagnosis. Specifically, a transistor

defect is deemed accurate if diagnosis reports the defective transistor; an open defect

is judged accurate if one of the intra-cell nodes associated with the defect is correctly

suspected; and a bridge defect is considered accurate if both the bridged intra-cell

nodes are correctly identified.

• Physical resolution: It is the number of defect candidates returned by diagnosis.
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• Home run: A diagnosis approach is said to hit a home run when a single defect

candidate is reported correctly.

5.4.2 Setup

To validate NOIDA, each cell in the 7nm standard-cell library is individually analyzed. A

pool of defective cells is created by injecting cell defects (one at a time) into the layout of

each cell. The defects injected include opens, bridges (feedback and non-feedback), stuck-

open and stuck-closed transistors with varying strengths. The resistance values range from

1Ω to 20kΩ for bridge and transistor stuck-closed defects, and from 1GΩ to 1kΩ for open

and transistor stuck-open defects. For each defective cell layout, a corresponding transistor-

level netlist is extracted. Because the behavior of a defect is unknown, i.e., whether it is

static or sequence-dependent, analog simulation is performed on each altered netlist using

an exhaustive two-pattern test set. A defect is considered detected if the voltage at a cell

output deviates from its expected, defect-free value of VDD or GND by more than 50%.

Also, and importantly, patterns that detect the defect are deemed cell-level failing patterns,

while the remaining patterns are treated as cell-level passing patterns.

Each defect simulation response is analyzed to determine if it exhibits static or sequence-

dependent behavior. A sequence-dependent defect requires a sequence of patterns (two

patterns in this case) for detection. Detection of a static defect is independent of the first

pattern applied for all two-pattern combinations. In other words, a static defect is detected

by a single pattern.

Figure 5.5 shows the number of defects that are analyzed for each primitive standard

cell in the library, while Figure 5.6 shows the distribution for each complex cell. Each figure

consists of two plots – each showing the distribution of static and sequence-dependent defects

as a proportion of the total number of defects examined for a cell. A total of 115 standard

cells are inspected, where 48 (41.7%) are primitive and 67 (59.3%) are complex cells. A total
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of 34,330 defects are analyzed, out of which 10,303 (30.0%) defects have been examined for

a primitive cell while 24,027 (70.0%) for a complex cell.

The following observations can be made from Figures 5.5 and 5.6.

1. Figure 5.5 reveals that out of 10,303 defects, 6,626 (64.3%) defects are identified to the

static while 3,677 (35.7%) are found to be sequence-dependent. Figure 5.6 indicates

that among 24,027 defects, 10,162 (42.3%) defects are static while 13,865 (57.7%)

seem to be sequence-dependent. This means that a defect is likely to be detected by a

sequence of patterns if it resides in a complex standard cell; specifically, 79.0% of the

analyzed sequence-dependent defects reside in complex cells.

2. It is seen from Figure 5.6 that the cell “FAX1”, which implements the functionality of

a full adder, contains the highest number of possible defects (751 defects).

3. Among primitive cells, the 4-input NOR gate with a high drive strength, referred to

as “NOR4XP75” in Figure 5.5, appears to have the most number of possible defects

(338 defects).

Among primitive cells, Figure 5.7 and Figure 5.8 show the distribution of static and

sequence-dependent defects, respectively, based on their type (i.e., whether a defect to be

examined is an open, a bridge or a transistor defect). Figures 5.7 and 5.8 are divided into

three plots each, one corresponding to each defect type. The gray bar in each plot denotes

the number of static (sequence-dependent) defects in Figure 5.7 (Figure 5.8). Figure 5.7

reveals that, among static defects, 50.8% are bridge defects, 19.8% are open defects and

29.4% are transistor defects. On the other hand, it is seen from Figure 5.8 that only 12.5%

of the sequence-dependent defects are bridge defects, while the number of open and transistor

defects are nearly similar (45.9% and 41.7%, respectively). It is also observed that a majority

of bridge defects (88.0%) are static.
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Figure 5.5: Distribution of static and sequence-dependent defects for primitive cells in a 7nm

standard-cell library.
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Figure 5.6: Distribution of static and sequence-dependent defects for complex cells in a 7nm

standard-cell library.
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Similarly, Figure 5.9 and Figure 5.10 show the distribution of static and sequence-

dependent defects, respectively, based on their defect type, for complex cells. Figure 5.9

reveals that, among static defects, 65.0% are bridge defects, while only 13.8% are open

defects. On the other hand, it is seen from Figure 5.10 that just 19.9% of the sequence-

dependent defects are bridge defects, while the number of open and transistor defects are

42.8% and 37.3%, respectively. It is also observed that a majority of bridge defects (70.5%)

are static, and most of the open and transistor defects are sequence-dependent (80.8% and

70.6%, respectively).

The experiments presented in the subsequent subsections (Sections 5.4.3 through 5.4.5)

evaluate NOIDA and compare its performance with commercial diagnosis. Commercial

diagnosis uses a pre-computed fault dictionary to diagnose a front-end defect. In the following

experiments, to mimic the ever-evolving nature of defects, it is assumed that the fault model

employed by commercial diagnosis does not capture the behavior of every injected defect.

Specifically, here, it is assumed that weak resistive defects are not modeled by commercial

diagnosis. Thus, a bridge or a transistor stuck-closed defect with resistance between 10kΩ

to 20kΩ, or an open or a transistor stuck-open defect with resistance between 1kΩ to 10kΩ

is not considered while constructing the dictionary employed by the commercial tool.
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Figure 5.7: Distribution of static defects by defect type for primitive cells in a 7nm standard-

cell library.
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Figure 5.8: Distribution of sequence-dependent defects by defect type for primitive cells in

a 7nm standard-cell library.
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Figure 5.9: Distribution of static defects by defect type for complex cells in a 7nm standard-

cell library.



5.4. EXPERIMENTS 189

0 200 400
No. of sequence-

dependent defects

A2O1A1IXP33
A2O1A1O1IXP25

AO211X2
AO21X1
AO21X2

AO221X1
AO221X2
AO222X2

AO22X1
AO22X2
AO31X2

AO322X2
AO32X1
AO32X2

AO331X1
AO331X2

AO33X2
AOI211X1

AOI211XP5
AOI21X1

AOI21XP33
AOI21XP5
AOI221X1

AOI221XP5
AOI222XP33

AOI22X1
AOI22XP33

AOI22XP5
AOI311XP33

AOI31XP33
AOI31XP67

AOI321XP33
AOI322XP5
AOI32XP33
AOI33XP33

FAX1
HAXP5

MAJIXP5
MAJX2
MAJX3

O2A1O1IXP33
O2A1O1IXP5

OA211X2
OA21X2

OA221X2
OA222X2

OA22X2
OA31X2

OA331X1
OA331X2

OA33X2
OAI211XP5

OAI21X1
OAI21XP33

OAI21XP5
OAI221XP5

OAI222XP33
OAI22X1

OAI22XP33
OAI22XP5

OAI311XP33
OAI31XP33
OAI31XP67

OAI321XP33
OAI322XP33

OAI32XP33
OAI331XP33

Ce
ll

Bridge

0 200 400
No. of sequence-

dependent defects

Open

0 200 400
No. of sequence-

dependent defects

Transistor

Figure 5.10: Distribution of sequence-dependent defects by defect type for complex cells in

a 7nm standard-cell library.
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5.4.3 Results: Exhaustive Testing

In this experiment, NOIDA is applied to each defective cell while assuming that each cell is

tested exhaustively4. NOIDA is evaluated using the diagnostic metrics discussed in Section

5.4.1 and its performance is compared with commercial diagnosis.

Figure 5.11 shows the average physical accuracy for each primitive cell. The figure is

partitioned into two plots for clarity. The x-axis shows the percentage of defects diagnosed

correctly by a diagnosis approach. In each plot, each horizontal bar is associated with a

standard cell (whose name is displayed within its corresponding horizontal bar) and is divided

into two parts; the “right” part (i.e., towards the positive x axis) represents the accuracy

achieved by NOIDA, while the “left” part (i.e., towards the negative x axis) represents the

accuracy attained by commercial diagnosis. Each value written on either side of a horizontal

bar is the accuracy achieved by the corresponding standard cell. For each cell, its accuracy is

written in “blue” (“yellow”) if NOIDA (commercial diagnosis) correctly diagnoses a higher

percentage of defects.

Figure 5.11 reveals that NOIDA performs better than state-of-the-art commercial di-

agnosis for every primitive cell. On average, the physical accuracy for NOIDA is 99.2%,

which is 13.5% higher than commercial diagnosis. Out of 48 primitive cells, 33 (68.7%) cells

achieve perfect physical accuracy when NOIDA is used. Moreover, the maximum improve-

ment in accuracy is observed for the cell, “NOR2X2”; while NOIDA correctly diagnoses

each defective cell of that type, commercial diagnosis correctly diagnoses only 71.0% of de-

fects. Further investigation reveals that NOIDA achieves 99.7% (98.1%) accuracy for static

(sequence-dependent) defects, which is an improvement of 15.4% (16.5%) over commercial

diagnosis.

Figure 5.12 shows the average physical accuracy for each complex cell. It is clearly seen

4The size of an exhaustive test set used for the diagnosis of a static defect within a n-input standard cell
is 2n, and (2n)(2n − 1) for a sequence-dependent defect.
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from the figure that NOIDA outperforms commercial diagnosis for each complex cell as

well. On average, the physical accuracy for NOIDA is 95.4%, which is 15.0% higher than

commercial diagnosis. Out of 67 complex cells, 48 (71.6%) cells achieve physical accuracy

greater than 95.0%, while the maximum physical accuracy attained by commercial diagnosis

is 92.8%. In addition, the maximum improvement in physical accuracy is observed for the

cell, “AO31X2”, where the accuracy for NOIDA is 94.0% and the accuracy for commercial

diagnosis is 65.0%. Further investigation reveals that NOIDA achieves 98.2% (92.3%) ac-

curacy for static (sequence-dependent) defects, which is an improvement of 17.6% (19.7%)

over commercial diagnosis.

Figures 5.13 and 5.14 show histograms of the physical resolution for primitive and complex

cells, respectively. The x-axis shows the resolution and the y-axis shows the number of

defects. The percentage of defects accurately diagnosed for a particular resolution is shown

at the top of its corresponding plot-bar. The top half of each figure (i.e., above y = 0) shows

the distribution of the number of defects that are accurately diagnosed while the bottom

half shows the distribution of the inaccurately diagnosed defects. The percentage of defects

diagnosed correctly by each diagnosis technique is shown above the plot in each figure.

It is observed from Figure 5.13 that, among the defects diagnosed with perfect resolu-

tion, NOIDA correctly diagnoses 96.0% of defects; in contrast, commercial diagnosis identifies

72.0% of defects accurately. On average, the physical resolution for NOIDA is 14.7, which

is 3.4% better than commercial diagnosis. Besides reporting fewer candidates, NOIDA diag-

noses 13.5% more defects correctly, on average. Additionally, for static (sequence-dependent)

defects, the mean physical resolution of NOIDA is 11.0% (31.1%) better than commercial

diagnosis. Thus, for primitive cells, Figures 5.11 and 5.13 reveal that NOIDA outperforms

commercial diagnosis in terms of physical accuracy as well as resolution.

Figure 5.14 reveals that, for complex cells, NOIDA correctly diagnoses 74.0% of defects

when the physical resolution is one, which is an enhancement of 32.1% over commercial
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diagnosis. However, NOIDA appears to report more candidates than commercial diagnosis,

on average. Although commercial diagnosis seems to achieve better average physical reso-

lution than NOIDA, it does so by sacrificing accuracy. Specifically, among the cases where

commercial diagnosis reports fewer candidates, 22.4% of them are inaccurate. On the other

hand, among the cases where NOIDA reports fewer candidates, 91.4% of them are accurate.

One of the defect types that is often seen is a contact-to-gate short (i.e., a bridge defect

between the drain/source and the gate of a transistor) [364]. Among primitive cells, it is

observed that NOIDA diagnoses all such defects accurately, while commercial diagnosis is

unable to identify the correct location for 5.1% of defects. Additionally, NOIDA hits a

home run five times more often than commercial diagnosis. When contact-to-gate shorts are

examined for complex cells, it is revealed that the average accuracy for NOIDA is 99.7%,

which is 9.9% more than commercial diagnosis. Moreover, NOIDA delivers a home run 8X

times commercial diagnosis.
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Figure 5.11: Physical accuracy for each primitive cell in a 7nm standard-cell library, when

each cell is exhaustively tested.
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Figure 5.12: Physical accuracy for each complex cell in a 7nm standard-cell library, when

each cell is exhaustively tested.
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Figure 5.13: Distribution of physical resolution for primitive cells in a 7nm standard-cell

library, when each cell is exhaustively tested.
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Figure 5.14: Distribution of physical resolution for complex cells in a 7nm standard-cell

library, when each cell is exhaustively tested.
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5.4.4 Results: Front-end ATPG

The experiment conducted in Section 5.4.3 assumes that each standard cell is exhaustively

tested. However, one of the major problems with a cell-exhaustive test set [68–70, 86, 87] is

the amount of test time and test data volume, which are directly proportional to the number

of test patterns. Thus, a cell-exhaustive test set may not be suitable in practice.

In this section, NOIDA is applied to each defective cell while assuming that each cell is

tested with a minimum number of test patterns required to detect all the defects modeled

within a cell. A commercial ATPG tool that is capable of generating a test set of minimal

size is employed here to create tests for each standard cell.

Figure 5.15 shows the size of the test set generated by commercial ATPG as a ratio to

the number of exhaustive tests for each cell. The vertical axis shows the ratio of the test set

sizes. The horizontal axis represents the standard cells. The solid blue line in Figure 5.15

shows the ratio of the test set sizes for static defects, while the dashed yellow line shows the

ratio for sequence-dependent defects. It should be noted that the y-axis uses a log scale.

Expectedly, ATPG generates fewer tests than exhaustive testing. For static defects, the

minimum ratio for the test set sizes is 0.05; for sequence-dependent defects, the minimum

ratio is 0.0004.

Figure 5.16 shows the average physical accuracy for each primitive cell. Figure 5.16

reveals that NOIDA performs better than state-of-the-art commercial diagnosis for every

primitive cell. The physical accuracy achieved by NOIDA for each primitive cell is 100.0%,

which is 14.2% higher than commercial diagnosis. Moreover, the maximum improvement in

accuracy is observed for the cell, “NOR2X2”, where commercial diagnosis reports a correct

candidate for 29.0% fewer defects. Furthermore, it is observed that commercial diagnosis

performs slightly worse for sequence-dependent defects than static defects. Specifically, for

static (sequence-dependent) defects, NOIDA attains an improvement of 13.4% (16.0%) over

commercial diagnosis.
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Figure 5.15: Ratio of test set sizes obtained from a commercial cell-internal ATPG tool and

exhaustive testing for a 7nm standard-cell library.

Figure 5.17 shows the average physical accuracy for each complex cell. It is clearly seen

from the figure that NOIDA outperforms commercial diagnosis for each complex cell as well.

More importantly, the physical accuracy attained by NOIDA for each complex cell except one

is perfect; for the cell named “OAI31XP33”, the physical accuracy for NOIDA is 98.6%. On

the other hand, the average physical accuracy attained by commercial diagnosis is 80.5%. In

addition, the maximum improvement in physical accuracy is observed for the cell, “AO31X2”,

where the accuracy for commercial diagnosis is 35.0% less than NOIDA. Furthermore, it is

observed that NOIDA achieves 100.0% (99.97%) accuracy for static (sequence-dependent)

defects, which is an improvement of 22.3% (16.8%) over commercial diagnosis.

When the results presented in Figures 5.16 and 5.17 are compared with Figures 5.11

and 5.12, respectively, i.e., when the ramifications of using an ATPG test set instead of

an exhaustive test set are studied, it is discovered that NOIDA performs better (in terms
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of physical accuracy) with fewer patterns. It has been shown in [187–190] that certain

tests can have a detrimental effect on the quality of back-end diagnosis; that observation

is demonstrated here to be true for front-end diagnosis as well. A test can confound and,

consequently, misdirect diagnosis, which could either deteriorate physical accuracy (if the

correct candidate is removed) or physical resolution (if diagnosis yields more candidates) or

both. This observation is especially true for multiple defects (or a single defect affecting

multiple nets), where error masking and unmasking effects are prominent.

Figures 5.18 and 5.19 show histograms of the physical resolution for primitive and com-

plex cells, respectively. It is observed from Figure 5.18 that among the defects diagnosed

with perfect resolution, NOIDA correctly diagnoses each defect; in contrast, commercial di-

agnosis diagnoses 73.0% of defects accurately. On average, NOIDA reports 10.8 candidates

per diagnosis, which is 39.8% better than commercial diagnosis. Besides reporting fewer

candidates, NOIDA diagnoses 14.2% more defects correctly, on average. Thus, Figures 5.16

and 5.18 show that NOIDA outperforms commercial diagnosis in terms of physical accuracy

as well as resolution for primitive cells.

Figure 5.19 reveals that, for complex cells, commercial diagnosis returns a correct can-

didate for 27.8% fewer defects, when the physical resolution is at most five. Additionally,

NOIDA reports fewer candidates for 22.6% of defects without losing accuracy. However,

NOIDA appears to report more candidates than commercial diagnosis, on average. Although

commercial diagnosis seems to attain better average physical resolution than NOIDA, it does

so by sacrificing accuracy. Specifically, among the cases where commercial diagnosis reports

fewer candidates, 21.3% of them are inaccurate.

When the physical resolution achieved by NOIDA is compared for exhaustive and ATPG

test sets, it is observed that the mean resolution is slightly better when an ATPG test set is

used. Specifically, the improvement is 6.6%. However, more front-end defects are diagnosed

with ideal resolution when an exhaustive test set is employed (specifically, 15X more often).
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To summarize the results presented in this section, when each cell in the standard-cell

library is tested with an ATPG test set, the physical accuracy for NOIDA is 100.0%, while

the accuracy for commercial diagnosis is 82.1%. NOIDA improves physical resolution for

33.7% of defects without losing accuracy. In contrast, commercial diagnosis reports fewer

but incorrect candidates for 21.4% of defects. Eliminating a correct defect candidate can

have an adverse effect on subsequent failure analysis methods. For example, an incorrect

root cause can be estimated for a population of failing chips due to an imprecise construction

of defect paretos from analyzing numerous diagnoses, which could result in an unnecessary

usage of PFA resources, thereby impeding yield learning.

Results presented in Sections 5.4.3 and 5.4.4 are compared to study the consequences of

using an ATPG test set instead of an exhaustive test set for diagnosis. When an exhaustive

test set is utilized by NOIDA, more front-end defects with an ideal resolution are diagnosed;

on the other hand, the use of an ATPG test set results in better physical resolution and

accuracy, on average.

When contact-to-gate shorts are analyzed, it is observed that, among primitive cells,

NOIDA diagnoses all such defects accurately, while commercial diagnosis is unable to identify

the correct location for 5.3% of defects. Additionally, NOIDA hits a home run twice more

often than commercial diagnosis. When contact-to-gate shorts are examined for complex

cells, it is revealed that the average accuracy for NOIDA is 100.0%, which is 9.8% more

than commercial diagnosis. Moreover, NOIDA delivers a home run 1.7X times commercial

diagnosis.
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Figure 5.16: Physical accuracy for each primitive cell in a 7nm standard-cell library, when

each cell is tested with an ATPG test set.
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Figure 5.17: Physical accuracy for each complex cell in a 7nm standard-cell library, when

each cell is tested with an ATPG test set.
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Figure 5.18: Distribution of physical resolution for primitive cells in a 7nm standard-cell

library, when each cell is tested with an ATPG test set.
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Figure 5.19: Distribution of physical resolution for complex cells in a 7nm standard-cell

library, when each cell is tested with an ATPG test set.
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5.4.5 Results: Circuit-level Noise

As discussed towards the end of Section 5.2, circuit-level noise can produce an unpredictable

deviation between the tester response and the behavior estimated by a fault model. In

NOIDA (and essentially any prior front-end diagnosis approach that focuses on physical

localization), a deviation between the observed and the predicted behavior can be caused

due to the potentially inexact SPICE models employed for transistor-level fault simulation.

Voltage approximated at an intra-cell node from an analog simulation could be misinterpreted

as logic-0 instead of logic-1 (or vice versa), which could result in a cell-level failing pattern be

misconstrued as a cell-level passing pattern (or vice versa). In NOIDA, the possibly incorrect

analog-to-digital conversion could lead to an imprecise derivation of the neighborhood state

for an intra-cell node, and consequently, mistakenly, eliminate a consistent candidate or

retain an inconsistent candidate.

An experiment is thus conducted to study the effect of noise on the performance of

NOIDA and commercial diagnosis. The experiment is designed to mimic the undesired

transformation of a cell-level passing pattern to a failing pattern (or vice versa) due to

noise. Specifically, each front-end defect response generated in Section 5.4.2 is altered by

randomly flipping the pass-fail behavior of a pattern such that at most 50% of the patterns

are transformed.

Figure 5.20 shows the average physical accuracy for each primitive cell. Figure 5.20

reveals that NOIDA performs better than state-of-the-art commercial diagnosis for every

primitive cell when noise is introduced in the tester response. On average, the physical

accuracy for NOIDA is 95.8%, which is 3.5X times better than commercial diagnosis. Out

of 48 primitive cells, 24 (50.0%) cells achieve perfect physical accuracy. Moreover, the

maximum improvement in accuracy is observed for the cell, “NAND4XP25”; while NOIDA

correctly diagnoses 96.0% of defects, commercial diagnosis correctly locates a mere 16.0%

of defects. Further investigation reveals that NOIDA achieves 97.8% (93.6%) accuracy for
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static (sequence-dependent) defects, which is 4.8X (2.7X) times commercial diagnosis. Ad-

ditionally, NOIDA diagnoses each static defect correctly for 39 (81.3%) primitive cells.

Figure 5.21 shows the average physical accuracy for each complex cell. It is seen that

NOIDA outperforms leading-edge commercial diagnosis for each complex cell in the presence

of noise as well. Although the effect of noise on diagnosis quality is more prominent for com-

plex cells, NOIDA locates more defects correctly than commercial diagnosis. On average,

the physical accuracy for NOIDA is 74.0%, which is 32.0% higher than commercial diagno-

sis. Out of 67 complex cells, one cell (“HAXP5”) achieves perfect physical accuracy when

NOIDA is used; on the other hand, the maximum physical accuracy attained by commercial

diagnosis is only 60.9%. In addition, the maximum improvement in physical accuracy is

observed for the cell, “OAI31XP67”, where the accuracy is 4.5X times commercial diagnosis.

Further exploration reveals that NOIDA is more effective for static than sequence-dependent

defects. For static defects, NOIDA attains 87.7% accuracy, which is 3X times commercial

diagnosis. Moreover, NOIDA identifies the correct candidate for each static defect for 11

(16.4%) primitive cells. For sequence-dependent defects, NOIDA achieves 64.8% accuracy,

an improvement of 47.3% over commercial diagnosis.

Figures 5.22 and 5.23 compare the physical resolution achieved by NOIDA and commer-

cial diagnosis in the presence of noise for primitive and complex cells, respectively. It is

observed from Figure 5.22 that, for primitive cells, NOIDA achieves perfect resolution for

14.1% of defects, of which 90.2% are accurate. In contrast, commercial diagnosis reports a

resolution of one for 8.6% of defects with an accuracy of 25.6%. NOIDA reports a single

correct candidate for 12.8% of defects, which is 5.7X more often than commercial diagnosis.

When the effect of noise on the quality of diagnosis attained by NOIDA for primitive

cells is investigated (i.e., when Figures 5.18 and 5.22 are compared), it is observed that

the accuracy decreases by 4.2%, but the number of ideal diagnoses increases from 0.5% to

12.8%. Thus, the improvement in resolution also degrades the achieved accuracy. On the
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Figure 5.20: Physical accuracy for each primitive cell in a 7nm standard-cell library in the

presence of circuit-level noise.
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other hand, the accuracy attained by commercial diagnosis drops from 85.8% to 27.4% in

the presence of noise.

Figure 5.23 reveals that, for complex cells, NOIDA achieves perfect resolution for 24.9%

of defects, of which 53.6% are accurate. In contrast, commercial diagnosis reports a single

candidate for 5.6% of defects with an accuracy of 28.4%. Moreover, NOIDA reports 6.3

candidates per diagnosis, on average, which is 2.9% better than commercial diagnosis. Thus,

NOIDA outperforms commercial diagnosis in terms of physical accuracy as well as resolution

for complex cells, when noise is introduced in the tester response.

Conceivably, the effectiveness of NOIDA decreases in the presence of noise for complex

cells (Figures 5.19 and 5.23). Specifically, although NOIDA reports almost half as many

candidates on average, its physical accuracy decreases from 100.0% to 74.0% because of

noise. The accuracy degradation is, however, greater for commercial diagnosis, where the

attained accuracy plummets to 42.0%.

To summarize the results presented in this section, in the presence of noise, the mean

physical accuracy for NOIDA is 78.5%, while the accuracy for commercial diagnosis is 39.0%.

NOIDA reports 0.9 more candidates per diagnosis, on average, while identifying the correct

candidate twice as often as commercial diagnosis.

When the effect of noise is investigated for contact-to-gate shorts, it is observed that,

among primitive cells, the average accuracy for NOIDA is 93.3%, while commercial diag-

nosis identifies the correct location for only 21.8% of defects. Additionally, NOIDA hits a

home run 7.6X times commercial diagnosis. When contact-to-gate shorts are analyzed for

complex cells, it is revealed that the average accuracy for NOIDA is 75.4%, which is 2.6X

times commercial diagnosis. Moreover, NOIDA delivers a home run 16.1X more often than

commercial diagnosis.

Results presented in Section 5.4.4 and 5.4.5 are compared to study the consequences

of introducing noise to the tester response. The results demonstrate that NOIDA is more
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resistant to noise than state-of-art commercial diagnosis. Specifically, while noise decreases

the average physical accuracy for NOIDA by 21.5%, noise drastically worsens the accuracy

for commercial diagnosis from 82.3% to 39.0%. However, noise seemingly improves resolution

for each diagnosis approach. Specifically, NOIDA reports 4.2 fewer candidates per diagnosis,

on average, while commercial diagnosis reports 3.3 fewer candidates because of noise.
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Figure 5.21: Physical accuracy for each complex cell in a 7nm standard-cell library in the

presence of circuit-level noise.
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Figure 5.22: Distribution of physical resolution for primitive cells in a 7nm standard-cell

library in the presence of circuit-level noise.
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Figure 5.23: Distribution of physical resolution for complex cells in a 7nm standard-cell

library in the presence of circuit-level noise.
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5.5 Conclusion

This chapter describes a novel generalized methodology for front-end defect diagnosis we call

NOIDA (NOise-resistant Intra-cell Diagnosis Approach). NOIDA concentrates on finding

defect locations within a cell and deriving defect behavior based on the nets that surround

the suspected defect location. Unlike prior work where a fault model is employed to verify

if the assumed model represents an actual defect, NOIDA extracts a custom fault model of

a defect by examining its physical neighborhood. Thus, in addition to physically localizing

a front-end defect (in terms of its x− y − z location), NOIDA characterizes the defect with

respect to its behavior as well.

A comprehensive simulation experiment is conducted to study the effectiveness of NOIDA.

NOIDA is evaluated on over 34,000 front-end defects that are distributed over 115 standard

cells within a 7nm standard-cell library. The performance of NOIDA is investigated under

three scenarios: (a) each defective cell is exhaustively tested; (b) each defective cell is tested

with an ATPG test set; and (c) each defective cell is tested in the presence of circuit-level

noise. Experiment results demonstrate the efficacy of NOIDA.

In the first scenario (i.e., when an exhaustive test set is applied to a defective standard

cell), NOIDA accurately diagnoses 96.6% of defects, which is an improvement of 17.7% over

state-of-the-art commercial diagnosis. In addition, NOIDA reports an ideal diagnosis (i.e.,

when a single candidate reported by diagnosis is correct) for 50.5% more defects.

In the second scenario, i.e., when each defective cell is tested with a test set generated

by a commercial ATPG tool, it is observed that the average physical accuracy for NOIDA

is 100.0%, which is 21.8% better than commercial diagnosis. Additionally, the physical

resolution for NOIDA is better than commercial diagnosis for 33.7% of defects. Although

commercial diagnosis reports 15.0% fewer candidates, its low accuracy can significantly im-

pact subsequent failure analyses. For example, a statistical analysis of low accuracy diagnoses
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can lead to an incorrect prediction of the underlying root cause, which, in turn, steers the

slow and destructive PFA process in the wrong direction.

Compared to an exhaustive test set, the physical accuracy for NOIDA is discovered to

be 3.4% higher when an ATPG test set is utilized. This result can be explained from the

observation that certain tests, especially in the presence of multiple faults, can confound

diagnosis due to error masking and unmasking. On the other hand, it is observed that

the likelihood of producing an ideal diagnosis for NOIDA decreases when an ATPG test

set is used. This is because additional tests can distinguish among existing candidates,

which results in improved resolution for an exhaustive test set. Therefore, efforts should

be directed towards generating an optimal, diagnostic test set that can improve physical

resolution without sacrificing physical accuracy.

In the third scenario, the effect of adding noise to the tester response is analyzed. Various

factors can cause deviations between the behavior determined by a fault model and the

behavior observed on the tester. Approximate SPICE models that are employed to perform

analog simulation can induce an undesired discrepancy between the actual and the predicted

behavior of a failing standard cell, which can cause diagnosis to misinterpret the logic value at

a cell output (and/or any of the cell-internal nodes). As a consequence, a failing pattern can

be misinterpreted as a passing pattern or vice versa, and lead diagnosis astray. Experiment

results indicate that NOIDA is more resistant to noise than a state-of-the-art commercial

tool. NOIDA correctly diagnoses 78.5% of the front-end defects, which is more than twice

as often as commercial diagnosis. NOIDA returns an ideal diagnosis for 13.2% of defects,

which is 7.6X times commercial diagnosis.

The superior quality of diagnosis achieved by NOIDA to localize and characterize the

behavior of a front-end defect can make PFA efficient and cost-effective, which likely en-

hances/accelerates yield learning. However, there is still room for improvement. A machine

learning based scoring framework, similar to that developed for LearnX and MD-LearnX,
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can be adapted here to pinpoint the correct candidate. Layout features can be incorporated

in the scoring model for improved performance. Future work is further discussed in detail

in the next chapter.
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Chapter 6

Conclusions

Yield, which is defined as the proportion of working chips fabricated, can be quite low when

a new manufacturing process or a new chip design is introduced. The process of identifying

and rectifying the sources of yield loss to improve both chip design and manufacturing is

called yield learning.

As semiconductor fabrication advances to smaller and more complex process nodes, it

is becoming increasingly difficult to ramp logic yield quickly. Advanced nodes introduce

new design and manufacturing challenges, especially in logic, resulting in an increase in the

number and complexity of defects, which consequently hinder yield learning. The rate of

yield learning is extremely critical to the success of the semiconductor industry and must

thus be accelerated to meet the three objectives of aggressive time-to-volume, time-to-market

and time-to-money requirements.

Software-based defect diagnosis plays an important role in logic failure analysis and yield

learning. Diagnosis is a process to identify the location and ideally, characterize the nature

and root cause of a defective chip by examining its tester response. Based on the feedback

produced by diagnosis, a small but significant number of chips are selected to be inspected

physically. The aim of physical failure analysis (PFA) is to provide crucial understanding of
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failure mechanisms to improve the design and/or the manufacturing process for increasing

yield.

Besides guiding PFA, diagnosis offers valuable information to assist yield analysis and

learning. Diagnosis aids in the (a) derivation of defect density and size distributions for

each metal layer to comprehend the impact of random defects, (b) identification of yield-

limiting defects by statistically correlating a population of failing chips, (c) evaluation of

the capability of various fault models, (d) generation of an adaptive test set to curtail test

escapes, and (e) prediction of the number of defective chips that will pass testing to estimate

test cost.

Logic diagnosis is thus indispensable to the improvement of the design and manufacturing

of a chip. It plays a significant role during (a) yield ramping, when logic test chips are em-

ployed and customer chips are fabricated ahead of time to meet aggressive market demands,

(b) high-volume manufacturing for continuous yield monitoring, and (c) yield excursion,

when an underlying source of yield loss needs to be identified to stabilize yield.

With increasing chip density and manufacturing complexity, and decreasing critical de-

fect size, the effectiveness of PFA in characterizing the root cause of a defect is diminishing.

On the other hand, contrary to PFA, diagnosis is expeditious and non-destructive in nature;

in addition, it is influential in guiding PFA and driving yield learning, in general. The bene-

fits of diagnosis, along with the declining efficiency of PFA, thus makes advancing diagnosis

procedures a way to enable/accelerate yield learning. The logic diagnosis methodology de-

veloped in this dissertation is an important step towards realizing that goal. The rest of

this chapter encapsulates the contributions of our work presented in this dissertation, and

provides some important areas of future work.
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6.1 Dissertation Contributions

Given the advantages of diagnosis and the limitations of PFA, it is crucial that the respon-

sibility of characterizing a defect, which is traditionally accomplished by PFA, is fulfilled

by diagnosis as much as possible to climb the yield learning curve faster. Therefore, the

objective of diagnosis must be to logically characterize a defect. In other words, diagnosis

must concentrate on accurately pinpointing the x−y−z location of a defect in the circuit as

well as determine the precise logic behavior of a defect. An ideal diagnosis thus, minimizes

the need for PFA.

A comprehensive diagnosis methodology is developed in this dissertation that endeavors

to actualize the aforementioned objectives. Our developed diagnosis methodology is divided

into three stages. The first stage focuses on defect localization, while the second and the

third stages concentrate on deducing the behavior of a back-end and a front-end defect,

respectively, while further improving its physical location. The significance and the major

contributions of this dissertation are summarized next.

6.1.1 LearnX/MD-LearnX

LearnX/MD-LearnX is a physically-aware diagnosis methodology that identifies the location

and the type of the defect affecting a failing chip [274, 275]. LearnX assumes that a single

defect resides in a failing chip. MD-LearnX builds on LearnX to effectively locate multiple

defects. LearnX/MD-LearnX serves as the first stage of our diagnosis methodology and

impacts the effectiveness of subsequent analyses. Notable features of LearnX/MD-LearnX

include:

• Use of the X-fault model [65] for improved diagnostic accuracy: Besides

utilizing the commonly used (temporary) stuck-at fault model to represent an error at

a likely defect location, the X-fault model is employed to enhance diagnosis accuracy.
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The X-fault model assumes an unknown value (X) at a candidate location, thereby,

allowing the error to propagate conservatively, even for multiple defects.

• Machine learning for improved diagnostic resolution: In prior work, a candidate-

ranking method is manually designed from domain knowledge and/or intuition. How-

ever, its effectiveness is not guaranteed for every defect type, design, and/or manufac-

turing process. Instead, in our work, a data-driven candidate-scoring model is auto-

matically created from learning the latent correlations between the tester response and

simulation of the correct candidate.

• Use of physical layout for improved diagnosis quality: Layout information

is utilized in our work to identify likely defect locations, filter out bridges that are

physically infeasible, distinguish between an open and a dominant bridge defect, and

identify the physical fan-out branches that may be faulty based on the pass-fail status

of the receiver standard cells.

• Outperform state-of-the-art: Results from a simulation-based experiment demon-

strate that LearnX returns a single correct candidate (i.e., an ideal diagnosis) for 67.9%

fail logs, which is 67.5% more than state-of-the-art commercial diagnosis. In addition,

for multiple defects, MD-LearnX reports an ideal diagnosis (i.e., a single correct can-

didate for each injected defect) for 40.0% of the fail logs, which is twice as often as

commercial diagnosis.

A silicon experiment further demonstrates the effectiveness of LearnX/MD-LearnX.

The silicon failure data comes from a 40M gate test chip design manufactured in a

14nm technology. When 36 failing chips are physically inspected, it is observed that

LearnX/MD-LearnX returns fewer candidates than commercial diagnosis for 69.4%

chips, while identifying the correct candidate in each case.
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6.1.2 PADLOC

The goal of PADLOC is to characterize a back-end defect in terms of its exact physical

location and precise logic behavior [146]. PADLOC further localizes a defect by identifying

the net segments that are relevant for defect excitation. It derives the logic behavior of a

defect by examining the logic activity of the adjacent segments. Salient features of PADLOC

include:

• Net segmentation for enhanced physical localization: A candidate net is divided

into smaller segments based on its topology and the topology of its physical neighbors.

A two-line bridge defect, for example, likely resides between two adjacent segments

that have an unobstructed line-of-sight between them.

• Avoid the use of imprecise circuit parameters: Prior work utilizes circuit pa-

rameters such as coupling capacitances between adjacent segments, and logic threshold

voltage and leakage current of a receiver cell to estimate the voltage at a candidate

location. However, the potentially inaccurate values of the circuit parameters can

lead diagnosis astray. Instead, the logic values established in the neighborhood of a

candidate are analyzed to find the logic value at the candidate location.

• Not limited to specific fault models: Most work focuses on matching the observed

circuit behavior with a fault model (e.g., the wired-bridge fault model, biased voting

bridge fault model) to characterize the behavior of a defect. PADLOC instead deduces

the precise logic behavior of a defect based on its neighborhood, and thus can diagnose

a defect that portrays an arbitrary misbehavior.

• Outperform state-of-the-art: Results from a simulation-based experiment demon-

strate that PADLOC correctly locates the defect for 96.5% fail logs, which is 10.3%

more than leading-edge commercial diagnosis. Bounding circle diameter, which is de-
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fined as the diameter of the smallest circle that encloses each segment suspected by

diagnosis, is one of the metrics employed in this work to measure the physical resolution

of a diagnosis approach. The value of bounding circle diameter is directly correlated

to the cost of PFA [161]. It is observed that the average bounding circle diameter for

PADLOC is 33.0% less (and hence, better) than commercial diagnosis.

A silicon experiment corroborates the capability of PADLOC. It is revealed that bound-

ing circle diameter for PADLOC is 32.7% better than commercial diagnosis. More

importantly, when 36 fail logs whose PFA results are available are examined, PAD-

LOC reports a smaller bounding circle diameter for 47.2% fail logs (while reporting

the same diameter for the remaining fail logs), and attains up to 44X improvement,

without losing accuracy.

6.1.3 NOIDA

NOIDA characterizes a front-end defect in terms of its precise logic behavior and exact

physical location within a failing standard cell [162]. NOIDA investigates the behavior of a

candidate cell (implicated by LearnX/MD-LearnX) to pinpoint the location and derive the

behavior of an intra-cell defect. Notable features of NOIDA include:

• Fault dictionary free: Prior work either creates a new fault dictionary or employs an

existing one to identify a front-end (intra-cell) defect. The disadvantage of searching

the observed cell behavior in the fault dictionary is that a dictionary-based approach,

by design, cannot identify an unfamiliar defect. NOIDA, on the other hand, deduces

the intra-cell candidates that could explain the observed behavior. In addition, it

derives the logic behavior of a cell-internal defect by inspecting its intra-cell physical

neighborhood.

• Applicable to new and/or multiple defects: Because NOIDA is independent
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of a fault dictionary, it is capable of locating a new intra-cell defect that may be

introduced by a new technology. In addition, prior fault dictionary-based approaches

typically compute and store the responses of single cell-internal defects. NOIDA, on

the other hand, makes no assumptions regarding the number of defects that could

affect a standard cell.

• Outperform state-of-the-art: NOIDA is assessed on 115 cells within a 7nm standard-

cell library [373]. Results from the first simulation-based experiment, where each defec-

tive cell is exhaustively tested, indicate that NOIDA correctly locates 96.6% of defects,

which is 17.7% more than leading-edge commercial diagnosis. Moreover, NOIDA re-

turns a single correct candidate for 50.5% additional defects.

In the second experiment, where each defective cell is tested with a test set created

with a commercial front-end ATPG tool, it is observed that NOIDA correctly identifies

21.8% more defects, and reports a single correct candidate for 38.0% more fail logs.

• Resistant to circuit-level noise: Approximate SPICE models employed during

transistor-level simulation can cause an unforeseen deviation between the predicted

and the observed defect behavior. For example, a cell-level failing pattern can be

misconstrued as a passing pattern or vice versa. An experiment is designed to study

the effect of introducing noise in the tester response on NOIDA and state-of-the-art

commercial diagnosis. Results reveal that NOIDA is more robust to noise. Specifically,

the accuracy for NOIDA is 78.5%, which is more than 2X times commercial diagnosis.

Additionally, NOIDA returns an ideal diagnosis 7.6X more often than commercial

diagnosis.
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6.2 Future Work

A comprehensive diagnosis methodology is presented in this dissertation that outperforms

leading-edge commercial diagnosis, thereby, facilitating yield learning. Some possible areas

of research that should be investigated to further the work developed in this dissertation are

described next.

6.2.1 Delay Defects

The scope of LearnX/MD-LearnX and PADLOC has been limited to diagnosing static de-

fects, i.e., defects that require a single test pattern for detection and do not impact the circuit

timing. Defects such as weak resistive opens and bridges may only modify the performance

of a circuit instead of altering its logic functionality. Delay defects can be categorized based

on location (spot or distributed delay) and the amount of delay (gross delay or small delay).

A spot defect occurs at a fixed location in the layout (e.g., opens and shorts). A defect

whose delay is distributed over more than one circuit element is referred to as a distributed

delay defect. A gross delay defect causes a delay sufficiently large enough to slow down a

transition at a defect location such that it can be detected irrespective of the propagation

path. A small delay defect, on the other hand, can only be detected if the error propagates

through a path whose slack is less than its delay size. A delay defect requires at least

two patterns for detection. A delay-defect diagnosis framework can be based on extending

LearnX/MD-LearnX:

• A spot defect with gross delay can be detected by a sequence of two patterns, where

the first pattern initializes the candidate location while the second pattern causes a

transition at the location. Thus, for a two-pattern test, candidates can first be identified

(by LearnX/MD-LearnX, for example) using the second pattern; a candidate can then

be eliminated by verifying if it transitions between the two patterns.
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• A small delay defect may not mirror the behavior of a stuck-at fault under the influence

of the second pattern. A stuck-at fault at the defect location may produce more

simulation-failing outputs than tester-failing outputs. Thus, the criterion of a stuck-at

fault explaining a failing pattern can be relaxed to ignore TPSF outputs. Features

pertaining to TPSF outputs can be ignored for small delay defect candidates during

machine learning training/testing in LearnX/MD-LearnX.

• Diagnosis of distributed defects is more complicated but can be achieved through the

use of path-delay, segment-delay and segment-network fault models [374].

• In aforementioned cases, PADLOC can be extended to diagnose a delay defect by

monitoring the neighborhood state for a candidate for a sequence of patterns instead

of a single pattern.

6.2.2 Design Features in LearnX/MD-LearnX

The features used to create a scoring model in LearnX (Phase 2) (and Phases 2 and 3 of

MD-LearnX) are all derived by comparing the candidate simulation response and the tester

response. Besides extracting features from the test data, design information can be used

to identify new features for improved diagnosis quality. The work of [301], for instance,

extracts design features to distinguish a bridge defect. For example, one feature checks if

a pair of bridged nets drives the same standard cell; a bridge defect is that case cannot be

differentiated from a cell defect.

Although those features do not particularly help in enhancing diagnostic resolution, they

are used to convey information of the likelihood of a candidate being a bridge defect (or

a non-bridge defect), which consequently aids in deriving defect type distributions during

volume diagnosis.
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6.2.3 Machine Learning for Ranking PADLOC and NOIDA Can-

didates

It is argued in Section 4.3.2.2 and Section 5.3 that the size of the neighborhood and the

amount of inconsistency are the primary reasons why a correct candidate can be eliminated

by PADLOC and NOIDA, respectively. One of the ways to improve diagnostic accuracy is

to design a scoring method to rank the candidates analyzed by PADLOC and NOIDA. A

procedure similar to LearnX/MD-LearnX, where machine learning is deployed to find the

correct candidate, can be adopted in PADLOC and NOIDA. Features such as the num-

ber of physical neighbors, distance between adjacent segments and the number of (unique)

failing/passing neighborhood states can be extracted for each candidate.
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