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Abstract

With the explosive growth of information and communication, data is being generated at an un-
precedented rate from various sources, including multimedia, sensor networks, biological systems,
social networks, and physical infrastructure. Research in graph signal processing aims to develop
tools for processing such data by providing a framework for the analysis of high-dimensional data
defined on irregular graph domains. Graph signal processing extends fundamental signal process-
ing concepts to data supported on graphs that we refer to as graph signals. In this work, we study
two fraternal problems: (1) sampling and (2) reconstruction of signals on graphs. Both of these
problems are eminent topics in the field of signal processing over the past decades and have mean-
ingful implications for many real-world problems including semi-supervised learning and active
learning on graphs. Sampling is the task of choosing or measuring some representative subset of
the signal such that we can interpolate and recover the whole signal. In many settings, acquiring
samples is expensive and it is desirable to be able to approximate the signal as efficiently as pos-
sible. Signal reconstruction refers the task of recovering the true graph signal given noisy, incom-
plete, or corrupt measurements. It is evident that these two problems are intimately tied to the
underlying graph structure.

In this body of work, we study the tasks of sampling and reconstruction for two complemen-
tary classes of graph signals that broadly capture characteristics of most graph-structured data:
(1) smooth signals that are characterized by slow transitions with respect to graph and (2) piecewise-
smooth signals that are characterized by localized behavior, abrupt discontinuities or fast tran-
sitions over the underlying graph. We examine why a one-size-fits-all approach may not always
be appropriate and consequently design algorithms and frameworks specific to each graph signal
model. We first present a sampling theory in the spirit of Shannon and Nyquist and study the
limits of sampling these two graph signal models under passive and active settings. We present a
framework for the reconstruction or estimation of graph signals and investigate the limitations of
these methods. Graph trend filtering is a flexible framework for estimation on graphs that is adap-
tive to inhomogeneity in the level of smoothness and localized characteristics of an observed signal
across nodes. We strengthen the graph trend filtering framework by considering a family of possi-
bly non-convex regularizers that exhibit superior reconstruction performance over minimization for
the denoising of piecewise smooth graph signals. We study product graphs which are a generative
model that allows us to decompose a large real-world large graph into smaller graphs. We develop
frameworks for sampling and reconstruction that both lessen the computational complexity and
achieve better performance by availing of the inherent structure in product graphs.

The irregularity of the underlying structure of the data in contrast to the regularity in classical
signal processing makes studying these problems on graphs challenging but also compelling. A key
theme throughout this work is the interplay between the graph structure and the signal that lies
on it. We study how structural properties of both the graph and the signal on the graph inform
not only how well we can perform these two tasks but also the design of algorithms and strategies
to perform them efficiently. Moreover, we illustrate the power of these proposed tools via vignettes
on semi-supervised learning and efficient communication in sensor networks.
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1.1 Motivation

Figure 1.1: A graph signal
supported on a graph

With the vast growth in information and communication, data is
being generated and acquired at an unprecedented rate from var-
ious sources, including multimedia, climate, neuro-imaging, social
networks, urban infrastructure, biological systems and sensor net-
works. The dimensionality of the information in this data offers
significant challenges both in terms of the computational and sam-
ple complexity required to process and glean useful insight from
this data. However, such high-dimensional data often have an un-
derlying structure that limits its intrinsic dimensionality. Graphs
offer the ability to model this internal structure that is inherently
complex and irregular. A rigorous way to formulate the assump-
tion that the data possesses an innate structure with fewer degrees
of freedom is to model the data as belonging to a low-dimensional
manifold embedded in a high dimensional space. That is, we make

a direct association between the geodesic distance between two points on a manifold and the graph
distance between these two points with respect to an underlying graphs. As a result, a graph can
be seen as a discrete approximation to a continuous manifold.

Graph signal processing (GSP) was borne of a need to process such graph-structured data in a
systematic and mathematically rigorous way1,2,3. Algebraic signal processing introduced an ax-
iomatic approach to signal processing and showed how the signal model is generated from a sim-
ple filter, the shift, which then determines filtering, convolution, the Fourier transform, and fre-
quency4,5. This led to the introduction of using the graph structure as the shift operator and the
genesis of graph signal processing. As a result, GSP in many ways builds upon established princi-
ples in classical signal processing which deals with signals that are supported on regular structures
such as time-series signals or images. The challenges of GSP are principally consequences of the
irregularity of the underlying graph structure. For example, it is unclear how to define a trans-
lation operator for a graph signal. In addition, as we shall see, simultaneous localization in the
vertex and frequency space which is infeasible in classical signal processing on regular grids as a
result of the uncertainty principle, is viable on irregular graphs. This has significant implications
for many of the problems we study.

Recent work involves graph-based filtering6, graph-based transforms6,7,8, sampling and inter-
polation on graphs9,10,11, semi-supervised classification on graphs12,13,14, graph dictionary learn-
ing15,16 and community detection on graphs17. For a recent review see18,2.

Graphs are usually acquired or constructed in one of two different ways. Firstly, the graph may
be constructed using the data itself by using a distance, affinity or correlation metric or by learn-
ing the graph under some optimization criterion19,20. In point clouds and many graph-based semi-
supervised classification problems for example, it is natural construct a nearest neighbor graph.
Alternatively, the graph may be innate to the data as is the case in urban transportation or road
networks and brain networks.

Sampling is the task of choosing or acquiring some subset of the signal with the view of later
being able to recover the whole signal. A convenient way to view sampling is through the lens of
data compression or dimensionality reduction. Particularly, we aim to efficiently sample the small-
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est representative subset of the graph signal that retains the relevant information in the original
data such that we can recover the original signal. This problem is important when the labeled
data is scarce and expensive whereas unlabeled data is easily available for most semi-supervised
classification problems on graphs. We consider two sampling paradigms: (1) passive sampling, and
(2) active sampling. Passive sampling refers to the setting where we are constrained to strategies
that are blind to any samples of the signal. That is, we design strategies by considering only the
underlying graph structure and any modeling assumptions we have made. In contrast, active or
adaptive sampling strategies are able to choose samples in an online fashion: the decision of where
to sample next depends on all the observations made previously.

A good sampling strategy is beneficial for active learning and dimensionality reduction with
graphs. For example, in semi-supervised learning with graphs, we embed the entire dataset onto a
graph and a graph signal, whose nodes represent individual data samples, edges encode the sim-
ilarities between data samples, and the signal is the class label. We then select a small subset
of nodes from this graph to be the observed training data. A smart sampling strategy can help
choose the most representative training data, leading to a more effective training process. On the
other hand, a good recovery strategy is beneficial for prediction, completion and denoising with
graphs. Consider the Netflix problem, for example. We can build a similarity graph of users and
movies, and construct a ratings signal on top, but a user typically rates only a few movies. To
recommend movies based on a user’s preference, we need to predict their preferences for unrated
items. This is equivalent to completing a matrix of graph signals from a few random, noisy sam-
ples.

Signal reconstruction or estimation refers the task of recovering the underlying signal given
noisy or corrupted measurements. This is a well studied problem in data science under the guise
of denoising and additionally has applications for inpainting, collaborative filtering, recommender
systems and other large-scale data completion problems. Signal reconstruction is then essentially
an inverse problem that aims to reverse the corruption of the signal. Since noise can have delete-
rious cascading effects in many downstream tasks, being able to efficiently and accurately recon-
struct a signal is of significant importance. When constructing a signal model or a signal prior,
the canonical assumption is that the signal is smooth with respect to the graph, that is, the signal
coefficients do not vary much over local neighborhoods of the graph. However, this characteriza-
tion is often insufficient for many real-world signals. It is often the case that there are localized
discontinuities in the signal and the signal exhibits a piecewise behavior over the graph. As a re-
sult, it is necessary to develop representations and algorithms to process and analyze such signals.

1.2 Thesis Contributions

We study the tasks of (1) sampling signals and (2) reconstructing signals that lie on
graphs by understanding and exploiting the relationships between the graph signal, its appro-

priate representation with respect to the underlying graph and the graph itself.
The proposed body of work can be divided into three distinct yet complementary areas: (a) the

sampling of smooth graph signals (b) the sampling of piecewise-smooth graph signals (c) the re-
construction of noisy or corrupted graph signals. A common theme throughout this work is the
influence of the graph structure on both the limitations of these tasks and the performance of the
proposed algorithms. In particular, the irregularity of the graph structure in contrast to the reg-
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ular structure in classical time and image signal processing has important implications for both
the fundamental limitations of these tasks and the design of algorithms and strategies to perform
these tasks efficiently.

Sampling Smooth Graph Signals: We present the analog of the classical sampling theory for
bandlimited signals on graphs, and show extensions for efficient sampling and recovery on product
graphs. We then study the fundamental statistical limits of sampling smooth graph signals and es-
tablish how the structure of the graph drives both the optimal sampling strategy, how well we can
expect to do, and the performance of these algorithms. Particularly, we study the performance of
passive sampling versus active sampling for smooth signals.

Sampling Piecewise-Smooth Graph Signals: The discontinuities in piecewise-smooth sig-
nals make the task of efficiently sampling them substantially more challenging. In this work, we
propose studying the differences between passive and active sampling of piecewise smooth signals
on graphs and their interplay with the graph structure. Further, we aim to develop efficient sam-
pling procedures and strategies for sampling such signals.

Reconstructing Graph Signals: We present and develop frameworks for the recovery or es-
timation of noisy or corrupted smooth and piecewise-smooth graph signals. We consider a synthesis-
based approach based on signal approximation via a graph-based representation basis while the
second analysis-based approach solves an optimization problem that penalizes the signal’s varia-
tion on the graph. In the case of piecewise smooth signals, we show how using non-convex penal-
ties for graph trend filtering gives superior performance in terms of both denoising and support re-
covery. Particularly, in the case of piecewise smooth signals, we seek to develop an understanding
of the limitations and differences between graph-based total variation denoising and graph-based
wavelet thresholding with respect to the underlying graph structure.

Broader Impact: The goal of the proposed tools and frameworks is to provide solutions for
real-world applications of graph-structured data. We outline applications in sensor networks and
semi-supervised learning.

1.2.1 Overview

In this section, we briefly overview the content in the following chapters. In Chapter 2, we aim to
concisely present the foundational technical content that forms the basis for the subsequent chap-
ters where we expound upon the specific aims presented in this chapter. We first briefly review
the graph signal processing (GSP) framework which is the basis of this work. We then motivate
and develop the signal models we study and their graph-based representations. We compare and
contrast the two major classes of signals we study, smooth graph signals and piecewise smooth
graph signals. Particularly, via an uncertainty principle on graphs, we gain further insight into the
differences between how these two signal models interact with the underlying graph. This allows
us to motivate the reasoning behind the choices that we make for the best representation for these
different classes of signals.
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In Chapter 3, we study sampling smooth signals on graphs. We first present a sampling theory
for bandlimited graph signals that is analogous to downsampling discrete-time signals such that
we can recover the signal perfectly. We extend this framework to show we can sample efficiently
on product graphs by using a structured sampling procedure that allows us significant gains in
computational complexity. We then study minimax lower bounds for sampling smooth graph sig-
nals under both passive and active samplings, and show that active sampling can’t fundamentally
outperform passive sampling. Further, we present optimal sampling and reconstruction algorithms
with respect to the lower bounds for passive sampling and discuss how the underlying graph struc-
ture drives their performance. We then discuss recovering smooth graph signals from noisy or cor-
rupted measurements by formulating an optimization problem that minimizes the variation of the
signal over the graph. While this has been well studied in previous work, we present a framework
for recovering smooth signals on product graphs that exploits the low rank structure of these sig-
nals by modeling the signal as a multi-dimensional tensor.

In Chapter 4, we first discuss the reconstruction of piecewise-smooth graph signals from noisy
or corrupted measurements and present two approaches. The first approach solves a optimization
problem via the graph trend filtering framework which enforces a sparsity constraint on (higher-
order) discrete graph differences while the second approach is based on approximating the signal
with respect to a graph wavelet basis or dictionary. Further, we strengthen the graph trend filter-
ing framework by considering a large family of possibly non-convex regularizers that exhibit supe-
rior reconstruction performance over ℓ1 minimization for the denoising of piecewise smooth graph
signals. We also seek to compare wavelet thresholding on graphs and graph-based total variation
denoising for the estimation of piecewise-constant signals on graphs.

In Chapter 5, we study the sampling of piecewise-smooth signals on graphs. Similarly to Chap-
ter 3, we propose studying passive and active sampling of piecewise smooth signals on graphs. Un-
like sampling smooth signals that have no discontinuities, the localized nature of the discontinu-
ities in piecewise smooth signals make the detection of these discontinuities inherently decoupled
from the global features of the graph signal. It then follows that the passive sampling of piecewise-
smooth graph signals is a significantly harder or even futile task. Consequently, we propose study-
ing the active sampling of piecewise-smooth signals by designing algorithms and strategies. We
emphasize here that the results are borne of largely experimental results.
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2
Graph Signal Processing and Related Areas
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2.1 Graph Signal Processing

Two basic approaches to signal processing on graphs have been considered: The first is rooted in
spectral graph theory and builds upon the graph Laplacian matrix. Since the graph Laplacian
matrix is restricted to be symmetric and positive semi-definite, the spectral graph theory-based
approach is applicable only to undirected graphs with real and nonnegative edge weights. The sec-
ond approach, discrete signal processing on graphs (DSPG)6,21, is rooted in the algebraic signal
processing theory 22,23 and builds on the graph shift operator, which works as the elementary op-
erator that generates all linear shift-invariant filters for signals with a given structure. In general,
the tools we propose and derived from and can be generalized for any standard graph representa-
tion. While some of the tools can be extended for directed graphs, for clarity and brevity, we only
consider undirected graphs with positive weights in this discussion.

Algebraic signal processing introduced an axiomatic approach to signal processing and showed
how the signal model is generated from a simple filter, the shift, which then determines filtering,
convolution, the Fourier transform, and frequency. This led to the use of weighted, graph adja-
cency matrices as shifts that generate the graph signal model for signals indexed by nodes of an
arbitrary directed or undirected graph.3,24,25 We note that additionally, this choice is a direct gen-
eralization of the classical time signal model. That is, when the signal model is the classical time
signal model, the shift and the graph signal model reverts to the classical time shift (delay) and
signal model.

We consider a graph G = (V, E ,A), where V = {v0, . . . , vN−1} is the set of nodes, E = {e0, . . . , eM−1}
is the set of edges, and A ∈ RN×N is the graph shift operator, or the weighted adjacency matrix.
The edge set E represents the connections of the graph G, which can be either directed or undi-
rected and the edge weight Aj,k = wj,k between nodes vj and vk measures the underlying relation
between the jth and the kth node, such as a similarity, a dependency, or a communication pat-
tern. Let a graph signal be defined as

x =
[
x0, x1, . . . , xN−1

]T
∈ RN ,

where xi denotes the signal coefficient at the ithe node. We note that ordering the signal coeffi-
cients corresponds to labeling the nodes of the graph and establishing the adjacency matrix.

The degree of a node is the sum of the weights of the edges from that node. We can write the
diagonal degree matrix as D where the i-th entry in its diagonal is the degree of the i-th node.
It is easy to see that the graph shift operator A ∈ RN×N is an elementary filtering operation
that replaces a signal coefficient at a node with a weighted linear combination of coefficients at
its neighboring nodes. Some variations of this graph shift include the normalized adjacency matrix
Anorm = D− 1

2 AD− 1
2 and transition matrix P = D−1 A. We can also use the graph Laplacian ma-

trix L ∈ RN×N as a graph representation, which is a second-order difference operator on graphs.
Some common choices of a graph Laplacian matrix are the unnormalized Laplacian L = D − A,
the normalized Laplacian I−D− 1

2 AD− 1
2 , or the transition Laplacian I−D−1 A. We note that the

graph Laplacian L is a symmetric positive semidefinite matrix.
The graph Fourier basis generalizes the traditional Fourier basis and is used to represent the

graph signal in the graph spectral domain. The graph Fourier basis V ∈ RN×N is defined to be
the eigenvector matrix of the chosen graph representation. When we use the graph shift operator
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A,
A = VΛV−1, (2.1)

where the i-th column vector of V is the graph Fourier basis vector vi corresponding to the
eigenvalue λi as the ith diagonal element in Λ. The graph Fourier transform of x ∈ RN is x̂ =

Ux, where U = V−1 is called the graph Fourier transform matrix. When A is symmetric, then
U = VT is orthonormal; the graph Fourier basis vector vi is the ith row vector of U. The inverse
graph Fourier transform is x = V x̂. The vector x̂ represents the frequency coefficients correspond-
ing to the graph signal x, and the graph Fourier basis vectors can be regarded as graph frequency
components. In this thesis, we use V and U to denote the inverse graph Fourier transform matrix
and graph Fourier transform matrix for the chosen graph representation basis, which can be the
adjacency matrix, the graph Laplacian, or the transition matrix.

The ordering of the graph Fourier basis vectors depends on the their variation with respect to
the underlying graph. Further, the variation of a graph signal x is defined with respect to the cho-
sen graph representation. When the graph representation is the graph shift A, the variation of x
is defined as

SA(x) =

∥∥∥∥x− 1

|λmax(A)|
Ax

∥∥∥∥2
2

,

where λmax(A) is the eigenvalue of A with the largest magnitude. Unless otherwise specified, we
assume that the graph shift has been normalized such that λmax(A) = 1. We can show that when
the eigenvalues of the graph shift A are sorted in a nonincreasing order λ(A)

1 ≥ λ
(A)
2 ≥ . . . ≥

λ
(A)
N , the variations of the corresponding eigenvectors follow a nondecreasing order SA(v

(A)
1 ) ≤

S(A)(v
(A)
2 ) ≤ . . . ≤ S(A)(v

(A)
N ).

When the graph representation is the graph Laplacian matrix, the variation of x is defined as

SL(x) =

N∑
i,j=1

Ai,j(xi − xj)2 = xTLx.

We can show that when the eigenvalues of the graph Laplacian L are sorted in a nondecreasing
order λ(L)

1 ≤ λ
(L)
2 ≤ . . . ≤ λ

(L)
N , the variation of the corresponding eigenvectors follows a nonde-

creasing order SL(v
(L)
1 ) ≤ SL(v

(L)
2 ) ≤ . . . ≤ SL(v

(L)
N ).

The variations of a graph Fourier basis vectors allow us to order the graph Fourier basis vec-
tors: the Fourier basis vectors with small variations are considered as low-frequency components
while the vectors with large variations are considered as high-frequency components.24 The eigen-
vectors associated with large eigenvalues of the graph shift (small eigenvalues of the graph Lapla-
cian) represent low-frequency components and the eigenvectors associated with small eigenvalues
of the graph shift (large eigenvalues of graph Laplacian) represent high-frequency components. In
the following discussion, unless stated otherwise, we assume all graph Fourier bases are ordered
from low frequencies to high frequencies.

Here, we restate Theorem 1 from24 that establishes the frequency ordering induced by the total
variation functional TVA for graphs that have diagonalizable adjacency matrices.

Theorem 1. Consider two distinct eigenvalues λm, λn ∈ R of the adjacency matrix A with corre-
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sponding eigenvectors vm and vn. If the eigenvalues are ordered as

λm ≤ λn

,then the total variation of their eigenvectors satisfy

TVA(vn) ≤ TVA(vm)

Further, we can show that an ordering of the graph Fourier basis from lowest to highest frequen-
cies based on the graph shift quadratic form S2(x) coincides with the ordering induced by the to-
tal variation TVA.
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2.2 Smooth Graph Signals
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Figure 2.1: An example of a smooth
graph signal on a random geometric
graph

Here, we look at globally smooth graph signals where
the signal coefficient at each node is close to the signal
coefficients of its neighbors.26,27,28,29

Definition 1. A graph signal x ∈ RN is globally smooth
on a graph A ∈ RN×N with parameter η ≥ 0, when

SA(x) ≤ η ‖x‖22 . (2.2)

Denote this class of graph signals by GSA(η).

Definition 2. A graph signal x ∈ RN is bandlimited on
a graph A with parameter K ∈ {0, 1, · · · , N − 1}, when
the graph frequency components x̂ satisfies

x̂k = 0 for all k ≥ K.

We denote this class of graph signals by BLA(K).

Figure 2.2: Character-
ization of smooth and
bandlimited graph signals

We can then show conditions on η and K such the class of ban-
dlimited graph signals BLA(K) is a subset of the class of globally
smooth signals GSA(η). Since smooth signals can contain arbitrary
high frequency components, towards characterizing the spectral energy
of smooth signals, we can define a generalization of the bandlimited
class of signals that allows for a tail after the first K frequency com-
ponents.

Definition 3. A graph signal x ∈ RN is approximately bandlimited
on a graph A with parameters β ≥ 1 and µ ≥ 0 , when there exists a
K ∈ {0, 1, · · · , N − 1} such that its graph Fourier transform x̂ satisfies

N−1∑
k=K

(1 + k2β)x̂2k ≤ µ ‖x‖
2
2 . (2.3)

Denote the class of graph signals by ABLA(K,β, µ).

We can then show conditions on η such that the class of globally
smooth graph signals GSA(η) is a subset of the class of the approx-
imately bandlimited graph signals ABLA(K,β, µ) as seen in Fig-
ure 2.2. as seen in Figure 2.2. We note that we can show a similar

characterization under the graph Laplacian.
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2.3 Piecewise Smooth Signals

Piecewise smooth signals exhibit inhomegeneous smoothness over the graph, and are character-
ized by localized behavior and abrupt discontinuities. In practice, the graph signal may not be
necessarily smooth over the entire graph, but only locally within different pieces of the graph. To
model inhomogeneous levels of smoothness over a graph, we say that a graph signal β is piecewise
constant over a graph G if many of the differences βk − βj are zero for (j, k) ∈ E .

Let ∆ ∈ RM×N be the oriented incidence matrix of G, where each row corresponds to an edge.
That is, if the edge ei ∈ E connects the jth node to the kth node (j < k), the ith row of ∆ is then

∆i,ℓ =


−(Aj,k)

√
|Aj,k |, ℓ = j;

(Aj,k)
√
|Aj,k |, ℓ = k;

0, otherwise,

Let us assume for simplicity that the edge weights are all 1. We then note that

‖∆x‖1 =
∑

(i,j)∈E

|xi − xj |

As a result, ∆ can be interpreted as a graph difference operator. Consequently, the difference sig-
nal ∆β is sparse and ‖∆β‖0 is small. We can generalize this graph difference operator to charac-
terize piecewise smooth signals on a graph.30,31,32
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Figure 2.3: From left to right, piecewise constant, linear and quadratic signals on a 2-dimensional
grid graph

We can generalize this characterization to piecewise linear (k = 1) signals by defining a piece-
wise linear signal as a signal whose value at a node can be linearly interpolated from the values at
neighboring nodes. It is easy to see that this is the same as requiring the second-order differences
∆T∆x to be sparse. Similarly, we say that a signal has a piecewise quadratic structure if the dif-
ferences between the second-order differences defined for piecewise linear signals are mostly zero,
that is, if ∆∆T∆x is sparse. Generalizing this, we can define the following recursive definition of
the k-th order graph difference operator ∆(k+1) such that a k-piecewise polynomial graph signal is
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sparse in ∆(k+1)x. Let ∆(1) = ∆.

∆(k+1) =

∆(1)T∆(k) odd k

∆(1)∆(k) even k
(2.4)

The signal ∆β = [(βk − βj)](j,k)∈E specifies the unweighted pairwise differences of the graph
signal over each edge. As a result, ∆ can be interpreted as a graph difference operator. On the
other hand , a signal is called smooth over a graph G if ‖∆β‖22 =

∑
(j,k)∈E(βk − βj)2 is small.
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2.4 Localization and Uncertainty Principles

In classical signal processing, it is well known that signals cannot be simultaneously localized in
both the time and frequency domains.33,34 Some previous works extend this uncertainty princi-
ple to graphs by studying how well a graph signal exactly localize in both the graph vertex and
graph spectrum domain.35,36,37 For any unitary transform Z ∈ RN×N , we can show the following
ℓ0-norm and ℓ1-norm based uncertainty principles that are demonstrably tight. They shed some
insight into how properties of the representation basis drive how well we can localize in the signal
(vertex) domain and the transform domain.

Theorem 2. (Uncertainty principle I)

‖x‖0 + ‖Zx‖0 ≥
2

‖Z‖∞
and ‖x‖1 + ‖Zx‖1 ≥

2

‖Z‖
1
2∞

Particularly, this shows that how well a chosen representation basis can represent a signal is di-
rectly linked to the localization of the energy in the column vectors of Z. As we shall study later,
for the representations we study, this energy localization is inextricably linked to structural prop-
erties of the graph. ■

We now look at a concentration-based uncertainty principle with respect to the graph Fourier
transform U. For a vertex set Γ ⊆ [N ], we can define a vertex-projection operator P Γ that project
signals onto the set of signals that are non-zero over the vertex set Γ. We can then define ϵ-vertex
concentrated signals over Γ such that ‖x− P Γx‖22 ≤ ϵ. Similarly, for a frequency set Ω ⊆ [N ],
we can define a spectrum-projection operator QΩ that projects signals onto the set of bandlimited
signals over the frequency set Ω. We can then define ϵ-spectrum concentrated signals over Ω such
that ‖x−QΩx‖

2
2 ≤ ϵ.

Theorem 3. (Uncertainty principle II) Let a unit norm signal x supported on an undirected
graph be ϵΓ-vertex concentrated and ϵΩ-spectrum concentrated at the same time. Then,

|Γ| · |Ω| ≥ (1− (ϵΩ + ϵΓ))
2

‖UΩ‖2∞
.

where UΩ is the submatrix of the graph Fourier transform matrix indexed by the columns of Ω. ■

In classical signal processing, ‖UΩ‖∞ = 1/
√
N ; the lower bound is O(N) and simultaneous

localization in the vertex and frequency space is not viable. However, for complex and irregular
graphs, the energy of a graph Fourier basis vector may be concentrated on a few elements, that is,
‖UΩ‖∞ = O(1) and simultaneous localization is possible. Empirically, we can observe that these
bounds are tight.

Wavelets and Smoothness: Given a graph signal, let us consider its graph Fourier decompo-
sition x = UT α = Vα and its wavelet decomposition x = W Tβ. Using the uncertainty principle
for pairs of bases33, we have that

‖α‖0 · ‖β‖0 ≥
1

µ2
and ‖α‖0 + ‖β‖0 ≥

2

µ
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where µ = µ(UT ,W T ) is the mutual coherence between the graph Fourier transform basis U and
the wavelet basis W . In general, they are quite incoherent and a signal cannot have sparse repre-
sentations in both these bases since for a smooth signal, we can show that the wavelet coefficients
decay at a certain rate. As a result, this helps motivate and necessitate the development of dis-
tinct representations and algorithms for the processing of smooth and the processing of piecewise
smooth signals.

While in time and images, Fourier and Haar wavelet bases are generally exhibit bad incoher-
ence (large mutual coherence) because low-order wavelets and low-order frequencies are correlated.
However, we can demonstrate that on irregular graphs this is not the case and the mutual coher-
ence is often smaller. This is because vertex-localized wavelets at different scalings can be smooth
which is a direct implication of Theorem 3.
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3
Sampling and Recovering Smooth Graph Signals
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In this chapter, we study sampling smooth signals on graphs on graphs. These sampling algo-
rithms can be considered as extensions of the Nyquist sampling for regular domains to irregular
domains. In traditional machine learning approaches to classification, one uses only a labeled set
to train the classifier. Labeled instances however are often difficult, expensive, or time consuming
to obtain, as they require the efforts of experienced human annotators. Meanwhile, unlabeled data
is typically relatively cheap to collect, but there has been few ways to use them. Semi-supervised
learning addresses this problem by using large amount of unlabeled data, together with the la-
beled data, to build better classifiers. Graphs are a natural way to represent such datasets. That
is, each vertex represents one data point to which a label is associated and a graph can be formed
by connecting vertices with weights corresponding to the affinity or distance between the data
points in some feature space. It is then natural to assume that the label signal is smooth on the
graph. Since samples are often sparse or expensive, designing efficient sampling and reconstruction
tools for semi-supervised classification and active learning is notably valuable.

We first present a sampling theory for bandlimited graph signals that is analogous to downsam-
pling discrete-time signals such that we can recover the signal perfectly. We extend this frame-
work to show we can sample efficiently on product graphs by using a structured sampling proce-
dure that allows us significant gains in computational complexity. We then study minimax lower
bounds for sampling smooth graph signals under both passive and active samplings, and show
that active sampling does not fundamentally outperform passive sampling. Further, we present
optimal sampling and reconstruction algorithms with respect to the lower bounds for passive sam-
pling and discuss how the underlying graph structure drives their performance. We then discuss
recovering smooth graph signals from noisy or corrupted measurements by formulating an opti-
mization problem that minimizes the variation of the signal over the graph. While this has been
well studied in previous work, we present a framework for recovering smooth signals on product
graphs that exploits the low rank structure of these signals by modeling the signal as a multi-
dimensional tensor. Finally, we present applications that showcase our algorithms and strategies.

3.1 Sampling Theory for Bandlimited Graph Signals

In this section, we consider the classical signal processing task of sampling theory within the frame-
work of DSPG. Sampling theory is a key topic in signal processing38,39. As the bridge connecting
sequences and functions, classical sampling theory shows that a bandlimited function can be per-
fectly recovered from its sampled sequence if the sampling rate is high enough40. More generally,
we can treat any decrease in dimension via a linear operator as sampling, and, conversely, any in-
crease in dimension via a linear operator as interpolation38,41. Formulating a sampling theory in
this context is equivalent to moving between higher- and lower-dimensional spaces while ensuring
perfect recovery.

A sampling theory for graphs has interesting implications and applications. For example, given
a graph representing friendship connectivity in Facebook, we can just sample a small fraction of
users and query their hobbies. We then can recover all users’ hobbies. The task of sampling on
graphs is, however, not well understood42,10. It is challenging because graph signals lie on com-
plex, irregular structure, where many classical concepts are ill-posed, such as downsampling43. It
is even more challenging to find a graph structure that is associated with the sampled signal coef-
ficients. For example, in the Facebook example, we sample a small fraction of users. An associated
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graph structure would allow us to infer new connectivity between those sampled users, even when
they are not directly connected in the original graph.

Some previous work on sampling theory9,42 considers graph signals that are uniquely sampled
onto some given subset of nodes. This approach is not consistent with classical sampling theory
and applies to undirected graphs only. It also does not explain how a graph structure supports
these sampled coefficients.

The assumption that graph signals vary slowly or are smooth over the graph is a natural one
to make. Many real world graph signals like sensor network data and biological network data
are smooth, or exhibit bandlimited behavior, or have known limited support with respect to the
graph Fourier transform. For example, in the context of semi-supervised classification on graphs,
each vertex represents one data point to which a label is associated and a graph can be formed
by connecting vertices with weights corresponding to the affinity or distance between the data
points in some feature space. It is then natural to assume that the label signal has slow variation
or is smooth on the graph and consequently approximately bandlimited. Since labeled instances
are rare or expensive to collect, devising efficient yet frugal sampling algorithms on large complex
graphs is of significant interest. Here we propose a sampling theory for signals that are supported
on either directed or undirected graphs. Perfect recovery is possible for graph signals bandlim-
ited under the graph Fourier transform. We also show that the sampled signal coefficients form
a new graph signal whose corresponding graph structure is constructed from the original graph
structure. The proposed sampling theory follows Chapter 5 from38 and is consistent with classi-
cal sampling theory. We further establish the connection to the theories of frames with maximal
robustness to erasures and compressed sensing, show a principle to choose the optimal sampling
operator, and show how random sampling works on circulant graphs and Erdős-Rényi graphs. To
handle full-band graphs signals, we propose graph filter banks to force graphs signals to be ban-
dlimited. Finally, we validate the proposed sampling theory on three simulated datasets of Erdős-
Rényi graphs, small-world graphs, scale-free graphs, and a real-world dataset of online blogs. We
show that for each case, the proposed sampling theory achieves perfect recovery with high proba-
bilities.

Contributions. The contributions in this section are

• a novel sampling theory for graph signals, which follows the same paradigm as classical sam-
pling theory;

• a novel approach to construct a graph structure that supports the sampled signal coeffi-
cients;

• a novel principle to choose the optimal sampling operator;

• a novel approach to construct graph filter banks to analyze full-band graph signal.

Outline. Section 3.1.1 describes the proposed sampling theory for graph signals, and the pro-
posed construction of graph structures for the sampled signal coefficients. The proposed sampling
theory is evaluated in in Section 3.5. We then conclude this section and provide pointers to future
directions.

In general, V may not be orthonormal; to restrict its behavior, we assume that

α1 ‖x‖22 ≤ ‖Vx‖2 ≤ α2 ‖x‖22 , for all x ∈ RN , (3.1)
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where α1, α2 > 0, that is, V is a Riesz basis with stability constants α1, α2
38. The eigenvalues

λ0, . . . λN−1 of A, represent frequencies on the graph18.

Symbol Description Dimension

A graph shift N ×N
V inverse graph Fourier transform matrix N ×N
Ψ sampling operator M ×N
Φ interpolation operator N ×M
x graph signal N
x̂ graph signal in the frequency domain N
M sampled indices
xM sampled signal coeffcients of x M
x̂(K) first K coeffcients of x̂ K
x̂(−K) except first K coeffcients of x̂ K
V(K) first K columns of V N ×K
V(−K) except first K columns of V N × (N −K)

V−1
(K)

first K rows of V−1 K ×N

V−1
(−K)

except first K rows of V−1 (N −K)×N

Table 3.1: Key notation used in this chapter

3.1.1 Sampling on Graphs

In this section, we propose a sampling theory for graph signals. We show that perfect recovery is
possible for graph signals bandlimited under the graph Fourier transform, and a new graph shift
for the sampled signal coefficients is constructed from the original graph shift. A toy example is
shown to illustrate the proposed sampling theory. We further analyze the proposed sampling the-
ory by showing the relations to previous theories, a principle to choose the optimal sampling oper-
ator, how random sampling works, and a graph filter bank to handle full-band graph signals.

Suppose that we want to sample M coefficients in a graph signal x ∈ RN to produce a sampled
part xM ∈ RM (M < N), where M denotes the sequence of sampled indices, M ⊂ {0, 1, · · · , N −
1} and |M| = M . We then interpolate xM to get x′ ∈ RN , which recovers x either exactly or
approximately. The sampling operator Ψ is a linear mapping from RN to RM , defined as

Ψi,j =

{
1, j =Mi;

0, otherwise,
(3.2)

and the interpolation operator Φ is a linear mapping from RM to RN (see Figure 3.1),

Figure 3.1: Sampling followed by interpolation
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sampling : xM = Ψx ∈ RM ,

interpolation : x′ = ΦxM = ΦΨx ∈ RN .

Perfect recovery happens for all x when ΦΨ is the identity matrix. This is not possible in general
because rank(ΦΨ) ≤M < N .

Figure 3.2: Sampling followed by interpolation. The arrows indicate different edge weights for two
nodes.

We consider bandlimited graph signals here, where perfect recovery is possible.

Definition 4. A graph signal is called bandlimited when there exists K ∈ {0, 1, · · · , N − 1} such
that its graph Fourier transform x̂ satisfies

x̂i = 0 for all i ≥ K.

The smallest such K is called the bandwidth of x. A graph signal that is not bandlimited is called
a full-band graph signal.

Definition 5. The set of graph signals in RN with bandwidth of at most K is a closed subspace
denoted BLK(V−1).

Following Theorem 5.2 in38, we obtain the following result.

Theorem 4. Let V(K) be the first K columns of V and let the sampling operator Ψ satisfy

rank(ΨV(K)) = K.

The interpolation operator Φ = V(K) U, with UΨV(K) a K × K identity matrix, where U ∈
RK×M , achieves perfect recovery:

x = ΦΨx, for any x ∈ BLK(V−1).

Since we do not specify the ordering of frequencies, we can reorder the eigenvalues and permute
the corresponding eigenvectors in the graph Fourier transform matrix to choose any band in the
graph Fourier domain. The bandlimited restriction is equivalent to requiring limited support in
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the graph Fourier domain. Theorem 4 is thus applicable for all graph signals that have limited
support in the graph Fourier domain.

The sample size M should be no smaller than the bandwidth K. When M < K, rank(UΨV(K)) ≤
rank(U) ≤ M < K, UΨV(K) can never be an identity matrix. Since UΨV(K) an identity ma-
trix, U is the inverse of ΨV(K) when M = K; it is a pseudo-inverse of ΨV(K) when M > K,
where the redundancy exists. We discuss the redundancy in Section 3.2.4. For simplicity, we only
consider the case where the sample size and the bandwidth are the same, i,e., M = K, and U is
invertible. When M > K, we simply select K from M sampled signal coefficient to ensure that
the sample size and the bandwidth are the same.

From Theorem 4, we see that an arbitrary sampling operator may not lead to perfect recov-
ery even for bandlimited graph signals. The sampling operator should select at least one set of
K linearly-independent rows in V(K). Since V is invertible, the column vectors in V are linearly
independent and rank(V(K)) = K always holds. In other words, at least one set of K linearly-
independent rows in V(K) always exists. When a sampling operator Ψ satisfies rank(ΨV(K)) =

K, we call it a qualified sampling operator. Since the graph shift A is given, one can find such a
set independently of the graph signal. Given such a set, Theorem 4 guarantees perfect recovery of
bandlimited graph signals without any approximation as in42 and any probability constraints as in
compressed sensing44. To find linearly-independent rows in a matrix, fast algorithms exist, such as
QR decomposition; see45,38.

In the previous part, we show that perfect recovery is possible when the graph signals are ban-
dlimited. In the following content, we show that the sampled signal coefficients form a new graph
signal, whose corresponding new graph shift is constructed from the original graph shift.

Suppose a graph signal with bandwidth K, we express it as

x = V x̂ = V(K) x̂(K), (3.3)

where x̂(K) ∈ RK contains the first K signal coefficients in x̂. Let Ψ be a sampling operator that
samples M coefficients in x to produce xM, Φ = V(K) U be an interpolating operator, and Ψ be a
sampling operator, which satisfies (3.3) in Theorem 4 to perfectly recover x from xM. We express
the graph signal as

x = ΦΨx = ΦxM = V(K) UxM. (3.4)

Since (3.3) and (3.4) hold for all x ∈ BLK(V−1), we thus get

x̂(K) = UxM.

Reminding ourselves from Theorem 4 that U is the invertible when M = K, we then get

xM = U−1 UxM = U−1 x̂(K).

The sampled signal coefficients xM can be constructed from the frequency content x̂(K) through
U−1. In addition, the frequency content x̂(K) can be constructed from the sampled signal coeffi-
cients xM through U, which implies that xM is a graph signal associated with the graph Fourier
transform matrix U. Since we only use the first K frequencies, the graph shift that is associated
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with xM is then
AM = U−1 Λ(K) U ∈ RK×K ,

where Λ(K) ∈ RK×K is a diagonal matrix that samples the first K eigenvalues of Λ. The previous
discussion can be summarized as follows:

Theorem 5. Let Ψ be the sampling operator to sample K coefficients in x ∈ BLK(V−1) to pro-
duce xM ∈ RK and satisfy

rank(ΨV(K)) = K.

Let U be (ΨV(K))
−1. Then, xM is a graph signal associated with the graph shift

AM = U+ Λ(K) U ∈ RK×K . (3.5)

The graph Fourier transform of xM is

x̂M = UxM ∈ RK .

The inverse graph Fourier transform is

xM = U−1 x̂M ∈ RK .

From Theorem 5, we see that the graph shift AM is constructed by sampling the rows of the
eigenvector matrix and sampling the first K eigenvalues of the original graph shift A. We simply
say that AM is “sampled” from A, preserving certain information in the graph Fourier domain.

Since the bandwidth of x is K, the first K coefficients in the frequency domain are x̂(K) = x̂M,
and the other N −K coefficients are x̂(−K) = 0; in other words, the frequency contents are equiva-
lent for the original graph signal x and the sampled graph signal xM after performing their corre-
sponding graph Fourier transforms.

Similarly to Theorem 4, by reordering the eigenvalues and permuting the corresponding eigen-
vectors in the graph Fourier transform matrix, Theorem 5 is applicable for all graph signals that
have limited supports in the graph Fourier domain, and the sampled graph shift AM supports the
sampled signal coefficients, preserving the corresponding frequency content.

3.1.2 Finite Discrete-time Cases

We call the graph that supports a finite discrete-time signal as the finite discrete-time graph, which
is represented by the cyclic permutation matrix38,21,

A =


0 0 · · · 1

1 0 · · · 0
... . . . . . . 0

0 · · · 1 0

 (3.6)

= VΛV−1,
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where the eigenvector matrix

V =
[
v0 v1 · · · vN−1

]
=
[

1√
N
(wjk)∗

]
j,k=0,···N−1

, (3.7)

is the Hermitian transpose of the N -point discrete Fourier transform matrix, i.e., V = F∗, where
∗ is the Hermitian transpose, and V−1 is the N -point discrete Fourier transform matrix (F), i.e.,
V−1 = F, and the eigenvalue matrix is

Λ = diag
[
λ0 λ1 · · · λN−1

]
, (3.8)

where λi = wi, w = e−2πj/N . We see that Definitions 6, 7 and Theorem 4 are immediately appli-
cable to finite discrete-time signals.

Definition 6. A discrete-time signal is called bandlimited when there exists K ∈ {0, 1, · · · , N − 1}
such that its discrete Fourier transform x̂ satisfies

x̂i = 0 for all i ≥ K.

The smallest such K is called the bandwidth of x. A discrete-time signal that is not bandlimited is
called a full-band discrete-time signal.

Definition 7. The set of discrete-time signals in RN with bandwidth of at most K is a closed
subspace denoted BLK(F), with F as the discrete Fourier transform matrix.

With this definition of the discrete Fourier transform matrix, the highest frequency is in the
middle of the spectrum (although this is just a matter of ordering). From Definitions 6 and 7,
we can permute the rows in the discrete Fourier transform matrix to choose any frequency band.
Since the discrete Fourier transform matrix is a Vandermonde matrix, any K rows of F∗

(K) are in-
dependent45,38; in other words, rank(ΨF∗

(K)) = K always hold when M ≥ K. We apply now
Theorem 4 to obtain the following result.

Theorem 6. Let F∗
(K) be the first K columns of F∗ and let the sampling operator Ψ satisfy the

sampling number M is no less than the bandwidth K. The interpolation operator Φ = F∗
(K) U,

with UΨF∗
(K) a K ×K identity matrix, achieves perfect recovery,

x = ΦΨx, for any x ∈ BLK(F).

From Theorem 6, we can perfectly recover a discrete-time signal when it is bandlimited.
Similarly to Theorem 5, we can show that a new graph shift can be constructed from the finite

discrete-time graph. Multiple sampling mechanisms can be done to sample a new graph shift, to
obtain an intuitive one, we do as follows. Suppose x ∈ RN is a finite discrete-time signal, where N
is even, and the corresponding finite discrete-time graph is represented by the cyclic permutation
matrix, A, as in (3.6). We reorder the frequencies in (3.8), by putting the frequencies with even
indices first as

Λ̃ = diag
[
λ0 λ2 · · · λN−2 λ1 λ3 · · · λN−1

]
,

Correspondingly, we reorder the columns of V in (3.7) by putting the columns with even indices
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first as
Ṽ =

[
v0 v2 · · · vN−2 v1 v3 · · · vN−1

]
.

One can check that ṼΛ̃Ṽ
−1

is still the same cyclic permutation matrix, where Ṽ
−1

is the inverse
of Ṽ. Suppose we want to preserve the first N/2 frequency contents in Λ̃, the sampled frequencies
are then

Λ̃(N/2) = diag
[
λ0 λ2 · · · λN−2

]
.

Let a sampling operator Ψ choose the first N/2 rows in Ṽ(N/2),

ΨṼ(N/2) =
[

1√
N
(w2jk)∗

]
j,k=0,···N/2−1

,

which is the Hermitian transpose of the N/2 discrete Fourier transform and satisfies rank(ΨṼ(N/2)) =

N/2 in Theorem 5. The sampled graph Fourier transform matrix U = (ΨṼ(N/2)))
−1 is the N/2

discrete Fourier transform. The sampled graph shift is then constructed as

AM = U−1 Λ̃(N/2) U,

which is exactly the N/2 × N/2 cyclic permutation matrix. Hence, we have shown that by choos-
ing an appropriate sampling mechanism, a smaller finite discrete-time graph is obtained from a
larger finite discrete-time graph by using Theorem 5. We note that using a different ordering or
sampling operator, would result in a graph shift that can be different and non-intuitive. This is
however a matter of choosing different frequency contents.

Figure 3.3: Sampling a graph.
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3.1.3 Toy examples

We consider a five-node directed graph with graph shift

A =


0 0.4 0.4 0 0.2

0.667 0 0.333 0 0

0.5 0.25 0 0.25 0

0 0 0.5 0 0.5

0.5 0 0 0.5 0

 .

The corresponding inverse graph Fourier transform matrix is

V =


0.4472 0.1936 0.253 0.3532 −0.4026
0.4472 0.4034 0.1604 −0.7446 0.1782

0.4472 0.0842 −0.5618 0.2862 0.362

0.4472 −0.6596 −0.4053 −0.4706 −0.5733
0.4472 −0.598 0.656 0.132 0.5886

 ,

and the frequencies are

Λ = diag
[
1 0.3895 −0.1161 −0.444 −0.829

]
.

We generate a bandlimited graph signal x ∈ BL3(V
−1) as

x =
[
0.242 0.2639 0.232 0.1577 0.1638

]T
.

We can check the first three columns of V to see that all sets of three rows are independent. Ac-
cording to the sampling theorem, we can recover x perfectly by sampling any three of its coef-
ficients; for example, sample the first,second and the fourth coefficients. Then, M = {1, 2, 4},
xM =

[
0.242 0.2639 0.1577

]T
, and the sampling operator

Ψ =

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 .
We recover x by using the following interpolation operator (see Figure 3.2)

Φ = V(3)(ΨV(3))
−1 =


1 0 0

0 1 0

−2.7043 2.8703 0.834

0 0 1

5.0363 −3.9845 −0.0518

 .
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The inverse graph Fourier transform matrix is

U−1 = ΨV(3) =

0.4472 0.1936 0.253

0.4472 0.4034 0.1604

0.4472 −0.6596 −0.4053

 ,
and the sampled frequencies are

Λ(3) =

1 0 0

0 0.3895 0

0 0 −0.1161

 ,
The sampled graph shift is then constructed as

AM = U−1 Λ(3) U =

0.3865 0.3142 0.2417

−0.615 −0.0607 −0.4898
1.5553 0.2565 0.9476

 .
We see that while the sampled graph shift contains self-loops and negative weights, which seems
to be dissimilar to A, AM perfectly preserves the frequency content of A.

3.1.4 Discussions

We extend the proposed sampling theory, and discuss three topics: the relation to the previous
work, how to choose a sampling operator, and how to handle full-band graph signals.

Relation to frames with maximal robustness to erasures

A frame is a generating system {f1, f2, · · · , fN} of RK , where N ≥ K, when there exist two con-
stants A > 0, B <∞, such that for all x ∈ RN ,

A ‖x‖2 ≤
∑
k

|fTk x|2 ≤ B ‖x‖2 .

We represent the frame as an N ×K matrix with rows fTk :

F =


fT1

fT2
...
fTM


The frame F is maximally robust to erasures when every K × K submatrix (obtained by delet-
ing N − K rows of F) is invertible46. In46, the authors show that a polynomial transform ma-
trix is a frame with maximally robust to erasures; in47, the authors show that many lapped or-
thogonal transforms and lapped tight frame transforms, are also maximally robust to erasures.
It is clear that if the inverse graph Fourier transform matrix V is maximally robust to erasures,
any sampling operator that samples at least K signal coefficients guarantees perfect recovery; in
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other words, when a graph Fourier transform matrix happens to be a polynomial transform ma-
trix, sampling any K signal coefficients leads to perfect recovery.

Relation to compressed sensing

Compressed sensing is a sampling framework to recover sparse signals in a few measurements48.
The theory asserts that a few samples guarantee to recover the original signals when signals and
the sampling approaches are well-defined in some theoretical aspects. To be more specific, given
the sampling operator Ψ ∈ RM×N ,M << N and the sampled signal xM = Ψx, a sparse signal
x ∈ RN , is recovered by solving

min
x
||x||0, subject to xM = Ψx. (3.9)

Since the l0 norm is not convex, the optimization is a non-deterministic polynomial-time hard
problem. To obtain a computational efficient algorithm, the l1 norm based algorithm, known as
the basis pursuit or basis pursuit with denoising, recovers the sparse signal with small approxima-
tion error49,50,51.

In the standard compressed sensing theory, the signals have to be sparse or approximately
sparse to gurantee accurate recovery properties. In52, the authors proposed a general way to per-
form compressed sensing with non-sparse signals using dictionaries. To be more specific, a general
signal x ∈ RN , is recovered by

min
x
||Dx||0, subject to xM = Ψx, (3.10)

where D is a dictionary designed to make Dx sparse. When specifying x to be a graph signal, and
D to be the graph Fourier transform of the graph on which the signal resides, Dx represents the
frequency content of x, which is sparse when x has a small bandwidth. (3.10) recovers a ban-
dlimited graph signal from a few sampled signal coefficients via an optimization approach. The
proposed sampling theory deals with the cases where the nonzero frequencies are known, and can
be reordered to form a bandlimited graph signal. Compressed sensing deals with the cases where
the nonzero frequencies are unknown, which is a more general and harder problem. By taking ad-
vantage of knowing the frequencies, the proposed sampling theory only needs K sampled signal
coefficients to achieve perfect recovery. On the other hand, compressed sensing needs more sam-
pled signal coefficients to achieve an approximated recovery.

Full-band graph signal

As shown in Theorem 4, the perfect recovery is achieved when graph signals are bandlimited. To
handle full-band graph signals, we propose an approach based on graph filter banks.

Suppose x is a full-band graph signal, we express it as the addition of two bandlimited signals
supported on the same graph, i. e., x = xl + xh, where

xl = V

[
IK 0

0 0

]
V−1 x,
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Figure 3.4: Graph filter bank. We can split the graph signal to two bandlimited graph signals.
In each channel, we perform sampling and interpolation, following the paradigm in Theorem 4.
Finally, we add the results from both channels to obtain the original full-band graph signal.

and

xh = V

[
0 0

0 IN−K

]
V−1 x.

We see that xl contains the first K frequencies, xh contains the other N−K frequencies, and both
of them are bandlimited. We do sampling and interpolation for xl and xh in two channels, respec-
tively. We take the first channel as an example. Following the paradigm in Theorems 4 and 5,
we use a feasible sampling operator Ψl to sample xl, and obtain the sampled signal coefficients as
xl
Ml = Ψlxl, with the corresponding graph as AMl . We can recover xl by using a interpolation

operator Φl as xl = Φlxl
Ml . Finally, we add the results from both channels to obtain the origi-

nal full-band graph signal (also illustrated in Figure 3.4). We see that the above idea can easily be
generalized to multiple channels by splitting the original graphs signal into multiple bandlimited
graph signals; instead of dealing with a huge graph, we work with multiple small graphs, which is
easy for the storage and computation.

3.2 Sampling Theory on Product Graphs

Many examples of real-world graph-structured data are multi-modal in nature and importantly
have an inherent structure. Product graphs are a graph model that composes graphs from smaller
building blocks we call graph atoms and represent a concise way to model such data53,54. For
example, product graph composition using a product operator is a natural way to model time-
varying signals on a sensor network as shown in Figure 1(b). The graph signal formed by the mea-
surements of all the sensors at all the time steps is supported by the graph that is the product of
the sensor network graph and the time series graph. The kth measurement of the nth sensor is in-
dexed by the nth node of the kth copy of the sensor network graph. In53, a generative model that
can effectively model the structure of many large real-world networks was presented by recursively
applying the Kronecker product on a base graph that can be estimated efficiently. Consequently,
constructing a framework for the efficient sampling and recovery on such product graphs is an im-
portant step for tasks such as graph signal recovery, compression, and semi-supervised learning on
large-scale and multi-modal graphs.

Multiple types of graph products exist, that is, we can enforce connections across modes in dif-
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ferent ways55. In the case of the Cartesian product as in Figure 1(b), the measurement of the nth

sensor at the kth time step is related to not only to its neighboring sensors at the kth time step
but also to its measurements at the (k − 1)th and (k + 1)th time steps respectively. Hence, con-
structing a framework for efficient sampling and recovery on such product graphs is an important
step for tasks such as graph signal recovery, compression, and semi-supervised learning on large-
scale and multi-modal graphs.

In28,36, a sampling theory for bandlimited signals was presented that can be considered as an
extension of Nyquist sampling for regular domains to irregular domains. In this work, extended
this sampling theory to product graphs in56 by showing how to efficiently sample and perfectly
recover bandlimited signals on product graphs. Particularly, we show that we do not need to pro-
cess the whole product graph A or compute its spectral decomposition which is of complexity
O(N3) and is often computationally prohibitive for large graphs. While the sampling theory char-
acterizes sampling sets that enable perfect recovery for bandlimited signals, it does not prescribe
easily implementable, robust sampling strategies. Randomized sampling strategies57,29, charac-
terized by a probability distribution over the nodes, present a more flexible framework to sample
nodes on a graph in the presence of noise that is also easily implementable. Hence, in our work,
we further extend these randomized sampling strategies to product graphs by exploiting the struc-
ture of product graph. Particularly, as in the case of the sampling theory for product graphs56,
we only need to process the graph atoms the product graph is composed of.

3.2.1 Product Graphs

As before, we consider a graph G = (V,A), where V = {v0, . . . , vN−1} is the set of nodes and
A ∈ RN×N is the graph shift, or a weighted adjacency matrix. A Represents the connections of
the graph G, which can be either directed or undirected.

Product graphs are graphs whose adjacency matrices are composed using the product (rep-
resented by the square symbol □) of the adjacency matrices of smaller graph atoms. Consider
two graphs G1 = (V1,A1) and G2 = (V2,A2) . The graph product of G1 and G2 is the graph
G = G1□G2 = (V,A1 □A2) where |V| = |V1| · |V2|. The set of nodes V is the Cartesian product of
the sets V1 and V2. That is, a node (u1, u2) is created for every u1 ∈ V1 and u2 ∈ V2.

Figure 3.5: Under the Kronecker product, (u1, u2) ∼ (v1, v2) in the product graph if u1 ∼ v1 and
u2 ∼ v2

Typically, we use one of the Kronecker graph product (⊗, Figure 1(a)), the Cartesian graph
product (⊕, Figure 1(b) or the strong graph product (⊠) which is a combination of both the Kro-
necker and Cartesian product to compose a product graphs. Since the product is associative, one
can extend the above formulation to define product graphs constructed from multiple graph-atoms.
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Figure 3.6: Under the Cartesian product, (u1, u2) ∼ (v1, v2) in the product graph if u1 = v1 and
u2 ∼ v2 or u1 ∼ v1 and u2 = v2

Digital images reside on rectangular lattices that are Cartesian products of line graphs for rows
and columns. We have already seen how the Cartesian product is a natural way to analyze time-
varying signals on graphs by enforcing further connections both across the graph in question and
the time graph. A social network with multiple communities can also be represented by the Kro-
necker graph product of the graph that represents a community structure and the graph that cap-
tures the interaction between neighbors. In the context of recommender engines where we have
user ratings for different entities at different times, we can view this as a signal lying on the Kro-
necker product of three graphs, the graph relating the different users, the graph relating the differ-
ent entities, and the time graph. In the context of multivariate signals on a given graph A where
each node has a multidimensional vector associated with it, we can view this as a signal lying on
the product graph constructed by the composition of A and the covariance matrix of the multi-
variate data Σ.

In the following exposition, for clarity and brevity, we only consider the Kronecker product.
However, the results and theorems either hold or can easily be extended to both Cartesian and
strong products. We also only consider the graph Fourier transform defined for the graph shift
matrix A but these results can also be extended for when the graph Fourier transform is defined
for the graph Laplacian.

We consider a product graph G = (V,A), |V| = N , that is constructed from J graph atoms
G1, G2, · · ·GJ , where Gj = (Vj ,Aj), |Vj | = Nj , using the Kronecker product where

∏J
j=1Nj = N .

We can write the resulting graph shift matrix of the product graph as

A = A(1)⊗A(2)⊗ · · · ⊗A(J) = ⊗J
j=1 A

(j) (3.11)

We can then write the spectral decomposition of the product graph shift A as

A = VΛU (3.12)

where V = V(1)⊗V(2)⊗ · · · ⊗V(J) = ⊗J
j=1 V

(j)

Λ = Λ(1) ⊗ Λ(2) ⊗ · · · ⊗ Λ(J) = ⊗J
j=1Λ

(j)

U = U(1)⊗U(2)⊗ · · · ⊗U(J) = ⊗J
j=1 U

(j) = V−1

For a given graph atom, Gj , the columns of V(j) and their corresponding frequencies are pairs
of the form (v

(j)
i(j)
, λ

(j)
i(j)

). Here, i(j) is an index for the nodes in Gj that varies from (1, 2, · · ·Nj)

where Nj = |Vj |, the number of nodes in Gj .
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As a result, under the Kronecker Product, each of the N basis vectors in V have the form

v
(1)
i(1)
⊗ · · · ⊗ v

(j)
i(j)
⊗ · · · ⊗ v

(J)
i(J)

, λ
(1)
i(1)
× · · · × λ(j)i(j)

× · · · × λ(J)i(J)
(3.13)

across all combinations of the indices (i(1), · · · , i(j), · · · , i(J)). For example, if V(1) = [v
(1)
1 |v

(1)
2 ]

and V(2) = [v
(2)
1 |v

(2)
2 |v

(2)
3 ],

V(1)⊗V(2) = [v
(1)
1 ⊗v

(2)
1 |v

(1)
1 ⊗v

(2)
2 |v

(1)
1 ⊗v

(2)
3 | · · ·

v
(1)
2 ⊗v

(2)
1 |v

(1)
2 ⊗v

(2)
2 |v

(1)
2 ⊗v

(2)
3 ]

Frequency Analysis for Product Graphs Under the Kronecker product, we have seen
that the eigenvalues of the graph product matrix A are the product of combinations of eigenval-
ues from the sub-graphs that compose the product graph. We now study the ordering of eigenvec-
tors by their total variations induced under the Kronecker Product composition of graphs.

For clarity, we only consider real-valued eigenvalues here. The reasoning below can easily be
extended to complex eigenvalues (directed graphs).

Theorem 7. For brevity and clarity, let us consider the setting where the product graph is formed
by composing M = 2 graphs A(1) and A(2) of respective size N1 and N2 whose eigenvector-
eigenvalue pairs are (v

(1)
i , λ

(1)
i and (v

(2)
j , λ

(2)
j ) respectively. Without loss of generality, we also as-

sume the respective sets of eigenvalues of the two graphs are ordered as λ(1)1 ≤ λ
(1)
2 ≤ · · · ≤ λ

(1)
N1

and λ
(2)
1 ≤ λ(2)2 ≤ · · · ≤ λ(2)N2

.
As derived in (3.12), A = A(1)⊗A(2) has eigenvector-eigenvalue pairs of the form (vi,j , λi,j)

where

vi,j = v
(1)
i ⊗v

(2)
j (3.14)

λi,j = λ
(1)
i λ

(2)
j (3.15)

Clearly λi,j ≤ λi,j+1 and λi,j ≤ λi+1,j . Directly applying Theorem 1, we have the following
partial ordering of the eigenvectors of A based on the total variation functional.

TVA(vi,j) > TVA(vi,j+1) (3.16)

TVA(vi,j) > TVA(vi+1,j) (3.17)

We can perform analogous characterizations of the partial ordering of eigenvectors induced by
the Cartesian graph composition method. In addition, we can also show a congruous partial or-
dering of eigenvectors of the graph Laplacian induced by both the Kronecker and Cartesian prod-
ucts. We note that in this case, we would use the graph total variation functional based on the
quadratic form of the graph Laplacian here TVA = xTLx.

3.2.2 Sampling Theory: Product Graph

In this section, we show how to efficiently sample and recover bandlimited signals on product
graphs.
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We now consider the product graph G that is composed using the Kronecker product over J
graphs {G(1), · · · , G(J)}.

As before, we have a bandlimited graph signal x ∈ BLK(V) that is associated with the product
graph A and a sampling operator Ψ such that the sampled signal xM = Ψx is acquired by ap-
plying the sampling operator Ψ. We showed in Theorem 5 that a sufficient condition to perfectly
recover the sampled bandlimited signal xM = Ψx where x ∈ BLK(V) is that

rank(ΨV(K)) = K (3.18)

It is straightforward to sample the product graph using the framework constructed in the pre-
vious section for a single graph by using the composed graph-shift A as a whole. Instead, in this
section, we look to exploit the structure of the product graph under the Kronecker product com-
position when we sample the graph. We note here that we are free to order the eigenvectors of V
arbitrarily.

We have seen that we can write any given column vector v of V as a particular combination of
J column vectors from each of the V(j):

v = v
(1)
i(1)
⊗ · · · ⊗ v

(j)
i(j)
⊗ · · · ⊗ v

(J)
i(J)

=

J⊗
j=1

v
(j)
i(j)

(3.19)

where v
(j)
i(j)

is a column of V(j) indexed by i(j).
Given some subset of K columns of V over which the signal is bandlimited, we can accordingly

re-order the columns in each of V(j) such that

V(K) ⊂ V
(1)
R1
⊗ · · ·V(j)

Rj
⊗ · · ·V(J)

RJ
=

J⊗
j=1

V
(j)
Rj

= VS . (3.20)

V
(j)
Rj

corresponds to the top Rj columns of V(j) and S =
∏J

j=1Rj . We note that K ≤ S ≤ KJ .
In addition, any signal that is in BLK(V) is also in BLS(

⊗J
j=1 V

(j)
Rj

).

Theorem 8. Let us consider the sampling scheme where we sample Rj nodes from each of the
sub-graphs G(j) using the sampling operator Ψ(j).

Using Theorem 5, for each of the J graph atoms, we can construct appropriate sampling (Ψ(j))
and interpolation (Φ(j)) operators corresponding to the subset of columns Rj in V(j) such that for
any x(j) ∈ BLRj (V

(j)), we can sample and perfectly recover such that x(j) = Φ(j)(Ψ(j)x(j)) =

Φ(j)x
(j)
M . In addition, x(j)

M is associated with a sampled graph whose graph shift is A
(j)
M .

We now sample S nodes in the product graph corresponding to all combinations of the sampled
nodes in the graph atoms. That is, we construct the sampling operator Ψ to sample S =

∏J
j=1Rj

nodes in the product graph such that xM = Ψx

Ψ =

J⊗
j=1

Ψ(j) (3.21)
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Further, the corresponding interpolation operator Φ over the product graph is

Φ =
J⊗

j=1

Φ(j) (3.22)

As a result, Ψ and Φ enable perfect recovery such that for any bandlimited graph signal x ∈
BLK(V) on the product graph, x = ΦxM = ΦΨx.

In addition, the sampled graph signal xM lies on a sampled product graph. Particularly the
sampled product graph can be decomposed as the Kronecker product of the sampled graph for the
individual sub-graphs. That is,

AM =

J⊗
j=1

A
(j)
M (3.23)

Proof. Let us consider the sampling scheme where we sample Rj nodes from each of the sub-graphs
G(j) using the sampling operator Ψ(j). We then compose the full sampling operator

Ψ = Ψ(1) ⊗ · · · ⊗Ψ(j) ⊗ · · · ⊗Ψ(M) =

J⊗
j

Ψ(j)

such that we sample the nodes on the product graphs corresponding to the combinations of the
Rj nodes.

We can then write

ΨV(K) = (

J⊗
j=1

Ψ(j))(

J⊗
j=1

V
(j)
R(j)

) =

J⊗
j=1

Ψ(j) V
(j)
Rj

(3.24)

Hence, to satisfy the condition rank(ΨV(K)) ≥ K it is sufficient to ensure that for each of the
sub-graphs

rank(Ψ(j) V
(j)
Rj

) = Rj (3.25)

such that

rank(ΨV(K)) =

J∏
j

rank(Ψ(j) V
(j)
Rj

) =

J∏
j=1

Rj ≥ K (3.26)

We have already shown, for a single graph, how to choose a sampling operator Ψ(j) that en-
sures the above condition holds. We choose Ψ(j) such that Ψ(j) V

(j)
Rj

is full rank, that is, rank(Ψ(j) V
(j)
Rj

) =

Rj . The corresponding interpolation operator Φ(j) is Φ(j) = V
(j)
Rj

)W (j) where W (j) = (Ψ(j) V
(j)
Rj

)†.
As shown before, given an admissible sampling operator Ψ such that rank(ΨV(K)) = K, the

interpolation operator Φ that ensures perfect recovery can be composed as the product of the in-
terpolation operators of the M graphs, Φ(j) such that:
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Φ = V(K) W = V(K)(ΨV(K))
† (3.27)

= (

M⊗
j=1

V
(j)
Rj

)(

M⊗
j=1

Ψ(j)
M⊗
j=1

V
(j)
Rj

)† = (

M⊗
j=1

V
(j)
Rj

)(

M⊗
j=1

(Ψ(j) V
(j)
Rj

))† (3.28)

= (

M⊗
j=1

V
(j)
Rj

)(

M⊗
j=1

(Ψ(j) V
(j)
Rj

)†) =

M⊗
j=1

(V
(j)
Rj

(Ψ(j) V
(j)
Rj

)†) (3.29)

=

M⊗
j=1

(V
(j)
Rj

W (j)) =

M⊗
j=1

Φ(j) (3.30)

Hence, we have shown how to construct sampling and interpolation operators for bandlimited
signals on product graphs that enables perfect recovery. Particularly, we can construct the sam-
pling operator by composing admissible sampling operators on the graph atoms that the product
graph is composed of.

This tells us that we don’t need to compute the whole product graph A or its spectral decom-
position (GFT basis). Instead we can sample bandlimited graph signals and perfectly recover us-
ing only the spectral decompositions of the sub-graphs A(j). As shown before, a sampled graph
signal is supported by a ”sampled” graph that preserves it’s Graph Fourier transform. The sam-
pled graph is of the form

AM = W †Λ(M)W ∈ RM×M . (3.31)

As a result, we can write:

AM = (ΨV(M))
†Λ(M)((ΨV(M))) (3.32)

= (

M⊗
l=1

Ψ(j)
M⊗
l=1

V
(j)
Rj

)†(

M⊗
l=1

Λ(R(l)))(

M⊗
l=1

Ψ(j)
M⊗
l=1

V
(j)
Rj

) (3.33)

= (

M⊗
l=1

(Ψ(j) V
(j)
Rj

)†)(

M⊗
l=1

Λ(Rj))(

M⊗
l=1

(Ψ(j) V
(j)
Rj

)) (3.34)

=

M⊗
l=1

(Ψ(j) V
(j)
Rj

)†Λ(Rj)(Ψ
(j) V

(j)
Rj

) =

M⊗
l=1

(W (j))†Λ(Rj)W
(j) (3.35)

=

M⊗
l=1

A
(j)
M (3.36)

We see that the sampled product graph can be decomposed as the Kronecker product of the sam-
pled graph for the individual graph atoms.

The sampling and recovery framework for product graphs based the decomposition of the sam-
pling and interpolating operators presented in Theorem 8 is illustrated in Figure 3.7.

3.2.3 Toy Example

In this section, we study a toy example that further illustrates Theorem 8. As shown in Figure 3.8,
consider a graph A = A1⊗A2 and a bandlimited signal x ∈ BLK(V) with K=3. The top K = 3
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Figure 3.7: As shown in Theorem 8, we can construct an admissible sampling operator and cor-
responding interpolation operator by composing sampling and interpolation operators defined re-
spectively on each of the graph atoms. Further, the sampled graph signal lies on a sampled product
graph
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Figure 3.8: In Section 3.2.3, we consider sampling and recovering a signal x ∈ BLK(V) with
K = 3. The top K = 3 columns of the ordered GFT basis V corresponds to the pairs (1, 1), (4, 3),
and (3, 3) of the graph atoms respectively. We choose a sample set consisting of nodes (1,3,4)
on the A1 and a sampling set (2,3) on A2. The sample sets are marked by the transparent blue
circle in the above figure. We then sample nodes corresponding to all combinations of the sam-
pling sets on the product graph. That is, we sample 6 nodes corresponding to the following pairs
{(1, 2), (1, 3), (3, 2), (3, 3), (4, 2), (4, 3)} We can appropriately construct an interpolation operator
from the interpolation operators corresponding to the chosen sampling sets on the graph atoms A1

and A2 such that we can ensure perfect recovery for any bandlimited signal x ∈ BLK(V)
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columns of the ordered GFT basis V corresponds to the pairs (1, 1), (4, 3), and (3, 3) from the
graph atoms respectively. As a result, we can set R1 = {1, 3, 4} and R2 = R1 = {1, 3} such that
V(K) ⊂ V

(1)
R1
⊗V

(2)
R2

. We can then compose sampling and interpolation operators using Theorem 5
for each of the two graphs:

Ψ(1) =

0 1 0 0

0 0 1 0

1 0 0 0

 Φ(1) =


0 0 1

1 0 0

0 1 0

0.69 2.21 −1



Ψ(2) =

[
0 1 0

0 0 1

]
Φ(2) =

0 1

1 0

0 1


We then compose the sampling and interpolation operators as in Theorem 8 as Ψ = Ψ(1) ⊗Ψ(2)

and Φ = Φ(1) ⊗ Φ(2). We then sample |R1||R2| = 6 nodes in the product graph as xM = Ψx cor-
responding to combinations of the chosen sampling sets for each of the graph atoms as illustrated
in Figure 3.8. We then see that we can sample and perfectly reconstruct any bandlimited signal
x ∈ BLK(V) by verifying that ΦxM = x.

3.2.4 Discussions and Extensions

Graph Generation under Recursive Kronecker Multiplication

In53, a generative model that can effectively model the structure of many large real-world net-
works was presented by recursively applying the Kronecker product on a base graph that can be
estimated efficiently. We can consequently leverage our framework to sample graph signals that
are supported on a large real-world networks with a substantial reduction in the sample and com-
putational complexity.

Smooth Signals

In Theorem 13, it was shown that smooth signals can be well approximated by a graph signal that
is bandlimited with respect to the top K columns of the ordered graph Fourier basis V. That is, a
smooth graph signal x can be well approximated by x′ ∈ BLA(K).

Particularly, given the partial ordering induced under the Kronecker product in Theorem 7, we
can write

V(K) = V
(1)
R(1)
⊗ · · ·V(ℓ)

R(ℓ)
⊗ · · ·V(M)

R(M)
=

M⊗
l=1

V
(ℓ)
R(ℓ)

(3.37)

where VR(ℓ)
corresponds to the top R(ℓ) columns of V. We note that

K ≤
M∏
ℓ=1

R(ℓ) ≤ K +M

Hence, we need at most O(K) samples, and we can sample smooth signals on product graphs
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nearly optimally.

Optimal sampling operator

As mentioned in Section 3.1.1, at least one set of K linearly-independent rows in V(K) always ex-
ists. When we have multiple choices of K linearly-independent rows, we aim to find the optimal
one to minimize the effect of noise. When we have multiple choices of K linearly-independent
rows, which one is optimal? We answer this question from two aspects: the first one is to mini-
mize the turbulence from noise; the second one is to provide robust representation for sampled
signal coefficients.

We consider the noise e is introduced during sampling as follows,

xM = Ψx+ e

The recovered graph signal, x′, is then

x′ = ΦxM = ΦΨx+Φe = x+Φe.

An optimal sampling operator should minimize the turbulence from noise. To bound the turbu-
lence, we have

||x′ − x||2
= ||Φe||2
= ||V(K) Ue||2
≤ ||V(K) ||2||U ||2||e||2.

Since ||V(K) ||2 and ||e||2 are fixed, we want U to have a small spectral norm. From this aspect,
for each feasible Ψ, we compute the inverse, or pseudo-inverse of ΨV(K) to obtain U; the best
choice comes from the smallest spectral norm of U.

Since U is the graph Fourier transform matrix for the sampled signal coefficients, we want U

to span the space well to provide robust and stable representation58,59. When M = K, U is
a basis that spans RK ; we thus check the condition for the Riesz basis. For each feasible Ψ, we
compute the inverse of ΨV(K) to obtain U; the best choice comes from the tightest stability con-
stants of U38. When M > K, U is a frame that spans RK ; we thus check the condition for the
frame. For each feasible Ψ, we compute the pseudo-inverse of ΨV(K) to obtain U; the best choice
comes from the tightest frame bounds of U38. Note that for both Riesz basis and frame, the lower
bound is the smallest singular value of U and the upper bound is the spectral norm of U.

Combining these two aspects, we find that the principle to find the optimal sampling operator
is as follows: given a sampling operator Ψ, we compute the inverse of ΨV(K) to obtain U. We
choose the sampling operator with the minimum spectral norm and the maximum smallest singu-
lar value of U.

Ψopt = argmax
Ψ

σmin(ΨV(K)), (3.38)

where σmin denotes the smallest singular value. Since we restrict the form of Ψ in (5.2), (3.38) is
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non-deterministic polynomial-time hard. To solve (3.38), we can use a greedy algorithm as shown
in Algorithm 1. Some previous work solved the similar optimization problem for matrix approx-
imation and showed that the greedy algorithm gives a good approximation to the global opti-
mum60. Note that M is the sampling sequence, indicating which row to select, and (V(K))M de-
notes the sampled rows from V(K). When increasing the number of samples, the smallest singular
value of ΨV(K) grows, and thus, redundant samples make the algorithm robust to noise.

Algorithm 1 Optimal Sampling Operator via Greedy Algorithm
Input V(K) the first K columns of V

M the number of samples
Output M sampling set

Function
while |M| < M

m = argmaxi σmin

(
(V(K))M+{i}

)
M←M+ {m}

end
return M

Product Graph

Since

Ψ =

M⊗
l=1

Ψ(l),ΨV(K) =

M⊗
l=1

Ψ(ℓ) V
(ℓ)
R(ℓ)

,

we can write,

Ψopt = argmax
Ψ

σmin(ΨV(K)) = argmax
Ψ

σmin(

M⊗
l=1

Ψ(ℓ) V
(ℓ)
R(ℓ)

) (3.39)

=

M∏
l=1

argmax
Ψ(ℓ)

σmin(Ψ
(ℓ) V

(ℓ)
R(ℓ)

) (3.40)

(3.41)

Hence this is equivalent to finding the optimal sampling operator for each of the sub-graphs by
solving equation 3.38. That is, for each sub-graph indexed by ℓ, we solve

Ψ(ℓ),opt = argmax
Ψ(l)

σmin(Ψ
(l) V

(ℓ)
(K)) (3.42)

such that

Ψopt =

M∏
ℓ=1

Ψ(ℓ),opt (3.43)

We can use Algorithm 1 for each of the ℓ subgraphs to approximate the problem in (3.42).
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3.3 Randomized Sampling for Graph Signals

3.3.1 Uniform Random sampling

In Section 3.6.2, we see that when sampling sufficient signal coefficients, any sampling operator
leads to perfect recovery for discrete-time signals. Here we show that similar results are applied
for circulant graphs and Erdős-Rényi random graphs.

Circulant graphs. A circulant graph is a graph whose adjacency matrix is circulant43. The
circulant-graph shift, C, can be represented a polynomial of the cyclic permutation matrix, A,
whose the corresponding graph Fourier transform is discrete Fourier transform, i.e.,

C =

L−1∑
i=0

hi A
i =

L−1∑
i=0

hi(F
∗ ΛF)i

= F∗

(
L−1∑
i=0

hiΛ
i

)
F .

where L is the order of the polynomial, and hi is the coefficient corresponding to the ith order.
Since the graph Fourier transform matrix of circulant graphs is discrete Fourier transform matrix,
we can perfectly recover a circulant-graph signals with bandwidth K by sampling any M ≥ K

signal coefficients as shown in Theorems 6. In other words, perfect recovery is guaranteed when we
randomly sample sufficient signal coefficients.

Erdős-Rényi graphs. An Erdős-Rényi graph is constructed by connecting nodes randomly,
where each edge is included in the graph with probability p independent from every other edge61,62.
We aim to show that by sampling K signal cofficients randomly, the singular values of the corre-
sponding ΨV(K) are well bounded.

Lemma 1. Let a graph shift A represent an Erdős-Rényi random graph on a vertex set of size
N , obtained by drawing an edge between each pair of vertices, randomly and independently, with
probability p = g(N) log(N)/N . Let V be the eigenvector matrix of A, obeying VVT = N · I. Let
the sampling number satisfies

M ≥ K · log
2.2 g(N) log(N)

p
·max(C1 logK,C2 log

3

δ
),

for some positive constants C1, C2. Then,

P

(∥∥∥∥ 1

M
(ΨV(K))

T (ΨV(K))− I

∥∥∥∥
2

≤ 1

2

)
≤ 1− δ (3.44)

for all the sampling operators Ψ that samples M signal coefficients.

Proof. Since the graph shift A is a real and symmetric matrix, the eigenvector matrix V is or-
thogonal and satisfies maxi,j |Vi,j | = O

(√
log2.2 g(N) logN/(N2p)

)
for p = g(N) log(N)/N 63.

We then plug V into Theorem 1.2 in64 and obtain (3.44).

Theorem 9. Let a graph shift A represent an Erdős-Rényi random graph on a vertex set of size
N , obtained by drawing an edge between each pair of vertices, randomly and independently, with
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probability p = g(N) log(N)/N . Let V be the eigenvector matrix of A, obeying VVT = N · I. Let
Ψ be a sampling operator with the sampling number obeying:

M ≥ K · log
2.2 g(N) log(N)

p
·max(C1 logK,C2 log

3

δ
),

for some positive constants C1, C2. With probability (1 − δ), ΨV(K) is a frame in RK with lower
bound M/2 and upper bound 3M/2.

Proof. Using Lemma 6, with probability (1− δ), we have

∥∥ 1
M (ΨV(K))

T (ΨV(K))− I
∥∥
2
≤ 1

2

It is equivalent to that, for all x ∈ RK ,

−1

2
xTx ≤ xT

(
1
M (ΨV(K))

T (ΨV(K))− I
)
x ≤ 1

2
xTx

M

2
xTx ≤ xT (ΨV(K))

T (ΨV(K))x ≤ 3M

2
xTx

From Theorem 11, we see the singular values of ΨV(K) are well bounded with high probability.
It shows that ΨV(K) has full rank with high probability; in other words, with high probability,
perfect recovery is achieved for Erdős-Rényi graph signals when we randomly sample sufficient
signal coefficients.

3.3.2 Product Graphs and Decomposability

While the sampling theory discussed above gives conditions on sampling sets that enable perfect
recovery for bandlimited signals, it does not prescribe easily implementable robust algorithms to
choose these sampling sets. Randomized sampling in this case is particularly favorable especially
for large graphs where standard column subset selection or search algorithms may be prohibitive.
In this section, we study randomized sampling procedures whereby we sample M nodes propor-
tional to a sampling distribution {πi} over the nodes. That is, we sample M nodes without re-
placement such that in each of the M rounds, the probability of the i-th node being selected is
proportional to πi.

Inspired by the sampling framework discussed in the last section, we want to compose a sam-
pling operator on the product graph from sampling operators we construct on the graph atoms.
Consider the following sampling framework: For each of the J graphs, Gj , where j = {1, · · · , J},
we define a probability distribution {π(j)} over its nodes and a corresponding sampling operator
Ψ(j) that samples the i-th node in Gj with probability π(j)

i . As before, we then compose the sam-
pling operators over the graph atoms using the Kronecker product as Ψ =

⊗J
j=1 Ψ

(j) such that
the probability of the the i-th node in the product graph G is the product of the probabilities of
choosing the corresponding nodes on the graph atoms and πi = ΠJ

j=1π
(j)
i(j)

. Similarly to the previ-
ous section, this allows us to compose a sampling operator Ψ and probability distribution {πi} by
only processing the graph atoms and constructing sampling operators Ψ(j) and probability distri-
butions {π(j)} over each graph atom Gj , which is substantially more computationally efficient.
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Uniform Random Sampling

Further, for product graphs composed of graph atoms that belong to the family of graphs, it is
sufficient to uniformly randomly sample on each of the graph atoms and compose the sampling
operator using the product operator.

Experimentally-Designed Sampling

Uniform random sampling performs sub-optimally for many real-world irregular graphs and more
complex graph models. We now consider experimentally designed sampling, where the sampling
distribution is non-uniform and adapted to the graph structure. Particularly, we aim to sample
the most informative nodes with respect to the bandlimited class of signals. In57, a random sam-
pling framework is presented such that only M = O(K log(K)) measurements are sufficient to
ensure stable and robust recovery of bandlimited graph signals BLK(V) from their samples. It
is shown that the graph weighted coherence ρK = maxi{π−1/2

i ‖VT
(K) δi‖2} governs the sample

complexity for stable and robust recovery. It is then easy to show that the optimal sampling dis-
tribution {π∗

i } that minimizes the graph weighted coherence ρK is π∗
i = ‖VT

(K) δi‖22/K which also
corresponds to the statistical leverage scores of V(K) and can be computed efficiently. In this sec-
tion, we generalize this random sampling framework to product graphs by exploiting the structure
of product graphs. Towards this, we first show how we can compute this optimal sampling score
for a given node of the product graph from the optimal sampling scores of that node’s correspond-
ing nodes over the graph atoms for signals in BLS(V).

Lemma 2. Let {π∗(j)} be the optimal sampling distribution corresponding to the j-th graph
atom and V(Rj) such that π∗(j)

i(j)
= ‖V(j)T

(Rj)
δi(j) ‖22/Rj . It then follows that the optimal sampling

score for a node on the product graph is simply the product of the sampling scores of the corre-
sponding nodes in the graph atom such that

π∗
i =
‖VT

(S) δi ‖22
S

=

J⊗
j=1

‖V(j)T
(Rj)

δi(j) ‖22
Rj

=

J⊗
j=1

π
∗(j)
i(j)

. (3.45)

π2
i = ‖VT

(K) δi ‖22 = δTi V(K) V
T
(K) δi

= δTi (

J⊗
j=1

V
(j)
(Rj)

)(

J⊗
j=1

V
(j)
(Rj)

)T δi = δTi (

J⊗
j=1

V
(j)
(Rj)

V
(j)T
(Rj)

) δi

= (

J⊗
j=1

δi(j))
T (

J⊗
j=1

V
(j)
(Rj)

V
(j)T
(Rj)

)(

J⊗
j=1

V
(j)
(Rj)

V
(j)T
(Rj)

)(

J⊗
j=1

δi(j))

=

J⊗
j=1

δTi(j) V
(j)
(Rj)

V
(j)T
(Rj)

δi(j) =

J⊗
j=1

‖V(j)T
(Rj)

δi(j) ‖
2
2

=

J⊗
j=1

(π
(j)
i(j)

)2
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Under the randomized sampling framework over the graph atoms described in Lemma 2, we
now provide (optimal) sufficient conditions on the minimum number of samples that ensure a sta-
ble embedding of graph signals in BLK(V) on the product graph.

Theorem 10. Let Ψ(j) sample Mj nodes according to the sampling distribution π(j)∗ such that
Ψ =

⊗J
j=1 Ψ

(j) samples M = ΠJ
j=1Mj nodes. Let D(j) be a diagonal rescaling matrix such that

D
(j)
i(j),i(j)

= 1/
√
Mjπ

(j)
i(j)

and D =
⊗J

j=1 D
(j). For any δ, ϵ ∈ (0, 1) if,

M ≥ 3

δ2
S log(

2K

ϵ
),

where S = ΠJ
j=1Rj , we have that with probability atleast 1− ϵ, ΨD represents a stable embedding

for any x ∈ BLK(V) such that

(1− δ)‖x‖22 ≤ ‖ΨDx‖22 ≤ (1 + δ)‖x‖22 (3.46)

Proof. Full proof omitted due to lack of space. The proof is a consequence of Lemma 2 and is in
parts constructed similarly to Theorem 3 in57.

Algorithm 1. We recover the original graph signal by solving the following optimization prob-
lem:

x∗
SP = V(K) argminx̂(K)

∥∥ΨTΨD2ΨTΨy −V(K) x̂(K)

∥∥2
2

= (
⊗J

j=1 Φ
(j))y

where
Φ(j) = V

(j)
Rj

U
(j)
Rj

Ψ(j)TΨ(j)D(j)2Ψ(j)T

Hence, we see that we can compose the interpolation operators by only processing the graph
atoms. We can now provide lower and upper bounds on the squared error.

Corollary 1. Assume we compose a sampling operator with sufficient samples as proposed in
Lemma 2 with respect to the optimal sampling distribution {π∗

i } and use Algorithm 1 to recover
the original signal. We then have, with probability atleast 1− ϵ,

1

M
√
1 + δ

‖ΨDϵ‖2 ≤ ‖x∗
SP − x‖2 ≤

2

M
√
1− δ

‖ΨDϵ‖2

Proof. This is a direct consequence of Theorem 6 in57 because of the restricted isometry property
satisfied in Theorem 10.

Remark 1. Smooth graph signals are bandlimited under a fixed frequency ordering29. We can
show that with our framework on product graphs, under the Cartesian product, we only need
O(KlogK) samples to sample and recover a smooth signal in BLK(V) which is optimal.

Remark 2. We have seen that we do not need to process the whole product graph A or compute
its spectral decomposition (GFT basis) to construct random sampling and interpolation operators
on the product graph. Instead, we only need to compute the spectral decompositions of its graph
atoms A(j) that are of size O(poly(N

1
J )).
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In this section, we study randomized sampling procedures whereby we sample M nodes pro-
portional to a sampling distribution {πi}. That is, we sample M nodes without replacement such
that in each of the M rounds, the probability of the i-th node being selected is proportional to πi.

Theorem 11. Let A,V,Ψ be defined as in Lemma 6. With probability (1− δ), ΨV(K) is a frame
with lower bound M/2 and upper bound 3M/2.

For a Kronecker product of random graphs, we can simply randomly sample each sub-graph
and ensure perfect recovery with high probability. This follows because

σmax(A⊗B) = σmax(A)σmax(B)

and
σmin(A⊗B) = σmin(A)σmin(B)

Graph Weighted Coherence

In57, a random sampling framework is presented such that only M = K log(K) measurements
are sufficient to ensure stable and robust recovery of bandlimited graph signals from their samples.
We can define the graph weighted coherence that governs how many samples we would need as
ρK ,

ρK = max
i
{π−1/2

i ‖VT
(K) δi‖2}

Particularly, it is shown that the optimal sampling distribution {πi} to the sampling distribu-
tion that minimizes the graph weighted coherence ρK is

πi = ‖VT
(K) δi‖2

We note that this optimal sampling distribution corresponds to the statistical leverage scores of
V(K). In65, approximately bandlimited graph signals were defined to be a more general class of
graph signals that relaxes the requirement of bandlimitedness, but still promotes smoothness by
allowing for a tail after the first K frequency components.

A minimax optimal recovery sampling strategy is then presented for such approximately ban-
dlimited signals. Particularly it is shown that the approximate optimal sampling score when the
SNR is small and when the SNR is high are respectively {π} and {√πi}.

We now show how we can compute the sampling score for a given node of the product graph
from the sampling scores of the node’s corresponding nodes in the atoms of the product graph.

Theorem 12. We have seen how any signal that is in BLK(V) is also in BLS(
⊗J

j=1 V
(j)
Rj

). In
addition every node i in the product graph corresponds to a tuple of nodes belonging to the graph
atoms (i(1), · · · , i(j) · · · , i(J)), such that the Kronecker delta vector δi =

⊗J
j=1 δi(j) . Let {π(j)}

be the optimal sampling distribution corresponding to the j-th graph atom and VRj such that
π
(j)
i(j)

= ‖V(j)T
Rj

δi(j) ‖2. We can then show that

πi =

J⊗
j=1

π
(j)
i(j)

(3.47)
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As a result, the optimal sampling score on a node on the product graph is simply the product
of the sampling scores of the corresponding nodes in the graph atom.

Proof. We can then write:

π2
i = ‖VT

(K) δi ‖22 = δTi V(K) V
T
(K) δi

= δTi (

J⊗
j=1

V
(j)
Rj

)(

J⊗
j=1

V
(j)
Rj

)T δi = δTi (

J⊗
j=1

V
(j)
Rj

V
(j)T
Rj

) δi

= (

J⊗
j=1

δi(j))
T (

J⊗
j=1

V
(j)
Rj

V
(j)T
Rj

)(

J⊗
j=1

V
(j)
Rj

V
(j)T
Rj

)(

J⊗
j=1

δi(j))

=

J⊗
j=1

δTi(j) V
(j)
Rj

V
(j)T
Rj

δi(j) =

J⊗
j=1

‖V(j)T
Rj

δi(j) ‖
2
2

=

J⊗
j=1

(π
(j)
i(j)

)2

3.3.3 Graph Filter Banks

We have shown that we can sample and perfectly recover bandlimited signals on product graphs
by composing the appropriate sampling and interpolation operators from the product graph atoms.
In addition, we can process multi-band signals by sampling optimally on a product graph by con-
structing filter banks analogously to66 where to handle full-band graph signals, we proposed an
approach based on graph filter banks.

We see that the above idea can easily be generalized to multiple channels by splitting the origi-
nal graphs signal into multiple bandlimited graph signals; instead of dealing with a huge graph, we
work with multiple small graphs, which is easy for the storage and computation.

3.3.4 Complexity and Savings

Sample Complexity: We have seen that we need at least K samples in order to perfectly recover a
bandlimited graph signal x ∈ BLK(V) in the single graph setting. In the product graph sampling
framework prescribed above, we need atleast S samples of the graph signal on the product graph
where K ≤ S ≤ KJ . Hence, in the worst case, we need KJ samples to ensure perfect recovery.

Smooth signals on graphs are approximately bandlimited under a fixed frequency ordering26.
We can show that under the Cartesian product, we only need S ≤ K + J samples to perfectly
recover and sample a smooth signal that is in BLK(V) which is nearly optimal.

Computational Complexity: We note that we do not need to process the whole product graph
A or compute its spectral decomposition (GFT basis) which is of complexity O(N3) and is often
computationally prohibitive for large graphs. Instead we can construct sampling and interpola-
tion operators on the product graph using only the spectral decompositions of its graph atoms
A(j) that are of size O(poly(N

1
J )). We choose Rj nodes from each of the graphs G(j) and sample
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(a) 150 cities in the U.S. (b) Three sampled cities.

Figure 3.9: Sampling cities from the U.S. (a) shows an 8-nearest-neighbor graph. We aim to
sample three cities, including Los Angeles, New York City and Miami, preserving the first three
frequencies contents; (b) shows the sampled graph.

S =
∏J

j=1Rj nodes in the product graph such that each sampled node in the product graph cor-
respond to some combination of the sampled nodes in the graph atoms. Hence, we effectively only
need to do choose

∑J
j=1Rj nodes over the graph atoms. In contrast, in the single graph setting,

we need to choose atleast K nodes, where in general K = O(S).

3.3.5 Numerical Experiments

In this section, we validate the proposed sampling theory on three classical types of graphs, in-
cluding Erdős-Rényi graphs, small-world graphs, and scale-free graphs. We show that the perfect
recovery is achieved in each type of graphs with high probabilities.

To validate the proposed sampling theory in a real-world graph, we sample a geodesic graph of
the cities in the U.S. Due to limited space, we just show one feasible sampling result in Figure 3.9.

We aim to validate the proposed sampling theory for Erdős-Rényi graphs, small-world graphs,
and scale-free graphs, investigating success rates of perfect recovery using random sampling.

Experimental setup

Suppose that for each graph, we deal with the corresponding graph signals with fixed bandwidth
K = 10. Given a graph shift, we randomly sample 10 rows from the first 10 columns of graph
Fourier transform matrix, and check if the 10 × 10 matrix has full rank. Based on Theorem 4, if
the 10 × 10 matrix has full rank, the perfect recovery is guaranteed. For each given graph shift,
we run the random sampling for 100 times, and count the number of success to obtain the success
rate.

Erdős-Rényi graphs. An Erdős-Rényi random graph is constructed by assigning edges ran-
domly. Each edge exists independently in the graph with a given connection probability61,62. As
shown in Section IV.C, with high probability, perfect recovery is achieved for Erdős-Rényi graph
signals when we randomly sample sufficient signal coefficients. We verify this result experimen-
tally, by randomly sampling Erdős-Rényi graphs with various sizes and connecting probabilities.
We vary the size to be 50, 500, and 1000; and the connection probabilities with an interval of 0.01
from 0 to 0.5. For each given size and connection probability, we generate 100 times randomly.

Small-world graphs. A small-world graph is a graph where most nodes are not neighbors
of one another but most nodes can be reached from the other with a small number of steps61,62.
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In the context of a social network, this results in the small world phenomenon of strangers being
linked by a small number of mutual acquaintances or connections. Many empirical graphs that
we encounter in the real world show such small-world phenomenon and are well modeled by such
models. Online social networks, such as Facebook, the Internet, and gene networks, are exam-
ples of such graphs. We use the Watts-Strogatz model to generate such graphs, which includes
three variables, size, connection probability, and the rewiring probability67. We vary the size to
be 50, 500, and 1000; the connection probabilities with an interval of 0.01 from 0 to 0.5, and fix
the rewiring probability to be 0.1. For each given size and connection probability, we generate 100
times randomly.

Scale-free graphs. A scale-free graph is a graph whose degree distribution follows a power
law61,62, i.e., the fraction P (d) of nodes in the graph having d connections goes asymptotically
with

P (d) ∼ d−γ ,

where γ is typically between 2 and 3. Many real-world graphs, such as the topology of web pages,
the collaborative network of Hollywood actors , the power grid of the United States and the peer-
reviewed scientific literature exhibit scale-free phenomenon. Scale-free graphs are dominated by a
relatively small proportion of nodes that are hubs of connectivity.

We use the the Barabási-Albert model with the preferential attachment mechanism to generate
such graphs, which includes two variables, size, and the number of edges to attach at every step68.
We vary the size to be 50, 500, and 1000; the number of edges to attach at every step with an in-
terval of 1 from 0 to 10. For each given size and connection probability, we generate 100 times
randomly.

Results

Figure 3.10 shows success rates for size averaged over 100 random tests for each of three types of
graphs. We see that the success rate is close to 100% in each of three types of graphs with various
sizes.

3.3.6 Sampling Online Blogs

We aim to validate the proposed sampling theory for online blogs, investigating the success rate of
perfect recovery using random sampling, and further classifying the labels of the online blogs.

Dataset

We consider a dataset of N = 1224 online political blogs as either conservative or liberal69. We
represent conservative labels as +1 and liberal ones as −1. The blogs are represented by a graph
in which nodes represent blogs, and directed graph edges correspond to hyperlink references be-
tween blogs. The graph signal here is the label assigned to the blogs, called the labeling signal.

We use the spectral decomposition in (2.1) for this online-blog graph to get the graph frequen-
cies in a descending order and the corresponding graph Fourier transform matrix. We show the
graph frequencies in Figure 3.11, and the frequency content of the labeling signal in Figure 3.12.
We see that labeling signal is a full-band signal, but approximately bandlimited. The main infor-
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(a) n=50 Erdos-Renyi (b) n=500 Erdos-Renyi

(a) n=50 Small-World (b) n=500 Small-World

(a) n=50 Scale-free (b) n=500 Scale-free

Figure 3.10: Success rates for different graph families
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mation is preserved in the low frequencies. The high frequency contents are introduced to force
the elements the labeling signals to be binary integers.
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Figure 3.11: Graph frequencies.
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Figure 3.12: Frequency content of the labeling signal.

Experimental setup & results

To investigate the success rate of perfect recovery using random sampling, we vary the bandwidth
K of the labeling signal with an interval of 1 from 1 to 10, randomly sample K rows from the first
K columns of the graph Fourier transform matrix, and check if the K × K matrix has full rank.
For each bandwidth, we random sample10,000 times, and count the number of success to obtain
the success rate. Figure 3.13 shows the resulting success rate. We see that the success rates de-
crease as increasing the bandwidth, but the success rates are all above 90% when the bandwidth is
no greater than 20.
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Figure 3.13: Success rate of online blogs as a function of the bandwidth.
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Since a qualified sampling operator is independent of graph signals, we precompute the qual-
ified sampling operator for the online-blog graph, as discussed in Section 3.1.1. We then sample
M labels from the labeling signal by using a qualified sampling operator, and recover the labeling
signal by using the corresponding interpolation operator. Since the labeling signal is not bandlim-
ited, it is infeasible to achieve perfect recovery; however, we only care about the sign of labels. We
thus set the threshold at zero, so that positive values are set to +1 and negative to 1. Figure 3.14
shows the recovery accuracy by varying the sample size M with an interval of 1 from 1 to 10. We
see that the recovery accuracy is as high as 94.44% by sampling only two blogs, and the recov-
ery accuracy gets slightly better as increasing the bandwidth. Comparing to previous results70,
harmonic functions achieve 94.68% by sampling 120 blogs, the graph Laplacian regularization
achieves 94.62% by sampling 120 blogs, graph total variation minimization achieves 94.76% by
sampling 10 blogs, and graph total variation regularization achieves 94.68% by sampling 10 blogs.
We recall that in previous results, we use random sampling; here, we use the qualified sampling
operator to choose samples based on the graph structure actively. If we fix the bandwidth to be
2, the success rate, or the probability to get a qualified sampling operator by random sampling, is
99.68%, and the recovery accuracy is 94.44%; in other words, we achieve 94.44% recovery accuracy
in a high probability by random sampling.
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Figure 3.14: Recovery accuracy of online blogs as a function of the bandwidth.

In this section, we test our randomized sampling framework on the product graph A = A(1)⊗A(2)

composed over two graph atoms where A(1) is the Minnesota road graph71 with N1 = 2642 nodes
which we randomly sample according to the optimal sampling distribution illustrated in the heatmap
in Figure 3.15 and the path graph (N2 = 8) which we can uniformly randomly sample. We set
K = 100 such that R1 = 40 and R2 = 3 and S = R1 ×R2 = 120 and generate a synthetic bandlim-
ited signal on A with respect to V(K). We perform the experiment over varying noise settings by
injecting the true signal with white gaussian noise such that the noisy signal we sample from has
SNR of 5dB, 10dB or 15dB. We sample M1 nodes on A(1) and M2 nodes on A(2) with Ψ(1) and
Ψ(2) respectively and compose the sampling operator Ψ = Ψ(1) ⊗ Ψ(2) to sample M = M1 ·M2

nodes on the product graph A. We recover using the interpolation operators Φ(1) and Φ(2) corre-
sponding to each graph atom as described in Algorithm 1. We illustrate the performance of our
framework which is consistent with our theoretical analysis in Figure 3.15 where we plot the re-
construction SNR versus the size of the sample set M averaged over 20 iterations.
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SNR vs. number of samples
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3.4 Fundamental Statistical Limits of Sampling Strategies

We now propose a new class of graph signals, called approximately bandlimited, and build a theo-
retical foundation for understanding the recovery of this class under random sampling, experimen-
tally designed sampling, and active sampling. We propose two recovery strategies under random
sampling and experimentally designed sampling, which are unbiased estimators for low frequency
components. Both recovery strategies achieve the optimal rate of convergence for each sampling
scenario. Our work follows the previous works that studied the theoretical capabilities of passive
sampling and active sampling for recovering functions from samples72,73. The main difference is
that we consider a discrete case and deal with irregular structures. For smooth function, active
sampling, experimentally designed sampling, and random sampling have the same performance72;
however, for the approximately bandlimited class, active sampling has the same rate of conver-
gence with experimentally designed sampling; and experimentally designed sampling outperforms
random sampling when supported graphs are irregular.

To validate the recovery strategies, we test on six specific graphs, including a ring graph with k

nearest neighbors, an Erdős-Rényi graph, a generalized random key graph, a preferential-attachment
graph, a real-world graph from Wikipedia, and a random geometric graph. Surprisingly, the pro-
posed theorems and the experimental results agree that experimentally designed sampling can
outperform random sampling on a graph where nodes have similar degrees. This work also shows
that graph signal processing is a good framework to study graph structures, and shows a compre-
hensive explanation that when and why anchor points for clustering and semi-supervised learning
on graphs work.

Contributions. Our contributions are as follows: we propose

• a new class of smooth graph signals and reveal the relations to existing classes of smooth
graph signals;

• minimax lower bounds of the recovery error under three sampling strategies;

• recovery strategies based on random sampling and experimentally designed sampling that
achieves optimal rates of convergence;

• a generalized random key graph that has strong cluster patterns;

• an analysis of graph structures from the perspective of signal processing; and

• a comprehensive study that when and why anchor points for clustering and semi-supervised
learning on graphs work.

Outline:. Section 3.4.1 review the smooth graph signal models and formulate the sampling
and recovery strategies ; Section 3.4.2 proposes the minimax lower bound of recovery error; Sec-
tion 3.4.3 proposes two recovery strategies based on random sampling and experimentally de-
signed sampling; Section 3.4.6 shows the optimal convergence rates of recovery on two types of
graphs. The proposed recovery strategies are evaluated in Section 3.5 on six graphs. We then dis-
cuss and provides pointers to future directions.
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3.4.1 Problem Formulation

We now review three classes of smooth graph signals, and show there connections. We next de-
scribe the sampling and recovery strategies of interest. In this way, we show the connection be-
tween our work and the previous work: graph signal inpainting and sampling theory on graphs.

Graph Signal Model

We focus on smooth graph signals, that is, the signal coefficient at each node is close to the signal
coefficients of its neighbors. In literature74,66, two classes of graph signals have been introduced to
measure the smoothness on graphs.

Definition 8. A graph signal x ∈ RN is globally smooth on a graph A ∈ RN×N with parameter
η ≥ 0, when

‖x−Ax‖22 ≤ η ‖x‖22 . (3.48)

Denote this class of graph signals by GSA(η).

Since we normalized the graph shift such that |λmax(A)| = 1; when η ≥ 4, all graph signals
satisfy (3.48).

Definition 9. A graph signal x ∈ RN is bandlimited on a graph A with parameter K ∈ {0, 1, · · · , N−
1}, when the graph frequency components x̂ satisfies

x̂k = 0 for all k ≥ K.

Denote this class of graph signals by BLA(K).

Note that the original definition just requires x̂ be K-sparse, which is unnecessarily smooth66.
To show the relations to these two classes, we present the following theorem.

Theorem 13. For any K ∈ {0, 1, · · · , N−1}, BLA(K) is a subset of GSA(η), when η ≥ (1−λK)2.

Proof. Let x be a graph signal with bandwidth K, that is,

x =

K−1∑
k=0

x̂kvk,

Then, we have

|xi −
∑
j∈Ni

Ai,j xj | = |

(
K−1∑
k=0

x̂kvk

)
i

−
∑
j∈Ni

Ai,j

(
K−1∑
k=0

x̂kvk

)
j

|

= |
K−1∑
k=0

x̂k

(vk)i −
∑
j∈Ni

Ai,j(vk)j

 |
= |

K−1∑
k=0

x̂k(1− λk)(vk)i|

≤ (1− λK−1)|
K−1∑
k=0

x̂k · (vk)i| = (1− λK−1)|xi|.
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It is clear that for bandlimited graph signals, the signal coefficient at each node is close to the
weighted average of all its neighbors; in other words, bandlimited graph signals are smooth locally,
which implies global smoothness,

‖x−Ax‖22 =

N−1∑
i=0

|xi −
∑
j∈Ni

Ai,j xj |2

≤
N−1∑
i=0

(1− λK−1)
2|xi|2 = (1− λK−1)

2 ‖x‖22 .

It is obvious that a globally smooth graph signal can have arbitrary high-frequency components,
thus, the bandlimited class is a subset of the globally smooth class.

While the recovery of globally smooth graph signals has been studied in74 (leading to graph
signal inpainting), global smoothness is a general requirement, making it hard to provide further
theoretical insight75. While the recovery of bandlimited graph signals has been studied in66 (lead-
ing to sampling theory on graphs), the bandlimited requirement is a restricted requirement, mak-
ing it hard to use in the real world applications. A third class of graph signals is thus proposed to
relaxes the the bandlimited requirement, but still promotes smoothness76.

Definition 10. A graph signal x ∈ RN is approximately bandlimited on a graph A with param-
eters β ≥ 1 and µ ≥ 0 , when there exists a K ∈ {0, 1, · · · , N − 1} such that its graph Fourier
transform x̂ satisfies

N−1∑
k=K

(1 + k2β)x̂2k ≤ µ ‖x‖
2
2 . (3.49)

Denote the class of graph signals by ABLA(K,β, µ).

The approximately bandlimited class allows a tail after the first K frequency components. The
parameter µ controls the shape of the tail. When µ is smaller, we allow fewer energy from the
high frequency components. The parameter β controls the speed of energy decaying. When β

is larger, we punish the energy from high frequency components more. The class of BLA(K) is
similar to the ellipsoid constraints in previous literature, where all the frequency components are
considered in the constraints; in other words, ABLA(K) provides more flexibility for the low fre-
quency components.

The following theorem shows the relationship between ABLA(K,β, µ) and GSA(η).

Theorem 14. ABLA(K,β, µ) is a subset of GSA(η), when

η ≥

(
1− λK−1 +

√
4α2µ

(1 +K2β)

)2

;

GSA(η) is a subset of ABLA(K,β, µ), when

µ ≥ 1 + (N − 1)2β

(1− λK)α1
η.

From Theorem 14, we see that when choosing proper parameters, GSA(η) is a subset of ABLA(K,β, µ).
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Proof. To show the first statement, let x ∈ ABLA(K,β, µ), we have

‖x−Ax‖2 =

∥∥∥∥∥
(

K−1∑
k=0

x̂kvk +

N−1∑
k=K

x̂kvk

)
−A

(
K−1∑
k=0

x̂kvk +

N−1∑
k=K

x̂kvk

)∥∥∥∥∥
2

(a)

≤

∥∥∥∥∥
K−1∑
k=0

x̂kvk −A

K−1∑
k=0

x̂kvk

∥∥∥∥∥
2

+

∥∥∥∥∥
N−1∑
k=K

x̂kvk −A

N−1∑
k=K

x̂kvk

∥∥∥∥∥
2

(b)

≤ (1− λK−1) ‖x‖2 +

√√√√α2
2

N−1∑
k=K

(1− λk)2x̂2k

= (1− λK−1) ‖x‖2 +

√√√√α2

N−1∑
k=K

(1− λk)2
(1 + k2β)

(1 + k2β)x̂2k

≤ (1− λK−1) ‖x‖2 +

√√√√α2 max
k∈{K,··· ,N−1}

(1− λk)2
(1 + k2β)

N−1∑
k=K

(1 + k2β)x̂2k

(c)

≤ (1− λK−1) ‖x‖2 +

√
α2 max

k∈{K,··· ,N−1}

(1− λk)2
(1 + k2β)

µ ‖x‖22

≤

(
1− λK−1 +

√
4α2µ

(1 +K2β)

)
‖x‖2

where (a) follows from the triangle inequality, (b) from Theorem 13 and (3.1), and (c) from the
property of ABLA(K,β, µ). To show the second statement, let x ∈ GSA(η), we have

N−1∑
k=K

(1 + k2β)x̂2k =

N−1∑
k=K

1 + k2β

(1− λk)2
(1− λk)2x̂2k

≤ max
k∈{K,··· ,N−1}

1 + k2β

(1− λk)2
N−1∑
k=K

(1− λk)2x̂2k

≤ 1 + (N − 1)2β

(1− λK)2α1
η ‖x‖22

where the last inequality follows from (3.1).

From Theorem 14, we see that ABLA(K,β, µ) is not only more general than BLA(K), but de-
scribes GSA(η) in a more controlled way. In this work, we focus on ABLA(K,β, µ), and study the
recovery performance of this class under various sampling scenarios.

Sampling & Recovery Strategy

We consider the procedure of sampling and recovery as follows: we sample M coefficients in a
graph signal x ∈ RN with noise to produce a noisy sampled signal y ∈ RM (M < N), that is,

y = Ψx+ ϵ ≡ xM + ϵ, (3.50)

where ϵ ∼ N (0, σ2 IM×M ), and M = (M0, ·,MM−1) denotes the sequence of sampled indices, or
called sampling set, and Mi ∈ {0, 1, · · · , N − 1}, and the sampling operator Ψ is a linear mapping
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from RN to RM , defined as

Ψi,j =

{
1, j =Mi;

0, otherwise.
(3.51)

We then interpolate y to get x′ ∈ RN , which recovers x either exactly or approximately.
We consider three different sampling strategies: random sampling means that sample indices are

chosen from from {0, 1, · · · , N − 1} independently and randomly; and experimentally design sam-
pling means that sample indices can be chosen beforehand; and active sampling means that sam-
ple indices can be chosen as a function of the sample points and the samples collected up to that
instance, that is, Mi depends only on {Mj , yj}j<i. It is clear that random sampling is a subset of
experimentally design sampling, which is again a subset of active sampling.

3.4.2 Minimax Lower Bounds

In this section, we study the fundamental limitations of three sampling strategies for recovering
ABLA(K,β, µ) by showing the minimax lower bounds.

We start by introducing some notations72.

Definition 11. For any recovery strategy (x∗,M), and any vector x ∈ RN , we define the risk of
the recovery strategy as

R(x∗,M,x) = Ex,M[d2(x∗,x)],

where Ex,M is the expectation with respect to the probability measure of {xi, yi}i∈M. We define
the maximal risk of a recovery strategy as supx∈RN R(x∗,M,x).

The goal of this section is to find tight lower bounds for the maximal risk, over all possible re-
covery strategies, that is, we present bounds of the form,

inf
(x∗,M)∈Θ

sup
x∈RN

Ex,M[d2(x∗,x)] ≥ cϕ2n, ∀ n ≥ n0, (3.52)

where n0 ∈ N, c > 0 is a constant, ϕn is a positive sequence converging to zero, and Θ is the
set of all recovery strategies. The sequence ϕ2n is denoted as a lower rate of convergence. It is also
possible to devise upper bounds on the maximal risk. These are usually obtained through explicit
recovery strategies, as will be presented in Section 3.4.3. If (3.52) and

inf
(x∗,M)∈Θ

sup
x∈RN

Ex,M[d2(x∗,x)] ≤ Cϕ2n, ∀ n ≥ n0,

hold, where C > 0, then ϕn is said to be the optimal rate of convergence. When talking about
optimal rates of convergence, we are interested in the polynomial behavior, a rate of convergence
ϕ2n is equivalent to n−γ , if and only if given γ1 < γ < γ2, we have n−γ2 < ϕ2n < n−γ1 for n large
enough.

Since we propose general bounds for arbitrary graphs, these bounds involve some parameters
that depend on the graph structure, thus, we cannot show lower rates of convergence in this gen-
eral case. Given a graph structure, we can specify the parameters, and then show the lower rate of
convergence based on these general bounds, as will be presented in Section 3.5.

Denote |M| be the size of the sampling set and V(2,K) be the sub-matrix of V, containing the
(K + 1)th to the 2Kth columns.
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Theorem 15. For the class ABLA(K,β, µ), we have the following results.
(1) under the requirements of the random sampling model, we have

inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥ max

K≤κ0≤N

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0 N

∥∥V(2,κ0)

∥∥2
F
|M|

)
,

where c1 > 0 , 0 < c < 1, and Θrand denotes the set of all recovery strategies based on random
sampling;

(2) under the requirements of the experimentally designed sampling model, we have

inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥ max

K≤κ0≤N

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
∞,2
|M|

)
,

where c1 > 0 , 0 < c < 1, and Θexp denotes the set of all recovery strategies based on experimen-
tally designed sampling;

(3) under the requirements of the active sampling model, we have

inf
(x∗,M)∈Θactive

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥ max

K≤κ0≤N

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
∞,2
|M|

)
,

where c1 > 0 , 0 < c < 1, and Θactive denotes the set of all recovery strategies based on active
sampling.

For the proof, see Appendix A. From Theorem 15, we see that experimentally designed sam-
pling has the same minimax lower bound as active sampling, which means that collecting the
feedback before taking samples does not improve the fundamental limitation; we also see that
the three minimax lower bounds depend on the properties of V(2,κ0), which represents the graph
structure. When each row of V(2,κ0) has roughly similar energies,

∥∥V(2,κ0)

∥∥2
F

and N
∥∥V(2,κ0)

∥∥2
∞,2

are similar; when the energy is concentrated in a few rows, N
∥∥V(2,κ0)

∥∥2
∞,2

is much larger than∥∥V(2,κ0)

∥∥2
F

, in other words, the minimax lower bound of experimental designed sampling is tighter
than that of random sampling. This happens in many real-world graphs that have complex, irreg-
ular structure. The minimax lower bounds thus show the potential advantage of experimentally
designed sampling and active sampling over random sampling. We will elaborate in Section 3.4.6
and 3.5

3.4.3 Recovery Strategy

We now propose two recovery strategies based on random sampling and experimentally designed
sampling. Since we cannot hope to perform better than the experimentally designed sampling,
we do not need a recovery strategy for active sampling. In Section 3.4.1, we showed that a graph
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signal is smooth when its energy is mainly concentrated in the low-frequency components. For
example, for the class BLA(K), all the energy is concentrated in the first K frequency components
and the graph signal can be perfectly recovered by using those first K frequency components. The
recovery strategies we propose here follow this intuition, by providing unbiased estimators for the
low-frequency components.

Recovery Strategy based on Random Sampling

We consider the following recovery strategy.

Algorithm 2. We sample a graph signal |M| times. Each time, we choose a node i independently
and randomly, and take a measurement yi. We then recover the original graph signal by using the
following two steps:

x̂∗k =
N

|M|
∑
i∈M

Uki yi,

x∗i =
∑
k<κ

Vik x̂
∗
k,

where x∗i is the ith component of the recovered graph signal x∗.

Algorithm 2 aims to estimate the first κ frequency components, and reconstruct the original
graph signal based on these graph frequency components. The only tuning parameter in Algo-
rithm 2 is the bandwidth κ.

To show the performance of Algorithm 2 for recovering the low-frequency components, we have
the following results. Denote V(κ) be the first κ columns of the inverse graph Fourier transform
matrix V, and U(κ) be the first κ rows of the graph Fourier transform matrix U.

Lemma 3. Algorithm 2 with bandwidth κ provides an unbiased estimator of the first κ frequency
components, that is,

Ex∗ = V(κ) U(κ) x, for all x,

where x∗ is the result of Algorithm 2.

We can further show an upper bound on the recovery error.

Theorem 16. For x ∈ ABL(K,β, µ), let x∗ be the result of Algorithm 2 with bandwidth κ ≥ K,
we have,

E ‖x∗ − x‖2 ≤
α2µ ‖x‖22
κ2β

+
α2(maxj x

2
j + σ2)

|M|
N
∥∥U(κ)

∥∥2
F
,

where α2 is the stability constant of V in (3.1), σ2 is the noise level in (5.1), and ‖·‖F is the Frobe-
nius norm.

The proofs of Lemma 3 and Theorem 16 are merged in Appendix B. The main idea follows
from the bias-variance tradeoff. The first term is the bias term, and the second terms is the vari-
ance term. Since Algorithm 2 can recover the first κ frequency components on expectation, the
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bias comes from the other (N − κ) frequency components, which can be bounded from the defini-
tion of ABL(K,µ, β) when κ ≥ K. The variance term depends on

∥∥U(κ)

∥∥2
F

, which represents the
graph structure.

The advantage of Algorithm 2 is its efficiency, that is, we only need the first κ eigenvectors in-
volved with the computation, which is appealing for large-scale graphs; the disadvantage is that
when the main energy of an original graph signal is not concentrated in the first κ frequency com-
ponents, the recovered graph signal has a large bias.

3.4.4 Recovery Strategy based on Experimentally Designed Sampling

For experimentally designed sampling, we consider the following recovery strategy.

Algorithm 3. We sample a graph signal |M| times. Each time, we choose a node with probabil-
ity wi = ‖i‖2 /

∑N−1
j=0 ‖j‖2, where i is the ith column of U(κ), and take a measurement yi. We

then recover the original graph signal by using the following two steps:

x̂∗k =
1

|M|
∑
i∈M

1

wi
Uki yi,

x∗i =
∑
k<κ

Vik x̂
∗
k.

where x∗i is the ith component of the recovered graph signal x∗.

Similarly to Algorithm 2, Algorithm 5 aims to estimate the first κ frequency components, and
reconstructs the original graph signal based on these frequency components. The difference comes
from the normalization factor. In Algorithm 2, the contribution from each measurement is nor-
malized by a constant, the size of the graph; and in Algorithm 5, the contribution from each mea-
surement is normalized based on the norm of the corresponding column in U(κ). It is similar to
leverage scores used in matrix approximation77, where the goal is to evaluate the contribution
from each column to approximating matrix. Note that leverage scores use the norm square, ‖i‖22,
and we use the norm, ‖i‖2. When we use the squared norm as probability, the performance is the
same as random sampling. We call the probability wi as the sampling score for the ith node.

We can show that Algorithm 5 is also an unbiased estimator for recovering the low-frequency
components, and potentially has a tighter upper bound.

Lemma 4. Algorithm 5 with bandwidth κ provides an unbiased estimator of the first K fre-
quency components, that is,

Ex∗ = V(κ) U(κ) x, ∀ x,

where x∗ is the result of Algorithm 5.

We can further show an upper bound on the recovery error.

Theorem 17. For x ∈ ABLA(K,β, µ), let x∗ be the result of Algorithm 5 with bandwidth κ ≥
K, we have,

E ‖x∗ − x‖2 ≤
α2µ ‖x‖22
κ2β

+
(maxj x

2
j + σ2)α2

|M|
∥∥U(κ)

∥∥2
2,1
.
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The proofs of Lemma 3 and Theorem 16 are merged in Appendix C. The main idea also follows
from the bias-variance tradeoff.

We see that Algorithm 2 and Algorithm 5 have the same bias by recovering the first κ fre-
quency components on expectation. When each column of U(κ) has roughly similar energy, N

∥∥U(κ)

∥∥2
F

and
∥∥U(κ)

∥∥2
2,1

are similar. However, when the energy is concentrated on a few columns, N
∥∥U(κ)

∥∥2
F

is much larger than
∥∥U(κ)

∥∥2
2,1

, in other words, Algorithm 5 has a significant advantage over Algo-
rithm 2 when the associated graph structure is irregular.

Relation to Graph Signal Inpainting

Graph signal inpainting via variation minimization also aims at recovering smooth graph signals
by limited samples70. We consider a globally smooth graph signal with the random sampling model,
with the following optimization problem as the recovery strategy,

x∗ = argmin
x
‖x−Ax‖22 , (3.53a)

subject to ‖Ψx− y‖22 ≤ σ2, (3.53b)

where σ2 is noise level, y is a vector representation of the noisy measurements (5.1), and Ψ is the
sampling operator (5.2). The main difference is that graph signal inpainting via variation min-
imization focuses on recovery in the vertex domain, and the proposed algorithms focus on re-
covery in graph spectral domain. The optimum of (3.53) cannot guarantee recovery of the low-
frequency components, but it guarantees that the recovered graph signal is close to the measure-
ments. When the noise level is large, we cannot trust these measurements, and then we tend to
use Algorithm 2 and 5 to do linear approximation and capture the main shape of the original
graph signal. An advantage of (3.53) is that it can be implemented in a distributed manner eas-
ily78,79.

3.4.5 Relation to Sampling Theory on Graphs

Sampling theory on graphs considers a bandlimited graph signal with both the random and the
experimentally designed sampling models66. It shows that for a noiseless bandlimited graph sig-
nal, the experimentally designed sampling guarantees perfect recovery, while random sampling
cannot, which also implies that active sampling cannot perform better than experimentally de-
signed sampling. The recovery strategy is to solve the following optimization problem,

x∗ = arg min
x∈BLA(K)

‖Ψx− y‖22 (3.54)

= V(K)(ΨV(K))
+y,

where Ψ is the sampling operator (5.2), y is a vector representation of the measurements (5.1),
and (·)+ is the pseudo-inverse. When the original graph signal is bandlimited, x ∈ BLA(K), it is
clear that the result of (3.54) is an unbiased estimator of x, that is,

Ex∗ = V(k)(ΨV(k))
+E(Ψx+ ϵ) = x.
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When the original graph signal is not bandlimited, the result of (3.54) is a biased estimator of the
first K frequency components, that is,

Ex∗ = V(K)(ΨV(K))
+E(Ψx+ ϵ)

= V(K)(ΨV(K))
+Ψ

(
V(K) x̂(K) +V(−K) x̂(−K)

)
= V(K) x̂(K) +V(K)(ΨV(K))

+ V(−K) x̂(−K),

where V(−K) is V expect for the first K columns, x̂K is the first K components of x, and x̂−K

is x expect for the first K components. We see that the signal belonging to the other frequency
band also projects onto the first K components. In a sense of recovering the low-frequency compo-
nents, (3.54) needs fewer samples, but Algorithms 2 and 5 are more reliable.

3.4.6 Optimal Rates of Convergence

To discriminate the proposed recovery strategies, we propose two types of graphs, and show that
the proposed recovery strategies achieve the optimal rates of convergence on these two.

3.4.7 Type-1 Graph

Definition 12. A graph A ∈ RN×N is type-1, when

|Vi,j | = O(N−1/2), |Ui,j | = O(N−1/2), for all i, j = 0, 1, · · · , N − 1,

where V,U are the the inverse graph Fourier transform matrix, the graph Fourier transform ma-
trix of A.

For a type-1 graph, each element in V and U has roughly similar magnitudes, that is, the en-
ergy evenly spread to each element in V, and U. Some examples are discrete-time graphs, discrete-
space graphs, and nearest-neighbor graphs.

Based on Theorem 16, we can specify the parameters for a type-1 graph and show the following
result.

Corollary 2. Let A ∈ RN×N be a type-1 graph, for the class ABLA(K,β, µ).

• Let x∗ be the results given by Algorithm 2 with the bandwidth κ ≥ K, we have

E
(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N ;

• Let x∗ be the results given by Algorithm 5 with the bandwidth κ ≥ K, we have

E
(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N .
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When |M| � N , we set κ = N , and then the bias term is zero, and both upper bounds are ac-
tually CN |M|−1. We see that Algorithms 2 and 5 have the same convergence rate, that is, experi-
mentally designed sampling does not perform better than random sampling for the type-1 graphs.

Based on Theorem 15 and Corollary 2, we conclude as follows.

Corollary 3. Let A ∈ RN×N be a type-1 graph, for the class ABLA(K,β, µ).

• Under requirements of the random sampling model, we have

c|M|−
2β

2β+1 ≤ inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > c > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N ;

• Under requirements of the experimentally designed sampling model, we have

c|M|−
2β

2β+1 ≤ inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > c > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N .

The proof of Corollaries 2 and 3 are merged in Appendix D.
We see that in both the random and experimentally designed sampling settings, the lower and

upper bounds have the same rate of convergence, which achieves the optimum. In addition, ran-
dom and experimentally designed sampling have the same optimal rate of convergence and we can
conclude that experimentally designed sampling thus does not perform better than random sam-
pling for the type-1 graphs. Both Algorithms 2 and 5 reach the optimal rate of convergence.

3.4.8 Type-2 Graph

Definition 13. A graph A ∈ RN×N is type-2 with parameter K0 > 0, when

•
∥∥V(2,K)

∥∥
∞,2

is O(1), for all K > K0, where V(2,K) is the sub-matrix of V, containing the
(K + 1)th to the 2Kth columns;

•
∥∥∥h(K)

T c

∥∥∥
1
≤ α

∥∥∥h(K)
T

∥∥∥
1
, for all K ≥ K0, where h(K)

i =
√∑K−1

k=0 U2
k,i, T indexes the largest

K elements in h, T c indexes the other (N −K) elements, and α > 0 is a constant.

A type-2 graph requires that V and U to be approximately sparse. When we take the first K
rows to form a submatrix, the energy in the submatrix concentrates in a few columns. Note that
the second requirement is equivalent to that the sampling scores are approximately sparse. The
simulations show that star graphs fall into this type approximately.

Based on Theorems 16, and 17, we conclude the following.

Corollary 4. Let A ∈ RN×N be a type-2 graph with parameter K0, for the class ABLA(K,β, µ).
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• Let x∗ be the results given by Algorithm 2 with the bandwidth κ ≥ K, we have

E
(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N ;

• Let x∗ be the results given by Algorithm 5 with the bandwidth κ ≥ max{K,K0}, we have

E
(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+2−γ ≤ C ′|M|−

2β
2β+1 ,

where C > 0, the rate is achieved when κ is in the order of |M|1/(2β+2−γ) and upper bounded
by N , and

γ ∈ [max{1, 2β + 2− log |M|
logmax{K,K0}

},max{1, (2β + 2) logN

(logN + log |M|)
}].

Based on Theorem 15, 16, and 17, we conclude as follows.

Corollary 5. Let A ∈ RN×N be a type-2 graph with parameter K0, for the class ABLA(K,β, µ).

• Under requirements of the random sampling model, we have

c|M|−
2β

2β+1 ≤ inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

where C > c > 0, and the rate is achieved when κ is in the order of |M|1/(2β+1) and upper
bounded by N ;

• Under requirements of the experimentally designed sampling model, there exists a γ > 1, we
have,

c|M|−
2β

2β+2−γ ≤ inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+2−γ ,

where C > 0, the rate is achieved when κ is in the order of |M|1/(2β+2−γ) and upper bounded
by N .

The proof of Corollaries 4 and 5 are merged in Appendix E.
We see that under both the random and experimentally designed sampling settings, the lower

and upper bounds have the same rate of convergence, which achieves the optimum. However, ex-
perimentally designed sampling has a much larger optimal rate of convergence, and consequently
we can conclude that experimentally designed sampling exhibits much better performance than
random sampling for this type-2 graph. Only Algorithm 5 reaches the optimal rate of conver-
gence.

3.5 Numerical Experiments

In this section, we validate the proposed theorems and recovery strategies on six specific graphs:
a ring graph, an Erdős-Rényi graph, a generalized random key graph, a preferential-attachment
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graph, a Wikipedia graph, and a random geometric graph. Based on the graph structure, we can
label each of them as a type-1 or type-2 graph, and then, for each of these graphs, we compare
the empirical performance of recovery strategies based on random and experimentally designed
sampling. Surprisingly, the degrees of nodes are not useful to determine whether experimentally
designed sampling outperforms random sampling, instead, the weights used in Algorithm 5 is a
good indicator!

3.5.1 Simulated Graph Signals

For each graph A, we generate 100 graph signals by the following two steps. We first generate the
graph frequency components as

x̂k

{
∼ N (1, 0.52) if k < K,

= K2β/k2β if k ≥ K.
(3.55)

We then normalize x̂ to have norm one, and obtain x = V x̂. It is clear that x ∈ ABLA(K,β, µ),
where K = 10 and β varies as 0.1, 1 and 2. During the sampling, we simulate the noise ϵ ∼
N (0, 0.012). In the recovery, we set the bandwidth κ to 10 for all the recovery strategies.

3.5.2 Type-1 Graph

It is generally hard to proof which type a graph belongs to by rigorously following Definition 12,
but we can check its graph Fourier transform matrix and label the graph approximately. We find
that ring graphs with k-nearest neighbors, Erdős-Rényi graphs, and generalized random key graphs
belong to type-1. We expect that the recovery strategies based on experimentally designed sam-
pling performs similarly to the recovery strategies based on random sampling.

Ring Graph with k-nearest Neighbors

We consider a graph with each node connecting to its k-nearest neighbors. The eigenvectors are
similar to the discrete cosine transform. Since the graph is undirected, V is orthonormal, U =

VT . In this case, the energy evenly spreads to each element in V,U,80, which approximately
follows Definition 12. We simulate a ring graph with 4-nearest neighbors, and generate smooth
graph signals as mentioned in Section 3.5.1 on this graph. In the simulation, the ring graph with
4-nearest neighbors has 10,000 nodes, and each node has 4 neighbors.

Figure 3.16 shows the properties of the simulated ring graph. Since every node has 4 neighbors,
the degrees are concentrated in 4, and the sampling scores in Algorithm 5 are around 10−4, which
confirms that the graph belongs to type-1.

Figure 3.17 compares the performances of Algorithm 2 and 5 with various values of β averaged
over 100 tests. The blue curve represents Algorithm 2, the red curve represents Algorithm 5, and
the black dotted line represented the approximation by the true first K frequency components. In
this case, we barely see the blue curve because it overlaps with the red curves. When β increases,
the fraction of energy from the first K components decreases, and thus, the bias decreases. For
each β, Algorithm 2 and 5 converges to the linear approximation with similar rates. We conclude
that the ring graph, as a type-1 graph, results in that the recovery strategies based on experimen-
tally designed sampling performs similarly to the recovery strategies based on random sampling.
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Figure 3.16: Properties of the ring graph with 4-nearest neighbors.
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Figure 3.17: Recovery error comparison of the ring graph with 4-nearest neighbors. The blue
curve represents Algorithm 2, the red curve represents Algorithm 5, and the black line represented
the approximation by the true first K frequency components.
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Erdős-Rényi Graph

We consider a random graph where each pair of nodes is connected with some probability, also
known as an Erdős-Rényi graph62. Since the maximum value of eigenvectors of an Erdős-Rényi
graph is bounded by O(N−1/2)63, the energy also spreads to each element in V, which follows
Definition 12. In the simulation, the Erdős-Rényi graph has 10,000 nodes, and each pair of nodes
is connected with probability of 0.01, that is, each node has 100 neighbors on expectation.
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Figure 3.18: Properties of the Erdős-Rényi graph.

Figure 3.18 shows the properties of the simulated Erdős-Rényi graph. Since the connectivity
probability is 0.01, the degrees are around 100, and the sampling scores in Algorithm 5 are around
10−4, which confirms that the graph belongs to type-1.
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Figure 3.19: Recovery error comparison of the Erdős-Rényi graph. The blue curve represents Al-
gorithm 2, the red curve represents Algorithm 5, and the black line represented the approximation
by the true first K frequency components.
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Figure 3.19 compares the performances of Algorithm 2 and 5 with various values of β aver-
aged over 100 tests. In this case, we still barely see the blue curve because of the overlapping.
When β increases, the fraction of energy from the first K components decreases, and thus, the
bias decreases. For each β, Algorithm 2 and 5 converges to the linear approximation with similar
rates. We conclude that the the Erdős-Rényi graph, as a type-1 graph, results in that the recovery
strategies based on experimentally designed sampling performs similarly to the recovery strategies
based on random sampling.
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Generalized Random Key Graph

We propose a new graph model here, called a generalized random key graph. It is inspired from
the random key graph, which is widely used in wireless sensor networks. independently and ran-
domly assigned R distinct keys from the pool of P keys. Two sensor nodes can then establish a
secure link between them when they share at least one key in common. Another example is that
each people in a social network independently and randomly chooses R hobbies from the pool of
the P hobbies. Two people can then establish a friendship between them when they share at least
one hobby in common. Some extended work of the random key graph is used in connectivity anal-
ysis, clustering analysis, and recommender systems.

To model more realistic scenarios in network science, such as community detection, we propose
the generalized random key graph as follows: each node is independently and randomly assigned
R distinct keys from the pool of P keys. Two nodes are connected with probability pr when they
share r keys in common, where 0 ≤ p0 ≤ p1 ≤ p2 ≤ · · · ≤ pR ≤ 1. The random key graph is a
special case when p0 = 0 and p1 = p2 = · · · = pR = 1, which can be regarded a noiseless case.
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Figure 3.20: A generalized random key graph.

In the simulation, the generalized random key graph has 1, 000 nodes, where each node selects
2 keys from the pool of 5 keys, in total of 10 clusters. The connectivity probability is p0 = 0, p1 =

0.1, p2 = 0.8. Figure 3.20 shows the graph shift.
Figure 3.21 shows the properties of the simulated generalized random key graph. The degrees

are around 140, and the sampling scores in Algorithm 5 are around 10−3, which confirms that the
graph belongs to type-1.

Figure 3.22 compares the performances of Algorithm 2, 5 and sampling theory on graphs with
optimal sampling operator 3.54 with various values of β averaged over 100 tests. In this case, we
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Figure 3.21: Properties of the generalized random key graph.

still barely see the blue curve because of the overlapping. When β increases, the fraction of en-
ergy from the first K components decreases, and thus, the bias decreases. For each β, Algorithm 2
and 5 converges to the linear approximation with similar rates. When β = 0.1, that is, lots of
high-frequency components exist, sampling theory on graphs with optimal sampling operator does
not performs stably. When β = 2, that is, few high-frequency components exist, sampling theory
on graphs with optimal sampling operator provides the best performance. Since we proof that Al-
gorithm 5 is optimal in terms of convergence rates, sampling theory on graphs with optimal sam-
pling operator is better by some constant. Note that in many real-world applications, the improve-
ment on constants is also valuable. For example, in semi-supervised learning, we want to label
fewer data samples without losing classification accuracy81. We conclude that the the generalized
random key graph, as a type-1 graph, results in that the recovery strategies based on experimen-
tally designed sampling performs similarly to the recovery strategies based on random sampling.
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Figure 3.22: Recovery error comparison of the generalized random key graph. The blue curve
represents Algorithm 2, the red curve represents Algorithm 5, the orange curve represents sam-
pling thoery on graphs with optimal sampling operator (3.54), and the black line represented the
approximation by the true first 4 frequency components.
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3.5.3 Type-2 Graph

To obtain the asymptotic rate, we need the requirement in Definition 13 holds for all K > K0 ,
which is strict. In many real-world problems, we often consider a small sample size and a small
bandwidth, that is, some bias is tolerable. In this case, we just need the requirement in Defini-
tion 13 holds for only K = K0 � N . We call those graphs as the general type-2 graphs. Based on
Theorems 16 and 17, for the general type-2 graphs, Algorithms 2 and 5 have the same bias, but
Algorithms 5 has a much lower variance. We find that preferential attachment graphs, some real-
world graphs, and generalized random key graphs belong to general type-2. We expect that the
recovery strategies based on experimentally designed sampling outperforms the recovery strategies
based on random sampling.

Preferential Attachment Graph

We consider a graph where the more connected a node is, the more likely it is to receive new links,
known as a preferential attachment graph61,62. It is well known that the degree distribution of a
preferential attachment graph follows the power law. We conjecture that it belongs to type-2. We
simulate a preferential attachment graph with 10,000 nodes by using the Barabási-Albert model,
where new nodes are added to the network one at a time. Each new node is connected to 2 exist-
ing nodes with a probability that is proportional to the number of links that the existing nodes
already have.
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Figure 3.23: Properties of the preferential attachment graph.

Figure 3.23 shows the properties of the simulated preferential attachment graph. Both distribu-
tions of the degrees and the sampling scores in Algorithm 5 are skewed, and follow the power law,
which confirms that the graph belongs to general type-2.

Figure 3.24 compares the performances of Algorithm 2 and 5 with various values of β averaged
over 100 tests. When β increases, the fraction of energy from the first K components decreases,
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Figure 3.24: Recovery error comparison of the preferential attachment graph. The blue curve
represents Algorithm 2, the red curve represents Algorithm 5, and the black line represented the
approximation by the true first K frequency components.

and thus, the bias decreases. For each β, Algorithm 5 converges to the linear approximation much
faster than Algorithm 2. We conclude that the the preferential attachment graph, as a general
type-2 graph, results in that the recovery strategies based on experimentally designed sampling
outperforms the recovery strategies based on random sampling.
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Wikipedia Graph

We consider a real-world graph that represents Wikipedia adminship election. A small part of
Wikipedia contributors are administrators, who are users with access to additional technical fea-
tures that aid in maintenance. In order for a user to become an administrator a request for ad-
minship is issued and the Wikipedia community via a public discussion or a vote decides who to
promote to adminship. Using the latest complete dump of Wikipedia page edit history, all admin-
istrator elections and vote history data were extracted82. The graph has 8297 nodes and 228080
edges. Many online social networks follow the power law. We then conjecture that the Wikipedia
graph has a similar property with a preferential attachment graph, and belongs to general type-2.
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Figure 3.25: Properties of the Wikipedia graph.

Figure 3.25 shows the properties of the simulated preferential attachment graph. Similarly to
the preferential attachment graph, both distributions of the degrees and the sampling scores in Al-
gorithm 5 are skewed, and follow the power law, which confirms that the graph belongs to general
type-2.

Figure 3.26 compares the performances of Algorithm 2 and 5 with various values of β averaged
over 100 tests. When β increases, the fraction of energy from the first K components decreases,
and thus, the bias decreases. For each β, Algorithm 5 converges to the linear approximation much
faster than Algorithm 2. We conclude that the the Wikipedia graph, as a general type-2 graph,
results in that the recovery strategies based on experimentally designed sampling outperforms the
recovery strategies based on random sampling.
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Figure 3.26: Recovery error comparison of the Wikipedia graph. The blue curve represents Algo-
rithm 2, the red curve represents Algorithm 5, and the black line represented the approximation by
the true first K frequency components.
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Random Geometric Graph

We consider a spatial graph where each of nodes is assigned random coordinates in the box [0, 1]d

and each edge appears when the distance between two nodes is in a given range83. It is known
that given proper parameters, the degree distribution of a random geometric graph is the same
with an Erdős-Rényi graph. We conjecture that similarly to an Erdős-Rényi graph, a random ge-
ometric graph belongs to type-1. In the simulation, the random geometric graph has 1, 000 nodes,
lying in the box [0, 1]2, and two nodes are connected when the Euclidean distance is less than
0.09.
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Figure 3.27: Properties of the random geometric graph.

Figure 3.27 shows the properties of the simulated random geometric graph. Before this, we
have shown five graphs. For each of them, the distributions of degrees and sampling scores are
similar, which seems that the degree distribution is a good indicator for identifying the type of a
graph. Surprisingly, for the random geometric graph, the degree distribution is bell-shaped and
the distribution of sampling scores is skewed! It means that our previous conjecture is wrong and
a graph can belongs to general type-2, even when each node has a similar degree. In other words,
recovery strategies based on experimentally designed sampling can outperform those based on ran-
dom sampling on a graph where each node has a similar degree. It is shown83 that the cluster
properties are different between a random geometric graph and an Erdős-Rényi graph. The sam-
pling scores can capture these cluster properties through the graph Fourier transform matrix, and
works as a proper indicator of when experimentally designed sampling can outperform random
sampling.

We simulate a graph signal with bandwidth K = 4 and β = 1, in a way as shown in (3.55).
Figure 3.28 shows the first 20 graph frequency componentsof such a graph signal, the black dotted
line indicates the cut-off frequency. We see that there is a decay after the cut-off frequency.

Figure 3.29 (a)-(d) show the first 4 graph Fourier basis vectors. Each basis vector captures cer-
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Figure 3.28: First 20 graph frequency components.

tain local cluster patterns. Figure 3.29 (e) shows the original graph signal whose frequency con-
tent is in Figure 3.28, and Figure 3.29 (f) shows the corresponding graph signal approximated by
the first 4 basis vectors. Figure 3.29 (g)-(i) show the recovered graph signals of Algorithm 2, 5,
and sampling theory on graphs with optimal sampling operator (3.54), when only 4 samples can
be taken for each algorithm. We see that sampling theory on graphs with optimal sampling oper-
ator almost perfectly recover the bandlimited graph signals with only 4 samples, and Algorithm 5
works much better than Algorithm 2.

Figure 3.30 compares the performances of Algorithm 2, 5 and sampling theory on graphs with
optimal sampling operator (3.54) averaged over 100 tests.

We see that as experimentally designed sampling operators, both Algorithm 5 and sampling
theory on graphs with optimal sampling operator converge much faster than Algorithm 2. We
conclude that the the random geometric graph, as a general type-2 graph, results in that the re-
covery strategies based on experimentally designed sampling outperforms the recovery strategies
based on random sampling.
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(a) 1st basis vector. (b) 2nd basis vector. (c) 3rd basis vector.

(d) 4th basis vector. (e) Original graph signal. (f) Bandlimited graph signal.

(g) Random sampling. (h) Experimentally designed sampling. (i) Optimal sampling.

Figure 3.29: Graph signals on the random geometric graph.
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Figure 3.30: Recovery error comparison of the random geometric graph. The blue curve repre-
sents Algorithm 2, the red curve represents Algorithm 5, the orange curve represents sampling
thoery on graphs with optimal sampling operator (3.54), and the black line represented the approx-
imation by the true first 4 frequency components.
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3.5.4 Discussion

This work inspire the following ideas.

• The degree distribution does not tell everything on a graph. Degree only consider the infor-
mation of neighbors, which is limited. Many other patterns may be more meaningful, such
as clusters;

• Graph Fourier transform matrix is useful for understanding a graph structure. Here, we
compute sampling scores from the graph Fourier transform matrix, and find that the ran-
dom geometric graph has local cluster patterns. We believe that the graph Fourier transform
matrix can be useful to study a graph structure in many other case;

• Experimentally designed sampling is useful for semi-supervised learning with graphs. Many
algorithms of semi-supervised learning work based on graphs that are constructed from a
given dataset81. The graph is often constructed by modeling each node as a data sample
and connecting two nodes by a edge if the distance between their features is in a given range,
which is similar to the construction of random geometric graphs. Many adaptive algorithms
are proposed to find anchor points on graphs, which is essentially experimentally designed
sampling on graphs84. Those work does not study when and why experimentally designed
sampling can work, however, we give a comprehensive explanation;

• Even we prove Algorithm 5 is optimal in terms of convergence rate, we still see that sam-
pling theory on graphs with optimal sampling operator outperforms Algorithm 5 in the gen-
eralized random key graphs and the random geometric graph. Since we want to sample very
little in many applications, and asymptotic rates cannot tell the performance when we take
only a few samples, better sampling and recovery strategies based on experimentally de-
signed sampling on graphs are still appealing.
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3.6 Spectrum-Blind Sampling of Graph Signals

The sampling theory studied in Section 3.1.1 recovers bandlimited graph signals where the authors
consider settings where we are aware that the main energy of a graph signal is in the low frequen-
cies; we call this setting spectrum-aware. In contrast, here we are unaware of the shape of graph
signals in the graph spectral domain; we call this setting spectrum-blind.85 More precisely, we now
consider a relaxation from the definition of bandlimited graph signals where we know graph sig-
nals are sparse in the graph spectrum domain, but do not know the supports. We consider a class
of K-spectrally sparse graph signals:

XK = {x ∈ RN : ‖x̂‖0 ≤ K, where x̂ = Ux}.

Here, bandlimited graph signals here do not necessarily mean low-pass because we do not spec-
ify the ordering of frequencies. The bandlimited restriction is equivalent to limiting the number
of nonzero elements in the graph Fourier domain with known supports. The elements in XK are
the same as those in BLA(K), but XK is blind to the ordering of frequencies. XK is thus a use-
ful characterization for graph signals with more complex multiband structures. We consider sam-
pling graph signals x ∈ XK . We approach this problem by formulating an optimization problem
that enforces sparsity on the graph Fourier transform of x. In this section, we formulate the prob-
lem of signal recovery on graphs and describe the sampling and recovery framework. We study
spectrum-blind signal recovery and propose algorithms for both random sampling and experimen-
tal designed sampling with which we can ensure reliable recovery.

3.6.1 Problem Formulation

We now review a class of bandlimited graph signals and generalize this class to the spectrum-blind
setting. We next describe the sampling and recovery strategies. Based on Definition 6, the ban-
dlimited graph signals do not necessarily mean low-pass because we do not specify the ordering of
frequencies. The bandlimited restriction is equivalent to limiting the number of nonzero elements
in the graph Fourier domain with known supports. Note that this setting is spectrum-aware be-
cause we assume the ordering of frequencies is known to ensure the first K frequency components
are nonzero.

We now consider a relaxation from the definition of bandlimited graph signals where we know
graph signals are sparse in the graph spectrum domain, but do not know the supports. We con-
sider a class of K-spectrally sparse graph signals.

XK = {x ∈ CN : ‖x̂‖0 ≤ K, where x̂ = V−1 x}.

The elements in XK are the same as those in BLA(K), but XK is blind to the ordering of frequen-
cies. XK is thus a useful characterization for graph signals with more complex multiband struc-
tures. We consider such graph signals x ∈ XK in the following discussion.

Sampling and Recovery Strategy

Suppose that we want to sample M coefficients of a graph signal x ∈ CN to produce a sampled
signal xM ∈ CM (M < N), where M = (M0, · · · ,MM−1) denotes the sequence of sampled
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indices, and Mi ∈ {0, 1, · · · , N − 1}. We then interpolate xM to get x′ ∈ CN , which recovers
x either exactly or approximately. The sampling operator Ψ is a linear mapping from CN to CM ,
defined as

Ψi,j =

{
1, j =Mi;

0, otherwise,
(3.56)

and the interpolation operator Φ is a mapping from CM to CN .
We use the sampling operator to get the sampled graph signal xM = Ψx ∈ CN and x′ =

ΦxM ∈ CN recovers x either exactly or approximately. We consider two sampling strategies: ran-
dom sampling means that sampling indices are chosen from from {0, 1, · · · , N − 1} independently
and randomly; and experimentally designed sampling means that sampling indices can be chosen
beforehand. It is clear that random sampling is a subset of experimentally design sampling27.

Random Sampling

We consider random sampling where the subsampled graph signal xM is a random subset of the
graph signal x. That is, the sampling operator Ψ is formed by sampling M rows of the identity
matrix In from a uniform distribution. We note that since xM = Ψx and x = V x̂, consequently,
xM = (ΨV)x̂. Denoting the sampled graph Fourier matrix (ΨV) as VM, it is natural to formu-
late this as an ℓ0-norm optimization problem which is often intractable. We instead seek to mini-
mize surrogate measures, such as the ℓ1-norm, that lead to more tractable computational methods
as in the following formulation:

Algorithm 4. Let Ψ be a random sampling operator and the noisy measurements xM = VM x̂+

e with ‖e‖2 ≤ ϵ. We recover x ∈ XK by solving the following optimization problem:

minimize
x̂

‖x̂‖1,

subject to ‖xM −VM x̂‖2 ≤ ϵ.
(3.57)

In the following discussion, we restrict ourselves to undirected graphs and consequently sym-
metric graph shifts. The following theorem shows the recovery performance of Algorithm 4. .We
initially assume that the graph Fourier matrix has uniformly bounded entries. The matrix formed
by choosing M rows of such a matrix uniformly at random is sufficiently incoherent (satisfies the
restricted isometry property) with high probability when the number of measurements is on the
order of K log4N 86,87.We shall consequently show families of graphs whose graph Fourier matrices
satisfy this property both empirically and theoretically.

Theorem 18. Let M ≥ Cµ2 log(N)4K, where C is some constant and µ =
√
Nmax

i,j
|(V)i,j | such

that V has sufficiently well-bounded entries. The recovery error of the solution x̂∗ of in Algorithm
4 is bounded with high probability as

‖x̂∗ − x̂‖2 ≤ C
[
ϵ+
‖x̂− x̂K‖2√

K

]
, (3.58)

where x̂K denotes the vector of the K largest coefficients (in magnitude) of x̂.

The proof is a direct consequence of results in classical compressed sensing88,89,86,87. This re-
sult says that the recovery error is at most proportional to the norm of the noise in the samples
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and the tail of the signal. We therefore apply the same arguments used to prove that the RIP
holds for partially bounded orthogonal matrices for appropriate random sampling operators, for
graph Fourier matrices that are partially bounded orthogonal matrices.

Given the reconstruction of x̂, we can recover the full graph signal x∗ by simply applying the
inverse graph Fourier transform x∗ = V x̂∗.

We note that (5) can be formulated as a linear program. Consequently, we have shown a spectrum-
blind framework under which uniform random sampling of a sufficient number of coefficients of
the graph signal allows the robust recovery of the original graph signal with high probability.

3.6.2 Extensions to Graph Models

In the previous section, we note that the restricted isometry property and incoherence condition
between the sparsity and measurement bases does not necessarily hold for all families of graphs.
We now specifically look at families of graphs where we can use random sampling for reliable spectrum-
blind recovery.

Circulant Graphs and the Finite Discrete-Time Signal

Since the discrete Fourier transform matrix diagonalizes the circulant graph and is hence its graph
Fourier transform matrix66, we see that Theorem 18 is immediately applicable to signals sup-
ported on circulant graphs. Specifically, for a partial Fourier matrix, µ =

√
Nmax

i,j
|(VK)i,j | = 1,

we have that the minimum number of random samples required to recover a K-sparse x̂ is

M ≥ C(logN)4K. (3.59)

Additionally, the graph that supports a finite discrete-time signal is called the finite discrete-
time graph, which is represented by the cyclic permutation matrix38,21, also a circulant graph.
Consequently, the bound in (3.59) corresponds to a standard result in classical compressed sens-
ing when using Fourier measurements.

Erdős-Rényi Random Graphs

An Erdős-Rényi graph is constructed by connecting nodes randomly, where each edge is included
in the graph with probability p independent from every other edge61,62. We aim to derive bounds
on the minimum number of random samples required such that we can recover the graph signal
using the formulation in Algorithm 4.

Corollary 6. Let a graph shift A represent an Erdős-Rényi random graph on a node set of size
N , obtained by drawing an edge between each pair of vertices, randomly and independently, with
probability p = g(N) log(N)/N where g(·) is some positive function. Let V be the eigenvector
matrix of A, obeying VVT = N · I. Let the sampling number satisfy

M ≥ CK · log
2.2 g(N) log5(N)

Np
,

for some positive constant C. Then, the recovery error of the solution x̂∗ of in Algorithm 4 fol-
lows (3.58).
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Due to lack of space we omit the proof which is based on results in90. We note the dependency
on p, and see that as p decreases or as the graph is more sparse, we expect to require more sam-
ples for the partial graph Fourier matrix to capture sufficient information. This can be verified
empirically.

3.6.3 Experimentally Designed Sampling

As mentioned in the previous section, for graphs where we do not have sufficient incoherence be-
tween the measurement and sparsity bases, we cannot hope to perform random sampling for reli-
able recovery using the same order of measurements. This is the case for some irregularly struc-
tured graphs. In this section, we study whether we can hope to do better by studying the graph
structure. We also restrict ourselves to undirected graphs and consequently symmetric graph shifts.
More specifically, we now consider experimentally designed sampling where the samples are de-
signed based on the graph structure. We can use the notion of local coherence introduced in91,
and extend sparse recovery guarantees to a richer class of graphs beyond strictly incoherent sys-
tems. The result shows that regions of the sensing basis that are more coherent with the sparsity
basis should be sampled with a higher density. In Section 3.6.4, we demonstrate superior perfor-
mance for irregular graph structures using experimentally designed sampling as opposed to ran-
dom sampling.
Algorithm 5. 91 Let Ψ be a sampling operator designed as follows: we assign a weight κj to
each node where κj = sup1≤k≤N |

√
N Vj,k |. We sample a graph signal |M| times. Each time, we

choose a node with probability κ2j proportional to the square of maximum element in the row cor-
responding to the node in the graph Fourier matrix V . Given noisy measurements xM = Ψx + e,
we recover the original graph signal by solving the following optimization program:

minimize
x

‖V−1 x‖1,

subject to ‖xM − PΨx‖2 ≤
√
Mϵ,

where x∗i is the ith component of the recovered graph signal x∗ and P is a diagonal matrix with
diagonal entries pk,k = 1/

√
cκk.

The following theorem shows the recovery performance of Algorithm 5.

Theorem 19. Let M ≥ K( 1
N

∑N
j=1 κ

2
j ) log

4(N). The recovery error of the solution x̂∗ of in Algo-
rithm 5 is bounded as

‖x− x∗‖2 ≤
1√
K
‖V−1 x−V−1 x∗‖1 + ϵ. (3.60)

We omit the proof; it follows from91.
Since random sampling is a subset of experimentally designed sampling, we naturally expect

experimentally designed sampling to always perform at least as well as random sampling. We ex-
pect the performance improvement to be more significant for irregularly structured graphs whose
Fourier matrices tend to exhibit a larger degree of coherence. We empirically compare the perfor-
mance of experimentally designed sampling versus random sampling for different graph families in
the next section.
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3.6.4 Simulations

In this section, we validate the proposed framework for spectrum-blind graph signal recovery by
showing that reliable recovery is achieved for each of the different families of graphs with high
probabilities for both random and experimentally-designed sampling. We demonstrate the (linear)
tradeoff in terms of the average number of minimum number of samples required to ensure perfect
recovery versus the sparsity of the signal in addition to showing the efficacy of experimentally-
designed sampling.

Erdős-Rényi graphs. As shown in Section 3.6.2, with high probability, perfect recovery is
achieved for Erdős-Rényi graph signals when we randomly sample a sufficient number of signal
coefficients. We verify this result experimentally, by randomly sampling Erdős-Rényi graphs with
various sizes and connecting probabilities.

Scale-free graphs. A scale-free graph is a graph that is dominated by a relatively small num-
ber of nodes that are hubs of connectivity. Its degree distribution follows a power law61,62. Many
real-world graphs, such as the topology of web pages, the collaborative network of Hollywood ac-
tors, the power grid of the United States exhibit the scale-free phenomenon.

3.6.5 Experimental setup

Suppose that for each graph, we construct a unit norm graph signal whose spectral support is
chosen randomly from a uniform distribution on the set of all supports with a given sparsity K.
Given a graph shift, we sample M times and perform the ℓ1 minimization procedure in Algo-
rithm 4 100 times, and calculate the average mean square recovery error as a function of the sam-
ples acquired; these are shown in Figure 3.31. We vary the sparsity K to be 5,10,15,20 and the
number of samples acquired M from 0 to 100.

We also compare experimentally designed sampling to random sampling; the results are shown
in Figure 3.32 and Figure 3.33 for Erdős-Rényi and scale-free graphs, respectively. We use graphs
of size N = 1000 and vary sparsity levels and the number of samples acquired to generate a heat
map that shows the frequency of perfect recovery for both random sampling and experimentally
designed sampling. In the figures, each square corresponds to the number of samples acquired (y-
axis) at a particular level of sparsity (x-axis), the color of which signifies the frequency of perfect
recovery with respect to to the color bar. Hence, we see that while experimentally designed sam-
pling always works better, the improvement is amplified for scale-free graphs and we are able to
perfectly recover with a higher success rate. This conforms with our intuition since the scale-free
graph exhibits a more irregular structure and is less incoherent with respect to the measurement
basis.

We further empirically study mean square recovery for Erdős-Rényi graphs of size N = 200 as
a function of the number of samples acquired by varying the connection probability . The results
are shown in Figure 3.32. We see in accordance with Theorem 6 that for low density graphs, we
expect to require slightly more samples on average to ensure reliable recovery. Nevertheless, we
are able to exhibit reliable recovery for the rich family of Erdős-Rényi graphs.

81



(a) Erdős-Rényi Graph (b) Scale-Free Graph

Figure 3.31: Mean square recovery error performance using random sampling as a function of the
number of samples acquired for Erdős-Rényi and scale-free graphs of size N=200. The blue curve
corresponds to a sparsity level in the spectral domain of K = 5, the green to K = 15 and the cyan
to K = 20. For Erdős-Rényi random graphs, we use edge-presence probability p = 0.05 and add 5
edges at each step for scale-free graphs using the Barabasi-Albert preferential attachment model.

(a) Random sampling (b) Experimentally designed sampling

Figure 3.32: Frequency of perfect recovery for varying sparsity (y-axis) and varying number of
samples (x-axis) for both random sampling and experimentally designed sampling on Erdős-Rényi
graphs
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(a) Random sampling (b) Experimentally designed sampling

Figure 3.33: Frequency of perfect recovery for varying sparsity (y-axis) and varying number of
samples (x-axis) for both random sampling and experimentally designed sampling on scale-free
graphs.

83



3.7 Reconstruction of Smooth Graph Signals

In this section, we study the estimation or reconstruction of smooth signals on graphs from noisy,
incomplete, or corrupted measurements. Reconstructing signals from noisy observations is a well-
studied problem in signal processing and has applications for inpainting, collaborative filtering,
recommender systems and other large-scale data completion problems. We briefly introduce previ-
ous work on signal recovery in the graph signal processing literature and Laplacian regularization
before presenting a framework for the estimation of smooth signals on product graphs. By struc-
turing the signal as a tensor, we enforce a low-rank condition on the tensor to help recover the
signal.

In the basic setting, we assume we measure a noisy or corrupted signal y and seek to recon-
struct x from y.

y = x+ ϵ

Broadly, there are two frameworks for signal reconstruction or estimation. The first, which we re-
fer to as the synthesis framework, generally consists of constructing an appropriate basis or dictio-
nary over the graph for the class of signals, and then regressing the observed signal y over this ba-
sis. We have already seen in Section 2.2 how seen how the graph Fourier basis promotes smooth-
ness in the sense that smooth signals are approximately bandlimited with respect to the graph
Fourier basis. A straightforward way to recover the signal would be to choose the best K such
that we project the signal onto the corresponding bandlimited space. In this section, however we
study graph signal reconstruction based on the analysis framework where we formulate an opti-
mization problem that regularizes the smoothness criterion with a penalty function. While in the
below discussion we only consider this setting where we only have i.i.d Gaussian noise ϵ, we can
extend a general form of graph signal recovery to a flexible optimization problem formulation that
accounts for outliers and multiple signals.

3.7.1 Graph Total Variation and Laplacian Regularization

A natural proxy for the smoothness of a signal on a graph is its variation over the graph S2(x)

which can be defined with respect to the graph adjacency matrix where SA(x) =
∥∥∥x− 1

|λmax(A)| Ax
∥∥∥2
2

or with respect to the graph Laplacian SL(x) = xTLx as we saw in Section 2.1. Regularization
with respect to SL(x) on graphs has been well-studied in previous work in the context of Lapla-
cian regularization.92,93

From Section 2.2, we see that the class of bandlimited signals is a subset of globally smooth
signals. Rather than explicitly enforcing bandlimitedness, we formulate a convex optimization
problem that minimizes the graph variation of the graph signal. Minimizing S(x) enforces the esti-
mated signal to be smooth with most of the energy lying in the subspace of low graph frequencies.
For the basic reconstruction problem, we solve the following problem27:

minimize
x

‖y − x‖2 + λ S(x) (3.61)

While this is the basic formulation,27 presents a more flexible framework that can deal with
multiple signals as well as outliers. The approaches described in27 however, do not exploit the in-
herent structure of product graphs, and instead treat the graph holistically.
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The graph Fourier basis promotes smoothness in the sense that smooth signals are approxi-
mately bandlimited with respect to the graph Fourier basis. A straightforward way to recover the
signal under the synthesis framework would then be to choose the best K such that we project the
signal onto the corresponding bandlimited space. We refer to this method as GFProj.

3.7.2 Representations for Signals on Product Graphs:

We consider a product graph G = (V,A), |V| = N , that is constructed from N graph atoms
G1, · · ·GN , where Gj = (Vj ,Aj), |Vj | = Nj , using the Kronecker product where

∏J
j=1Nj = N .

We can write the resulting graph shift matrix of the product graph as A = A(1)⊗A(2)⊗ · · · ⊗
A(J) = ⊗J

j=1 A
(j). In general, we have seen that we can write both the spectral graph Fourier de-

composition as well as the multiresolution decomposition in the form A(j) = F (j)Σ(j)F (j)T . We
can then write the decomposition of the product graph shift as A = FΣF T where:

F = F (1) ⊗ F (2) ⊗ · · · ⊗ F (J) = ⊗J
j=1F

(j) (3.62)

Σ = Σ(1) ⊗ Σ(2) ⊗ · · · ⊗ Λ(J) = ⊗J
j=1Σ

(j) (3.63)

This construction can easily be extended to dictionaries and frames. When F corresponds to the
graph multiresolution wavelet transform, we note that this is analogous to separable wavelet con-
struction by tensorization on images and d-dimensional grids.94

3.7.3 Product Graphs and Low Rank Structure

Figure 3.34: A graph signal on
a product graph composed from
k-atoms can be structured as a
k-th order tensor

We now study the same problem on product graphs but try
to exploit some of the inherent structure in the graph. A nat-
ural way to organize signals on product graphs is using ten-
sors.95,96 In the case of a signal lying on a product of three
graphs ,we want to represent the data by a 3rd order tensor
X where the (i, j, k)-th entry in the tensor X indicates the
signal value corresponding to the the node in the product
graph corresponding to the tuple of the i-th node in A1 , the
j-th node in A2, and the k-th node in A3. In the context of
recommender engines for example, this would in turn corre-
spond to the i-th user’s rating of the j-th entity at the k-th
time instant.

Tensor factorization is a decomposition method for high
dimensional data that is used to estimate the prominent factors in some signal. Similarly to ma-
trix factorization, PCA, and in graph signal processing, transforms such as spectral graph wavelets
and the graph Fourier transform, tensor decomposition allows us to detect latent structure in
graph data. Typical tasks built on top of this include denoising, inpainting, and anomaly detec-
tion. We study the spectral decomposition of such product graphs and show how an extension
of the smoothness assumption to signals on product graphs leads to the corresponding tensor Y
possessing a low-dimensional structure. In this section, we formulate an optimization problem for
signal recovery that exploits this low-dimensional structure.97 For ease of exposition, we use 3-way
tensors, the Kronecker tensor product and the graph Laplacian in the following discussion, but the
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Figure 3.35: Mode unfoldings of a third-order tensor along each of its three modes.

framework described can easily be generalized for n-way tensors, other tensor products, and other
graph representations.

3.8 Low-Dimensional Tensors and Product Graphs

It is straightforward to see that we can leverage the formulations presented above directly on prod-
uct graphs without incorporating the structure of the product graph. However, in the following
discussion, we study the reconstruction of smooth signals on product graphs by exploiting the low-
dimensional structure of the signal on the product graph.

A natural way to organize signals on product graphs is by using tensors that can be thought of
as generalizations of a matrix to higher dimensions.95,96. In the case of a signal lying on a prod-
uct of three graphs ,we represent the data by a 3rd order tensor X where the (i1, i2, i3)-th entry
in the tensor X indicates the signal value corresponding to the node in the product graph corre-
sponding to the tuple of the i1-th node in A1 , the i2-th node in A2, and the i3-th node in A3. In
the context of recommender engines for example, this would in turn correspond to the i-th user’s
rating of the j-th entity at the k-th time instant. Hence, a signal x ∈ RN associated with the
product graph defined in Section 3.2.1 can be organized as a J-th order tensor X ∈ RN1×N2···×NJ .

We largely adopt the nomenclature and notation in95 for tensors. Fibers are the higher order
analog of rows and columns in matrix and are obtained by fixing every index but one. The mode-
j unfolding of the tensor X , X(j) ∈ RNj×(N/Nj) arranges the mode-j fibers as the columns of the
matrix. The j-mode (matrix) product of a tensor X with a matrix Φ denoted by X ×j Φ corre-
sponds to multiplying each mode-j fibre by Φ. Let×J

j=1
Fj be short-form for multiplying a tensor

along each mode by Fj . That is, G(×J

j=1
Fj) = G ×1 F1 ×2 F2 · · · ×J FJ . The CP -rank of a tensor

is defined as the minimum number of rank-one tensors that generate X as their sum. In general,
computing the CP -rank of a tensor is difficult, in fact, it is an NP-hard problem. An alternative
notion of the rank of a tensor, the n-rank,is the tuple of the ranks of the mode-n unfoldings which
is easy to compute and yields a greater degree of flexibility. As a result, in this work, we only con-
sider the n-rank of a tensor to quantify the low dimensional structure of the tensor. Any signal
x on a product graph A can be decomposed as x =

∑R
i=1 x

(1)
i ⊗ x

(2)
i · · · ⊗ x

(J)
i such that each
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Figure 3.36: Tucker Decomposition

x(j) lies on the respective graph atom Aj . We can study the decomposition of smooth signals on
product graphs and show how an extension of the smoothness assumption to signals on product
graphs leads to the corresponding tensor X possessing a low-dimensional structure. We can then
also show that the j-mode fibers of the tensor X corresponding to x are smooth with respect to
the j-th graph atom Aj . As a result, in the following algorithms and frameworks, we exploit this
low-dimensional structure of the graph signal tensor for smooth signal recovery.

3.8.1 Reconstruction via Smooth Tucker Decomposition

Similarly to matrix factorization, PCA, and in graph signal processing, transforms such as spectral
graph wavelets and the graph Fourier transform, tensor decomposition allows us to detect latent
structure in graph data. The Tucker decomposition decomposes a tensor into a core tensor and
multiple matrices which correspond to different core scalings along each mode.

The Tucker decomposition (Figure 3.36) approximates a tensor with a core-tensor and factor
matrices F1,F2, and F3 as below .

minimize
X

‖X −Y‖F

subject to X = G ×1 F1 ×2 F2 ×3 F3

(3.64)

We note that the canonical polyadic decomposition decomposition (CPD) is a special case of
the Tucker decomposition where the core tensor G is constrained to be super-diagonal. While we
formulate decompositions in the graph setting inspired by both the CP and Tucker decomposition
formulations; below, we only consider the Tucker decomposition95,96. Such decompositions of the
graph signal tensor can be interpreted as signal compression on product graphs. We note that by
setting each of the factor matrices equal to (some subset of) the columns of the GFT basis V(i) of
the graph atoms Ai, we can enforce bandlimitedness of the product signal on the graph. That is,
setting F1 = V

(1)
K1

, F2 = V
(2)
K2

and F3 = V
(3)
K3

explicitly enforces smoothness of the graph signal on
the product graph. This is the direct analog of approximating the signal with respect to the graph
Fourier basis by projecting the signal to a low-frequency subspace of the graph.

Therefore, the Tucker decomposition can be seen as a higher-order PCA95,96,98. For a J-th or-
der tensor, the Tucker decomposition approximates a tensor X with a core-tensor G and J column-
wise orthonormal factor matrices Fj ∈ RNjxRj , Pj ≤ Nj j = {1, · · · , J} such that X = G(×J

j=1
Fj).

Under such a decomposition, the n-rank of X is simply the tuple of the ranks of the mode-j un-
foldings, (R1, R2 · · ·RJ). We note however that, in general, we need to estimate or fix the n-rank

87



beforehand which is often difficult or unwieldy.

Synthesis

We now formulate the direct analog of the synthesis approach on a single graph in GFProj, where
we project the signal onto the low-frequency bandlimited subspace spanned by the graph Fourier
basis vectors, to the Tucker decomposition and product graphs. We note that by setting each of
the factor matrices equal to the leading Rj columns of the GFT basis V(j) of the graph atoms Aj ,
we can enforce bandlimitedness of the product signal on the graph. That is, by setting Fj = V

(j)
Rj

we can explicitly enforce smoothness of the graph signal on the product graph. We call this algo-
rithm TD-S.

Analysis

Under the analysis framework, we now formulate an optimization problem that enforces in addi-
tion to the Tucker decomposition structure described above, a smoothness regularizer. Particu-
larly, given a set of graph signals on a product graph, we aim to find a low-rank decomposition
that explicitly enforces smoothness not only across edges within the same mode but also across
modes of the tensor or product graph. We can define the optimization problem as follows:

arg min
X

‖Y − G(
J×

j=1

Fj)‖2F + λg(Fi) + γh(Fi)

subject to g(Fi) =

J∑
j=1

tr(FT
j LjFj),

h(Fi) = tr((⊗J
j=1Fj)

TL(⊗J
j=1Fj)),

FT
i Fi = I,∀i

(3.65)

g(·) enforces smoothness within modes while h(·) enforces smoothness across modes of the ten-
sor or product graph. Since the above formulation is convex over each of the variables we are opti-
mizing over, we can solve it in an alternating fashion by solving for each of Fj while leaving the
other factor matrices F(−j) fixed. Due to lack of space, we omit detailed derivations and only
present the framework in Algorithm 2 which we refer to as TD-A. It is closely related to and is
a generalization of previous work in99.

3.8.2 Reconstruction via the Nuclear Norm of Unfoldings

In the algorithms presented in Section 3.8.1, we saw that we needed to fix or estimate the n-rank
beforehand which can often be inconvenient. In this section, we alleviate this inflexibility by pre-
senting a more direct optimization formulation. The sum of each of the ranks of the mode-j un-
foldings in the n-rank tuple

∑J
j=1Rj has been proposed as a proxy for the n-rank100,101,102. We

can then use the nuclear norm as a convex surrogate for the rank as is done in many matrix com-
pletion problems103. We also enforce smoothness of each of the mode-j fibers with respect to the
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Algorithm 2 (TD-A): Tucker Decomposition via Alternating Least Squares
1: Inputs: Y , Rj ,∀j ∈ {1 · · · J} and parameters λ, γ
2: Initialize:

F (0)
j = I, ∀j

3: repeat
4: for j ← 1 to J do
5: M(k+1)

j ← Y(j)
⊗J

j=1,j ̸=i F
(k)
j

6: uj ←
∏J

j=1,j ̸=i tr(F
(k)T
j DjF (k)

j )

7: vj =
∏J

j=1,j ̸=i tr(F
(k)T
j Aj F (k)

j )

8: H
(k+1)
j ←M(k+1)

j M(k+1)T
j − (λ+ γuj)Dj + (λ+ γvj)Aj

9: F (k+1)
j ← top Rj eigenvectors of H(k+1)

j

10: end for
11: k ← k + 1
12: until convergence
13: G = Y(×J

j=1
F (k)T

j )

j-th graph atom and define the following convex optimization problem:

minimize
X

‖Y −X‖2F +

J∑
j=1

[α tr(XT
(j)LjX(j)) + β‖X(j)‖∗] (3.66)

We solve this via the alternating direction method of multipliers (ADMM) framework for sep-
arable optimization problems104,100. Towards this, we introduce J tensor variables Z1, · · ·ZJ

which represent the J different mode-j unfoldings X(1), · · · ,X(J) of the tensor X such that the
mode-j unfolding of Zj , Zj,(j) = X(j),∀j ∈ {1, 2, · · · J}. We can rewrite (3.66) in the form
f(X ) +

∑J
j=1 gj(Zj):

minimize
X ,Zj

‖Y −X‖2F +

J∑
j=1

[α tr(ZT
(j)LjZ(j)) + β‖Z(j)‖∗]

subject to Zj = X ,∀j

(3.67)

We can then write the augmented Lagrangian where Wj are the Lagrange variables and µ is the
penalty parameter as:

minimize
X ,Z{j},W{j}

‖Y −X‖2F +

J∑
j=1

[α tr(ZT
j,(j)LjZj,(j))+

β‖Zj,(j)‖∗− <Wj ,X −Zj > +
µ

2
‖X −Zj‖2F ]

(3.68)

Due to limitations on space, we do not present detailed derivations when we minimize 3.68 over
X and Zj respectively. However, we note that the subproblem when solving for Zj is

minimize
Zj,(j)

α tr(ZT
j,(j)LjZ(j)) + β‖Zj,(j)‖∗+

<Wj,(j),Zj,(j) > +
µ

2
‖X(j) −Zj,(j)‖2F

(3.69)
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We can solve this convex problem by generalized gradient descent105 by solving a proximity func-
tion in each step with respect to the nuclear norm. We define Dτ (C) to be the operator that shrinks
the singular values of C by soft-thresholding the singular values of C by τ . We call the result-
ing sub-algorithm GD-Z and give an overview in Algorithm 3. We refer to the overall algorithm
as NNFold, the pseudocode for which is presented in Algorithm 4.

Algorithm 3 (GD-Z): Gradient Descent Algorithm for 3.69
1: Inputs: Wj,(j),X(j), and parameters α, β, µ
2: Initialize:

Zj,(j) = 0
3: repeat until convergence
4: Choose step size t by backtracking line search
5: Zj,(j) ← Dtβ(Zj,(j) − t[2µ(Zj,(j) −X(j)) +Wj,(j) + 2αLZj,(j)])
6: until termination
7: return Zj,(j)

Algorithm 4 (NNFold): ADMM algorithm for 3.66
1: Inputs: Y , and parameters α, β, µ
2: Initialize:

X
(0)
(j) ,Z

(0)
(j),W

(0)
(j) = 0,∀j

3: repeat until convergence
4: X (k+1) ← 1

Jµ−2

∑J
j=1(W

(k)
j + µZ

(k)
j )− 2Y

5: for j ← 1 to J do
6: Z

(k+1)
j,(j) ← GD-Z(W

(k)
j,(j),X

(k)
(j) , α, β, µ)

7: W
(k+1)
j ←W

(k)
j − µ(X (k+1) −Z

(k+1)
j )

8: end for
9: k ← k + 1

10: until termination
11: return X (k)

Theorem 20. Algorithm 4 NNFold converges if the optimal solution set is nonempty such that
every limit point of the sequence {X (k)} is an optimal solution.

3.9 Numerical Experiments

We construct a synthetic ground truth smooth signal on a product graph A composed using the
Kronecker product of a random geometric graph, star graph and a chain graph each of which has
25 nodes. We use a heat diffusion model over the product graph such that the graph signal tensor
has varying CP -ranks, r = 2, 4, 6. We add noise so the signal we denoise over Y has an SNR of
5dB. We compare the algorithms GFProj (Section 3.8), GTV (Section 3.8), TD-S(Section 3.8.1),
TD-A(Section 3.8.1), and NNFold(Section 3.8.2). The results are shown in the Table 3.2. We
see that TD-A, NNfold that exploit the product structure consistently outperform GFProj and
GTV while NNfold tends to outperform the Tucker decomposition based methods especially for
more complex signals.

For the same synthetic smooth signal, we compare Algorithms TD-A and NNfold for denois-
ing for different levels of noise. The results are shown in Figure 3.37. While at high SNR levels,
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r = 2 r = 4 r = 6
GFProj 1.85e-3 4.6e-2 4.9e-2
GTV 7.82e-4 8.12e-3 8.88e-3
TD-S 1.22e-3 9.14e-3 1.23e-2
TD-A 9.21e-5 6.42e-4 3.2e-3
NNFold 2.02e-4 5.98e-4 9.69e-4

Table 3.2: MSE for denoising smooth signal on product graph using each of the 5 discussed algo-
rithms

Figure 3.37: Reconstructed signal SNR for varying levels of noise

they are both very similar, at low SNR levels or in noisy settings, NNfold performs significantly
better.

Computational Complexity: The graph atoms A(j) the product graph is composed of are of
size O(poly(N

1
J )). Since we only perform computationally heavy operations like matrix inversion

and singular value decomposition (O(N3)) on structures derived from the graph atoms, the algo-
rithms yield significant computational gains over algorithms that do not exploit the structure in
product graphs.

Product graphs are a pragmatic and flexible framework for modeling many kinds of multi-modal
real-world graph structured data. In this work, we studied the reconstruction of noisy smooth sig-
nals on product graphs. We exploited the low-dimensionality of these signals on product graphs
by modeling them as low-rank tensors. Our motivations in this work are two-fold in that in addi-
tion to better reconstruction performance, we can also gain computational savings. We presented
two main algorithms the first of which is based on the Tucker decomposition while the second is
based on the the nuclear norm of the mode-j unfoldings of the tensor. Further, we presented nu-
merical experiments that showcase the superior performance of these algorithms with respect to
algorithms that do not exploit the structure of product graphs.
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Figure 3.38: A grand view of systems made of local Wireless Sensor Networks that communicate
their readings to a geographically separated hub.

3.10 Applications: Rakeness-Based design of Compressed Sensing for Wireless Sen-
sor Networks

Signals on multiple graphs may model an IoT consisting of local wireless sensor networks (WSNs)
performing sets of acquisitions that must be sent to a central hub that may be far from the mea-
surement field. Rakeness-based design of compressed sensing is exploited to allow the administra-
tion of the trade off between local communication and the long range transmission needed to reach
the hub.

Extensive Montecarlo simulations incorporating real world figures in terms of communication
consumption show potential power savings from 25% to almost 50% with respect to a direct ap-
proach not exploiting local communication and rakeness.

From an application point of view, signals on graphs fit into a number of scenarios where the
relationship between samples is not a simple ordering in time. In unstructured frameworks, the
locations at which samples are acquired imply some relationship between them (like the temper-
ature at different spots that are thermically connected in different ways or the consumption of
computers in an inhomogeneous company local network) that can be modeled by a generic graph.
Moreover, the sensors themselves may belong to a Wireless Sensor Network (WSN) whose nodes
have local communication capabilities (that can also be modeled by a graph) and finally deliver
their acquisitions to a central hub by means of long range transmissions in some Wide Area Net-
work (WAN).

Figure 3.38 gives an intuitive representation of these structures that suggest exploring the trade-
off between local communication/processing and direct transmission to the hub. For example, as-
suming that the ratio between the typical distance covered by long-range and short-range com-
munications is 102 (tens of meters to kilometers) and that no particular directivity can be pro-
vided by sensor nodes antennas, one expects that the ratio between entailed powers is of the order
of 104. This is matched by actual consumption of current implementations. For example, Blue-
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tooth Low Energy modules come with energy-per-bit efficiencies in the range from 31 nJ/bit to
46 nJ/bit while LoRaWAN implementations exhibit energy efficiencies in the range 19µJ/bit to
220µJ/bit so that one may expect a ratio ϵ between short- and long-range efficiencies between
ϵmin = 1.4× 10−4 and ϵmax = 2.4× 10−3. This is more than enough to allow substantial local data
exchange before a single long-range transmission is attempted.

Though intuitively straightforward, such a trade-off is not trivial to administer. In our case, we
will address it by exploiting a further prior that is commonly valid for real-world signals, i.e., the
fact that they have non-white second-order statistics that can be modeled as a further weighted
graph connecting the same vertices.

Hence, the signal is ultimately characterized by three graphs: the one representing the structure
of its support, the one describing the connectivity of the WSN acquiring it, and the one express-
ing its second-order statistics. From this point of view, we are dealing with a signal on multiple
graphs.

3.10.1 Acquisition of multiple graph signals

Acquisition largely benefits from priors on the signal, for example, classical frequency domain in-
formation allows us to sample signals in a subset of the time instants. What we address here is
the efficient acquisition of graph signals exploiting the prior that a they are known to be sparse in
their Fourier domain, i.e, that ξ has at most κ � n non-zero components. The graph providing
the Fourier basis will be named the sparsity graph of the signal.

This is the natural setting in which Compressed Sensing (CS)89 may be employed. In fact, for
a certain m, where m < n one may find m × n matrices S such that the measurements in the
vector y = (y0, . . . , ym−1)

⊤ = Sx = SUξ can be post-processed to yield the original x despite
the fact that S (and thus SU) is rectangular. In the graph framework, the easiest case is when
yj = xvj for certain vertices v0, . . . , vm−1 ∈ V , i.e., when the signal is subsampled and the matrix
S is made of m rows of the n× n identity matrix106,85.

Instead, we consider measurements of the form yj =
∑

u∈Wj
Sj,uxu for certain Wj ⊆ V , as-

suming that one may use local communication to collect the signal values at the vertices w ∈ Wj ,
compute yj and send it to the hub. This is precisely the scenario sketched in the introduction,
where acquired values can be propagated locally by the WSN with an energy cost per individual
communication (a hop) that is only ϵ-times the cost of transmitting yj to the hub.

Usually, one cannot arbitrarily choose the vertices in Wj since, for example, they must corre-
spond to nodes that are geometrically close. We model this with a sampling graph that connects
two vertices of V if one of them can communicate a value to the other.

The sampling strategy is a generalization of single-vertex sampling scheme that takes into ac-
count the sampling graph constraint. To compute the j-th measurement yj we randomly select a
vertex vj ∈ V . Assuming that the sampling graph is connected, a distance h(vj , u) is defined from
every vertex u ∈ V . Given a hop budget H we select a subset Wj ⊆ V such that

∑
u∈Wj

h(vj , u) ≤
H. This can be effectively done by modifying the classical Dijkstra algorithm giving the minimum
spanning tree, so that it adds a new vertex to the tree only if there are enough hops left to go
from that vertex to the root. The vertices in Wj belong to a minimum cost tree that routes sig-
nal samples to vj , where yj can be computed.

This is exemplified in Figure 3.39 where the largest red disk represents the randomly chosen
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root vj and we are given a hop budget H = 16. The 3 nearest neighbors of vj are included in
Wj and consume a total of 1 hop each to communicate their values to the root along the red solid
edges. Four nodes can connect to the nearest neighbors of the root by means of red dashed edges
and thus can communicate their value with 2 hops each. Since the budget is not exhausted by
these 11 hops we may add further vertices. However, we cannot accomodate all the vertices that
communicate with the root with 3 hops. In this case, a random node is selected among the candi-
dates to satisfy our budget.

vj

Figure 3.39: A generalization of single-vertex
sampling. In the graph nodes are connected only
if they are closer than a certain threshold.

Once these signal values are collected, the
root may linearly combine them in multiple
ways by adopting different weighting coeffi-
cients, thus producing more than one mea-
surement. This sample reuse saves communi-
cation costs but limits the diversity that can
be exploited in computing the measurements.
Hence, given a certain M and ∆m = dm/Me,
measurements are taken from independently
drawn roots vj and neighborhoods Wj for
j = 0, . . . ,∆m − 1. Then, we assume
vj = vj (mod ∆m) and Wj = Wj (mod ∆m)

for j ≥ ∆m.
As far as coefficients are concerned, the

most trivial, CS-inspired, option is to take
each non-null entry of S to be the realization of an independent normal random variable. We will
denote this classical choice as the random option.

3.10.2 Correlation graph and Rakeness-Based CS

Independently of their sparsity, most signals feature some sort of energy localization that can be
detected by considering their correlation matrix X = E[xx⊤] and verifying that its eigenvalues
are not identical and, thus, there are subspaces along which most of the energy of x concentrates.
Localization and sparsity are different priors since the subspaces along which energy concentrates
does not need to be κ-dimensional canonical subspaces in the sparsity reference system.

It is a graph prior since the matrix X is a symmetric matrix that can be interpreted as the in-
cidence matrix of a complete, graph where the edge between vertex v′ and vertex v′′ has a weight
E[xv′xv′′ ].

The exploitation of such a prior to optimize CS for time-domain signals has been investigated
based on the rakeness concept107. The basic observation is that it is convenient to design the
statistics of the coefficients Sj,u such that yj is, on the average, able to rake as much energy as
possible from the signal. Due to the random nature of the signal, observing only its maximum-
energy component (the so-called principal component) is not enough to reconstruct it and energy
maximization should be tempered by the need to span the whole signal space. This results in a
design flow that solves a constrained maximization problem that depends on the correlation of the
signal to be acquired. This optimization problem outputs the correlation matrix of the process
that should be used to generate the coefficients Sj,u to improve the acquisition capabilities and
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performance of CS108.
Hence, as a second option, instead of drawing the coefficients as random independent normals,

for each vertex subset Wj the correlation subgraph with incidence matrix X|Wj
linking the vertices

in Wj is used as an input for textcolorredthe rakeness-based design of the corresponding set of co-
efficients. We use the simplest version of the aforementioned design flow such that the correlation
matrix of the set of coefficients turns out to be

Σ|Wj
=

1

2

(
X|Wj

tr
(
X|Wj

) + Inj

nj

)
(3.70)

where nj = |Wj | is the cardinality of Wj and Inj
is the nj ×nj matrix. Given Σ|Wj

symmetric and
positive semidefinite the non-null entries of the j-th row of S are realizations of jointly-Gaussian
random variables whose correlation matrix is ΣWj .

3.10.3 Empirical evidence

To assess the effectiveness of the proposed approach we perform a Montecarlo analysis of a few
configurations. In all trials n = 128 while the sparsity level is taken as κ ∈ {6, 12, 24} to explore
priors with different strengths.

In each trial the sampling graph is a realization of a Geometric random graph with n nodes uni-
formly distributed in [0, 1]2 with connections if their distance is less than 0.15 (label Geo-0.15).
Hop budgets H ∈ {64, 128, 256} are considered. The sparsity graph can either be the same as the
sampling graph or the realization of one of the following random graphs:

• Erdös-Rényi graph with probability of connection equal to 0.1 (label ER-0.1)

• Barabasi-Albert graph whose construction starts from a 10-vertices ER-0.1 and connects ev-
ery new vertex to 5 previous vertices (label BA-10-5)

• Watts-Strogatz graph with 6 neighbors in the initial ring and with a rewiring probability
equal to 0.3 (label WS-6-0.3)

In all cases possibly non-connected realizations are discarded.
To simulate localization, the κ non-zero components in ξ are selected with a non-uniform prob-

ability. This probability distribution is communicated to neither the sampling mechanism nor the
reconstruction algorithm. What is known by the sampling stage is only the correlation matrix
X = E[xx⊤] from which the various correlation submatrices X|Wj

are taken to compute (3.70).
White Gaussian noise is added to the samples giving them an Intrinsic Signal-to-Noise-Ratio

ISNR = 60 dB. Reconstruction is obtained by Basis Pursuit with De-noising (BPDN) as imple-
mented by SPGL1109.

Performance is evaluated as the Probability of Correct Reconstruction (PCR) defined as the
probability that the relative error in the reconstruction corresponds to a loss of not more than
6 dB with respect to the ISNR, i.e., PCR = Pr {∥x∥/∥x−x̂∥ ≥ 54 dB}.

The qualitative features of all the observed trends coincide. Figure 3.40 reports how the PCR
depends on the number of measurements in three cases that correspond to κ = 6, 12, 24, i.e., to
progressively weakening sparsity priors. The vertex-only option (black dotted track) is taken as a
reference.
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Figure 3.40: PCR plotted against m for different configurations. Track color indicates the avail-
able hop budget (H = 0 signifying vertex-only sampling). Solid lines correspond to random CS,
dashed lines correspond to rakeness-based CS. The number of measurements needed to guaran-
tee a PCR of 95% is highlighted for vertex-only sampling (H = 0) and for the best random and
rakeness-based options. In a) κ = 6, the sparsity graph is the same Geo-0.15 used for sampling,
and each vertex contributes not more than M = 4 measurements. In b) κ = 14, the sparsity graph
is WS-6-0.3, and each vertex contributes not more than M = 8 measurements. In c) κ = 24, the
sparsity graph is ER-0.1, and each vertex contributes not more than M = 16 measurements.

In all those plots as well as in all tested cases, the position of the continuous tracks shows that
if the samples collected by local communication are combined with purely random coefficients no
gain is obtained. Local communication can be traded for long-range one only if we exploit the cor-
relation graph by means of rakeness-based CS. An optimized choice of the coefficients leverages
the availability of multiple samples to compute more informative measurements. Hence, the same
reconstruction quality can be obtained at the hub even if less measurements are sent to it through
long-range transmission.

This points toward a possible power saving. To quantify this, we normalize to 1 the energy
needed by a long-range transmission so that the cost of a short-range transmission gets normal-
ized to the ratio ϵ discussed in the Introduction. With this, the power needed by the collection of
samples and transmission of the measurements is PCS = mCS + ϵH

⌈
mCS

/M
⌉
, where m∗ is the num-

ber of measurement needed to achieve the prescribed performance, M is the maximum number of
measurement that each node can compute with the samples it collected, and H is the hop budget
constraining sample collection. This compares favorably with PVS = mVS, i.e., with the power
(equal to the number of measurements) needed to achieve the same performance level by simple
vertex-sampling.

Figure 3.41 reports the ratio PCS/PVS when the desired PCR is set to 95% and in all the cases
we tested in an extensive Monte-Carlo simulation.

Though it is evident that as the sparsity prior κ increases, our framework looses its ability of
allowing substantial subsampling and thus power saving, rakeness-based CS is almost always able
to yield substantial power saving. Actual saving depends on the relationship between the spar-
sity graph and the sampling graph and on the value of ϵ, but in most of the non-extreme cases, at
least 25% of the power is unnecessary if rakeness-based CS is adopted.

Hence, rakeness-based CS applied to multiple-graph signals is an effective way to administer the
trade-off between short- and long-range communication in a quite common IoT scenario that sees
the interplay of local WSN and geographic information hubs. It is estimated that its exploitation
may yield not less than 25% of power saving.
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Figure 3.41: Power saving with respect to vertex-only sampling in all the tested configurations.
Each group of 4 points with the same shape and color correspond to the 4 sparsity graph (ER-01,
BA-10-2, WE-10-0.6, and Geo-0.51). The color of a point indicates the available hop budget H,
while its shape indicates the maximum number of measurements M provided by each vertex. Dif-
ferent sparsities κ are shown and for each sparsity, random and rakeness-based CS is considered.
The upper plot considers a ratio between the energy needed by short-range and long-range com-
munication equal to ϵ = ϵmin = 1.4 × 10−4. The lower plot considers ϵ = ϵmax = 2.4 × 10−3.
Highlighted points correspond to the a), b), and c) plots of Figure 3.40.
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3.11 Applications: Bayesian Sampling and Recovery of Smooth Signals on Graphs

Figure 3.42: Graph representation
of the USPS Digit dataset

In the semi-supervised learning setting, it is often of interest
to provide a confidence score or a level of uncertainty in ad-
dition to our decision. Towards this goal, in this work, we in-
troduce a Bayesian treatment of semi-supervised learning on
graphs via sampling theory. We build an appropriate prior
distribution to model smooth signals or label distributions on
a graph. We can then perform semi-supervised learning on a
graph by sampling the graph using the optimal random sam-
pling distribution and then recovering the label distribution.
When constructing the posterior, a key issue that needs to be
overcome is that the label space is discrete while the graph
signal is continuous. We study the posterior distribution of
the labels under this framework and introduce scalable nu-
merical methods, for MCMC-based sampling to sample from
the posterior distribution which is often intractable. We can
estimate the mean and variance of the posterior distribution

over each node which we argue capture the confidence score and the uncertainty for the estimate
at the node. We specifically study relationships between uncertainty quantification and the graph
structure. We use real-world data to further demonstrate and validate our framework.

3.12 Applications: Energy-Efficient Route Planning for Autonomous Aerial Vehi-
cles

We use graph signal sampling and recovery techniques to plan routes for autonomous aerial vehi-
cles. We proposed a novel algorithm that plans an energy-efficient flight trajectory by considering
the influence of wind. We model the weather stations as nodes on a graph and model wind veloc-
ity at each station as a smooth graph signal.110
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4
Reconstruction of Piecewise Smooth Graph Signals

99



Signal estimation from noisy observations is a classic problem in signal processing and has ap-
plications in signal inpainting, collaborative filtering, recommendation systems and other large-
scale data completion problems. Since noise can have deleterious, cascading effects in many down-
stream tasks, being able to efficiently and accurately filter and reconstruct a signal is of significant
importance.

In graph signal processing, a common assumption is that the graph signal is smooth with re-
spect to the graph, that is, the signal coefficients do not vary much over local neighborhoods of
the graph. However, this characterization is insufficient for many real-world signals that exhibit
spatially inhomogeneous levels of smoothness over the graph. In social networks for example, within
a given community or social circle, users’ profiles tend to be homogeneous, while within a different
social circle they will be of different, yet still have homogeneous values. Consequently, the signal
is often characterized by large variations between regions and small variations within regions such
that there are localized discontinuities and patterns in the signal. As a result, it is necessary to
develop representations and algorithms to process and analyze such piecewise smooth graph sig-
nals.

In this chapter, we study the denoising of the class of piecewise smooth graph signals (includ-
ing but not limited to piecewise constant graph signals), which is complementary to the class of
smooth graph signals that exhibit homogeneous levels of smoothness over the graph. The recon-
struction of smooth graph signals has been well studied in previous work both within graph signal
processing1,111 as well as in the context of Laplacian regularization112,113. In this chapter, we de-
velop frameworks and algorithms for the reconstruction and sampling of piecewise-smooth graph
signals. We follow a similar structure to the presentation in Chapter 3 for smooth signals where
we first present a framework for reconstructing or estimating piecewise smooth signals as defined
in Section 2.3. Particularly, we want to understand the difference between graph total variation
denoising and wavelet smoothing on graphs. As in Section 3.7, we study methods from both the
analysis framework for signal estimation and the synthesis framework. We present both the graph
trend filtering formulation which falls under the analysis framework, and wavelet thresholding
which falls under the synthesis framework. We also propose studying how these two frameworks
are fundamentally different both in terms of their empirical performance and theoretical proper-
ties

4.1 Graph Trend Filtering

4.1.1 Introduction

The Graph Trend Filtering (GTF) framework30, which applies total variation denoising to graph
signals114, is a particularly flexible and attractive approach that regularizes discrete graph differ-
ences using the ℓ1 norm. Although the ℓ1 norm based regularization has many attractive proper-
ties115, the resulting estimates are biased toward zero for large coefficients. To alleviate this bias
effect, non-convex penalties such as the Smoothly Clipped Absolute Deviation (SCAD) penalty116

and the Minimax Concave Penalty (MCP)117 have been proposed as alternatives. These penal-
ties behave similarly to the ℓ1 norm when the signal coefficients are small, but tend to a constant
when the signal coefficients are large. Notably, they possess the so-called oracle property: in the
asymptotics of large dimension, they perform as well as the case where we know in advance the
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support of the sparse vectors118-122.
In this work, we strengthen the GTF framework in30 by considering a large family of possibly

non-convex regularizers, including SCAD and MCP that exhibit superior reconstruction perfor-
mance over ℓ1 minimization for the denoising of piecewise smooth graph signals. Furthermore, we
extend the GTF framework to allow vector-valued signals, e.g. time series, on each node of the
graph, which greatly broadens the applicability of GTF to applications in social networks123, gene
networks, and semi-supervised classification124 125.

Through theoretical analyses and empirical performance, we demonstrate that the use of non-
convex penalties improves the performance of GTF in terms of both reduced reconstruction error
and improved support recovery, i.e. how accurately we can localize the discontinuities of the piece-
wise smooth signals. Our contributions can be summarized as follows:

• Theoretically, we derive the statistical error rates of the signal estimates, defined as first-
order stationary points of the proposed GTF estimator. We derive the rates in terms of
the noise level and the alignment of the ground truth signal with respect to the underlying
graph, without making assumptions on the piecewise smoothness of the ground truth sig-
nal. The better the alignment, the more accurate the estimates. Importantly, the estimators
do not need to be the global minima of the proposed non-convex problem, which are much
milder requirements and important for the success of optimization. For denoising vector-
valued signals, the GTF estimate is more accurate when each dimension of the signal shares
similar patterns across the graph.

• Algorithmically, we propose an ADMM-based algorithm that is guaranteed to converge to a
critical point of the proposed GTF estimator.

• Empirically, we demonstrate the performance improvements of the proposed GTF estima-
tors with non-convex penalties on both synthetic and real data for signal estimation, support
recovery, event detection, and semi-supervised classification.

The rest of this section is organized as follows. Section 4.1.2 reviews related works and their
relationships to our work and an introduction to graph trend filtering. Section 4.2 presents the
proposed GTF framework with non-convex penalties and vector-valued graph signals. Section 4.3
develops its performance guarantees, and Section 4.4 presents an efficient algorithm based on
ADMM. Numerical performance of the proposed approach is examined on both synthetic and real-
world data for denoising and semi-supervised classification in Section 4.5. Throughout this paper,
we use boldface letters a and A to represent vectors and matrices respectively. The transpose of
A is denoted as A⊤. The ℓ-th row of a matrix A is denoted as Aℓ·, and the j-th column of a ma-
trix A is denoted as A·j . The cardinality of a set T is denoted as |T |. For any set T ⊆ {1, 2, ..., r}
and x ∈ Rr, we denote (x)T ∈ R|T | such that xℓ ∈ (x)T if and only if ℓ ∈ T for ℓ ∈ {1, 2, ..., r}.
Similarly, we define a submatrix AT · ∈ R|T |×d of A ∈ Rr×d that corresponds to pulling out the
rows of A indexed by T . The ℓ2 norm of a vector a is defined as ‖a‖2, and the spectral norm of
a matrix A is defined as ‖A‖. The pseudo-inverse of a matrix A is defined as A†. For a func-
tion h(x) : Rp → R, we write ∇xh(x)|x=x∗ to denote the gradient or subdifferential of h(x),
if they exist, evaluated at x = x∗. When the intention is clear, this may be written concisely
as ∇h(x∗). We also follow the standard asymptotic notations. If for some constants C,N > 0,
|f(n)| ≤ C|g(n)| for all n ≥ N , then f(n) = O(g(n)); if g(n) = O(f(n)), then f(n) = Ω(g(n)).
Finally, Table 4.1 summarizes some key notations used here for convenience.
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Symbol Description Dimension

∆ oriented incidence matrix m× n

∆(k+1) kth order graph difference operator r × n
β scalar-valued graph signal n
B vector-valued graph signal n× d
y noisy observation of β n
Y noisy observation of B n× d
∆ℓ· ℓ-th row of ∆ n
B·j j-th column of B n

∥∆(k+1)∥ spectral norm of ∆(k+1) 1

Table 4.1: Key notation used in this chapter

4.1.2 Related Work and Connections

Estimators that adapt to spatial inhomogeneities have been well studied in the literature via reg-
ularized regression, total variation and splines126-128. Most of these methods involve locating
change points or knots that denote a distinct change in the behavior of the function or the signal.

For example, in one of the earliest relevant works126, least-squares regression penalized with
total variation penalties127,128 are shown to be least squares splines with locally data-adaptive
placed knots.

Our work is most related to the spatially adaptive GTF estimator introduced in30 that smoothens
or filters noisy signals to promote piecewise smooth behavior with respect to the underlying graph
structure; see also129. In the same spirit as126, the fused LASSO and univariate trend filtering
framework developed in114,130,31 use discrete difference operators to fit a time series signal using
piecewise polynomials. The GTF framework generalizes univariate trend filtering by generalizing a
path graph to arbitrarily complex graphs. Specifically, by appropriately defining the discrete dif-
ference operator, we can enforce piecewise constant, piecewise linear, and more generally piecewise
polynomial behaviors over the graph structure. In comparison to previous work30, in this chapter,
we have significantly expanded its scope by allowing vector-valued data over the graph nodes and
a broader family of possibly non-convex penalties.

We note that while a significant portion of the relevant literature on GTF or the fused LASSO
has focused on the sparsistency or support recovery conditions under which we can ensure the re-
covery of the location of the discontinuities or knots131,132, in this work, we study the asymptotic
error rates of our estimator with respect to the mean squared error. Our analysis of error rates
leverages techniques in133,134 that result in sharp error rates of total variation denoising via oracle
inequalities, which we have carefully adapted to allow non-convex regularizers. The obtained error
rates can be translated into bounds on support recovery or how well we can localize the boundary
by leveraging techniques in135.

Employing a graph-based regularizer that promotes similarities between the signal values at
connected nodes has been investigated by many communities, such as graph signal processing, ma-
chine learning, applied mathematics, and network science. The Network LASSO proposed in123,
which is similar to the GTF framework with multi-dimensional or vector-valued data, focused on
the development of efficient algorithms without any theoretical guarantees. The recent works by
Jung et al.125,136,124 have analyzed the performance of Network LASSO for semi-supervised learn-
ing when the graph signal is assumed to be clustered according to the labels using the network
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Figure 4.1: Illustration of piecewise smooth signals on the Minnesota road graph. From left to
right: piecewise constant (k = 0), piecewise linear (k = 1), and piecewise quadratic (k = 2) graph
signals. Note that the highlighted change points, i.e. the support of ∆(k+1)β⋆, are edges for even k
and nodes for odd k.

null space property and the network compatibility condition inspired by related concepts in com-
pressed sensing137. In contrast, our analysis does not make assumptions on the graph signal, and
the error rate is adaptive to the alignment of the signal and the graph structure used in denoising.

A well-studied generalization of the sparse linear inverse problem is when there are multiple
measurement vectors (MMV), and the solutions are assumed to have a common sparsity pattern 138 139-
140. Sharing information across measurements, and thereby exploiting the conformity of the spar-
sity pattern, has been shown to significantly improve the performance of sparse recovery in com-
pressive sensing and sparse coding141-145. Motivated by these works, we consider vector-valued
graph signals that are regarded as multiple measurements of scalar-valued graph signals sharing
discontinuity patterns.

There are a few variants of non-convex penalties that promote sparsity such as SCAD, MCP,
weakly convex penalties, and ℓq (0 ≤ q < 1) minimization118,146-. In this thesis, we consider
and develop theory for a family of non-convex penalties parametrized similarly to that in118 with
SCAD and MCP as our prime examples, although it is valid for other non-convex penalties.

More broadly, a significant amount of work has been devoted towards image denoising. Pre-
vious work related to signal recovery include Gaussian smoothing, Wiener local empirical filter-
ing, and wavelet thresholding methods. Signal inpainting reconstructs lost or deteriorated parts
of signals, including images and videos. Standard techniques include total variation-based meth-
ods which have enjoyed widespread popularity111,127,128, image model-based methods and sparse
representations. It is natural to view graph trend filtering as a generalization of total variation de-
fined on an image (a 2d grid) to arbitrary weighted graphs. Some of the first works generalizing
total variation to graph total variation include129. Further, in the context of graphs, signal re-
covery or denoising algorithms have been presented for globally smooth signals26 especially in the
context of graph Laplacian regularization112,113,147,148,149,150,151,152. However, as we discuss later,
these are not locally adaptive which limits their efficacy in many settings.
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4.1.3 Denoising Piecewise Smooth Graph Signals via GTF

Assume we observe a noisy signal y over the graph under i.i.d Gaussian noise:

y = β⋆ + ϵ, ϵ ∼ N (0, σ2I), (4.1)

and seek to reconstruct β⋆ from y by leveraging the graph structure. When β is a smooth graph
signal, Laplacian smoothing112,113,147-149 can be used, which solves the following problem:

min
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖22, (4.2)

where λ > 0. However, it cannot localize abrupt changes in the graph signal when the signal is
piecewise smooth.

Graph trend filtering (GTF)30 is a flexible framework for estimation on graphs that is adap-
tive to inhomogeneity in the level of smoothness of an observed signal across nodes. The kth order
GTF estimate is defined as:

min
β∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)β‖1, (4.3)

which can be regarded as applying total variation or fused LASSO with the graph difference op-
erator ∆(k+1) 114,32. The sparsity-promoting properties of the ℓ1 norm have been well-studied153.
Consequently, applying the ℓ1 penalty in GTF sets many of the (higher-order) graph differences
to zero while keeping a small fraction of non-zero values. GTF is then adaptive over the graph; its
estimate at a node adapts to the smoothness in its localized neighborhood.

Remark 3. We can use mixed piecewise penalties to encourage different kinds of piecewise poly-
nomial behavior by stacking the graph difference matrices of different orders. For example, we
can use a regularizer λ‖∆(l+1)β‖1 + γ‖∆(m+1)β‖1 and optimize (4.3) with ∆(k+1) replaced by
∆̃ =

[
∆(l+1)⊤; γ/λ∆(m+1)⊤]⊤. In this chapter, however, we only consider the basic graph differ-

ence operator defined for a fixed k.

4.2 Vector-Valued GTF with Non-Convex Penalties

In this section, we first extend GTF to allow a broader family of non-convex penalties and then
extend it to handle vector-valued signals over the graph.

4.2.1 (Non-)convex Penalties

The ℓ1 norm penalty considered in (4.3) is well-known to produce biased estimates , which moti-
vates us to extend the GTF framework to a broader class of sparsity-promoting regularizers that
are not necessarily convex. We wish to minimize the following generalized kth order GTF loss
function:

f(β) =
1

2
‖y − β‖22 + g(∆(k+1)β;λ, γ), β ∈ Rn, (4.4)

where
g(∆(k+1)β) ≜ g(∆(k+1)β;λ, γ) =

r∑
ℓ=1

ρ((∆(k+1)β)ℓ;λ, γ)
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is a regularizer defined as the sum of the penalty function ρ(·;λ, γ) : R → R applied element-wise
to ∆(k+1)β. Here, r = m for even k and r = n for odd k to account for different dimensions of
∆(k+1); see (2.4). We will refer to the GTF estimator that minimizes f(β) as scalar-GTF.

Similarly to118,120,154, we consider a family of penalty functions ρ(·;λ, γ) that satisfies the fol-
lowing assumptions.

Assumption 1. Assume ρ(·;λ, γ) satisfies the following:

(a) ρ(t;λ, γ) satisfies ρ(0;λ, γ) = 0, is symmetric around 0, and is non-decreasing on the real
non-negative line.

(b) For t ≥ 0, the function t 7→ ρ(t;λ,γ)
t is non-increasing in t. Also, ρ(t;λ, γ) is differentiable for

all t 6= 0 and sub-differentiable at t = 0, with limt→0+ ρ
′(t;λ, γ) = λ. This upper bounds

ρ(t;λ, γ) ≤ λ|t|.

(c) There exists µ > 0 such that ρ(t;λ, γ) + µ
2 t

2 is convex.

Many penalty functions satisfy these assumptions. Besides the ℓ1 penalty, the non-convex SCAD116

penalty

ρSCAD(t;λ, γ) = λ

∫ |t|

0

min

(
1,

(γ − u/λ)+
γ − 1

)
du, γ ≥ 2, (4.5)

and the MCP117

ρMCP(t;λ, γ) = λ

∫ |t|

0

(
1− u

λγ

)
+

du, γ ≥ 1 (4.6)

also satisfy them. We note that Assumption 1 (c) is satisfied for SCAD with µ ≥ µSCAD = 1
γ−1

and for MCP with µ ≥ µMCP = 1
γ . Fig. 4.2 illustrates the ℓ1, SCAD and MCP penalties for

comparison. While the non-convexity means that in general, we may not always find the global
optimum of f(β), it often affords us many other advantages. SCAD and MCP both taper off to
a constant value and hence apply less shrinkage for higher values. As a result, they mitigate the
bias effect while promoting sparsity. Further, they are smooth and differentiable for t ≥ 0 and are
both upper bounded by the ℓ1 penalty for all t.

4.2.2 Vector-Valued GTF

In many applications, the signals on each node are in fact multi-dimensional or vector-valued, e.g.
time series in social networks, multi-class labels in semi-supervised learning, feature vectors of dif-
ferent objects in feature selection. Therefore, it is natural to consider an extension to the graph
signal denoising problem, where the graph signal on each node is a d-dimensional vector instead
of a scalar. In this scenario, we define a vector-valued graph signal to be piecewise smooth if it
is piecewise smooth in each of its d dimensions, and assume their discontinuities to coincide over
the same small set of edges or nodes. Further, we denote the vector-valued signal of interest as
B⋆ ∈ Rn×d, such that the ith row of the matrix B corresponds to the ith node of the graph. The
noise model for the observation matrix Y ∈ Rn×d is defined as

Y = B⋆ +E, (4.7)
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Figure 4.2: Illustration of ρ(·;λ, γ) for ℓ1, SCAD (γ = 3.7), and MCP (γ = 1.4), where λ = 2.
Both SCAD and MCP move towards ℓ1 as γ increases.

where each element of E ∈ Rn×d is drawn i.i.d from N (0, σ2). A naïve approach is to estimate
each column B·j of B separately via scalar-GTF:

min
B∈Rn×d

d∑
j=1

f(B·j). (4.8)

However, this formulation does not take full advantage of the multi-dimensionality of the graph
signal. Instead, when the columns of B are correlated, coupling them can be beneficial such that
we encourage the sharing of information across dimensions or features. For example, if one col-
umn B·i exhibits strong piecewise smoothness over the graph, and therefore has compelling evi-
dence about the relationship between nodes, sharing that information to a related column B·j can
improve the overall denoising and filtering performance. As a result, we formulate a vector-GTF
problem as follows:

min
B∈Rn×d

1

2
‖Y −B‖2F + h(∆(k+1)B;λ, γ), (4.9)

where the new penalty function h(∆(k+1)B) ≜ h(∆(k+1)B;λ, γ) : Rr×d → R is the sum of
ρ(·;λ, γ) applied to the ℓ2 norm of each row of ∆(k+1)B ∈ Rr×d:

h(∆(k+1)B ;λ, γ) =

r∑
ℓ=1

ρ
(
‖(∆(k+1)B)ℓ·‖2;λ, γ

)
. (4.10)

By enforcing sparsity on
{
‖(∆(k+1)B)ℓ·‖2

}
1≤l≤r

, we are coupling ∆(k+1)B·j to be of similar spar-
sity patterns across j = 1, . . . , d. Note the difference from (4.8), where elements of (∆(k+1)B)ℓ·
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can be set to zero or non-zero independently.

4.3 Theoretical Guarantees and Statistical Limits

In this section, we present the error rates and support recovery guarantees of the generalized GTF
estimators, namely scalar-GTF (5.3) and vector-GTF (4.9), under the AWGN noise model. Before
continuing, we first define a few useful quantities. Let CG be the number of connected components
in the graph G, or equivalently, the dimension of the null space of ∆(k+1). Further, let r be the
number of rows of ∆(k+1), and ζk be the maximum ℓ2 norm of the columns of ∆(k+1)†.

Throughout this section, we assume the penalty function, in addition to Assumption 1, also
satisfies the following.

Assumption 2.
µ <

1

‖∆(k+1)‖2
.

Proposition 1 (Bound on ζ). If the graph Laplacian matrix has λ2(L) > 0, then ζ ≤ 1/λ2(L)
k+1
2

for odd k, and ζ ≤
√
2/λ2(L)

k
2+1 for even k.

4.3.1 Error Rates of the Global Minimizers

We first bound the error rates of the global minimizer of the generalized GTF estimators (5.3) and
(4.9), whose proof is given in Appendix B.1.1.

Theorem 21 (Error bounds of the GTF minimizer). Assume µ < 1
∥∆(k+1)∥2 . Fix δ ∈ (0, 1). For

scalar-GTF (5.3), let β̄ to be its minimizer. Set λ = σζ
√

2 log( erδ ), then

‖β̄ − β⋆‖22
n

≤ 4g(∆(k+1)β⋆)

n(1− µ‖∆(k+1)‖2)
(4.11)

+
σ2

n

(
CG + 2

√
2CG log

(
1

δ

))
(4.12)

with probability at least 1 − 2δ. Similarly, for vector-GTF (4.9), let B to be its minimizer. Set
λ = σζ

√
2d log( edrδ ), then

‖B −B⋆‖2F
dn

≤ 4h(∆(k+1)B⋆)

dn(1− µ‖∆(k+1)‖2)
(4.13)

+
σ2

n

(
CG + 2

√
2CG log

(
d

δ

))
(4.14)

with probability at least 1− 2δ.

Moreover, λ2(L) ≥ 4
nD , where D is the diameter of the graph. Consequently, we get faster

rates when the graph is well-connected and has a small diameter. When ‖∆(k+1)β⋆‖1 = O(1)

and the graph is fully connected such that CG = 1, the estimate β̄ converges in probability with
respect to its average squared error at the rate ζ

√
log r/n. It is shown in30 that ζ ≤ 1

λ2(L)(k+1)/2 ,
where λ2(L) is the smallest non-zero eigenvalue of the graph Laplacian matrix L = ∆(1)T∆(1)

and quantifies the algebraic connectivity of the graph155. Moreover, one can bound λ2(L) ≥ 4
nD ,
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where D is the diameter of the graph. Consequently, we get faster rates when the graph is well-
connected and has a small diameter.

Proposition 2 (Bound on ζ). If the graph Laplacian matrix has λ2(L) > 0, then ζ ≤ 1/λ2(L)
k+1
2

for odd k, and ζ ≤
√
2/λ2(L)

k
2+1 for even k.

Using Proposition 2, we can further specialize the rates in Theorem 21 for some representative
graphs to gain further insights.

• Chain graph: For univariate trend filtering,

‖β̂ − β⋆‖22
n

= O

(√
log n

n
nk
∥∥∆(k+1)β⋆

∥∥
1

)
.

• d-regular graphs and Erdős-Rényi random graphs: For d-regular graphs as well as Erdős-
Rényi random graphs with edge probability p ∈ (0, 1) such that d = np,

‖β̂ − β⋆‖22
n

= O

(√
log(nd)

nd
k+1
2

∥∥∆(k+1)β⋆
∥∥
1

)
.

Proof. Proof and further discussion deferred to Appendix.

Theorem 22 (Error bound of extended GTF minimizer). Define B to be the minimizer of the
extended GTF loss function in (4.9), and B⋆ as defined in (4.7). Fix δ ∈ (0, 1). Then setting λ =

σζ
√

2 log( erδ ), and for a penalty function ρ(·;λ, γ) such that µ < 1
∥∆(k+1)∥2

2
,

‖B −B⋆‖2F
n

≤ O
(
C

n

)
+

4λ2r(
√
d− 1)2

(1− µ‖D‖22)2n
+

4hλ(DB⋆)

(1− µ‖D‖22)n
(4.15)

with at least probability 1− 2δ.

4.3.2 Error Rates of First-order Stationary Points

Due to non-convexity, global minima of the proposed GTF estimators may not be attainable.
Therefore, it is more desirable to understand the statistical performance of any first-order station-
ary points of the GTF estimators by considering oracle inequalities. We call β̂ ∈ Rn a stationary
point of f(β), if it satisfies

0 ∈ ∇βf(β)|β=β̂.

We further introduce the compatibility factor, which generalizes the notion used in133 to allow
vector-valued signals.

Definition 14 (Compatibility factor). Let ∆(k+1) be fixed. The compatibility factor κT,d of a set
T ⊆ {1, 2, . . . , r} is defined as κ∅,d = 1, and for nonempty set T ,

κT,d(∆
(k+1)) = inf

B∈Rn×d

{ √
|T | · ‖B‖F∑

ℓ∈T ‖(∆(k+1)B)ℓ·‖2

}
.
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To further build intuition, consider
√
|T |κT,1(∆)−1 = supβ∈R{‖(∆)Tβ‖1/‖β‖2}. This is pre-

cisely the definition of ‖(∆)T ‖1,2, an induced norm of the |T | × n submatrix of ∆. If we consider
signals with fixed power ‖β‖22 = 1, ‖(∆)Tβ‖1 will depend on how much the T edges are connected
to each other. Together with ‖(∆)Tβ‖1 ≤

√
|T |‖(∆)Tβ‖2, κT,1(∆) can be related to the re-

stricted eigenvalue condition, which is often used to bound the performance of LASSO137. With
slight abuse of notation, we write κT := κT,d.

We have the following oracle inequality that is applicable to the stationary points of the GTF
estimators, whose proof is given in Appendix B.1.3. The proof follows a construction that is sim-
ilar to Theorem 2 in133. The oracle inequality holds for any β̂ that satisfies the first order opti-
mality condition. This mild condition on β̂ that they are stationary points allows us to use our
ADMM-based algorithm and non-convex penalties. This is a key difference with30 Theorem 3
and156 Theorem 1 which holds for global minima which we cannot always guarantee when using
non-convex penalties.

We stress that although GTF was motivated by piecewise smooth graph signals, Theorem 23
holds for any graph G and graph signal β⋆.

Theorem 23 (Oracle inequality of GTF stationary points). Assume µ < 1/‖∆(k+1)‖2. Fix δ ∈
(0, 1). For scalar-GTF (5.3), let β̂ be a stationary point. Set λ = σζk

√
2 log

(
er
δ

)
, then

‖β̂ − β⋆‖22
n

≤ inf
β∈Rn

{
‖β − β⋆‖22 + 4g((∆(k+1)β)T c)

n

}

+
2σ2

[
CG + 2

√
2CG log( 1δ ) +

8ζ2
k|T |
κ2
T

log( erδ )
]

n(1− µ‖∆(k+1)‖2)
(4.16)

with probability at least 1 − 2δ for any T ⊆ {1, 2, ..., r}. Similarly, for vector-GTF (4.9), let B̂ be
a stationary point. Set λ = σζk

√
2d log( edrδ ), then

‖B̂ −B⋆‖2F
dn

≤ inf
B∈Rn×d

{
‖B −B⋆‖2F + 4h((∆(k+1)B)T c)

dn

}

+

2σ2

[
CG + 2

√
2CG log(dδ ) +

8ζ2
k|T |
κ2
T

log( edrδ )

]
n(1− µ‖∆(k+1)‖2)

(4.17)

with probability at least 1− 2δ for any T ⊆ {1, 2, ..., r}.

Remark 4. Recall that µ is defined in Assumption 1 (c), which characterizes how “non-convex”
the regularizer is, and dictates the inflection point in Fig. 4.2. The assumption µ < 1/‖∆(k+1)‖2

in Theorem 23 therefore implicitly constrains the level of non-convexity of the regularizer. Take
MCP in (B.2) for example: since µ ≥ 1/γ, we can guarantee the existence of a valid µ such that
µ < 1/‖∆(k+1)‖2 as long as we set γ > ‖∆(k+1)‖2.

Theorem 23 allows one to select β and T to optimize the error bounds on the right hand side of
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(4.16) and (4.17). For example, pick β = β⋆ in (4.16) (hence an “oracle”) to have

‖β̂ − β⋆‖22
n

≤ 4g((∆(k+1)β⋆)T c)

n

+
2σ2

[
Cδ

G + 8ζ2kκ
−2
T |T | log(

er
δ )
]

n(1− µ‖∆(k+1)‖2)
, (4.18)

where Cδ
G = CG + 2

√
2CG log( 1δ ).

• By setting T as an empty set, we have

‖β̂ − β⋆‖22
n

≤ 4g(∆(k+1)β⋆)

n
+

2σ2Cδ
G

n(1− µ‖∆(k+1)‖2)
, (4.19)

which suggest that the reconstruction accuracy improves when the ground truth β⋆ is better
aligned with the graph structure, and consequently the value of g(∆(k+1)β⋆) is small.

• On the other hand, by setting T as the support of ∆(k+1)β⋆, we achieve

‖β̂ − β⋆‖22
n

≤
2σ2

[
Cδ

G + 8ζ2kκ
−2
T ‖∆(k+1)β⋆‖0 log( erδ )

]
n(1− µ‖∆(k+1)‖2)

,

which grows linearly as we increase the sparsity level ‖∆(k+1)β⋆‖0.

Similar discussions can be conducted for vector-GTF by choosing B = B⋆ in (4.17). More im-
portantly, we can directly compare the performance of vector-GTF with scalar-GTF, which was
formulated for vector-valued graph signals in (4.8). The error bound of vector-GTF pays a small
price in the order of log d, but is tighter than scalar-GTF if h((∆(k+1)B⋆)T c)�

∑d
j=1 g((∆

(k+1)B⋆
·j)T c).

This suggests that vector-GTF is much more advantageous when the support sets of ∆(k+1)B⋆
·j

for j = 1, . . . , d overlap, i.e. when the local discontinuities and patterns in B⋆
·j are shared.

4.3.3 Comparison with Scalar-GTF using ℓ1 Regularization

We compare our error bound for scalar-GTF, that is, on ‖β̂ − β⋆‖22/n, with30 Theorem 3, which is
obtained for GTF with the ℓ1 penalty, reproduced below for convenience.

Theorem 24 (Basic error bound of ℓ1 GTF minimizer). If λ = Θ(σζk
√
log r), then β̂, the mini-

mizer of (4.3), satisfies

‖β̂ − β⋆‖22
n

= O

(
λ‖∆(k+1)β⋆‖1

n
+
σ2CG

n

)
.

The above bound is comparable to our bound in the special case of setting T to an empty set,
i.e. (4.19). The first term of the bound in (4.19) is upper bounded by that of Theorem 24. The
non-convex regularization yields especially tighter bounds when ∆(k+1)β⋆ contains large coef-
ficients, so that g(∆(k+1)β⋆) � λ‖∆(k+1)β⋆‖1. On the other hand, the second term of (4.19)
contains 1 − µ‖∆(k+1)‖2 in the denominator, which makes it an upper bound of the second term
in Theorem 24. This gap can be brought down by choosing a larger γ, which allows one to pick
a smaller µ, as mentioned in Remark 4. However, as γ → ∞, non-convex SCAD and MCP also
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tends to ℓ1, which erases the improvement from using non-convex regularizers in the first term of
the bound. This indicates a trade-off in the overall error bound based on γ, or the “non-convexity”
of the regularizers chosen for scalar-GTF.

To sum up, despite being non-convex, we can guarantee that any stationary point of the pro-
posed GTF estimator possesses strong statistical guarantees.

4.3.4 Error Rates for Erdős-Rényi Graphs

We next specialize Theorem 23 to the Erdős-Rényi random graphs using spectral graph theory157.
Let dmax and d0 respectively be the maximum and expected degree of the graph. It is known that
for any graph it holds30

ζk ≤ λmin(∆
(2))−

k+1
2 , (4.20)

where λmin(∆
(2)) is the smallest non-zero eigenvalue of the graph Laplacian matrix ∆(2). More-

over, we have ‖∆(k+1)‖2 = (λmax(∆
(2)))k+1, and dmax + 1 ≤ λmax(∆

(2)) ≤ 2dmax
155. Next, we

present a simple lower bound on κT , which is proved in Appendix B.1.4.

Proposition 3 (Bound on κT ). κT is bounded for any T and d as

κT (∆
(k+1)) ≥ (2dmax)

− k+1
2 .

1.
Chain graph (Univariate trend filtering): for a chain graph, we have dmax = 2, and

‖∆(k+1)‖2 = O(1), r = O(n), and ζ = O(nk+1/2)30. Therefore, with probability at least 1− 2n−10,

‖β̂ − β⋆‖22
n

≲ σ2 log n

n
+ ‖∆(k+1)β⋆‖0 · n2k log n.

For an Erdős-Rényi random graph, if d0 = Ω(log(n)), we have dmax = O(d0) almost surely158

Corollary 8.2 and CG = 1. Furthermore, λmin(∆
(2)) = Ω(d0 −

√
d0)

30,157,159, and r = n for odd k

and r = O(nd0) for even k. Therefore, with probability at least 1− n−10, we have

‖β̂ − β⋆‖22
n

≲ σ2
√
log n

n

+min

{
g(∆(k+1)β⋆)

n
,
σ2‖∆(k+1)β⋆‖0 log n

n

}
,

where g(∆(k+1)β⋆) ≲ σ∥∆(k+1)β⋆∥1

√
logn

d
(k+1)/2
0

by plugging in g(∆(k+1)β⋆) ≤ λ‖∆(k+1)β⋆‖1.
These results are also applicable to d0-regular Ramanujan graphs159.

4.3.5 Support Recovery

An alternative yet important metric for gauging the success of the proposed GTF estimators is
support recovery, which aims to localize the discontinuities in the piecewise smooth graph signals,

1For k > 2, the piecewise kth order polynomial signals are indistinguishable from smooth signals for large k, we
can safely assume k ≤ 2 for most use cases.

111



i.e. the support set of ∆(k+1)β⋆, that is

Sk(β
⋆) =

{
t ∈ {1, · · · , r} : (∆(k+1)β⋆)t 6= 0

}
. (4.21)

In particular, for odd k, the discontinuities correspond to graph nodes; and for even k, they cor-
respond to the edges. Let β̂ be the GTF estimate of the graph signal. The quality of the sup-
port recovery can be measured using the graph screening distance135. For any t1 ∈ Sk(β

⋆) and
t2 ∈ Sk(β̂), let dG(t1, t2) denote the length of the shortest path between them. The distance of
Sk(β̂) from Sk(β

⋆) is then defined as

dG(Sk(β̂)|Sk(β
⋆))

=


max

t1∈Sk(β⋆)
min

t2∈Sk(β̂)
dG(t1, t2), if Sk(β

⋆) 6= ∅

∞ otherwise
. (4.22)

Interestingly, Lin et.al.135 showed recently that under mild assumptions, one can translate the er-
ror bound into a support recovery guarantee. We see that the rates on the graph screening dis-
tance or how well we can localize the boundary then depend on both the jump height Hn be-
tween clusters, and the diameter of the clusters. Specifically, letting Rn be the RHS of (4.16) that
bounds the error ‖β̂ − β⋆‖22/n in Theorem 23, we have

dG(Sk(β̂)|Sk(β
⋆)) =

O
(

Rn

H2
r

)
, k = 0

O
(

R1/3
n

H
2/3
r

)
, k = 1

, (4.23)

where Hr quantifies the minimum level of discontinuity, defined as the minimum absolute value of
the non-zero values of ∆(k+1)β⋆, i.e.

Hr = min
t∈Sk(β⋆)

|(∆(k+1)β⋆)t|. (4.24)

Consequently, this leads to support recovery guarantees of the proposed GTF estimators. Numer-
ical experiment in Section 4.5.1 verifies the superior performance of the non-convex regularizers
over the ℓ1 regularizer for support recovery.

4.4 ADMM Algorithm and its Convergence

There are many algorithmic approaches to optimize the vector-GTF formulation in (4.9), since
scalar-GTF (5.3) can be regarded as a special case with d = 1. In this section, we illustrate the
approach adopted in this work, which is the Alternating Direction Method of Multipliers (ADMM)
framework for solving separable optimization problems104.

Via a change of variable as Z = ∆(k+1)B, we can transform (4.9) to

min
B∈Rn×d

1

2
‖Y −B‖2F + h(Z;λ, γ) s.t. Z = ∆(k+1)B.
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Algorithm 5 ADMM for solving (4.9)

1: Inputs: Y ,∆(k+1), and parameters λ, γ, τ
2: Initialize:

B ← Y or Binit if given.
D ←∆(k+1), Z ← DB, U ← DB −Z
X ← (I + τD⊤D)−1

3: repeat
4: for j ← 1 to num_cols(B) do
5: B·j ←X(τD⊤(Z·j −U·j) + Y·j)
6: end for
7: for ℓ← 1 to num_rows(DB) do
8: Zℓ· ← Proxρ(‖Dℓ·B +Uℓ·‖2;λ/τ)
9: end for

10: U ← U +DB −Z
11: until termination

Its corresponding Lagrangian can be written as:

L(B,Z,U) =
1

2
‖Y −B‖2F + h(Z;λ, γ)

+
τ

2
‖∆(k+1)B −Z +U‖2F −

τ

2
‖U‖2F, (4.25)

where U ∈ Rr×d is the Lagrangian multiplier, and τ is the parameter. Alg. 5 shows the ADMM
updates based on the Lagrangian in (4.25). Recall the proximal operator is defined as Proxf (v;α) =

argminx
1
2‖x−v‖22+αf(x) for a function f(·). ℓ1, SCAD and MCP all admit closed-form solutions

of Prox, which are simple thresholding operations160. Furthermore, we have the following conver-
gence guarantee for Alg. 5, whose proof is provided in Appendix B.1.5.

Theorem 25. Let τ ≥ µ, then Alg. 5 converges to a stationary point of (4.9).

In addition, we provide a detailed time complexity analysis of Alg. 5 in Table 4.2. Note that
since ∆ is a sparse matrix with exactly 2m non-zero entries, Alg. 5 can run much faster when k =

0. As a preprocessing step for each D, we compute V ∈ Rn×n and S ∈ Rn×n, the eigenvectors and
eigenvalues of D⊤D, exactly once. X = V (1 + ρS)−1V ⊤ can then be initialized very efficiently for
all experiments that use D.

k ≥ 1 k = 0

D⊤D eigen decomposition O(rn2 + n3) O(m2 + n3)

Z initialization O(rnd) O(md)

X initialization O(n2) O(n2)

B update O(d(nr + n2)) O(d(m+ n2))

DB calculation O(rnd) O(md)

Z,U update O(rd) O(rd)

Total after t iterations O(tdrn+ tdn2) O(tdm+ tdn2)

Table 4.2: Time complexity analysis of Alg. 5.
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Figure 4.3: Scalar-GTF with MCP (orange) has much lower bias than scalar-GTF with ℓ1 (blue)
when estimating a piecewise constant signal over a 12 × 12 grid graph. See highlighted regions
pointed by red arrows in A and B. The scatter points correspond to a noisy signal with 5dB SNR.

4.5 Numerical Experiments

For the following experiments, we fixed γ = 3.7 for SCAD, γ = 1.4 for MCP. Further, the graphs
we use in the following experiments satisfy Assumption 2 for this choice of γ. Unless explicitly
mentioned, we tuned λ and τ

λ for each experiment using the Hyperopt toolbox161. To meet the
convergence criteria in Theorem 25, we enforced τ ≥ 1/γ. SCAD/MCP were warm-started with
the GTF estimate with ℓ1 penalty. Python packages PyGSP162,71 and NetworkX163 were used
to construct and plot graphs. The input signal SNR was calculated as 10 log10(‖B⋆‖F/σ2nd),
while the reconstructed signal SNR was calculated as 10 log10(‖B⋆‖F/‖B̂ − B⋆‖F), where B̂

was the reconstruction. Computation time was measured with MacBook Pro 2017 with an 2.9
GHz Intel Core i7 and 16GB RAM. Our code is available at https://github.com/HarlinLee/
nonconvex-GTF-public.

4.5.1 Denoising via GTF with Non-convex Regularizers

We first highlight via synthetic examples two important advantages that non-convex regularizers
provide over the ℓ1 penalty.

• Bias Reduction: We demonstrate the reduction in signal bias in Fig. 4.3 for the graph sig-
nal defined over a 12 × 12 2D-grid graph, using both the ℓ1 penalty and the MCP penalty.
Clearly, the MCP estimate (orange) has less bias than the ℓ1 estimate (blue), and can re-
cover the ground truth surface (purple) more closely.

• Support Recovery: We illustrate the improved support recovery performance of non-
convex penalties on localizing the boundaries for a piecewise constant signal on the Min-
nesota road graph, shown in Fig. 4.5. Particularly, we look at how well our estimator lo-
calizes the support of ∆(k+1)β⋆, that is, the discontinuity of the piecewise constant graph
signal by looking at how well we can classify an edge as connecting two nodes in the same
piece or being a cut edge across two pieces. By sweeping the regularization parameter λ, we
obtain the ROC curve in Fig. 4.4, i.e. the true positive rate versus the false positive rate of
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Figure 4.4: The ROC curve for classifying whether an edge lies on a boundary for the Minnesota
road graph signal shown in Fig. 4.5. The input SNR of the noisy piecewise constant signal is
7.8dB.

classifying a cut edge correctly, and see that scalar-GTF with MCP and SCAD consistently
outperforms the scalar-GTF with ℓ1 penalty.

Then, we compare the performance of GTF using non-convex regularizers such as SCAD and
MCP with that using the ℓ1 norm more rigorously. For the ground truth signal β⋆, we construct a
piecewise constant signal on a 20 × 20 2D-grid graph and the Minnesota road graph162 as shown
in the left panel of Fig. 4.5, and add different levels of noise following (4.1). We recover the signal
by scalar-GTF with Alg. 5, and plot the SNR of the reconstructed signal versus the SNR of the
input signal in solid lines in the middle panel of Fig. 4.5, averaged over 10 and 20 realizations,
respectively. SCAD/MCP consistently outperforms ℓ1 in denoising graph signals defined over both
regular and irregular structures.

4.5.2 Denoising Vector-valued Signals via GTF

We compare the performance of vector-GTF in (4.9) with (4.8), which applies scalar-GTF to each
column of the vector-valued graph signal. The convex ℓ1 norm, and the non-convex SCAD and
MCP are employed. We reuse the same ground truth graph signals over the 2D-grid graph and
the Minnesota road graph constructed in Section 4.5.1 in Fig. 4.5. d independent noisy realiza-
tions of the graph signal are concatenated to construct a noisy vector-valued graph signal with
dimension d = 10 on the 2D-grid graph and with d = 20 on the Minnesota road graph. We recover
the vector-valued signal by minimizing vector-GTF (4.9) with Alg. 5.

The middle panel of Fig. 4.5 plots the average SNR of the reconstructed signal versus the av-
erage SNR of the input signal in dotted lines. We emphasize that the performance of (4.8) is the
same as applying scalar-GTF to each realization, which is shown in the middle panel of Fig. 4.5
in solid lines. As before, SCAD/MCP consistently outperforms ℓ1 in denoising signals over both
regular and irregular graphs. Furthermore, as expected, due to the sharing of information across
realizations, vector-GTF consistently outperforms scalar-GTF, especially in the low SNR regime.

The right panel of Fig. 4.5 plots the computation time versus the gain in SNR from denoising
via vector-GTF. 10 trials are performed for each regularizer with the input signal SNR fixed at
20dB. Parameter tuning and eigen decomposition of ∆(2) are preprocessing steps, and hence they
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Figure 4.5: The left panel shows the ground truth piecewise constant signals on 20 × 20 2D-grid
graph (top), and Minnesota road graph (bottom). The middle panel shows their corresponding
plots of input signal SNR versus reconstructed signal SNR, averaged over 10 and 20 realizations,
respectively. Finally, the right panel plots the computation time against gain in SNR from denois-
ing via vector-GTF. 10 trials were performed for each regularizer, where the input signal SNR was
fixed at 20dB.

are not included in the time measurement; but for reference, the eigen decomposition took 0.025
and 2.5 seconds for 2D-grid and Minnesota graphs, respectively. Since GTF with non-convex regu-
larizers are warm-started by the ℓ1 estimate, the runtime for ℓ1 GTF is added to the SCAD/MCP
runtime. Overall, running vector-GTF with SCAD/MCP after once with ℓ1 takes more time, but
with large benefits in the denoising performance. Even with the additional computation time,
Vector-GTF runs reasonably fast; with the Minnesota road network, where n = 2642 and m =

3304, computation takes less than 25 seconds.
We further investigate the benefit of sharing information across measurements or realizations

in the following experiment, using the same ground truth signal on the 2D-grid graph. We stack
eight noisy realizations of this same piecewise constant signal to build a vector-valued signal. We
construct these noisy measurements by scaling each one of them differently and randomly such
that each will have SNR ∼ log10 Uniform[−10, 30]dB under (4.1). This has the effect of rendering
some measurements more informative than others, and potentially allowing vector-GTF to reap
the benefits of sharing information across measurements. We recover the 8-dimensional graph sig-
nal via Alg. 5 using ℓ1, SCAD, and MCP regularizers, and in Table 4.3, report the input signal
and reconstructed signal SNRs for each measurement in addition to the average SNRs. λ is fixed
at 0.5σ2.
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Average #1 #2 #3 #4 #5 #6 #7 #8

Input SNR (dB) 8.7 -14 0 0 3.5 5.8 12 29 34

Vector-GTF + ℓ1 29 10 20 23 26 36 37 39 38
Scalar-GTF + ℓ1 21 0 11 13 16 18 26 41 45

Vector-GTF + SCAD 32 10 20 22 25 36 35 49 61
Scalar-GTF + SCAD 29 0 15 17 25 35 34 47 60
Vector-GTF + MCP 32 10 20 22 25 36 35 49 61
Scalar-GTF + MCP 29 0 15 22 24 30 33 49 60

Table 4.3: Noisy input and reconstructed signal SNRs for eight measurements of varying input
SNRs, rounded to two significant figures. Highest reconstructed signal SNR for each measurement
is in bold.

Average #1 #2 #3 #4 #5 #6 #7 #8
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Figure 4.6: Noisy input and reconstructed signal SNRs for each snapshot of a piecewise constant
signal on a 20 × 20 2D-grid graph, as shown in Fig. 4.5. Stars show reconstructed signal SNRs
from vector-GTF, while crosses are from scalar-GTF. MCP (not shown) performed similarly to
SCAD.

First of all, notice that as before, using SCAD/MCP generally achieves results with higher SNR
than using ℓ1, and that on average, minimizing (4.9) outperforms minimizing (4.8). The effect of
sharing information across measurements is most apparent in low SNR settings, when information
about the boundaries of the graph signal can be borrowed from higher SNR signals to improve the
estimation. On the other hand, sharing information with noisier signals does not help denoising
signals with high input SNR. However, it is worth noting that, unlike ℓ1, SCAD/MCP does not
see decrease in its performance in the high SNR settings.

4.5.3 Event Detection with NYC Taxi Data

To further illustrate graph trend filtering on a real-world dataset, we consider the road network
of Manhattan where the nodes correspond to junctions164. We map the pickups and dropoffs of
the NYC taxi trip dataset to the nearest road junctions, and define the total count at that junc-
tion to be the signal value on the corresponding graph node. The signal of interest, plotted on the
top left panel of Fig. 4.7, is the difference between the event graph signal on the day of NYC Gay
Pride parade, 12-2pm on June 26, 2011, and the seasonal average graph signal at the same time
during the 8 nearest Sundays. During the event, no pickups and dropoffs could occur in the areas

117



Figure 4.7: Top left: the noisy signal on the Manhattan road network is the change in the taxi
pickup and dropoff count during the 2011 NYC Gay Pride. Top right: areas of Pride events,
where the traffic was blocked off. Bottom: the GTF estimates using ℓ1 and MCP. The GTF esti-
mate with MCP better detects and localizes the event, compared to the one using ℓ1 penalty.

shown in the top right panel of Fig. 4.7 . We denoise the signal via GTF using both ℓ1 and MCP,
where we chose λ such that ‖∆β̂‖0 ≈ 200. Once again, we observe the GTF estimate with MCP
produces sharper traces around the parade route, indicating better capabilities of event detection
and localization.

4.5.4 Semi-supervised Classification

Graph-based learning provides a flexible and attractive way to model data in semi-supervised clas-
sification problems when vast amounts of unlabeled data are available compared to labeled data,
and labels are expensive to acquire112,113,149. One can construct a nearest-neighbor graph based
on the similarities between each pair of samples, and hope to propagate the label information from
labeled samples to unlabeled ones. We move beyond our original problem in (5.3) to a K-class
classification problem in a semi-supervised learning setting, where for a given dataset with n sam-
ples, we observe a subset of the one-hot encoded class labels, Y ∈ Rn×K , such that Yij = 1 if ith
sample has been observed to be in jth class, and Yij = 0 otherwise. A diagonal indicator matrix
M ∈ Rn×n denotes samples whose class labels have been observed. Then, we can define the modi-
fied absorption problem113,30,149 using a variation of GTF to estimate the unknown class probabil-

118



Heart Wine quality Wine Iris Breast Car

# of samples (n) 303 1599 178 150 569 1728
# of classes (K) 2 6 3 3 2 4

k = 0

ℓ1 0.148 0.346 0.038 0.036 0.042 0.172
SCAD
p-value

0.148 0.353 0.038 0.033 0.042 0.149
1. 0.06 1. 0.27 1. 0.06

MCP
p-value

0.144 0.351 0.037 0.035 0.040 0.148
0.23 0.18 0.34 0.34 0.35 0.05

k = 1

ℓ1 0.143 0.351 0.034 0.039 0.035 0.104
SCAD
p-value

0.144 0.350 0.034 0.039 0.035 0.104
0.30 0.43 0.34 1. 0.71 0.66

MCP
p-value

0.146 0.350 0.034 0.039 0.034 0.103
0.05 0.44 0.34 1. 0.02 0.23

Table 4.4: Misclassification rates averaged over 10 trials, with p-values from running sampled
t-tests between SCAD/MCP misclassification rates and the corresponding rates using ℓ1. Cases
where non-convex penalties perform better than ℓ1 with p-value below 0.1 are highlighted in bold,
and where they perform worse are in italic.

ities B ∈ Rn×K :

B̃ =argminB∈Rn×K

1

2
‖M(Y −B)‖2F

+

K∑
j=1

g(∆(k+1)B·j ;λ, γ) + ϵ‖R−B‖2F, (4.26)

where R ∈ Rn×K (set to be uniform in the experiment) is a fixed prior belief, and ϵ > 0 deter-
mines how much emphasis to be given to the prior belief. The labels Ỹ can be estimated using B̃

such that Ỹij = 1 if and only if j = argmax1≤ℓ≤K B̃iℓ, and otherwise Ỹij = 0. Note that this can
be completely separated into K scalar-GTF problems, one corresponding to each class.

We applied the algorithm in (4.26) to 6 popular UCI classification datasets165 with ϵ = 0.01.
For each dataset, we normalized each feature to have zero mean and unit variance, and constructed
a 5-nearest-neighbor graph of the samples based on the Euclidean distance between their features,
with edge weights from the Gaussian radial basis kernel. We observed the labels of 20% of samples
in each class randomly. Table 4.4 shows the misclassification rates averaged over 10 repetitions,
which demonstrates that the performance using non-convex penalties such as SCAD/MCP are at
least competitive with, and often better than, those with the ℓ1 penalty.
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4.6 Wavelets and Multiresolution Analysis on Graphs

Multiresolution analysis and splines are standard representation tools for piecewise smooth sig-
nals. A multiresolution analysis represents and analyzes signals at different resolution scales by
recursively decomposing a signal into coarse and detail subspaces.166,94,167,168 This is particu-
larly interesting on graphs with respect to piecewise smooth signals that possess localized behav-
ior. Multiresolution analysis is usually formulated axiomatically as a sequence of nested subspaces
V0 ⊃ V1 ⊃ V2 · · · ⊃ VL of increasing smoothness by repeatedly splitting each Vj into a smoother
part Vj+1 and a rougher part Wj+1. Typically, as j increases, the the elements in Vj are increas-
ingly less localized.

4.6.1 Local-set-based Representations

In this section, we present the local-set-based representations and show the advantages to repre-
sent the class of piecewise-constant graph signals.

Basics of Local Sets

Local sets are used in the previous works on graph cuts and graph signal reconstruction169,170.
Here we use the same idea to decompose a graph structure.

Definition 15. Let the node set V divide into a series of node sets {Si}Ci=1. We call them local
sets when they satisfy

• the subgraph corresponding to each node set is connected, that is, GSi is connected for all i;

• any two node set is disjoint, that is, Si ∩ Sj = ∅;

• the union of the node sets is V, that is,
⋃

i Si = V.

There may exist various divisions of local sets, which will be discussed later. The local sets de-
compose a graph structure into multiple smaller pieces. Instead of studying a huge graph, we in-
stead study multiple local sets.

We assign a graph signal to each local set. We represent a local set S by using 1S ∈ RN , where

(1S)i =

{
1, i ∈ S;
0, otherwise.

For each local set signal, we measure its smoothness using normalized variation

Sp(S) =
1

‖1S‖pp
‖∆1S‖pp .

For unweighted graphs, S0(S) = S1(S) = S2(S). For a given local set, it measures how hard it is
to cut the boundary edges and make GS an isolated subgraph. We normalize the variation by the
size of the local set, which implies that given the same cut cost, a larger local set is more smooth
than a smaller local set.
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4.6.2 Multiresolution Local Sets

We aim to construct a series of local sets in a multiresolution fashion. We first define the multires-
olution analysis on graphs.

Definition 16. A general multiresolution analysis on graphs consists of a sequence of embedded
closed subspaces

V0 ⊂ V1 ⊂ V2 · · · ⊂ VK

such that

• upward completeness
K⋃
i=0

Vi = RN ;

• downward completeness
K⋂
i=0

Vi = {c1V , c ∈ R};

• existence of basis There exists an orthonormal basis {Φ}i for VK .

Compared with the original multiresolution analysis, the complete space here is RN instead
of L2(R). As a result of the discrete nature of a graph; we remove scale invariance and transla-
tion invariance from the above axiomatic definition because the rigorous definitions of scaling and
translation onb graphs are still unclear. This is the reason we call it general multiresolution analy-
sis on graphs.

General Construction

The main idea behind this proposed construction is to build a connection between the subspaces
and local sets: a bigger subspace corresponds to a finer resolution on the graph vertex domain,
or more localized local sets. We initialize such that S0,1 = V corresponds to V0, that is, V0 =

{c01S0,1
, c0 ∈ R}. We then partition S0,1 into two disjoint local sets S1,1 and S1,2, which corre-

sponds to V1, where V1 = {c11S1,1
+ c21S1,2

, c1, c2 ∈ R}. In this manner, we recursively partition
a larger local set into two smaller local sets. For the ith level subspace, we have Vi =

∑2i

j=1 cj1Si,j

and then, we partition Si,j into Si+1,2j−1, Si+1,2j for all j = 1, 2, · · · , 2i. We call Si,j is the par-
ent set of Si+1,2j−1, Si+1,2j and Si+1,2j−1, Si+1,2j are the children set of Si,j . When |Si,j | ≤ 1,
Si+1,2j−1 = Si,j and Si+1,2j = ∅. In the finest resolution, each local set corresponds to an indi-
vidual node or an empty set. In other words, we build a binary decomposition tree that partitions
a graph structure into multiple local sets. The ith level of the decomposition tree corresponds to
the ith level subspace. The maximum level of the decomposition K depends on how we partition
the local sets. K ranges from N to dlogNe, where N corresponds to a partitioning of one node at
each step and dlogNe corresponds to an even partition at each step.

It is clear that the proposed construction of local sets satisfies three requirements in Defini-
tion 16. The initial subspace V0 has the coarsest resolution. Through the partition, local sets zoom
into an increasingly finer resolution on the graph vertex domain. The subspace VK with finest res-
olution zooms into each individual node and is a basis that spans the entire RN . We also revisit
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Figure 4.8: Local set decomposition tree. In each partition, we decompose a node set into two
disjoint connected set and generate a basis vector to the wavelet basis. S0,1 is in Level 0, S1,1, S1,2

are in Level 1, and S2,1, S2,2, S2,3, S2,4 are in Level 2.

scale invariance and translation invariance. The original scale invariance requires that when f(t) ∈
V0, we have f(2mt) ∈ Vm, which is ill-posed because graphs are naturally finite and discrete; the
original translation invariance requires that when f(t) ∈ V0, then f(t − n) ∈ V0, which is ill-posed
because graphs are irregular. The essence of scale and translation invariance is to use the same
function with its scaled versions and translates to span different subspaces. The proposed con-
struction still promotes similar attributes. The scaling function is 1S ; the hierarchy of partition is
similar to the scaling and translation, that is, when 1Si,j

∈ Vi, then 1Si+1,2j−1
,1Si+1,2j

∈ Vi+1, and
when 1Si+1,2j−1

∈ Vi+1 then 1Si+1,2j
∈ Vi+1.

To summarize the construction, we build a local set decomposition tree by recursively parti-
tioning a local set into two disjoint local sets until that all the local sets are individual nodes. We
now show a toy example in Figure 4.8. In Partition 1, we partition the entire node set S0,1 =

V = {1, 2, 3, 4} into two disjoint local sets S1,1 = {1, 2}, S1,2 = {3, 4}. Thus, V1 = {c11S1,1 +

c21S1,2 , c1, c2 ∈ R}. Similarly, in Partition 2, we partition S1,1 into two disjoint connected sets
S2,1 = {1}, S2,2 = {2}; in Partition 3, we partition S1,2 into S2,3 = {3}, S2,4 = {4}. Thus,
V2 = {c11S2,1 + c21S2,2 + c31S2,3 + c41S2,4 , c1, c2, c3, c4 ∈ R} = R4.

Graph Partition Algorithm

The graph partition is the key step to construct the local sets. From the perspective of promoting
smoothness of graph signals, we partition a local set S into two disjoint local set S1, S2 by solving
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the following optimization problem

minS1,S2 S0(S1) + S0(S2) (4.27)

subject to : S1 ∩ S2 = ∅, S1 ∪ S2 = S,

GS1
and GS2

are connected.

Ideally, we aim to solve 4.27 to obtain two children local sets, however, it is nonconvex and hard
to solve. Instead, we consider three relaxed methods to partition a graph.

The first method is based on spectral clustering169. We first obtain the graph Laplacian ma-
trix of a local set and compute the eigenvector corresponding to the second smallest eigenvalue of
the graph Laplacian matrix. We then set the median number of the eigenvector as the threshold;
we put the nodes whose corresponding values in the eigenvector are no smaller than the thresh-
old into a children local set and put the nodes whose corresponding values in the eigenvector are
smaller than the threshold into the other children local set. This method approximately solves 4.27
by ignoring the second constraint; it guarantees that two children local sets have the same number
of nodes, but does not guarantee that they have the same number of nodes are connected.

The second method is based on spanning tree. To partition a local set, we first obtain the max-
imum spanning tree of the subgraph and then find a balance node in the spanning tree. The bal-
ance node partition the spanning tree into two subtrees with the closet number of nodes171. We
remove the balance node from the spanning tree, the resulting largest connected component form
a children local set and the other nodes including the balance node forms the other children lo-
cal set. This method approximately solves 4.27 by approximating a subgraph by the correspond-
ing maximum spanning tree; it guarantee that two children local sets are connected, but does not
guarantees that they have the same number of nodes. When the original sbugraph is highly con-
nected, the spanning tree loses some connection information and the shape of the local set may
not capture the community in the subgraph.

The third method is based on the 2-means clustering. We first randomly select 2 nodes as the
community center and assign every other node to its nearest community center based on the geodesic
distance. We then recompute the community center for each community by minimizing the sum-
mation of the geodesic distances to all the other nodes in the community and assign node to its
nearest community center again. We keep doing this until the community centres converge after a
few iterations. This method is inspired by the classical k-means clustering; it also guarantees that
two children local sets are connected, but does not guarantee that they have the same number of
nodes.

In general, the proposed construction of local sets is not restricted to any particular graph par-
tition algorithm; depending on the applications, the partition step can also be implemented by
many other existing graph partition algorithms.

Dictionary Representations

We collect the local sets based on the levels in a ascending order and represent them in a dictio-
nary, whose atom corresponds to each local set, that is,

D = {1Si,j
}i=K,j=2i

i=0,j=1 .
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We call it the local-set-based dictionary. When we remove the empty sets, the local-set-based dic-
tionary has 2N − 1 atoms, that is, D ∈ RN×(2N−1); each atom is a piecewise-constant graph sig-
nal with various sizes and localizing various parts of a graph. The local set dictionary provides a
redundant representation for any graph signal. We later show that it is particularly good for rep-
resenting piecewise-constant graph signals.

4.6.3 Wavelet Basis

We construct a wavelet basis based on the local set dictionary. We combine two local sets parti-
tioned from the same parent local set to form a basis vector. Let the local sets Si+1,2j−1, Si+1,2j

have the same parent local set Si,j , the basis vector combing these two local sets is√
|Si+1,2j−1||Si+1,2j |
|Si+1,2j−1|+ |Si+1,2j |

(
1

|Si+1,2j−1|
1Si+1,2j−1

− 1

|Si+1,2j |
1Si+1,2j

)
.

To represent in a matrix form, the wavelet basis is

W = DU,

where

U =



1
∥1∥2

0 · · · 0

0 g(2, 3) · · · 0

0 −g(3, 2) · · · 0

0 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · g(2N − 2, 2N − 1)

0 0 · · · −g(2N − 1, 2N − 2)


∈ R(2N−1)×N ,

and i is the ith column of D, and

g(i, j) =

√
‖j‖0

(‖i‖0 + ‖j‖0) ‖i‖0
.

The matrix U acts like a downsampling matrix that combines two consecutive column vectors in
D to form one column vector in W and the function g(·, ·) reweights the column vectors in D to
ensure that each column vector in W has norm 1 and sums to 0.

Another explanation is that when we recursively partition a node set into two local sets, each
partition generates a wavelet basis vector. We still use Figure 4.8 as an example. In Partition 1,
we partition the entire node set S0,1 = {1, 2, 3, 4} into S1,1 = {1, 2}, S1,2 = {3, 4} and generate a
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basis vector √
|S1,1||S1,2|
|S1,1|+ |S1,2|

(
1

|S1,1|
1S1,1 −

1

|S1,2|
1S1,2

)
=

1

2

[
1 1 −1 −1

]
;

in Partition 2, we partition S1,1 into two disjoint connected sets S2,1 = {1}, S2,2 = {2} and gener-
ate a basis vector √

|S2,1||S2,2|
|S2,1|+ |S2,2|

(
1

|S2,1|
1S2,1

− 1

|S2,2|
1S2,2

)
=

1√
2

[
1 −1 0 0

]
;

in Partition 3, we partition S1,2 into S2,3 = {3}, S2,4 = {4} and generate a basis vector√
|S2,3||S2,4|
|S2,3|+ |S2,4|

(
1

|S2,3|
1S2,3

− 1

|S2,4|
1S2,4

)
=

1√
2

[
0 0 1 −1

]
.

We summarize the construction of the local-set-based wavelet basis in Algorithm 6.

Algorithm 6 Local-set-based Wavelet Basis Construction
Input G(V, E,A) graph
Output W wavelet basis

Function
initialize a stack of node sets S and a set of vectors W
push S = V into S
add w = 1√

|S|
1S into W

while the cardinality of the largest element of S is bigger than 1
pop up one element from S as S
partition S into two disjoint connected sets S1, S2

push S1, S2 into S
add w =

√
|S1||S2|
|S1|+|S2|

(
1

|S1|
1S1 −

1
|S2|

1S2

)
into W

end
return W

4.6.4 Analysis

We now analyze some properties of the proposed construction of the local sets and wavelet basis.
The main results are

• the local-set-based dictionary provides a multiresolution representation;

• there exists a tradeoff between smoothness and fine resolution in partitioning the local sets;

• the local-set-based wavelet basis is an orthonormal basis;

• the local-set-based wavelet basis promotes sparsity for piecewise-constant graph signals.
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Theorem 26. The proposed construction of local sets satisfies the multiresolution analysis on
graphs.

We have shown this in the previous section. We state it again here for completeness. In the
original multiresolution analysis, more localization in the time domain leads to more high-frequency
components. Here we show a result that is similar in spirit.

Theorem 27. A series of local sets with a finer resolution is less smooth, that is, for all i,

2i∑
j=1

S0(Si,j) ≤
2i+1∑
j=1

S0(Si+1,j).

Proof. We first show that the sum of variations of two children local sets is larger than the varia-
tion of the parent local set.

S0(Si+1,2j−1) + S0(Si+1,2j)

=
1

|Si+1,2j−1|
∥∥∆1Si+1,2j−1

∥∥
0
+

1

|Si+1,2j |
∥∥∆1Si+1,2j

∥∥
0

(a)

≥ 1

|Si,j |
(∥∥∆1Si+1,2j−1

∥∥
0
+
∥∥∆1Si+1,2j

∥∥
0

)
(b)

≥ 1

|Si,j |
∥∥∆1Si,j

∥∥
0

= S0(Si,j),

where (a) follows from that the cardinality of the the parent local set is larger than either of its
children local sets and (b) follows from that we need to cut a boundary to partition two children
local sets. Since every local set in the ith level has two children local sets in the i + 1th level and
every local set in the i + 1th level has a parent local set in the ith local, we sum them together
over j and obtain Theorem 27.

Theorem 27 shows that by zooming in on the graph vertex domain, the partitioned local sets
get less smooth; in other words, we have to tradeoff smoothness to obtain a finer resolution.

We next show that the local-set-based wavelet basis is a valid orthonormal basis.

Theorem 28. The local-set-based wavelet basis construction is an orthonormal basis.

Proof. First, we show each vector has norm one.

∥∥∥∥∥
√
|S1||S2|
|S1|+ |S2|

(
1

|S1|
1S1 −

1

|S2|
1S2

)∥∥∥∥∥
2

2

(a)
= |S1|

(√
|S1||S2|
|S1|+ |S2|

1

|S1|

)2

+ |S2|

(√
|S1||S1|
|S1|+ |S2|

1

|S2|

)2

= 1,

where (a) follows from that S1 ∩ S2 = ∅. Second, we show each vector is orthogonal to the other
vectors. We have

1Tw =

√
|S1||S2|
|S1|+ |S2|

(∑
i∈S1

1

|S1|
−
∑
i∈S2

1

|S2|

)
= 0.
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Thus, each vector is orthogonal to the first vector, 1V/
√
|V|. Each other individual vector is gen-

erated from two node sets. Let S1, S2 generate wi and S3, S4 generate wj . Due to the construc-
tion, there are only two conditions, two node sets of one vector belongs to one node set of the
other vector, and all four node sets do not share element with each other. For the first case, with-
out loss of generality, let (S3 ∪ S4) ∩ S1 = S3 ∪ S4, we have

wT
i wj =

√
|S1||S2|
|S1|+ |S2|

|S3||S4|
|S3|+ |S4|

(∑
i∈S3

1

|S3|
−
∑
i∈S4

1

|S4|

)
= 0.

For the second case, the inner product between wi and wj is zero because their supports do not
match. Third, we show that W spans RN . Since we recursively partition the node set until the
cardinalities of all the node sets are smaller than 2, there are N vectors in W. The statement fol-
lows

We show that the local-set-based wavelet basis is a good representation for piecewise-constant
graph signals because it promotes sparsity.

Theorem 29. Let W be the output of Algorithm 6 and L be the maximum level of the decompo-
sition in Algorithm 6 . For all x ∈ RN , we have

∥∥WTx
∥∥
0
≤ ‖∆x‖0 L.

Proof. When an edge e ∈ Supp(∆w), where Supp denotes the indices of nonzero elements, we
say that the edge e is activated by the vector w. Since each edge is activated at most once in each
decomposition level, each edge is activated by at most L basis elements. Let activations(e) be the
number of basis elements in W that activates e.

∥∥WTx
∥∥
0
≤

∑
e∈Supp(∆w)

activations(e) ≤ ‖∆x‖0 L.

The maximum level of the decomposition is determined by the choice of graph partition algo-
rithm. Theorem 29 shows that what matters is the cardinality of each local set, instead of the
shape of each local set. To achieve the best sparse representation, we should partition each local
set as evenly as possible. Note that when the partition is perfectly even, the resulting wavelet ba-
sis is the same as the classical Haar wavelet basis.

Corollary 7. Let the local-set-based wavelet basis evenly partition the node set each time. For
all x ∈ PCG(K), we have

∥∥WTx
∥∥
0
≤ KdlogNe.

We see that the local-set-based wavelet basis leads to a sparse representation for the piecewise-
constant graph signals. Furthermore, we conjecture that the proposed construction is the optimal
orthonormal basis to promote sparsity for piecewise-constant graph signals.
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In general, the graph difference operator provides more sparse representation than the local-set-
based wavelet basis, however, the graph difference operator is not necessarily a one-to-one map-
ping and is bad at reconstruction; the graph difference operator only focuses on the pairwise rela-
tionship. On the other hand, the local-set-based wavelet basis is good at reconstruction and pro-
vides a multiresolution view in the graph vertex domain.

The even partition minimizes the worst case; it does not necessarily mean that the even parti-
tion is always well suited for all applications. For example, a graph has two communities, a huge
one and a tiny one, which hints that a piecewise-constant graph signal sits on a part of either of
two communities. In this case, we cut a few edges to partition two communities and assign a local
set for each of them, instead of partitioning the huge community to make sure that two local sets
have the same cardinality.

4.6.5 Review & Discussion

In this section, we review some previous related works and discuss their relations to the above ex-
position

There are mainly two approaches to design a representation for graph signals: one is based on
the graph Fourier domain and the other one is based on the graph vertex domain.

The representations based on the graph Fourier domain are based upon the spectral proper-
ties of the graph. The most fundamental representation based on the graph Fourier domain is
the graph Fourier transform, which is the eigenvectors of a matrix that represents a graph struc-
ture172,6. Based on the graph Fourier transform, people propose various versions of multiresolu-
tion transforms on graphs, including diffusion wavelets173, spectral graph wavelets7, graph quadra-
ture mirror filter banks174, windowed graph Fourier transform175, polynomial graph dictionary176.
The main idea is to construct a series of graph filters on the graph Fourier domain, which are lo-
calized on both the vertex and graph Fourier domains. The advantages of the representations on
the graph Fourier domain are: first, it avoids the complex and irregular connectivity on the graph
vertex domain because each frequency is independent; second, it is efficient, because the construc-
tion is simply to determine a series of filter coefficients, where the computation is often acceler-
ated by the polynomial approximation; third, it is similar to the design of the classical wavelets.
However, there are two shortcomings: first, it loses the discrete nature of a graph. That is, the
construction is not directly based on the graph frequencies; instead, it proposes a continuous ker-
nel from which values are sampled; second, the localization on the graph vertex domain is worse
than the representations based on the graph vertex domain. It is true that this construction pro-
vides better localization on the graph Fourier domain. However, the concept of localization on the
graph Fourier domain is often vague, abstract, and is often less important in most real-world ap-
plications.

The representations based on the graph vertex domain are based on the connectivity proper-
ties of the graph. The advantages are: first, it provides better locality on the graph vertex do-
main and is easier to visualize; second, it provides a better understanding of the connectivity of
a graph, which is avoided by the graph Fourier transform for the representations on the graph
Fourier domain. Some examples of the representations include multiscale wavelets on trees177,
graph wavelets for spatial analysis178, spanning tree wavelet basis171. The proposed representa-
tions also adopt this approach.
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• Spanning tree wavelet basis proposes a localized basis on a spanning tree. The proposed
work is mainly inspired by this work and the proposed representations generalize the results
from a spanning tree to a general graph.

• Multiscale wavelets on trees provides a hierarchy tree representation for a dataset. It pro-
poses a wavelet-like orthonormal basis based on a balanced binary tree, which is similar to
our proposed representations. This previous work focuses on high dimensional data and the
representation properties for a smooth signal; the proposed work focuses on a graph struc-
ture and representation properties for a piecewise-constant signal;

• Graph wavelets for spatial traffic analysis proposes a general wavelet representation on graphs.
The wavelet basis vectors are not generated from a single function, that is, the wavelet coef-
ficients at different scales and locations are different; the proposed representations resemble
the Haar wavelet basis in spirit and are generated from a single indicator function.

4.7 Multiresolution Analysis and Wavelets on Graphs

Classical wavelets are constructed by translating and scaling a single mother wavelet. The trans-
form coefficients are then given by the inner products of the input function with these translated
and scaled waveforms. Directly extending this construction to arbitrary weighted graphs is prob-
lematic, as it is unclear how to define scaling and translation on an irregular graph. The spectral
graph wavelets179 define a multiresolution analysis by defining scaling with respect to the graph
spectral domain. Vertex-based multiresolution analyses however have greater interpretability and
may be more computationally efficient as computing the spectral decomposition of a graph is gen-
erally computationally expensive. Previous work in GSP180,181 has established vertex-based mul-
tiresolution analyses wavelets on graphs but there is a lack of a unifying framework that would
allow a more rigorous analysis. Towards this, we propose using the Matrix Multiresolution Fac-
torization (MMF) framework introduced by Kondor et al182 to generalize and analyze vertex-
based graph wavelets and multiresolution analyses on graphs. Multiresolution matrix factorization
(MMF) uncovers soft hierarchical organization in matrices, characteristic of naturally occurring
large networks and the covariance structure of large collections of random variables, without en-
forcing a hard hierarchical clustering.

4.7.1 Matrix Multiresolution Factorization

Figure 4.9: MMF Factorization: The resulting factorizations, provide a natural way to define
multiresolution on graphs

MMF formulates the matrix factorization analog of multiresolution analysis on finite sets. MMF
uncovers soft hierarchical organization in matrices, characteristic of naturally occurring large net-
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works. A multiresolution analysis with respect to a symmetric matrix A consists of a sequence of
spaces VL ⊂ · · ·V2 ⊂ V1 = Rn where Vl has an orthonormal basis Φl. Φl and the complementary
space Wl has a basis Ψl such that the wavelets in Wl are increasingly localized. Further, each el-
ement in Φl and Ψl can be sparsely approximated by elements in Φl−1. The key idea is that each
Vl−1 → Vl ⊕ Wl basis transformation can be represented by a sparse orthogonal transformation
Ql. Hence in a multiresolution matrix factorization up to depth L,we decompose the matrix A by
a sequence of sparse orthogonal transforms as

A = (QT
1 Q

T
2 · · ·Q

T
L)H(QL · · ·Q2Q1) (4.28)

where H is diagonal outside of a block of size dL × dL where dL = dim(VL) (Figure 4.9). Note
that when H is diagonal, this corresponds to the graph Fourier transform. The wavelets corre-
spond to the rows of QL · · ·Q2Q1. As a result denoting the wavelet transform as W = QL · · ·Q2Q1,
the wavelet coefficients can be analyzed as α = Wx and synthesized as inverse wavelet transform
x = W Tα. Here we only give a cursory overview of the framework and omit further details. We
note that the MMF framework generalizes the multiresolution construction presented in previous
works180,181. In fact, the Haar transforms on graphs based on recursive bipartitioning corresponds
to a particular series of sparse orthogonal rotations.

Separable Multiresolution Wavelets on Product Graphs

Let us consider the product graph A = A1⊗A2, and define multiresolution analyses on each of
A1 and A2.

Vn+1 = V
(1)
n+1 ⊗ V

(2)
n+1 (4.29)

= (V (1)
n ⊕W (1)

n )⊗ (V (2)
n ⊕W (2)

n ) (4.30)

= (V (1)
n ⊗ V (2)

n )⊕ (V (1)
n ⊗W (2)

n )⊕ (W (1)
n ⊗ V (2)

n )⊕ (W (1)
n ⊗W (2)

n ) (4.31)

= Vn ⊗Wn (4.32)

such that Wn = (V
(1)
n ⊗W (2)

n )⊕ (W
(1)
n ⊗ V (2)

n )⊕ (W
(1)
n ⊗W (2)

n )

This is analogous to separable wavelet construction by tensorization on images and d-dimensional
grids.

4.7.2 Wavelet Denoising

We define the class of piecewise-compressible graph signals signals under the graph wavelet trans-
form W defined under the multiresolution analysis formulation in Section 4.7.

Definition 17. Let α = Wx be the wavelet coefficients such that α(k) refers to the k-th largest
entry in the coefficient vector α. If there exists a constant C such that

|α(k)| ≤ C
‖∆(1)x‖1

k
(4.33)

then the signal is piecewise-compressible.
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We then study the wavelet smoothing problem that enforces sparsity with respect to the wavelet
coefficients

minimize
x

‖y − x‖2 + λ‖Wx‖1 (4.34)

We note that for the Haar graph wavelet construction181, we can show that piecewise constant
signals are compressible under the transform. Further, a rather remarkable result shows that nat-
ural images with bounded variation are compressible under the 2-dimensional Haar wavelet trans-
form183. In addition, this result can be extended to d-dimensional grids.

In this section, we then try and rigorously understanding the difference between trend filter-
ing and wavelet denoising on graphs. Empirically, we make the observations that trend filtering
is more robust to noise than wavelet smoothing. We study piecewise compressible signals and the
performance of the soft-thresholding estimator. We can then show the following theoretical guar-
antee on the recovery performance.133

Theorem 30. We consider problem 4.34. It is clear that this problem can be solved by soft-
thresholding the wavelet coefficients. Let x̂ = WT τ(Wx;λ) be the reconstructed signal where
τ is the soft-thresholding operator with respect to λ. Then, for large enough n, we can show that
up to a constant factor,

1

n
E‖x̂− x∗‖22 ⩽ logN

N
(σ2 + σ‖∆x∗‖1) (4.35)

That is, we can show an adaptive rate for the MSE in terms of the true ‖∆x∗‖1.

4.8 Applications of Graph Wavelets and Haar Multiresolution Analysis

In this section, we study various applications of the proposed multiresolution local sets and the
corresponding representations. The applications include, approximation, denoising, and estima-
tion. For each application, we design a specific algorithm and provide an extensive empirical eval-
uation with respect to other state of the art algorithms.

4.8.1 Approximation

Approximation is a standard task to evaluate a representation and is similar in many ways to
compression. The goal is to use a few expansion coefficients to approximate a graph signal. We
compare the graph Fourier transform6, the windowed graph Fourier transform175, the local-set-
based wavelet basis and dictionary. The graph Fourier transform is the eigenvector matrix of
the graph shift and the windowed graph Fourier transform provides vertex-frequency analysis on
graphs. For the local-set-based wavelet basis and dictionary, we also consider three graph parti-
tion algorithms, including spectral clustering, spanning tree and 2-means.

Algorithm

Since the graph Fourier transform and the local-set-based wavelet bases are orthonormal bases,
we consider nonlinear approximation, that is, after expanding in with a representation, we should
choose the K largest-magnitude expansion coefficients so as to minimize the approximation error.
Let {ϕi ∈ RN}Ni=1 be an orthonormal basis and x ∈ RN be a signal. The nonlinear approximation
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to x is

x′ =
∑
k∈IK

〈x, ϕk〉ϕk, (4.36)

where IK is the index set of the K largest-magnitude expansion coefficients. When a basis pro-
motes sparsity for x, only a few expansion coefficients are needed to obtain a small approximation
error.

Since the the windowed graph dictionary and the local-set-based dictionaries are redundant, we
solve the following sparse coding problem,

x′ = argmina ‖x−Da‖22 , (4.37)

subject to : ‖a‖0 ≤ K,

where D is a redundant dictionary and a is a sparse code. The idea is to use a linear combination
of a few atoms from D to approximate the original signal. When D is an orthonormal basis, the
closed-form solution is exactly (4.36). We solve (4.37) by using the orthogonal matching pursuit,
which is a greedy algorithm184.

Experiments

We test the four representations on two datasets, including the Minnesota road graph185 and the
U.S city graph74.

For the Minnesota road graph, we simulate a piecewise-constant graph signal by randomly pick-
ing 5 nodes as community centers and assigning each other node to its nearest community center
based on the geodesic distance. We assign a random integer to each community. The simulated
graph signal is shown in Figure 4.10. The signal contains 5 piecewise constants and 84 inconsis-
tent edges. The frequency coefficients and the wavelet coefficients obtained by using three graph
partition algorithms are shown in Figure 4.10(b), (c), (d) and (e). The sparsities of the wavelet
coefficients for spectral clustering, spanning tree, and 2-means are 364, 254, and 251, respectively;
the proposed wavelet bases provide much better sparse representations than the graph Fourier
transform. The evaluation metric of the approximation error is the normalized mean square error,
that is,

Normalized MSE =
‖x′ − x‖22
‖x‖22

,

where x′ is the approximation signal and x is the original signal. Figure 4.10(f) shows the approx-
imation errors given by the four representations. The x-axis is the number of coefficients used in
approximation, which is K in (4.36) and (4.37) and the y-axis is the approximation error, where
lower means better. We see that the local-set-based wavelet with spectral clustering and local-set-
based dictionary with spectral clustering provides much better performances and the windowed
graph Fourier transform catches up with graph Fourier transform around 15 expansion coeffi-
cients. Figure 4.10(g) and (h) compares the local-set-based wavelets and dictionaries with three
different partition algorithms, respectively. We see that the spanning tree and 2-means have sim-
ilar performances, which are better than spectral clustering. This is consistent with the sparsities
of the wavelet coefficients, where the wavelet coefficients of spanning tree and 2-means are more
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sparse than those of spectral clustering.
The U.S city graph is a network representation of 150 weather stations across the U.S. We as-

sign an edge when two weather stations are within 500 miles. The graph includes 150 nodes and
1033 undirected, unweighted edges. Based on the geographical area, we partition the nodes into
four communities, including the north area (N), the middle area (M), the south area (S), and the
west area (W). The corresponding piecewise-constant graph signal is

x = 1N + 2 · 1M + 3 · 1S + 4 · 1W . (4.38)

The graph signal is shown in Figure 4.11(a), where dark blue indicates the north area, the light
indicates the middle area, the dark yellow indicates the south area and the light yellow indicates
the west area. The signal contains 4 piecewise constants and 144 inconsistent edges.

The frequency coefficients and the wavelet coefficients obtained by using three graph partition
algorithms are shown in Figure 4.11(b), (c), (d) and (e). The sparsities of the wavelet coefficients
for spectral clustering, spanning tree, and 2-means are 45, 56, and 41, respectively; the proposed
wavelet bases provide much better sparse representations than the graph Fourier transform.

The evaluation metric of the approximation error is also the normalized mean square error.
Figure 4.11(f) shows the approximation errors given by the four representations. Similarly to Fig-
ure 4.11(d), the local-set-based wavelet with spectral clustering and local-set-based dictionary
with spectral clustering exhibiting much better performance. The windowed graph Fourier trans-
form catches up with graph Fourier transform around 25 expansion coefficients. Figure 4.11(g)
and (h) compares the local-set-based wavelets and dictionaries with three different graph parti-
tion algorithms, respectively. We see that partitioning using spectral clustering provides the best
performance.

To summarize the task of approximation, the proposed local set based representations provide a
reliable approximation for a piecewise-constant graph signal because it promotes sparsity.
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Figure 4.10: Approximation on the Minnesota road graph.
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Figure 4.11: Approximation on the U.S city graph.
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4.8.2 Denoising

Denoising is one of the most important tasks in image processing. The goal is to remove noise
from a signal. Let x be a piecewise-constant graph signal, e be noise, and y = x + e is a noisy
graph signal. We aim to obtain x′ from y and minimize the difference between x′ and x.

Similarly to Section 4.8.1, we compare the graph Fourier transform, the vertex-frequency graph
dictionary, the local set wavelet basis and dictionary. For the local-set-based wavelet basis and
dictionary, we consider three graph partition algorithms, including spectral clustering, spanning
tree and 2-means. We also compare with trend filtering on graphs, which is particularly designed
for the goal of denoising a signal defined on a graph186.

Algorithm

For the graph Fourier transform and the PC wavelet basis, we use nonlinear approximation to ob-
tain the denoised graph signal. Since x is unknown, we approximate y by using a few expansion
coefficients. We assume that the main information about the noiseless graph signal is concentrated
in those expansion coefficients and the other expansion coefficients are contaminated by noise. We
thus obtain a high-quality graph signal by removing those noise-contaminated expansion coeffi-
cients. Similarly, for the vertex-frequency graph dictionary and the local set dictionary, we obtain
the denoised graph signal by solving (4.37) by replacing x to y. Trend filtering on graphs consid-
ers the following optimization problem.

x′ = argminx ‖y − x‖22 + µ ‖∆x‖1 ,

where ∆ is the graph difference operator and µ is a tuning parameter that balances the approx-
imation to y and the sparsity of ∆x. Since we know that x is piecewise constant, the difference
∆x should be small.

Experiments

We test those algorithms on the U.S city graph and use the same piecewise-constant graph sig-
nal (4.38) as the noiseless graph signal. We consider two noise levels. Let the noise e ∼ N (0, σ2),
where σ varies as 0.2, which corresponds to a low noise level, and 0.4, which corresponds to a high
noise level.

The evaluation metric used to evaluate the denoising error is still the normalized mean square
error. Figure 4.12(a) shows the noisy graph signal with low noise level. The noise-to-signal ratio,
‖e‖2 / ‖x‖2 = 7%. Figure 4.12(c) shows the denoising errors given by the five algorithms. The x-
axis is the number of coefficients used in denoising, which is K in (4.36) and (4.37) and the y-axis
is the denoising error, where lower means better. The horizontal line in black indicates the best
performance of trend filtering on graphs by tuning the parameter µ. We see that trend filtering
on graphs provide much better performances than the four representation-based algorithms in the
case of the low noise level, and the local-set-based wavelets and dictionaries outperform the graph
Fourier transform and windowed graph Fourier transform. Figure 4.12(e) and (g) compares the
local-set-based wavelets and dictionaries with three different partition algorithms, respectively. We
see that the spectral clustering and 2 means are slightly better than spanning tree.
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Figure 4.12(b) shows the noisy graph signal with low noise level. The noise-to-signal ratio,
‖e‖2 / ‖x‖2 = 14%. Figure 4.12(d) shows the denoising errors given by the five algorithms. We
see that the local-set-based wavelets and dictionaries are slightly better than trend filtering on
graphs in the case of high noise level. Figure 4.12(f) and (h) compares the local-set-based wavelets
and dictionaries with three different partition algorithms, respectively. We see that three graph
partition algorithms have similar performances.

To summarize the task of denoising, the proposed local set based representations works well to
remove noise from a piecewise-constant graph signal when the noise level is low. When the noise
level is high, trend filtering on graphs works better than the representation-based algorithms be-
cause trend filtering on graphs penalizes the sparsity of ∆x, which emphasizes the pairwise differ-
ences.
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Figure 4.12: Denoising on the U.S city graph.
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4.8.3 Case Study: Epidemics process

Epidemics process has been modeled as the diffusion process of ideas/opinions/beliefs/innovations
over a finite-sized, static, connected social network187. In the terminology of epidemics, if the
state of each node is either susceptible or infected, it is usually model by the susceptible-infected-
susceptible (SIS) model. Nodes that are infected have a certain rate (γ) to recover and return to
be susceptible; nodes that are susceptible can be contagious if infected by its neighboring infected
nodes with a certain rate (β).

Here we adopt the SIS model on network, which takes the network structure into account and
help us estimate the macroscopic behavior of an epidemic outbreak62. In SIS model on network, β
is the infection rate that quantifies the probability per unit time that the infection will be trans-
mitted from an infective individual to a susceptible one, γ is the recovery (or healing) probability
per unit time that an infective individual recovers and becomes susceptible again. To be more ac-
curate, the infection rate studied here is a part of endogenous infection rate, which has the form
of βd, where d is the number of infected neighbors of the susceptible node187,188. Since βd depen-
dents on the structure of the network, β is referred to as the topology dependent infection rate,
and since recovery is a spontaneous action and the recovery probability is identical for all the in-
fective nodes, γ is considered to be network topology independent187.

We consider a task to estimate the disease incidence, or the percentage of the infected nodes
at each time step. A simple method is that, in each time, we randomly sample some nodes, query
their states, and calculate the percentage of the infected nodes. This method provides an unbiased
estimator to estimate the disease incidence. However, this method has two shortcomings: first, it
loses information on graphs and cannot tell which nodes are infected; second, since it is a random
approach, it needs a huge number of samples to ensure a reliable estimation.

We can model the states of nodes as a graph signal where 1 represents infective and 0 repre-
sents susceptible. When the topology dependent infection rate is high and the healing probability
is low, the infection spreads locally; that is, nodes in the same community get infected in a same
time and the corresponding graph signal is piecewise constant. We can use the sampling and re-
covery algorithm in Section 5.1 and then calculate the percentage of the infected nodes in the
recovered graph signal. In this way, we can visualize the graph and tell which nodes may be in-
fected because we recover the states of all the nodes; we also avoid the randomness effect because
the algorithm is based on the experimentally designed sampling.

We simulate an epidemics process over the Minnesota road graph by using the SIS model. We
set γ be 0.1, and β be 0.6. In the first day, we randomly select three nodes to be infected and dif-
fuses it for 49 days. Figure 4.13 shows the states of nodes in the 10th day and the 20th day. We
see that three small communities are infected in the 10th day; these communities are growing big-
ger in the 20th day. Since the healing probability is nonzero, a few susceptible nodes still exist
within the communities.

We compare the results of two algorithms: one is based on random sampling followed with cal-
culating the percentage of infection within the sampled nodes; the second is based on the local-
set-based recovery algorithm following with calculating the percentage of infection within the re-
covered graph signal. The evaluation metric is the frequency that the result of the local-set-based
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Figure 4.13: Epidemics process over the Minnesota road graph. Yellow indicates infection and
blue indicates susceptible.

recovery algorithm is closer to the groundtruth, that is,

Success rate =
1

M

M∑
i=1

I(|x̂(2) − x0| < |x̂(1)i − x0|),

where x0 is the ground truth of the percentage of infection, x̂(1)i is the estimation of the random
algorithm in the ith trials, x̂(2) is the estimation of the local-set-based recovery algorithm, and M

is the total number of random trials; we choose M = 1000 here. The success rate measures the
frequency with which the local-set-based recovery algorithm has a better performance. When the
success rate is bigger than 0.5, the local-set-based recovery algorithm is better; When the success
rate is smaller than 0.5, the random algorithm is better. Figure 4.14 shows the success rates given
by the local-set-based recovery with three different graph partition algorithms. In each figure, the
x-axis is the day (50 days in total); the y-axis is the success rate; the darker region means that
local-set-based recovery algorithm fails and the lighter region means that local-set-based recov-
ery algorithm successes; and the number shows the percentage of success or fail within 50 days.
We see that given 100 samples, the local-set-based recovery algorithms are slightly worse than the
random algorithm; given 1000 samples, the local-set-based recovery algorithms are slightly better
than the random algorithm.

In Figure 4.15, we show the recovered states by the local-set-based recovery algorithm with 2-
means partition on the 20th day. When having a few samples, the local-set-based recovery algo-
rithms can recover the states in general, but cannot zoom into details and provide accurate es-
timations; when taking more samples, the local-set-based recovery algorithms recover the states
better and provide better estimations. We see that the local-set-based recovery algorithm with
2-means partition provides both good estimation and good visualization.
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Figure 4.14: Success rate of estimating the disease incidence.

141



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) 2-means (f) 2-means
with 100 samples. with 1000 samples.

Figure 4.15: Recovery of the node state on the 20th day.
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5
Sampling Piecewise Smooth Graph Signals

The assumption that graph signals vary slowly or are smooth over the graph is a natural one to
make. However, in social networks, within a given community or social circle, users’ profiles tend
to be homogeneous, while within a different social circle they will be different, yet still homoge-
neous. Such signals are characterized by large variation between regions or pieces and slow vari-
ation within pieces. In this work, we study the sampling and reconstruction of such piecewise-
smooth graph signals that exhibit a spatially inhomogeneous level of smoothness over regions of
the graph and have abrupt, localized discontinuities. This class of piecewise-smooth signals is
complementary to the class of smooth graph signals that exhibit spatially homogeneous levels of
smoothness over the graph. The sampling of such smooth signals has been well studied in previous
work both within the field of graph signal processing as well as in the context of Laplacian regu-
larization.

In the context of semi-supervised classification on graphs, each vertex represents one data point
to which a label is associated and a graph can be formed by connecting vertices with weights cor-
responding to the affinity or distance between the data points in some feature space. It is then
natural to assume that the label signal is piecewise-smooth on the graph. Since samples are often
sparse or expensive, designing efficient sampling and reconstruction tools for semi-supervised clas-
sification and active learning is notably valuable.

In this chapter, we develop frameworks and algorithms for the sampling of piecewise-smooth
graph signals. We study sampling piecewise smooth and particularly piecewise-constant signals on
a graph. As before, we seek to develop algorithms and strategies for sampling piecewise-smooth
signals. We study both passive and active sampling on graphs when sampling piecewise-smooth
signals. Further, we seek to understand the influence of the underlying graph structure like in
Chapter 3.
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5.1 Sampling and Recovery Using Haar Wavelets

Here we sample and recover using the Haar graph wavelet introduced in the previous chapter. The
goal of sampling and recovery is to collect a few samples from a graph signal, and then to recover
the original graph signal from those samples either exactly or approximately.

Algorithm

We consider the following recovery algorithm based on the multiresolution local sets. Let m be
the number of samples. We use the multiresolution decomposition of the local sets as shown in
Section 4.6.1. Instead of obtaining a full decomposition tree, we partition the local sets until we
obtain m leaf local sets. Those local sets may not be in the same decomposition level , but their
union still covers the entire space. For the local sets in the same level of the decomposition tree,
we first partition the one that has the largest number of nodes. For each leaf local set, we choose
a center that has the minimum summation of the geodesic distances to all the other nodes in the
leaf local set. We use those centers for the m leaf local sets as the sampled set. Let x ∈ RN be
a piecewise-constant graph signal, M = (M1, · · · ,Mm) be the designed sampled set, with each
sampled node Mj be the center of the jth leaf local set Sj . The recovered graph signal is

x′ =

m∑
j=1

xMj
1Sj

.

We obtain a simple upper bound for the recovery error of this algorithm.

Theorem 31. Let the original graph signal x ∈ PCG(K). The recovery error is bounded as

N∑
i=1

I(xi 6= x′i) ≤ K max
j=1,··· ,m

|Sj |,

where I(·) is the indicator function.

Proof. The error happens only when there exists at least one inconsistent edge in a community.
Since there are K inconsistent edges, we make errors in at most K communities. The worst case is
that each error is made in the one of the largest K communities.

Theorem 31 shows that the size of the largest community influences the recovery error. When
we use the even partition, the size of the largest local set is minimized, which minimizes the up-
per bound. Similar to Theorem 29, Theorem 31 also shows the importance of the even partition
again. This algorithm studies the graph structure before taking samples, which belongs to the ex-
perimentally designed sampling. In the classical regression for piecewise-constant functions, it is
known that experimentally designed sampling has the same performance with random sampling
asymptotically72. When we restrict the problem setting to sample only a few nodes from a finite
graph, however, random sampling can lead to the uneven partition where some communities are
much larger than the others. As a deterministic approach, the experimentally designed sampling
minimizes the error bound and is better than random sampling when the sample size is small.

144



We also consider two other recovery algorithms, including trend filtering on graphs and har-
monic functions. For trend filtering on graphs, we consider

x′ = argminβ∈Rn

1

2
‖(y − β)M‖22 + λ‖∆(k+1)β‖1,

where M is the sampling node set obtained by random sampling. We want to push the recovered
graph signal to be close to the original one at the sampled nodes and to be piecewise constant.
For harmonic functions, we consider

x′ = argminβ∈Rn
1
2‖(y − β)M‖22 + µ ‖∆β‖22 ,

where ‖∆β‖22 = βT Lβ and L is the graph Laplacian matrix. Harmonic functions are proposed to
recover a smooth graph signal which can be treated as an approximation of a piecewise-constant
graph signal. When we obtain the solution, we assign each coefficient to its closest constant in x.

Experiments

We test the four representations on two datasets, including the Minnesota road graph185 and the
U.S city graph74.

For the Minnesota road graph, we simulate a piecewise-constant graph signal by randomly pick-
ing 5 nodes as community centers and assigning each other node a community label based on the
geodesic distance. We assign a random integer to each community. We still use the simulated
graph signal in Figure 4.10(a).

The evaluation metric of the recovery error is the percentage of mislabel, that is,

Error =

∑N
i=1 I(xi 6= x′i)

N
,

where x′ is the recovered signal and x is the ground-truth signal. Figure 5.1(a) shows the recovery
errors given by three algorithms. The x-axis is the ratio between the number of samples and the
total number of nodes and the y-axis is the recovery error, where lower means better. Since har-
monic functions and trend filtering are based on random sampling, the results are averaged over
50 runs. SC indicates spectral clustering, ST indicates spanning tree and 2M indicates 2-means.
We see that the local-set-based recovery algorithms are better than harmonic functions and trend
filtering, especially when the sample ratio is small.

For the U.S city graph, we use the same piecewise-constant graph signal (4.38) as the ground
truth. The evaluation metric of the recovery error is the percentage of mislabel. Figure 5.1(b)
shows the recovery errors given by three recovery strategies with two different sampling strategies.
Similarly to the recovery of the Minnesota road graph, we see that the local-set-based recovery al-
gorithms are better than harmonic functions and trend filtering, especially when the sample ratio
is small.

To summarize the task of sampling and recovery, the proposed center-assign algorithm is sim-
ple and useful in the recovery. The experimentally designed sampling based on local sets tries to
minimizes the upper bound in Theorem 31 and make each local set have similar sizes. It provides
a deterministic approach to choose sampled nodes; it works better than random sampling when
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Figure 5.1: Comparison of recovery errors. LS+SC represents the local-set-based recovery algo-
rithm with spectral clustering partition; LS+ST represents the local-set-based recovery algorithm
with spanning tree partition; LS+2M represents the local-set-based recovery algorithm with 2-
means partition.

the sample ratio is small and has a similar asymptotic performance to random sampling.
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5.2 Sampling Piecewise Smooth Signals on Graphs via Graph trend Filtering

The graph trend filtering (GTF) framework30, which applies total variation denoising on graphs114,
is a particularly flexible and attractive approach to process piecewise-smooth graph signals that is
based on minimizing the ℓ1 norm of discrete graph differences. In this work, we present an exten-
sion to the GTF framework under the sampling setting, that is, where we only partially observe
the signal.

Most sampling strategies fall under the umbrellas of either (1) passive sampling where there
is no feedback and we simply sample the space without any knowledge of key signal character-
istics, or (2) active sampling where we can incorporate feedback in a sequential process. Unlike
sampling smooth signals that have no discontinuities, the localized nature of the discontinuities in
piecewise-smooth signals make the detection of these discontinuities inherently decoupled from the
global or neighborhood features of the graph signal. It then follows that the passive sampling of
piecewise-smooth graph signals is a significantly harder or even futile task than the same for glob-
ally smooth signals. For the latter, it is often sufficient to sample such that we uniformly cover the
space. Consequently, we propose studying the active sampling of piecewise-smooth signals by de-
signing algorithms and strategies that incorporate feedback. Particularly, we develop active sam-
pling methods that can capitalize on the localized nature of the boundary by focusing the sam-
pling process in the estimated vicinity of the boundary.

5.2.1 Sampling

We consider the procedure of sampling and recovery as follows: we sample M coefficients in a
graph signal β ∈ RN with Gaussian noise to produce a noisy sampled signal y ∈ RM (M < N),
that is,

y = Ψβ + ϵ ≡ βM + ϵ, (5.1)

where ϵ ∼ N (0, σ2 IM×M ), and M = (M1, · · · ,MM ) denotes the sampling set where Mi ∈
{1, · · · , N}. The sampling operator Ψ is a linear mapping from RN to RM , defined as

Ψi,j =

{
1, j =Mi;

0, otherwise.
(5.2)

We then reconstruct β from y to get β̂ ∈ RN .
Passive sampling refers to the setting where we are constrained to strategies that are blind

to any samples of the signal. That is, we design strategies by considering only the underlying
graph structure and any modeling assumptions we have made. In contrast, active or adaptive
sampling strategies are able to choose samples in an online fashion by allowing feedback: the deci-
sion of where to sample next depends on all the observations made previously. While it’s obvious
that good active sampling strategies should never perform worse than passive sampling strategies,
we aim to develop active sampling strategies that are able to achieve substantial gains in perfor-
mance.

Under passive sampling, we can consider two different sampling settings: random sampling
where the sample indices are chosen from from {1, · · · , N} independently and uniformly randomly;
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Figure 5.2: Example of sampling a piecewise-constant (k=0) graph signal with 4 pieces on the
Minnesota road graph with a random 5% of samples. From left to right, we have the true signal,
the noisy signal, the location of the samples, and the reconstructed signal. Noisy input signal SNR
= 5dB, Reconstructed signal SNR = 12.8dB
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Figure 5.3: Example of sampling a piecewise-linear (k=1) graph signal on the Minnesota road
graph with a random 5% of samples. From left to right, we have the true signal, the noisy sig-
nal, the location of the samples, and the reconstructed signal. Noisy input signal SNR = 5dB,
Reconstructed signal SNR = 14.5dB

and experimentally designed sampling where the sample indices can be chosen beforehand based
on the graph structure. Since we do not a-priori make any assumptions or have any information
on the location of the boundary or discontinuities of the piecewise-smooth graph signal, we can
show that experimentally designed sampling does not outperform random sampling and in fact,
can often be detrimental. In other words, these discontinuities are fundamentally dissociated from
samples outside their locations on the graph unlike globally smooth signals where key character-
istics of the signal are spread out over local neighborhoods and consequently some nodes can be
more informative than others. Consequently, we only consider uniform random sampling for pas-
sive sampling. We note that previous work that has studied the fundamental limits of passive and
active sampling on graphs for globally smooth signals, has shown that active sampling does not
fundamentally outperform passive sampling. However, experimentally designed sampling outper-
forms random sampling for irregular graphs where some nodes can be more informative than oth-
ers.

5.3 Sampling via Graph Trend Filtering

Graph trend filtering (GTF)30 is a flexible framework for estimation on graphs that is adaptive to
inhomogeneity in the level of smoothness and localized characteristics of an observed signal across
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nodes. The kth order GTF estimate is defined as:

β̂ = argminβ∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)β‖1, (5.3)

which can be regarded as applying total variation or fused lasso with the graph difference operator
∆(k+1) 114,32. The sparsity-promoting properties of the ℓ1 norm have been well-studied153. Conse-
quently, applying the ℓ1 penalty in GTF sets many of the graph differences to zero while keeping
a small fraction of nonzero values. GTF is then adaptive over the graph; its estimate at a node
adapts to the smoothness in its localized neighborhood.

Under the sampling and recovery framework, we propose solving following modified version of
the GTF formulation GTF-S:

β̂ = argminβ∈Rn

1

2
‖y −Ψβ‖22 + λ‖∆(k+1)β‖1, (5.4)

Remark 5. Note that we can use mixed piecewise penalties to encourage different kinds of piece-
wise polynomial behavior by stacking the graph difference matrices since we can transform λ‖∆(l+1)‖1+
γ‖∆(m+1)‖1 as ‖∆‖1 where

∆ =

[
λ∆(l+1)

γ∆(m+1)

]
In the following exposition however, we only consider the basic graph difference operator for a
given k.

We solve this GTF-S formulation in (5.4) via the alternating direction method of multipliers
(ADMM) framework for solving separable optimization problems104. Via a change of variable
defining η = ∆(k+1)β, we can write the transformed problem:

β̂ = argminβ∈Rn

1

2
‖y −Ψβ‖22 + λ‖η‖1 s.t. η = ∆(k+1)β

and its corresponding Lagrangian as:

L(β,η, ) =
1

2
‖y −Ψβ‖22 + λ‖η‖1 +

τ

2
‖∆(k+1)β − η + ‖22

− τ

2
‖‖22 (5.5)

where ̆ is the Lagrangian multiplier, and τ the parameter. Algorithm 7 shows the ADMM up-
dates based on the Lagrangian in (5.5). For an appropriately chosen τ , the algorithm converges
in a fixed number of iterations. In Fig. 5.2 and Fig. 5.3, we illustrate with an example the sam-
pling and recovery of a piecewise-constant and piecewise-linear graph signal on the Minnesota
road graph71 with the GTF-S framework.

5.3.1 Theoretical Analysis

We now present bounds on the error rate of the GTF-S fit ‖Ψ(β̂ − β⋆)‖2 that help elucidate
the relationship between the sample complexity (number of samples M needed for accurate re-
construction) with respect to structural properties of the graph and complexity of the boundary
‖∆(k+1)β‖1. For simplicity, let us assume the graph is fully connected, that is there is only 1 con-
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Algorithm 7 ADMM Optimization for GTF-S
1: Inputs: y,Ψ,∆(k+1), and parameters λ, τ
2: Initialize:

D ←∆(k+1), η ← Dβ, ← Dβ − η,
β ← y or βinit if given.

3: repeat
4: β ← (ΨTΨ+ τDTD)−1(τDT (η−) +ΨTy)
5: for i ← 1 to length(Dβ) do
6: ηi ← proxρ([Dβ]i + ui;λ/τ)
7: ▷ proxρ(t;α) = soft-thresholding operator on t with αρ
8: end for
9: ← +Dβ − η

10: until termination

nected component, the dimension of the null space of ∆(k+1). Note that if there were multiple
connected components, the problem becomes fully separable over each connected component.

Proposition 4. On a fully connected graph, we have ∆(k+1)†∆(k+1) = I − 1
N J

Definition 18 (Compatibility factor). Let ∆(k+1) be fixed. The compatibility factor κT of a
nonempty set T ⊆ {1, 2, . . . , r} is defined as

κT (∆
(k+1)) = inf

β∈Rn

{ √
|T | · ‖β‖2

‖(∆(k+1)β)T ‖1

}
.

Below, we present a simple lower bound on κT :

Proposition 5 (Bound on κT ). Let dmax be the maximal degree of the graph, then κT is bounded
for any T and d as

κT (∆
(k+1)) ≥ 1

(2dmax)
k+1
2

.

We have that,
β̂ = argminβ∈Rn

1

2
‖y −Ψβ‖22 + λ‖∆(k+1)β‖1

As a result, by optimality we can write,

‖y −Ψβ̂‖22 + λ‖∆(k+1)β̂‖1 ≤ ‖y −Ψβ⋆‖22 + λ‖∆(k+1)β⋆‖1 (5.6)

By rearranging,

‖Ψ(β̂ − β⋆)‖22 ≤ 2(y −Ψβ⋆)TΨ(β̂ − β⋆) + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1 (5.7)

150



Denoting β̂ − β⋆ as γ for simplicity, we have that

‖Ψγ‖22 ≤ 2ϵTΨγ + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1

≤ 2ϵTΨ(∆(k+1)†∆(k+1) +
1

n
J)γ + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1

≤ 2

n
ϵTΨJγ + 2ϵTΨ∆(k+1)†∆(k+1)γ + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1

≤ 2

n
‖ϵTΨJ‖2‖γ‖2 + 2‖ϵTΨ∆(k+1)†‖∞‖∆(k+1)γ‖1 + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1

We can maximally bound 2
n‖ϵ

TΨJ‖2 ≤ C with probability atleast 1− δ such that

C = 2σ

√
2
M

N
log(

2

δ
)

Further, setting λ ≥ 4‖ϵTΨ∆(k+1)†‖∞, we have that

‖Ψγ‖22 ≤ C‖γ‖2 +
λ

2
(‖∆(k+1)γ‖1 + 2‖∆(k+1)β⋆‖1 − 2‖∆(k+1)β̂‖1)

For any subset T ⊆ [r], we can write

‖∆(k+1)γ‖1 + 2‖∆(k+1)β⋆‖1 − 2‖∆(k+1)β̂‖1
= 3‖(∆(k+1)γ)T ‖1 − ‖(∆(k+1)γ)Tc

‖1 + 4‖(∆(k+1)β⋆)Tc
‖1

Further, since ‖Ψγ‖22 ≥ 0, γ lies in the cone

C = {t : ‖(∆(k+1)t)Tc
‖1 ≤ 3‖(∆(k+1)t)T ‖1 + 4‖(∆(k+1)β⋆)Tc

‖1 +
2C

λ
‖γ‖2} (5.8)

By the definition of κT , we have that for any T,

‖(∆(k+1)γ)T ‖1 ≤
√
|T |‖γ‖2
κT

As a result, we have that

‖Ψγ‖22 ≤ C‖γ‖2 +
λ

2
(
3
√
|T |‖γ‖2
κT

− ‖(∆(k+1)γ)Tc + 4‖(∆(k+1)β⋆)Tc‖1)

≤ (C +
3λ
√
|T |

2κT
)‖γ‖2 + 2λ‖(∆(k+1)β⋆)Tc

‖1

Definition 19. We now introduce a restricted isometry property for all γ ∈ C such that

‖Ψγ‖22 ≥
‖γ‖22
Φ

where C = {t : ‖(∆(k+1)t)Tc
‖1 ≤ 3‖(∆(k+1)t)T ‖1 + 4‖(∆(k+1)β⋆)Tc

‖1 + 2C
λ ‖γ‖2

such that
‖γ‖22 ≤ Φ(C +

3λ
√
|T |

2κT
)‖γ‖2 + 2Φλ‖(∆(k+1)β⋆)Tc

‖1 (5.9)
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If x2 − bx− c ≤ 0, then x2 ≤ 4max(b2, |c|) ≤ 4(b2 + c), for b ≥ 0 As a result, we have that

Theorem 32 (Main Error Bound).

‖β̂ − β⋆‖22 ≤ 4(Φ(C +
3λ
√
|T |

2κT
))2 + 8Φλ‖(∆(k+1)β⋆)Tc‖1 (5.10)

Since this holds for all sets T ,

‖β̂ − β⋆‖22 ≤ min
T

[
4(Φ(C +

3λ
√
|T |

2κT
))2 + 8Φλ‖(∆(k+1)β⋆)Tc‖1

]
(5.11)

If we take T = supp(∆(k+1)β⋆), ‖(∆(k+1)β⋆)Tc
‖1 = 0, we have that

‖β̂ − β⋆‖22 ≤ 4Φ2(C +
3λ
√
|T |

2κT
)2 (5.12)

while if T = ϕ, ‖(∆(k+1)β⋆)Tc
‖1 = ‖∆(k+1)β⋆‖1, and

‖β̂ − β⋆‖22 ≤ 4Φ2C2 + 8Φλ‖(∆(k+1)β⋆)‖1 (5.13)

Theorem 33 (Weak Consistency Error bound of the GTF-S minimizer). Let β̂ to be the mini-
mizer of (5.4), r be the number of rows of ∆(k+1), ζ be the maximum ℓ2 norm of the columns of
Ψ∆(k+1)†. Set λ = σζ

√
2 log( rδ ), then with probability at least 1− 2δ, we have:

‖Ψ(β̂ − β⋆)‖22 ≤ σ2
(
1 + 2

√
2 log(

1

δ
)
)
+ 4σζ

√
2 log(

r

δ
)‖∆(k+1)β⋆‖1

Proof. Setting λ, we have that

‖Ψγ‖22 ≤ C‖γ‖2 + λ‖∆(k+1)(β̂ − β⋆)‖1 + λ‖∆(k+1)β⋆‖1 − λ‖∆(k+1)β̂‖1
≤ C‖γ‖2 + 2λ‖∆(k+1)β⋆‖1

Hence, the GTF-S fit is consistent if ‖∆(k+1)β⋆‖1 grows at a rate slower than 1

σζ
√

log( r
δ )

. From155,

we can show that ζ ≤ 1/λmin(∆
(2))

k+1
2 , where λmin(∆

(2)) is the smallest nonzero eigenvalue of the
graph Laplacian matrix ∆(2) and quantifies the algebraic connectivity of the graph. We note that
this result is consistent with basic error rates for graph trend filtering30 as M → N .

5.4 Active Sampling for Piecewise Smooth Signals on Graphs

As alluded to earlier, the abrupt discontinuities are highly localized. That is, these discontinuities
are fundamentally dissociated from samples outside their locations on the graph unlike globally
smooth signals. This makes the task passive sampling significantly harder or perhaps even ineffec-
tive. Consequently, in the passive sampling setting, without prior knowledge on the location of the
discontinuities, we do not expect experimentally designed sampling to perform better than uni-
form random sampling. Hence, in the first part, we propose understanding how uniform random
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sampling differs from experimentally designed sampling for piecewise-smooth signals on graphs.
Previous work189,73,190 in a similar vein has studied fundamental performance limits of active

learning in for continuous functions the context of regression under noisy conditions. Significantly
faster rates of convergence are generally achievable in cases involving functions whose complexity
is highly concentrated in small regions of space. Further, for piecewise constant functions, active
learning methods can capitalize on the highly localized nature of the boundary by focusing the
sampling process in the estimated vicinity of the boundary. In this work, we ask similar questions
for piecewise signals supported on irregular structures. As before, we seek to understand how the
underlying graph structure influences both these limitations and the performance of these algo-
rithms.

In the smooth signal setting, where the chosen basis is the graph Fourier transform, we know
the support of the coefficients of the basis transform since smooth signals are approximately ban-
dlimited. However, for piecewise smooth signals, without apriori knowledge on the locations of the
discontinuities, the support of the wavelet coefficients are difficult to detect. This leads us to sus-
pect that like for piecewise smooth functions, active sampling can achieve substantial gains over
passive sampling since feedback can helps us localize the discontinuities.

We aim to develop an active learning framework for the piecewise constant class of graph sig-
nals. While, we would like to eventually develop optimal sequential sampling algorithms, we pro-
pose to initially explore the following two-step procedure for adaptively sampling a piecewise-
constant graph signal. A simple scheme is the following two-step approach is similar in flavor to
the approach studied by Willett et al189 and is based in part on the tree-structured estimators for
passive learning. In the first step, called the preview step, a rough estimator of the signal x or its
discontinuties is constructed using half our sampling budget, distributed over the graph. In the
second step, called the refinement step, we use our remaining sampling budget near the estimated
locations of the boundaries in the previous steps to find the separating constant regions and re-
cover the piecewise-constant signal x.

5.4.1 Active Sampling

We expect localized behavior that may be hard to detect to hamper the performance of passive
sampling strategies. Consequently, in this section, we seek to employ active sampling strategies
when the signal exhibits inhomogeneous behavior over the graph and contains discontinuities as
in the case of piecewise-smooth signals. This gain in performance can be measured both in terms
of the error rates and the sample complexity required to achieve a particular guarantee on the er-
ror. In spirit, our work follows previous work that studied the capabilities of passive and active
sampling for recovering non-smooth functions from samples; the difference is that we consider a
discrete setting and deal with irregular structures. For a smooth function, it has been shown that
active sampling, experimentally designed sampling and uniform sampling have the same perfor-
mance from a statistical perspective. For brevity, we only consider the piecewise-constant (k = 0)
setting here, however the ideas and strategies presented here can easily be extended to general k.
Given a sampling budget of M samples (assume for simplicity that M is even), we employ a two-
step approach based in part on the active sampling procedures discussed in73.

1. In the first step, called the preview step, we randomly sample M/2 samples uniformly dis-
tributed over the graph with Ψ̃ and use the GTF-S estimator (5.4) of the signal to get the
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rough estimate β̃.

2. In the second step, called the refinement step, we select the remaining half of our budget
M/2 samples, near the perceived locations of the boundaries estimated in the preview step.
Particularly, in this step we define a probability distribution over the nodes such that πi ∝∑

j∈N (i) |β̃i − β̃j | where N (i) denotes the neighborhood of i, the nodes it shares an edge
with. We sample M/2 nodes with replacement such that in each of the M/2 rounds, the
probability of the i-th node being selected is proportional to πi. Consequently, at the end
of this process we can construct a randomized sampling set represented by Ψ̂ such that the
samples are largely concentrated in the vicinity of the boundary or discontinuities. We then
use the GTF-S estimator (5.4) with the full set of M samples with sampling operator ΨT =[
Ψ̃T |Ψ̂T

]
to get our final estimate β̂.

This prescribed strategy is a natural way to take advantage of the idea that estimating the sig-
nal near the boundary is key to obtaining better reconstruction performance. We consider the
even split of the sampling budget between the preview and refinement step only for simplicity.
In addition, instead of a two-step procedure, one can reprise this idea, performing multiple refine-
ment steps where in each step we acquire a new estimate of the boundary. However, for simplic-
ity, we only consider the two-step procedure here.

5.5 Numerical Experiments

In this section, we perform numerical experiments on the synthetic piecewise-constant and piecewise-
linear graph signals on the Minnesota road network with N = 2642 nodes and m = 3304 edges
illustrated in Figures 5.2 and 5.3. We construct the piecewise-constant graph signal with 4 pieces
by randomly choosing the location of 4 seed nodes and connecting every node to the closest seed
by shortest path distance. We construct the piecewise-linear signal by randomly choosing the loca-
tion of 50 discontinuities and solving the Poisson equation ∆(2)β = b where the non-zero entries
in sparse vector b correspond to the discontinuities. We tune the hyperparameters ρ and τ in Al-
gorithm 7 by grid-search for the below experiments.

5.5.1 Passive Sampling

In this section, we study the performance of our proposed algorithm for different sampling densi-
ties and noise settings. We inject white gaussian noise such that the noisy signal has a specified
SNR (5dB,10dB,15dB) before uniformly randomly sampling the signal and recovering it with Al-
gorithm 7. The results are illustrated in Figure 5.4.

We see that we can only accurately reconstruct at moderately higher sampling densities. Note
that we can reconstruct a piecewise-linear signal with better accuracy than a piecewise-constant
signal with the same sample budget since the piecewise-linear graph signal is more homogenous
and its key characteristics are less localized.

5.5.2 Active Sampling

We repeat the same experiment as that in Section 5.5.1 for the 5dB input SNR setting but ad-
ditionally employ the active sampling strategy described in Section 5.4.1. The results are illus-
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Figure 5.4: Reconstructed signal SNR versus sampling density for different input SNR settings
for both a piecewise-constant and a piecewise-linear graph signal

trated in Figure 5.5. Note that for piecewise-linear signals, in the refinement step, we define πi ∝
|β̃i − 1

|Ni|
∑

j∈Ni
β̃j |.
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Figure 5.5: Reconstructed signal SNR versus sampling density for passive and active sampling
settings for both a piecewise-constant and a piecewise-linear graph signals

We see that for both piecewise-constant and piecewise-linear graph signals, active sampling con-
sistently and significantly outperforms passive sampling for the same sampling budget. This per-
formance gain is particularly substantial at lower sampling densities.

5.6 Future Work and Extensions

We note that with approximate knowledge of the location of the discontinuities, we can estimate
the support of the wavelet coefficients of the signal. We can then employ techniques developed for
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experimental designed sampling191 to design the samples in the second step similarly to the sam-
pling scores derived in Section 3.4.4. It is then easy to see that the localization of the energy in
the rows of the wavelet basis is key to understanding how the graph structure influences our per-
formance. More specifically, we see how the uncertainty principle is insightful since wavelets at
the same scale can have different degrees of localization. As a result, we expect that this interac-
tion between the graph structure and the graph wavelet basis to play an important role in under-
standing these fundamental limits. If active sampling does indeed outperform passive sampling
for this class of signals, then our aim is to show that the upper bound of this recovery algorithm
is strictly smaller than the minimax lower bounds developed for passive sampling. As before, we
seek to understand how the underlying graph structure influences both these limitations and the
performance of these algorithms.
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6
Conclusion, Gaps and Future Work

6.1 Conclusion

In this thesis, we studied the tasks of (1) sampling signals and (2) reconstructing signals from
noisy observations for each of the signal classes of (1) globally smooth and (2) piecewise smooth
signals.

For smooth signals, we presented a sampling theory that guarantees perfect recovery, random-
ized sampling strategies and studied the fundamental limits of sampling in passive and active set-
tings. That is, we showed that there are no fundamental gains from active sampling but there is.
This is in contrast to sampling in a regular space. We showed how to efficiently sample on prod-
uct graphs taking advantage of the structure. Further, we developed novel algorithms for smooth
signal reconstruction on product graphs.

For piecewise-smooth signals that exhibit abrupt localized discontinuities over the graph, we
presented the graph trend filtering estimator for signal reconstruction. Specifically, we showed
that employing non-convex penalties has better reconstruction performance and support recov-
ery. We also showed how to construct local-set multiresolution analysis and wavelet basis in order
to approximate piecewise constant signals.

Moreover, we studied experimentally the limits of sampling piecewise-smooth graph signals un-
der passive and active settings and explored designing adaptive sampling strategies that can out-
perform passive strategies.

Further, we outlined applications relevant to semi-supervised classification on graphs and prob-
lems in sensor networks that illustrate how the proposed tools and frameworks can provide solu-
tions for many real-world applications of graph-structured data.
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6.2 Future Work and Potential New Directions

6.2.1 Active Sampling

Studying the fundamental statistical limits of active learning versus passive learning on irregu-
lar spaces is still worth pursuing. Our largely experimental work on active sampling for piecewise
smooth signals on graphs is a good first step before doing so. It also provides ample evidence that
active sampling outperforms passive sampling in this setting.

For smooth signals, we have studied the fundamental minimax rates of active sampling and
passive sampling, and shown that active sampling has no gain. However, active sampling still usu-
ally slightly out performs passive sampling in highly noisy settings. Hence, it is still worth devel-
oping active sampling algorithms even for smooth signals.

6.2.2 Localization and Network Motifs

Moving away from sampling and recovery, anomaly detection and event detection is a massive
area of research. The uncertainty principle shows us the limiting effects of the graph Fourier trans-
form in gleaning information since they possess simultaneous localization in vertex frequency space.
While this area is still mostly pattern specific, whereby the pattern is swept across the graph, a
more general solution is needed, perhaps an invariant translation operator.

Another alternative to using the graph Fourier transform which is also more well suited to an-
alyze for example biological networks and social networks is network motifs. Network motifs are
elementary subgraphs that repeat themselves in a complex network, which may reflect local, func-
tional properties.

6.2.3 Graph Neural Networks and Graph Signal Processing

Recently developed sampling and recovery strategies have been based on two main frameworks:
graph signal processing (GSP) and graph neural networks (GNNs). GSP provides a mathemat-
ically rigorous framework to analyze graph signals by generalizing the classical signal processing
toolbox to the graph domain6,172. On the other hand, GNNs provide a unifying end-to-end learn-
ing framework by extending deep neural network techniques to the graph domain192,193. From the
GSP perspective, the sampling and recovery operators Ψ,Φ are linear mappings, and the graph
signal model is explicitly defined in advance. On the other hand, in the case of GNNs, the sam-
pling and recovery operators Ψ,Φ could be nonlinear, and the graph signal model is implicitly
learnt during the training process. GNNs have achieved impressive progress; however, a principled
and mathematically rigorous approach to understand and design GNNs is greatly needed. GSP
could potentially complement GNNs along this direction, which has not been fully explored yet.

Therefore, there is a niche for both signal processing and machine learning communities to col-
laborate and solve fundamental challenges on sampling and recovery of graph signals. This would
not only benefit the development of both GSP and GNNs, but also a variety of applications, such
as social network analysis, 3D point cloud processing, urban data analysis, sensor network local-
ization, and many others.

However, we want to promote a combination between GSP-based algorithms and GNN-based
algorithms to accelerate the research progress of sampling and recovery of graph signals. As emerg-
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ing tools, GNNs enable an end-to-end learning framework to handle graph-related problems. With
a huge amount of training data, GNNs would potentially provide powerful empirical performances;
however, it is still an open issue to understand and design the architectures of GNNs. GSP could
potentially guide the architecture design of GNNs by providing some theoretical insights. At the
same time, GNNs could inspire more mathematically rigorous building blocks developed by GSP
via a large amount of engineering attempts.
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A
A.1 Proofs from Chapter 3

A.1.1 Fano’s Method

We aim to construct a typical set of vectors in F , and use the Fano’s method. Let X be a pruned
hypercube and let

F ′ = {x(w) = V x̂�w =

2κ0−1∑
k=κ0

wkψk, w ∈ X},

where κ0 is no smaller than the bandwidth K,

ψk = x̂kvk = (±)k
√

cµ ‖x‖22
κ0(1 + k2β)

vk,

and 0 < c < 1. It is easy to check that F ′ ⊆ F . Let d(x,y) = ‖x− y‖2, we have

d2(x(w),x()) =
∥∥V x̂� (w−)2

∥∥2
2

= α2

2κ0−1∑
k=κ0

(wk − uk)2x̂2k

= α2

2κ0−1∑
k=κ0

(wk − uk)2
cµ ‖x‖22

κ0(1 + k2β)

(a)

≥ α2

2κ0−1∑
k=κ0

(wk − uk)2 ·
cµ ‖x‖22

κ0(1 + (2κ0)2β)

(b)

≥ α2κ0
8
·

cµ ‖x‖22
κ0(1 + (2κ0)2β)

≥ c1µκ
−2β
0 ‖x‖22 ,
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where (a) follows from k ≤ 2K, and (b) from the Varshamov-Gilbert lemma. To use the Fanno’s
method, we need to bound the KL divergence,

KL(pw, pw0
|M) =

∑
i∈M

Ew

[
log

p(yi − x(w)
i )

p(yi − x(w0)
i )

]

≤
∑
i∈M

[
1

2σ2
(x

(w)
i − x(w0)

i )2
]

=
∑
i∈M

[
1

2σ2
(v∗
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2

]

=
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(
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)2

=
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i∈M
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2
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x̂kx̂k′wkwk′ Vik Vik′


≤ 1
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i∈M
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cµ ‖x‖22 w2
k V

2
ik
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√
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∑
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where δ =
∑2κ0−1

k,k′=κ0,k ̸=k′(−1)k+k′ cµ∥x∥2
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√
1+k2β

√
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has a lower order because of the cross signs.
For random sampling, the sampling set M is chosen randomly, thus, we have

KL(pw, pw0
) = EM [KL(pw, pw0

|M)]

≤
cµ ‖x‖22
σ2

κ
−(2β+1)
0 EM
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V2
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k=κ0

V2
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∥∥2
F
|M|,

where (a) follows from the independence of each sample, P(j = i) denotes the probability to sam-
ple the ith node that equals j, and

∥∥V(2,κ0)

∥∥2
F
=
∑N

j=1

∑2κ0−1
k=κ0

V2
jk.

For experimentally designed sampling, we can choose the sampling set M to maximize
∑

i∈M
∑2κ0−1

k=κ0
V2

ik,
thus, we have
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∥∥2
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For active sampling, we cannot get more benefit from signal coefficients, so the KL divergence is
the same of the experimentally designed sampling. By the Fanno’s lemma, we finally have the fol-
lowing lower bounds for three sampling scenarios.

Appendix B. Proof of Upper Bound for Random Sampling

We aim to bound the error by the bias-variance.

E ‖x∗ − x‖2 = E ‖x∗ − x‖2

= E ‖x∗ − Ex∗ + Ex∗ − x‖2

= E
(
‖x∗ − Ex∗‖2 + ‖Ex∗ − x‖2 + 2(x∗ − Ex∗)T (Ex∗ − x)

)
= ‖Ex∗ − x‖2 + E ‖x∗ − Ex∗‖2 .

The first term is bias and the second term is variance. For each element in the bias term, we have

Ex∗i − xi =
∑
k<κ

Vik
N

|M|
EM,ϵ

(∑
l∈M

Ukl(xl + ϵl)

)
− xi

(a)
=

∑
k<κ

Vik
N

|M|
|M| · El (Ukl xl)− xi

=
∑
k<κ

VikN

N∑
j=1

Ukj xjP(j = l)− xi

=
∑
k<κ

Vik

N∑
j=1

Ukj xj − xi

=
∑
k<κ

Vik x̂k − xi = −
∑
k≥κ

Vik x̂k,

where (a) follows from the independence of each sample, P(j = l) denotes the probability to
sample the lth node that equals j. Since we sample randomly, P(j = l) = 1/N . This leads to
Lemma 3. We then bound the bias term based on Definition 10.

‖Ex∗ − x‖2
(a)

≤ α2

∑
k≥κ

x̂2k

= α2

∑
k≥κ

x̂2k(1 + k2β)

1 + k2β

≤ α2

1 + κ2β

∑
k≥κ

x̂2k(1 + k2β)

(b)

≤ α2

1 + κ2β

∑
k≥K

x̂2k(1 + k2β)

(c)

≤ α2

1 + κ2β
µ ‖x‖22

where (a) follows from the assumption of V (3.1), (b) from the assumption that κ ≥ K, and (c)

from Definition 10.
We next bound the variance term by splitting into two parts, with and without noise. For each
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element in the variance term, we have

x∗i − Ex∗i =
∑
k<κ

Vik

(
N

|M|
∑
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)
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(1)
i , we have
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where (a) follows from the independence of noise, (b) from the independence of each sample.
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To bound ∆
(2)
i , we have
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where (a) follows from the fact that we ignore the second term.
We combine the bounds for both ∆

(1)
i and ∆

(2)
i , and obtain the bounds for the variance term.
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F
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Finally, we combine the bias term and the variance term, and obtain the bounds for the recovery
error, as presented in Theorem 16.
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Appendix. C Proof of Upper Bound for Experimentally Designed Sampling

Similarly to Theorem 16, we split the error to the bias term and the variance term. For each ele-
ment in the bias term, we have

Ex∗i − xi =
∑
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Vik
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where P(j = l) denotes the probability to sample the lth node that equals j. Since we sample with
a given weight, P(j = l) = 1/wi. This leads to Lemma 4, and the bias term is thus the same as
presented in Theorem 16. We next bound the variance term by splitting into two parts, with and
without noise. For each element in the variance term, we have
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To bound ∆
(2)
i , we have
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where (a) follows from the fact that we ignore the second term.
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We combine the bounds for both ∆
(1)
i and ∆

(2)
i , and obtain the bounds for the variance term.
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Finally, we combine the bias term and the variance term, and obtain the bounds for the recovery
error, as presented in Theorem 17.

Appendix. D Proof of Corollary 1

We start with the upper bound of Corollary 3. Based on Theorem 16, we have
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where (a) follows from Definition 12, κ is set in the order of |M|
1

2β+1 , and C > 0 is some constant.
Since at least Algorithm 2 satisfies this rate of convergence, we thus have

inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 .

Based on Definition 12,
∥∥U(κ)

∥∥2
2,1

=

(
N
√
κ( c√

N
)2
)2

= c2Nκ, which is in the same order of

N
∥∥U(κ)

∥∥2
F

, we thus have
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+
(maxj x

2
j + σ2)α2

|M|
N
∥∥U(κ)

∥∥2
2,1
� C|M|−
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where C > 0. Since at least Algorithm 5 satisfies this rate of convergence. We thus have

inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 .

The above content proofs the upper bound in Corollary 3. We next show the lower bound.
Based on Definition 12,

∥∥V(2,κ0)

∥∥2
F
= Nκ0(

c√
N
)2 = c2κ0, we thus have

inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
F
|M|

)
,
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c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+1

0 N
|M|

)

≥
c1µ ‖x‖22
κ2β0

(
1− cµmaxi x

2
i

σ2κ2β+1
0

|M|

)
� c|M|−

2β
2β+1 ,

where κ0 is set in the order of |M|
1

2β+1 . Based on Definition 12,
∥∥V(2,κ0)

∥∥2
∞,2

= κ0(
c√
N
)2 =

c2κ0/N , which is in the same order of
∥∥V(2,κ0)

∥∥2
F
/N , we thus have we thus have

inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
∞,2
|M|

)
,

=
c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+1

0 N
|M|

)

≥
c1µ ‖x‖22
κ2β0

(
1− cµmaxi x

2
i

σ2κ2β+1
0

|M|

)
� c|M|−

2β
2β+1 ,

where K is set in the order of |M|
1

2β+1 .

Appendix. E Proof of Corollary 2

We start with the upper bound of Corollary 5. Based on Theorem 17, we have

α2µ ‖x‖22
κ2β

+
(maxj x

2
j + σ2)α2

|M|
N
∥∥U(κ)

∥∥2
F

(a)
=

α2µ ‖x‖22
κ2β

+
(maxj x

2
j + σ2)α2

|M|
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≤ N
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α2µmaxi x

2
i

κ2β
+

(maxj x
2
j + σ2)α2c

2

|M|
κ

)
� C|M|−

2β
2β+1 ,
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where (a) follows from Definition 12, κ is set in the order of |M|
1

2β+1 , and C > 0 is some constant.
Since at least Algorithm 2 satisfies this rate of convergence, we thus have

inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 .

We next bound
∥∥U(κ)

∥∥2
2,1

. Since κ ≥ K0, we have

∥∥U(κ)

∥∥2
2,1

= ‖h‖21 = (‖hT ‖1 + ‖hT c‖1)
2

(a)

≤ (1 + c)2 ‖hT ‖21
(b)

≤ (1 + c)2κ ‖hT ‖22
≤ (1 + c)2κ ‖h‖21 = (1 + c)2κ2,

where (a) follows from Definition 13, and (b) from the norm equivalence.
Based on Theorem 17, we thus have

α2µ ‖x‖22
κ2β

+
(maxj x

2
j + σ2)α2

|M|
∥∥U(κ)

∥∥2
2,1

≤
α2µ ‖x‖22
κ2β

+
(maxj x

2
j + σ2)α2c

|M|
κ2

≤ N

(
α2µmaxi x

2
i

κ2β
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(maxj x
2
j + σ2)α2c

2

|M|N
κ2

)
(a)

≤ N

(
α2µmaxi x

2
i

κ2β
+

(maxj x
2
j + σ2)α2c

2

|M|
κ2−γ

)
� C|M|

2β
2β+2−γ ,

where γ varies with κ to satisfy κγ ≤ N . The upper bound reaches the minimum when κ is set in
the order of |M|

1
2β+2−γ , also, κ ≥ K, thus,

max{1, 2β + 2− log |M|
logK

} ≤ γ ≤ (2β + 2) logN

logN + log |M|
.

Note that γ = 1 corresponds to N = κ. Since at least Algorithm 5 satisfies this rate of conver-
gence. We thus have

inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+2−γ ,

where max{1, 2β + 2− log |M|
logK } ≤ γ ≤

(2β+2) logN
logN+log |M| ..

The above content proofs the lower bound in Corollary 3. We next show the lower bound. Based
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on Definition 12,
∥∥V(2,κ0)

∥∥2
F
= Nκ0(

1√
N
)2 = κ0, we thus have

inf
(x∗,M)∈Θrand

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥
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σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
F
|M|

)
,

=
c1µ ‖x‖22
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1−
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0 N
|M|

)
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κ2β0

(
1− cµmaxi x

2
i

σ2κ2β+1
0

|M|

)
� c|M|−

2β
2β+1 ,

where κ0 is set in the order of |M|
1

2β+1 . Based on Definition 12,
∥∥V(2,κ0)

∥∥2
∞,2

= c, we thus have
we thus have

inf
(x∗,M)∈Θexp

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖22

)
≥

c1µ ‖x‖22
κ2β0

(
1−

cµ ‖x‖22
σ2κ2β+2

0

∥∥V(2,κ0)

∥∥2
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|M|
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,

=
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0
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)
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1− cµmaxi x
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i
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N |M|
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� c|M|−

2β
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where κ0 is set in the order of |M|
1

2β+1 , and max{1, 2β + 2 − log |M|
logK } ≤ γ ≤ (2β+2) logN

logN+log |M| , because
κ0 ≤ K, and κγ0 ≤ N .
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B
B.1 Proofs from Chapter 4

Denoting SCAD and MCP parameters γSCAD ≥ 2 and γMCP ≥ 1 and define the SCAD penalty
functions as:

ρSCAD(t;λ, γSCAD) = λ

∫ |t|

0

min(1,
(γSCAD − u/λ)+

γSCAD
)du (B.1)

and the MCP penalty function as

ρMCP (t;λ, γMCP ) = λ

∫ |t|

0

(1− u

λγMCP
)+du (B.2)

B.1.1 Proof of Theorem 21

Proof. We denote D = ∆(k+1). Define R as the row space of D, and R⊥ the null space. Let PR =

D†D, the projection onto R, and ‖x‖R = ‖PRx‖2. Additionally, PR⊥ = I −D†D, the projection
onto R⊥. Now consider

β̃ = argminβ∈Rn

1

2
‖y − β‖2R + g(Dβ), (B.3)

such that β̄ = PR⊥y + β̃ and ‖β̄ − β⋆‖22 = ‖ϵ‖2R⊥ + ‖β̃ − β⋆‖2R. Recognizing that ‖ϵ‖2R⊥ is a chi-
squared random variable with CG degrees of freedom, we can then invoke the one-sided tail bound
for chi-squared random variables (c.f.194 Example 2.5) such that for any 0 ≤ t ≤ 1,

P
(
‖ϵ‖2R⊥ ≥ σ2CG(1 + t)

)
≤ exp

(
−CGt

2

8

)
.

Consequently, with probability at least 1− δ,

‖ϵ‖2R⊥ ≤ σ2
(
CG + 2

√
2CG log(1/δ)

)
. (B.4)

We now consider the second term ‖β̃ − β⋆‖2R. By the optimality of β̃, we have

1

2
‖y − β̃‖2R + g(Dβ̃) ≤ 1

2
‖y − β⋆‖2R + g(Dβ⋆).
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Rearranging the terms and substituting (4.1) give us

‖β̃ − β⋆‖2R
≤ 2ϵ⊤PR(β̃ − β⋆)− 2g(Dβ̃) + 2g(Dβ⋆)

= 2
〈
(D†)⊤ϵ,D(β̃ − β⋆)

〉
− 2g(Dβ̃) + 2g(Dβ⋆)

≤ 2
∥∥(D†)⊤ϵ

∥∥
∞

∥∥D(β̃ − β⋆)
∥∥
1
− 2g(Dβ̃) + 2g(Dβ⋆), (B.5)

where the last line follows from Hölder’s inequality. By standard tail bounds for independent
Gaussian random variables, we have

‖(D†)⊤ϵ‖∞ ≤ σζk
√

2 log(
er

δ
) (B.6)

with probability at least 1 − δ. Further note that the inequality (B.21) holds simultaneously with
the inequality (B.20) with probability at least 1− 2δ.

By setting λ = σζk
√
2 log( erδ ) ≥ ‖(D

†)⊤ϵ‖∞, we continue bounding (B.5) as

‖β̃ − β⋆‖2R ≤ 2λ
∥∥D(β̃ − β⋆)

∥∥
1
− 2g(Dβ̃) + 2g(Dβ⋆)

=
[
2λ
∥∥D(β̃ − β⋆)

∥∥
1
− 2g

(
D(β̃ − β⋆)

)]
+
[
2g
(
D(β̃ − β⋆)

)
− 2g(Dβ̃) + 2g(Dβ⋆)

]
. (B.7)

Under Assumption 1, we have λ‖x‖1 ≤ g(x)+ µ
2 ‖x‖

2
2 from118 Lemma 4. Hence, the first two terms

in (B.7) can be bounded as:

2λ‖D(β̃ − β⋆)‖1 − 2g(D(β̃ − β⋆)) ≤ µ‖D(β̃ − β⋆)‖22.

For the next two terms in (B.7), by the subadditivity and symmetry of g(·)118,

2g
(
D(β̃ − β⋆)

)
− 2g(Dβ̃)

≤ 2g
(
(Dβ̃ −Dβ⋆)−Dβ̃

)
= 2g(Dβ⋆).

Plugging the above two inequalities into (B.7), we have

‖β̃ − β⋆‖2R ≤ µ‖D(β̃ − β⋆)‖22 + 4g(Dβ⋆). (B.8)

Note that

‖D(β̃ − β⋆)‖2 = ‖DPR(β̃ − β⋆)‖2
≤ ‖D‖ · ‖β̃ − β⋆‖R,

which, combined with (B.8), leads to

‖β̃ − β⋆‖2R ≤ µ‖D‖2‖β̃ − β⋆‖2R + 4g(Dβ⋆).
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By the assumption µ‖D‖2 < 1, we have

‖β̃ − β⋆‖2R ≤
4g(Dβ⋆)

1− µ‖D‖2
. (B.9)

Since ‖β̄ − β⋆‖22 = ‖ϵ‖2R⊥ + ‖β̃ − β⋆‖2R, we conclude that

‖β̄ − β⋆‖22 ≤ σ2
(
CG + 2

√
2CG log(1/δ)

)
+

4g(Dβ⋆)

1− µ‖D‖2

with probability at least 1− 2δ.
The proof for vector-GTF (4.9) is a straightforward extension. Defining B̃ similarly to β̃, we

have ‖B − B‖2F = ‖PR⊥E‖2F + ‖B̃ − B⋆‖2R. The first term can be bounded as ‖PR⊥E‖2F ≤
dσ2
(
CG + 2

√
2CG log(d/δ)

)
with probability at least 1− δ. The second term can be bounded as

‖B̃ −B⋆‖2R ≤ 2〈E,PR(B̃ −B⋆)〉 − 2h(DB̃) + 2h(DB⋆).

For the first term, using Cauchy-Schwarz inequality, we obtain

〈E,PR(B̃ −B⋆)〉 = 〈(D†)⊤E,D(B̃ −B⋆)〉

≤
r∑

ℓ=1

∥∥((D†)⊤E)ℓ·
∥∥
2

∥∥(D(B̃ −B⋆))ℓ·
∥∥
2

≤
r∑

ℓ=1

√
d
∥∥((D†)⊤E)ℓ·

∥∥
∞

∥∥(D(B̃ −B⋆))ℓ·
∥∥
2

≤ λ
r∑

ℓ=1

∥∥(D(B̃ −B⋆))ℓ·
∥∥
2
, (B.10)

where the last line follows from the assumption on λ as well as the tail bound (B.20). One can
then continue to bound (B.10) in a similar way as (B.5).

For SCAD/MCP, µ ≥ max( 1
γSCAD−1 ,

1
γMCP

) satisfies the inequality, and µ = 0 does so trivially
for ℓ1 118.

Remark 6. This is a straightforward result using concentration bounds for sub-Gaussian random
variables. Let ai = ((D†)⊤ϵ)i = d⊤

i ϵ where di is the i-th column of D† . It follows that if ϵi is
SG(σ2), ai is SG(σ2‖di‖22). It also follows then that ∀i, ai is SG(σ2 maxi ‖di‖22) = SG(σ2ζ2) such
that

P (|ai| ≥ t) ≤ 2 exp(− t2

2σ2ζ2
)

We can then apply the union bound to get the standard result for the maximum of sub-gaussian
random variables:

P

(
max

i=1,···r
|ai| ≥ σζ

√
2 log(

r

δ
)

)
≤ 2δ

B.1.2 Proof of Proposition 2

Proof. We denote ∆(k+1)† = [s1, . . . , sn], and the eigendecomposition of L = UΣU⊤, where
orthogonal matrix U = [u1, . . . ,un]. Note that L† = UΣ†U⊤, and L(k+1) = UΣ(k+1)U⊤. Lastly,
∆⊤ = [d1, . . . ,dm], where ‖dj‖2 =

√
2. We consider two cases:

173



• k is odd. ∆(k+1)† = (L(k+1))
†
∆(k+1)⊤ = (L(k+1))

†
(L( k+1

2 ))⊤ = U(Σ(k+1))†Σ( k+1
2 )U⊤. Then,

‖sj‖22 =

n∑
i=2

1

λk+1
i

〈ui,uj〉2 ≤
1

λk+1
2

• k is even. ∆(k+1)† = (L(k+1))†(L( k
2 ))⊤∆⊤ = UΣ(k+1)†Σ( k

2 )U⊤∆⊤. Similarly,

‖sj‖22 =

n∑
i=2

1

λk+2
i

〈ui,dj〉2 ≤
1

λk+2
2

‖dj‖22 =
2

λk+2
2

Proof. We start from ‖(∆(k+1)β)T ‖1 ≤
√
|T |‖(∆(k+1)β)T ‖2, and note that given two matrices A

and B, (AB)T = (A)TB where T is a subset of rows indices. Therefore we consider two cases:

• k is even. λmax(X) indicates the largest eigenvalue of matrix X, and di is the degree of node i.

‖(∆(k+1)β)T ‖2 = ‖(∆)T∆
(k)β‖2

≤ ‖(∆)T ‖‖∆(k)β‖2 =
√
λmax((∆)⊤T (∆)T ))‖∆(k)β‖2

Note that (∆)T is equivalent to the incidence matrix of a subgraph with only T edges, which
allows us to bound, √

λmax((∆)⊤T (∆)T ))‖∆(k)β‖2

≤
√

max
(u,v)∈T

{du + dv}‖∆(k)β‖2 ≤
√
2dmax‖∆(k)β‖2

• k is odd.

‖(∆(k+1)β)T ‖2 = ‖(∆⊤)T∆
(k)β‖2

≤ ‖(∆⊤)T ‖‖∆(k)β‖2 =
√
λmax(LT×T )‖∆(k)β‖2

LT×T ∈ R|T |×|T | is the principal submatrix of L indexed by T . From Cauchy’s interlacing
theorem, the maximum eigenvalue of the submatrix is upperbounded, so√

λmax(LT×T )‖∆(k)β‖2
≤
√
λmax(L)‖∆(k)β‖2 ≤

√
2dmax‖∆(k)β‖2

To conclude the proof, we use ∆(k)⊤∆(k) = L(k), and that the eigenvalues of a power matrix is
also raised to the power.

‖(∆(k+1)β)T ‖1 ≤
√
|T |‖(∆(k+1)β)T ‖2

≤
√
|T |
√
2dmax‖∆(k)β‖2 ≤ (2dmax)

k+1
2

√
|T |‖β‖2

k = 0.

‖(∆β)T ‖1 ≤
√
|T |
√ ∑

(i,j)∈T

|βi − βj |2 =
√
|T |‖βi − βj‖2 ≤

√
|T |‖βi‖2 +

√
|T |‖βj‖2 ≤ 2

√
|T |
√
d‖β‖2
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k = 1.

‖(∆⊤∆β)T ‖1 ≤
√
|T |
√∑

i∈T

|diβi −
∑

j:(i,j)∈E

βj |2 =
√
|T |‖d⊤βi − βj‖2 (B.11)

≤
√
|T |‖d⊤βi‖2 +

√
|T |‖βj‖2 ≤ 2

√
|T |d‖β‖2 (B.12)

B.1.3 Proof of Theorem 23

Proof. We denote D = ∆(k+1). Define R as the row space of D, and R⊥ the null space. Let PR =

D†D, the projection onto R, and ‖x‖R = ‖PRx‖2. Additionally, PR⊥ = I −D†D, the projection
onto R⊥. Since β̂ is a stationary point of f(β), it follows that

0 ∈ ∇βf(β)|β=β̂ = (β̂ − y) +∇βg(Dβ)|β=β̂. (B.13)

By the chain rule, ∇βg(Dβ)|β=β̂ = {D⊤z : z ∈ ∇xg(x)|x=Dβ̂}. Then by (B.13), there exists
z ∈ ∇xg(x)|x=Dβ̂, such that

0 = (β̂ − y) +D⊤z.

In particular, ∀β ∈ Rn, we have

β⊤(y − β̂) = (Dβ)⊤z, (B.14)

and, specializing to β̂,

β̂⊤(y − β̂) = (Dβ̂)⊤z. (B.15)

Subtract (B.15) from (B.14), and use the definition of subgradient to get ∀β ∈ Rn,

β⊤(y − β̂)− β̂⊤(y − β̂) = (Dβ −Dβ̂)⊤z

≤ g(Dβ)− g(Dβ̂). (B.16)

By the measurement model y = β⋆ + ϵ and the polarization equality, i.e. 2a⊤b = ‖a‖22 + ‖b‖22 −
‖a− b‖22, the left-hand side of (B.16) can be rewritten as

β⊤(y − β̂)− β̂⊤(y − β̂)

= (β − β̂)⊤(β⋆ − β̂) + ϵ⊤(β − β̂)

=
1

2
‖β − β̂‖22 +

1

2
‖β⋆ − β̂‖22 −

1

2
‖β − β⋆‖22 + ϵ⊤(β − β̂). (B.17)

Combining (B.16) and (B.17) gives us ∀β ∈ Rn

‖β̂ − β‖22 + ‖β̂ − β⋆‖22
≤ ‖β − β⋆‖22 + 2ϵ⊤(β̂ − β) + 2g(Dβ)− 2g(Dβ̂). (B.18)
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Let us first consider ϵ⊤(β̂ − β). From Hölder’s inequality,

ϵ⊤(β̂ − β) = (D†Dϵ)⊤(β̂ − β) + (PR⊥ϵ)⊤(β̂ − β)

≤ ‖(D†)⊤ϵ‖∞‖D(β̂ − β)‖1 + ‖PR⊥ϵ‖2‖β̂ − β‖2. (B.19)

By standard tail bounds for independent Gaussian random variables, we have with probability at
least 1− δ,

‖(D†)⊤ϵ‖∞ ≤ σζk
√
2 log(

er

δ
). (B.20)

Additionally, recognize that ‖ϵ‖2R⊥ is a chi-squared random variable with CG degrees of freedom.
We can then invoke the one-sided tail bound for chi-squared random variables (c.f.194 Example
2.5) such that for any 0 ≤ t ≤ 1,

P
(
‖ϵ‖2R⊥ ≥ σ2CG(1 + t)

)
≤ exp

(
−CGt

2

8

)
.

Consequently, with probability at least 1− δ,

‖ϵ‖2R⊥ ≤ σ2
(
CG + 2

√
2CG log(1/δ)

)
. (B.21)

The inequalities (B.21) and (B.20) hold simultaneously with probability at least 1 − 2δ. Then,
using λ‖x‖1 ≤ g(x) + µ

2 ‖x‖
2
2 and λ = σζk

√
2 log( erδ ) ≥ ‖(D

†)⊤ϵ‖∞, we can bound (B.19) further
as

ϵ⊤(β̂ − β) ≤ ‖PR⊥ϵ‖2‖β̂ − β‖2 + λ‖D(β̂ − β)‖1

≤ ‖PR⊥ϵ‖2‖β̂ − β‖2 + g(D(β̂ − β)) +
µ

2
‖D(β̂ − β)‖22.

Together with ‖D(β̂ − β)‖22 ≤ ‖D‖2‖(β̂ − β)‖22, we can upper bound (B.18) as

‖β̂ − β‖22 + ‖β̂ − β⋆‖22
≤ ‖β − β⋆‖22 + 2‖PR⊥ϵ‖2‖β̂ − β‖2 + µ‖D‖2‖β̂ − β‖22

+ 2g(D(β̂ − β)) + 2g(Dβ)− 2g(Dβ̂). (B.22)

Note that for any set T , g(x) =
∑

i∈T ρ(xi) +
∑

j∈T c ρ(xj) = g((x)T ) + g((x)T c). Therefore, using
the triangle inequality and subadditivity and symmetry of ρ,

g(D(β̂ − β)) + g(Dβ)− g(Dβ̂)

≤ g((D(β̂ − β))T ) + g((Dβ)T c) + g((Dβ̂)T c)

+ g(Dβ)− g((Dβ̂)T )− g((Dβ̂)T c)

= g((D(β̂ − β))T ) + 2g((Dβ)T c) + g((Dβ)T )− g((Dβ̂)T )

≤ 2g((D(β̂ − β))T ) + 2g((Dβ)T c). (B.23)
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We bound (B.23) further by the compatibility factor,

g((D(β̂ − β))T ) ≤ λ‖(D(β̂ − β))T ‖1
≤ λ

√
|T |κ−1

T ‖β̂ − β‖2. (B.24)

Now combining (B.22), (B.23), and (B.24), we then have

‖β̂ − β‖22+‖β̂ − β⋆‖22 ≤ ‖β − β⋆‖22 + 4g((Dβ)T c)

+ 2
(
‖PR⊥ϵ‖2 + 2λ

√
|T |κ−1

T

)
‖β̂ − β‖2

+ µ‖D‖2‖β̂ − β‖22.

Apply Young’s inequality, which is 2ab ≤ a2/ϵ + ϵb2 for ϵ > 0, with a = ‖PR⊥ϵ‖2 + 2λ
√
|T |κ−1

T ,
b = ‖β̂ − β‖2, and ϵ = 1− µ‖D‖2 > 0, we have

2
(
‖PR⊥ϵ‖2 + 2λ

√
|T |κ−1

T

)
‖β̂ − β‖2

≤ 1

ϵ

(
‖PR⊥ϵ‖2 + 2λ

√
|T |κ−1

T

)2
+ ϵ‖β̂ − β‖22

≤ 2

(1− µ‖D‖2)
(
‖PR⊥ϵ‖22 + 4λ2|T |κ−2

T

)
(B.25)

+ (1− µ‖D‖2)‖β̂ − β‖22.

Therefore,

‖β̂ − β‖2 + ‖β̂ − β⋆‖22
≤ ‖β − β⋆‖22 + 4g((Dβ)T c) + ‖β̂ − β‖22

+
2

(1− µ‖D‖2)
(
‖PR⊥ϵ‖22 + 4λ2|T |κ−2

T

)
. (B.26)

Cancel ‖β̂ − β‖22 on both sides, apply the infimum over β and plug in the bounds (B.21) to get

‖β̂ − β⋆‖22 ≤ inf
β

{
‖β − β⋆‖22 + 4g((Dβ)T c)

}
+

2σ2

(1− µ‖D‖2)

(
CG + 2

√
2CG log(

1

δ
) +

8ζ2k |T |
κ2T

log(
er

δ
)

)
.

The proof extends for the vector-GTF (4.9) in a similar manner. We need to replace (B.19) by

〈E, B̂ −B〉 = 〈D†DE, B̂ −B〉+ 〈PR⊥E, B̂ −B〉

≤ λ
r∑

ℓ=1

∥∥Dℓ·(B̂ −B)
∥∥
2
+ ‖PR⊥E‖F‖B̂ −B‖F,

where ‖PR⊥E‖2F ≤ dσ2
(
CG + 2

√
2CG log(d/δ)

)
with probability at least 1 − δ. Similarly, for
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(B.24), we use the generalized definition of the compatibility factor κT , given as

h((D(B̂ −B))T ) ≤ λ
∑
ℓ∈T

‖(D(B̂ −B))ℓ·‖2

≤ λ
√
|T |κ−1

T ‖B̂ −B‖F,

which will lead to the claimed bound in the theorem.

B.1.4 Proof of Proposition 5

Proof. By Cauchy-Schwartz inequality, we have∑
ℓ∈T

‖(∆(k+1)B)ℓ·‖2 ≤
√
|T |‖(∆(k+1)B)T ‖F,

and note that given two matrices U and V , (UV )T = (U)TV where T is a subset of rows indices.
We also use the fact that ‖UV ‖F ≤ ‖U‖‖V ‖F. We consider two cases:

• For even k, we have

‖(∆(k+1)B)T ‖F = ‖(∆)T∆
(k)B‖F

≤ ‖(∆)T ‖‖∆(k)B‖F =
√
λmax((∆)⊤T (∆)T ))‖∆(k)B‖F.

Note that (∆)T is equivalent to the incidence matrix of a subgraph with only T edges, which
allows us to bound,

λmax((∆)⊤T (∆)T )) ≤ max
(u,v)∈T

{du + dv} ≤ 2dmax

where di is the degree of node i.

• For odd k, we have

‖(∆(k+1)B)T ‖F = ‖(∆⊤)T∆
(k)B‖F

≤ ‖(∆⊤)T ‖‖∆(k)B‖F =

√
λmax(∆

(2)
T×T )‖∆

(k)B‖F,

where ∆
(2)
T×T ∈ R|T |×|T | is the principal submatrix of ∆(2) indexed by T . By Cauchy’s interlac-

ing theorem, the maximum eigenvalue of the submatrix is upper bounded, so

λmax(∆
(2)
T×T ) ≤ λmax(∆

(2)) ≤ 2dmax.

Therefore, for all k, ‖(∆(k+1)B)T ‖F ≤
√
2dmax‖∆(k)B‖F. To conclude the proof, note∑

ℓ∈T

‖(∆(k+1)B)ℓ·‖2 ≤
√
|T |
√

2dmax‖∆(k)B‖F

≤
√
|T |
√
2dmax‖∆(k)‖‖B‖F ≤ (2dmax)

k+1
2

√
|T |‖B‖F.
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B.1.5 Proof of Theorem 25

We show the convergence of Alg. 5 by proving a modified version of122 Proposition 1. The super-
script (m) denotes the values of B,Z,U at the mth iteration of the loop inside Alg. 5.

Proposition 6 (Convergence to a feasible solution). If τ ≥ µ, then the primal residual r(m) =

‖∆(k+1)B(m) − Z(m)‖F and the dual residual s(m+1) = ‖τ(∆(k+1))⊤(Z(m+1) − Z(m))‖F of Alg. 5
satisfy that limm→∞ r(m) = 0 and limm→∞ s(m) = 0.

Proof. Denote D = ∆(k+1), and ρλ(·) = ρ(·;λ, γ). Recall from Assumption 1 (c) that there exists
µ > 0 such that ρλ(‖x‖2) + µ

2 ‖x‖
2
2 is convex. Now consider the Lagrangian L(B,Z,U) with regard

to the ℓ-th row zℓ of Z = [z⊤1 , ...z
⊤
r ]

⊤, assuming all other variables are fixed:

ρλ(‖zℓ‖2) +
τ

2
‖zℓ − c1‖22 + c2

=ρλ(‖zℓ‖2) +
τ

2
‖zℓ‖22 − τ〈zℓ, c1〉+

τ

2
‖c1‖22 + c2

where c1 and c2 represent terms of L(B,Z,U) that do not depend on zℓ. With our choice of τ ≥
µ, then L(B,Z,U) is convex with regard to each of B, U , and for each row of Z, allowing us to
apply195 Theorem 5.1. Therefore, Alg. 5 converges to limit points B⋆,Z⋆,U⋆.

Then it follows that the dual residual limm→∞ s(m) = ‖τD⊤(Z⋆ − Z⋆)‖F = 0. For the primal
residual, notice that the U update step in line 10 of Alg. 5 also shows that ∀m, t ≥ 0,

U (m+t) = U (m) +

t∑
i=1

(DB(m+i) −Z(m+i)).

Fixing t and setting m→∞, we have

U⋆ = U⋆ + t(DB⋆ −Z⋆)

holds ∀t ≥ 0. Hence, DB⋆ −Z⋆ = 0, and therefore limm→∞ r(m) = ‖DB⋆ −Z⋆‖F = 0.

This proposition shows that the algorithm in the limit achieves primal and dual feasibility, and
that the Augmented Lagrangian in (4.25) with Z⋆ and U⋆ becomes the original GTF formulation
in (4.9). B that is produced by every iteration of Alg. 5 is a stationary point of (4.25) with fixed
Z and U . As a result, B⋆ is a stationary point of (4.9).

B.1.6 Semi-Supervised Learning Algorithmic Details

Compared to the vector-valued GTF problem in (4.9), the semi-supervised learning problem in
(4.26) has additional variables, such as M ,R. Therefore, (4.26) has a different Augmented La-
grangian equation, which was then optimized using Alg. 8 which we present below for complete-
ness.

L′(B,Z,U) =
1

2
‖M(Y −B)‖2F + ϵ‖R−B‖2F + h(Z;λ, γ)

+
τ

2
‖∆(k+1)B −Z +U‖2F −

τ

2
‖U‖2F

We used the proximal operators of ℓ1, SCAD, MCP as derived in160.
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Algorithm 8 ADMM for Semi-Supervised Learning
1: Inputs: Y ,∆(k+1), M , R, and parameters λ, γ, τ , ϵ
2: Initialize:

D ←∆(k+1), Z ← DB, U ← DB −Z,
B ← Y or Binit if given.

3: repeat
4: for j ← 1 to num_cols(B) do
5: B·j ← (M⊤M + ϵI + τD⊤D)−1(M⊤MY·j + ϵR·j + τD⊤(Z·j −U·j))
6: end for
7: for ℓ← 1 to num_rows(DB) do
8: Zℓ· ← Proxρ(‖Dℓ·B +Uℓ·‖2;λ/τ)
9: end for

10: U ← U +DB −Z
11: until termination
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