
Hardware-Aware AutoML for Efficient Deep Learning Applications

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dimitrios Stamoulis

B.S., Electrical and Computer Engineering, National Technical University of Athens
M.Eng., Electrical and Computer Engineering, McGill University

Carnegie Mellon University
Pittsburgh, PA

May 2020

c© 2020 Dimitrios Stamoulis.
All rights reserved.

iii

Acknowledgements

The past four years at Carnegie Mellon have been an incredible, transformative endeavor for me, and I

could hardly enumerate the many ways in which these brilliant people have supported and inspired me.

To these people I express my sincere gratitude.

First and foremost, I would like to thank my advisor Diana Marculescu for her wisdom and guidance. I

cannot imagine a more supportive and inspiring advisor than Diana. Her trust and patience guided me in

expanding my research interests and skills and allowed me to pursue novel research problems. I hope in

my career to come close to the incredible role model she is as a mentor: always dedicated to helping her

students to “unearth” their full potential. Thank you Diana for unveiling the true joy of a PhD to me.

I would like to thank my committee members, Gauri Joshi, Da-Cheng Juan, and Di Wang. I have

greatly enjoyed my discussions with Gauri on the limitations and opportunities in the field of AutoML.

Da-Cheng’s research experience and insight greatly contributed to the early steps of this work. Through

his enthusiasm, he has shown me how to energize team efforts and how to convey keen ideas and concerns

in a constructive and sensitive manner. I was incredibly fortunate to work with Di, who taught me how

simple intuition can spawn solutions to very challenging problems. His ability to identify and to motivate

novel research directions allowed me to form ideas that eventually found their way into this thesis.

My deepest gratitude to Radu Marculescu, for his dedication to high-quality research and for continu-

ously inspiring me to seek the big picture of the problems we worked on. As an EnyAC-er, I was fortunate

to collaborate and interact with some incredibly talented researchers: Ermao Cai, Zhuo Chen, Ruizhou

Ding, Ting-Wu Chin, Ahmet Fatih Inci, thank you for making our EnyAC meetings a feast of knowledge

and for discussing and critiquing countless ideas with me through our various collaborations.

I have had some incredible mentors and collaborators during my internships: Florin Dartu, Rahul

Krishnan, Jie Liu, and Dimitrios Lymberopoulos, thank you for giving me the opportunity to apply my

research to real-world problems. I would also like to reiterate my sincere thanks to my past mentors,

including Dimitrios Soudris, Dimitrios Rodopoulos, Zeljko Zilic, Brett Meyer, and Francky Catthoor, for

being instrumental in fashioning my interests during my formative years as a young researcher.

I would also like to thank the following institutions and people for generously supporting my PhD:

Qualcomm Inc. for the Qualcomm Innovation Fellowship 2018, the National Science Foundation (grants

NSF CCF Grant 1314876, NSF CNS Grant No. 1564022, CSR Grant No. 1815780, and CCF Grant No.

1815899), the Pittsburgh Supercomputing Center (via NSF CCR Grant No. 180004P), David Barakat and

LaVerne Owen-Barakat for the David Barakat and LaVerne Owen-Barakat Fellowship, and the Gerondelis

Foundation. I would like to extend special thanks to Google Research for the Google Cloud Platform (GCP)

iv

and TensorFlow Research Cloud (TFRC) credit awards. From the Google Pittsburgh office, many thanks to

Chris Larkin and Jonathan Caton for their tremendous help. Big thanks to the awesome staff members in

the ECE Department: Nathan Snizaski, Sherri Ferris, Judy Bandola, Bari Guzikowski, Shelley Phelps, and

many others, for their help in administrative and student activities.

During my PhD, I was fortunate to meet numerous incredibly talented, genuine people that enriched

my life both in Carnegie Mellon and in Pittsburgh. To Ifigeneia Apostolopoulou, Kartikeya Bhardwaj,

Prashanth Mohan, Jeremie Kim, Vignesh Balaji, Sandeep Dsouza, Ching-Yi Lin, Ryan Kim, and many

others, many thanks for the insightful discussions during classes and projects. To Mark Blanco, Vasu

Agrawal, and other HKN members, thanks for the exciting activities with the CMU HKN chapter. To Amrit

Pandey, Joe Sweeney, Antonis Manousis, Onur Kibar, Meric Isgenc, Pietro Simeoni, Luca Colombo, Martin

Wagner, Tyler Vuong, Youngwook Do, Bechara Maroun, Marko Jereminov, Aayushya Agarwal, and many

others, thank you for being the most amazing friends and for the amazing memories!

I find myself fortunate to have the guidance of Anastasios and Yannis Stamoulis, who have been

instrumental in shaping my resilience, character, and ambitions. I want to reiterate a particular shout-out

to my friends George Pavlakos, Vagelis Nikoloudakis, Yannis Chatzimichos, Nikos Tsiamitros, and Kostas

Tokas, for the friendship we share since our first semester at NTUA and for their support throughout the

peaks and valleys.

I am most thankful to my dear Katerina Mousteraki for her love and encouragement, for her patience

and support through endless early mornings, submission deadlines, late nights, and countless miles

covered across ever-changing internships, universities, and work locations around the globe. Thank you for

being by my side throughout the whole journey.

Last, but certainly not least, my very special gratitude goes to my family for their unconditional love,

guidance, and support: my father Anastasios Stamoulis, my mother Anastasia Aleiferi, and my brother

Thomas Stamoulis, to whom I owe everything I have achieved in my life so far. This thesis is as much their

hard work as it is mine.

v

Abstract

Deep Neural Networks (DNNs) have been traditionally designed by human experts in a painstaking

and expensive process, dubbed by many researchers to be more of an art than science. However, the ever-

increasing demand for state-of-the-art performance and real-world deployment has resulted in larger

models, making the manual DNN design a daunting task. AutoML presents a promising path towards

alleviating this engineering burden by automatically identifying the DNN hyperparameters, such as the

number of layers or the type of layer-wise operations. As modern DNNs grow larger, AutoML methods

face two key challenges: first, the increased DNN model sizes result in increased computational complexity

during inference, making it difficult to deploy AutoML-designed DNNs to resource-constrained devices.

Second, due to the large DNN design space, each AutoML search remains considerably costly, with an

overall cost of hundreds of GPU-hours.

In this thesis, we propose AutoML methods that are both hardware aware and search-cost efficient. We

introduce a Bayesian optimization (BO) methodology enhanced with hardware-cost predictive models,

allowing the AutoML search to traverse the design space in a constraint “complying” manner, up to 3.5×

faster compared to vanilla BO methods. Moreover, we formulate the design of adaptive DNNs as an AutoML

task and we jointly solve for the DNN architectures and the adaptive execution scheme, reducing energy

consumption by up to 6× compared to hand-tuned designs. Next, in a departure from existing one-shot

Neural Architecture Search (NAS) assumptions on how the candidate DNN architectures are evaluated,

we introduce a novel view of the one-shot NAS problem as finding the subsets of kernel weights across

a single-path one-shot model. Our proposed formulation reduces the NAS search cost by up to 5,000×

compared to existing NAS methods. Taking advantage of such efficiency, we investigate how various

design space and formulation choices affect the AutoML results, achieving a new state-of-the-art NAS

performance for image classification accuracy (75.62%) under runtime constraints on mobile devices.

Contents

Contents vi

List of Tables ix

List of Figures x

List of Algorithms xiv

1 Introduction 1

1.1 Challenges for state-of-the-art AutoML frameworks . 2

1.2 Thesis contributions . 3

1.3 Thesis organization . 4

2 Background 5

2.1 Paradigms for AutoML . 5

2.2 Designing DNNs with hardware-aware AutoML: problem formulation 7

2.3 Constrained Bayesian optimization . 7

2.4 One-shot Neural Architecture Search (NAS) . 9

3 Hardware-Constrained DNN Hyperparameter Optimization via Bayesian Optimization 12

3.1 Chapter overview . 12

3.1.1 Key novelty: Enhancing BO with hardware models . 13

3.1.2 Contributions and Chapter organization . 14

3.2 Hardware-constrained Bayesian optimization . 14

3.3 Proposed methodology: HyperPower . 15

3.3.1 Proposed power and memory models . 15

3.3.2 Proposed constraint-aware acquisition function . 16

3.3.3 Early termination enhancement . 17

vi

CONTENTS vii

3.4 Experimental results . 17

3.4.1 Experimental setup . 17

3.4.2 HyperPower outperforms vanilla Bayesian optimization & random search 18

3.5 Discussion . 20

4 Hardware-Constrained Adaptive DNNs Design 21

4.1 Chapter overview . 21

4.1.1 Key novelty: adaptive DNNs as a hyperparameter optimization problem 22

4.1.2 Contributions and Chapter organization . 22

4.2 Background: Adaptive DNNs . 23

4.3 Proposed methodology: adaptive DNNs as an AutoML problem 24

4.4 Experimental results . 25

4.5 Discussion . 29

5 Efficient Single-Path Neural Architecture Search 31

5.1 Chapter overview . 31

5.1.1 Key novelty: from multi- to single-path NAS formulations 33

5.1.2 Contributions and Chapter organization . 33

5.2 Proposed Single-Path NAS . 33

5.2.1 Single-path vs. existing multi-path assumptions . 35

5.2.2 Hardware-aware NAS with differentiable runtime loss 36

5.3 Experimental results . 37

5.3.1 Experimental setup . 37

5.3.2 Runtime profiling and modeling . 38

5.3.3 State-of-the-art runtime-constrained ImageNet classification 38

5.3.4 Ablation study: kernel-based accuracy-efficiency trade-off 41

5.3.5 Single-Path NAS as feature extractor: COCO object detection 42

5.4 Discussion . 43

6 Exploring the Neural Architecture Search Space 44

6.1 Chapter overview . 44

6.2 Investigating one-shot NAS formulations . 46

6.3 Hypertuning the NAS solver . 49

6.4 Single-Path+: enhancing the one-shot NAS search space . 51

CONTENTS viii

6.4.1 Analyzing the SE-based accuracy-runtime trade-off . 53

6.4.2 State-of-the-art Mobile AutoML results . 54

6.5 Discussion . 55

7 Related Work 56

7.1 Modeling the hardware performance of DNNs . 56

7.2 Towards efficient DNN execution . 57

7.2.1 Adaptive DNNs . 57

7.2.2 Pruning & quantization . 57

7.3 Hardware-aware Bayesian optimization . 58

7.4 Hardware-aware Neural Architecture Search (NAS) . 58

8 Conclusion 60

8.1 Key thesis results . 60

8.1.1 Enhancing Bayesian optimization with hardware constraint-awareness 60

8.1.2 AutoML for designing adaptive DNNs . 60

8.1.3 Single-path one-shot NAS . 61

8.1.4 State-of-the-art Mobile AutoML performance . 61

8.2 Future work . 62

8.2.1 Jointly exploring the underlying hardware architecture space 62

8.2.2 NAS beyond image classification . 62

8.2.3 AutoML in distributed training settings: federated learning 63

Bibliography 64

List of Tables

3.1 Root Mean Square Percentage Error (RMSPE) values of the proposed power and memory models. 16

3.2 Mean best test error (and standard deviation in parenthesis) achieved per method. 19

4.1 Hyperparameter optimization results on the test set. 28

4.2 Designing three-network adaptive DNNs: Hyperparameter optimization results on the test set. 29

5.1 Single-Path NAS achieves state-of-the-art accuracy (%) on ImageNet for similar mobile latency

setting compared to previous NAS methods (≤ 80ms on Pixel 1), with up to 5, 000× reduced

search cost in terms of number of epochs. *The search cost in epochs is estimated based on

the claim [12] that ProxylessNAS is 200× faster than MnasNet. ‡ChamNet does not detail the

model derived under runtime constraints [23] so we cannot retrain or measure the latency. . . . 39

5.2 Searching across subsets of kernel weights: DNNs with weight values trained over subsets of

the kernels (3× 3 as subset of 5× 5) achieve performance (top-1 accuracy) similar to DNNs with

individually trained kernels. 42

5.3 COCO Object Detection Performance . 43

6.1 Single-Path+ NAS, enhanced with fully searchable Squeeze-and-Excitation [52] (SE) paths, further

pushes the state-of-the-art accuracy (%) on ImageNet for the targeted mobile latency setting

(≈ 80ms on Pixel 1), currently outperforming both manually- and NAS-designed DNNs that

also consider SE [49, 122]. † For MobileNetV3, we report the version that matches the MnasNet

space backbone, since some additional manual enhancements in the network head are directly

applicable to all other DNNs below. 54

ix

LIST OF FIGURES x

List of Figures

2.1 An overview of AutoML paradigms following the categorization by Hutter et al. [54]. In this

thesis, we focus on AutoML based on Bayesian optimization (Chapters 3-4) and one-shot NAS

(Chapters 5-6) techniques under hardware constraints. 6

2.2 Overview of BO during each iteration d + 1. BO uses a surrogate probabilistic model Mi to

approximate each term; the plots show the mean and confidence intervals estimated with the

model (the true objective function is shown for reference, but it is unknown in practice). At

each iteration d + 1, an acquisition function q(·) is expressed based on the modelMi and the

maximizer of q(·) is selected as the candidate design point ad+1 to evaluate. The objective is

evaluated, i.e., the candidate DNN ad+1 is trained and evaluated on the validation set. Then,

the probabilistic models Mi are refined via Bayesian posterior updating based on the new

observation. The process is repeated for Dmax steps. 8

2.3 One-shot differentiable NAS relaxes the combinatorial optimization problem (Equation 2.1) to

a softmax-based approximation of the DNN choices. A supernet model is constructed that

encompasses all candidate DNN designs, i.e., all solutions a ∈ A. 9

2.4 MobileNetV2-based search space [102]: DNN layers are grouped into predefined blocks, based

on their filter sizes. Each block contains four mobile inverted bottleneck convolution MBConv

layers. For each MBConv, NAS methods search for the convolution kernel size k, the expansion

ratio e, whether the layer is skipped or not, etc. MBConv from different blocks/layers can be

different. 11

3.1 Visualizing the complexity of the design space – testing error and GPU power consumption for

different DNN design based on the AlexNet search space (CIFAR-10 with Caffe [56] on NVIDIA

GTX-1070). 13

3.2 DNN power consumption as a low-cost constraint (power measured on NVIDIA TX1). 14

3.3 Actual and predicted power using our models for MNIST and CIFAR-10, executing on GTX

1070 (left) and Tegra TX1 (right). 16

LIST OF FIGURES xi

3.4 Early termination insight: how accuracy can indicate configurations that do not converge to

high-accuracy values (> 10%). 17

3.5 HyperPower reaches the near-optimal region in a fifth of point evaluations compared to vanilla

BO and random search. 18

3.6 Assessment of HyperPower compared to random search and vanilla BO under fixed number of

point evaluations on CIFAR-10 CNN: (left) Number of constraint-violating samples against the

number of point evaluations. (right) Validation error and power value per candidate design. . . 18

3.7 HyperPower reaches low-error samples faster compared to vanilla constrained BO, capturing the

benefit of using early termination and predictive hardware cost models. 19

4.1 Classifying an image x using adaptive neural networks comprised of M DNNs. The system

evaluates Ni first, and based on a decision function κi,i+1 decides to use Ni(x) as the final

prediction or to evaluate networks in later stages. 23

4.2 Energy minimization under maximum error constraint. Bayesian optimization considers con-

figurations (red circles) around the near-optimal region, while significantly outperforming

static-design systems (orange squares). Left: Embedded (local) execution for both networks.

Right: An edge-server energy-minimization design paradigm. 27

4.3 Bayesian optimization for minimum energy under error constraints in the edge-server design.

The method progressively evaluates designs closer to the Pareto front. The near-optimal region

is reached within 22 function evaluations. Left: Sequence of configurations selection. Right: Best

solution against the number of function evaluations. 27

4.4 Assessing the effectiveness of the proposed methodology across different design paradigms

and both constrained and over-constrained cases (the constraint values per case are given in the

parentheses on the x-axis labels). We observe that our methodology BO+ (blue) successfully

approaches the grid-search solution (gray), while always outperforming the best solution

achieved by existing static-design methods (orange). Left: Energy minimization under maximum

error constraints. Right: Error minimization under maximum energy constraints. 28

5.1 Our method directly optimizes for the subset of convolution kernel weights and searches over

an over-parameterized “superkernel” in each DNN layer (right). This novel view of the design

space eliminates the need for maintaining separate paths for each candidate operation, as in

previous multi-path approaches (left). 32

5.2 Encoding NAS kernel-level decisions into the searchable superkernel. 34

5.3 Encoding expansion ratio decisions into the searchable superkernel. 35

LIST OF FIGURES xii

5.4 Single-path NAS builds upon the MobileNetV2-based search space [122] to identify the mobile

inverted bottleneck convolution (MBConv) per layer (left). Our one-shot supernet encapsulates all

possible NAS architectures in the search space, i.e., different kernel size (middle) and expansion

ratio (right) values, without the need for appending each candidate operation as a separate path.

Single-Path NAS directly searches over the weights of the per-layer searchable “superkernel”

that encodes all MBConv types. 36

5.5 The runtime model (Equation 5.8) is accurate, with 1.76% mean prediction error. 38

5.6 Single-Path NAS search progress: Progress of both objective terms, i.e., cross entropy CE (left)

and runtime R (right) during NAS search. 40

5.7 Our method outperforms MobileNetV2 & MnasNet across various size scales. 40

5.8 Hardware-efficient DNN found by Single-Path NAS, with top-1 accuracy of 74.96% on ImageNet

and inference time of 79.48ms on Pixel 1 phone. 41

5.9 Visualization of kernel-based architectural contributions. The standard deviation of superkernel

values across the kernel channels is shown in log-scale, with lighter colors indicating smaller

values. 41

6.1 “How the differentiable Mobile NAS formulation assumptions affect the overall performance (accuracy and

runtime) of the AutoML-designed DNN?” Statistics (mean and variance) for the (proxy) accuracy

(top 1%) and the runtime of DNNs designed via various formulations across 20 runs; for

intra-run statistics, we pick the Pareto optimal DNN out of the 20 samples and we train another

20 DNNs sampled from the softmax distribution. 47

6.2 Progress of various hyperparameter optimization solvers with respect to the distance from the

target latency (left) and the overall reward (right). 50

6.3 Visualizing the objective value (Equation 6.2) across multiple fidelities (y-axis) and hyperparam-

eter values (x-axis) via grid search. Interestingly, low-cost function evaluations (middle, right)

that reach the Pareto point around the target latency faster, tend to “overshoot” beyond this

point towards over-constrained, suboptimal designs (bottom, right). 50

6.4 Single-Path+ search space [112]: we enhance the MobileNet-based space with fully searchable

Squeeze-and-Excitation [52] (SE) paths. Our method searches over the weights of both the depth-

wise searchable superkernel (i.e., kernel size and expansion ratio values) and the searchable

squeeze superkernel (i.e., SE ratio value). We show that this search space further improves the

accuracy-runtime trade-off. 51

LIST OF FIGURES xiii

6.5 Encoding NAS decisions into the squeeze superkernel: We formulate all candidate Squeeze-

and-Excitation (SE) path types (i.e., SE ratio values) directly into the searchable superkernel. . 52

6.6 Hardware-efficient Single-Path+ DNN design [112], with top-1 accuracy of 75.62% on ImageNet

and inference time of 81.84ms on Pixel 1 phone. Compared to previous DNNs without SE [113]

(Figure 5.8), some of the earlier 5× 5 MBConvs have been replaced with smaller 3× 3− 3

MBConvs, and instead Single-Path+ NAS selects SE paths with SE ratio of se = 0.5 in the last

layers. 53

6.7 Runtime profiling shows that SE ratios larger than 0.25 provide a better accuracy-runtime trade-

off, since the squeeze step is enhanced with more channels with negligible runtime overhead

(si
k,e,0.25 ≈ si

k,e,0.5), especially for the deeper layers (MBConv 18-21). 53

List of Algorithms

1 Designing adaptive DNNs via Bayesian optimization . 26

xiv

Chapter 1

Introduction

Deep Neural Networks (DNNs) have emerged as powerful models for numerous deep learning (DL)

applications, such as image recognition [46], machine translation [126], object detection [73, 74, 45],

and semantic segmentation [63]. The abundance of successful, real-world DNN-based products and

applications in our daily lives (e.g., 2D human pose estimation [55], Speech-to-Text APIs [39], real-time

virtual-reality image rendering on head-mounted displays [81, 80, 88], to name a few) has ignited an

ever-increasing interest in pushing the performance of DNNs to achieve state-of-the-art results. DNNs

have been traditionally designed by human experts in an expensive and meticulous process, which has

been dubbed by many researchers as more of an art than science [103]. However, as modern DNN models

become increasingly deeper and larger, the task of hand-tailored DNN design has become a daunting

challenge [119].

AutoML presents a promising path for alleviating the engineering costs and the complexity that are

intrinsic to the design of neural networks, by automating the tuning of DNN hyperparameters (e.g., the

number of layers, the type of operations per layer, etc.) and by formulating the design of DNNs as a

hyperparameter optimization problem [103, 97]. In fact, we are witnessing a proliferation of novel AutoML

approaches, with formulations spanning many different methodologies, such as black-box hyperparameter

optimization (HPO) [103, 106, 33, 62, 71, 5] and Neural Architecture Search (NAS) [138, 97, 79, 100].

Notably, commercial interest in AutoML has grown dramatically in recent years, as demonstrated by the

vast computational resources committed to industry-driven AutoML research [138, 97, 1, 136, 131, 42, 35]

and by the plethora of commercial cloud-based services and frameworks [32, 36, 86, 38, 121, 87]. Overall,

AutoML methodologies constitute a research topic of paramount importance, since the commoditization of

“push-button” DL solutions without the need for DL experts is expected to have significant reverberations

across multiple industries.

1

CHAPTER 1. INTRODUCTION 2

1.1 Challenges for state-of-the-art AutoML frameworks

AutoML frameworks have currently established the state-of-the-art performance across numerous DL

applications. Strong empirical results show that AutoML-generated DNNs outperform their hand-designed

counterparts. However, despite the numerous beta tools available online [32, 86, 38], the growing demand

for real-world deployment of DNNs has given rise to two key challenges in AutoML research.

Challenge 1 – Hardware efficiency of AutoML-designed DNNs: As modern DNNs become increas-

ingly deeper, they require more computational power during inference. This increased computational

cost becomes an impediment to the deployment of state-of-the-art AutoML-designed DNNs to resource-

constrained devices, such as mobile phones and Internet-of-Things (IoT) nodes [122]. For instance, object

classification can drain the smartphone battery within an hour [133]. Consequently, accounting for the

hardware efficiency of AutoML-designed DNNs has emerged as an important research direction, as attested

by the plethora of recent device-aware AutoML approaches [122, 55, 12, 31, 51].

In particular, existing methods revisit the earlier hardware-unaware AutoML formulations (e.g., re-

inforcement learning [138] or evolutionary algorithms [97]) by incorporating the total FLOP count as a

constraint and by optimizing for the so-called “mobile setting”, i.e., for models with less than 600 million

parameters. Nonetheless, recent experimental results show that the number of operations or parameters

does not approximate the latency well [31, 14, 8]. While recent methods explicitly account for hardware

measurements and models (e.g., inference latency) into AutoML formulations [31, 51, 128, 12], they have

yet to address the second key challenge of prohibitively large search cost, as discussed next.

Challenge 2 – Efficiency in AutoML search cost: As state-of-the-art DNNs grow larger, their increased

model complexity gives rise to a combinatorially large search space. For example, in the case of a mobile-

efficient DNN with 22 layers, choosing among five candidate operations yields 522 ≈ 1015 possible DNN

architectures [128]. Hence, AutoML methods need to tackle the intrinsically high cost of traversing this huge

design space. Earlier methods use reinforcement learning (RL) to guide the exploration [122]. Nonetheless,

training the RL controller poses prohibitive computational challenges, since tens of thousands of candidate

DNNs need to be trained [128] for a total search cost of tens of thousands of GPU-hours. This immense

amount of computational resources required for AutoML constitutes an unprecedented burden for cloud

providers, with each search being as costly in terms of total carbon footprint as five round-trip flights from

San Fransisco to New York [44].

Recent literature has seen a shift towards more sample-efficient differentiable formulations [79, 93,

132, 128, 12]. However, even the newest Neural Architecture Search (NAS) methods remain considerably

expensive, with an overall cost of hundreds of GPU-hours [128, 12]. Consequently, existing AutoML

CHAPTER 1. INTRODUCTION 3

frameworks remain a bottleneck, especially when using them repeatedly to search for different hardware

platforms under various device constraints: each single AutoML search [128, 12] has the same total carbon

footprint as five cars during their lifetimes [44].

1.2 Thesis contributions

In light of the aforementioned challenges, in this thesis we strive to develop novel AutoML methods that are

both hardware aware and search-cost efficient. We show that, by incorporating insight from the underlying

search space, the hardware (HW) metrics, and the target applications, our proposed solutions outperform

prior work in terms of DNN accuracy, while significantly reducing the search cost. We demonstrate this

with the following novel contributions:

• Chapter 3 – Hardware-enhanced Bayesian optimization: We introduce a Bayesian optimization (BO)

method where the HW-cost terms are directly incorporated into the BO formulation, allowing the

AutoML search to traverse the design space in a constraint “complying” manner [109]. The proposed

method reaches the near-optimal region 3.5× faster compared to vanilla constrained BO methods.

• Chapter 4 – AutoML for designing adaptive DNNs: To the best of our knowledge, we are first

to formulate the design of adaptive DNNs as an AutoML problem and to jointly solve for the

architectures of the individual (heterogeneous) DNNs and the adaptive execution scheme under HW

constraints [110]. We propose a BO-based methodology that reduces energy consumption by up to

6× and improves accuracy by up to 31.13% compared to hand-designed adaptive DNNs, when tested

on a commercial NVIDIA mobile SoC and the CIFAR-10 dataset.

• Chapter 5 – Single-path one-shot NAS: We introduce a novel view of the one-shot NAS problem,

drastically decreasing the number of trainable parameters. To the best of our knowledge, this is the

first formulation of one-shot NAS as finding the subset of kernel weights in each DNN layer [113, 114].

The overall search cost (8 epochs) is up to 5,000× faster compared to prior work.

• Chapter 6 – State-of-the-art Mobile NAS performance: We enhance the Mobile NAS search space

by treating the Squeeze-and-Excitation [52] (SE) path as fully searchable. We show that larger SE

ratios further improve the overall performance by yielding a better DNN accuracy-runtime trade-off

and we investigate how various formulation choices affect the one-shot NAS performance [112]. Our

method achieves a new state-of-the-art Mobile NAS accuracy on ImageNet classification (75.62%)

with inference runtime on par with existing methods.

CHAPTER 1. INTRODUCTION 4

To this end, we believe that this thesis supports the following claim:

Thesis statement: AutoML methods can be both hardware aware and search-cost efficient.

1.3 Thesis organization

The remainder of this thesis is organized as follows.1 Chapter 2 formulates the problem of hardware-

constrained AutoML. Chapter 3 introduces our hardware-constrained BO methodology. Chapter 4 details

the BO-based design of adaptive (heterogeneous) DNN systems under energy and communication con-

straints. In Chapter 5, we propose a novel one-shot NAS method. In Chapter 6, we detail an enhancement of

the NAS design space that further improves the accuracy-runtime trade-off and we investigate how different

implementation choices affect the performance of the AutoML-designed DNNs. Chapter 7 discusses the

related work. Finally, Chapter 8 concludes this thesis and highlights directions for future research.

1This manuscript does not include some of my lead authored PhD research related to manufacturing process variations [115] and
precipitation prediction models [29] as they fall outside the scope of this thesis.

Chapter 2

Background

AutoML methods treat the design of DNNs as a hyperparameter optimization problem. To facilitate the

discussion in the following chapters, we first provide an overview of AutoML methods (Section 2.1), we

then formulate the hardware-aware AutoML problem (Section 2.2), and we review some background

material related to the key methods investigated in this thesis, i.e., Bayesian optimization (Section 2.3) and

one-shot NAS (Section 2.4).

2.1 Paradigms for AutoML

To contextualize the work in this thesis, we identify the main categories (and their respective sub-categories)

in AutoML methods following the categorization by Hutter et al. [54]. We follow such dichotomies mainly

to identify the focus for this thesis, and we note that different authors have drawn these delineations

differently, e.g., Li and Talwalkar identify the main AutoML components with respect to the search space,

the search method, and the evaluation method of an AutoML approach [70]. As shown in Figure 2.1,

AutoML can be categorized into three high-level categories, namely (i) black-box hyperparameter optimization

(HPO), (ii) Neural Architecture Search (NAS), and (iii) meta-learning.

Hyperparameter optimization: HPO refers to the class of AutoML methods that tune a learning model

over a wide range of hyperparameter choices related to model architecture (e.g., number of parameters),

optimization (e.g., learning rate), and regularization (e.g., regularization factors). HPO methods can be

further separated based on their strategy to traverse the design space: e.g., model-free [3], Bayesian

optimization [34], and multi-fidelity [71], etc. Since every learning system has hyperparameters, HPO

methods date back to the 1990s [65], spanning ML (e.g., SVMs [106]) and DL applications (e.g., DNNs [107]).

Neural Architecture Search: NAS methods refer to the recent sub-field of AutoML that aims to

specifically tune the structural hyperparameters of DL models, i.e., the model architecture. While there

5

CHAPTER 2. BACKGROUND 6

Figure 2.1: An overview of AutoML paradigms following the categorization by Hutter et al. [54]. In this
thesis, we focus on AutoML based on Bayesian optimization (Chapters 3-4) and one-shot NAS (Chapters 5-6)
techniques under hardware constraints.

is indeed a significant overlap between NAS and HPO methodologies, in this thesis we adhere to the

following distinction between NAS and HPO from Hutter et al. [54]: in the former, the NAS search space

consists of architectural hyperparameters only, while in the latter case (HPO) it does not.

As of this writing, NAS literature is witnessing a yearly exponential increase in the number of papers

written on the subject [76]. Hence, we further categorize NAS works into standalone and one-shot NAS

methodologies, based on how the candidate DNNs are evaluated. In particular, in standalone NAS, the

search strategy (e.g., reinforcement learning [137] or evolutionary algorithms [97]) selects a DNN in every

iteration. The candidate design is trained from scratch on a (proxy) task to evaluate its performance, hence

yielding computation demands on the order of thousands of GPU-days [138]. To reduce this computational

burden, one-shot NAS treats all DNN architectures as subsets of a supernetwork (the one-shot model) [79].

This requires only the weights of a single one-shot model to be trained, and the various candidate designs

are then evaluated by inheriting trained weights from the supernetwork.

Meta-learning: Meta-learning methods focus on learning to learn on a new task by building on experience

obtained from related, previously studied tasks [125]. Several meta-learning strategies exhibit significant

overlap with the previous two categories (e.g., warm-start techniques in HPO [36] or configuration-transfer in

proxy-based one-shot NAS [79]), hence in this thesis we consider only HPO and NAS.

Overall, this thesis exclusively focuses on BO-based HPO and one-shot NAS methodologies, as high-

lighted in Figure 2.1. Our choice stems from our goal to develop AutoML methods that are both hardware-

aware and search-cost efficient. To this end, these two techniques are excellent starting points for our endeavor

and the reason is twofold: (i) search-cost efficiency – prior work has shown that BO and one-shot NAS reduce

CHAPTER 2. BACKGROUND 7

the search cost compared to other HPO and standalone NAS counterparts [79, 103]; (ii) hardware-awareness

– both these methods have been previously used for AutoML under hardware constraints, which allows us

to have representative comparisons with prior work by assessing our methodologies against well-studied

AutoML search spaces and hardware platforms [92, 122]. In particular, we delve into BO (Chapters 3-4)

and one-shot NAS (Chapters 5-6) techniques to design DNNs for image classification under hardware

constraints.

2.2 Designing DNNs with hardware-aware AutoML: problem formulation

When designing DNNs, there is a plethora of options for the DL practitioner to choose from, such as:

• Layer-wise operation choice: convolution, pooling, fully-connected layer, etc.

• Types of convolution layers: varying number of filters, kernel size, expansion ratios, etc.

• Pooling layers: kernel size, stride values, etc.

• Fully-connected layers: number of units

• Learning hyperparameters: learning rate, momentum, weight decay, etc.

All these different tunable hyperparametes yield the design space A with all possible configurations.

In the context of automated hardware-constrained DNN design, our goal is to find the DNN architecture

a∗ ∈ A with the optimal learning performance with respect to the DL task (e.g., the validation error on

the target dataset) that satisfies the constraints (e.g., power consumption during inference) on the target

platform. Formally, we write the DNN design as a constrained optimization problem:

min
a∈A

L(a) s.t. C̃(a) ≤ C̃T (2.1)

where our goal is to find the a∗ ∈ A that minimizes the learning loss L, and whose hardware-cost terms

C̃(a) satisfy the respective hardware constraints (target hardware performance) C̃T . In practice, evaluating

Equation 2.1 at different candidate designs a is costly. To this end, prior work has explored various methods

to efficiently solve this problem.

2.3 Constrained Bayesian optimization

The key insight behind various black-box HPO methodologies[103, 106, 5] is to approximate the objective

and constraint terms by surrogate probabilistic models which are cheaper to evaluate. In particular, Bayesian

optimization (BO) is a sequential model-based approach that has been shown to work well in practice for

problems with few tens of hyperparameters [103].

CHAPTER 2. BACKGROUND 8

Figure 2.2: Overview of BO during each iteration d + 1. BO uses a surrogate probabilistic modelMi to
approximate each term; the plots show the mean and confidence intervals estimated with the model (the
true objective function is shown for reference, but it is unknown in practice). At each iteration d + 1, an
acquisition function q(·) is expressed based on the modelMi and the maximizer of q(·) is selected as the
candidate design point ad+1 to evaluate. The objective is evaluated, i.e., the candidate DNN ad+1 is trained
and evaluated on the validation set. Then, the probabilistic modelsMi are refined via Bayesian posterior
updating based on the new observation. The process is repeated for Dmax steps.

To solve the constrained optimization problem in Equation 2.1, BO approximates each objective and

constraint term with a probabilistic (surrogate) model Mi based on Gaussian processes (GP). For each

function term fi, the GP model is a probability distribution over the possible functions of fi(a), and it

approximates each fi at each iteration d + 1 based on data A := aj ∈ Ad
j=1 queried so far. We assume that

the values fi := fi,{1:d} of a function term fi at points A are jointly Gaussian with mean mi and covariance

Ki, i.e., fi | A ∼ N (mi, Ki). This formulation intuitively encapsulates our belief about the shape of functions

that are more likely to fit the data observed so far. Since the observations fi are noisy with additive noise

ε ∼ N (0, σ2), we write each GP model as yi | fi, σ2 ∼ N (fi, σ2I). At each point aj, GP gives us a cheap

approximation for the mean and the uncertainty of the respective term, written as pMi (yi|aj) and illustrated

in Figure 2.2 with the black curve and the grey shaded areas.

Each iteration d + 1 of a BO algorithm consists of three key steps:

1. Maximization of acquisition function: We first need to select the point ad+1 (e.g., the next candidate

DNN configuration) at which the objective (e.g., the validation error of the candidate DNN) will be evaluated

next. This task of guiding the search relies on the so-called acquisition function q(a). A popular choice

for the acquisition function is the Expectation Improvement (EI) criterion, which computes the probability

that a term fi will exceed (negatively) some threshold y+i , i.e., EI(a) =
∫ ∞
−∞ max{y+i − yi, 0} · pMi (yi|a) dyi.

Intuitively, q(a) provides a measure of the direction toward which there is an expectation of improvement

of the objective function. The acquisition function is evaluated at different candidate points a, yielding high

values at points where the GP’s uncertainty is high (i.e., favoring exploration), and where the GP predicts a

high objective (i.e., favoring exploitation) [103]; this is qualitatively illustrated in Figure 2.2 (blue curve).

We select the maximizer of q(a) as the point ad+1 to evaluate next (green triangle).

2. Evaluation of the objective/constraints: Once the current candidate DNN architecture an+1 has been

CHAPTER 2. BACKGROUND 9

selected, the DNN is generated and trained to completion to evaluate its objective and constraint terms.

Please note that this step is the main bottleneck in AutoML. Hence, the efficiency of our proposed BO-based

methods (Chapters 3-4) comes from detecting when this step can be bypassed or how the search can be

quickly guided towards constraint-satisfying samples (i.e., fewer function evaluations).

3. Probabilistic model update: As the new term value yi,{d+1} becomes available at the end of iteration

d + 1, the probabilistic model pMi (yi) is refined via Bayesian posterior updating (the posterior mean

mi,{d+1} and covariance Ki,{d+1} can be analytically derived). This step is quantitatively illustrated in

Figure 2.2 with the black curve and the grey shaded areas. Please note how the updated model has reduced

uncertainty around the previous samples and newly observed point. For a comprehensive discussion of

GP models the reader is referred to [95].

Overall, the above methodology has been successfully used in several HPO tasks and it is a key

component in various commercial or industry-supported tools [32, 87], hence we delve into hardware-

constrained BO problems in this thesis.

2.4 One-shot Neural Architecture Search (NAS)

Figure 2.3: One-shot differentiable NAS relaxes the

combinatorial optimization problem (Equation 2.1) to

a softmax-based approximation of the DNN choices.

A supernet model is constructed that encompasses all

candidate DNN designs, i.e., all solutions a ∈ A.

To improve the search cost of AutoML methods,

one-shot NAS exploits weight-sharing by relaxing

the categorical DNN design choices to a one-shot

differentiable optimization problem. Specifically,

one-shot methods relax the combinatorial optimiza-

tion problem (categorical hyperparameters a) to

a softmax-based approximation parameterized by

α, i.e., each hyperparameter is ak ≈ softmax(αk).

Next, an over-parameterized multi-path supernet is

constructed (illustrated in Figure 2.3) where, for

each layer, every candidate operation is added as a

separate trainable path [12, 79, 128]. Hence, in these

methods, which we refer to differentiable one-shot

NAS [79, 93], the DNN design becomes an opera-

tion/path selection problem.

For layer input x, the output of each layer i is a (weighted) sum defined over the output of N different

paths, where each path j corresponds to a different candidate kernel wi,j. The weight of each path αi,j

CHAPTER 2. BACKGROUND 10

corresponds to the probability that this path is selected over the parallel paths:

oi
multi−path(x) =

N

∑
j=1

αi,j · oi,j(x) = αi,0 · conv(x, wi,0
3×3) + · · ·+ αi,N · conv(x, wi,N

5×5) (2.2)

Problem formulation: NAS formulations solve for the (distributions of) paths of the multi-path supernet

that yield the optimal architecture, i.e., for the optimal architecture parameters α (path weights), such

that the weights wα of the corresponding α-architecture have minimal loss L(α, wα). However, solving

for a constrained case (e.g., Equation 2.1) yields DNNs specific to the given constraints C̃T , and the

hyperparameter optimization process has to be repeated for a different C̃T values. To this end, given the

computational cost of performing architecture search, NAS literature has been more interested in finding

multiple Pareto-optimal solutions in a single search [122]. Hence, NAS methods revisit the constrained

Equation 2.1 and they solve instead for a weighted (trade-off) objective:

min
α

min
wα
L(α, wα) + λ · C̃(a) (2.3)

Solving Equation 2.3 gives rise to a challenging bi-level optimization problem [79]. Existing methods

interchangeably update the α’s while freezing the w’s and vice versa, leading to several gradient steps.

As expected, branching out all paths is intrinsically inefficient, since the number of trainable parameters

that need to be maintained and updated during the search grows linearly with respect to the number of

candidate operations per layer [1], leading to memory explosion [12] and increased search cost, with an

overall computational demand of hundreds of GPU-hours. In Chapters 5-6 we introduce our novel NAS

approach to alleviate the search cost related to one-shot differentiable NAS approaches.

Mobile NAS design spaces

Typically, NAS methods start from a fixed DNN “backbone” and they choose each layer-wise operation

from a set of predefined, candidate operations. A typical “backbone” choice for hardware-aware NAS is

the MobileNetV2 design [102] (Figure 5.4).1 MobileNetV2 skeleton: In this macro-architecture, except for

the head and stem layers, all DNN layers are grouped into blocks based on their input resolutions and the

filter sizes. The filter numbers per block follow the values in [128], i.e., we use seven blocks with up to four

layers each. Each blocks consists of four mobile inverted bottleneck convolution MBConv [102] layers. The

MBConv micro-architecture consists of a point-wise (1× 1) convolution, a k× k depthwise convolution, a

Squeeze-and-Excitation (SE) block [52], and a linear 1× 1 convolution. Unless the layer has a stride value

of two, a skip path is introduced to provide a residual connection from input to output.

1Different types of search spaces and DNN “backbones” have been previously considered (e.g., hierarchical [78], cell-based [138],
etc.). However, merging intermediate results across multiple branches of the cell/hierarchy with addition and concatenation operations
has been shown to be hardware costly [128]. Thus, such NAS search spaces are beyond the scope of our work.

CHAPTER 2. BACKGROUND 11

Figure 2.4: MobileNetV2-based search space [102]: DNN layers are grouped into predefined blocks, based
on their filter sizes. Each block contains four mobile inverted bottleneck convolution MBConv layers. For
each MBConv, NAS methods search for the convolution kernel size k, the expansion ratio e, whether the
layer is skipped or not, etc. MBConv from different blocks/layers can be different.

In Figure 2.4 (right) we list the various layer-wise design choices. Each MBConv is parameterized by:

(i) the kernel size of the depthwise convolution k× k, (ii) the expansion ratio e, i.e., the ratio between the

output and input of the first 1× 1 convolution, and (iii) the Squeeze-and-Excitation [52] ratio se, i.e., the

ratio between the number of channels in the intermediate convolution and the input of the Squeeze-and-

Excitation path. NAS also considers a special skip-op “layer”, which “zeroes-out” the kernel and feeds the

input directly to the output, i.e., the entire layer is dropped. This choice effectively corresponds to reducing

the depth of the network. Based on this parameterization, we denote each MBConv as MBConv-k× k-e-se.

The goal of NAS is to automatically identify the type of each MBConv layer in the DNN design.

Chapter 3

Hardware-Constrained DNN Hyperparameter

Optimization via Bayesian Optimization

Bayesian optimization (BO) has been the prominent hyperparameter optimization (HPO) method for model

selection. However, vanilla BO relies on costly function evaluations to learn the probability that a candidate

Deep Neural Network (DNN) architecture satisfies the hardware constraints. In this Chapter, we introduce

a novel BO formulation that explicitly incorporates hardware models, allowing the hyperparameter solver

to efficiently navigate the design space in a hardware-constraint “complying” manner.

3.1 Chapter overview

Bayesian optimization (BO) refers to a class of black-box HPO methods where the objective and constraint

functions are only accessible via expensive point evaluations. Ever since the earlier Machine Learning

(ML) applications posed the challenge of selecting the hyperparameters of SVMs or regression models, the

quintessential application for BO has been model selection [106]. In particular, BO naturally fits hyperparam-

eter tuning problems, where it is challenging to analytically capture the generalization performance of an

ML model under various Euclidean or categorical hyperparameter choices.

Following the surge of interest in deep learning (DL), Deep Neural Networks (DNNs) have emerged

as powerful models in supervised learning applications, such as image classification [46] and object

detection [73, 74, 45]. Hence, in the context of DNN design, this motivates viewing model selection as

an HPO problem, i.e., studying model selection over the space of DNN architectures to optimize for

generalization performance. Naturally, BO has been one of the earlier methods to successfully outperform

human experts [119], as attested by earlier BO-based AutoML tools (e.g., HyperOpt [4], Spearmint [106],

Google Vizier [36]).

12

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 13

Figure 3.1: Visualizing the complexity of the design space – testing error and GPU power consumption for
different DNN design based on the AlexNet search space (CIFAR-10 with Caffe [56] on NVIDIA GTX-1070).

In the context of hardware-constrained BO, existing methods treat the hardware constraints as low-cost,

a priori known constraints, whose probability that are satisfied is modeled during the search by inexpensive

point evaluations. This is based on the observation that profiling the hardware cost of a DNN architecture

is considerably cheaper than training the network to evaluate its accuracy. Existing methodologies exploit

this intuition by profiling DNNs on simple datasets such as MNIST or by using the DNN parameter count

as a low-cost proxy of the hardware efficiency [48, 96]. Nonetheless, as shown in Figure 3.1, the design space

could be more complex when considering the DNN power consumption on an actual GPU platform and

for a larger dataset. For instance, we observe that, for a given accuracy level, the DNN power consumption

could differ significantly by up to 55.01W (i.e., more than a third of the GPU Thermal Design Power). As

discussed in our results later in this Chapter, the low cost of hardware performance evaluations could

become non-trivial to exploit under power or memory consumption constraints.

3.1.1 Key novelty: Enhancing BO with hardware models

We conjecture that the low evaluation cost of hardware metrics can be further exploited to directly train predictive

models of the power and memory consumption as a function of the DNN hyperparameters. These models can

be in turn incorporated directly into a novel BO formulation, hence allowing the BO solver to efficiently

navigate the design space in a constraint “complying” manner. This gives rise to two interesting challenges:

first, how to accurately model the power and memory consumption of DNNs (during inference) based

on profiling data from commercial GPU platforms. Second, how to explicitly incorporate the predictive

hardware-cost models into the BO formulation without introducing additional cost that could hamper

the efficiency of the BO solver. To answer these questions, we develop a novel BO framework, namely

HyperPower [109]. In HyperPower, we propose accurate regression-based predictive models and a novel

constraint-aware acquisition function.

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 14

3.1.2 Contributions and Chapter organization

To the best of our knowledge, this thesis makes the following contributions:

1. We introduce predictive models to capture the power and memory consumption of DNNs running

on GPUs. Our regression-based models are accurate across various GPU platforms and image

classification datasets, with an overall prediction error less than 7%.

2. We propose a hardware-aware BO formulation that efficiently traverses the design space in a constraint

“complying” manner. HyperPower reaches the near-optimal region up to 3.5× faster compared to

vanilla constrained BO methods.

The organization of this Chapter is as follows: Section 3.2 formulates the problem and investigates the

DNN power consumption as a low-cost constraint. Section 3.3 introduces HyperPower, including the

regression-based predictive models and the constraint-aware acquisition function. Section 3.4 demonstrates

the experimental results. Last, Section 3.5 provides the discussion.

3.2 Hardware-constrained Bayesian optimization

The power P(·) and the memory M(·) consumption of a DNN (during inference) have been traditionally

seen as key impediments to deploying DNNs to low-power devices, such as IoT nodes. Hence, a common

AutoML use case is to solve Equation 2.1 under power and memory constraints, PT and MT , respectively:

min
a∈A

L(a) s.t. P(a) ≤ PT , M(a) ≤ MT (3.1)

Low-cost constraint evaluation in vanilla Bayesian optimization baseline

Figure 3.2: DNN power consumption as a low-cost con-

straint (power measured on NVIDIA TX1).

Power as low-cost constraint: We first inves-

tigate whether the power consumption can

be formulated as an a priori known constraint.

By randomly sampling and training candi-

date designs a on the MNIST dataset [68], we

measure how the (inference) DNN power and

the validation accuracy vary throughout train-

ing. As shown in Figure 3.2, we observe that

the DNN power consumption measured on

an NVIDIA TX1 device does not significantly

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 15

change as the DNN is trained for more iterations. That is, the power characteristics of a DNN are not

affected by the quality of the trained model itself.

This observation allows us to formulate the power-constrained optimization (and also memory-

constrained, as discussed in our results) as BO with a priori known constraints. During the search,

the low-cost constraints are fitted with GPs [34], using a latent function for each constraint. Specifically,

each GP captures the probability of the constraint being satisfied, i.e., Pr(M ≤ MT) and Pr(P ≤ PT). In

each iteration, we first evaluate the low cost constraints of power and memory consumption. We refer to

this baseline as vanilla constrained BO [34]. This method has been previously used for FLOP-constrained

DNN design [34, 48], since similarly the FLOP count is a low-cost constraint.

3.3 Proposed methodology: HyperPower

To enhance BO with “explicit hardware awareness”, we first propose to model power P(·) and and the

memory M(·) consumption of a DNN (during inference) as a function of the DNN hyperparameters.

Specifically, we model P(·) and M(·) as a function of the J discrete (structural) hyperparameters â ∈ Z
J
+

(subset of a ∈ A); we train on the structural hyperparameters â that affect the DNN power and memory

(e.g., number of hidden units), since parameters such as learning rate have negligible impact. To this

end, we employ offline random sampling by generating different configurations in the designs space. Per

candidate design âl , we measure the power Pl and memory Ml consumption values during inference on

different GPU platforms. Given the L profiled data points {(âl , Pl , Ml)}L
l=1, we train linear regression

models parameterized by parameters p, m ∈ RJ , i.e.:

Power model : P(â) =
J

∑
j=1

pj · âj (3.2)

Memory model : M(â) =
J

∑
j=1

mj · âj (3.3)

We train the models (Equations 3.2-3.3) with a 10-fold cross validation on the dataset {(âl , Pl , Ml)}L
l=1.

While we have experimented with nonlinear regression [8], the linear models provide sufficient accuracy

(as shown in our results). More importantly, the linear formulation is cheap to evaluate with the acquisition

function on different design points a ∈ A (as discussed in subsection 3.3.2).

3.3.1 Proposed power and memory models

To obtain datapoints we profile the power and memory consumption of various DNN designs on two

different machines, i.e., a server machine with an NVIDIA GTX 1070 and a low-power embedded board

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 16

Figure 3.3: Actual and predicted power using our models for MNIST and CIFAR-10, executing on GTX
1070 (left) and Tegra TX1 (right).

Table 3.1: Root Mean Square Percentage Error (RMSPE) values of the proposed power and memory models.

Model MNIST GTX 1070 CIFAR-10 GTX 1070 MNIST Tegra TX1 CIFAR-10 Tegra TX1
Power 5.70% 5.98% 6.62% 4.17%

Memory 4.43% 4.67% – – – – 1

NVIDIA Tegra TX1. We profile the DNNs offline using Caffe [56] on both the CIFAR-10 and MNIST. To

capture points of the design space, we profile variants of the AlexNet network for MNIST and CIFAR-10,

by randomly varying the size of the different layers (details in the experimental results section).

In Figure 3.3, we plot the predicted and actual power values, trained on the MNIST and CIFAR-10

networks for both GTX 1070 and Tegra TX1.1,2 Alignment across the blue line indicates good prediction

results. We observe good prediction for all tested platforms and datasets, with a Root Mean Square

Percentage Error (RMSPE) value always less than 7% (Table 3.1) for both power and memory models. It is

worth noticing the power value ranges per device and that our proposed models can accurately capture

both the high-performance and low-power design regimes.

3.3.2 Proposed constraint-aware acquisition function

Inspired by constraint-aware heuristics [34, 40], we propose a power and memory constraint-aware

acquisition function:

q(a) =
∫ ∞

−∞
max{y+ − y, 0} · pM(y|a) · I[P(â) ≤ PT] · I[M(â) ≤ MT] dy (3.4)

where â are the structural hyperparameters, pM(y|a) is the predictive marginal density of the objective

function at a based on surrogate model M. I[P(â) ≤ PT] and I[M(â) ≤ MT] are indicator functions,

which are equal to 1 if the power and memory constraints are respectively satisfied. The threshold y+

1Tegra does not support NVML API for memory measurements, and the tegrastats command reports utilization and not
memory consumption.

2Due to low GPU utilization for the MNIST models, we profile candidate DNNs on MNIST with an inference batch size of 4. The
DNNs on CIFAR-10 are profiled with batch size 1.

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 17

is adaptively set to the best value y+ = maxj=1:d yj over previous observations [103][34]. Intuitively, we

capture the fact that improvement should not be possible in regions where the constraints are violated.

3.3.3 Early termination enhancement

Figure 3.4: Early termination insight: how accuracy can in-

dicate configurations that do not converge to high-accuracy

values (> 10%).

Last, we observe that candidate architectures

that diverge during training can be quickly

identified only after a few training epochs (Fig-

ure 3.4). Please note that this is different

than predicting the final test error of a net-

work, which could suffer from overestima-

tion issues [30], introducing artifacts to the

probabilistic model. Instead of predicting for

converging cases, we identify diverging cases,

allowing the optimization process to discard

low-performance samples. We incorporate

early termination into HyperPower to further enhance the efficiency of our approach.

3.4 Experimental results

3.4.1 Experimental setup

For a detailed evaluation of our proposed methodology, we compare HyperPower against the vanilla BO

baseline (Subsection 3.2). We also consider two random search variants. First, we consider constrained

Random Search with early termination of constraint-violating samples. Moreover, we consider Random

Walk, a random-based method that aims to “tame” the randomness by tuning the exploitation-exploration

trade-off [105]; each next random point ad+1 is selected around the point a+ with the best objective value

y+ over previous observations. Formally, at any step we select from within “neighborhood” controlled by

σ2
0 , i.e., ad+1 ∼ N (a+, σ2

0).

We implement these methods on top of Spearmint [106]. We implement wrapper scripts around

the objective/constraint functions that are queried by Spearmint, that automate the generation of Caffe

simulations, and power/memory model evaluations. We employ hyperparameter optimization on variants

of the AlexNet network for MNIST and CIFAR-10, with six and thirteen hyperparameters respectively. For

the convolution layers we vary the number of features (20-80) and the kernel size (2-5), for the pooling

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 18

layers the kernel size (1-3), and for the fully connected layers the number of units (200-700). We also vary

the learning rate (0.001-0.1), the momentum (0.8-0.95), and the weight decay (0.0001-0.01) values.

3.4.2 HyperPower outperforms vanilla Bayesian optimization & random search

Figure 3.5: HyperPower reaches the near-optimal region in a fifth

of point evaluations compared to vanilla BO and random search.

Fixed number of function evaluations:

We first assess the effectiveness of Hy-

perPower compared to vanilla BO and

random search under a fixed number of

function evaluations. We optimize for

the validation error on CIFAR-10 with

a power constraint of 90W. As typical

values for the experiments [34, 106, 30],

we select a maximum number of 50 iter-

ations per run. We plot the progress of each method in Figure 3.5, where we observe that the proposed

methodology reaches the near-optimal region faster compared to both vanilla BO and random search

methods. To understand such efficiency of HyperPower, we visualize the constrained violating samples per

method in Figure 3.6. In particular, we confirm in Figure 3.6 (left) that HyperPower does not select samples

that violate the constraint. In Figure 3.6 (right), we plot the validation error and the power consumption of

each DNN considered. Once again, we see that HyperPower queries design points (red circles) to the left of

the power constraint (90W). Last, as expected, we note that the random search methods are more likely

to sample suboptimal points compared to the BO ones. Overall, the proposed formulation (Equation 3.4)

benefits the efficiency of the BO solver, since it allows HyperPower to reach the average best error in a fifth

of function evaluations (Figure 3.5).

Figure 3.6: Assessment of HyperPower compared to random search and vanilla BO under fixed number of
point evaluations on CIFAR-10 CNN: (left) Number of constraint-violating samples against the number of
point evaluations. (right) Validation error and power value per candidate design.

Fixed wall-clock runtime budget: We evaluate the different methods under maximum wall-clock

runtime budget, i.e., two and five hours for MNIST and CIFAR-10, respectively. This scenario is important

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 19

in a more commercial-standard context when executing on a cluster [103] and under pricing schemes

in cloud systems [119, 30]. We repeat the exploration for three runs per method for each considered

device-dataset pair with the following constraints constraints: 85W and 1.15 for MNIST on GTX 1070, 90W

and 1.25GB for CIFAR-10 on GTX 1070, 10W for MNIST on Tegra TX1, and 12W for CIFAR-10 on Tegra

TX1 (no memory constraints on Tegra). In Table 3.2 we report the mean and the standard deviation of the

best test error achieved by each method. We observe that HyperPower achieves the best mean test-error.

We can also note that our method has less variance in all but one case. For the random methods, this is

because some runs failed to find a high-performance region.

Table 3.2: Mean best test error (and standard deviation in parenthesis) achieved per method.

Solver MNIST – GTX 1070 CIFAR-10 – GTX 1070 MNIST – Tegra TX1 CIFAR-10 – Tegra TX1
Random search [3] 1.01% (0.18%) 24.39% (3.08%) 0.97% (0.14%) 24.09% (1.97%)
Random Walk [105] 0.84% (0.08%) 22.88% (0.87%) 0.90% (0.12%) 21.90% (0.59%)

Vanilla constrained BO [106] 0.85% (0.12%) 22.09% (0.35%) 0.91% (0.07%) 22.99% (0.41%)
HyperPower (proposed) 0.81% (0.02%) 21.81% (0.38%) 0.79% (0.03%) 21.95% (0.65%)

Figure 3.7: HyperPower reaches low-error samples faster compared to

vanilla constrained BO, capturing the benefit of using early termina-

tion and predictive hardware cost models.

Finally, we evaluate the bene-

fit of combining early termination

with the predictive models in the

our BO formulation. In Figure 3.7,

we plot the best validation error

(%) with respect to the total hy-

perparameter optimization time for

CIFAR-10 on GTX 1070 (5-hour ex-

ecution) for both the vanilla BO,

i.e., BO without these two enhance-

ments (predictive models and early

termination), and HyperPower. We observe that our proposed methodology reaches low-error samples

faster that the default (exhaustive) BO. We note the density of the samples at the beginning of the red

line; this is to be expected, since low-performance or violating samples can be quickly discarded thanks to

the introduced enhancements.3 Overall, our proposed methodology reaches the near-optimal region 3.5×

faster than the vanilla method.

3We note that early termination can individually improve the baselines methods, i.e., BO without predictive models and the
random search methods. The reader is referred to [109] for detailed ablation studies.

CHAPTER 3. HARDWARE-CONSTRAINED DNN DESIGN VIA BAYESIAN OPTIMIZATION 20

3.5 Discussion

In this Chapter, we introduce HyperPower, a framework that enables efficient hardware-constrained BO for

DNN design. We show that power consumption can be used as a low-cost, a priori known constraint, and

we proposed predictive models for the power and memory of DNNs executing on GPUs. By incorporating

the predictive models into a hardware-constrained BO formulation, HyperPower reaches the near-optimal

region 3.5× faster than the vanilla method. One straightforward direction for future work is to adapt our

proposed BO framework to a more complex design space. In Chapter 4, we investigate BO in a novel image

classification paradigm based on adaptive DNNs.

Chapter 4

Hardware-Constrained Adaptive DNNs Design

Adaptive Deep Neural Networks (DNNs) have been recently introduced as means for hardware-efficient

image classification. Adaptive DNNs refer to systems of DNNs with different accuracy and computation

characteristics, where a selection scheme adaptively selects the network to be evaluated for each input image.

In this Chapter, we pursue a more powerful design paradigm where both the DNN architectures and the

selection scheme are jointly optimized. To solve this problem, we adapt our BO-based formulation to

efficiently design adaptive DNNs under energy, accuracy, and communication constraints.

4.1 Chapter overview

The energy requirements of DNNs have emerged as a key impediment preventing their deployment on

energy-constrained embedded and mobile devices, such as Internet-of-Things (IoT) nodes, wearables, and

smartphones. As means to reducing the average classification cost, prior art has observed that a significant

portion of an image classification dataset can be correctly classified by simpler (computationally efficient)

DNNs, while only a fraction of examples require larger (computationally expensive) DNNs [37]. Such

intuition has motivated the introduction of adaptive DNNs, i.e., systems of DNNs with different accuracy

and computation characteristics, where a selection scheme is responsible for choosing which network

classifies each input image [7]. Adaptive DNNs have been featured in numerous image classification

frameworks from both industry [37] and academia [127, 90, 89, 92, 91].

Nevertheless, all previous approaches focus on learning how data should be processed among the

DNNs, hence only optimizing with respect to the selection scheme while treating each DNN as a blackbox

(i.e., pre-trained off-the-shelf DNN). This could severely impede the effectiveness of adaptive DNNs when

used in real-world applications. In fact, our analysis in this Chapter shows that when deployed on energy-

constrained mobile devices, adaptive execution allows for only a small headroom for energy consumption

21

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 22

savings [110]. For example, our results show that existing methods, if tested on commercial NVIDIA Tegra

TX1 platforms, could actually lead to an increase in energy consumption under strict accuracy constraints.

4.1.1 Key novelty: adaptive DNNs as a hyperparameter optimization problem

In a departure from existing assumptions on how to design adaptive DNNs, we make the following novel

observation: the hardware efficiency of adaptive DNNs can be further improved if the DNN architectures are

optimized jointly with the network selection scheme. This insight gives rise to a challenging question: “can we

formulate and efficiently solve the design of adaptive DNNs as a hyperparameter optimization problem?”

In the forthcoming sections of this Chapter we will successfully answer this question, by developing a

novel BO framework to efficiently design adaptive DNNs for edge-computing nodes [110].

4.1.2 Contributions and Chapter organization

In this thesis, we make the following contributions:

1. To the best of our knowledge, we are first to jointly optimize the DNN architectures and the selection

scheme in adaptive DNNs, by formulating the process as an AutoML problem. We show that our

formulation is generic and able to incorporate different design goals: in our evaluation, we consider

optimization under energy, accuracy, and communication constraints for image classification on

edge-computing nodes.

2. We propose a hardware-aware BO method to exploit properties of the mobile space: we observe that

once the accuracy and hardware measurements have been obtained for a set of candidate DNNs, it is

inexpensive to sweep over different network selection schemes to populate the optimization process

with more data points. This fine-tuning step allows our algorithm to reach the near-optimal region

faster compared to design space-unaware BO.

3. Our methodology identifies designs that outperform existing resource-constrained adaptive DNNs

by up to 6× in terms of minimum energy per image and by up to 31.13% in terms of accuracy

improvement, when tested on a commercial NVIDIA mobile board and the CIFAR-10 dataset.

The remainder of this Chapter is organized as follows: Section 4.2 provides some background material on

adaptive DNNs. Section 4.3 details the proposed methodology, Section 4.4 presents the experimental setup

and results, and Section 4.5 provides the discussion.

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 23

4.2 Background: Adaptive DNNs

Prior work has proposed adaptive DNNs [127], i.e., systems of DNNs with different accuracy and com-

putation characteristics, where a selection scheme adaptively selects the network to be evaluated for each

input image [7]. Let us consider the case with M DNNs to choose from, i.e. N1, ..., Ni, ..., NM, as shown in

Figure 4.1. For an input data item x ∈ X , we denote the predictions of each i-th DNN as Ni(x) ∈ RK,

which represents the probabilities of input x belonging to each of the K classes (i.e., number of K classes

in the classification problem). The performance with respect to the classification task corresponds to loss

L(ỹ(x), y), where ỹ(x) and y ∈ {1, 2, . . . , K} are the predicted and true labels, respectively; ỹi(x) is defined

as the most probable class based on the current prediction, i.e., ỹi(x) = argmax Ni(x). As previously

discussed (Equation 2.1), Li corresponds to the loss per network Ni. For notation brevity, here we write the

loss as 0-1 loss L(ỹi(x), y) = 1ỹi(x) 6=y, i.e., whether the label ỹi(x) predicted from Ni fails to match the true

label y. Once again, the hardware (cost) term per network i is Ci = C(Ni(x)).

Figure 4.1: Classifying an image x using adaptive neural networks comprised of M DNNs. The system
evaluates Ni first, and based on a decision function κi,i+1 decides to use Ni(x) as the final prediction or to
evaluate networks in later stages.

Given an image, N1 is executed first. Next, a decision function κ is evaluated to determine whether the

classification decision from N1 should be returned as the final answer or the next network N2 should be

evaluated. In general, we denote decision function κij : Ni(x)→ {0, 1} that provides “confidence feedback”

and decides between exiting at state Ni (i.e., κij = 0) or continuing at subsequent stage Nj (i.e., κij = 1).1

An effective choice for the κij function is a threshold-based formulation [92, 120], where we define

as score margin SM the distance between the largest and the second largest value of the vector Ni(x) =

(N1
i (x), N2

i (x), ..., NK
i (x)) at the output of network Ni. Intuitively, the more “confident” the CNN is about

its prediction, the larger the value of the predicted output, thus the larger the value of SM (since Ni(x)’s

sum to 1). For the case of j = i + 1, let’s denote θi,i+1 the threshold value for the decision function κi,i+1

between a network Ni and a network Ni+1. If SM in the output of Ni is larger than θi,i+1, the inference

result from Ni is considered correct, otherwise Ni+1 is evaluated next, i.e., κi,i+1(Ni(x)|θi,i+1) = 1[SMi≥θi,i+1]

Key insight: The goal of the network selection problem in adaptive DNNs is to select functions κ that

1Without loss of generality, we show decisions between two subsequent stages, i.e., j = i + 1, for visualization and notation
simplicity. However, Nj could be any other network in the design, i.e., j ∈ M ∧ i 6= j.

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 24

yields the optimal loss L with respect to the learning task, subject to the average per-image hardware

cost term C. We make the following key observation: this design goal is similar to the design of DNNs

with HPO methods. Thus, we can incorporate the adaptive-selection decisions directly into the hardware-

constrained AutoML formulation (Equation 2.1). To the best of our knowledge there is no global, systematic

methodology for the hardware-constrained HPO of adaptive DNNs, since adaptive approaches rely on

off-the-shelf DNNs, without jointly optimizing the execution scheme and the DNNs.

4.3 Proposed methodology: adaptive DNNs as an AutoML problem

We directly incorporate the network-level decision into an HPO formulation.2 That is, the loss and hardware-

related terms from Equation 2.1 can be expressed as a function of the two networks (N1, N2) and the network-

level decision function κ12. We can define design space Z that consists of the set of hyperparameters for

each network ai and hyperparameters θ’s of the decision function κ12, i.e., z = (a1, a2, θ12), z ∈ Z . Hence,

the energy consumed and the loss when classifying an input image x ∈ X with each neural network Ni is

E(Ni(x|ai)) and Li(ỹi(x|ai), y)), respectively.

Our AutoML design goal remains the same: we want to minimize the expected loss (classification error)

subject to the hardware constraint, e.g., the average energy consumption per image ET . Formally, we adapt

Equation 2.1 and we write:

min
z=(a1,a2,θ12)

E(x,y)∼X×Y

[(
1− κ12(N1(x|a1)|θ12)

)
·
(

L1
(
ỹ1(x|a1), y

)
− L2

(
ỹ2(x|a2), y

))]
s.t. Ex∼X

[
E2
(

N2(x|a2)
)
· κ12

(
N1(x|a1)|θ12

)
+ E1

(
N1(x|a1)

)]
≤ ET

(4.1)

Note that in Equation 4.1 the overall energy and accuracy explicitly depend on the DNN designs (ai).

Moreover note that, unlike prior art that resorts in exhaustive (offline) or iterative (online) methods to

find a value for the threshold [92, 120], we directly incorporate the θ values as hyperparameters to be

co-optimized alongside the DNN design. Last, our formulation is generic, allowing us to consider different

design paradigms, such as the case where all networks execute locally (single device) [92, 120], or when

some of the networks are executed on remote servers [69], as discussed next.

Loss-constrained energy minimization: We also formulate the orthogonal problem of minimizing the

average energy, while not exceeding a maximum accuracy degradation ∆LT , i.e., compared to case of only

using the larger network, the error rate difference should not be greater than ∆LT :

min
z=(a1,a2,θ12)

Ex∼X
[

E2
(

N2(x|a2)
)
· κ12

(
N1(x|a1)|θ12

)
+ E1

(
N1(x|a1)

)]
s.t. E(x,y)∼X×Y

[(
1− κ12

(
N1(x|a1)|θ12

))
·
(

L1
(
ỹ1(x|a1), y

)
− L2

(
ỹ2(x|a2), y

))]
≤ ∆LT

(4.2)

2For notation simplicity, we consider M = 2 neural networks; we extend our analysis beyond the two-network case in [110].

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 25

Local execution: P(Ni(x)) is the power required when evaluating a neural network Ni an input image

x ∈ X . Similarly, we denote the runtime per image evaluation as R(Ni(x)). The expected (per image)

energy is when executing both DNNs locally is:

Ex∼X
[

P2
(

N2(x|a2)
)
· R
(

N2(x|a2)
)
· κ12

(
N1(x|a1)|θ12

)
+ P1

(
N1(x|a1)

)
· R
(

N1(x|a1)
)]

(4.3)

Remote execution of larger network: We also consider the case where some of the images x ∈ X are

sent to the server over the network and the result is being communicated back, i.e., N1 executes on the

edge and N2 on the server. The expected energy is:

Ex∼X
[

Pidle ·
(

Rserver
(

N2(x|a2)
)
+ τcomm

)
· κ12

(
N1(x|a1)|θ12

)
+ P1

(
N1(x|a1)

)
· Redge

(
N1(x|a1)

)]
(4.4)

where Redge and Rserver is the runtime when executing on the edge device and the server, respectively, and

Pidle is the idle power of the edge device while waiting for the result (for duration τcomm). Please note that

we assume ideal network buffers with a constant communication cost τcomm, since networking effects fall

outside the scope of our analysis.3

Enhancing Bayesian optimization: Equations 4.1 and 4.2 are variants of the main AutoML problem 2.1,

we can therefore employ BO to efficiently solve them. We summarize the methodology steps in Algorithm 1.

To enhance the efficiency of the BO, we make the following observation: if we freeze the sizing of the networks

considered in each outer iteration of Algorithm 1, we can cheaply fine-tune across the decision functions κ. This step

(lines 12-16), which corresponds to sweeping across θ values, has negligible complexity compared to the

overall optimization overhead.

The benefit of the κ-based fine-tuning is twofold. First, in earlier stages of BO more data are being

appended to the observation history D which improves the convergence of BO. Second, in the later states

of BO, the κ-based optimization serves as fine-tuning around the near-optimal region. Effectively, our

methodology combines the design space exploration properties inherent to BO-based methods, and the

exploitation scope of optimizing only over the κ functions. As confirmed in our results, Algorithm 1

improves upon the designs considered during BO.

4.4 Experimental results

Experimental setup: To enable the design of adaptive DNNs via BO, we implement the key steps of

Algorithm 1 on top of the Spearmint tool [106]. As embedded board we use NVIDIA Tegra TX1, on which

we deploy the candidate networks Ni’s and we measure their energy, power, and runtime values. As a

3Recent work by Bhardwaj et al. on distributed DNN inference provides a comprehensive experimental analysis when deploying
DNN models on Internet-of-Things (IoT) nodes [6].

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 26

Algorithm 1 Designing adaptive DNNs via Bayesian optimization
Input: Num. iterations Dmax, Number of networks M (M = 2 network case), Constraint CT
Output: Optimizer z∗ of adaptive neural networks

1: for d = 1, 2, ..., Dmax do
2: M← fit models on data so far D
3: zd ← arg maxz∈Z q(z,M) // acquisition function max.
4: // Training and profiling each network Ni
5: L1(ad

1), L2(ad
2)← train networks N1 and N2

6: // power, runtime measurements on device
7: E1(ad

1), E2(ad
2)←energy of N1 and N2

8: // Evaluate accuracy and energy consumption
9: ud, vd ← evaluate obj. term and const. term

10: D = D ∩ {zd, ud, vd}
11: // κ12 function fine-tuning
12: for θ′i,i+1 = 0, ..., 1.0 do
13: zd ← (ad

1, ad
2, θ′12)

14: u′, v′ ← evaluate obj. term and const. term
15: D = D ∩ {z′, u′, v′}
16: end for
17: end for
18: return z∗ ← arg maxz{u1, ..., uD} s.t. v∗ ≤ CT

representative comparison with prior art [92], we consider a two-network system with CaffeNet as N1 and

VGG-19 as N2 for image classification on CIFAR-10. For all the considered cases, we use Algorithm 1 for 50

function evaluations to optimize the design of the CaffeNet network and the network selection scheme.

That is, we vary the DNN design choices around the nominal CaffeNet hyperparameters [56], i.e., for the

convolution layers we vary the number of feature maps (32-448) and the kernel size (2-5), and for the fully

connected layers the number of units (500-4000).

We consider the following test cases of adaptive image classification: (i) all DNNs execute locally on the

mobile system and we denote this case as local; (ii) only N1, i.e., the less complex network is deployed on the

mobile system (edge node), while the more accurate networks execute on a server (remote execution). For

every image item, the decision function selects whether to use the local prediction or to communicate the

image to the server and receive the result of the more complex network. We compute the communication

time to transfer jpeg images and to receive the classification results back over two types of connectivity,

via Ethernet and over WiFi, which we denote as Ethernet and wireless respectively.

Adaptive DNNs design: We first demonstrate the advantages that AutoML offers in this design space.

For both these cases of local and remote execution with two networks, we employ grid search and we plot

the obtained error-energy pairs in Figure 4.2 (left and right plot, respectively). We highlight this trade-off

between accuracy and energy by drawing the Pareto front (green line).4 We make the following observations:

4This visualization is insightful since the constrained optimization problem under consideration can be equivalently viewed as a
multi-objective function, by writing the constraint term as the Lagrangian (e.g., such formulation is used in [7]).

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 27

Figure 4.2: Energy minimization under maximum error constraint. Bayesian optimization considers
configurations (red circles) around the near-optimal region, while significantly outperforming static-design
systems (orange squares). Left: Embedded (local) execution for both networks. Right: An edge-server
energy-minimization design paradigm.

first, note how far to the left the Pareto front (green line) and the the configurations considered by BO

(red circles) are compared to the static optimization designs (orange squares), as well as the monolithic

CaffeNet and VGG-19 networks (black markers). This captures the headroom that is available for significant

reduction in energy consumption (as discussed next). Second, note how close to the Pareto-front red circles

are, showing the effectiveness of BO at identifying the near-optimal region.

Figure 4.3: Bayesian optimization for minimum energy under error constraints in the edge-server design.
The method progressively evaluates designs closer to the Pareto front. The near-optimal region is reached
within 22 function evaluations. Left: Sequence of configurations selection. Right: Best solution against the
number of function evaluations.

Effectiveness of BO: In Figure 4.3 we visualize the BO progress for the edge-server case. First, we

enumerate the first 30 function evaluations (Figure 4.3, left), where we observe that the near-optimal

region is reached with 22 steps. Next, we assess the advantage that the κ-based fine-tuning step offers. In

(Figure 4.3, right), we show the minimum constraint-satisfying energy achieved during BO without (red

line) and with (blue line) this step employed during the optimization. We denote these methods as BO and

BO+, respectively. Indeed, we observe that the fine-tuning step enhances the optimization process towards

reaching the near-optimal region (grid search, dotted line) faster.

Adaptive DNNs evaluation: Next, for all three design practices, i.e., local, Ethernet, and wireless, we

solve both a constrained and an over-constrained case for both the error-constrained energy minimization

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 28

(Equation 4.2) and the energy-constrained error minimization (Equation 4.1) problems. We plot the error

on the validation set and energy per-image in Figure 4.4 of the following DNN design methods: BO, BO+,

grid search, the best previously published work that treats the DNNs as blackboxes [92] (denoted as static),

and using either N1 (CaffeNet) or N2 (VGG-19) on their own. We report the constraints per case in the

parentheses on the x axis (the error percentage value corresponds to the maximum accuracy degradation

allowed compared to always using VGG-19, i.e., the B value in Equation 4.2). We also report the test error

of each method in Table 4.1.

Figure 4.4: Assessing the effectiveness of the proposed methodology across different design paradigms and
both constrained and over-constrained cases (the constraint values per case are given in the parentheses on
the x-axis labels). We observe that our methodology BO+ (blue) successfully approaches the grid-search
solution (gray), while always outperforming the best solution achieved by existing static-design methods
(orange). Left: Energy minimization under maximum error constraints. Right: Error minimization under
maximum energy constraints.

Table 4.1: Hyperparameter optimization results on the test set.

Minimum energy (mJ) achieved under allowed accuracy degradation constraint (given in parenthesis).
Method Local (3%) Ethernet (3%) Wireless (3%) Local (1%) Ethernet (1%) Wireless (1%)

Static [7, 92] 256.09 230.05 231.15 292.25 233.50 235.97
BO 114.43 38.28 41.49 163.15 41.85 45.54

BO+ 99.35 38.00 40.50 148.26 41.68 45.54
Grid 93.43 38.00 40.50 123.57 41.68 45.49

Minimum error (%) achieved under energy constraint (given in parenthesis).
Method Local (240mJ) Ethernet (120mJ) Wireless (120mJ) Local (120mJ) Ethernet (45mJ) Wireless (45mJ)

Static [7, 92] 17.30 18.44 18.44 18.44 18.44 18.44
BO 12.67 12.77 12.74 20.69 12.83 14.42

BO+ 12.66 12.70 12.74 16.30 12.83 13.98
Grid 12.58 12.58 12.58 14.14 12.82 13.98

Based on the results, we can make several observations: (i) Suboptimality of prior work: As discussed

previously, the energy consumption of CaffeNet and VGG-19 allows for only a small energy-saving

headroom to exploit via the static method. In fact, for local energy minimization with 1% maximum

accuracy degradation allowed (similar constraint as in [92]), statically designed adaptive DNNs will be

forced to always use VGG-19 for the final prediction, while wastefully evaluating CaffeNet. This results in

larger energy consumption than using VGG-19 by itself. (ii) Effectiveness proposed method: We observe

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 29

that in all the considered cases the proposed BO+ method closely matches the result identified by grid

search. In general, our methodology identifies designs that outperform static methods [92] by up to 6× in

terms of minimum energy under accuracy constraints and by up to 31.13% in terms of error minimization

under energy constraints.

Moreover, (iii) κ-based fine-tuning: As expected, the fine-tuning step that we enhances the BO. In

particular, BO+ leads to further energy minimization under accuracy constraints by 13.18% and to error

minimization under energy constraints by 21.22%, compared to the result of BO without fine-tuning. (iv)

Local versus remote execution: we observe that executing some of DNNs comprising the adaptive neural

network remotely allows for more energy-efficient image classification, compared to executing everything

locally at the same level of accuracy. That is, using an edge-server design, where only the smallest CNN

executes locally, allows for energy reduction of 2.96× compared to executing all networks locally and for

the same error constraint.

Table 4.2: Designing three-network adaptive DNNs: Hyperparameter optimization results on the test set.

Minimum energy (mJ) under Minimum error (%)
Method accuracy degradation under energy constraint:

constraint: Local (3%) Local (120mJ)
Static [7, 92] 268.43 41.25

BO 137.36 17.94
BO+ 113.59 15.06
Grid 108.45 14.98

Exploring three-network adaptive DNNs: Finally, we evaluate the proposed method on a three-

network case. We summarize the results in Table 4.2. Once again, we observe that, compared to static

methods, our methodology closely matches the results obtained by grid search. More specifically, in the

case of energy minimization, the solution reached by BO+ is only 4.74% away from the optimal grid

search-based design, while outperforming best previously published static methods [92] by 2.47× in terms

of energy minimization.

4.5 Discussion

In this Chapter, we introduce an efficient HPO methodology to design hardware-constrained adaptive

DNNs based on BO. The key novelty in our work is that both the DNN architectures and the selection

scheme are treated as hyperparameters that are globally (jointly) optimized. This allows us to identify

designs that outperform existing adaptive DNNs by up to 6× in terms of minimum energy per image

under accuracy constraints and by up to 31.13% in terms of error minimization under energy constraints.

CHAPTER 4. HARDWARE-CONSTRAINED ADAPTIVE DNNS DESIGN 30

Finally, we study two image classification practices, i.e., classifying all images locally versus over the cloud

under energy and communication constraints.

To motivate an interesting direction for future work, we note that the methodologies presented in both

this (Chapter 4) and the previous chapter (Chapter 3) are based on sequential network samples. That is, in

each iteration the hyperparameter optimizer suggests a (set of) candidate DNN designs which are trained

and evaluated on a validation set from scratch. In the context of NAS methods, recent AutoML work has

shown that one-shot methodologies can significantly reduce the search cost [79]. In the following Chapter 5,

we delve into one-shot AutoML: we identify the key bottleneck in existing methodologies and we achieve

new state-of-the-art results for Mobile AutoML applications.

Chapter 5

Efficient Single-Path Neural Architecture Search

Neural Architecture Search (NAS) has drawn an unprecedented surge of interest from the AutoML

community in the recent months. One-shot NAS methodologies have been recently shown to significantly

reduce the NAS search cost compared to their standalone counterparts [79]. In this Chapter, we delve

into one-shot NAS formulations and we identify their key limitations. In a novel departure from existing

(multi-path) assumptions on how the different DNN architectures are encoded across separate paths in the

one-shot model, we introduce a state-of-the-art single-path NAS encoding of the search space.

5.1 Chapter overview

Earlier work on AutoML, including our Bayesian optimization methodologies introduced in Chapters 3-4,

have been originally studied in the context of sequential point evaluations. With the recent surge of interest

in Neural Architecture Search (NAS), the earlier NAS methods based on either evolutionary algorithms

(EA) or reinforcement learning (RL) adhere to this sequential setting. That is, the AutoML search progresses

over evaluations of standalone DNNs and the networks that have already been evaluated are used either for

mutations over the EA population [97] or to train the RL agent using a policy gradient algorithm [138].

However, these methods are not ideally suited for optimizing problems where point evaluations are

expensive to obtain [61]. Indeed, architecture search is in essence an optimization problem, i.e., aiming to

find the DNN with the lowest validation error: there is no explicit need to maintain a notion of mutations

for EA or to solve the credit assignment for RL [61]. Since either methods could be fundamentally

more difficult problems than optimization [57], these approaches require thousands of candidate DNNs

to be trained [128]. Consequently, updating the RL controller or the EA population poses prohibitive

computational challenges and thousands of candidate DNNs need to be trained.

The aforementioned challenge has propelled the AutoML community to investigate novel formulations

31

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 32

that reduce the computational burden of standalone NAS methods. In a seminal work, Liu et al. have shown

that formulating the NAS problem in a differentiable manner excels in discovering high-performance DNN

architectures [79], while being orders of magnitude faster than previous standalone techniques. The main

idea of one-shot NAS is to relax the design of DNNs (Equation 2.1) to a differentiable operation/path

selection problem: first, an over-parameterized, multi-path supernet is constructed, where, for each layer,

every candidate operation is added as a separate trainable path, as illustrated in Figure 5.1 (left). Next,

multi-path NAS formulations solve for the paths that yield the optimal architecture. This insight has given

rise to a plethora of novel one-shot methodologies [128, 12, 132, 84].

Figure 5.1: Our method directly optimizes for the subset of convolution kernel weights and searches over
an over-parameterized “superkernel” in each DNN layer (right). This novel view of the design space
eliminates the need for maintaining separate paths for each candidate operation, as in previous multi-path
approaches (left).

As expected, naïvely branching out all paths is inefficient due to an intrinsic limitation: the number of

trainable parameters that need to be maintained and updated during the search grow linearly with respect

to the number of candidate operations per layer [1]. To tame the memory explosion introduced by the

multi-path supernet, current methods employ creative “workaround” solutions: e.g., searching on a proxy

dataset (subset of ImageNet [128]), or employing a memory-wise scheme with only a subset of paths being

updated during the search [12]. Nevertheless, these techniques remain considerably costly, with an overall

computational demand of at least 200 GPU-hours.

This observation motivates a novel exploration in this thesis based on the following question: “can we

match the performance of existing one-shot NAS in terms of accuracy of the identified DNN design, while

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 33

reducing the search cost from days down to only a few hours?” A critical challenge in this endeavor is

that we need to rethink how the NAS search space can be represented with the one-shot over-parameterized

supernet in a more efficient way.

5.1.1 Key novelty: from multi- to single-path NAS formulations

To address the suboptimality of prior work, we propose Single-Path NAS. Our key insight is illustrated

in Figure 5.1 (right). We build upon the observation that different candidate convolutional operations

in NAS can be viewed as subsets of a single “superkernel”. Without having to choose among different

paths/operations as in multi-path methods, we instead solve the NAS problem as finding which subset

of kernel weights to use in each DNN layer. By sharing the kernel weights, we encode all candidate NAS

operations into a single “superkernel”, i.e., with a single path, for each layer of the one-shot NAS supernet.

5.1.2 Contributions and Chapter organization

To the best of our knowledge, our Single-Path NAS methodology brings the following novel contributions:

1. Single-Path NAS: We propose a novel view of the one-shot, supernet-based design space, hence

drastically decreasing the number of trainable parameters. Single-Path NAS is the first work to

formulate the NAS problem as finding the subset of kernel weights in each DNN layer [113, 114].

2. State-of-the-art results: We achieve an overall search cost of only 8 epochs, i.e., 3.75 hours on TPUs

(30 TPU-hours), which is up to 5,000× faster compared to prior work. Single-Path NAS achieves

state-of-the-art top-1 accuracy on ImageNet with mobile latency on-par with previously best Mobile

AutoML methodologies (≈ 80ms on a Pixel 1).

This Chapter is organized as follows: Section 5.2 presents our novel view of the design space and

introduces the Single-Path NAS formulation. Section 5.3 and Section 5.4 provide the experimental results

and discussion, respectively.

5.2 Proposed Single-Path NAS

To simplify notation and to illustrate the key idea, without loss of generality, we show the case of choosing

between a 3× 3 or a 5× 5 kernel for an MBConv layer. Let us denote the weights of the two candidate

kernels as w3×3 and w5×5, respectively. As shown in Figure 5.2, we observe that the weights of the 3× 3

kernel can be viewed as the inner core of the weights of the 5× 5 kernel, while “zeroing” out the weights

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 34

of the “outer” shell. We denote this (outer) subset of weights (that does not contribute to output of the

3× 3 kernel but only to the 5× 5 kernel), as w5×5\3×3. Hence, the NAS architectural choice of using

Figure 5.2: Encoding NAS kernel-level decisions into

the searchable superkernel.

the 5× 5 convolution corresponds to using both the

inner w3×3 weights and the outer shell, i.e., w5×5 =

w3×3 + w5×5\3×3 (Figure 5.2).

We can therefore encode the NAS decision di-

rectly into the superkernel of an MBConv layer as

a function of kernel weights as follows:

wk = w3×3 + 1(use 5× 5) ·w5×5\3×3 (5.1)

where 1(·) is the indicator function that encodes

the architectural NAS choice, i.e., if 1(·) = 1 then

wk = w3×3 + w5×5\3×3 = w5×5, else 1(·) = 0 then

wk = w3×3.

Trainable indicator/condition function: While the indicator function encodes the NAS decision, a

critical choice is how to formulate the condition over which the 1(·) is evaluated. Our intuition is that,

for an indicator function that represents whether to use the subset of weights, its condition should be

directly a function of the subset’s weights. Thus, our goal is to define an “importance” signal of the subset

weights that intrinsically captures their contribution to the overall DNN loss. We draw inspiration from

weight-based conditions that have been successfully used for quantization-related decisions [27] and we

use the group Lasso term. Specifically, for the indicator related to the w5×5\3×3 “outer shell” decision, we

write the following condition:

wk = w3×3 + 1(
∥∥∥w5×5\3×3

∥∥∥2
> tk=5) ·w5×5\3×3 (5.2)

where tk=5 is a latent variable that controls the decision (e.g., a threshold value) of selecting kernel 5× 5.

The threshold will be compared to the Lasso term to determine if the outer w5×5\3×3 weights are used

to the overall convolution. It is important to notice that, instead of picking the thresholds (e.g., tk=5) by

hand, we seamlessly treat them as trainable parameters to learn via gradient descent. To compute the

gradients for thresholds, we relax the indicator function g(x, t) = 1(x > t) to a sigmoid function, σ(·),

when computing gradients, i.e., ĝ(x, t) = σ(x > t).

Searching for expansion ratio and skip-op: Since the result of the kernel-based NAS decision wk

(Equation 5.2) is a convolution kernel itself, we can in turn apply our formulation to also encode NAS

decisions for the expansion ratio of the wk kernel. As illustrated in Figure 5.3, the channels of the depthwise

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 35

convolution in an MBConv-k× k-3 layer with expansion ratio e = 3 can be viewed as using one half of the

channels of an MBConv-k× k-6 layer with expansion ratio e = 6, while “zeroing” out the second half of

channels {wk,6\3}. Finally, by “zeroing” out the first half of the output filters as well, the entire superkernel

contributes nothing if added to the residual connection of the MBConv layer: i.e., by deciding if e = 3, we

can encode the NAS decision of using, or not, only the “skip-op” path. For both decisions over wk kernel,

we write:

w = 1(
∥∥wk,3

∥∥2
> te=3) · (wk,3 + 1(

∥∥∥wk,6\3

∥∥∥2
> te=6) ·wk,6\3) (5.3)

Hence, for input x, the output of the i-th MBConv layer of the network is:

oi(x) = conv(x, wi|ti
k=5, ti

e=6, ti
e=3) (5.4)

Figure 5.3: Encoding expansion ratio decisions into the

searchable superkernel.

Searchable MBConv kernels: Each MBConv

uses 1 × 1 convolutions for the point-wise (first)

and linear stages, while the kernel-size decisions af-

fect only the (middle) k× k depthwise convolution

(Figure 5.4). To this end, we use our searchable

k × k depthwise kernel at this middle stage. In

terms of number of channels, the depthwise kernel

depends on the point-wise 1× 1 output, which al-

lows us to directly encode the expansion ratio e at

the middle stage as well: by setting the point-wise

1× 1 output to the maximum candidate expansion ratio, we can instead solve for which of them not to

“zero” out at the depthwise (middle) state. In other words, we directly use our searchable depthwise

convolution superkernel to effectively encode the NAS decision for the expansion ratio. Hence, our

single-path, convolution-based formulation can sufficiently capture any MBConv type (e.g., MBConv-3× 3-6,

MBConv-5× 5-3, etc.) in the MobileNetV2-based design space (Figure 5.4).

5.2.1 Single-path vs. existing multi-path assumptions

As a reminder, in Chapter 2 we briefly illustrated how multi-path existing methods [12, 79, 128] solve the

differentiable NAS problem, where the output of each layer i is a (weighted) sum defined over the output

of N different paths (Equation 2.2). Hence, it is easy to see how our novel single-path view is advantageous,

since the output of the convolution at layer i of our search space is directly a function of the weights of our

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 36

Figure 5.4: Single-path NAS builds upon the MobileNetV2-based search space [122] to identify the mobile
inverted bottleneck convolution (MBConv) per layer (left). Our one-shot supernet encapsulates all possible
NAS architectures in the search space, i.e., different kernel size (middle) and expansion ratio (right) values,
without the need for appending each candidate operation as a separate path. Single-Path NAS directly
searches over the weights of the per-layer searchable “superkernel” that encodes all MBConv types.

single over-parameterized kernel (Equation 5.4):

oi
single−path(x) = oi(x) = conv(x, wi|ti

k=5, ti
e=6, ti

e=3) (5.5)

More importantly, with our single-path formulation, the overall network loss is directly a function of

the “superkernel” weights, where the learnable kernel- and expansion ratio-related threshold variables,

tk and te, are directly derived as a function (norm) of the kernel weights w. Consequently, Single-Path

NAS formulates the NAS problem as solving directly over the weight kernels w of a single-path, compact neural

network. Formally, the NAS problem becomes:

min
w
L(w|tk, te) (5.6)

Efficiency of Single-Path NAS: Unlike the bi-level optimization problem in prior differentiable NAS

methods (Section 2, Equation 2.3), solving our NAS formulation in Equation 5.6 is as expensive as

training the weights of a single-path, branchless, compact neural network with vanilla gradient descent.

Therefore, our formulation eliminates the need for separate gradient steps between the DNN weights and

the NAS parameters. Moreover, the reduction of the trainable parameters w per se, further leads to a

drastic reduction of the search cost down to just a few epochs, as our experimental results show later in

Section 5.3. Our NAS problem formulation allows us to efficiently solve Equation 5.6 with batch sizes of

1024, a four-fold increase compared to prior art’s search efficiency.

5.2.2 Hardware-aware NAS with differentiable runtime loss

To design hardware-efficient DNNs, the differentiable objective in Equation 5.6 should reflect both the

accuracy of the searched architecture and its inference latency on the target hardware. Hence, we use a

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 37

latency-aware formulation [12, 128]:

L(w|tk, te) = CE(w|tk, te) + λ · log(R(w|tk, te)) (5.7)

The first term CE corresponds to the cross-entropy loss of the single-path model. The hardware-related

term R is the runtime in milliseconds (ms) of the searched NAS model on the target mobile platform.

Finally, the coefficient λ modulates the trade-off between cross-entropy and runtime.

Runtime model over the single-path design space: To preserve the differentiability of the objective,

another critical choice is the formulation of the latency term R. Prior art has showed that the total network

latency of a mobile DNN can be modeled as the sum of each i-th layer’s runtime Ri, since the runtime of

each operator is independent of other operators [8, 12, 128]:

R(w|tk, te) = ∑
i

Ri(wi|ti
k, ti

e) (5.8)

For our approach, we adapt the per-layer runtime model as a function of the NAS-related decisions

t. We profile the target mobile platform (Pixel 1) and we record the runtime for each candidate kernel

operation per layer i, i.e., Ri
3×3,3, Ri

3×3,6, Ri
5×5,3, and Ri

5×5,6. We denote the runtime of layer i by following

the notation in Equation 5.3. Specifically, the runtime of layer i is defined first as a function of the expansion

ratio decision:

Ri
e = 1(

∥∥wk,3
∥∥2

> te=3) · (Ri
5×5,3 + 1(

∥∥∥wk,6\3

∥∥∥2
> te=6) · (Ri

5×5,6 − Ri
5×5,3)) (5.9)

Next, by incorporating the kernel size decision, the total runtime is:

Ri =
Ri

3×3,6

Ri
5×5,6

· Ri
e + Ri

e · (1−
Ri

3×3,6

Ri
5×5,6

) · 1(
∥∥∥w5×5\3×3

∥∥∥2
> tk=5) (5.10)

As in Equation 5.2, we relax the indicator function to a sigmoid function σ(·) when computing gradients.

By using this model, the runtime term in the loss function remains differentiable with respect to layer-wise

NAS choices. As we show in our results, the model is accurate, with an average prediction error of 1.76%.

5.3 Experimental results

5.3.1 Experimental setup

We use Single-Path NAS to design DNNs for image classification on ImageNet [24]1. We use Pixel 1

as the target mobile platform. This experimental setup allows for a representative comparison with

prior hardware-efficient NAS that optimize for Pixel 1 devices around a target latency of 80ms [12, 122].

1https://github.com/dstamoulis/single-path-nas

https://github.com/dstamoulis/single-path-nas

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 38

We implement our NAS framework in TensorFlow (TF-1.12) running on TPUs-v2 [59], following the

TPU-based MnasNet documentation2. We use Keras to implement our trainable superkernels, where

we define a custom Keras-based convolution kernel where the output is a function of both the weights

and the threshold-based decisions (Equations 5.2-5.3). Our custom layer also returns the layer runtime

(Equations 5.9-5.10).

5.3.2 Runtime profiling and modeling

Figure 5.5: The runtime model (Equation 5.8) is accu-

rate, with 1.76% mean prediction error.

To train the runtime model, we deploy the DNNs to

the mobile device with TensorFlow TFLite. On the

device, we profile runtime using the Facebook AI

Performance Evaluation Platform (FAI-PEP)3 that

supports profiling for tflite models with detailed

per-layer runtime breakdown. We record the run-

time per layer (MBConv breakdown) by profiling

DNNs with different MBConv types, i.e., we obtain

the Ri
3×3,3, Ri

3×3,6, Ri
5×5,3, and Ri

5×5,6 runtime val-

ues per MBConv layer i (Equations 5.9-5.10). To

evaluate the runtime-prediction accuracy of the model, we generate 100 randomly designed DNNs and we

measure their runtime on the device. As illustrated in Figure 5.5, our model can accurately predict the

DNN runtimes: the Root Mean Squared Error (RMSE) is 1.32ms (1.76% mean prediction error).

5.3.3 State-of-the-art runtime-constrained ImageNet classification

We apply our method to design DNNs for the Pixel 1 phone with an overall target latency of 80ms. We

train the derived Single-Path NAS model for 350 epochs, following the MnasNet training schedule [122].

We compare our method with mobile DNNs designed by human experts and state-of-the-art NAS methods

in Table 5.1, in terms of classification accuracy and search cost. In terms of hardware efficiency, prior

work has shown that low FLOP count does not necessarily translate to high hardware efficiency [31], we

therefore evaluate the various NAS methods with respect to the inference runtime on Pixel 1 (≤ 80ms).

Enabling a representative comparison: While we provide the original values from the respective

papers, our goal is to ensure a fair comparison. To this end, we retrain the baseline models following the

same schedule (in fact, we find that the MnasNet-based training schedule improves the top1 accuracy

2https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
3https://github.com/facebook/FAI-PEP

https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
https://github.com/facebook/FAI-PEP

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 39

Table 5.1: Single-Path NAS achieves state-of-the-art accuracy (%) on ImageNet for similar mobile latency
setting compared to previous NAS methods (≤ 80ms on Pixel 1), with up to 5, 000× reduced search
cost in terms of number of epochs. *The search cost in epochs is estimated based on the claim [12] that
ProxylessNAS is 200× faster than MnasNet. ‡ChamNet does not detail the model derived under runtime
constraints [23] so we cannot retrain or measure the latency.

Method Top-1 Top-5 Mobile Search
Acc (%) Acc (%) Runtime (ms) Cost (epochs)

MobileNetV1 [50] 70.60 89.50 113
-MobileNetV2 1.0x [102] 72.00 91.00 75.00

MobileNetV2 1.0x (our impl.) 73.59 91.41 73.57
Random search 73.78 ± 0.85 91.42 ± 0.56 77.31 ± 0.9 ms -
MnasNet-B1 [122] 74.00 91.80 76.00 40,000MnasNet-B1 (our impl.) 74.61 91.95 74.65
ChamNet-B [23] 73.80 – – 240‡
ProxylessNAS-R [12] 74.60 92.20 78.00 200*ProxylessNAS-R (our impl.) 74.65 92.18 77.48
FBNet-B [128] 74.1 - - 90FBNet-B (our impl.) 73.70 91.51 78.33
Single-Path NAS (proposed) 74.96 92.21 79.48 8 (3.75 hours)

compared to what is reported in several previous methods). Similarly, we profile the models on the same

Pixel 1 device. For prior work that does not optimize for Pixel 1, we retrain and profile their model closest

to the MnasNet baseline (e.g., the FBNet-B and ChamNet-B networks [23, 128], since the authors use these

DNNs to compare against the MnasNet model). Finally, to enable a representative comparison of the search

cost per method, we directly report the number of epochs reported per method, hence canceling out the

effect of different hardware systems (GPU vs. TPU hours).

ImageNet classification: Table 5.1 shows that our Single-Path NAS achieves top-1 accuracy of 74.96%,

which is the new state-of-the-art ImageNet accuracy among hardware-efficient NAS methods. Specifically,

our method achieves better top-1 accuracy than ProxylessNAS by +0.31%, while maintaining on par target

latency of ≤ 80ms on the same target mobile phone. Single-Path NAS outperforms methods in this mobile

latency range, i.e., better than MnasNet (+0.35%), FBNet-B (+0.86%), and MobileNetV2 (+1.37%).

NAS search cost: Single-Path NAS has orders of magnitude reduced search cost compared to all

previous hardware-efficient NAS methods. Specifically, MnasNet reports that the controller uses 8k

sampled models, each trained for 5 epochs, for a total of 40k train epochs. In turn, ChamNet trains an

accuracy predictor on 240 samples, which assuming an aggressively fast training schedule of five epochs

per sample (same as in MnasNet), corresponds to a total search cost of 1.2k epochs. ProxylessNAS reports

200× search cost improvement over MnasNet, hence the overall cost is the TPU-equivalent of 200 epochs.

Finally, FBNet reports 90 epochs of training on a proxy dataset (10% of ImageNet). While the number

of images per epoch is reduced, we found that a TPU can accommodate a FBNet-like supermodel with

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 40

Figure 5.6: Single-Path NAS search progress: Progress of both objective terms, i.e., cross entropy CE (left)
and runtime R (right) during NAS search.

maximum batch size of 128, hence the number of steps per FBNet epoch are still 8× more compared to the

steps per epoch in our method.

In comparison, Single-Path NAS has a total cost of eight epochs, which is 5,000× faster than MnasNet,

25× faster than ProxylessNAS, and 11× faster than FBNet. We use an aggressive training schedule similar

to the few-epochs schedule used in MnasNet to train the individual DNN samples [122]. We visualize the

search efficiency of our method in Figure 5.6, where we show the progress of both CE and R terms. Earlier

during our search (first six epochs), we employ dropout across the different subsets of the kernel weights

(Figure 5.6, right). Dropout is a common technique in NAS methods to prevent the supernet from learning

as an ensemble. That is, we randomly drop the subsets of the superkernel in our single-path search space.

We search for ∼ 10k steps (8 epochs with a batch size of 1024), which corresponds to total wall-clock time

of 3.75 hours on a TPUv2. In particular, given than a TPUv2 has 2 chips with 4 cores each, this corresponds

to a total of 30 TPU-hours.

Figure 5.7: Our method outperforms MobileNetV2 &

MnasNet across various size scales.

Different channel size scaling: Next, we fol-

low a typical analysis [12, 128], by rescaling the

networks using a width multiplier [102]. As shown

in Figure 5.7, we observe that our model consis-

tently outperforms prior methods under varying

runtime settings. For instance, Single-Path NAS

with 79.48ms is 1.56× faster than the MobileNetV2

scaled model of similar accuracy.

Visualization of Single-Path NAS DNN: Our

derived DNN architecture is shown in Figure 5.8.

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 41

Figure 5.8: Hardware-efficient DNN found by Single-Path NAS, with top-1 accuracy of 74.96% on ImageNet
and inference time of 79.48ms on Pixel 1 phone.

Figure 5.9: Visualization of kernel-based architectural contributions. The standard deviation of superkernel
values across the kernel channels is shown in log-scale, with lighter colors indicating smaller values.

Moreover, to illustrate how the searchable superkernels effectively capture NAS decisions across subsets of

kernel weights, we plot the standard deviation of weight values in Figure 5.9 (shown in log-scale, with

lighter colors indicating smaller values). Specifically, we compute the standard deviation of weights across

the channel-dimension for all superkernels. For various layers shown in Figure 5.9 (per i-th DNN’s layer

from Figure 5.8), we observe that the outer w5×5\3×3 “shells” reflect the NAS architectural choices: for

layers where the entire w5×5 is selected, the w5×5\3×3 values drastically vary across the channels. On the

contrary, for all layers where 3× 3 convolution is selected, the outer shell values do not vary significantly.

5.3.4 Ablation study: kernel-based accuracy-efficiency trade-off

Our method searches over subsets of convolutional kernel weights. Hence, we conduct experiments to

highlight how kernel-weight subsets can capture accuracy-efficiency trade-off effectively. We use the

MobileNetV2 macro-architecture as a backbone (we maintain the location of stride-2 layers as default).

As two baseline networks, we consider the default MobileNetV2 with MBConv-3× 3-6 blocks (i.e., w3×3

kernels for all depthwise convolutions), and a network with MBConv-5× 5-6 blocks (i.e., w5×5 kernels).

Next, to capture the subset-based training of weights during a Single-Path NAS search, we consider a

DNN with MBConv-5× 5-6 blocks, where we compute the loss of the model over two subsets, (i) the inner

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 42

Table 5.2: Searching across subsets of kernel weights: DNNs with weight values trained over subsets of the
kernels (3× 3 as subset of 5× 5) achieve performance (top-1 accuracy) similar to DNNs with individually
trained kernels.

Method Top-1 Acc (%) Top-5 Acc (%)
Baseline DNN - w3×3 kernels 73.59 91.41
Baseline DNN - w5×5 kernels 74.10 91.67
Single-Path DNN - inference w/ w3×3 kernels 73.43 91.42
Single-Path DNN - inference w/ w3×3 + w5×5\3×3 kernels 73.86 91.72

w3×3 weights, and (ii) by also using the remaining w5×5\3×3 weights. For each loss computed over these

subsets, we accumulate back-propagated gradients and update the respective weights, i.e., gradients are

being applied separately to the inner and to the entire kernel per layer. We follow training steps similar to

the “switchable” training across channels as in [135] (for the remaining training hyper-parameters we use

the same setup as the default MnasNet). As shown in Table 5.2, we observe the final accuracy across the

kernel granularity, i.e., with the inner w3×3 and the entire w5×5 = w3×3 + w5×5\3×3 kernels, follows an

accuracy change relative to DNNs with individually trained kernels.

Such finding is significant in the context of NAS, since choosing over subsets of kernels can effectively

capture the accuracy-runtime trade-offs similar to their individually trained counterparts. We therefore

conjecture that our efficient superkernel-based design search can be flexibly adapted and benefit the

guided search space exploration in other RL-based NAS methods. Beyond the NAS literature, our finding

is closely related to Slimmable networks [135]. SlimmableNets limit however their analysis across the

channel dimension, and our work is the first to study trade-offs across the NAS kernel dimension.

5.3.5 Single-Path NAS as feature extractor: COCO object detection

Last, we assess the performance of Single-Path NAS as a feature extractor for object detection. and we

use our network as a drop-in replacement for the backbone featurizer in the Mask-RCNN model [45].

Similarly, we compare with other backbones networks based on models from earlier mobile NAS methods.

We train our model on the COCO dataset [75]. We use the open-source implementation of TPU-trained

Mask-RCNN4. The models are trained on TPUs with batch size of 64. We train the different models

on COCO train2017 and we evaluate them on COCO val2017. We summarize the results on COCO

validation set in Table 5.3.

In particular, we observe that our designed DNN achieves higher average-precision (AP) on the

validation set compared using backbones from previous mobile AutoML methods. We note that the

Mask-RCNN head is less hardware efficient compared to MobileNet-like alternatives such as SSDLite [102].

Nonetheless, the focus of this analysis is to assess the NAS designs as feature extractors while assuming

4https://cloud.google.com/tpu/docs/tutorials/mask-rcnn

https://cloud.google.com/tpu/docs/tutorials/mask-rcnn

CHAPTER 5. EFFICIENT SINGLE-PATH NAS 43

Table 5.3: COCO Object Detection Performance

Method AP APS APM APL

MobileNet-V2 + Mask-RCNN 30.47 16.49 32.33 41.14
MnasNet + Mask-RCNN 32.47 17.74 34.45 43.88

ProxylessNAS + Mask-RCNN 32.93 17.76 34.86 44.43
Single-Path NAS + Mask-RCNN (Proposed) 33.03 17.82 35.48 44.76

the head design fixed. In fact, recent NAS work has extended the NAS search directly to the backbone [15]

and the detection head design [35]. Such searchable components can be flexibly incorporated into our

Single-Path NAS flow, whose exploration is an interesting direction for future work.

5.4 Discussion

In this Chapter, we propose Single-Path NAS, a NAS method that reduces the search cost for designing

hardware-efficient DNNs to less than 4 hours. The key idea is to revisit the one-shot supernet design space

with a novel single-path view, by formulating the NAS problem as finding which subset of kernel weights

to use in each DNN layer. Single-Path NAS reduces the search cost of hardware-efficient NAS down to

only 8 epochs (30 TPU-hours), which is up to 5,000× faster compared to prior work. While we used a

differentiable NAS formulation, our novel design space encoding can be flexibly incorporated into other

NAS methodologies. Hence, an interesting line of future work is to combine the efficiency of our one-shot

design space with RL- or EA-based NAS search strategies.

Another insightful research direction is to investigate how the performance of single-path one-shot

formulations can be improved further. In the next Chapter, we delve into the various factors that affect

the accuracy of the identified DNN design: search space, differentiable solver formulation, and solver

parameterization. Our exploration yields state-of-the-art Mobile AutoML results.

Chapter 6

Exploring the Neural Architecture Search Space

In this Chapter, we investigate the key components of a state-of-the-art one-shot NAS methodology: the

search space, the differentiable solver formulation, and the solver parameterization. Our goal is to assess

how each one of these aspects affects the NAS performance in terms of the accuracy of the identified DNN.

Our findings push the state-of-the-art performance of Mobile AutoML methods further, while maintaining

the overall search cost down to a few hours.

6.1 Chapter overview

The AutoML community has motivated the significance of understanding the properties of NAS solvers

and their limitations [54, 1, 83]. Nonetheless, a significant number of existing NAS methods are mainly

driven by strong empirical results [97, 137, 12]. This leaves a plethora of interesting questions to investigate:

“how the different NAS formulations, e.g., the encoding of NAS choices across multiple paths or a single path, affect

the overall performance of differentiable NAS.” Besides an inter-approach comparison, prior work on mobile

NAS [128, 12] lacks a detailed intra-level analysis on the statistics of differentiable NAS. That is, “by how

much the quality of the DNN design varies across multiple runs of the same NAS search?”

Developing some understanding of the factors that affect the performance of a NAS solver is paramount

to enhancing AutoML methodologies [1]. Such endeavor necessitates a comprehensive set of exploratory

experiments with the intention of analyzing the properties of a NAS system. A number of existing methods

share a similar goal. For instance, the properties of weight sharing within the one-shot supermodel are

studied in [1]. Similarly, Stochastic NAS [132] investigates the entropy of DNN distributions, while the

analysis in [70] shows that random search is a good baseline compared to complex NAS methodologies.

However, existing analyses are limited to the cell-based design based on DARTS [79] and the properties

are studied against proxy datasets, such as CIFAR-10. This could be attributed to the high computational

44

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 45

burden that is intrinsic to NAS exploration. In this Chapter, we exploit the efficiency of novel single-path

one-shot formulations (as introduced in Chapter 5) to delve into the key aspects of a NAS solver. Specifically,

we identify the following three factors to investigate: (i) the differentiable solver formulation, (ii) the solver

parameterization, and (iii) the search space.

First, in terms of the solver formulation, we aim to quantitatively investigate various single- and multi-

path methods with different modeling approximations to encode/relax NAS decisions (e.g., sigmoid, softmax,

or STE functions). Second, in terms of solver parameterization, we note that existing methods approximate

Pareto optimal solutions by a customized weighted objective function based on a trade-off parameter λ.

Nonetheless, this value is manually picked. For instance, MnasNet employs an empirical rule based on

“prior” runtime-accuracy trade-off knowledge [122], while FBNet [128] and ProxylessNAS [12] do not

provide details on the λ value used or how it was picked. This gives rise to the following question: “What

is the value of the trade-off parameter λ that yields Pareto optimal solutions around a target latency?”

Last, we strive to enhance the NAS search space in order to further improve the DNN accuracy vs.

hardware efficiency trade-off. In particular, we investigate the addition of a Squeeze-and-Excitation [52]

(SE) path in the MobileNet-based search space. Prior work shows that the SE path can improve the overall

accuracy [49]. This finding has been adapted by recent RL-based designs [122, 123]. Nonetheless, the

exploration is limited to a binary decision of using SE or not. Instead, in our work we are the first to treat

the SE path as fully searchable (i.e., searching over various SE ratios). To this end, we introduce Single-Path+

NAS which achieves state-of-the-art Mobile AutoML performance [112].

Contributions and Chapter organization

In this Chapter, to the best of our knowledge, we make the following contributions:

1. Our work is the first to formulate the hyperparameter tuning of a differentiable NAS solver as a hy-

perparameter optimization problem itself, aiming to automatically find the trade-off hyperparameter

in differentiable NAS given a target runtime.

2. To the best of our knowledge, we are first to treat the Squeeze-and-Excitation [52] (SE) path as a fully

searchable operation in the MobileNet-based search space. Our methodology, namely Single-Path+

NAS, is the first single-path NAS approach with SE paths.

3. Single-Path+ NAS [112] achieves a new state-of-the-art: 75.62% top-1 accuracy on ImageNet with

∼ 80ms latency on a Pixel 1, i.e., a +0.42% improvement over the previously best hardware-aware

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 46

NAS [122] and manually-designed [49] DNNs in similar latency settings, while maintaining the

efficiency of single-path one-shot formulations (i.e., 2.45 hours on TPU-v3, 24 TPU-hours).

The remainder of this Chapter is organized as follows: Sections 6.2 and 6.3 investigate the performance

of one-shot NAS under various solver formulations and parameterization schemes, respectively. Section 6.4

extends the Mobile NAS search space and discusses the state-of-the-art results for image classification

performance. Last, Section 6.5 provides the discussion.

6.2 Investigating one-shot NAS formulations

To comprehensively investigate various single- and multi-path methods, we consider the following differ-

entiable NAS formulations:

1. Multi-path with sigmoid: This implementation solves the bilevel, multi-path formulation of Equa-

tion 2.3. To this end, we implement a vanilla differentiable multi-path NAS solver [12]. While our

implementation replicates prior work’s methodology [128], we adjust the multi-path solver to the aggres-

sive few-epochs schedule used in [122, 113]. This allows us to assess whether existing multi-path methods

can reach a high-performing DNN within the same number of epochs as Single-Path NAS. Specifically, we

set the number of total steps to eight epochs and we update the warm-up and learning rate schedules

accordingly. We slim down the multi-path supernet by a width-multiplier factor of 0.5 (recent NAS work

also employs such search on a scaled-down model [123]). Similar to [128], we generate a proxy dataset (i.e.,

subset of ImageNet with 100 classes) to search on. We deploy our implementation on cloud TPUs.

2. Single-path with sigmoid: this is the default implementation reported so far. That is, during search

(backpropagation over the supernet) we approximate the indicator functions (e.g., 1(
∥∥∥w5×5\3×3

∥∥∥2
> tk=5))

with sigmoid functions σ().

3. Single-path with STE [2]: during search we approximate the indicator functions with the straight-

through estimator (STE) [134].

4. Single-path with softmax: This implementation is a hybrid between the single-path encoding of

the design space and the use of softmax, i.e., we encode the NAS choice of selecting across subsets of the

superkernel using a softmax function parameterized by τ, i.e., softmax(τ). For instance, we represent the

kernel-level decision as:

wk =
exp(τ3×3)

∑j exp(τj)
·w3×3 +

exp(τ5×5)

∑j exp(τj)
· (w3×3 + w5×5\3×3) (6.1)

We formulate the Single-Path search as a bilevel optimization problem min
τ

min
wτ
L(τ, wτ), where we alternate

the steps for updating the τ parameters and the DNN weights.

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 47

Figure 6.1: “How the differentiable Mobile NAS formulation assumptions affect the overall performance (accuracy
and runtime) of the AutoML-designed DNN?” Statistics (mean and variance) for the (proxy) accuracy (top 1%)
and the runtime of DNNs designed via various formulations across 20 runs; for intra-run statistics, we pick
the Pareto optimal DNN out of the 20 samples and we train another 20 DNNs sampled from the softmax
distribution.

5. Random search: Parameter-free random search via constrained sampling (by rejection). Samples are

limited within the range of interest ∼ 80ms.

For all the aforementioned methods, we find the λ value that achieves the desired accuracy trade-off

∼ 80ms (to tune λ, we use the hyperparameter-tuning scheduler presented in subsection 6.3). We repeat the

same NAS search experiment 20 times and we measure the mean and (inter-) variance across the 20 runs

for both objective terms, i.e., validation accuracy and runtime of the AutoML-designed DNN, denoted as

inter-run. In addition, to capture the (intra-) variance within a single search in softmax-based methods, we

pick the best result among the 20 runs, and we train 20 new samples from the softmax distribution (in fact,

similar selection is used in [128] where 10 DNNs are sampled and trained to pick the best). We denote the

latter variant as intra-run. We train each DNN for a few epochs to obtain a representative proxy-accuracy

value, following the aggressive training used in MnasNet to study their RL method [122]. We summarize

our results in Figure 6.1.

Comparison vs. random search: This result is particularly interesting, since there has been recent

discussion within the NAS community on whether simple random search could find designs with per-

formance comparable to those of more complex methods [70]. Indeed, we observe that random search

performs on par with multi-path cases, which confirms similar observations by recent work [131, 20].

Nonetheless, it is important to note that random search is still inferior compared to Single-Path NAS in

terms of the (proxy) accuracy around the target latency range ∼ 80ms.

Furthermore, the nearly-zero search cost of random search is not necessarily representative: to avoid

training all random, constraint-satisfying samples, an AutoML practitioner would employ an evaluation

of a proxy task, by training each sample for few epochs and by picking the one with highest accuracy.

Hence, the actual search cost for random search is not negligible. In fact, the low search cost of our method

(8 epochs) is comparable to the number of training epochs during the aforementioned selection process.

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 48

Given than Single-Path NAS gives DNNs with superior performance than random search at comparable

cost, we argue that NAS remains a better AutoML options than random search methods.

Softmax intra-run variance: Next, please notice the variance inherent to all the softmax-based cases.

That is, we observe that sampling the softmax of the best NAS search (selected from the 20 NAS repetitions)

yields high-variance in terms of both accuracy and runtime. This finding confirms a recent analysis that

shows the high entropy in the architecture distribution for cell-based multi-path designs [132].

Different single-path variants: Moreover, we compare our original Single-Path NAS (single-path

sigmoid) method against its two variants (i) with STE and (ii) with softmax (inter-run). First, once again we

notice that the softmax version has higher variance compared to both the sigmoid and the STE versions.

For the STE version, while the variance appears smaller than sigmoid, it is important to note that we had to

repeat the process multiple times to reach 20 completed searches due to encountered numerical instability

issues with STE (exploding gradients). A deeper study on the STE is an interesting direction for future

NAS work, similar to recent STE analysis in the context of hardware-aware quantization [134].

Single-Path NAS vs. prior work: Last, we highlight the advantage of using our proposed method

(single-path sigmoid) instead of existing methods [128, 12] (multi-path softmax, inter-run). We observe that

the variance across different Single-Path NAS runs is smaller than the variance of softmax-based methods

(both inter- and intra-run).

Overall, we observe that multi-path softmax methods sample either low accuracy samples (many

layers skipped, which is another issue previously observed [132]) or higher accuracy ones that violate

the constraint. We hypothesize that the inferior solutions are due to the fact that the bilevel problem

(Equation 2.3) is an intrinsically more complex optimization problem to solve, as also discussed in [79].

That is, it is difficult for the multi-path solver to reach a high quality solution within a few epochs, while

our proposed Single-Path NAS for the same number of steps is as costly as training a compact model.

Besides the optimization complexity, one would argue that the performance of multi-path methods is

decided by several hyperparameters. Indeed, we extensively experimented with numerous settings by

varying the number of epochs between the interleaved steps (NAS vs. DNN weights updates), the learning

rates for each update step, the batch size, the Gumbel-softmax parameters [128], to name a few. Given that

running each solver parameterization is expensive (hundreds of epochs), this highlights another limitation

related to the tuning cost for all the hyperparameters involved, making our proposed method even more

appealing to use. Next, we investigate how the parameterization of the NAS solver affects the end result

and how we can automate this tuning step.

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 49

6.3 Hypertuning the NAS solver

In this Section, we answer this interesting question: “instead of empirically tuning the NAS trade-off hyper-

parameter, can we automatically find it given a target runtime from the hardware engineers?” To this end, we

formulate the tuning of λ (Equation 5.7) as a hyperparameter optimization problem itself. Specifically, we

solve for the λ value that maximizes the validation accuracy under the given runtime target RT . For a

representative analysis, we use the weighted objective introduced in [122] that approximates Pareto optimal

solutions, hence allowing our approach to traverse the Pareto front while solving for λ. Specifically:

max
λ

Accvalid(λ|w, tk, te, tse) ·
[

R(λ|w, tk, te, tse)

RT

]w

, with w =

0, if R(λ|w, tk, te, tse) ≤ RT

−1, otherwise
(6.2)

We would like to stress here that each evaluation of Equation 6.2 corresponds to new NAS search.

Therefore, solving this hyperparameter optimization problem would be impractical with previous NAS

methods where each function evaluation would cost hundreds of hours. Instead, we exploit the efficiency of

Single-Path NAS and we investigate various black-box hyperparameter optimization techniques. Specifically,

we consider the following methods:

1. Bayesian optimization [103]: Vanilla Bayesian optimization, as implemented in the Dragonfly

tool [62], available online1. The method fits a Gaussian process (GP) [95] (probabilistic model) to the

objective (Equation 6.2) by points sampled across the hyperparameter λ.

2. Multi-fidelity optimization [60]: Enhanced Bayesian optimization method where the GP fits both

the hyperparameter space (λ values) and the fidelity (budget) space. The intuition is that low-fidelity

evaluations could offer a good view of the function manifold at lower cost. We use discrete budget

choices from two up to eight (the default maximum in the vanilla case) as multiple fidelities. We use the

multi-fidelity method from Dragonfly [62] which, for each new sample to evaluate, it suggests the new λ

value and the sample budget (epochs).

3. Random search [3]: Parameter-free random search that randomly samples λ values.

We extend our AutoML framework to support this hyperparameter optimization. Our implementation

automates the process of launching multiple (sequential or parallel) runs on cloud TPUs and calls the

black-box optimization solver that suggests the next λ value to evaluate. Our goal is to find the trade-off

λ value that yields Pareto-optimal designs around the target runtime level RT = 80ms. We run each

solver for five runs with a total budget of 400 epochs and we track the current-best objective value. In

Figures 6.2 (right) and Figure 6.2 (left), we report the objective value and the distance from the target

runtime, respectively, where we plot the average-best and the variance across the five runs.
1https://github.com/dragonfly/dragonfly/

https://github.com/dragonfly/dragonfly/

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 50

Figure 6.2: Progress of various hyperparameter optimization solvers with respect to the distance from the
target latency (left) and the overall reward (right).

Vanilla vs. multi-fidelity Bayesian optimization: we observe that vanilla Bayesian optimization

outperforms the multi-fidelity counterpart by reaching the near-optimal region faster and by converging

to a higher-reward final solution. This is an interesting finding, since prior work shows that, for other

hyperparameter settings (e.g., learning rate) multi-fidelity enhances the optimization process.

To fully investigate why this occurs, we employ grid search across budget epochs (from two to eight) and

different λ values, and we plot the objective value (Equation 6.2) of the NAS search result in Figure 6.3. The

result explains the suboptimality of the multi-fidelity case, since we can observe that the main assumption

that “low-cost samples give a representative view of the space” does not fully hold. In particular, as

highlighted in the Figure, we observe that initially promising λ values (brighter objective values obtained

after four or five epochs, middle right) become suboptimal (darker at eight epochs, bottom right).

Figure 6.3: Visualizing the objective value (Equation 6.2) across multiple fidelities (y-axis) and hyperpa-
rameter values (x-axis) via grid search. Interestingly, low-cost function evaluations (middle, right) that
reach the Pareto point around the target latency faster, tend to “overshoot” beyond this point towards
over-constrained, suboptimal designs (bottom, right).

From a NAS design standpoint, the larger values λ penalize the runtime term more so they approach

the Pareto point around the target latency faster, but they tend to “overshoot” beyond this point towards

over-constrained designs. We find this result interesting, since we postulate that other black-box optimization

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 51

techniques that rely on low-cost (early) approximation (e.g., hyperband [71]) would encounter the same

issue. Studying this hyperparameter optimization problem is an interesting research direction for future

work currently under-explored.

Comparison vs. random search: We find that random search, while never outperforming the Bayesian

optimization result, has a relatively good performance at tuning the λ hyperparameter. Interestingly, recent

work shares similar observation when tuning NAS scaling hyperparameters via grid search [123]. We hope

that our analysis would further foster exploration towards this direction.

Figure 6.4: Single-Path+ search space [112]: we enhance the MobileNet-based space with fully searchable
Squeeze-and-Excitation [52] (SE) paths. Our method searches over the weights of both the depthwise
searchable superkernel (i.e., kernel size and expansion ratio values) and the searchable squeeze superkernel
(i.e., SE ratio value). We show that this search space further improves the accuracy-runtime trade-off.

6.4 Single-Path+: enhancing the one-shot NAS search space

We enhance the Mobile AutoML design space, as is shown in Figure 6.4. In particular, each mobile inverted

bottleneck convolution MBConv [102] micro-architecture is now also augmented with a Squeeze-and-

Excitation (SE) block [52]. That is, besides the kernel size and the expansion ration, each MBConv-k× k-e-se

layer is also parameterized by the Squeeze-and-Excitation [52] ratio se, i.e., the ratio between the number of

channels in the intermediate convolution and the input of the Squeeze-and-Excitation path.

Searching for SE ratio: Next, we extend the superkernel-based definition to encode the NAS decision

related to the Squeeze-and-Excitation [52] (SE) ratio se. In particular, we observe that the expansion

ratio decision (Equation 5.3) corresponds effectively to searching over the total number of channels of a

convolution kernel. As shown in Figure 6.5, we replace the convolution kernel of the squeeze convolution

of the SE path with a searchable superkernel, where the largest number of channels corresponds to the

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 52

largest candidate se value, i.e., se = 0.5. By following an intuition similar to Equation 5.3, we observe that

“zero-ing out” the second half of the squeeze convolution corresponds to using se = 0.25, while “zero-ing

out” the entire kernel corresponds to not using a SE path (se = 0). We therefore write:

wse = 1(‖w0.25‖2 > tse=0.25) · (w0.25 + 1(
∥∥∥w0.5\0.25

∥∥∥2
> tse=0.5) ·w0.5\0.25) (6.3)

Overall, we now have two searchable superkernels, the original superkernel across the main MBConv

path, and the superkernel across the SE path. For input x, the output of the i-th MBConv becomes:

oi(x) = conv(x, wi|ti
k=5, ti

e=6, ti
e=3, ti

se=0.5, ti
se=0.25) (6.4)

Figure 6.5: Encoding NAS decisions into the squeeze superkernel:

We formulate all candidate Squeeze-and-Excitation (SE) path types

(i.e., SE ratio values) directly into the searchable superkernel.

Last, we need to properly incor-

porate this NAS decision into the

runtime term. To this end, we cap-

ture the effect that the SE path has

on the runtime. For notation consis-

tency, we denote the total runtime

of the i-th MBConv layer with ker-

nel size k, expansion ratio e, and

SE ratios 0.25 or 0.5 as Ri
k×k,e,se=0.25

and Ri
k×k,e,se=0.5, respectively. Sim-

ilarly, we denote the runtime of the

MBConv layer without a SE path as Ri
k×k,e,se=0. For notation clarity, let us denote the relative increase in

runtime due to the addition of the SE path compared to the runtime without the SE path as scaling factor:

si
k,e,0.25 = Ri

k×k,e,se=0.25/Ri
k×k,e,se=0 (6.5)

Based on our detailed runtime analysis presented in our results, we make two observations: (i) due to

the relatively smaller size of the squeeze convolution across the SE path compared to the k× k convolution

of the main path, the difference in the relative runtime increase from using either SE ratios is negligible, i.e.,

si
k,e,0.25 ≈ si

k,e,0.5. Next, (ii) the relative ratio of the runtimes with and without using the SE path differs for

each type of the main MBConv path. To this end, we express the overall runtime scaling as function of the

kernel and the expansion ratio choices:

si
k,e=6,0.25 = 1(

∥∥∥w5×5\3×3

∥∥∥2
> tk=5) · si

k=5,e=6,0.25 + (1− 1(
∥∥∥w5×5\3×3

∥∥∥2
> tk=5) · si

k=3,e=6,0.25 (6.6)

si
k,e=3,0.25 = 1(

∥∥∥w5×5\3×3

∥∥∥2
> tk=5) · si

k=5,e=3,0.25 + (1− 1(
∥∥∥w5×5\3×3

∥∥∥2
> tk=5) · si

k=3,e=3,0.25 (6.7)

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 53

Hence, overall we have:

Ri =
(
1−1(

∥∥∥w0.5\0.25

∥∥∥2
> tse=0.25)

)
· Ri

k,e + 1(
∥∥∥w0.5\0.25

∥∥∥2
> tse=0.25)·{

1(
∥∥∥wk,6\3

∥∥∥2
> te=6) · si

k,e=6,0.25 +
(
1− 1(

∥∥∥wk,6\3

∥∥∥2
> te=6)

)
· si

k,e=3,0.25

}
· Ri

k,e

(6.8)

Figure 6.6: Hardware-efficient Single-Path+ DNN design [112], with top-1 accuracy of 75.62% on ImageNet
and inference time of 81.84ms on Pixel 1 phone. Compared to previous DNNs without SE [113] (Figure 5.8),
some of the earlier 5× 5 MBConvs have been replaced with smaller 3× 3− 3 MBConvs, and instead
Single-Path+ NAS selects SE paths with SE ratio of se = 0.5 in the last layers.

6.4.1 Analyzing the SE-based accuracy-runtime trade-off

Figure 6.7: Runtime profiling shows that SE ratios larger than 0.25

provide a better accuracy-runtime trade-off, since the squeeze step

is enhanced with more channels with negligible runtime overhead

(si
k,e,0.25 ≈ si

k,e,0.5), especially for the deeper layers (MBConv 18-21).

Our derived DNN is shown in Fig-

ure 6.6. To capture the overhead

possibly introduced by the use of

the SE path, we report the rela-

tive runtime increase per MBConv

types for each layer in Figure 6.7.

We can make the following obser-

vations. First, we observe that the

relative increase in the MBConv’s

runtime (scaling factor sk,e,0.25 in

Equation 6.8) is closer to 1.0 for the

last 4 layers. This is to be expected,

since the squeeze 1× 1 convolution

is performed on input feature maps

with reduced spatial dimensions.

Indeed, we observe that the Single-Path NAS appends SE paths in these last layers. More importantly, we

observe that the difference in the relative runtime increase from using either SE ratios of 0.25 or 0.5 is

negligible, i.e., si
k,e,0.25 ≈ si

k,e,0.5. This is important in the context of NAS decision since prior work only

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 54

Table 6.1: Single-Path+ NAS, enhanced with fully searchable Squeeze-and-Excitation [52] (SE) paths, further
pushes the state-of-the-art accuracy (%) on ImageNet for the targeted mobile latency setting (≈ 80ms on
Pixel 1), currently outperforming both manually- and NAS-designed DNNs that also consider SE [49, 122].
† For MobileNetV3, we report the version that matches the MnasNet space backbone, since some additional
manual enhancements in the network head are directly applicable to all other DNNs below.

Method Top-1 Top-5 Mobile Search
Acc (%) Acc (%) Runtime (ms) Cost (epochs)

MobileNetV2 [102] 72.00 91.00 75.00 -MobileNetV3 [49] 75.20 – 78 †
MnasNet-B1 [122] 74.00 91.80 76.00 40,000MnasNet-A1 [122] 75.20 92.50 78.00
ProxylessNAS-R [12] 74.60 92.20 78.00 200
Single-Path NAS [113] 74.96 92.21 79.48 8
Single-Path+ NAS (proposed) 75.62 92.61 81.84 8 (2.45 hours)

searches over the binary decision of using se = 0.25 or not, without searching for the se value. Indeed,

Single-Path+ NAS uses a ratio of se = 0.5 for all the SE layers.

6.4.2 State-of-the-art Mobile AutoML results

To enable a representative evaluation, we train the DNN architecture identified by our SE-enhanced AutoML

method following the same training setup as in prior work [113, 122]. Table 6.1 shows that Single-Path+

NAS achieves top-1 accuracy of 75.62% with ∼ 80ms latency on a Pixel 1. This is a new state-of-the-art

ImageNet accuracy among hardware-efficient NAS methods, i.e., a +0.42% improvement compared to the

previously best hardware-aware NAS model (MnasNet-A1 [122]) and DNNs that combine both AutoML

and manual-design expertise (MobileNetV3 [49]). Interestingly, both these methods search over a similar

design space, augmented with an SE path.

Moreover, our proposed approach fully maintains the search cost efficiency of a single-path one-shot

formulation, hence being orders of magnitude faster compared to all previous hardware-efficient NAS

methods. That is, we search for ∼ 10k steps (8 epochs with a batch size of 1024), which corresponds to

total wall-clock time of 2.45 hours on a TPUv3-8 (i.e., 24 TPU-hours). Our method has a total cost of eight

epochs, which is 5,000× faster than MnasNet and 25× faster than ProxylessNAS.

Last, compared to the Single-Path NAS [113] design, we observe that some of the earlier MBConv types

with either 5× 5 kernels or expansion ration 6, have been replaced with smaller 3× 3− 3 MBConvs, and

instead the Single-Path+ NAS flow selects SE paths with SE ratio of se = 0.5 in the last few layers. As

the obtained top-1 accuracy of the fully-trained DNN attests, the use of a searchable SE improves the

accuracy-runtime trade-off of mobile DNNs.

CHAPTER 6. EXPLORING THE NEURAL ARCHITECTURE SEARCH SPACE 55

6.5 Discussion

In this Chapter, we delve into the key components of a one-shot NAS solver: the search space, the

differentiable solver formulation, and the solver parameterization. We assess how various implementation

choices affect the performance in terms of the identified DNN. Moreover, we exploit the search-cost

efficiency of single-path NAS to explore novel dimensions in the search space. Our enhanced NAS

methodology Single-Path+ achieves a new state-of-the-art: 75.62% top-1 accuracy on ImageNet with ∼ 80ms

latency on a Pixel 1, i.e., a +0.42% improvement over the previously best AutoML designs. An interesting

exploration for future work is to analyze how the accuracy of candidate models (based on single-path

weight-sharing) correlates to standalone proxy accuracy, similar to the analysis in [1] for the multi-path case.

Chapter 7

Related Work

Beyond the AutoML methodologies studied so far in this thesis, the field of hardware-efficient deep

learning (DL) spans numerous techniques across other AutoML formulations, applications, and design

paradigms. In this chapter, we discuss related methods that tackle the problem of efficient DL applications

from different viewpoints.

7.1 Modeling the hardware performance of DNNs

Modeling the hardware cost of DNN execution during inference is a critical component across several

AutoML methods. Earlier approaches have relied on simplistic proxies such as the DNN parameter

and FLOP count to approximate the overall memory consumption and the overall computational cost,

respectively [34]. By incorporating Joule-per-operation factors (based on technology node spreadsheets),

prior art has proposed counter-based models to approximate energy consumption [99, 105, 43]. Nonetheless,

recent work shows that low FLOP or parameter counts do not necessarily translate to hardware efficiency [31,

85]. To address this limitation, recent work on DNN modeling has introduced accurate, regression-based

predictive models trained on commercial GPUs [94, 8]. Recent AutoML literature employs similar profiling-

based methodologies where the DNN execution on hardware platforms is explicitly profiled and/or

modeled [31, 122]. In particular, for mobile AutoML tasks targeting deployment on smartphones, NAS

methods model the total runtime as a sum over the per-layer runtimes [12, 128].

Capturing DNN performance on hardware accelerators

The goal of deploying low-power DL models to edge devices, such as IoT nodes, has spurred the de-

velopment of methodologies that aim to (co-)optimize the design of hardware accelerators [82], hence

necessitating the development of accurate hardware simulators that would allow efficient design space

56

CHAPTER 7. RELATED WORK 57

exploration (DSE). Several recently introduced simulators (e.g., MAESTRO [66], SCALE-Sim [101], HER-

ALD [67]) aim to cater to this need, by modeling a wide range of hardware accelerator design choices.

Towards more accurate modeling of the accelerator performance, recent work investigates NAS in the

presence of manufacturing variability, but these efforts are limited to RTN-induced variability phenom-

ena [58]. Towards this direction, these simulation frameworks provide the foundation where other process

variation- [115, 17] or aging-aware models [9, 98, 111, 116, 118, 117, 21] could be flexibly incorporated.

7.2 Towards efficient DNN execution

7.2.1 Adaptive DNNs

Prior art has shown that a large percentage of images in a dataset are easy to classify with a simpler DNN

configuration [127]. This insight of dynamically trading off accuracy with energy efficiency can be found

in several existing approaches (e.g., conditional [90], scalable [127]). The early efforts to enable energy

efficiency were based on “early-exit” conditions placed at each layer of a DNN, aiming at bypassing later

stages of a DNN if the classifier has a “confident” prediction in earlier stages. These methods include

the scalable-effort classifier [127], the conditional deep learning classifier [90], the distributed neural

network [124], the edge-host partitioned neural network [64], and the cascading neural network [69]. At the

network-level, Takhirov et al. have trained an adaptive classifier [120]. Park et al. propose a two-network

adaptive design [92], where the decision of which network to process the input data is done by looking

into the “confidence score” of the network output. Bolukbasi et al. extend the formulation of network-level

adaptive systems to multiple networks [7]. Last, other works extend this approach to more tree-like

structures for image classification [89], across multiple resolution scales for video object detection [19], or

across variant granularity of the image labels [16].

7.2.2 Pruning & quantization

There is an enormous body of work on techniques aiming to reduce the DNN model complexity for efficient

hardware execution during inference: e.g., pruning of the network connections [43, 22, 133], quantization of

the network weights and activations [26, 27, 25, 28], hardware-efficient implementations of convolution

operations [18, 129], to name a few. Recent work shows that these design principles can be directly

incorporated into the AutoML search space. In [130], the authors introduce a quantization-aware NAS

method to simultaneously search for the arithmetic precision and the DNN architecture. Similarly, Cai et

al. [10, 11] jointly optimize for arbitrary number of filters and precision while searching the DNN backbone.

CHAPTER 7. RELATED WORK 58

That is, such enhancements can be viewed as appending more search dimensions in the AutoML search

space, hence providing an interesting line of future work for our methodologies.

7.3 Hardware-aware Bayesian optimization

Prior art has proposed formulations for constrained Bayesian optimization, motivating optimization

cases where the constraints can be expressed as known a priori [34]; these formulations enable models

that can directly capture candidate configurations as valid or invalid [40]. Hernández-Lobato et al.

developed a general framework for employing Bayesian optimization with unknown constraints or with

multiple objective terms [47]. This framework has been successfully used for the co-design of hardware

accelerators and DNNs [48, 96], and the design of DNNs under runtime constraints [47]. However, existing

methodologies evaluate only MNIST on hardware simulators [48, 96], do not consider power as key design

constraint [47], or rely on inaccurate count-based models instead of platform measurements.

7.4 Hardware-aware Neural Architecture Search (NAS)

NAS literature (standalone or one-shot) has investigated a plethora of solver formulations and search selection

strategies, spanning methods based on reinforcement learning (RL) [138, 137], evolutionary algorithms [97],

gradient-based methods [79, 93], Bayesian optimization [61, 23], to name a few.

Hardware-aware NAS: Earlier hardware-aware NAS methods focused on maximizing accuracy under

FLOPs constraints [132, 136], but low FLOP count does not necessarily translate to hardware efficiency [31].

More recent methods incorporate hardware terms (e.g., runtime, power) into cell-based NAS formu-

lations [31, 51], but cell-based implementations are not hardware friendly [128]. Breaking away from

cell-based assumptions in the search space encoding, recent work employs NAS over a generalized

MobileNetV2-based design space introduced in [122].

Hardware-aware multi-path differentiable NAS: Recent NAS literature has seen a shift towards one-

shot NAS formulations [93, 132]. Gradient-based NAS in particular has gained increased popularity

and has achieved state-of-the-art results [79, 84]. One-shot-based methods use an over-parameterized

super-model network, where, for each layer, every candidate operation is added as a separate trainable

path. Nonetheless, multi-path search spaces have an intrinsic limitation: the number of trainable parameters

that need to be maintained and updated with gradients during the search grows linearly with respect to

the number of different convolutional operations per layer, resulting in memory explosion [1, 12].

To this end, state-of-the-art approaches employ different novel “workaround” solutions. FBNet [128]

searches on a “proxy” dataset (i.e., subset of the ImageNet dataset). Despite the decreased search cost

CHAPTER 7. RELATED WORK 59

thanks to the reduced number of training images, these approaches do not address the fact that the entire

supermodel needs to be maintained in memory during search, hence the efficiency is limited due to

inevitable use of smaller batch sizes. ProxylessNAS [12] has employed a memory-wise one-shot model

scheme, where only a set of paths is updated during the search. However, such implementation-wise

improvements do not address a second key suboptimality of one-shot approaches, i.e., the fact that separate

gradient steps are needed to update the weights and the architectural decisions interchangeably [79].

Although the number of trainable parameters, with respect to the memory cost, is kept to the same level at

any step, the way that multi-path-based methods traverse the design space remains inefficient.

Hardware-aware single-path differentiable NAS: While concurrent methods consider relaxed convo-

lution formulations based on insights similar to our work [104, 53, 42], they either use design spaces and

objectives that have been shown to be hardware inefficient (e.g., cell-based space, FLOP count), or they

optimize over a subset of our design space. In our work, we optimize over multiple searchable kernels per

layer and we simultaneously search across several NAS decisions, i.e., kernel sizes, channels dimensions,

expansion ratio, or Squeeze-and-Excitation [52] ratio dimensions.

Chapter 8

Conclusion

In this thesis, we have demonstrated that AutoML methods can be both hardware aware and search-cost

efficient: our proposed methodologies can design hardware-efficient DNN architectures that achieve state-

of-the-art DL performance, in only a few hours. In this chapter, we summarize the key results of our work

and we discuss several interesting directions for future research that arise of our endeavor.

8.1 Key thesis results

8.1.1 Enhancing Bayesian optimization with hardware constraint-awareness

Vanilla BO treats the hardware cost as a low-cost, a priori-known constraint: with several point evaluations,

the BO solver models the likelihood that a point in the design space satisfies the constraints or not. Key

insight: we conjugate that BO methods could exploit a more accurate understanding of the underlying

hardware cost via accurate models which are trained offline. We train predictive models to capture the

power and memory consumption of DNNs running on GPUs, with an overall prediction accuracy of 93%.

Based on our key insight, we develop HyperPower, a BO-based method where the hardware-cost terms

are explicitly incorporated into the formulation, allowing for the solver to traverse the design space in a

constraint “complying” manner [109]. We show that HyperPower reaches the near-optimal region up to

3.5× faster compared to vanilla constrained BO methods.

8.1.2 AutoML for designing adaptive DNNs

The literature on adaptive DNNs has mainly focused on learning where each input image should be

classified among the DNNs, hence only optimizing with respect to the selection scheme. That is, prior

work treats each DNN as a blackbox (i.e., pre-trained off-the-shelf DNN). Key insight: we demonstrate

60

CHAPTER 8. CONCLUSION 61

that the hardware efficiency of adaptive DNNs can be greatly improved if the DNN architectures are

optimized jointly with the network selection scheme. Our work is the first to formulate the design of

adaptive DNNs as an AutoML problem under various energy, accuracy, and communication constraints.

We identify designs that outperform existing resource-constrained adaptive DNNs by up to 6× in terms of

minimum energy per image and by up to 31.13% in terms of accuracy improvement, when tested on a

commercial NVIDIA mobile board and the CIFAR-10 dataset.

8.1.3 Single-path one-shot NAS

Despite the strong empirical results in reducing the search cost and identifying state-of-the-art DNN

designs, existing one-shot multi-path NAS formulations exhibit a key suboptimality: by viewing the NAS

choices as an operation/path selection problem, each candidate operation is appended as a separate path

to the one-shot supernet. However, naïvely branching out all paths is inefficient due to the large number of

supernet parameters to be maintained and updated during the search. Hence, these techniques remain

considerably costly, with an overall computational demand of at least 200 GPU-hours.

To address this suboptimal formulation, we propose Single-Path NAS [113]. Key insight: our method

views the different candidate convolutional operations in NAS as subsets of a single “superkernel”,

allowing us to solve the NAS problem as finding which subset of kernel weights to use in each DNN layer.

We achieve an overall search cost of only 8 epochs (3.75 hours on TPUs-v2), which is up to 5,000× faster

compared to prior work, while outperforming existing Mobile AutoML methodologies in terms of top-1

accuracy on ImageNet with on-par mobile latency (≈ 80ms on a Pixel 1).

8.1.4 State-of-the-art Mobile AutoML performance

While analyzing the factors that affect the performance of a NAS solver is paramount to enhancing AutoML

methodologies, existing analyses are limited in their scope due to the high computational burden that is

intrinsic to NAS runs. Key insight: we exploit the efficiency of our novel single-path one-shot formulation

and we delve into the key aspects of a NAS solver. Specifically, we study how NAS implementation choices

such as the solver formulation or parameterization affect the search result. Moreover, we enhance the

NAS search space by treating the Squeeze-and-Excitation [52] (SE) path as a fully searchable operation.

Our enhanced Single-Path+ NAS [112] achieves a new state-of-the-art: 75.62% top-1 accuracy on ImageNet

with ∼ 80ms latency on a Pixel 1, i.e., a +0.42% improvement over the previously best hardware-aware

NAS [122] and manually-designed [49] DNNs in similar latency settings, while maintaining the efficiency

of single-path one-shot formulations (i.e., 2.45 hours on TPU-v3, 24 TPU-hours).

CHAPTER 8. CONCLUSION 62

8.2 Future work

AutoML constitutes a research topic of paramount importance, being viewed as a key factor towards the

democratization of DL [54]: the user would simply provide the data and AutoML would offer state-of-the-art

DNN solutions without the need for DL experts. As of this writing, we are witnessing a proliferation of

AutoML approaches, as demonstrated by the exponential increase in the number of AutoML papers [76].

The research community has highlighted that, despite the steady improvement in AutoML methods, the

comprehensiveness of evaluations in the field still lags behind compared to other areas in DL, ML, and

optimization [76]. Therefore, future work in AutoML, and especially in hardware-aware NAS, can explore

numerous interesting directions.

8.2.1 Jointly exploring the underlying hardware architecture space

While recent hardware-aware AutoML has achieved state-of-the-art performance for on-device DL applica-

tions, such effectiveness is bound by the underlying hardware resources [10]. The need to bring low-power

DL models to edge devices, such as IoT nodes, has spurred the development of NAS methodologies that

aim to jointly optimize the hardware accelerator design as well as the DNN [82]. Co-design NAS approaches

present several opportunities and challenges for future work. That is, the extra degree of freedom from

the underlying architecture design is expected to make the search complexity larger. To this end, recent

work aims to adapt existing standalone and multi-path NAS approaches to enable efficient co-design [82, 10].

Therefore, a straight-line future direction is to extend our single-path one-shot formulation to jointly optimize

the underlying accelerator design.

8.2.2 NAS beyond image classification

The NAS literature has mainly focused on image classification. Hence, an interesting direction for future

work is to extend AutoML to other DL applications. As of this writing, we note some initial steps

towards this direction: NAS for object detection (e.g., designing feature pyramid networks [35] and/or

backbones [15]), sequence-to-sequence tasks [108], semantic segmentation [77], to name a few. However,

these early “post-ImageNet” techniques are heavily biased to the knowledge from manual engineering: i.e.,

the search spaces and formulations are defined around previously best hand-tuned architectures (e.g., the

evolutionary algorithm seeded around Transformer-like modules [108]). As also noted in [54], these a priori

assumptions impose intrinsic limitations to the power of NAS methods. Thus, another direction of interest

is to explore more general and flexible search spaces.

CHAPTER 8. CONCLUSION 63

8.2.3 AutoML in distributed training settings: federated learning

Last, we note that current AutoML approaches assume a conventional, well-defined training setting, i.e.,

they train and evaluate candidate models on training and validation sets, respectively, that assume to

have all datapoints readily available. Such assumptions give rise to an interesting direction for future

work towards extending AutoML to novel model training paradigms, such as federated learning [72]. In

federated learning, the goal is to train DL models over a dataset of points that reside on remote distributed

devices. Each device may generate data that vary in terms of the underlying data distribution and the

number of datapoints, hence necessitating a departure from conventional training approaches [13, 41].

Consequently, extending AutoML methods to a distributed training setting while properly accounting for

the inherent statistical heterogeneity over heterogeneous and massive networks poses numerous challenges

and opportunities for future work.

Bibliography

[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding

and simplifying one-shot architecture search. In International Conference on Machine Learning, pages

549–558, 2018. 1, 10, 32, 44, 55, 58

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through

stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 46

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of

machine learning research, 13(Feb):281–305, 2012. 5, 19, 49

[4] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms. Citeseer, 2013. 12

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter

optimization. In Advances in neural information processing systems, pages 2546–2554, 2011. 1, 7

[6] Kartikeya Bhardwaj, Ching-Yi Lin, Anderson Sartor, and Radu Marculescu. Memory-and

communication-aware model compression for distributed deep learning inference on iot. ACM

Transactions on Embedded Computing Systems (TECS), 18(5s):1–22, 2019. 25

[7] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for

efficient inference. In International Conference on Machine Learning, pages 527–536, 2017. 21, 23, 26, 28,

29, 57

[8] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. Neuralpower: Predict and

deploy energy-efficient convolutional neural networks. arXiv preprint arXiv:1710.05420, 2017. 2, 15, 37,

56

[9] Ermao Cai, Dimitrios Stamoulis, and Diana Marculescu. Exploring aging deceleration in finfet-based

multi-core systems. In Proceedings of the 35th International Conference on Computer-Aided Design, page

111. ACM, 2016. 57

64

BIBLIOGRAPHY 65

[10] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Kuan Wang, Tianzhe Wang, Ligeng Zhu, and Song Han.

Automl for architecting efficient and specialized neural networks. IEEE Micro, 2019. 57, 62

[11] Han Cai, Tianzhe Wang, Zhanghao Wu, Kuan Wang, Ji Lin, and Song Han. On-device image

classification with proxyless neural architecture search and quantization-aware fine-tuning. In

Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 0–0, 2019. 57

[12] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task

and hardware. In International Conference on Learning Representations, 2019. ix, 2, 3, 9, 10, 32, 35, 37, 39,

40, 44, 45, 46, 48, 54, 56, 58, 59

[13] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and

Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018. 63

[14] Bo Chen and Jeffrey Gilbert. Introducing the CVPR 2018 On-Device Visual Intelligence Challenge.

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html, 2018. 2

[15] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Chunhong Pan, and Jian Sun. Detnas:

Neural architecture search on object detection. arXiv preprint arXiv:1903.10979, 2019. 43, 62

[16] Zhuo Chen, Ruizhou Ding, Ting-Wu Chin, and Diana Marculescu. Understanding the impact of label

granularity on cnn-based image classification. In 2018 IEEE International Conference on Data Mining

Workshops (ICDMW), pages 895–904. IEEE, 2018. 57

[17] Zhuo Chen, Dimitrios Stamoulis, and Diana Marculescu. Profit: priority and power/performance

optimization for many-core systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2017. 57

[18] Zhuo Chen, Jiyuan Zhang, Ruizhou Ding, and Diana Marculescu. Vip: Virtual pooling for accelerating

cnn-based image classification and object detection. arXiv preprint arXiv:1906.07912, 2019. 57

[19] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adascale: Towards real-time video object

detection using adaptive scaling. arXiv preprint arXiv:1902.02910, 2019. 57

[20] Minsu Cho, Mohammadreza Soltani, and Chinmay Hegde. One-shot neural architecture search via

compressive sensing. arXiv preprint arXiv:1906.02869, 2019. 47

[21] Simone Corbetta, Pieter Weckx, Dimitrios Rodopoulos, Dimitrios Stamoulis, and Francky Catthoor.

Time-efficient modeling and simulation of true workload dependency for bti-induced degradation

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

BIBLIOGRAPHY 66

in processor-level platform specifications. In Harnessing Performance Variability in Embedded and

High-performance Many/Multi-core Platforms, pages 217–235. Springer, 2019. 57

[22] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a

grow-and-prune paradigm. arXiv preprint arXiv:1711.02017, 2017. 57

[23] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan,

Yunqing Hu, Yiming Wu, Yangqing Jia, et al. Chamnet: Towards efficient network design through

platform-aware model adaptation. arXiv preprint arXiv:1812.08934, 2018. ix, 39, 58

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages

248–255. Ieee, 2009. 37

[25] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution

for training binarized deep networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 11408–11417, 2019. 57

[26] Ruizhou Ding, Zeye Liu, RD Shawn Blanton, and Diana Marculescu. Quantized deep neural networks

for energy efficient hardware-based inference. In Design Automation Conference (ASP-DAC), 2018 23rd

Asia and South Pacific, pages 1–8. IEEE, 2018. 57

[27] Ruizhou Ding, Zeye Liu, Ting-Wu Chin, Diana Marculescu, and RD Blanton. Flightnns: Lightweight

quantized deep neural networks for fast and accurate inference. In 2019 Design Automation Conference

(DAC), 2019. 34, 57

[28] Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and RD Blanton. Lightnn: Filling the gap

between conventional deep neural networks and binarized networks. In Proceedings of the on Great

Lakes Symposium on VLSI 2017, pages 35–40. ACM, 2017. 57

[29] Ruizhou Ding, Dimitrios Stamoulis, Kartikeya Bhardwaj, Diana Marculescu, and Radu Marculescu.

Enhancing precipitation models by capturing multivariate and multiscale climate dynamics. In

Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, pages

39–42. ACM, 2017. 4

[30] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparam-

eter optimization of deep neural networks by extrapolation of learning curves. In Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015. 17, 18, 19

BIBLIOGRAPHY 67

[31] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-aware

progressive search for pareto-optimal neural architectures. arXiv preprint arXiv:1806.08198, 2018. 2,

38, 56, 58

[32] Facebook Open Source. Bayesian Optimization in PyTorch. https://www.botorch.org/, 2019. 1, 2, 9

[33] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimiza-

tion at scale. In International Conference on Machine Learning, pages 1436–1445, 2018. 1

[34] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown

constraints. arXiv preprint arXiv:1403.5607, 2014. 5, 15, 16, 17, 18, 56, 58

[35] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architecture

for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7036–7045, 2019. 1, 43, 62

[36] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley.

Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1487–1495. ACM, 2017. 1, 6, 12

[37] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number

recognition from street view imagery using deep convolutional neural networks. arXiv preprint

arXiv:1312.6082, 2013. 21

[38] Google. Google AutoML Beta. https://cloud.google.com/automl/, 2019. 1, 2

[39] Google CLoud. Cloud Speech-to-Text. https://cloud.google.com/speech-to-text/, 2019. 1

[40] Robert B Gramacy and Herbert KH Lee. Optimization under unknown constraints. arXiv preprint

arXiv:1004.4027, 2010. 16, 58

[41] Neel Guha, Ameet Talwlkar, and Virginia Smith. One-shot federated learning. arXiv preprint

arXiv:1902.11175, 2019. 63

[42] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single

path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420,

2019. 1, 59

[43] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for

efficient neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

56, 57

https://www.botorch.org/
https://cloud.google.com/automl/
https://cloud.google.com/speech-to-text/

BIBLIOGRAPHY 68

[44] Karen Hao. Training a single AI model can emit as much carbon as

five cars in their lifetimes. https://www.technologyreview.com/s/613630/

training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/, 2019. 2,

3

[45] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE

international conference on computer vision, pages 2961–2969, 2017. 1, 12, 42

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016. 1, 12

[47] José Miguel Hernández-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, and Zoubin

Ghahramani. A general framework for constrained bayesian optimization using information-based

search. The Journal of Machine Learning Research, 17(1), 2016. 58

[48] José Miguel Hernández-Lobato, Michael A Gelbart, Brandon Reagen, Robert Adolf, Daniel

Hernández-Lobato, Paul N Whatmough, David Brooks, Gu-Yeon Wei, and Ryan P Adams. De-

signing neural network hardware accelerators with decoupled objective evaluations. In Advances in

neural information processing systems - workshop on Bayesian Optimization, 2016. 13, 15, 58

[49] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun

Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv preprint

arXiv:1905.02244, 2019. ix, 45, 46, 54, 61

[50] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,

Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 39

[51] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Shih-

Chieh Chang. Monas: Multi-objective neural architecture search using reinforcement learning. arXiv

preprint arXiv:1806.10332, 2018. 2, 58

[52] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 7132–7141, 2018. ix, xii, 3, 10, 11, 45, 51, 54, 59, 61

[53] Andrew Hundt, Varun Jain, and Gregory D Hager. sharpdarts: Faster and more accurate differentiable

architecture search. arXiv preprint arXiv:1903.09900, 2019. 59

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

BIBLIOGRAPHY 69

[54] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning: Methods,

Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book. x, 5, 6, 44, 62

[55] Eric Hwang, Peter Vajda, Matt Uyttendaele, and Rahul Nallamothu. Facebook AI Performance

Evaluation Platform. https://ai.facebook.com/blog/under-the-hood-portals-smart-camera/, 2019. 1,

2

[56] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio

Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In

Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678. ACM, 2014. x, 13,

16, 26

[57] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual

decision processes with low bellman rank are pac-learnable. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 1704–1713, 2017. 31

[58] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon Hu, and Yiyu

Shi. Device-circuit-architecture co-exploration for computing-in-memory neural accelerators. arXiv

preprint arXiv:1911.00139, 2019. 57

[59] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,

Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis

of a tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer

Architecture (ISCA), pages 1–12. IEEE, 2017. 38

[60] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-fidelity

bayesian optimisation with continuous approximations. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 1799–1808. JMLR. org, 2017. 49

[61] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.

Neural architecture search with bayesian optimisation and optimal transport. In Advances in Neural

Information Processing Systems, pages 2016–2025, 2018. 31, 58

[62] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R.

Collins, Jeff Schneider, Barnabas Poczos, and Eric P Xing. Tuning hyperparameters without grad

students: Scalable and robust bayesian optimisation with dragonfly. arXiv preprint arXiv:1903.06694,

2019. 1, 49

https://ai.facebook.com/blog/under-the-hood-portals-smart-camera/

BIBLIOGRAPHY 70

[63] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár. Panoptic segmenta-

tion. arXiv preprint arXiv:1801.00868, 2018. 1

[64] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay. Edge-host partition-

ing of deep neural networks with feature space encoding for resource-constrained internet-of-things

platforms. arXiv preprint arXiv:1802.03835, 2018. 57

[65] Ron Kohavi and George H John. Automatic parameter selection by minimizing estimated error. In

Machine Learning Proceedings 1995, pages 304–312. Elsevier, 1995. 5

[66] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and

Tushar Krishna. Understanding reuse, performance, and hardware cost of dnn dataflow: A data-

centric approach. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, page 754–768, 2019. 57

[67] Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, and Vikas Chandra. Herald: Optimizing heteroge-

neous dnn accelerators for edge devices. arXiv preprint arXiv:1909.07437, 2019. 57

[68] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,

1998. URL http://yann.lecun.com/exdb/mnist, 10:34, 1998. 14

[69] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, and

Bart Dhoedt. The cascading neural network: building the internet of smart things. Knowledge and

Information Systems, 52(3):791–814, 2017. 24, 57

[70] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.

arXiv preprint arXiv:1902.07638, 2019. 5, 44, 47

[71] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:

A novel bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560,

2016. 1, 5, 51

[72] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,

methods, and future directions. arXiv preprint arXiv:1908.07873, 2019. 63

[73] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2117–2125, 2017. 1, 12

BIBLIOGRAPHY 71

[74] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object

detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

1, 12

[75] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,

and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on

computer vision, pages 740–755. Springer, 2014. 42

[76] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture search.

arXiv preprint arXiv:1909.02453, 2019. 6, 62

[77] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-

Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 82–92, 2019. 62

[78] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-

erarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

10

[79] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv

preprint arXiv:1806.09055, 2018. 1, 2, 6, 7, 9, 10, 30, 31, 32, 35, 44, 48, 58, 59

[80] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. Deep appearance models for face

rendering. ACM Transactions on Graphics (TOG), 37(4):68, 2018. 1

[81] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. Deep Appearance Models for Face

Rendering. https://research.fb.com/publications/deep-appearance-models-for-face-rendering/,

2019. 1

[82] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. On neural architecture search for

resource-constrained hardware platforms. arXiv preprint arXiv:1911.00105, 2019. 56, 62

[83] Renqian Luo, Tao Qin, and Enhong Chen. Understanding and improving one-shot neural architecture

optimization. arXiv preprint arXiv:1909.10815, 2019. 44

[84] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. In

Advances in neural information processing systems, pages 7816–7827, 2018. 32, 58

https://research.fb.com/publications/deep-appearance-models-for-face-rendering/

BIBLIOGRAPHY 72

[85] Diana Marculescu, Dimitrios Stamoulis, and Ermao Cai. Hardware-aware machine learning: modeling

and optimization. In Proceedings of the International Conference on Computer-Aided Design, page 137.

ACM, 2018. 56

[86] Microsoft (GitHub open-source project). NNI (Neural Network Intelligence). https://github.com/

microsoft/nni, 2019. 1, 2

[87] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Introducing Ludwig, a Code-Free Deep

Learning Toolbox. https://eng.uber.com/introducing-ludwig/, 2019. 1, 9

[88] Giljoo Nam, Chenglei Wu, Min H. Kim, and Yaser Sheikh. Strand-accurate multi-view hair capture.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 1

[89] Priyadarshini Panda, Aayush Ankit, Parami Wijesinghe, and Kaushik Roy. Falcon: Feature driven

selective classification for energy-efficient image recognition. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 36(12), 2017. 21, 57

[90] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-

efficient and enhanced pattern recognition. In Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2016, pages 475–480. IEEE, 2016. 21, 57

[91] Priyadarshini Panda, Swagath Venkataramani, Abhronil Sengupta, Anand Raghunathan, and Kaushik

Roy. Energy-efficient object detection using semantic decomposition. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 25(9):2673–2677, 2017. 21

[92] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim, Sungroh Yoon, and

Sungjoo Yoo. Big/little deep neural network for ultra low power inference. In Proceedings of the 10th

International Conference on Hardware/Software Codesign and System Synthesis, pages 124–132. IEEE Press,

2015. 7, 21, 23, 24, 26, 28, 29, 57

[93] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture

search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018. 2, 9, 58

[94] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural

networks. 2016. 56

[95] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning, volume 1.

MIT press Cambridge, 2006. 9, 49

https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://eng.uber.com/introducing-ludwig/

BIBLIOGRAPHY 73

[96] Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart, Paul Whatmough,

Gu-Yeon Wei, and David Brooks. A case for efficient accelerator design space exploration via bayesian

optimization. In 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),

pages 1–6. IEEE, 2017. 13, 58

[97] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image

classifier architecture search. arXiv preprint arXiv:1802.01548, 2018. 1, 2, 6, 31, 44, 58

[98] Dimitrios Rodopoulos, Dimitrios Stamoulis, Grigorios Lyras, Dimitrios Soudris, and Francky Catthoor.

Understanding timing impact of bti/rtn with massively threaded atomistic transient simulations. In

2014 IEEE International Conference on IC Design & Technology, pages 1–4. IEEE, 2014. 57

[99] Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar. Delight: Adding energy dimension

to deep neural networks. In Proceedings of the 2016 International Symposium on Low Power Electronics

and Design, pages 112–117, 2016. 56

[100] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and Thomas Brox. Autodispnet:

Improving disparity estimation with automl. arXiv preprint arXiv:1905.07443, 2019. 1

[101] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. Scale-sim:

Systolic cnn accelerator. arXiv preprint arXiv:1811.02883, 2018. 57

[102] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018. x, 10, 11, 39, 40, 42, 51, 54

[103] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the

human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175,

2015. 1, 7, 8, 17, 19, 49

[104] Richard Shin, Charles Packer, and Dawn Song. Differentiable neural network architecture search.

OpenReview, 2018. 59

[105] Sean C Smithson, Guang Yang, Warren J Gross, and Brett H Meyer. Neural networks designing

neural networks: multi-objective hyper-parameter optimization. In Proceedings of the 35th International

Conference on Computer-Aided Design, pages 1–8, 2016. 17, 19, 56

[106] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine

learning algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012. 1, 5,

7, 12, 17, 18, 19, 25

BIBLIOGRAPHY 74

[107] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,

Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural

networks. In International conference on machine learning, pages 2171–2180, 2015. 5

[108] David R So, Chen Liang, and Quoc V Le. The evolved transformer. arXiv preprint arXiv:1901.11117,

2019. 62

[109] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. Hyperpower: Power-and

memory-constrained hyper-parameter optimization for neural networks. In 2018 Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2018. 3, 13, 19, 60

[110] Dimitrios Stamoulis, Ting-Wu Rudy Chin, Anand Krishnan Prakash, Haocheng Fang, Sribhuvan Sajja,

Mitchell Bognar, and Diana Marculescu. Designing adaptive neural networks for energy-constrained

image classification. In Proceedings of the International Conference on Computer-Aided Design. ACM, 2018.

3, 22, 24

[111] Dimitrios Stamoulis, Simone Corbetta, Dimitrios Rodopoulos, Pieter Weckx, Peter Debacker, Brett H

Meyer, Ben Kaczer, Praveen Raghavan, Dimitrios Soudris, Francky Catthoor, et al. Capturing true

workload dependency of bti-induced degradation in cpu components. In 2016 International Great

Lakes Symposium on VLSI (GLSVLSI), pages 373–376. IEEE, 2016. 57

[112] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,

and Diana Marculescu. Single-path mobile automl: Efficient convnet design and nas hyperparameter

optimization. arXiv preprint arXiv:1907.00959, 2019. xii, xiii, 3, 45, 51, 53, 61

[113] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,

and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4 hours.

arXiv preprint arXiv:1904.02877, 2019. xiii, 3, 33, 46, 53, 54, 61

[114] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,

and Diana Marculescu. Single-path nas: Device-aware efficient convnet design. arXiv preprint

arXiv:1905.04159, 2019. 3, 33

[115] Dimitrios Stamoulis and Diana Marculescu. Can we guarantee performance requirements under

workload and process variations? In Proceedings of the 2016 International Symposium on Low Power

Electronics and Design, pages 308–313. ACM, 2016. 4, 57

BIBLIOGRAPHY 75

[116] Dimitrios Stamoulis, Dimitrios Rodopoulos, Brett H Meyer, Dimitrios Soudris, Francky Catthoor, and

Zeljko Zilic. Efficient reliability analysis of processor datapath using atomistic bti variability models.

In Proceedings of the 25th edition on Great Lakes Symposium on VLSI, pages 57–62. ACM, 2015. 57

[117] Dimitrios Stamoulis, Dimitrios Rodopoulos, Brett H Meyer, Dimitrios Soudris, and Zeljko Zilic. Linear

regression techniques for efficient analysis of transistor variability. In 2014 21st IEEE international

conference on electronics, circuits and systems (ICECS), pages 267–270. IEEE, 2014. 57

[118] Dimitrios Stamoulis, Kostas Tsoumanis, Dimitrios Rodopoulos, Brett H Meyer, Kiamal Pekmestzi,

Dimitrios Soudris, and Zeljko Zilic. Efficient variability analysis of arithmetic units using linear

regression techniques. Analog Integrated Circuits and Signal Processing, 87(2):249–261, 2016. 57

[119] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In Advances in

neural information processing systems, pages 2004–2012, 2013. 1, 12, 19

[120] Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, and Ajay Joshi. Energy-efficient adaptive classifier

design for mobile systems. In Proceedings of the 2016 International Symposium on Low Power Electronics

and Design, pages 52–57. ACM, 2016. 23, 24, 57

[121] Mingxing Tan. MnasNet: Towards Automating the Design of Mobile Machine Learning Models.

https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html, 2018. 1

[122] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-aware

neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018. ix, xii, 2, 7, 10, 36, 37, 38,

39, 40, 45, 46, 47, 49, 54, 56, 58, 61

[123] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural

networks. arXiv preprint arXiv:1905.11946, 2019. 45, 46, 51

[124] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neural networks over

the cloud, the edge and end devices. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th

International Conference on, pages 328–339. IEEE, 2017. 57

[125] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018. 6

[126] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing

systems, pages 5998–6008, 2017. 1

https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html

BIBLIOGRAPHY 76

[127] Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. Scalable-effort

classifiers for energy-efficient machine learning. In Proceedings of the 52nd Annual Design Automation

Conference, page 67. ACM, 2015. 21, 23, 57

[128] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,

Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via

differentiable neural architecture search. arXiv preprint arXiv:1812.03443, 2018. 2, 3, 9, 10, 31, 32, 35,

37, 39, 40, 44, 45, 46, 47, 48, 56, 58

[129] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,

Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

9127–9135, 2018. 57

[130] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed

precision quantization of convnets via differentiable neural architecture search. arXiv preprint

arXiv:1812.00090, 2018. 57

[131] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural

networks for image recognition. arXiv preprint arXiv:1904.01569, 2019. 1, 47

[132] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.

arXiv preprint arXiv:1812.09926, 2018. 2, 32, 44, 48, 58

[133] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural

networks using energy-aware pruning. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 2, 57

[134] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understanding

straight-through estimator in training activation quantized neural nets. arXiv preprint arXiv:1903.05662,

2019. 46, 48

[135] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.

arXiv preprint arXiv:1812.08928, 2018. 42

[136] Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu, Hairong Liu, and Greg Diamos. Resource-

efficient neural architect. arXiv preprint arXiv:1806.07912, 2018. 1, 58

BIBLIOGRAPHY 77

[137] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016. 6, 44, 58

[138] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures

for scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017. 1, 2, 6, 10, 31, 58

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Challenges for state-of-the-art AutoML frameworks
	Thesis contributions
	Thesis organization

	Background
	Paradigms for AutoML
	Designing DNNs with hardware-aware AutoML: problem formulation
	Constrained Bayesian optimization
	One-shot Neural Architecture Search (NAS)

	Hardware-Constrained DNN Hyperparameter Optimization via Bayesian Optimization
	Chapter overview
	Key novelty: Enhancing BO with hardware models
	Contributions and Chapter organization

	Hardware-constrained Bayesian optimization
	Proposed methodology: HyperPower
	Proposed power and memory models
	Proposed constraint-aware acquisition function
	Early termination enhancement

	Experimental results
	Experimental setup
	HyperPower outperforms vanilla Bayesian optimization & random search

	Discussion

	Hardware-Constrained Adaptive DNNs Design
	Chapter overview
	Key novelty: adaptive DNNs as a hyperparameter optimization problem
	Contributions and Chapter organization

	Background: Adaptive DNNs
	Proposed methodology: adaptive DNNs as an AutoML problem
	Experimental results
	Discussion

	Efficient Single-Path Neural Architecture Search
	Chapter overview
	Key novelty: from multi- to single-path NAS formulations
	Contributions and Chapter organization

	Proposed Single-Path NAS
	Single-path vs. existing multi-path assumptions
	Hardware-aware NAS with differentiable runtime loss

	Experimental results
	Experimental setup
	Runtime profiling and modeling
	State-of-the-art runtime-constrained ImageNet classification
	Ablation study: kernel-based accuracy-efficiency trade-off
	Single-Path NAS as feature extractor: COCO object detection

	Discussion

	Exploring the Neural Architecture Search Space
	Chapter overview
	Investigating one-shot NAS formulations
	Hypertuning the NAS solver
	Single-Path+: enhancing the one-shot NAS search space
	Analyzing the SE-based accuracy-runtime trade-off
	State-of-the-art Mobile AutoML results

	Discussion

	Related Work
	Modeling the hardware performance of DNNs
	Towards efficient DNN execution
	Adaptive DNNs
	Pruning & quantization

	Hardware-aware Bayesian optimization
	Hardware-aware Neural Architecture Search (NAS)

	Conclusion
	Key thesis results
	Enhancing Bayesian optimization with hardware constraint-awareness
	AutoML for designing adaptive DNNs
	Single-path one-shot NAS
	State-of-the-art Mobile AutoML performance

	Future work
	Jointly exploring the underlying hardware architecture space
	NAS beyond image classification
	AutoML in distributed training settings: federated learning

	Bibliography

