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Abstract 

In this thesis, I explored and investigated consumer choice modeling, optimal engineering 

design, and technology-specific policy simulation in three studies. In the first study (Chapter 2), 

“On the Implications of Using Composite Vehicles in Choice Model Prediction,” I investigated 

the issues of choice set representation in choice modeling methodology. I derived composite 

correction factors for logit-class models that can help reconcile differences in modeling results 

in composite-level and elemental-level models. I then demonstrated cases where correction 

factors may be useful. This contributed to an improved understanding of how competitor 

representation affects choice predictions. In the second study (Chapter 3), “Implications of 

Competitor Representation on Optimal Engineering Design,” I investigated profit-maximizing 

engineering design models that integrate choice models for demand. Specifically, I studied how 

competitor representation can affect the trade-off between cost and benefit of design change. I 

derived a closed-form expression for the marginal cost and benefit relationship for the level of 

an attribute under optimal design assuming a latent-class or mixed logit (random-coefficients 

logit) demand model. I used this to characterize the impact of competitor representation in a 

case study of optimal automotive design. In the third study (Chapter 4), “The dynamic costs and 

benefits of a technology-forcing policy nested in a broader performance standard: the case of 

ZEV and CAFE,” I addressed the complexity of dynamic effects and nested policy interaction in 

automotive energy and environmental policy. I focus on two policies: Zero-Emission Vehicle 

(ZEV) mandates and Corporate Average Fuel Economy / Greenhouse Gas (CAFE/GHG) 

standards. I simulated consumer, producer, and government decisions in a model with explicit 

technological change, dynamic learning-by-doing spillover effects, policy interaction effects, 

and endogenous fleet standard setting via cost-benefit analysis. I demonstrated the potential 

impacts of ZEV mandates: potential net social benefit or net social cost, depending on key 

factors and parameters. I identified these key factors and quantified the trade-offs that may 

inform ZEV and CAFE/GHG fleet standard policy-making. 
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Chapter 1: Introduction 

 

Figure 0.1: Landscape of automotive-related CO2 emissions in the United States. 

In 2016, the transportation sector in the United States surpassed the electric power sector to become 

the highest-emitting sector of CO2 emissions (EIA, 2017). While emissions from electric power have 

mainly been reduced via adoption of new technologies and cleaner fuels by large firms at the power 

plant level, emissions from transportation, particularly from the light duty vehicle segment, have grown 

steadily. Pollution from light duty vehicles depend not only on technological advances, but also on a 

complex mix of consumer choice, automaker decisions, and policy design. The latest fuel efficiency and 

electric vehicle (EV) technologies promise to help reduce light duty vehicle emissions, but the impact of 

these technologies is limited to their success in the marketplace. While many automakers have now 

announced commitments to electrify their product portfolios (Greentech Media, 2018), it was only a few 

years ago when EVs were mostly known in the industry as “compliance cars,” cars that were likely sold 

at losses in order for automakers to meet regulatory quotas (Green Car Reports, 2014). In response to 

market demand and regulatory changes, Ford and GM recently decided to drop smaller and fuel-

efficient sedans from their lineups to focus on SUVs and trucks (Automotive News, 2018), which will 

likely add to the trend of increasing emissions. In a similar way, many transportation energy and 

environmental policies also depend on consumer and producer behavior. Governments have aimed to 

reduce emissions with policies such as Corporate Average Fuel Economy and Greenhouse Gas 

(CAFE/GHG) standards, EV tax credits, and Zero Emission Vehicle (ZEV) mandates, but their success also 

relies on automaker responses and consumer adoption. 

To help understand the roles of consumers, producers, and government in the light duty vehicle 

segment, researchers have developed methods to model demand, supply, and policy. Vehicle choice 

models are widely used to simulate consumer purchase decisions in economic and policy analyses, such 

as the Department of Energy (DOE)’s assessment of public investment in vehicle technology R&D 

programs (Stephens, Birky, & Ward, 2014) and the Energy Information Administration (EIA)’s Annual 

Energy Outlook scenario projections (EIA, 2018). And in academic studies, automaker design and pricing 

choices are modeled as profit maximization and design optimization problems, with consideration of 
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consumer demand via choice modeling (Wassenaar & Chen, 2003). Policy options are typically modeled 

as scenarios with exogenous parameters that affect producer and consumer decisions (Shiau, Michalek, 

& Hendrickson, 2009; Whitefoot, Fowlie, & Skerlos, 2017) but can also be modeled endogenously. All of 

these modeling methods involve assumptions that may have implications that are not well understood. 

Model specifications vary significantly in the literature and they can lead to drastically different model 

outcomes with different implications. This presents a need to understand and characterize the 

implications of model specification.  

This thesis contains three body chapters, each for a study. Figure 0.2 is a representation of how 

each study investigates and applies various methods for modeling automotive demand, supply, and 

policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.2: Coverage of the chapters/studies in this thesis. 

The first two studies of this thesis investigate a specific model specification issue in choice 

modeling – how the modeler represents the available choice set alternatives in the market. In the first 

study, I focus on modeling demand (in several exogenous policy scenarios) and examine how, when, and 

why different specifications for the alternatives produce different predictions about consumer choice. In 

the second study, I expand the modeling scope to consider both consumer and producer decisions and 

investigate how different representations of competing alternatives affect producer design and pricing 

decisions under profit maximization. In both studies, with theory and case studies, I demonstrate how to 

Demand 

Supply 

Policy 

Chapter 2 

Chapter 3 

Chapter 4 
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reconcile observed differences in modeling results with new specifications involving “correction 

factors.” Both studies 1 and 2 build on the literature evaluating the suitability of choice models for policy 

analysis and engineering design. 

In the third study, I expand the modeling scope further to study the role of energy and 

environmental policy in the light duty automotive market. The most economically efficient policy would 

typically involve taxing and subsidizing externalities directly (Parry, Walls, & Harrington, 2007), but the 

presence of multiple, dynamic, and complex externalities, as well as political considerations mean that 

an assortment of potentially sub-optimal policies are implemented in practice, making them relevant 

and important to study. I focus on modeling the various dynamic and interacting impacts of two types of 

such policies: fleet-level Corporate Average Fuel Economy and Greenhouse Gas standards (CAFE/GHG), 

which regulates the fuel economy and emissions intensity of new light duty vehicle sales, and Zero-

Emissions Vehicle (ZEV) mandates, a technology-forcing policy that requires a proportion of new light 

duty vehicle sales to meet ZEV criteria. 

To set the tone of the thesis, I provide a few quoted words of wisdom2 applicable to research: 

 

"Research is what I am doing when I don't know what I am doing"  
- von Braun (1957), who may or may not have been quoting Einstein 
 
 
""Once the rockets are up, 
who cares where they come down? 
That's not my department," 
says Wernher von Braun." 
- Lyrics from Lehrer (1965), based on von Braun (1976) 
 

 

 

 

 

  

 
2 RT ≠ endorsement - that is to say, the opinions expressed in the quotes here and throughout the thesis should 
not necessarily be interpreted as the official policy or position of the thesis author. 
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Chapter 2: On the Implications of Using Composite Vehicles in Choice 
Model Prediction 

This study was co-authored with Jeremy Michalek and Kate Whitefoot and was published in 

Transportation Research Part B: Methodological in 20183. 

 

"Variety is the spice of life" - Cowper (1785) 

 

The environmental impact and economic cost of transportation policy like fuel economy standards 

depend critically on consumer behavior. But consumer choice predictions have shown to be sensitive to 

model specification (Haaf, Michalek, Morrow, & Liu, 2014). There is a need to understand and 

characterize the sources of uncertainty and variation in choice model predictions. This first study 

investigates a key model specification issue in discrete choice modeling: the representation of the 

alternatives in the marketplace.  

Choice modelers often use composites to represent groups of alternatives, but this practice may 

introduce arbitrary changes to choice-share predictions. In this study, we evaluate the impacts of the 

use of composites on choice-share prediction. We do this to produce insight into modeling limitations 

and biases and to provide guidance on minimizing or eliminating discrepancies. We find that composite 

specification can cause more variation in predicted shares than parameter uncertainty in models 

without alternative-specific constants (ASCs). We find that ASCs can mitigate or eliminate this variation 

in some, but not all, counterfactual scenarios. We identify and demonstrate correction factors for 

models using composites to predict choice shares in counterfactual scenarios consistent with those from 

corresponding models that use disaggregated elemental alternatives. 

 

 

  

 
3 Yip, A. H. C., Michalek, J. J., & Whitefoot, K. S. (2018) “On the implications of using composite vehicles in choice 
model prediction,” Transportation Research Part B: Methodological, v116, p163-188. 10.1016/j.trb.2018.07.011 
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1. Graphical Abstract 

 

 

  

 

 

 
 
 

2. Highlights 

 Choice modelers often use composites to represent groups of alternatives, but this 
practice may introduce arbitrary changes to choice-share predictions.  

 We find that composite specification can cause more variation in predicted shares than 
parameter uncertainty in models without alternative-specific constants (ASCs). 

 We find that ASCs can mitigate or eliminate this variation in some, but not all, 
counterfactual scenarios. 

 We identify correction factors for models using composites to predict choice shares in 
counterfactual scenarios consistent with those from corresponding models that use 
disaggregated elemental alternatives.  
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3. Abstract 

Vehicle choice modelers often use composite alternatives, which are simplified representations 
of a larger, diverse group of vehicle options—a practice known as choice set aggregation. 
Although this practice has been justified by computational tractability and data constraints, it can 
introduce arbitrary changes to choice-share predictions. We isolate and characterize the 
implications of using composite vehicles for choice prediction, given exogenously determined 
model parameters. We first identify correction factors needed for composite models to predict 
choice shares that are consistent with those from models that use the full set of disaggregated 
elemental alternatives. We then assess the distortion of choice-share predictions under various 
composite specifications and partial corrections using two case studies based on models in the 
literature used in transportation and energy policymaking: (1) we examine a logit model without 
alternative-specific constants (ASCs) and find that the distortion in share predictions due to 
composite specification is substantial and can be larger than variation due to parameter 
uncertainty; (2) we examine counterfactual predictions of a nested logit model with ASCs based 
on the NEMS and LVChoice models and find that composite models using ASCs can mitigate or 
eliminate distortion in some, but not all, counterfactual scenarios. In particular, the distortion is 
larger when the scenario significantly affects the differences in elemental membership or utility 
heterogeneity between composite groups. We provide explicit correction factors for composite 
models with and without ASCs that can be used to take advantage of the tractability of composite 
models while ensuring that their choice-share predictions exactly match those of their 
corresponding elemental models in counterfactual and forecasting scenarios. 
 
Keywords: choice set aggregation, aggregation of alternatives, vehicle choice model, composite 
vehicles, multinomial logit, nested logit, mixed logit 
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4. Introduction 

Discrete choice models are widely used to estimate consumer preferences for transportation 
options and to simulate choices under various scenarios. For example, vehicle choice models 
(VCMs) can be used to predict how vehicle sales might respond to a subsidy program (Greene et 
al., 2005) or how well alternative-fuel vehicles may sell given improvements in their 
performance (Stephens et al., 2014). These predictions are used in counterfactual policy studies 
(Bento et al., 2009; Goldberg, 1998; Greene et al., 2005; Jacobsen, 2013), as well as projections 
and forecasts (Brownstone et al., 2000; Liu and Lin, 2017). 

Vehicle choice models vary considerably in the level of detail at which they represent the 
market. Some studies represent alternatives in a choice set at a granular level of detail (Brooker 
et al., 2015; Bunch and Brownstone, 2013; Greene and Liu, 2012; Klier and Linn, 2012). These 
alternatives are known as elemental alternatives4 (Ben-Akiva and Lerman, 1985), and we refer to 
models that represent the choice set using elemental alternatives as “elemental models”. For 
example, in Brooker et al. (2015), the US automotive market is represented by over 400 
alternatives at the make-model-trim level (e.g.: GMC Sierra 2500HD, Kia Forte LX, etc.). Other 
models use composite alternatives, which represent groups of elemental alternatives (e.g.: 
grouped by size class, technology, and/or fuel type) (Bento et al., 2009; Brownstone et al., 2000; 
Goldberg, 1998; Xie and Lin, 2017). The use of composites in choice modeling is also known as 
choice set aggregation5, which is one of several methods to reduce the choice set (Ben-Akiva and 
Lerman, 1985; McFadden, 1978). We refer to models that represent the choice set using 
composites as “composite models”. For example, the VCMs in the National Energy Modeling 
System (NEMS) (EIA, 2010) and the related LVChoice model (Birky, 2012), which are used to 
inform policymaking, aggregate vehicles by fuel type (e.g.: gasoline, electric, etc.) and vehicle 
class (e.g.: small car, large SUV, etc.). Each group of vehicles of a specific fuel type and vehicle 
class is modeled using a single generic composite vehicle whose attributes are intended to 
represent the group. As a result, the market of alternatives is represented by a dramatically 
reduced choice set of only 45 composite vehicle alternatives in LVChoice. Figure 1 shows an 
illustrative example of how granular elemental alternatives are grouped and represented using 
composites in VCMs. 
 

 
4 More precisely, we define an element as a product profile (vector of attributes) that represents a group of 
alternatives with identical observed attributes (e.g.: a red Ford Focus SE and a blue Ford Focus SE have identical 

observed attributes if color is not observed) and a composite as a product profile that represents a group of 
alternatives that differ in observed attributes (e.g.: the Ford Focus SE and Ford Focus ST differ on price and fuel 
economy). See the literature review section for more detail. 

5  Choice set aggregation, or aggregation of alternatives, should not be confused with the aggregation of individual 
consumers into groups. To avoid possible confusion, we primarily refer to the “use of composites” instead of 
“aggregation”.    
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(a) These elemental alternatives represent the 
market at the disaggregated make-model-trim level. 

 (b) These composite alternatives represent the 
market at the aggregated fuel-type level. 

Figure 1: Examples of choice sets using (a) elemental alternatives, and (b) composite 
alternatives (adapted from manufacturer website images, with permission). 

 
Some studies use composite vehicles in the process of estimating model parameters, 

while other studies use composite vehicles only for predicting choice shares. We label these the 
“explanatory literature” and the “predictive literature,” respectively, following Haaf et al. (2016). 
Table 1 provides a detailed comparison.  

In the explanatory literature, parameter estimation is often conducted on composite 
vehicles because sales data are typically not available at the disaggregated elemental level; 
however, there is concern that the use of composites can cause an “aggregation bias” for model 
parameters, and researchers have worked to quantify and mitigate this bias (Brownstone and Li, 
2017; Habibi et al., 2017; Spiller, 2012; Wong et al., 2018). Researchers in other domains—
particularly spatial and locational choice—also find that the use of composites affects both 
model estimation and subsequent prediction results (Haener et al., 2004; Parsons and Hauber, 
1998; Parsons and Needelman, 1992).   

In contrast, the predictive literature focuses on simulating choice shares under a range of 
scenarios. This literature adopts parameter estimates from other studies or using expert judgment 
(e.g.: willingness-to-pay and elasticity estimates that are presumed to be unbiased). Applications 
and examples of these models are shown in Tables 1 and 2.6 Many of these studies choose to use 
composites to model counterfactual and forecast scenarios. Here, the implications of choice set 
aggregation are decoupled from the issue of parameter bias. The predictive literature lacks 
studies characterizing the influence of composite vehicles on choice predictions, so it is not 
known how much this practice might be arbitrarily influencing results.  

 
  

 
6 Vehicle choice models in the predictive literature are frequently used for policy analysis, as summarized in Table 1. 
Several scholars summarize advantages of this approach for supporting policy decisions in a choice model peer 
review for the US Environmental Protection Agency (SRA International et al., 2012). 
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We focus on the predictive literature to isolate the effect of composites on prediction, and 
we address the following research questions: 

1. How does the use of composite alternatives in place of elemental alternatives affect VCM 
choice predictions in theory and in practice? 

2. How much does composite specification distort predictions relative to other sources of 
error, uncertainty, or variation? 

3. How might composites be specified to produce choice predictions that match a 
corresponding elemental model? 

 
We begin by reviewing the variety of choice set aggregation practices used in the 

literature. We then develop theory regarding the use of composites in choice prediction for 
several types of choice models and identify “correction factors”7 that allow composite models to 
predict choice shares that are consistent with those from corresponding elemental models. We 
then construct two case studies simulating choice predictions for elemental and composite choice 
sets based on VCMs used in the literature and in policymaking. In these case studies, we analyze 
the variation in simulation results due to differences in composite specification and compare it to 
variation in simulation results caused by other sources of uncertainty and variation in VCMs.  
 

 
 
 

 
7 The term “correction factor” indicates that the composite model is “corrected” to match a corresponding elemental 
model, following the terminology in the literature (Ben-Akiva and Lerman, 1985). It does not imply that the 
corresponding elemental model itself is “correct” or that choice predictions from the elemental model would 
necessarily match observations. 
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Table 1: Types of Vehicle Choice Modeling Literature that Use Composite Alternatives 
 

 Explanatory literature Predictive literature 

Objective 

Estimate model parameters that explain 
preferences and choices, and in some studies, 
use the resulting model to predict choice share 
in counterfactual scenarios  

Predict choice share in counterfactual 
scenarios and/or forecasts 

Method 
Estimate preference parameters � by fitting a 
choice model to observed choices 

Simulate choice shares �� for a range of 
scenarios by computing market shares with a 
choice model 

Process 
���, �� → �, ξ�  
���, �, ξ�  → ��� (some studies) 

���, ��, � → ξ� (some studies) 
���, ξ�, � → ��� 

Source of 
preference 
parameters � 

Estimated using ���, ��  
Exogenous (literature/expert-informed) based 
on willingness to pay for attributes and price 
elasticities 

Source of ASC ξ Estimated simultaneously 
Calibrated post-hoc to observed shares �� in a 
baseline scenario 

Correction factors 
used in utility 
specification of 
composite 

Size factor sometimes included.  
Heterogeneity factor not used, except in 
literature comparing different composite 
specifications (bottom row). 
Can be approximated. 

Size factor (or variant) often included.  
Heterogeneity factor not used.  
May require computation of elemental utilities 
and elemental ASCs or can be approximated. 

Sample literature 
using composite 
alternatives 

Goldberg (1998); Brownstone et al. (2000); 
Train & Winston (2007); Bento et al. (2009); 
Shiau et al. (2009); Jacobsen (2013)  

Michalek et al. (2004); EIA (2010); Birky 
(2012); Greene et al. (2014); Xie & Lin (2017) 

Sample literature 
using elemental 
alternatives 

Klier & Linn (2012); Bunch & Brownstone 
(2013); Whitefoot et al. (2017) 

Greene et al. (2005); Bunch et al. (2011); 
Greene & Liu (2012); Whitefoot & Skerlos 
(2012); Brooker et al. (2015) 

Example 
applications 

Analyses of impacts and effects of fuel 
economy standards (Goldberg, 1998; Klier & 
Linn, 2012; Bunch & Brownstone, 2013; 
Jacobsen, 2013), gasoline taxes (Bento et al., 
2009), automotive industry competitiveness 
(Train & Winston, 2007) 

DOE VTO program analysis (Stephens et al., 
2014), NRC Transitions to Alternative 
Vehicles & Fuels study (Greene et al., 2014), 
EIA Annual Energy Outlook (Lynes et al., 
2017), EPA and DOT evaluating potential use 
of VCMs in regulatory rulemaking (Helfand et 
al., 2015; SRA International et al., 2012) 

Literature 
comparing 
between models 
with different 
composite 
specifications 

Vehicle choice: Spiller (2012); Habibi et al. 
(2017); Wong, Brownstone, & Bunch (2018)  
Spatial choice: Parsons & Needelman (1992); 
Feather (1994); Kaoru et al. (1995); Ferguson 
& Kanaroglou (1997); Parsons & Hauber 
(1998); Haener et al. (2004) 

This study 

Notes: ���: vehicle attributes of composite alternative k in scenario t, ��: observed market share of composite 
alternative k, ���: predicted choice share of composite alternative k in scenario t.  
Refer to Haaf et al. (2016) for further discussion regarding explanatory and predictive literature.  
Refer to Table 2 for further detail and references regarding specific studies that use correction factors. 



   

 

11 
 

5. Literature Review  

Several recent studies have characterized the effects of specific modeling assumptions on vehicle 
choice model predictions, such as utility specification, functional form, preference heterogeneity, 
and error distribution (Haaf et al., 2016, 2014; Helfand et al., 2015; Klier and Linn, 2012; 
Stephens, 2014; Stephens et al., 2017). We focus on the effects of choice set aggregation and the 
use of composites. 

Before reviewing the literature on composites, it is instructive to explicitly define the 
terms composite and elemental alternatives, as the use of these terms varies across the literature. 
For the purposes of this study, we define an element as a product profile (vector of attributes) 
that represents a group of alternatives with identical observed attributes and a composite as a 
product profile that represents a group of alternatives that differ in observed attributes. Whether a 
product profile at a given level of detail is considered an element or a composite depends on the 
observed attributes included in the utility function of the choice model. For example, many 
vehicle choice models include attributes such as price and fuel economy. Vehicle descriptions at 
the make-model level (e.g.: Ford Focus) describe groups of variants (e.g.: Ford Focus SE, Ford 
Focus ST, etc.) that differ substantially in price and fuel economy, so we classify a choice model 
using alternatives at the make-model level as using composites. In contrast, if a choice model 
described vehicles at the make-model-trim level (e.g.: Ford Focus SE) within which all variants 
of each profile (e.g.: red Ford Focus SE, blue Ford Focus SE, etc.) have the same price and fuel 
economy, then we classify it as using elements. However, if the “color” attribute were to be 
added as an attribute in the utility function of this choice model, then the make-model-trim level 
would be considered to be at the composite level because each profile represents a group of 
alternatives that varies in one of the observed attributes (color).8  
 

5.1. Use of Composites in Vehicle Choice Models 
Table 2 demonstrates how much VCMs used for counterfactual analysis or forecasting can vary 
in the level of detail at which they represent the market. VCMs in the top section of Table 2 
represent the automotive market using only tens or hundreds of composite alternatives based on 
combinations of size class, powertrains, and fuel type—creating simplified and abstracted 
representations of the market. Each composite represents many design variants in the real 
market. On the other end of the spectrum, VCMs in the bottom section of Table 2 simulate 
hundreds or thousands of vehicle alternatives at the make-model-engine or make-model-trim 
level to represent a much more detailed set of design variants in the market. 

There are several reasons why a modeler may choose to represent vehicle alternatives as 
composites. One reason is computational costs and tractability (Brownstone et al., 2000; 
Goldberg, 1998; McFadden, 1978). Increasing computational power in recent years has 
somewhat mitigated this need. However, computational constraints may still force modelers to 
use composites when the VCM is integrated with an interdependent supply-side model that 

 
8 In vehicle choice modeling practice, make-model-trim profiles and series-subseries profiles are not necessarily 
strictly elements, because each represents a group of variants that differ in options packages (e.g.: premium stereo, 
navigation system) that affect observed attributes (e.g.: price). Nevertheless, the make-model-trim level and the 
series-subseries level are typically treated as elements in practice (any variation in observed attributes of alternatives 
below these levels is typically ignored) due to limited data availability, and we follow this convention here. 
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iteratively determines the attributes of vehicle options and their sales (Bunch et al., 2011; 
Goldberg, 1998; Jacobsen, 2013; Shiau et al., 2009).  

Other reasons modelers use composites are data constraints and a desired level of 
resolution in predictions. For example, modelers may lack data to specify attributes for each 
elemental alternative in a future scenario (Helfand et al., 2015) and may only be interested in 
predictions made at a composite level to focus on their research question of interest or to avoid a 
sense of false precision (Greene and Liu, 2012). Modelers also may not be willing to predict 
market shares in detail and may prefer to stay abstract in their predictions, citing the politically 
sensitive and controversial nature of manufacturer-level predictions (Keefe, 2014; Xie and Lin, 
2017). Finally, modeling the market entry or exit of specific design variants may not be within 
the scope of research (Klier and Linn, 2012).  

Choice set aggregation can also be used to deal with commonality in unobserved 
attributes of elemental alternatives that would conflict with the assumption of independent and 
identically distributed error terms in logit models. This is discussed in more detail by McFadden 
(1978). 

Despite the advantages of using composites discussed above, there are several arguments 
against their use. Composite alternatives are abstractions with hypothetical attributes that are not 
actually available on the market and therefore may inaccurately represent choices. In the 
locational choice literature, Kanaroglou and Ferguson (1996) argue that elemental alternatives 
are the “fundamental disaggregate units considered by choice-makers in the decision process” 
while composites are often defined out of necessity but do not correspond with consumer 
choices. Haener et al. (2004) describe the disaggregate version of their choice model to be closer 
to how they believe decisions are made. In vehicle choice, Spiller (2012) and Wong, 
Brownstone, & Bunch (2018) both describe composites as “misspecification” of the “true” 
choice set. 

Furthermore, the use of composites may ignore the heterogeneity of their underlying 
elemental alternatives, which may be important to model explicitly, especially for vehicle choice 
(Greene and Liu, 2012; Spiller, 2012). The consumer vehicle market includes a large amount of 
vehicle design variation, and there is uncertainty in future technology, fuel-type, and segment 
availability and popularity. Baum and Luria (2016) describe recent shifts towards higher-end, 
more luxurious, and heavier design variants in the automotive market. Wong et al. (2018) cite 
increasing variation in fuel economy and other attributes in recent years due to fuel price 
variations, stringent fuel economy standards, and technological advances. Composites may 
inadequately reflect the impact of scenarios or policies that affect passenger vehicle options 
heterogeneously, such as those based on fuel economy or battery capacity. Several studies 
(Brooker et al., 2015; Bunch and Brownstone, 2013; Greene and Liu, 2012; Klier and Linn, 
2012; Whitefoot and Skerlos, 2012) cite this as motivation to simulate at an elemental level.9 
  

 
9 For example, Brooker et al. (2015) argue that the Toyota Prius hybrid, a particularly high-selling vehicle, would be 
inadequately represented by a generic composite hybrid vehicle. Other examples of elemental alternatives driving 
the sales of the composite category, particularly alternative-fuel vehicles: the BMW i3 extended-range electric 
vehicle with a 100-mile electric range plus gasoline range extender and the Tesla Model S 85 electric vehicle  with a 
300-mile range and no extender may not be well represented by the composites in LVChoice and earlier versions of 
the NEMS model (Birky, 2012; Greene and Chin, 2000), which include a Plug-In Hybrid Electric Vehicle (PHEV) 
with a 40-mile range and EVs with 100- and 200-mile ranges. 
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Table 2: Examples of Vehicle Choice Models that Predict Counterfactual or Future Market 
Shares Using Different Representations of the US Light-Duty Vehicle Market 

a) Vehicle Choice Models Simulating at Composite Level with Aggregation 

Publication  
[Model Name] 

Number of 
Simulated 

Alternatives 

Granularity of  
Alternatives 

Type of 
Choice 
Modela 

Source of 
Preference 
Parametersb 

Source 
of ASCsb 

Correction 
Factors 

Michalek, Papalambros, & 
Skerlos (2004) 

5-20  5-10 makes x 1-2 models each L Exo – – 

Shiau, Michalek, & 
Hendrickson (2009) 

10 10 makes (mid-size only) MXL Est – – 

Greene, Park, & Liu (2014) 
[LAVE-Trans] 

10 5 fuel types x 2 size classes NL Exo Cal Size 

Xie & Lin (2017) [MA3T 
variant] 

12-28 
(3 fuel economy variants + 4 
fuel types) x 4 size classes 

NL Exo Cal Size 

Goldberg (1998) 18 9 size classes x 2 origins NL Est – – 

Brownstone, Bunch, & Train 
(2000) 

26-37 
12 sizes x 4 fuel types x 2 
origins x 2 cost levels 

L & 
MXL 

Est Est Size 

Liu & Lin (2017) [MA3T 
variant] 

20 10 fuel types x 2 size classes NL Exo Cal Size 

Brownstone et al. (1996) 36 14 size classes x 4 fuel types 
L & 
NL 

Est Est – 

Birky (2012) [LVChoice] 45c 9 fuel types x 5 size classes NL Exo Cal Size 

Vyas et al. (2012) [SimAGENT] 54 9 body types x 6 vintages 
MDCE
V 

Est Est – 

Bento et al. (2009) 59 
7 makes x 10 size classes x 5 
ages 

MXL Est – – 

Levinson et al. (2017) 
[ParaChoice] 

100 20 fuel types x 5 size classes NL Exo Cal Size 

EIA (2010) [NEMS CVCC] 132c 11 fuel types x 12 size classes NL Exo Cal Size 

Train & Winston (2007) 200 Make/model MXL Est Est Size 

Harrison et al. (2007) [NERA 
NVMM] 

200+ Make/model NL Exo Cal – 

Goldberg (1995) 228 Make/model NL Est – – 

Jacobsen (2013) 287 
7 makes x 10 size classes x 5 
ages 

MXL Est – – 

Bunch & Mahmassani (2009) 
[CARBITS 2] 

350 
12 sizes x prestige x model 
years 

L & 
NL 

Est Cal Size 

b) Vehicle Choice Models Simulating at Elemental Level (or with Minimal Aggregation) 

Brooker et al. (2015) [ADOPT] 400+ 
Make/model/trim/engine 
options 

MXL Est Cal – 

Whitefoot & Skerlos (2012) 473 Make/model/engine L Exo Cal – 

Whitefoot, Fowlie, & Skerlos 
(2017) 

471 Make/model/engine MXL Est Est – 

Bunch et al. (2011) [CARBITS 
3] 

800+ Make/model/engine NL Est Cal – 

Greene et al. (2005)  831 Make/carline/configuration NL Exo Cal – 

Greene (2009) 867 Make/model/engine NL Exo Cal – 

Greene & Liu (2012) [CVCM 
for EPA] 

~1000 Make/model/configuration NL Exo Cal – 

Bunch & Brownstone (2013)  
[model for DOT Volpe] 

1213 Make/model/nameplate NL Est Est – 

Klier & Linn (2012) 1819 
Make/model/engine x model 
years 

NL Est Est – 
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Notes: In this table, the models in which preference parameters are estimated prior to simulation fall into the 
explanatory literature category, and the models where the parameters are exogenously determined and/or calibrated 
fall into the predictive literature category. 
a  L: Multinomial Logit; MXL: Mixed Logit; NL: Nested Logit; MDCEV: Multiple Discrete-Continuous Extreme 
Value  
b Exo: exogenous; Est: estimated; Cal: calibrated 
c  These models simulate each size class in its own separate choice model, and so there are only 9-11 fuel type 
composites in the choice model simulations for each assumed market segment. 

 
5.2. Composite Specification 

Modelers using composites must make assumptions about how they are specified. Composites 
are commonly specified using the arithmetic average or sales-weighted average of the attributes 
of their constituent elemental alternatives. However, while the use of averages to represent 
composites may be intuitive, the choice set aggregation literature has described a need for 
modelers to “correct” such models by accounting for the group size and utility heterogeneity of 
the elemental alternatives being represented by composites (Ben-Akiva and Lerman, 1985; 
Kitamura et al., 1979; Lerman, 1975; McFadden, 1978).10 These correction factors serve to align 
composite model results with corresponding elemental model results.  

In practice, though, composite VCMs vary in how they specify composites, and no 
consistent application of correction factors has emerged in the literature. Goldberg (1998) and 
Jacobsen (2013) use composites with average attributes and no correction factors. Leiby and 
Rubin (1997) and Greene and Chin (2000) derived a "Make-Model Availability" (MMA) factor 
that is meant to represent the “value of diversity of choice” to the consumer and has subsequently 
been widely used in other VCMs used in policymaking (Birky, 2012; EIA, 2010; Greene et al., 
2014; Greene and Liu, 2012; Liu and Lin, 2017). Brownstone et al. (2000) and Train and 
Winston (2007) include the number of vehicle models in their utility specifications, describing it 
as a factor accounting for “product line externality,” while Wolinetz and Axsen (2016) include 
the number of electric vehicle model offerings as part of an “availability constraint.” Tables 1 
and 2 show summaries of correction factor usage in the literature. 

In this paper, we show how composites affect choice-share predictions through both 
mathematical derivation and simulation case studies. We explicitly identify the correction factors 
that allow composite models to be consistent with elemental-model choice predictions, thereby 
allowing modelers to exploit the advantages of composite models while eliminating the 
discrepancies between composite and elemental choice predictions. 
 
6. Theory 

We examine a general discrete choice model containing a set of composite vehicle alternatives 
� and compare its predicted choice probabilities to those of a corresponding choice model 

 
10 Later studies (Feather, 1994; Ferguson and Kanaroglou, 1997; Haener et al., 2004; Kaoru et al., 1995; Parsons and 
Needelman, 1992) examined how composite use and correction factors could affect spatial and locational choice 
model results. We note that while spatial and locational choices may be sufficiently described by composites with 
the average attributes of carefully defined homogeneous groups of geographically proximate elemental choices, the 
vehicle market of make-model-trim alternatives may not be adequately modeled by composites without accounting 
for group size and heterogeneity. Wong et al. (2018) and Brownstone and Li (2017) analyzed various specifications, 
including the McFadden (1978) approximate correction factor on parameter estimation results but not on predicted 
choice probabilities. Habibi et al. (2017) also compare several specifications and correction factors but focus on the 
impact on estimation. Refer to Table 1 for a summary. 
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containing the set of elemental vehicle alternatives �. Each composite alternative, � ∈ �, 
represents a subset of the elemental alternatives �� ⊆ �. The subsets �� ∀� ∈ � partition the set 

� (∪�∈� �� = � and  �� ∩ ��′ = ∅ ∀� ∈ �, �
′

∈ �\�). We define �� to be the predicted market-

level probability of consumers choosing alternative j, or predicted choice share. The choice 
shares predicted by the composite model �� ∀� ∈ � will vary depending on how the attributes 
of the composites are specified (e.g.: average or sales-weighted average of the attributes of the 
subsumed elements). We define Δ�� as the difference between a given composite model’s 
predicted choice probability �� and the sum of the elemental model’s predicted choice 
probabilities for the alternatives that � represents, ∑ ���∈��

. Specifically, 

 

Δ�� = �� − � ��

�∈��

(1) 

 
This difference provides a metric for comparing composite model specifications used in 

the predictive literature, and we examine some conditions under which Δ�� = 0.11 We begin 
with models that exclude alternative-specific constants (ASCs) and later generalize to those that 
include ASCs. 
 

6.1. Models Without Alternative-Specific Constants (ASCs) 
Studies using choice models that lack ASCs include Goldberg (1998), Bento et al. (2009), Shiau 
et al. (2009), and Jacobsen (2013). For a general random-utility discrete-choice model without 
ASCs, consumers choose the alternative with the highest utility. The utility ��  of each alternative 

� can be separated into two components: �� = �� + ��. The first term ��  is the consumer utility 

derived from vehicle attributes observed by the modeler, henceforth referred to as observed 
utility.12 The second term �� represents unobserved random error. Given ��  for all alternatives 

and a distribution for ��, the choice share �� (Pr��� ≥ ���  ∀�� ∈ ��) can be computed with a 

multidimensional integral for the elemental choice set � and for the composite choice set �:  
 

�� = � � � … � ��(�)��¬�

��������

�����

��������

�����

�

�

�����

���;    �� = � � � … � ��(�)��¬�

��������

�����

��������

�����

�

�

�����

��� (2) 

 
where � = |�|, � = |�|, ��(�) is the probability density function for the vector of random error 
terms in the composite model, ��(�) is the probability density function for the vector of random 

error terms in the elemental model, and ¬ represents “all except”, so that ��¬� = �������� …  
���������� … ������, and ��¬� = �������� … ���������� … ������. The difference between 

the composite and elemental model choice-share predictions Δ�� for generic error distribution 
assumptions is computed using Eq.(1) and Eq.(2). This expression provides a measure of the 
inconsistency between the elemental model and any given composite model specification. 

To find a composite model specification that is consistent with the elemental model for a 
given error distribution assumption, we set Δ�� = 0 ∀� ∈ � and solve for the utility of the 

 
11 As we will see, Δ�� = 0 when the appropriate “correction factors” are used in the composite utilities.  
12 For simplicity of illustration, consumer heterogeneity, including consumer-specific attributes such as demographic 
information that would affect utility, is ignored here. 
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composite13. For the particular cases where both the elemental model and the composite model 
are specified as logit, nested logit, or mixed logit, a closed-form expression or kernel solution 
exists. We derive each of these cases in Appendix A and summarize results in Table 3. The 
solutions share a similar form for the utility of the composite involving the Logarithm of the Sum 
of the Exponential (LSE) of the utilities of the elemental alternatives. The LSE specification can 
be decomposed, as shown by McFadden (1978) and by Ben-Akiva and Lerman (1985),14 into (1) 
the base composite utility (often an average or weighted average of the elements represented by 
the composite), (2) the group “size correction factor,” which is a factor that accounts for the 
number of elements represented by the composite, and (3) the “heterogeneity correction 
factor15,” which is a factor that accounts for differences in utility of elemental alternatives from 
the base composite utility. When both of these correction factors are combined with the base 
composite utility, they are mathematically equivalent to the LSE and therefore predict choice 
probabilities from the composite model that are consistent with those that the elemental model 
would predict for the corresponding group of vehicles. As shown in Table 2, while some vehicle 
choice models have applied a size correction factor (or a variant), no vehicle choice model using 
composites in the predictive literature has applied these correction factors in full16. We 
characterize the implications of this practice.

 
13 A solution may or may not exist, depending on the pair of assumptions about the error term distributions. As 
demonstrated in Parsons and Needelman (1992) based on McFadden (1978), a solution consistent with random 
utility maximization exists where both error terms are iid Type I Extreme Value.  
14 The size and heterogeneity correction factors were first discussed and derived by Lerman (1975), McFadden 
(1978), and Ben-Akiva and Lerman (1985) for logit and nested logit models. In this paper, we extend the derivation 
to make explicit how these concepts apply to mixed-logit models and to models that include ASCs.  
15 The exponential function in the heterogeneity correction factor emphasizes alternatives in �� with higher utility. 
Ben-Akiva and Lerman (1985) observe that the derivative of the heterogeneity correction factor shows sensitivity to 
elemental alternatives with high choice probabilities. 
16 One study in the explanatory literature, Habibi et al. (2017), does use full correction factors to make predictions, 
but focuses on comparing parameter estimates. 
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Table 3: Composite Specifications for Models Without ASCs to Produce Share Predictions 
Consistent with a Corresponding Elemental Model 
 Observed utility of 

composites required for 
Δ�� = 0 ∀� ∈ � 

Base 
composite 
utility17,18 

Size 
correction 

factor 

Heterogeneity 
correction 

factor 

Logit 
�� = ln � � exp����

�∈��

� 

    = �̅� + ln(��) + ln(��) 

�̅� = �′��� �� = |��| �� =
∑ exp ��′��� − ������∈��

��

 

Nested 
Logit 

�� = �� ln � � exp �
��

��
�

�∈��

� 

    = �̅� + �� ln(��) + �� ln(��) 

�̅� = �′��� �� = |��| 
�� =

∑ exp �
�′��� − ����

��
��∈��

��

 

Mixed 
Logit 

��� = ln � � exp�����

�∈��

� 

    = �̅�� + ln(��) + ln����� 

�̅�� = ��′��� �� = |��| ��� =
∑ exp ���′��� − ������∈��

��

 

Notes: Derivations are available in Appendix A and B. �: “observed utility,” utility derived from attributes observed 
by the modeler; �̅�: base composite utility; �: nest parameter, which reflects the degree of independence in 
unobserved utility among alternatives in the nests; �: vector of vehicle attributes; ���: vector of attributes of the 
composite alternative; �: vector of consumer preference parameters. For the case of mixed logit (which includes 
latent-class logit as a special case), the model parameters are random variables and therefore the base composite 
utility and the heterogeneity correction factor are also random variables. We identify random variables with the ~ 

symbol. ��: random vector of consumer preference parameters, which may be continuous (e.g.: normal) or discrete 
(e.g.: different values for individual consumer segments, as in latent-class models).

 
17 We show the case where utility is linear-in-parameters for illustration. Note that when utility is linear in 
parameters, a composite alternative defined using the average value for each attribute will have average utility. 
Other utility models could be used so long as the heterogeneity correction factor is adjusted accordingly. 
18 In the literature, the base composite’s attribute vector is often calculated as an average or weighted average (��� =
∑ �����∈��

��⁄ , where the �’s are some weights e.g.: sales of each alternative) (Goldberg, 1998; Bento et al., 2009). 

However, in other models, the base composite’s attributes are based on other methods or expert judgment, for 
example in the case of forecasts (EIA, 2010). The correction factors apply for any specification of ���. 
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6.2. Models With Alternative-Specific Constants (ASCs) 
Many vehicle choice models (Brownstone et al., 2000; Bunch et al., 2011; Train and Winston, 
2007; Xie and Lin, 2017) use ASCs, which are utility parameters estimated for each choice 
alternative. Each alternative’s ASC can be thought of, under certain conditions, as representing 
the average utility across consumers that is associated with the alternative’s unobserved 
attributes. With ASCs, the utility for each choice alternative in the model is represented by �� =

�′�� + �� + ��. In the literature and in practice, ASCs are determined by two different 

approaches: (1) by estimating them together with other parameters and (2) by fitting them post-
hoc as calibration constants (Haaf et al., 2016). VCMs in the explanatory literature typically 
estimate ASCs simultaneously with other choice model parameters as part of an effort to control 
for omitted variable bias (Guevara, 2015; Haaf et al., 2016; Klier and Linn, 2012; Train and 
Winston, 2007; Whitefoot et al., 2017), whereas VCMs in the predictive literature use post-hoc 
calibration to estimate ASCs as calibration constants (Birky, 2012; Greene et al., 2005; Xie and 
Lin, 2017). The correction factors we present are agnostic about the approach of estimating 
ASCs. In the literature, ASCs have been estimated/calibrated for elemental alternatives using 
elemental sales data (which we refer to as E-ASCs) as well as for composite alternatives using 
composite-level sales data (C-ASCs). Refer to Tables 1 and 2 for examples.  

To differentiate the baseline scenario in which ASCs are estimated or calibrated to 
existing sales data from the counterfactual or forecast scenario where shares are predicted, we 
introduce the subscript � ∈ � and define � = 0 as the baseline scenario where observed shares 
are available and ASCs are estimated (� ≠ 0 implies a counterfactual or forecast scenario).  
Similar to our procedure in the previous section, to find a composite model specification that is 
consistent with the elemental model, we set Δ��� = 0  ∀� ∈ �, � ∈ � and solve for the utility of 
the composite for the cases of logit, nested logit, and mixed logit when E-ASCs and C-ASCs are 
present. Derivations are provided in Appendix C, and the results are summarized in Table 4.  

Here, the LSE solution is decomposed into a base composite utility and correction factors 
that are functions of both the E-ASCs and the C-ASCs.19 For any E-ASCs and C-ASCs 
determined by any method, these correction factors will adjust the composite model to make 
predictions consistent with the elemental model. To be meaningful, the E-ASCs are generally 
estimated or calibrated using observed data, but any value for the C-ASCs will do. A convenient 
choice when constructing a new composite model is to set �� = 0  ∀� ∈ � and simplify the 
equations in Table 4 accordingly, but for models that have already been calibrated at the 
composite level, the general correction factors in Table 4 allow a modeler to adjust the composite 
specification so that choice probabilities are consistent with an associated elemental model. This 
is advantageous, for example, when counterfactual or forecast scenarios involve computationally 
intensive operations where the use of composites can reduce computation time or when 
sensitivity analysis for forecasts is more tractable with fewer parameters.

 
19 For simplicity, we show ASCs as being estimated in the baseline scenario � = 0 using observed choices and 
assumed constant across counterfactual and forecast scenarios (no scenario subscript). Some models make projected 
adjustments to ASCs for forecast scenarios (e.g.: Birky, 2012; EIA, 2010). This practice is discussed by Haaf et al. 
(2016) and Stephens et al. (2017). The correction factors in Table 4 hold for any choice of ASCs for any scenario.  
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Table 4: Composite Specifications for Models With ASCs to Produce Share Predictions Consistent With a Corresponding 
Elemental Model 
 Observed utility of composites 

required for 
Δ��� = 0 ∀� ∈ �, � ∈ � 

Base 
composite 
utility17,18 

Size 
correction 

factor 

Heterogeneity20 
correction 

factor 

Logit 
��� = ln � � exp���� + ���

�∈���

� − �� 

         = �̅�� + ln(���) + ln(���) − �� 

�̅�� = �′���� + �� ��� = |���| 

���

=
∑ exp ��′���� − ����� + ��� − �����∈���

���
 

Neste
d 
Logit 

��� = ��� ln � � exp �
��� + ��

���
�

�∈���

�

− �� 
         = �̅�� +
��� ln(���) + ��� ln(���) − �� 

�̅�� = �′���� + �� ��� = |���| 

���

=

∑ exp �
�′���� − ����� + ��� − ���

���
��∈���

���
 

Mixed 
Logit 

���� = ln � � exp����� + ���

�∈���

� − �� 

        = �̅��� + ln(���) + ln������ − �� 

�̅��� = ��′����  + �� ��� = |���| 

����

=
∑ exp ���′���� − ����� + ��� − �����∈���

���
 

Notes: Derivations are available in Appendix C. ��: Elemental-Alternative-Specific-Constant (E-ASC) (estimated or calibrated to observed choice data in 

scenario � = 0); ��: Composite-Alternative-Specific-Constant (C-ASC) (may take any value (e.g.: zero) or be estimated or calibrated to observed choice data in 
scenario � = 0)19; �̅��: base utility of composite � in scenario t17,18; �: nest parameter, which reflects the degree of independence in unobserved utility among 

alternatives in the nests; �: vector of vehicle attributes; ���: vector of attributes of the composite alternative; �: vector of consumer preference parameters. ��: 
random vector of consumer preference parameters, which may be continuous (e.g.: normal) or discrete (e.g.: different values for individual consumer segments, 
as in latent-class models)

 
20 Heterogeneity correction factor here in Table 4 refers to heterogeneity of observed utility including E-ASC (in contrast to heterogeneity correction factor for 
models without ASC)  
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For the typical case where ASCs are fit to data from a single market,21 the ASCs can 
reduce share error for both the elemental model and the composite model to zero in the baseline 
scenario � = 0. But, importantly, these ASCs do not necessarily lead to the same result in 
counterfactual or forecast scenarios. Specifically, we define: 
 

Δ��� = ��� − ���   ∀� ∈ � (3) 

 

Δ��� = ��� − ��� = ��� − � ���

�∈��

   ∀� ∈ � (4) 

 
Where ��� is the observed share of alternative � in scenario � = 0; Δ��� is the difference between 

predicted elemental choice probabilities and observed choice shares for alternative � in scenario 
� = 0, and Δ��� is the difference between predicted composite choice probabilities and observed 
choice share for composite � in scenario � =  0. Choice share for composite k is defined as the 
sum of the observed shares for the alternatives represented by composite �.  

Calibration of �� enforces that ��� = ��� (and therefore Δ��� = 0) ∀� ∈ �. Similarly, if the 

composite model is independently calibrated to sales data at the composite level, such as in Birky 
(2012), calibration of �� enforces that ��� = ∑ ����∈��

 and Δ��� = 0 ∀� ∈ �. Because both the 

elemental model and the composite model are calibrated to match the same baseline scenario 
sales data, they will have consistent choice probabilities in that scenario: Δ��� = 0. But without 
complete correction in the composite model, the elemental and composite models with ASCs 
may nevertheless produce different choice probabilities in counterfactual or forecast scenarios: 
Δ��� ≠ 0.  

Table 5 summarizes these implications, and Figure 2 summarizes the comparison of the 
roles of E-ASCs, C-ASCs, and correction factors: E-ASCs and C-ASCs force the elemental 
model and composite model choice shares, respectively, to match the observed market shares 
(and therefore match one another) in the baseline scenario where ASCs are determined, whereas 
the correction factors ensure that the elemental model and composite model match one another 
for all scenarios. 
 
Table 5: Summary of the Implications of ASCs and Correction Factors 
  Baseline 

scenario 
Counterfactual 

scenario 
Without ASCs Without complete correction Δ� ≠ 0 Δ� ≠ 0 

With complete correction Δ� = 0 Δ� = 0 
With ASCs Without complete correction Δ� = 0 Δ� ≠ 0 

With complete correction Δ� = 0 Δ� = 0 
 
 
 

 
21 In some models, ASCs for alternatives that appear in multiple observed markets (e.g.: model years or choice sets) 
are held constant across those markets to estimate ASCs as fixed effects and control for omitted variables (Guevara, 
2015). We focus our narrative here on the case of a single market, where ASCs provide enough degrees of freedom 
to allow choice model shares to match observed shares and can be used in conjunction with instrumental variables to 
control for omitted variables (Haaf et al., 2016).  
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Figure 2: Illustration of the roles of correction factors, E-ASCs, and C-ASCs in choice 
modeling. Arrows indicate the direction of adjustment, so that the predictions from the 
model at each arrow’s tail are adjusted to match those from the models at the arrow’s head. 
 

Our correction factors, which extend prior work to explicitly address models with ASCs, 
allow models with vehicle composites to produce choice shares consistent with a corresponding 
model with elemental alternatives, even in counterfactual or forecast scenarios. 
 
7. Simulation case studies 

To characterize the impact of composite specification on choice modeling predictions in practice, 
we construct two case studies. In Case 1, we isolate the effect of composite specification on 
choice model share prediction for a simple logit model without ASCs and compare its magnitude 
relative to parameter uncertainty. In Case 2, we construct a nested logit model based on the 
NEMS and LVChoice models, with and without ASCs, and we explore the effect of the use of 
composites and correction factors on counterfactual predictions. We compute choice 
probabilities using a series of models that predict choice shares using different specifications of 
the utility of composite vehicles. These model specifications are listed in Table 6. 
 
  

Elemental Model  

Choice Predictions 

����  ∀� ∈ �� 

Composite Model 

Choice Predictions 

(���  ∀� ∈ �) 

Observed  

Choice Shares 

 (��� ∀� ∈ � & 

  ��� = ∑ ����∈��
∀� ∈ �)  

Correction factors 

ensure 

��� = ∑ ����∈��
 and 

Δ��� = 0 

∀� ∈ �, � ∈ �  

C-ASCs ensure 

��� = ∑ ����∈��
 and Δ��� = 0 

∀� ∈ �, � = 0 

E-ASCs ensure  

��� = ��� and Δ��� = 0 

∀� ∈ �, � = 0 
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Table 6: Model Specifications in Case Study Simulations 

Composite 
Model 
Specification 

Components Included in the Utility of the Composite 

C1a 
Base composite utility using the arithmetic averages of constituent vehicle 
utilities (�̅� = ∑ ���∈��

��⁄ ) 

C1w Base composite utility using sales-weighted averages (�̅� = ∑ �����∈��
��⁄ ) 

C2a 
Base composite utility based on arithmetic averages plus the size correction 
factor (Table 3, 4) 

C2w 
Base composite utility based on sales-weighted averages plus the size correction 
factor (Table 3, 4) 

C3 
Base composite utility with both size and heterogeneity correction factors (Table 
3, 4) (results for this specification are independent of how the base composite 
utility is specified) 

Other Model Specifications 

E 

Elemental: choice set composed of disaggregated elemental alternatives at the 
make-model-trim level and their attributes. The set of elemental alternatives are 
based on the model-year 2014 vehicles tracked by IHS Polk with more than 100 
sales in California. 

 
Both case studies concentrate on choice shares for various fuel-types in the small car 

market in California. Fuel-type groupings for composites are based on the classification scheme 
in LVChoice and include gasoline vehicles, diesel vehicles, hybrid electric vehicles (HEVs), 
plug-in hybrid vehicles with a ~10-mile electric range (PHEV10), PHEVs with a ~40-mile22 
range (PHEV40), and fully electric vehicles (EVs). Sales and attribute data are from IHS Polk 
and Wards Automotive Yearbook, respectively, for model-year 2014 new car registrations in 
California. 
 

7.1. Case 1 – Logit Without ASCs 
In Case 1, we use a multinomial logit model with a functional form that includes price, fuel 
economy, 0-60 mph acceleration time, and vehicle footprint (wheelbase multiplied by track 
width), following Whitefoot and Skerlos (2012). We exclude ASCs to isolate the effect of 
composites on the model’s ability to capture choice predictions using observed attributes. Utility 
parameters are defined based on the midpoint of the willingness-to-pay ranges and the price 
elasticity of demand found by Whitefoot and Skerlos (2012). 

 
22 The PHEV40 composite group is meant as a classification covering PHEVs with a large range and is not strictly 
limited to PHEVs with exactly 40 mi of all-electric range. For 2014, this included the Ford C-Max Energi SEL with 
20 mi, Cadillac ELR with 37 mi, and Chevrolet Volt with 38 mi. 
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Figure 3: Case 1 simulated choice shares by fuel type for the 2014 California new small car 
market under different specifications for the utility of composites as defined in Table 4. 
“Corr” refers to correction factors included in the model specification; “Size” and “Het” 
refer to the size and heterogeneity correction factors, respectively. The rightmost column 
“Obs” shows observed (not simulated) sales of 2014 vehicles. 
 

Figure 3 shows that choice-share predictions significantly differ depending on how the 
composites are specified. When using only arithmetic means to specify composites (C1a), choice 
predictions deviate dramatically from the benchmark elemental model results (E). Shares of 
alternative-fuel vehicles, each of which represent few elemental variants, are much larger in the 
composite model, and shares of gasoline vehicles, which represent many diverse elemental 
variants, are much smaller. Using sales-weighted-average composites (C1w) reduces the 
deviations only slightly. We find that including the size correction factor (C2a) improves 
predictions considerably, but differences in the choice shares are still substantial. For example, 
shares of HEVs and EVs in this composite specification (14% and 6%, respectively) are still 
much larger than the elemental model (7% and 3%, respectively). Gasoline vehicle share is 
substantially smaller in the composite model compared to the elemental model (72% instead of 
84%). Compared to arithmetic averages, sales-weighted average composites with the size 
correction (C2w) achieved predictions much closer to the benchmark, but they overpredict 
gasoline vehicles and underpredict HEVs and EVs relative to the elemental model. When the 
appropriate heterogeneity correction factor from Table 2 is included in model specification C3, 
the predictions successfully replicate the benchmark results. This is expected because using the 
appropriate correction factors is equivalent to the LSE solution for each composite group, 
resulting in choice probabilities that match the elemental model results.  

These results show that the use of composites and correction factors can substantially 
impact choice-share predictions. We also observe that, in this particular case study, the elemental 

C1a 
None 

 

Corr: 
C1w 
None 

C2a 
Size 

C2w 
Size 

C3 
Size&Het 

E 
 

Obs 
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model predictions of choice shares are much closer to observed shares than the predictions from 
the uncorrected composite models. This implies that, if we were to use ASCs in this case study 
for the uncorrected composite model, the ASCs would play a larger role in share predictions 
relative to the vehicle attributes we consider than they would when the elemental model is used. 
Hence, the use of composites without correction factors can significantly influence how much 
share predictions are driven by observed versus unobserved attributes. Whether unobserved 
attributes play a larger role in the uncorrected composite model or the elemental model depends, 
of course, on which model predicts actual shares more closely with no ASCs. We would expect 
this to vary from case to case. We further explore the role of ASCs in Case 2. 

We then examine how the magnitude of the effect of composite specification on choice 
probabilities compares to other sources of model error or uncertainty. We do so by repeating the 
Case 1 simulation with a range of utility parameter estimates. A total of 1000 sets of preference 
parameters are drawn from independent uniform distributions based on the interval containing all 
estimates of willingness-to-pay and price elasticities of demand across the literature reviewed in 
Whitefoot and Skerlos (2012), which reflect the uncertainty in estimated preference parameters 
arising from differences in data, estimation methods, and model specification across studies. We 
examine the magnitude of variation of these outputs due to parameter uncertainty and compare it 
to the variation due to different composite definitions. 
 

 
Figure 4: Simulated choice shares of each fuel type in the 2014 California new small car 
market, using different specifications for the utility of composites as defined in Table 4 and 
1000 sets of preference parameters drawn from ranges in the literature (Whitefoot and 
Skerlos, 2012). Boxes denote interquartile range and whiskers denote 5th and 95th 
percentiles.  
 

Figure 4 shows the magnitude of choice-share variation for each fuel-type over the 
distribution of parameter values �. For example, the box plot on the far left shows the variation 
in the share of EVs predicted by the model using the arithmetic average composite specification 
over the 1000 draws of the parameter values � from ranges in the literature. This box plot shows 
that the median share of EVs predicted by this composite model (C1) is 12%, and the 5% and 
95% percentiles of the uncertainty distribution are 7% share and 20% share, respectively. 
Looking across the box plots, we observe that variation due to composite specification 
(comparing C1, C2, and C3 with E, the elemental model within the same fuel type) is often 
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larger than variation due to parameter uncertainty (the spread of each box plot). For example, the 
share of EVs predicted by the elemental model is 2-6% (median of 3%). These results suggest 
that composite specification can cause substantial share prediction variation that can be greater 
than variation due to parameter uncertainty. Further details of these results are discussed in 
Appendix D. 
 

7.2. Case 2 – Nested Logit With ASCs 
In Case 2, we investigate the effect of using composites on VCM simulations of counterfactual 
scenarios based on VCMs used to inform policymaking. We construct a nested logit specification 
with ASCs based on LVChoice (Birky, 2012), a VCM used by the Department of Energy and the 
National Petroleum Council to simulate market shares of alternative-fuel vehicles under different 
scenarios. LVChoice uses the same utility specification and parameters as the VCM in the 
NEMS CVCC model used by the Energy Information Administration (EIA) (Birky, 2012; EIA, 
2010). Further details of the model used in Case 2 are in Appendix E. Following LVChoice and 
NEMS, we treat vehicle size classes as separate nested logit models representing isolated 
markets and consumer segments.  

Similar to Case 1, in Case 2 we simulate choice shares using a series of composite model 
specifications (C1, C2, C3), as well as a benchmark disaggregated elemental model (E). In Case 
2, we specify composite vehicles using sales-weighted averages based on the attributes and sales 
of constituent elemental alternatives in 2014 and drop the “w” from the labels for simplicity of 
notation. Composites are defined at the sub-fuel type level based on the classification scheme 
used in LVChoice and NEMS. In the elemental model, make-model-trim level alternatives are 
added as members of each sub-fuel type in a 3-level nested logit model. This model structure is 
shown in Figure 5.  
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Figure 5: Structure of the (a) composite model and (b) elemental model used in Case 2, 
based on the structure of LVChoice and NEMS (Birky, 2012; EIA, 2010). CV refers to 
conventional vehicles; TDI refers to turbo-direct-injection.  
 

In addition to constructing multiple composite models with varying correction factors, we 
examine results in this case using models with ASCs. We calibrate the ASCs post-hoc, following 
the common practice in the predictive literature for VCMs (Haaf et al., 2016). Specifically, we 
adopt the default utility-coefficient parameters in LVChoice and solve for the E-ASCs in the 
elemental model needed for predicted shares to match observed 2014 market shares. The C-
ASCs are similarly calibrated in the composite model using the sum of the observed shares of the 
elemental alternatives represented by the composite. We present the results from models with 
and without ASCs for comparison. 

We simulate scenarios that are typical of those simulated in the predictive VCM literature 
in Tables 1 and 2. These scenarios reflect counterfactual or forecasted settings that assume 
technological and/or policy changes that affect the attributes of the alternatives. We present four 
scenarios to represent the range of impacts of composite specification on choice share 
predictions23: 

(a) The baseline scenario, which includes 2014 US federal and California state subsidy and 
monetary incentive programs for EVs and PHEVs (all vehicles at 2014 list price, except 
for EV and PHEV, for which prices were reduced by $4,000-10,00024); 

(b) A counterfactual scenario in which there are no EV and PHEV subsidies (all vehicles at 
2014 list price); 

 
23 The results of other simulated scenarios can be found in Appendix F. 
24 Data for subsidy amounts for each elemental vehicle were from California Air Resources Board (2017). 

(b) 

Elemental

(a) 

Composite
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(c) A “battery cost reduction” scenario, based on battery cost projections in the EIA Annual 
Energy Outlook Reference Case between 2014 and 2025 (Lynes, 2017) (baseline scenario 
with EV and PHEV prices reduced by $300-600/kWh from $600-1200/kWh);25 

(d) A “battery cost reduction and full EV offerings” scenario, a forecast type scenario based 
on battery cost reduction in scenario (c) and an increase in the number of EV make-
model-trim variants to equal the number of gasoline make-model-trim variants.26 
 
Figure 6 summarizes model predictions when ASCs are excluded from the models and 

when they are included. In both cases, the following composite models are constructed: the 
uncorrected composite model (C1), the composite model with the size correction factor (C2), and 
the composite model with both the size and the heterogeneity correction factor (C3), defined in 
Tables 3 and 4. These specifications follow those used in practice as discussed in section 2.2 and 
are defined in Table 5.  
 In the top row of Figure 6, where ASCs are not used, we see that the composite models 
that are not fully corrected (C1 and C2) are much more sensitive to changes in the counterfactual 
scenarios than the elemental model. Similar to Case 1, we find that the uncorrected composite 
models systematically overpredict shares for alternative-fuel vehicles (each of which represents 
few elemental variants) and underpredict gasoline vehicle share (which represents many 
elemental variants) relative to the elemental model. As expected, the fully corrected composite 
model (C3) matches the elemental model in all scenarios. 

In the bottom row of Figure 6, where ASCs are used, all models have the same results in 
the baseline scenario (a) by design. This occurs because all composite and elemental models are 
calibrated with ASCs to the observed market shares for that scenario (2014 California market 
shares). As shown in Figure 2, the C-ASCs calibrated to the baseline scenario allow for ��� =
∑ ����∈��

= ∑ ����∈��
, regardless of correction. So, the choice shares of all models are therefore 

identical in the baseline scenario. However, the composite models using ASCs can still produce 
different share predictions from the elemental model in counterfactual scenarios. In particular, 
the distortion is related to how differently the counterfactual scenarios affect the size and 
heterogeneity correction factors for each composite group.  

In the counterfactual no-subsidy scenario (b) with relatively minor impact on utility 
heterogeneity, the distortion introduced by composite specifications without correction factors is 
negligible when the models use ASCs. In the battery cost reduction scenario (c), prices of 
elemental PHEVs and EVs within the same fuel-type group are affected differently depending on 
their battery pack size. This is because the PHEV and EV composite groups include vehicles 
with a variety of battery sizes. This affects the heterogeneity correction factor for each composite 
group differently and causes the C1 and C2 models to predict different shares than the fully 
corrected C3 model and elemental model. In this instance, in scenario (c), the omission of the 
heterogeneity correction factor led to lower PHEV share (38% instead of 44%) and higher 
gasoline share (37% instead of 32%) relative to the elemental model. In scenario (d), we 
combine the battery cost reduction with an increase in the size (number of elements) of the EV 
composite group to match the size of the gasoline vehicle composite group. Both size and 
heterogeneity correction factors are shown to impact choice share predictions significantly, with 
EV share varying from 21% in C1 without correction to 37% in C2 with only size correction and 

 
25 Range of battery pack cost reduction based on EIA’s estimates that depend on pack size and vehicle type (larger 
$/kWh costs and cost reductions for smaller packs such as in PHEVs). 
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to 70% with both size and heterogeneity correction, matching the elemental model prediction.26 
In the literature, model specifications such as C1 and C2 (and variants) have been used 

for counterfactual simulations in vehicle choice models, while C3 has not (see Tables 1 and 2). 
The use of complete size and heterogeneity correction enables the prediction of choice shares  
that are consistent with those from the elemental model even in counterfactual scenarios.

 
26 For scenario (d), we do not forecast individual EV elements, but, rather, forecast the number of EV elements in 
the correction factor, following practice in the predictive literature i.e. the user-defined Make-Model-Availability 
parameter in LVChoice (Birky, 2012) and LAVE-Trans (Greene et al., 2014). We display the elemental results of this 
case as identical to C3 results because they match by definition, but individual elements were not simulated for this 
case. 
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Figure 6: Case 2 simulated choice shares by fuel type for the 2014 California new small car market under (a) baseline and (b)-
(d)20 counterfactual scenarios with different specifications for the utility of composites as defined in Table 6. “Corr” indicates 
correction factors applied in each case; “Size” and “Het” refer to the size and heterogeneity correction factors, respectively. All 
composite utilities are defined by the sales-weighted average utilities of their corresponding elements. “Elem” indicates the 
elemental model (make-model-trim level).  

 

Corr: 
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8. Conclusion 

We find that the common practice of using composites for vehicle choice model predictions can 
significantly distort choice-share predictions relative to models that use disaggregated elemental 
alternatives unless appropriate correction factors are used. We identify correction factors for a 
variety of model forms: multinomial logit, nested logit, and mixed logit—with and without 
ASCs—given exogenous preference parameters. These correction factors ensure choice-share 
predictions from composite models are consistent with those from their corresponding elemental 
models in counterfactual or forecast scenarios. 

For our first case study, which excludes ASCs, the distortion of share predictions using a 
variety of specifications for composites that appear in the literature can be as wide or wider than 
the variation in share predictions due to uncertainty in preference parameters in the literature. For 
our second case study, which includes ASCs, composite-model choice shares are consistent with 
elemental-model choice shares in the baseline scenario where ASCs are calibrated, but they can 
nevertheless differ in counterfactual or forecast scenarios. 

Generally, we find that the magnitude of the distortion introduced by the use of 
composites depends on several factors. Composite models without correction factors can 
systematically misrepresent the choice shares when composite groups (1) represent a particularly 
large or small number of elements, (2) represent a heterogeneous group of elements with utilities 
that deviate substantially from the utility of the composite, or (3) when composites are used in 
counterfactual scenarios that affect the number of elements in the group (e.g.: policy increases 
electric vehicle offerings) or the heterogeneity of utility of the elements in the composite group 
differently than other composite groups (e.g.: policy increases the spread of electric vehicle 
prices).  

To avoid these distortions, we recommend that vehicle choice modelers using composites 
apply full correction factors. In many of the cases we examined, the distortions introduced by the 
use of composites are largely mitigated when the models include ASCs; however, significant 
distortion can remain in some counterfactual cases even when ASCs are used. To ensure that the 
distortion is eliminated, full correction factors are needed.  This requires data on attributes of 
elemental alternatives and, for models with ASCs, sales data for elemental alternatives in a 
baseline scenario. Vehicle attribute and sales data at a detailed level (e.g., make-model-trim and 
subseries level) are available through databases such as Wards Automotive and IHS Polk, 
respectively. Of course, future attributes are not known. Examination of past trends may inform 
sensitivity analysis for forecasting using composites with fewer parameters (e.g.: �̅, ln(�) ,
ln(�)) than if the attributes of every elemental alternative were to be forecasted (e.g.: Brooker et 
al., 2015), but more research is needed to characterize the interdependencies of these factors for 
forecasting. When sales data at the elemental level are too challenging or expensive to obtain, an 
examination of the correction factors, even when E-ASCs are uncertain, can give the modeler an 
understanding of the magnitude of distortion the composite specification may cause (for 
example, sales data at the make-model level can be assigned to elements at the make-model-
subseries level using a variety of assumptions, producing a variety of estimates for the ASCs that 
can be used for robustness checks).  

Correction factors can allow modelers to exploit the advantages of composite models, 
including reduced model complexity and computational cost, without introducing arbitrary 
distortion to choice-share results caused by specification of the composite. Our analysis focuses 
on differences between the predictions of models specified with composite vehicles and models 
specified with vehicle alternatives at the elemental level. We do not characterize how well either 
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model represents the “true” data-generating process of consumer choices (misspecification) or 
how well model predictions match observed sales. Study of interactions between model 
misspecification and the use of composites is left for future work. 
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10. Glossary 

ASC Alternative-Specific Constant 
C-ASC Composite-Alternative-Specific Constant 
E-ASC Elemental-Alternative-Specific Constant 
EIA Energy Information Administration 
EV Electric Vehicle 
HEV Hybrid Electric Vehicle 
LSE Logarithm of the Sum of the Exponential 
MMA Make-Model Availability 
NEMS National Energy Modeling System 
PHEV Plug-In Electric Vehicle 
VCM Vehicle Choice Model 
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12. Supplementary Material and Appendices

APPENDIX A: DERIVATIONS FOR �� AND FOR ASSOCIATED COMPOSITE 
SPECIFICATIONS FOR �� = � 
In this Appendix, we derive expressions for the utility of the composite such that Δ�� = 0. For 
special cases of discrete choice models such as logit, nested logit, and mixed- and latent-class 
logit, ��� simplifies to expressions that can be solved explicitly, which we derive below. 
 
Multinomial Logit 

When both the composite and elemental models are modeled using multinomial logit 
assumptions, specifically where ��(�) = ∏ ���exp(−���)�   (iid Type I Extreme Value error 
distribution), Equation 2 simplifies to: 

Δ�� =
���

∑ ����∈�
− �

���

∑ ���
�∈�

�∈��

 

=
(���)�∑ ���

�∈� � − �∑ ���
�∈��

�(∑ ���
�∈� )

(∑ ����∈� )�∑ ���
�∈� �

 

where �, � are indices for elemental alternatives, and �, � are indices for composite alternatives. 
To specify composite vehicles that predict the choice shares consistent with those from the 
elemental model, we set Δ�� = 0 and solve for ��:  

�� = ln � � ���

�∈��

� + ln �
∑ ���

�∈�

∑ ���
�∈�

� 

The second term is the log of the ratio of the sum of exponentiated utilities of all alternatives in 
the composite model to the sum of the exponentiated utilities of all alternatives in the elemental 
model. This term can take the value of any arbitrary constant because logit choice probabilities 
are invariant to a constant shift in utility across all alternatives: 

�����

∑ �����
�

=
�����

∑ ��� ��
�

=
�����

�� ∑ ����
=

���

∑ ����
 

So, �� can be simplified to: 

�� = ln � � ���

�∈��

� + � 

where � is an arbitrary constant. The composite model generates identical choice probabilities 
for any value of �. If we choose � = 0 for simplicity27, we recover the log-sum-exponential 
function (LSE) identified by McFadden (1978)28 and Ben-Akiva and Lerman (1985): 

�� = ln � � ���

�∈��

� 

This tells us that if we specify composites such that the utility of each composite is equal to the 
LSE of the elemental alternatives it represents, the composite model will produce the same 

 
27 If �� is defined as ln�∑ ���

�∈��
�, we see that the quantity 

∑ ����∈�

∑ �
��

�∈�
= 1 and therefore � = ln(1) = 0 is consistent with the derived result. 

28 Described as the “inclusive value” 
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choice probabilities as the summed choice probabilities of the elemental alternatives each 
composite represents in the elemental model. 
 
Nested Multinomial Logit 

The nested logit model extends the logit model by allowing alternative assumptions about the 
correlation of errors in subsets of alternatives. The nest parameters �� determine the correlation 
of error terms for alternatives within the same nest, which alters substitution patterns. The 
grouping of alternatives into nests is analogous to the mapping of elemental alternatives to 
composite alternatives, and the LSE function as the utility specification for composites derived in 
the previous section is also equivalent to the closed-form solution for the marginal probability of 
a choice associated with a certain nest in the nested logit framework (McFadden, 1978), as can 
be seen in the following derivation. 
The predicted choice probability using nested logit can be expressed as the product of a 
conditional probability (j conditional on nest k) and marginal probability of nest k itself: 

�� = �(�|�)�(�) 

= �
exp �

��

��
�

∑ exp �
��

��
��∈��
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��
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��∈�

� 

where � is the nest containing alternative �. At the composite level, the choice probability for 
composite � is: 

�� =
exp(��)
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Therefore, 
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Setting the derived expression to zero results in a specification for the composite utility. 

�� = ln � � [���(��)]
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Again, the 2nd term is the same for all k, so we can interpret it to be a constant shift across all 
alternatives, which does not affect choice probability predictions29.  

 
29 If �� is defined as �� ln �∑ exp �

��

��
��∈��

�, we see that the quantity 
∑ [���(��)]�∈�

∑ ������ �� ∑ ����
��

��
��∈��

��∈�

= 1 and therefore the second term equals zero, 

which is consistent with the derived result. 
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�� = �� ln � � exp �
��

��
�

�∈��

� 

 
This is a more general version of the previous result for logit30.  
 
Mixed Logit and Latent-Class Logit 

Further variations of the logit model involve the representation of consumer and preference 
heterogeneity. In mixed logit (also known as random coefficients logit), there are general 

continuously distributed random-variable preference parameters, ��, representing consumer 
heterogeneity, and Δ�� can be represented as: 

Δ�� = � ��
exp���′���

∑ exp���′����∈�

− �
exp���′���
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Δ�� = � �Δ��(��)���������
����
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A special case for Δ�� = 0 would be for the utility of composites for each value of �� to be 
specified by the following expression: 

�� = ln � exp���′���

�∈��

 

In latent-class logit, which can be thought of as a special case of mixed logit, consumer 
preferences are modeled as a discrete distribution and the choice probability integral becomes a 
summation of logit models using the consumer preferences of each latent class weighted by the 
probability of each latent class. For example, with a discrete distribution of preference 
coefficients represented by �� for consumer class i, and their proportions represented by �(��) 
where ∑ �(��)� = 1, the predicted choice probability collapses into: 
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30 In logit, the random error components of utility are assumed to be uncorrelated, with the nest parameter �� = 1 ∀� 
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Δ�� = �{Δ����(��)}

�

 

Similar to the mixed-logit case, the condition Δ�� = 0 here can be fulfilled for latent-class logit 
in a special case where each Δ��� = 0 ∀ �. This would require that the utility of composites for 
each consumer class i be specified by the LSE expression unique to each consumer class: 

��� = ln � exp���′���

�∈��

 

This ensures that each Δ��� = 0 and therefore Δ�� = 0. This special case solution implies that 
zero deviations in predictions between the composite and elemental level within each consumer 
class. 
 
 
APPENDIX B: DECOMPOSITION OF LSE AND DERIVATION OF CORRECTION 
FACTORS THAT ALLOW �� = � 
McFadden (1978), Ben-Akiva and Lerman (1985), and Parsons and Needelman (1992) show that 
in the logit and nested-logit cases with no ASCs, the LSE expression for the utility of composite 
alternatives can be decomposed into a function of a base composite utility �̅� (often defined as 
the average utility of its constituent elemental alternatives31) and two correction factors: “size,” 
the number of elements in the group of elemental alternatives being represented by the composite 
alternative, and “heterogeneity,” a function that accounts for differences in utility of elemental 
alternatives from the base composite utility32. We show this decomposition for nested logit first, 
which is general to logit (where �� = 1 ∀�). We then extend this derivation to mixed-logit and 
latent-class logit. 

�� = �� ln � � exp �
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��
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��� �� = �̅� + ��� − �̅��. Then, 
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31 In the literature, the base composite’s attribute vector is often calculated as an average or weighted average (��� =
∑ �����∈��

��⁄ , where the �’s are some weights e.g.: sales of each alternative) (Goldberg, 1998; Bento et al., 2009). 

However, in some models, the base composite’s attributes are based on other methods or expert judgment, for 
example in the case of forecasts (EIA, 2010). The correction factors apply for any specification of ���. 
 
32 The exponential function in the heterogeneity correction factor amplifies the positive differences between the 
utility of the elemental alternatives and the base composite utility and shrinks the negative differences. Therefore, 
the heterogeneity correction factor is weighted towards the differences in utility of elemental alternatives with 
positive and higher differences. Ben-Akiva and Lerman (1985) observe that the derivative of the heterogeneity 
correction factor shows sensitivity to elemental alternatives with high choice probabilities. 
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This shows how the size and heterogeneity correction factors can be added to the base composite 
utility to recover the LSE quantity and maintain zero deviation between the elemental and 
composite predictions. 
We can generalize to mixed logit and latent-class logit, where �� = 1 ∀� and the model 

parameters ��, ��, and �� are continuously distributed random variables. We show the case where 
utility is linear-in-parameters for illustration. Note that when utility is linear-in-parameters, a 
composite alternative defined using the average value for each attribute will have average utility. 
Other utility models could be used so long as the heterogeneity correction factor is adjusted 
accordingly. 
For mixed logit, the LSE can be decomposed: 

��� = ln � exp���′���

�∈��

 

= ��′��� + ln(��) + ln �
∑ ��� ���′��� − ������∈��

��
� 

For latent-class logit, the LSE can also be decomposed: 

��� = ln � exp���′���

�∈��

 

= ����� + ln(��) + ln �
∑ ��� ���′��� − ������∈��

��
� 

This shows that there are correction factors unique to each consumer class i that would allow for 
the composite utilities perceived by each consumer class to equal the LSE specification and 
therefore result in composite choice share predictions that do not deviate from their 
corresponding elemental model’s predictions. 
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APPENDIX C: DERIVATIONS FOR ��, COMPOSITE SPECIFICATIONS, AND 
CORRECTION FACTORS IN MODELS USING ASCS 
In Appendices A and B, for models without ASCs, we have shown the composite utility 
specifications and correction factors necessary for the choice model predictions to match the 
elemental results. In models with ASCs, the elemental model is defined differently, where the 
utility for each choice alternative in the model is represented by: 
 

��� = ��� + �� + ��� 

 
The following shows the derivation for Δ���, which measures the differences between the 
choice share predictions of composite models that use C-ASCs and their corresponding 
elemental models that use E-ASCs, for all scenarios m. We then establish the composite 
specification required for Δ��� = 0. 
From the result of Appendix A, we found that in logit-type models, composites specified by the 
LSE of its constituent elemental utilities result in Δ�� = 0. We generalize this to obtain 
correction factors that are appropriate for models with ASCs and for all scenarios m. Instead of 
needing the composite utility �� to equal the LSE of elemental utilities �� , the composite utility 

in scenario m plus the C-ASC, ��� + ��, will need to equal the LSE of the elemental base 
utilities plus their E-ASCs, ��� + �� in order for Δ��� = 0. We show the derivation and 

decomposition here for nested logit, which can be generalized to logit and mixed logit in a 
similar manner as in Appendix A and B. 
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��� ln � � exp �
��� + ��

���
�

�∈��

� = (�̅�� + ��) + ��� ln(���) + ��� ln(���) 

 
 We observe that the composite correction factors are valid for any choice of ��, as long 
as the same quantity is included in the heterogeneity correction factor. �� is typically determined 
from previously estimated or calibrated ��, which is the standard practice in models using ASCs 
simulating counterfactual or future choice shares in scenario m (Haaf et al., 2016).  
 

 

APPENDIX D: ADDITIONAL DETAIL ON CASE 1 RESULTS 
To visualize the deviation between various composite models and the elemental model, we 
transform the data in Figure 4 to show differences with the elemental model, Δ��. Specifically, 
we compute the difference between the composite and elemental share predictions for each 
composite model specification, conditional on each draw of �. These are plotted in Figure A1. 
We find that the results for Δ�� for most composite specifications and fuel types are statistically 
significantly different from zero. This indicates that the deviations between the composite and 
elemental models are statistically significant when accounting for variation in parameter values 
across the literature (the EV composites with size correction are exceptions where the range of 
deviations do cross zero). 
 

 
Figure A1: Differences in simulated choice shares of each fuel type for each composite 
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specification as defined in Table 4 and the benchmark elemental model over 1000 sets of 
preference parameters drawn from ranges in the literature (Whitefoot and Skerlos, 2012). 
Boxes denote interquartile range and whiskers denote 5th and 95th percentiles. 
 
Figure A1 shows the distribution of the differences between the composite and elemental models 
across the 1000 draws of �. For example, the far-left box plot (C1a for EV) shows that the 
median difference between the arithmetic-average composite model and the elemental model 
predictions for EV choice shares is 6%. It also shows that the 5% and 95% percentile differences 
in prediction between the composite and elemental models across different draws of � are 1% 
and 16%, respectively. This figure illustrates that the composite models without correction tend 
to overpredict the share of AFV composites (which represent few elemental alternatives) and 
underpredict the share of gasoline vehicles (for which there are many diverse elemental 
alternatives), and that this variation is robust to different values of � in the literature.  
Comparing Figure A1 to Figure 4 provides an additional way to compare the importance of 
composite specification. For example, using the arithmetic-average composite model modifies 
gasoline vehicle share predictions by 72-80% relative to the elemental model (C1a for Gasoline 
in Figure A1), while parameter uncertainty alone only results in a 12% spread between the 5th 
and 95th percentiles in gasoline share predictions from the elemental model (E for Gasoline in 
Figure 4). 
 

 

APPENDIX E: CASE 2 MODEL DETAILS 
 
We use a nested logit utility specification and model structure based on that used in LVChoice, 
which itself is based on EIA NEMS CVCC (version AEO 2010). We use the preference 
parameters, adjusted for inflation, from the "coef" worksheet in the LVChoice Excel workbook 
(Birky, 2012) downloaded from https://www.anl.gov/energy-systems/project/light-duty-vehicle-
consumer-choice-model-lvchoice. These are reprinted below. We interpret the use of 
“technology set generalized cost coefficient” to be analogous to setting the nested logit 
parameter to be 0.5 (i.e. vehicle price parameter / technology set gen. cost = 0.00065/0.00131 = 
0.5) based on documentation in Birky (2012) and Greene and Liu (2012). 
 
The attributes and parameters in the utility specification are as follows: 

Parameter 
Small 
Car parameter units 

Vehicle Price -0.00131 1990$ 

Fuel Cost -0.62159 1990 cents/mile 

Range -155.398 miles 

Acceleration, 0-60 mph -0.28482 seconds 

Luggage Space 2.355299 index to conventional, 0-1.0 

Battery Replacement Cost -0.00082 1990$ 

Maintenance Cost -0.00397 1990$/yr 

Make/Model Availability 0.3 index to conventional, 0-1.0 
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Fuel Availability Coefficient 1 -9.81375 index to gasoline, 0-1.0 

Fuel Availability Coefficient 2 -20.149 index to gasoline, 0-1.0 

Home Refueling for Evs 0.66045 dummy, 0 or 1 

Multi-Fuel General. Cost -2.98935 na 

Technology Set Gen. Cost -0.00065 na 

Source: Birky (2012) 
 
The set of elemental alternatives was based on IHS Polk at the make/series/subseries level. 
Attribute data from Wards Automotive were matched to these elemental alternatives. For 
attributes not available from Wards Automotive, default values from LVChoice for the year 2014 
were used. IHS Polk sales data were used for sales weighting and E-ASC calibration. 
 
 
 
APPENDIX F: ADDITIONAL SIMULATION RESULTS FROM CASE 2 
 
We present a broader set of counterfactual scenarios simulated for Case 2. These scenarios are 
based on those tested in the predictive VCM literature in Tables 1 and 2. The full list of scenario 
details are as follows: 

(a) The baseline scenario, which includes 2014 US federal and California state subsidy and 
monetary incentive programs for EVs and PHEVs (all vehicles at 2014 list price, except 
for EV and PHEV, for which prices were reduced by $4,000-10,00033); 

(b) A counterfactual scenario in which there are no EV and PHEV subsidies (all vehicles at 
2014 list price); 

(c) A “battery cost reduction” scenario, based on battery cost projections in the EIA Annual 
Energy Outlook Reference Case between 2014 and 2025 (Lynes, 2017) (baseline scenario 
with EV and PHEV prices reduced by $300-600/kWh from $600-1200/kWh34); 

(d) A “battery cost reduction and full EV offerings” scenario, a forecast type scenario based 
on battery cost reduction in scenario (c) and an increase in the number of EV make-
model-trim variants to equal the number of gasoline make-model-trim variants.26 

(e) Battery cost reduction scenario with EV and PHEV prices reduced by $100-200/kWh 
(f) Battery cost reduction scenario with EV and PHEV prices reduced by $200-400/kWh 
(g) Gasoline tax scenario with gasoline prices increased by $0.25/gal 
(h) Gasoline tax scenario with gasoline prices increased by $1/gal 
(i) Gasoline tax scenario with gasoline prices increased by $2/gal 
(j) Gasoline tax scenario with gasoline prices increased by $3/gal 
(k) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $1000/0.01 gallons per mile (GPM) 
(l) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $3000/0.01 GPM 
(m) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $5000/0.01 GPM 

 
33 Data for subsidy amounts for each elemental vehicle were from California Air Resources Board (2017). 
34 Range of battery pack cost reduction based on EIA’s estimates that depend on pack size and vehicle type (larger 
$/kWh costs and cost reductions for smaller packs such as in PHEVs). 
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(n) Rebate scenario with prices of above-average fuel economy vehicles increased by 
$1000/0.01 GPM 

(o) Rebate scenario with prices of above-average fuel economy vehicles increased by 
$3000/0.01 GPM 

(p) Rebate scenario with prices of above-average fuel economy vehicles increased by 
$5000/0.01 GPM 

(q) Fee-bate scenario with a $500/0.01 GPM fee or rebate pivoted around average fuel 
economy 

(r) Fee-bate scenario with a $1000/0.01 GPM fee or rebate pivoted around average fuel 
economy 

(s) Fee-bate scenario with a $3000/0.01 GPM fee or rebate pivoted around average fuel 
economy 
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Generally, counterfactual scenarios with increasing deviation from the baseline scenario (left to 
right) carry larger distortions in the predicted shares in the composite models without full 
correction (C1, C2) from the predicted result from elemental model (E). Scenarios that affect the 
utility heterogeneity of each fuel type (composite group) differently also lead to prediction 
mismatch (i.e. gas-guzzler tax affecting the set of elemental gasoline vehicle alternatives but not 
the electric vehicles, causing a change in ln(b) for the gasoline composite but not the electric 
composite). 
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Chapter 3: Implications of Competitor Representation on Optimal 
Engineering Design  

This study was co-authored with Jeremy Michalek and Kate Whitefoot. It was recently presented at the 

2019 International Design Engineering Technical Conferences, published in conference proceedings35, 

and will be submitted to the Journal of Mechanical Design.  

 

"An optimist sees a glass that’s half full; a pessimist sees a glass that’s half empty; an engineer 

sees a glass that’s twice as big as it needs to be." - old engineering joke, first online by Crowder 

(1990), according to Popik (2015) 

 

In this study, we investigate optimal design models that integrate choice models for demand and how 

competitor representation can affect the trade-off between cost and benefit of design change. We 

derived a closed-form expression for the marginal cost and benefit relationship for the level of an 

attribute under optimal design assuming a latent-class or mixed logit demand model. We used this to 

characterize the impact of competitor representation in optimal design models. 

  

 
35 Yip, A. H. C, Michalek, J. J., Whitefoot, K. S. Implications of Competitor Representation on Optimal Design. ASME 
2019 International Design Engineering Technical Conferences and Computers and Information in Engineering 
Conference Proceedings. Vol 2A. Paper No. DETC2019-98114. 10.1115/DETC2019-98114 
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Abstract 

We investigate the effect of competitor product representation on optimal design results in profit-

maximization studies. Specifically, we study the implications of replacing a large set of “elemental” 

product alternatives available in the marketplace with a reduced set of selected competitors or 

“composite” alternatives, as is common in the literature. We derive first-order optimality conditions and 

show that optimal design (but not price) is independent of competitors under the logit and nested logit 

models (where preference coefficients are homogeneous), but optimal design results may depend on 

competitor representation in latent class and mixed logit models (where preference coefficients are 

heterogeneous). In a case study of automotive powertrain design using mixed logit demand, we find 

optimal acceleration performance changes when competitors are modeled using a small set of 

composite alternatives rather than the full set. The magnitude of this change depends on the specific 

form and parameters of the cost and demand functions assumed and it ranged from 0% to 5% across a 

primary range of parameter assumptions in our case study and up to 20% when using a wider range. We 

find that the magnitude of the change in optimal design variables induced by competitor representation 

in our case study increases with the heterogeneity of preference coefficients across consumers and 

changes with the curvature of the cost function. We show that correction factors can recover optimal 

solutions of the elemental competitor model while requiring only a small set of composite competitors 

to represent the market. 

 

Keywords: optimal design, competitor, logit, nested logit, mixed logit, composite, elemental, 

heterogeneity 
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1. Introduction 

The engineering literature on design for market systems integrates consumer choice models within 

optimal design problems to determine the most profitable product designs and positioning among 

competing product offerings [1–7]. The optimal design outcomes in these models can be sensitive to 

choice model specification generally [2,6–9]. However, the implications of competitor representation on 

optimal design has not been systematically studied.  

In optimal design studies, competing products are represented with different practices and at 

varying levels of detail. Table 1 summarizes examples of competitor representation in the design for 

market systems literature. In some studies, competing products are specified at a granular level, and 

their attributes correspond to those of the near-complete range of real-world products. For example, 

Choi et al. [10] represent the market of pain relievers with 14 existing brands and types. Morrow et al. 

[11] include 443 specific automotive design variants at the make-model-engine-option level 

representing the new car market in the US. In other studies, competing products are represented with a 

select number of hypothetical products meant to span the options available in the market. For example, 

Kwak and Kim [12] specify three competing products: a high-, mid-, and low-spec computer; Shiau and 

Michalek [3] assume four competing products in the weight scales market; Besharati et al. [13] assume 

that there are three competitive products in the angle grinder market; and Shin and Ferguson [14] 

assume three cars and three MP3 players that compete with the product under design. In some studies, 

only a subset of real-world competing alternatives is modeled, based on product segmentation, 

popularity in the market, and/or proximity to the product under design. For example, in both Shiau et al. 

[15] and Wassenaar et al. [16], competitors for a mid-size car under design were specified by a choice 

set with 10-12 other specific mid-size cars of different brands and designs. The choice model 

formulation in these two studies exclude options in different size segments such as compact car and 

SUV, even though survey data shows that many consumers consider vehicles of different size segments 

when purchasing a vehicle [17]. In these latter two types of studies, there is an implicit recognition that 

the actual market consists of many products (more than the 3-7 represented in these examples) but that 

it would be impractical or infeasible to include all of them in the choice model.  
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TABLE 1: Examples of Competitor Representation in the Design for Market Systems Literature36 

Study (author, year) Market 
Number of 
competing 

alternatives 

Type of  
competitor 
representation 

Shin & Ferguson, 2016 [14] Cars 3 Hypothetical 
Shin & Ferguson, 2016 [14] MP3 players 3 Hypothetical 

Kwak & Kim, 2012 [12] Computers 3 
Generic/  
representative 

Shiau & Michalek, 2009 [3] Weight scales 4 Hypothetical 
Besharati et al., 2006 [13] Angle grinders 4 Hypothetical 

Li & Azarm, 2000 [18] 
Cordless 
screwdrivers 

5 Hypothetical 

Zhao & Thurston, 2013 [19] Cell phones 5 Hypothetical 

Wang et al., 2011 [20] 
Laptops and 
smartphones 

7 Hypothetical 

Shiau et al., 2009 [15] Midsize cars 10 
Generic/  
representative 

Wassenaar et al., 2005 [16] Midsize cars 12 
Detailed (market 
subset) 

Choi et al., 1990 [10] Pain relievers 14 Detailed 
Morrow et al., 2014 [11] Cars 443 Detailed 
Frischknecht et al., 2010 [6] Cars 473 Detailed 

 

Yip et al. [21] found that competitor product representation can substantially affect choice 

model predictions. Specifically, the study examined the practice of using product “composites”—a type 

of choice set alternative that represents a category or segment of products. For example, instead of a 

specific “elemental” product design variant such as a Ford Fiesta, the competing choice alternative may 

be a generic “compact car” or “sedan”, specified using a function (usually an average) of the attribute 

values of “elemental” product alternatives in that grouping. The study found that composite 

representation could significantly affect choice share predictions unless particular correction factors 

were applied to the model. Because competitor representation affects choice share prediction, it may 

affect optimal design conditional on choice share prediction.  

Prior studies have characterized the implications of demand model assumptions for engineering 

design [6,7], including demand model functional form and specification [2,4,6,8,14,19,22], consumer 

and product heterogeneity [2,8,21,23], and market structure and competition [2,4,6]. We contribute to 

 
36 Full table in supplementary material. 
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this literature by characterizing the implications of competitor representation for optimal design. 

Specifically, we investigate conditions under which the optimal design is robust versus sensitive to 

variation in competitor representation. We pose a generic optimal design problem, derive first-order 

necessary conditions, and identify properties of the optimality conditions for several popular demand 

model specifications to determine in which cases the optimal design may depend on competitor 

representation. Then, in an automotive case study, we investigate the magnitude of this effect in one 

practical application and assess factors that affect the magnitude. 

2. Influence of Competitors on Optimal Design 

We examine the first-order conditions of the profit-maximizing design and pricing problem under 

different classes of discrete choice models to understand how competitors affect the optimal design 

solution. We first show that with logit and nested logit model representations of demand, the optimal 

design does not depend on any information about competitors—neither the number of alternatives, nor 

the values of their attributes. We then show how optimal design can be dependent on competitors 

when consumer preference parameters are heterogeneous in the cases of mixed logit and latent-class 

logit models. 

Following a common formulation in the literature [1,13,14,24,25], we define a single-period 

profit-maximization problem where firm � seeks to maximize total profits π from its products � ∈ �� 

with respect to price ��  and a vector of product attributes �� for each of its products � ∈ ��: 

max Π = � ���� − ������

�∈��

                                                                                                                                    (1)  

w.r.t. ��, �� ∀� ∈ �� 

where 

�� = ��(��) 

�� = �����, ��∀� ∈ �� 

where unit-cost �� is a function of the attributes � of the product j, 37 and quantity demanded �� is a 

function of the attributes �� and price �� of all products in the market � ∈ �. We exclude constraints for 

 
37 This formulation ignores fixed costs without loss of generality because adding a constant to the objective function 
will not change the design solution. It also ignores unit-costs that vary with volume or unit-costs that depend on 
attributes of other products. 
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simplicity, though these could be implemented with KKT conditions. Following common assumptions in 

the design for market systems literature, we assume that competing products of other firms are 

considered fixed and do not respond to the focal firm’s decisions.38 In this formulation, we also assume 

that the focal firm is attempting to decide the price and design variables for all of its products (i.e. all 

internal competitors)39.  

For this optimization problem, the first-order necessary condition with respect to price 

�Π/�� = 0 can be re-arranged into the following equation40: 

�� = �� − �
���

���
�

��

��� + � �
����

���
���� − �����

��∈��\�

�      ∀� ∈ �� (2�) 

 

where ��\� refers to the set of internal competitors (i.e. all products of the focal firm except �). 

For the specific case that the firm only has one product, Eq. (2a) becomes:  

�� = �� − �
���

���
�

��

�� (2�) 

These equations state that at a solution, the price of product � is equal to the cost �� plus a 

markup that depends on demand �� and the sensitivity of demand to price 
���

���
. This result has some 

expected properties: if the sensitivity of demand to price in a choice model were lowered toward zero, 

the optimal price solution would tend to infinity. If the sensitivity of demand to price were raised toward 

infinity, the difference between price and cost at the solution tends to zero. In the more general case of 

a firm with multiple products, the markup for product � depends also on the sensitivity of demand of its 

internal competitors to product �’s price, and the markups of the internal competitors. For maximum 

profit, every product’s price would be set to simultaneously satisfy each first-order condition. This 

condition for optimal price is well-known; we turn our attention on conditions for optimal design. 

 
38 This is in contrast to the econometric literature and several recent engineering design studies [2,11,28], which 
determine the Nash equilibrium of competing firms. However, the formulation above where competitors are 
considered fixed is consistent with each firm’s optimality conditions in equilibrium when there are no leading and 
following firms. 
39 We discuss cases with some fixed price and/or design variables in the supplementary material. 
40 Full derivations in supplementary material. We note a derivation that is similar but in terms of elasticities in Eq. 
(4) in Fischer (2010) [29]. 



 
 

53 
 

By substituting the relationship in Eq. (2a) for price into the first-order necessary condition with 

respect to the product attributes, �Π/�� = 0, we obtain the following equation: 41 

���

���
= −

∑ �
����

���
���� − �������∈�

∑ �
����

���
���� − �������∈�

    ∀� ∈ �� (3�) 

which relates the marginal cost of a design change to an expression involving the marginal demand of 

design and price changes of each product in the market, weighted by their optimal markups. For the 

case where the firm has only one product,  

���

���
= − �

���

���
�

��
���

���

(3�) 

which states that, at a solution, the marginal unit-cost of a design change42 is equal to the population’s 

aggregate marginal willingness-to-pay for the design change. Specifically, − �
���

���
�

��
���

���
 is the iso-

demand price-equivalence of a design change – the price change required per unit change in the design 

attribute to maintain constant demand.43 Willingness-to-pay is the term used in the choice literature for 

the iso-utility or iso-demand price equivalence of a design or feature change.44,45 We refer to this as the 

population’s aggregate willingness-to-pay for a design change (WTP) (iso-demand) to avoid confusion 

with WTP for individuals (where iso-utility and iso-demand are indistinguishable).  

We note that the above equations (2-3) remain general to any demand model functional form 

for �. In the following sections, we examine the properties of these necessary conditions for several 

types of logit choice models that are used most frequently in the literature [1,8,24,26]. We begin with 

logit models that have homogeneous preference parameters (logit and nested logit) and then examine 

 
41 This form of the FOC is equivalent to Eq. (6) in Fischer (2010) [29]. 
42 Marginal unit-cost of a design change (��/��) should not be confused with marginal cost of increasing production 
volume (��/��, where � is total cost). Unit-cost � is already “marginal” with respect to production volume– i.e.: the 
production cost per incremental unit ignoring fixed costs. 
43 For each value of �, there is a corresponding value of � that produces demand �. To first order, setting �� =

��

��
�� +

��

��
�� = 0 for iso-demand changes and solving for ��, we obtain �� = − �

��

��
�

��

�
��

��
� �� or 

��

��
= − �

��

��
�

��

�
��

��
�, which is the 

marginal change in price per marginal change in design needed to maintain constant demand (to first order). 
44 This concept is related to marginal rates of substitution, but it is applied to a population substituting design 
attributes of a product for price, rather than to an individual substituting one good or service for another. 
45 In the context of a population modeled with heterogeneous consumer preference parameters, the iso-utility 
framing does not apply (design changes would affect utility for different consumers differently). 
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logit models with heterogeneous preference parameters (random-coefficients i.e. latent-class and mixed 

logit). 

 

 

2.1. Logit and Nested Logit (Homogeneous Preference Parameters) 

In this section, we show that when logit and nested logit models are used with linear utility functions to 

represent demand, the optimal design solution is independent of competing products. Following 

derivations shown in Shiau and Michalek [15], and Besanko et al. [27], we derive the conditions for first-

order optimality in the case of demand represented with a logit model and explicitly show that the 

optimality condition with respect to design does not depend on any information about competitors. We 

then extend these results to the case of nested logit and show that its optimality condition and design 

solutions are also independent of competitor representation. 

 

Logit 

Consider quantity demanded represented by a logit model:  

�� = �
exp����

∑ exp�������∈�

= �
exp����

exp���� + ∑ exp�������∈��\� + ��

 ∀� ∈ � (4) 

 

where � is the market size; �� is the utility specification composed of consumer preference parameters 

and product �’s price and attributes46; ��\� is the set of internal competitors of product � (i.e. all 

products of the focal firm �, except �); �� = ∑ exp(���)��∈���
 is a quantity equal to the sum of the 

exponential of utility of all products in the set ���, which is the set of product j’s external competitors 

(i.e. all products of non-focal firms �′).  

By taking the partial derivatives of demand with respect to price p and attributes x, and 

substituting them into the first-order conditions in Eq. (2a) and (3a), we obtain Eq. (5a) and (6a)47: 

 
46 At this point, we do not restrict utility to be linear or non-linear in price or attributes. However, we assume utility 
is homogenous i.e. no utility from product variables interacted with consumer group variables such as 
demographics.  
47 Full derivations available in the supplemental material. 
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�� = �� −
1 + ∑ �−

���

� ���� − �������∈�\�

���

���
�1 −

��

��

   ∀� ∈ � (5�) 

���

���
= − �

���

���
�

��
���

���

(6�) 

Eq. (5a) says that the optimal price of product � is its cost plus an expression involving choice 

share of internal competitors and their markups that is inversely proportional to the choice share of all 

competitors �1 −
��

�
� multiplied by the partial derivative of utility with respect to price. Because choice 

share is a function of competitor utility, the expression for the profit-maximizing price exhibits potential 

dependence on competitor representation.  

Eq. (6a) says that at the optimal solution, the marginal cost of an attribute change is equal to the 

negative ratio of the sensitivity of utility to attribute change and the sensitivity of utility to price change. 

In the case where utility is specified to be linear in price, i.e. 
���

���
= �, we obtain Eq. (6b), an equation 

with expressions that do not depend on the optimal price. 

���

���
= −

1

α

���

���

(6�) 

 Eq. (6b) involves the cost function, which is a function of attribute variables x only and not 

other variables48, and utility, which is also a function of attribute variables x only49. This means that Eq. 

(6b) implies the solution for the profit-maximizing attribute vector x* that does not depend on the 

quantity � involving competitor utility or variables p or q, which depend on �. Therefore, the optimal 

design solution does not depend on the representation of competitors in this case50,51.  

 

 

 
48 This is not the case if unit-costs are modeled to vary with market share or sales volume, for example, if they are 
at a magnitude where economies of scale matter.  
49 Typically, a utility specification linear in attributes would yield 

���

���
= �. We see that the conclusion drawn from Eq. 

(6b) applies even in the case of utility non-linear in attributes (where 
���

���
 may be a function of x) and/or cases 

where there are non-linear mappings between design variables and attributes.  
50 Assuming a unique solution exists in the feasible domain. There may be degenerate cases where there are no 
solutions or multiple solutions. 
51 This result holds for cases where not all internal competitors are being designed (i.e. fixed design for any internal 
competitor), as long as all prices are optimal. See supplemental information. 



 
 

56 
 

Nested Logit 

In the case of nested logit, we also find the first-order optimality condition to be independent of 

competitor information. Generalizing Eq. (4) to a two-level nested logit specification: 

�� =
1

�
��|��� = � �

exp �
��

��
�

exp �
��

��
� + ���\�

� �
exp ��� ln �exp �

��

��
� + ���\���

exp ��� ln �exp �
��

��
� + ���\��� + ����

� (7) 

where ���\� = ∑ exp �
���

��
���∈��\�  and ����

= ∑ ∑ exp �
��

���
���∈�����∈�\�  are quantities equal to the sum of 

exponentiated utility of all of product j’s competitors within nest l and outside nest l, respectively; �� is 

the choice set of alternatives within nest l; � is the set of all nests of products in the market; and �� is 

the nesting parameter for nest l. Eq. (7) reduces to Eq. (4) when �� = 1 ∀� ∈ �. 

By following the same procedure as above for obtaining Eq. (6a-b) for logit i.e. finding the partial 

derivatives of demand under nested logit and substituting them into the first-order condition with 

respect to design in Eq. (3a), we find that when using a two-level nested logit model to represent 

demand, the first-order optimality condition for design also reduces to Eq. (6a-b), which are functions of 

consumer preference parameters and not a function of variables such as ���\� or ����
, which would 

involve the utility from competitors of the same nest or of other nests. 

2.2. Random-Coefficients Logit (Heterogeneous Preference 

Parameters) 

In this section, we show that in the case of a logit demand model specified with random coefficients, 

such as latent-class logit or mixed logit, the optimality conditions do not, in general, establish design 

variables x independently of competitors, and competitor representation may affect the optimal design. 

For example, suppose consumers are directionally heterogeneous in their preference for attribute x 

(some prefer more while others prefer less). The optimal solution for attribute x for one firm may 

depend on whether competing firms are targeting consumers who prefer more of x or those who prefer 

less of x. 

In a random coefficients logit model, preference parameters are modeled as distributions rather 

than point values. Using discrete distributions based on preferences of consumer groups indexed by � 

and of size ��, such as in a latent-class logit model or a numerical approximation of a mixed logit model 

(sampling from continuous distributions), we have: 
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�� =
1

�
� ���

�

�

∀� ∈ � (8�) 

��� = ��

exp�����

exp����� + ∑ exp��������∈��\� + ����

∀� = {1,2, … , �}, � ∈ � (8�) 

where �� is the size of consumer group �; ��� is the quantity of product j demanded by consumer group 

� (size times choice share); ���  is the utility of product � for consumer group �; ��\� is the set of internal 

competitors of product � (i.e. all products of the focal firm except �); and ���� is a quantity equal to the 

sum of exponentiated utilities for group � of product �’s external competitors. Again, by substituting in 

the partial derivatives of demand with respect to prices and attributes, the first-order optimality 

conditions from Eq. (2-3) become52:  

�� = �� −

�� + ∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

∑ ���

����

���

���

��
�1 −

���

��
���

�

   ∀� ∈ �� (9�) 

���

���
= −

∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

    ∀� ∈ �� (10�) 

In the case of a firm pricing and designing only a single product (no internal competitors): 

�� = �� −
��

∑ ���

����

���

���

��
�1 −

���

��
���

�

(9�)
 

���

���
= −

∑ ���

����

���

���

��
�1 −

���

��
���

�

∑ ���

����

���

���

��
�1 −

���

��
���

�

(10�) 

Because mixed logit is generally implemented using a finite set of draws to approximate the 

distribution, these equations apply to the numerically calculated mixed logit case as well. For the case of 

� = 1, these first order conditions in Eq. (9-10) reduce to the logit result in Eq. (5-6). For � > 1, Eq. 

(10b) indicates that the marginal unit-cost of design change is equal to the ratio of the sum of 

 
52 Full derivations available in the supplemental material. 
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����

���
 and 

����

���
  of each group, weighted by 

���

��
�1 −

���

��
�. This right-hand side of Eq. (10b) is the population’s 

aggregate marginal willingness-to-pay for that design change for a random coefficients logit model53. 

Notice that, for equal size consumer groups, the consumers that have choice probabilities closer to 0.5 

(in the middle of the S-curve) have the greatest contributions to the summation because their marginal 

changes in demand in response to a design change are the most sensitive.  

Unlike in the case of logit and nested logit, Eq. (10b) depends on the quantity demanded by 

each consumer group, ���. Because this demand depends on ��� as well as the optimal ��  (which 

depends on ��� and thus ���), the optimal design �� is not generally independent of competitor 

representation. 

We summarize these theoretical results in Table 2.  

  

 
53 We note a similar derivation in Wong [30], who describes this as “average MWTP under a hedonic model from the 
implicit price gradient.” (Eq. 14 in [30]) This is not to be confused with what Wong defines as “average MTWP in a 

discrete choice model ���� = ∫
���

���
���” (Eq. 13 in [30]) 
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TABLE 2: First-order necessary conditions for optimal price and design for product j by firm k 

  With respect to price With respect to design 

General to 
any 

demand 
model 

Multiple 
products 

�� = �� − �
���

���

�

��

��� + � �
���

���

��� − ����

�∈�\�

� ∀� ∈ �� 

���

���

= −

∑ �
���

���
��� − �����∈�

∑ �
���

���
��� − �����∈�

    ∀� ∈ �� 

 

Single 
product 

�� = �� − �
���

���

�

��

�� 

 

���

���

= − �
���

���

�

��
���

���

 

 

Logit and 
nested 
logit54 

Multiple 
products 

�� = �� −
1 + ∑ �−

��

� ��� − �����∈��\�

���

���
�1 −

��

�
�

 

∀� ∈ �� 

���

���

= − �
���

���

�

��
���

���

 

∀� ∈ ��  

Single 
product 

 

 

�� = �� −
1

���

���
�1 −

��

�
�

 

 

 

���

���

= − �
���

���

�

��
���

���

 

Multiple 
products, 

utility 
linear in 

price 

�� = �� −
1 + ∑ �−

��

� ��� − �����∈��\�

� �1 −
��

�
�

∀� ∈ �� 

���

���

= −
1

�

���

���

 

∀� ∈ �� 

 

Random 
coefficients 

logit 

Multiple 
products 

��

= �� −

�� + ∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

∑ ���

����

���

���

��
�1 −

���

��
���

�

  

 ∀� ∈ �� 

 

���

���

= −

∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

∑ �∑ �−��

����

���

���

��

����

��
��

� ���� − �������∈��\�

 

∀� ∈ �� 

 

Single 
product 

�� = �� −
��

∑ ���

����

���

���

��
�1 −

���

��
���

�

 ���

���

= −

∑ ���

����

���

���

��
�1 −

���

��
���

�

∑ ���

����

���

���

��
�1 −

���

��
���

�

 

    

 

  

 
54 Eq. (6a) and (6b) hold for the case of demand represented by two-level nested logit. 
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Although the theoretical derivations show that when using a random-coefficients logit demand 

model, the optimal design may vary depending on competitor representation, it is unclear in general 

how large this effect may be in practical cases. We use a case study of the US automotive market to 

demonstrate and test the issue of competitor representation on optimal design. 

3. Case study: Re-design of an Automobile 

We construct a case study based on a model of the automotive market from the literature [28]. In this 

case study, we investigate whether and to what extent the optimal design of a single vehicle changes 

under heterogeneous consumer preferences for different fixed competitor representations. We adopt 

the model and data used in Whitefoot et al. [28], which was based on the 2006 US new car market, with 

some simplifying assumptions. We take as decision variables the vehicle’s price � and acceleration �, 

measured as time to accelerate from 0 to 60 mph in seconds. Fuel consumption rate is calculated as a 

function of acceleration using their estimation of the Pareto frontier developed through simulation and 

design of experiments (equivalent to treating fuel consumption rate as a free variable and constraining 

the solution to lie on the Pareto frontier). In this model, cost decreases with increasing acceleration time 

(i.e. smaller engine displacement size), with diminishing returns, and is specified by Eq. (20-21): 

� = 1000�� + 1000�� exp �−
�

10
� + ��� +

����

10
(20) 

��

��
= −100�� exp �−

�

10
� +

���

10
(21) 

where c is unit-cost in $, x is acceleration time (0-60 mph) in seconds, w is weight in lbs, and the � terms 

are parameters fit to engineering simulation results and cost data from [28]. For demand, we use a 

mixed logit specification and parameters from [28]. The consumer utility is specified by Eq. (22): 

��� = ���� + ��
��� (22) 

where � is the consumer utility from observed attributes and � includes the attributes of fuel economy 

(inverse of fuel consumption rate), vehicle “footprint” area (length times width), and acceleration time. 

The � coefficients are specified as independently and normally distributed. Consumer demographic 

characteristics are ignored. 

We hold all competitor products fixed in price and attributes (summarized by the � parameter), 

and the firm solves the profit-maximization problem for price and acceleration time of the focal product, 

with other attributes fixed (fuel economy is specified as a function of acceleration, as described in [28]). 
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We first solve the problem using competitors represented as 470 elemental alternatives, and then we 

re-solve with competitors represented by 3 composite alternatives (one compact car, one midsize car, 

and one large car) intended to represent the 470 elemental alternatives. Each composite is specified by 

the weighted average price and attributes of their subsumed elemental alternatives – i.e.: the compact 

car composite’s price is the average price of all compact cars, weighted by sales fraction. This type of 

composite using weighted averages is intuitive and has been used in the choice modeling literature55 

[21].  We use the L-BFGS algorithm implemented in the R nloptr package to solve the design 

optimization problem. 

We first show the optimal solution in the base scenario with default parameterization. Then, we 

vary the heterogeneity in preferences in different scenarios. In a recent review of the automotive 

demand literature, Greene at al. [26] show that estimates of both mean and the standard deviation of 

consumer willingness-to-pay for vehicle attributes cover a wide range. We simulate a wide range of 

preference heterogeneity by applying a multiplier to the standard deviation of the normally distributed 

preferences found in Whitefoot et al. [28] from 0x to 10x, which is within the range found in Greene at 

al. [26]. For fuel economy, this represents a fixed $600/mpg at 0x, a heterogeneous distribution with a 

90% interval from $472 to $728/mpg at 1x (the default parameter values), -$40 to $1240/mpg at 5x, and 

-$680 to $1880/mpg at 10x. Finally, we also test several cases of different cost functions, vehicle size 

classes, and the use of correction factors to specify composite utility, as discussed in Yip et al. [21], to 

assess their effect on the influence of competitor representation on optimal design solutions. 

4. Case study results 

Figure 1 shows the difference in the optimal decision variables when competitors are represented as 3 

composite alternatives rather than 470 elemental alternatives under a range of consumer-preference 

heterogeneity multipliers. In the base scenario, shown in Fig. 1a, a compact car is redesigned. Using the 

default preference heterogeneity (1x), we find that competitor representation affects the optimal 

acceleration time by -0.03% and optimal price by 4.6%. When the heterogeneity is scaled down to 0x (no 

preference heterogeneity), the optimal acceleration time is identical regardless of the competitor 

 
55 In the surveyed optimal design literature, it is unclear what the attributes of hypothetical competitors are meant 
to represent. We do not find clearly stated rationale for attribute levels and values in the papers surveyed in Table 
1 (see Table 1A for quotes). Other possible specifications include taking simple averages or sampling a subset of 
elemental alternatives, as discussed in the introduction discussing the literature in Table 1, or using composite 
correction factors and alternative-specific constants, which could lead to variation in results [21]. 



 
 

62 
 

representation, as expected from our derivation in Section 2.1. With heterogeneity scaled up by 10x, 

competitor representation affects optimal acceleration time by -2.6%   

 

 

FIGURE 1: Differences in optimal values of price and design (acceleration time) when competitors 

are represented by elemental vs. composite alternatives 

 

We repeat these tests for the case of re-designing a large car, which has different consumer 

utility parameters as estimated by Whitefoot et al. [28]. The optimal design results, in Fig. 1b, show 

larger differences than the case of the compact car. With a preference heterogeneity multiplier at 10x, 

competitor representation affected optimal acceleration time by -3.6%. In addition to the results shown 

in Fig. 1, we ran a series of cases varying the distributions and input parameter values across a wide 

range, including uniform and bimodal distributions. In most cases where parameter values were in a 

realistic range, the effect of competitor representation on optimal design is between 0% and -5%. 
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However, in some cases, we found that the optimal design changed up to 20%. Changes in optimal price 

were larger: typically between 5% and 15%, and in some cases as large as 30%. 

In Fig. 1c and Fig. 1d, we assume a cost function with a steeper (2x) marginal unit-cost of design 

change, which affects the magnitude of the impact of competitor representation on optimal 

acceleration time slightly (-2.3% for small car and -3.4% for large car at 10x). 

As shown in Section 2.2, the first-order optimality conditions stipulate that at an optimal 

solution, the marginal unit-cost of a design change is equal to the population’s aggregate marginal WTP 

for a design change (Eq. 8). For the mixed logit case, the aggregate WTP is the ratio of the sum of 

coefficients �� and ��  of each consumer (each draw from the distribution), weighted by ���(1 − ���/�) 

(Eq. 19). To help explain how and why both the degree of preference heterogeneity and the curvature of 

the cost function influence the effect of competitor representation on optimal designs, we plot the 

marginal unit-cost of design change (MC for short, representing the left-hand side of Eq. 19) and the 

aggregate WTP for design change (WTP for short, representing the right-hand side of Eq. 19) in Fig. 2. 

Both of these values are negative because increasing acceleration time reduces both marginal unit-cost 

and willingness-to-pay.56 We see that the optimal solutions for each simulated case lie at each 

intersection of the MC and WTP curves, where the marginal unit-cost change from increasing 

acceleration match the iso-demand price change, as expected.  

The MC curve is independent of demand assumptions, consumer heterogeneity, or the 

representation of competitor products, because the marginal cost of production volume is independent 

of production volume in our formulation (Eq. 1). However, WTP is a function of demand and its 

parameters, and for latent-class logit and mixed logit models, this includes competitor products. As 

such, when competitors are represented by composites instead of elemental alternatives, the WTP 

curve shifts, changing the optimal solution. In this case study, the composite representation (solid lines; 

optima at circles) causes the WTP curve to shift to the left relative to the elemental representation 

(dashed lines; optima at crosses), and the magnitude of the shift increases with the degree of 

preference heterogeneity (shown by shades of gray of the pairs of WTP lines, shifting right as the 

preference heterogeneity multiplier goes from 0x to 10x). 

 
56 For lower values of acceleration time, the population’s aggregate marginal WTP for increasing acceleration time is 
positive because in this model, fuel economy is also treated as a function of acceleration, following the Pareto 
frontier. 
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FIGURE 2: Marginal unit-cost of a design change (MC) and the population’s aggregate marginal 

willingness-to-pay for a design change (WTP) as a function of the design variable (acceleration 

time) for the compact car redesign case 

 

We also observe that a steeper MC curve (the blue line, noted by (c)) leads to a somewhat 

smaller effect of competitor representation on optimal design, corresponding to the result in Fig. 1c. We 

repeat this analysis for the large car case in Figure 3 and obtain similar findings. We summarize the 

numerical results in Table 3. We also visualize the optimal design result in Figure 4. 
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FIGURE 3: Marginal unit-cost of a design change (MC) and the population’s aggregate marginal 

willingness-to-pay for a design change (WTP) as a function of the design variable (acceleration 

time) for the large car redesign case 

 

TABLE 3: Summary of numerical results in case study - differences in optimal design variable due 

to composite representation (vs. elemental representation) of competitor products 

  Difference in optimal design 
variable (acceleration time) 

Steepness of 
marginal cost 

(MC) curve 

Preference 
heterogeneity 

multiplier 

Size class of product (car) 
under design 

Compact Large 

1x 

0x 
0 s 
0% 

0 s 
0% 

1x 
-0.004 s 
-0.03% 

-0.005 s  
-0.04% 

10x 
-0.36 s 
-2.6% 

-0.45 s 
-3.6% 

2x 

0x 
0 s 
0% 

0 s 
0% 

1x 
-0.005 s 
-0.04% 

-0.005 s 
-0.04% 

10x 
-0.33 s 
-2.3% 

-0.44 s 
-3.4% 

(d) 

(b) 

100x 
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FIGURE 4: Summary of results from optimal engineering design case study 

Finally, we find the optimal design while simulating composite competitors with utilities 

specified with full correction factors and we find a 0 s (0%) difference in the optimal design found from 

the benchmark model with 470 elemental alternatives for all marginal cost and preference 

heterogeneity cases. Given that Yip et al. [21] showed that full composite correction factors would 

generate choice share predictions for composite models that would match those from elemental 

models, we do expect that the optimal designs conditional on the choice model results would also 

match between composite and elemental model simulations. When adding only the size correction 

factor to the utility of composites (partial correction), the optimal design difference was larger in some 

cases and smaller in others.  

The use of composite correction factors can affect the optimal design difference, as well as the 

computation of optimal design. Modelers using composites with correction factors may benefit from 

shorter computation times, particularly in more complex models that attempt to optimally price and 

design multiple vehicles and may in certain cases generate optimal design results that do not deviate 

from those from a corresponding elemental model. However, modelers may not have access to the 

precise information needed to compute the exact correction factors and the elemental model may itself 

be mis-specified and may not necessarily optimize design more accurately than the composite model.  
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5. Conclusion 

We derive first-order optimality conditions for profit maximizing design and price and determine that 

competitor representation does not affect optimal design when demand is modeled using logit or 

nested logit models (homogeneous consumer preference parameters), but competitor representation 

may affect optimal design when demand is modeled using latent-class or mixed logit models 

(heterogeneous consumer preference parameters). Competitor representation may affect optimal price 

under all demand models. These findings hold for utility functions that are linear in price and cost 

functions where marginal unit-cost is independent of production volume. 

In a case study of automotive design under mixed logit demand, we find that the optimal design 

(0-60 mph acceleration time) changes when competitors are modeled using a small set of composite 

alternatives to represent a larger set of vehicles available on the market. The magnitude of this effect 

depends on the specific form and parameters of the cost and consumer utility functions. In our case 

study, the magnitude of the change increases with preference heterogeneity and decreases with the 

steepness of the marginal unit-cost curve. By applying correction factors, one can obtain the optimal 

solution to the elemental competitor problem using a composite representation of competitors.  
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marginal willingness-to-pay for a design change (WTP) as a function of the design 
variable (acceleration time) for the compact car redesign case 

 

Fig. 3 Marginal unit-cost of a design change (MC) and the population’s aggregate 
marginal willingness-to-pay for a design change (WTP) as a function of the design 
variable (acceleration time) for the large car redesign case 



 
 

71 
 

Supplemental Material and Appendices 

A. Extended Table of Literature 

TABLE 1A: EXTENDED VERSION OF TABLE 1 WITH EXAMPLES OF COMPETITOR 
REPRESENTATION IN THE DESIGN FOR MARKET SYSTEMS LITERATURE 

Study (author, year) Market 
Number of 
competing 

alternatives 

Type of  
competitor 
representation 

Reasoning behind competitor representation 

Shin & Ferguson, 2016 [14] Cars 3 Hypothetical No reason given 

Shin & Ferguson, 2016 [14] MP3 players 3 Hypothetical No reason given 

Kwak & Kim, 2012 [12] Computers 3 
Generic/  
representative 

“There are three competing products on the market 
(i.e., high-spec, mid-spec, and low-spec), and they 
differ from each other in terms of part specifications 
and selling price.” 

Shiau & Michalek, 2009 [3] 
Weight 
scales 

4 Hypothetical 

"Table 6 shows the specifications of four competing 
products C1, R2, S3, and T4 in the market, where 
each product has a unique combination of product 
characteristics." 

Besharati et al., 2006 [13] 
Angle 
grinders 

4 Hypothetical 
“We assume that in the market for this power tool, 
there are three competitive products.” 

Li & Azarm, 2000 [18] 
Cordless 
screwdrivers 

5 Hypothetical No reason given 

Zhao & Thurston, 2013 [19] Cell phones 5 Hypothetical 

“a hypothetical market is assumed with five product 
competitors and their attributes as shown in Table 1. 
These data were collected from several real products 
in the current cell phone market.” 

Wang et al., 2011 [20] 
Laptops and 
smartphones 

7 Hypothetical No reason given 

Shiau et al., 2009 [15] Midsize cars 10 
Generic/  
representative 

Computational reasons. Explanation: Case study: 
midsize vehicles, 10 generic domestic manufacturers 
competing in the market. “assuming each 
manufacturer has a single representative vehicle j in 
its fleet”. “We simulate 10 generic domestic 
manufacturers competing in the market”, with the 
“assumption of a single vehicle design per producer”  

Wassenaar et al., 2005 [16] Midsize cars 12 
Detailed 
(market subset) 

7 models, 12 trims, to represent the midsize 
segment. “Our implementation is subject to the 
assumption that customers only consider the 12 
vehicle trims when purchasing a vehicle.” 

Choi et al., 1990 [10] 
Pain 
relievers 

14 Detailed 

14 existing brands. "small experimental preference 
data set on 14 over-the-counter analgesic pain 
relievers" "The reader should note that this example 
is not meant to be a thorough study of the market, 
but is simply meant to illustrate the properties of the 
proposed model and algorithms described in the 
paper." 

Morrow et al., 2014 [11] Cars 443 Detailed 

"This model is not intended to be a high-fidelity 
model of vehicle design; our intended application of 
this model is a comparison of numerical methods in a 
large market." 

Frischknecht et al., 2010 [6] Cars 473 Detailed No reason given 
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B. Extended Derivations 

Given the profit-maximization problem defined in Eq. (1), and assuming analytic functions, we derive Eq. 

(2-3) by first writing out the first-order necessary conditions57: 
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Re-arranging to get Eq. (2-3) in the paper, reprinted here as (S3-S4): 
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To obtain Eq. (3a), matching Eq. (6) in Fischer (2010), we first re-arrange Eqn. (S3): 
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Then, we re-arrange Eqn. (S4): 
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57 We use matrix calculus notation here, where the partial derivative of a scalar with respect to a vector indicates a 
gradient, and gradients are row vectors. 
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The last term in the parenthetical quantity is zero and can be dropped:  
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Finally, we substitute Eqn. (S5) into Eqn. (S6): 
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Eq. (S7) is reported in the main text as Eq. (3a). 

 

Logit 

Given Eq. (4) for quantity demanded represented by a logit model, we obtain Eq. (5-6) by taking the 

partial derivatives of quantity demanded with respect to prices and designs. We also make use of an 

expression for the summed choice share of all internal and external competitors (all except the focal 

product �) 
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Partial derivatives 
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and similarly, 
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The partial derivatives of demand for product � with respect to the design and price of internal 

competitors � ∈ �\� are: 
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and similarly, 
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By symmetry, the partial derivatives of demand for each internal competitor � ∈ �\� with respect to the 

design and price of the focal product � are identical to the partial derivatives of demand for each focal 

product � with respect to each internal competitor � ∈ �\�. 

 

First-order optimality conditions 

Substituting the partial derivatives (S9-S12) into the first-order optimality conditions (S3-S4) and further 

re-arrangement and simplification yields: 
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FOC with respect to design 
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Substituting (S14) into (S4),  
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Substituting Eq.(S9-S10) into Eq.(S15): 
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We report Eq. (S13) (S15) (S16) as Eq. (5a) (3b) (6a) in the main text. 

 

Random Coefficients Logit 

Given Eq. (8) for quantity demanded represented by a random coefficients logit model, we obtain Eq. (9-

10) by taking the partial derivatives of quantity demanded with respect to prices and designs. 

 

Partial derivatives 

Based on Eq. (S9) – (S14), we find the partial derivatives of quantity demanded with respect to prices 

and designs to be: 
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First-order optimality conditions 

By substituting the partial derivatives specific to Random Coefficients Logit (S17-22) into Eqn. (S3-S4), 

we obtain FOC relationships: 
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Eq. (S23-S24) are reported in the main text as Eq. (9-10).  
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Chapter 4: The dynamic costs and benefits of a technology-forcing 
policy nested in a broader performance standard: the case of ZEV 
and CAFE 

This study was presented at several conferences, including at USAEE 201958, and is co-authored 

with Jeremy Michalek and Kate Whitefoot. 

 
“I can make a model tie my shoe laces” - anonymous colleague, cited by Pindyck (2013) 

 

Technology-specific policies may be less economically efficient than technology-neutral policies 

when addressing environmental externalities, but they may increase social welfare via longer-

term dynamic effects resulting in technology-specific non-appropriable learning-by-doing 

spillover (Gillingham & Stock, 2018; Linn & McConnell, 2017). Additionally, complicating the 

cost-benefit analysis are interactions between technology-specific policies and technology-

neutral policies, especially if they overlap in scope or jurisdiction (Goulder, Jacobsen, & Van 

Benthem, 2012; A. T. Jenn, Azevedo, & Michalek, 2016). I investigate the impact of these effects 

on the cost-benefit calculation of ZEV mandates. I do this by representing several of these 

effects explicitly and endogenously, building on models for consumer and firm behavior. 

Specifically, I model the updating of CAFE/GHG standard stringency based on induced 

technology cost reduction resulting from ZEV mandates. I characterize how this new policy 

interaction effect (ZEV dynamically influencing future CAFE) could change the cost-benefit 

calculation and analysis of the impact of technology-specific policies such as ZEV mandates. 

 

1. Introduction 

Many governments have implemented regulations to encourage the deployment of electric 

vehicles (EVs). The literature has found that many of these policies have cost society beyond 

what is justified by current environmental benefits and externality mitigation (Holland, Mansur, 

Muller, & Yates, 2016; Michalek et al., 2011; Weis, Michalek, & Jaramillo, 2016), though many 

regional and vehicle-specific factors can affect the relative environmental benefits of EVs 

(Yuksel, Tamayao, Hendrickson, Azevedo, & Michalek, 2016) and the US electric grid has 

changed quickly in recent years, reducing emissions associated with EV charging in the US 

(Holland, Mansur, Muller, & Yates, 2018).  

A common argument to justify these policies that have been assessed as having low or 

negative near-term net benefits has been that EV technology-forcing policy can stimulate a 

technology transition for the future and generate long-term net benefits (D. L. Greene, Park, & 

 
58 Yip, A., Michalek, J., Whitefoot, K. (2019) THE DYNAMIC COSTS & BENEFITS OF TECHNOLOGY-FORCING POLICY 
NESTED IN A BROADER PERFORMANCE STANDARD: THE CASE OF ZEV & CAFE. USAEE 2019 conference 
proceedings. 
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Liu, 2014a). For example, when justifying bonus incentives for EVs and other alternative fuel 

vehicles in the 2017-2025 federal light-duty vehicle fleet standards, the Environmental 

Protection Agency (EPA) noted “EPA believes it is worthwhile to forego modest additional 

emissions reductions in the near term in order to lay the foundation for the potential for much 

larger ‘game-changing’ GHG emissions and oil reductions in the longer term.” (EPA, 2012; A. T. 

Jenn et al., 2016)  

1.1. Dynamic effects 

Gillingham and Stock (2018) discuss EVs as a case example of the importance of taking a 

perspective of “dynamic costs” as opposed to only considering static short-term costs. Several 

studies in the literature begin to tackle the complexity of dynamic costs and benefits while 

analyzing EV policies. Greene, Park, and Liu (2014b), in an analysis for the National Academies 

of Sciences, Engineering, and Medicine Transitions to Alternative Fuels and Vehicles study, 

simulated EV transition scenarios with dynamic effects, including learning-by-doing and 

consumer aversion reduction with adoption. Their simulations, using the LAVE-Trans model, 

demonstrated how the long-term benefits of an EV transition (including uncounted energy 

savings, GHG mitigation, air quality improvements, and changes in consumer and producer 

surplus) could dominate over the short-term costs of EV subsidies “by roughly an order of 

magnitude”. Liu and Lin (2017) include feedback loops in the MA3T model to represent dynamic 

effects accounting for “changes in non-technology factors as the market evolves” and they find 

large uncertainties in the future EV market. Sykes and Axsen (2017) modeled ZEV policies 

creating spillover effects associated with technological learning from EV adoption. These 

spillovers were found to justify regions implementing their own ZEV mandates to meet GHG 

targets. Linn and McConnell (2019) estimated the optimal innovation subsidy for EVs justified 

by learning-by-doing spillover, finding that spillover benefits appeared to be less than the 

current amount of government subsidies provided for EVs in the US. Adoption and investment 

in charging infrastructure in the short-term also generates spillovers in the form of positive 

externality benefits (and/or reduced costs) for future adopters. Fox, Jaccard, and Axsen (2017) 

demonstrated how capturing both dynamic effects on the supply (cost reductions from 

learning-by-doing) and demand side (neighbor effect and charging network) can lead to higher 

cost-effectiveness of technology-specific ZEV policy than if these dynamic factors are ignored. 

While these studies innovatively simulate the long-term effects of several dynamic 

mechanisms, a limitation is that they analyze scenarios with policies tested one-at-a-time and 

implemented in isolation. For example, in Greene et al. (2014b) and Fox et al. (2017), the fuel 

economies of conventional and electric vehicles were projected separately and exogenously, 

which implicitly ignores how EV sales would contribute to and interact with existing fuel 

economy standards. This could lead to unaccounted lost progress in conventional vehicle fuel 

efficiency. When existing conventional technological options and policies are ignored or 

exogenously assumed to follow a static or fixed trend, the analysis can miss effects of policy 

interactions and pollution leakage, which could lead to underestimation of policy cost and/or 
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reduce and negate some of the benefits of a technology or policy, and even some of the 

potential gains from dynamic effects. 

1.2. Policy interaction and pollution leakage 

Pollution leakage occurs when a policy has incomplete scope, jurisdiction, or geographic 

coverage, or a scope that overlaps with or is nested within a related policy’s scope. For 

example, a state policy is typically nested geographically within federal policies. A policy may 

also be more stringent and/or more technology-specific than a related policy while addressing 

similar goals. Because these policies operate in markets, induced emissions reductions in one 

avenue “can simply make it less expensive for others to pollute,” driving a “waterbed effect” 

(Fowlie, 2018).  

The literature suggests that policy interaction and leakage can significantly erode a 

policy’s environmental benefits and cost-effectiveness. Goulder et al. (2012) showed that 

nested GHG policy proposed by California could result in significant leakage, reducing the 

overall benefit of the policies. They analyzed three mechanisms of leakage: more stringent 

standard for new cars in certain states allows automakers to meet a less stringent standard for 

new cars in rest of US; more interest in used and existing cars, an effect exacerbated with 

nested policy coverage, reducing scrappage of existing stock of used cars; and technological 

spillover between regions, a “negative leakage effect” which counteracts regional leakage via 

development of technology available for deployment in both regions. They simulated the US car 

market to assess these “unintended consequences” and found the first two effects dominating 

the regional spillover effect. In another type of leakage, Jenn et al. (2016; 2019) showed that 

special accounting of alternative fuel vehicles (AFVs) in the CAFE standards and the 

combination of special accounting and ZEV mandates can amplify emission leakage into the rest 

of the non-AFV fleet under certain conditions. These analyses show that under fixed and 

binding environmental performance standards, nested policies that are more stringent can 

result in limited, redundant, or in some cases, negative environmental benefit. Table 4.1 shows 

a summary of various types of leakage in transportation energy and automotive policy. 
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Table 4.1: Types of leakage, their sources and sinks, and examples in transportation energy 

and automotive policy 

Type of 
leakage 

Pollution could 
leak to… 

Examples Literature  

Geographical other regions 
Cars outside California/ZEV 
states 

Goulder et al. (2012) 
Sykes & Axsen (2017) 

Inter-sectoral 
other parts of 
life cycle 

Electric power, biofuel 
production 
Battery production 

Yuksel et al. (2016) 
Tamayao et al. (2015) 

Intra-sectoral 
more VMT 
used cars 
existing cars 

Rebound 
Deferred retirement 
Second car in household 

Gillingham et al. (2016) 
Gruenspecht (1982) 
Archsmith et al. (2015) 

Intra-fleet 
larger cars 
light trucks 

Less-regulated types of cars 
becoming more attractive 
and more polluting 

Whitefoot & Skerlos (2012) 
Whitefoot et al. (2017) 

Intra-fleet non-EVs 

Relaxed standard for non-
EVs resulting from special 
accounting of EVs in CAFE 
and overlapping objectives 

Jenn et al. (2016) 
Jenn et al. (2019) 

 

1.3. Overall impact is unclear; new approach needed 

Both dynamic effects and policy interaction effects can alter the estimated benefits and 

costs of technology-specific policy such as ZEV mandates. They are insufficiently considered in 

the literature on EVs and EV policy and it is unclear what their combined effect is on overall 

short- and long-run environmental outcomes and societal cost. In practice, when justifying 

policy intervention, policymakers and advocates have asserted the dominance of long-term 

benefits of dynamic cost reductions, but typically lack evidence on the magnitude and 

trajectory of the potential impact of actions today on future emissions reductions and net 

benefits, especially with consideration to the potentially counteracting effects of policy 

interaction.  

 Given the backdrop of fleet emission standards driving environmental outcomes, 

policies such as ZEV may produce potentially limited direct benefits due to leakage and policy 

interaction; however, they may generate indirect benefits via dynamic and spillover effects. 

Cost reductions due to technology-forcing policies could induce changes to the optimal future 

CAFE policy, leading to improved environmental outcomes and net societal benefit59. 

 
59 Alternatively, EV cost reductions could cause future CAFE policy to cease to bind, which would be another way 

the benefits of technology-forcing policies may be realized. There may be scenarios and conditions where EVs and 

ZEV policy might cause CAFE overcompliance i.e. non-bindingness, leading to ZEV overtaking CAFE as the 
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Our approach explicitly models ZEV policy under the umbrella of CAFE/GHG standards. 

We allow the dynamic impacts of ZEV policy to be indirectly realized via the endogenous setting 

of CAFE standards. Several studies in the literature have attempted to model endogenous 

energy policy design by maximizing net societal benefit with respect to the stringency of the 

policy. van Benthem et al. (2008) estimated the optimal subsidy for solar photovoltaic 

installations by maximizing the net societal benefit from learning spillover. Beck et al. (2018) 

find the optimal subsidy for solar by maximizing societal welfare in a computable general 

equilibrium model. Linn and McConnell (2019) estimate the subsidy for electric vehicles where 

marginal societal benefit is equal to marginal cost of the subsidy (thus maximizing net societal 

benefit). This approach is also used to determine the optimal tax and subsidy for vehicles in 

Holland et al. (2016)60 and is typical of models determining the optimal carbon tax. In contrast 

to this prior work, instead of simulating price-based policies (taxes and subsidies), we model 

existing “second-best” technology/sector-specific, performance/quantity-based policies (CAFE 

and ZEV standards/quotas), which can have more indirect and complex effects on the outcome 

and are more commonplace in real-world settings. We also note other work that study the 

impact of fleet standards on EV adoption (Carley, Zirogiannis, Siddiki, Duncan, & Graham, 2019; 

Fritz, Plötz, & Funke, 2019; Melton, Axsen, & Moawad, 2020; Ou et al., 2018; Sen, Noori, & 

Tatari, 2017; Zirogiannis, Duncan, Carley, Siddiki, & Graham, 2019); we build on this work and 

study a countervailing impact: the influence of EVs and EV policy on fleet standards.  

 

2. Research Objectives 

We investigate the following research questions: 

• In the presence of policy interaction and leakage effects, can ZEV mandates reduce US 

light-duty fleet emissions dynamically by inducing increased stringency of future 

welfare-maximizing fleet standards (i.e. optimal CAFE)? 

• Under what conditions do ZEV mandates increase social welfare? 

 

3. Methods  

3.1. Overview 

We develop an integrated techno-economic model of the US new passenger car market, with 

three primary decision-making groups: consumers, firms, and government. Consumers 

determine demand by choosing among differentiated products (cars) according to random 

 
governing driver of emissions reductions from light-duty transportation. This can be observed in the simulations by 

checking whether the optimal levels for CAFE are binding or not. 

60 under a limited scope of emissions sources 
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utility maximization. Automakers determine supply by deciding the prices and designs of their 

products to maximize profit in Nash equilibrium under policy constraints and oligopolistic 

competition. Finally, the federal government sets the stringency of fleet standards to maximize 

social welfare, given expectations of automaker and consumer responses (as a Stackelberg 

leader). Additional exogeneous factors, including ZEV mandates, can induce tightening of CAFE 

standards by changing the level of stringency that maximizes social welfare. We model this 

mechanism by simulating the dynamic effects of ZEV policy via cost reductions from 

technological experience and spillover. Policy interaction and leakage61 effects are included as 

an inherent result of profit-maximizing firm behavior and incomplete/overlapping scope of 

regulations. The model is summarized in Figure 4.1.  

 

Figure 4.1: Model structure 

3.2. Model of automotive market 

We model firms and consumers making decisions that determine supply and demand of new 

passenger cars in the US62. We model oligopolist automakers maximizing the total net present 

value of expected profits from all their products over all time steps. The automakers do this by 

choosing their vehicle portfolios’ prices and designs. Profit is modeled as a function of prices, 

costs, and sales based on demand of each vehicle variant, which is determined by a consumer 

 
61 In this study, we focus on representing intra-fleet leakages described in Table 4.1. Geographical and inter-
sectoral leakage is not in the scope of this study, except for the partial consideration of life cycle impacts of 
electricity and fuels. 
62 For simplicity, we assume a single US market and ignore the regionality/jurisdictional aspect of ZEV embedded in 
CAFE 
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demand model. The automakers are subject to both ZEV and CAFE standards, which are 

modeled as constraints. The firm’s optimization problem is represented by Eq. (1): 

maximize Π� = � ��������� − ����(1 + �)���

�∈���∈�

                                                                            (1) 

w.r.t. ���, ���  ∀�, �  

subject to:  

���
������� = �� −

∑ ������
���

�∈��

∑ ����∈��

≤ 0  

���
��� =

∑ ������
���

�∈��

∑ ����∈��

− �� ≤ 0  

Indices 
� ∈ ℒ: firms 
� ∈ �: time steps 
� ∈ ��: vehicle 
alternatives 
offered by firm � 

Definitions 
Π�: profit of firm � 
���: price of product � in time � 

���: attributes of product � in time � 

���
���: GHG rating of product � in time � 

�: discount rate considered by firms 
��� = ��(���, ���∀�): quantity of product � demanded and sold in time � 

��� = ��(���): per-unit vehicle production cost of product � in time � 

���
�������: Corporate Average Fuel Economy / Greenhouse Gas 

(CAFE/GHG) constraint for firm � and in time step � 

���
���: ZEV quota constraint for firm � and in time step �  

��: CAFE/GHG standard in time step � 
��: ZEV quota in time step � 

 

3.2.1. Consumer demand 

We model the demand of new63 passenger cars in the US with a discrete choice model with 

logit specification, informed by estimated parameters in the literature. This model predicts 

market shares based on consumer preferences and the prices and attributes of alternatives.  

�� =
1

�
� ��

exp������ + ������

∑ ∑ exp������ + �������∈���∈ℒ

�

�

 

 
63 Although the used car market is a source and sink of policy leakage as shown in Goulder et al. (2012), we do not 
plan to model the used car market explicitly. An outside good in the demand model could represent the choice of 
used cars (along with no-purchase), but we assume a fixed 17M market size for consumers purchasing new 
vehicles in the US annually. 
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Where �� is the coefficient for price preference for consumer group �, � is the vector of 

coefficients for attribute preferences for consumer group �, � = {1, … , �} is the index for 

random draws representing consumers, and �� is the market size of each consumer group. 

This equation predicts the demand for a vehicle alternative based on the market size � 

and the choice share probability based on a random utility model with logit specification. The 

summation is a discrete approximation of a mixed logit model where � and � are continuously 

distributed preference parameters. The current implementation of the model draws only once 

(N=1) from point values for � and �, which collapses the model into simple logit with 

homogeneous preferences.  

We use stated preference (SP) estimates from Helveston et al. (2015), which were based 

on survey data collected from Amazon Mechanical Turk and the Pittsburgh Auto Show during 

2012-1364. We caveat that consumers in that study had limited exposure and experience with 

EVs and that EV technology, offerings, and associated preferences (range anxiety, charging) 

may change going forward. We conduct sensitivity and scenario analysis on the willingness-to-

pay (WTP) for EV parameter, discussed below in implementation. 

3.2.2. Vehicle production cost 

�� = ����� + {
�

������������ ∀ � = �

��������� + ���
��������� ∗ ���

��� ∀ � = �
 

The vehicle production cost for gasoline and electric vehicles share a common base cost and 

differ in the remaining powertrain component costs, such as engine costs for gasoline vehicles, 

and battery and non-battery costs for electric vehicles. 

3.2.3. Gasoline vehicle engine cost 

We use equations derived by Whitefoot et al. (2017) based on engineering simulations and 

NHTSA cost estimates to define relationships between gasoline vehicle attributes and engine 

costs. Cost decreases with increasing acceleration time (i.e. smaller engine), with diminishing 

returns, and is specified by: 

�
������� = 1000�� + 1000�� exp �−

����

10
� + ����� +

���������

10
 

 
64 Comparing the SP WTP estimates from Helveston et al. (2015) with revealed preference (RP) WTP estimates for 
acceleration time and fuel economy from Whitefoot et al. (2017), we find that the estimated WTP for acceleration 
time is 1-2x larger ($1200/sec improvement vs. $800/s) in the SP estimate compared to the approximate mean of 
the RP estimate, and the estimated WTP for fuel economy improvement is 2-3x larger (depending on the fuel 
economy level). For context, based on the estimates of WTP for fuel economy, I estimate the equivalent implied 
consumer discount rate to be in the order of 10% in Helveston et al. (2015) and 15-25% in Whitefoot et al. 
(2017). 
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where �
�������  is unit-cost in $ per unit, ���� is acceleration time (0-60 mph) in sec, ��� is 

weight in lb, and the � terms are parameters fit to engineering simulation results from 

Whitefoot et al. (2017). 

3.2.4. EV battery cost reduction 

We represent the impact of learning-by-doing via the industry-wide unit-cost ($/kWh) 

reduction of EV battery packs from cumulative production experience. This is commonly 

modeled in the literature by a power-law learning curve (Matteson & Williams, 2015; Rubin, 

Azevedo, Jaramillo, & Yeh, 2015), which can be written as follows: 

���
��� = ��

��� ∗ �
�� + ∑ {��,   ���

�� ��,���
���������}�∈�

��
�

����(�����)

 

This relationship is a model of technological cost reduction from the mechanisms of learning-

by-doing, economies of scale, and R&D. The industry-wide EV battery production cost is 

modeled to fall as a function of cumulative production experience. The model is based on the 

power-law experience curve model, estimated on historical industry-wide EV battery price data 

(proxy for cost assuming fixed quality) correlated with cumulative EV battery production, a 

proxy for cumulative experience. The learning rate, ���, represents the reduction in unit cost 

($/kWh) in an EV battery pack per doubling of cumulative production experience. 

Many studies (Alberth, 2008; Ferioli, Schoots, & van der Zwaan, 2009; Gillingham, 

Newell, & Pizer, 2008; Nemet, 2006; Nordhaus, 2014; Pizer & Popp, 2008; Popp, 2019; 

Söderholm & Sundqvist, 2007; Taylor & Fujita, 2013) have discussed the suitability of using 

learning curves to represent technological change in energy-economic models. One key 

limitation is a lack of causality and identifiable mechanism when using industry-average price 

data correlated with a crude measure of industry-wide application-specific cumulative 

experience. The unit of analysis is often poorly defined, affecting data quality and specificity65. 

A firm’s cost reductions may arise from learning-by-doing via a firm’s own production 

experience, but are conflated by concurrent trends of economies of production scale (larger 

factories and production lines), economies of unit scale (larger battery packs), innovations in 

materials and product design that are independent of production, gains from R&D, and 

importantly, from non-appropriable spillover of direct and indirect competitor production 

experience and learning. 

 

 

 
65 Data for battery prices can vary significantly when there is ambiguity whether prices are at the cell- or pack-
level, when prices do not reflect cost in an emerging market, and/or when battery chemistries, countries of 
production, or battery pack size differ, but the data do not specify and include values lumped together. 
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3.2.5. Spillover from dynamic and policy interaction effects 

An additional complexity of modeling cost reductions from learning-by-doing is the 

appropriability and non-appropriability/spillover of learning-by-doing. Linn and McConnell 

(2019) and Muehlegger and Rapson (2019)(forthcoming) discuss the economic rationale for 

policies that address the market failure of non-appropriable learning spillover. Non-

appropriable learning spillover occurs when firms learn and benefit from the production 

experience and investments of other firms. This is distinct from appropriable learning effects, 

which are within-firm cost reductions from investments and experience, where there are no 

discernable market failures. Linn and McConnell (2019) and Muehlegger and Rapson 

(forthcoming) identify several mechanisms: reverse-engineering of products, observing and 

adopting material selection, product design, production processes, and best practices, sharing 

of supply chains and inadvertent sharing of knowledge, and workforce transfers. Some of these 

mechanisms can be partially restricted by intellectual property protections, non-compete terms 

in employment contracts, or exclusivity clauses in supplier contracts. 

We note that the literature on non-appropriable learning distinguished from 

appropriable learning is limited. A few studies have found that learning spillovers have been 

small in specific energy technology and automotive production contexts. Bollinger and 

Gillingham (2019) estimate the non-hardware costs of residential solar installations and 

estimate the appropriable and non-appropriable learning that occurred in the form of 

installation cost reductions in California residential solar installations 2002-2012. They find low 

amounts of non-appropriable learning spillover, compared to the learning that happens within 

firm and the cost reductions in the module and non-module/balance-of-system hardware costs.  

In studies that simulate learning-by-doing using an industry-wide power-law learning 

curve, van Benthem et al. (2008) and Beck et al. (2018) observe the historic learning rate for 

solar PV and halve it to account for appropriability (and test other values in sensitivity analysis). 

Linn and McConnell (2019) apply 8% and 20% learning rates for EV batteries, based on Nykqvist 

and Nilsson (2015) and (Nykvist, Sprei, & Nilsson, 2019). They argue that their application 

should be considered as an “upper bound” on the cost reductions that are not fully captured by 

individual firms due to appropriability.  

The present work attempts to simulate an optimistic case for the impact of learning-by-

doing on the benefits of ZEV policy and therefore, a high level of non-appropriable learning-by-

doing spillovers may be appropriate. However, assuming a correspondingly low level of 

appropriable learning may not represent the upperbound of the potential learning effect and 

incentive for firms to invest. Nevertheless, due to a lack of firm-specific data, the current 

version of the model ignores the appropriability of learning-by-doing and cost reductions and 

assumes industry-wide cost reductions come from the experience of all firms (complete 

spillover). All production experience from all firms is assumed to benefit the entire industry. 

This model represents large non-appropriable learning spillovers (as estimated from the 

industry-wide learning curve) and zero appropriable learning.  
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3.2.6. CAFE/GHG standard 

In the US, the CAFE standard has been set jointly with GHG standards under a “National 

Program” since 2010. This study implements the GHG version of the standards, given the 

relative severity of the penalty for non-compliance of the GHG standard.  

This standard forces the sales-weighted average GHG performance of the automaker’s 

fleet of vehicles to be under the GHG standard �� at each time step. The existing current US 

standards in place are footprint-based and the regulatory obligations are bankable, borrowable, 

and tradeable, but we use a simplified implementation where automakers comply with the 

standard with their own fleet in every time step. The existing standards also give special 

treatment to EVs and their emissions (Jenn et al., 2019), but we do not include these additional 

mechanisms. We account for consequential life-cycle emissions associated with gasoline and 

electricity consumed in the use phase (vehicle operation), including upstream fuel-cycle 

emissions, but exclude vehicle and battery production emissions and product end-of-life 

emissions. Details about the marginal emissions factors used to calculate the GHG emissions of 

vehicles can be found in the appendix. 

3.2.7. ZEV quota 

This constraint measures the proportion of an automaker’s fleet of vehicles against the quota �� 

at each time step. The existing current quotas in California and 9 other states offer a varied 

number of credits for zero-emissions-vehicles according to their type and performance such as 

range, but we use a simplified version with a single credit, extrapolated to the national level, 

and we ignore banking, borrowing, and trading. 

3.2.8. Vehicle fuel economy 

���
�� = {

������� � ∀ � = �

���
�� ∀ � = �

 

Gasoline vehicle fuel economy are based on empirical relationships from Whitefoot et al. (2017) 

which were derived from engineering simulations using AVL Cruise. Fuel consumption is 

calculated as a function of acceleration using their estimation of the Pareto frontier developed 

through simulation and design of experiments (equivalent to treating fuel consumption as a 

free variable and constraining the solution to lie on the Pareto frontier).  

3.3. Federal government, regulatory impact assessment, and policy setting 

When setting future levels of the CAFE standards, the US EPA and NHTSA agencies conduct a 

cost-benefit analysis of the regulations, and in the past, this analysis has been used to set the 

regulatory stringency to the level that maximizes net societal benefit. During this process, the 

agencies consider the costs and effectiveness of fuel-saving technologies and factor this into 

the stringency of the regulations. We represent the effect that technology costs have on the 

stringency of the CAFE/GHG standards by modeling the standards as set at the level for which 
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marginal costs equal marginal benefits. This allows the federal standards to be updated 

dynamically based on new information, particularly about newly realized cost reductions from 

ZEV-induced adoption of electrified technologies. We note that this is an oversimplification of 

the agencies regulatory process, and that the stringency of the standards is not always set at 

the level for which marginal costs equal marginal benefits. The cost-benefit analysis is one 

component of the rulemaking process; in practice, additional factors have also impacted the 

choice of the stringency level, including negotiating standards across the state and federal 

entities involved.  

While we simplify the entire process into a strict cost-benefit calculation, we also 

enhance the complexity of the cost-benefit analysis compared to the EPA/NHTSA’s analysis by 

including endogenous producer and consumer decision-making and allowing for impacts on 

producer and consumer surplus from changes in product prices and designs. This is in contrast 

to the EPA/NHTSA estimation of costs and benefits, which assumes vehicle demand remains 

fixed at an exogenously specified level despite price and design changes. Their methodology 

calculates technology costs and undervalued fuel savings66 as the main impacts on producer 

and consumer surplus from new vehicles. In our modeling, technology costs and changes in fuel 

economy are part of the firm’s and consumer’s consideration and are reflected in changes in 

producer and consumer surplus.  Our modeling currently assumes consumer valuation of fuel 

economy according to WTP results estimated by Helveston et al. (2015) and we do not count 

undervalued fuel savings towards social welfare. We also assume hidden costs of fuel-savings 

benefits are fully captured in the WTP (disutility) for EV estimated parameter from Helveston et 

al. (2015) and we vary this parameter in sensitivity analysis. Future work will include further 

sensitivity analysis on the WTP for fuel economy and consideration of uncounted/undervalued 

fuel savings as social welfare. 

However, our implementation does not include a full multi-market model that includes 

impacts on VMT, rebound, and used cars, as recommended by Bento et al. (2019). This study 

attempts to isolate the effect of interest, which is the role of ZEV policy on short- and long-term 

environmental and net societal benefit. Although EVs may be driven more or could cause 

changes in the used car markets, these impacts are outside of the scope of this study. 

3.4. Equilibrium Modeling Approach 

We formulate the entire problem as a Stackelberg-type bi-level optimization problem. 

At the upper level, we model the federal government as a Stackelberg leader that anticipates 

the responses of automakers when it sets the CAFE/GHG standard ��∀�. At the lower level, 

firms fall into Nash equilibrium given the government-specified CAFE/GHG standard and an 

exogenously specified level of ZEV.  

 
66 “Undervalued fuel savings” assumes a degree of consumer myopia, as well as gasoline price perceptions and 
discount rates. Busse, Knittel, and Zettelmeyer (2013) find “little evidence of consumer myopia.” See (Gillingham, 
Houde, & van Benthem, 2019; Leard, 2018; Xie & Lin, 2017) for further discussion. 
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 At the upper level, the government seeks to maximize the net social welfare benefit of a 

policy scenario67: 

maximize � = ��� + ��� − ��� 

w.r.t. ��∀� 

���: producer surplus, measured in total firm profits. 

���: consumer surplus, measured by equivalent variation following Small and Rosen (1981). 

This is calculated as the sum of the expected value of the relative willingness-to-pay of each 

consumer’s purchase less their prices. This can also be thought of as the total relative price-

adjusted monetized utility of products purchased by consumers. 

���: environmental damages, measured in total monetized marginal damages from four major 

air pollutants (CO2, NOx, PM2.5, SO2) associated with the lifetime use of the products purchased 

by consumers. Full fuel-cycle emissions are included (well-to-wheels), but production and end-

of-life-associated emissions (such as those from battery production) are currently excluded. 

Other environmental externalities such as other air pollutants, water pollution, and noise are 

not included. 

��: CAFE/GHG standard for time � 

The equations, assumptions, and data sources for calculating producer surplus, consumer 

surplus, and environmental damages are in Appendix A.  

At the lower level, firms are modeled to be in Nash equilibrium, where each firm 

maximizes the total net present value of expected profits from all their products over all time 

steps according to Eq. (1). The firms decide the prices and attributes of their vehicle offerings.  

 

Figure 4.2: Sequential iterative approach to solving firm Nash Equilibrium problem, from 

(Shiau & Michalek, 2009) 

 
67 We ignore the no-policy baseline scenario’s benefit and cost, because they are not affected by decision variables 
and they do not affect where the optimal solution lies. This means that the value of � cannot be interpreted with 
any real-world meaning. 
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We attempt to solve this bi-level optimization problem with several numerically-

approximated-local-gradient-based and non-gradient-based optimization algorithms, where the 

Nash equilibrium between firms is solved via sequential iterations. Figure 2 illustrates the 

sequential approach as presented by (Shiau & Michalek, 2009). The profit maximization 

problem is solved individually for each firm �, while holding the pricing and design decisions of 

all other firms ���\��
, x��\��

 fixed. This is done for each firm sequentially until all firms cannot 

achieve a better profit by moving unilaterally. This approach is easy to implement (analytical 

solutions do not need to be derived, constraints are supplied to the optimization algorithms as-

is) but this approach can be computationally intensive.68  

In theory, this type of Stackelberg bi-level optimization problem could be solved 

numerically by finding a solution for both the upper-level government problem and the lower-

level firm equilibrium. However, because the lower level problem is solved computationally, 

this approach produces imprecise solutions due to numerical noise, which can mislead the 

optimization algorithm used to solve the upper level problem. To avoid this problem, we solve 

the upper-level government problem using an exhaustive grid search across values of the 

CAFE/GHG standard, and we observe the values when net social welfare benefits are 

maximized. The grid search for the results presented below was performed for CAFE/GHG 

standards ranging from 0-50 mpg, with more granular simulations where local optima were 

detected. 

 

 

 

  

 
68 An alternative approach is to find solutions that simultaneously satisfy each firm’s KKT FOCs, which can be 
represented as constraints, thereby creating a Mathematical Problem with Complementary Constraints (MPCC). 
(Biswas & Hoyle, 2019) review the advantages and disadvantages of various methods for solving bi-level 
optimization problems. This approach may be considerably faster than sequential iterations. However, solutions 
may not be minima and require checking second-order sufficiency conditions or Nash equilibrium criteria, which 
could increase overall time to find an equilibrium depending on the nature of the problem and solution space. We 
expect that a carefully formulated FOC approach could solve for equilibrium much more quickly than the iterative 
approach, which would help run cases and scenarios faster and allow us to explore larger parameter spaces and in 
more dimensions. We leave this for future work. 
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4. Results and Discussion 

4.1. Model implementation of policy scenarios and cases 

In a simplified model implementation that demonstrates the key mechanisms driving how ZEV 

affects social welfare, we instantiate the model with 2 firms, each producing 1 vehicle design 

per fuel type (gasoline and electric), resulting in 2 products per firm and a total set of 4 vehicle 

alternatives in the market. The decision variables for the firms are ���∀�, �, the vehicle price for 

all vehicles in all time steps, and ���∀� ∈ ���������, �, a vector of vehicle attributes for gasoline 

vehicles in all time steps, consisting of the 0-60 mph acceleration time, and the tech parameter, 

representing the discrete number of fuel-saving technologies implemented in the vehicle 

design, based on physical simulations and estimated relationships in Whitefoot et al. (2017). 

We include two time steps in the model, each representing a period of five years. In the 

first time step, we implement an exogenous ZEV quota at several levels that may bind. When 

binding, we expect the ZEV policy to force more EVs than the market would have without the 

policy. In the second time step, we simulate various levels of CAFE and find the scenario that 

produces the maximum net social welfare (via the grid search approach). To isolate the effect of 

ZEV in a prior time step on optimal CAFE in a future time step, we set the other policy to be 

non-binding69 in the same time step i.e. non-binding CAFE in time step 1 and non-binding ZEV in 

time step 2. This is summarized in Table 4.2. 

We note that these scenarios are a gross simplification of the real-world and 

foreseeable implementation of CAFE and ZEV70. The construction of these scenarios allows us 

to represent the counterfactual cases so we can see the isolated impact of ZEV in time step 1 on 

welfare and optimal CAFE in time step 2. However, these scenarios fail to represent the more 

complicated picture when both policies bind and interact—for example through 

geographic/jurisdictional and intra-fleet leakage. Future work will characterize where these 

non-binding levels are and what happens in scenarios where both policies bind and interact in 

both time steps. 

Table 4.2: Policies in simulated scenarios 

Time period, t 1 2 

ZEV [% ZEV], �_� �� = {0, 25, 50}  �� = 0 (non-binding) 

CAFE [mpg], �� �� = 0 (non-binding) 
 

�� = level at which social 
welfare is maximized 

 

 
69 This is equivalent to setting the other policy up to its binding level (the firms will respond with the same 
decisions and all model results will be the same). 
70 CAFE and ZEV requirements currently exist and likely bind in both current day and in the near future. They are 
also both likely to change slowly and/or increase in stringency rather than arbitrarily switch from binding to non-
binding (high and binding ZEV requirements and then no ZEV requirements) or vice-versa (no CAFE and then 
binding CAFE) as we set up in the simulated scenarios. 
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In addition to simulating scenarios given different sets of policies, we consider and 

explore two key parameters, represented in two cases – optimistic and pessimistic EV cases. In 

the optimistic EV case, we assume low consumer disutility for EVs and low non-battery costs of 

EVs, whereas in the pessimistic EV case, we assume high values for both parameters. Finally, we 

vary the SCC given the high level of uncertainty in the value of GHG mitigation. Details of this 

can be in Table 4.3. 

Table 4.3: Key non-policy parameters varied in simulated scenarios 

Parameter Description Values in 
optimistic 
case 

Values in 
pessimistic 
case 

Description 

−
���

�
 

Monetized consumer 
utility (WTP) associated 
with BEV relative to 
conventional vehicles 

-$6000 -$12000 Based on Helveston et al. 
(2015), adjusted for EV 
range of 200 mi71 

������� Costs of EV powertrain 
that are not affected by 
learning-by-doing 

$1000 $4000 Based on Lutsey and 
Nicholas (ICCT) (2019), 
UBS (2017) teardown, and 
other projections 
(Hummel et al., 2017; 
Lutsey & Nicholas, 2019) 
72 

 
71 We vary the consumer disutility for EVs, the preference (or disutility) of the electric vehicle fuel type (all other 

attributes equal). Helveston et al. (2015) estimated a WTP of -$12000 for the “BEV150” (Battery Electric Vehicle 

with 150 mi range) fuel type compared to the conventional gasoline fuel type. Given significant changes in the EV 

market since 2012, the disutility and negative WTP for EVs based on EV range could very well be lower (improved 

knowledge in consumers, improved availability of charging infrastructure, overestimation by survey respondents) 

or higher (exhaustion of early adopters and technology enthusiasts, underestimation by survey respondents). We 

also test a value of -$6000 to account for the 200-300 mi electric range of typical modern EVs. This value is a 

linear extrapolation based on electric range.  

The literature contains a wide range of estimates for WTP of electric vehicles and their range. Greene et 

al. (2018) review the literature for WTP for vehicle attributes and found a trimmed range of -$44k to +$31k and a 

mean of -$8k for EV (of an unspecified electric range). The trimmed range for WTP for range was -$20 to +$243 

/mi, with a mean of $86/mi. Dimitopoulos et al. (2013) reviewed 33 SP studies and found a 95% confidence 

interval for the value of 1 mi in range: $29-104, mean of 66-75 (2005$). As discussed, Helveston et al. (2015) 

estimated a mean WTP of -$12k for EV150 (-$17k for EV75 and -$18k for EV100). We note problematic 

inconsistencies in definition of WTP for EV and range within and between studies that make values in the literature 

difficult to interpret and use. 

The value of -$6k is a linear extrapolation of the WTP for an EV with 200 mi range. A rough estimate of 

the value of the additional 50 mi would be $3k, resulting in a -$9k disutility (WTP EV200 over gasoline). Caveats 

include: 1) Stated preference studies may not accurately reflect what people think when they consider a purchase. 

2) Infrastructure, familiarity, and understanding of range affects valuation of range and range anxiety. 3) Value of 

range likely to be highly non-linear. High diminishing returns to increases in range as range is more than several 

multiples of a typical daily commute and/or approaches gasoline vehicle range. 

 
72 We vary the cost of producing the EV powertrain excluding the battery pack, which is meant to account for the 
electric motor, power electronics, charger, and other indirect/integration costs of EV manufacturing that are on top 
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���� Social cost of carbon 
(SCC) [in $USD 2020 / 
metric ton of CO2] 

$200 $50 Approximation of values 
from the Interagency 
Working Group on the 
Social cost of Greenhouse 
Gases (IWG) ((IWG), n.d.). 
SCC varies by year and 
discount rate and depends 
on projected future state 
of world, among many 
other assumptions. Revesz 
et al. (2017) suggest the 
use of $50/t (2020) as the 
“best estimate of the 
social cost of greenhouse 
gases.” Ricke et al. (2018) 
find much higher SCC 
values and range (66% 
confidence intervals of 
$177-805/tCO2).  
 

 

 

 

 

 

 

 

 

  

 
of the base cost of vehicle manufacturing. This parameter also includes credits for the gasoline fuel system and 
emissions controls systems that do not need to be installed in EVs. EV costs are highly uncertain and vary 
significantly in the literature. In this implementation, this parameter represents the cost gap between EVs and 
gasoline vehicles, excluding the production cost of the battery that benefits from learning-by-doing. We estimate 
values of $1000 and $4000 based on ICCT (2019) and UBS (2017) teardown study. 
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4.2. Results and Discussion 

 

Figure 4.3: Change in net social welfare from the no-policy baseline (y-axis values) under 

three levels of ZEV requirements in time step 1 (ZEV1) (blue, yellow, and red), various levels 

of CAFE stringency in time step 2 (CAFE2) (x-axis), and four sets of model assumptions (rows 

and columns). Dotted lines show the CAFE level at which net social welfare is maximized. 

Change in net social welfare are relative to each scenario’s no-policy baseline.  

The effects of CAFE and ZEV on social welfare depend on model assumptions about EV costs 

and consumer preferences and the social cost of carbon (SCC). A binding CAFE policy 

increases net social welfare when assuming a SCC of $200/t (c,d) and decreases it when 

Optimal CAFE2 is non-binding 

0% ZEV1 

25% ZEV1 

50% ZEV1 

(a)    (b) 

(c)    (d) 

Optimal CAFE2 
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assuming a SCC of $50/t (a, b). A binding ZEV policy increases net social welfare when 

assuming a SCC of $200/t and optimistic EV costs and consumer preferences (d), and 

decreases it in the other simulated scenarios (a,b,c). 

Figure 4.3 shows how the net social welfare changes for three levels of ZEV requirements in 

time step 1 (ZEV1) and four sets of model assumptions. The dotted lines show the level of the 

CAFE standard for time step 2 (CAFE2) where net societal welfare is maximized given the level 

of ZEV1.  

In cases with lower SCC (a, b), net societal benefit is at its maximum at fuel economy 

levels at or below the unregulated equilibrium for fuel economy (i.e. when CAFE2 does not bind 

as a policy constraint and does not affect decisions). Beyond that level, additional stringency in 

CAFE2 causes net social welfare to fall. This is consistent with recent literature on CAFE, 

showing that the estimated compliance costs of the policy has been equivalent to $50-300/t 

(Gillingham and Stock, 2018). 

In the cases with higher SCC (c, d), there are values of CAFE that increase net social 

welfare. For the EV pessimistic case, we find that the social welfare optimal CAFE level in time 

step 2 is between 29-30 mpg depending on the value of ZEV in time step 1. For the EV 

optimistic case, we find that it is between 45-46 mpg. We find that a higher level of ZEV in time 

period 1 does indeed result in a higher optimal CAFE standard in time period 2 due to EV cost 

reductions from learning. The shifts in the optimal CAFE arising from higher ZEV standard are 

on the order of 1 mpg, as shown by the dotted lines shifting to the right in Figure 4.3. The 

change in net social benefit also is fairly flat in the region of the optimal CAFE, indicating that 

relatively small changes in net social welfare ($100/vehicle) within +/-10 mpg of the optimal 

value of CAFE. This result likely depends on the assumptions in the logit model and vehicle 

options represented in the simulations. 

We note two phenomena of interest in case (d). A higher ZEV policy in the previous step 

raises the net societal benefit at the same CAFE level; and it also changes where net societal 

benefit is maximized (optimal CAFE in time step 2 increases when ZEV in the previous step is 

higher). Both of these effects contribute to increased net societal benefit induced by the ZEV 

policy (assuming CAFE is set according to net societal benefit maximization). 

Whether the ZEV requirements increase net social welfare or not depends on factors 

including but not limited to consumer preferences for EVs and EV costs. We find that in three 

out of the four cases (a, b, and c in Figure 4.3), ZEV policy reduces net social welfare. In the case 

where the social cost of carbon is high ($200), consumer disutility for EVs is low, and EV non-

battery costs are low (case d in Figure 4.3), ZEV policy in time step 1 increases net social 

welfare. To understand what drives the net change, we examine the breakdown in net social 

welfare changes in Figure 4.4 and scenario results in Table 4.4.  
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Table 4.4: Summary results73 from cases and policy scenarios 

Scenarios (a) P - 50 (b) O - 50 (c) P - 200 (d) O - 200 

EV assumptions Pessimistic Optimistic Pessimistic Optimistic 

WTP_EV [$] -12000 -6000 -12000 -6000 

Non-battery costs [$] 4000 1000 4000 1000 

SCC [$/tCO2] 50 50 200 200 

Outcomes given ZEV %     

ZEV [%] at  t=1 0 50 0 50 0 50 0 50 

EV sales share [%] in t=1 13 50 21 50 13 50 22 50 

EV sales share [%] in t=2 15 17 26 28 28 31 47 48 

Optimal and binding 
CAFE [mpg] at t=2 0-12 0-12 0-14 0-14 29 30 45 46 

FE [mpg_e] in t=1 16 26 18 26 16 26 18 26 

FE [mpg_e] in t=2 17 17 19 19 40 42 72 73 

 

 

 

 

 
73 Results so far rely on a homogeneous logit demand model specification and market scenario comprised only the 
compact car segment with two firms producing a total of four vehicle options as an illustrative case. Results are 
likely sensitive to these assumptions and specifications. 



 
 

97 
 

 

Figure 4.4: Societal outcomes under two levels of ZEV requirements in time step 1 (and their 

associated optimal levels of CAFE in time step 2) (pairs of bars) and four sets of model 

assumptions (columns). Dots represent net societal benefit in each scenario. All quantities are 

relative to baseline scenario outcomes. A third category of outcomes, producer surpluses, did 
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not change from the baseline in the cases and scenarios tested, and therefore do not show up 

as colored bars. 

 In (a) and (b), which use a $50/t SCC, the optimal CAFE2 is non-binding, so when ZEV1 is 

0%, neither policy is binding and there are no changes in outcomes compared to the baseline 

no-policy case. ZEV quotas of 50% result in large reductions in consumer surplus and small 

increases in environmental benefit during the first time step (and no impact on the second time 

step because the optimal CAFE2 are still non-binding). As a result, ZEV causes drops in net social 

welfare.  

In (c) and (d), which use a $200/t SCC, the optimal CAFE2 is binding. With ZEV of 0% at time 

period 1, the reduction of air emissions externalities from a binding optimal CAFE outweigh 

consumer surplus losses, resulting in a net benefit. ZEV quotas of 50% in time period 1 increase 

both environmental benefit (because valued damages are larger) and consumer surplus losses 

(because consumers prefer gasoline vehicles over EVs). In case (c), with pessimistic EV 

assumptions, ZEV decreases net social welfare due to large consumer utility losses outweighing 

reduction in pollution damages. In case (d), with optimistic EV assumptions, ZEV increases social 

welfare because consumer utility losses associated with EVs are smaller and are outweighed by 

their reduction in pollution damages. 

The optimistic EV assumptions in (d) compared to (c) result in several nuanced impacts 

on the net social welfare of ZEV policy, which are worth unpacking. First, optimistic EV 

assumptions result in a large EV share in the baseline no-policy scenario. This reduces the 

change in benefits and costs attributable to a given ZEV policy since the counterfactual baseline 

would already include a large number of EV sales and associated benefits and costs. We see this 

in the results for a 25% ZEV quota are fairly close to the 0% quota (yellow and blue lines in Fig. 

4.3 in (b) and (d)). This is because the model computes an EV market share of 21% (b) and 22% 

(d) in the no policy case, and therefore ZEV quotas below this level do not produce any change 

in social welfare in these cases and that the impact of a ZEV quota of 50% is being measured 

against a baseline no-policy scenario that already has a significant amount of EVs and their 

corresponding costs and benefits. Second, optimistic EV assumptions reduce consumer surplus 

losses associated with EV adoption. Third, optimistic EV assumptions may reduce the influence 

of cost reductions from learning-by-doing, reducing the policy-induced change in EV share. In 

case (d), we see the combined effect of the optimistic EV assumptions leads to smaller 

consumer surplus losses from CAFE (in time step 2) than in case (c), which comes from the 

higher level of EV cost reduction induced by the ZEV policy.  

We find that when ZEV and optimal CAFE are binding, ZEV mandates result in increased 

optimal CAFE levels. We also find that ZEV mandates reduced social welfare in three simulated 

cases and increased social welfare in one case. This depends on whether environmental 

benefits of EVs outweigh reductions in consumer surplus and other effects and these depend 

on various inputs and assumptions. We summarize the key outcomes in Table 4.5. 
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Table 4.5: Key outcomes74 from cases and policy scenarios 

Scenarios (a) P - 50 (b) O - 50 (c) P - 200 (d) O - 200 

EV assumptions Pessimistic Optimistic Pessimistic Optimistic 

WTP_EV [$] -12000 -6000 -12000 -6000 

Non-battery costs [$] 4000 1000 4000 1000 

SCC [$/tCO2] 50 50 200 200 

Key outcomes     

Is the optimal CAFE level binding at 
time period 2? 75 No No Yes Yes 

Does ZEV result in a higher optimal 
CAFE in time period 2? No No Yes Yes 

Does ZEV increase social welfare? No No No Yes 

 

5. Conclusions 

5.1. Key findings 

CAFE and ZEV policy can have dynamic effects on consumer choice, firm decisions, and 

reduction in environmental damages. To understand their potential interaction and overall 

impact on social welfare, we simulate firms pricing and designing gasoline and electric vehicles 

under the two policies over two time steps representing five years each. We explicitly represent 

cost reductions from learning in EV battery pack production and account for policy-induced 

changes in producer surplus, consumer surplus, and use-phase air pollution damage reductions. 

We find that in the cases we tested, when assuming a lower social cost of carbon, the optimal 

CAFE level is non-binding, and ZEV mandates reduce social welfare. When assuming a higher 

social cost of carbon, the optimal CAFE level is binding, with higher ZEV mandates in the 

previous time period inducing higher optimal CAFE standards because of cost reductions from 

learning. In these cases, ZEV may either increase or decrease social welfare, depending on 

whether environmental benefits of EVs outweigh reductions in consumer surplus and other 

effects.  

Our results suggest that the ZEV policy can cause the social-welfare-maximizing level of 

fuel economy standards to be tighter and can either reduce or improve social welfare. Whether 

ZEV standards and resulting increases in optimal CAFE standards increase net social welfare 

depends on assumptions including but not limited to the disutility and cost of electric vehicles, 

as well as environmental externality valuation. 

 
74 Results so far rely on a homogeneous logit demand model specification and market scenario comprised only the 
compact car segment with two firms producing a total of four vehicle options as an illustrative case. Results are 
likely sensitive to these assumptions and specifications. 
75 This is equivalent to “Can increasing CAFE2 beyond the binding level enhance welfare?” 
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5.2. Limitations and Future Work 

Specific predictions about whether or not the optimal CAFE/GHG level is binding and whether 

ZEV mandates increase or decrease social welfare depend on many modeling assumptions 

beyond the EV disutility, cost, and SCC parameters explored in our results. We discuss each of 

these additional assumptions and their implications in turn. 

Where possible, we assumed the optimistic level of parameter to show a potential 

upperbound impact of ZEV. However, there are many key model assumptions and parameters 

that are uncertain and remain to be tested for their impact on net social welfare from ZEV 

policy. Their impact can be complex due to their varied and heterogeneous impacts on the 

baseline no-policy scenario and on the two separate time steps. I discuss several categories of 

these: 

5.2.1. Demand model uncertainties and heterogeneity 

Based on the Greene et al. (2018) meta-study and Helveston et al. (2015) and Whitefoot et al. 

(2017), we note large variations, uncertainties, and heterogeneity in the consumer valuation of 

vehicle attributes, including but not limited to fuel economy, acceleration time, fuel type/EV, 

and EV range. We also note the potential for preferences to change over time, with experience, 

or with adoption and scale e.g. network externalities of charging infrastructure or consumer 

familiarity. Finally, we note the limited number and dimension of preferences for attributes 

currently represented (acceleration time and fuel economy). 

In future work, we expect to capture a wider range of preferences and to simulate 

heterogeneous consumer groups and demand with simulated mixed logit. However, we will still 

face the same limitation noted in the discussion – multiple impacts result from optimism on EVs 

or certain preferences; conditions that are optimistic for EV adoption are not necessarily 

correlated or predictive of net social benefit. With simulation, we may hope to find some 

directional patterns within or between scenarios. 

We also note that while stated preference estimates can sometimes be viewed as an 

upperbound for WTP due to survey takers having particular biases towards paying more than 

they actually would, this may not be the case for results of WTP for emerging technologies. 

Survey takers may either or both underestimate or overestimate how much they would actually 

consider attributes such as EV type and range. For example, depending on the survey sample, 

survey takers overall may be too enthusiastic and overlook EV/range disadvantages, and/or 

they may be overcautious about technology that they haven’t previously considered or fully 

understood, given the unfamiliarity and limitations of the survey instrument and procedure. 

In the longer-term future, it is possible for EVs to become widely accepted as 

alternatives to conventional vehicles without a disutility penalty (zero WTP_EV), for example, if 

extreme fast-charging technologies and ubiquitous infrastructure become available. Recent 

studies estimate WTP for charging, as well as social learning and neighbor effects of EV 
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adoption (Edelenbosch, McCollum, Pettifor, Wilson, & Van Vuuren, 2018; D. L. Greene, Kontou, 

Borlaug, Brooker, & Muratori, 2020; Mau, Eyzaguirre, Jaccard, Collins-Dodd, & Tiedemann, 

2008), which support the case of a changing disutility. When testing cases with lower EV 

disutility values such as zero, we find results with very high and up to 100% EV market share. 

This prevents ZEV policy from having any distinguishable impact on equilibrium solution results. 

We note that more work needs to be done to define the appropriate scope and applicability of 

simulations.  

5.2.2. Supply model structure 

In parallel with improving consumer representation with heterogeneous preferences, it may 

also improve model realism to represent the automakers and their products with more detail. 

The current representation of 2 firms and 2 products each (one gasoline and one electric 

vehicle) in one segment (compact cars) is crude and does not allow for consumer substitution 

between other vehicle fuel types, vehicle segments, or multiple firms in competition. We 

currently simulate a duopoly of 2 generic firms in Nash equilibrium, but would extend the 

number of automakers and products to be more realistic and to get appropriate price decisions 

and margins/markups more reflective of the real world. 

One option for future work to address the product representation problem is the use of 

size and heterogeneity correction factors for composite vehicle alternatives to keep the model 

tractable while obtaining results consistent with a model with elemental choice alternatives. 

The representation of technological progress of EV battery packs is a major limitation of 

this model. Hsieh et al. (2019) estimate a 2-stage battery learning model that separates 

material synthesis and battery production costs. This may help improve the cost reduction 

model, since the simple battery cost learning curve fails to distinguish between materials and 

materials synthesis costs, which are more incompressible than production, manufacturing, and 

assembly costs. The battery cost learning curve may therefore be overpredicting learning-by-

doing cost reductions. 

As noted, the current model is limited to using an industry-wide learning model with 

complete non-appropriable learning spillover. We expect EV battery-producing firms to learn 

(i.e. reduce battery production costs) at a faster rate based on their own production 

experience, but without appropriate data on firm-specific battery costs and production 

volumes, we do not have estimates on whether that is due to a higher learning rate or from 

being at an earlier stage of learning and building on much less cumulative experience, or if the 

exponential learning curve model is even a good model for appropriable within-firm learning-

by-doing cost reductions. 

While the current model attempts to represent appropriable and non-appropriable 

learning-by-doing, we note that economies of scale and R&D are also major drivers of cost 

reductions. These phenomena also have appropriable and non-appropriable portions, but we 

are not aware of appropriate data or models for this. 
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The cost and design of conventional gasoline vehicles are based on Whitefoot et al. 

(2017) and future work may involve adapting the work of recent work studying fuel economy 

technologies and compliance options, such as (A. Jenn, Hardman, et al., 2019) based on EPA 

OMEGA modeling inputs.  

We assume a constant overall fleet size and do not include an outside good as a choice 

alternative. This was to avoid another source and sink of leakage, which would take the form of 

consumers buying the outside good generating uncertain impact on net social welfare.  

5.2.3. Environmental damage calculation uncertainties 

Environmental damages have uncertain and varied valuation in society – we vary the SCC in 

scenario analysis, but we could also vary the VSL assumption that is part of the monetized 

damages of pollution. Azevedo et al. (Deetjen & Azevedo, 2019; Donti, Kolter, & Azevedo, 2019) 

use $8.8 million (in 2010 dollars) for VSL, which is embedded in the damage estimates that are 

used in this study. The results in simulated scenarios have 10-30% of the environmental 

externality from conventional air pollution damages and the rest (majority) from climate-

change-associated damages in the simulated cases assuming $50-200/t. 

I use estimates of marginal emissions for the electric grid based on those used in EPA’s own 

regulatory impact assessment for the CAFE/GHG rules for MY2022-2025 (detailed in the 

appendix). In an alternative case, I assumed 2018 marginal emissions for the electric grid, which 

are representative of short-run consequential emissions estimated from how the grid operates. 

However, these may not reflect potential longer-run changes to the grid, for example, if EV 

adoption induces power plant capacity expansion and particularly if this new generation causes 

changes in the merit order of power plants. Due to the near-medium term (next 2-10 years) 

scope of the current analysis, short-run marginal emissions factors are likely appropriate, 

though further and formal sensitivity analysis is necessary. 

5.2.4. Scope of social welfare 

We use the same 3% discount rate for firm and government calculations, but it is unclear 
whether the government would discount producer surplus at a social or private discount rate.  

We currently do not count “uncounted energy savings” as a consumer benefit, as is done in the 
CAFE/GHG rulemaking (Bento et al., 2019). We ignore negative environmental and social 
externalities beyond air emissions, such as water pollution, noise pollution, or petroleum use 
reduction. All of these may increase the benefits of EVs but also of conventional fuel economy 
options. 

Our scope of analysis is limited to impacts on the new light-duty vehicle market and we ignore 
other leakage pathways such as impacts from changes in VMT (rebound effect), the used car 
market and vehicle retirement (Gruenspecht effect), different usage of cars (second car in 
household, different driving patterns or habits), safety and related benefits and costs, or 
attractiveness of alternative transportation modes.  
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We ignore other policy details, such as compliance flexibilities, special accounting of EVs and EV 
emissions, attribute-differentiated standards, regional nature of ZEV, presence and interaction 
with other EV-related policies such as subsidies, incentives, and infrastructure. 

5.2.5. Time and policy horizon 

Computation limitations currently limit us to implementing two time steps representing a single 
year each. This means the model only accounts for the benefits and costs of products sold in 
each time step (5 years each) and their associated producer surplus, consumer surplus, and 
lifetime environmental damages. With only five years of ZEV and five years of CAFE after that, 
the criteria of increase in net social benefit may be too restrictive. To increase net social 
benefit, excess costs of ZEV1 must be paid off by the (lifetime) benefit of vehicles sold in the 
immediately following period. The benefits of ZEV may be undercounted and adding time steps 
that have associated impacts may allow for the accumulation of compound learning effects, 
which could be a large driver of cost reductions and ultimate net social benefit. 

Instead of simulating more years with freely-decided variables and optimized decisions 
and policies, we attempted an alternative approach by representing longer time periods within 
time steps. This method only added an extrapolated amount of benefits and costs (assuming all 
variables, decisions, and policies were fixed within the entire time step). This approach is crude 
and only represents a rough attempt at counting more benefits of ZEV. Even though the 
discounted infinite series of years for time step 2 attempts to capture the maximum possible 
benefit in time step 2 (optimistic on ZEV impact), both constraints of no new learning and no 
new decisions keep the scenarios conservative. Unfortunately, the preliminary results from 
these side cases where I represented 10 years in time step 2 were not very meaningful or 
interpretable. ZEV1 of 50% became non-binding in the cases tested, resulting in no changes in 
outcomes. Further testing is warranted. 
 

5.2.6. Other 

Finally, inherently uncertain factors affecting the results include foreign markets and policies 

and gasoline prices, which are necessarily exogenous unless simulating globally or in general 

equilibrium, which is beyond the scope of this study. 
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8. Supplementary Information 

Appendix A: Fixed parameters, assumptions, and data sources 

Table A1: Fixed Parameters 

Parameter Description Base 
Value 

Sensitivi
ty 
Values 

Notes / Basis 

Fixed parameters 

� Discount 
rate 
(firms and 
government
) 

3%  For simplicity and consistency, we 
discount producer surplus, consumer 
surplus, and environmental 
externalities with the same discount 
rate.   

Parameters related to automotive products and attributes 

 size class, 
footprint, 
and weight 
of vehicle 
alternatives 

Compact 
car class 
Footprint 
of 12135 
sq in 
Curb 
weight of 
2934 lb 

 2006 vehicle attribute data from Wards 
Automotive 

� Annual 
market size 
of light duty 
vehicles 

17M  Total number of 2018 new vehicle 
registrations in the US (source: 
https://www.statista.com/statistics/26
9872/ 
largest-automobile-markets-
worldwide-based-on-new-car-
registrations/) 
 
Model instantiation assumes entire 
market is made of compact cars. 

���
��� EV 

acceleration 
0-60 mph 
time 

6.5 s  2018 Chevrolet Bolt 

���
�� EV fuel 

economy 
120 mpge  2018 Chevrolet Bolt 

���
��������� EV battery 

pack size 
60 kWh  2018 Chevrolet Bolt 

�, � Engine cost 
and fuel 

Table S3 
& S4 for 

 From Whitefoot et al. (2017) 
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economy 
model 
coefficients 

compact 
cars 

Parameters in demand model  

�, � Demand 
model 
coefficients 

From 
results of 
logit 
model 
(preferen
ce space) 

 From Helveston et al. (2015), except 
��� 

�, � Random-
coefficients 
logit model 
parameters 

1, 1  Model instantiation assumes 
homogenous consumer preferences of 
a single consumer group 

Parameters in experience curve model 

��� Learning 
rate 

0.2  Linn and McConnell (2019) 

�� Cumulative 
EV Li-ion 
battery 
production 
experience 

300 GWh  Cumulative capacity of global Li-ion 
batteries produced for EVs 2010-2018, 
from BNEF, (Kittner, Lill, & Kammen, 
2017; Schmidt, Hawkes, Gambhir, & 
Staffell, 2017) 

�� EV Li-ion 
battery pack 
cost 
[$/kWh] 

200  BNEF, for industry-wide battery cost. 

     

     

     

Parameters used in calculating and monetizing environmental externalities 

 Annual miles 
traveled (for 
environmen
tal benefit 
accounting) 
[mi/yr] 

11200  NHTS reported household annual miles 
by age, averaged, from Transportation 
Energy DataBase 
https://tedb.ornl.gov/wp-
content/uploads/2019/03/TEDB_37-
2.pdf#page=214.  
Alternatively, more detailed schedule 
of annual mileage for cars and light 
trucks by age, estimated by EPA: 
https://tedb.ornl.gov/wp-
content/uploads/2019/03/TEDB_37-
2.pdf#page=91 
 



 
 

112 
 

 Multiplier 
for 
discounted 
lifetime of 
emissions 

11.9  Based on assumed 15 year vehicle 
lifetime and r=3%. 11.9: multiplier for 
discounted (@ 3%) 15 yr lifetime of 
emissions (P/A, 3%, 15) 
https://www.me.utexas.edu/~me353/ 
resources/flash/factor_calculator.html 
 

������������� CO2 
intensity of 
gasoline 
vehicles 
[tCO2/gal 
gasoline] 

0.0115  Based on well-to-wheels (full fuel 
cycle) emissions intensity from GREET. 
See appendix B for details. 

������������� CO2 
intensity of 
electric 
vehicles 
[tCO2/gal 
gasoline 
equivalent] 

0.0198  Based on marginal CO2 emissions 
estimate for 2030 used in EPA 
regulatory impact analysis. See 
appendix B for details. 

�������� 

 

Air pollution 
damage 
intensity for 
gasoline 
vehicles 
[$2018/gal 
gasoline] 

0.31  Estimated damages based on ANL 
GREET and NHTSA estimates of tailpipe 
emissions and US-average. See 
appendix B for details. 

��������
 Air pollution 

damage 
intensity for 
electric 
vehicles 
[$2018/gal 
gasoline 
equivalent] 

0.78  Estimated damages based on US 
marginal power grid emissions in 2018 
and monetized health and 
environmental impacts, from Azevedo 
et al. (2019). Assumes zero emissions 
from battery manufacturing. Assumes 
10% transmission, distribution, and 
charging losses. 
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Appendix B: Net societal benefit calculation details and data sources 

Δ producer surplus 

Calculated from the total profits of all firms based on the sales of their products that are priced 

at prices different form their unit costs 

��� = � �{���(1 + �)��}

��

 

��� = ����� ���� − �����

�

 [1000$/���] 

Δ consumer surplus 

Calculated from the total relative monetized consumer utility of all products based on the 

consumers’ expected relative willingness-to-pay for the products (relative value less price paid) 

��� = � �{���(1 + �)��}

��

 

��� =
1

�
� � �����

����

−��
�

��

 [1000$/���] 

���� = ����� + ����� 

Δ environmental damages 

Calculated from the total environmental damages of all products based on fuel consumption 

rates, pollution intensity (emissions factors of fuel and energy), and economic costs from 

environmental damages 

��� = � ����� (1 + �)���

��

 

Societal costs associated with lifetime CO2 and air pollution damages from firm l’s car sales: 

��� = �
��� [�����]

���
��  �

��
���

�
/ � ��� [�����]

��

∗ 11200 �
��

��
� ∗ 11.9 [��� − ����������] 

∗ �������������� �
� ���

��� �������� ����������
� ∗ ���� �

$

� ���
�

+ ����� �
$

��� �������� ����������
�� 
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∗
1

1000
�
1000$

$
� 

CO2 

For gasoline vehicles, 

���������������������� = (0.009268 + 0.00224) �
����

���
� = 0.0115 �

� ���

��� ��������
� 

Full fuel cycle (well-to-wheels) emissions (9268 g/gal tailpipe, 2240 g/gal from gasoline well-to-

pump fuel cycle (upstream, refining, transport) from ANL GREET 2018. 

For electric vehicles, 

����������������������

= 591 ���
���

��ℎ
� ∗ 2.205 �

�� ���

��
� ∗ 33.7 �

��ℎ

���
� ∗

1

1000
�
��ℎ

��ℎ
�

∗
0.4536

1000
�

� ���

�� ���
� ∗ 1.10 = 0.0219 �

� ���

��� �������� ����������
� 

Data sources for calculating electricity generation CO2 emissions intensity: 

 Marginal CO2 emissions factor for average 2018 US electricity, from Electricity Marginal 

Factors Estimates website (Deetjen & Azevedo, 2019; Donti et al., 2019)(Azevedo et al., 

2019): 591 kg/MWh (estimated for average US; does not include power plant life cycle 

emissions) 

 Alternative assumption about electricity generation emissions rates, based on the 2016 

EPA draft Technical Assessment Report for the Midterm Evaluation of Light-Duty Vehicle 

Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards 

for Model Years 2022-2025: 0.534 g/Wh (time-invariant US-wide estimate based on 

EPA-assumed charging time profile and geographic weights where hybrid cars were sold 

2006-2009 (EPA RIA of FRM, Ch 4.6); includes feedstock-related GHG emissions 

upstream of power plant) 

o This estimate results in total CO2 intensity of 0.0198 tCO2/gal gasoline equiv 

 Assumes 10% transmission, distribution, and charging losses, and no battery end-of-life 

GHG emissions. 

 Battery materials and manufacturing emissions are estimated to result in 0.06 - 0.1 

tCO2/kWh of Li-NMC battery capacity (Dai, Kelly, Gaines, & Wang, 2019; Kelly, Dai, & 

Wang, 2019)(lower end: European battery manufacturing; higher end: Chinese battery 

manufacturing). 0.06-0.1 * 60 kWh pack = 3.6-6 tCO2 over lifetime. 11200 mi/yr / 120 

mpge * 8 yrs = 747 lifetime e-gallons (assumes battery life of 8 yrs). This results in a 

mean estimate of 0.0065 (0.005-0.008) t/gal. 
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Air pollution 

Combining estimates for emission factors from (“Argonne GREET Publication : Updated 

Emission Factors of Air Pollutants from Vehicle Operations in GREET Using MOVES,” n.d.)Cai et 

al., 2013 (ANL 2013), ANL GREET (2018) (“Argonne GREET Publication : Summary of Expansions 

and Updates in GREET® 2019,” n.d.), and NHTSA damage factors (NHTSA, 2012) and assuming 

30 mpg for the 2018 car in ANL (2013), we obtain a value for well-to-wheels (WTW) air 

pollution damage intensity (APDI) for gasoline vehicles:  

�������������� =  0.31 �
$

��� ��������
� 

Data sources for gasoline emissions intensity and damages:  

 Cai et al., 2013 (ANL) Updated Emissions Factors of Air Pollutants Vehicle Operations in 

GREET using MOVES, Table A2 lifetime mileage-weighted average [PTW] air pollutant 

emissions factors (g/mile) for gasoline passenger cars for model years 1990-2020 

 ANL (2018) GREET model 

 Table VIII-16, Economic Values Used for Benefits Computations, NHTSA (2012) FRIA for 

CAFE 2017-2025 

For electricity-associated air emissions, we use marginal damage factors from Azevedo et al., 

2019, for 2018 US-wide-average marginal damage factors for NOx, SO2, and PM2.5. We obtain 

a value for well-to-wheels (WTW) air pollution damage intensity (APDI) for electric vehicles: 

��������������

= �2.7 �
$

��ℎ
(���)� + 5.8 �

$

��ℎ
(���.�)� + 9.9 �

$

��ℎ
(���)��

∗
1

1000
�
��ℎ

��ℎ
� ∗  33.7 �

��ℎ

��� �������� ����������
� ∗ 1.1 ∗ 1.15

= 0.78 �
$

��� �������� ����������
� 

Data sources for electricity emissions damages: 

 Electric grid air pollution emissions factors from Azevedo et al., 2019 (Deetjen & 

Azevedo, 2019; Donti et al., 2019), https://cedm.shinyapps.io/MarginalFactors/ 

(marginal damages from PM2.5, NOx, and SO2 emissions for 2018, US-wide) 

 Assumes 10% transmission, distribution, and charging losses, and no battery end-of-life 

emissions. 

 1.15 factor to bring $2010 values to $2018 values (based on GDP deflator) 

For both gasoline and electric vehicles, we currently ignore criteria air contaminant emissions 

from manufacturing and battery production. 
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Chapter 5: Conclusions and contributions of this thesis 

In this thesis, I explored and investigated consumer choice modeling, optimal engineering 

design, and technology-specific policy simulation in three studies. In the first study (Chapter 2), 

“On the Implications of Using Composite Vehicles in Choice Model Prediction,” I investigated 

the issues of choice set representation in choice modeling methodology. I derived composite 

correction factors for logit-class models that can help reconcile differences in modeling results 

in composite-level and elemental-level models. I then demonstrated cases where correction 

factors may be useful. This contributed to an improved understanding of how competitor 

representation affects choice predictions. In the second study (Chapter 3), “Implications of 

Competitor Representation on Optimal Engineering Design ,” I investigated profit-maximizing 

engineering design models that integrate choice models for demand. Specifically, I studied how 

competitor representation can affect the trade-off between cost and benefit of design change. I 

derived a closed-form expression for the marginal cost and benefit relationship for the level of 

an attribute under optimal design assuming a latent-class or mixed logit (random-coefficients 

logit) demand model. I used this to characterize the impact of competitor representation in a 

case study of optimal automotive design. In the third study (Chapter 4), “The dynamic costs and 

benefits of a technology-forcing policy nested in a broader performance standard: the case of 

ZEV and CAFE,” I addressed the complexity of dynamic effects and nested policy interaction in 

automotive energy and environmental policy. I focus on two policies: Zero-Emission Vehicle 

(ZEV) mandates and Corporate Average Fuel Economy / Greenhouse Gas (CAFE/GHG) 

standards. I simulated consumer, producer, and government decisions in a model with explicit 

technological change, dynamic learning-by-doing spillover effects, policy interaction effects, 

and endogenous fleet standard setting via cost-benefit analysis. I demonstrated the potential 

impacts of ZEV mandates: potential net social benefit or net social cost, depending on key 

factors and parameters. I identified these key factors and quantified the trade-offs that may 

inform ZEV and CAFE/GHG fleet standard policy-making. 

 

A few final words about research: 

"Ce que l'on conçoit bien s'énonce clairement, // Et les mots pour le dire arrivent 
aisément." - Boileau-Despréaux (1674), believed to be the source of the saying "If you 
can't explain it simply, you don't understand it well enough" 
 
"Look forward"  
- Spot (2009) 


