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Abstract
In this thesis, I ask the question “how do we compute reliably using thousands

of distributed, unreliable nodes?” We propose a system-level solution where we
add redundant data across distributed nodes using the technique called “coded com-
puting.” Our main contribution is developing strategies for a masterless, fully-
decentralized setting for important computation primitives in machine learning (ML)
and scientific computing applications while minimizing the overhead of coding.
For distributed matrix multiplication, we make a fundamental advance by propos-
ing coded computing strategies that outperform prior works by an unbounded fac-
tor, including recently-developed coded computing strategies as well as traditional
Algorithm-Based Fault Tolerance (ABFT) strategies. We also propose coded com-
puting schemes for other primitives such as fast Fourier transform (FFT) and matrix
QR factorization.

Completing computation reliably and in time under diverse unpredictabilities
(e.g., stragglers, node failures, bit flips) is becoming a more important problem. The
amount of data we collect is growing exponentially and recent developments in ML
have enabled utilizing and processing such large quantities of data. This has not only
led to an increase in the scale of computing but also the wide popularity of large-
scale computing across our society. I will discuss how masterless coded computing
can be a more efficient fault-tolerance technique under growing unpredictability in
computing systems, providing both theoretical and experimental evidence.
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Chapter 1

Introduction

1.1 Reliability Issues in Computing

“Hardware Problems on October 14 and 15. The 360/91 was down from 4:50 P.M. Tuesday until

10:45 A.M. Wednesday because of a hardware failure due to a faulty SLT card in the floating

point section of the CPU. The backup card had already been used. The IBM Emergency Parts

Center located one Tuesday night in Palo Alto, but it was damaged in transit. Another card was

located in Pennsylvania; it was due to arrive in Los Angeles by 6:30 P.M. Wednesday, but the

IBM Customer Engineer succeeded in repairing the damaged card and got the 91 up by 11 A.M.,

averting an additional 9.5 hours of downtime.”

CCN Newsletter, University of California, Los Angeles, Oct. 15, 1975

“In 2003 in Schaerbeek, Belgium, an single-event upset (SEU) was responsible for giving a

candidate in an election an extra 4,096 votes. This was only spotted because it meant the

politician concerned had more votes than it was possible to get and an investigation ensued.”

The Independent, Feb. 17, 2017
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“The Spaceborne Computer Returns to Earth. The computer encountered a variety of

anomalies, ranging from temperature anomalies to higher rates of processor cache errors to an

astronaut’s knee bumping into the emergency power switch and causing a hard crash.”

HPC Wire, June 10, 2019

It is easy to assume that computers are purely logical machines that take inputs, follow

through pre-determined operations, and produce outputs, and to forget about the physical re-

ality underneath the logical operations. Computers are still physical systems that follow the laws

of physics. Albeit this sounds like a self-evident statement, it has an important implication: com-

puters are subject to the statistical nature of particles, and hence subject to “noise”. One might

question if computing can transcend the physical restrictions at all. However, through Szilard’s

machine [68, 105], it was shown that information is fundamentally a physical quantity, and hence

the processing of information is a physical process.

The question of how to assemble physical components together to output reliable compu-

tation results under inherent noise in nature has been an important thread in computer science

research since the beginning of the field. The pioneer of modern computer architecture, John

von Neumann initiated the discussion on this topic in a series of five lectures at Caltech [115] in

1952, and it attracted tremendous attention from prominent researchers [10, 122] including the

founder of Information Theory, Claude Shannon [79].

While the deep-rooted problem of reliability in computing remains a fundamental issue, how

it manifests depends on the physical substrate and the specifics of a computing system. Starting

from vacuum tube computers in the 1940s, computing technology has gone through a myriad

of revolutionary changes, and factors that affect the reliability of computing have been evolving

at a fast pace. There are more diverse factors than one might imagine that could cause faulty

computing. At the atomic level, cosmic rays, the flux of high-energy particles that come from

outer space, could interfere with atoms in a chip and cause a bit flip. Computing failures can also

result from faulty read from aging memory. For instance, flash memories have a finite read/write

endurance, which means that after some number of cycles, a flash cell becomes unreliable and
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unable to retain the stored information. Unexpected power outages can also bring important

computation to a sudden halt1. Software errors such as bugs for an unconsidered corner case

comprise a large fraction of computer crashes.

An important change in computing paradigms in recent decades is scaling out instead of

scaling up. As we are reaching the end of Moore’s law and Dennard’s scaling, going massively

parallel became a more efficient solution for scaling computation. There are unreliability issues

that arise from massive parallelism. Firstly, since we are concurrently using tens of thousands of

processors, each of which has its own failure probability, as a whole, the probability of failure in-

creases and mean-time-between-failure (MTBF) decreases. Consider the Fugaku supercomputer

that is now being built in Japan to be available in 2021. The system will have 150,000 phys-

ical nodes with a total of 8 million cores [73]. For a system-level mean-time-between-failures

(MTBF) of 24-48 hours, the MTBF of each node must be 411-822 years. Such nodes are diffi-

cult to design, implement, and test, and provide little-to-no room for unexpected reliability issues

(e.g. dirty power, unexpected early wear-out [39, 44]) that have been experienced in the past. Un-

reliability is not limited to hard crashes or soft errors; unpredictable program execution time is

also a reliability issue since users want to obtain computation results within the expected time.

The issue of unpredictably slow compute nodes, known as “stragglers”, are well-recognized in

cloud computing literature [1, 22, 49]. It is an increasing concern as we increase the number

of compute nodes because each node exhibits different performance in practice (even identical

ones) and it becomes harder to predict the job completion time with thousands of intrinsically

heterogeneous nodes. Another factor that compounds the problem is that these large-scale sys-

tems are often multi-tenant. As there are dynamically changing job requests, it is not always

possible to do optimal job distribution. Sub-optimal scheduling of jobs can lead to long job

queues at certain compute nodes or network congestion, which all contribute to unpredictable

program execution time.

1At Oak Ridge National Lab, which is on the wildlife reserve, wild animals running over power lines have led to

power outages several times.
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The problem of reliable computing will continue to diversify as new technology and paradigm

of computing emerge. To go beyond the limit of transistor-based computing technology, people

are exploring completely new technologies such as quantum computing or biological computing.

In the early phase of these new technologies, one of the biggest challenges would be providing

high reliability and fidelity. Even with the same hardware technology, how we utilize and service

computing technologies is going through innovations. For example, federated learning, in which

edge devices (e.g., smartphones) and the central server communicate back and forth to train a

private machine learning model, has been an exciting field of study [72]. A critical challenge

in federated learning is dealing with unreliable edge devices that can drop out of computation

due to connectivity or energy constraints. Another upcoming idea is serverless computing [58]

offered by cloud providers where a user can run applications at a lower cost by not having a

dedicated server but instead using machine resources that are dynamically allocated based on

each provider’s policy. A user of serverless computing service cannot know which machine

will become available or unavailable, and incorporating such dynamically-changing compute

resources can be a new unreliability problem.

1.2 Coded Computing as a Low-Overhead Reliability Tech-

nique

Despite the effort for assuring the reliability of each component in computing systems, there

remain uncontrollable factors. What are the techniques used to handle random unreliabilities

in today’s large-scale computing systems? All current production-quality technologies rely on

checkpointing, where we store the snapshot of computation at a regular interval and roll back to

the most recent checkpoint in case of failure. To store the synchronized state of distributed nodes,

checkpoints are often stored in a shared parallel file system. The time spent in checkpointing is

significant (15–30 minutes in 20009) because of the I/O burden to the parallel file system [13].
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There has been an active research to reduce the overhead of checkpointing, such as reducing the

size of checkpoints [9, 53] or in-memory checkpointing [133].

Another reliability technique often considered in distributed computing systems is replica-

tion [2, 5, 33, 34, 117]. In replication strategies, we create replicas of the same process so that

even when a node (or a process) fails, we can proceed with one of the surviving replicas, without

having to roll back and restart. Replication has large resource overhead (at least 2x) as we have to

use limited computing resources to perform identical computations just for reliability. However,

recent studies have shown that using replication can be more efficient than checkpoint-restart in

systems with small MTBF [34], and using replication along with checkpoint-restart can greatly

reduce mean-time-between-interruption (MTBI) [5].

Checkpoint-restart and replication can be applied universally, agnostic to the computation

task. Can we sacrifice the universality and come up with a more application-specific reliability

method to reduce the time and resource overheads of these generic strategies? Especially, can

we borrow ideas from information theory, that has served as the foundation of modern digital

communication by contriving a mathematical tool to design redundancy that is unboundedly

more efficient than replication? This is the approach we propose in this thesis, called “coded

computing”, where we add redundancies through encoding and decoding using the ideas from

error-correcting codes. We will explain the basic idea of coded computing in more detail in

Chapter 2. In this section, we provide a brief history of the concept of coded computing, which

is almost as old as the problem of reliable computing.

In 1958, Elias studied if we can extend Shannon’s noisy coding theorem in the landmark

paper, “Communication in the presence of noise” [100], to noisy AND gates, and wrote a pa-

per titled “Computation in the presence of noise” [30]. Subsequent works also studied how to

incorporate noiseless encoders and decoders to build reliable Boolean gates [86, 121, 122]. A

more advanced encoding and decoding technique called algorithm-based fault tolerance (ABFT)

was proposed by Huang and Abraham in 1984 [52] to detect and correct errors on circuits during
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Figure 1.1: Computation system with noiseless encoders and decoders to make unreliable gates

more reliable. [122, Figure 4.8]

linear algebra operations and later developed for other computations such as fast Fourier trans-

form (FFT) [18, 92]. Chen and Dongarra discovered that the ABFT technique could be used for

parallel matrix algorithms for HPC systems [17] to deal with node failures. This has initiated

extensive research in ABFT [8, 21, 47, 128], and soft error detection/correction using ABFT was

also studied [16, 78].

In 2015, the same idea was proposed by Lee et al. to combat the straggler problem [67], and

was given the name “coded computing”. Since the pioneering work by Lee et al., coded comput-

ing has generated exciting results including: coding strategies for distributed optimization [61,

91, 108, 129], addressing von Neumann’s 60-year-old question of error-resilient neural network

training [28], obtaining storage-optimal solutions to error-resilient matrix-multiplication [29,

101, 132], and obtaining the first solution to linear transforms with all elements being error-

prone [125].

Compared to existing fault tolerance techniques, coded computing can be a much more ef-

ficient solution in terms of system overhead. Coded computing does not require roll-back or
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restart to recover the lost result from a failed node. Instead, it requires communication from

the surviving nodes and low-complexity decoding operation to recover the computation output.

Also, compared to replication-based schemes, coded computing requires much less redundancy.

Replication-based schemes require 2x redundancy for detecting an error and 3x redundancy (also

known as triple modular redundancy (TMR)) for correcting an error. Coded computing, on the

other hand, can provide single error detection and correction capability with a small (asymptoti-

cally negligible) redundancy.

1.3 Definitions and Notation

Computation System Models

We will mainly use two models of distributed computation system in this thesis: a master-worker

setup and a masterless setup.

Figure 1.2: A computational system: The master node receives the computational inputs and

sends appropriate tasks to the workers. The workers are prone to faults and delays. The fusion

node aggregates the computational outputs from the subset of successful workers and produces

the desired computational outputs.

Definition 1.3.1. [Master-Worker Setup] In the master-worker setup, we assume that there are

three types of nodes: (i) a master node; (ii) worker nodes; and (iii) a fusion node whose roles are

the following:

7



(i) A master node that receives computational inputs and perform pre-processing if required.

It then distributes (pre-processed) input data to worker nodes.

(ii) Worker nodes perform the given computation on the input it received from a master node.

A successful worker sends the resulting computation to the fusion node. A failed worker

does not send the result to the fusion node.

(iii) A fusion node that receives outputs from the subset of successful worker nodes. If a fusion

node receives enough number of successful workers, it will perform post-processing (e.g.,

decoding) and produces the final computational output. Otherwise, it declares a “compu-

tation failure.”

Note that we make a distinction between a master node and a fusion node as they serve

different functionalities. However, the distinction is more logical, and both master node and

fusion node will reside in one physical node. Sometimes, we will omit this distinction, and call

a fusion node as a master node in some places. Details of each node’s role would depend on the

computation goal.

Definition 1.3.2. [Masterless Setup] A masterless setup consists of a set of identical compute

nodes. There is no central node present during the computation and nodes do not have any

shared memory. Data located at different nodes can be shared only through explicit communi-

cation between two nodes. We assume a fully-connected network where any worker node can

communicate with any other node in the system directly.

Also, we will use the term nodes and processors interchangeably in this document. In real-

world distributed systems, nodes are composed of multiple processors, and a processor has mul-

tiple cores. While we will acknowledge these differences in Chapter 4 where we discuss experi-

ments, in other places, one should regard nodes as a more abstract notion.
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Error-Correcting Codes

We will very briefly review the basics of error-correcting codes as they have been designed

for communication and storage systems. For more comprehensive understanding, we refer the

readers to excellent textbooks including [74, 94, 95].

The objective of error-correcting codes is to add redundancy on the given data to recover lost

or corrupted data through redundancy. Mathematically, this can be described as follows. Let

m P Fk denote a length-k message vector. By adding n ´ k redundant symbols, we want to

encode this message vector into a length-n code vector x P Fn. The encoding function:

E : Fk Ñ Fn (1.1)

that maps m to x can be any function, but in this work, we will only consider linear functions.

This is referred to as linear encoding. Given that E is linear, now the encoding process can be

represented as:

x “mG, (1.2)

where G is a k-by-n matrix, called a generator matrix. One important parameter in error-

correcting codes is a code rate R “ k{n that represents how much portion of x contain the

original information.

A crucial question to ask is: how many lost symbols can we recover if we add n ´ k re-

dundant symbols? A reasonable hope would be tolerating n ´ k erasures since we added n ´ k

more symbols. This is indeed the provably best performance any encoding function can achieve,

and there exists a linear encoding scheme that achieves this. Codes that achieve this are called

maximum distance separable (MDS) codes.

Systematic codes under the linear encoding (1.2) are codes that have a generator matrix of

the form:

G “

»

—

—

—

—

–

Ikˆk P

fi

ffi

ffi

ffi

ffi

fl

. (1.3)
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The left k-by-k square block is identity matrix, followed by a k-by-pn ´ kq parity generating

matrix P . This means that the first k symbols of x would be just a copy of the original message

m, and the last n´k symbols would be linear combinations of m encoded by: mP . In systematic

codes, we will call the encoded symbols parity symbols or checksums.

Now, we introduce some notions that are closely related to distributed computing settings.The

recovery threshold is the minimum number of successful workers required by the fusion node

to recover the computation output. We will denote the recovery threshold by K. The recovery

bandwidth is the minimum number of symbols to be communicated to the fusion node to recover

the computation output.

Failure Models

Largely, the failure model we consider in this thesis is “an erasure model” where we assume

that when a node fails, we lose the entire data it held. An erasure can happen for various reasons.

It could be due to fail-stop errors which is a commonly used abstraction for failures in HPC to

describe a situation where process behavior becomes arbitrary. It could be also due to stragglers.

If a process does not respond within the set deadline, it could be considered as an erasure. Also,

we assume that a node failure can be isolated2.

Latency Models

We use the α-β model to estimate the point-to-point communication cost. In the α-β model, the

time to send or receive a message of s bytes is :

T “ α ` s ¨ β (1.4)

Here, α is startup time to establish a connection between two nodes, and β is the bandwidth

cost required to transfer one symbol. For an algorithm that requires multiple rounds of message
2One failure can easily trickle down to other nodes and isolating a failure is not always straightforward in real-

world systems. However, we limit ourselves to a simple model in this thesis.
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exchanges, total communication time can be written as follows:

T “ C1α ` C2β, (1.5)

where C1 is the number of communication rounds, C2 is the number of symbols communicated

in a sequence. To be more precise, if we denote bi as the maximum number of symbols commu-

nicated between two nodes at the i-th round, C2 can be written as:

C2 “

C1
ÿ

i“1

bi. (1.6)

This is because the next round does not start until the previous round is completed, and the band-

width latency for each round is dominated by the largest message. Symbols can have different

units, such as bits or bytes, but in this work we do not specify any units.

In some places, we will use the α-β-γ model to incorporate the computation cost into equa-

tion:

T “ αC1 ` βC2 ` γC3, (1.7)

where C3 is the number of floating point operations (flops).

1.4 Main Contributions and Outline

This thesis considers a long-standing intellectual problem of computing reliably with unreliable

components adapted to the present-day computing systems by marrying large-scale distributed

algorithms and coding theory. Main contributions of this thesis are as follows:

• We propose MatDot codes for matrix multiplication that advance on the existing literature

in ABFT and coded computing strategies in terms of recovery threshold. It was later proven

that the recovery threshold of MatDot codes is optimal under input storage constraint [132].

We also constructed PolyDot codes that can flexibly trade off communication cost and

storage cost. (Chapter 2)
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• We argue that coded computing with a master node is not scalable (with some prelimi-

nary experimental evidence), and we introduce the idea of “masterless coded computing”,

where data pre- and post-processing are also done without a central master node. (Chap-

ter 3)

• An important topic to be thought over in masterless coded computing is reducing the com-

munication cost of distributed encoding and decoding. By borrowing the idea of locally-

recoverable (LRC) codes from the latest distributed storage codes literature, we propose

LRC coded matrix multiplication which allows for more communication-efficient recovery

in case of a single failure. (Chapter 3.1)

• We propose fully-distributed coded computing algorithms for existing numerical algo-

rithms that are extensively used in a broad set of HPC applications such as: Scalable

Universal Matrix Multiplication Algorithm (SUMMA) and the 4-step algorithm for FFT.

(Chapter 3.2)

• Finally, we show experimental evaluation of the proposed 3D Coded SUMMA on a HPC

system. Through extensive experiments, we compare when coded computing can outper-

form existing fault-tolerance techniques such as replication or ABFT. (Chapter 4)

1.4.1 Excluded Work

During my Ph.D., I also worked on energy-adaptive error-correcting codes which is not included

in this thesis. The goal of this research was to design an error-correcting code that can adapt to

time-varying environments (e.g., SNR, energy constraints) to minimize energy consumption for

encoding/decoding. I proposed two novel designs of energy-adaptive codes: (1) energy-adaptive

polar codes (theoretical analysis), (2) energy-adaptive LDPC codes (simulation analysis). For

interested readers, we refer to [54, 55, 57].
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Chapter 2

Introduction to Coded Computing

“It seems somewhat strange to be writing a paper on parallel matrix multiplication almost two

decades after commercial parallel systems first became available. One would think that by now

we would be able to manage such an apparently straightforward task with simple, highly

efficient implementations. Nonetheless, we appear to have gained new insight into this problem.”

The first paragraph of “SUMMA: scalable universal matrix multiplication algorithm” by R. A.

van de Geijn and J. Watts, 1997

This chapter will be a gentle introduction to coded computing. We will first walk through

the basic concept of coded computing by showing how we can apply coding to distributed ma-

trix multiplication since matrix multiplication is not only a crucial building block of numerical

algorithms but also straightforward to understand. After providing a few simple examples in

Chapter 2.1.1, we illustrate MatDot codes and PolyDot codes more formally, which are our ma-

jor breakthroughs in coded matrix multiplication. Then, in Chapter 2.2, we take one step back

from coded matrix multiplication, and discuss a more global view on how coded computing can

be applied to other classes of computation.
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2.1 Coded Matrix Multiplication

Throughout this chapter, we will assume the master-worker setup defined in 1.3 and our compu-

tation goal is to compute the following matrix multiplication:

C “ AB, (2.1)

where A,B,C are assumed to beN -by-N square matrices for simplicity1. The key idea of coded

matrix multiplication is encoding redundancy on the inputs A and B before the computation so

that the computation output C can be protected from any possible failures during computation.

We believe that this would be best understood through simple examples.

Below are a few more notations we use throughout this chapter:

• P : The total number of worker nodes used.

• m: The storage parameter that denotes that a fixed 1{m fraction of each of the input ma-

trices can be stored at each node.

• k: The recovery threshold of a coding strategy.

2.1.1 Simple examples

We provide simple examples of three different coded matrix multiplication strategies: (i) ABFT

matrix multiplication [52] (also called Product codes in [67]), (ii) Polynomial codes [130] and

then (iii) our proposed construction, MatDot codes. We will evaluate the straggler tolerance of

a strategy by its recovery threshold, k. For all the examples, we consider the simplest case with

m “ 2. Let us begin by describing the first strategy, ABFT matrix multiplication.

Example 2.1.1 (ABFT codes [52] (m “ 2, k “ 2
?
P )). Consider two N ˆ N matrices A and

B that are split as follows:

A “

»

—

–

A0

A1

fi

ffi

fl

,B “

„

B0 B1



1Coding strategies we introduce here can be extended to rectangular matrices as well.
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where A0,A1 are sub-matrices (row-blocks) of A of dimension N{2 ˆ N and B0,B1 are sub-

matrices (column-blocks) of B of dimension N ˆ N{2. Using ABFT, it is possible to compute

AB over P nodes such that, piq each node uses N2{2 linear combinations of the entries of A

and N2{2 linear combinations of the entries of B and piiq the overall computation is tolerant to

P ´ 2
?
P stragglers in the worst case. Thus, any P ´ pP ´ 2

?
P q “ 2

?
P worker nodes suffice

to recover AB.

ABFT codes use the following strategy: P processors are arranged in a
?
P ˆ

?
P grid.

ABFT codes encode two row-blocks of A and two column-blocks of B separately using two

systematic p
?
P , 2q MDS codes. Then, we distribute the i-th encoded row-block of A to all

the worker nodes on the i-th row of the grid, and the j-th encoded column-block of B to all the

worker nodes on the j-th column of the grid. Note that here the grid indexing is i “ 1, 2, . . . ,
?
P

and j “ 1, 2, . . . ,
?
P . An example for P “ 9 is shown in Fig. 2.1. The worst case arises when

all but one worker node in the lower right p
?
P ´ 1q ˆ p

?
P ´ 1q part of the grid fail. Thus, the

worst case recovery threshold is P ´ p
?
P ´ 1q2 ` 1 “ 2

?
P . For the example given in Fig. 2.1

where P “ 9, recovery threshold is 2
?
P “ 6. �

Figure 2.1: ABFT matrix multiplication [52] for P “ 9 worker nodes with m “ 2, where the

recovery threshold is 6.

In the previous example, the recovery threshold was a function of P and thus it requires

more successful worker nodes as we use more processors. However, as we will show in the next

15



Figure 2.2: Polynomial Codes [130] with m “ 2. The recovery threshold is 4.

Figure 2.3: An illustration of the computational system with four worker nodes and applying

MatDot codes with m “ 2. The recovery threshold is 3.

example, Polynomial codes [130] provide a superior recovery threshold that does not depend on

P .

Remark 2.1.1. In the worst-case ABFT codes might require Θp
?
P q nodes to finish, but in the

best-case only m2 nodes might suffice, e.g., if all the systematic nodes finish first. Therefore,

some specific subsets of nodes of size smaller than the recovery threshold can sometimes suffice

for reconstruction, even though not all subsets of this size suffice. For a detailed discussion on

best-case and average-case recovery, the reader is referred to [67].

Example 2.1.2 (Polynomial codes [130] (m “ 2, k “ 4)). Consider two N ˆN matrices A and
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B that are split as follows:

A “

»

—

–

A0

A1

fi

ffi

fl

,B “

„

B0 B1



.

Polynomial codes compute AB over P nodes such that, piq each node uses N2{2 linear combi-

nations of the entries of A and N2{2 linear combinations of the entries of B and piiq the overall

computation is tolerant to P ´ 4 stragglers, i.e., any 4 nodes suffice to recover AB. Polynomial

codes use the following strategy: Node i computes pA0`A1iqpB0`B1i
2q, i “ 1, 2, . . . P, so that

from any 4 of the P nodes, the polynomial ppxq “ pA0B0 `A1B0x`A0B1x
2 `A0B1x

3q can

be interpolated. Having interpolated the polynomial, AB as

»

—

–

A0B0 A0B1

A1B0 A1B1

fi

ffi

fl

can be obtained

from the coefficients (matrices) of the polynomial. �

Finally, we show an example of our novel MatDot code construction that achieves a smaller

recovery threshold as compared with Polynomial codes. Unlike ABFT and Polynomial codes,

MatDot divides matrix A vertically into column-blocks and matrix B horizontally into row-

blocks.

Example 2.1.3. [MatDot codes (m “ 2, k “ 3)]

MatDot codes compute AB over P nodes such that, piq each node uses N2{2 linear combi-

nations of the entries of A and N2{2 linear combinations of the entries of B and piiq the overall

computation is tolerant to P ´ 3 stragglers, i.e., 3 nodes suffice to recover AB. The proposed

MatDot codes use the following strategy: Matrix A is split vertically and B is split horizontally

as follows:

A “ rA0 A1s , B “

»

—

–

B0

B1

fi

ffi

fl

, (2.2)

where A0,A1 are column-blocks of A of dimension N ˆ N{2 and B0,B1 are row-blocks of B

of dimension N{2ˆN .

Let pApxq “ A0`A1x and pBpxq “ B0x`B1. Let x1, x2, ¨ ¨ ¨ , xP be distinct elements in F.

The master node sends pApxrq and pBpxrq to the r-th worker node where the r-th worker node
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performs the multiplication pApxrqpBpxrq and sends the output to the fusion node. The exact

computations at each worker node are depicted in Fig. 2.3. We can observe that the fusion node

can obtain the product AB using the output of any three successful workers as follows: Let the

worker nodes 1, 2, and 3 be the first three successful worker nodes, then the fusion node obtains

the following three matrices:

pApx1qpBpx1q “ A0B1 ` pA0B0 `A1B1qx1 `A1B0x
2
1,

pApx2qpBpx2q “ A0B1 ` pA0B0 `A1B1qx2 `A1B0x
2
2,

pApx2qpBpx3q “ A0B1 ` pA0B0 `A1B1qx3 `A1B0x
2
3.

Since these three matrices can be seen as three evaluations of the matrix polynomial pApxqpBpxq

of degree 2 at three distinct evaluation points x1, x2, x3, the fusion node can obtain the coeffi-

cients of x in pApxqpBpxq using polynomial interpolation. This includes the coefficient of x,

which is A0B0 `A1B1 “ AB. Therefore, the fusion node can recover the matrix product AB.

�

2.1.2 MatDot and PolyDot codes

We will now provide the formal description of MatDot and PolyDot codes. We start by defining

a rigorous system model.

2.1.2.1 System Model

We consider a master-worker setup given in 1.3.1, and define an pN, k, P,mq Computational

system for Matrix Multiplication based on it.

Definition 2.1.1. [An pN, k, P,mq Computational system for Matrix Multiplication]

(i) A master node receives computational inputs, i.e., two N ˆ N matrices A and B and

obtains, via linear pre-processing, 2P matrices as follows:

rAi “ fipAq and rBi “ gipBq for i “ 1, 2, . . . , P.
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Here, fi and gi are two functions such that fi : FNˆN Ñ FN{tˆN{s and gi : FNˆN Ñ

FN{sˆN{t. Each rAi for i “ 1, 2, . . . , P is an N{t ˆ N{s matrix and each rBi for i “

1, 2, . . . , P is an N{sˆN{t matrix, where s and t are two integers that satisfy st “ m and

m is an integer that divides N . Specifically, each entry of rAi (respectively rBi) is restricted

to be an F-linear combination2 of the entries of A (respectively B).

(ii) P worker nodes that perform the following operations: For i “ 1, ¨ ¨ ¨ , P , the i-th worker

node receives rAi, rBi from the master node, and performs some computation on these ma-

trices.

(iii) A fusion node that receives outputs from the subset of successful worker nodes.

(iv) The recovery threshold is k, i.e., a fusion node will perform post-processing if the number

of successful worker is at at least k, and produces the final output AB.

We make some informal remarks on the system model before describing our problem state-

ment.

• For a given computation system, the parameter k is referred to as its recovery threshold.

Note that as per the definition, the recovery threshold is a worst-case evaluation, i.e., over

the worst possible choice of inputs A,B as well as the worst set of worker failures.

• The parameter m controls the memory of each worker in the model, i.e., each worker node

can store only upto a 1{m fraction of each of the input matrices.

• For convenience, we simply refer to an pN, k, P,mq computation system for matrix multi-

plication as a computation system in this paper; the parameters N, k, P,m can be inferred

from context.

• A worker node can fail due to various reasons such as: (i) straggling due to other jobs in

the queue; (ii) straggling due to network congestion; (iii) temporary unavailability (e.g.,

2We restrict pre-processing to be linear to capture memory constraints of each worker node. Note that, allowing

for non-linear pre-processing with infinite precision can allow the master node to encode the entire input A,B into

smaller dimensional matrices over real or complex fields.
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system updates or power outage). In particular, while our model states that the failed

worker nodes do not send their computational outputs to the fusion node, in practice, a

straggling worker node that sends its result later than an acceptable deadline may also be

considered as a failure in our model. We use the term failed nodes interchangeably with

the term straggling nodes in this paper. The parameter P ´ k represents fault-tolerance, or

equivalently, the straggler-tolerance of the system.

• Elementary coding theory also implies that an pN, k, P,mq computation systems can cor-

rect tP´k
2

u erroneous worker nodes, i.e., nodes that can output incorrect computations,

though we do not focus explicitly on error correction in this paper.

• For a given computation system, the computational complexities of the master, workers,

and the fusion node are referred to as the pre-processing, online, and decoding complex-

ities. In addition to recovery thresholds, we also evaluate various computation schemes

in terms of these computation complexities, as well as the communication cost from the

worker nodes to the fusion node. The communication cost between the master node and

worker nodes is constant in all the strategies because of the storage constraint, i.e., the

master sends upto N2{m symbols to each worker node.

• Our strategies also extend when the matrices rAi and rBi are allowed to be of dimensions

N{t1 ˆ N{s and N{s ˆ N{t2 (discussed in Remark 2.1.3 later), i.e., asymmetric storage

constraints for the two inputs. Our system model also assumes that A,B are square matri-

ces with equal dimensions for simplicity of notation. Our ideas and results will naturally

apply for cases where A,B are non-square matrices as well, as long as the product AB is

defined.

2.1.2.2 Problem Statement

We consider an pN, k, P,mq computation system where the computational complexities of the

master, worker and fusion nodes, when evaluated in terms of parameter N,P,m, are all less than
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the complexity of any sequential algorithm that takes inputs A,B and computes the product AB

as the output3. Given parameters N,P,m, among these considered systems, our problem is to

determine the computation system with the smallest achievable recovery threshold.

Although the problem stated here remains open, we will present non-trivial coding strate-

gies that achieve significantly smaller recovery threshold than previously known systems. For

simplicity, we report results assuming naive matrix multiplication with complexity ΘpN3q in

our paper; our ideas and results extend, with minor modifications, to include lower complexity

algorithms such as Strassen’s algorithm [104].

2.1.2.3 Some Notations and Definitions

For fpnq and gpnq that are two functions of the variable n, fpnq “ Opgpnqq if there exists an n0

and a constant c such that for all n ą n0, fpnq ď cgpnq. Similarly, fpnq “ opgpnqq if for any

chosen ε ą 0, one can find an n0 such that for all n ą n0, fpnq ď εgpnq. Lastly, fpnq “ Θpgpnqq

if fpnq “ Opgpnqq and gpnq “ Opfpnqq.

We will be using the term “row-block” to denote the sub-matrices formed when we split a

matrix A horizontally as follows: A “

»

—

–

A0

A1

fi

ffi

fl

. Similarly, we will be using the term “column-

block” to denote the sub-matrices formed when we split a matrix vertically into sub-matrices as

follows: A “

„

A0 A1



.

2.1.2.4 MatDot Code Construction

In this section, we will describe the distributed matrix-matrix multiplication strategy using Mat-

Dot codes, and then examine the computation and communication costs of the proposed strategy.

3The computational complexity requirement is necessary. Without this requirement, it is easy to design a

pN, k “ m,P,mq computation system by simply storing A,B using a pP,mq Maximum Distance Separable code

at the workers, which sends the stored symbols to the fusion node which then decodes A,B and then performs the

multiplication. However, in practice, this is not parallelizing the matrix-multiplication task.
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From the examples in Section 2.1.1, we have seen that for m “ 2, the recovery threshold of

MatDot codes is k “ 3, which is lower than Polynomial codes and ABFT matrix multiplication.

The following theorem shows that for any integer m, the recovery threshold of MatDot codes is

k “ 2m´ 1.

Theorem 2.1.1. For the matrix multiplication problem specified in Section 2.1.2.2 computed on

the system defined in Definition 2.1.1, a recovery threshold of 2m´1 is achievable where m ě 2

is a positive integer that divides N .

Before we prove Theorem 2.1.1, we first describe the construction of MatDot codes.

Construction 2.1.1. [MatDot Codes]

Splitting of input matrices: The matrix A is split vertically into m equal column-blocks (of

N2{m symbols each) and B is split horizontally into m equal row blocks (of N2{m symbols

each) as follows:

A “ rA0 A1 . . . Am´1s , B “

»

—

—

—

—

—

—

—

–

B0

B1

...

Bm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.3)

where, for i P t0, . . . ,m´1u, and Ai,Bi areNˆN{m andN{mˆN dimensional sub-matrices,

respectively.

Master node (encoding): Let x1, x2, . . . , xP be distinct elements in F. Let pApxq “
řm´1
i“0 Aix

i

and pBpxq “
řm´1
j“0 Bjx

m´1´j. The master node sends to the r-th worker the evaluations of

pApxq, pBpxq at x “ xr, that is, it sends pApxrq, pBpxrq to the r-th worker.

Worker nodes: For r P t1, 2, . . . , P u, the r-th worker node computes the matrix product

pCpxrq “ pApxrqpBpxrq and sends it to the fusion node on successful completion.

Fusion node (decoding): The fusion node uses outputs of any 2m´ 1 successful workers to

compute the coefficient of xm´1 in the product pCpxq “ pApxqpBpxq (the feasibility of this step

will be shown later in the proof of Theorem 2.1.1). If the number of successful workers is smaller

than 2m´ 1, the fusion node declares a failure.
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Notice that in MatDot codes, we have

AB “

m´1
ÿ

i“0

AiBi, (2.4)

where Ai and Bi are as defined in (2.3). The simple observation of (2.4) leads to a different way

of computing the matrix product as compared with Polynomial-codes-based computation. In

particular, to compute the product, we only require, for each i, the product of Ai and Bi. We do

not require products of the form AiBj for i ‰ j unlike Polynomial codes, where, after splitting

the matrices A,B in to m parts, all m2 cross-products are required to evaluate the overall matrix

product. This leads to a significantly smaller recovery threshold for our construction.

Proof of Theorem 2.1.1. To prove the theorem, it suffices to show that in the MatDot code con-

struction described above, the fusion node is able to reconstruct C from any 2m ´ 1 worker

nodes. Observe that the coefficient of xm´1 in:

pCpxq “ pApxqpBpxq “

˜

m´1
ÿ

i“0

Aix
i

¸˜

m´1
ÿ

j“0

Bjx
m´1´j

¸

(2.5)

is AB “
řm´1
i“0 AiBi (from (2.4)), which is the desired matrix-matrix product. Thus it is suf-

ficient to compute this coefficient at the fusion node as the computation output for successful

computation. Now, because the polynomial pCpxq has degree 2m´ 2, evaluation of the polyno-

mial at any 2m´1 distinct points is sufficient to compute all of the coefficients of powers of x in

pApxqpBpxq using polynomial interpolation. This includes AB “
řm´1
i“0 AiBi, the coefficient

of xm´1. �

In Section 2.1.2.5, we provide a complexity analysis that shows that using this strategy, the

master and fusion nodes have a lower computational complexity as compared to the worker nodes

in the regime where m,P ! N .

2.1.2.5 Complexity Analysis of MatDot codes

Encoding/decoding complexity: Encoding for each worker requires evaluating two polynomi-

als pApxq and pBpxq, each of degree m ´ 1, at a unique value of x where the coefficients of
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these polynomials are sub-matrices of size N2{m. We examine the encoding complexity using

two algorithms here. One encoding algorithm could be to take a linear combination of m sub-

matrices of size N2{m, leading to an overall encoding complexity of OpmN2{mq “ OpN2q for

each worker. Thus, the overall computational complexity of encoding for P workers isOpN2P q.

Alternatively, one could also use fast polynomial evaluation algorithms [63, 65] which allow one

to evaluate a polynomial (of degree m ´ 1) at P pą mq arbitrary points within a time complex-

ity of OpP log2mq (or more practically OpP log2m log logmq). Because this evaluation has

to be repeated N2{m times, the overall encoding complexity using fast polynomial evaluation

algorithms becomes O
´

N2P log2m log logm
m

¯

.

Next, we examine the decoding complexity. Decoding requires interpolating the coefficient

of xm´1 (of sizeN2) in the polynomial pCpxq of degree 2m´2. Because we are interested in only

one coefficient of the polynomial pCpxq and not all of them, we consider the problem of inverting

the corresponding Vandermonde matrix for polynomial interpolation and then computing the

corresponding coefficient of xm´1 separately.

Let pCpxq “ C0 ` C1x ` . . . ` Ck´1x
k´1 where k “ 2m ´ 1 and we are interested in

interpolating only Cm´1. Also, let x̃1, x̃2, . . . , x̃k denote the kp“ 2m´1q unique values at which

the k fastest workers evaluated the polynomial pCpxq and V denote the k ˆ k Vandermonde

matrix given by:

V “

»

—

—

—

—

—

—

—

–

1 x̃1 x̃21 . . . x̃k´11

1 x̃2 x̃22 . . . x̃k´12

...
... . . . ...

1 x̃k x̃2k . . . x̃k´1k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.6)

24



Observe that

pV b INˆNq

»

—

—

—

—

—

—

—

–

C0

C1

...

Ck´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

C0

C1

...

Ck´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
`

V´1
b INˆN

˘

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.7)

where b denotes the Kronecker product and INˆN denotes an identity matrix of dimensions

NˆN . The decoder first inverts the matrix V (complexity is at mostOpk3q using naive inversion

algorithms4) and then picks the m-th row of V´1 which corresponds to the linear combination

of evaluations leading to the coefficient of xm´1. Next, it linearly combines these k evaluations

pCpx̃1q, pCpx̃2q, . . . , pCpx̃kq (of size N2 each) using the k values in rm-th row of V´1s, effec-

tively performing the computation

Cm´1 “
`

rm-th row of V´1
s b INˆN

˘

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This second step is of complexityOpN2kq. Thus, the total decoding complexity isOpN2k`k3q,

of which, the first term dominates as we are interested in regimes where kp“ 2m´ 1q ! N .

Each worker’s computational cost: Each worker multiplies two matrices of dimensions

N ˆN{m and N{mˆN , requiring N3{m operations (using standard matrix multiplication al-

4Note that, it might be possible to reduce the term k3 to k2 using improved methods of inverting Vandermonde

matrices [6, 40, 62, 85, 112]. However, since this is not the dominant term in this decoding complexity analysis, we

stick with the most conservative estimate k3.
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gorithms5). Hence, the computational complexity for each worker isOpN3{mq. Thus, as long as

P and m are sufficiently small compared to N , the encoding and decoding complexity is smaller

than per-worker computational complexity in a scaling sense. More specifically, for the decod-

ing complexity to be negligible, we need m2 “ opNq (derived from N2p2m ´ 1q “ opN3{mq).

Similarly, for the encoding complexity to be negligible, we need mP “ opNq (derived from

N2P “ opN3{mq), again sticking to the conservative estimate of encoding complexity.

Communication cost: The master node communicates OpPN2{mq symbols, and the fu-

sion node receives OpmN2q symbols from the successful worker nodes. While the master node

communication cost is identical to that in Polynomial codes, the fusion node there only receives

Opm2N2{m2q “ OpN2q symbols.

Remark 2.1.2. We note that in addition to communication costs, the computational cost per node

is also higher for MatDot codes (OpN3{mq) as compared to Polynomial codes (OpN3{m2q).

This is suggestive of a trade-off. Thus, we also propose PolyDot codes which provide a trade-off

between MatDot codes (lowest recovery threshold, higher communication and computation cost)

and Polynomial codes (higher recovery threshold, lower communication and computation cost),

with these two codes being its two special cases. These trade-offs are also pictorially illustrated

later in Fig. 2.4 and Fig. 2.5.

Discussion on applicability of MatDot codes:

• In our recent work [101], we demonstrate the potential advantages of MatDot codes in

practice. Reference [101] presents a distributed implementation of Fast approximate k-

Nearest Neighbor computation using MatDot codes. The problem reduces to the online

multiplication of only a set of few selected rows of a large matrix with another matrix/vec-

tor in real-time. Encoding and storing sub-matrices in advance is allowed, but the index

set of rows of the first matrix is only available in the online phase. It is difficult to apply

5More sophisticated algorithms [104] also require super-quadratic complexity in N , and so a similar conclusion

can be derived here if those algorithms are used at workers as well, as long as the complexity is super-quadratic in

N .
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horizontal splitting in this case as the index set of rows is not known a priori, and vertical

splitting of the first matrix, as done in MatDot codes, is better suited.

• In several large-scale computing settings, storage is the primary cause that necessitates

parallelizing or distributing the computation across multiple nodes. The actual computa-

tion cost is often cheap, and in fact often cheaper than communication costs too. The main

cause of latency or straggling is attributed to several factors, which also include queuing

of other tasks or limitations of communication bandwidth [116, 117]. Thus, the actual

time that each worker node takes is a combination of three terms: the delay-free compu-

tation cost, the delay-free communication cost and the unpredictable delay or straggling,

which could even be higher than the first two terms depending on the nature of the queuing

in the system. In several models in existing literature, the total time has also been mod-

eled with distributions which do not depend on the computation cost or communication

cost [116, 117]. In such scenarios, MatDot codes would be significantly beneficial in re-

ducing latency as compared to existing techniques as it requires the fusion node to wait for

the fewest workers. Alternatively, when the computation and communication costs domi-

nate storage costs, one could use Polynomial codes, or interpolate between these two codes

using our proposed PolyDot framework (see Section 2.1.2.6).

• MatDot codes can also be written in a systematic form. See Chapter 3.1.2.

2.1.2.6 PolyDot Code Constructions

In this section, we present a code construction, named PolyDot codes, that provides a trade-

off between per-worker computation/communication costs and recovery thresholds. Polynomial

codes [130] have a higher recovery threshold of m2, but have a lower per-worker computation

cost of OpN3{m2q and communication cost of OpN2{m2q per worker node. On the other hand,

MatDot codes have a lower recovery threshold of 2m´ 1, but have a higher per-worker compu-

tation cost of OpN3{mq and a higher communication cost of OpN2q per-worker. This section
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constructs a code that bridges the gap between Polynomial codes and MatDot codes so that we

can get intermediate per-worker computation/communication costs and recovery thresholds, with

Polynomial and MatDot codes being two special cases. To achieve this goal, we propose PolyDot

codes, which may be viewed as an interpolation of MatDot codes and Polynomial codes, with

one extreme being MatDot codes and the other extreme being Polynomial codes.

We follow the same problem setup and system assumptions as in MatDot codes. In the

following theorem, we obtain the recovery threshold achieved by PolyDot codes.

Theorem 2.1.2. For the matrix multiplication problem specified in Section 2.1.2.2 computed on

the system defined in Definition 2.1.1, there exist codes with a recovery threshold of t2p2s ´ 1q

and a communication cost from each worker node to the fusion node bounded by OpN2{t2q for

any positive integers s, t such that st “ m and both s and t divide N .

Before we move on to describe the PolyDot code construction and prove Theorem 2.1.2, we

first introduce PolyDot codes with a simple example for m “ 4 and s “ t “ 2.

Example 2.1.4. [PolyDot codes (m “ 4, s “ 2, k “ 12)]

Matrix A is split into sub-matrices A0,0,A0,1,A1,0,A1,1, each of dimension N{2 ˆ N{2.

Similarly, matrix B is split into sub-matrices B0,0,B0,1,B1,0,B1,1 each of dimensionN{2ˆN{2

as follows:

A “

»

—

–

A0,0 A0,1

A1,0 A1,1

fi

ffi

fl

,B “

»

—

–

B0,0 B0,1

B1,0 B1,1

fi

ffi

fl

. (2.8)

Notice that, from (2.8), the product AB can be written as

AB “

»

—

–

ř1
i“0A0,iBi,0

ř1
i“0A0,iBi,1

ř1
i“0A1,iBi,0

ř1
i“0A1,iBi,1

fi

ffi

fl

. (2.9)

Now, we define the encoding functions pApxq and pBpxq as

pApxq “ A0,0 `A1,0x`A0,1x
2
`A1,1x

3,

pBpxq “ B0,0x
2
`B1,0 `B0,1x

8
`B1,1x

6.
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Observe the following:

(i) the coefficient of x2 in pApxqpBpxq is
ř1
i“0A0,iBi,0,

(ii) the coefficient of x8 in pApxqpBpxq is
ř1
i“0A0,iBi,1,

(iii) the coefficient of x3 in pApxqpBpxq is
ř1
i“0A1,iBi,0, and

(iv) the coefficient of x9 in pApxqpBpxq is
ř1
i“0A1,iBi,1.

Let x1, ¨ ¨ ¨ , xP be distinct elements of F. The master node sends pApxrq and pBpxrq to

the r-th worker node for r P t1, ¨ ¨ ¨ , P u. The r-th worker node performs the multiplication

pApxrqpBpxrq and sends the result to the fusion node.

Let worker nodes indexed from 1 to 12 be the first 12 worker nodes that send their results to

the fusion node. Then the fusion node obtains the matrices pApxrqpBpxrq for all r P t1, ¨ ¨ ¨ , 12u.

Since these 12 matrices are essentially twelve distinct evaluations of the matrix polynomial

pApxqpBpxq of degree 11 at twelve distinct points x1, ¨ ¨ ¨ , x12, the coefficients of the matrix

polynomial pApxqpBpxq can be obtained using polynomial interpolation. This includes the coef-

ficients of xi`2`6j for all i, j P t0, 1u, i.e.,
ř1
k“0Ai,kBk,j for all i, j P t0, 1u. Once the matrices

ř1
k“0Ai,kBk,j for all i, j P t0, 1u are obtained, the product AB is obtained by (2.9). �

The recovery threshold form “ 4 in Example 2.1.4 is k “ 12. This is larger than the recovery

threshold of MatDot codes, which is k “ 2m ´ 1 “ 9, and smaller then the recovery threshold

of Polynomial codes, which is k “ m2 “ 16. Hence, we can see that the recovery thresholds of

PolyDot codes are between those of MatDot codes and Polynomial codes.

Construction 2.1.2 describes the general construction of PolyDot(m, s, t) codes. Note that,

although two parameters m and s are sufficient to characterize a PolyDot code, we include t in

the parameters for better readability.

Construction 2.1.2. [PolyDot(m, s, t) codes]
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Splitting of input matrices: A and B are split both horizontally and vertically:

A “

»

—

—

—

—

–

A0,0 ¨ ¨ ¨ A0,s´1

... . . . ...

At´1,0 ¨ ¨ ¨ At´1,s´1

fi

ffi

ffi

ffi

ffi

fl

,

B “

»

—

—

—

—

–

B0,0 ¨ ¨ ¨ B0,t´1

... . . . ...

Bs´1,0 ¨ ¨ ¨ Bs´1,t´1

fi

ffi

ffi

ffi

ffi

fl

, (2.10)

where, for i “ 0, ¨ ¨ ¨ , s ´ 1, j “ 0, ¨ ¨ ¨ , t ´ 1, Aj,i’s are N{t ˆ N{s sub-matrices of A and

Bi,j’s are N{sˆN{t sub-matrices of B. We choose s and t such that both s and t divide N and

st “ m.

Master node (encoding): Define the encoding polynomials as:

pApx, yq “
t´1
ÿ

i“0

s´1
ÿ

j“0

Ai,jx
iyj,

pBpy, zq “
s´1
ÿ

k“0

t´1
ÿ

l“0

Bk,ly
s´1´kzl. (2.11)

The master node sends the evaluations of pApx, yq, pBpy, zq at x “ xr, y “ xtr, z “ x
tp2s´1q
r to

the r-th worker where xr’s are all distinct for r P t1, 2, . . . , P u. By this substitution, we are

transforming the three-variable polynomial to a single-variable polynomial as follows:

pCpx, y, zq “ pCpxq “
ÿ

i,j,k,l

Ai,jBk,lx
i`tps´1`j´kq`tp2s´1ql,

and evaluate the polynomial pCpxq at xr for r “ 1, ¨ ¨ ¨ , P . In Lemma 2.1.1, we show that this

transformation is one-to-one.

Worker nodes: For r P t1, 2, . . . , P u, the r-th worker node computes the matrix product

pCpxr, yr, zrq “ pApxr, yrqpBpyr, zrq and sends it to the fusion node on successful completion.

Fusion node (decoding): The fusion node uses outputs of the first t2p2s ´ 1q successful

workers to compute the coefficient of xi´1ys´1zl´1 in pCpx, y, zq “ pApx, yqpBpy, zq, i.e., it
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Figure 2.4: An illustration of the trade-off between communication cost (from the workers to

the fusion node) and the recovery threshold of PolyDot codes by varying s and t for a fixed

m (m “ 36). The minimum communication cost is N2, corresponding to polynomial codes,

that have the largest recovery threshold. It is important to note here that in the above, we are

only including the communication cost from the workers to the fusion node. The communication

from the master node to the workers is not included, and it can dominate in situations when the

workers are highly unreliable.

computes the coefficient of xi´1`ps´1qt`p2s´1qtpl´1q of the transformed single-variable polynomial.

The proof of Theorem 2.1.2 shows that this is indeed possible. If the number of successful workers

is smaller than t2p2s´ 1q, the fusion node declares a failure.

Discussion on applicability of PolyDot codes: Before we prove the theorem, let us discuss the

utility of PolyDot codes. Under a fixed storage constraint (1{m), as t increases and s decreases

while keeping stp“ mq fixed, the recovery threshold keeps increasing and the computation and

communication costs keep decreasing. By choosing different s and t, we can trade off com-

munication{computation cost and recovery threshold. For s “ m and t “ 1, PolyDotpm, s “

m, t “ 1q code is a MatDot code which has a low recovery threshold but a high communica-

tion{computation cost. At the other extreme, for s “ 1 and t “ m, PolyDotpm, s “ 1, t “ mq

code is a Polynomial code. Now, let us consider a code with intermediate s and t values, such
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Figure 2.5: An illustration of the trade-off between the computation cost per worker and the re-

covery threshold of PolyDot codes by varying s and t for a fixed N,m (N “ 72,m “ 36). The

minimum computation cost per worker is 288 multiplication operations per worker, correspond-

ing to polynomial codes, that have the largest recovery threshold.

as, s “
?
m and t “

?
m. A PolyDotpm, s “

?
m, t “

?
mq code has a recovery threshold

of mp2
?
m ´ 1q “ Θpm1.5q, and the total number of symbols to be communicated to the fu-

sion node is Θ ppN{
?
mq2 ¨m1.5q “ Θp

?
mN2q, which is smaller than ΘpmN2q as required by

MatDot codes but larger than ΘpN2q as required by Polynomial codes. This trade-off between

communication cost and recovery threshold is illustrated in Fig. 2.4 for m “ 36. Similarly,

in terms of computational cost per worker node, a PolyDotpm, s “
?
m, t “

?
mq code re-

quires OpN3{m1.5q operations, which is less than the OpN3{mq operations required by MatDot

codes but higher than the OpN3{m2q operations required by Polynomial codes. This trade-off

between the computation per worker and the recovery threshold is illustrated in Fig. 2.5 for

N “ 72,m “ 36.

In regimes where the storage-constraint is more critical than the computation or communica-

tion time, PolyDot codes with the MatDot configuration (or at least closer to MatDot codes, i.e.,

higher s, lower t) is more appropriate. Alternatively, in settings where computation and commu-

nication time dominate significantly, PolyDot codes with Polynomial codes’ configuration (or at
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least close to Polynomial codes, i.e., higher t, lower s) may be more preferable. Interestingly

though, even in systems where communication costs may be significant, it is possible that more

communication from fewer successful workers is less expensive than requiring more successful

workers as required in Polynomial codes, which we hope to explore experimentally in future

work.

Now, we proceed to prove Theorem 2.1.2. We need the following lemma.

Lemma 2.1.1. The following function

f :t0, ¨ ¨ ¨ , t´ 1u ˆ t0, ¨ ¨ ¨ , 2s´ 2u ˆ t0, ¨ ¨ ¨ , t´ 1u

Ñ t0, ¨ ¨ ¨ , t2p2s´ 1q ´ 1u

pα, β, γq ÞÑ α ` tβ ` tp2s´ 1qγ (2.12)

is a bijection.

Proof. Let us assume, for the sake of contradiction, that for some pα1, β1, γ1q ‰ pα, β, γq,

fpα1, β1, γ1q “ fpα, β, γq. Then pfpα, β, γq mod tq “ α “ pfpα1, β1, γ1q mod tq “ α1 and

hence α “ α1. Similarly, pfpα, β, γq mod tp2s ´ 1qq “ pfpα1, β1, γ1q mod tp2s ´ 1qq gives

α ` tβ “ α1 ` tβ1, and thus β “ β1 (because α “ α1). Now, because α “ α1 and β “ β1, as

we just established, fpα, β, γq “ fpα1, β1, γ1q from our assumption, it follows that γ “ γ1. This

contradicts our assumption that pα, β, γq ‰ pα1, β1, γ1q. �

Proof of Theorem 2.1.2. The product of pApx, yq and pBpy, zq can be written as follows:

pCpx, y, zq “ pApx, yqpBpy, zq

“

˜

t´1
ÿ

i“0

s´1
ÿ

j“0

Ai,jx
iyj

¸˜

s´1
ÿ

k“0

t´1
ÿ

l“0

Bk,ly
s´1´kzl

¸

“
ÿ

i,j,k,l

Ai,jBk,lx
iys´1`j´kzl. (2.13)

Note that the coefficient of xi´1ys´1zl´1 in pCpx, y, zq is equal to Ci,l “
řs´1
k“0Ai,kBk,l. By
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our choice of y “ xt and z “ xtp2s´1q we can further simplify pCpx, xt, xtp2s´1qq:

pCpx, y, zq “ pCpxq “
ÿ

i,j,k,l

Ai,jBk,lx
i`tps´1`j´kq`tp2s´1ql. (2.14)

The maximum degree of this polynomial is when i “ t ´ 1, j ´ k “ s ´ 1 and l “ t ´ 1,

which is pt ´ 1q ` p2s ´ 2qt ` tp2s ´ 1qpt ´ 1q “ t2p2s ´ 1q ´ 1. Furthermore, if we let

α “ i, β “ s ´ 1 ` j ´ k, γ “ l, the function fpα, β, γq in Lemma 2.1.1 is the degree of

x in (2.14). This implies that for different pairs of pi, j ´ k, lq, we get different powers of x.

When j ´ k “ 0, we obtain p
řs´1
k“0Ai,kBk,lqx

i`tps´1q`tp2s´1ql “ Ci,lx
i`tps´1q`tp2s´1ql which is

the desired product we want to recover.

This implies that if we have t2p2s ´ 1q successful worker nodes, we can compute all the

coefficients in (2.14) by polynomial interpolation. Hence, we can recover all Ci,l’s, i.e., the

coefficients of xi`tps´1q`tp2s´1ql, for i, l “ 0, ¨ ¨ ¨ , t´ 1. �

Remark 2.1.3. We first introduce the novel PolyDot framework for matrix-matrix multiplication

which block-partitions the two matrices A and B into t ˆ s and s ˆ t respectively, using two

multivariate polynomials:

pApx, yq “
t´1
ÿ

i“0

s´1
ÿ

j“0

Ai,jx
iyj,

pBpy, zq “
s´1
ÿ

k“0

t´1
ÿ

l“0

Bk,ly
s´1´kzl. (2.15)

It is trivial to see that for an asymmetric partitioning, e.g., where A is split in t1 ˆ s and B is

split in sˆ t2 blocks, the encoding polynomials in the PolyDot framework change as:

pApx, yq “
t1´1
ÿ

i“0

s´1
ÿ

j“0

Ai,jx
iyj,

pBpy, zq “
s´1
ÿ

k“0

t2´1
ÿ

l“0

Bk,ly
s´1´kzl. (2.16)

In this work, the novelty lies in cleverly choosing pApx, yq and pBpy, zq, such that, in the product

of the two multivariate polynomials, i.e., in pCpx, y, zqp“ pApx, yqpBpy, zqq some coefficients
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correspond to parts of the required resultant matrix AB. After this, we convert the multivariate

polynomial pCpx, y, zq into a polynomial of a single variable using a substitution which preserves

bijection between all the coefficients (including the ones that are not required).

Because only some of the coefficients of pCpx, y, zq are actually required for reconstructing

AB, it is not necessary to preserve bijection between all the coefficients in the polynomial of a

single variable. In subsequent works [26, 132] a lower recovery threshold is obtained by choosing

an improved substitution such that some of the garbage coefficients in pCpx, y, zq align with each

other resulting in a polynomial of a single variable with fewer coefficients.

2.1.2.7 Complexity Analysis of PolyDot codes

Encoding/decoding complexity: Encoding for one worker requires the evaluation of the poly-

nomials pApxq and pBpxq at a unique value of x. As both the polynomials have m non-zero

coefficients which are sub-matrices of A and B respectively, the encoder scales the m sub-

matrices with N2{m elements each and adds them up. This requires computational complexity

of Opm ¨ N2{mq “ OpN2q. Thus, the overall computational complexity of encoding for P

worker nodes is OpN2P q. One could alternatively also use fast polynomial evaluation algo-

rithms [63, 65] to evaluate the two polynomials of respective degrees st´ 1 and t2p2s´ 1q ´ st

at P arbitrary points, leading to an encoding complexity of at most O
´

N2P log2 pst2q log log pst2q
m

¯

,

that can be rewritten as O
´

N2P log2 pm2{sq log log pm2{sq
m

¯

using st “ m.

Decoding requires interpolating t2 coefficients of the polynomial pCpxq of degree t2p2s´1q´

1 where each coefficient is of size N2{t2. We examine a choice of two decoding algorithms here,

and interestingly, again observe a trade-off between MatDot and Polynomial codes in decoding.

If we use a decoding technique similar to MatDot codes by considering the problem of deriving

the required t2 linear combinations from the inverse of the k ˆ k Vandermonde matrix V and

then combining the k evaluated sub-matrices sent by the worker nodes using these t2 linear

combinations, then the overall decoding complexity is Opt2 ¨ N2

t2
k ` k3q “ OpN2k ` k3q where
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k “ t2p2s´ 1q. Again, as k ! N , the complexity is dominated by the term N2k.

Alternatively, the decoder could also choose to solve for all the coefficients of pCpxq from the

evaluations, as a single interpolation problem. There exist fast polynomial interpolation methods

that have a complexity ofOpk log2 kq theoretically [65] (or more practicallyOpk log2 k log log kq [63])

for a polynomial of degree k ´ 1. For this problem k “ t2p2s ´ 1q. Therefore, using these fast

polynomial interpolation algorithms, the decoding complexity per coefficient matrix element is

Opt2p2s´1q log2 t2p2s´1q log log t2p2s´ 1qq “ Opt2s log2
pm2{sq log logm2{sq usingm “ st.

As the interpolation is performedN2{t2 times for the coefficient matrices of sizeN2{t2, the over-

all decoding complexity is OpN2s log2
pm2{sq log log pm2{sqq.

Remark 2.1.4. Note that, when we substitute t “ 1, s “ m in the second expression of decod-

ing complexity for PolyDot codes, we get OpN2m log2
pmq log log pmqq which differs from the

decoding complexity of MatDot and systematic MatDot codes by a factor of log2
pmq log log pmq

although it matches with the decoding complexity of Polynomial codes for t “ m, s “ 1. This is

because for MatDot codes, we only require one coefficient of the polynomial pCpxq and hence the

decoding complexity can be lowered by log2
pmq log log pmq by treating the matrix-inversion and

the final coefficient computation separately than solving them together as a single interpolation

problem as done in the second case because interpolation also produces all the other coefficients

that are not required in MatDot codes. Alternatively, for Polynomial codes, it makes sense to

solve a single interpolation problem as all the coefficients of pCpxq are useful. For a general

PolyDot coding scheme, one can choose to invert first and then compute only the required coeffi-

cients (first decoding algorithm) or to decode as a single interpolation problem (second decoding

algorithm) depending on whether OpN2st2q or OpN2s log2
pm2{sq log log pm2{sqq is lower.

Each worker’s computational complexity: Multiplication of matrices of size N{t ˆ N{s

and N{s ˆ N{t requires OpN3

st2
q “ OpN3s

m2 q computations. For the decoding complexity to be

negligible in comparison to the per-node computational complexity, we need either m2t2 “

m4{s2 “ opNq orm2 log2
pm2{sq log log pm2{sq “ opNq. Similarly, for the encoding complexity
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to be negligible in comparison to the per-node computational complexity, we need m2P {s “

opNq.

Communication complexity: Master node communicates OpN2{tsq “ OpN2{mq symbols

to each worker, hence total outgoing symbols from the master node will be OpPN2{Mq. For

decoding, each node sends OpN2{t2q symbols to the fusion node and the recovery threshold is

Opt2p2s´ 1qq. Total number of symbols communicated to the fusion node is Opp2s´ 1qN2q.

2.2 Beyond Coded Matrix Multiplication: Coded Dwarfs

Hundreds of papers on ML are being published on arxiv every week, and new computation al-

gorithms are being released at a dazzling speed. It is impossible to develop a coding technique

for each and every algorithm that comes out. A sensible goal is to identify a set if computa-

tions that are small enough to be universal but also big enough to justify the overhead of coding.

Matrix multiplication is certainly one indispensable computation building block in modern-day

computing, including machine learning, data analytics, and scientific computing. What are other

computation primitives that make up today’s computing applications? In mid 2000s, the high-

performance computing community arrived at a set of such canonical computations, so-called

“seven dwarfs of computation” [19], and the set was later expanded to “thirteen dwarfs” [3].

Each dwarf is a class of computations that share similar computation and communication pat-

terns. Below is the list of seven computation dwarfs:

• Dense Linear Algebra

• Sparse Linear Algebra

• Spectral Methods

• N-Body Methods

• Structured Grids

• Unstructured Grids
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• Monte Carlo (MapReduce)

The seven dwarfs have served as a guideline for building and testing a parallel system [15,

88]. We believe that looking at computation dwarfs is a good way to look at the landscape of

coded computing as well. In fact, most existing works in coded computing literature belong to

one of the dwarf categories, which we will call “coded dwarfs”. In this chapter, we want to

provide a brief review of coded dwarfs and our perspective on the future directions of coded

computing.

Dense Linear Algebra

Dense linear algebra comprises a large set of operations on dense vectors or matrices which

is large classified into three categories: vector-vector operations, matrix-vector operations, and

matrix-matrix operations. As these operations are essential in scientific computing and machine

learning [20], some of the first analog “nanofunctions” have been built to support them [80, 118].

At system-level, there exist multiple libraries implementing these operations (e.g., BLAS and

LAPACK). It is also one of the dwarfs that are substantially studied.

For matrix-vector multiplication, a recent work [67] proposed the use of Minimum Distance

Separable (MDS) codes for coded matrix-vector products, which can be viewed as a rediscovery

of the ABFT approach adopted in the original work of Huang and Abraham [52]. Specifically

for short and fat linear transforms, which is commonly used in processing high-dimensional

data such as principal component analysis (PCA), short-dot codes [27] were proposed. Short-

Dot codes trade off between the length of the dot products s and the recovery threshold K “

P ´ Ps
N
` M . The MDS coding strategy and the uncoded strategy are two special cases of

Short-Dot codes.

For matrix-matrix multiplication, there have been an ample amount of research including:

ABFT/Product codes [52, 67], high-dimensional product codes [66], Polynomial codes [130],

MatDot codes [29], PolyDot and Generalized PolyDot codes [28, 132]. The performance com-
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Figure 2.6: Scaling of recovery threshold with storage parameter m, i.e., when each node can

store a fraction 1{m of each of the matrices being multiplied. Total number of nodes is P “ 1000.

MatDot codes achieve the lowest recovery threshold for the storage constrained matrix multipli-

cation problem. Generalized PolyDot codes interpolate between MatDot codes and Polynomial

codes. (Figure from [28])

parison of these is depicted in Figure 2.6. we refer the reader to the previous chapter.

Another interesting line of work is coded binary linear transform with entirely unreliable

components [124]. This is a departure from a common assumption in coded computing that the

computing engines are unreliable, but that the encoding/decoding mechanisms can be performed

reliably. In [124], “ENcoded COmputation with Decoders EmbeddeD,” (or “ENCODED”) was

proposed where embedded decoding units to combat information dissipation [31] that makes

errors to accumulate over the computation paths.

Sparse Linear Algebra

Sparse linear algebra concerns the problems and methods of manipulating sparse matrices, such

as multiplying a sparse matrix to a vector, or performing graph analytics (graphs have sparse

matrix representations). Sparse linear algebra has become increasingly important as numerous

datasets for machine learning applications are very sparse (e.g., user ratings on products). How-
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Figure 2.7: Key ideas of substitute decoding. (a) Finding the maximal information of the vector

y by projecting it onto the row space of Gs. (b) Approximating the unknown part of y using the

result from the last iteration, xplq.

ever, coding sparse matrices poses a fundamental challenge. Traditional codes require dense

linear combinations of input data, and this will significantly increase the number of non-zero

elements, taking away the storage/computation advantage of sparse data.

For sparse matrix multiplication, using sparse codes was proposed [119], but having spar-

sity in the generator matrix limits the fault tolerance (the number of tolerable faults is linearly

proportional to the number of non-zeros in a codeword).

For solving sparse linear systems, novel ideas that exploit the iterative nature of power itera-

tions methods [97] were suggested [126, 127]. Consider solving the PageRank equation [83]:

x “ p1´ dqAx` dr, (2.17)

where the matrix A is extremely sparse. This can be solved through the power iterations:

xpl`1q “ p1´ dqAxplq ` dr (2.18)

until xplq converges to the fixed point of (2.17). The novel idea of “substitute decoding” was

proposed that utilizes the result from the previous iteration, xplq, as a side information to recover

xplq xpl`1q assuming that the difference between two iterations is small. This idea is summarized

in Figure 2.7.
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Spectral Methods

Spectral methods refer to Fourier representations and related operations (such as the Fast Fourier

Transform; FFT), which convert data into frequency domain. Typically, spectral methods use

multiple stages of a butterfly network, which combine multiply-add operations, and employ a

specific pattern of data permutation, with all-to-all communication for some stages and strictly

local for others [3]. FFT operations are widely used in signal processing, and are a valuable tool

to speed up scientific computing such as solving differential equations with FFT acceleration

[50, 96].

Several ABFT techniques for FFT [59, 82, 109, 120] were proposed for FFT circuit im-

plementations, and more recent works studied coded FFT algorithms for for distributed FFT

computation [56, 131]. This will be discussed in detail in Chapter 3.2.2.

MapReduce

MapReduce is a widely used framework in large-scale data processing. It has two phases, “map”

and “reduce”. In the map phase, the input data is split into independent chunks and sent to

distributed nodes. At distributed nodes, key/value pairs are processed locally to generate a set of

intermediate key/value pairs. The second phase reduces the returned values from all the nodes

into a summarized result by merging intermediate values associated with the same intermediate

key. The “Monte Carlo” dwarf in the original seven dwarfs was later generalized to MapReduce

as the pattern of communication and computing essentially follows that of Monte Carlo [3].

Coded MapReduce was suggested by Lit et al. [69] not for fault tolerance, but for reducing

communication cost during the “data shuffling”. Between the map and reduce phase, “data

shuffling” is required to rearrange data so that the data with the same intermediate key value

can be located in the same worker server. Often, this data shuffling bottlenecks the performance

of MapReduce computations. Their follow-up work showed that coded MapReduce for linear

operations can be used as a fault-tolerance as well [70].
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The crux of the coded MapReduce strategy [69, 70] is to leverages the tradeoff between

computation and communication: add redundant computations at each worker node to reduce

the amount of data that has to be communicated during the shuffle stage. We illustrate this

through a simple example in Figure 2.8. Some notations required are:

• N : number of input files

• K: number of compute nodes

• Q: number of output functions

• r: computation load (1 ď r ď K) – the average number of nodes that map each input file

Latency gains achieved by the coded MapReduce strategy were quantified experimentally

in [71].

Future Directions

Integrating these techniques closely with design of emerging devices and systems is perhaps the

most important future direction. For instance, in an unpublished work with Ning Wang and Eric

Pop (the authors of [118]), we developed the concept of “nanoflags.” These analog engines,

attached to a nanofunction, indicate the confidence a nanofunction has in its own output, based

on its modeling of input dependent errors (as discussed in [118], this modeling is possible for

graphene-based dot-product nanofunctions). Such novel systems that complement nanofunc-

tions can help simplify the system-level problem because it can help identify which nodes have

erroneous outputs, and discard those outputs from decoding.

In storage systems, we have seen many successful cases where research collaborations be-

tween system/device designers and information/coding theorists generated not only practical

values but also theoretical advances. E.g., new classes of codes were developed for flash mem-

ory [25, 43] and resistive memory [64] which are designed to combat device-specific fault pat-

terns and vulnerabilities. Codes designed to overcome the constraints of today’s distributed

storage systems [24, 89, 90] are now widely adopted in practice. We believe that the same can
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be achieved for computing systems and devices. By thinking beyond traditional fault tolerance

techniques and designing codes based on the understanding of the limitations and device-specific

characteristics, newly emerging computing systems can be made robust and resilient with mini-

mal overhead.
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(a) r “ 1 (b) r “ 2

Figure 2.8: [71, Fig.1] An example coded MapReduce forQ “ 3, N “ 6, K “ 3. Three different

shapes (blue triangle, green square, red circle) represent 3 different output functions, and we use

numbers to denote 6 different input files. The goal is to compute these 3 output functions on all 6

input files. During the data shuffle stage, we want to send all the values associated with the same

output function to the same node – all the red circle outputs to Node 1, green square to Node 2,

and blue triangle to Node 3. (a) Uncoded: Data is located in only one server, and hence r “ 1.

For the data rearrangement before the reduce phase, each node has to send two of its outputs to

the other nodes. Thus, 4 intermediate values should be communicated from each node, and the

total of 12 values need to be communication. (b) Coded: Each input file is present in two nodes,

i.e., r “ 2. Now, if we do not leverage coding, each node needs two more intermediate values

to proceed to the reduce phase. This requires 2 ˆ 3 “ 6 values to be communicated in total.

However, by sending the XOR of the intermediate values, the communication can be reduced to

multicasting three values.
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Chapter 3

Masterless Coded Computing

A majority of suggested coded computing strategies assume a master-worker setup where a sys-

tem has a powerful master node that distributes data to and aggregates the result from worker

nodes. However, this is not a practical system model especially when the scale of computation

grows. When we scale the computation to thousands of worker nodes, it means that a master

node must communicate with the thousands of nodes simultaneously. A similar problem called

“TCP incast problem” is well-known in distributed storage literature [23, 93, 114]. TCP incast is

a catastrophic TCP throughput collapse that happens when synchronized request workloads flood

in past the ability of an Ethernet switch to buffer packets [87]. Similarly, large data movements

to a single master node will create an unbalanced communication pattern that could result in

switch buffer overflows and packet drops. Even without any issue in the network, the processing

of thousands of packets at the master node will cause significant latency. We will present some

experimental evidence of this in Chapter 4. Furthermore, the master-worker setup assumes that

a master node has a very large memory that can store the entire data. Let us denote the number

of workers as P . Then, the master node must have P times more memory than the workers,

which is not realistic as P becomes large. Lastly, a master node itself can fail, at which point,

computation results cannot be guaranteed. For the aforementioned reasons, large-scale paral-

lel algorithms for HPC applications are generally designed for fully-distributed nodes without a
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master. Introducing a master node just for the sake of coding would not be a compelling solution

to practitioners.

In this thesis, we propose “masterless coded computing”. The goal of masterless coded com-

puting is to design encoding and decoding strategies that can be performed without the presence

of a master node so that they can be seamlessly integrated into existing fully-parallel algorithms.

An important challenge that has to be addressed in masterless coded computing is the com-

munication overhead of coding. With the absence of a master node, all the nodes have to commu-

nicate with each other to perform distributed encoding and decoding. In distributed computing,

communication is often the bottleneck, not computation, because communication bandwidth is

not growing as fast as flop rates of processors [99]. If we blindly apply existing coded comput-

ing techniques to the fully distributed setting, the communication overhead of encoding/decod-

ing could dominate and coded computing approach could end up much slower than the uncoded

counterpart.

In Chapter 3.1, we will discuss how we can reduce the communication overhead of distributed

decoding, especially in coded matrix multiplication. To the best of our knowledge, reducing

communication overhead for distributed encoding is largely an open problem. However, we

believe that existing works in sparse codes can be utilized [37, 48, 76, 123]. In Chapter 3.2, we

will go over masterless coded computing algorithms that are designed for popularly-used parallel

algorithms in practice: SUMMA for matrix multiplication and the transpose algorithm for FFT.

In each of them, we will thoroughly analyze the communication overhead of coding and show

conditions under which the overhead can be amortized.
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3.1 Reducing Communication Overhead in Distributed De-

coding

In this section, we introduce two ideas for reducing communication overhead of distributed de-

coding: locally-recoverable coded matrix multiplication and systematic coded matrix multipli-

cation. We will explain at the beginning of each subsection how these ideas can be beneficial

for reducing communication costs in masterless coded computing. Finally, we will show a code

construction that is locally recoverable and systematic.

3.1.1 Locally Recoverable Coded Matrix Multiplication

3.1.1.1 Motivation

Locally recoverable (LRC) codes have been extensively studied for distributed storage as they

can reduce the number of node access to repair a failed storage node [12, 41, 42, 51, 81, 84, 102,

106, 107]. In classical MDS codes, which are optimal in terms of the total amount of redundancy,

we always need k symbols to recover the original message when we use an pn, kq MDS code.

On the other hand, LRC codes let us to recover a lost symbol using just r other symbols where

r ă k for the case of single erasure. Using LRC codes, when one storage node fails, we can

recover it using just a few local nodes.

Having repair locality can also be useful in distributed computing for several scenarios:

• When we want to perform consecutive matrix multiplications, e.g., computing the product

D “ ABC, we can repair a failed node locally after computing the first product D1 “ AB.

Then, we carry on the next computation D “ D1C without all the nodes sending their

intermediate results to the master node.

• In the fully distributed setting, which does not have a powerful master node, we can use a

systematic code with locality. Assuming that the fault rate is low and single node failure

is the most common scenario, we can recover a failed systematic node by contacting only
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a few other nodes.

To the best of our knowledge, this is the first work that proposes locally recoverable matrix

multiplication codes. We leverage novel matrix multiplication codes [29, 130] and optimal LRC

codes [106] to obtain locally-recoverable Polynomial codes (which require minimal communi-

cation from workers to master node) and locally-recoverable MatDot codes (which are storage

optimal).

3.1.1.2 Preliminaries on LRC Codes

We say that a code C has locality r if every symbol of the codeword can be recovered from

a subset of r other symbols. In [41], a Singleton-type bound was derived on the maximum

distance of LRC codes with locality r.

Theorem 3.1.1. Let C be an pn, k, rq LRC code. Then the minimum distance of C satisfies:

d ď n´ k ´ r
k

r
s` 2. (3.1)

Comparing this with the pn, kq MDS code without locality which has d “ n ´ k ` 1, we

can see that the overhead of having locality is at least rk
r
s ´ 1. In this work, we use a family of

optimal LRC codes presented in [106] that achieves the equality in (3.1).

Construction 3.1.1 (Optimal (n,k,r) LRC code [106]). Let a P Fkq be a message vector and let us

re-index a as a “ paij, i “ 1, ¨ ¨ ¨ , r; j “ 1, ¨ ¨ ¨ k
r
q. For simplicity, we will assume that r divides

k here. Then, the encoding polynomial is defined as:

fapxq “
r
ÿ

i“1

k
r
ÿ

j“1

aijx
i´1gpxqj´1. (3.2)

Let A “ tα1, ¨ ¨ ¨ , αnu be a subset of Fq (q ě n). The codeword is the evaluation of the poly-

nomial fa at α1, ¨ ¨ ¨ , αn: c “ pfapαq, α P Aq. A core of this construction is choosing a good

polynomial gpxq which satisfies the following:

i) degpgq “ r ` 1.
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ii) There exists a partition of A, A “ A1

Ť

¨ ¨ ¨
Ť

A n
r`1

, where |Ai| “ r ` 1 such that g is

constant on each set Ai. In other words, for all α, α1 P Ai, gpαq “ gpα1q.

First, note that by choosing g with degree r`1, the degree of fa becomes pr`1q¨pk{r´1q`r´1 “

k ` r{k ´ 2. Hence, the distance d “ n´ k ´ k
r
` 2. This satisfies the equality in (3.1).

Now, let us see how choosing such a g guarantees locality r. Let us denoteA1 “ tα1, ¨ ¨ ¨ , αr`1u.

Without loss of generality, let us assume that fapα1q is lost. We want to recover fapα1q using r

other symbols. Note that, by the second condition, gpα1q “ gpα2q “ ¨ ¨ ¨ “ gpαr`1q “ γ. Then,

fapxq at α1, ¨ ¨ ¨ , αr`1 can be represented as:

fapαlq “
r
ÿ

i“1

k
r
ÿ

j“1

aijα
i´1
l γj´1

“

r
ÿ

i“1

`

k
r
ÿ

j“1

aijγ
j´1

˘

αi´1l

“

r
ÿ

i“1

ψiα
i´1
l pl “ 1, ¨ ¨ ¨ , r ` 1q

Since this is degree-pr ´ 1q polynomial in αl, the coefficients, ψi’s can be recovered from evalu-

ation at r points: fapα2q, ¨ ¨ ¨ , fapαr`1q. Then, we can recover fapα1q by computing:

fapα1q “

r
ÿ

i“1

ψiα
i´1
1 .

�

3.1.1.3 Problem Statement

We want to give a coding strategy for computing C “ AB with locality r. More specifically, we

want to construct locally recoverable Polynomial codes with locality r and locally recoverable

MatDot codes with locality r.

3.1.1.4 Locally Recoverable Polynomial Codes

We first give an example of locally recoverable Polynomial codes for m “ 4 and r “ 4 with

P “ 25 worker nodes.
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Figure 3.1: In Example 3.1.1, we have to find a degree-5 polynomial and γ1, ¨ ¨ ¨ , γ5 which satisfies

gpAiq “ γi. The plot shows one possible choice of gpxq and γ1, ¨ ¨ ¨ , γ5. After choosing gpxq and γi’s

(i “ 1, ¨ ¨ ¨ , 5), αj’s are automatically decided (j “ 1, ¨ ¨ ¨ , 25). For instance, A1 “ tα1, ¨ ¨ ¨ , α5u are

shown on the plot.

Example 3.1.1 (m “ 4, r “ 4, P “ 25). We first split the matrices A and B into 4 blocks as

follows:

A “

»

—

—

—

—

—

—

—

–

A1

A2

A3

A4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “ rB1 B2 B3 B4s , (3.3)

where Ai’s and Bi’s are N{4 ˆ N and N ˆ N{4 dimensional submatrices, respectively. Let

A “ tα1, ¨ ¨ ¨ , α25u be a set of 25 distinct real numbers and let A1 “ tα1, ¨ ¨ ¨ , α5u, ¨ ¨ ¨ ,A5 “

tα21, ¨ ¨ ¨ , α25u be subsets of A that form a partition of A.

Then, we encode the matrices A and B with the following polynomials:

pApxq “ A1 `A2x`A3x
2
`A4x

3

pBpxq “ B1 `B2gpxq `B3gpxq
2
`B4gpxq

3

where gpxq is a polynomial of degree 5 that satisfies gpAiq “ γi. An example choice of gpxq and

γi’s is shown in Fig 3.1.
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The i-th worker gets the encoded matrices, which are the evaluations of the polynomials

pApxq and pBpxq at x “ αi. The i-th worker then computes the following product:

pCpxq “
4
ÿ

i“1

4
ÿ

j“1

AiBjx
i´1gpxqj´1 (3.4)

at x “ αi and returns the result to the master node.

The degree of polynomial pCpxq is 3 ¨ 5 ` 3 “ 18, so the master node can recover the

coefficients of pCpxq from its evaluation at any 19 distinct points. Hence, the recovery threshold

K “ 19.

To see that locality r “ 4, let us assume that node 3 is erased, and notice that gp¨q satisfies

gpα1q “ gpα2q “ gpα3q “ gpα4q “ gpα5q “ γ1. Now, pCpxq at α1, ¨ ¨ ¨ , α5 can be rewritten as:

pCpxq “
4
ÿ

i“1

˜

4
ÿ

j“1

Bjγ
j´1
1

¸

Aix
i´1. (3.5)

Notice that this is a polynomial of degree 3 which can be recovered from evaluation at any four

distinct points, and in this case, α1, α2, α4, α5. �

We now provide a general construction of LRC Polynomial codes. Note that our construction

is limited to the case when r “ m.

Construction 3.1.2 (LRC Polynomial code with r “ m). Splitting of the matrices A and B

follows Construction 3.1.6:

A “

»

—

—

—

—

—

—

—

–

A1

A2

...

Am

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “ rB1 B2 . . . Bms . (3.6)

Let A “ tα1, ¨ ¨ ¨αP u be a set of P distinct real numbers and let tA1, ¨ ¨ ¨ ,A P
r`1
u be subsets

ofA with size pr` 1q which form a partition ofA. For simplicity, we assume that pr` 1q divides

P .

We encode matrix A and B using the following polynomials:

pApxq “
m
ÿ

i“1

Aix
i´1, pBpxq “

m
ÿ

i“1

Bigpxq
i´1, (3.7)
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where gpxq is a polynomial of degree pr ` 1q which is constant on each set Ai. The i-th worker

gets the evaluation of pApxq and pBpxq at x “ αi. Then a worker node computes the following

product:

pCpxq “
m
ÿ

i“1

m
ÿ

j“1

AiBjx
i´1gpxqj´1, (3.8)

and return the result to a master node. �

Before proving the recovery threshold and locality property of LRC Polynomial code, we

want to make an important remark on choosing gpxq and A.

Remark 3.1.1. [Finding a good polynomial gpxq and a setA] In [106], a major challenge was to

find a suitable polynomial g over Fq while keeping q small. However, in this work we consider

real numbers. In R, as long as gpxq “ 0 has r` 1 distinct real roots (sufficient but not necessary

condition), we can always find γ1, ¨ ¨ ¨ , γ P
r`1

and A1, ¨ ¨ ¨ ,A P
r`1

that satisfies gpAiq “ γi (i “

1, ¨ ¨ ¨ P
r`1

).

However, choosing evaluation points (αi’s) that satisfy the above condition can create nu-

merical stability issues. The numerical stability issue is a persistent problem in coded computing

when trying to extend the coding technique from finite field to R [46, 125]. This is because

decoding MDS codes close to capacity often leads to matrices that have poor condition num-

ber [38]. Adding locality could worsen the problem. As the degree of g becomes large (i.e., large

r), the slope of the polynomial gp¨q becomes steep very quickly. This will force us to choose

αi’s that are very close to each other which can make the resulting Vandermonde matrix close to

singular. How much locality effect the stability issue and how to choose a good polynomial gp¨q

and γi’s to make the decoding as numerically stable as possible needs to be studied further. �

The following theorem shows the recovery threshold and locality property of the proposed

LRC Polynomial code construction.

Theorem 3.1.2. LRC Polynomial code given in Construction 3.1.2 achieves locality r “ m and

recovery threshold K “ m2 `m´ 1. Hence, this is an optimal LRC code for locality r “ m.

Proof. The degree of the polynomial pC is pm ´ 1q ` pm ` 1qpm ´ 1q “ m2 `m ´ 2. Hence,
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we can obtain the coefficients of pC from evaluation at any m2 `m´ 1 distinct points. Because

xi´1gpxqj´1 all have distinct degrees, we can decode AiBj sequentially from the coefficients.

First, recover AmBm from the coefficient of xm2`m´2, then recover AmBm´1 from the coeffi-

cient of xm2`m´2 and AmBm that was already decoded, and so on. Thus, the recovery threshold

K “ m2 `m´ 1.

Locality r “ m is guaranteed as (3.8) follows the form of (3.2) in Construction 3.1.1 by

setting r “ m and k{r “ m. The overhead of having locality r “ m is m ´ 1 which is

m2{m´ 1 “ k{r ´ 1. This shows the optimality of the LRC Polynomial code. �

3.1.1.5 Locally Recoverable MatDot Codes

Before giving a general construction of locally recoverable MatDot codes, we want to give a

simple example of LRC MatDot codes for m “ 6 and r “ 3.

Example 3.1.2 (LRC MatDot with m “ 6, r “ 3). First, we split the matrices A and B as

follows:

A “ rA1 A1 . . . A6s , B “

»

—

—

—

—

—

—

—

–

B1

B2

...

B6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

LetA “ tα1, ¨ ¨ ¨ , αP u be a set of P distinct real numbers and letA1 “ tα1, ¨ ¨ ¨ , α4u, ¨ ¨ ¨ ,AP
4
“

tαP´3, ¨ ¨ ¨ , αP u be subsets of A of size 4 that form a partition of A. Let gpxq be a polyno-

mial with degree 4 that is constant on each subset Ai. We encode matrix A and B as follows:

pApxq “ pA1 `A2xq ` pA3 `A4xqgpxq ` pA5 `A6xqgpxq
2,

pBpxq “ pB6 `B5xq ` pB4 `B3xqgpxq ` pB2 `B1xqgpxq
2.

The

i-th worker node receives the encoded matrices, pApαiq and pBpαiq, and then computes the fol-
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lowing product:

pCpxq “pA1 `A2xqpB6 `B5xq ` ¨ ¨ ¨

` pA1B1 ` ¨ ¨ ¨A6B6qxgpxq
2
` ¨ ¨ ¨

` pA5 `A6xqpB2 `B1xqgpxq
4 (3.9)

at x “ αi. Notice that the coefficient of xgpxq2 in (3.9) is C “ A1B1 ` ¨ ¨ ¨A6B6. The degree

of polynomial pC is 4 ¨ 4 ` 2 “ 18, so we can recover the coefficients of the polynomial with

evaluation at any 19 distinct points. After obtaining the coefficients of pC, the coefficients of

xigpxqj for i “ 0, 1, 2, j “ 0, ¨ ¨ ¨ , 4 can be obtained as they all have distinct degrees. Hence, the

recovery threshold K “ 19.

To see the locality property, let us assume that node 3 is erased, and let us denote gpA1q “ γ,

i.e., gpα1q “ gpα2q “ gpα3q “ gpα4q “ γ. Then pCpxq at α1, ¨ ¨ ¨ , α4 can be rewritten as:

pCpxq “pA1 `A2xqpB6 `B5xq ` ¨ ¨ ¨

` pA1B1 ` ¨ ¨ ¨A6B6qxγ
2
` ¨ ¨ ¨

` pA5 `A6xqpB2 `B1xqγ
4.

Now, notice that this is a polynomial of degree 2, which can be recovered from evaluation at any

three points, and in this case, α1, α2, α4. �

We now give a construction of LRC MatDot codes with general m and r. Unlike LRC

Polynomial codes, in the LRC MatDot code construction, r can take any value between 1 and

2m´ 1.

Construction 3.1.3 (LRC MatDot Codes). Splitting of the matrices A and B follows Construc-

tion 2.1.1:

A “ rA1 A2 . . . Ams , B “

»

—

—

—

—

—

—

—

–

B1

B2

...

Bm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.10)
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Let A “ tα1, ¨ ¨ ¨αP u be a set of P distinct real numbers and let A1, ¨ ¨ ¨ ,A P
r`1

be subsets of

A with size pr ` 1q which form a partition of A. For simplicity, we assume that r ` 1 divides

both P and m. Let gpxq be a polynomial of degree r ` 1 which is constant on each subset Ai.

The encoding polynomials of the matrices A and B are as follows:

pApxq “ pA1 ` ¨ ¨ ¨ `A r`1
2
x

r´1
2 q

` pA r`1
2
`1 ` ¨ ¨ ¨ `Apr`1qx

r´1
2 qgpxq ` ¨ ¨ ¨

` pAm´ r`1
2
`1 ` ¨ ¨ ¨ `Amx

pr´1q{2
qgpxq

2m
r`1

´1, (3.11)

pBpxq “ pBm ` ¨ ¨ ¨ `Bm´ r`1
2
`1x

r´1
2 q

` pBm´ r`1
2
` ¨ ¨ ¨ `Bm´rx

r´1
2 qgpxq ` ¨ ¨ ¨

` pB r`1
2
` ¨ ¨ ¨ `B1x

r´1
2 qgpxq

2m
r`1

´1. (3.12)

The i-th worker gets the evaluation of pApxq and pBpxq at x “ αi (i “ 1, ¨ ¨ ¨ , P ). Then a worker

node computes the following product:

pCpxq “ pApxqpBpxq

“

r`1
2
ÿ

j“1

Ajx
j´1

r`1
2
ÿ

j“1

Bm´j`1x
j´1
` ¨ ¨ ¨

` pA1B1 ` ¨ ¨ ¨ `AmBmqx
r´1
2 gpxq

2m
r`1

´1
` ¨ ¨ ¨

`

r`1
2
ÿ

j“1

Am´j`1x
j´1

r`1
2
ÿ

j“1

Bjx
j´1gpxq

4m
r`1

´2, (3.13)

and return the result to a master node. �

The following theorem shows the locality and recovery threshold of the proposed LRC Mat-

Dot code construction.

Theorem 3.1.3. The LRC MatDot code given in Construction 3.1.3 achieves locality r and re-

covery threshold K “ 4m´ r ´ 2.

Proof. The degree of the polynomial pC in (3.13) is pr´ 1q` p 4m
r`1
´ 2qpr` 1q “ 4m´ r´ 3, so

with evaluation at any 4m´ r ´ 2 distinct points, the coefficients of pC can be recovered. Also,
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notice that the coefficient of x
r´1
2 gpxq

2m
r`1

´1 is C “ A1B1 ` ¨ ¨ ¨ `AmBm. As xigpxqj all have

distinct degrees for i “ 0, ¨ ¨ ¨ r´1
2
, j “ 0, ¨ ¨ ¨ , 4m

r`1
´ 2, we can obtain the coefficient of xigpxqj

from the coefficients of pCpxq. Hence, the recovery threshold is K “ 4m´ r ´ 2.

Now, let us show that the locality of the construction is r. The polynomial pCpxq can be

rewritten as:

pCpxq “

r`1
2
ÿ

j“1

Ajx
j´1

r`1
2
ÿ

j“1

Bm´j`1x
j´1

`
`

r`1
2
ÿ

j“1

Ajx
j´1

r`1
2
ÿ

j“1

Bm´ r`1
2
´j`1x

j´1

`

r`1
2
ÿ

j“1

A r`1
2
`jx

j´1

r`1
2
ÿ

j“1

Bm´j`1x
j´1

˘

gpxq

` ¨ ¨ ¨ `
`

r`1
2
ÿ

j“1

Am´j`1x
j´1

r`1
2
ÿ

j“1

Bjx
j´1

˘

gpxq
4m
r`1

´2

“ f1pxq ` f2pxqgpxq ` ¨ ¨ ¨ ` f 4m
r`1

´1pxqgpxq
4m
r`1

´2.

Notice that f1, ¨ ¨ ¨ , f 4m
r`1

´1 are all polynomials of degree r ´ 1. Let pCpαq be the lost matrix and

let α P Al. For all β P Al,

pCpβq “ f1pβq ` f2pβqγl ` ¨ ¨ ¨ ` f 4m
r`1

´1pβqγ
4m
r`1

´2

l , (3.14)

because gpAlq “ γl. This is a degree-pr ´ 1q polynomial in β, so the coefficients of pC can be

recovered from its evaluation at the r points inAlztαu. Then the lost matrix can be recovered by

evaluating pCpβq given in (3.14) at β “ α. �

By comparing the recovery threshold given in Theorem 3.1.3 and the recovery threshold

of MatDot codes without locality (Construction 2.1.1), we can see that the overhead of having

locality r is 2m´r´1. However, the optimal overhead suggested by Theorem 3.1.1 is r2m´1
r

s´1.

Thus, there is a gap between the proposed LRC MatDot codes and the optimal LRC codes; while

the optimal overhead of having locality r decreases in the order of 1{r, the overhead of LRC
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Figure 3.2: This plot shows the gap between the optimal LRC codes and the proposed LRC MatDot

construction. In the optimal LRC codes, the overhead of having locality r in K is r2m´1r s ´ 1, while in

the LRC MatDot codes, the overhead is 2m´ 1´ r.

MatDot codes decreases linearly in r (see Fig 3.2). Whether this sub-optimality is inevitable due

to the structure of MatDot codes is an open question.

3.1.2 Systematic Coded Matrix Multiplication

3.1.2.1 Motivation

To understand the advantages of systematic codes in a masterless setup, let us consider computing

matrix product C “ AB and assume the splitting of matrices as follows:

A “

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

, B “

„

B1 ¨ ¨ ¨ Bm



. (3.15)
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Note that this splitting is same as Polynomial codes [130] and Product codes [67]. In an uncoded

strategy, m2 workers will compute the product:

C “ AB “

»

—

—

—

—

–

A1B1 ¨ ¨ ¨ A1Bm

... . . . ...

AmB1 ¨ ¨ ¨ AmBm

fi

ffi

ffi

ffi

ffi

fl

, (3.16)

where each worker computes one sub-block of C, i.e., AiBj. Introducing redundancy for re-

silience, we add p additional nodes. When failures happen during the computation, any m2

successful nodes out of m2 ` p nodes can reconstruct the computation output C. In many set-

tings, failures are rare. Under our masterless setting, if we use a non-systematic code, m2 nodes

have to communicate with each other to recover the product C even when there is no failure,

which can be extremely expensive. On the other hand, if we use a systematic code, we do not

need any communication to recover C when allm2 systematic node – nodes that compute AiBj’s

(i, j “ 1, ¨ ¨ ¨ ,m) – are successful. Further, even when there is a failure among the systematic

workers, recovering a failed node only requires communication fromm2 nodes to the failed node.

This has a smaller communication complexity than allm2 nodes communicating with each other.

Lastly, encoding systematic codes is more communication efficient since we only have to encode

p additional nodes as compared to encoding all m2 ` p nodes in non-systematic codes.

We will first give the systematic construction on MatDot codes we discussed in Section 2.1.2.

Then, we discuss why it is not straightforward to construct systematic Polynomial codes. Finally,

we will present a general framework for designing systematic codes for the matrix splitting given

in (3.15) (as in Polynomial codes).

3.1.2.2 Systematic MatDot Codes

We will first define systematic codes in the MatDot context.

Definition 3.1.1. [Systematic code for distributed matrix multiplication problem (Section 2.1.2.2)]

For the problem stated in Section 2.1.2.2 computed on the system defined in Definition 2.1.1 such
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Figure 3.3: An illustration of the computational system with four worker nodes and applying

systematic MatDot codes with m “ 2. The recovery threshold is 3.

that the matrices A and B are split as in (2.3), a code is called systematic if the output of the r-th

worker node is the product ArBr, for all r P t1, ¨ ¨ ¨ ,mu. We refer to the first m worker nodes,

that output ArBr for r P t1, ¨ ¨ ¨ ,mu, as systematic worker nodes.

Note that the final output AB can be obtained by summing up the outputs from the m sys-

tematic worker nodes:

AB “

m
ÿ

r“1

Ar´1Br´1.

The presented systematic code, named “systematic MatDot code”, is advantageous over Mat-

Dot codes in two aspects. Firstly, even though both MatDot and systematic MatDot codes have

the same recovery threshold, systematic MatDot codes can recover the output as soon as the m

systematic worker nodes successfully finish, this is unlike MatDot codes which always require

2m ´ 1 workers to successfully finish to recover the final result. Furthermore, when the m sys-

tematic worker nodes successfully finish first, the decoding complexity using systematic MatDot

codes is OpmN2q, which is slightly less than the decoding complexity of MatDot codes, i.e.,

OpkN2 ` k3q where k “ 2m´ 1. Another advantage for systematic MatDot codes over MatDot

codes is that the systematic MatDot approach may be useful for backward-compatibility with

current practice. What this means is that, for systems that are already established and operating

with no straggler tolerance, but do an m-way parallelization, it is easier to apply the systematic
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approach as the infrastructure could be appended to additional worker nodes without modifying

what the first m nodes are doing.

The following theorem shows that there exists a systematic MatDot code construction that

achieves the same recovery threshold as MatDot codes.

Theorem 3.1.4. For the matrix-matrix multiplication problem specified in Section 2.1.2.2 com-

puted on the system defined in Definition 2.1.1, there exists a systematic code, where the product

AB is the summation of the output of the first m worker nodes, that solves this problem with a

recovery threshold of 2m´ 1, where m ě 2 is any positive integer that divides N .

Before we describe the construction of systematic MatDot codes, that will be used to prove

Theorem 3.1.4, we first present a simple example to illustrate the idea of systematic MatDot

codes.

Example 3.1.3. [Systematic MatDot code, m “ 2, k “ 3]

Matrix A is split vertically into two sub-matrices (column-blocks) A0 and A1, each of di-

mension N ˆ N
2

and matrix B is split horizontally into two sub-matrices (row-blocks) B0 and

B1, each of dimension N
2
ˆN as follows:

A “ rA0 A1 s , B “

»

—

–

B0

B1

fi

ffi

fl

. (3.17)

Now, we define the encoding functions pApxq and pBpxq as pApxq “ A0
x´x2
x1´x2

` A1
x´x1
x2´x1

and pBpxq “ B0
x´x2
x1´x2

` B1
x´x1
x2´x1

, for distinct x1, x2 P F. Let x3, ¨ ¨ ¨ , xP be elements of F

such that x1, x2, x3, ¨ ¨ ¨ , xP are distinct. The master node sends pApxrq and pBpxrq to the r-th

worker node, for all r P t1, ¨ ¨ ¨ , P u, where the r-th worker node performs the multiplication

pApxrqpBpxrq and sends the output to the fusion node. The exact computations at each worker

node are depicted in Fig. 3.3.

We can observe that the outputs of the worker nodes 1, 2 are A0B0,A1B1, respectively, and

hence this code is systematic. Let us consider a scenario where the systematic worker nodes, i.e.,

worker nodes 1 and 2, complete their computations first. In this scenario, the fusion node does
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not require a decoding step and can obtain the product AB by simply performing the summation

of the two outputs it has received: A0B0`A1B1. Now, let us consider a different scenario where

worker nodes 1, 3, 4 are the first three successful workers. Then, the fusion node receives three

matrices, pApx1qpBpx1q, pApx3qpBpx3q, and pApx4qpBpx4q. Since these three matrices can be

seen as three evaluations of the polynomial pApxqpBpxq of degree 2 at three distinct evaluation

points x1, x3, x4, the coefficients of the polynomial pApxqpBpxq can be obtained using polynomial

interpolation. Finally, to obtain the product AB, we evaluate pApxqpBpxq at x “ x1, x2 and sum

them up:

pApx1qpBpx1q ` pApx2qpBpx2q “ A0B0 `A1B1 “ AB.

�

We now describe the general construction of the systematic MatDot codes for matrix-matrix

multiplication. As all the code constructions in this paper follow the polynomial format given

in Construction 2.1.1, in our subsequent constructions, we will only highlight major differences,

such as, encoding polynomials.

Construction 3.1.4. [Systematic MatDot codes]

Splitting of input matrices: A and B are split as in (2.3).

Master node (encoding): The master node encodes matrices A and B using the following

polynomials:

pApxq “
m
ÿ

i“1

Ai´1Lipxq, pBpxq “
m
ÿ

i“1

Bi´1Lipxq, (3.18)

where

Lipxq “
ź

jPt1,¨¨¨ ,muztiu

x´ xj
xi ´ xj

. (3.19)

Fusion node (decoding): For any k such that m ď k ď 2m ´ 1, whenever the outputs

of the first k successful workers contain the outputs of the systematic worker nodes 1, ¨ ¨ ¨ ,m,

i.e., tpCpxrqurPt1,¨¨¨ ,mu is contained in the set of the first k outputs received by the fusion node,

the fusion node performs the summation
řm
r“1 pCpxrq. Otherwise, if tpCpxrqurPt1,¨¨¨ ,mu is not
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contained in the set of the first 2m ´ 1 evaluations received by the fusion node, the fusion node

performs the following steps: (i) interpolates the polynomial pCpxq “ pApxqpBpxq (the fea-

sibility of this step will be shown later in the proof of Theorem 3.1.4), (ii) evaluates pCpxq at

x1, ¨ ¨ ¨ , xm, (iii) performs the summation
řm
r“1 pCpxrq.

If the number of successful worker nodes is smaller than 2m´1 and the firstm worker nodes

are not included in the successful worker nodes, the fusion node declares a failure.

The following lemma proves that the construction given here is systematic.

Lemma 3.1.1. For Construction 3.1.4, the output of the r-th worker node, for r P t1, ¨ ¨ ¨ ,mu,

is the product Ar´1Br´1. That is, Construction 3.1.4 is a systematic code for distributed matrix-

matrix multiplication as defined in Definition 3.1.1

Proof of Lemma 3.1.1. The lemma follows from the fact that pApxrq “ Ar´1, and pBpxrq “

Br´1, for r P t1, ¨ ¨ ¨ ,mu. Thus, pCpxrq “ pApxrqpBpxrq “ Ar´1Br´1, for any r P t1, ¨ ¨ ¨ ,mu.

�

Now, we proceed with the proof of Theorem 3.1.4.

Proof of Theorem 3.1.4. Since Construction 3.1.4 is a systematic code for matrix-matrix mul-

tiplication (Lemma 3.1.1), in order to prove the theorem, it suffices to show that Construction

3.1.4 is a valid construction with a recovery threshold k “ 2m ´ 1. From (3.19), observe

that the polynomials Lipxq, i P t1, ¨ ¨ ¨ ,mu, have degrees m ´ 1 each. Therefore, each of

pApxq “
řm
i“1Ai´1Lipxq and pBpxq “

řm
i“1Bi´1Lipxq has a degree of m ´ 1 as well. Con-

sequently, pCpxq “ pApxqpBpxq has a degree of 2m ´ 2. Now, because the polynomial pCpxq

has degree 2m ´ 2, evaluation of the polynomial at any 2m ´ 1 distinct points is sufficient to

interpolate Cpxq using polynomial interpolation algorithm. Now, since Construction 3.1.4 is sys-

tematic (Lemma 3.1.1), the product AB is the summation of the outputs of the first m workers,

i.e., AB “
řm
r“1 pCpxrq. Therefore, after the fusion node interpolates Cpxq, evaluating pCpxq

at x1, ¨ ¨ ¨ , xm, and performing the summation
řm
r“1 pCpxrq yields the product AB. �
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3.1.2.2.1 Complexity Analysis of Systematic MatDot codes Apart from the encoding/de-

coding complexity, the complexity analyses of systematic MatDot codes are the same as their

MatDot counterpart. In the following, we investigate the encoding/decoding complexity of Con-

struction 3.1.4.

Encoding/Decoding Complexity: Encoding for each worker first requires performing eval-

uations of polynomials Lipxq for all i P t1, ¨ ¨ ¨ ,mu, with each evaluation requiring Opmq oper-

ations. This givesOpm2q operations for all polynomial evaluations. Afterwards, two linear com-

binations of m sub-matrices of size N2{m each is taken, which is of complexity OpmN2{mq “

OpN2q. Therefore, the overall encoding complexity for each non-systematic worker is

OpmaxpN2,m2qq “ OpN2q because m ! N . For the systematic workers, no further encod-

ing is required on the sub-matrices of A and B. Thus, the overall computational complexity of

encoding for P workers is OpN2pP ´mqq.

For decoding, two cases would arise depending on whether all the m systematic nodes fin-

ished first or not. When all them systematic nodes finish first, the decoding is equivalent to taking

the sum of the m systematic evaluations and is thus of complexityOpN2mq. Alternatively, when

the m systematic nodes do not finish first, the decoder waits for the first kp“ 2m ´ 1q nodes

to send their evaluations of pCpxq. Then it is required to interpolate the coefficients of pCpxq,

evaluate it at the systematic points x1, x2, . . . , xm, and then take the sum of the systematic eval-

uations. Because we are interested in only the final sum of the systematic evaluations and not in

the individual systematic evaluations or coefficient interpolations, we again consider the prob-

lem of deriving the appropriate linear combination and taking the final linear combination on the

matrices separately.

Recall that pCpxq “ C0 ` C1x ` . . . ` Ck´1x
k´1 where k “ 2m ´ 1 but now we are

interested in computing the sum of the systematic evaluations of pCpxq at x1, x2, . . . , xm. Also

let x̃1, x̃2, . . . , x̃k denote the kp“ 2m´ 1q unique values at which the k fastest workers evaluated

the polynomial pCpxq and V denote the k ˆ k Vandermonde matrix as defined in (2.6). Recall

63



that,
»

—

—

—

—

—

—

—

–

C0

C1

...

Ck´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
`

V´1
b INˆN

˘

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let V̂ denote the mˆ k Vandermonde matrix for evaluation, consisting of increasing powers of

the m systematic values x1, x2, . . . , xm, as follows:

V̂ “

»

—

—

—

—

–

1 x1 x21 . . . xk´11

...
... . . . ...

1 xm x2m . . . xk´1m

fi

ffi

ffi

ffi

ffi

fl

.

Now, the evaluation of pCpxq at the systematic values x1, x2, . . . , xm is equivalent to the follow-

ing operation:

´

V̂ b INˆN

¯

»

—

—

—

—

—

—

—

–

C0

C1

...

Ck´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

´

pV̂V´1
q b INˆN

¯

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, the summation of these m systematic evaluations can be written as:

pr1, 1, . . . , 1s1ˆm b INˆNq
´

V̂ b INˆN

¯

»

—

—

—

—

—

—

—

–

C0

C1

...

Ck´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

´

pr1, 1, . . . , 1s1ˆmV̂V´1
q b INˆN

¯

»

—

—

—

—

—

—

—

–

pCpx̃1q

pCpx̃2q

...

pCpx̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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The decoder first computes the final row-vector pr1, 1, . . . , 1s1ˆmV̂V´1q (complexity is at

most Opk3q as it is dominated by the inversion of the matrix V). Next, it linearly combines the

k evaluations pCpx̃1q, pCpx̃2q, . . . , pCpx̃kq (of size N2 each) using the k values in the final row

vector (complexity isOpN2kq). Thus, the total decoding complexity isOpN2k`k3q “ OpN2kq

when kp“ 2m´ 1q ! N . This is similar to MatDot codes.

Note that, these encoding and decoding complexities may be improved further in functions

of m and P in different scenarios, e.g., using alternate methods of faster evaluation, or using the

outputs of the systematic nodes more efficiently during decoding if at least some of them are in

the set of k fastest workers (if not all) that will be pursued as a future work. Here, we restrict

ourselves to somewhat conservative estimates for our proposed strategy as our main goal is to

explore dependence on N in the regime where m,P ! N .

3.1.2.3 Systematic Polynomial Codes

Using the similar technique as we used in systematic MatDot codes does not easily yield a sys-

tematic construction for Polynomial codes [130]. We follow the univariate polynomial construc-

tion in [130] and assume that the matrices A and B are encoded using the polynomials pApxq

and pBpxq:

pApxq “
DA
ÿ

d“1

fdpA1, . . . ,Amqx
d, (3.20)

and

pBpxq “
DB
ÿ

d“1

gdpB1, . . . ,Bmqx
d, (3.21)

for some (possibly linear) functions fdp¨q’s and gdp¨q’s.

Let us assume that we use polynomial pApxq and pBpxq and the first m2 workers compute

AiBj’s (i, j “ 1, ¨ ¨ ¨ ,m). This implies the following:

pApαnqpBpαnq “ AiBj, (3.22)
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for n “ m ¨ pi´ 1q ` j. Then, ignoring constant factors, the following should be satisfied:

pApαnq “ Ai, pBpαnq “ Bj. (3.23)

This imposes m2 evaluation points on both pA and pB. Hence, the degree of the polynomials pA

and pB should be at least m2´ 1. Their product, pCpxq “ pApxq ¨ pBpxq, thus has degree at least

2m2 ´ 2. This makes the recovery threshold 2m2 ´ 1, instead of m2.

3.1.2.4 A General Description of Systematic Matrix Multiplication Codes

We first introduce some notations and set up a framework for systematic matrix multiplication

codes under the matrix splitting speified in (3.15). We denote the “block-vectorized” version of

the final matrix C by:

block-vecpCq “ rA1B1 ¨ ¨ ¨A1Bm ¨ ¨ ¨AmB1 ¨ ¨ ¨AmBms
T . (3.24)

Let us assume that the matrix blocks Ai’s and Bj’s are scalars for the ease of explanation. We

will first explain how we encode input matrices A and B and then show how the product C is

encoded as a result.

Systematic encoding matrices for A and B are written as:

GA “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Imˆm b 1mˆ1

a1,1 ¨ ¨ ¨ a1,m
... . . . ...

ap,1 ¨ ¨ ¨ ap,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.25)
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GB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1mˆ1 b Imˆm

b1,1 ¨ ¨ ¨ b1,m
... . . . ...

bp,1 ¨ ¨ ¨ bp,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.26)

We will call the bottom submatrices of these matrices as PA and PB respectively, as they are

the parity-generating parts. Assuming that A1, ¨ ¨ ¨ ,Am,B1, ¨ ¨ ¨ ,Bm are scalars, our encoding

can be written as:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rA1

...

rAm2

rAm2`1

...

rAm2`p

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ GA

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

A1

...

A1

...

Am

...

Am

a1,1A1 ` ¨ ¨ ¨ ` a1,mAm

...

ap,1A1 ` ¨ ¨ ¨ ` ap,mAm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.27)

„

rB1 ¨ ¨ ¨ rBm2 rBm2`1 ¨ ¨ ¨
rBm2`p



“

„

B1 ¨ ¨ ¨ Bm



GTB

“

”

B1 ¨ ¨ ¨Bm ¨ ¨ ¨ B1 ¨ ¨ ¨Bm b1,1B1 ` ¨ ¨ ¨ ` b1,mBm ¨ ¨ ¨

bp,1B1 ` ¨ ¨ ¨ ` bp,mBm

ı

. (3.28)

rAi and rBi represent encoded data the node i receives (i “ 1, ¨ ¨ ¨ ,m2 ` p).
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The final encoded product can now be written as:

rC “ block-vecpCqGC

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

A1B1

A1B2

...

AmBm

pa1,1A1 ` ¨ ¨ ¨ ` a1,mAmqpb1,1B1 ` ¨ ¨ ¨ ` b1,mBmq

...

pap,1A1 ` ¨ ¨ ¨ ` ap,mAmqpbp,1B1 ` ¨ ¨ ¨ ` bp,mBmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.29)

which encodes the block-vectorized form in (3.24) using an encoding matrix of the form:

GC “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Im2ˆm2

PA ‹ PB

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.30)

The ‹ denotes “row-wise Kronecker product”, also known as the Khatri-Rao product [75].

Remark 3.1.2. Remember that we used a simplifying assumption that Ai’s and Bj’s are scalars.

To extend this to actual matrices of dimension N{mˆN and NˆN{m, we can treat Ai,Bj’s as

elements in the vector space of RN{mˆN and RNˆN{m. Then, we can think of the matrix

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

as an m ˆ 1 column vector with each element in RN{mˆN . In a similar fashion, the matrix
„

B1 ¨ ¨ ¨ Bm



can be regarded as an 1 ˆ m row vector with each element in RNˆN{m. The
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matrix product GA ¨

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

is now a matrix-vector product where the dimension of the matrix

is pm2 ` pq ˆm and the length of the vector is m. Each element in the matrix is in the field R

and each element in the vector is in the vector space RN{mˆN . This can be understood as a set of

scalar multiplications on the vectors and vector additions.

While considering the submatrices as vectors is a more intuitive way to understand our con-

struction, we include a “non-vectorized” explanation here. Since our multiplications and addi-

tions are performed in a block-wise fashion, the same number should be multiplied to all the

elements in the sub-matrix. E.g., for encoding the first parity node, a1,1 should be multiplied

with all elements in A1; a1,2 should be multiplied with all elements in A2, and so on. Since each

submatrix Ai has N{m rows, we have to expand the encoding matrix GA by N{m as follows:

GA “ GA b IN
m
ˆN

m
. (3.31)

Now, GA is a matrix of dimension pm2 ` pqN
m
ˆN , and (3.27) can be rewritten as:

»

—

—

—

—

–

rA1

...

rAm2`p

fi

ffi

ffi

ffi

ffi

fl

“ GA

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

. (3.32)

We can construct different codes by choosing different coefficients in PA and PB. Our code

constructions provided in the following will use this general framework and, we will highlight

only how PA and PB are constructed.

3.1.2.5 Random Code Construction and Probabilistic Guarantees

Construction 3.1.5 (Random Code). Following the general framework given in (3.30), all en-

tries in PA and PB are drawn iid from the standard Gaussian distribution N p0, 1q.

Theorem 3.1.5. Construction 3.1.5 provides a systematic MDS matrix-multiplication code with
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probability 1, i.e., the results from any m2 out of the overall m2 ` p nodes are sufficient to

reconstruct the final result C.

To prove the theorem, we need two lemmas.

Lemma 3.1.2 (Corollary 3, p.319 in [77]). A matrixG is an encoding matrix of a systematic MDS

code if and only if every square submatrix of the parity generating submatrixGP is non-singular.

Lemma 3.1.3. If the entries of PA and PB are drawn iid from the standard Gaussian distribu-

tion, every square submatrix of the parity generating submatrix PA ‹ PB is non-singular with

probability 1.

Proof. We will first show that the determinants of any r ˆ r submatrix (r ď p) are non-zero

polynomials by mathematical induction. When r “ 1, this is trivial. Now, assume that every

pr ´ 1q ˆ pr ´ 1q submatrix of PA ‹ PB has a non-zero determinant. Let us denote an arbitrary

r ˆ r submatrix as:

S “

»

—

—

—

—

—

—

—

–

ai1,j1bi1,k1 ai1,j2bi1,k2 ¨ ¨ ¨ ai1,jrbi1,kr

ai2,j1bi2,k1 ai2,j2bi2,k2 ¨ ¨ ¨ ai2,jrbi2,kr
...

... . . . ...

air,j1bir,k1 air,j2bir,k2 ¨ ¨ ¨ air,jrbir,kr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.33)

The determinant of this matrix can be written as:

detpSq “ ai1,j1bi1,k1D1 ` ai1,j2bi1,k2D2 ` ¨ ¨ ¨ ` ai1,jrbi1,krDr, (3.34)

where Di is the determinant of the pr ´ 1q ˆ pr ´ 1q submatrix without the first row and the

i-th column of the matrix S, and they are non-zero polynomials due to the induction assumption.

Because pj1, k1q, pj2, k2q, ¨ ¨ ¨ , pjr, krq are all distinct, r terms in (3.34) cannot cancel each other

out. Hence, detpSq is not a zero polynomial.

It is easy to see that the set of ai,j, bi,k’s in matrix S such that detpSq “ 0 is a measure-0

subset of the entire space1. For a given r, there are
`

m2

r

˘

¨
`

p
r

˘

possible submatrices. Let us call

1Depending on which rows and columns are chosen for the submatrix S, the entire space can be as small as Rr2

and as big as R2r2 .
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the set of ai,j, bi,k’s that makes any square submatrix of PA ‹ PB to have determinant 0, a “bad

set”. The bad set is a union of
řp
r“1

`

m2

r

˘

¨
`

p
r

˘

measure-0 subsets. Hence, P pbad setq “ 0 when

ai,j, bi,k’s are chosen randomly from a Gaussian distribution. �

From Lemmas 3.1.2 and 3.1.3, Theorem 3.1.5 follows.

3.1.2.6 Bivariate Polynomial Code Construction

Let us denote a Vandermonde matrix as follows:

Vanddpu1, u2, ¨ ¨ ¨ukq “

»

—

—

—

—

—

—

—

–

1 u1 ¨ ¨ ¨ ud´11

1 u2 ¨ ¨ ¨ ud´12

...
... . . . ...

1 uk ¨ ¨ ¨ ud´1k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Construction 3.1.6 (Bivariate Polynomial Code). Let

A “ Vandmpα1, ¨ ¨ ¨ , αmq, B “ Vandmpβ1, ¨ ¨ ¨ , βmq,

AP “ Vandmpαm`1, ¨ ¨ ¨ , αm`pq,

BP “ Vandmpβm`1, ¨ ¨ ¨ , βm`pq, (3.35)

where αi’s and βi’s (i “ 1, ¨ ¨ ¨ ,m2 ` p) drawn iid from the standard Gaussian distribution.

Following the general framework given in (3.30), PA and PB are constructed as follows:

PA “ APA´1, PB “ BPB´1. (3.36)

The following lemma explains how Construction 3.1.6 is based on polynomials.

Lemma 3.1.4. If α1, ¨ ¨ ¨ , αm and β1, ¨ ¨ ¨ , βm are drawn iid from the standard Gaussian distri-

bution, with probability 1, there exists a polynomial of degree 2m´ 2, hpx, yq that satisfies

hpαi, βjq “ AiBj, (3.37)

for i, j “ 1, ¨ ¨ ¨m.
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Proof. If αi’s are all distinct, we can construct a polynomial fpxq as follows:

fpxq “
m
ÿ

i“1

Ai

ź

j‰i

x´ αj
αi ´ αj

. (3.38)

Similarly, if βi’s are all distinct, we can construct a polynomial gpxq as follows:

gpxq “
m
ÿ

i“1

Bi

ź

j‰i

x´ βj
βi ´ βj

. (3.39)

Then, if we let hpx, yq “ fpxqgpyq, (3.37) is satisfied. For iid samples from Gaussian distribu-

tion, Prpαi “ αjq “ 0 for i ‰ j. Hence, the polynomial h exists with probability 1. �

Since the degree of the polynomials f and g we constructed in (3.38) and (3.39) is m´ 1, let

us write them as follows:

fpxq “ f0 ` f1x` ¨ ¨ ¨ ` fm´1x
m´1, (3.40)

gpxq “ g0 ` g1x` ¨ ¨ ¨ ` gm´1x
m´1. (3.41)

Because fpαiq “ Ai for i “ 1, 2, . . . ,m, we have:
»

—

—

—

—

–

f0
...

fm´1

fi

ffi

ffi

ffi

ffi

fl

“ A´1

»

—

—

—

—

–

A1

...

Am

fi

ffi

ffi

ffi

ffi

fl

. (3.42)

For the parity nodes, we encode A and B using polynomial evaluations fpαiq and gpβiq, i “

m` 1, . . . ,m` p, and let each parity node compute:

hpαi, βiq “ fpαiqgpβiq. (3.43)

Using this, our encoding matrix can be written as:

GA “

»

—

–

Imˆm b 1mˆ1

APA´1

fi

ffi

fl

. (3.44)

The bottom submatrix PA “ APA´1 is the result of polynomial encoding at the parity nodes

given in (3.43). PB can be obtained similarly.
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Theorem 3.1.6. Construction 3.1.6 provides a systematic MDS matrix-multiplication code with

probability 1, i.e., the results from any m2 out of the overall m2 ` p nodes are sufficient to

reconstruct the final result C.

Proof. First, notice that if we can reconstruct the coefficients fi’s and gj’s in polynomial hpx, yq,

we can recover C by evaluating hpx, yq at x “ αi, y “ βj for i, j “ 1, ¨ ¨ ¨ ,m. Hence, we will

prove that we can reconstruct the polynomial hpx, yq from any m2 nodes with probability 1, i.e.,

any m2 ˆm2 submatrix of the following matrix is invertible:

H “

»

—

–

Ab B

AP ‹ BP

fi

ffi

fl

pm2`pqˆm2

. (3.45)

Denote an arbitrary m2 ˆm2 square submatrix of H by S. We will show that detpSq is a non-

zero polynomial of the standard Gaussian random variables αi’s and βj’s, and hence PrpdetpSq “

0q “ 0. We will use 0 to denote a zero polynomial.

Let us rewrite S as:

S “

»

—

–

Ssys

Spar

fi

ffi

fl

,

where Ssys and Spar are from rows ofAbB andAP ‹BP , respectively. Let us denote the number

of rows in Ssys and Spar as σ and ρ.

Case 1: σ “ m2 and ρ “ 0. In other words, S “ A b B. Then, from the property of

Kronecker product,

detpSq “ detpAqm detpBqm

“
ź

i‰j

pαi ´ αjq
m
ź

i‰j

pβi ´ βjq
m,

which is a non-zero polynomial.

Case 2: 1 ď ρ ď p. We will use induction on ρ.

i) ρ “ 1.

73



In this case, Spar is a row vector of the following form:

Spar “

„

Vandmpαkq b Vandmpβkq



,

where k ą m. Using this row vector, the determinant can be expanded as follows:

detpSq “ detpS1q ´ βk detpS2q ` ¨ ¨ ¨ ´ α
m´1
k βm´1k detpSm2q, (3.46)

where Si’s are submatrices of S excluding the i-th column and the m2-th row. The signs

in (3.46) assume that m is even, but the proof holds the same for an odd m. Notice that

detpS1q, ¨ ¨ ¨ , detpSm2q are polynomials only in αi’s and βj’s for i, j “ 1, ¨ ¨ ¨m, and they do

not have any αk or βk terms for k ą m. Hence, detpSq “ 0 only when

detpS1q “ ¨ ¨ ¨ “ detpSm2q “ 0. (3.47)

i.e., when all these are zero polynomials.

Let us denote I “ tpi, jq|i, j “ 1, ¨ ¨ ¨ ,mu and IpSq Ď I as a set of indices of αi, βj that are

included in Ssys. In this case, we have only one element in IzIpSq and let us denote the element

as p̃i, j̃q. Now, let us define another matrix S 1 by replacing Spar with
„

Vandmpαĩq b Vandmpβj̃q



.

Notice that the matrix S 1 now consists of m2 rows of the systematic part. Therefore, from Case

1, we get:

detpS 1q “ detpS1q ´ βj̃ detpS2q ` ¨ ¨ ¨ ´ α
m´1
ĩ

βm´1
j̃

detpSm2q

“
ź

i‰j

pαi ´ αjq
m
ź

i‰j

pβi ´ βjq
m
‰ 0.

This contradicts (3.47). Thus, detpSq ‰ 0.

ii) Let as assume that detpSq ‰ 0 for any ρ ď k. Then, showing that this holds for ρ “ k` 1

is similar to what we did for ρ “ 1.

detpSq “ detpS1q ´ βk`1 detpS2q ` ¨ ¨ ¨ ´ α
m´1
k`1 β

m´1
k`1 detpSm2q. (3.48)
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Now, let us assume that detpSq “ 0. This implies that (3.47) holds. Let us choose p̃i, j̃q P IzIpSq

and construct S 1 by replacing the last row with

„

Vandmpαĩq b Vandmpβj̃q



.

Then S 1 has k rows fromAP ‹BP and m2´ k rows fromAbB. Thus, by inductive assumption,

detpS 1q “ detpS1q ´ βj̃ detpS2q ` ¨ ¨ ¨ ´ α
m´1
ĩ

βm´1
j̃

detpSm2q

‰ 0.

This contradicts (3.47). Thus detpSq ‰ 0. �

3.1.3 Systematic LRC MatDot Codes

In this section, we discuss systematic2 LRC MatDot code construction that has both the de-

sired properties: being systematic and being locally-recoverable. Although we assume a master-

worker system in this paper, LRC matrix multiplication nodes will be also valuable in a fully-

distributed system that does not have a master node. Systematic encoding would be particularly

useful in this setting because we can obtain the final computation output by only repairing failed

systematic nodes. Assuming that failure rate is low, locality will let us repair a failed systematic

node by communicating with only a few other nodes instead of communicating with all the other

nodes.

We will first give an example of systematic LRC MatDot codes for m “ 4, r “ 3 with

P “ 16 worker nodes.

Example 3.1.4 (Systematic LRC MatDot Codes with m “ 4, r “ 3, P “ 16). We first split

2The definition of systematic codes follows Definition 3.1.1

75



matrices A and B into 4 blocks as follows:

A “ rA1 A1 A3 A4s , B “

»

—

—

—

—

—

—

—

–

B1

B2

B3

B4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.49)

where Ai’s and Bi’s are N ˆ N{4 and N{4 ˆ N dimensional submatrices, respectively. Let

A “ tα1, ¨ ¨ ¨ , α16u be a set of 16 distinct real numbers and let A1 “ tα1, ¨ ¨ ¨ , α4u, ¨ ¨ ¨ ,A4 “

tα13, ¨ ¨ ¨ , α16u be disjoint subsets of A that form a partition of A. Let gpxq be a polynomial of

degree 4 which satisfies: gpAiq “ γi for i “ 1, ¨ ¨ ¨ , 4. Then, we encode the matrices A and B

with the following polynomials:

pApxq “
`

A1
x´ α1

α2 ´ α1

`A2
x´ α1

α2 ´ α1

˘

f1pxq

`
`

A3
x´ α6

α5 ´ α6

`A4
x´ α5

α6 ´ α5

˘

f2pxq

pBpxq “
`

B1
x´ α1

α2 ´ α1

`B2
x´ α2

α1 ´ α2

˘

f1pxq

`
`

B3
x´ α6

α5 ´ α6

`B4
x´ α5

α6 ´ α5

˘

f2pxq
where

f1pxq “ λ11 ` λ12gpxq and f2pxq “ λ21 ` λ22gpxq. The coefficients λij’s are chosen so that

fipAjq “ δij for i, j “ 1, 2. They can be obtained by solving:

»

—

–

λ11 λ12

λ21 λ22

fi

ffi

fl

»

—

–

1 1

γ1 γ2

fi

ffi

fl

“

»

—

–

1 0

0 1

fi

ffi

fl

.

The i-th worker node receives the encoded matrices, pApαiq and pBpαiq, and then computes the
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following product:

pcpxq “ pApxqpBpxq

“
`

A1
x´ α1

α2 ´ α1

`A2
x´ α1

α2 ´ α1

˘`

B1
x´ α1

α2 ´ α1

`B2
x´ α2

α1 ´ α2

˘

f1pxq
2
`
`

¨ ¨ ¨
˘

f1pxqf2pxq

`
`

A3
x´ α6

α5 ´ α6

`A4
x´ α5

α6 ´ α5

˘`

B3
x´ α6

α5 ´ α6

`B4
x´ α5

α6 ´ α5

˘

f2pxq
2

at x “ αi. First, note that the following holds:

pcpα1q “ A1B1, pcpα2q “ A2B2,

pcpα5q “ A3B3, pcpα6q “ A4B4.

Hence, this is a systematic code. The degree of pCp¨q is 2 ¨ 4` 2 “ 10, so with evaluation at any

11 points, we can recover the coefficients on pCpxq. The recovery threshold K “ 11.

Now, to examine the locality property, let as assume that node 3 is erased. Because f1

and f2 are linear combinations of constant and gpxq, they are also constant on each subset

Ai. For i “ 1, ¨ ¨ ¨ , 4, pCpαiq becomes a polynomial of degree 2 in αi as f1pαiq, f2pαiq are

constant for α1, ¨ ¨ ¨ , α4. Hence, the coefficients of pC can be recovered from three evaluations,

pCpα1q, pCpα2q, and pCpα4q, and thus the lost matrix pCpα3q can be recovered. �

We now give a construction of systematic LRC MatDot codes for general m and r.

Construction 3.1.7 (Systematic LRC MatDot Codes). The key idea is to replace gpxqi´1 in

pApxq given in (3.11) with fipxq which satisfies fipAjq “ δij (i, j “ 1, ¨ ¨ ¨ , 2m
r`1

), and to replace
ř

r`1
2

j“1 A r`1
2
pi´1q`jx

j´1 in (3.11) with Lagrange interpolation (i “ 1, ¨ ¨ ¨ , 2m
r`1

). We do similar

replacements for pBpxq in (3.12). Let us explain this in more detail.

First, we generate fi’s by linearly combining 1, gpxq, ¨ ¨ ¨ , gpxq
2m
r`1

´1: fipxq “
ř

2m
r`1

j“1 λijgpxq
j´1.
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Let us denote gpAiq “ γi. We obtain λij’s by solving the following equation:

Λ ¨

»

—

—

—

—

—

—

—

–

1 1 ¨ ¨ ¨ 1

γ1 γ2 ¨ ¨ ¨ γ 2m
r`1

...
... . . . ...

γ
2m
r`1

´1

1 γ
2m
r`1

´1

2 ¨ ¨ ¨ γ
2m
r`1

´1
2m
r`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ I 2m
r`1
,

where Λ “

„

λij



and I 2m
r`1

is an identity matrix of dimension 2m
r`1

ˆ 2m
r`1

. It is easy to see that by

this choice of λij’s, fipAjq “ δij for i, j “ 1, ¨ ¨ ¨ , 2m
r`1

.

Let rAi be a subset of Ai which has the first half of the elements, that is,

rAi “ tαpr`1qpi´1q`1, ¨ ¨ ¨ , αpr`1qpi´1q` r`1
2
u,

and let rAipjq “ rAiztαpr`1qpi´1q`ju. Now, let us define φijpxq as follows:

φi,jpxq “
ź

αP rAipjq

x´ α

αpr`1qpi´1q`j ´ α
.

Then, we encode A and B using the following polynomials:

pApxq “

r`1
2
ÿ

j“1

Ajφ1,jpxqf1pxq `

r`1
2
ÿ

j“1

A r`1
2
`jφ2,jpxqf2pxq

` ¨ ¨ ¨ `

r`1
2
ÿ

j“1

Am´ r`1
2
`jφ 2m

r`1
,jpxqf 2m

r`1
pxq

“

2m
r`1
ÿ

i“1

r`1
2
ÿ

j“1

A r`1
2
pi´1q`jφi,jpxqfipxq, (3.50)

pBpxq “

2m
r`1
ÿ

i“1

r`1
2
ÿ

j“1

B r`1
2
pi´1q`jφi,jpxqfipxq. (3.51)

The i-th worker receives the evaluation of pApxq and pBpxq at x “ αi. A worker node then
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computes the following product:

pCpxq “ pApxqpBpxq

“

´

2m
r`1
ÿ

i“1

r`1
2
ÿ

j“1

A r`1
2
pi´1q`jφi,jpxqfipxq

¯

´

2m
r`1
ÿ

i“1

r`1
2
ÿ

j“1

B r`1
2
pi´1q`jφi,jpxqfipxq

¯

,

and returns the result to the master node. �

The following theorem shows that the Construction 3.1.7 is indeed systematic, and achieves

the same locality and recovery threshold as the non-systematic version LRC MatDot codes.

Theorem 3.1.7. The systematic LRC MatDot code given in Construction 3.1.7 is systematic, and

achieves locality r and recovery threshold K “ 4m´ r ´ 2.

Proof. To show that the construction is systematic, we have to show that there exists a subset

Asys “ tβ1, ¨ ¨ ¨ , βmu Ď A such that pCpβiq “ AiBi. Let Asys “ rA1

Ť

¨ ¨ ¨
Ť

rA 2m
r`1

. Now, notice

that for i “ 1, ¨ ¨ ¨ , 2m
r`1

and j “ 1, ¨ ¨ ¨ , r`1
2

,

pCpαpr`1qpi´1q`jq “ pApαpr`1qpi´1q`jqpBpαpr`1qpi´1q`jq

“ A r`1
2
pi´1q`jB r`1

2
pi´1q`j,

and αpr`1qpi´1q`j P Asys. This proves that the code is systematic.

The degree of φi,j’s is r´1
2

and the degree of fi’s is pr` 1qp 2m
r`1
´ 1q “ 2m´ r´ 1. Thus, the

degree of pCpxq is 2 ¨ p r´1
2
` 2m´ r´ 1q “ 4m´ r´ 3. This shows that the recovery threshold

K “ 4m´ r ´ 2.

Finally, let us show the locality property. Let pCpαq be the lost symbol and let α P Al. Then,

for all β P Al, fipβq “
ř

2m
r`1

j“1 λijγ
j´1
l “ ψi. Then, pCpβq can be rewritten as:

pCpβq “
´

r`1
2
ÿ

j“1

`

2m
r`1
ÿ

i“1

ψiA r`1
2
pi´1q`j

˘

φi,jpβq
¯

¨

´

r`1
2
ÿ

j“1

`

2m
r`1
ÿ

i“1

ψiB r`1
2
pi´1q`j

˘

φi,jpβq
¯

.
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Since φi,j’s are polynomials of degree r´1
2

, pCpβq is a degree-pr ´ 1q polynomial in β. Hence,

from the evaluation of pCp¨q at the r points in Alztαu, we can recover the coefficients of pCp¨q.

The lost symbol pCpαq can then be recovered by evaluating pCpβq at β “ α. �

3.2 Masterless Coded Computing Strategies

3.2.1 Coded SUMMA

3.2.1.1 System Model and Notations

The computation goal is to compute a matrix product:

C “ AB, (3.52)

where A,B,C P Rmˆm. The matrices need not be the same dimensions in our algorithms, but

this is just for simplicity. We have p nodes under the masterless setting. We call systematic nodes

for the nodes that have the original data and parity nodes for those that have encoded data. We

also assume that the code rate is fixed, which is defined as:

(# systematic nodes)
(# systematic nodes)` (# parity nodes)

Depending on the algorithm, p nodes will be placed on a 2D or 3D grid, and we will use P pi, jq

(P pi, j, lq) to denote the pi, jq-th (pi, j, lq-th) node on the grid. We consider hard failures in this

paper, and we assume that we cannot recover any data from a failed node.

For communication cost analysis, we assume the α-β model. For anmˆmmatrix X, we will

use Xrow
i (Xcol

i ) to denote the i-th row block (column block) of X, and Xi,j to denote the pi, jq-

th sub-block of X.Finally, we define recovery threshold as the minimum number of workers

required to reconstruct C in the worst case.
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Algorithm 1 SUMMA

Initial Data Distribution: P pi, jq has Ai,j and Bi,j .

for k “ 1 to ?p do

/* For i “ 1, . . . ,
?
p in parallel */

P pi, kq broadcasts Ai,k to the i-th row

/* For j “ 1, . . . ,
?
p in parallel */

P pk, jq broadcasts Bk,j to the j-th column

/* For all nodes in parallel */

P pi, jq computes Ci,j Ð Ci,j `Ai,kBk,j

end for

3.2.1.2 Background: SUMMA and 2.5D SUMMA

The scalable universal matrix multiplication algorithm (SUMMA) is a parallel algorithm for

general matrix multiplication, which is very simple and highly efficient [113]. The SUMMA

assumes a 2D grid placement of nodes and computes C “ AB through a series of outer product

updates.

Let A “

„

Acol
1 ¨ ¨ ¨ Acol?

p



and B “

»

—

—

—

—

–

Brow
1

...

Brow?
p

fi

ffi

ffi

ffi

ffi

fl

. Then, C “
ř

?
p

k“1AkBk. In the k-th iteration

of SUMMA, we compute one outer product, AkBk. More details are given in Algorithm 1.

To further increase parallelism, 2.5D SUMMA was proposed [103], which adds one more

dimension to the grid. 2.5D SUMMA arranges p nodes into a
a

p{c ˆ
a

p{c ˆ c grid, and each
a

p{c ˆ
a

p{c layer computes a c-th fraction of SUMMA. Then, the results of all the layers are

aggregated to compute: C “
řc
k“1A

col
k Brow

k . The full algorithm is summarized in Algorithm 2.
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3.2.1.3 Problem Definition

Given the system model given in Section 3.2.1.1, we want to construct a coding strategy for

SUMMA and 2.5D SUMMA (Algorithm 1,2) that has small encoding and decoding communi-

cation overhead.

3.2.1.4 Coded SUMMA

For algorithms like SUMMA which place nodes on a 2D grid, a natural choice of codes is

ABFT/Product codes [52, 67]. In this section, we provide insights on how ABFT/Product codes

can be incorporated into SUMMA’s data distribution and communication patterns. We will call

coded SUMMA algorithm with an n ˆ n grid with a k ˆ k grid of systematic nodes as pn, kq

coded SUMMA.

Example 3.2.1 (p3, 2q Coded SUMMA). Let us consider using the top-right 2x2 grid as system-

atic nodes, and the remaining nodes as parity nodes. Matrices A and B are divided into 3x3

sub-blocks, and node P pi, jq initially has Ai,j and Bi,j .

Encoding: For encoding A, let us further break down Ai,j into two equal-sized row blocks,

and denote them A
p1q
i,j and A

p2q
i,j . Then, each node encodes parity symbols by computing A

p3q
i,j “

A
p1q
i,j `A

p2q
i,j , and each column performs column-wise all-to-all communication to shuffle the row

blocks of A. After shuffling, node P pi, jq will have rAi,j that is defined as:

rAi,j “

»

—

—

—

—

–

A
piq
1,j

A
piq
2,j

A
piq
3,j

fi

ffi

ffi

ffi

ffi

fl

(3.53)

For instance, node P p1, 1q and P p3, 1q will have:

rA1,1 “

»

—

—

—

—

–

A
p1q
1,1

A
p1q
2,1

A
p1q
3,1

fi

ffi

ffi

ffi

ffi

fl

, rA3,1 “

»

—

—

—

—

–

A
p3q
1,1

A
p3q
2,1

A
p3q
3,1

fi

ffi

ffi

ffi

ffi

fl

,
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respectively.

Encoding B is similar, but performed in a column-wise fashion. Bi,j is split into two equal-

sized column blocks, i.e., Bi,j “

„

B
p1q
i,j B

p2q
i,j



. Then, each node computes: Bp3qi,j “ B
p1q
i,j `B

p2q
i,j .

Each row then performs row-wise all-to-all communication to shuffle the column blocks of B so

that after shuffling, node P pi, jq has:

rBi,j “

„

B
pjq
i,1 B

pjq
i,2 B

pjq
i,3



. (3.54)

Computation: We perform SUMMA given in Algorithm 1 on the rearranged matrix rA and

rB.

Decoding: The decoding algorithm is detailed in Algorithm 3. Notice that the shuffled rows

and columns are automatically rearranged back to AB during the decoding process. We can

further optimize the decoding process by doing “lazy decoding”, which is explained later in the

section. �

The SUMMA can be thought of as running a series of generic matrix multiplications where

we compute:

CÐ αC` βAB, (3.55)

for
?
p iterations. The proposed coding technique can thus be applied to any iterative matrix-

multiply updates.

Remark 3.2.1. [Lazy Decoding] For iterative algorithms of k iterations, there exist two ways of

decoding: decode after each iteration or decode after all k iterations. We propose lazy decoding

which is in between the two extremes.

The goal of lazy decoding is to decode in the middle of iterative matrix-multiplies only when

the decoding is necessary. We will consider that decoding is necessary if any failure in the next

iteration can make the results undecodable. The condition for decodability of product codes was

given in [60, 67]. If we represent failure patterns as a bipartite graph where left and right vertices

correspond to rows and columns on the grid, respectively. There is an edge between the i-th left

vertex and the j-th right vertex, if the node P pi, jq is a failure. Then, the code is undecodable if
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there exists a subgraph where each node has degree greater than n´ k. Now, we will show how

the lazy decoding approach can be implemented in a fully-distributed manner.

After computing one iteration of (3.55), all the successful nodes will broadcast their status

so that all the surviving nodes can construct the bipartite graph of the failure pattern of the entire

grid.

Let P pi, jq be one of the surviving nodes. Then, P pi, jq adds an edge between the i-th left

vertex and the j-th right vertex on the graph, and check the decodability condition. If the pattern

is undecodable, it will broadcast to all the nodes on the grid that initiates decoding process.

After recovering all the nodes on the nˆ n grid, the next iteration resumes. We will not specify

implementation details of this, but note that each only has to send one-bit beacon, which is much

cheaper than exchanging matrices.

3.2.1.5 Communication and Computation Cost Analysis

We analyze the communication cost and computation cost in coded SUMMA. The coded SUMMA

has three stages, i.e., encoding, computation, and decoding. Denote the time of these three parts

respectively by T enc
SUMMA, T comp

SUMMA, and T dec
SUMMA.

Theorem 3.2.1. For the system model given in Section 3.2.1.1, communication time of the pn, kq

coded SUMMA is given as follows:

T enc
SUMMA “ αΘplog nq ` βΘpm2 log n{n2

q, (3.56)

T comp
SUMMA “ αΘpn log nq ` βΘpm2

{nq, (3.57)

T dec
SUMMA “ αΘplog nq ` βΘpm2 log n{n2

q. (3.58)

Thus, the encoding and decoding time in coded SUMMA is negligible if n " 1.

Proof. First, we look at the encoding time. The encoding on each one of A and B can be

conducted by a local encoding step followed by a shuffling step. At the beginning, each node has
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data of size m2{n2. The data is partitioned into k small blocks and encoded into n small blocks.

Thus, the data at each node after encoding is m2{nk. Then, the data are shuffled in the n nodes

using an all-to-all communication. We use the communication efficient all-to-all algorithm in

[11] on the row direction for B and the column direction for A. If each node has u bits and the

number of nodes is v, this algorithm completes in 2 log v communication rounds, and requires

sending u log v bits in total. Note that we have a factor 2 because we need to encode both A and

B.

Local encoding: Cencoding
SUMMA “ 2m2{n2{k ¨ pnkq “ 2m2{n.

Shuffling (all-to-all): T encoding
SUMMA “ 2α log n`4βpm2{nkq log n “ αΘplog nq`βΘpm2 log n{n2q.

Second, we look at the SUMMA computing time. The computation proceeds in n iterations.

In each iteration, one node broadcasts data of size m2{nk to a row, and one node broadcasts data

of the same size to a column. Then, local matrix-multiplication is conducted.

Broadcast: T computing
SUMMA “ r4α log n` 4βpm2{nkqs ¨ n “ αΘpn log nq ` βΘpm2{nq.

Local computing: Ccomputing
SUMMA “ n ¨ pm{kq2 ¨ pm{nq “ m3{k2.

Finally, we look at the SUMMA decoding time. All the rows in the 2D mesh perform de-

coding in parallel. Then, all the columns perform decoding in parallel. One round of decoding

requires two all-to-all communication steps. The data at each node (partial matrix of C) has size

m2{k2.

Shuffling (all-to-all): T decoding
SUMMA “ 2α log n`4βpm2{k2q log n “ αΘplog nq`βΘpm2 log n{n2q.

�

3.2.1.6 Coded 2.5D SUMMA

In 2.5D SUMMA, each layer computes a different set of outer products, that is, the l-th layer

computes Acol
l Bcol

l where A “

„

Acol
1 ¨ ¨ ¨ Acol

c



and B “

»

—

—

—

—

–

Brow
1

...

Brow
c

fi

ffi

ffi

ffi

ffi

fl

, and the final product is

the sum of all the outer products computed at different layers: C “
řc
k“1A

col
l Bcol

l . For this
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last dimension where we split the outer products, we can apply MatDot codes [29] since MatDot

codes split the matrix product into outer products. Hence, we propose coded 2.5D SUMMA

which applies ABFT/Product codes within each layer and MatDot codes across the layers. We

will use pn, kq ˆ pN,Kq coded 2.5D SUMMA to denote the coded strategy which uses pn, kq

coded SUMMA at each layer and has K systematic layers out of total of N layers.

A Concise description of the main algorithm. (Fig. 3.4) We will call the three directions in

the 3D grid direction-i, -j, and -l respectively.

Step 1 (Encoding across layers) A and B are encoded locally using MatDot codes on the first

processor layer. Then, the encoded matrices are scattered in direction-l so that each layer

gets the same linear combination.

Step 2 (Encoding on rows and columns) For all layers in parallel, encode on partial A and B

using product codes. Then, encoded submatrices are shuffled to ensure that each node has

the same single linear combinatinon. The MDS codes and MatDot codes are encoded on

orthogonal directions.

Step 3 (SUMMA) For all layers in parallel, the encoded data is gathered into the minimum amount

of nodes ( 1
N

-fraction of all the nodes). Matrix-matrix multiplications are conducted using

the SUMMA algorithm on all layers. The gathering step is for reducing the number of

stages in SUMMA.

Step 4 (Decoding) In the case of failures, decode on the rows, columns, or across layers.

Let us now provide a simple example of p3, 2q ˆ p4, 2q coded 2.5D SUMMA.

Example 3.2.2 (p3, 2q ˆ p4, 2q coded 2.5D SUMMA). The node P pi, j, 1q initially has Ai,j and

Bi,j .

Encoding: We will first encode MatDot codes and begin with splitting Ai,j into two smaller
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Stepj1:jlocaljencodingjusingjMatDotjcodes

ij

l

Initialjdatajdistribution

i

j

Onlyjfirstjlayerjhasjdata

A B

i

j

3Djmesh

Stepj1.1:jlocaljencoding

A B

Stepj1.2:jscatter

l

Stepj2:jlocaljencodingjusingjproductjcodes
A

l

Localjencoding Shuffle

onjdirectionjj

B
l

Localjencoding Shuffle

onjdirectionji

MatDot

MatDot

Stepj3:jSUMMA

+ +=

Onejmayjusejajlocaljgatheringjstepjtojreducejnumberjofj
communicationjrounds

i i

j j

Figure 3.4: Coded 2.5D SUMMA algorithm

column blocks and Bi,j into two smaller row blocks as follows:

Ai,j “

„

A
p1q
i,j A

p2q
i,j



,Bi,j “

»

—

–

B
p1q
i,j

B
p2q
i,j

fi

ffi

fl

. (3.59)

Then, the node P pi, j, 1q locally computes four encoded column-blocks and row-blocks as fol-
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lows:

Ai,j,1 “ A
p1q
i,j ` α1A

p2q
i,j , Bi,j,1 “ α1B

p1q
i,j `B

p2q
i,j ,

Ai,j,2 “ A
p1q
i,j ` α2A

p2q
i,j , Bi,j,2 “ α2B

p1q
i,j `B

p2q
i,j ,

Ai,j,3 “ A
p1q
i,j ` α3A

p2q
i,j , Bi,j,3 “ α3B

p1q
i,j `B

p2q
i,j ,

Ai,j,4 “ A
p1q
i,j ` α4A

p2q
i,j , Bi,j,4 “ α4B

p1q
i,j `B

p2q
i,j ,

where α1, ¨ ¨ ¨ , α4 are four distinct real numbers. Then P pi, j, 1q sends Ai,j,k to P pi, j, kq for

k “ 2, 3, 4. We can also use systematic MatDot codes where Ai,j,1 “ A
p1q
i,j and Ai,j,1 “ A

p2q
i,j .

After MatDot encoding step, the node P pi, j, kq will have Ai,j,k and Bi,j,k for all i, j “

1, . . . , 3, k “ 1, . . . , 4. Then, each layer will perform encoding for (3,2) coded SUMMA as

described in Example 3.2.1.

Computation: Perform 2.5D SUMMA on the 3ˆ 3ˆ 4 grid as given in Algorithm 2.

Decoding: We decode MatDot codes across layers. If some node’s data is undecodable

through MatDot codes, we decode the Product code within the layer. �

In the pn, kq ˆ pN,Kq coded 2.5D SUMMA, we encode MatDot codes on shuffled columns

of A and shuffled rows of B. We will describe more on shuffled MatDot codes and show that the

shuffling does not change the structure of MatDot codes.

Shuffled MatDot codes in pn, kq ˆ pN,Kq coded 2.5D SUMMA. At the first layer, the i-th

column generates N encoded column blocks of A as follows:

K
ÿ

l“1

A
plq
i α

l´1
ρ (3.60)

for ρ “ 1, . . . N . Similarly, the i-th row in the first layer encodes B as follows:

K
ÿ

l“1

B
plq
i α

K´l
ρ (3.61)
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for ρ “ 1, . . . , N . Note that we use Ai and Bi to denote Acol
i and Brow

i . Now the k-th layer gets

encoded blocks of A and B as follows:

!

K
ÿ

l“1

A
plq
i α

l´1
k for i “ 1, . . . , K

)

,

!

K
ÿ

l“1

B
plq
i α

K´l
k for i “ 1, . . . , K

)

.

Then, the k-th layer computes:

K
ÿ

i“1

˜

K
ÿ

l“1

A
plq
i α

l´1
k

¸˜

K
ÿ

j“1

B
pjq
i αK´jk

¸

. (3.62)

Lemma 3.2.1. Shuffled MatDot codes in pn, kq ˆ pN,Kq 2.5D coded SUMMA can recover

any failed node P pi, j, kq from the set of surviving nodes S “ tP pi, j, κq, κ P r1, . . . , N su if

|S| ě 2K ´ 1.

Proof. Let us define a polynomial fCpxq as:

fCpxq “
K
ÿ

i“1

˜

K
ÿ

l“1

A
plq
i x

l´1

¸˜

K
ÿ

j“1

B
pjq
i xK´j

¸

. (3.63)

The coefficient of xK´1 in fCpxq is:

K
ÿ

i“1

K
ÿ

l“1

A
plq
i B

plq
i “ AB “ C. (3.64)

Since the degree of the polynomial fC is 2K´2, with any 2K´1 evaluations of the polynomial,

we can recover all the coefficients including (3.64). �

Theorem 3.2.2. The recovery threshold of pn, kq ˆ pN,Kq 2.5D SUMMA is given by:

n2N ´ pN ´ 2Kqpn´ k ` 1q2 ` 1. (3.65)

Proof. We want to show that the minimum number of failures that cannot be decoded is λmin “

pN ´ 2Kqpn ´ k ` 1q2. Let us first show that the worst-case scenario on each layer without

MatDot codes is ψmin “ pn ´ k ` 1q2. Let ψ be the number of failures on n ˆ n grid. We have
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to show that i) any ψ ă ψmin is decodable and ii) there exists a pattern of ψmin failures that is

not decodable. To show i), let us assume that ψ ď pn ´ k ` 1q2 ´ 1. Let ψi be the number of

failures at the i-th column and Cf “ ti : ψi ą n ´ ku. Then, |Cf | ă n ´ k ` 1. Thus, there

are at least k columns that are decodable, and hence we can decode the entire grid. To prove ii),

consider a scenario where the bottom right pn ´ k ` 1q ˆ pn ´ k ` 1q sub-grid fails. Then, we

cannot decode the result at pk, kq-th node.

We can use a similar argument to extend this to the pn, kq ˆ pN,Kq 2.5D SUMMA. Let us

assume that λ be the total number of failures on the 3D grid, and λi be the number of failures at

the i-th layer. We have to show that i) any λ ă λmin is decodable and ii) there exists a pattern of

λmin failures that is not decodable. Let us assume that λ ă λmin. Then |Lf “ ti : λi ě ψminu| ă

N ´ 2K. This shows that there are at least 2K ` 1 layers with less than ψmin failures, and hence

these layers are decodable. From Lemma 3.2.1, we can see that as long as there are 2K ` 1

successful layers, we can decode the final output. Now, assume that the first pN ´ 2Kq layers

have failures at their bottom right pn´k`1qˆpn´k`1q sub-grids. Then, we cannot decode the

pk, kq-th node on these layers, and we only have 2K layers that have successful pk, kq-th node.

Thus, this is not decodable. �

Remark 3.2.2. The threshold in Theorem 3.2.2 is the minimum number of successful nodes

in the worst-case scenario to ensure recovery. There exist scenarios in which the number of

successful nodes is smaller than the recovery threshold, but the recovery can still be successful.

3.2.1.7 Communication and Computation Cost Analysis

We analyze the communication cost and computation cost in the coded 2.5D SUMMA algorithm.

Again, for simplicity, assume the matrices A and B both have size mˆm. The processor mesh

has size nˆ nˆN .

Denote by Tcomm the time required for 2.5D coded SUMMA. Denote by TABFT
comm the extra time

for the coding cost in product codes. Denote by TMatDot
comm the extra time for coding cost in MatDot
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codes.

Theorem 3.2.3. Suppose the product codes and MatDot codes have constant rate, i.e., n “ Θpkq

and N “ ΘpKq. Then,

Tcomm “
“

αΘ plog nq ` βΘ
`

m2
{n2

˘‰

¨
n

N
, (3.66)

T ABFT
comm “ αΘplog nq ` βΘpm2 log n{n2

q, (3.67)

TMatDot
comm “ αΘplog nq ` βΘpm2

{n2
q. (3.68)

The results lead to the following observations:

• For product codes:

(Latency) The latency of encoding and decoding product codes is negligible if N “

opnq.

(Bandwidth) The bandwidth of encoding and decoding product codes is negligible

if N “ opn{ log nq. Note that the log n factor in all-to-all communications can be

removed if one uses the ring algorithm. However, the number of communication

rounds increase from log n to n.

• For MatDot codes:

(Latency) The latency of encoding and decoding MatDot codes is negligible if N “

opnq.

(Bandwidth) The bandwidth of encoding and decoding MatDot codes is negligible if

N “ opnq.

Regarding the condition N “ opnq, note that the motivation for 2.5D SUMMA instead of 3D

SUMMA is that the replication factor cannot be as large as p1{3. Thus, in the usual case, we have

N “ opnq (otherwise we can use 3D SUMMA in which the data is replicated n times).

Proof. We analyze the time complexity of both communication and computation in each step.

W.L.O.G, we only calculate the complexity of multiplications and ignore additions in matrix-

matrix multiplications.
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Encoding MatDot codes and scattering the coded results

The first layer has n ˆ n nodes. Each node has a square matrix of size m2{n2. Each local

square matrix is partitioned into K small blocks and encoded into N small blocks. The N small

blocks at a particular node on the first layer is scattered toN layers. Both A and B need encoding

and scattering.

Local encoding cost: C1 “ 2m2{n2 ¨N .

Communication cost (scatter using recursive-halving [110]): T1 “ 2α logN ` 2βm
2

n2 ¨
N
K

.

Encoding product codes and shuffling the encoded data Each node now has two small

blocks of size m2{n2{K “ m2

n2K
. It further divides each small block into k and encode into

n. Thus, the data size at each node becomes m2

n2K
¨ n{k “ 2m2

nkK
. The shuffling stage can use

the communication efficient all-to-all algorithm [11] on the row direction for B and the column

direction for A. If each node has u bits and the number of nodes is v, this algorithm completes

in 2 log v communication rounds, and requires sending u log v bits in total.

Local encoding cost: C2 “
2m2

n2K
¨ 1
k
¨ nk “ 2m2

nK
.

Communication cost (all-to-all): T2 “ 4α log n` β 2m2

nkK
log n

Compute matrix-matrix multiplications using SUMMA The data on each layer is gath-

ered into n2{K nodes, i.e., the nodes in each row and column are partitioned into groups of size

K and a local data gathering is carried out. Then, SUMMA proceeds in n{K rounds. In each

round, one node in each row broadcasts data of size m2

nkK
¨K “ m2

nk
to the entire row, and similarly

for each column. Then, local computation is carried out, which multiplies two matrices of size

m{nˆm{k.

Local gathering using recursive-doubling [110]: T3,gather “ 2α logK ` 2m2

nk
β.

Broadcast in SUMMA (scatter using recursive-halving followed by all-gather using

recursive-doubling): T3,bcast “ p4α log n` 4m2

nk
βq ¨ pn{Kq.

Local matrix-matrix multiplication: C3 “ pm{nˆ pm{kq
2q ¨ pn{Kq “ m3

k2K
.
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Decoding and reduction The decoding of product codes requires an all-to-all communica-

tion on each row or column to reversely shuffle the computation results. The local partial result

at each node has size m{k ˆ m{k “ m2{k2. The number of nodes that need to participate in

the decoding is k. The decoding of MatDot codes only requires a reduce across layers. The data

size at each node in the reduction phase is still m2{k2, and the number of layers required in the

reduce is 2K ´ 1 (for MatDot codes).

Decoding product codes (all-to-all): T4,a2a “ 2α log k ` βpm2{k2q log k.

Decoding MatDot codes (reduce using recursive-halving followed by tree-gather [110]):

T4,reduce “ 2α logp2K ´ 1q ` p2m2{k2qβ.

Note that this communication cost analysis is the worst-case analysis because if we use sys-

tematic codes, we don’t have to communicate at all when there is no failure. Also, we may only

need to communicate for the undecodable sysematic nodes on each layer.

Puting all the things together Overall communication cost:

The overall communication cost is shown in the following.

Tcomm “T1 ` T2 ` T3,gather ` T3,bcast ` T4,a2a ` T4,reduce

“2α logN ` 2β
m2

n2
¨
N

K

` 4α log n` β
2m2

nkK
log n

` 2α logK `
2m2

nk
β

` p4α log n`
4m2

nk
βq ¨ pn{Kq

` 2α log k ` βpm2
{k2q log k

` 2α logp2K ´ 1q ` p2m2
{k2qβ

paq
“
“

αΘ plog nq ` βΘ
`

m2
{n2

˘‰

¨
n

N
,

where in step (a), we use the fact that K “ ΘpNq and k “ Θpnq, i.e., the code has constant rate.

Now, we look at the communication time for encoding and decoding only. For product codes,
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the extra communication is due to the shuffling in step 2 (see Section 3.2.1.7) and the decoding

in step 4 (see Section 3.2.1.7). Thus, the extra communication time due to the use of product

codes is

T product-code
comm “T2 ` T4,a2a

“4α log n` β
2m2

nkK
log n

` 2α log k ` βpm2
{k2q log k

“αΘplog nq ` βΘpm2
{n2

¨ log nq.

For MatDot codes, the extra communication comes from the local gathering step (see Section

3.2.1.7) and the decoding step (see Section 3.2.1.7). Thus, the overall communication due to the

use of MatDot codes is

TMatDot
comm “T3,gather ` T4,reduce

“2α logK `
2m2

nk
β

` 2α logp2K ´ 1q ` p2m2
{k2qβ

“αΘplogNq ` βΘpm2
{n2
q.

�

In Chapter 4, we will present experimental results for Coded 2.5D SUMMA.

3.2.2 Coded FFT

3.2.2.1 System Model

We assume that we have a total of P processors under the masterless setup. Among P proces-

sors, K of them are “systematic processors”, and the remaining P ´K processors are “parity

processors” We assume a massively parallel setup where K is very big, but K does not grow

faster than ΘplogN{ log logNq. For communication latency, we assume the α-β model.
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Using P processors, we want to compute N -point FFT:

Z “ FNx (3.71)

where x is a length-N input data vector, FN is an N -by-N DFT matrix (ωN : the N -th root of

unity) represented as

FN “

»

—

—

—

—

—

—

—

–

ω0
N ω0

N ¨ ¨ ¨ ω0
N

ω0
N ω1

N ¨ ¨ ¨ ωN´1N

...
...

. . .
...

ω0
N ωN´1N ¨ ¨ ¨ ω

pN´1q2

N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.72)

and Z is a length-N vector of the Fourier transform of x. We assume that N is very large, so

that the data cannot be stored in one processor. In the beginning, each processor has a segment

of consecutive values of the input vector x, e.g., Processor 1 has
„

x1 x2 ¨ ¨ ¨ xN{K

T

.

3.2.2.2 Preliminaries: Distributed FFT Algorithm

We want to explain the “transpose” algorithm that is commonly used in high-performance FFT

libraries [36]. It uses the Cooley-Tukey technique to break down N -point FFT into smaller FFTs

of size N1 and N2 where N “ N1N2. Now, (3.71) can be rewritten as

Zk “
N´1
ÿ

n“0

ωnkN xn

“

N1´1
ÿ

n1“0

ωn1k1
N1

tn1,k2

N2´1
ÿ

n2“0

ωn2k2
N2

xn2N1`n1

where k “ k1N2` k2, k1 “ 0, ¨ ¨ ¨N1´ 1, and k2 “ 0, ¨ ¨ ¨ , N2´ 1. The terms tn1,k2’s are called

twiddle factor which are equal to ωk2n1
N .

We can now compute N -point FFTs in two steps. In the first step, each processor is assigned

to compute N1{K FFTs of length N2. Then the processors transpose the data (requiring com-

munication) and compute N2{K FFTs of size N1 in the second step. Between the first and the

second step, we have to multiply twiddle factors. This complicates our coding approach since
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multiplying twiddle factors is an element-wise multiplication of two matrices (Hadamard prod-

uct), which does not commute with matrix-matrix multiplication (See Remark 3.2.3). We now

explain the algorithm in detail:

Algorithm 1. Uncoded Distributed FFT Algorithm (Transpose Algorithm)

1. Rearrange the input data x into X:

X “

»

—

—

—

–

x1 xN1`1 ¨ ¨ ¨ xpN2´1qN1`1

...
...

. . .
...

xN1 x2N1 ¨ ¨ ¨ xN1N2

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

X
prowq
1

...

X
prowq
K

fi

ffi

ffi

ffi

fl

“

”

X
pcolq
1 ¨ ¨ ¨ X

pcolq
K

ı

.

We useX (row)
i ’s (X (col)

i ’s) to denote equal-sized submatrices ofX divided horizontally (ver-

tically). From our system assumption, in the beginning, the i-th processor has X (col)
i

3. To

begin the distributed FFT computation, we transpose the data distributed over K proces-

sors so that the i-th processor can now have X (row)
i .

2. Compute N1{K row-wise FFTs of size N2 at each processor.

Y (row)
i “ X (row)

i FN2

3. Transpose the data so that the i-th processor has Y (col)
i .

Y “

»

—

—

—

–

Y (row)
1

...

Y (row)
K

fi

ffi

ffi

ffi

fl

“

”

Y (col)
1 ¨ ¨ ¨ Y (col)

K

ı

4. Multiply twiddle factors at each processor.

Y (col)
i “ T (col)

N,i ˝ Y
(col)
i

3This assumption is coming from that it is more natural for a processor to store contiguous data without the

knowledge that the next computation is going to be FFT. If we assume that processors have row-wise data in the

beginning, we can avoid the first transpose step. This does not change the result in Theorem 3.2.5 in scaling sense.
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where ˝ represents Hadamard product and TN is a matrix of twiddle factors

TN “

»

—

—

—

—

—

—

–

ω0
N ω0

N ¨ ¨ ¨ ω0
N

ω0
N ω1

N ¨ ¨ ¨ ωN2´1
N

...
...

. . .
...

ω0
N ωN1´1

N ¨ ¨ ¨ ω
pN1´1qpN2´1q
N

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

„

T (col)
N,1 ¨ ¨ ¨ T (col)

N,K



.

5. Compute N2{K column-wise FFTs of size N1 at each processor.

Z (col)
i “ FN1Y

(col)
i . (3.73)

3.2.2.3 Coded FFT Algorithm

Figure 3.5: This diagram summarizes encoding and decoding steps in Algorithm 2 with an ex-

ample of P “ 3, K “ 2.

We will now explain our coding strategy for the distributed FFT algorithm. The uncoded

distributed algorithm described in Algorithm 1 has transpose step in the middle which requires

all the nodes in the system to exchange data with all the other nodes. If there is any failed

node before the transpose step, the computation will fail at the transpose step. Hence, simply

adding fault tolerance which recovers faults at the end of the algorithm is not adequate for the

distributed FFT algorithm. We need to apply fault resilience technique twice: once right before

the transpose step, and once when the entire computation is complete. This requires distributed

97



encoding and decoding in the middle of the computation which poses unique challenges for

coded FFT algorithm.

In our coding strategy, we utilize pP ´ Kq redundant processors to encode the first and the

second FFT steps separately. In the first step, processors perform FFT on the row-wise data

X
prowq
i ’s. In order to protect from the lost output at a failed node, we have to encode parity

symbols across columns (column-wise encoding). By doing this, at the end of the first step, any

successful K processors can recover the output and proceed to the next step. In the second step,

each processor computes FFT on the column-wise data, Y pcolqi ’s, so we encode row-wise parity

symbols (row-wise encoding). Our coded computing algorithm is described below (*: additional

steps that are not present in the uncoded algorithm).

Algorithm 2. Coded Distributed FFT Algorithm

1. * Encode column-wise parity symbols at each processor.

X̃ “ GT
1X “

»

—

—

—

—

–

X̃
prowq
1

...

X̃
prowq
P

fi

ffi

ffi

ffi

ffi

fl

(3.74)

G1 is an N1-by-N 1
1 encoding matrix for where N 1

1 “
P
K
N1:

G1 “

„

IN1 P1



(3.75)

2. Rearrange the encoded data. Now the i-th processor has X̃prowq
i .

3. Compute N1{K row-wise FFTs of size N2 at each processor.

4. Wait for the first successful K processors and transpose the output within the successful

K processors.

5. * If needed, decode to retrieve the uncoded output at each processor.

6. Multiply twiddle factors.

7. * Encode row-wise parity symbols and send them to the remaining P ´K processors.

Ỹ “ Y G2 “

„

Ỹ
pcolq
1 ¨ ¨ ¨ Ỹ

pcolq
P



(3.76)
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G2 is an N2-by-N 1
2 encoding matrix where N 1

2 “
P
K
N2:

G2 “

„

IN2 P2



(3.77)

8. Compute N2{K row-wise FFTs of size N1 at each processor.

9. * Wait for the first successful K processors and halt the remaining P ´ K processors.

Decode if needed.

For both encoding steps in Step 1 and Step 7, we use a pP,Kq systematic MDS code. In the

following theorem, we show that using the proposed coded distributed FFT algorithm, any K

successful processors are enough to recover the computed outputs at Step 5 and Step 9 4.

Theorem 3.2.4. In Algorithm 2 where we compute distributed FFT of size N using P proces-

sors each of which can store and process 1
K

fraction of the input (P ą K), any successful K

processors can recover Y and Z at Step 5 and 9, respectively.

Proof. Let us first prove that we can recover Y with any K successful processors at Step 5 and

the similar argument holds for recovering Z at step 9.

At Step 4, we will have the result from K successful workers. Let us denote the indices of

the successful K workers as ti1, ¨ ¨ ¨ , iKu. Then the output from the successful workers is:

Ysuc “

»

—

—

—

—

—

—

—

–

X̃ (row)
i1

FN2

X̃ (row)
i2

FN2

...

X̃ (row)
iK

FN2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

„

Y (col)
suc,i1 ¨ ¨ ¨Y (col)

suc,iK



. (3.78)

After transposing at Step 5, processors i1, ¨ ¨ ¨ , iK will have column-wise output Y (col)
suc,i1 , ¨ ¨ ¨Y

(col)
suc,iK .

Y (col)
suc,i can be written as:

Y (col)
suc,i “ GT

1,sucXF
(col)
N2,i

“ GT
1,sucY

(col)
i (3.79)

4Note that we do not have any fault recovery for twiddle multiplication step. However, computational complexity

of twiddle factor multiplication is OpNq compared to that of OpN logNq. Hence, it is less probable to have faults

during twiddle factor multiplication step
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where GT
1,suc is a submatrix of GT

1 which only has rows from successful nodes and hence has the

size N1-by-N1.

As we assume the erasure model where we lose the entire data from a failed node, we only

code across nodes, not within a node. Hence, our encoding matrixG1 has the following structure:

G1 “ G1 b IN1{K (3.80)

where G1 is the encoding matrix for a systematic pP,Kq-MDS code which has size K-by-P .

Now, G1,suc can be rewritten as:

GT
1,suc “ GT1,suc b IN1{K (3.81)

where G1,suc is a submatrix of G that only has K columns from the K successful nodes, i.e., i1-th

to iK-th columns of G. Because G1 is a pP,Kq MDS code, G1,suc always has a full rank. As

rankpA b Bq “ rankpAq ¨ rankpBq for any matrices A and B, rankpG1,sucq “ N1. Hence, we

can recover Y (col)
i at every successful node at Step 5. Similar argument applies to recovering Z

at Step 9. �

3.2.2.4 Communication Cost Analysis

Now, we prove our main theorem which states that as long as the number of parity processors is

oplogKq, communication overhead of encoding and decoding can be amortized:

Theorem 3.2.5. In our proposed coded FFT algorithm, if P ´K “ oplog2Kq, communication

overhead of coding is negligible compared to the communication cost of uncoded FFT.

To prove the theorem, we first identify the communication cost of uncoded FFT algorithm.

Then, we analyze communication cost of encoding and decoding and we compare them to obtain

the theorem.

Communication cost of uncoded FFT algorithm. Let us begin with understanding the com-

munication cost of uncoded FFT algorithm. In Algorithm 1, steps that require communication
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are Step 1 and 3. Both steps need communication to transpose the data stored in distributed

processors. For transposing the data, all processors have to exchange data with all the other

processors. This communication is known as “all-to-all” communication. Bruck et al. showed

lower bounds and explicit algorithms that achieve lower bounds for two special cases of all-to-

all communication [11] – a minimum-communication-rounds regime and a minimum-bandwidth

regime. Let us first formally define all-to-all communication.

Definition 3.2.1. [All-to-all] In all-to-allpp, nq communication, there are p nodes each of which

stores n symbols. The data stored in the i-th node can be broken down into p data blocks,

Mi,1, ¨ ¨ ¨Mi,p, where the size of each block is n{p symbols. The goal of the communication is to

transpose the data stored in p processors so that at the end of the communication, the i-th node

has M1,i, ¨ ¨ ¨ ,Mp,i data blocks.

We will first give a simple lower bound of all-to-allpp, nq communication.

Theorem 3.2.6 (Proposition 2.3 and 2.4 in [11]). For all-to-allpp, nq communication, C1 and C2

are lower bounded by:

C1 ě rlog2 ps, C2 ě
p´ 1

p
n (3.82)

However, Bruck et al. showed that the lower bounds on C1 and C2 cannot be achieved

simultaneously which is stated in the theorem below.

Theorem 3.2.7 (Theorem 2.5 and 2.6 in [11]). If all-to-allpp, nq communication uses the mini-

mum number of rounds, i.e., C1 “ rlog2 ps, C2 is lower bounded by:

C2 ě
n

2
log2 p. (3.83)

If all-to-allpp, nq communication uses the minimum number of symbols transferred in sequence,

i.e., C2 “
p´1
p
n symbols in a sequence, then C1 is lower bounded by:

C1 ě p´ 1. (3.84)

Furthermore, both lower bounds are achievable.
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Now, by using Theorem 3.2.7, we can give communication cost lower bounds on the trans-

pose step in the distributed FFT algorithm.

Corollary 3.2.1. The transpose step of N -point FFT requires the communication cost at least

rlog2Ksα `
1

2

N

K
log2Kβ (3.85)

when using the minimum communication rounds regime, and

pK ´ 1qα `
pK ´ 1q

K

N

K
β (3.86)

when using the minimum communication bits regime.

Under our massively parallel system model where K is very large, we have logK ăă
?
K.

Hence, we should always choose the minimum-communication-round regime over the minimum-

bandwidth regime. From now on, we will only consider minimum communication round regime

and use its communication cost given in (3.85).

Communication overhead of coding. Now, let us identify additional communication cost due

to coding in Algorithm 2. In the first encoding step where we compute column-wise parity

symbols, we do not need any communication since processors already have column-wise data

in the beginning. Also, for the first decoding in Step 5, column-wise decoding can be done in

local processors as each processor has column-wise data after the transpose step. In Step 7, it

requires inter-processor communication to encode row-wise parity symbols as one row of the

data is spread over all the processors. Also in step 9, we have to perform row-wise decoding

while every node has column-wise data, and thus we need inter-processor communication for

decoding. Hence, in this section, we will analyze the communication cost of the second encoding

step and decoding step. We will first show the communication cost of the second encoding step

where we compute:

Ỹ “ Y G2. (3.87)

Before we begin our communication cost analysis, we want to make a few remarks.
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Remark 3.2.3. [Why do we need distributed encoding?] If we can do the second encoding,

which is computing row-wise parity symbols, at local processors before the transpose step, we

can avoid communication for distributed encoding at Step 7. However, there is no trivial way of

doing this using a linear code due to the twiddle factors. After Step 3, the i-th processor has

Y (row)
i “ X̃ (row)

i FN1 “ G(row)
1,i XFN1 . (3.88)

If we do row-wise encoding at the i-th processor locally before the transpose step, the i-th pro-

cessor will have

Ỹ (row)
i “ G(row)

1,i XFN2G2. (3.89)

We then perform the transpose of the output from the first K successful nodes. The i-th node

now has

Ỹ (col)
i “ G1,sucXFN2G

col
2,i. (3.90)

Column-wise decoding can be done locally by inverting G1,suc:

Ŷ (col)
i “ G´11,sucG1,sucXFN2G

col
2,i “ XFN2G

col
2,i. (3.91)

We now have to multiply twiddle factors to Ŷ (col)
i :

Ŷ (col)
i “ TN ˝ Ŷ

(col)
i “ TN ˝ pXFN2G

col
2,iq (3.92)

However, this will produce a different final output from what we expect because of the nonlin-

earity of Hadamard product:

A ˝ pBCq ‰ pA ˝BqC. (3.93)

Hence,

T
pcolq
N,i ˝ pXFN2G

col
2,iq ‰ pT

pcolq
N,i ˝XFN2qG

col
2,i. (3.94)

From our modified coding strategy, our final output from successful nodes will be FN1TN ˝

pXFN2G2,sucq and even after decoding, we will have

FN1TN ˝ pXFN2G2,sucqG
´1
2,suc ‰ FN1TN ˝ pXFN2q. (3.95)
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This means that we have to perform twiddle factor multiplication before proceeding to the row-

wise encoding step. With the same argument, we can show that column-wise decoding must be

done before multiplying twiddle factors. It concludes that because of the twiddle factors, the

second-step encoding must be done across the processors incurring some communication cost.

We now want to analyze the communication cost of the second encoding step. Let us first

investigate the communication cost of a simple encoding scheme where we add one parity node

that stores the checksums of data, X1`¨ ¨ ¨`XK . The encoding matrixG2 for this can be written

as follows:

Gcks “

»

—

—

—

—

–

1

IK
...

1

fi

ffi

ffi

ffi

ffi

fl

(3.96)

G2 “ Gcks b IN2{K (3.97)

For this computation, allK nodes have to send its data to one checksum node to compute the sum

of all the data in the network. This is a well-known communication operation called “reduce(-

to-one)”.

Definition 3.2.2. [Reduce] In reducepp, nq communication, there are p data nodes which have

data M1, ¨ ¨ ¨ ,Mp of size n and one reduction node. The goal of the communication is to send

M1 ` ¨ ¨ ¨ `Mp to the reduction node.

A lower bound on the communication cost of reducepp, nq operation is given in the following

theorem.

Theorem 3.2.8. The communication cost of reducepp, nq is lower bounded by

rlog2 psα ` nβ. (3.98)

It was found that reduce operation can be done by reversing any broadcasting algorithm,

where one broadcasting node sends its message to all the other processors in the network. Traff

and Ripke[111] proposed a near-optimal broadcasting algorithm that achieves the lower bound

104



(3.98) within a factor of 2 . By reversing their broadcasting algorithm, we can achieve the same

communication cost for reducepp, nq communication.

Theorem 3.2.9. Reducepp, nq can be done with the communication cost of at most

p
a

rlog2 psα `
a

nβq2 ď 2prlog2 psα ` nβq. (3.99)

Whether (3.99) is optimal or not is an open problem. We will use this as a state-of-the-art

communication algorithm for reduce operation. By applying (3.99), we can obtain the commu-

nication cost for encoding one checksum node.

Corollary 3.2.2. A pK ` 1, K, 2q systematic MDS code over K systematic processors each of

which hs N{K data symbols can be encoded with the communication cost of

p
a

rlog2Ksα `
a

N{Kβq2 ď 2prlog2Ksα `N{Kβq. (3.100)

We can now extend computing checksums to computing parity symbols for a generic pP,K, d “

P ´K ` 1q systematic MDS code. Unlike checksum computation which only requires a single

reduce(-to-one) operation, here we need multiple reductions to P ´K nodes.

From the intuition we got from reduce(-to-one) problem, we will first establish bounds for

multi-broadcasting problem (will be defined below) and show that multi-reduce problem for

encoding a pP,K, d “ P ´K ` 1q systematic MDS code can be solved by reversing the multi-

broadcasting algorithm.

Definition 3.2.3. [Multi-broadcast] In multi-broadcastpp, r, nq communication, there are r broad-

casting nodes and p destination nodes. Broadcasting nodes have distinct messages M1, ¨ ¨ ¨ ,Mr

of size n symbols. At the end of the communication, all p destination nodes should have all r

messages, M1, ¨ ¨ ¨ ,Mr.

We want to note that multi-message broadcasting has been studied in the literature [4, 98].

However, their models have one broadcasting node which sends multiple messages in a sequence.

This is fundamentally different from our multi-broadcast which has multiple broadcasting nodes
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that can send out their messages simultaneously. To the best of our knowledge, communication

cost analysis of this specific problem has not been studied before.

We will first show a communication algorithm for multi-broadcastpp, r, nq and then show that

it achieves the lower bound within a factor of 2.

Theorem 3.2.10. Multi-broadcastpp, r, nq can be done with the communication cost at most

2prlog2 psα ` rnβq (3.101)

Proof. First, divide p processors into r disjoint sets of size p{r. Let us denote the sets as

S1, S2, ¨ ¨ ¨ , Sr. The i-th broadcasting node broadcasts its message to all the nodes in Si. With

the optimal broadcasting algorithm [111], it takes communication cost of p
a

log2
p
r
α `

?
nβq2.

After the broadcasting step, the j-th nodes in Si’s pi “ 1, ¨ ¨ ¨ , rq communicate with each

other so that all of them can share M1, ¨ ¨ ¨ ,Mr. This is all-gatherpr, nq communication which is

defined as follows.

Definition 3.2.4. [All-gather] In all-gatherpp, nq communication, there are p nodes which have

distinct messages M1, ¨ ¨ ¨ ,Mp of size n symbols. At the end of the communication, all p nodes

should have all p messages.

All-gatherpr, nq can be done with communication cost of plog2 rqα ` pr ´ 1qnβ using the

bidirectional algorithm [14].

The total communication cost of this two-step algorithm is

p

c

log2

p

r
α `

a

nβq2 ` log2 rα ` pr ´ 1qnβ

ď rlog2 psα ` rnβ ` plog2

p

r
α ` nβq

ď 2prlog2 psα ` rnβq.

�

We now show a lower bound for multi-broadcastpp, r, nq communication.
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Theorem 3.2.11. The communication cost of multi-broadcastpp, r, nq is lower bounded by

rlog2 psα ` rnβ (3.102)

Proof. Each broadcasting node must communicate to p destination nodes which takes at least

rlog2 ps communication rounds. Each destination node has to receive messagesM1, ¨ ¨ ¨Mr which

have n. Hence, mutlti-broadcastpp, r, nq requires at least the bandwidth of rn. �

By comparing (3.101) and (3.102), we can see that the algorithm given in Theorem 3.2.10

achieves the lower bound within a factor of 2.

Finally, we define multi-reduce operation which is the communication required for encod-

ing parity symbols, and show that it can be done with the same communication cost as multi-

broadcast operation.

Definition 3.2.5. [Multi-reduce] In multi-broadcastpp, r, nq communication, there are p data

nodes and r reduction nodes (r ă p). p data nodes have data M1, ¨ ¨ ¨ ,Mp each of which consist

of n symbols. At the end of communication, the i-th reduction node will have ai,1M1 ` ¨ ¨ ¨ `

ai,pMp where ai,j’s (i “ 1, ¨ ¨ ¨ , r, j “ 1, ¨ ¨ ¨ , p) are chosen so that the data from any p nodes are

linearly independent combinations of M1, ¨ ¨ ¨ ,Mp.

Theorem 3.2.12. Multi-reducepp, r, nq communication can be done by reversing the multi-broadcast

algorithm given in Theorem 3.2.10. Hence, the communication cost of multi-reducepp, r, nq is at

most

2prlog2 psα ` rnβq (3.103)

Proof. Let D1, D2, ¨ ¨ ¨ , Dp denote the data at p data processors. Let us divide data processors

into r disjoint sets of size p{r and let Si denote the set of indices of the i-th set: Si “ tpi ´ 1q ¨

p{r ` 1, ¨ ¨ ¨ , pi´ 1q ¨ p{r ` p{ru. This is all-gatherpr, nq communication.

First, the j-th nodes in Si’s pi “ 1, ¨ ¨ ¨ , nq perform all-gather communication. All the j-th

processors in Si’s will have Dj, Dj`p{r, ¨ ¨ ¨ , Dj`pr´1qp{r after the communication.

107



In the second step, all the nodes in Si will carry out reduce communication with the i-th

reduction node. Each node in Si will compute a corresponding linear combination of the the data

it has and send only n symbols of data to the i-th reduction node. For instance, the j-th node in

Si will compute

ai,jDj ` ai,j`p{rDj`p{r ` ¨ ¨ ¨ ` ai,j`pr´1qp{rDj`pr´1qp{r.

This is reducepp{r, nq which can be done with the communication cost of p
a

log2
p
r
α `

?
nβq2.

This completes multi-reducepp, r, nq communication. �

This gives an achievable communication scheme for encoding parity symbols and decoding

systematic symbols of a pP,K, dq systematic MDS code.

Corollary 3.2.3. A pP,K, d “ P ´K ` 1q systematic MDS code over K systematic processors

each of which has N{K data symbols can be encoded with the communication cost of

2

ˆ

rlog2Ksα ` pP ´Kq
N

K
β

˙

. (3.104)

Proof. The encoding matrix of pP,K, P ´K ` 1qMDS code has the form

G “
„

IK | P


where IK is a K-by-K identity matrix and P is a parity matrix of dimension K-by-P ´ K

whose entries are all non-zero [7]. This means that every parity symbol is a linear combination

of all K symbols distributed in K nodes. Hence, encoding parity symbols for a systematic

pP,K, d “ P ´K ` 1qMDS code is exactly multi-reducepK,P ´K,N{Kq operation. Simply

substituting this to (3.103) completes the proof. �

A similar argument can be applied to show that decoding at Step 11 of Algorithm 2 can also

be done with the same communication cost.

Corollary 3.2.4. Reconstructing N{K data symbols in failed systematic nodes of at Step 11 of

Algorithm 2 can be done with the communication cost at most:

2

ˆ

rlog2Ksα ` pP ´Kq
N

K
β

˙

. (3.105)
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Proof. First, note that we only have to recover the data in systematic nodes. The worst case is

when there are P ´K failed nodes among the systematic nodes. In this case, the remaining K

successful nodes have to send their data to P ´K systematic nodes. A failed node’s data symbol

can be represented as a linear combination of K output symbols from successful nodes. Hence,

this is multi-reducepK,P ´K,N{Kq operation. �

Proof. (Proof of of Theorem 3.2.5.) By comparing the encoding communication overhead given

in (3.104) with the communication cost of uncoded FFT algorithm given in (3.85), we can prove

our main theorem. Uncoded FFT algorithm requires two transpose operation, one in the begin-

ning and one before the second FFT step. This requires communication cost of

2

ˆ

rlog2Ksα `
N

2K
rlog2Ksβ

˙

(3.106)

If we compare this against the communication cost of encoding given in (3.104), the condition

for the encoding cost to be smaller than the all-to-all communication is given as follows:

4
`

rlog2Ksα ` pP ´Kq
N

K
β
˘

ă 2
`

rlog2Ksα `
N

2K
rlog2Ksβ

˘

P ´K ă
log2K

4
.

Hence, as long as P ´ K is smaller than log2K
4

in scaling sense, communication overhead of

coding is negligible compared to the intrinsic communication cost of uncoded distributed FFT

algorithm. �
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Algorithm 2 2.5D SUMMA

Initial Data Distribution: P pi, j, 1q has Ai,j and Bi,j .

/* Distributing A, B across layers

for k “ 1 to c do

for i “ 1 to
a

p{c do

for j “ 1 to 1
c

a

p{c do

/* All P pi, j, kq in parallel */

P pi, j, 1q sends Ai,j and Bi,j to P pi, j, kq

end for

end for

end for

for k “ 1 to c do

/* All k-th layers in parallel */

Perform SUMMA to compute Acol
k Brow

k .

end for

for i “ 1 to
a

p{c do

for j “ 1 to
a

p{c do

/* All i, j in parallel */

P pi, j, 1q, . . . P pi, j, cq reduce to P pi, j, 1q to compute Ci,j .

end for

end for
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Algorithm 3 Decoding for pn, kq coded SUMMA

while (# decoded rows) ă k or (# decoded cols) ă k do

for i “ 1 to n do

if Row i has ě k successful nodes then

Perform row-decode

end if

end for

for j “ 1 to n do

if Column j has ě k successful nodes then

Perform column-decode

end if

end for

end while

function row-decode (i)

Decoding set D “ tj1, ¨ ¨ ¨ , jku

all-to-all(D)

/* For all nodes in D in parallel */

Locally decode for Ci,j , pj “ 1, ¨ ¨ ¨ , kq

end function

function col-decode (j)

Decoding set D “ ti1, ¨ ¨ ¨ , iku

all-to-all(D)

/* For all nodes in D in parallel */

Locally decode for Ci,j , pi “ 1, ¨ ¨ ¨ , kq

end function
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Algorithm 4 Coded SUMMA
Input: Input matrices A and B, generator matrix Gkˆn.

Initialize (Encoding): Partition matrix A into k row blocks and B into k column blocks.

Encode the k row blocks of A into n row blocks. Encode the k column blocks of B into n

column blocks. Denote the encoded matrices by Acoded and Bcoded.

Initialize (Data distribution): Suppose there is a n ˆ n processor mesh. Partition the coded

matrix Acoded into nˆn square blocks and Bcoded into n square blocks. Send each Acoded,ij and

Bcoded,ij to the processor on the i-th row and the j-th column. Initialize Ccoded,ij “ 0;

Multi-stage Computing: The matrix multiplication of Ccoded “ AcodedBcoded is computed

using n outer-product stages, i.e.,

AcodedBcoded “

n
ÿ

l“1

Acoded,lBcoded,l. (3.69)

for l “ 1 to n do

for i “ 1 to n, j “ 1 to n (in parallel) do

The il-th processor broadcasts its Acoded,il to the other processors in the i-th row.

The lj-th processor broadcasts its Bcoded,lj to the other processors in the j-th column.

The ij-th processor should receive Acoded,il and Bcoded,lj. Then, it computes

Ccoded,ij ` “ Acoded,ilBcoded,lj. (3.70)

if The number of faults in a row or column is above a threshold then

Conduct decoding in the entire mesh, on both rows and columns, in parallel.

end if

end for

end for
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Chapter 4

Experimental Results

In this chapter, we present experimental evaluation of coded computing strategies. In Section 4.1,

we show implementation and experiments of Coded SUMMA strategy (Section 3.2.1) on a HPC

cluster.

4.1 Coded SUMMA Experiments

In this section we compliment the theoretical analysis on its fault tolerance and execution time

overhead given in Section 3.2.1 with extensive experimental evaluations.

Experimental Setup

In our experimental setup, we used a cluster with 40 compute nodes, each of which has two

12-Core AMD Opteron (tm) Processor 6164 HE, 64 GB DRAM, and 500 GB hard disk. Nodes

are connected through Gigabit Ethernet under a single switch. We used each core as one MPI

process, i.e., one core was one logical node P pi, j, lq. To ensure that there is no MPI communi-

cation within the same compute node, we used cyclic distribution of compute nodes. We injected

a layer failure by artificially ignoring the result from one layer in the reduce phase. We assumed

that the information about the failed node will be made available at all surviving nodes. We

113



recorded execution time of: memory allocation, MatDot Encoding, MPI Scatter, 2D SUMMA,

and Decoding + MPI Reduce. In the implementation of the baseline replication-based scheme,

time spent in the communication from the surviving replica layer to the first layer was included

in Decoding + MPI Reduce time. Since the cluster we used for experiments had total of 960

cores, the most extensive experiments were run on an 8ˆ 8ˆ 4 grid with total of 256 cores1.

Table 4.1: Execution time comparison of pn “ 8,m “ 2,M “ 4q 3D Coded SUMMA and

replication. We used systematic MatDot codes and 8 cores per node.

N Strategy

Memory
Allocation

(s)
Encoding

(s)
Scatter

(s)

2D
SUMMA

(s)

Decoding
+ Reduce

(s)
Total
(s)

10000
Replication 0.1 0 1.505 19.583 0.926 22.245

MatDot 0.105 0.124 2.25 18.621 1.384 22.486

20000
Replication 0.369 0 6.574 87.792 3.626 98.681

MatDot 0.362 0.402 9.075 88.371 5.502 103.357

30000
Replication 0.75 0 14.993 214.798 7.859 239.035

MatDot 0.752 0.864 19.773 224.232 12.316 257.883

40000
Replication 1.317 0 25.613 438.356 13.941 480.464

MatDot 1.325 1.418 39.496 440.872 21.853 505.41

Comparison with replication

We first compare our proposed MatDot-coded approach and replication. Execution time compar-

ison of the two is summarized in Table 4.1. First notice that almost 90 % of the total execution

time is used on 2D SUMMA. Then, the next significant portion of the execution time is MPI

Scatter and Reduce. Computation time for MatDot encoding and decoding makes up less than

1Bigger grids with the dimensions of non-power-of-two numbers are not included as they showed worse perfor-

mance.
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Figure 4.1: Comparison of total execution time for uncoded 3D SUMMA with no redundancy,

replication, and coded 3D SUMMA using systematic MatDot codes. We can see that the over-

head of the coded strategy is about 5-7% compared to replication and 10-18% compared to

uncoded.

1 % of the total time. When we compare the total execution time, the overhead of MatDot cod-

ing is about 5-7 % compared to replication. This is mainly due to the increased communication

cost in the scatter and reduce communication as predicted in the previous section. We further

compare the total execution time of replication and MatDot against the uncoded counterpart that

does not provide any resilience (See Fig. 4.1). Compared to the uncoded strategy, the execution

time of 3D Coded SUMMA is about 10-18 % more.

Fig. 4.2 shows the difference between using systematic and non-systematic codes. In Fig. 4.2a,

systematic failure means a node failure in a systematic layer (the first m layers with the original

data) and parity failure means a node failure in a parity layer (the last m layers with encoded

data). The biggest benefit of using systematic codes is that when there is no failure in systematic

nodes, there is no need for decoding, and the final steps would be no different from the uncoded

strategy. The results in Fig. 4.2a show that this is indeed true in experiments and the last reduce

step (including decoding) is about 3x times faster when we have only parity failures, and no
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Figure 4.2: (a) When the failed node is a parity node, there is no need for decoding, and hence

reducing over the first m systematic nodes is sufficient. This reduces decoding+reduce time by

„3x. (b) For systematic MatDot codes, we include both systematic failure and parity failure

cases in the comparison. For systematic failures, non-systematic and systematic codes share

similar performance. For parity failures, systematic codes show clear advantage when the matrix

dimension is large.

systematic failure. Because of this effect, we can see that using systematic codes is about 3-5 %

faster than non-systematic codes when there is no systematic failure in Fig. 4.2b.

Master-Worker vs. Masterless

We now demonstrate interesting side results that we obtained through our experiments on Coded

2.5D SUMMA. Recall that in the results presented above used the elemental cyclic distribution

of physical nodes as given in Figure 4.3b. However, the initial implementation followed a brute-

force node distribution as given in Figure 4.3a. In the brute-force approach, the first physical

node (node index 0 in Figure 4.3) takes up all logical nodes on the first layer (z “ 0). In Coded

2.5D SUMMA, the first layer is responsible for data encoding, distribution, aggregation, and
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(a) Brute-force node distribution (Master-worker).

(b) Elemental cyclic node distribution (Masterless).

Figure 4.3: An example of the physical compute node distribution for a 4 ˆ 4 ˆ 4 grid. The

3D grid is unrolled in the z-dimension and blue number on the grid represents the physical node

index.

decoding, which are tasks assigned to a master node in the master-worker setup considered in

coded computing literature [29, 67, 130]. Hence, in this approach, although the logical algorithm

is fully-distributed, the computation and communication pattern in the actual implementation

works as if one physical node acts as a master node. On the other hand, in the elemental cyclic

distribution approach, logical nodes on the first layer are evenly distributed among four physical

nodes (node index 0 to 3 in Figure 4.3b). By comparing these two implementations, we analyze

the effect of having a master node and provide an experimental proof on why we need masterless

strategies.

The comparison of the two implementations is summarized in Figure 4.4. This experiment

was also run on an 8 ˆ 8 ˆ 4 grid. From Figure 4.4a, we can see that the total execution time

of the master-worker implementation is about 25-35 % higher than the masterless counterpart.
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(a) Total execution time comparison. (b) Communication time comparison.

Figure 4.4: Execution time comparison of master-worker and masterless implementations of

Coded 2.5D SUMMA for pn “ 8,m “ 2,M “ 4q.

Furthermore, Figure 4.4b shows that the increase in communication time is even more dramatic;

the master-worker implementation consumesą3x time in communication. This substantiates our

claim that communication between a master node and worker nodes will become a significant

bottleneck in the parallel algorithm.

Figure 4.5 portrays the breakdown of total execution time in the master-worker and masterless

implementations. First, recall that the only communication that is affected by these two different

implementations is the z-communications, i.e., z-scatter and z-reduce across layers. The broad-

cast operations along the x and y axes during 2D SUMMA are not affected. Now, we can notice

that in the masterless Coded 2.5D SUMMA implementation, z-communication (master-worker

communication) is only about 10 % of the total execution time. In the master-worker implemen-

tation, this becomes „30 % of the total time. In parallel algorithms that have a higher portion

of communication time (e.g., 30 % of total execution time), the increase in communication time

due to the existence of a master node would be more severe. Also, the scale of experiments we

ran was relatively small with a total of 16 physical nodes. Once we use hundreds of physical

nodes, the bottleneck of a master-worker communication would be more evident.
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(a) Masterless (b) Master-Worker

Figure 4.5: Execution time breakdown of the masterless and master-worker implementations of

Coded 2.5D SUMMA for pn “ 8,m “ 2,M “ 4, N “ 30000q.
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Figure 4.6: Comparing Coded 2.5D SUMMA execution time for pn “ 8,m “ 2,M “ 4q and

pn “ 4,m “ 2,M “ 4q. Comparing these two different settings suggests that the execution time

analysis in Section 3.2.1 is fairly accurate. From n “ 4 to n “ 8, we can see that communication

cost (z-scatter and z-reduce) reduces by 4x (1{n2) as expected. On the other hand, 2D SUMMA

time reduces by 2-2.7x. This can also be explained by our analysis because computation time in

2D SUMMA is expected to reduce by 1{n2 (i.e., by 4x) but communication time in 2D SUMMA

is expected to reduce by 1{n (i.e., by 2x). Hence, all in all, theoretical analysis suggests an

execution time reduction between 2-4x for the 2D SUMMA part.
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Appendix A

n-matrix Multiplication

Proof of Theorem A.4.1. Here, we only derive the proof for the case of even n. The proof for

odd n can be derived in a similar manner with minor differences in the expressions. What we

have to show to complete the proof are as follows:

Claim A.0.1. The maximum degree of pCpxq is s
n
2 t

n
2
`1 ` s

n
2 t

n
2
´1 ´ 1.

Claim A.0.2. Ci,j is the coefficient of xdpn,i,jq for i, j “ 1, ¨ ¨ ¨ , t where

dpn, i, jq “ s´ 1` spt´ 1q ` stps´ 1q ` ¨ ¨ ¨ ` i ¨ s
n
2 t

n
2
´1
` j ¨ s

n
2 t

n
2 . (A.1)

Claim A.0.3. xdpn,i,jq term is obtained only when: i) i1 “ i, ii) j1 “ i2, ¨ ¨ ¨ , jn´1 “ in, iii)

jn “ j.

Let us first rewrite pCpxq as follows:

pCpxq “

ÿ

i1“1¨¨¨t,¨¨¨ ,in“1¨¨¨s
j1“1¨¨¨s,¨¨¨ ,jn“1¨¨¨t

A
p1q
i1,j1

B
p1q
i2,j2

¨ ¨ ¨A
pn{2q
in´1,jn´1

B
pn{2q
in,jn

xps´1`j1´i2q`¨¨¨`i1s
n
2 t

n
2´1

`jns
n
2 t

n
2 . (A.2)
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Note that we get the maximum degree when i1 “ t´1, s´1`j1´i2 “ 2s´2, ¨ ¨ ¨ , jn “ t´1.

Hence,

max deg of pCpxq “ 2s´ 2` sp2t´ 2q ` ¨ ¨ ¨ `

sn{2´1tn{2´1p2s´ 2q ` pt´ 1qsn{2tn{2´1

` pt´ 1qsn{2tn{2

“ sn{2tn{2´1 ` sn{2tn{2`1 ´ 2

“ kpn, s, tq ´ 1.

This shows Claim A.0.1. To show Claim A.0.2, note that:

Ci,j “
ÿ

j1,j2,¨¨¨ ,jn´1

A
p1q
i,j1

B
p1q
j1,j2

A
p2q
j2,j3

B
p2q
j3,j4

¨ ¨ ¨A
pn{2q
jn´2,jn´1

B
pn{2q
jn´1,j

.

Among the terms in the sum in (A.2), Ci,j is the sum of terms that are from the i-th row of the

first matrix Ap1q and the j-th column on the last matrix Bpn{2q, and that have the second index

and the first index of two adjacent matrices matching, e.g., j1 “ i2 and j2 “ i3. By setting these

i1, ¨ ¨ ¨ , in, j1, ¨ ¨ ¨ , jn values, we obtain (A.1).

Lastly, we want to show Claim A.0.3. Let d be the degree of x in (A.2)

d “ ps´ 1` j1 ´ i2q ` ¨ ¨ ¨ ` s
n
2
´1t

n
2
´1
ps´ 1` jn´1 ´ inq

` i1s
n
2 t

n
2
´1
` jns

n
2 t

n
2 , (A.3)

which can be rewritten as:

d “ d0 ` d1 ¨ s` d2 ¨ st` ¨ ¨ ¨ ` dn´1 ¨ s
n
2 t

n
2
´1
` dn ¨ s

n
2 t

n
2 , (A.4)
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where

d0 “ d mod s

d1 “ pd´ d0q{s mod t

d2 “ pd´ d0 ´ d1 ¨ sq{st mod s

...

dn “ pd´ d0 ´ d1 ¨ t´ ¨ ¨ ¨ ´ dn´1 ¨ s
n{2tn{2´1q{sn{2tn{2.

We can think of this representation as a mixed radix systemD with n`2 digits, pd0, d1, ¨ ¨ ¨ , dn`1q,

which has an alternating radix pt, s, t, s, ¨ ¨ ¨ , t, sq. By substituting d0 “ t ´ 1, d1 “ s ´

1, ¨ ¨ ¨ , dn`1 “ s ´ 1, we can confirm that the biggest number we can represent with (A.4) is

sn`1tn`1´1 ą kpn, s, tq´1. Also, from its construction, any number between 0 and sn`1tn`1´1

can be uniquely determined by the pair pd0, d1, ¨ ¨ ¨ , dn`1q (for more explanation, see Theorem 1

in [35]). Hence, any 0 ď d ď kpn, s, tq ´ 1 can be uniquely represented with pd0, d1, ¨ ¨ ¨ , dn`1q.

Now, we want to show that d “ dpn, i, jq only when d0 “ s ´ 1, d1 “ t ´ 1, ¨ ¨ ¨ , dn´3 “

t ´ 1, dn´2 “ s ´ 1 and dn´1 “ i, dn “ j. It is easy to see that d0 “ dpn, i, jq mod s “ s ´ 1,

and similarly d1 “ pdpn, i, jq ´ d0q mod t “ t ´ 1 and so on. Since i1 varies only from 0 to

t´ 1,

dn´1 “ pi ¨ s
n
2 t

n
2
´1
` j ¨ s

n
2 t

n
2 q{sn{2tn{2´1 mod t

“ pi` jtq mod t

“ i.

Finally, dn “ pj ¨ s
n
2 t

n
2 q{s

n
2 t

n
2 “ j. As there is only one unique representation of any d with a

tuple pd0, d1, ¨ ¨ ¨ , dnq, by comparing (A.3) and (A.4), we can conclude that j1 “ i2, ¨ ¨ ¨ , jn´1 “

in, and i1 “ i, jn “ j. This completes the proof.

�

In this section, we present a coding technique for multiplying n matrices (n-matrix multipli-
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cation), i.e., computing

C “ Dp1qDp2q
¨ ¨ ¨Dpnq. (A.5)

We state the problem formally in Section A.1 and then explain why this is different from multi-

plying two matrices. Then, in Section A.2, we provide a new code construction called n-matrix

codes which applies MatDot codes and Polynomial codes in an alternating fashion. With this

construction, we show that we can achieve recovery threshold of Θpmrn{2sq (see Theorem A.2.1)

followed by a complexity analysis in Section A.3. After that, we propose a Generalized n-matrix

codes in Section A.4 which allows for both horizontal and vertical partitioning of all the matrices

being multiplied and again explore the trade-off between recovery threshold (see Theorem A.4.1

in Section A.4) and communication and computation complexity (Section A.5).

A.1 Problem Statement

We consider a generalization of the system model of Section 2.1.2.1 with a master node, P

worker nodes, and a fusion node, to multiply more than two matrices. Here the goal is to compute

the product C “
śn

i“1D
piq of N ˆ N square matrices, Dp1q, ¨ ¨ ¨ ,Dpnq. As we will treat the

matrices Dpiq with odd and even indices differently, we will denote the Dpiq’s with odd indices

as Apri{2sq and the Dpiq’s with even indices as Bpi{2q for all i P t1, ¨ ¨ ¨ , nu. Using this notation, C

can be written as:

C “

$

’

’

&

’

’

%

ś

n
2
i“1A

piqBpiq if n is even,
´

śtn
2

u

i“1A
piqBpiq

¯

Aprn
2

sq if n is odd.
(A.6)

In our model, each worker can receive at most nN2{m symbols from the master node, where

each symbol is an element of F. Specifically, for each matrix Dpiq, each worker receives N2{m

symbols which are F-linear combinations of the entries of the matrix. Similar to Section 2.1.2.2,

the computational complexities of the operations at master, worker and fusion nodes, in terms

of the parameters N,P,m, are required to be strictly less than the computational complexity of
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a sequential algorithm that computes the product. The goal is to perform this matrix product

utilizing faulty or straggling workers with as low recovery threshold as possible. Again, in the

following discussion, we will assume that |F| ą P .

A.2 Codes for n-matrix multiplication

Theorem A.2.1 (Recovery threshold for n-matrix codes). For the matrix multiplication problem

specified in Section A.1 computed on the system defined in Definition 2.1.1, there exists a code

with a recovery threshold of

kpn,mq “

$

’

&

’

%

2mn{2 ´ 1 if n is even,

pm` 1qmtn
2

u ´ 1 if n is odd.
(A.7)

Discussion on applicability of n-matrix codes:

Before describing the code construction for n-matrix multiplication, we first discuss when

n-matrix multiplication codes can be useful despite having a recovery threshold that grows ex-

ponentially with n. First, note that as n-matrix multiplication is a chain of pn´ 1q matrix-matrix

multiplications, one may think that we can apply the coding techniques developed in the previous

sections to each pairwise matrix multiplication instead of developing a new coding technique for

n-matrix multiplication. For example, let us consider computing C “ Ap1qBp1qAp2q. A master

node can first encode Ap1q and Bp1q using MatDot codes and distribute encoded matrices to all

the worker nodes and the fusion node can decode E “ Ap1qBp1q from the output of successful

worker nodes. Then we again encode E and Ap2q using MatDot code and distribute encoded

matrices to the worker nodes. Finally, the fusion node can reconstruct C by decoding the out-

puts of successful worker nodes. As you can see from this example, simply applying MatDot

codes on each matrix-matrix multiplication requires two rounds of communication after com-

puting E “ Ap1qBp1q and C “ EAp2q. For n-matrix multiplication, it requires n ´ 1 rounds of

communication. This can be inefficient in the systems when the communication cost increases

with number of rounds of communication (e.g., due to large communication setup overheads).
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What we propose in this section is a coded n-matrix multiplication strategy which requires

only one round of communication. Our main result in Theorem A.2.1 shows that n-matrix codes

need Θpmrn{2sq successful nodes to recover the computation result. On the other hand, suc-

cessively applying MatDot codes requires Θpmq nodes to successfully recover the final result,

which is is in scaling sense smaller than Θpmrn{2sq for large n. This suggests that n-matrix codes

avoid intermediate communications at the cost of larger recovery threshold. When communica-

tion start-up cost is the main source of delay, one should use n-matrix codes, and when number

of computation nodes is limited, one should sequentially apply coding strategy for two-matrix

multiplication such as MatDot or PolyDot codes.

Moreover, in many applications such as power-iteration-based methods, one often prefers to

compute Anxp0q (where xp0q P Rn is an initial vector) instead of calculating An due to higher

computational complexity. Our suggested coded multiple matrix-matrix multiplications can be

employed in such applications simply by letting Dp1q “ Dp2q “ . . . “ Dpnq “ A. Further details

about this idea can be found in [45]. Therefore, redundancy overhead used in our scheme can be

useful in such scenarios for two main reasons: (i) Saving communication cost; and (ii) Providing

robustness against stragglers.

We will now begin with simple examples for even and odd n. The first example shows the

example for even n, and present a construction for general n.

Example A.2.1 (Multiplying 4 matrices (n “ 4,m “ 2, k “ 7)). Here, we give an example of

multiplying 4 matrices and show that a recovery threshold of 7 is achievable. For i P t1, 2u,

matrix Apiq is split vertically into sub-matrices Apiq
0 ,A

piq
1 each of dimension N ˆ N

2
as follows:

Apiq “

”

A
piq
0 A

piq
1

ı

, while, for i P t1, 2u, matrix Bpiq is split horizontally into sub-matrices

B
piq
0 ,B

piq
1 each of dimension N

2
ˆN as follows:

Bpiq “

»

—

–

B
piq
0

B
piq
1

fi

ffi

fl

. (A.8)
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Notice that the product C “
ś2

i“1A
piqBpiq can now be written as

2
ź

i“1

ApiqBpiq “
`

Ap1qBp1q
˘ `

Ap2qBp2q
˘

“

´

A
p1q
0 B

p1q
0 `A

p1q
1 B

p1q
1

¯´

A
p2q
0 B

p2q
0 `A

p2q
1 B

p2q
1

¯

. (A.9)

Now, we define the encoding polynomials pApiqpxq, pBpiqpxq, i P t1, 2u as follows:

pAp1qpxq “ A
p1q
0 `A

p1q
1 x,

pBp1qpxq “ B
p1q
0 x`B

p1q
1 ,

pAp2qpxq “ A
p2q
0 `A

p2q
1 x,

pBp2qpxq “ B
p2q
0 x`B

p2q
1 . (A.10)

From (A.10), we have

pAp1qpxqpBp1qpxq “ A
p1q
0 B

p1q
1 ` pA

p1q
0 B

p1q
0 `A

p1q
1 B

p1q
1 qx

`A
p1q
1 B

p1q
0 x2,

pAp2qpxqpBp2qpxq “ A
p2q
0 B

p2q
1 ` pA

p2q
0 B

p2q
0 `A

p2q
1 B

p2q
1 qx

`A
p2q
1 B

p2q
0 x2. (A.11)

From (A.9) along with (A.11), we can observe the following:

(i) the coefficient of x in pAp1qpxqpBp1qpxq is Ap1q
0 B

p1q
0 `A

p1q
1 B

p1q
1 “ Ap1qBp1q,

(ii) the coefficient of x2 in pAp2qpx2qpBp2qpx2q is the product Ap2q
0 B

p2q
0 `A

p2q
1 B

p2q
1 “ Ap2qBp2q,

and

(iii) the coefficient of x3 in pAp1qpxqpBp1qpxqpAp2qpx
2qpBp2qpx

2q is the product
ś2

i“1A
piqBpiq

(our desired output).

Let x1, ¨ ¨ ¨ , xP be distinct elements of F, the master node sends pApiqpxirq and pBpiqpxirq, for

all i P t1, 2u, to the r-th worker node, r P t1, ¨ ¨ ¨ , P u, and the r-th worker node performs the

multiplication
ś2

i“1 pApiqpx
i
rqpBpiqpx

i
rq and sends the output to the fusion node.
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Let worker nodes 1, ¨ ¨ ¨ , 7 be the first 7 worker nodes to send their computation outputs

to the fusion node, then the fusion node receives the matrices
ś2

i“1 pApiqpx
i
rqpBpiqpx

i
rq for all

r P t1, ¨ ¨ ¨ , 7u. Since these 7 matrices can be seen as 7 evaluations of the matrix polynomial
ś2

i“1 pApiqpx
iqpBpiqpx

iq of degree 6 at 7 distinct evaluation points x1, ¨ ¨ ¨ , x7, the coefficients of

the matrix polynomial
ś2

i“1 pApiqpx
iqpBpiqpx

iq can be obtained using polynomial interpolation.

This includes the coefficient of x3, i.e.,
ś2

i“1A
piqBpiq. �

Now we show an example for odd n.

Example A.2.2 (Multiplying 3 matrices (n “ 3,m “ 2, k “ 5)). Here, we give an example of

multiplying 3 matrices and show that a recovery threshold of 5 is achievable. In this example,

we have three input matrices Ap1q, Bp1q, and Ap2q, each of dimension N ˆ N and need to com-

pute the product Ap1qBp1qAp2q. First, the three input matrices are split in the same way as in

Example A.2.1. The product Ap1qBp1qAp2q can now be written as

C “ Ap1qBp1qAp2q
“

”

Ap1qBp1qA
p2q
0 Ap1qBp1qA

p2q
1

ı

, (A.12)

where Ap1qBp1q “ A
p1q
0 B

p1q
0 `A

p1q
1 B

p1q
1 .

Now, we define the encoding polynomials pAp1qpxq, pBp1qpxq, pAp2qpxq as follows:

pAp1qpxq “ A
p1q
0 `A

p1q
1 x,

pBp1qpxq “ B
p1q
0 x`B

p1q
1 ,

pAp2qpxq “ A
p2q
0 `A

p2q
1 x. (A.13)

From (A.13), we have

pAp1qpxqpBp1qpxqpAp2qpx
2
q “ A

p1q
0 B

p1q
1 A

p2q
0

` pA
p1q
0 B

p1q
0 `A

p1q
1 B

p1q
1 qA

p2q
0 x

` pA
p1q
1 B

p1q
0 A

p2q
0 `A

p1q
0 B

p1q
1 A

p2q
1 qx

2

` pA
p1q
0 B

p1q
0 `A

p1q
1 B

p1q
1 qA

p2q
1 x3 `A

p1q
1 B

p1q
0 A

p2q
1 x4. (A.14)
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From (A.14), we can observe the following:

(i) the coefficient of x in pAp1qpxqpBp1qpxqpAp2qpx2q is the product Ap1qBp1qA
p2q
0 , and

(ii) the coefficient of x3 in pAp1qpxqpBp1qpxqpAp2qpx2q is the product Ap1qBp1qA
p2q
1 .

From (A.12), these two coefficients suffice to recover C. Let x1, ¨ ¨ ¨ , xP be distinct elements

of F, the master node sends pApiqpxirq, for all i P t1, 2u, and pB1pxrq to the r-th worker node, r P

t1, ¨ ¨ ¨ , P u, where the r-th worker node performs the multiplication pAp1qpxrqpBp1qpxrqpAp2qpx2rq

and sends the output to the fusion node.

Let worker nodes 1, ¨ ¨ ¨ , 5 be the first 5 worker nodes to send their computation outputs

to the fusion node, then the fusion node receives the matrices pAp1qpxrqpBp1qpxrqpAp2qpx2rq for

all r P t1, ¨ ¨ ¨ , 5u. Since these 5 matrices can be seen as 5 evaluations of the polynomial

pAp1qpxqpBp1qpxqpAp2qpx
2q of degree 4 at five distinct evaluation points x1, ¨ ¨ ¨ , x5, the coeffi-

cients of the matrix polynomial pAp1qpxrqpBp1qpxrqpAp2qpx2rq can be obtained using polynomial

interpolation. This includes the coefficients of x and x3, i.e., Ap1qBp1qA
p2q
0 and Ap1qBp1qA

p2q
1 . �

Next, we present a code construction for n-matrix multiplication for general n and m.

Construction A.2.1. [n-matrix codes]

Splitting of input matrices: for every i P t1, ¨ ¨ ¨ , rn
2
su and j P t1, ¨ ¨ ¨ , tn

2
uu, Ai and Bj are

split as follows

Apiq
“

”

A
piq
1 A

piq
2 . . . Apiq

m

ı

, Bpjq “

»

—

—

—

—

—

—

—

–

B
pjq
1

B
pjq
2

...

B
pjq
m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (A.15)

where, for k P t1, . . . ,mu, Apiq
k ,B

pjq
k are N ˆ N{m and N{m ˆ N dimensional matrices,

respectively.

Master node (encoding): Let x1, x2, . . . , xP´1 be arbitrary distinct elements of F. For i P

t1, ¨ ¨ ¨ , rn
2
su, define pApiqpxq “

řm
j“1A

piq
j x

j´1, and, for i P t1, ¨ ¨ ¨ , tn
2
uu, define pBpiqpxq “

řm
j“1B

piq
j x

m´j. For r P t1, 2, . . . , P u, the master node sends to the r-th worker the evaluations,
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pApiqpx
mi´1

r q and pBpjqpxm
j´1

r q, for all i P t1, ¨ ¨ ¨ , rn
2
su and j P t1, ¨ ¨ ¨ , tn

2
uu.

Worker nodes: For i P t1, ¨ ¨ ¨ , rn
2
su, define

pCpiqpxq “

$

’

’

&

’

’

%

pApiqpxqpBpiqpxq if i P t1, ¨ ¨ ¨ , tn
2
uu,

pApiqpxq if n is odd and i “ rn
2
s.

(A.16)

For r P t1, 2, . . . , P u, the r-th worker node computes the matrix product Π
rn
2

s

i“1pCpiqpx
mi´1

r q and

sends it to the fusion node on successful completion.

Fusion node (decoding): If n is even, the fusion node uses outputs of any 2m
n
2 ´1 successful

workers to compute the coefficient of xm
n{2´1 in the matrix polynomial Π

n
2
i“1pCpiqpx

mi´1
q, and if

n is odd, the fusion node uses outputs of any mtn
2

upm` 1q´ 1 successful workers to compute the

coefficients of xjm
t n2 u
´1, for all j P t1, ¨ ¨ ¨ ,mu, in the matrix polynomial Π

rn
2

s

i“1pCpiqpx
mi´1

q (the

feasibility of this step will be shown later in the proof of Theorem A.2.1).

If the number of successful workers is smaller than 2m
n
2 ´ 1 for even n or smaller than

mtn
2

upm` 1q ´ 1 for odd n, the fusion node declares a failure.

Remark A.2.1. The coefficient of xmi´mi´1 in pCpiqpxm
i´1
q, for any i P t1, ¨ ¨ ¨ , tn

2
uu, is

řm
j“1A

piq
j B

piq
j “

ApiqBpiq.

Remark A.2.2. A reader might wonder why there is a difference between odd-valued and even-

valued n, and if one can be reduced to the other by introducing an identity matrix of dimensions

N ˆ N in the n-matrix multiplication problem. In this work, we have an assumption that the

matrices being multiplied are not known in advance and may even be chosen by an adversary. If it

is known in advance that one of the matrices is an identity matrix or even a matrix with a special

structure, e.g., a Toeplitz matrix (essentially convolution), then alternative coding techniques

might be applicable altogether, which we hope to explore as a future work. Here, we assume

that none of the matrices are known to us, and we aim to find a general scheme. When n “

2, the n-matrix codes is exactly MatDot codes. When n “ 3, (e.g., multiplying ABC), it

is Polynomial codes applied to AB and C, followed by MatDot codes. It reduces to simply

computing AB when we know that the third matrix C is identity, but without the hindsight, we
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still have to encode the identity matrix, resulting in a bigger recovery threshold than multiplying

two matrices.

A.3 Complexity Analyses of n-matrix codes (Construction A.2.1)

Encoding/decoding complexity: Decoding requires interpolating a 2mn{2 ´ 2 degree poly-

nomial if n is even or a mtn
2

upm ` 1q ´ 2 degree polynomial if n is odd for each element

in the matrix. Using polynomial interpolation algorithms of complexity Opk log2 kq [65], or

Opk log2 k log log kq [63], where k “ kpn,mq as defined in (A.7), complexity per matrix el-

ement is Opmrn
2

s log2mrn
2

sq log logmrn
2

sq. Thus, for N2 elements, the decoding complexity is

OpN2mrn
2

s log2mrn
2

s log logmrn
2

sq.

Encoding for each worker requires performing n additions, each adding m scaled matrices

of size N2{m, for an overall encoding complexity for each worker ofOpmnN2{mq “ OpnN2q.

Thus, the overall computational complexity of encoding for P workers is OpnN2P q.

Each worker’s computational cost: Each worker multiplies n matrices of dimensions N ˆ

N{m and N{mˆN . For any worker r with r P t1, ¨ ¨ ¨ , P u, the multiplication can be performed

as follows:

Case 1: n is even

In this case, worker r wishes to compute the product:

pAp1qpxrqpBp1qpxrqpAp2qpx
m
r qpBp2qpx

m
r q ¨ ¨ ¨

pApn{2qpx
mn{2´1

r qpBpn{2qpx
mn{2´1

r q.

Worker r does this multiplication in the following order:

1. Compute pBpiqpxm
i´1

r qpApi`1qpxm
i

r q for all i P t1, ¨ ¨ ¨ , n{2 ´ 1u with a total complexity of

OpnN3{m2q.

2. Compute the product of the output matrices of the previous step with a total complexity of

OpnN3{m3q. Call this product matrix D. Notice that D has a dimension of N{mˆN{m.
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3. Compute pAp1qpxrqD with complexityOpN3{m2q. Call this product matrix E. Notice that

E has a dimension of N ˆN{m.

4. Compute E pBpn{2qpx
mn{2´1

r q with complexity OpN3{mq.

Hence, the overall computational complexity per worker for even n is:

OpmaxpnN3
{m2, nN3

{m3, N3
{m2, N3

{mqq “ OpmaxpnN3
{m2, N3

{mqq.

Case 2: n is odd

In this case, worker r wishes to compute the product:

pAp1qpxrqpBp1qpxrq ¨ ¨ ¨ pAppn´1q{2qpxm
pn´3q{2

r q

pBppn´1q{2qpxm
pn´3q{2

r qpAppn`1q{2qpxm
pn´1q{2

r q.

Worker r does this multiplication in the following order:

1. Compute pBpiqpxm
i´1

r qpApi`1qpxm
i

r q for all i P t1, ¨ ¨ ¨ , pn´1q{2u with a total complexity of

OpnN3{m2q.

2. Compute the product of the output matrices of the previous step with a total complexity of

OpnN3{m3q. Call this product matrix D. Notice that D has a dimension of N{mˆN{m.

3. Compute pAp1qpxrqD with complexity OpN3{m2q.

Hence, the overall computational complexity per worker for odd n is

OpmaxpnN3
{m2, nN3

{m3, N3
{m2

qq “ OpnN3
{m2

q.

In conclusion, the computational complexity per worker is OpmaxpnN3{m2, N3{mqq if n is

even, and OpnN3{m2q if n is odd1.

Communication cost: The master node communicates total of OpnPN2{mq symbols to the

worker nodes, and the fusion node receives Opmtn
2

uN2q symbols from the successful worker

nodes.
1The expressions for even n and odd n are different due to the last step in the even n case where we compute the

matrix multiplication of dimension N ˆN{m and N{mˆN , which has computational complexity of OpN3{mq
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A.4 Codes for Generalized n-matrix multiplication

Here, we give another code construction for n-matrix multiplication which is a generalization of

the code construction given in the previous section. The new construction allows us to split input

matrices more flexibly and trades off communication and computation (similar to PolyDot codes

in Section 2.1.2.6 for two matrices). The results presented here are an improvement over [32],

and are built on techniques from [26, 132].

Theorem A.4.1 (Recovery threshold for Generalized n-matrix codes). For the matrix multipli-

cation problem specified in Section A.1 and computed on the system defined in Definition 2.1.1,

there exists a code with a recovery threshold of

kpn, s, tq “

$

’

&

’

%

s
n
2 t

n
2
`1 ` s

n
2 t

n
2
´1 ´ 1 if n is even,

s
n`1
2 t

n`1
2 ` s

n´1
2 t

n´1
2 ´ 1 if n is odd

(A.17)

for any integers s, t that satisfy m “ st.

Proof. Here, we only derive the proof for the case of even n. The proof for odd n can be derived

in a similar manner with minor differences in the expressions. What we have to show to complete

the proof are as follows:

Claim A.4.2. The maximum degree of pCpxq is s
n
2 t

n
2
`1 ` s

n
2 t

n
2
´1 ´ 1.

Claim A.4.3. Ci,j is the coefficient of xdpn,i,jq for i, j “ 1, ¨ ¨ ¨ , t where

dpn, i, jq “ s´ 1` spt´ 1q ` stps´ 1q ` ¨ ¨ ¨ ` i ¨ s
n
2 t

n
2
´1
` j ¨ s

n
2 t

n
2 . (A.18)

Claim A.4.4. xdpn,i,jq term is obtained only when: i) i1 “ i, ii) j1 “ i2, ¨ ¨ ¨ , jn´1 “ in, iii)

jn “ j.
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Let us first rewrite pCpxq as follows:

pCpxq “

ÿ

i1“1¨¨¨t,¨¨¨ ,in“1¨¨¨s
j1“1¨¨¨s,¨¨¨ ,jn“1¨¨¨t

A
p1q
i1,j1

B
p1q
i2,j2

¨ ¨ ¨A
pn{2q
in´1,jn´1

B
pn{2q
in,jn

xps´1`j1´i2q`¨¨¨`i1s
n
2 t

n
2´1

`jns
n
2 t

n
2 . (A.19)

Note that we get the maximum degree when i1 “ t´1, s´1`j1´i2 “ 2s´2, ¨ ¨ ¨ , jn “ t´1.

Hence,

max deg of pCpxq “ 2s´ 2` sp2t´ 2q ` ¨ ¨ ¨ `

sn{2´1tn{2´1p2s´ 2q ` pt´ 1qsn{2tn{2´1

` pt´ 1qsn{2tn{2

“ sn{2tn{2´1 ` sn{2tn{2`1 ´ 2

“ kpn, s, tq ´ 1.

This shows Claim A.4.2. To show Claim A.4.3, note that:

Ci,j “
ÿ

j1,j2,¨¨¨ ,jn´1

A
p1q
i,j1

B
p1q
j1,j2

A
p2q
j2,j3

B
p2q
j3,j4

¨ ¨ ¨A
pn{2q
jn´2,jn´1

B
pn{2q
jn´1,j

.

Among the terms in the sum in (A.19), Ci,j is the sum of terms that are from the i-th row of the

first matrix Ap1q and the j-th column on the last matrix Bpn{2q, and that have the second index

and the first index of two adjacent matrices matching, e.g., j1 “ i2 and j2 “ i3. By setting these

i1, ¨ ¨ ¨ , in, j1, ¨ ¨ ¨ , jn values, we obtain (A.18).

Lastly, we want to show Claim A.4.4. Let d be the degree of x in (A.19)

d “ ps´ 1` j1 ´ i2q ` ¨ ¨ ¨ ` s
n
2
´1t

n
2
´1
ps´ 1` jn´1 ´ inq

` i1s
n
2 t

n
2
´1
` jns

n
2 t

n
2 , (A.20)

which can be rewritten as:

d “ d0 ` d1 ¨ s` d2 ¨ st` ¨ ¨ ¨ ` dn´1 ¨ s
n
2 t

n
2
´1
` dn ¨ s

n
2 t

n
2 , (A.21)
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where

d0 “ d mod s

d1 “ pd´ d0q{s mod t

d2 “ pd´ d0 ´ d1 ¨ sq{st mod s

...

dn “ pd´ d0 ´ d1 ¨ t´ ¨ ¨ ¨ ´ dn´1 ¨ s
n{2tn{2´1q{sn{2tn{2.

We can think of this representation as a mixed radix systemD with n`2 digits, pd0, d1, ¨ ¨ ¨ , dn`1q,

which has an alternating radix pt, s, t, s, ¨ ¨ ¨ , t, sq. By substituting d0 “ t ´ 1, d1 “ s ´

1, ¨ ¨ ¨ , dn`1 “ s ´ 1, we can confirm that the biggest number we can represent with (A.21) is

sn`1tn`1´1 ą kpn, s, tq´1. Also, from its construction, any number between 0 and sn`1tn`1´1

can be uniquely determined by the pair pd0, d1, ¨ ¨ ¨ , dn`1q (for more explanation, see Theorem 1

in [35]). Hence, any 0 ď d ď kpn, s, tq ´ 1 can be uniquely represented with pd0, d1, ¨ ¨ ¨ , dn`1q.

Now, we want to show that d “ dpn, i, jq only when d0 “ s ´ 1, d1 “ t ´ 1, ¨ ¨ ¨ , dn´3 “

t ´ 1, dn´2 “ s ´ 1 and dn´1 “ i, dn “ j. It is easy to see that d0 “ dpn, i, jq mod s “ s ´ 1,

and similarly d1 “ pdpn, i, jq ´ d0q mod t “ t ´ 1 and so on. Since i1 varies only from 0 to

t´ 1,

dn´1 “ pi ¨ s
n
2 t

n
2
´1
` j ¨ s

n
2 t

n
2 q{sn{2tn{2´1 mod t

“ pi` jtq mod t

“ i.

Finally, dn “ pj ¨s
n
2 t

n
2 q{s

n
2 t

n
2 “ j. As there is only one unique representation of any d with a tu-

ple pd0, d1, ¨ ¨ ¨ , dnq, by comparing (A.20) and (A.21), we can conclude that j1 “ i2, ¨ ¨ ¨ , jn´1 “

in, and i1 “ i, jn “ j. This completes the proof. �
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Remark A.4.1. If we substitute st “ m in (A.17), we get:

kpn, s, tq “

$

’

&

’

%

m
n
2 pt` 1q ´ t if n is even,

m
n´1
2 pm` tq ´ t if n is odd

(A.22)

By plugging in s “ m, t “ 1, we can see that kpn, s, tq “ 2mn{2 ´ 1 for n even, and

kpn, s, tq “ m
n`1
2 `m

n´1
2 ´ 1 for n odd. This matches the recovery threshold given in (A.7).

We now give a construction of Generalized n-matrix codes.

Construction A.4.1 (Generalized n-matrix multiplication code).

Splitting of input matrices: We split Ai’s and Bi’s as follows:

Apiq
“

»

—

—

—

—

–

A
piq
0,0 ¨ ¨ ¨ A

piq
0,s´1

... . . . ...

A
piq
t´1,0 ¨ ¨ ¨ A

piq
t´1,s´1

fi

ffi

ffi

ffi

ffi

fl

,

Bpiq “

»

—

—

—

—

–

B
piq
0,0 ¨ ¨ ¨ B

piq
0,t´1

... . . . ...

B
piq
s´1,0 ¨ ¨ ¨ B

piq
s´1,t´1

fi

ffi

ffi

ffi

ffi

fl

, (A.23)

where A
piq
j,k’s have dimension N{tˆN{s and B

piq
j,k’s have dimension N{sˆN{t.

Master node (encoding): Define the encoding polynomials as

pAp1qpz1, z2q “
t´1
ÿ

i“0

s´1
ÿ

j“0

A
p1q
i,j z

i
1z
j
2,

pBp1qpz2, z3q “
s´1
ÿ

i“0

t´1
ÿ

j“0

B
p1q
i,j z

s´1´i
2 zj3,

...,

pBpn{2qpzn, zn`1q “
s´1
ÿ

i“0

t´1
ÿ

j“0

B
pn{2q
i,j zs´1´in zjn`1.
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for n even, and

pAp1qpz1, z2q “
t´1
ÿ

i“0

s´1
ÿ

j“0

A
p1q
i,j z

i
1z
j
2,

...,

pBppn´1q{2qpzn´1, znq “
s´1
ÿ

i“0

t´1
ÿ

j“0

B
ppn´1q{2q
i,j zs´1´in´1 zjn,

pAppn`1q{2qpzn, zn`1q “
t´1
ÿ

i“0

s´1
ÿ

j“0

A
ppn´1q{2q
i,j zt´1´in zjn`1,

for n odd.

The master node sends to the r-th worker evaluations of pApiq’s, and pBpiq’s at

z1 “ xs
n{2tn{2´1

, z2 “ x, z3 “ xs, ¨ ¨ ¨ ,

zn “ xs
n{2´1tn{2´1

, zn`1 “ xs
n{2tn{2 for n even, (A.24)

z1 “ xs
pn´1q{2tpn´1q{2

, z2 “ x, x3 “ xs, ¨ ¨ ¨ ,

zn “ xs
pn´1q{2tpn´3q{2

, zn`1 “ xs
pn´1q{2tpn`1q{2

for n odd. (A.25)

where xr’s are all distinct for r P t1, 2, . . . , P u.

Fusion node (decoding): The fusion node uses outputs of any kpn, s, tq successful workers

(given in (A.17)) to compute the coefficients of pCpzq. If the number of successful workers is

smaller than kpn, s, tq, the fusion node declares a failure.

Remark A.4.2. The two strategies for n-matrix multiplication proposed in this work can be

understood better in our general PolyDot framework (see Table A.1). Essentially, they differ

in the substitutions for the variables z1, ¨ ¨ ¨ , zn`1 to convert the polynomial in n variables into

a polynomial in a single variable for the ease of interpolation. The main intuition behind the

substitutions of (A.24) and (A.25) is that for z1 and zn`1, their powers grow from 0 to t ´ 1 (or

s ´ 1), while all the other terms have powers growing from 0 to 2s ´ 2 (or 2t ´ 2). Hence, to

minimize the maximum degree of the product polynomial, it is best to assign high powers of x

to z1 and zn`1. An alternate substitution could also be to start with z1 “ x and then continue
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Table A.1: Comparison of different strategies for multiplying n matrices using different substi-

tutions in the general PolyDot framework when n is even.

n-matrix codes Generalized

n-matrix codes

Alternate

Substitution
Substitution z1 “ z2 “

x, z3 “ z4 “

xm, ¨ ¨ ¨ , zn´1 “

xn “

xm
n{2´1

, zn`1 “

xm
n{2

z1 “

xs
n{2tn{2´1

, z2 “

x, x3 “

xs, ¨ ¨ ¨ , zn “

xs
n{2´1tn{2´1

, zn`1 “

xs
n{2tn{2

z1 “ x, z2 “

xt, z3 “

xst, ¨ ¨ ¨ , zn`1 “

xs
n{2tn{2

Recovery

Threshold

2mn{2 ´ 1 s
n
2 t

n
2
`1 `

s
n
2 t

n
2
´1 ´ 1

s
n
2 t

n
2
`1 `

s
n
2 t

n
2 ´ t

substituting z2 “ xt, z3 “ xst, z4 “ xst
2 , . . ., zn`1 “ stn

2
utr

n
2

s. The recovery threshold resulting

due to this substitution is given by:

kpn, s, tq “

$

’

&

’

%

s
n
2 t

n
2
`1 ` s

n
2 t

n
2 ´ t if n is even,

s
n`1
2 t

n`1
2 ` s

n´1
2 t

n`1
2 ´ t if n is odd

(A.26)

for any integers s, t that satisfy m “ st. This is slightly higher than the recovery threshold

obtained in Theorem A.4.1. Thus, for n ą 2, we can improve the recovery threshold by delving

deeper into the order of the substitution.

A.5 Complexity Analysis of Generalized n-matrix codes

Encoding/decoding complexity: Encoding communication cost isOpnN2P q as in Section A.3.

Decoding complexity is OpN2

t2
kpn, s, tq log2 kpn, s, tq log log kpn, s, tqq (even case)

or OpN2

ts
kpn, s, tq log2 kpn, s, tq log log kpn, s, tqq (odd case).

Communication Complexity: The master node sends out OpnPN2{mq encoded symbols
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in the beginning. After the completion of computation, each node has to sendOpN2{t2q symbols

to the fusion node. Hence, total number of symbols the fusion node receives is kpn, s, tq ¨N2{t2.

Let us first consider the case when n is even. By substituting (A.17), we obtain kpn, s, tqN2{t2 “

Opmn{2{tq. This is the same trade-off we observed using PolyDot codes for single matrix-matrix

multiplication. For a fixed m, recovery threshold kpn, s, tq grows linearly with t while commu-

nication cost is inversely related to t (See Fig.2.4). When n is odd, we do not see such trade-off.

Recovery threshold is always mpn´1q{2pm ` tq ´ t “ Opmpn`1q{2q regardless of the choice of t.

Communication cost on the other hand is kpn, s, tqN2{t2 “ Opmpn`1q{2{t2 `mpn´1q{2{tq which

decreases with growing t. For instance, if t “ 1, communication cost is Opmpn`1q{2q, and when

t “ m, communication cost is Opmpn´3q{2q. This suggests that when n is odd, it is always better

to choose t “ m as m grows to infinity.

Each worker’s computation cost: Using the similar technique shown in Section A.3, we

can show that each worker’s computation complexity is at most OpmaxpnN3{m1.5, N3{mqq for

any choice of s, t. If we compare the computation complexity for encoding/decoding and the

computation complexity at each worker node, we can see that as long asN ą Opmn{2´1.5 logmq,

encoding/decoding computation overhead is amortized.

Remark A.5.1. Our result given here splits Apiq’s into s ˆ t grid of blocks and Bpiq’s into t ˆ s

grid of blocks. However, it is not necessary that all matrices have to be split in the same fashion.

For instance, Ap1q can be divided into t1 ˆ s1 grid and Bp1q can be divided into s1 ˆ t2 grid,

and so on. In this more general setting Apiq’s are split into ti ˆ si grid and Bpiq’s are split into

si ˆ ti`1 grid. Let us denote s “ rs1, ¨ ¨ ¨ , sn{2s, t “ rt1, ¨ ¨ ¨ , tn{2`1s. Then Theorem A.4.1 can

be rewritten as follows.

kpn, s, tq “

$

’

’

&

’

’

%

ptn{2`1 ` 1{t1q
śn{2

i“1 siti ´ 1 if n even,

pt1spn`1q{2 ` 1q
śpn´1q{2

i“1 siti ´ 1 if n odd.
(A.27)

Remark A.5.2. In this work we assumed that all matrices have size N ˆ N for simplicity.
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However, this assumption is not necessary in the results presented here. When we have matrices

with different dimensions to multiply, splitting each matrix in a different way would be more

beneficial. For example, when we multiply matrices A,B with dimensions N ˆ N and N ˆ 2,

we can divide A into tˆ s grid and divide B into sˆ 1 grid.
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[75] Shuangzhe Liu and Gõtz Trenkler. Hadamard, khatri-rao, kronecker and other matrix

products. Int. J. Inf. Syst. Sci, 4(1):160–177, 2008. 3.1.2.4

[76] Michael Luby. Lt codes. In null, page 271. IEEE, 2002. 3

[77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-

correcting codes. Elsevier, 1977. 3.1.2

[78] Michael Moldaschl, Karl E Prikopa, and Wilfried N Gansterer. Fault tolerant

communication-optimal 2.5 d matrix multiplication. Journal of Parallel and Distributed

149



Computing, 104:179–190, 2017. 1.2

[79] Edward F Moore and Claude E Shannon. Reliable circuits using less reliable relays.

Journal of the Franklin Institute, 262(3):191–208, 1956. 1.1

[80] Ihab Nahlus, Eric P Kim, Naresh R Shanbhag, and David Blaauw. Energy-efficient Dot-

Product Computation using a Switched Analog Circuit Architecture. In International

Symposium on Low Power Electronics and Design (ISLPED), pages 315–318, 2014. 2.2

[81] Frederique Oggier and Anwitaman Datta. Self-repairing homomorphic codes for dis-

tributed storage systems. In INFOCOM, 2011 Proceedings IEEE, pages 1215–1223.

IEEE, 2011. 3.1.1.1

[82] Choong Gun Oh, Hee Yong Youn, and V. K. Raj. An efficient algorithm-based concurrent

error detection for FFT networks. IEEE Transactions on Computers, 44(9), Sep 1995.

ISSN 0018-9340. 2.2

[83] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing

order to the web. Technical report, Stanford InfoLab, 1999. 2.2

[84] D. S. Papailiopoulos and A. G. Dimakis. Locally repairable codes. IEEE Transactions on

Information Theory, 60(10):5843–5855, Oct 2014. ISSN 0018-9448. doi: 10.1109/TIT.

2014.2325570. 3.1.1.1

[85] FD Parker. Inverses of Vandermonde matrices. The American Mathematical Monthly, 71

(4):410–411, 1964. 4

[86] W Wesley Peterson and Michael O Rabin. On codes for checking logical operations. IBM

Journal of Research and Development, 3(2):163–168, 1959. 1.2

[87] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G Andersen, Gregory R Ganger,

Garth A Gibson, and Srinivasan Seshan. Measurement and analysis of tcp throughput

collapse in cluster-based storage systems. In FAST, volume 8, pages 1–14, 2008. 3

[88] Stephen C Phillips, Vegard Engen, and Juri Papay. Snow white clouds and the seven

150



dwarfs. In IEEE International Conference on Cloud Computing Technology and Science,

pages 738–745, 2011. 2.2

[89] KV Rashmi, Nihar B Shah, and Kannan Ramchandran. A piggybacking design frame-

work for read-and download-efficient distributed storage codes. In Information Theory

Proceedings (ISIT), 2013 IEEE International Symposium on, pages 331–335. IEEE, 2013.

2.2

[90] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan

Ramchandran. A hitchhiker’s guide to fast and efficient data reconstruction in erasure-

coded data centers. ACM SIGCOMM Computer Communication Review, 44(4):331–342,

2015. 2.2

[91] Netanel Raviv, Rashish Tandon, Alex Dimakis, and Itzhak Tamo. Gradient coding from

cyclic mds codes and expander graphs. In International Conference on Machine Learning

(ICML), pages 4302–4310, 2018. 1.2

[92] A. L. Narasimha Reddy and Prithviraj Banerjee. Algorithm-based fault detection for sig-

nal processing applications. IEEE Transactions on Computers, 39(10):1304–1308, 1990.

1.2

[93] Yongmao Ren, Yu Zhao, Pei Liu, Ke Dou, and Jun Li. A survey on tcp incast in data center

networks. International Journal of Communication Systems, 27(8):1160–1172, 2014. 3

[94] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge university

press, 2008. 1.3

[95] Ron Roth. Introduction to coding theory. Cambridge University Press, 2006. 1.3

[96] Robert D Ryne. On FFT-based convolutions and correlations, with application to solving

poisson’s equation in an open rectangular pipe. arXiv preprint arXiv:1111.4971, 2011.

2.2

[97] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003. 2.2

151



[98] Peter Sanders and Jop F Sibeyn. A bandwidth latency tradeoff for broadcast and reduction.

Information Processing Letters, 86(1), 2003. 3.2.2.4

[99] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology chal-
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