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Abstract

With the recent advancement of data collection techniques, there has been an explosive growth in the size

and complex of data sets in many application domains. The rise of such unprecedented data has posed new

challenges as well as new opportunities to researchers in statistics and data science. Traditional methods,

tailored to static and low-dimensional data, perform poorly or are no longer applicable for modern high-

dimensional data with complex structures. Moreover, classical asymptotic theory easily breaks down under

non-traditional settings where numerous parameters can interact in dynamic ways. Motivated by these new

challenges, this dissertation aims to develop novel methods and technical tools suitable for modern high-

dimensional data with particular emphasis on three types of testing problems: (i) one-sample testing, (ii)

two-sample testing and (iii) independence testing.

One of the major contributions of this thesis is to introduce a flexible two-sample testing framework

that can leverage any existing classification or regression method. By taking advantage of state-of-the-art

algorithms in machine learning, the proposed method can efficiently handle different types of variables and

various structures in high-dimensional data with competitive power under a variety of practical scenarios.

To justify our approach, we provide rigorous theoretical and empirical analysis of their performance. With a

specific focus on Fisher’s linear discriminant analysis, we prove more sophisticated results including minimax

optimality under common regularity conditions. In addition to supervised learning approaches, we also

contribute to the literature by proposing goodness-of-fit tests for high-dimensional multinomials as well as

multivariate generalizations of classical rank-based tests.

Another theme of this dissertation is concerned with permutation tests. Although the permutation

approach is standard in practical implementations of two-sample and independence testing, its theoretical

properties, especially power, have not been explored beyond simple cases. A major challenge of analyzing the

permutation test is that it depends on a random critical value which is a function of observations. We study

how to overcome this challenge and demonstrate that the permutation test has competitive power properties

for many interesting problems under non-traditional settings. In particular we use the minimax perspective

to evaluate the performance of a test and show that the permutation test is optimal for the problems where

minimax lower bounds are available.
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Chapter 1

Introduction

1.1 Problem Statements

Testing the equality of distributions is a fundamental topic in statistics with a wide range of applications.

In astronomy, for example, researchers would like to explain underlying physical phenomenons based on

their theoretical models. Testing whether the true distribution of physical objects agrees with a theoretical

distribution helps astronomers decide the validity of their model approximation and obtain further insights

into astronomical objects (Babu and Feigelson, 2006). In machine learning, it is of interest to determine

whether the distribution of artificial images generated by an unsupervised learning method is similar to the

underlying distribution of real images (Sutherland et al., 2016; Arjovsky et al., 2017). In marketing and

business intelligence, the process of comparing two versions of a website or a mobile application, known as

A/B testing, has been widely adopted to improve customer satisfaction and increase revenue (Siroker and

Koomen, 2013).

Indeed, comparing distributions is a classical topic in statistics and there have been numerous methods

developed since the pioneering work of Pearson (1900). Furthermore their theoretical and empirical properties

have been well-established under classical low-dimensional regimes (e.g. Thas, 2010; Read and Cressie, 2012,

for reviews). In recent years, however, we have witnessed renewed interest in this subject as the modern

data we encounter are increasingly high-dimensional and complex (e.g. image data and network data).

Traditional approaches — which focus on low-dimensional and Euclidean data — often fail or are not easily

generalizable to high-dimensional and/or non-Euclidean data. For instance, classical Hotelling’s T 2 test for

the two-sample problem is only applicable when the dimension is less than the sample size and suffers from

low power when the dimension and the sample size are comparable (Bai and Saranadasa, 1996). Some of

the traditional approaches such as Kolmogorov–Smirnov test are based on empirical distributions and their

extensions to multivariate cases are nontrivial. Motivated by these issues, the main goal of this thesis is to
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propose statistical methods suitable for modern high-dimensional data and to understand their theoretical

properties, particularly focusing on three hypothesis testing problems: 1) the one-sample problem, 2) the

two-sample problem and 3) the independence testing problem. These problems can be formally stated as

follows:

1. One-sample problem. Suppose we observe {X1, . . . , Xn} i.i.d.∼ P where Xi ∈ Rd. Given a

hypothesized distribution P0, the one-sample problem aims at testing whether

H0 : P = P0 versus H1 : P 6= P0.

2. Two-sample problem. Let {X1, . . . , Xm} i.i.d.∼ P and {Y1, . . . , Yn} i.i.d.∼ Q where P and Q are

unknown distributions and Xi, Yi ∈ Rd. The two-sample problem aims at testing whether

H0 : P = Q versus H1 : P 6= Q.

3. Independence testing problem. Given {(X1, Y1), . . . , (Xn, Yn)} i.i.d.∼ PXY where Xi ∈ Rp and

Yi ∈ Rq, we would like to test for independence between X and Y , i.e.

H0 : PXY = PXPY versus H1 : PXY 6= PXPY .

1.2 Permutation Approach

In testing problems, it is usual practice to determine a critical value in a way that the resulting test controls

the type I error rate at level α. For the one-sample problem, finding such a critical value is not an issue

as we can easily simulate the null distribution of a test statistic from known P0. For the two-sample

problem and the independence testing problem, however, the exact null distribution of the test statistic is

rarely available as the underlying distributions are unknown. One common way to approximate this null

distribution is based on asymptotic theory which presents a sharp result in large sample scenarios. This

asymptotic approach, however, lacks a finite sample guarantee on type I error control and often requires

stringent model assumptions that are hardly verifiable in practice. In theoretical computer science, on the

other hand, testing problems are usually tackled from a non-asymptotic view where the established results

hold in finite sample sizes building on concentration bounds (e.g. Canonne, 2015, for a survey). However

the existing tests in this line of work are often impractical as their thresholds depend heavily on unspecified

constants or even unknown parameters (e.g. Chan et al., 2014; Bhattacharya and Valiant, 2015; Diakonikolas

and Kane, 2016). To bypass these issues, this thesis mainly adopts the permutation approach that yields

a valid level α test for two-sample and independence testing (e.g. Pesarin and Salmaso, 2010; Good, 2013,
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for reviews). While the permutation approach is standard in practical implementations of two-sample and

independence testing, its theoretical properties, especially power, have not been explored beyond simple

cases. A major challenge of analyzing the permutation test is that it depends on a random critical value

which is a function of observations. One of the specific aims of this thesis is then to study how to overcome

the issue arising from the random critical value and demonstrate that the permutation test has good power

properties for many interesting problems under non-traditional settings.

1.3 Overview of this thesis

The rest of this thesis is organized as follows.

• Chapter 2. Multinomial Goodness-of-Fit Based on U-Statistics: In this chapter, we consider

multinomial goodness-of-fit tests in the high-dimensional regime where the number of bins increases

with the sample size. In this regime, Pearson’s chi-squared test can suffer from low power due to the

substantial bias as well as high variance of its statistic. To resolve these issues, we introduce a family of

U -statistics for multinomial goodness-of-fit and study their asymptotic behaviors in high-dimensions.

Specifically, we establish conditions under which the considered U -statistic is asymptotically Poisson or

Gaussian, and investigate its power function under each asymptotic regime. Furthermore, we introduce

a class of weights for the U -statistic that results in minimax rate optimal tests.

• Chapter 3. Global and Local Two-Sample Tests via Regression: The goal of this chapter is

to present a regression approach to comparing multivariate distributions of complex data. Depending

on the chosen regression model, our framework can efficiently handle different types of variables and

various structures in the data, with competitive power under many practical scenarios. Whereas

previous work has been largely limited to global tests which conceal much of the local information, our

approach naturally leads to a local two-sample testing framework in which we identify local differences

between multivariate distributions with statistical confidence. We demonstrate the efficacy of our

approach both theoretically and empirically, under some well-known parametric and nonparametric

regression methods. Our proposed methods are applied to simulated data as well as a challenging

astronomy data set to assess their practical usefulness.

• Chapter 4. Robust Multivariate Nonparametric Tests via Projection-Averaging: In this

chapter, we generalize the Cramér–von Mises statistic via projection-averaging to obtain a robust test

for the multivariate two-sample problem. The proposed test is consistent against all fixed alternatives,

robust to heavy-tailed data and minimax rate optimal against a certain class of alternatives. Our

test statistic is completely free of tuning parameters and is computationally efficient even in high

dimensions. When the dimension tends to infinity, the proposed test is shown to have comparable
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power to the existing high-dimensional mean tests under certain location models. As a by-product of

our approach, we introduce a new metric called the angular distance which can be thought of as a robust

alternative to the Euclidean distance. Using the angular distance, we connect the proposed method

to the reproducing kernel Hilbert space approach. In addition to the Cramér–von Mises statistic, we

demonstrate that the projection-averaging technique can be used to define robust multivariate tests in

many other problems.

• Chapter 5. Comparing a Large Number of Multivariate Distributions: In this chapter,

we propose a test for the equality of multiple distributions based on kernel mean embeddings. Our

framework provides a flexible way to handle multivariate data by virtue of kernel methods and allows

the number of distributions to increase with the sample size. This is in contrast to previous studies

that have been mostly restricted to classical univariate settings with a fixed number of distributions.

By building on Cramér-type moderate deviation for degenerate two-sample V -statistics, we derive the

limiting null distribution of the test statistic and show that it converges to a Gumbel distribution.

The limiting distribution, however, depends on an infinite number of nuisance parameters, which

makes it infeasible for use in practice. To address this issue, the proposed test is implemented via the

permutation procedure and is shown to be minimax rate optimal against sparse alternatives.

• Chapter 6. Euclidean and Manhattan Distance for High-Dimensional Two-Sample

Testing: The Euclidean distance is the most commonly used metric for high-dimensional data in the

nonparametric two-sample testing literature. Many testing procedures based on Euclidean distance are

known to be consistent for general alternatives under the classical low-dimensional setting. However,

consistency becomes nontrivial for high-dimensional cases. In the high-dimension and low sample

size setting, we demonstrate that existing nonparametric tests based on Euclidean distance become

parametric tests. Specifically, we show under certain scenarios that they can be consistent only against

first or second moment differences. We partially address this problem by replacing Euclidean distance

with Manhattan distance.

• Chapter 7. Classification accuracy as a proxy for two-sample testing: When data analysts

train a classifier and check if its accuracy is significantly different from chance, they are implicitly

performing a two-sample test. We investigate the statistical properties of this flexible approach in

the high-dimensional setting. We first present general conditions under which a classifier-based test

is consistent, meaning that its power converges to one. To get a finer understanding of the rates

of consistency, we study a specialized setting of distinguishing two Gaussians with different means

and a common covariance. By focusing on Fisher’s linear discriminant analysis (LDA) and its high-

dimensional variants, we provide asymptotic but explicit power expressions of classifier-based tests and

contrast them with corresponding Hotelling-type tests. Surprisingly, the expressions for their power
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match exactly in terms of the parameters of interest, and the LDA approach is only worse by a constant

factor.

• Chapter 8. Minimax optimality of permutation tests: In this chapter, we present a general

non-asymptotic framework for analyzing the power of the permutation test. The utility of the

proposed framework is illustrated in the context of two-sample and independence testing under

both discrete and continuous settings. In each setting, we introduce permutation tests based on

U -statistics and study their minimax performance. We also develop exponential concentration bounds

for permuted U -statistics based on a novel coupling idea. Building on these exponential bounds, we

introduce permutation tests which are adaptive to unknown smoothness parameters without losing

much power. The proposed framework is further illustrated using more sophisticated test statistics

including weighted U -statistics for multinomial testing and Gaussian kernel-based statistics for density

testing.

Finally we conclude with a discussion of open problems and future directions in Chapter 9. Most of technical

details and additional results are deferred to the appendices.
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Chapter 2

Multinomial Goodness-of-Fit Based

on U-Statistics: High-Dimensional

Asymptotic and Minimax Optimality

This chapter is adapted from my work supervised by Sivaraman Balakrishnan and Larry Wasserman. This

work was published in Journal of Statistical Planning and Inference (Kim, 2020).

2.1 Introduction

Suppose that there are n independent random vectors X1 = (X1,1, . . . , X1,d), . . . ,Xn = (Xn,1, . . . , Xn,d)

from a multinomial distribution with unknown parameters π = (π1, . . . , πd)

∈ Ω and

Ω =
{

(π1, . . . , πd) ∈ [0, 1]d :

d∑
j=1

πj = 1
}
.

Given a specific choice of parameter vector π0 = (π0,1, . . . , π0,d) ∈ Ω, the goodness-of-fit test for multinomial

distributions is concerned with distinguishing

H0 : π0 = π versus H1 : π0 6= π. (2.1)
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Pearson’s chi-squared statistic (Pearson, 1900) is one of the well-known test statistics for this problem. Let

Yj =
∑n
i=1 I(Xi,j = 1) for j = 1, . . . , d. Then Pearson’s chi-squared statistic is defined by

χ2
n =

d∑
j=1

(Yj − nπ0,j)
2

nπ0,j
.

The properties of χ2
n have been well-studied in a classical low-dimensional setting (Lehmann and Romano,

2006; Read and Cressie, 2012; Balakrishnan et al., 2013). For instance, the test based on χ2
n is asymptotically

optimal against local alternatives when d is fixed (see, e.g. Chapter 14 of Lehmann and Romano, 2006).

However, in the high-dimensional regime where the dimension is comparable with or much larger than the

sample size, χ2
n suffers from the fact that it can have substantial bias for the testing problem. In other words,

the power of the test can be much smaller than the significance level α against certain local alternatives.

The major cause of the testing bias is due to the expected value of χ2
n:

E
[
χ2
n

]
= d− 1 +

d∑
j=1

πj − π0,j

π0,j
+
n− 1

n

d∑
j=1

(πj − π0,j)
2

π0,j
.

When the null is not uniform, it is possible to observe EH1 [χ2
n] < EH0 [χ2

n], which can trigger a significant

bias problem of χ2
n for some α level. This bias problem becomes more serious when the dimension is large

but the sample size is small (see, Haberman, 1988, for details).

To avoid the testing bias caused by the expected value, we view Pearson’s chi-squared statistic as a

V -statistic (Lemma 2.0.1) and consider a modified χ2
n based on the U -statistic. From the basic property of

U -statistics, the modified χ2
n is an unbiased estimator of

∑d
j=1 (πj − π0,j)

2/π0,j and its expectation becomes

zero if and only if the null is true. As a result, the modified χ2
n can have significant power in the high-

dimensional regime where classical χ2
n is substantially biased (Figure 2.1).

Another limitation of χ2
n in sparse multinomial settings is that it puts too much weight on small entries

in π0, and these small entries make the statistic highly unstable (Marriott et al., 2015; Valiant and Valiant,

2017; Balakrishnan and Wasserman, 2019). In this case, one might need to consider different weights to

obtain higher power of the test. Motivated by these observations, we consider a family of U -statistics of

||A1/2(π − π0)||22 where A is some positive definite matrix.

The primary objective of this work is to investigate the limiting behavior of the proposed U -statistic in

high-dimensions and determine a sufficient condition for A under which the resulting test is minimax rate

optimal for multinomial goodness-of-fit.

Main results. The main results of this chapter are as follows:

1. Poissonian Asymptotic for the U -statistic (Section 2.3.1): We establish conditions under which the

U -statistic has a Poisson limiting distribution.
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Figure 2.1: Illustration of the bias issue of Pearson’s χ2
n test in the high-dimensional regime. For the

simulation, the null and the alternative are chosen π0,i ∝ i and πi ∝ i5, respectively. We take the sample
size n = 800 and the dimension d = 4000. Since the null is rejected when the test statistic is greater than a
certain quantile of the null distribution, we see from the left panel that the χ2

n test is substantially biased.
On the other hand, the right panel shows that the modified χ2

n based on the U -statistic can have significant
power in this example.

2. Gaussian Asymptotic for the U -statistic (Section 2.3.2): We also establish conditions under which the

U -statistic has a Gaussian limiting distribution.

3. Global Minimax Optimality of the U -statistic (Section 2.4): We present a class of weight matrices A

resulting in the minimax optimal test based on the U -statistic.

Related work. A considerable amount of literature has been published on the high-dimensional behavior of

χ2
n (e.g. Tumanyan, 1954, 1956; Steck, 1957; Holst, 1972; Morris, 1975; Read and Cressie, 2012; Rempa la and

Weso lowski, 2016, and the references therein). Our work is especially motivated by Rempa la and Weso lowski

(2016) who present conditions of the Poissonian and Gaussian asymptotics for χ2
n. One can generalize their

result to our U -statistic framework by using the relationship between U - and V -statistics. However, their

analysis is restricted to the case of the null hypothesis and does not easily generalize to other cases with

different weights. Hence, we take different approaches to overcome such shortcomings. The present study is

also closely related to the work by Zelterman (1986, 1987) who proposes a modified χ2
n to handle the testing
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bias of the chi-squared test. The modified statistic is given by

φn = χ2
n −

d∑
j=1

Yj
nπ0,j

. (2.2)

It can be shown that φn is equivalent to the proposed U -statistic up to some constant factors when we

take the weight matrix as A = diag(π−1
0,1, . . . , π

−1
0,d) (Remark 2.1), and thus φn falls into our U -statistic

framework. Diakonikolas et al. (2016) show that the collision-based test is minimax rate optimal for

multinomial uniformity testing where π0 = (1/d, . . . , 1/d)> (Remark 2.3). Their test statistic is a special

case of our U -statistics by taking the identity weight matrix given in (2.6). We generalize their minimax

result to an arbitrary null probability by providing a class of A that leads to the minimax optimal test. Our

result includes the truncated weight considered in Balakrishnan and Wasserman (2019) as an example.

Outline. The rest of the paper is organized as follows. In Section 2.2, we view Pearson’s chi-squared

statistic as a V -statistic and provide a modified and generalized χ2
n based on the U -statistic. In Section 2.3,

we investigate the Poissonian and Gaussian asymptotics for the proposed U -statistic in the high-dimensional

regime. In Section 2.4, we present a sufficient condition for A that results in the minimax optimal test based

on the U -statistic. In Section 2.5, we provide simulation studies. We summarize the results and discuss

future work in Section 2.6. Finally, all of the proofs and additional results are presented in Appendix A.1.

2.2 Pearson’s Chi-squared Statistic based on the U-statistic

As mentioned earlier, when the null is not uniform, Pearson’s chi-squared statistic can have EH1
[χ2
n] <

EH0
[χ2
n]. This phenomenon can result in serious testing bias especially in the high-dimensional regime. To

remove the main testing bias due to its expected value, we first view χ2
n as a V -statistic and suggest the

modified χ2
n based on a U -statistic. To begin, consider the following second order kernel:

hπ0
(Xi,Xj) = (Xi − π0)>D−1

π0
(Xj − π0), (2.3)

where Dπ0
is a d × d diagonal matrix with the diagonal entries {π0,1, . . . , π0,d}. Given hπ0

, we define the

V -statistic as

Vπ0
=

1

n2

n∑
i=1

n∑
j=1

hπ0
(Xi,Xj).

In this setting, the next lemma shows that Pearson’s chi-squared statistic is equivalent to the V -statistic

defined with kernel hπ0 .
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Lemma 2.0.1. Pearson’s chi-squared statistic has another representation as

χ2
n =

d∑
j=1

(Yj − nπ0,j)
2

nπ0,j
=

1

n

n∑
i=1

n∑
j=1

hπ0(Xi,Xj) = nVπ0 .

As is well-known, a V -statistic is typically biased for estimating the population quantity. In order to

remove the estimation bias of Vπ0
, we consider a U -statistic defined as

Uπ0
=

(
n

2

)−1 ∑
1≤i<j≤n

hπ0
(Xi,Xj). (2.4)

It can be easily seen that the expected value of Uπ0
is always non-negative and equal to zero if and only if

π = π0. As a result, Uπ0
does not suffer from the testing bias arising from the expected value.

Remark 2.1. Uπ0
is closely related to the test statistic proposed by Zelterman (1986, 1987). In view of

Lemma 2.0.1, it is straightforward to show that these two statistics have the identity φn = (n− 1)(Uπ0
− 1);

thus they have the exact same power. Unfortunately, even if Uπ0 does not have the problem of the expectation,

it can still have the testing bias against certain alternatives. For instance, Haberman (1988) provides a case

where φn’s power is less than the significance level, which implies that Uπ0
also has the testing bias in the

same case.

There are some theoretical and empirical evidence to suggest that the scaling factor of χ2
n might not be

optimal in the high-dimensional setting (Marriott et al., 2015; Valiant and Valiant, 2017; Balakrishnan and

Wasserman, 2019). For example, when π0 is highly skewed, χ2
n can perform poorly as it is dominated by

small domain entries of π0. Therefore, one might need to consider different weights for χ2
n to obtain higher

power of the test in high-dimensions. In this context, we consider a family of U -statistics by considering a

general weight matrix. The test statistic of our interest is given as

UA =

(
n

2

)−1 ∑
1≤i<j≤n

hA(Xi,Xj), (2.5)

where hA(Xi,Xj) = (Xi − π0)>A(Xj − π0) and A is some positive definite matrix. In the next section, we

study the limiting behavior of UA under different high-dimensional regimes.

2.3 High-Dimensional Asymptotics

The asymptotic behavior of Pearson’s chi-squared statistic has been well studied in the literature (Read

and Cressie, 2012, for a review). In the high-dimensional case where the dimension (the number of bins)

increases with the sample size, Rempa la and Weso lowski (2016) investigate both the Poisson and Gaussian
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approximations for χ2
n. Specifically, when π0 is uniformly distributed, they show that χ2

n is asymptotically

Poisson when n/
√
d → c ∈ (0,∞) and asymptotically Gaussian when n/

√
d → ∞. One can use their

results to establish similar asymptotics for the U -statistic in view of Lemma 2.0.1. However, their analysis

is restricted to the case of the null hypothesis.

In this section, we derive both null and alternative distributions of the considered U -statistic and present

conditions for its high-dimensional limiting behavior. Note that, under the low-dimensional regime where

d is fixed, it is rather straightforward to obtain the limiting distribution of the considered U -statistic. For

example, UA is the U -statistic, which has degeneracy of order one at the null hypothesis; thereby it converges

to a weighted sum of independent chi-squared random variables with one degree of freedom (see, e.g., Lee,

1990, for asymptotic results of U -statistics). More interesting and challenging might be the high-dimensional

case where UA can have a Poisson or Gaussian limiting distribution, which will be studied in the following

subsections.

2.3.1 Poisson Approximation

We start with establishing conditions under which the U -statistic has an asymptotic Poisson distribution. It

is worth noting that, since a Poisson random variable is supported on the non-negative integers, an arbitrary

choice of A does not necessarily yield a Poisson approximation for UA (even after being properly centered

and scaled). For this reason, we focus on the simple case where A is the identity matrix, i.e.

UI =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi − π0)>(Xj − π0), (2.6)

and study its asymptotic behavior. We briefly discuss the generalization of the identity matrix to an arbitrary

matrix A resulting in the Poisson asymptotic in Remark 2.2.

Let us start by defining some conditions which hold as n, d→∞ simultaneously:

(P.1) n3
{∑d

i=1 π
3
i + (π>π)2

}
→ 0.

(P.2)
(
n
2

)
π>π → η1,

(
n
2

)
π>0 π0 → η0 and

(
n
2

)
π>π0 → η2 where ηi ∈ (0,∞) for i = 0, 1, 2.

(P.3) n3
{∑d

i=1 πiπ
2
0,i −

(∑d
i=1 πiπ0,i

)2}→ 0.

Let us consider the following decomposition of UI :

(
n

2

)
UI = W − (n− 1)

n∑
i=1

(
X>i π0 + π>0 π0

)
,

where W =
∑

1≤i<j≤n X>i Xj . Based on this decomposition, first note that condition (P.1) together with the

first condition in (P.2) is to ensure that W is approximately Poisson with mean η1. The last two conditions

12



in (P.2) as well as (P.3) are to guarantee that the remainder of
(
n
2

)
UI other than W converges to η0 − 2η2

in probability. Specifically, (P.3) is a sufficient condition under which the variance of (n − 1)
∑n
i=1 X>i π0

converges to zero so that the asymptotic behavior of
(
n
2

)
UI is dominated by W .

Under the above conditions, we depict the limiting behavior of UI as follows:

Theorem 2.1 (Poisson limiting distributions). Under the conditions (P.1), (P.2) and (P.3), UI has a Poisson

limiting distribution as

(
n

2

)
UI

d−→ Pois(η1)− 2η2 + η0.

In the following corollaries, we demonstrate the above result under the uniform null and the piecewise

uniform alternatives.

Corollary 2.1.1 (Uniform null distribution). Suppose that we are under the uniform null, i.e. π = π0 =

(1/d, . . . , 1/d)>. If n/
√
d→ √2η0 ∈ (0,∞), then

(
n

2

)
UI

d−→ Pois(η0)− η0.

If η0 = 0, then it converges to zero in distribution.

Corollary 2.1.2 (Piecewise uniform alternatives). Suppose that the null distribution is uniformly distributed.

Consider ω1, ω2 > 0 such that ω1 + ω2 = 1. For simplicity, assume that d is even number (otherwise, let

π1,d = 0) and consider the alternative distribution defined by

π1 = (ω1/d, . . . , ω1/d︸ ︷︷ ︸
d/2 elements

, ω2/d, . . . , ω2/d︸ ︷︷ ︸
d/2 elements

).

If n/
√
d→ √2η0 ∈ (0,∞), then under the alternative hypothesis,

(
n

2

)
UI

d−→ Pois(η1)− η0,

where η1 = η0(ω2
1 + ω2

2)/2.

From the above results, let us describe the asymptotic power function of UI under the Poissonian

asymptotic. We assume that the null distribution is uniform where n/
√
d → c ∈ (0,∞); thereby the

distribution of
(
n
2

)
(UI + 1/d) is approximated by the Poisson distribution. Let cα ∈ Z+ be a critical value

13



such that

PH0

((
n

2

)
(UI + 1/d) > cα

)
≤ α,

under the null. Then the power function of UI can be approximated by

βn,d(π) = PH1

((
n

2

)
(UI + 1/d) > cα

)
=

∫ 2η1

0

1

Γ(cα + 1)
ycα exp

(
−y

2

)
dy + o(1), (2.7)

against the alternatives that satisfy (P.1), (P.2) and (P.3).

Remark 2.2. The Poisson approximation for UI can be extended to a general statistic UA when the weight

matrix A is asymptotically close to σI for some σ > 0. Suppose that we are under the null hypothesis and

the conditions (P.1), (P.2) and (P.3) are satisfied. For Σ0 = diag(π0) − π0π
>
0 and Dσ = A − σI, assume

that n2tr{(DσΣ)2} → 0 as n, d→∞. Then the following holds by Chebyshev’s inequality:

(
n

2

)
(UA − σUI) p−→ 0 and

(
n

2

)
UA

d−→ σPois(η0)− ση0.

2.3.2 Gaussian Approximation

In this section, we study the asymptotic normality of UA. Without loss of generality, we further assume that

A is symmetric. Under the null hypothesis, the next theorem provides a sufficient condition under which UA

is asymptotically Gaussian.

Theorem 2.2 (Asymptotic normality of UA under the null). Suppose

tr((AΣ)4)

[tr{(AΣ)2}]2 → 0 and
E
[{
hA(X1,X2)

}4]
+ nE

[{
hA(X1,X2)

}2{
hA(X1,X3)

}2]
n2[tr{(AΣ)2}]2 → 0. (2.8)

Then, under the null hypothesis, we have

√(
n

2

)
UA√

tr
{

(AΣ)2
} d−→ N (0, 1).

Recall that, in Corollary 2.1.1, we established the limiting behavior of UI under the uniform null when

n/
√
d→ c ∈ [0,∞). In the next corollary, we study the asymptotic normality of UI when n/

√
d→∞ under

the uniform null.
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Corollary 2.2.1 (Uniform null distribution). Suppose we are under the null hypothesis where π0 is uniform.

If n/
√
d→∞, then we have

√(
n

2

)
UI√

1/d(1− 1/d)

d−→ N (0, 1).

Let us now turn our attention to the alternative distribution of UA in the high-dimensional asymptotic.

As in Chen and Qin (2010), we consider the following two scenarios under the alternative hypothesis:

(S.1) (Strong Signal-to-Noise) n−1tr((AΣ)2) = o
(
(π − π0)>AΣA(π − π0)

)
.

(S.2) (Weak Signal-to-Noise) (π − π0)>AΣA(π − π0) = o
(
n−1tr((AΣ)2)

)
.

To appreciate the given scenarios, let us decompose UA = Uquad + Ulinear where

Uquad =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi − π)>A(Xj − π),

Ulinear =

(
n

2

)−1 ∑
1≤i<j≤n

{
(Xi − π)>A(π − π0) + (Xj − π)>A(π − π0) + ||A1/2(π − π0)||22

}
.

Accordingly, we have E [Uquad] = 0 and E [Ulinear] = ||A1/2(π − π0)||22. Under (S.1), UA is dominated by

Ulinear and thus

UA − ||A1/2(π − π0)||22√
Var(UA)

=
Ulinear − ||A1/2(π − π0)||22√

Var(Ulinear)
+ oP (1),

whereas under (S.2), UA is dominated by Uquad so that

UA − ||A1/2(π − π0)||22√
Var(UA)

=
Uquad√

Var(Uquad)
+ oP (1).

Hence, in order to establish the asymptotic normality of UA, we need to study the limiting behavior of Ulinear

and Uquad under each scenario. The result is summarized in the following theorem.

Theorem 2.3 (Asymptotic normality of UA under the alternative). Assume either i) (S.1) and (π −
π0)>AΣA(π − π0) <∞, or ii) (S.2) and the condition (2.8) given in Theorem 2.2. Then

UA − ||A1/2(π − π0)||22√
Var(UA)

d−→ N (0, 1),
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where

Var (UA) =

(
n

2

)−1{
tr{(AΣ)2}+ 2(n− 1)(π − π0)>AΣA(π − π0)

}
.

Theorem 2.3 together with Theorem 2.2 allows us to describe the power function of UA under the Gaussian

asymptotic. Let zα be the upper α quantile of the standard normal distribution. For notational simplicity,

let us denote

Λ0 = tr{(AΣ0)2}, Λ1 = tr{(AΣ)2} and Λ2 = 2(n− 1)(π − π0)>AΣA(π − π0),

where Σ0 and Σ are the covariance matrix of X under the null and the alternative hypothesis, respectively.

Then the power is approximated by

βn,d(π0, π1, A) = Φ

(
−

√
Λ0√

Λ1 + Λ2

zα +

√(
n

2

) ||A1/2(π − π0)||22√
Λ1 + Λ2

)
+ o(1). (2.9)

Under (S.1) together with the additional assumption (S.3) below:

(S.3) n−1tr((AΣ0)2) = o
(
(π − π0)>AΣA(π − π0)

)
,

the power function of UA can be further simplified to

βn,d(π0, π1, A) = Φ

( √
n||A1/2(π − π0)||22√

4(π − π0)>AΣA(π − π0)

)
+ o(1).

On the other hand, under (S.2), the approximation becomes

βn,d(π0, π1, A) = Φ

(
−
√

tr{(AΣ0)2}√
tr{(AΣ)2}

zα +
n||A1/2(π − π0)||22√

2tr{(AΣ)2}

)
+ o(1).

2.4 Minimax Optimality

As discussed before, χ2 statistic tends to have a large variance by putting too much weight on small entries of

π0. Consequently, the resulting test can perform poorly and is not minimax optimal in the high-dimensional

setting (Balakrishnan and Wasserman, 2018). This motivates us to consider different weights for the test

statistic. In this section, we discuss the choice of the weight matrix A from a minimax point of view. To

formulate the minimax problem, we modify the hypotheses given in (2.1) as

H0 : π = π0 versus H1 : ||π − π0||1 ≥ εn, (2.10)
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where ||x||1 is the `1 norm of x ∈ Rd. Let us consider a set of level α test functions, φ : {Xi}ni=1 7→ {0, 1},
such that

Φn,α =
{
φ : PnH0

(φ = 1) ≤ α, 0 < α < 1
}
. (2.11)

Then the global minimax risk (see e.g., Valiant and Valiant, 2017; Balakrishnan and Wasserman, 2019) is

defined as the supremum over the local minimax risk:

Rn(εn) = sup
π0∈Ω

Rn(εn, π0),

where the local minimax risk is given by

Rn(εn, π0) = inf
φ∈Φn,α

sup
{
EH1 [1− φ] : ||π − π0||1 ≥ εn, π ∈ Ω

}
.

For a given δ ∈ (0, 1− α), the global minimum separation rate is characterized by

ε∗n = inf
{
εn : Rn(εn) ≤ δ

}
.

Under the given setting, Valiant and Valiant (2017) show that the global minimax rate is

ε∗n �
d1/4

√
n
.

The main objective of this section is to find a sufficient condition for A that results in minimax rate

optimal test based on the U -statistic. We first describe that the test based on the U -statistic with a mixture

weight is minimax rate optimal in Section 2.4.1 and we go on to generalize this result in Section 2.4.2.

2.4.1 U-statistic weighted by a mixture distribution

The weight used in Uπ0 often results in a high variance of the test statistic especially when π0 is sparse. UI

does not suffer from the same variance issue but its weight does not use information of the null distribution.

We combine Uπ0
and UI to reduce the disadvantages associated with each and obtain a minimax rate optimal

test. Let us define the mixture distribution by

πmix =
1

2
π0 +

1

2
πunif, (2.12)

17



where πunif = (1/d, . . . , 1/d). Then by using Amix = diag{π−1
mix,1, . . . , π

−1
mix,d}, the resulting U -statistic is

defined by

Umix =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi − π0)
>
Amix(Xj − π0). (2.13)

To test (2.10), we reject the null hypothesis when Umix is greater than the critical value:

φ(Umix) = I

Umix >

√
1

α

(
n

2

)−1

tr{(AmixΣ0)2}

 ,

where Σ0 = diag (π0)− π0π
>
0 . Then we can see that φ(Umix) has nontrivial power when εn � d1/4/

√
n and

thus it is global minimax rate optimal. We formally state this result in Theorem 2.4 which holds for more

general test statistics.

Remark 2.3. Diakonikolas et al. (2016) show that the collision-based test statistic

W =
∑

1≤i<j≤n
X>i Xj

is minimax rate optimal for multinomial uniformity testing. For the uniform null case, Umix is equivalent

to the collision-based test statistic W ; thereby, our result can be viewed as a generalization of Diakonikolas

et al. (2016) to arbitrary null probabilities.

Remark 2.4. Poissonization, where the sample size has a Poisson distribution, is a standard assumption in

the literature to construct the upper bound of the minimax risk. Under Poissonization, several statistics have

been proposed to obtain the minimax optimality (Valiant and Valiant, 2017; Balakrishnan and Wasserman,

2019). We would like to emphasize that our minimax result is established without assuming Poissonization.

2.4.2 Generalization

The mixture distribution in (2.12) can be generalized by considering an arbitrary but fixed γ ∈ (0, 1) such

that

π
(γ)
mix = γπ0 + (1− γ)πunif.

For a given weight vector w ∈ Rd, we say that w ∈ Rd is comparable to π
(γ)
mix, if there exist fixed constants

C1, C2 > 0 independent of n and d such that C1π
(γ)
mix,i ≤ wi ≤ C2π

(γ)
mix,i for all i = 1, . . . , d. We denote a
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weight vector comparable to π
(γ)
mix by

w ∼ π(γ)
mix.

Based on these notations, let us define a class of weight matrices:

Aw =
{

diag
(
w−1

)
∈ Rd×d : w ∈ Rd and w ∼ π(γ)

mix for some γ ∈ (0, 1)
}
. (2.14)

Then the test based on the U -statistic associated with any Aw ∈ Aw:

φ(Uw) = I

Uw >
√

1

α

(
n

2

)−1

tr{(AwΣ0)2}


is global minimax rate optimal. The result is summarized in the next theorem.

Theorem 2.4 (Global minimax optimality of Uw). For testing (2.10), the test based on φ(Uw) has size at

most α. In addition, suppose there exists a universal constant C > 0 independent of n and d such that

ε2n ≥
C
√
d

n

[
1√
α

+
1

ζ

]
, (2.15)

for any ζ ∈ (0, 1], then we have PH1(φ(Uw) = 0) ≤ ζ. Hence, φ(Uw) is global minimax optimal.

Here we provide several examples that belong to the proposed framework.

Example 2.1 (Truncated χ2). Balakrishnan and Wasserman (2019) show that the test based on the truncated

χ2 test statistic is global minimax rate optimal. Unlike the classical χ2 statistic, the truncated χ2 test statistic

is weighted by θtrunc,j = max{π0,j , 1/d} for j = 1, . . . , d. Note that θtrunc ∼ πmix since πmix,j ≤ θtrunc,j ≤
2πmix,j for all j = 1, . . . , d. Therefore, it satisfies the comparable condition with C1 = 1 and C2 = 2.

Example 2.2 (`p-type mixture). For p ≥ 1, let us define

θ`p,j =

(
πp0,j + πpunif,j

2

)1/p

for j = 1, . . . , d. Then we observe that θ`p ∼ πmix since πmix,j ≤ θ`p,j ≤ 21−1/pπmix,j for all j = 1, . . . , d,

where we used ||x||1 ≤ 21−1/p||x||p ≤ 21−1/p||x||1 for p ≥ 1. In fact, if p =∞, it corresponds to the truncated

weight as θ`∞ = θtrunc.
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Figure 2.2: Power comparisons between five different tests based on Utrunc, Umix, UI , Uπ0
and Pearson’s

χ2
n at significance level α = 0.05.

2.5 Simulations

In this section, we provide numerical results to illustrate the finite sample performance of the proposed

methods. In the first simulation study, we compare power between Pearson’s chi-squared test and the

proposed tests based on U -statistics. We consider four different U -statistics: Uπ0 , UI , Umix and Utrunc where

Utrunc is the U -statistic with truncation weights described in Example 2.1. We let the null distribution π0

have a power law distribution where the probability of the ith bin is proportional to the r0th power of its

index, i.e. π0,i ∝ ir0 for i = 1, . . . , d. When r0 is close to zero, then the null distribution becomes close to the

uniform distribution. On the other hand, when r0 has a large value, the null distribution becomes skewed

to the left. In our simulations, we consider two null distributions with r0 = 1 and r0 = 5. The alternative

distribution π is also chosen to have a power law distribution as πi ∝ ir for i = 1, . . . , d and we change r

to describe different power behaviors. The null and alternative distribution of each statistic are estimated

via Monte Carlo simulations with 1000 repetitions where we take the sample size and the number of bins as

n = 200 and d = 2000, respectively.

The simulation results are presented in Figure 2.2. From the results, we observe that Pearson’s χ2
n test

shows entirely different behaviors between two alternatives where (i) r0 < r and (ii) r0 > r. Specifically,

when r0 < r, Pearson’s χ2
n test is extremely biased and has zero power to reject the null hypothesis, whereas

it has the highest power among the considered tests when r0 > r. In contrast, the tests based on the U -

statistics are considerably robust toward the testing bias and perform reasonably well against the entire range

of alternatives. This illustrates the benefit of the proposed U -statistic framework under the high-dimensional

regime. For the comparison between the U -statistics, no test is uniformly more powerful than the others. In

particular, the test based on Uπ0 outperforms the other tests when r0 > r, but underperforms when r0 < r.
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Figure 2.3: Comparisons between the empirical power and the theoretical power based on the normal
approximation at significance level α = 0.05.

On the other hand, the test based on UI performs the best when r0 < r and performs the worst when r0 > r.

The test based on Umix are usually the second best and better than the one based on Utrunc.

In the second simulation study, we compare the empirical power of the tests and the corresponding

theoretical power based on the normal approximation established in (2.9). For the comparison, we consider

three U -statistics: Uπ0
, UI and Umix, and choose the null distribution as π0,i ∝ i for i = 1, . . . , d. Under

the alternative, we consider two power law distributions with r = 0.3 and r = 2 where πi ∝ ir for i =

1, . . . , d. As before, the null and alternative distribution of each statistic are estimated via Monte Carlo

simulations with 1000 repetitions where we take the sample size and the number of bins as n = 400 and

d = 100, 300, 500, 700, 1000, 1500. The results are given in Figure 2.3. It is seen from the results that the

power approximation via asymptotic normality looks fairly robust over different dimensions especially against

the alternative distribution with r = 2.

2.6 Summary and Discussion

In this work, we introduced a family of U -statistics for multinomial goodness-of-fit tests and investigated their

asymptotic behaviors in the high-dimensional regime. Specifically, we established the conditions under which

the U -statistic is approximately Poisson or Gaussian, and studied its power function under each asymptotic

regime. We also proposed a class of weights for the U -statistic and showed the minimax optimality of the

resulting tests. Despite the fact that the proposed tests achieve minimax rate optimality, they still have

room for improvement. In particular, the considered class of weight functions only uses the information of

π0 but not π. When prior information about π is available (e.g. differences exist in specific bins with high

probability), then it is possible to design more powerful test by incorporating that information. In this case,
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it would be beneficial to use our asymptotic results and choose A that maximizes the asymptotic power

function under the given restrictions. We reserve this topic for future work.
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Chapter 3

Global and Local Two-Sample Tests

via Regression

This chapter is adapted from my joint work with Ann Lee and Jing Lei. This work was published in Electronic

Journal of Statistics (Kim et al., 2019a).

3.1 Introduction

Given two distributions P0 and P1 on RD, the global two-sample problem is concerned with testing H0 : P0 =

P1 versus H1 : P0 6= P1, based on independent random samples from each distribution. This fundamental

problem has a long history in statistics and has been well-studied in a classical setting (see, e.g., Thas,

2010). Recently, however, there has been renewed interest in this field as modern data we encounter have

become more complex and diverse. Traditional approaches, which focus on low-dimensional and Euclidean

data, often fail or are not easily generalizable to high-dimensional and non-Euclidean data. Additionally,

some recent developments in high-dimensional two-sample testing are limited to simple alternatives such as

location and scale differences (see, Hu and Bai, 2016, for a recent review). In this context, there is a need

to develop a new tool for the two-sample problem that can efficiently handle complex data and can detect

differences beyond location and scale alternatives.

When the null hypothesis of the global two-sample test is rejected, it is often valuable (for e.g. scientific

discovery, calibration of simulation models, and so on) to further explore how the two distributions are

different. Specifically, as a follow-up study to the global test, one might wish to identify locally significant

regions where the two distributions differ. This topic, which we refer to as the local two-sample problem, has

been studied by Duong (2013) who uses kernel density estimators to identify local differences between two
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density functions. However, the kernel density approach may perform poorly when distributions are not in

a low-dimensional Euclidean space, and hence another tool is needed for more challenging settings.

The goal of this work is to develop a general framework for both global and local two-sample problems

that overcomes the aforementioned challenges. Specifically, we aim to design a two-sample test that can

efficiently handle different types of variables (e.g. mixed data types) and various structure (e.g. manifold,

irrelevant covariates) in the data. Consequently, the resulting test can have substantial power for a variety

of challenging alternatives. We achieve our goal by connecting the two-sample problem to a regression

problem as follows. Let f0 and f1 be density functions of P0 and P1 with respect to a common dominating

measure. We view f0 and f1 as conditional densities f(x|Y = 0) and f(x|Y = 1) by introducing an

indicator random variable Y ∈ {0, 1}. Then by Bayes’ theorem, the hypothesis H0 : f0(x) = f1(x) for all

x ∈ S = {x ∈ RD : f0(x) + f1(x) > 0} can be verified to be equivalent to the hypothesis that involves the

regression function:

H0 : P(Y = 1|X = x) = P(Y = 1), for all x ∈ S. (3.1)

We state the corresponding global and local alternative hypotheses as

H1 : P(Y = 1|X = x) 6= P(Y = 1), for some x ∈ S, and

H1(x) : P(Y = 1|X = x) 6= P(Y = 1), at fixed x ∈ S,

respectively.

Motivated by the above reformulation, we propose a testing procedure that measures an empirical distance

between the regression function P(Y = 1|X = x) and the class probability P(Y = 1). We refer to this

approach as the regression test. Depending on the choice of regression method, the regression test can adapt

to nontraditional data settings. As we shall see, the power of the test is closely related to the mean square

error of the chosen regression estimator. In addition, by choosing a nonparametric regression method, the

global regression test can be sensitive to general alternatives beyond location and scale differences. We will

demonstrate the benefits of the regression test with both theoretical and empirical results.

3.1.1 Motivating Example

We motivate our approach by comparing multivariate distributions of galaxy morphologies, but the proposed

framework benefit other areas of science and technology as well (involving, e.g., outlier detection, calibration

of simulation models, and comparison of cases and controls). A galaxy’s morphology is the organization of a

galaxy’s light, as projected into our line of sight and observed at a particular wavelength as a pixelated image.

Morphological studies are key to understanding the evolutionary history of galaxies and to constraining
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Figure 3.1: Result of local two-sample test of differences between high- and low-SFR galaxies in a seven-
dimensional morphology space. The red squares indicate regions where the density of low-star-forming
galaxies are significantly higher, and the blue circles indicate regions in morphology space that are dominated
by high-star-forming galaxies; the gray crosses represent insignificant test points. The galaxies are embedded
in a two-dimensional diffusion space for visualization purposes only (see Appendix B.2 for details); Ψ1 and
Ψ2 here denote the first two coordinates.

theories of the Universe; see e.g. Conselice (2014) for a review. So far astronomers have only been able to

study one or two morphological statistics (or projections of these) at a time instead of an entire ensemble.

The reason is a lack of tools for effectively comparing and jointly analyzing multivariate or high-dimensional

data in their native spaces. A global hypothesis test with a binary reject yes/no answer is also not informative

enough to explain how two distributions are different in a multivariate feature space.

We illustrate the efficacy of the proposed global and local testing framework on the morphology statistics

of two galaxy populations with high and low star-formation rate (SFR), respectively. The challenge here is

not only that the problem involves multivariate data, but also that some of the morphological statistics are

mixed discrete and continuous type with heavy outliers. We efficiently handle this issue by building on the

success of random forests regression. The visualized local two-sample result is shown in Figure 3.1 and the

details of the analysis can be found in Section 3.6.

3.1.2 Related Work

In recent years, several attempts have been made to connect binary classification with two-sample testing.

The main idea of this approach is to check whether the accuracy of a binary classifier is better than chance

level and reject the null if the difference is significant. Such an approach, referred to as an accuracy or
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classification test, was conceptualized by Friedman (2003) and has since been investigated by several authors

(Ojala and Garriga, 2010; Olivetti et al., 2015; Ramdas et al., 2016; Rosenblatt et al., 2016; Gagnon-Bartsch

and Shem-Tov, 2019; Lopez-Paz and Oquab, 2016; Hediger et al., 2019). In the same manner as our regression

framework, a key strength of the accuracy test is that it offers a flexible way for the two-sample problem

as it can utilize any existing classification procedure in the literature. However, the classification accuracy

framework is not easily converted to a local two-sample test. In addition, many classifiers are estimated by

dichotomizing regression estimators and the discrete nature of such classifiers may result in a less powerful

test (see Section 3.5.2 and other simulation results).

For the global two-sample test, our framework can be viewed as an instance of goodness-of-fit testing

for regression models (e.g. González-Manteiga and Crujeiras, 2013, for a review). There is a substantive

literature on this topic including Hardle and Mammen (1993), Weihrather (1993), González-Manteiga

and Cao (1993), Zheng (1996), Zhang and Dette (2004), Hart (2013) and among others. This line

of work typically concentrates on comparing differences between parametric (e.g. linear regression) and

nonparametric (e.g. kernel regression) fits from an asymptotic point of view. For example, Hardle and

Mammen (1993) consider the squared deviation between a parametric regression estimator and a kernel

estimator. They show that their test statistic converges to a normal distribution under the null hypothesis

and justify the use of the wild bootstrap procedure. However, this type of asymptotic approach is challenging

to analyze beyond kernel-type estimators and often requires strong technical assumptions. In contrast, our

framework is designed to compare any type of regression estimators with a specific constant fit by building

upon the permutation principle. Hence the resulting test is valid in any finite sample sizes. Moreover we

present a unified framework of studying the power of the regression test by taking advantage of existing

results on the estimation error.

For the local two-sample test, our approach has similarities to independent work by Cazáis and Lhéritier

(2015) who estimate the Kullback-Leibler divergence between P(Y = 1|X = x) and P(Y = 1). Our procedure,

however, identifies locally significant areas with statistical confidence whereas Cazáis and Lhéritier (2015)

graphically decide a threshold for the significance.

3.1.3 Overview of this chapter

We outline this chapter as follows: In Section 3.2, we introduce the proposed metrics, test statistics and

algorithms for the global and local regression tests. In Section 3.3, we study theoretical properties of the

global regression test. We begin by considering a simple scenario where two populations only differ in their

means in Section 3.3.1. In this scenario, we show that the regression test based on Fisher’s linear discriminant

analysis (LDA) achieves the same local optimality as the Hotelling’s T 2 test. Moving on to general regression

settings in Section 3.3.2, we establish a connection between the testing error of the global regression test
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and the mean integrated square error (MISE) of the regression estimator. In Section 3.4, we turn to the

local two-sample problem and investigate general properties of the local regression tests. In Section 3.4.1,

we describe the testing error of the local regression test in terms of the mean square error (MSE) of the

regression estimator. We further establish an optimality of the local regression tests over the Lipschitz

class from a minimax point of view in Section 3.4.2. When data have intrinsic dimension, we show that

the performance of the local regression tests based on kNN or kernel regression only depends on intrinsic

dimension in Section 3.4.3. Section 3.4.4 studies the limiting distribution of the local permutation statistic to

avoid a high computational cost from permutations for large sample size. In Section 8.9, simulation studies

are provided to illustrate finite sample performance of the global and local regression tests. In Section 3.6,

we apply the proposed approach to a problem in astronomy and demonstrate its efficacy. All the proofs are

deferred to Appendix C.4.

Notation. Throughout this chapter, we denote the class probabilities P(Y = 0) and P(Y = 1) by π0 and

π1, respectively, and write the joint distribution of (X,Y ) by π0[P0 × δ0] + π1[P1 × δ1] where δk denotes the

point mass at k for k = 0, 1. We denote the corresponding conditional probability P(Y = 1|X = x) by m(x),

which can be explicitly written as

m(x) =
π1f1(x)

π1f1(x) + π0f0(x)
.

We use PX(·) to denote the marginal probability measure of X and ||Z||2 denotes the Euclidean norm of

a vector Z ∈ RD. The symbols
p−→ and

d−→ stand for convergence in probability and in distribution,

respectively. We use an . bn if there exists C > 0 such that an ≤ Cbn for all n. Similarly, an � bn if there

exist constants C,C ′ > 0 such that C ≤ |an/bn| ≤ C ′ for all n. As convention, the acronym i.i.d. is used to

represent independent and identically distributed.

3.2 Framework

3.2.1 Metrics

A common metric for comparing two distributions is the difference between two density functions f0(x) and

f1(x); this metric has been used for global and local two-sample testing by Anderson et al. (1994) and Duong

(2013). Another natural metric, suggested for global two-sample testing by Keziou and Leoni-Aubin (2005),

Fokianos (2008) and Sugiyama et al. (2011), is the density ratio f1(x)/f0(x). Although both the density

difference and density ratio metrics are intuitive, there are several weaknesses associated with each of them.

For example, the estimation of a density difference is largely limited to kernel density estimators, which are

sensitive to the curse of dimensionality. The density ratio, on the other hand, could potentially be estimated
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using various regression methods thanks to the following reformulation:

f1(x)

f0(x)
=
π0

π1

m(x)

1−m(x)
,

(see, e.g., Qin and Zhang, 1997). The main weakness of the ratio approach, however, is that the ratio is highly

sensitive to the tail behavior of distributions, and it is not even well defined when m(x) = 1. To overcome

these limitations, we propose an alternative approach which instead compares the regression function with

the class probability. More specifically, we consider

Tglobal =

∫
S

{m(x)− π1}2dPX(x), Tlocal(x) = {m(x)− π1}2 (3.2)

as global and local measures of the discrepancy between two distributions where we assume that π1 is a fixed

constant within 0 < π1 < 1 throughout this chapter. By construction, both Tglobal and Tlocal(x) are bounded

between zero and one. More importantly, we can take advantage of numerous existing regression methods

(see, e.g., Friedman et al., 2009, for popular methods and descriptions) when estimating m(x). Hence, our

approach maintains the flexibility of the density ratio approach while avoiding the problem of ill-defined

quantities.

3.2.2 Test Statistics and Algorithms

Suppose we observe n pairs of samples {(Xi, Yi)}ni=1, where Xi ∈ RD and Yi ∈ {0, 1}. Let m̂(x) be an

estimate of m(x) based on the samples, and π̂1 = 1
n

∑n
i=1 I(Yi = 1). Then by plugging these statistics into

(3.2), we define our global and local test statistics as

T̂global =
1

n

n∑
i=1

{m̂(Xi)− π̂1}2, T̂local(x) = {m̂(x)− π̂1}2. (3.3)

The null distributions of the proposed test statistics are typically unknown, and they depend on the choice

of regression method as well as the distribution of the data. Hence, to keep our framework as general as

possible, we use a permutation procedure to set a critical value that yields a valid level α test for any given

regression estimator under any sampling scheme given in Section 3.2.3. The proposed permutation framework

for global and local two-sample testing are summarized in Algorithm 1 and Algorithm 2, respectively.

3.2.3 Sampling Schemes

In the two-sample problem, there are two common sampling schemes for obtaining the paired data set

{(Xi, Yi)}ni=1, namely i) i.i.d. sampling and ii) separate sampling defined as follows:
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Algorithm 1: Global Two-Sample Testing via Permutations

Require: samples {Xi, Yi}ni=1, number of permutations B, significance level α, a regression method.

(1) Calculate the global test statistic T̂global.
(2) Randomly permute {Y1, . . . , Yn}. Calculate the test statistic using the permuted data.

(3) Repeat the previous step B times to obtain
{
T̂ (1)
global, . . . , T̂

(B)
global

}
.

(4) Approximate the permutation p-value by

p =
1

B + 1

(
1 +

B∑
b=1

I(T̂ (b)
global > T̂global)

)
.

(5) Reject the null hypothesis when p < α. Otherwise, accept the null hypothesis.

Algorithm 2: Local Two-Sample Testing via Permutations

Require: samples {Xi, Yi}ni=1, test points {xj}kj=1, number of permutations B, significance level α, a multiple
testing procedure, a regression method.
(1) Calculate the test statistic T̂local(xj) at the k test points.
(2) Randomly permute {Y1, . . . , Yn}. Calculate the test statistic using the permuted data.

(3) Repeat the previous step B times to obtain {T̂ (1)
local(xj)}

k
j=1, . . . , {T̂

(B)
local(xj)}

k
j=1.

(4) Approximate the permutation p-value at each test point xj by

pj =
1

B + 1

(
1 +

B∑
b=1

I(T̂ (b)
local(xj) > T̂local(xj))

)
.

(5) Apply a multiple testing procedure for controlling the FWER or the FDR at α level.
(6) Return the significant local test points.

• i.i.d. sampling. Under i.i.d. sampling, we observe n pairs of i.i.d. samples {(Xi, Yi)}ni=1 from the joint

distribution π1[P1×δ1]+π0[P0×δ0]. Here we note that n is fixed in advance. Then n1 =
∑n
i=1 I(Yi = 1)

and n0 = n − n1 are Binomial(n, π1) and Binomial(n, π0), respectively. This setting is common in

applications of supervised learning where the goal is to build a model that can successfully predict the

class label Y given the feature vector X (e.g. Friedman et al., 2009). Our goal, on the other hand, is

to test whether the two distributions P0 and P1 are the same or not by leveraging existing methods in

the regression literature.

• Separate sampling. In the case of separate sampling, n0 and n1 are predetermined and they are

not random. We then observe n0 and n1 independent sample points from P0 and P1 separately, which

provides the data set {(Xi, Yi)}ni=1 where Yi = 1 if Xi was drawn from P1 and Yi = 0 otherwise.

We can link the separate sampling to the i.i.d. sampling scheme by randomly ordering the (Xi, Yi) pairs,

so that the data points are exchangeable and for each i ∈ {1, . . . , n}, the conditional distribution of Yi given

Xi = x is m(x) = π1f1(x)/{π1f1(x)+π0f0(x)} where the class probability is given by π1 = n1/n. Therefore,
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although the joint distributions of {(Xi, Yi)}ni=1 are different under i.i.d. and separate sampling schemes,

they share the same regression function.

Remark 3.1. These two sampling schemes are also known as prospective sampling and retrospective (or

case-control) sampling, respectively, and their relationships have been studied in different contexts. For

example, it has been shown that the logistic slope estimates have similar behaviors under both sampling

schemes (see, e.g. Anderson, 1972; Prentice and Pyke, 1979; Wang and Carroll, 1993, 1999; Bunea and

Barbu, 2009). This result has been extended to general regression models by Scott and Wild (2001).

3.3 Global Two-Sample Tests via Regression

The choice of regression method in our framework will ultimately decide whether we achieve competitive

statistical power. In Section 3.3.1, we illustrate the point that the global regression test can be optimal if

we choose a suitable regression method. For this theoretical purpose, we focus on the regression test based

on Fisher’s LDA and show its optimality. In Section 3.3.2, we turn our attention to more general regression

settings and characterize the testing error of the global regression test in terms of the mean integrated square

error (MISE) of the regression estimator.

3.3.1 Fisher’s Linear Discriminant Analysis

In this section, we consider a simple scenario of two sample normal mean to highlight the difference between

our approach and the classification accuracy approach. In particular, we prove that the regression test

based on Fisher’s LDA achieves the same local power as Hotelling’s T 2 test. This result has significance

given that i) Hotelling’s test is optimal under the considered scenario and ii) the classification accuracy test

based on Fisher’s LDA is usually underpowered (Ramdas et al., 2016; Rosenblatt et al., 2016). To facilitate

comparison with the previous results, which are established under separate sampling, we also consider the

case where n0 and n1 are predetermined throughout this subsection.

Suppose we observe {Xi,0}n0
i=1

i.i.d.∼ N(µ0,Σ) and independently {Xi,1}n1
i=1

i.i.d.∼ N(µ1,Σ). We denote the

pooled samples by {Xi}ni=1 = {Xi,0}n0
i=1 ∪ {Xi,1}n1

i=1 where n = n0 + n1. The two-sample problem then

becomes the problem of testing for mean differences as

H0 : µ0 = µ1 versus H1 : µ0 6= µ1. (3.4)

For this particular problem, Fisher’s LDA is a natural choice for regression, assuming normality and equal

class covariances. Let µ̂i be the sample mean vector for each group, S be the covariance matrix of the

combined samples, i.e. S = n−1
∑n
i=1(Xi − µ̂)(Xi − µ̂)> where µ̂ = n−1

∑n
i=1Xi. Then, by putting
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π1 = n1/n, the regression estimator based on Fisher’s LDA is given by

m̂LDA(x) (3.5)

=
π1 exp

{
− 1

2 (x− µ̂1)>S−1(x− µ̂1)
}

π0 exp
{
− 1

2 (x− µ̂0)>S−1(x− µ̂0)
}

+ π1 exp
{
− 1

2 (x− µ̂1)>S−1(x− µ̂1)
} .

One of the most popular test statistics for testing (3.4) is Hotelling’s T 2 statistic, which yields optimal

power for the normal means problem (see, e.g. Anderson, 2003). For the two-sample problem, Hotelling’s

T 2 statistic is defined by

T 2
Hotelling =

n0n1

n0 + n1
(µ̂0 − µ̂1)>S−1

p (µ̂0 − µ̂1),

where Sp is the pooled covariance matrix, that is

Sp =
1

n0 + n1 − 2

(
n0∑
i=1

(Xi,0 − µ̂0)(Xi,0 − µ̂0)> +

n1∑
i=1

(Xi,1 − µ̂1)(Xi,1 − µ̂1)>
)
.

On the other hand, the regression test statistic based on Fisher’s LDA is given by

T̂LDA =
1

n

n∑
i=1

(
m̂LDA(Xi)− π1

)2

.

The next theorem provides a connection between the seemingly unrelated T̂LDA and T 2
Hotelling statistics.

Specifically, it shows that nπ−1
0 π−1

1 T̂LDA is asymptotically identical to Hotelling’s T 2 statistic under the null.

It is also worth pointing out that the theorem still holds without the normality assumption.

Theorem 3.1. Let {Xi,0}n0
i=1 and {Xi,1}n1

i=1 be random samples under separate sampling from two

multivariate distribution with the mean vectors µ0 and µ1, respectively, and the same covariance matrix

Σ. Assume the pooled samples are mutually independent and the third moments of X1,0 and X1,1 are finite.

Suppose that Sp and S satisfy S−1
p = Σ−1(1 +oP (1)) and S−1 = Σ−1(1 +oP (1)). Then, under H0 : µ0 = µ1,

it holds that

nT̂LDA = nπ2
0π

2
1(µ̂0 − µ̂1)>S−1

p (µ̂0 − µ̂1) + oP (1). (3.6)

Therefore,

nπ−1
0 π−1

1 T̂LDA = T 2
Hotelling + oP (1)

d−→ χ2
D,

where χ2
D is the chi-squared distribution with D degrees of freedom.
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Let us now turn to the alternative hypothesis. To begin with, we consider a family of probability functions

that satisfy the following smoothness condition.

Definition 3.1 (Definition 12.2.1 of Lehmann and Romano (2006)). Let {Pµ, µ ∈ Ω} be a parametric model

where Ω is an open subset of RD, and let fµ(x) = dPµ(x)/dν(x) be the density function with respect to

Lebesgue measure ν. The family {Pµ, µ ∈ Ω} is quadratic mean differentiable (q.m.d.) at µ0 if there exists

a vector of real-valued functions η(·, µ0) = (η1(·, µ0), · · · , ηD(·, µ0))
>

such that

∫
RD

[√
fµ0+h(x)−

√
fµ0(x)− 〈η(x, µ0), h〉

]2

dν(x) = o(||h||22) (3.7)

as ||h||2 → 0.

Such q.m.d. families include fairly large parametric models such as exponential families in natural form.

For our purpose, we focus on location q.m.d. families, denoted by {Pµ, µ ∈ Ω}. Specifically, Pµ is a member

of {Pµ, µ ∈ Ω} if its density satisfies fµ(x) = f(x− µ) for which f(x) has zero mean and covariance matrix

Σ. Next, for given Pµ0
and Pµ1

from {Pµ, µ ∈ Ω}, let us consider the local alternative

H1,n : µ1 − µ0 = h/
√
n, (3.8)

where h = (h1, . . . , hD)>. Then, under H1,n, T̂LDA has asymptotic behavior as follows.

Theorem 3.2. Suppose under separate sampling that {Xi,0}n0
i=1

i.i.d.∼ Pµ0 and independently {Xi,1}n1
i=1

i.i.d.∼ Pµ1 where Pµi is a member of the location q.m.d. family with the same covariance matrix Σ and finite

third moments. Suppose that Sp and S satisfy S−1
p = Σ−1(1 + oP (1)) and S−1 = Σ−1(1 + oP (1)). Under the

sequence of local alternatives given in (3.8), we have

nπ−1
0 π−1

1 T̂LDA = T 2
Hotelling + oP (1)

d−→ χ2
D(λ),

where χ2
D(λ) denotes a noncentral chi-square distribution with D degrees of freedom and the noncentral

parameter

λ = π0π1h
>Σ−1h.

The results from Theorem 3.1 and Theorem 3.2 imply that our regression test based on T̂LDA has the same

asymptotic local power as Hotelling’s T 2 test. As a result, the regression test based on T̂LDA is asymptotically

optimal against the local alternatives as Hotelling’s T 2 test.

To illustrate the main point of this section, we compare the performance of T̂LDA with Hotelling’s T 2 test

through Monte Carlo simulations. We randomly generate n0 = n1 = 100 samples from N((0, . . . , 0)>, ID)

and N((µ, . . . , µ)>, ID), respectively and set µ2 = 0.05 for D = 5 and µ2 = 0.01 for D = 20. We also consider
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Figure 3.2: Power comparisons between Hotelling’s T 2 (Hotelling), T̂LDA (Reg), the in-sample
accuracy (Acc-Resub), and the cross-validated accuracy (Acc-CV) via Fisher’s LDA.

two versions of the accuracy-based tests via Fisher’s LDA: the in-sample (re-substitution) accuracy and the

two-fold cross-validated accuracy. To calculate the cross-validated accuracy, we use the balanced sample

splitting scheme in which the first part of data is used to train the LDA, and the second part is used to

estimate the accuracy of the classifier (see, Definition 1 and 2 of Rosenblatt et al., 2016, for more details). To

make a fair comparison, the critical values of the given tests were all decided by the permutation procedure.

As shown in Figure 3.2, the regression test based on T̂LDA has comparable power to Hotelling’s T 2 test that

coincides with our theory. On the other hand, the accuracy tests have less power than Hotelling’s T 2 test.

3.3.2 The MISE and Testing Error for Global Regression

We now turn to more general regression settings and investigate general properties of the global regression

test in both separate and i.i.d. sampling cases. Let M be a certain class of regression m(x) : S ⊆ RD 7→
[0, 1] containing constant functions. Suppose that we have a regression estimator m̂(x) that has the mean

integrated square error as

sup
m∈M

E
∫
S

(m̂(x)−m(x))
2
dPX(x) ≤ C0δn, (3.9)

where C0 is a positive constant and δn = o(1). In the case of i.i.d. sampling, we further assume δn ≥ n−1,

which is typical for nonparametric regression estimators. Our main interest here is in employing the above

MISE to characterize the testing error of the global regression test. Note that the plug-in global statistic

in (3.3) is typically a biased estimator of the MISE and the bias differs from case to case. To simplify our

analysis, we consider sample splitting where the half of data is used to estimate the regression function and
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the other is used to evaluate the empirical squared error. In detail, given samples (X1, Y1), . . . , (X2n, Y2n),

the regression test statistic based on (random) sample splitting is defined by

T̂ ′global =
1

n

2n∑
i=n+1

(m̂(Xi)− π̂1)
2
, (3.10)

where m̂(·) and π̂1 are calculated based on the first half of the data {(X1, Y1), . . . ,

(Xn, Yn)}. In the case of separate sampling, we assume a random ordering in the entire data set and similarly

split it into two parts but with the additional restriction that class probabilities are the same in both parts.

Based on T̂ ′global, we argue that for sufficiently large C1 > 0 and n, the testing error of the global regression

test can be arbitrarily small against the class of global alternatives given by

M(C1δn) =
{
m ∈M :

∫
S

(m(x)− π1)
2
dPX(x) ≥ C1δn

}
.

Note that since π1 is assumed to be fixed, the regression function m(x) is completely determined by f0

and f1. Thus in the following theorem and hereafter, we use the notation f0, f1 ∈ M to represent m(x) =

π1f1(x)/{π0f0(x) + π1f1(x)} ∈ M. Similarly, we write f0, f1 ∈ M0 to signify that π1f1(x)/{π0f0(x) +

π1f1(x)} = π1 for all x ∈ S. With this notation in hand, we state the main theorem of this subsection.

Theorem 3.3. Consider the case of i.i.d. sampling or separate sampling. In each case, suppose that we have

a regression estimator m̂(·) satisfying (3.9). Let tα be the upper α quantile of the permutation distribution

of T̂ ′global based on m̂(·) where we permute the first half of labels. For fixed α ∈ (0, 1) and β ∈ (0, 1− α), we

assume that there exists a positive constant C ′0,α such that supf0,f1∈M Pf0,f1(tα < C ′0,αδn) ≥ 1− β/2. Then

there exist positive constants C1 and N depending on C0, C
′
0,α, α, β such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂ ′global > tα

)
≤ α and

• Type II error: sup
n≥N

sup
f0,f1∈M(C1δn)

Pf0,f1
(
T̂ ′global ≤ tα

)
≤ β.

Theorem 3.3 uses the assumption that the permutation critical value of the regression test is uniformly

bounded by δn (up to some constant factor) with high probability. We end this subsection with a class of

regression estimators, which satisfy this assumption. Let us consider a class of regression estimators with

the following representation:

m̂(x) =

n∑
i=1

wi(x)Yi,
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where wi(x) ≥ 0 and
∑n
i=1 wi(x) = 1 for all x. In addition, we assume that wi(x) is a function

of {X1, . . . , Xn} but not {Y1, . . . , Yn}. This class of estimators, often called linear smoothers, contains

many popular regression methods such as k-nearest neighbor (kNN) regression, kernel regression and local

polynomial regression. Focusing on linear smoothers, we provide the following corollary.

Corollary 3.3.1. Consider the case of i.i.d. sampling or separate sampling. In each case, let T̂ ′global be the

global regression test statistic in (3.10) based on a linear smoother m̂(·) with the property in (3.9). Let tα be

the upper α quantile of the permutation distribution of T̂ ′global where we permute the first half of labels. Then

for fixed α ∈ (0, 1) and β ∈ (0, 1 − α), there exist positive constants C1 and N depending on C0, α, β such

that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂ ′global > tα

)
≤ α and

• Type II error: sup
n≥N

sup
f0,f1∈M(C1δn)

Pf0,f1
(
T̂ ′global ≤ tα

)
≤ β.

3.3.3 Examples

In the case of i.i.d. sampling, the convergence rate δn of commonly used regression estimators have been

well-established and these results can be directly used to study the testing error of the global regression test.

We list several known results here. More examples can be found in Györfi et al. (2002), Tsybakov (2009)

and Devroye et al. (2013).

• kNN regression. WhenM is a class of Lipschitz continuous functions, the convergence rate of kNN

estimators satisfies δn = n−2/(2+D) (Györfi et al., 2002). This can be generalized to a Hölder space

with smooth parameter β in which the rate becomes δn = n−2β/(2β+D) (Györfi et al., 2002; Ayano,

2012) for 0 < β ≤ 1.5. Furthermore, Kpotufe (2011) shows that kNN estimators are adaptive to the

intrinsic dimension d � D under appropriate conditions. In this case, the convergence rate becomes

much faster as δn = n−2/(2+d) � n−2/(2+D).

• Kernel regression. Kernel regression estimators also achieve the converge rate as δn = n−2/(2+D)

for Lipschitz continuous functions and more generally as δn = n−2β/(2β+D) for a Hölder space with

smooth parameter 0 < β ≤ 1.5 (Györfi et al., 2002). The adaptivity of kernel regression to the intrinsic

dimension has been proved by Kpotufe and Garg (2013). Following their results, the convergence rate

becomes δn = n−2/(2+d) � n−2/(2+D) when there exists a low-dimensional structure in the data.

• Local polynomial regression. LetM be a Sobolev space with smoothness α. Then local polynomial

regression estimators has the convergence rate as δn = n−α/(α+d) where d is manifold dimension smaller
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than the original dimension D (Bickel and Li, 2007).

• Random forests regression. For Lipschitz continuous functions, Biau (2012) shows that the random

forest estimator converges at rate δn = n−
0.75

s log 2+0.75 where s is the number of the relevant features.

Hence, the convergence rate of the random forests becomes faster than n−2/(2+D) when s ≤ D/2 under

certain conditions. Wager and Walther (2015) use the guess-and-check forest algorithm to show that

the convergence rate of the random forest is δn = n− log(ξ)/ log(2ξ) where ξ = 1/(1− 3/4s).

To the best of our knowledge, there has been no detailed investigation of the regression estimation error

under separate sampling. In this case, we cannot directly take advantage of existing results on regression.

However, as the sample size becomes larger, the difference between i.i.d. sampling and separate sampling

becomes minor. Hence we expect that a reasonable regression estimator behaves similarly under both

sampling schemes in large sample sizes, while a detailed analysis is necessary in future work. It is also worth

noting that for certain regression methods, consistency results are not significantly affected by sampling

scheme. For example, the consistency theory for L1 penalized regression relies mainly on the assumption

about a design matrix, which can be fulfilled under both sampling schemes (Van de Geer, 2008; Bühlmann

and Van De Geer, 2011). In such a case, the same convergence rate can be established under both sampling

schemes.

3.4 Local Two-Sample Tests via Regression

The global two-sample test only answers the question whether two distributions are different, whereas in

some applications, it would be more valuable to describe how these two distributions differ in a multivariate

space. With this goal in mind, we now move on to the local two-sample problem and study general properties

of the local regression test.

3.4.1 The MSE and Testing Error for Local Regression

We start by establishing similar results in Section 3.3.2 for local regression tests. Given a local point x ∈ S
of interest, suppose that a regression estimator has the mean square error such that

sup
m∈M

E
[
(m̂(x)−m(x))

2
]
≤ C0,xδn,x, (3.11)

where C0,x is a positive constant and δn,x = o(1). In addition, we assume δn,x ≥ n−1 for i.i.d. sampling.

Then the next theorem shows that for sufficiently large C1,x and n, the local testing error based on the given
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regression estimator can be arbitrarily small against the class of local alternatives given by

M(C1,xδn,x) =
{
m ∈M : (m(x)− π1)

2 ≥ C1,xδn,x

}
.

Theorem 3.4. Consider the case of i.i.d. sampling or separate sampling. In each case, consider the local

regression test statistic T̂local(x) in (3.3) based on a linear smoother m̂(x) =
∑n
i=1 wi(x)Yi with the property

in (3.11). Let tα be the upper α quantile of the permutation distribution of T̂local(x). Then for fixed α ∈ (0, 1)

and β ∈ (0, 1− α), there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂local(x) > tα

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈M(C1,xδn,x)

Pf0,f1
(
T̂local(x) ≤ tα

)
≤ β.

Remark 3.2. Although Theorem 3.4 focuses on a linear smoother, the same conclusion holds for other

regression methods as long as there exists a positive constant C0,x,α such that the permutation critical value

tα is bounded above by C0,x,αδn with high probability (see Theorem 3.3 for a more formal statement).

In order to keep things as simple and concrete as possible, we next focus on the Lipschitz class and

analyze the optimality of the local regression tests from a minimax point of view. In the rest of this section

(Section 3.4.2–3.4.4), we concentrate on i.i.d. sampling scheme to take full advantage of known regression

results. However, as we discussed in Section 3.3.3, similar results are expected to hold under separate

sampling as well.

3.4.2 Minimax Optimality over the Lipschitz Class

For a fixed constant L > 0, let us denote the Lipschitz function class by

MLip =
{
m : |m(x)−m(y)| ≤ L||x− y||2 for all x, y ∈ S

}
.

We also denote the collection of α level tests by Φn,α = {φ : supf0,f1∈M0
Pf0,f1(φ = 1) ≤ α} and denote the

class of Lipschitz local alternatives by

MLip(δn,x) =
{
m ∈MLip : (m(x)− π1)

2 ≥ δn,x
}
. (3.12)

With this notation and fixed α ∈ (0, 1) and β ∈ (0, 1− α), the minimum separation is defined by

δ?n,x = inf
{
δn,x : inf

φ∈Φn,α
sup

f0,f1∈MLip(δn,x)

Pf0,f1(φ = 0) ≤ β
}
, (3.13)
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which is the smallest distance between m(x) and π1 such that the power becomes nontrivial. Then a test is

called minimax rate optimal if it has power uniformly over MLip(δn,x) such that δn,x � δ?n,x.

In this section, we will investigate minimax rate optimality of local regression tests over the Lipschitz

class under i.i.d. sampling. First we formally state an upper bound for the local estimation error based on

kNN and kernel regression in Example 3.1 and Example 3.2, respectively. We then use these results to obtain

the upper bound for the minimum separation in Corollary 3.4.1.

Example 3.1 (kNN regression). For a fixed point x ∈ S, list the data by

(X1,n(x), Y1,n(x)), . . . , (Xn,n(x), Yn,n(x)),

where Xk,n(x) is the kth nearest neighbor of x and Yk,n(x) is its pair. Consider the kNN regression estimator

m̂kNN (x) =
1

kn

kn∑
i=1

Y(i,n)(x), (3.14)

and assume that P(X ∈ Bx,ε) > τxε
D where Bx,ε is a ball of radius ε > 0 centered at x and τx > 0. Then

sup
m∈MLip

E
[
(m̂kNN (x)−m(x))

2
]
≤ 1

4kn
+ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

,

and for kn = n2/(2+D), we have

sup
m∈MLip

E
[
(m̂kNN (x)−m(x))

2
]
≤ C0,xn

− 2
2+D ,

where C0,x = 1/4 + L2Γ(2/D)D−1τ
−2/D
x .

A similar result can be established for kernel regression estimators as follows.

Example 3.2 (Kernel regression). Given a kernel K : S 7→ [0,∞), the kernel regression estimator at a fixed

point x is given by

m̂ker(x) =

∑n
i=1 YiK

(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

) . (3.15)

Assume there exists 0 < r < R and 0 < λ < 1 such that

λI(x ∈ B0,r) ≤ K(x) ≤ I(x ∈ B0,R)
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where B0,ε is a ball of radius ε > 0 centered at the origin. Further assume that P(X ∈ Bx,ε) > τxε
D for some

τx > 0. Then

sup
m∈MLip

E
[
(m̂ker(x)−m(x))

2
]
≤
(

1 + λ

4λ2τxrD
+

2e−1

τxrD

)
1

nhDn
+ L2R2h2

n

and for hn = n−2/(2+D),

sup
f0,f1∈MLip

E
[
(m̂ker(x)−m(x))

2
]
≤ C0,xn

− 2
2+D

where C0,x = (1 + λ)/(4λ2τxr
D) + 2e−1/(τxr

D) + L2R2.

Remark 3.3. Example 3.1 and Example 3.2 are well-known and standard except that we keep track of the

constant C0,x over the Lipschitz class. Similar results exist in the literature but for slightly different settings.

Hence, in Appendix C.4, we present detailed proofs for these two examples heavily building on Györfi et al.

(2002). The proofs will also be used to study the performance of the kNN and kernel local regression tests

under the existence of intrinsic dimension in Proposition 3.1.

From the previous examples together with Theorem 3.4, we conclude that the minimum separation in

(3.13) satisfies δ?n,x . n−2/(2+D). We summarize this result in the following corollary.

Corollary 3.4.1 (Upper bound). Let us denote the local kNN and kernel regression test statistics by

T̂kNN (x) = (m̂kNN (x)− π̂1)2, T̂ker(x) = (m̂ker(x)− π̂1)2, (3.16)

and the upper α quantile of the permutation distribution of each statistic by tα,kNN and tα,ker respectively.

Suppose the conditions in Example 3.1 holds with kn = n2/(D+2). Then for fixed α ∈ (0, 1) and β ∈ (0, 1−α),

there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂kNN (x) > tα,kNN

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1
(
T̂kNN (x) ≤ tα,kNN

)
≤ β.

On the other hand, under the conditions in Example 3.2 with hn = n−2/(2+D) and for fixed α ∈ (0, 1) and

β ∈ (0, 1− α), there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂ker(x) > tα,ker

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1
(
T̂ker(x) ≤ tα,ker

)
≤ β
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As a result, the minimum separation satisfies δ?n,x . n−2/(2+D).

Next based on the standard technique to lower bound the testing error (e.g., Ingster, 1987; Baraud, 2002),

we establish a lower bound for the minimum separation by n−2/(2+D) . δ?n,x. This results matches with the

upper bound in Corollary 3.4.1. Therefore, the tests in Corollary 3.4.1 are minimax rate optimal and cannot

be improved.

Theorem 3.5 (Lower bound). For any given α ∈ (0, 1) and β ∈ (1 − α), there exists a constant C1,x > 0

such that

inf
φ∈Φn,α

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1(φ = 0) ≥ 1− α− β.

Remark 3.4. In the context of two-sample testing, it is sometimes more natural to make smoothness

assumptions on densities f0 and f1 rather than on the regression function. Here we briefly discuss how

to translate the smoothness condition on f0 and f1 into a condition on the regression function. Suppose that

density functions f0 and f1 are uniformly bounded below by c > 0 (see, e.g. Yang and Barron, 1999, for a

similar assumption). Then some algebra shows that

|m(x)−m(y)| ≤ π0c
−1|f0(x)− f0(y)|+ π1c

−1|f1(x)− f1(y)|.

In other words, if f0 and f1 are Lipschitz continuous (or more generally Hölder continuous), then the

regression function is also Lipschitz continuous with a different Lipschitz constant. This means that our

theoretical results will remain valid for the class of Lipschitz densities with the boundedness condition.

3.4.3 An Approach to Intrinsic Dimension

The previous results show that no test is uniformly powerful when the square distance between m(x) and

π1 is order of n−2/(2+D); therefore it demonstrates the typical curse of dimensionality. Suppose that data

X ∈ S ⊆ RD has low intrinsic dimension d which is smaller than the original dimension D (e.g. manifold

data). In this case, we would like to have a test whose performance only depends on intrinsic dimension

and thus avoids the curse of dimensionality. For this purpose, we consider the homogeneous measure which

captures local dimension of data.

Definition 3.2. (Definition 2 of Kpotufe, 2011) Fix x ∈ S ⊆ RD, and r > 0. Let C > 0 and 1 ≤ d < D.

The probability measure P(·) is (C, d)-homogeneous on Bx,r if we have P(X ∈ Bx,r′) ≤ Cε−dP(X ∈ Bx,εr′)
for all r′ ≤ r and 0 < ε < 1.

Using Definition 3.2, we reproduce Corollary 3.4.1 and show that the performances of the local kNN and

kernel regression tests depend on the intrinsic dimension instead of the original dimension.
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Proposition 3.1. Consider the same notations as in Corollary 3.4.1 and let x ∈ S ⊆ RD. Suppose the

probability measure P(·) is (C, d)-homogeneous on Bx,r. Then for the kNN regression test with kn = n2/(2+d)

and for any β ∈ (0, 1− α), there exist positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂kNN (x) > tα,kNN

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1
(
T̂kNN (x) ≤ tα,kNN

)
≤ β.

On the other hand, for the kernel regression test with hn = n−2/(2+d) and for any β ∈ (0, 1− α), there exist

positive constants C1,x and Nx such that

• Type I error: sup
f0,f1∈M0

Pf0,f1
(
T̂ker(x) > tα,ker

)
≤ α and

• Type II error: sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1
(
T̂ker(x) ≤ tα,ker

)
≤ β.

When the intrinsic dimension is unknown, one can employ a Bonferroni procedure to obtain the same

results in Proposition 3.1. To illustrate the idea, let kn(i) = n−2/(i+2) for i = 1, . . . , D and denote the

resulting kNN tests by φi(α) = I(T (i)
kNN (x) > t

(i)
α,kNN ) where T (i)

kNN (x) and t
(i)
α,kNN are the kNN test statistic

calculated with kn(i) and the corresponding α level permutation critical value, respectively. Then the

final test is defined by φmax = max1≤i≤D φi(α/D). By using the union bound, it is easy to see that

supf0,f1∈M0
Pf0,f1 (φmax = 1) ≤ α and

sup
n≥Nx

sup
f0,f1∈MLip(C1,xn−2/(2+d))

Pf0,f1 (φmax = 0) ≤ β,

for certain C1,x and Nx. This shows that the Bonferroni test does not lose any power in terms of separation

rate and it adapts to the unknown intrinsic dimension. Despite this theoretical guarantee, the Bonferroni

approach should be used with caution in practice. Indeed the Bonferroni test might be too conservative

since it does not take into account the dependency structure among φ1, . . . , φD.

Remark 3.5. For simplicity, we illustrate our idea on the Lipschitz class which only requires a mild

smoothness assumption. Nevertheless our results in Section 3.4.2–3.4.3 can be extended to a general function

class such as Hölder class (e.g. Chapter 3.2 of Györfi et al., 2002) in a similar way. Indeed, all we need is a

uniform bound for the MSE (3.11) over a general class, which can be found in the regression literature (See

Section 3.3.3).
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3.4.4 Limiting Distribution of Local Permutation Test Statistics

When the sample size is large, calculating the permutation distribution is time-consuming. Hence it would

be useful to investigate the limiting distribution of the permutation statistic. Based on the combinatorial

central limit theorem (e.g. Bolthausen, 1984), we show that the permutation distribution of our local test

statistic converges to the chi-square distribution with one degree of freedom as the sample size tends to

infinity.

Theorem 3.6. Consider the local regression test statistic T̂local(x) in (3.3) based on a linear smoother

m̂(x) =
∑n
i=1 wi(x)Yi. Suppose that

max1≤i≤n |wi(x)− 1/n|
{∑n

i=1(wi(x)− 1/n)2}1/2
p−→ 0 (3.17)

holds and let

σ2
n =

n

n− 1
π̂1(1− π̂1)

n∑
i=1

(
wi(x)− 1

n

)2

. (3.18)

Further let η = (η1, . . . , ηn) be a permutation of {1, . . . , n}. Then the permutation distribution of the one-side

local regression statistic converges to the standard normal distribution as

sup
t∈R

∣∣∣Pη (σ−1
n (m̂η(x)− π̂1) ≤ t

∣∣∣Xn)− P (N(0, 1) ≤ t)
∣∣∣ p−→ 0.

Here Pη(·|Xn) is the uniform probability measure over permutations conditioned on (X1, Y1), . . . , (Xn, Yn)

and m̂η(x) =
∑n
i=1 wi(x)Yηi . Thereby, σ−2

n T̂local(x) converges to the chi-square distribution with one degree

of freedom as

sup
t∈R

∣∣∣Pη (σ−2
n T̂local(x) ≤ t

∣∣∣Xn)− P
(
χ2

1 ≤ t
) ∣∣∣ p−→ 0.

We illustrate Theorem 3.6 using kNN and kernel regression and show that both σ−2
n T̂kNN (x) and

σ−2
n T̂ker(x) converge to the chi-square distribution with one degree of freedom under appropriate conditions.

Corollary 3.6.1 (kNN regression). Consider the kNN estimator in (3.14) with

σ2
n = π̂1(1− π̂1)

(n− 1)(n− k)

n2k
.

Then the permutation distribution of σ−2
n T̂kNN (x) converges to the chi-square distribution with one degree

of freedom when n, k →∞ and 2k < n.
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Corollary 3.6.2 (Kernel regression). Consider the kernel regression estimator in (3.15) and assume that

supt |K(t)| = K < ∞,
∫
K2(t)dt < ∞ and

∫
Kh(t)dx = 1 where Kh(t) = h−DK(t/h). Denote the density

function of X by f(·). Assume that 0 < f(x) < ∞ and f(·) is twice differentiable at x. Further assume

that nhD → ∞ and h → 0. Then the permutation distribution of σ−2
n T̂ker(x) converges to the chi-square

distribution with one degree of freedom where σ2
n is given in (3.18).

3.5 Simulations

In this section, we carry out simulation studies for global and local two-sample tests to examine the empirical

performance of the proposed methods. Throughout our simulations, we focus on the separate sampling

scenarios under which other existing two-sample tests are usually investigated. We begin by comparing the

regression test based on random forests (Breiman, 2001) with other benchmark competitors in Section 3.5.1.

Next in Section 3.5.2, we illustrate by an example that the classification accuracy tests can fail due to their

discrete nature while the corresponding regression tests perform well. We also provide simulation results for

the local regression test in Section 3.5.3 to validate our approach.

3.5.1 Random Forests Two-Sample Testing

Random forests have been proven to be a powerful tool for regression and classification problems in many

application areas (see e.g., Hamza and Larocque, 2005; Dı́az-Uriarte and De Andres, 2006; Cutler et al., 2007;

Chen and Ishwaran, 2012). Despite the good performance of random forests in classification and regression

problems, only a few works have applied these methods to statistical inference problems. To the best of

our knowledge, only Gagnon-Bartsch and Shem-Tov (2019) and Hediger et al. (2019) use random forests

for the two-sample problem. Now whereas Gagnon-Bartsch and Shem-Tov (2019) and Hediger et al. (2019)

consider an accuracy test based on random forests, we propose a regression test based on random forests.

The corresponding test statistic is given by

T̂RF =
1

n

n∑
i=1

(m̂RF (Xi)− π̂1)
2
, (3.19)

where m̂RF is the regression estimator from the random forest algorithm. For our simulation study, we

implement both the RF accuracy and regression tests with the randomForest package (version 4.6-12) in R

with default options for the parameters. We found in our simulation study that the in-sample classification

accuracy of random forests is typically one even under the null case; therefore, the resulting test has no

power against any alternative. For this reason, we instead estimate the classification accuracy from out-of-

bag samples (which is a default option provided by the randomForest package). Throughout this section,

we denote the accuracy test statistic based on random forests by ÂRF .
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Simulation Setting

Our simulations analyze two main settings. The first setting includes dense alternatives where the two

distributions are different over a number of coordinates. The second setting, on the other hand, considers

sparse alternatives where the two distributions differ in only a few coordinates. We carry out the simulations

via the permutation procedure with 100 random permutations, repeated 300 times for all test statistics. The

significance level is controlled at α = 0.05.

Dense Alternatives. For the dense alternatives, we draw random samples of size n0 = n1 = 20

and dimension D = 5, 20, 50, 100, 150 and 200 from either multivariate normal distributions N(µ,Σ) or

multivariate Cauchy distribution C(µ,Σ) with different location µ and scale Σ parameters. We consider the

following scenarios:

• Dense Normal Location. Test N(0, ID) versus N (µ, ID), where µ = (0.2, 0.2, . . . , 0.2)>.

• Dense Cauchy Location. Test C(0, ID) versus C(µ, ID), where µ = (0.3, 0.3, . . . , 0.3)>.

• Dense Normal Scale. Test N(0, ID) versus N(0, JD), where JD is a diagonal matrix whose diagonal

elements are (0.6, 0.6, . . . , 0.6)>.

• Dense Cauchy Scale. Test C(0, ID) versus C (0, JD), where JD is a diagonal matrix whose diagonal

elements are (0.5, 0.5, . . . , 0.5)>.

Sparse Alternatives. Similarly, we generate random samples with n0 = n1 = 20 and D =

20, 50, 100, 200, 300 and 400 from either multivariate normal distributions or multivariate Cauchy distri-

butions. We consider the following problems:

• Sparse Normal Location. Test N(0, ID) versus N(µ, ID), where µ = (2, 0, . . . , 0)>.

• Sparse Cauchy Location. Test C(0, ID) versus C(µ, ID), where µ = (3, 0, . . . , 0)>.

• Sparse Normal Scale. Test N(0, ID) versus N (0, JD), where JD is a diagonal matrix with diagonal

elements (0.01, 1, . . . , 1)>.

• Sparse Cauchy Scale. Test C(0, ID) versus C (0, JD), where JD is a diagonal matrix with diagonal

elements (0.01, 1, . . . , 1)>.

As a benchmark competitor, we consider the maximum mean discrepancy (MMD) test (Gretton et al.,

2012) based on

MMD2
n = − 2

n0n1

n0,n1∑
i,j=1

k(Xi,0, Xi,1) +
1

n2
0

n0∑
i,j=1

k(Xi,0, Xj,0) +
1

n2
1

n1∑
i,j=1

k(Xi,0, Xj,0), (3.20)
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Table 3.1: Power analysis against dense location alternatives at level α = 0.05

Normal Dense Location Cauchy Dense Location

D 5 20 50 100 150 200 5 20 50 100 150 200

T̂RF 0.123 0.187 0.303 0.417 0.573 0.633 0.157 0.370 0.607 0.803 0.893 0.950

ÂRF 0.070 0.117 0.233 0.340 0.440 0.510 0.093 0.260 0.503 0.693 0.793 0.857

MMDn 0.143 0.290 0.520 0.723 0.880 0.937 0.097 0.057 0.053 0.050 0.060 0.040

Energyn 0.156 0.283 0.530 0.720 0.877 0.940 0.083 0.077 0.073 0.057 0.057 0.057

where k(x, y) is the Gaussian kernel with a bandwidth chosen by the median heuristic, i.e. k(x, y) =

exp
(
−||x− y||22/σmedian

)
(see, Gretton et al., 2012, for details). We also consider the Energy test (Székely

and Rizzo, 2004; Baringhaus and Franz, 2004) based on

Energyn =
2

n0n1

n0,n1∑
i,j=1

||Xi,0 −Xj,1||2 −
1

n2
0

n0∑
i,j=1

||Xi,0 −Xj,0||2 −
1

n2
1

n1∑
i,j=1

||Xi,1 −Xj,1||2. (3.21)

Simulation Results

Tables 3.1–3.4 summarize our simulation results. We see from Table 3.1 and 3.2 that MMDn and Energyn

perform better than the regression test (T̂RF ) and the accuracy test (ÂRF ) against the dense normal location

and scale alternatives. Indeed, MMDn and Energyn are known to be asymptotically optimal against the

normal location alternative with the identity covariance matrix (Ramdas et al., 2015). However, they are

both moment-based statistics, and hence sensitive to outliers. They are also based on the Euclidean metric. A

major issue of the Euclidean and similar metrics is that they assign weights to the coordinates proportional to

their scale without screening for irrelevant variables. Consequently, neither MMDn nor Energyn can properly

deal with sparse alternatives, which explains their poor performance against the sparse location and scale

alternatives. On the other hand, the base learner of the random forest algorithm is the decision tree. The

usual splitting rule of decision trees is invariant to absolute values (see e.g., Chapter 9.2 of Friedman et al.,

2009), which leads to robustness against outliers.

Random forests also have the ability to handle sparse alternatives by randomly selecting a few variables

during the tree-growing process. By averaging each tree, random forests eventually put more weight on

informative variables. In general, T̂RF and ÂRF are comparable to or more powerful than MMDn and

Energyn under the sparse location and scale alternatives. Finally, we note from our simulations that the

regression test T̂RF exhibits higher power than the accuracy test ÂRF for the dense as well as the sparse

alternatives.
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Table 3.2: Power analysis against dense scale alternatives at level α = 0.05

Normal Dense Scale Cauchy Dense Scale

D 5 20 50 100 150 200 5 20 50 100 150 200

T̂RF 0.133 0.187 0.260 0.350 0.410 0.473 0.287 0.557 0.790 0.937 0.953 0.970

ÂRF 0.097 0.150 0.200 0.277 0.277 0.290 0.230 0.407 0.663 0.783 0.840 0.877

MMDn 0.210 0.563 0.847 0.993 0.997 1.000 0.380 0.380 0.407 0.407 0.400 0.400

Energyn 0.080 0.263 0.397 0.657 0.847 0.913 0.283 0.293 0.310 0.310 0.313 0.297

Table 3.3: Power analysis against sparse location alternatives at level α = 0.05

Normal Sparse Location Cauchy Sparse Location

D 20 50 100 200 300 400 20 50 100 200 300 400

T̂RF 0.953 0.880 0.830 0.687 0.600 0.503 0.960 0.933 0.897 0.710 0.643 0.577

ÂRF 0.883 0.817 0.763 0.600 0.523 0.440 0.943 0.877 0.830 0.613 0.540 0.527

MMDn 0.977 0.943 0.770 0.587 0.437 0.360 0.147 0.067 0.057 0.043 0.057 0.027

Energyn 0.977 0.943 0.770 0.587 0.440 0.367 0.157 0.083 0.043 0.037 0.050 0.040

Table 3.4: Power analysis against sparse scale alternatives at level α = 0.05

Normal Sparse Scale Cauchy Sparse Scale

D 20 50 100 200 300 400 20 50 100 200 300 400

T̂RF 0.630 0.333 0.287 0.167 0.167 0.133 0.830 0.550 0.390 0.257 0.197 0.170

ÂRF 0.603 0.297 0.220 0.130 0.120 0.087 0.743 0.467 0.287 0.207 0.170 0.150

MMDn 0.043 0.057 0.043 0.053 0.060 0.063 0.067 0.033 0.040 0.057 0.063 0.043

Energyn 0.037 0.050 0.043 0.050 0.060 0.063 0.047 0.047 0.040 0.057 0.053 0.037

3.5.2 A Comparison between Regression and Classification Accuracy Tests

As mentioned earlier, many classifiers are typically estimated by dichotomizing regression estimators.

Depending on the alternative, this dichotomization can result in a less powerful accuracy test than the

corresponding regression test. We specifically demonstrate this point by considering two commonly used

nonparametric regression methods; namely, k-nearest neighbors regression and kernel regression.

Simulation Setting

Recall the kNN estimator and the kernel regression estimator in (3.14) and (3.15), respectively. Using these

estimators, the global regression test statistics are given by

T̂kNN =
1

n

n∑
i=1

(
m̂kNN (Xi)− π̂1

)2

and T̂ker =
1

n

n∑
i=1

(
m̂ker(Xi)− π̂1

)2

.
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Here we use the Euclidean distance to measure the pairwise distance between observations for kNN. On the

other hand, we consider the Gaussian kernel with a diagonal bandwidth matrix with identical components

h for kernel regression. The corresponding accuracy test statistics are

ÂkNN =
1

n

n∑
i=1

I
(
I(m̂kNN (Xi) > 1/2) = Yi

)
and

Âker =
1

n

n∑
i=1

I
(
I(m̂ker(Xi) > 1/2) = Yi

)
,

respectively. For all tests, we reject the null hypothesis when the test statistic is larger than a permutation

critical value.

For the simulation study, we let {X1,0, . . . , Xn0,0}
i.i.d.∼ N(µ0, σ

2
0 × ID) and {X1,1, . . . , X1,n1

} i.i.d.∼
N(µ1, σ

2
1 × ID) where µ0 = (0, . . . , 0)>, µ1 = (0.2, . . . , 0.2)>, σ2

0 = 1, and σ2
1 = 1.2. Hence, there exist

differences in both the location and scale parameters. We choose the sample sizes n0 = n1 = 50 and change

the dimension from D = 5 to D = 75 by steps of 10. To compare the performance, we carry out the

permutation test with 200 permutations, and the simulations are repeated 1,000 times to estimate the power

of the test. We provide results for a range of different values of the tuning parameters: k = 5, 15, 25 for the

k-NN regression, and h = 5, 15, 25 for the kernel regression.

Simulation Results

Simulation results are presented in Figure 3.3 and 3.4. From the results, it is seen that the regression

tests consistently outperform the corresponding classification accuracy tests under the given scenario. The

power of the accuracy tests even decreases with dimension, whereas the power of the regression tests steadily

increases with dimension. The increase in power with dimension is desirable under this scenario because

each coordinate presents evidence towards the alternative. The counter-intuitive result for the accuracy tests

is due to the fact that the tests employ a dichotomized regression estimator. To explain it more clearly, we

borrow some results from Mondal et al. (2015). First, it can be shown by the weak law of large numbers

that

1) D−1/2||Xi,0 −Xj,0||2 p−→ σ0

√
2 for 1 ≤ i < j ≤ n0,

2) D−1/2||Xi,1 −Xj,1||2 p−→ σ1

√
2 for 1 ≤ i < j ≤ n1,

3) D−1/2||Xi,0 −Xj,1||2 p−→
√
σ2

0 + σ2
1 + (µ0 − µ1)2

for 1 ≤ i ≤ n0, 1 ≤ j ≤ n1, as D → ∞ while n0 and n1 are fixed. For the given example, we have

σ0

√
2 <

√
σ2

0 + σ2
1 + (µ0 − µ1)2 < σ1

√
2, which implies that every instance is closer to an instance from the
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Figure 3.3: Power comparison between the regression test and the classification accuracy test via k-NN
regression at level α = 0.05 for the toy example in Section 3.5.2.
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Figure 3.4: Power comparison between the regression test and the classification accuracy test via kernel
regression at level α = 0.05 for the toy example in Section 3.5.2.

class Y = 0 than to other instances from the class Y = 1. In other words, the nearest neighbors of any

observation are most likely to be from the class Y = 0. Note that both k-NN and kernel regression, explicitly

or implicitly, use the Euclidean distance to calculate the proximity between two instances. Therefore, we

observe with high probability that m̂kNN (Xi) and m̂KerR(Xi) are estimated as less than half and the

dichotomized classifiers become

I (m̂kNN (Xi) > 1/2) = I (m̂KerR(Xi) > 1/2) = 0, for all i = 1, . . . , n.

Due to this dichotomization, ÂkNN and ÂKerR converge to the empirical class probability n0/n under the

alternative, resulting in poor power performance. On the other hand, the regression tests based on T̂kNN
and T̂ker can be powerful as long as m̂kNN (x) and m̂ker(x) significantly deviate from the class probability.

This is indeed the case under the considered scenario and thus explains why the regression tests outperform

the corresponding classification tests.
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3.5.3 Toy Examples for Local Two-Sample Testing

Contrary to classification accuracy, our regression approach naturally leads to a local two-sample testing

framework that provides further information on pointwise differences between two populations. We consider

two toy examples to demonstrate the empirical performance of the local regression test. For the simulation

study, we focus on the local kNN regression statistic in (3.16) with kn = n2/(2+D) for the normal mixture

example and kn = n2/(2+d) for the manifold example. For both examples, we control the family-wise error

rate (FWER) at α = 0.05 via the Hochberg step up procedure (Hochberg, 1988).

Normal mixture example

In the first example, we consider two normal mixtures in R2:

f0(x, y) =
1

8

8∑
i=1

φi(x, y) and f1(x, y) =
1

8

8∑
i=1

φ′i(x, y),

where φi is the bivariate normal density function with means µ1 = (−3,−3), µ2 = (−3, 1), µ3 = (−1,−1),

µ4 = (−1, 3), µ5 = (1,−3), µ6 = (1, 1), µ7 = (3,−1), µ8 = (3, 3) and covariance matrix Σ = 0.32 × I2. φ′i

is similarly defined with means µ′1 = (−3,−1), µ′2 = (−3, 3), µ′3 = (−1,−3), µ′4 = (−1, 1), µ′5 = (1,−1),

µ′6 = (1, 3), µ′7 = (3,−3), µ′8 = (3, 1) and the same covariance matrix. We generated n0 = n1 = 2000

samples from f0 and f1 and implemented Algorithm 2 to capture local significant points. The local tests

were performed at a fixed uniform grid of 50 × 50 points over (x, y) ∈ [−4, 4] × [−4, 4] and the result is

presented in Figure 3.5.

Manifold data example

In the second example, we create high-dimensional data with a low-dimensional manifold structure by

generating edge images of size 16 × 16. Let x, y be integers on evenly spaced points between −30 and

30 that are 2 units apart. Hence the size of the domain of (x, y) becomes 16 × 16. Given two underlying

parameters θ ∈ [−π, π] and ρ ∈ [−5, 5], an edge image is defined by

I(x, y) = I (x · cos(θ) + y · sin(θ)− ρ > 0) .

For the simulation, we draw n0 = n1 = 100 samples from

(θ0, ρ0) ∼ 1

10
Unif([0, π]× [0, 5]) +

9

10
Unif([−π, 0]× [−5, 0]) and

(θ1, ρ1) ∼ 9

10
Unif([0, π]× [0, 5]) +

1

10
Unif([−π, 0]× [−5, 0]),
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Figure 3.5: Significant local regions for the normal mixture example. The left is the underlying true model
and the right is the result of the local two-sample test. The difference regions are colored as follows — (a)
red: f1(x, y) > f0(x, y), (b) blue: f1(x, y) < f0(x, y) and (c) gray: insignificant.

and generate corresponding edge images. As a result, there are two sets of the edge images supported on

R256. Using these image samples, we implemented Algorithm 2 to detect local significant points. The local

tests were performed at fixed images whose parameters are defined on a uniform grid of 200×200 points over

(θ, ρ) ∈ [−π, π]× [−5, 5]. For visualization purpose, we projected the testing points into the two-dimensional

diffusion space (see Appendix B.2 for details) and the final result is provided in Figure 3.6.

For both examples, the kNN local regression test performs reasonably well and detects most of the local

differences between two distributions.

3.6 Application to Astronomy Data

Continuing our discussion from Section 6.2, we apply our two-sample framework to galaxies in the COSMOS,

EGS, GOODS-North and UDS fields observed by the Hubble Space Telescope (HST) as part of the CANDELS

program.∗ For the analysis, we compute seven morphological statistics that summarize galaxy images

nonparametrically: M, I, D (Freeman et al., 2013), Gini, M20 (Lotz et al., 2004), C and A (Conselice,

2003). Each statistic (see the references for details) explains particular aspects of galaxy morphology. In

brief, the M, I, D statistics capture galaxies with disturbed morphologies, Gini and M20 describe the variance

of a galaxy’s stellar light distribution, and the C and A statistics measure the concentration of light and

∗http://candels.ucolick.org
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Figure 3.6: Significant local regions for the manifold data example. The left is the underlying true model
and the right is the result of the local two-sample test. The difference regions are colored as follows — (a) red:
f1(x1, . . . , x256) > f0(x1, . . . , x256), (b) blue: f1(x1, . . . , x256) < f0(x1, . . . , x256) and (c) gray: insignificant.
Here Ψ1 and Ψ2 denote the the first two coordinates of the diffusion map.

asymmetry of a galaxy, respectively. We restrict our study to relatively nearby galaxy observations that

have a redshift (proxy for distance) estimate between 0.56 < z < 1.12. The final data set consists of 2736

so-called i-band-selected galaxy observations. For each galaxy, we have seven morphological image statistics

along with an estimate of star-formation rate (SFR).

Galaxy morphology is closely related to other physical properties such as star formation rate, mass and

metallicity (see, e.g., Snyder et al., 2015). The aim of this study is to demonstrate that our local two-

sample framework can be valuable in detecting and quantifying dependencies between variables of moderate

or high dimension without resorting to low-dimensional projections of summary statistics. In particular,

we demonstrate that local two-sample tests can identify galaxies that lie in regions of the feature space

where the estimated proportion of a particular defined class of objects (such as star-forming galaxies) differs

significantly from the global proportion. Hence, we start by defining two galaxy classes based on the SFR:

we say that a galaxy belongs to the high-SFR group if its SFR is higher than the upper 25% quantile of the

SFR distribution (log10(SFR) > 1.201), and that it belongs to the low-SFR group if its SFR is lower than the

lower 25% quantile of the SFR distribution (log10(SFR) < −0.915). We further randomly divide the data

into a training set (n = 684) and a test set (n = 684). We use the training data to construct the local test

statistic in (3.3), and we perform the local-two sample tests at the points in the test set (that is, these are

the evaluation points in Algorithm 2). Note that this particular application is especially challenging because
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the seven morphological statistics have very different properties, and some of the statistics (M and I) are

essentially of mixed discrete and continuous type with heavy outliers; hence, any metric-based estimator is

bound to perform poorly even after normalizing the variables. Our regression test, however, can by-pass this

problem by leveraging the random forest algorithm. Another advantage of using random forests is that the

algorithm returns variable importance measures that can help us identify which morphology statistics are

the most important in distinguishing the two populations (Figure 3.7).

3.6.1 Analysis and Result

According to our global two-sample test (T̂RF = .188, p < .001), there is a significant difference between

the low-SFR and the high-SFR populations in terms of galaxy morphology. We follow up on this result

by implementing the local two-sample testing framework according to Algorithm 2 with FWER control at

α = 0.05 by the Hochberg step up procedure. To visualize locally significant points from the local test, we use

diffusion maps with local scaling (Zelnik-Manor and Perona, 2005). For more information on our particular

application of diffusion maps, see Appendix B.2. The main result of the local significance test is displayed

in Figure 3.1. As we can see, the high-SFR and low-SFR dominated regions (that is, the regions where

fLowSFR < fHighSFR and fLowSFR > fHighSFR, respectively) are fairly well-separated in morphology space.

Figure 3.1 also shows some examples of galaxy images at significant test points. By inspecting such images,

we note that the “red” galaxies in the low-SFR dominated regions of the seven-dimensional space tend to

be more concentrated and less disturbed than their “blue” counterparts in the high-SFR dominated regions

— this result is consistent with previous astronomical studies about irregular galaxies displaying merger

activities and high star-formation rates. Our test result is further supported by the variable importance

measures in Figure 3.7: the two most important morphology statistics in distinguishing between high-SFR

and low-SFR galaxies are the Gini (Lotz et al., 2004) and I (Freeman et al., 2013) morphology statistics.

Indeed, by definition, the Gini statistic describes the variance of a galaxy’s stellar light distribution, and the

I statistic captures galaxies with disturbed morphologies.

3.7 Conclusions

In this work, we presented a new framework for both global and local two-sample testing via regression.

Depending on the chosen regression model, our framework can efficiently deal with different types of variables

and different structures in the data; thereby, providing tests with competitive power against many practical

alternatives. Compared to other recent approaches in the two-sample literature (such as classification tests),

our framework has the key advantage of being able to detect locally significant regions in multivariate

spaces. Throughout this work, we studied theoretical properties of the regression tests by building on
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Figure 3.7: Variable importance measures from random forest regression, as measured by the Mean
Decrease Gini (MDG) metric when splitting the data along the indicated variables. For the morphology-SFR
study, the Gini and I morphology statistics are the two most important features in distinguishing between
high-star-forming and the low-star-forming galaxy populations.

existing regression results. We established a connection between the power of the global and local tests to

the MISE and MSE of the corresponding regression estimators, and we demonstrated practical usefulness of

our methods via simulations.

By taking advantage of permutation tests under the global null hypothesis, the proposed local testing

framework ensures that the type I error rate is less than or equal to the significance level. When the local

null hypothesis H0(x) : m(x) = π is of interest, on the other hand, there is no such guarantee. In this

case, it would be necessary to use an asymptotic framework and investigate the limiting behavior of a local

test statistic. This topic is reserved for future work. Another direction for future work is to study the

optimality of global regression tests. Contrary to the local regression test, a regression estimator with the

optimal estimation error rate may not necessarily return minimax optimal global regression test. We hope

that future studies will establish a lower bound and matching upper bound for the global regression test.
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Chapter 4

Robust Multivariate Nonparametric

Tests via Projection-Averaging

This chapter is adapted from my joint work with Sivaraman Balakrishnan and Larry Wasserman. This work

is accepted to the Annals of Statistics for publication.

4.1 Introduction

Let X and Y be random vectors defined on a common probability space (Ω,A,P) with distributions PX

and PY , respectively. Given two mutually independent samples Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn}
from PX and PY , we want to test

H0 : PX = PY versus H1 : PX 6= PY . (4.1)

This fundamental problem has received considerable attention in statistics with a wide range of applications

(see e.g. Thas, 2010, for a review). A common statistic for the univariate two-sample testing is the Cramér–

von Mises (CvM) statistic (Anderson, 1962):

mn

m+ n

∫ ∞
∞

(
F̂X(t)− F̂Y (t)

)2
dĤ(t),

where F̂X(t) and F̂Y (t) are the empirical distribution functions of Xm and Yn, respectively, and (m+n)Ĥ(t) =

mF̂X(t) + nF̂Y (t). Another approach is based on the energy statistic, which is an estimate of the squared
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energy distance (Székely and Rizzo, 2013):

E2 = 2E[|X1 − Y1|]− E[|X1 −X2|]− E[|Y1 − Y2|],

where |x| is the absolute value of x ∈ R. The energy distance is well-defined assuming a finite first moment

and it can be written in a form that is similar to Cramér’s distance (Cramér, 1928), namely,

E2 = 2

∫ ∞
−∞

(
FX(t)− FY (t)

)2
dt,

where FX(t) and FY (t) are the distribution functions of X and Y , respectively.

The CvM-statistic has several advantages over the energy statistic for univariate two-sample testing. For

instance, the CvM-statistic is distribution-free under H0 (Anderson, 1962) and its population counterpart is

well-defined without any moment assumptions. It also has an intuitive probabilistic interpretation in terms of

probabilities of concordance and discordance of four independent random variables (Baringhaus and Henze,

2017). Nevertheless, the CvM-statistic has rarely been studied for multivariate testing. A primary reason is

that the CvM-statistic is essentially rank-based, which leads to a challenge to generalize it in a multivariate

space. In contrast, the energy statistic can be easily applied in arbitrary dimensions as in Baringhaus

and Franz (2004) and Székely and Rizzo (2004). Specifically, they defined the squared multivariate energy

distance by

E2
d(PX , PY ) = 2E[‖X1 − Y1‖]− E[‖X1 −X2‖]− E[‖Y1 − Y2‖], (4.2)

where ‖ · ‖ is the Euclidean norm in Rd. The multivariate energy distance maintains the characteristic

property that it is always non-negative and equal to zero if and only if PX = PY . It can also be viewed as

the average of univariate Cramér’s distances of projected random variables (Baringhaus and Franz, 2004):

E2
d(PX , PY ) =

√
π(d− 1)Γ(d−1

2 )

Γ(d2 )

∫
Sd−1

∫
R

(
Fβ>X(t)− Fβ>Y (t)

)2
dtdλ(β), (4.3)

where λ represents the uniform probability measure on the d-dimensional unit sphere Sd−1 = {x ∈ Rd :

‖x‖ = 1}, Γ(·) is the gamma function and the symbol > stands for the transpose operation.

Although the multivariate energy distance can be easily estimated in any dimension, it still requires the

finite moment assumption as in the univariate case. When the underlying distributions violate this moment

condition with potential outliers, the energy statistic becomes extremely unstable and the resulting test

might perform poorly. Given that outlying observations arise frequently in practice with high-dimensional

data, there is a need to develop a robust counterpart of the energy distance. The primary goal of this

work is to introduce a robust, tuning parameter free, two-sample testing procedure that is easily applicable
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in arbitrary dimensions and consistent against all fixed alternatives. Specifically, we modify the univariate

CvM-statistic to generalize it to an arbitrary dimension by averaging over all one-dimensional projections. In

detail, the proposed test statistic is an unbiased estimate of the squared multivariate CvM-distance defined

as follows:

W 2
d (PX , PY ) =

∫
Sd−1

∫
R

(
Fβ>X(t)− Fβ>Y (t)

)2
dHβ(t)dλ(β), (4.4)

where Hβ(t) = ϑXFβ>X(t) + ϑY Fβ>Y (t) and ϑX is a fixed value in (0, 1) and ϑY = 1− ϑX . For simplicity

and when there is no ambiguity, we may omit the dependency on PX , PY and write Wd(PX , PY ) as Wd.

Throughout this chapter, we refer to the process of averaging over all projections as projection-averaging.

4.1.1 Summary of our results

The proposed multivariate CvM-distance shares some appealing properties of the energy distance while being

robust to heavy-tailed distributions or outliers. For example, Wd is invariant to orthogonal transformations

and satisfies the characteristic property (Lemma 4.0.1), meaning that Wd is nonnegative and equal to zero

if and only if PX = PY . More importantly, it is straightforward to estimate Wd without using any tuning

parameters (Theorem 4.1). Based on an unbiased estimate of W 2
d , we apply the permutation test procedure

to determine a critical value of the test statistic. Although the permutation approach has been standard in

practical implementations of two-sample testing, its theoretical properties have been less explored beyond

simple cases (e.g. Pesarin, 2001). Indeed, previous studies usually consider asymptotic tests in their theory

section whereas their actual tests are calibrated via permutations. We bridge the gap between theory and

practice by presenting both theoretical and empirical results on the permutation test under various scenarios.

Our main results regarding the CvM-distance are summarized as follows:

• Closed-form expression (Section 4.2): Building on Escanciano (2006) and Zhu et al. (2017), we show

that the test statistic has a simple closed-form expression.

• Asymptotic power (Section 4.2): We prove that the permutation test based on the proposed statistic

has the same asymptotic power as the oracle and asymptotic tests that assume knowledge of the

underlying distributions (Section 4.2.2) against fixed and contiguous alternatives.

• Robustness (Section 4.3): We show that the permutation test based on the proposed statistic

maintains good power in the contamination model, while the energy test becomes completely powerless

in this setting.

• Minimax optimality (Section 4.4): We analyze the finite-sample power of the proposed permutation

test and prove its minimax rate optimality against a class of alternatives that differ from the null in

terms of the CvM-distance. We also show that the energy test is not optimal in our context.
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• HDLSS behavior (Section 4.5): We consider a high-dimension, low-sample size (HDLSS) regime

where the dimension tends to infinity while the sample size is fixed. Under this regime, we identify

sufficient conditions under which the power of the proposed test converges to one. In addition, we

show that the proposed test has comparable power to the high-dimensional mean tests introduced by

Chen and Qin (2010) and Chakraborty and Chaudhuri (2017) under certain location models.

• Angular distance (Section 4.6): We introduce the angular distance between two vectors and use this to

show that the multivariate CvM-distance is a special case of the generalized energy distance (Sejdinovic

et al., 2013). Furthermore, the CvM-distance is the maximum mean discrepancy (Gretton et al., 2012)

associated with the angular distance.

Beyond the CvM-statistic, the projection-averaging technique can be widely applicable to other

nonparametric statistics. In the second part of this study, we revisit some famous univariate sign- or

rank-based statistics and propose their multivariate counterparts via projection-averaging. Although there

has been much effort to extend univariate sign- or rank-based statistics in a multivariate space (see e.g.

Hettmansperger et al., 1998; Oja and Randles, 2004; Liu, 2006; Oja, 2010), they are either computationally

expensive to implement or less intuitive to understand. Our projection-averaging approach addresses these

issues by providing a tractable calculation form of statistics and by having a direct interpretation in terms

of projections. In Section 4.7 and also Appendix C.5.8, we demonstrate the generality of the projection-

averaging approach by presenting multivariate extensions of several existing univariate statistics.

4.1.2 Literature review

There are a number of multivariate two-sample testing procedures available in the literature. We list some

fundamental methods and recent developments. Anderson et al. (1994) proposed the two-sample statistic

based on the integrated square distance between two kernel density estimates. The energy statistic was

introduced by Baringhaus and Franz (2004) and Székely and Rizzo (2004) independently. Biswas and

Ghosh (2014) modified the energy statistic to improve the performance of the previous test for the high-

dimensional location-scale and scale problems. Gretton et al. (2012) introduced a class of distances between

two probability distributions, called the maximum mean discrepancy (MMD), based on a reproducing kernel

Hilbert approach. Sejdinovic et al. (2013) showed that the energy distance is a special case of the MMD

associated with the kernel induced by the Euclidean distance. Recently, Pan et al. (2018) proposed a new

metric, named the ball divergence, between two probability distributions and connected it to the MMD. A

further review of kernel-based two-sample tests can be found in Harchaoui et al. (2013).

Another line of work is based on graph constructions. Schilling (1986) and Henze (1988) introduced a

multivariate two-sample test based on the k nearest neighbor (NN) graph. Mondal et al. (2015) pointed out

that the previous NN test may suffer from low power for the high-dimensional location-scale problem and
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provided an alternative that addresses this limitation. Another variant of the NN test, which is tailored to

imbalanced samples, can be found in Chen et al. (2013). Friedman and Rafsky (1979) considered minimum

spanning tree (MST) to present a generalization of the univariate run test in Wald and Wolfowitz (1940).

The MST test proposed by Friedman and Rafsky (1979) has recently been modified by Chen and Friedman

(2017) and Chen et al. (2018) to improve power under scale alternatives and imbalanced samples, respectively.

Rosenbaum (2005) proposed a distribution-free test in finite samples based on cross-matches. More recently,

Biswas et al. (2014) introduced another distribution-free test based on the shortest Hamiltonian path. A

general theoretical framework for graph-based tests has been established by Bhattacharya (2018, 2019).

Other recent developments include Liu and Modarres (2011), Kanamori et al. (2012), Bera et al. (2013),

Lopez-Paz and Oquab (2016), Zhou et al. (2017), Mukhopadhyay and Wang (2018), among others.

The projection-averaging approach to CvM-type statistics can be found in other statistical problems.

For example, Zhu et al. (1997) and Cui (2002) considered the CvM-statistic using projection-averaging to

investigate one-sample goodness-of-fit tests for multivariate distributions. Escanciano (2006) proposed the

CvM-based goodness-of-fit test for parametric regression models. To the best of our knowledge, however, this

is the first study that investigates the CvM-statistic for the multivariate two-sample problem via projection-

averaging.

Our technique to obtain a closed-form expression for projection-averaging statistics is based on Escanciano

(2006). The same principle has been exploited by Zhu et al. (2017) in the context of testing for multivariate

independence. We further extend the result of Escanciano (2006) to more general cases and provide an

alternative proof using orthant probabilities for normal distributions.

Outline The rest of this chapter is organized as follows. In Section 4.2, we introduce our test statistic

and the permutation test procedure. We then study their limiting behaviors under the conventional fixed

dimension asymptotic framework. In Section 4.3, we compare the power of the CvM test with that of the

energy test and highlight the robustness of the CvM test. Section 4.4 establishes minimax rate optimality

of the proposed test against a certain class of alternatives associated with the CvM-distance. In Section 4.5,

we study the asymptotic power of the CvM test in the HDLSS setting. We introduce the angular distance

between two vectors in Section 4.6 to show that the CvM-distance is the generalized energy distance built on

the introduced metric. In Section 4.7, the projection-averaging technique is applied to other sign- or rank-

based statistics and this allows us to provide new multivariate extensions. Simulation results are reported in

Section 8.9 to demonstrate the competitive power performance of the proposed approach with finite sample

size. All proofs of the main results are deferred to the supplementary material.

Notation For two non-zero vectors U1, U2 ∈ Rd, we denote the angle between U1 and U2 by Ang(U1, U2) =

arccos
{
U>1 U2/(‖U1‖‖U2‖)

}
. For 1 ≤ q ≤ p, we let (p)q = p(p − 1) · · · (p − q + 1). Let P0 and P1 be the
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probability measures under H0 and H1, respectively. Similarly E0 and E1 stand for the expectations with

respect to P0 and P1. For any two real sequences {an} and {bn}, we use an � bn if there exist constants

C,C ′ > 0 such that C < |an/bn| < C ′ for each n. We write an = O(bn) if there exists C > 0 such that

|an| ≤ C|bn| for each n. We also write an = o(bn) if limn→∞ an/bn = 0. For a sequence of random variables

Xn, we use the notation Xn = OP(an) when Xn is bounded in probability (tight). The acronym i.i.d.

stands for independent and identically distributed and we use the symbol X1, . . . , Xn
i.i.d.∼ P to represent

that X1, . . . , Xn are i.i.d. samples from distribution P . We denote the d × d identity matrix by Id. The

symbol 1(·) is used for indicator functions. We write summation over the set of all k-tuples drawn without

replacement from {1, . . . , n} by
∑n,6=
i1,...,ik=1 . Throughout this chapter, we assume that all vectors are column

vectors and m,n ≥ 2.

4.2 Projection Averaging-Type Cramér–von Mises Statistics

In this section, we start with the basic properties of the CvM-distance. We then introduce our test statistic

and study its limiting behavior. We end this section with a description of the permutation test and its

large sample properties. Throughout this section, we consider the conventional asymptotic regime where the

dimension is fixed and

m

m+ n
→ ϑX ∈ (0, 1) and

n

m+ n
→ ϑY ∈ (0, 1) as N = m+ n→∞. (4.5)

Let us first establish the characteristic property of the CvM-distance.

Lemma 4.0.1 (Characteristic property). Wd is nonnegative and has the characteristic property:

Wd(PX , PY ) = 0 if and only if PX = PY .

Note that Wd involves integration over the unit sphere. One way to approximate this integral is to

consider a subset of Sd−1, namely {β1, . . . , βk}, and then to take the sample mean over k different univariate

CvM-statistics (see e.g. Zhu et al., 1997). However, this approach has an unpleasant trade-off between

accuracy and computational time depending on the choice of k. The problem becomes even worse in high

dimensions where one may need exponentially many projections to achieve a certain accuracy. Our approach,

on the other hand, does not suffer from this computational issue by explicitly calculating the integral over

Sd−1. The explicit form of the integration is mainly due to Escanciano (2006) who provided the following

lemma:
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Figure 4.1: Visual proof of Lemma 4.0.2. The blue curve represents the set of (β1, β2) ∈ R2 that satisfies
1(β>U1 ≤ 0)1(β>U2 ≤ 0) and θ represents the angle between U1 and U2.

Lemma 4.0.2. (Escanciano, 2006) For any non-zero vectors U1, U2 ∈ Rd,

∫
Sd−1

1(β>U1 ≤ 0)1(β>U2 ≤ 0)dλ(β) =
1

2
− 1

2π
Ang (U1, U2) .

Remark 4.1. Escanciano (2006) proved Lemma 4.0.2 using the volume of a spherical wedge (see Figure 4.1).

In the supplementary material (Appendix C.4.2), we provide an alternative proof of this result based on

orthant probabilities for normal distributions. We also extend this result to integration involving strictly

more than two indicator functions in the supplementary material (Lemma C.1.8 and Lemma C.1.30). This

extension allows us to generalize the univariate τ∗ (Bergsma and Dassios, 2014) in Theorem 4.12 and

potentially many other univariate statistics (see Appendix C.5.8).

Based on Lemma 4.0.2, we give another representation of W 2
d in terms of the expected angle involving

three independent random vectors. Here and hereafter, we assume that

β>X and β>Y have continuous distribution functions for λ-almost all β ∈ Sd−1.

This continuity assumption greatly simplifies the alternative expression for W 2
d and avoids the possibility

that Ang(·, ·) is not well-defined when one of the inputs is a zero vector. This issue may be handled by

defining Ang(·, ·) differently for those exceptional cases, but we do not pursue this direction here.
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Theorem 4.1 (Closed-form expression). Suppose that X1, X2
i.i.d.∼ PX and, independently, Y1, Y2

i.i.d.∼ PY .

Then the squared multivariate CvM-distance can be written as

W 2
d (PX , PY ) =

1

3
− 1

2π
E [Ang (X1 − Y1, X2 − Y1)]− 1

2π
E [Ang (Y1 −X1, Y2 −X1)] .

The above result highlights that Wd(PX , PY ) is invariant to the choice of ϑX and ϑY under the continuity

assumption. In the next subsection, we introduce the test statistic and study its limiting behavior.

4.2.1 Test Statistic and Limiting Distributions

Theorem 4.1 leads to a natural empirical estimate of W 2
d based on a U -statistic. Consider the kernel of order

two:

hCvM(x1, x2; y1, y2) =
1

3
− 1

2π
Ang (x1 − y1, x2 − y1)− 1

2π
Ang (y1 − x1, y2 − x1) . (4.6)

We denote its symmetrized version, which is invariant to the order of the first two arguments as well as the

last two arguments, by

h̃CvM(x1, x2; y1, y2) =
1

2
hCvM(x1, x2; y1, y2) +

1

2
hCvM(x2, x1; y2, y1).

Then our test statistic is defined as follows:

UCvM =

(
m

2

)−1(
n

2

)−1 ∑
1≤i1<i2≤m

∑
1≤j1<j2≤n

h̃CvM(Xi1 , Xi2 ;Yj1 , Yj2). (4.7)

Leveraging the basic theory of U -statistics (e.g. Lee, 1990), it is clear that UCvM is an unbiased estimator

of W 2
d . Additionally, UCvM is a degenerate U -statistic under the null hypothesis as we prove in the

supplementary material (Appendix C.4.5). Hence we can apply the asymptotic theory for a degenerate

two-sample U -statistic (Chapter 3 of Bhat, 1995) to obtain the following result.

Theorem 4.2 (Asymptotic null distribution of UCvM). For each k = 1, 2, . . . , let λk be the eigenvalue with

the corresponding eigenfunction φk satisfying the integral equation

E
[
E
{
h̃CvM(x1, X2;Y1, Y2)

∣∣X2

}
φk(X2)

]
= λkφk(x1). (4.8)

Then UCvM has the limiting null distribution under the limiting regime (4.5) given by

NUCvM
d−→ ϑ−1

X ϑ−1
Y

∞∑
k=1

λk(ξ2
k − 1),
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where ξk
i.i.d.∼ N(0, 1) and

d−→ stands for convergence in distribution.

Under a fixed alternative hypothesis where PX and PY do not change with m and n, the proposed test

statistic converges weakly to a normal distribution. We build on Hoeffding’s decomposition of a two-sample

U -statistic (e.g. page 40 of Lee, 1990) to prove the following result.

Theorem 4.3 (Asymptotic distribution of UCvM under fixed alternatives). Let us define

σ2
hX = Var

[
E
{
h̃CvM(X1, X2;Y1, Y2)

∣∣X1

}]
and

σ2
hY = Var

[
E
{
h̃CvM(X1, X2;Y1, Y2)

∣∣Y1

}]
,

where Var(·) is the variance operator. Then under the limiting regime (4.5) and fixed alternative PX 6= PY ,

we have

√
N(UCvM −W 2

d )
d−→ N

(
0, 4ϑ−1

X σ2
hX + 4ϑ−1

Y σ2
hY

)
.

From the previous two theorems, it is clear to see that NUCvM is stochastically bounded under the null

hypothesis whereas it diverges to infinity under fixed alternatives. Thus one can expect that any reasonable

test based on the proposed test statistic is consistent (meaning that the power converges to one as N →∞)

against all fixed alternatives. In fact, the problem of distinguishing two fixed distributions is too easy in large

sample situations and many of nonparametric tests are known to be consistent in this asymptotic regime.

We therefore turn now to a more challenging scenario where a distance between PX and PY diminishes as

the sample size increases. To this end, we make a standard assumption that the underlying distributions

belong to quadratic mean differentiable (QMD) families (e.g. Bhattacharya, 2019).

Definition 4.1. (Quadratic Mean Differentiable Families, page 484 of Lehmann and Romano, 2006) Let

{Pθ, θ ∈ Ω} be a family of probability distributions on (Rd,B) where B is the Borel σ-field associated with Rd

and Ω is an open subset of Rp. Assume each Pθ is absolutely continuous with respect to Lebesgue measure

and set pθ(t) = dPθ(t)/dt. The family {Pθ, θ ∈ Ω} is quadratic mean differentiable at θ0 if there exists a

vector of real-valued functions η(·, θ0) = (η1(·, θ0), . . . , ηp(·, θ0))> such that

∫
Rd

[√
pθ0+b(t)−

√
pθ0(t)− b>η(t, θ0)

]2
dt = o(‖b‖2) as ‖b‖ → 0.

The QMD families include a broad class of parametric distributions such as exponential families in natural

form. By focusing on the QMD families, we are particularly interested in asymptotically non-degenerate

situations where the limiting sum of the type I and type II errors of the optimal test is non-trivial, i.e. bounded

by the nominal level α and one. It has been shown that when Pθ0 and PθN belong to the QMD families, this
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non-degenerate situation occurs when ‖θ0 − θN‖ � N−1/2 (Chapter 13.1 of Lehmann and Romano, 2006).

Hence we consider a sequence of contiguous alternatives where θN = θ0 + bN−1/2 for some b ∈ Rp and

establish the asymptotic behavior of UCvM under the given scenario. Our result builds on the prior work by

Chikkagoudar and Bhat (2014) and extends it to multivariate cases.

Theorem 4.4 (Asymptotic distribution of UCvM under contiguous alternatives). Assume {Pθ, θ ∈ Ω} is

quadratic mean differentiable at θ0 with derivative η(·, θ0) and Ω is an open subset of Rp. Define the Fisher

Information matrix to be the matrix I(θ) with (i, j) entry

Ii,j(θ) = 4

∫
Rd
ηi(t, θ)ηj(t, θ)dt,

and assume that I(θ0) is nonsingular. Suppose we observe Xm i.i.d.∼ Pθ0 and Yn i.i.d.∼ Pθ0+bN−1/2 for b ∈ Rp.

Then under the limiting regime (4.5),

NUCvM
d−→ ϑ−1

X ϑ−1
Y

∞∑
k=1

λk{(ξk + ϑ
1/2
X ak)2 − 1},

where ak =
∫
Rd 2{b>η(x, θ0)}p−1/2

θ0
(x)φk(x)dPθ0(x).

The above theorem implies that if there exists k ≥ 1 such that ak 6= 0 and λk > 0, a test based on

UCvM can have asymptotic power greater than α (see, page 615 of Lehmann and Romano, 2006). This is

in contrast to the NN test which has a slower consistency rate given by N−1/4 when d ≤ 8 under some

regularity conditions (see, Bhattacharya, 2018). In the supplementary material, we consider low-dimensional

Gaussian location models and illustrate that the proposed CvM test dominates the NN test via simulations.

In fact the former tends to have very close power to Hotelling’s T 2 test, which is known to be optimal under

the low-dimensional Gaussian scenarios (Anderson, 2003).

4.2.2 Critical Value and Permutation Test

So far we have investigated the limiting behaviors of the test statistic under the null and (fixed and

contiguous) alternative hypotheses. It is important to note that the performance of a test depends not only

on its test statistic but also crucially on its critical value. A common approach to determining the critical

value is based on the limiting null distribution of the test statistic. Since we are dealing with a general

composite null, one can define this limiting null distribution in various ways. Two natural candidates are

described as follows:

• P (single)
CvM : the limiting distribution of NUCvM based on i.i.d. samples from the single distribution PX .

64



• P (mix)
CvM : the limiting distribution of NUCvM based on i.i.d. samples from the mixture distribution

ϑXPX + ϑY PY .

These two limiting distributions P
(single)
CvM and P

(mix)
CvM coincide when PX = PY but they are different in

general if PX 6= PY . By invoking Theorem 4.2, we can conclude that P
(single)
CvM and P

(mix)
CvM are Gaussian

chaos distributions in the low-dimensional setting. The asymptotic tests then reject the null hypothesis

when NUCvM is greater than the upper 1−α quantile of P
(single)
CvM or P

(mix)
CvM , denoted by q

(single)
α,CvM and q

(mix)
α,CvM,

respectively.

Unfortunately this asymptotic approach is infeasible as the limiting distributions involve quantities that

depend on the underlying distributions and that cannot be easily estimated. Even if either P
(single)
CvM or P

(mix)
CvM

is known exactly, the resulting asymptotic test does not have finite-sample guarantees on the type I error

control. For this reason, we advocate for using the permutation procedure that resolves the issues of the

asymptotic approach. More importantly, as shown in Theorem 4.6, the power of the permutation test is

asymptotically the same as that of the asymptotic tests under the conventional asymptotic regime.

Before we describe the permutation procedure, let us introduce the oracle test that serves as a benchmark

for the permutation test. Let Tm,n be a generic two-sample test statistic. Then the critical value of the

oracle test based on Tm,n can be determined as follows:

• Oracle Test

1. Consider new i.i.d. samples {Z̃1, . . . , Z̃N} from the mixture ϑXPX + ϑY PY .

2. Let Tm,n(Z̃) be the test statistic of interest calculated based on X̃m = {Z̃1, . . . , Z̃m} and Ỹn =

{Z̃m+1, . . . , Z̃N}.

3. Given a significance level 0 < α < 1, return the critical value c∗α,m,n defined by

c∗α,m,n := inf
{
t ∈ R : 1− α ≤ P

(
Tm,n(Z̃) ≤ t

)}
. (4.9)

It is worth pointing out that the oracle statistic Tm,n(Z̃) has the same distribution as the test statistic

based on the original samples under H0, but not necessarily under H1. Hence the oracle test based on

c∗α,m,n is exact under H0 and can be powerful under H1. However, c∗α,m,n relies on the unknown mixture

distribution ϑXPX + ϑY PY , which makes the oracle test impractical. In sharp contrast, the critical value of

the permutation test can be obtained without knowledge of the mixture distribution as follows:

• Permutation Test

1. Let {Z1, . . . , ZN} = {X1, . . . , Xm, Y1, . . . , Yn} be the pooled samples and Z$ = {Z$(1), . . . , Z$(N)}
where $ = {$(1), . . . , $(N)} is a permutation of {1, . . . , N}.
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2. Let Tm,n(Z$) be the test statistic of interest calculated based on X$m = {Z$(1), . . . , Z$(m)} and

Y$n = {Z$(m+1), . . . , Z$(N)}.

3. Given a significance level 0 < α < 1, return the critical value cα,m,n defined by

cα,m,n := inf
{
t ∈ R : 1− α ≤ 1

N !

∑
$∈SN

1
(
Tm,n(Z$) ≤ t

)}
, (4.10)

where SN is the set of all permutations of {1, . . . , N}.

In Theorem 4.5, we show that the difference between c∗α,m,n and cα,m,n for the proposed statistic is

asymptotically negligible under both the null and alternative hypotheses. This connection in turn implies

that the permutation critical value converges to q
(mix)
α,CvM, which is the limit of the oracle critical value by

construction. Moreover, under the contiguous alternative, we also establish that q
(single)
α,CvM is the same as

q
(mix)
α,CvM. Building on this observation, we formally prove that (i) the permutation test, (ii) the oracle test

and (iii) the asymptotic tests based on P
(single)
CvM and P

(mix)
CvM have the same asymptotic power against both

contiguous and fixed alternatives in Theorem 4.6. In doing so, we develop a general asymptotic theory for the

permutation distribution of a two-sample degenerate U -statistic under H0. This general result is established

based on Hoeffding’s conditions (Hoeffding, 1952) and extended to H1 via the coupling argument (Chung

and Romano, 2013). The details can be found in Appendix C.2.

Let us denote by c∗α,CvM and cα,CvM the critical values of the oracle test and the permutation test based

on the scaled CvM-statistic, that is NUCvM, as described in the procedures (4.9) and (4.10), respectively.

Then our result on the critical values is stated as follows.

Theorem 4.5 (Asymptotic behavior of the critical values). Consider the conventional limiting regime in

(4.5) with the additional assumption that m/N − ϑX = O(N−1/2). Then under both the null and (fixed or

contiguous) alternative hypotheses,

cα,CvM
p−→ q

(mix)
α,CvM and c∗α,CvM

p−→ q
(mix)
α,CvM,

where
p−→ stands for convergence in probability. Moreover, under the null or contiguous alternative, we

further have that q
(mix)
α,CvM = q

(single)
α,CvM .

Leveraging the previous result combined with Slutsky’s theorem, we next prove that the asymptotic

power of the oracle test, the permutation test and the asymptotic tests are identical against any fixed and

contiguous alternatives. This clearly highlights an advantage of the permutation test as it is exact under

H0 and asymptotically as powerful as the oracle and asymptotic tests under H1. More importantly the

permutation test does not require any prior information on the underlying distributions.
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Theorem 4.6 (Asymptotic equivalence of power). The oracle test and the permutation test control the type

I error under the null hypothesis as

P0

(
NUCvM > c∗α,CvM

)
≤ α and P0

(
NUCvM > cα,CvM

)
≤ α.

On the other hand, under the fixed or contiguous alternative hypotheses considered in Theorem 4.3 and

Theorem 4.4 with the additional assumption that m/N − ϑX = O(N−1/2), we have

P1

(
NUCvM > cα,CvM

)
= P1

(
NUCvM > c∗α,CvM

)
+ o(1)

= P1

(
NUCvM > q

(single)
α,CvM

)
+ o(1)

= P1

(
NUCvM > q

(mix)
α,CvM

)
+ o(1).

Remark 4.2. It is worth pointing out that due to the symmetry of the kernel h̃CvM, it is enough to consider(
N
m

)
permutations to obtain the critical value cα,CvM for the CvM test. Nevertheless, except for small sample

sizes, the exact permutation procedure is too expensive to implement in practical applications. A common

approach to alleviate this computational issue is to use Monte Carlo sampling of random permutations and

approximate the exact permutation p-value. In more detail, note first that the permutation test function

can be written as 1(p̂CvM ≤ α) where p̂CvM is the permutation p-value given by

p̂CvM =
1

N !

∑
$∈SN

1{UCvM(Z$) ≥ UCvM}.

Let $(1), . . . , $(B) be independent and uniformly distributed on SN . Then the Monte Carlo version of the

permutation p-value is computed by

p̂
(B)
CvM =

1

B + 1

[
B∑
i=1

1{UCvM(Z$(i)) ≥ UCvM}+ 1

]
.

It is well-known that 1(p̂
(B)
CvM ≤ α) is also a valid level α test for any finite sample size and p̂CvM− p̂(B)

CvM

p−→ 0

as B → ∞ (e.g. page 636 of Lehmann and Romano, 2006). Throughout this chapter, we also adopt this

approach for our simulation studies.

4.3 Robustness

Recall that the energy distance and the CvM-distance can be represented by integrals of the L2
2-type difference

between two distribution functions. In view of this, the main difference between the energy distance and
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the CvM-distance is in their weight function. More precisely, the energy distance is defined with dt, which

gives a uniform weight to the whole real line. On the other hand, the CvM-distance is defined with dHβ(t),

which gives the most weight on high-density regions. As a result, the test based on the CvM-distance is

more robust to extreme observations than the one based on the energy distance. It is also important to note

that the CvM-distance is well-defined without any moment conditions, whereas the energy distance is only

well-defined assuming a finite first moment. When the moment condition is violated or there exist extreme

observations, the test based on the energy distance may perform poorly. The purpose of this section is to

demonstrate this point both theoretically and empirically by using contaminated distribution models.

4.3.1 Theoretical Analysis

Suppose that we observe samples from an ε-contamination model:

X ∼ PX,N := (1− ε)QX + εGN and

Y ∼ PY,N := (1− ε)QY + εGN ,

(4.11)

where GN can change arbitrarily with N and ε ∈ (0, 1). Suppose that QX and QY are different so that a

given test has high power to distinguish between QX and QY without contaminations. Then it is natural

to expect that the power of the same test would not decrease much for the contamination model when ε is

close to zero. In other words, an ideal test would maintain robust power against any choice of GN as long

as QX and QY are different and ε is small. Unfortunately, this is not the case for the energy test. As we

shall see, for any arbitrary small (but fixed) ε, there exists a contamination GN such that the energy test

becomes asymptotically powerless under mild moment conditions for QX and QY . On the other hand, the

CvM test is uniformly powerful over any choice of GN as sample size tends to infinity.

Remark 4.3. We mainly focus on statistical power to study robustness because one can always employ the

permutation procedure to control the type I error under H0 : PX,N = PY,N .

Let us consider the energy statistic based on a U -statistic:

UEnergy =
2

mn

m∑
i=1

n∑
j=1

‖Xi − Yj‖ −
1

(m)2

m, 6=∑
i1,i2=1

‖Xi1 −Xi2‖ −
1

(n)2

n,6=∑
j1,j2=1

‖Yj1 − Yj2‖. (4.12)

Then the main result of this subsection is stated as follows.

Theorem 4.7 (Robustness under contaminations). Suppose we observe samples Xm and Yn from the

contaminated model in (4.11) with an arbitrary small but fixed contamination ratio ε. Assume that QX

and QY are fixed but QX 6= QY while N changes. In addition, assume that QX and QY have their finite
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Figure 4.2: Empirical power of NN, FR, Energy, BG, Hotelling, CQ, LRT, LC and CvM tests under the
contamination models with ε = 0.05. See Example 4.1 and 4.2 for details.

second moments. Consider the tests based on UCvM and UEnergy given by

φCvM := 1(UCvM > cα,CvM) and φEnergy := 1(UEnergy > cα,Eng),

where cα,CvM and cα,Eng are α level permutation critical values of UCvM and UEnergy respectively. Then for

any (QX , QY ), there exists a certain GN such that the energy test becomes asymptotically powerless under

the asymptotic regime in (4.5), whereas the CvM test is asymptotically powerful uniformly over all possible

GN . More precisely,

lim
m,n→∞

inf
GN

E1 [φEnergy] ≤ α and lim
m,n→∞

inf
GN

E1 [φCvM] = 1. (4.13)

Remark 4.4. In Theorem 4.7, we made the assumption that QX and QY are fixed and have finite second

moments. We also assumed the asymptotic regime in (4.5). These assumptions are mainly for the energy

test and are not necessary for the CvM test. In fact, the same result can be derived for the CvM test given

that there is a positive sequence bm,n →∞ increasing arbitrary slowly with m,n such that Wd(QX , QY ) ≥
bm,n(1/

√
m+ 1/

√
n) (see Theorem 5.5).

4.3.2 Empirical Analysis

To illustrate Theorem 4.7 with finite sample size, we carried out simulation studies using the contamination

model in (4.11). In our simulation, we take QX and QY to have multivariate normal distributions with
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different location parameters or different scale parameters. In both examples, we take GN to have a

multivariate normal distribution given by

GN := N((0, . . . , 0)>, σ2Id),

where σ controls the scale of the contamination GN .

Example 4.1 (Location difference). For the location alternative, we compare two multivariate normal

distributions, where the means are different but the covariance matrices are identical. Specifically, we set

QX = N((−0.5, . . . ,−0.5)>, Id), and QY = N((0.5, . . . , 0.5)>, Id),

with ε = 0.05. We then change σ = 1, 40, 80, 120, 160, 200 and 240 to investigate the robustness of the tests

against contamination with large scale parameter σ.

Example 4.2 (Scale difference). Similar to the location alternative, we again choose multivariate normal

distributions which differ in their scale but not in their location parameters. In detail, we have

QX = N((0, . . . , 0)>, 0.12 × Id), and QY = N((0, . . . , 0)>, Id),

with ε = 0.05. Again, we change σ = 1, 40, 80, 120, 160, 200 and 240 to assess the effect of contamination

with large scale parameter σ.

In addition to the energy test, we further considered three nonparametric tests in our simulation studies,

namely, the k-nearest neighbor test by Schilling (1986) with k = 3, the MST test proposed by Friedman and

Rafsky (1979) and the inter-point distance test by Biswas and Ghosh (2014). For future reference, we refer

to them as the NN test, the FR test and the BG test, respectively. We also added the high-dimensional

mean test by Chen and Qin (2010) and Hotelling’s T 2 test (e.g. page 188 of Anderson, 2003) for the location

alternative and the high-dimensional covariance test by Li and Chen (2012) and the conventional likelihood

ratio test (e.g. page 412 of Anderson, 2003) for the scale alternative. We refer to them as the CQ test,

Hotelling’s test, the LC test and the LRT test, respectively.

Experiments were run 1, 000 times to estimate the power of different tests with m = n = 40 and d = 10 at

significance level α = 0.05. The p-value of each test was computed using 500 permutations as in Remark 4.2.

As can be seen from Figure 4.2, the power of the CvM test is consistently robust to the value of σ, which

supports our theoretical result. The power of the energy test, on the other hand, drops down significantly

as σ increases for both location and scale differences. As explained in the proof of Theorem 4.7, this

poor performance was attributed to the fact that the energy statistic is very much dominated by extreme

observations from GN when σ is large. The graph-based tests, i.e. the NN and FR tests, also show a robust
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power performance against the contamination models. Intuitively speaking, they perform robustly under the

given scenarios as their test statistics, which count the number of edges in a graph, do not vary a lot even in

the presence of outliers; but as far as we know, there is no theoretical support for this result in the current

literature. Moreover these graph-based tests typically exhibit poorer consistency rates (Bhattacharya, 2018)

compared to the proposed CvM test. The other four tests (Hotelling’s test, the LRT test, the LC test and

the CQ test) perform poorly for large σ, which may be explained similarly as to why the energy test has low

power in these examples.

4.4 Minimax Optimality

Although our choice of the U -statistic was a natural one to estimate W 2
d , it remains unclear whether one can

come up with a better test statistic for testing whether H0 : Wd = 0 or H0 : Wd > 0. One might also wonder

whether there exists a testing procedure that leads to significantly higher power than the permutation test

while controlling the type I error. In this section, we shall show that the answer is negative from a minimax

point of view. In particular, we prove that the permutation test based on UCvM is minimax rate optimal

against a class of alternatives associated with the CvM-distance.

To formulate the minimax problem, let us define the set of two multivariate distributions which are at

least ε far apart in terms of the CvM-distance, i.e.

F(ε) :=
{

(PX , PY ) : Wd(PX , PY ) ≥ ε
}
.

For a given significance level α ∈ (0, 1), let Tm,n(α) be the set of measurable functions φ : {Xm,Yn} 7→ {0, 1}
such that

Tm,n(α) = {φ : P0(φ = 1) ≤ α}.

We then define the minimax type II error as follows:

1− βm,n(ε) = inf
φ∈Tm,n(α)

sup
PX ,PY ∈F(ε)

P1(φ = 0). (4.14)

Our primary interest is in finding the minimax separation εm,n satisfying

εm,n = inf
{
ε : 1− βm,n(ε) ≤ ζ

}
,

for some 0 < ζ < 1− α. We start by establishing a lower bound for the minimax separation εm,n based on

Neyman–Pearson lemma.
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Theorem 4.8 (Lower Bound). For 0 < ζ < 1−α, there exists some constant b = b(α, ζ) independent of the

dimension such that εm,n = b(m−1/2 + n−1/2) and the minimax type II error is lower bounded by ζ, i.e.

1− βm,n (εm,n) ≥ ζ.

The above result shows that if εm,n is of lower order than m−1/2 + n−1/2, then no test has the type II

error that is uniformly smaller than the nominal level α. We now prove that this lower bound is tight by

establishing a matching upper bound. In particular, the upper bound is obtained by the permutation test

based on UCvM, highlighting that the proposed approach is minimax rate optimal.

Theorem 4.9 (Upper Bound). Recall the CvM test φCvM given in Theorem 4.7. For a sufficiently large

c > 0, let ε?m,n be the radius of interest defined by

ε?m,n := c

(
1√
m

+
1√
n

)
. (4.15)

Then there exists ζ ∈ (0, 1− α) such that the type II error of φCvM is uniformly bounded by ζ, i.e.

sup
PX ,PY ∈F(ε?m,n)

P1 (φCvM = 0) < ζ.

Remark 4.5. We would like to emphasize that no assumption has been made in Theorem 5.5 regarding the

ratio of the sample sizes. This implies that the proposed test can be consistent against general alternatives

even when the two sample sizes are highly unbalanced as m/n→ 0 or m/n→∞.

As a straightforward consequence of Theorem 4.7, we also show that the energy test, which is our main

competitor, is not minimax rate optimal in our context.

Proposition 4.1 (Non-optimality of the energy test). Recall the energy test φEnergy given in Theorem 4.7.

Then there exists a pair of distributions that belongs to F(ε?m,n) such that the energy test becomes

asymptotically powerless, i.e.

lim
m,n→∞

inf
PX ,PY ∈F(ε?m,n)

P1(φEnergy = 1) ≤ α.

In the next section we turn our attention to the asymptotic regime where the sample size is fixed and

the dimension tends to infinity and study the limiting behavior of the CvM test.
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4.5 High Dimension, Low Sample Size Analysis

The high dimension, low sample size (HDLSS) regime has received increasing attention in recent years and

has been frequently employed to give statistical insights into high-dimensional two-sample testing (e.g. Biswas

and Ghosh, 2014; Biswas et al., 2014; Mondal et al., 2015; Chakraborty and Chaudhuri, 2017). Focusing

on this HDLSS regime, the goal of this section is twofold: Firstly, we provide sufficient conditions under

which the proposed test is consistent in HDLSS situations (Section 4.5.1). Secondly, we show that UCvM

has the same asymptotic behavior as the high-dimensional mean test statistics proposed by Chen and Qin

(2010) and Chakraborty and Chaudhuri (2017) under certain location models (Section 4.5.2). Along with

these mean test statistics, we further establish the equivalence among UCvM, the energy statistic and the

MMD statistic with the Gaussian kernel. The latter connection was motivated by Ramdas et al. (2015) who

showed that the energy statistic, the MMD statistic and the mean test statistic by Chen and Qin (2010) are

asymptotically equivalent in different scenarios.

4.5.1 HDLSS Consistency

Let us denote E(X) = µX , E(Y ) = µY , Var(X) = ΣX and Var(Y ) = ΣY where ΣX and ΣY are positive

definite matrices. Before presenting the main results, we state the two assumptions.

(A1). Var(‖Z∗1 −Z∗2‖2) = O(d), and Var{(Z∗1 −Z∗3 )>(Z∗2 −Z∗3 )} = O(d) where Z∗1 , Z
∗
2 , Z

∗
3 are independent

and each Z∗i follows either PX or PY .

(A2). d−1tr(ΣX) → σ2
X , d

−1tr(ΣY ) → σ2
Y , d

−1‖µX − µY ‖22 → δ
2

XY where 0 < σ2
X , σ

2
Y < ∞ and 0 ≤

δ
2

XY <∞.

Assumption (A1) implies that component variables are weakly dependent. Under the distributional

assumptions (including multivariate normal distributions) made in Bai and Saranadasa (1996) and Chen

and Qin (2010), Assumption (A1) is satisfied when

(µX − µY )>(ΣX + ΣY )(µX − µY ) = O(d) and

tr{(ΣX + ΣY )2} = O(d).

(4.16)

The details of this derivation can be found in Appendix C.5.1. Assumption (A2) is common in the HDLSS

literature (e.g. Hall et al., 2005) and facilitates the analysis. Under these two conditions, the following

theorem establishes the HDLSS consistency of the proposed test where we assume that the nominal level

satisfies α > 1/{(m+ n)!/(m!n!)} for m 6= n and α > 2/{(m+ n)!/(m!n!)} for m = n.
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Theorem 4.10 (HDLSS consistency). Suppose (A1) and (A2) hold. Assume that σ2
X 6= σ2

Y or δ
2

XY > 0.

Then the permutation test based on UCvM is consistent under the HDLSS regime, that is limd→∞ E1[φCvM] =

1.

4.5.2 HDLSS Asymptotic Equivalence of CvM-statistic and Others

Next we focus on mean difference alternatives with equal covariance matrices. There are many types of

high-dimensional mean inference procedures in the literature (see Hu and Bai, 2016, for a recent review).

For example, Chen and Qin (2010) suggest a test statistic based on an unbiased estimator of ‖µX − µY ‖2.

Specifically, their test statistic is given by

UCQ =
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

(Xi1 − Yj1)>(Xi2 − Yj2).

More recently, Chakraborty and Chaudhuri (2017) define a test statistic based on spatial ranks as

UWMW =
1

(m)2(n)2

m,6=∑
i1,i2=1

n,6=∑
j1,j2=1

(Xi1 − Yj1)

‖Xi1 − Yj1‖
>

(Xi2 − Yj2)

‖Xi2 − Yj2‖
.

They proved that UCQ and UWMW are asymptotically equivalent under a certain HDLSS setting.

Independently, the equivalence between UCQ, UEnergy and the MMD statistic with the Gaussian kernel

was established by Ramdas et al. (2015) under different settings. Let us denote the MMD statistic with the

Gaussian kernel by

UMMD =
1

(m)2

m,6=∑
i1,i2=1

exp
(
− 1

2ς2d
‖Xi1 −Xi2‖2

)

+
1

(n)2

n,6=∑
j1,j2=1

exp
(
− 1

2ς2d
‖Yj1 − Yj2‖2

)
− 2

mn

m∑
i=1

n∑
j=1

exp
(
− 1

2ς2d
‖Xi − Yj‖2

)
,

where ς2d is the bandwidth parameter. Here we combine and further extend these results by presenting

sufficient conditions under which UCvM, UEnergy, UMMD, UCQ and UWMW are asymptotically equivalent. To

establish the result, we need two more assumptions.

(A3). Var{(Z∗1 −Z∗2 )>(Z∗3 −Z∗4 )} = O(d) where Z∗1 , Z
∗
2 , Z

∗
3 , Z

∗
4 are independent and each Z∗i follows either

PX or PY .

(A4). ΣX = ΣY and ‖µX − µY ‖2 = O(
√
d).

Assumption (A3) is required for studying UCQ and UWMW. Like Assumption (A1), Assumption (A3) is

also satisfied under condition (4.16). Notice that UCQ and UWMW are only sensitive to location parameters
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whereas UCvM, UEnergy and UMMD are sensitive to both location and scale parameters. This suggests that

the equal covariance assumption in (A4) is crucial for our result and cannot be dropped. The condition

‖µX − µY ‖2 = O(
√
d) is also important for our analysis and was also considered in Chakraborty and

Chaudhuri (2017). Under the given assumptions, we make repeated use of Taylor expansions to establish

the equivalence among the test statistics stated as follows.

Theorem 4.11 (HDLSS equivalence). Suppose (A1), (A2), (A3) and (A4) hold. Let $ be an

arbitrary permutation of {1, . . . , N} and σ2
d = d−1tr(ΣX). We denote by U$CvM, U$Energy, U$MMD, U$CQ

and U$WMW, the CvM, Energy, MMD, CQ, and WMW test statistics, respectively, calculated based on

X$m = {Z$(1), . . . , Z$(m)} and Y$n = {Z$(m+1), . . . , Z$(N)}. Assume that the bandwidth parameter of

the Gaussian kernel satisfies ς2d � d. Then under the HDLSS asymptotics, we have that

√
dU$CvM =

1

2π
√

3dσ2
d

U$CQ +OP(d−1/2), U$Energy =
1√

2dσd
U$CQ +OP(d−1/2),

√
dU$WMW =

1√
dσ2

d

U$CQ +OP(d−1/2),
√
dU$MMD =

√
d

ς2d
e−dσ

2
d/ς

2
dU$CQ +OP(d−1/2).

(4.17)

Note that the asymptotic equivalence established in (4.17) holds for any permutation. Leveraging this

result, we show that the permutation critical values of the test statistics are asymptotically the same as well.

Corollary 4.11.1 (Permutation critical values). Consider the same assumptions made in Theorem 4.11.

Let cα,CvM, cα,Eng, cα,MMD, cα,CQ and cα,WMW be the 1 − α quantile of the permutation distribution of

2π
√

3dσ2
dUCvM,

√
2σdUEnergy, ς2de

−dσ2
d/ς

2
dUMMD/

√
d, UCQ/

√
d and

√
dσ2

dUWMW, respectively. Then

cα,CvM = cα,Eng +OP(d−1/2) = cα,MMD +OP(d−1/2)

= cα,CQ +OP(d−1/2) = cα,WMW +OP(d−1/2).

From the previous results, we expect that the considered permutation tests have comparable power in the

limit as further illustrated by our simulation results in Section 8.9. We also refer the reader to Appendix C.5.5

where we present an explicit expression for the limiting power function of the asymptotic tests with extra

assumptions. We would like to emphasize, however, that when the moment assumption is violated, the power

of these tests can be entirely different. For instance, our simulation results in Section 8.9 demonstrate that

the CQ, energy and MMD tests perform poorly when X and Y have Cauchy distributions with different

location parameters. In contrast, the CvM and WMW tests maintain robust power against the same Cauchy

alternative, which highlights a benefit of the current approach in high dimensions.
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4.6 Connection to the Generalized Energy Distance and MMD

Recall that the energy distance is defined with the Euclidean distance under the finite first moment condition.

By considering a semimetric space (Z, ρ) of negative type, Sejdinovic et al. (2013) generalized the energy

distance by

E2
ρ = 2E[ρ(X1, Y1)]− E[ρ(X1, X2)]− E[ρ(Y1, Y2)].

They further established the equivalence between the generalized energy distance and the MMD with a

kernel induced by ρ(·, ·). Given a distance-induced kernel k(·, ·), the squared MMD is given by

MMD2
k = E[k(X1, X2)] + E[k(Y1, Y2)]− 2E[k(X1, Y1)].

In this section, we show that the multivariate CvM-distance is a member of the generalized energy

distance by the use of the angular distance and thus also a member of the MMD. Let MX and MY be the

support of X and Y respectively and let M = MX ∪MY ⊆ Rd. Then we define the angular distance as

follows:

Definition 4.2 (Angular distance). Let Z∗ be a random vector having mixture distribution (1/2)PX +

(1/2)PY . For z, z′ ∈M, denote the scaled angle between z − Z∗ and z′ − Z∗ by

ρAngle(z, z′;Z∗) =
1

π
Ang (z − Z∗, z′ − Z∗) .

The angular distance is defined as the expected value of the scaled angle:

ρAngle(z, z′) = E [ρAngle(z, z′;Z∗)] . (4.18)

As shown in Appendix C.5.6, ρAngle is a metric of negative type defined on M. With this key property

and the identity given in the next proposition, we may conclude that the multivariate CvM-distance is a

special case of the generalized energy distance based on the angular distance.

Proposition 4.2 (Another view of the CvM-distance). Let us consider the angular distance defined in

(4.18). Then

2W 2
d = 2E [ρAngle(X1, Y1)]− E [ρAngle(X1, X2)]− E [ρAngle(Y1, Y2)] .

Remark 4.6. The angular distance can be generalized by taking the expectation with respect to a different

measure. For instance, when the expectation is taken with respect to Lebesgue measure, the generalized
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angular distance is proportional to the Euclidean distance (see Appendix C.5.7). The main difference between

the Euclidean distance and the proposed angular distance is that the latter takes into account information

from the underlying distribution and is less sensitive to outliers. In this respect, the introduced angular

distance can be viewed as a robust alternative for the Euclidean distance.

Remark 4.7. As one of the reviewers pointed out, there might be several ways to enhance the power of the

proposed test by modifying the multivariate CvM-distance. For instance, by the characteristic property of

W 2
d , it can be seen that H0 holds if and only if Txy = Txx and Txy = Tyy where Txy = E[ρAngle(X1, Y1)],

Txx = E[ρAngle(X1, X2)] and Tyy = E[ρAngle(Y1, Y2)]. Motivated by this observation, another test statistic

can be introduced based on an estimate of (Txy −Txx)2 + (Txy −Tyy)2 (and other variants are possible, see

Appendix C.5.4). As demonstrated in Appendix C.6, the test based on this new statistic tends to be more

sensitive to scale differences than the CvM test.

4.7 Other Multivariate Extensions via Projection-Averaging

The projection-averaging approach used for the multivariate CvM-statistic is general and can be applied to

many other univariate robust statistics. In this section and also Appendix C.5.8, we illustrate the utility of

the projection-averaging approach by considering several examples including Kendall’s tau, Spearman’s rho

and the sign covariance (Bergsma and Dassios, 2014). Let us begin with one-sample and two-sample robust

statistics. Given a pair of random variables (X,Y ), denote the difference between two random variables by

Z = X −Y . The univariate sign test statistic is an estimate of Tsign := P(Z > 0)− 1/2 and it is used to test

whether

H0 : P(Z > 0) = 1/2 versus H1 : P(Z > 0) 6= 1/2.

The projection-averaging technique extends Tsign to a multivariate case as follows:

Proposition 4.3 (One-sample sign test statistic). For i.i.d. random vectors Z1, Z2 from a multivariate

distribution PZ where Z ∈ Rd, the projection-averaging approach generalizes Tsign as

∫
Sd−1

(
P(β>Z1 > 0)− 1

2

)2

dλ(β) =
1

4
− 1

2π
E [Ang (Z1, Z2)] . (4.19)

Given univariate two samples Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn}, the Wilcoxon–Mann–Whitney

test is designed for testing whether

H0 : P(X > Y ) = 1/2 versus H1 : P(X > Y ) 6= 1/2,
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based on an estimate of TWMW := P(X > Y )− 1/2. The next proposition extends TWMW to a multivariate

case via projection-averaging.

Proposition 4.4 (Two-sample Wilcoxon–Mann–Whitney test statistic). Let X1, X2
i.i.d.∼ PX and,

independently, Y1, Y2
i.i.d.∼ PY where X1, Y1 ∈ Rd. The projection-averaging approach generalizes TWMW

as

∫
Sd−1

(
P(β>X1 > β>Y1)− 1

2

)2

dλ(β) =
1

4
− 1

2π
E [Ang (X1 − Y1, X2 − Y2)] . (4.20)

Remark 4.8. The first order Taylor approximation of the inverse cosine function shows that the

representations given on the right-side of (4.19) and (4.20) are related to the spatial sign-statistics introduced

by Wang et al. (2015) and Chakraborty and Chaudhuri (2017), respectively. In fact, when U -statistics are

used to estimate (4.19) and (4.20), the projection-averaging statistics and the spatial sign-statistics are

asymptotically equivalent under some regularity conditions (see Appendix C.5.3 for details).

The same technique can be further applied to some robust statistics for independence testing. To test

for independence between two random variables, Kendall’s tau statistic is given as an estimate of τ :=

4P (X1 < X2, Y1 < Y2)− 1. We present a multivariate extension of τ as follows:

Theorem 4.12 (Kendall’s tau). For i.i.d. pairs of random vectors (X1, Y1),

. . . , (X4, Y4) from a joint distribution PXY where X ∈ Rp and Y ∈ Rq, the multivariate extension of τ via

projection-averaging is given by

∫
Sp−1

∫
Sq−1

[
4P
(
α>(X1 −X2) < 0, β>(Y1 − Y2) < 0

)
− 1
]2
dλ(α)dλ(β)

= E
[(

2− 2

π
Ang (X1 −X2, X3 −X4)

)
·
(

2− 2

π
Ang (Y1 − Y2, Y3 − Y4)

)]
− 1.

Recently, Bergsma and Dassios (2014) introduced a modification of Kendall’s tau, which is zero if and

only if random variables are independent under some mild conditions. Let us denote the univariate Bergsma–

Dassios sign covariance by

τ∗ = E [asign(X1, X2, X3, X4) · asign(Y1, Y2, Y3, Y4)] , (4.21)

with asign(z1, z2, z3, z4) = sign (|z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|). Motivated by the projection-

averaging approach, we propose the multivariate τ∗ as follows:
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Definition 4.3 (Multivariate τ∗). Suppose (X1, Y1), . . . , (X4, Y4) are i.i.d. random vectors from a joint

distribution PXY where X ∈ Rp and Y ∈ Rq. We define the multivariate τ∗ by

τ∗p,q =

∫
Sp−1

∫
Sq−1

E
[
asign(α>X1, α

>X2, α
>X3, α

>X4)× asign(β>Y1, β
>Y2, β

>Y3, β
>Y4)

]
dλ(α)dλ(β).

Since the kernel of τ∗ is sign-invariant, i.e. asign(z1, z2, z3, z4) = asign(−z1,

− z2,−z3,−z4), it is easy to see that τ∗p,q becomes the univariate τ∗ when p = q = 1. Also note that since

X and Y are independent if and only if α>X and β>Y are independent for all α ∈ Sp−1 and β ∈ Sq−1, the

characteristic property of τ∗p,q follows by that of the univariate τ∗.

Next we present a closed-form expression for τ∗p,q. For non-zero U1, U2, U3 ∈ Rd, let us define gd(U1, U2, U3)

and hd(Z1, Z2, Z3, Z4) by

gd(U1, U2, U3) =
1

2
− 1

4π
[Ang (U1, U2) + Ang (U1, U3) + Ang (U2, U3)]

and

hd(Z1, Z2, Z3, Z4) = gd(Z1 − Z2, Z2 − Z3, Z3 − Z4) + gd(Z2 − Z1, Z1 − Z3, Z3 − Z4)

+ gd(Z1 − Z2, Z2 − Z4, Z4 − Z3) + gd(Z2 − Z1, Z1 − Z4, Z4 − Z3).

We note that, in contrast to other applications, Lemma 4.0.2 is not enough to have an expression for τ∗p,q

without involving integrations over the unit sphere. To this end, we generalize Lemma 4.0.2 with three

indicator functions (see Lemma C.1.8) and present an alternative expression for τ∗p,q as follows.

Theorem 4.13 (Closed-form expression for τ∗p,q). For i.i.d. random vectors (X1, Y1), . . . , (X4, Y4) from a

joint distribution PXY where X ∈ Rp and Y ∈ Rq, τ∗p,q can be written as

τ∗p,q = E [hp(X1, X2, X3, X4) · hq(Y1, Y2, Y3, Y4)] + E [hp(X1, X2, X3, X4) · hq(Y3, Y4, Y1, Y2)]

−2E [hp(X1, X2, X3, X4) · hq(Y1, Y3, Y2, Y4)] .

Theorem 4.13 leads to a straightforward empirical estimate of τ∗p,q based on a U -statistic. This is also

true for the other multivariate generalizations introduced in this section and the supplementary material

(Appendix C.5.8). Using these estimates, some theoretical and empirical properties of the proposed measures

can be further investigated. These topics are reserved for future work.
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4.8 Simulations

In this section, we report numerical results to support the argument in Section 4.5 as well as to compare the

performance of the CvM test with other competing nonparametric tests against heavy-tailed alternatives.

Along with the energy, MMD, NN, FR and BG tests described before, we consider the cross-match test

(Rosenbaum, 2005), the multivariate run test (Biswas et al., 2014), the modified k-NN test (Mondal et al.,

2015) and the ball divergence test (Pan et al., 2018) for comparison. We refer to them as the CM test, run

test, MBG test and ball test, respectively. In our simulations, we used the Gaussian kernel with the median

heuristic (Gretton et al., 2012) for the MMD test and we set the number of nearest neighbors as k = 3 for

both NN test and MBG test. Since finding the shortest Hamiltonian path for the run test is NP-complete,

we employed Kruskal’s algorithm (Kruskal, 1956) as suggested by Biswas et al. (2014).

Throughout our experiments, the significance level was set at 0.05 and the permutation procedure was

used to determine the p-value of each test with 200 permutations as in Remark 4.2. The simulations were

repeated 500 times to approximate the power of different tests. We set the sample size and the dimension by

m,n = 20 and d = 200 for the balanced cases and by m = 35, n = 5 and d = 200 for the imbalanced cases.

First, we consider several examples where the powers of the five tests (CvM, energy, MMD, CQ and

WMW tests) in Section 4.5 are approximately equivalent to each other. Specifically we use multivariate

normal distributions with different means

µ(0) = (0, . . . , 0)>, µ(1) = (0.15, . . . , 0.15)> and

µ(2) =
√

0.045( 1, . . . , 1︸ ︷︷ ︸
d/2 elements

, 0, . . . , 0︸ ︷︷ ︸
d/2 elements

)>

and covariance matrices:

1. Identity matrix (denoted by I) where σi,i = 1 and σi,j = 0 for i 6= j.

2. Banded matrix (denoted by ΣBand) where σi,i = 1, σi,j = 0.6 for |i− j| = 1, σi,j = 0.3 for |i− j| = 2

and σi,j = 0 otherwise.

3. Autocorrelation matrix (denoted by ΣAuto) where σi,i = 1 and σi,j = 0.2|i−j| when i 6= j.

4. Block diagonal matrix (denoted by ΣBlock) where the 5 × 5 main diagonal blocks A are defined by

ai,i = 1 and ai,j = 0.2 when i 6= j, and the off-diagonal blocks are zeros.

Then we generate random samples from X ∼ N(µ(0),Σ) and either Y ∼ N(µ(1),Σ) or Y ∼ N(µ(2),Σ). The

results are summarized in Table 4.1. As can be seen from the table, the empirical powers of the considered

tests are very close under the given setting, which supports our theoretical results in Section 4.5. We also

observe that the other nonparametric tests, not considered in Section 4.5, are significantly less powerful than

the proposed test in all normal location alternatives.
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Table 4.1: Empirical power of the considered tests against the normal location models at α = 0.05.

Id ΣBand ΣBlock ΣAuto

m = 20, n = 20 µ(1) µ(2) µ(1) µ(2) µ(1) µ(2) µ(1) µ(2)

CvM 0.662 0.646 0.418 0.406 0.572 0.584 0.452 0.442

Energy 0.656 0.650 0.420 0.408 0.576 0.584 0.452 0.444

MMD 0.658 0.638 0.412 0.398 0.568 0.570 0.458 0.444

CQ 0.656 0.650 0.416 0.412 0.578 0.580 0.454 0.448

WMW 0.668 0.646 0.420 0.402 0.568 0.580 0.458 0.444

NN 0.288 0.288 0.164 0.154 0.242 0.238 0.176 0.174

FR 0.168 0.170 0.090 0.084 0.158 0.116 0.112 0.088

MBG 0.050 0.050 0.050 0.052 0.048 0.044 0.060 0.046

Ball 0.240 0.254 0.186 0.198 0.262 0.250 0.216 0.226

CM 0.042 0.054 0.028 0.040 0.052 0.050 0.038 0.034

BG 0.070 0.060 0.074 0.074 0.074 0.078 0.084 0.078

Run 0.160 0.153 0.101 0.105 0.146 0.128 0.110 0.102

In our second experiment, we consider several examples where the moment conditions are not satisfied.

We focus on random samples generated from multivariate Cauchy distributions. Let Cauchy(γ, s) refer to the

univariate Cauchy distribution where γ, s are the location parameter and the scale parameter, respectively.

Let X = (X(1), . . . , X(d)) and Y = (Y (1), . . . , Y (d)) be random vectors where X(i) i.i.d.∼ Cauchy(0, 1) and

Y (i) i.i.d.∼ Cauchy(γ, s) for i = 1, . . . , d. We first consider location differences where γ is not zero but the

scale parameters are identical, i.e. s = 1. Similarly, we consider scale differences where the scale parameter

s changes, but the location parameters are identical, i.e. γ = 0.

From the results presented in Table 4.2 and Table 4.3, it is seen that, unlike the multivariate normal

cases, there are significant differences between power performance among CvM, energy, MMD, CQ and

WMW tests. In particular, the tests based on the energy, MMD and CQ statistics have relatively low power

against the heavy-tail location alternatives, whereas the tests based on the CvM and WMW statistics show

better performance than the others. Turning to the scale problems, it can be seen that the CQ and WMW

tests are not sensitive to detect scale differences, which makes sense because they are specifically designed

for location problems. On the other hand, the CvM, energy and MMD tests perform reasonably well in these

alternatives. Among the omnibus nonparametric tests, the MMD, energy and ball tests have competitive

power against the scale differences, but not against the location differences in general. The MBG test is

only powerful against the scale differences where the sample sizes are balanced. The CM and run tests are

uniformly outperformed by the CvM test under all scenarios. The NN and FR tests perform strongly against
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Table 4.2: Empirical power of the considered tests against multivariate Cauchy distributions with m = n = 20 at
α = 0.05 where γ, s represent the location and scale parameter, respectively. The three highest power estimates in
each column are highlighted in boldface.

Location Scale

m = 20, n = 20 γ = 2 γ = 3 γ = 4 γ = 5 s = 2 s = 3 s = 4 s = 5

CvM 0.124 0.252 0.596 0.842 0.560 0.926 0.988 1.000

Energy 0.060 0.066 0.102 0.134 0.316 0.602 0.766 0.866

MMD 0.056 0.064 0.110 0.162 0.448 0.772 0.890 0.970

CQ 0.138 0.268 0.360 0.456 0.046 0.070 0.042 0.068

WMW 0.324 0.698 0.912 0.988 0.052 0.064 0.062 0.056

NN 0.288 0.662 0.884 0.976 0.214 0.194 0.256 0.224

FR 0.178 0.462 0.706 0.888 0.028 0.034 0.048 0.036

MBG 0.060 0.044 0.050 0.074 0.564 0.904 0.964 0.992

Ball 0.064 0.064 0.076 0.098 0.606 0.936 0.994 1.000

CM 0.030 0.078 0.128 0.226 0.056 0.170 0.334 0.490

BG 0.048 0.038 0.048 0.040 0.238 0.394 0.560 0.632

Run 0.059 0.129 0.274 0.422 0.220 0.506 0.767 0.864

Table 4.3: Empirical power of the considered tests against multivariate Cauchy distributions with m = 35 and
n = 5 at α = 0.05 where γ, s represent the location and scale parameter, respectively. The three highest power
estimates in each column are highlighted in boldface.

Location Scale

m = 35, n = 5 γ = 5 γ = 6 γ = 7 γ = 8 s = 3 s = 4 s = 5 s = 6

CvM 0.340 0.498 0.652 0.758 0.570 0.806 0.928 0.952

Energy 0.110 0.146 0.212 0.262 0.436 0.632 0.794 0.858

MMD 0.108 0.148 0.192 0.240 0.552 0.808 0.926 0.968

CQ 0.284 0.380 0.454 0.544 0.178 0.210 0.262 0.290

WMW 0.796 0.890 0.942 0.960 0.110 0.126 0.134 0.148

NN 0.144 0.294 0.376 0.558 0.118 0.150 0.154 0.182

FR 0.226 0.360 0.464 0.588 0.078 0.092 0.104 0.112

MBG 0.010 0.000 0.008 0.000 0.092 0.130 0.176 0.214

Ball 0.072 0.088 0.098 0.122 0.238 0.406 0.594 0.762

CM 0.082 0.176 0.190 0.262 0.030 0.080 0.092 0.126

BG 0.058 0.052 0.058 0.052 0.320 0.386 0.506 0.514

Run 0.088 0.150 0.198 0.228 0.106 0.174 0.248 0.326
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the location alternatives especially for the balanced case, but not against the scale alternatives. When the

sample sizes are unbalanced, the performance of the NN and FR tests are degraded a little bit, which can

be explained by Chen et al. (2013) and Chen et al. (2018). The CvM test, on the other hand, performs

consistently well against the heavy-tail location and scale alternatives and its performance appears immune

to the sample proportion.

In summary, the proposed test has almost identical power as the high-dimensional mean tests against

the light-tail location alternatives, whereas it outperforms many popular nonparametric competitors under

the heavy-tail location and scale alternatives. More simulation results in both high and low dimensions can

be found in Appendix C.6 of the supplemental article.

4.9 Concluding Remarks

In this work, we extended the univariate Cramér-von Mises statistic for two-sample testing to the multivariate

case using projection-averaging. The proposed statistic has a straightforward calculation formula in arbitrary

dimensions and the resulting test has good statistical properties. Throughout this chapter, we demonstrated

its robustness, minimax rate optimality and high-dimensional power properties. In addition, we applied the

same projection technique to other robust statistics and presented their multivariate extensions.

Beyond nonparametric testing problems, we believe that our approach can be used for other problems.

For example, our work can be viewed as an application of the angular distance to the two-sample problem.

The angular distance is closely connected to the Euclidean distance (Remark 4.6) but is more robust to

outliers by incorporating information from the underlying distribution. Given that the use of distances is of

fundamental importance in many statistical applications (including clustering, classification and regression),

we expect that the angular distance can be applied to other statistical problems as a robust alternative for

the Euclidean distance.
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Chapter 5

Comparing a Large Number of

Multivariate Distributions

This chapter is adapted from my work supervised by Sivaraman Balakrishnan and Larry Wasserman. This

work is available on ArXiv (Kim, 2019).

5.1 Introduction

Let P1, . . . , PK be probability distributions defined on a common measurable space (X ,B) for K ≥ 2.

The K-sample problem is concerned with testing the null hypothesis H0 : P1 = · · · = PK against the

alternative hypothesis H1 : Pi 6= Pj for some i, j ∈ {1, . . . ,K}. This fundamental problem of comparing

multiple distributions is a classical topic in statistics with a wide range of applications (Thas, 2010; Chen

and Pokojovy, 2018, for reviews). Despite its long history, previous approaches to the K-sample problem

have several limitations. First, many methods are limited to dealing with univariate data. For instance,

Kiefer (1959) proposes the K-sample analogues of the Kolmogorov–Smirnov and Cramér-Von Mises tests.

Scholz and Stephens (1987) generalize the Anderson-Darling test (Anderson and Darling, 1952) to the K-

sample case. These approaches are based on empirical distribution functions and are not easily extendable

to multivariate data. Some other references that are restricted to the univariate K-sample problem

include Conover (1965); Zhang and Wu (2007); Wy lupek (2010); Quessy and Éthier (2012); Lemeshko and

Veretelnikova (2018). Second, most research in this area has been carried out under classical asymptotic

regimes where the sample size goes to infinity but the number of distributions is fixed (e.g., Burke, 1979;

Bouzebda et al., 2011; Hušková and Meintanis, 2008; Mart́ınez-Camblor et al., 2008; Jiang et al., 2015;

Mukhopadhyay and Wang, 2018; Sosthene et al., 2018). Clearly this classical asymptotic analysis is not

appropriate for a dataset with large K and it only provides a narrow picture of the behavior of a test. To
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the best of our knowledge, Zhan and Hart (2014) is the only study in the literature that considers large K.

However, their analysis is limited to univariate data with fixed sample size. Third, recent developments on the

multivariate K-sample problem are largely built upon an average difference between distributions (Bouzebda

et al., 2011; Hušková and Meintanis, 2008; Rizzo and Székely, 2010; Zhan and Hart, 2014; Mukhopadhyay

and Wang, 2018; Sosthene et al., 2018). It is well-known that the test based on an average-type test statistic

tends to be powerful against dense alternatives in which many of P1, . . . , PK are different to each other. On

the other hand, it tends to suffer from low power against sparse alternatives where only a few of P1, . . . , PK

are different from the others. Recently, sparse alternatives have been motivated by numerous applications

such as DNA microarray analysis and anomaly detection where there are a small number of treatments

that can actually contribute response variables. These applications have led to recent developments of tests

tailored to sparse alternatives in the context of testing a high-dimensional vector (Jeng et al., 2010; Fan et al.,

2015; Liu and Li, 2020), two-sample mean or covariance testing (Cai et al., 2013, 2014; Cai and Xia, 2014),

analysis of variance (Arias-Castro et al., 2011; Cai and Xia, 2014) and independence testing (Han et al.,

2017). To our knowledge, however, a multivariate K-sample test specifically designed for sparse alternatives

is not available in the current literature.

In this study, we propose a new K-sample test that addresses the aforementioned limitations of the

previous approaches. More specifically, we introduce a K-sample test based on the kernel mean embedding

method that has been successfully applied to multivariate hypothesis testing. Our test statistic is defined

as the maximum of pairwise maximum mean discrepancies (Gretton et al., 2007, 2012), which leads to a

powerful test against sparse alternatives. Throughout this chapter, we investigate statistical properties of

the proposed test under the asymptotic regime where both the sample size and the number of distributions

tend to infinity. Below, we summarize our main findings and contributions.

• Limiting null distribution: By building on Drton et al. (2018), we develop Cramér-type moderate

deviation for degenerate two-sample V -statistics. Based on this result, we study the limiting

distribution of the proposed test statistic when the sample size and the number of distributions increase

simultaneously. In particular, we show the test statistic converges to a Gumbel distribution under some

appropriate conditions.

• Concentration inequality under permutations: We demonstrate the usefulness of Bobkov’s

inequality (Bobkov, 2004) in studying a concentration inequality for the permuted test statistic. By

applying his result, we derive an exponential concentration inequality for the proposed test statistic

under permutations. In contrast to usual Hoeffding or Bernstein-type inequalities, the developed

inequality relies solely on completely known and easily computable quantities without any moment

assumption.
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• Uniform consistency of the permutation test: Leveraging the developed concentration inequality

for the permuted statistic, we prove the uniform consistency of the permutation test over the class of

sparse alternatives. Under some regularity conditions, we also show that the power of the permutation

test cannot be improved from a minimax point of view.

• Empirical power comparison against sparse alternatives: A simulation study is conducted to

compare the performance of the proposed maximum-type test with the existing average-type tests

in the literature. The simulation results show that the proposed test consistently outperforms the

average-type tests against different sparse alternatives.

Outline. This chapter is organized as follows. In Section 5.2, we briefly review the maximum mean

discrepancy and introduce our test statistic. Section 5.3 studies the limiting distribution of the proposed

test statistic when the sample size and the number of distributions tend to infinity simultaneously. Section 5.4

formally introduces permutation procedures. In Section 5.5, we provide an exponential concentration

inequality for the proposed test statistic under permutations. Section 5.6 investigates the power of the

proposed test and proves its optimality property against sparse alternatives. In Section 8.9, we demonstrate

the finite-sample performance of the proposed approach via simulations. Finally, Section 5.8 concludes this

chapter and discusses future work. The proofs not presented in the main text can be found in Appendix D.1.

5.2 Test Statistic

We start with a brief overview of the maximum mean discrepancy proposed by Gretton et al. (2007, 2012).

Let H be a reproducing kernel Hilbert space (RKHS) on X with a reproducing kernel h : X × X 7→ R. For

two functions f, g ∈ H, we write the inner product on H by 〈f, g〉H and the associated norm by ‖f‖H. Given

a probability distribution P , the kernel mean embedding of P is given by µh(P ) = EX∼P [h(X, ·)]. Using

the feature map ψ : X 7→ H, which satisfies h(x, y) = 〈ψ(x), ψ(y)〉H, the kernel mean embedding can also

be written as EX∼P [ψ(X)] (see e.g. Muandet et al., 2016, for details). We now provide the definition of the

maximum mean discrepancy (MMD) associated with kernel h.

Definition 5.1 (Maximum mean discrepancy). Given two probability distributions, say P1 and P2, such

that EX1∼P1‖ψ(X1)‖H < ∞ and EX2∼P2‖ψ(X2)‖H < ∞, the maximum mean discrepancy is defined as the

RKHS norm of the difference between µh(P1) and µh(P2), i.e.

Vh(P1, P2) = ‖µh(P1)− µh(P2)‖H.

87



It has been shown that when kernel h is characteristic (see e.g., Fukumizu et al., 2008; Sriperumbudur

et al., 2011), the MMD becomes zero if and only if P1 = P2. Some examples of characteristic kernels

include Gaussian and Laplace kernels on X = Rd. This characteristic property allows to have a consistent

two-sample test against any fixed alternatives. For general K-sample cases, we consider the maximum of

pairwise maximum mean discrepancies as our metric, i.e.

Vh,max(P1, . . . , PK) = max
1≤k<l≤K

‖µh(Pk)− µh(Pl)‖H.

Hence as long as h is characteristic, it is clear to see that Vh,max(P1, . . . , PK) is zero if and only if P1 =

· · · = PK .

Suppose that we observe identically distributed samples X1,k, . . . , Xnk,k ∼ Pk for each k = 1, . . . ,K

and assume that the samples are mutually independent. We propose our test statistic defined as a plug-in

estimator of Vh,max:

V̂h,max = max
1≤k<l≤K

∥∥∥∥ 1

nk

nk∑
i1=1

ψ(Xi1,k)− 1

nl

nl∑
i2=1

ψ(Xi2,l)

∥∥∥∥
H
.

In practice, the test statistic can be computed in a straightforward manner based on the kernel trick

(e.g. Lemma 6 of Gretton et al., 2012):

V̂h,max = max
1≤k<l≤K

{
1

n2
k

nk∑
i1,i2=1

h(Xi1,k, Xi2,k) +
1

n2
l

nl∑
i1,i2=1

h(Xi1,l, Xi2,l)−
2

nknl

nk∑
i1=1

nl∑
i2=1

h(Xi1,k, Xi2,l)

}1/2

.

Throughout this chapter, we denote the pooled samples by {Z1, . . . , ZN} = {X1,1, . . . , XnK ,K} where N =∑K
k=1 nk.

5.3 Limiting distribution

Given the test statistic, our next step is to determine a critical value of the test with correct size α and good

power properties. A common way of calibrating the critical value is based on the limiting null distribution

of the test statistic. In this asymptotic approach, the critical value is set to be the 1 − α quantile of the

limiting null distribution and the null hypothesis is rejected when the test statistic exceeds the critical

value. The purpose of this section is to demonstrate the difficulty of implementing this asymptotic-based

test in our setting. In particular, we show that V̂h,max converges to a Gumbel distribution with a potentially

infinite number of unknown parameters under certain conditions. Unfortunately, it is by no means trivial to

consistently estimate these infinite nuisance parameters. Furthermore, it is well-known that a maximum-type

statistic converges slowly to its limiting distribution (e.g. Hall, 1991), which also makes the asymptotic test
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less attractive in practice. These limitations motivate us to delve into the permutation approach later in

Section 5.4–5.6.

5.3.1 Cramér-type moderate deviation

In order to derive the limiting distribution of the maximum of pairwise MMD statistics, it is important to

understand the tail behavior of the two-sample MMD statistic. The main tool to this end is Cramér-type

moderate deviation for degenerate two-sample V -statistics that we will develop in this subsection. Our

result largely builds upon Cramér-type moderate deviation for degenerate one-sample U -statistics recently

presented by Drton et al. (2018).

Let us start with some notation and assumptions. For notational convenience, we write the MMD statistic

between P1 and P2 as

V̂2
12 =

1

n2
1

n1∑
i1,i2=1

h(Xi1,1, Xi2,1) +
1

n2
2

n2∑
i1,i2=1

h(Xi1,2, Xi2,2)− 2

n1n2

n1∑
i1=1

n2∑
i2=1

h(Xi1,1, Xi2,2).

By defining h∗(x1, x2; y1, y2) := h(x1, x2) + h(y1, y2)− h(x1, y1)/2− h(x1, y2)/2− h(x2, y1)/2− h(x2, y2)/2,

the MMD statistic can also be written in the form of a two-sample V -statistic

V̂2
12 =

1

n2
1n

2
2

n1∑
i1,i2=1

n2∑
j1,j2=1

h∗(Xi1,1, Xi2,1;Xj1,2, Xj2,2). (5.1)

Under the null hypothesis, the considered V -statistic is degenerate meaning that the conditional expectation

of h∗(Xi1,1, Xi2,1;Xj1,2, Xj2,2) given any one of Xi1,1, Xi2,1, Xj1,2, Xj2,2 has zero variance whenever i1 6= i2

and j1 6= j2.

Let X1, X2 be independent random vectors from P1. We then define the centered kernel

h(x1, x2) := h(x1, x2)− E[h(x1, X2)]− E[h(X1, x2)] + E[h(X1, X2)],

which satisfies E[h(X1, X2)] = 0 and E[h(x1, X2)] = 0 almost surely. Under the finite second moment

condition of the centered kernel, i.e. E[{h(X1, X2)}2] <∞, we may write

h(x1, x2) =

∞∑
v=1

λvϕv(x1)ϕv(x2), (5.2)

where {λv}∞v=1 and {ϕv(·)}∞v=1 are the eigenvalues and eigenfunctions of the integral equation E[h(x1, X2)ϕv(X2)] =

λvϕv(x1) (e.g. page 80 of Lee, 1990).

To facilitate the analysis, we make the following assumptions regarding the kernel function.
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(A1). Assume that E[|h(X1, X1)|] <∞.

(A2). Suppose that h(x1, x2) admits the decomposition in (5.2) with λ1 ≥ λ2 ≥ . . . ≥ 0. For all u, v ∈
ST−1 := {x ∈ RT : ‖x‖2 = 1} where ‖ · ‖2 is Euclidean norm in RT and any positive integer T , assume

that there exists a constant η > 0 independent of T such that

E
[∣∣{ϕ1···T (X1)>u}2{ϕ1···T (X1)>v}m−2

∣∣] ≤ ηmmm/2, (5.3)

where ϕ1···T (X1) := (ϕ1(X1), . . . , ϕT (X1))> and m = 3, 4, . . .

It is worth noting that the given conditions are more general than those used in Drton et al. (2018).

Specifically, Drton et al. (2018) assume that the kernel h and its eigenfunctions are uniformly bounded.

Clearly, (A1) and (A2) are fulfilled under their boundedness assumptions. We also note that h(x1, x2) is a

valid positive definite kernel (Sejdinovic et al., 2013), which yields {h(x1, x2)}2 ≤ h(x1, x1)h(x2, x2). Hence,

the second moment condition E[{h(X1, X2)}2] < ∞ is also satisfied under (A1). Finally, the multivariate

moment condition (5.3) implies that individual eigenfunctions are sub-Gaussian (e.g. Vershynin, 2018).

Under the given conditions, we present Cramér-type moderate deviation for the two-sample degenerate

V -statistic described in (5.1). The proof of the following theorem can be found in Appendix D.1.

Theorem 5.1 (Cramér-type moderate deviation). Suppose that (A1) and (A2) are fulfilled. Assume

that there exists a constant C1 ≥ 1 such that C−1
1 ≤ n1/n2 ≤ C1 and n1/N converges to a constant as

N := n1 + n2 →∞. Then under the null hypothesis P1 = P2, we have

P(n1n2V̂2
12/N ≥ x)

P (
∑∞
v=1 λvξ

2
v ≥ x)

= 1 + o(1), (5.4)

uniformly over x ∈ (0, o(Nθ)) where ξ1, ξ2, . . . are independent and identically distributed as N(0, 1). Here θ

is a constant that satisfies

θ < sup
{
q ∈ [0, 1/3) :

∑
v>bN(1−3q)/5c

λv = O(N−q)
}
,

when there exist infinitely many non-zero eigenvalues and θ = 1/3 otherwise.

Remark 5.1. Although we restrict our attention to the two-sample V -statistic with a second-order kernel

h∗(x1, x2; y1, y2), our result can be straightforwardly extended to higher-order kernels h∗(x1, . . . , xr; y1, . . . , yr)

for some r ≥ 3. The key idea is to consider Hoeffding’s decomposition of two-sample U -statistics (page 40 of

Lee, 1990) and properly control the remainder terms (see, Drton et al., 2018, for one-sample case). Finally,

using the relationship between U - and V -statistics (e.g. page 183 of Lee, 1990), one can derive the desired
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result for the V -statistic with a higher-order kernel. We do not pursue this direction here since the second-

order kernel is enough for our application.

5.3.2 Gumbel limiting distribution

With the aid of Theorem 5.1, we are now ready to describe the limiting distribution of the proposed statistic

under large K and large N situations. The main ingredient is Chen–Stein method for Poisson approximations

(Arratia et al., 1989) that has been successfully applied to approximate the distribution of a maximum-type

test statistic to a Gumbel distribution (e.g. Han et al., 2017; Drton et al., 2018). For sake of completeness,

we state Theorem 1 of Arratia et al. (1989).

Lemma 5.1.1 (Theorem 1 of Arratia et al. (1989)). Let I be an arbitrary index set and for i ∈ I, let Yi

be a Bernoulli random variable with pi = P(Yi = 1) > 0. For each i ∈ I, consider a subset of I such that

Bi ⊂ I with i ∈ Bi. Let us define W =
∑
i∈I Yi and λ = E(W ) =

∑
i∈I pi. Let V be a Poisson random

variable with mean λ. Then we have that

∣∣P(W = 0)− P(V = 0)
∣∣ ≤ min{1, λ−1}(b1 + b2 + b3)

where

b1 :=
∑
i∈I

∑
j∈Bi

pipj , b2 :=
∑
i∈I

∑
i 6=j∈Bi

E(YiYj) and

b3 :=
∑
i∈I

E
∣∣∣E[Yi − pi∣∣∣ ∑

j∈I−Bi
Yj

]∣∣∣.
Let us denote the two-sample MMD statistic between Pk and Pl by V̂2

kl, that is V̂2
kl =

∥∥n−1
k

∑nk
i=1 ψ(Xi,k)−

n−1
l

∑nl
j=1 ψ(Xj,l)

∥∥2

H. Assume the sample sizes are the same as n := n1 = . . . = nK for simplicity. Then

based on the following key observation

P
(
nV̂2

h,max/2 ≤ x
)

= P
{∑

1≤k<l≤K
1
(
nV̂2

kl/2 > x
)

= 0
}
,

Lemma 5.1.1 can be applied in our context withW =
∑

1≤k<l≤K 1
(
nV̂2

kl/2 > x
)

and λ =
∑

1≤k<l≤K P
(
nV̂2

kl/2 >

x
)
. Ultimately the proof boils down to showing that b1, b2, b3 converge to zero under appropriate conditions.

This has been established in Appendix D.1 and the result is summarized as follows.

Theorem 5.2 (Gumbel limit). Suppose that (A1) and (A2) are fulfilled. Consider a balanced sample case

such that n := n1 = . . . = nK . Let θ be a constant chosen as in Theorem 5.1 and assume that logK = o(nθ).
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Then under the null hypothesis P1 = . . . = PK , for any y ∈ R,

lim
n,K→∞

P
(

n

2λ1
V̂2
h,max − 4 logK − (µ1 − 2) log logK ≤ y

)

= exp

{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
−y

2

)}
,

where κ =
∏∞
v=µ1+1(1− λv/λ1)−1/2 and µ1 is the multiplicity of the largest eigenvalue among the sequence

{λv}∞v=1.

Remark 5.2. From Theorem 5.2, it is clear that we need to know or at least estimate a potentially infinite

number of parameters {λv}∞v=1 in order to implement the asymptotic test. Even if one has access to these

eigenvalues, the asymptotic test might suffer from slow convergence. This means that the test can be too

liberal or too conservative in finite sample size situations.

Remark 5.3. When the sample sizes are unbalanced, the limiting distribution of V̂2
h,max may not have an

explicit expression as in Theorem 5.2. In particular, it depends on the limit values of nk/(nk + nl) for

1 ≤ k < l ≤ K. To avoid this complication, we simply focus on the case of equal sample sizes and present the

explicit formula for the limiting distribution. Nevertheless, if we instead use the weighted K-sample statistic:

max
1≤k<l≤K

(
nknl
nk + nl

V̂2
kl

)
,

we may obtain the same Gumbel limiting distribution as in Theorem 5.2 for general sample sizes.

5.3.3 Examples

In general, it is challenging to find closed-form expressions for {λv}∞v=1 and {ϕv(·)}∞v=1 as they depend on

the kernel as well as the underlying distribution. We end this section with two simple examples for which

{λv}∞v=1 and {ϕv(·)}∞v=1 are explicit. Based on these, we illustrate Theorem 5.2.

• Linear kernel: Suppose that {X1,1, . . . , Xn,1, . . . X1,K , . . . , Xn,K} are independent and identically

distributed as a multivariate normal distribution with mean zero and covariance matrix Σ. Suppose

further that Σ is a diagonal matrix whose diagonal entries are λ1 = . . . = λµ1
> λµ1+1 ≥ . . . ≥ λd > 0

for some µ1 ≥ 1. Let us consider the linear kernel given as h(x1, x2) = x>1 x2. Then it is straightforward

to see that the centered kernel in (5.2) has the eigenfunction decomposition as

h(x1, x2) =

d∑
v=1

λvϕv(x1)ϕv(x2) =

d∑
v=1

λv
(
x

(v)
1 /

√
λv
)(
x

(v)
2 /

√
λv
)
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where x
(v)
1 is the vth component of x1. Under the given setting, {ϕ1(X1,1), . . . , ϕd(X1,1)} are

independent and identically distributed as N(0, 1). It can be shown that the conditions in Theorem 5.2

are satisfied with θ = 1/3 under the Gaussian assumption. Thus the resulting test statistic converges

to a Gumbel distribution as in Theorem 5.2.

• Chi-square kernel: Suppose that {X1,1, . . . , Xn,1, . . . X1,K , . . . , Xn,K} are independent and identi-

cally distributed on a discrete domain {1, . . . ,m} with fixed m. Let pv > 0 be the probability of

observing the value v among {1, . . . ,m} and consequently
∑m
v=1 pv = 1. Consider the chi-square

kernel defined as h(x1, x2) =
∑m
v=1 p

−1
v 1(x1 = v)1(x2 = v). Let A be a (m−1)× (m−1) matrix whose

(v1, v2) entry is av1,v2 = p−1
v1 +p−1

m if v1 = v2 and av1,v2 = p−1
m otherwise. Let us define the eigenfunction

ϕv(x) to be the vth row of A1/2{1(x = 1)−p1, . . . ,1(x = m−1)−pm−1}> for v = 1, . . . ,m−1. Then,

following the calculation in Theorem 14.3.1 of Lehmann and Romano (2006),

h(x1, x2) =

m−1∑
v=1

λvϕv(x1)ϕv(x2) =

m∑
v=1

{1(x1 = v)− pv}{1(x2 = v)− pv}
pv

,

where λ1 = . . . = λm−1 = 1 and λv = 0 for v ≥ m and the eigenfunctions are bounded. Thus the

conditions in Theorem 5.2 are satisfied with θ = 1/3 and the resulting test statistic converges to a

Gumbel distribution.

5.4 Permutation Approach

So far we have investigated the limiting null distribution of the proposed test statistic and demonstrated

the difficulty of implementing the resulting asymptotic test. To address the issue, we take an alternative

approach based on permutations that does not require prior knowledge on unknown parameters. The key

advantage of the permutation approach is that it yields a valid level α test (or a size α test via randomization)

for any finite sample size and for any number of distributions. This attractive property is true for any type

of underlying distributions, provided that {Z1, . . . , ZN} are exchangeable under H0. In the following, we

briefly describe the original and randomized permutation procedures. The randomized procedure has a

computational advantage over the original procedure by considering a random subset of all permutations.

• Permutation approach: Let BN be the collection of all possible permutations of {1, . . . , N}. For

b = (b1, . . . , bN ) ∈ BN , we denote by V̂(b)
h,max the test statistic computed based on the permuted dataset

{Zb1 , . . . , ZbN }. We then clearly have V̂(b0)
h,max = V̂h,max for b0 = (1, . . . , N). The permutation p-value

is calculated by

pperm =
1

N !

∑
b∈BN

1
(
V̂(b)
h,max ≥ V̂h,max

)
. (5.5)
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It is well-known that P(pperm ≤ t) ≤ t for any 0 ≤ t ≤ 1 under H0 (e.g. Chapter 15 of Lehmann and

Romano, 2006). Consequently 1(pperm ≤ α) is a valid level α test.

• Randomized version: For large N , it would be beneficial to consider a subset of BN and compute

the approximated permutation p-value. Suppose that b′1, . . . , b
′
M are sampled uniformly from BN with

replacement. We then define a Monte-Carlo version of the permutation p-value by

pMC =
1

M + 1

{
1 +

M∑
i=1

1
(
V̂(b′i)
h,max ≥ V̂h,max

)}
. (5.6)

It can be shown that P(pMC ≤ t) ≤ t for any 0 ≤ t ≤ 1 under H0 (e.g. Chapter 15 of Lehmann and

Romano, 2006). Hence 1(pMC ≤ α) is a valid level α test as well.

Having motivated the permutation approach, we next analyze uniform consistency as well as minimax

optimality of the resulting permutation test against sparse alternatives in Section 5.6, building on

concentration inequalities developed in the following section.

5.5 Concentration inequalities under permutations

This section develops a concentration inequality for the permuted MMD statistic with an exponential tail

bound. The result established here is especially useful for studying the type II error (or the power) of the

proposed permutation test in Section 5.6. Our result can also be valuable in addressing the computational

issue of the permutation test. The permutation approach suffers from high computational cost as the number

of all possible permutations increases very quickly with the sample size. As a result, it is common in practice

to use Monte-Carlo sampling of random permutations to approximate the p-value of a permutation test.

However, in some application areas such as genetic where extremely small p-values are of interest, the

Monte-Carlo approach still requires heavy computations (Knijnenburg et al., 2009; He et al., 2019). Our

concentration inequality has an exponential tail bound with completely known quantities. Based on this,

one can find a sharp upper bound for the permutation p-value (or the permutation critical value) without

any computational cost for permutations. We discuss this direction in more detail in Remark 5.5.

5.5.1 Bobkov’s inequality

Before we state the main result of this section, we introduce Bobkov’s inequality (Bobkov, 2004), which is

the key ingredient of our proof. To state his result, we need to prepare some notation in advance. Consider

a discrete cube given by

GN,m = {w = (w1, . . . , wN ) ∈ {0, 1}N : w1 + . . . wN = m}.
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Note that for each w ∈ GN,m, there are exactly m(N −m) neighbors {sijw}i∈I(w),j∈J(w) where I(w) = {i ≤
N : wi = 1} and J(w) = {j ≤ N : wj = 0} such that (sijw)r = wr for r 6= i, j and (sijw)i = wj , (sijw)j =

wi. Now for a function f defined on GN,m, the Euclidean length of discrete gradient ∇f(w) is given as

|∇f(w)|2 =
∑

i∈I(w)

∑
j∈J(w)

|f(w)− f(sijw)|2.

For more details, we refer to Bobkov (2004). Then Bobkov’s inequality is stated as follows:

Lemma 5.2.1 (Theorem 2.1 of Bobkov (2004)). For every real-valued function f on GN,m and |∇f(w)| ≤ Σ

for all w,

Pw[f(w)− Ew{f(w)} ≥ t] ≤ exp{−(N + 2)t2/(4Σ2)},

where Pw(·) represents a counting probability measure on GN,m and Ew(·) is the expectation associated with

Pw(·).

5.5.2 Two-Sample Case

We first focus on the two-sample case. When K = 2, it is clear that the proposed test statistic becomes the

V -statistic in Gretton et al. (2012) and

V̂h,max =
N

n2

∥∥∥∥ 1

n1

n1∑
i1=1

ψ(Xi,1)− 1

N

N∑
j=1

ψ(Zj)

∥∥∥∥
H

=
N

n1n2

∥∥∥∥ n1∑
i1=1

ψ(Zi)

∥∥∥∥
H
, (5.7)

where ψ(Zi1) = ψ(Zi1) − 1
N

∑N
j=1 ψ(Zj). Recall that b is a N -dimensional random vector uniformly

distributed over BN in the permutation procedure. As before in Section 5.4, we denote the test statistic

based on the permuted dataset {Zb1 , . . . , ZbN } by

V̂(b)
h,max :=

N

n1n2

∥∥∥∥ n1∑
i1=1

ψ(Zbi1 )

∥∥∥∥
H
.

We also denote the probability law under permutations (conditional on Z1, . . . , ZN ) by Pb(·) and the

expectation associated with Pb(·) by Eb(·).
It should be stressed that in the two-sample case, there exists w ∈ GN,n1

corresponding to each b ∈ BN
such that

V̂(b)
h,max = V̂ [w]

h,max :=
N

n1n2

∥∥∥∥ N∑
i=1

wiψ(Zi)

∥∥∥∥
H
.
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More importantly, both V̂(b)
h,max and V̂ [w]

h,max have the same probability law when b and w are uniformly

distributed over BN and GN,n1
, respectively. In other words, we have

Pb

{
V̂(b)
h,max − Eb(V̂(b)

h,max) ≥ t
}

= Pw

{
V̂ [w]
h,max − Ew(V̂ [w]

h,max) ≥ t
}

for all t ∈ R.

This key observation allows us to apply Bobkov’s inequality to obtain a concentration inequality for the

permuted test statistic in the following theorem.

Theorem 5.3 (Concentration inequality for two-sample statistic). For K = 2, let Pb be the uniform

probability measure over permutations conditional on {Z1, . . . , ZN}. Let us write γ1,2 = n1n2/(n1 + n2)2.

Further denote h̃(Zi, Zj) = h(Zi, Zi) + h(Zj , Zj)− 2h(Zi, Zj) ≥ 0 and

σ̂2 =
1

N(N − 1)

N∑
i 6=j=1

h̃(Zi, Zj). (5.8)

Then for all t > 0, we have

Pb

(
V̂(b)
h,max ≥ t+

√
σ̂2

2Nγ1,2

)
≤ exp

(
−Nγ

2
1,2t

2

2σ̂2

)
. (5.9)

Proof. From the previous discussion, it suffices to investigate a concentration inequality for f(w) := V̂ [w]
h,max,

which is uniformly distributed on GN,n1 . Since Bobkov’s inequality holds for f(w), all we need to do is to

find meaningful bounds of the expected value of f(w) and the Euclidean length of ∇f(w). We first bound

the expected value of f(w). Using the feature map representation of kernel h, it is straightforward to see

that

N∑
i=1

‖ψ(Zi)‖2H = −
N∑

i6=j=1

〈
ψ(Zi), ψ(Zj)

〉
H =

1

2N

N∑
i 6=j=1

h̃(Zi, Zj). (5.10)

Then using Jensen’s inequality together with the above identities,

Ew

[∥∥∥∥ N∑
i=1

wiψ(Zi)

∥∥∥∥
H

]
≤

√√√√Ew

[ N∑
i=1

w2
i

∥∥∥ψ(Zi)
∥∥∥2

H
+

N∑
i6=j=1

wiwj
〈
ψ(Zi), ψ(Zi)

〉
H

]

=

√√√√n1

N

N∑
i=1

∥∥∥ψ(Zi)
∥∥∥2

H
+
n1(n1 − 1)

N(N − 1)

N∑
i 6=j=1

〈
ψ(Zi), ψ(Zj)

〉
H

=

√√√√ n1n2

2N2(N − 1)

N∑
i 6=j=1

h̃(Zi, Zj).
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By multiplying the scaling factor N/(n1n2) on both sides, we have Ew[f(w)] ≤
√
σ̂2/(2Nγ1,2).

Next we bound |∇f(w)|. Recall the definition of sijw in Section 5.5.1. Using the triangle inequality, we

see that ∣∣∣∣∣ N

n1n2

∥∥∥∥ N∑
l=1

wlψ(Zl)

∥∥∥∥
H
− N

n1n2

∥∥∥∥ N∑
l=1

(sijw)lψ(Zl)

∥∥∥∥
H

∣∣∣∣∣ ≤ N

n1n2

∥∥∥∥ψ(Zi)− ψ(Zj)

∥∥∥∥
H
.

Based on this observation, one can find Σ, which is independent of w, as

|∇f(w)|2 ≤ Σ2 :=
N2

n2
1n

2
2

∑
1≤i<j≤N

∥∥∥ψ(Zi)− ψ(Zj)
∥∥∥2

H
=

N2

2n2
1n

2
2

N∑
i 6=j=1

h̃(Zi, Zj),

where the last equality uses the identities in (5.10). Now apply Bobkov’s inequality with the above pieces

to obtain the desired result.

Remark 5.4. Before we move on, we make several comments on Theorem 5.3.

(a) The tail of the given concentration inequality relies solely on the variance term of the kernel. This is

in sharp contrast to Hoeffding or Bernstein-type inequalities (e.g. Boucheron et al., 2013) that usually

depend on the (possibly unknown) range of random variables.

(b) The given concentration inequality requires no assumption on random variables such as boundedness

or more generally sub-Gaussianity. Furthermore it only depends on known and easily computable

quantities in practice.

(c) For 0 < α < 1, consider a test function φ2 : {Z1, . . . , ZN} 7→ {0, 1} such that

φ2 = I

{
V̂h,max ≥

√
2σ̂2

Nγ2
1,2

log

(
1

α

)
+

√
σ̂2

2Nγ1,2

}
.

As a corollary of Theorem 5.3, it can be seen that φ2 is a valid level α test whenever {Z1, . . . , ZN} are

exchangeable.

(d) We stress that our test statistic is a degenerate two-sample V -statistic. Therefore, the previous studies

on concentration inequalities for the permuted simple sum (e.g. Chatterjee, 2007; Adamczak et al.,

2016; Albert, 2018) cannot be applied in our context.

5.5.3 Numerical Illustrations

We illustrate the usefulness of Theorem 5.3 via simulations. First of all, we can use Theorem 5.3 to compute

an upper bound for the original permutation p-value. In detail, suppose that n1 = n2 with N = n1 + n2 for
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simplicity. Then it is straightforward to see that the permutation p-value is less than or equal to

pBobkov :=

exp
{
− N

32σ̂2

(
V̂h,max −

√
2σ̂2

N

)2}
, if V̂h,max ≥

√
2σ̂2

N

1, else.

By the nature of the permutation test, pBobkov is a valid p-value in any finite sample size, in a sense

that P(pBobkov ≤ α) ≤ α under H0. Another way of obtaining a finite-sample valid p-value is to use an

unconditional concentration inequality. For example, Gretton et al. (2012) employ McDiarmid’s inequality

(McDiarmid, 1989) to have an concentration inequality for the MMD V -statistic with a bounded kernel.

Based on Theorem 7 of Gretton et al. (2012) under the bounded kernel assumption 0 ≤ h(x, y) ≤ B, another

valid p-value can be obtained as

pMcDiarmid :=

exp
{
− N

8B

(
V̂h,max −

√
32B
N

)2}
, if V̂h,max ≥

√
32B
N

1, else.

Both approaches provide exponentially decaying p-values in sample size but we should emphasize that pBobkov

does not require any moment conditions on the kernel. Even if the kernel is bounded, pBobkov would be

preferred to pMcDiarmid when σ̂2 is much smaller than B. This point is illustrated under the following set-up.

Set-up. We consider two kernels: 1) energy distance kernel h(x, y) = (‖x‖2 + ‖y‖2 − ‖x − y‖2)/2 and

2) linear kernel h(x, y) = x>y. Although these kernels are unbounded in general, they are bounded when

the underlying distributions have compact support. For this purpose, we consider two truncated normal

distributions with the different location parameters µ1 = 1 and µ2 = −1 and the same scale parameter

σ2 = 1. We let both distributions have the same support as [−5, 5] so that we can calculate the bound B

for each kernel. For each sample size N among {100, 200, . . . , 900, 1000}, the experiments were repeated 200

times to estimate the expected values of the p-values.

Results. In Figure 5.1, we present the simulation results of the comparison between pBobkov and pMcDiarmid

under the described scenario. The p-values are displayed in log-scale for better visual comparison. Under

the given setting, we observe that σ̂2 is much smaller than B for both kernels, which in turns leads to a

smaller value of pBobkov compared to pMcDiarmid. More specifically, we observe 1) σ̂2 ≈ 1.61 on average and

B = 10 for the energy distance kernel and 2) σ̂2 ≈ 4.01 on average and B = 100 for the linear kernel. It

is worth noting that the benefit of using pBobkov becomes more evident for unbounded random variables for

which pMcDiarmid is not even applicable.

Remark 5.5. The test based on pBobkov may not be recommended when the sample size is small and the

significance level α is of moderate size (e.g. α = 0.05). In this case, the permutation test via Monte-Carlo
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Figure 5.1: Comparisons between Bobkov’s inequality and McDiarmid inequality in their application to
p-value evaluation. In both energy distance kernel and linear kernel, Bobkov’s inequality returns significantly
smaller p-values than McDiarmid inequality. See Section 5.5.3 for details.

simulations would be more satisfactory. However, when the sample size is large and the significance level

is very small (e.g. α = 10−100), the Monte-Carlo approach would be computationally infeasible, requiring

at least α−1 random permutations in order to reject H0. In this large-sample and small α situation, the

approach based on pBobkov would be practically valuable, which does not require any computational cost on

permutations.

Remark 5.6. While we focused on the case where σ̂2 � B to highlight the advantage of pBobkov, it is

definitely possible to observe that pMcDiarmid is smaller than pBobkov, especially when B is comparable to or

smaller than σ̂2.

5.5.4 K-Sample Case

Next we give a general result for arbitrary K ≥ 2. Unfortunately, we cannot directly apply Bobkov’s

inequality when K > 2 since the inequality holds only for a function f(w) defined on a binary discrete

cube. Our strategy to overcome this problem is to first apply Bobkov’s inequality to each pairwise MMD

test statistic and then aggregate the results via the union bound. To start, we introduce σ̂2
K in Algorithm 3

that generalizes σ̂2 to the K-sample case.

It can be seen that σ̂2
K is the same as σ̂2 in (5.8) when K = 2 and can be computed in quadratic time

for large K. Using σ̂2
K , we extend Theorem 5.3 as follows.

Theorem 5.4 (Concentration inequality forK-sample statistic). For K ≥ 2, let Pb be the uniform probability

measure over permutations conditional on {Z1, . . . , ZN}. For distinct k, l ∈ {1, . . . ,K}, let γk,l = nknl/(nk+
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Algorithm 3: Calculation of σ̂2
K

Require: the pooled samples {Z1, . . . , ZN}, the number of samples n1, . . . , nK .

(1) Calculate h̃(Zi, Zj) for 1 ≤ i 6= j ≤ N .

(2) Sort and denote the previous outputs by h̃[1] ≥ . . . ≥ h̃[N(N−1)].

(3) Compute σ̂2
K := max1≤k<l≤K σ2

kl where σ2
kl is the sample average of h̃[1], h̃[2], . . ., h̃[(nk+nl)(nk+nl−1)].

(4) Return σ̂2
K .

nl)
2 and consider σ̂2

K in Algorithm 3. Then for any t ≥ 0,

Pb

{
V̂(b)
h,max ≥ t+ max

1≤k<l≤K

√
σ̂2
K

2(nk + nl)γk,l

}
≤
(
K

2

)
exp

{
− min

1≤k<l≤K

(nk + nl)γ
2
k,lt

2

2σ̂2
K

}
. (5.11)

Proof. For a given permutation b ∈ BN , let us denote

V̂(b)
kl =

∥∥∥∥ 1

nk

nk∑
i=1

ψ(Zbmk−1+i
)− 1

nl

nl∑
j=1

ψ(Zbml−1+j
)

∥∥∥∥
H
,

where ml−1 =
∑l−1
k=1 nk and m0 = 0 so that V̂(b)

h,max = max1≤k<l≤K V̂(b)
kl . Based on the triangle inequality

and the union bound, observe that

Pb

{
V̂(b)
h,max ≥ t+ max

1≤k<l≤K

√
σ̂2
K

2(nk + nl)γk,l

}
≤ Pb

[
max

1≤k<l≤K

{
V̂(b)
kl −

√
σ̂2
K

2(nk + nl)γk,l

}
≥ t
]

≤
∑

1≤k<l≤K
Pb

{
V̂(b)
kl ≥ t+

√
σ̂2
K

2(nk + nl)γk,l

}
. (5.12)

Let Z̃ = {Z̃1, . . . , Z̃nk+nl} be the nk +nl samples uniformly drawn from {Z1, . . . , ZN} without replacement.

Write

V̂ [w]
kl =

nk + nl
nknl

∥∥∥∥ nk+nl∑
i1=1

wi1

{
ψ(Z̃i1)− 1

nk + nl

nk+nl∑
i2=1

ψ(Z̃i2)

}∥∥∥∥
H
,

where w = {w1, . . . , wnk+nl} is a set of Bernoulli random variables uniformly distributed on Gnk+nl,nk as

before. Then by the law of total expectation and a slight modification of the proof of Theorem 5.3, it can

be seen that

Pb

(
V̂(b)
kl ≥ t+

√
σ̂2
K

2(nk + nl)γk,l

)
= EZ̃

[
Pw

{
V̂ [w]
kl ≥ t+

√
σ̂2
K

2(nk + nl)γk,l

∣∣∣∣∣ Z̃
}]
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≤ EZ̃

[
exp

{
−

(nk + nl)γ
2
k,lt

2

2σ̂2
K

}]

= exp

{
−

(nk + nl)γ
2
k,lt

2

2σ̂2
K

}
,

where the last equality follows since σ̂2
K is invariant to the choice of Z̃. By putting this result into the

right-hand side of (5.12), the proof is complete.

Remark 5.7. We provide some comments on Theorem 5.4.

(a) When K = 2, the concentration inequality given in (5.11) recovers the one in (5.9).

(b) One can replace σ̂2
K with max1≤i<j≤N h̃(Zi, Zj) in (5.11), which takes less time to compute, but at the

expense of the loss of the tightness. Note, however, that the bound with max1≤i<j≤N h̃(Zi, Zj) is tight

enough to prove minimax rate optimality of the proposed test. See the proof of Theorem 5.5 for details.

(c) As before in the two-sample case, the proposed K-sample concentration inequality is valid without any

moment condition and it depends solely on known and easily computable quantities.

(d) Consider a test function φK : {Z1, . . . , ZN} 7→ {0, 1} such that

φK = I

[
V̂h,max ≥ max

1≤k<l≤K

√√√√{ 2σ̂2
K

(nk + nl)γ2
k,l

}
log

{(
K
2

)
α

}
+ max

1≤k<l≤K

√
σ̂2
K

2(nk + nl)γk,l

]
.

As a corollary of Theorem 5.4, it can be seen that φK is a valid level α test whenever {Z1, . . . , ZN}
are exchangeable under H0.

5.6 Power Analysis

In this section, we study the power of the permutation test based on the proposed test statistic and prove its

minimax rate optimality against certain sparse alternatives. Throughout this section, we need the following

assumptions:

(B1). Assume that kernel h is uniformly bounded by 0 ≤ h(x, y) ≤ B for all x, y ∈ X .

(B2). There exists a fixed constant c > 0 such that nmax/nmin ≤ c for any sample sizes where nmax and

nmin are the maximum and the minimum of {n1, . . . , nK} respectively.

Note that the assumption (B1) is satisfied by some widely used kernels e.g. Gaussian and Laplace kernels.

It can also be satisfied by many other kernels when the underlying distributions have compact support. The
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second assumption (B2) states that n1, . . . , nK are well-balanced. This assumption, for example, holds for

the equal sample sizes with c = 1.

5.6.1 Power of the permutation test

Let P be the set of all distributions on (X ,B). We characterize the difference between the null and the

alternative in terms of max1≤k<l≤K Vh(Pk, Pl), which is the population counterpart of the proposed test

statistic V̂h,max. In particular, for a given positive sequence εN and kernel h, let us define a class of

alternatives:

Fh(εN ) =
{

(P1, . . . , PK) ∈ P : max
1≤k<l≤K

Vkl ≥ εN
}
, (5.13)

where Vkl = Vh(Pk, Pl) for simplicity. We call the collection of alternatives in Fh(εN ) as the sparse

alternatives, in a sense that only a few of {Vkl}1≤k<l≤K are required to be greater than εN while the

rest of them can be zero. Such sparse alternatives have been considered by many authors including Cai et al.

(2013), Cai et al. (2014) and Han et al. (2017) in different contexts. The main goal of this subsection is to

characterize the conditions under which the permutation test can be uniformly powerful over Fh(εN ). More

specifically, we show that as long as the lower bound εN is sufficiently larger than

r?N :=

√
logK

nmin
,

then the proposed permutation test is uniformly consistent. Furthermore, in Section 5.6.2, we prove that

this rate cannot be improved from a minimax perspective under some mild conditions on kernel h. In other

words, the proposed test is minimax rate optimal against the sparse alternatives with the minimax rate r?N .

We start by providing one lemma, which states that max1≤k<l≤K |V̂kl−Vkl| is bounded by C
√

logK/nmin

for some constant C with high probability.

Lemma 5.4.1. Suppose that (B1) holds and recall that V̂kl =
∥∥n−1

k

∑nk
i1=1 ψ(Xi1,k)−n−1

l

∑nl
i2=1 ψ(Xi2,l)

∥∥
H.

Then with probability at least 1− β where 0 < β < 1, we have

max
1≤k<l≤K

∣∣V̂kl − Vkl∣∣ ≤ 4

√
B

nmin
+ 2

√
B

nmin
log

{
2

β

(
K

2

)}
.

Proof. Using Theorem 7 of Gretton et al. (2012), one can obtain

P
(∣∣V̂kl − Vkl∣∣ ≥ 2

√
n−1
k B + 2

√
n−1
l B + t

)
≤ 2 exp

{
− (nk + nl)γk,lt

2

2B

}
.
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Then the result follows by applying the union bound as in Theorem 5.4 and the following inequality

min
1≤k<l≤K

(nk + nl)γk,l ≥
nmin

2
.

By building on Theorem 5.4 and Lemma 5.4.1, we prove the uniform consistency of the permutation test

against Fh(εN ) when εN is much larger than r?N . We provide the proof in Appendix D.1.

Theorem 5.5 (Uniform consistency of the original permutation test). Assume that (B1) and (B2) are

fulfilled. Denote the permutation test function by φK,perm = 1(pperm ≤ α) where pperm is given in (5.5).

Then under H1,

lim sup
nmin→∞

sup
(P1,...,PK)∈Fh(bNr?N )

P (φK,perm = 0) = 0,

where bN is an arbitrary sequence that goes to infinity as nmin →∞.

Next by using Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (e.g. Massart, 1990), we extend the

previous result to the randomized permutation test.

Corollary 5.5.1 (Uniform consistency of the randomized permutation test). Assume that (B1) and (B2)

are fulfilled. Denote the Monte-Carlo-based permutation test function by φK,MC = 1(pMC ≤ α) where pMC

is given in (5.6). Then under H1,

lim
M→∞

lim sup
nmin→∞

sup
(P1,...,PK)∈Fh(bNr?N )

P (φK,MC = 0) = 0,

where bN is an arbitrary sequence that goes to infinity as nmin →∞.

Remark 5.8. It is worth pointing out that the results of both Theorem 5.5 and Corollary 5.5.1 hold regardless

of whether K is fixed or increases with nmin. However, we note that K cannot increase much faster than

enmin as max1≤k<l≤K Vkl is upper bounded by a positive constant under (B1) and thereby r?N =
√

logK/nmin

is also bounded.

5.6.2 Minimax rate optimality

Theorem 5.5 as well as Corollary 5.5.1 show that the original and randomized permutation tests can be

uniformly powerful over Fh(bNr
?
N ) when bN is sufficiently large. In this subsection, we focus on the MMD

associated with a translation invariant kernel defined on Rd and further show that the previous result cannot

be improved from a minimax point of view. A kernel h : Rd × Rd 7→ R is called translation invariant if

there exists a symmetric positive definite function ϕ : Rd 7→ R such that ϕ(x− y) = h(x, y) for all x, y ∈ Rd

(Tolstikhin et al., 2017). Then our result is stated as follows.
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Theorem 5.6. Let 0 < α < 1 and 0 < ζ < 1−α. Suppose that nmin →∞ and K →∞. Consider the class

of sparse alternatives Fh(εN ) defined with a translation invariant kernel h on Rd. Assume that there exists

z ∈ Rd and κ1, κ2 > 0 such that ϕ(0)− ϕ(z) ≥ κ1 and r?N ≤ κ2 for all nmin. Further assume that (B1) and

(B2) hold. Then under H1, there exists a small constant b > 0 such that

lim inf
nmin→∞

inf
φ∈ΦN (α)

sup
(P1,...,PK)∈Fh(br?N )

P(φ = 0) ≥ ζ,

where ΦN (α) is the set of all level α test functions such that φ : {Z1, . . . , ZN} 7→ {0, 1}.

Remark 5.9. The results in Theorem 5.5 and Theorem 5.6 imply that the proposed permutation test is not

only consistent but also minimax rate optimal against the considered sparse alternatives. As far as we are

aware, this is the first time that the power of the permutation test is theoretically analyzed under large N

and large K situations.

Remark 5.10. In our problem setup, a distance between two distributions is measured in terms of the

maximum mean discrepancy associated with kernel h. One can also study minimax optimality of the proposed

test over a class of alternatives measured in terms of a more standard metric such as the L2 distance. For

this direction, the results of Li and Yuan (2019) seem useful in which the authors explore minimax rate

optimality of kernel mean embedding methods over a Sobolev space in the L2 distance. We leave a detailed

analysis of minimax optimality of the proposed test in other metrics to future work.

5.7 Simulations

In this section, we demonstrate the finite-sample performance of the proposed approach via simulations.

We consider two characteristic kernels for our test statistic; 1) Gaussian kernel and 2) energy distance

kernel. Gaussian kernel is given by h(x, y) = exp(−‖x − y‖22/σ) for which we choose the tuning parameter

σ by the median heuristic (Gretton et al., 2012). On the other hand, energy distance kernel is given by

h(x, y) = (‖x‖2 + ‖y‖2 − ‖x− y‖2)/2 as before. Note that the MMD statistic with energy distance kernel is

equivalent to the energy statistic (Székely and Rizzo, 2004; Baringhaus and Franz, 2004) in the two-sample

case.

5.7.1 Other multivariate K-sample tests

We compare the performance of the proposed tests with two multivariate K-sample tests. The first one is the

test based on DISCO statistic proposed by Rizzo and Székely (2010). Let Ekl,α′ be the α′-energy statistic
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between Pk and Pl given by

Ekl,α′ =
2

nknl

nk∑
i1=1

nl∑
i2=1

gα′(Xi1,k, Xi2,l)−
1

n2
k

nk∑
i1,i2=1

gα′(Xi1,k, Xi2,k)

− 1

n2
l

nl∑
i1,i2=1

gα′(Xi1,l, Xi2,l),

where gα′(x, y) = ‖x − y‖α′2 . Let us write the between-sample and within-sample dispersions by Sα′ =

K−1
∑

1≤k<l≤K Ekl,α′ and Wα′ = 2−1
∑K
k=1 n

−1
k

∑nk
i1,i2=1 gα′(Xi1,k, Xi2,k). Then DISCO statistic is defined

as ratio of the between-sample dispersion to the within-sample dispersion, that is

Dγ =
Sα′/(K − 1)

Wα′/(N −K)
.

The second test, proposed by Hušková and Meintanis (2008), is based on the empirical characteristic

functions. For a given α′′ ∈ R, Hušková and Meintanis (2008) consider the weighted L2 distance between

empirical characteristic functions as their test statistic, that is

Hα′′ =

K∑
k=1

N − nk
Nnk

nk∑
i1,i2=1

e−‖Xi1,k−Xi2,k‖
2
2/4α

′′ − 1

N

∑
1≤k 6=l≤K

nk∑
i1=1

nl∑
i2=1

e−‖Xi1,k−Xi2,l‖
2
2/4α

′′
.

In their paper, Hušková and Meintanis (2008) consider α′′ = 1, 1.5, 2 in their simulation study. Throughout

our simulations, we choose α′ = 1 for Dα′ and α′′ = 1.5 for Hα′′ and reject the null for large values of Dα′

and Hα′′ .

We also attempted to consider the graph-based K-sample test recently developed by Mukhopadhyay and

Wang (2018). To implement their test, we used the R package provided by the same authors. Unfortunately,

their method was not applicable when K is large due to numerical overflow in computing orthogonal

polynomials. Hence we focus on the first two methods described in this subsection and compare them

with the proposed tests against sparse alternatives.

5.7.2 Set-up

Let us denote a multivariate normal distribution with mean vector µ and covariance matrix Σ by N(µ,Σ).

Similarly we denote a multivariate Laplace distribution with mean vector µ and covariance matrix Σ by

L(µ,Σ). We examine the performance of the considered tests under the following sparse alternatives:

(a) Normal Location: P1 = N(δ1, Id) and P2 = . . . = PK = N(δ0, Id),

(b) Normal Scale: P1 = N(δ0, 3× Id) and P2 = . . . = PK = N(δ0, Id),
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Figure 5.2: Empirical power comparisons of the considered tests against (a) Normal location, (b) Normal

scale, (c) Laplace location, (d) Laplace scale alternatives. We refer to the tests based on V̂h,max with Gaussian
kernel and energy distance kernel as MaxGau and MaxEng, respectively. In addition, the tests based on Dα′

and Hα′′ are referred to as DISCO and ECF, respectively. See Section 8.9 for details.

(c) Laplace Location: P1 = L(δ1.2, Id) and P2 = . . . = PK = L(δ0, Id),

(d) Laplace Scale: P1 = L(δ0, 3× Id) and P2 = . . . = PK = L(δ0, Id),

where δb = (b, . . . , b)> and Id is the d-dimensional identity matrix. In words, we consider the sparse

alternatives where only one of the distributions differs from the other K − 1 distributions. Consequently,

the signal is getting sparser as K increases. Throughout our experiments, we fix sample sizes n1 = n2 =

. . . = nK = 10 and dimension d = 5 while increasing the number of distributions K ∈ {2, 20, 40, 60, 80, 100}.
All tests were implemented via the randomized permutation procedure with M = 200 random permutations

using the p-value in (5.6). As a result, they are all valid level α tests. Simulations were repeated 800 times

to estimate the power at significance level α = 0.05.
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5.7.3 Results

From the results presented in Figure 5.2, we observe that the tests based on Dα′ and Hα′′ have consistently

decreasing power as K increases in all sparse scenarios. This can be explained by the fact that Dα′ and

Hα′′ are defined as an average between pairwise distances. Under the given sparse scenario, the average of

pairwise distances, which is a signal to reject H0, decreases as K increases. Hence the resulting tests based

on Dα′ and Hα′′ suffer from low power in large K. On the other hand, the proposed tests show robust

performance to the number of distributions K under the given setting. They in fact have power very close

to one even when K is considerably large, which emphasizes the benefit of using the maximum-type statistic

against sparse alternatives.

Despite their good performance over sparse alternatives, the proposed tests do not always perform better

than the average-type tests based on Dα′ and Hα′′ . For example, these average-type tests may outperform

the proposed maximum-type tests against dense alternatives where many of P1, . . . , PK differ from each

other. Given that prior knowledge on alternatives is not always available to users, developing a powerful test

against both dense and sparse alternatives is an interesting direction for future work.

5.8 Conclusions

In this chapter, we introduced a new nonparametric K-sample test based on the maximum mean discrepancy.

The limiting distribution of the proposed test statistic was derived based on Cramér-type moderate deviation

for degenerate two-sample V -statistics. Unfortunately, the limiting distribution relies on an infinite number of

nuisance parameters, which are intractable in general. Due to this challenge, we considered the permutation

approach to determine the cut-off value of the test. We provided a concentration inequality for the proposed

test statistic with a sharp exponential tail bound under permutations. On the basis of this result, we studied

the power of the permutation test in large K and large N situations and further proved its minimax rate

optimality under some regularity conditions. From our simulation studies, the proposed test is shown to

be powerful against sparse alternatives where the previous methods suffer from low power. These findings

suggest that our method will be useful in application areas where only a small number of populations differ

from the others.

The power analysis in Section 5.6 relies on the assumption that a kernel is uniformly bounded. Although

some of the popular kernels satisfy this assumption, our result cannot be applied to unbounded cases. One

possible way to address this issue is to impose appropriate moment conditions on a kernel and utilize a

suitable concentration inequality (e.g. a modified McDiarmid’s inequality in Kontorovich, 2014) to obtain a

similar result to Lemma 5.4.1. This topic is reserved for future work.
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Chapter 6

Euclidean and Manhattan Distance

for High-Dimensional Two-Sample

Testing

This chapter is adapted from my work supervised by Sivaraman Balakrishnan and Larry Wasserman. While

finishing up the work in August 2018, we found a similar paper appeared on ArXiv (June 2018) and recently

published in Stat (Sarkar and Ghosh, 2018). Since significant parts of these two papers are overlapped and

admittedly Sarkar and Ghosh (2018) present more solid results, we decided not to make this work available

online.

6.1 Introduction

In recent years, high-dimensional data has become increasingly frequent in diverse fields of sciences. The

rise of high-dimensional data has posed new challenges to traditional statistical methods. One challenge

arises from the phenomenon of distance concentration in which all pairwise distances are almost equal in a

high-dimensional space. In such cases, the notion of closeness may not be meaningful, which results in poor

performance of distance based statistical methods. This phenomenon was examined by many authors such

as Aggarwal et al. (2001), Hall et al. (2005), Ahn et al. (2007), Sarkar and Ghosh (2019) in the context of

classification, clustering and dimension reduction.

The concept of closeness is also crucial in two-sample testing problems. A number of testing procedures

rely on a certain notion of proximity and Euclidean distance is among the widely used metric in the literature.

The existing distance-based two-sample procedures can be summarized into two categories. One approach
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is based on a comparison between within-class distances and between-class distances and the null is rejected

when the distributions of these distances do not coincide. The testing procedures introduced by Baringhaus

and Franz (2004), Székely and Rizzo (2004), Bakshaev (2009) and Biswas and Ghosh (2014) can fall into

this category. Another approach is based on a graph construction. In this approach, we construct a graph

based on sample distances and count how many edges are connected according to a given rule of the test.

The graph-based approach includes the tests based on the k-nearest neighbor (Schilling, 1986; Henze, 1988),

the minimum spanning tree (Friedman and Rafsky, 1979), the non-bipartite matching (Rosenbaum, 2005)

and the shortest Hamiltonian path (Biswas et al., 2014).

When Euclidean distance is used as a measure of proximity, all of the aforementioned tests have

been shown to be consistent against general alternatives in low-dimensional settings. In other words, the

asymptotic power of these tests converge to one for any difference between two distributions. In high-

dimensions, however, this general consistency is no longer obvious due to the phenomenon of distance

concentration.

In this work, we focus on the regime where the dimension tends to infinity while the sample size is fixed.

In this high-dimension, low sample size setting, we show that the Euclidean-based two-sample tests can be

consistent only against first or second moment differences under weakly dependent conditions on random

vectors. To overcome this problem, we suggest Manhattan distance as an alternative to Euclidean distance.

We then show that the nonparametric tests based on Manhattan distance are consistent against a broader

range of alternatives than those based on Euclidean distance under the high-dimensional regime.

6.2 Motivating Example

Suppose that {X1, . . . , Xm} and {Y1, . . . , Yn} are d-dimensional random vectors independently from two

distributions FX and GY , respectively. We write Xi = (Xi1, . . . , Xid)
> and Yj = (Yj1, . . . , Yjd)

> for i =

1, . . . ,m and j = 1, . . . , n. Based on these samples, the two-sample problem is concerned with testing

whether H0 : FX = GY or H1 : FX 6= GY . For an illustrative example, assume that the components

of X1 are independent and identically distributed as N(0, 1). Similarly assume that the components of

Y1 are independent and identically distributed as λN(µ1, σ
2
1) + (1 − λ)N(µ2, σ

2
2). We then set λ = 0.5,

σ2
1 = σ2

2 = 0.2, µ1 = (1 − σ2
1)1/2, and µ2 = −µ1. In this setting, the underlying two distributions have the

same mean and the same covariance matrix, but they clearly have different higher moments. To illustrate

the problem of high-dimensional Euclidean distance, we consider the three nonparametric tests commonly

used in the literature. The first one is the interpoint distance-based test proposed by Baringhaus and Franz

(2004), and the second one is based on the k-nearest neighbor graph by Schilling (1986) where we chose

k = 3 in our simulation study. The third one is a multivariate generalization of the run test by Friedman

and Rafsky (1979). The definition of each test is provided in Section 6.3. For the simulation study, we
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Figure 6.1: Power comparison between the Baringhaus and Franz (BF) test, the nearest neighbor (NN)
test and the Friedman and Rafsky (FR) test at significant level α = 0.05. For each test, we considered
Euclidean distance and Manhattan distance to illustrate their different behaviors in the high-dimensional
regime.

let the sample size m = n = 20, and increased the dimension to describe high-dimensional behavior of the

considered tests. We used the permutation procedure with 500 permutations to decide a cut-off value of

each test, and the simulations were repeated 1,000 times to estimate the power.

The simulation result is provided in Figure 6.1. Under the considered scenario, it is natural to expect that

the power of any reasonable nonparametric test increases with the dimension since we gain more evidence

against the null hypothesis. However, this was not the case for the tests based on Euclidean distance. They

perform poorly over the range of dimensions. On the other hand, the power of the tests based on Manhattan

distance consistently increase to one with the dimension. Understanding this counterintuitive result is the

main object of this work.

6.3 The Problem of High-Dimensional Euclidean Distance

The high-dimensional behavior of Euclidean distance has been investigated by several authors (e.g., Hall

et al., 2005; Biswas et al., 2014; Mondal et al., 2015). To summarize the previous analysis, assume that

there exist σx, σy > 0 such that d−1
∑d
i=1 var(X1i) → σ2

x and d−1
∑d
i=1 var(Y1i) → σ2

y. Further assume

d−1
∑d
i=1{E(X1i) − E(Y1i)}2 → τ2

xy as d → ∞. Then under the appropriate assumptions on the moments

and the dependent structure of X and Y (see e.g., Biswas et al., 2014), the weak law of large numbers

shows that d−1/2||X1 − X2||2 = d−1/2{∑d
i=1(X1i − X2i)

2}1/2 converges to σx
√

2 in probability. Similarly,
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d−1/2||Y1− Y2||2 and d−1/2||X1− Y1||2 converge in probability to σy
√

2 and (σ2
x + σ2

y + τ2
xy)1/2, respectively.

This implies that any pairwise Euclidean distance between samples from the same class is approximately

identical as either σx
√

(2d) or σy
√

(2d), depending on a given class. Similarly, any pairwise Euclidean distance

between samples from the different classes is of nearly equal length as {d(σ2
x + σ2

y + τ2
xy)}1/2. Intuitively, in

order for Euclidean-based tests to achieve reasonable power in the high-dimensional setting, at least one of

the quantities among σx
√

2, σy
√

2, and (σ2
x + σ2

y + τ2
xy)1/2 should be distinct from the others. However, in

the cases where two distributions have the same mean and the same covariance matrix, these quantities are

all identical, and the resulting Euclidean-based tests have low power as in the previous motivating example.

Although the above argument based on the convergence in probability is intuitive, it only tells us that the

sample Euclidean distance is concentrated around its population quantity as the dimension tends to infinity.

To have a deeper understanding of the given argument, we investigate the limiting distribution of Euclidean

distance in the high-dimensional setting. To begin with, we introduce a α-mixing condition.

Let G1 and G2 be two σ-fields. The α-mixing coefficient between G1 and G2 is defined by

α(G1,G2) = sup
A∈G1,B∈G2

|pr(A ∩B)− pr(A)pr(B)|.

We denote the σ-field generated by the sequence of random variables {X1i}ki=l by Fkl . Then the α-mixing

coefficient of {X1i}∞i=1 is given by

αX(r) = sup
k≥1

α(Fk1 ,F∞r+k).

The sequence {X1i}∞i=1 is called α-mixing if limr→∞ αX(r) = 0. We refer to Lin and Lu (1997) and Chapter

16.2 of Athreya and Lahiri (2006) for more details about α-mixing sequences.

Let {Zi}Ni=1 be the combined samples of {Xi}mi=1 and {Yi}ni=1 where N = m+ n. We denote all possible

pairwise Euclidean distances between {Zi}Ni=1 by

(W1, . . . ,WM )> = (||Z1 − Z2||2, . . . , ||ZN−1 − ZN ||2)>,

where M = N(N − 1)/2. With these notations, we establish the multivariate central limit theorem for the

pairwise Euclidean distances.

Lemma 6.0.1. Let {X1i}∞i=1 and {Y1i}∞i=1 be strictly stationary sequences with E(X11) = µx, var(X11) = σ2
x

and E(Y11) = µy, var(Y11) = σ2
y. For some δ ∈ (0,∞), suppose that following assumptions hold:

1. The moments E|X11|4+2δ and E|Y11|4+2δ are bounded.
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2. The α-mixing coefficients of {X1i}∞i=1 and {Y1i}∞i=1 satisfy

∞∑
r=1

αX(r)δ/2+δ <∞,
∞∑
r=1

αY (r)δ/2+δ <∞.

3. The minimum eigenvalue of limd→∞ var{d−1/2(W 2
1 , . . . ,W

2
M )>} is positive.

Then

(W1, . . . ,WM )> − (µ1, . . . , µM )>

converges to the multivariate normal distribution with zero mean vector and positive definite covariance

matrix Σ. Here µi is one of the values among σx
√

(2d), σy
√

(2d) and {dσ2
x + dσ2

y + d(µx − µy)2}1/2.

Remark 6.1. The strictly stationary condition in Lemma 6.0.1 can be removed by using the multivariate

central limit theorem for non-stationary dependent random sequences with extra conditions (e.g. Theorem

16.3.5 of Athreya and Lahiri, 2006).

Using Lemma 6.0.1, we demonstrate that the nonparametric tests based on Euclidean distance do not

have consistency against general alternatives in the high-dimensional regime. Specifically, we show under

the assumptions in Lemma 6.0.1 that the power of the tests do not converge to one unless there exist first or

second moment differences. We simply focus on Friedman and Rafsky’s test (Friedman and Rafsky, 1979),

the nearest neighbor test (Schilling, 1986) and Baringhaus and Franz’s test (Baringhaus and Franz, 2004)

considered in the previous motivating example, but the same argument can be similarly applied to other

nonparametric tests based on Euclidean distance. Friedman and Rafsky’s test rejects the null hypothesis for

a small value of its statistic, which is defined by

TFR
m,n =

N−1∑
i=1

Ψi + 1.

Here Ψi is the indicator variable equal to one if and only if the ith edge of the minimal spanning tree connects

two observations from the different distributions. On the other hand, the nearest neighbor test rejects the

null hypothesis when its statistic is larger than a cut-off value. The nearest neighbor statistic is defined by

TNN
m,n =

1

kN

N∑
i=1

k∑
r=1

Ii(r),

where Ii(r) is the indicator variable equal to one if and only if Xi and its rth nearest neighbor are from the

same distribution. Lastly, Baringhaus and Franz’s test rejects the null hypothesis for a large value of its
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statistic and its test statistic is given by

TBF
m,n =

1

mn

m∑
i=1

n∑
j=1

||Xi − Yj ||2 −
1

2m2

m∑
i=1

m∑
j=1

||Xi −Xj ||2 −
1

2n2

n∑
i=1

n∑
j=1

||Yi − Yj ||2.

Based on the given tests, we have the following result.

Theorem 6.1. Suppose FX and GY have the same mean and the same covariance matrix, but different

higher moments. Under the assumptions in Lemma 6.0.1, the power of TFR
m,n, TNN

m,n and TBF
m,n based on

Euclidean distance do not converge to one for any choice of significance level α ∈ (0, 1) as d→∞.

Under stronger assumptions, we can show that certain types of Euclidean-based tests become completely

powerless under the high-dimensional settings. The result is stated in the following theorem.

Theorem 6.2. Let the components of X1 be independent and identically distributed. Similarly, let the

components of Y1 be independent and identically distributed as well. Suppose that FX and GY have the

same finite moments up to their fourth moments. In other words, we have E|X11|p = E|Y11|p < ∞ for

p = 1, 2, 3, 4. Consider a function g : RM 7→ R that has a derivative at (2σ2
x, . . . , 2σ

2
x) where σ2

x = var(X11)

and define a test statistic as

Tm,n = g (W1, . . . ,WM ) . (6.1)

Suppose that we reject the null if Tm,n ∈ Rα where Rα is a α level rejection region. Then the power of the

considered test becomes less than or equal to α as d→∞.

The examples of the test statistic that has the form of (6.1) include the test statistics proposed by

Baringhaus and Franz (2004), Székely and Rizzo (2004), Biswas and Ghosh (2014) and the kernel maximum

mean discrepancy with the radial basis kernel by Gretton et al. (2012).

6.4 Alternative approach based on Manhattan Distance

To address the problem of Euclidean-based two-sample tests, we consider Manhattan distance as an

alternative to Euclidean distance. In particular, we illustrate that the tests based on Manhattan distance are

consistent against more general alternatives than those based on Euclidean distance in the high-dimensional

setting. We begin by introducing some notations.

Let FX11
(t) and GY11

(t) be the distributions of X11 and Y11, respectively. We write

γx = 2

∫ ∞
−∞

FX11(t) (1− FX11(t)) dt,
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γy = 2

∫ ∞
−∞

GY11
(t) (1−GY11

(t)) dt,

γxy =

∫ ∞
−∞

GY11(t) (1− FX11(t)) dt+

∫ ∞
−∞

FX11(t) (1−GY11(t)) dt.

Then we provide the following lemma.

Lemma 6.2.1. Consider the same assumptions in Lemma 6.0.1. Then the Manhattan distance between X1

and X2 scaled by d, that is d−1||X1−X2||1 = d−1
∑d
i=1 |X1i−X2i|, converges to γx in probability. Similarly,

d−1||Y1 − Y2||1 and d−1||X1 − Y1||1 converge in probability to γy and γxy, respectively. In addition, we have

γx = γy = γxy if and only if the marginal distributions of X and Y are the same.

The above lemma shows that if two distributions have different marginal distributions, at least one of

γx, γy and γxy is distinct from the others. This result differs from that of Euclidean distance whose limit

only depends on the first two moments. As a result, Manhattan-based tests can be sensitive against higher

moment alternatives where Euclidean-based tests become powerless. In the following, we revisit the normal

mixture example in Section 6.2 and further illustrate our main point.

Example 6.1 (Normal mixture). Let us write the mean of a folded normal random variable with parameters

(µ, σ2) as a function of µ and σ2 by

f(µ, σ2) = σ

√
2

π
exp

(
− µ2

2σ2

)
+ µ

{
1− 2Φ

(
−µ
σ

)}
,

where Φ is the standard normal cumulative distribution function. Then under the normal mixture example

given in Section 6.2, the limits of pairwise Manhattan distances γx, γy and γxy are calculated as follows (the

details are presented in the supplementary material):

γx =
2√
π
, γy = λ2f

(
0, 2σ2

1

)
+ 2λ(1− λ)f

(
µ1 − µ2, σ

2
1 + σ2

2

)
+ (1− λ)2f

(
0, 2σ2

2

)
,

γxy = λf(µ1, 1 + σ2
1) + (1− λ)f(µ2, 1 + σ2

2).

By plugging in λ = 0.5, σ2
1 = σ2

2 = 0.2, µ1 =
√

1− σ2
1 and µ2 = −µ1, the limit values are approximated by

γx ≈ 1.128, γy ≈ 1.147 and γxy ≈ 1.150. Therefore, γx, γy and γxy are all distinct and γxy > γy > γx. This

result contrasts with the limit values of pairwise Euclidean distances, which are all identical under the given

scenario, and therefore explains the superior behavior of the Manhattan-based tests in Figure 6.1.

In the next theorem, we briefly describe the cases where three tests considered in Theorem 6.1 are

consistent when Euclidean distance is replaced with Manhattan distance. However, they can be consistent

against other cases supported by our simulation results.
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Theorem 6.3. Assume the same scenario in Theorem 6.1 where the Euclidean-based tests fail to be

consistent. Further assume that γxy > max{γx, γy}. In this case, the Manhattan-based tests have the

following asymptotic behavior in the high-dimensional setting:

(i). For any α > max{bN/nc, bN/mc}/{N !/(m!n!)}, the power of Friedman and Rafsky’s test converges to

one as d→∞.

(ii). For any α > [1 + n!/{m!(m − n)!}]/{N !/(m!n!)} and m/2 ≤ k < m where 2 ≤ m ≤ n, the power of

the nearest neighbor test converges to one as d→∞.

(iii). For any α > 1/{N !/(m!n!)} when m 6= n and α > 2/{N !/(m!n!)} when m = n, the power of

Baringhaus and Franz’s test converges to one as d→∞.

Remark 6.2. Suppose that there exists ε ∈ (0, 1] such that m = εn. Then the lower bounds for significance

level α in Theorem 6.3 can be arbitrary small by choosing n sufficiently large.

6.5 Simulations

In this section, we provide simulation results for the tests based on Euclidean and Manhattan distance

against several alternatives. We consider Friedman and Rafsky’s test, the nearest neighbor test, Baringhaus

and Franz’s test and their variants for comparison. Recent studies (Mondal et al., 2015; Chen and Friedman,

2017) show that the nearest neighbor test and Friedman and Rafsky’s test perform poorly against scale

differences in high-dimensions. Hence, in our simulation study, we also consider the modified tests proposed

by Mondal et al. (2015) and Chen and Friedman (2017). First, the modified nearest neighbor test statistic

(Mondal et al., 2015) is

TMBG
m,n =

m

N

(
Tm,k −

m− 1

N − 1

)2

+
n

N

(
Tn,k −

n− 1

N − 1

)2

, (6.2)

where Tm,k =
∑m
i=1

∑k
r=1 Ii(r)/(mk) and Tn,k =

∑n
i=1

∑k
r=1 Ii(r)/(nk). As before, we chose k = 3 as the

number of neighbors for the simulation study. On the other hand, Chen and Friedman (2017) proposed

modifications of Friedman and Rafsky’s test. Let Rm be the number of edges connecting two observations

from FX and let Rn be the number of edges connecting two observations from GY . Among the different

tests that they proposed, we focus on the test based on the following statistic:

TCF
m,n =

{
Rm − |G|

m(m− 1)

N(N − 1)

}2

+

{
Rn − |G|

n(n− 1)

N(N − 1)

}2

, (6.3)

where |G| is the number of edges in the minimum spanning tree.
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Table 6.1: Empirical power of the tests over different dimensions at significance level α = 0.05 and m =
n = 20.

Location Scale Kurtosis

d 100 500 1000 100 500 1000 100 500 1000

TBF
m,n

Manhattan 0.701 1.000 1.000 0.084 0.178 0.218 0.752 1.000 1.000

Euclidean 0.748 1.000 1.000 0.096 0.178 0.239 0.058 0.050 0.050

TNN
m,n

Manhattan 0.412 0.897 0.988 0.068 0.004 0.000 0.543 0.969 1.000

Euclidean 0.453 0.936 0.998 0.065 0.002 0.000 0.058 0.054 0.056

TFR
m,n

Manhattan 0.312 0.733 0.928 0.059 0.000 0.000 0.433 0.843 0.960

Euclidean 0.342 0.752 0.946 0.047 0.000 0.000 0.069 0.070 0.050

TMBG
m,n

Manhattan 0.069 0.271 0.591 0.871 1.000 1.000 0.157 0.676 0.967

Euclidean 0.082 0.270 0.635 0.871 1.000 1.000 0.090 0.104 0.086

TCF
m,n

Manhattan 0.103 0.276 0.461 0.749 1.000 1.000 0.202 0.586 0.853

Euclidean 0.094 0.250 0.500 0.755 0.999 1.000 0.117 0.095 0.115

We compare the performance of the tests against the three alternatives where differences are in location,

scale and kurtosis parameters, respectively. For the location alternative, we let FX and GY be the

multivariate normal distributions as Nd((0.2, . . . , 0.2)>, I) and Nd((0, . . . , 0)>, I). Similarly, for the scale

alternative, we choose FX = Nd((0, . . . , 0)>, I) and GY = Nd((0, . . . , 0)>, 1.12 × I). For the kurtosis

alternative, we reconsider the multivariate normal mixture example described in Section 6.2 where the two

distribution have the same mean vector and the same covariance matrix. The simulation results under these

scenarios are provided in Table 6.1. All of the tests were implemented based on the permutation procedure

with 500 permutations, and the simulations were repeated 1,000 times to estimate the power.

For the main comparison between Euclidean and Manhattan distance, we see that the Manhattan-based

tests are comparable to or slightly less powerful than the Euclidean-based tests against the location and scale

alternatives. However, we would like to emphasize that the Euclidean-based tests perform poorly against

the kurtosis alternative for the reasons described in Section 6.3. In contrast, we observe that the power

of the Manhattan-based tests keep increasing with d against the kurtosis alternative, which confirms our

previous analysis. For the comparison between different two-sample methods, Baringhaus and Franz’s test

outperforms the other tests against the location and kurtosis alternatives, however it is less powerful than

the test by Mondal et al. (2015) and the test by Chen and Friedman (2017) against the scale alternative. In

general, the nearest neighbor test and the Friedman and Rafsky’ test are less powerful than the other tests

under the considered examples.
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Chapter 7

Classification accuracy as a proxy for

two-sample testing

This chapter is adapted from my joint work with Aaditya Ramdas, Aarti Singh and Larry Wasserman. This

work is accepted to the Annals of Statistics for publication.

7.1 Introduction

The recent popularity of machine learning has resulted in the extensive teaching and utilization of prediction

methods in theoretical and applied communities. When faced with a hypothesis testing problem in practice,

data scientists sometimes opt for a prediction-based test-statistic.

We study one example of this common practice in this chapter, concerning arguably the most classical

testing and prediction problems — two-sample testing (are the two underlying distributions the same?) and

classification (learning a classifier that separates the two distributions, implicitly assuming they are not

the same). Practitioners familiar with machine learning but not the hypothesis testing literature often find

it intuitive to perform testing in the following way: first learn a classifier, and then see if its accuracy is

significantly different from chance and if it is, then conclude that the distributions are different.

The central question that this chapter seeks to answer is “what are the pros and cons of the classifier-

based approach to two-sample testing?”. As we shall detail in Section 7.2, the notion of cost or price that is

appropriate for the Neyman-Pearson or Fisherian hypothesis testing paradigm, is the power achievable at a

fixed false positive level α (in other words, the lowest possible type-2 error achievable at some prespecified

target type-1 error). Indeed, we approach this question using the frequentist perspective of minimax theory.

More formally, we can restate our question as “when is the classifier-based test consistent, and how does its

power compare to the minimax power?”.
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7.1.1 Practical motivation

Before we delve into the details, it is worth mentioning that even though this chapter is a theoretical

endeavor, the question was initially practically motivated. Many scientific questions are naturally posed as

two-sample tests — examples abound in epidemiology and neuroscience. As a hypothetical example from

the latter, say we are interested in determining whether a particular brain region responds differently under

two situations (say listening to loud harsh sounds vs soft smooth sounds), or for a person with a medical

condition (patient) and a person without the condition (control). Often, one collects and analyzes brain

data for the same patient under the two contrasting stimuli (to study the effect of change in that stimulus),

or for different normal and ill patients under the same stimulus (to study effect of a medical condition).

Since the work of Golland and Fischl (2003) where the authors examined permutation tests for classification

with application to neuroimaging analysis, it has been increasingly common in the field of neuroscience—

see Zhu et al. (2008); Etzel et al. (2009); Pereira et al. (2009); Stelzer et al. (2013)—to assess whether

there is a significant difference between the two sets of data collected by learning a classifier to differentiate

between them (because, for instance, they may be more familiar with classification than two-sample testing).

Neuroscientists call this style of brain decoding as pattern discrimination and a positive answer can be seen

as preliminary evidence that the mental process of interest might occur within the portion of the brain

being studied; see Olivetti et al. (2012) for a discussion of related issues. This classification approach to

two-sample testing has been considered in other application areas including genetics (Yu et al., 2007), speech

analysis (Chen et al., 2009), credit scoring (Xiao et al., 2014), churn prediction (Xiao et al., 2015) and video

content analysis (Liu et al., 2018).

7.1.2 Overview of the main results

Our first contribution is to identify weak conditions on the classifier that suffice for both finite-sample or

asymptotic type-1 error control, as well as for asymptotic consistency.

• Asymptotic test (Proposition 7.3): We identify mild conditions under which the sample-splitting

error of a general classifier (7.27) is asymptotically normal as n, d→∞. We introduce an asymptotic

test based on this Gaussian approximation and prove its asymptotic type-1 error control. We also

prove that a sufficient condition for its consistency (for its power to asymptotically approach one) is

that its true accuracy converges to 1/2 + ε for any constant ε > 0 as n, d→∞ at any relative rate.

• Permutation test (Theorem 7.6): In addition to the asymptotic approach, we consider two types

of random permutation procedures that yield a valid level α test in finite-sample scenarios. Under

the same conditions made before, we present the minimum number of random permutations that

guarantees that the resulting permutation test is consistent.
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For technical reasons, it is most convenient to present these results last, after suitable notation, lemmas and

assumptions have been developed in earlier sections.

The above results leave two natural questions open: first, whether we can derive a rate of consistency

in special cases, and second, whether testing can be consistent even when the classifier accuracy approaches

chance (is not bounded away from half). We answer both affirmatively; our second contribution is to

rigorously analyze the asymptotic power of tests using classification accuracy for Gaussian and elliptical

distributions in a high-dimensional setting when the error of the Bayes optimal classifier approaches half. In

this direction, we have three main results:

• Power of the accuracy of LDA for Gaussian distributions with known Σ (Theorem 7.3):

The considered test statistic (7.14) is the centered and rescaled classification error of LDA estimated

via sample splitting, when Σ is known. Under standard interpretable assumptions (Section 7.5.1), this

test statistic converges to a standard normal in the high-dimensional setting (Theorem 7.2) under both

null and local alternative. Using this fact, we describe its local asymptotic power in expression (7.20).

Comparing the latter with the minimax power (7.8), we highlight that the performance of the accuracy

test is comparable to but worse than the minimax optimal test, achieving an asymptotic relative

efficiency (ARE) of 1/
√
π ≈ 0.564 for balanced sample sizes.

• Extensions to unknown Σ using naive Bayes and other variants (Theorem 7.4): We

generalize the previous findings to other linear classifiers for unknown Σ, like naive Bayes. We

again find that classifier-based tests are underpowered, achieving the same aforementioned ARE of

1/
√
π compared to corresponding variants of Hotelling’s test such as Bai and Saranadasa (1996) and

Srivastava and Du (2008).

• Extensions to elliptical distributions (Theorem 7.5): We extend Theorem 7.3 to the class of

elliptical distributions with finite kurtosis, and prove that the asymptotic power expression remains

unchanged from the Gaussian setting, up to an explicit constant factor, which is
√

2 times the

marginal density evaluated at 0. Restricting our attention to multivariate t-distributions, we also

find an interesting phenomenon that the classifier-based test becomes relatively more efficient when

the underlying distributions have heavier tails.

As two side contributions, we formally study the fundamental minimax power of high-dimensional two-sample

mean testing for Gaussians. In this direction, we have two main results.

• Explicit and exact expression for asymptotic minimax power (Proposition 7.1): By building

on prior work (Luschgy, 1982), we provide an explicit expression for the asymptotic minimax power of

high-dimensional two-sample mean testing that is valid for any positive definite covariance matrix and
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unbalanced sample sizes when d, n→∞ at any relative rate.

• Minimax optimality of Hotelling’s T 2 test when d = o(n) (Theorem 7.1): It is well known

that Hotelling’s test is minimax optimal when d is fixed and n→∞. In the high-dimensional setting,

when the dimension d and the sample size n both increase to infinity with d/n → c ∈ (0, 1), Bai and

Saranadasa (1996) show that Hotelling’s test may have low power. Since then, Hotelling’s test has

been largely undervalued in the setting where d increases with n. In contrast to the aforementioned

negative result, we prove that Hotelling’s test remains asymptotically minimax optimal when d → ∞
as long as d/n→ 0.

7.1.3 Interpreting our results and practical takeaway messages

There may be two somewhat contradictory ways that our results may be interpreted:

1. Practitioners may (possibly unjustly) use our results to reassure themselves that their utilization of

relatively more flexible prediction methods for testing, even in the high dimensional setting, may not

hurt their power too much.

2. At the same time, our results may also serve as a warning that a constant factor loss of power might

be possible, and for scientific disciplines in which data is not abundant, the scientist may be wary of

using prediction methods for hypothesis testing problems.

Indeed, after our earlier arXiv manuscript appeared, a few different papers have cited our results to justify

their practical choices in both of these above ways. To help weigh in on this possible conundrum and stop

the apparently contradictory messaging, we take the liberty of using our intuition from this chapter and also

other recent papers (e.g. Lopez-Paz and Oquab, 2016; Hediger et al., 2019; Gagnon-Bartsch and Shem-Tov,

2019) to instead propose complementary, non-contradictory takeaway messages:

1. If the data is relatively unstructured or not abundant, and if the alternative can be accurately specified

in such a manner that is both practically meaningful and for which a provably powerful two-sample test

statistic is available (or can be easily designed), then we recommend using such a well-tailored statistic.

2. Suppose the data is highly structured or abundant (say, images of two species of beetles), but the

potential differences between the two distributions cannot be easily specified. In this case, constructing

a refined test that has high power against an accurately prespecified alternative may be too hard, and

thereby we recommend using a flexible two-sample test statistic like classification accuracy (say using

a convolutional neural network classifier or random forests).
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Of course, it seems very challenging to theoretically study these setups in their full generality to provide

a thorough formal backing to such practical suggestions. However, we are hopeful that our work will spur

others to extend our concrete results to new settings.

7.1.4 Related work

The idea of using binary classifiers for two-sample testing was conceptualized by Friedman (2004). However,

Friedman’s proposal was fundamentally different from the one proposed here: he suggested using training a

classifier on all points, and using that classifier to assign a score to each point, and the scores in each class

were compared using a univariate two-sample test like Mann-Whitney or Kolmogorov-Smirnov. In other

words, Friedman’s proposal was to use classifiers to reduce a multivariate two-sample test into a univariate

one. A different classifier-based approach to the two-sample problem was proposed by Blanchard et al.

(2010). Although their test statistic is built upon classification algorithms, it aims to estimate the a priori

probability of a contamination model, instead of classification accuracy.

This chapter in contrast considers held-out accuracy as the test statistic. The held-out accuracy of any

classifier in any dimension can be used as the test statistic, and type-1 error can always be controlled non-

asymptotically at the desired level using permutations. Hence, the main question of genuine mathematical

interest is what we can prove about the power of such a test. Instead of permutations, if we instead

use a Gaussian approximation to the null distribution, then it is unclear whether it remains valid in the

high-dimensional setting and again its power is unclear. To the best of our knowledge, our Feb’16 ArXiv

manuscript was the first mathematical attempt to study the power of this approach. There has been a

growing interest in this idea in both the statistics and the machine learning communities (Rosenblatt et al.,

2016; Lopez-Paz and Oquab, 2016; Borji, 2019; Hediger et al., 2019; Gagnon-Bartsch and Shem-Tov, 2019),

most of which build on our ArXiv preprint but further provide valuable practical insight into the problem

using various classifiers under different scenarios. Nevertheless most of these other works couple informal

arguments with numerical experiments, motivating us to fully formalize and generalize our earlier analysis.

In an orthogonal work, Scott and Nowak (2005) proposed a Neyman-Pearson classification framework

within which one would like to minimize the probability of classification error for one class, subject to a

bound on the probability of classification error for the other class. Their problem is a variant of classification

in which the classifier is judged by a different error metric, but it is quite different from our goal of two-

sample testing. Other connections between classification and two-sample testing have also been explored by

Ben-David et al. (2007), Fukumizu et al. (2009) and Gretton et al. (2012), but none of them set out to solve

our problem.

Another class of two-sample tests is based on geometric graphs; examples include the k-nearest neighbor

(NN) graph (Schilling, 1986; Henze, 1988), the minimum spanning tree (Friedman and Rafsky, 1979) and the
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cross-matching (Rosenbaum, 2005). Recently Bhattacharya (2018) presented general asymptotic properties

of graph-based tests under the fixed dimensional setting. Comparing the performance of the k-NN graph

test and the k-NN classifier test (based on its heldout classification accuracy, as studied in this chapter) may

be interesting to explore in future work.

There is of course a very large body of work that just analyzes classifiers, or just analyzing two-sample

tests (e.g. Hu and Bai, 2016; Arias-Castro et al., 2018, and the references therein), but without connecting

the two. These will be cited when their results are used.

Paper Outline. The rest of this chapter is organized as follows. In Section 7.2, we formally define both

testing and classification problems. In Section 7.3, we discuss a minimax lower bound for two-sample testing

in high-dimensional settings and in Section 7.4, we prove that Hotelling’s T 2 test achieves this lower bound

when d/n→ 0. Section 7.5 studies the limiting distribution of Fisher’s LDA accuracy in the high-dimensional

setting. Building on this limiting distribution, Section 7.6 presents the asymptotic power of Fisher’s LDA

for two-sample mean testing under known Σ. Section 7.7 extends this asymptotic power expression to

other linear classifiers with unknown Σ, like naive Bayes. Generalizations to elliptical distributions are in

Section 7.8. In Section 7.9, we examine the type-1 error control and consistency of the asymptotic test as

well as the permutation test for any classifier. In Section 7.10, we provide simulation results that confirm our

theoretical analysis, before concluding in Section 7.11. The proofs of all the results along with the discussion

on open problems are provided in the supplement.

Notation. Let Nd(µ,Σ) refer to the d-variate Gaussian distribution with mean µ ∈ Rd and d×d positive

definite covariance matrix Σ. With a slight abuse of notation, we sometimes use Nd(z;µ,Σ) to denote the

corresponding density evaluated at z. The symbol ‖·‖ refers to the L2 norm. Let I[·] denote the standard 0-1

indicator function. Let Φ(·) denote the standard Gaussian CDF, and let zα be its upper 1−α quantile. For

a square matrix A, let diag(A) denote the diagonal matrix formed by zeroing out the off-diagonal entries of

A, and let λmin(A) and λmax(A) be the minimum and the maximum eigenvalues of A. We write the identity

matrix as I. For sequences of constants an and bn, we write an = O(bn) if there exists a universal constant

C such that |an/bn| ≤ C for all n larger than some n0, and we write an = o(bn) if an/bn → 0. Similarly,

for a sequence of random variables Xn and a corresponding set of constants an, we write Xn = OP (an) if

a−1
n Xn is stochastically bounded and Xn = oP (an) if a−1

n Xn converges to zero in probability.

7.2 Background

In this section, we introduce the two main topics that we study in this chapter: two-sample mean testing

using Hotelling-type statistics, and Fisher’s linear discriminant analysis (LDA). We only introduce the basic

versions here, later introducing high-dimensional variants like naive Bayes. In both these problems, we will
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be working in the high-dimensional Gaussian setting under which the number of samples n and dimension d

can both increase to infinity simultaneously.

7.2.1 Two-sample mean testing

Suppose thatX1, . . . , Xn0 , Y1, . . . , Yn1 are independent random vectors in Rd such that Xn0
1

def
= {X1, . . . , Xn0}

are identically distributed with the distribution P0 and Yn1
1

def
= {Y1, . . . , Yn1

} are identically distributed with

the distribution P1. Given these samples, the two-sample problem aims at testing whether

H0 : P0 = P1 vs. H1 : P0 6= P1. (7.1)

The focus of this chapter is on the specific case where P0 and P1 are d-variate Gaussian distributions with

densities p0(x)
def
= Nd(x;µ0,Σ) and p1(y)

def
= Nd(y;µ1,Σ), respectively, while we discuss the extension to

elliptical distributions in Section 7.8. Since we assume that P0 and P1 are Gaussians with equal covariance,

the previous problem boils down to testing whether two distributions have the same mean vector or not.

This two-sample mean testing is a fundamental decision-theoretic problem, having a long history in statistics;

for example, the past century has seen a wide adoption of the T 2-statistic by Hotelling (1931) to decide if

two-samples have different population means (Hu and Bai, 2016, for a review). Given the sample mean

vectors µ̂0
def
=
∑n0

i=1Xi/n0 and µ̂1
def
=
∑n1

i=1 Yi/n1 and the pooled sample covariance matrix

Σ̂
def
=

1

n0 + n1 − 2

[
n0∑
i=1

(Xi − µ̂0)(Xi − µ̂0)> +

n1∑
i=1

(Yi − µ̂1)(Yi − µ̂1)>
]
,

Hotelling’s T 2-statistic is given by

TH = (µ̂0 − µ̂1)>Σ̂−1(µ̂0 − µ̂1).

Hotelling’s T 2 test based on TH was introduced in the parametric setting for Gaussians, but it has been

generalized to multivariate non-Gaussian settings as well (e.g., Kariya, 1981).

7.2.2 Fisher’s linear discriminant classifier

Consider the same distributional setting described in the previous section. Given the samples Xn0
1 and Yn1

1 ,

classification is the problem of predicting to which of classes a new observation Z belongs, i.e. we want to

predict whether Z came from P0 or P1.
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Let the samples from P0 and P1 be given labels 0 and 1, respectively. If µ0, µ1 and Σ are known, then

the optimal classifier under the Gaussian setting is given by Bayes rule:

I
[
log

p1(Z)

p0(Z)
> 0

]
= I

[
(µ1 − µ0)>Σ−1

(
Z − (µ0 + µ1)

2

)
> 0

]
.

We denote δ
def
= µ1 − µ0 and µpool

def
= (µ0 + µ1)/2 so that we can succinctly write the Bayes rule as

CBayes(Z)
def
= I

[
δ>Σ−1(Z − µpool) > 0

]
. (7.2)

Then, by plugging in the empirical estimators δ̂
def
= µ̂1 − µ̂0 and µ̂pool

def
= (µ̂0 + µ̂1)/2, Linear Discriminant

Analysis (LDA) classification rule is given by

LDAn0,n1(Z)
def
= I

[
δ̂>Σ̂−1(Z − µ̂pool) > 0

]
.

The same classifier was derived by Fisher (1936, 1940) from a generalized eigenvalue problem (hence also

called Fisher’s LDA) and was later developed further by Wald (1944) and Anderson (1951). Define the error

of LDA conditioned on the input data as:

E def
= (E0 + E1)/2, (7.3)

where E0 def
= Pr

Z∼P0

(LDAn0,n1
(Z) = 1 | Xn0

1 ,Yn1
1 ),

E1 def
= Pr

Z∼P1

(LDAn0,n1
(Z) = 0 | Xn0

1 ,Yn1
1 ).

Clearly, E is a random variable that depends on the input data. Next, define the unconditional error of LDA

as

E
def
= (E0 + E1)/2, (7.4)

where E0
def
= En0,n1

[
Pr
Z∼P0

(LDAn0,n1
(Z) = 1 | Xn0

1 ,Yn1
1 )

]
,

E1
def
= En0,n1

[
Pr
Z∼P1

(LDAn0,n1(Z) = 0 | Xn0
1 ,Yn1

1 )

]
,

where En0,n1
denotes the expectation with respect to the n0 and n1 input points from each class. Note that

since the input data has already been integrated out, E, E0, E1 do not depend on the input data and are

only functions of d, δ,Σ, n
def
= n0 + n1.

However, E is unknown, but one can estimate E in a few different ways. One simple way is via sample

splitting where the samples are split into training and test sets. Let us denote the number of samples of

each class in the training set by n0,tr and n1,tr. Similarly let us write the number of samples of each class in
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the test set by n0,te and n1,te. In other words, there are ntr
def
= n0,tr + n1,tr samples in the training set and

nte
def
= n0,te +n1,te samples in the test set. We then form the LDA classifier using ntr samples in the training

set, and estimate its test error using the remaining nte samples in the test set. Specifically, let LDAn0,tr,n1,tr

be the LDA classifier formed based on the training set. Then the sample-splitting error, denoted by ÊS , is

given as

ÊS
def
= (ÊS0 + ÊS1 )/2, (7.5)

where ÊS0
def
=

1

n0,te

n0,te∑
i=1

I
[
LDAn0,tr,n1,tr(Xn0,tr+i) = 1

]
,

ÊS1
def
=

1

n1,te

n1,te∑
i=1

I
[
LDAn0,tr,n1,tr

(Yn1,tr+i) = 0
]
.

It is clear from the definitions that the LDA classifier will have a true accuracy significantly above half if

and only if µ0 6= µ1. This implies that one can actually use ÊS as a test statistic for two-sample testing,

by checking whether ÊS is significantly different from half or not. We shall derive the power of such a test

in Section 7.6 and compare it to the best possible power (in a minimax sense).

7.3 Lower bounds for two-sample mean testing

Before we present our analysis on the power of two-sample testing via classification, we begin by

understanding the fundamental minimax lower bounds for two-sample testing.

We first introduce some notation. Let P be a set that consists of all pairs of d-dimensional multivariate

normal density functions whose covariance matrices coincide, and is positive definite. Let P0 be the subset

of P such that each pair also has the same mean. For a given α ∈ (0, 1), let us write a level α test based on

Xn0
1 and Yn1

1 by ϕα and the collection of all level α tests by

Tα def
=
{
ϕα : Xn0

1 ∪ Yn1
1 7→ {0, 1} : sup

p0,p1∈P0

Ep0,p1 [ϕα] ≤ α
}
.

Additionally, we define a class of two multivariate normal density functions p0 and p1 whose distance is

measured in terms of Mahalanobis distance parameterized by ρ > 0 as:

P1(ρ)
def
= {(p0, p1) ∈ P : (µ0 − µ1)>Σ−1(µ0 − µ1) ≥ ρ2}.

The use of Mahalanobis distance is conventional and has been considered in Giri et al. (1963), Giri and Kiefer

(1964) and Salaevskii (1971) to study the minimax character of Hotelling’s one-sample test. The “oracle”
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Hotelling’s two sample test is defined as

ϕ∗H = I
[
n0n1

n0 + n1
(µ̂0 − µ̂1)>Σ−1(µ̂0 − µ̂1) ≥ cα,d

]
,

where cα,d is the 1 − α quantile of the chi-squared distribution with d degrees of freedom, and “oracle”

signifies that Σ is known. Luschgy (1982) extends the previous one-sample results and shows that ϕ∗H is

minimax optimal over P1(ρ), or more explicitly,

sup
ϕα∈Tα

inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕα] = inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕ∗H ], (7.6)

for any finite n and d. However, this result does not clearly show how the underlying parameters (e.g., n,

d, ρ) interact to determine the power. To shed light on this, we study the asymptotic expression for the

minimax power. Let us denote the sample size ratio by λ1 = λ1,n
def
= n1/n. Recalling that Φ is the standard

normal CDF and zα its 1− α quantile, we prove the following:

Proposition 7.1. Consider a high-dimensional regime where n, d → ∞ (at any rate). Then the minimax

power for Gaussian two-sample mean testing is

sup
ϕα∈Tα

inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕα] = Φ

(
−

√
2d√

2d+ nλ1(1− λ1)ρ2
zα +

nλ1(1− λ1)ρ2√
2d+ 4nλ1(1− λ1)ρ2

)
+ o(1). (7.7)

The proof of the above result is based on the central limit theorem and can be found in Appendix F.3.2.

Notably, the expression (7.7) is asymptotically precise including all constant terms and is valid without any

restrictions on d/n and λ1. The way to interpret the bound in (7.7) is as follows. The first term inside

the parentheses is not of interest for our purposes, its magnitude being bounded by the constant zα. The

second term is what determines the rate at which the power approaches one. When ρ = 0, the power reduces

to Φ(−zα) = α and if d and n are thought of as fixed, larger ρ leads to larger power. The key in high

dimensions, however, is how the power depends jointly on the signal to noise ratio (SNR) ρ, the dimension

d and the sample size n. To see this clearer, in the low SNR regime where ρ2 = o(d/n) and λ1 → λ ∈ (0, 1),

the minimax lower bound simplifies to

Φ

(
−zα +

nλ(1− λ)ρ2

√
2d

)
+ o(1). (7.8)

It can be already seen that at constant SNR, n only needs to scale faster than
√
d for test power to

asymptotically approach unity — this
√
d/n scaling is unlike the d/n scaling that one typically sees in

prediction problems (for prediction error or classifier recovery, see e.g. Raudys and Young, 2004). In the

next section, we prove that this lower bound is tight even when Σ is unknown, as long as d = o(n).
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7.4 Minimax optimality of Hotelling’s test when d = o(n)

When Σ is unknown, ϕ∗H is not available and thus it remains unclear whether the previous asymptotic lower

bound is tight. In other words, we do not know whether there exists a test that has the same asymptotic

minimax power as ϕ∗H in all high-dimensional regimes with unknown Σ. In this section, we will make a first

step towards closing this gap. In particular, we will show that Hotelling’s test with unknown Σ can achieve

the same asymptotic minimax power as ϕ∗H when d/n→ 0. By letting qα,n,d be the 1− α quantile of the F

distribution with parameters d and n− 1− d, Hotelling’s two-sample test with unknown Σ is given by

ϕH = I
[
n0n1(n− d− 1)

n(n− 2)d
(µ̂0 − µ̂1)>Σ̂−1(µ̂0 − µ̂1) ≥ qα,n,d

]
.

For Gaussians, it is well-known that ϕH satisfies supp0,p1∈P0
Ep0,p1 [ϕH ] ≤ α (e.g., Anderson, 2003). The

next theorem studies the power of ϕH .

Theorem 7.1. Consider an asymptotic regime where d/n → 0. Then the uniform power of ϕH is

asymptotically the same as that of ϕ∗H for Gaussian two-sample mean testing. In other words, as n, d→∞
with d/n→ 0, we have that infp0,p1∈P1(ρ) Ep0,p1 [ϕH ] is equal to

Φ

(
−

√
2d√

2d+ nλ1(1− λ1)ρ2
zα +

nλ1(1− λ1)ρ2√
2d+ 4nλ1(1− λ1)ρ2

)
+ o(1).

The proof of the above theorem can be found in Appendix F.3.3. Theorem 7.1 is in contrast to previous

negative results on the high-dimensional behavior of Hotelling’s test. For example, Bai and Saranadasa (1996)

demonstrate that the performance of ϕH can be bad when d/n → c ∈ (0, 1). When the dimension is larger

than the sample size, Hotelling’s test statistic TH is not even well-defined. Due to its limitations, Hotelling’s

test has been largely neglected in the setting where d increases with n. Unlike the previous negative results,

Theorem 7.1 revives ϕH by showing that it achieves the minimax power under the asymptotic regime where

d is allowed to grow, but d/n→ 0. We also provide empirical support for our asymptotic results in Figure 7.4

of Section 7.10.3.

Remark 7.1. Combining the previous theorem with Bai and Saranadasa (1996) and our simulation results

in Section 7.10.3, we may describe the phase transition behavior of Hotelling’s test with unknown Σ as

• Optimal regime (same power as ϕ∗H): d/n→ 0,

• Suboptimal regime (lower power than ϕ∗H): d/n→ c ∈ (0, 1),

• Not applicable: d/n→ c ≥ 1.
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Even though Hotelling’s test is suboptimal when d = O(n), it is still an open problem to determine

whether the lower bound is achievable by some other test, or whether a stronger lower bound can be proved.

7.5 Asymptotic normality of the accuracy of generalized LDA

Here, we investigate the high-dimensional limiting distribution of the sample-splitting error in (7.5). Building

on the results developed in this section, we will present the power of the classification test in Section 7.6.

Our main interest is in the setting where the dimension is comparable to or potentially much larger than the

sample size. In this high-dimensional scenario, Bickel and Levina (2004) prove that Fisher’s LDA performs

poorly in classification problems. When d > n, Fisher’s LDA classifier is not even well-defined since Σ̂ is

not invertible. Thus, Bickel and Levina (2004) consider the naive Bayes (NB) classification rule by replacing

Σ̂−1 with the inverse of diag(Σ̂) and show that it outperforms Fisher’s LDA in the high-dimensional setting.

In the context of two-sample testing, we encounter the same issue on Σ̂ as mentioned earlier. To simplify our

analysis, we start by assuming that Σ is known and analyze the asymptotic behavior of the corresponding

Fisher’s LDA statistic. Later in Section 7.7, we extend the results to unknown Σ by considering the NB

classifier and others.

7.5.1 Assumptions

Recalling that we work in the high-dimensional Gaussian setting with common covariance, let us detail some

assumptions that facilitate our analysis. We assume that as n = n0 + n1 →∞, we have

(A1) High-dimensional asymptotics: there exists c ∈ (0,∞) such that d/n→ c.

(A2) Local alternative: δ>Σ−1δ = O(n−1/2).

(A3) Sample size ratio: there exists λ ∈ (0, 1) such that n0/n→ λ.

(A4) Sample splitting ratio: there exists κ ∈ (0, 1) such that ntr/n→ κ.

The asymptotic regime in (A1) is called Raudys-Kolmogorov double asymptotics (e.g. Zollanvari et al., 2011)

and assumes that d increases linearly with n. In (A2), we assume that δ>Σ−1δ is close to zero such that a

minimax test has nontrivial power. Note that under (A1), the low SNR regime δ>Σ−1δ = o(d/n) is implied

by (A2). It is also interesting to note that the classification error of the Bayes optimal classifier (7.2) is

computed as

1

2
Pr
Z∼P0

{
CBayes(Z) = 1

}
+

1

2
Pr
Z∼P1

{
CBayes(Z) = 0

}
=1− Φ

(√
δ>Σ−1δ

2

)
,
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which means that the classification error of the Bayes classifier, and hence any classifier, approaches chance

under (A2). Assumption (A3) rules out highly imbalanced cases and is common in the two-sample literature

(e.g. Bai and Saranadasa, 1996; Chen and Qin, 2010; Srivastava et al., 2013). (A4) assumes that the user-

chosen sample-splitting ratio is within (0, 1). We show in Theorem 7.3 that the asymptotic power of the test

based on held-out classification accuracy is maximized when κ = 1/2 for the balanced case of λ = 1/2. In

other cases, Theorem 7.3 may serve as a guideline for choosing κ that maximizes the asymptotic power. For

any d× d symmetric positive definite matrix A, we define the generalized LDA classifier by

LDAA,n0,n1
(Z)

def
= I

[
δ̂>A(Z − µ̂pool) > 0

]
. (7.9)

Its error can be calculated by replacing LDAn0,tr,n1,tr(Z) with LDAA,n0,tr,n1,tr(Z) in expression (7.5):

ÊSA ≡ classification error of LDAA,n0,tr,n1,tr
(Z),

emphasizing the dependency on the user-chosen matrix A. In terms of Σ and A, we assume that:

(A5) Σ has bounded eigenvalues: there exist constants c1, c2 such that 0 < c1 ≤ λmin(Σ) ≤ λmax(Σ) ≤
c2 <∞.

(A6) A has bounded eigenvalues: there exist constants c′1, c
′
2 such that 0 < c′1 ≤ λmin(A) ≤ λmax(A) ≤

c′2 <∞.

The same eigenvalue condition for Σ was used by Bickel and Levina (2004). Assumption (A6) is satisfied

when A is diagonal with uniformly bounded entries, and when A = Σ−1 under (A5).

7.5.2 Asymptotic normality for non-random A

Given the previous assumptions, we study the asymptotic distribution of the sample-splitting error of the

generalized LDA classifier when A is non-random. Since Fisher’s LDA with known Σ is a special case of the

generalized LDA classifier, it is straightforward to derive the limiting distribution of ÊSΣ−1 from the general

result.

We first observe that the sample-splitting error of the generalized LDA classifier can be viewed as the

average of independent observations when conditioning on the training set. Therefore it is natural to expect

that the sample-splitting error is asymptotically normally distributed. To make this statement formal, we

define Ei,A and Ei,A similarly as Ei and Ei for i = 1, 2 from definitions (7.3) and (7.4), but by replacing the

LDA classifier with the generalized LDA classifier with a given A. Then let us write the standardized test
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statistic as

WA
def
=

ÊSA − E0,A/2− E1,A/2√
E0,A(1− E0,A)/(4n0,te) + E1,A(1− E1,A)/(4n1,te)

. (7.10)

In the next proposition, we present both conditional and unconditional limiting distributions of WA in the

high dimensional setting.

Proposition 7.2. Suppose that the assumptions (A1)–(A6) hold. Then WA converges to the standard

normal distribution conditional on the training set:

sup
t∈R
|Pr(WA ≤ t|Xn0,tr

1 ,Yn1,tr

1 )− Φ(t)| = OP (n−1/2).

Moreover, under the same assumptions, WA converges to the standard normal distribution unconditional on

the training set:

sup
t∈R
|Pr(WA ≤ t)− Φ(t)| = o(1).

The proof of Proposition 7.2 can be found in Appendix F.3.4. Although the limiting distribution of WA is

known from the previous lemma, it is quite challenging to determine the power of a test based classification

accuracy by analyzing WA. The reason is that E0,A and E1,A are random since they depend on the training

set. To address this issue, we shall present a tractable approximation of WA that replaces E0,A and E1,A with

non-random quantities. To ease notation, let us denote V0,A
def
= δ̂>A(µ0 − µ̂pool), V1,A

def
= δ̂>A(µ̂pool − µ1)

and UA
def
= δ̂>AΣAδ̂. We would like to stress that δ̂ and µ̂pool are computed based only on the training set.

Using this fact, E0,A and E1,A can be written as

E0,A = Φ

(
V0,A√
UA

)
and E1,A = Φ

(
V1,A√
UA

)
. (7.11)

Further write the expectations of V0,A, V1,A and UA by E[V0,A] = ΨA,n,d + ΞA,n,d, E[V1,A] = ΨA,n,d−ΞA,n,d

and E[UA] = ΛA,n,d where

ΨA,n,d
def
= −1

2
δ>Aδ,

ΛA,n,d
def
= δ>AΣAδ +

(
1

n0,tr
+

1

n1,tr

)
tr
{

(AΣ)2
}
,

and ΞA,n,d
def
=

1

2

(
1

n0,tr
− 1

n1,tr

)
tr(AΣ).

(7.12)
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Here the first two terms ΨA,n,d and ΛA,n,d can be viewed as signal and noise terms, respectively, which

ultimately determine the asymptotic power of the accuracy test. The third term ΞA,n,d is an extra variance

that comes from unbalanced sample sizes. Finally, we define a scaling factor

γA,n,d
def
= 2

√
n0,ten1,te

n0,te + n1,te

1√
Φ(ΞA,n,d/

√
ΛA,n,d){1− Φ(ΞA,n,d/

√
ΛA,n,d)}

. (7.13)

With this notation in hand and letting φ(·) be the standard normal density function, we now introduce an

approximation of WA defined as

W †A
def
= γA,n,d ·

{
ÊSA −

1

2
− φ

(
ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

}
.

It is clear that W †A is centered and scaled by explicit and non-random quantities. The next theorem shows

that the difference between WA and W †A is asymptotically negligible and therefore W †A is also asymptotically

standard normal.

Theorem 7.2. Suppose that the assumptions (A1)–(A6) hold. Then we have that WA = W †A + oP (1) and

thus the distribution of W †A converges to a standard normal:

sup
t∈R
|Pr(W †A ≤ t)− Φ(t)| = o(1).

The proof of Theorem 7.2 can be found in Appendix F.3.5. The asymptotic normality, established in

the above theorem, holds under the null as well as under the local alternative (A2). This enables us to

explore the asymptotic power of the generalized LDA test with known Σ in the next section, and we deal

with unknown Σ in the following section.

7.6 Asymptotic power of generalized LDA with non-random A

Here, we study the asymptotic power of the generalized LDA test for known Σ. Since a smaller value of

ÊSA−1/2 (or equivalently a larger value of the average per-class accuracy 1− ÊSA) is in favor of H1 : µ0 6= µ1,

we define the test function by

ϕA
def
= I

[
γA,n,d

(
ÊSA −

1

2

)
< −zα

]
. (7.14)
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It is then clear from Theorem 7.2 that ϕA has an asymptotic type-1 error controlled by α. Now under the

local alternative hypothesis, ϕA has power given by

E[ϕA] = Pr

(
W †A < −zα − γA,n,d · φ

(
ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

)
,

= Φ

(
− zα − γA,n,d · φ

(
ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

)
+ o(1), (7.15)

where the second equality uses Theorem 7.2. Let us write

βA,λ,κ
def
=

λ− 1/2√
λ(1− λ)κ

n−1tr(AΣ)√
n−1tr{(AΣ)2}

. (7.16)

Using assumptions (A1)–(A6), the main term in the power function (7.15) simplifies as

− γA,n,d · φ
(

ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

=

√
2κ(1− κ)φ(βA,λ,κ)√

Φ(βA,λ,κ){1− Φ(βA,λ,κ)}
· nλ(1− λ)δ>Aδ√

2tr{(AΣ)2}
+ o(1).

Resubstituting the above into expression (7.15), we finally infer that

E[ϕA] = Φ

(
− zα +

√
2κ(1− κ)φ(βA,λ,κ)√

Φ(βA,λ,κ){1− Φ(βA,λ,κ)}
· nλ(1− λ)δ>Aδ√

2tr{(AΣ)2}

)
+ o(1). (7.17)

Since supx∈R φ(x)/
√

Φ(x){1− Φ(x)} =
√

2/π and its maximum is achieved at x = 0, the asymptotic

power (7.17) is maximized when λ = 1/2 and κ = 1/2, further supported by simulations in Appendix F.4.

However it is unknown whether the same result continues to hold for a random A (e.g. A = Σ̂−1). In this

balanced setting, the asymptotic power is further simplified as

Φ

(
− zα +

nδ>Aδ√
32πtr{(AΣ)2}

)
+ o(1). (7.18)

For ease of reference, we summarize our discussion as a theorem.

Theorem 7.3. Suppose that the assumptions (A1)–(A6) hold. Then the generalized LDA test (7.14)

asymptotically controls type-1 error at level α and its power for Gaussian two-sample mean testing is given

by

E[ϕA] = Φ

(
− zα +

√
2κ(1− κ)φ(βA,λ,κ)√

Φ(βA,λ,κ){1− Φ(βA,λ,κ)}
· nλ(1− λ)δ>Aδ√

2tr{(AΣ)2}

)
+ o(1). (7.19)
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Furthermore, keeping other parameters fixed, the asymptotic power is maximized when λ = 1/2 and κ = 1/2

(corresponding to a balanced train/test split).

The proof of the above theorem follows immediately from the previous discussion and so is omitted. As

a direct consequence of Theorem 7.3, when λ = 1/2 and κ = 1/2, the power of the “oracle” Fisher’s LDA

test that uses A = Σ−1 (again, “oracle” is used because it uses Σ−1) becomes

E[ϕ∗Σ−1 ] = Φ

(
− zα +

nδ>Σ−1δ√
32πd

)
+ o(1). (7.20)

Comparing the above power with the minimax lower bound expression (7.8) with λ = 1/2, we may conclude

that the classification accuracy test can achieve essentially minimax optimal power, up to the small constant

factor 1/
√
π ≈ 0.564. In other words, we pay a constant factor by performing a two-sample testing via

classification compared to the minimax optimal test. However, this somewhat positive conclusion should be

treated with caution as emphasized below:

• First, Theorem 7.3 is a pointwise result. That means, the result holds for any sequence of distributions

satisfying the assumptions, but not uniformly over a class of distributions. Hence, conceptually, this

is weaker than the uniform power achieved by ϕ∗H in Theorem 7.1. However, this drawback actually

applies to almost every published result on high-dimensional two-sample testing that we are aware of

(or certainly all those that we cite), and it is a much broader open problem to prove that the power

guarantees for these tests hold uniformly over the relevant classes.

• Second, although a constant factor is not of major concern in determining the minimax rate, it may

have a significant effect on power in practice. To see this, let nFisher and nHotelling be the sample

sizes needed for ϕ∗Σ−1 and ϕ∗H to obtain the same power against the local alternative considered in

Theorem 7.3. Then the asymptotic relative efficiency (ARE) of ϕ∗Σ−1 with respect to ϕ∗H is defined

as the limit of the ratio nHotelling/nFisher (e.g. Chapter 14 of Van der Vaart, 2000). Based on the

asymptotic power expressions (7.8) and (7.19), a simple closed-form expression of the ARE is available

as

ARE(ϕ∗Σ−1 ;ϕ∗H) =

√
2κ(1− κ)φ(β∗)√

Φ(β∗){1− Φ(β∗)}
≤ 1√

π
≈ 0.564, (7.21)

where β∗ = limn,d→∞ βΣ−1,λ,κ if it exists. This ARE expression implies that ϕ∗Σ−1 requires (at least)
√
π ≈ 1.77 more samples to attain approximately the same power as ϕ∗H . In this context, Hotelling’s

test should be preferred over the classifier-based test to obtain higher power against the Gaussian mean

shift alternative.
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In the following sections, we extend the results on the oracle Fisher’s LDA classifier to it variants with

unknown Σ and also to elliptical distributions.

Remark 7.2. As mentioned in Section 7.5.1, the accuracy of the Bayes optimal classifier approaches half

under the considered asymptotic regime, meaning that no classifier can have accuracy better than a random

guess in the limit. In contrast, under the same asymptotic regime, two-sample testing based on generalized

LDA can have non-trivial power (strictly greater than α) as shown in Theorem 7.3. These two results not only

demonstrate that testing is easier than classification, but also that the local alternative (A2) is conceptually

interesting — it corresponds to a regime where the LDA classifier performs as poorly as a random guess for

classification, but is essentially optimal for testing.

7.7 Naive Bayes: power of generalized LDA with unknown Σ

For low-dimensional Gaussians with unknown Σ, there are strong reasons to prefer Hotelling’s test; it is

well-known that it is uniformly most powerful among all tests that are invariant with respect to nonsingular

linear transformations (e.g., Anderson, 2003). We also refer to Simaika (1941); Giri et al. (1963); Giri and

Kiefer (1964); Salaevskii (1971); Kariya (1981); Luschgy (1982) for other optimality properties of Hotelling’s

test in finite d and n settings. Moreover our result in Theorem 7.1 says that ϕH is asymptotically minimax

optimal among all level α tests as long as d/n → 0. Unfortunately, when d is linearly comparable to or

larger than n, these optimal properties of Hotelling’s test becomes highly non-trivial. In particular, ϕH has

asymptotic power tending to the (trivial) value of α in the high dimensional setting, when d, n → ∞ with

d/n→ 1− ε for small ε > 0 (Bai and Saranadasa, 1996, for details). The problem becomes even worse when

the dimension is larger than the sample size as TH is not well-defined.

The aforementioned issue on TH has motivated the study of alternative two-sample mean test statistics

in the high-dimensional setting. For instance, Bai and Saranadasa (1996) show that dropping Σ̂ from the

Hotelling test statistic (i.e. replacing Σ̂ with the identity matrix) entirely leads to a test that does have

asymptotic power tending to one in the high-dimensional setting where Hotelling’s test fails. The test

statistic proposed by Bai and Saranadasa (1996) can be essentially written as

TBS
def
= (µ̂0 − µ̂1)>(µ̂0 − µ̂1).

Following that, Srivastava and Du (2008) propose (in a similar spirit) the test statistic

TSD
def
= (µ̂0 − µ̂1)>diag(Σ̂)−1(µ̂0 − µ̂1), (7.22)
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by replacing Σ̂ with diag(Σ̂) in Hotelling’s statistic. They show that TSD also leads to high-dimensional

consistency.

As mentioned earlier, the idea of using diag(Σ̂) in place of Σ̂ has also been justified in the high-dimensional

classification problem (Bickel and Levina, 2004). In particular, the naive Bayes classifier (corresponding to

TSD) outperforms Fisher’s LDA classifier (corresponding to TH) in terms of the worst-case classification

error in the high-dimensional setting. We note that this relatively understated connection between two-

sample testing and classification has important implications for extending our previous results to other

linear classifiers. Specifically, as we shall see, the power of the classifier-based tests is only worse by a

constant factor than the variants of Hotelling’s test when both the classifier and the two-sample test use the

same substitute for Σ−1.

To start, let us consider two classifiers with unknown Σ. The first one is the naive Bayes classifier and

the other is the generalized LDA classifier with the identity matrix, i.e. A = I. We then compare the power

of the corresponding classification accuracy tests with the two-sample mean tests based on TSD and TBS .

Throughout this section, we assume that n0 = n1, n0,tr = n1,tr and ntr = nte for simplicity.

From Theorem 7.3, the asymptotic power of the test based on ÊSI is already available as

E[ϕI ] = Φ

(
− zα +

nδ>δ√
32πtr(Σ2)

)
+ o(1). (7.23)

Under more general conditions than the assumptions (A1)–(A6), Bai and Saranadasa (1996) show that the

asymptotic power of the test based on TBS , denoted by ϕBS , is

E[ϕBS ] = Φ

(
− zα +

nδ>δ√
32tr(Σ2)

)
+ o(1). (7.24)

Now by comparing two power expressions in (7.23) and (7.24), we arrive at the same conclusion as before

that the classification accuracy test is less powerful than the corresponding two-sample test ϕBS by the

constant factor 1/
√
π ≈ 0.564.

Next we focus on the naive Bayes classifier and compute the asymptotic power of the resulting test.

Although the analysis proceeds similarly to the previous one, we now need to deal with the randomness

from the inverse diagonal matrix, which requires extra non-trivial work. By putting D̂−1 def
= diag(Σ̂)−1 and

D−1 = diag(Σ)−1, the asymptotic power of the naive Bayes classifier is provided as follows.

Theorem 7.4. Consider the case where n0 = n1, n0,tr = n1,tr and ntr = nte. Then under the assumptions

(A1), (A2) and (A5), the power of the naive Bayes classifier test for Gaussian two-sample mean testing
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is

E[ϕD̂−1 ] = Φ

(
− zα +

nδ>D−1δ√
32πtr{(D−1Σ)2}

)
+ o(1). (7.25)

The proof of Theorem 7.4 can be found in Appendix F.3.5. Srivastava and Du (2008) study the asymptotic

power of the test ϕSD based on TSD (7.22). One can also check that their conditions are fulfilled under the

assumptions (A1)–(A5). Using λ = 1/2, the power of ϕSD is given by

E[ϕSD] = Φ

(
− zα +

nδ>D−1δ√
32tr{(D−1Σ)2}

)
+ o(1).

Comparing this with the asymptotic power of ϕD̂−1 in (7.25), we see that the power of the accuracy test

based on the naive Bayes classifier is worse than the corresponding two-sample test ϕSD, once again achieving

an ARE of exactly 1/
√
π.

7.8 Extension to elliptical distributions

In this section we extend our main result (Theorem 7.3) to the class of elliptical distributions and show

that the asymptotic power expression remains the same up to a constant factor. Let µ be a d-dimensional

vector, S be a d× d positive semi-definite matrix, ξ(·) be a nonnegative function. A random vector Z in Rd

is said to have an elliptical distribution with location parameter µ, scale matrix S and generator ξ(·) if its

characteristic function satisfies

E
[
eit
>Z
]

= eit
>µξ

(
t>St

)
for all t ∈ Rd.

When the second moment exists, it can be verified that µ corresponds to the mean vector of Z and S is

proportional to the covariance matrix of Z, denoted by Σ. More specifically, by letting ξ′(0) be the first

derivative of ξ evaluated at zero, S is explicitly linked to Σ as −2ξ′(0)S = Σ. Notable examples of elliptical

distributions include the multivariate normal, the multivariate student t, the multivariate Laplace and the

multivariate logistic distribution. We refer to Gómez et al. (2003); Frahm (2004); Fang et al. (2018) for

further properties and examples of elliptical distributions. To have an explicit power expression, we make

two extra assumptions on Z described as follows:

(A7) Condition on kurtosis parameter : let ζkurt be the kurtosis parameter of Z defined as

ζkurt
def
=

E
[{

(Z − µ)>Σ−1(Z − µ)
}2]

d(d+ 2)
− 1.
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We assume that there exists a positive constant M such that ζkurt < M for all n, d.

(A8) Condition on density function: assume that the standardized first coordinate of Z, that is e>1 (Z −
µ)/(e>1 Σe1)1/2 where e1 = (1, 0, . . . , 0)>, has the density function fξ(·) with respect to the Lebesgue

measure. We further assume that fξ is bounded and continuously differentiable.

We believe that the condition on ζkurt in (A7) is mild and satisfied for many elliptical distributions (e.g., ?).

For example, the kurtosis parameter of the multivariate t-distribution with ν degrees of freedom is 2/(ν− 4)

for ν > 4, which in turn implies that ζkurt is zero for the Gaussian case. To interpret (A8), we note that each

component of an elliptical random vector has the same distribution after standardization. Assumption (A8)

then states that this common distribution has the density function fξ with some extra regularity conditions.

Clearly fξ corresponds to the standard normal density function for the Gaussian case that is bounded and

continuously differentiable. But (A8) fails to hold for the Laplace distribution whose density function is not

differentiable at zero. With these extra assumptions, we are now ready to present the main result of this

section, which generalizes Theorem 7.3 to elliptical distributions.

Theorem 7.5. Suppose that P0 and P1 are elliptical distributions with parameters (µ0, S, ξ) and (µ1, S, ξ),

respectively. Consider the case where n0 = n1, n0,tr = n1,tr and ntr = nte, i.e. λ = κ = 1/2, for simplicity.

Then under the assumptions (A1), (A2) and (A5)–(A8), the generalized LDA test (7.14) asymptotically

controls type-1 error at level α and has the asymptotic power for testing the hypothesis (7.1) as

E[ϕA] = Φ

(
− zα +

fξ(0) · nδ>Aδ√
16tr{(AΣ)2}

)
+ o(1). (7.26)

The above result shows that the asymptotic power expression in Theorem 7.3 does not change in terms

of n, d,Σ, A, δ, for elliptical distributions. To further illustrate the result, let us consider the specific case

where P0 and P1 are multivariate t-distributions with ν degrees of freedom and the same scale matrix. We

additionally assume that ν > 4 under which the assumption (A7) is satisfied. In such a case, fξ(0) = fξ(0; ν)

can be written as

fξ(0; ν) =
Γ
(
ν+1

2

)√
π(ν − 2)Γ

(
ν
2

) → 1√
2π
≈ 0.399 as ν →∞.

Hence, by taking ν → ∞, the asymptotic power (7.26) recovers the previous power expression (7.18) for

the Gaussian case. Indeed fξ(0; ν) is a decreasing sequence of ν such that fξ(0; ν) < fξ(0; 4) ≈ 0.530 for

all ν > 4. This fact demonstrates that the generalized LDA test becomes relatively more efficient when the

underlying t-distributions have heavier tails, which is also validated by simulations (see Figure 7.2).
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7.9 Results on general classifiers

So far we have focused on the accuracy tests based on linear classifiers and derived their explicit asymptotic

power against local alternatives under Gaussian or elliptical distribution assumptions. In this section,

we turn to more general settings and examine two key properties, namely the type-1 error control and

consistency, of the accuracy test based on a general classifier. The main result of this section shows that a

classification accuracy test achieves asymptotic power equal to one, provided that the corresponding classifier

has an accuracy higher than chance. This result naturally motivates questions about rate, for which more

assumptions are needed, and also motivates studying a more challenging setting where the true accuracy

approaches half, like the one we consider for the generalized LDA test.

Let Ĉ(·) denote a generic classifier based on the training set which maps from Xn0,tr

1 ∪ Yn1,tr

1 to {0, 1}.
The per-class errors of this generic classifier, denoted by ÊS0 (Ĉ) and ÊS1 (Ĉ), are calculated by replacing

LDAn0,tr,n1,tr(Z) with Ĉ(Z) in expression (7.5). By taking the average of these two errors, we define the

sample-splitting error of Ĉ as

ÊS(Ĉ)
def
=
{
ÊS0 (Ĉ) + ÊS1 (Ĉ)

}/
2, (7.27)

and reject the null hypothesis H0 : P0 = P1 if ÊS(Ĉ) is significantly smaller than a half. To facilitate

analysis, we assume the following asymptotic properties of ÊS0 (Ĉ) and ÊS1 (Ĉ):

(A9) Asymptotic classification errors: assume that ÊS0 (Ĉ) = E0(C) + oP (1) and ÊS1 (Ĉ) = E1(C) + oP (1)

where E1(C) and E2(C) are constants within (0, 1). Moreover, there exists a strictly positive constant

ε > 0 such that E0(C)/2 + E1(C)/2 = 1/2− ε under the alternative hypothesis.

To determine the threshold of a test, we consider two methods: (1) the Gaussian approximation that

underlies our theory in the preceding sections and (2) the permutation procedure that has been common in

practice with finite sample guarantees. We start by analyzing the asymptotic test based on the Gaussian

approximation and then turn to permutation tests.

7.9.1 Asymptotic test

As discussed before, the sample-splitting error can be viewed as the sum of independent random variables

given the training set. Therefore it is natural to expect that this empirical error follows closely a normal

distribution even for a general classifier when the sample size is large. Building on this intuition, we define

the asymptotic test as

I

 2ÊS(Ĉ)− 1√
ÊS0 (Ĉ)

{
1− ÊS0 (Ĉ)

}/
n0,te + ÊS1 (Ĉ)

{
1− ÊS1 (Ĉ)

}/
n1,te

< −zα
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and denote it by ϕĈ,Asymp. We note that the quantity inside of the indicator function is a studentized sample-

splitting error under the null hypothesis. In the next proposition we prove that the normal approximation

is indeed accurate and thus ϕĈ,Asymp is a valid test at least asymptotically. Moreover, when the sequence of

classification errors tends to a constant that is strictly less than chance level, we show that the power of the

asymptotic test tends to one as n→∞ potentially with d→∞.

Proposition 7.3. Suppose that the assumptions (A3), (A4) and (A9) hold as n → ∞ potentially with

d→∞ at any relative rate. Then under the null hypothesis H0 : P0 = P1, we have limn→∞ EH0

[
ϕĈ,Asymp

]
≤

α. On the other hand, under the alternative hypothesis H1 : P0 6= P1, the asymptotic test is consistent as

limn→∞ EH1

[
ϕĈ,Asymp

]
= 1.

Despite its simplicity, the asymptotic approach has no finite sample guarantee on type-1 error control,

which motivates an alternative approach based on the permutation principle. In the next subsection we

focus on permutation tests and establish the same consistency result.

7.9.2 Permutation tests

In practice, instead of using the asymptotic standard normal null, one often employs permutation tests

that can offer exact control of the type-1 error rate. We note that there are two possible ways of applying

permutation testing within the classification via sample splitting framework. The methods below differ in

the italicized text.

Method 1 (Half-permutation):

• Split data randomly into two halves, call these X1, Y 1 and X2, Y 2. Train the classifier on X1, Y 1, call

this f∗. Evaluate accuracy of f∗ on X2, Y 2, call this a∗.

• Repeat P times: Pool the samples X2, Y 2 into one bag, randomly permute the samples, and then split

it into two parts, Xp, Y p. Here each part of Xp, Y p has the same sample size as the corresponding part

of X2, Y 2. Evaluate the accuracy of f∗ on this permuted data, call this ap.

• Sort all the accuracies a∗, a1, ..., aP and denote their order statistics by a(1) ≤ . . . ≤ a(P+1); Let

k
def
= d(1− α)(1 + P )e. If a∗ > a(k), then reject the null.

Method 2 (Full-permutation):

• Split data randomly into two halves, call these X1, Y 1 and X2, Y 2. Train the classifier on X1, Y 1, call

this f∗. Evaluate accuracy of f∗ on X2, Y 2, call this a∗.
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• Repeat P times: Pool all samples X1, Y 1, X2, Y 2 into one bag, randomly permute the samples, and

then split it into 4 parts Xp, Y p, X ′p, Y ′p. Here each part of Xp, Y p, X ′p, Y ′p has the same sample size

as the corresponding part of X1, Y 1, X2, Y 2. Train a new classifier fp on the first half, evaluate it on

the second half, to get accuracy ap.

• Sort all the accuracies a∗, a1, ..., aP and denote their order statistics by a(1) ≤ . . . ≤ a(P+1); Let

k
def
= d(1− α)(1 + P )e. If a∗ > a(k), then reject the null.

It is worth noting that both methods yield a valid level α test under H0 : P0 = P1 as a direct consequence

of, for example, Theorem 1 in Hemerik and Goeman (2018b). In terms of power, we expect that method

2 is preferred to method 1 as it uses the data more efficiently to determine a cut-off value. In particular

permuted accuracies via method 1 can take fewer values (hence the permutation distribution is sparser) than

those via method 2, which may result in a more conservative threshold depending on the nominal level.

However, we should also note that method 1 has a computational advantage over method 2 since it only

requires to re-fit a classifier on the second half of the dataset. Nevertheless the following theorem shows

that both methods provide a consistent test under the same assumptions made in Proposition 7.3. Let us

denote the permutation test by ϕĈ,Perm via either method 1 or method 2 based on classifier Ĉ. Then our

consistency result on ϕĈ,Perm is stated as follows.

Theorem 7.6. Consider the same assumptions made in Proposition 7.3. Then under the null hypothesis

H0 : P0 = P1, we have EH0

[
ϕĈ,Perm

]
≤ α for each n and d. Under the alternative hypothesis H1 : P0 6= P1,

the (half or full) permutation test is consistent as limn→∞ EH1

[
ϕĈ,Perm

]
= 1 given that the number of random

permutations P is greater than (1− α)/α.

One interesting aspect of the above theorem is that consistency is guaranteed as long as the number

of random permutations P is greater than (1 − α)/α (e.g., P ≥ 20 for α = 0.05), which is independent

of the sample size. We would also like to point out that the permutation test relies on a data-dependent

threshold and thus it is more difficult to analyze than the asymptotic test. In Appendix F.3.11, we bound

this data-dependent threshold with a more tractable quantity using Markov’s inequality with the first two

moments of the permuted test statistic. Leveraging this preliminary result, we prove that the permutation

critical value cannot exceed the true accuracy in the limit, and this is the critical fact that completes the

proof.

7.10 Experiments

In this section, we present several numerical results that support our theoretical analysis. Throughout our

simulations (except in Section 7.10.3), we set the sample sizes and the dimension to be n0 = n1 = d = 200
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and compare two multivariate Gaussian or multivariate t-distributions with the same identity covariance

matrix. The mean vectors of the two multivariate distributions were chosen to be

µ0 = (0, . . . , 0)> and µ1 =
δ

d1/4
· (1, . . . , 1)>

for δ ∈ {0, 0.05, . . . , 0.35, 0.40}. The simulations were repeated 500 times to estimate the power of each test

at significance level α = 0.05.

7.10.1 Empirical power vs. theoretical power

In the following experiment, we compare the empirical power of classification accuracy tests with the

corresponding theoretical power. For the Gaussian case, we consider the accuracy tests ϕΣ−1 and ϕD̂−1 based

on the Fisher’s LDA classifier and the naive Bayes classifier, respectively. As specified in the definitions of

ϕΣ−1 and ϕD̂−1 , the critical values of both tests are based on a normal approximation. Here we split the

samples into training and test sets with equal sample sizes so that the power is asymptotically maximized.

In this case, the asymptotic power expression for each test is presented in (7.20) and (7.25), respectively. For

the case of multivariate t-distributions, we focus on the accuracy test ϕΣ−1 and see whether the asymptotic

power expression (7.26) approximates its empirical power over different values of degrees of freedom ν.

The results are given in Figure 7.1 and Figure 7.2. From the results, we see that the empirical power

almost coincides with the theoretical counterpart especially when δ is not too big (i.e. low SNR regime),

which confirms our theoretical analysis. We also see that the accuracy test has higher power when the

underlying t-distributions have smaller degrees of freedom, an interesting and initially surprising fact that is

again predicted by our theory.

7.10.2 Sample-splitting vs. resubstitution

In the following experiment, we compare the performance of sample-splitting tests with resubstitution

accuracy tests under the Gaussian setting. As their name suggests, the resubstitution accuracy tests use

resubstitution accuracy estimates as their test statistic. The precise definition of a resubstitution estimate

is given in Appendix F.2. We also consider Hotelling’s test and its variant proposed by Srivastava and Du

(2008) as reference points.The setup is almost the same as the previous experiment except for the choice of

critical values. In particular, since the (asymptotic) null distribution of a resubstitution statistic is unknown,

the critical values of all tests are determined by the permutation procedure for a fair comparison. Specifically

we use method 2, which is described in Section 7.9.2, with 200 random permutations to calibrate critical

values.
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Figure 7.1: Comparisons of the empirical power to our theoretically derived expression for (asymptotic) power
under the Gaussian setting. The curves are almost identical especially when the size of δ is not too big, which suggests
that our theory under local alternatives accurately predicts power. See Section 7.10.1 for details.
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Figure 7.2: The empirical power and theoretical (asymptotic) power of the accuracy test based on Fisher’s LDA
classifier for comparing multivariate t-distributions with ν degrees of freedom. The empirical power closely follows
the corresponding theoretical power over different values of ν. Moreover, predicted by Theorem 7.5, the accuracy test
has higher power when the underlying t-distributions have smaller degrees of freedom. See Section 7.10.1 for details.

In the first part, Fisher’s LDA is considered as a base line classifier. Then the accuracy is estimated via

(i) sample-splitting with ntr = nte and (ii) resubstitution. As a reference point, we consider Hotelling’s test

as it shares the same weight matrix with Fisher’s LDA. For both Hotelling’s and Fisher’s LDA tests, we

assume that Σ is known. In the second part, the naive Bayes classifier is considered as a base line classifier
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Figure 7.3: Comparisons between sample-splitting (Split) and resubstitution (Resub) tests using Fisher’s LDA and
naive Bayes classifier. As reference points, we also consider 1) Hotelling’s test (Hotelling) and 2) the test based on TSD

(SD) in simulations. Under the given scenarios, the sample-splitting tests have higher power than the resubstitution
tests but lower power than Hotelling’s and SD tests, the latter being predicted by our theory. See Section 7.10.2 for
details.

with unknown Σ. We then perform tests based on sample-splitting and resubstitution accuracy statistics

defined similarly as before. In this part, we consider TSD given in (7.22) as a reference point since it relies

on the inverse of diagonal sample covariance matrix as in the naive Bayes classifier.

From the results presented in Figure 7.3, it stands out that Hotelling’s test and its high-dimensional

variant are more powerful than the corresponding tests via classification accuracy as we expected. The results

also show that the powers of the sample-splitting tests are slightly higher than those of the resubstitution

tests in both Fisher’s LDA and naive Bayes classifier examples. However additional simulation studies,

not presented here, suggest that resubstitution tests tend to be more powerful than sample-splitting tests

in low-dimensional settings (or when the sample sizes are relatively small) and thus, at least empirically,

neither of them is strictly better than the other under all scenarios. Similar empirical results were observed

by Rosenblatt et al. (2016) where they conducted extensive simulation studies to compare the performance

of the accuracy tests via resubstitution and 4-fold cross-validation and different versions of Hotelling’s test.

From their simulation results, one reaches the same conclusion that the accuracy tests tend to have lower

power than Hotelling’s test against Gaussian mean shift alternatives.

7.10.3 Asymptotic power of Hotelling’s Test

In this subsection, we provide numerical support for the asymptotic optimality of Hotelling’s test under

Gaussian settings with unknown Σ (Theorem 7.1). Here we compare two multivariate Gaussian distributions
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Figure 7.4: Comparisons of the power of the two tests: 1) Hotelling’s test ϕH with unknown Σ and 2) Hotelling’s
test ϕ∗H with known Σ at α = 0.05 in different asymptotic regimes. These results coincide with our theoretical results
in Section 7.4, showing that ϕH has asymptotically the same power as ϕ∗H when d/n→ 0 (the first row) and it is less
powerful when d/n→ c ∈ (0, 1) (the second row). See Section 7.10.3 for details.

with the mean vectors

µ0 =
1

d1/4n
1/2
0

· (1, . . . , 1)> and µ1 = − 1

d1/4n
1/2
0

· (1, . . . , 1)>

and the identity covariance matrix. In this case, by setting n0 = n1, the asymptotic minimax power tends to

be constant as in (7.8). Now we consider six different asymptotic regimes: i) d = bn1/4
0 c, ii) d = bn2/4

0 c, iii)

d = bn3/4
0 c, iv) d = 0.5n0, v) d = 1.0n0 and vi) d = 1.5n0. According to Theorem 7.1, Hotelling’s test with

unknown Σ (denoted by ϕH) obtains asymptotically the same power as the minimax optimal test (denoted

by ϕ∗H) in the first three regimes. Whereas, in the last three regimes where d and n are linearly comparable,

ϕH becomes less powerful than ϕ∗H proved by Bai and Saranadasa (1996). To illustrate this numerically,

we increase the sample size by n0 ∈ {101, 102, . . . , 106} and compute the power of ϕ∗H and ϕH for each n0.

To calculate the power, we use the fact that E[1− ϕ∗H ] and E[1− ϕH ] are noncentral χ2 and F distribution

functions evaluated at their critical values, which are cα,d and qα,n,d respectively.

As can be seen in the first row of Figure 7.4, the power of ϕH becomes approximately the same as

that of ϕ∗H in the first three regimes as n increases. On the other hand, in the last three regimes where

146



d/n→ c ∈ (0, 1), we observe significantly different results. Specifically, from the second row of Figure 7.4, it

is seen that the power of ϕH is much lower than that of ϕ∗H and the gap does not decrease even in large n.

This, thereby, supports our argument that ϕH is asymptotically comparable to the minimax optimal test in

the case of d/n→ 0, but it is underpowered otherwise.

7.11 Conclusions

This chapter provided analyses on the use of classification accuracy as a test statistic for two-sample testing.

We started by presenting a fundamental minimax lower bound for high-dimensional two-sample mean testing

and showed that Hotelling’s test with unknown Σ can be optimal in high-dimensional settings as long as

d/n→ 0. When d = O(n), we found that two-sample tests via the classification accuracy of various versions

of Fisher’s LDA (including naive Bayes) have the same power as high-dimensional versions of Hotelling’s

test in terms of all problem parameters (n, d, δ,Σ), but having worse (but explicit) constants. Beyond

linear classifiers, we also proved that both the asymptotic test and the permutation test based on a general

classifier are consistent if the limiting value of the true accuracy is higher than chance. This consistency

result naturally motivated a more challenging setting in which the Bayes error approaches half while the

corresponding accuracy-based test can still have non-trivial power, which is the regime studied in most of

this chapter. Under such a challenging regime, it would be interesting to see whether our current results can

be extended to non-linear classifiers.

147





Chapter 8

Minimax optimality of permutation

tests

This chapter is adapted from my joint work with Sivaraman Balakrishnan and Larry Wasserman. This work

is available on ArXiv (Kim et al., 2020a).

8.1 Introduction

A permutation test is a nonparametric approach to hypothesis testing routinely used in a variety of

scientific and engineering applications (e.g. Pesarin and Salmaso, 2010). The permutation test constructs

the resampling distribution of a test statistic by permuting the labels of the observations. The resampling

distribution, also called the permutation distribution, serves as a reference from which to assess the

significance of the observed test statistic. A key property of the permutation test is that it provides exact

control of the type I error rate for any test statistic whenever the labels are exchangeable under the null

hypothesis (e.g. Hoeffding, 1952). Due to this attractive non-asymptotic property, the permutation test has

received considerable attention and has been applied to a wide range of statistical tasks including testing

independence, two-sample testing, change point detection, clustering, classification, principal component

analysis (see Anderson and Robinson, 2001; Kirch and Steinebach, 2006; Park et al., 2009; Ojala and Garriga,

2010; Zhou et al., 2018).

Once the type I error is controlled, the next concern is the type II error or equivalently power of a test.

Despite its increasing popularity and empirical success, the power of the permutation test has yet to be fully

understood. A major challenge is to control its random critical value that has an unknown distribution.

While some progress has been made as we review in Section 8.1.2, our understanding of the permutation

approach is still far from complete, especially in finite-sample scenarios. The purpose of this chapter is to
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attempt to fill this gap by developing a general framework for analyzing the non-asymptotic type II error of

the permutation test and to demonstrate its efficacy from a minimax point of view.

8.1.1 Alternative approaches and their limitations

We first review a couple of other testing procedures and highlight the advantages of the permutation method.

One common approach to determining the critical value of a test is based on the asymptotic null distribution

of a test statistic. The validity of a test whose rejection region is calibrated using this asymptotic null

distribution is well-studied in the classical regime where the number of parameters is fixed and the sample

size goes to infinity. However, it is no longer trivial to justify this asymptotic approach in a complex, high-

dimensional setting where numerous parameters can interact in a non-trivial way and strongly influence the

behavior of the test statistic. In such a case, the limiting null distribution is perhaps intractable without

imposing stringent assumptions. To illustrate the challenge clearly, we consider the two-sample U -statistic

Un1,n2 defined later in Proposition 8.1 for multinomial testing. Here we compute Un1,n2 based on samples

from the multinomial distribution with uniform probabilities. To approximate the null distribution of Un1,n2
,

we perform 1000 Monte Carlo iterations for each bin size d ∈ {5, 100, 10000} while fixing the sample sizes

as n1 = n2 = 100. From the histograms in Figure 8.1, we see that the shape of the null distribution heavily

depends on the number of bins d (more generally the probabilities of the multinomial distribution). In

particular, the null distribution tends to be more symmetric and sparser as d increases. Since the underlying

structure of the distribution is unknown beforehand, Figure 8.1 emphasizes difficulties of approximating

the null distribution over different regimes. We also note that the asymptotic approach does not have any

finite sample guarantee, which is also true for other data-driven methods including bootstrapping (Efron

and Tibshirani, 1994) and subsampling (Politis et al., 1999). In sharp contrast, the permutation approach

provides a valid test for any test statistic in any sample size under minimal assumptions. Furthermore, as

we shall see, one can achieve minimax power through the permutation test even when a nice limiting null

distribution is not available.

Another approach, that is commonly used in theoretical computer science, is based on concentration

inequalities (e.g. Chan et al., 2014; Acharya et al., 2014; Bhattacharya and Valiant, 2015; Diakonikolas and

Kane, 2016; Canonne et al., 2018). In this approach the threshold of a test is determined using a tail bound of

the test statistic under the null hypothesis. Then, owing to the non-asymptotic nature of the concentration

bound, the resulting test can control the type I error rate in finite samples. This non-asymptotic approach is

more robust to distributional assumptions than the previous asymptotic approach but comes with different

challenges. For instance the resulting test tends to be too conservative as it depends on a loose tail bound.

More seriously the threshold often relies on unspecified constants and even unknown parameters. By contrast,

the permutation approach is entirely data-dependent and tightly controls the type I error rate.
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Figure 8.1: Histograms of the U -statistic in Proposition 8.1 calculated under the uniform multinomial null by
varying the number of bins d. The plots show that the shape of the null distribution is highly influenced by the
bin size and thus illustrate challenges of estimating the null distribution consistently over different scenarios. See
Section 8.1.1 for details.

8.1.2 Challenges in power analysis and related work

Having motivated the importance of the permutation approach, we now review the previous studies on

permutation tests and also discuss challenges. The large sample power of the permutation test has been

investigated by a number of authors including Hoeffding (1952); Robinson (1973); Albers et al. (1976); Bickel

and van Zwet (1978). The main result in this line of research indicates that the permutation distribution of

a certain test statistic (e.g. Student’s t-statistic and F -statistic) approximates its null distribution in large

sample scenarios. Moreover this approximation is valid under both the null and local alternatives, which then

guarantees that the permutation test is asymptotically as powerful as the test based on the asymptotic null

distribution. In addition to these findings, power comparisons between permutation and bootstrap tests have

been made by Romano (1989); Janssen and Pauls (2003); Janssen (2005) and among others. We also mention

that the robustness property of permutation tests to the exchangeability condition has been investigated by

Romano (1990); Chung and Romano (2013); Pauly et al. (2015); Chung and Romano (2016b); DiCiccio and

Romano (2017).

However the previous analysis of power, which heavily relies on classical asymptotic theory, is not easily

generalized to more complex settings. In particular, it often requires that alternate distributions satisfy

certain regularity conditions under which the asymptotic power function is analytically tractable. Due to

such restrictions, the focus has been on a limited class of test statistics applied to a relatively small set of

distributions. Furthermore, most previous studies have studied the pointwise, instead of uniform, power that

holds for any fixed sequence of alternatives but not uniformly over the class of alternatives.

Recently, there has been another line of research studying the power of the permutation test from a

non-asymptotic point of view (e.g. Albert, 2015, 2019; Kim et al., 2020b, 2019a). This framework, based
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on a concentration bound for a permuted test statistic, allows us to study the power in more general and

complex settings than the asymptotic approach at the expense of being less precise (mainly in terms of

constant factors). The main challenge in the non-asymptotic analysis, however, is to control the random

critical value of the test. The distribution of this random critical value is in general difficult to study due

to the non-i.i.d. structure of the permuted test statistic. Several attempts have been made to overcome

such difficulty focusing on linear-type statistics (Albert, 2019), regressor-based statistics (Kim et al., 2019a),

the Cramér–von Mises statistic (Kim et al., 2020b), maximum-type kernel-based statistics (Kim, 2019)

and classification accuracy statistic (Kim et al., 2019b). Our work contributes to this line of research by

developing some general tools for studying the finite-sample performance of permutation tests with a specific

focus on degenerate U -statistics.

Concurrent with our work, Berrett et al. (2020) also develop results for the permutation test based on a

degenerate U -statistic. While focusing on independence testing, Berrett et al. (2020) prove that one cannot

hope to have a valid independence test that is uniformly powerful over alternatives in the L2 distance.

The authors then impose Sobolev-type smoothness conditions as well as boundedness conditions on density

functions under which the proposed permutation test is minimax rate optimal in the L2 distance.

Throughout this chapter, we distinguish the Lp distance from the `p distance — the former is defined

with respect to Lebesgue measure and the latter is defined with respect to the counting measure.

8.1.3 Overview of our results

In this chapter we take the non-asymptotic point of view as in Albert (2015) and establish general results

to shed light on the power of permutation tests under a variety of scenarios. To concretely demonstrate the

efficacy of our results, we focus on two canonical testing problems: 1) two-sample testing and 2) independence

testing, for which the permutation approach rigorously controls the type I error rate (Section 8.2 for specific

settings). These topics have been explored by a number of researchers across diverse fields including statistics

and computer science and several optimal tests have been proposed in the minimax sense (e.g. Chan et al.,

2014; Bhattacharya and Valiant, 2015; Diakonikolas and Kane, 2016; Arias-Castro et al., 2018). Nevertheless

the existing optimal tests are mostly of theoretical interest, depending on loose or practically infeasible critical

values. Motivated by this gap between theory and practice, the primary goal of this study is to introduce

permutation tests that tightly control the type I error rate and have the same optimality guarantee as the

existing optimal tests.

We summarize the major contributions of this chapter and contrast them with the previous studies as

follows:

• Two moments method (Lemma 8.0.1). Leveraging the quantile approach introduced by Fromont

et al. (2013) (see Section 8.3 for details), we first present a general sufficient condition under which
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the permutation test has non-trivial power. This condition only involves the first two moments of a

test statistic, hence called the two moments method. To make this general condition more concrete,

we consider degenerate U -statistics for two-sample testing and independence testing, respectively, and

provide simple moment conditions that ensure that the resulting permutation test has non-trivial power

for each testing problem. We then illustrate the efficacy of our results with concrete examples.

• Multinomial testing (Proposition 8.1 and Proposition 8.4). One example that we focus on is

multinomial testing in the `2 distance. Chan et al. (2014) study the multinomial two-sample problem in

the `2 distance but with some unnecessary conditions (e.g. equal sample size, Poisson sampling, known

squared norms etc). We remove these conditions and propose a permutation test that is minimax rate

optimal for the two-sample problem. Similarly we introduce a minimax optimal test for independence

testing in the `2 distance based on the permutation procedure.

• Density testing (Proposition 8.3 and Proposition 8.7). Another example that we focus on is

density testing for Hölder classes. The two-sample problem for Hölder densities has been studied

by Arias-Castro et al. (2018) where the authors propose an optimal test in the minimax sense.

However their test depends on a loose critical value and also assumes equal sample sizes. We propose

an alternative test based on the permutation procedure without such restrictions and show that it

achieves the same minimax optimality. We also contribute to the literature by presenting an optimal

permutation test for independence testing over Hölder classes.

• Combinatorial concentration inequalities (Theorem 8.3, Theorem 8.4 and Theorem 8.5).

Although our two moments method is general, it might be a sub-optimal in terms of the dependence on a

nominal level α. Focusing on degenerate U -statistics, we improve the dependence on α from polynomial

to logarithmic with some extra assumptions. To do so, we develop combinatorial concentration

inequalities inspired by the symmetrization trick (Duembgen, 1998) and Hoeffding’s average (Hoeffding,

1963). We apply the developed inequalities to introduce adaptive tests to unknown smoothness

parameters at the cost of log log n factor. In contrast to the previous studies (e.g. Chatterjee,

2007; Bercu et al., 2015; Albert, 2019) that are restricted to simple linear statistics, the proposed

combinatorial inequalities are for degenerate U -statistics, which have potential applications beyond

the problems in this chapter (e.g. concentration inequalities under sampling without replacement).

In addition to the testing problems mentioned above, we also contribute to multinomial testing problems

in the `1 distance (e.g. Chan et al., 2014; Bhattacharya and Valiant, 2015; Diakonikolas and Kane, 2016).

First we revisit the chi-square test for multinomial two-sample testing considered in Chan et al. (2014)

and show that the test based on the same test statistic but calibrated by the permutation procedure is

also minimax rate optimal under Poisson sampling (Theorem 8.6). Next, motivated by the flattening idea in
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Diakonikolas and Kane (2016), we introduce permutation tests based on weighted U -statistics and prove their

minimax rate optimality for multinomial testing in the `1 distance (Proposition 8.10 and Proposition 8.11).

Lastly, building on the recent work of Meynaoui et al. (2019), we analyze the permutation tests based

on the maximum mean discrepancy (Gretton et al., 2012) and the Hilbert–Schmidt independence criterion

(Gretton et al., 2005) for two-sample and independence testing, respectively, and illustrate their performance

over certain function classes.

8.1.4 Outline of the paper

The remainder of the paper is organized as follows. Section 8.2 describes the problem setting and provides

some background on the permutation procedure and minimax optimality. In Section 8.3, we give a

general condition based on the first two moments of a test statistic under which the permutation test

has non-trivial power. We concretely illustrate this condition using degenerate U -statistics for two-sample

testing in Section 8.4 and for independence testing in Section 8.5. Section 8.6 is devoted to combinatorial

concentration bounds for permuted U -statistics. Building on these results, we propose adaptive tests

to unknown smoothness parameters in Section 8.7. The proposed framework is further demonstrated

using more sophisticated statistics in Section 8.8. We present some simulation results that justify the

permutation approach in Section 8.9 before concluding the paper in Section 8.10. Additional results including

concentration bounds for permuted linear statistics and the proofs omitted from the main text are provided

in the appendices.

Notation. We use the notation X
d
= Y to denote that X and Y have the same distribution. The set of all

possible permutations of {1, . . . , n} is denoted by Πn. For two deterministic sequences an and bn, we write

an � bn if an/bn is bounded away from zero and ∞ for large n. For integers p, q such that 1 ≤ q ≤ p, we let

(p)q = p(p−1) · · · (p− q + 1). We use ipq to denote the set of all q-tuples drawn without replacement from the

set {1, . . . , p}. C,C1, C2, . . . , refer to positive absolute constants whose values may differ in different parts

of the paper. We denote a constant that might depend on fixed parameters θ1, θ2, θ3, . . . by C(θ1, θ2, θ3, . . .).

Given positive integers p and q, we define Sp := {1, . . . , p} and similarly Sp,q := {1, . . . , p} × {1, . . . , q}.

8.2 Background

We start by formulating the problem of interest. Let P0 and P1 be two disjoint sets of distributions (or pairs

of distributions) on a common measurable space. We are interested in testing whether the underlying data

generating distributions belong to P0 or P1 based on mutually independent samples Xn := {X1, . . . , Xn}.
Two specific examples of P0 and P1 are:
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1. Two-sample testing. Let (PY , PZ) be a pair of distributions that belongs to a certain family of

pairs of distributions P. Suppose we observe Yn1
:= {Y1, . . . , Yn1

} i.i.d.∼ PY and, independently, Zn2
:=

{Z1, . . . , Zn2
} i.i.d.∼ PZ and denote the pooled samples by Xn := Yn1

∪ Zn2
. Given the samples, two-

sample testing is concerned with distinguishing the hypotheses:

H0 : PY = PZ versus H1 : δ(PY , PZ) ≥ εn1,n2 ,

where δ(PY , PZ) is a certain distance between PY and PZ and εn1,n2
> 0. In this case, P0 is the set of

(PY , PZ) ∈ P such that PY = PZ , whereas P1 := P1(εn1,n2
) is another set of (PY , PZ) ∈ P such that

δ(PY , PZ) ≥ εn1,n2 .

2. Independence testing. Let PY Z be a joint distribution of Y and Z that belongs to a certain family

of distributions P. Let PY PZ denote the product of their marginal distributions. Suppose we observe

Xn := ((Y1, Z1), . . . , (Yn, Zn))
i.i.d.∼ PY Z . Given the samples, the hypotheses for testing independence

are

H0 : PY Z = PY PZ versus H1 : δ(PY Z , PY PZ) ≥ εn,

where δ(PY Z , PY PZ) is a certain distance between PY Z and PY PZ and εn > 0. In this case, P0 is the

set of PY Z ∈ P such that PY Z = PY PZ , whereas P1 := P1(εn) is another set of PY Z ∈ P such that

δ(PY Z , PY PZ) ≥ εn.

Let us consider a generic test statistic Tn := Tn(Xn), which is designed to distinguish between the null and

alternative hypotheses based on Xn. Given a critical value cn and pre-specified constants α ∈ (0, 1) and

β ∈ (0, 1 − α), the problem of interest is to find sufficient conditions on P0 and P1 under which the type I

and II errors of the test 1(Tn > cn) are uniformly bounded as

• Type I error: sup
P∈P0

P(n)
P (Tn > cn) ≤ α,

• Type II error: sup
P∈P1

P(n)
P (Tn ≤ cn) ≤ β.

(8.1)

Our goal is to control these uniform (rather than pointwise) errors based on data-dependent critical values

determined by the permutation procedure.

8.2.1 Permutation procedure

This section briefly overviews the permutation procedure and its well-known theoretical properties, referring

readers to Lehmann and Romano (2006); Pesarin and Salmaso (2010) for more details. Let us begin with

155



some notation. Given a permutation π := (π1, . . . , πn) ∈ Πn, we denote the permuted version of Xn by

X πn , that is, X πn := {Xπ1
, . . . , Xπn}. For the case of independence testing, X πn is defined by permuting the

second variable Z, i.e. X πn := {(Y1, Zπ1
), . . . , (Yn, Zπn)}. We write Tπn := Tn(X πn ) to denote the test statistic

computed based on X πn . Let FTπn (t) be the permutation distribution function of Tπn defined as

FTπn (t) := M−1
n

∑
π∈Πn

1{Tn(X πn ) ≤ t}.

Here Mn denotes the cardinality of Πn. We write the 1− α quantile of FTπn by c1−α,n defined as

c1−α,n := inf{t : FTπn (t) ≥ 1− α}. (8.2)

Given the quantile c1−α,n, the permutation test rejects the null hypothesis when Tn > c1−α,n. This choice

of the critical value provides finite-sample type I error control under the permutation-invariant assumption

(or exchangeability). In more detail, the distribution of Xn is said to be permutation invariant if Xn and

X πn have the same distribution whenever the null hypothesis is true. This permutation-invariance is easily

met under the settings of the two-sample and independence testing problems. When permutation-invariance

holds, it is well-known that the permutation test 1(Tn > c1−α,n) is level α and possibly exact by randomizing

the test function (see e.g. Hoeffding, 1952; Lehmann and Romano, 2006; Hemerik and Goeman, 2018a).

Remark 8.1 (Computational aspects). Exact calculation of the critical value (8.2) is computationally

prohibitive except for small sample sizes. Therefore it is common practice to use Monte-Carlo simulations to

approximate the critical value (e.g. Romano and Wolf, 2005). We note that this approximation error can be

made arbitrary small by taking a sufficiently large number of Monte-Carlo samples. This argument may be

formally justified by using Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956). Hence, while we

focus on the exact permutation procedure, all of our results can be extended, in a straightforward manner,

to its Monte-Carlo counterpart with a sufficiently large number of Monte-Carlo samples.

8.2.2 Minimax optimality

Another aim of this chapter is to show that the sufficient conditions for the error bounds in (8.1) are indeed

necessary in some applications. We approach this problem from a minimax perspective taken by Ingster

(1987). Let us define a test φ, which is a Borel measurable map, φ : Xn 7→ {0, 1}. For a class of null

distributions P0, we denote the set of all level α tests by

Φn,α :=

{
φ : sup

P∈P0

P(n)
P (φ = 1) ≤ α

}
.
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Consider a class of alternative distributions P1(εn) associated with a positive sequence εn. Two specific

examples of this class of interest are P1(εn1,n2
) := {(PY , PZ) ∈ P : δ(PY , PZ) ≥ εn1,n2

} for two-sample

testing and P1(εn) := {PY Z ∈ P : δ(PY Z , PY PZ) ≥ εn} for independence testing. Given P1(εn), the

maximum type II error of a test φ ∈ Φn,α is

Rn,εn(φ) := sup
P∈P1(εn)

P(n)
P (φ = 0),

and the minimax risk is defined as

R†n,εn := inf
φ∈Φn,α

Rn(φ).

The minimax risk is frequently investigated via the minimum separation (or the critical radius), which is the

smallest εn such that type II error becomes non-trivial. Formally, for some fixed β ∈ (0, 1−α), the minimum

separation is defined as

ε†n := inf
{
εn : R†n,εn ≤ β

}
.

A test φ ∈ Φn,α is called minimax rate optimal if Rn,εn(φ) ≤ β for some εn � ε†n. With this definition in

place, we demonstrate minimax rate optimality of permutation tests in various scenarios.

8.3 A general strategy with first two moments

In this section, we discuss a general strategy for studying the testing errors of a permutation test based on

the first two moments of a test statistic. As mentioned earlier, the permutation test is level α as long as

permutation-invariance holds under the null hypothesis. Therefore we focus on the type II error rate and

provide sufficient conditions under which the error bounds given in (8.1) are fulfilled. The previous approach

to the non-asymptotic power analysis, reviewed in Section 8.1.1, hinges on a non-random critical value and

thus it does not directly apply to the permutation test. To bridge the gap, we consider a deterministic

quantile value that serves as a proxy for the permutation threshold c1−α,n. More precisely, let q1−γ,n be

the 1 − γ quantile of the distribution of the random critical value c1−α,n. Then by splitting the cases into

{c1−α,n ≤ q1−γ,n} and {c1−α,n > q1−γ,n} and using the definition of the quantile, it can be shown that the

type II error of the permutation test is less than or equal to

sup
P∈P1

PP (Tn ≤ c1−α,n) ≤ sup
P∈P1

PP (Tn ≤ q1−γ,n) + γ.
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Consequently, if one succeeds in showing that supP∈P1
PP (Tn ≤ q1−γ,n) ≤ γ′ with γ′ such that γ′ + γ ≤ β,

then the type II error of the permutation test is bounded by β as desired. This quantile approach to dealing

with a random threshold is not new and has been considered by Fromont et al. (2013) to study the power of

a kernel-based test via a wild bootstrap method. In the next lemma, we build on this quantile approach and

study the testing errors of the permutation test based on an arbitrary test statistic. Here and hereafter, we

denote the expectation and variance of Tπn with respect to the permutation distribution by Eπ[Tπn |Xn] and

Varπ[Tπn |Xn], respectively.

Lemma 8.0.1 (Two moments method). Suppose that for each permutation π ∈ Πn, Tn and Tπn have the

same distribution under the null hypothesis. Given pre-specified error rates α ∈ (0, 1) and β ∈ (1 − α),

assume that for any P ∈ P1,

EP [Tn] ≥ EP [Eπ{Tπn |Xn}] +

√
3VarP [Eπ{Tπn |Xn}]

β

+

√
3VarP [Tn]

β
+

√
3EP [Varπ{Tπn |Xn}]

αβ
.

(8.3)

Then the permutation test 1(Tn > c1−α,n) controls the type I and II error rates as in (8.1).

The proof of this general statement follows by simple set algebra along with Markov and Chebyshev’s

inequalities. The details can be found in Appendix G.4. At a high-level, the sufficient condition (8.3) roughly

says that if the expected value of Tn (say, signal) is much larger than the expected value of the permuted

statistic Tπn (say, baseline) as well as the variances of Tn and Tπn (say, noise), then the permutation test

can have non-trivial power greater than the nominal level. We provide an illustration of Lemma 8.0.1 in

Figure 8.2. Suppose further that Tπn is centered at zero under the permutation law, i.e. Eπ[Tπn |Xn] = 0.

Then a modification of the proof of Lemma 8.0.1 yields a simpler condition with improved constant factors:

EP [Tn] ≥
√

2VarP [Tn]

β
+

√
2EP [Varπ{Tπn |Xn}]

αβ
. (8.4)

In the following sections, we demonstrate the two moments method (Lemma 8.0.1) based on degenerate

U -statistics for two-sample and independence testing.

8.4 The two moments method for two-sample testing

This section illustrates the two moments method given in Lemma 8.0.1 for two-sample testing. By focusing

on a U -statistic, we first present a general condition that ensures that the type I and II error rates of the
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Figure 8.2: An illustration of Lemma 8.0.1. The lemma describes that the major components that determine the
power of a permutation test are the mean and the variance of the alternative distribution as well as the permutation
distribution. In particular, if the mean of the alternative distribution is sufficiently larger than the other components
(on average since the permutation distribution is random), then the permutation test succeeds to reject the null with
high probability.

permutation test are uniformly controlled (Theorem 8.1). We then turn to more specific cases of two-sample

testing for multinomial distributions and Hölder densities.

Let g(x, y) be a bivariate function, which is symmetric in its arguments, i.e. g(x, y) = g(y, x). Based on

this bivariate function, let us define a kernel for a two-sample U -statistic

hts(y1, y2; z1, z2) := g(y1, y2) + g(z1, z2)− g(y1, z2)− g(y2, z1), (8.5)

and write the corresponding U -statistic by

Un1,n2
:=

1

(n1)(2)(n2)(2)

∑
(i1,i2)∈i

n1
2

∑
(j1,j2)∈i

n2
2

hts(Yi1 , Yi2 ;Zj1 , Zj2). (8.6)

Depending on the choice of kernel hts, the U -statistic includes frequently used two-sample test statistics

in the literature such as the maximum mean discrepancy (Gretton et al., 2012) and the energy statistic

(Baringhaus and Franz, 2004; Székely and Rizzo, 2004). From the basic properties of U -statistics (e.g. Lee,

1990), it is readily seen that Un1,n2 is an unbiased estimator of EP [hts(Y1, Y2;Z1, Z2)]. To describe the main

result of this section, let us write the symmetrized kernel by

hts(y1, y2; z1, z2) :=
1

2!2!

∑
(i1,i2)∈i22

∑
(j1,j2)∈i22

hts(yi1 , yi2 ; zj1 , zj2), (8.7)
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and define ψY,1(P ), ψZ,1(P ) and ψY Z,2(P ) by

ψY,1(P ) := VarP [EP {hts(Y1, Y2;Z1, Z2)|Y1}],

ψZ,1(P ) := VarP [EP {hts(Y1, Y2;Z1, Z2)|Z1}],

ψY Z,2(P ) := max{EP [g2(Y1, Y2)], EP [g2(Y1, Z1)], EP [g2(Z1, Z2)]}.

(8.8)

The role of ψY,1(P ), ψZ,1(P ) and ψY Z,2(P ) should be clear in the proof of the following theorem but for now,

it is enough to say that these are the key components that upper bound the convergence rate of the variance

of Un1,n2
. By leveraging Lemma 8.0.1, the next theorem presents a sufficient condition that guarantees that

the type II error rate of the permutation test based on Un1,n2
is uniformly bounded by β.

Theorem 8.1 (Two-sample U -statistic). Suppose that there is a sufficiently large constant C > 0 such that

EP [Un1,n2 ] ≥ C

√√√√max

{
ψY,1(P )

βn1
,
ψZ,1(P )

βn2
,
ψY Z,2(P )

αβ

(
1

n1
+

1

n2

)2
}
, (8.9)

for all P ∈ P1. Then the type II error of the permutation test over P1 is uniformly bounded by β, that is

sup
P∈P1

P(n1,n2)
P (Un1,n2 ≤ c1−α,n1,n2) ≤ β.

Proof Sketch. Let us give a high-level idea of the proof, while the details are deferred to Appendix G.5.

First, by the linearity of expectation, it can be verified that the mean of the permuted U -statistic Uπn1,n2

is zero. Therefore it suffices to check condition (8.4). By the well-known variance formula of a two-sample

U -statistic (e.g. page 38 of Lee, 1990), we prove in Appendix G.5 that

VarP [Un1,n2
] ≤ C1

ψY,1(P )

n1
+ C2

ψZ,1(P )

n2
+ C3ψY Z,2(P )

(
1

n1
+

1

n2

)2

, (8.10)

and this result can be used to bound the first term of condition (8.4). It is worth pointing out that the

variance behaves differently under the null and alternative hypotheses. In particular, ψY,1 and ψZ,1 are zero

under the null hypothesis. Hence, in the null case, the third term dominates the variance of Un1,n2 where

we note that ψY Z,2 is a convenient upper bound for the variance of kernel hts. Intuitively, the permuted

U -statistic Uπn1,n2
behaves similarly to Un1,n2

computed based on samples from a certain null distribution

(say a mixture of PY and PZ). This implies that the variance of Uπn1,n2
is also dominated by the third term

in the upper bound (8.10). Having this intuition in mind, we use the symmetric structure of kernel hts and
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prove that

EP [Varπ{Tπn |Xn}] ≤ C4ψY Z,2(P )

(
1

n1
+

1

n2

)2

, (8.11)

which is one of our key technical contributions. Based on the previous two bounds in (8.10) and (8.11), we

then complete the proof by verifying the sufficient condition (8.4).

The next two subsections focus on multinomial distributions and Hölder densities and give explicit

expressions for condition (8.9). We also demonstrate minimax optimality of permutation tests under the

given scenarios.

8.4.1 Two-sample testing for multinomials

Let pY and pZ be multinomial distributions on a discrete domain Sd := {1, . . . , d}. Throughout this

subsection, we consider the kernel hts(y1, y2; z1, z2) in (8.5) defined with the following bivariate function:

gMulti(x, y) :=

d∑
k=1

1(x = k)1(y = k). (8.12)

It is straightforward to see that the resulting U -statistic (8.6) is an unbiased estimator of ‖pY − pZ‖22. Let

us denote the maximum between the squared `2 norms of pY and pZ by

b(1) := max
{
‖pY ‖22, ‖pZ‖22

}
. (8.13)

Building on Theorem 8.1, the next result establishes a guarantee on the testing errors of the permutation

test under the two-sample multinomial setting.

Proposition 8.1 (Multinomial two-sample testing in `2 distance). Let P(d)
Multi be the set of pairs of

multinomial distributions defined on Sd. Let P0 = {(pY , pZ) ∈ P(d)
Multi : pY = pZ} and P1(εn1,n2

) =

{(pY , pZ) ∈ P(d)
Multi : ‖pY − pZ‖2 ≥ εn1,n2} where

εn1,n2
≥ C

b
1/4
(1)

α1/4β1/2

(
1

n1
+

1

n2

)1/2

,

for a sufficiently large C > 0. Consider the two-sample U -statistic Un1,n2
defined with the bivariate function

gMulti given in (8.12). Then the type I and II error rates of the resulting permutation test are uniformly

bounded over the classes P0 and P1 as in (8.1).
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Proof Sketch. We outline the proof of the result, while the details can be found in Appendix G.6. The

main technical effort is to show that there exist constants C1, C2, C3 > 0 such that

ψY,1(P ) ≤ C1

√
b(1)‖pY − pZ‖22,

ψZ,1(P ) ≤ C2

√
b(1)‖pY − pZ‖22,

ψY Z,2(P ) ≤ C3b(1).

(8.14)

These bounds together with Theorem 8.1 imply that if there exists a sufficiently large C4 > 0 such that

‖pY − pZ‖22 ≥ C4

√
b(1)

α1/2β

(
1

n1
+

1

n2

)
, (8.15)

then the permutation test based on Un1,n2
has non-trivial power as claimed.

For the balanced case where n1 = n2, Chan et al. (2014) prove that no test can have uniform power

if εn1,n2
is of lower order than b

1/4
(1) n

−1/2
1 . Hence the permutation test in Proposition 8.1 is minimax rate

optimal in this balanced setting. The next proposition extends this result to the case of unequal sample sizes

and shows that the permutation test is still optimal even for the unbalanced cases.

Proposition 8.2 (Minimum separation for two-sample multinomial testing). Consider the two-sample

testing problem within the class of multinomial distributions P(d)
Multi where the null hypothesis and the

alternative hypothesis are H0 : pY = pZ and H1 : ‖pY − pZ‖2 ≥ εn1,n2
. Under this setting and n1 ≤ n2, the

minimum separation satisfies ε†n1,n2
� b1/4(1) n

−1/2
1 .

Remark 8.2 (`1- versus `2-closeness testing). We note that the minimum separation strongly depends on

the choice of metrics. As shown in Bhattacharya and Valiant (2015) and Diakonikolas and Kane (2016), the

minimum separation rate for two-sample testing in the `1 distance is max{d1/2n
−1/4
2 n

−1/2
1 , d1/4n

−1/2
1 } for

n1 ≤ n2. This rate, in contrast to b
1/4
(1) n

−1/2
1 , illustrates that the difficulty of `1-closeness testing depends

not only on the smaller sample size n1 but also on the larger sample size n2. In Section 8.8.2, we provide a

permutation test that is minimax rate optimal in the `1 distance.

Proof Sketch. We prove Proposition 8.2 indirectly by finding the minimum separation for one-sample

multinomial testing. The goal of the one-sample problem is to test whether one set of samples is drawn from

a known multinomial distribution. Intuitively the one-sample problem is no harder than the two-sample

problem as the former can always be transformed into the latter by drawing another set of samples from

the known distribution. This intuition was formalized by Arias-Castro et al. (2018) in which they showed

that the minimax risk of the one-sample problem is no larger than that of the two-sample problem (see their
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Lemma 1). We prove in Appendix G.7 that the minimum separation for the one-sample problem is of order

b
1/4
(1) n

−1/2
1 and it thus follows that b

1/4
(1) n

−1/2
1 . ε†n1,n2

. The proof is completed by comparing this lower bound

with the upper bound established in Proposition 8.1.

8.4.2 Two-sample testing for Hölder densities

We next focus on testing for the equality between two density functions under Hölder’s regularity condition.

Adopting the notation used in Arias-Castro et al. (2018), let Hds(L) be the class of functions f : [0, 1]d 7→ R

such that

1.
∣∣f (bsc)(x)− f (bsc)(x′)

∣∣ ≤ L‖x− x′‖s−bsc, ∀x, x′ ∈ [0, 1]d,

2. |||f (s′)|||∞ ≤ L for each s′ ∈ {1, . . . , bsc},

where f (bsc) denotes the bsc-order derivative of f . Let us write the L2 norm of f ∈ Hds(L) by |||f |||2L2
:=∫

f2(x)dx. By letting fY and fZ be the density functions of PY and PZ with respect to Lebesgue measure,

we define the set of (PY , PZ), denoted by P(d,s)
Hölder, such that both fY and fZ belong to Hds(L). Under this

Hölder density class P(d,s)
Hölder and n1 ≤ n2, Arias-Castro et al. (2018) establish that for testing H0 : fY = fZ

against H1 : |||fY − fZ |||L2
≥ εn1,n2

, the minimum separation rate satisfies

ε†n1,n2
� n−2s/(4s+d)

1 . (8.16)

We note that this optimal testing rate is faster than the n−s/(2s+d) rate for estimating a Hölder density in

the L2 loss (see Tsybakov, 2009). It is further shown in Arias-Castro et al. (2018) that the optimal rate

(8.16) is achieved by the unnormalized chi-square test but with a somewhat loose threshold. Although they

recommend a critical value calibrated by permutation in practice, it is unknown whether the resulting

test has the same theoretical guarantees. We also note that their testing procedure discards n2 − n1

observations to balance the sample sizes, which may lead to a less powerful test in practice. Motivated by

these limitations, we propose an alternative test for Hölder densities, building on the multinomial permutation

test in Proposition 8.1. To implement the multinomial test for continuous data, we first need to discretize

the support [0, 1]d. We follow the same strategy in Ingster (1987); Arias-Castro et al. (2018); Balakrishnan

and Wasserman (2019) and consider bins of equal sizes that partition [0, 1]d. In particular, each bin size is

set to κ−1
(1) where κ(1) := bn2/(4s+d)

1 c. We then apply the multinomial test in Proposition 8.1 based on the

discretized data and have the following theoretical guarantees for density testing.

Proposition 8.3 (Two-sample testing for Hölder densities). Consider the multinomial test considered in

Proposition 8.1 based on the equal-sized binned data described above. For a sufficiently large C(s, d, L) > 0,
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consider εn1,n2 such that

εn1,n2 ≥
C(s, d, L)

α1/4β1/2

(
1

n1
+

1

n2

) 2s
4s+d

.

Then for testing P0 = {(PY , PZ) ∈ P(d,s)
Hölder : fY = fZ} against P1 = {(PY , PZ) ∈ P(d,s)

Hölder : |||fY − fZ |||L2
≥

εn1,n2}, the type I and II error rates of the resulting permutation test are uniformly controlled as in (8.1).

The proof of this result uses Proposition 8.1 along with careful analysis of the approximation errors from

discretization leveraging Lemma 3 of Arias-Castro et al. (2018). The details can be found in Appendix G.8.

We remark that type I error control of the multinomial test follows clearly by the permutation principle,

which is not affected by discretization. From the minimum separation rate given in (8.16), it is clear that the

proposed test is minimax rate optimal for two-sample testing within Hölder class and it works for both equal

and unequal sample sizes without discarding the data. However it is also important to note that the proposed

test as well as the test introduced by Arias-Castro et al. (2018) depend on the smoothness parameter s, which

is typically unknown. To address this issue, Arias-Castro et al. (2018) build upon the work of Ingster (2000)

and propose a Bonferroni-type testing procedure that adapts to this unknown parameter at the cost of

log n factor. In Section 8.7, we improve this logarithmic cost to an iterated logarithmic factor, leveraging

combinatorial concentration inequalities developed in Section 8.6.

8.5 The two moments method for independence testing

In this section we present analogous results to those in Section 8.4 for independence testing. We start

by introducing a U -statistic for independence testing and establish a general condition under which the

permutation test based on the U -statistic controls the type I and II error rates (Theorem 8.2). We then move

on to more specific cases of testing for multinomials and Hölder densities in Section 8.5.1 and Section 8.5.2,

respectively.

Let us consider two bivariate functions gY (y1, y2) and gZ(z1, z2), which are symmetric in their arguments.

Define a product kernel associated with gY (y1, y2) and gZ(z1, z2) by

hin{(y1, z1), (y2, z2), (y3, z3), (y4, z4)} :=
{
gY (y1, y2) + gY (y3, y4)

−gY (y1, y3)− gY (y2, y4)
}
·
{
gZ(z1, z2) + gZ(z3, z4)− gZ(z1, z3)− gZ(z2, z4)

}
.

(8.17)
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For simplicity, we may also write hin{(y1, z1), (y2, z2), (y3, z3), (y4, z4)} as hin(x1, x2, x3, x4). Given this fourth

order kernel, consider a U -statistic defined by

Un :=
1

n(4)

∑
(i1,i2,i3,i4)∈in4

hin(Xi1 , Xi2 , Xi3 , Xi4). (8.18)

Again, by the unbiasedness property of U -statistics (e.g. Lee, 1990), it is clear that Un is an unbiased

estimator of EP [hin(X1, X2, X3, X4)]. Depending on the choice of kernel hin, the considered U -statistic covers

numerous test statistics for independence testing including the Hilbert–Schmidt Independence Criterion

(HSIC) (Gretton et al., 2005) and distance covariance (Székely et al., 2007). Let hin(x1, x2, x3, x4) be the

symmetrized version of hin(x1, x2, x3, x4) given by

hin(x1, x2, x3, x4) :=
1

4!

∑
(i1,i2,i3,i4)∈i44

hin(xi1 , xi2 , xi3 , xi4).

In a similar fashion to ψY,1(P ), ψZ,1(P ) and ψY Z,2(P ), we define ψ′1(P ) and ψ′2(P ) by

ψ′1(P ) := VarP [EP {hin(X1, X2, X3, X4)|X1}],

ψ′2(P ) := max
{
EP [g2

Y (Y1, Y2)g2
Z(Z1, Z2)], EP [g2

Y (Y1, Y2)g2
Z(Z1, Z3)],

EP [g2
Y (Y1, Y2)g2

Z(Z3, Z4)]
}
.

(8.19)

The following theorem studies the type II error of the permutation test based on Un.

Theorem 8.2 (U -statistic for independence testing). Suppose that there is a sufficiently large constant

C > 0 such that

EP [Un] ≥ C

√√√√max

{
ψ′1(P )

βn
,
ψ′2(P )

αβn2

}
,

for all P ∈ P1. Then the type II error of the permutation test over P1 is uniformly bounded by β, that is

sup
P∈P1

P(n)
P (Un ≤ c1−α,n) ≤ β.

Proof Sketch. The proof of Theorem 8.2 proceeds similarly as the proof of Theorem 8.1. Here we present

a brief overview of the proof, while the details can be found in Appendix G.9. First of all, the permuted

U -statistic Uπn is centered and it suffices to verify the simplified condition (8.4). To this end, based on the
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explicit variance formula of a U -statistic (e.g. page 12 of Lee, 1990), we prove that

VarP [Un] ≤ C1
ψ′1(P )

n
+ C2

ψ′2(P )

n2
. (8.20)

Analogous to the case of the two-sample U -statistic, the variance of Un behaves differently under the null and

alternative hypotheses. In particular, under the null hypothesis, ψ′1(P ) becomes zero and thus the second

term dominates the upper bound (8.20). Since the permuted U -statistic Uπn mimics the behavior of Un under

the null, the variance of Uπn is expected to be similarly bounded. We make this statement precise by proving

one of our key technical contributions that

EP [Varπ{Uπn |Xn}] ≤ C3
ψ′2(P )

n2
. (8.21)

Again, this part of the proof heavily relies on the symmetric structure of kernel hin and the details are

deferred to Appendix G.9. Now by combining the established bounds (8.20) and (8.21) together with the

sufficient condition (8.4), we can conclude Theorem 8.2.

In the following subsections, we illustrate Theorem 8.2 in the context of testing multinomial distributions

and Hölder densities.

8.5.1 Independence testing for multinomials

We begin with the case of multinomial distributions. Let pY Z denote a multinomial distribution on a product

domain Sd1,d2 := {1, . . . , d1} × {1, . . . , d2} and pY and pZ be its marginal distributions. Let us recall the

kernel hin(x1, x2, x3, x4) in (8.17) and define it with the following bivariate functions:

gMulti,Y (y1, y2) :=

d1∑
k=1

1(y1 = k)1(y2 = k) and

gMulti,Z(z1, z2) :=

d2∑
k=1

1(z1 = k)1(z2 = k).

(8.22)

In this case, the expectation of the U -statistic is 4‖pY Z − pY pZ‖22. Analogous to the term b(1) in the

two-sample case, let us define

b(2) := max
{
‖pY Z‖22, ‖pY pZ‖22

}
. (8.23)

Building on Theorem 8.2, the next result establishes a guarantee on the testing errors of the permutation

test for multinomial independence testing.
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Proposition 8.4 (Multinomial independence testing in `2 distance). Let P(d1,d2)
Multi be the set of multinomial

distributions defined on Sd1,d2 . Let P0 = {pY Z ∈ P(d1,d2)
Multi : pY Z = pY pZ} and P1(εn) = {pY Z ∈ P(d1,d2)

Multi :

‖pY Z − pY pZ‖2 ≥ εn} where

εn ≥
C

α1/4β1/2

b
1/4
(2)

n1/2
,

for a sufficiently large C > 0. Consider the U -statistic Un in (8.18) defined with the bivariate functions

gMulti,Y and gMulti,Z given in (8.22). Then, over the classes P0 and P1, the type I and II errors of the

resulting permutation test are uniformly bounded as in (8.1).

Proof Sketch. We outline the proof of the result, while the details can be found in Appendix G.10. In the

proof, we prove that there exist constants C1, C2 > 0 such that

ψ′1(P ) ≤ C1

√
b(2)‖pY Z − pY pZ‖22,

ψ′2(P ) ≤ C2b(2).

(8.24)

These bounds combined with Theorem 8.2 yields that if there exists a sufficiently large C3 > 0 such that

‖pY Z − pY pZ‖22 ≥
C3

α1/2β

√
b(2)

n
, (8.25)

then the type II error of the permutation test can be controlled by β as desired.

The next proposition asserts that the minimum separation rate for independence testing in the `2 distance

is ε†n � b
1/4
(2) n

−1/2. This implies that the permutation test based on Un in Proposition 8.4 is minimax rate

optimal in this scenario.

Proposition 8.5 (Minimum separation for multinomial independence testing). Consider the independence

testing problem within the class of multinomial distributions P(d1,d2)
Multi where the null hypothesis and the

alternative hypothesis are H0 : pY Z = pY pZ and H1 : ‖pY Z − pY pZ‖2 ≥ εn. Under this setting, the

minimum separation satisfies ε†n � b1/4(2) n
−1/2.

The proof of Proposition 8.5 is based on the standard lower bound technique of Ingster (1987) using a

uniform mixture of alternative distributions. However, we remark that an extra effort is needed in order to

ensure that alternative distributions are proper multinomial distributions. To this end, we carefully perturb

the uniform null distribution to generate a mixture of dependent alternative distributions, and use the

property of negative association to deal with the dependency. The details can be found in Appendix G.11.
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In the next subsection, we turn our attention to the class of Hölder densities and provide similar results of

Section 8.4.2 for independence testing.

8.5.2 Independence testing for Hölder densities

Turning to the case of Hölder densities, we leverage the previous multinomial result and establish the minimax

rate for independence testing under the Hölder’s regularity condition. As in Section 8.4.2, we restrict our

attention to functions f : [0, 1]d1+d2 7→ R that satisfy

1.
∣∣f (bsc)(x)− f (bsc)(x′)

∣∣ ≤ L‖x− x′‖s−bsc, ∀x, x′ ∈ [0, 1]d1+d2 ,

2. |||f (s′)|||∞ ≤ L for each s′ ∈ {1, . . . , bsc}.

Let us write Hd1+d2
s (L) to denote the class of such functions. We further introduce the class of joint

distributions, denoted by P(d1+d2,s)
Hölder , defined as follows. Let fY Z and fY fZ be the densities of PY Z and

PY PZ with respect to Lebesgue measure. Then P(d1+d2,s)
Hölder is defined as the set of joint distributions PY Z

such that both the joint density and the product density, fY Z and fY fZ , belong to Hd1+d2
s (L). Consider

partitions of [0, 1]d1+d2 into bins of equal size and set the bin size to be κ−1
(2) where κ(2) = bn2/(4s+d1+d2)c.

Based on these equal-sized partitions, one may apply the multinomial test for independence provided in

Proposition 8.4. Despite discretization, the resulting test has valid level α due to the permutation principle

and has the following theoretical guarantees for density testing over P(d1+d2,s)
Hölder .

Proposition 8.6 (Independence testing for Hölder densities). Consider the multinomial independence

test considered in Proposition 8.4 based on the binned data described above. For a sufficiently large

C(s, d1, d2, L) > 0, consider εn defined by

εn ≥
C(s, d1, d2, L)

α1/4β1/2

(
1

n

) 2s
4s+d1+d2

.

Then for testing P0 = {PY Z ∈ P(d1+d2,s)
Hölder : fY Z = fY fZ} against P1 = {PY Z ∈ P(d1+d2,s)

Hölder : |||fY Z −
fY fZ |||L2 ≥ εn}, the type I and II errors of the resulting permutation test are uniformly controlled as in

(8.1).

The proof of the above result follows similarly to the proof of Proposition 8.3 and can be found in

Appendix G.12. Indeed, as shown in the next proposition, the proposed binning-based independence test is

minimax rate optimal for the Hölder class density functions. That is, no test can have uniform power when

the separation rate εn is of order smaller than n−4s/(4s+d1+d2).

Proposition 8.7 (Minimum separation for independence testing in Hölder class). Consider the independence

testing problem within the class P(d1+d2,s)
Hölder in which the null hypothesis and the alternative hypothesis are
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H0 : fY Z = fY fZ and H1 : |||fY Z − fY fZ |||L2 ≥ εn. Under this setting, the minimum separation satisfies

ε†n � n−2s/(4s+d1+d2).

The proof of Proposition 8.7 is again based on the standard lower bound technique by Ingster (1987) and

deferred to Appendix G.13. We note that the independence test in Proposition 8.6 hinges on the assumption

that the smoothness parameter s is known. To avoid this assumption, we introduce an adaptive test to this

smoothness parameter at the cost of log log n factor in Section 8.7. A building block for this adaptive result

is combinatorial concentration inequalities developed in the next section.

8.6 Combinatorial concentration inequalities

Although the two moments method is broadly applicable, it may not yield sharp results when an extremely

small significance level α is of interest (say, α shrinks to zero as n increases). In particular, the sufficient

condition (8.3) given by the two moments method has a polynomial dependency on α. In this section,

we develop exponential concentration inequalities for permuted U -statistics that allow us to improve this

polynomial dependency. To this end, we introduce a novel strategy to couple a permuted U -statistic with

i.i.d. Bernoulli or Rademacher random variables, inspired by the symmetrization trick (Duembgen, 1998)

and Hoeffding’s average (Hoeffding, 1963).

Coupling with i.i.d. random variables. The core idea of our approach is fairly general and based

on the following simple observation. Given a random permutation π uniformly distributed over Πn, we

randomly switch the order within (π2i−1, π2i) for i = 1, 2, . . . , bn/2c. We denote the resulting permutation

by π′. It is clear that π and π′ are dependent but identically distributed. The point of introducing this

extra permutation π′ is that we are now able to associate π′ with i.i.d. Bernoulli random variables without

changing the distribution. To be more specific, let δ1, . . . , δbn/2c be i.i.d. Bernoulli random variables with

success probability 1/2. Then (π′2i−1, π
′
2i) can be written as

(π′2i−1, π
′
2i) =

(
δiπ2i−1 + (1− δi)π2i, (1− δi)π2i−1 + δiπ2i

)
for i = 1, 2, . . . , bn/2c.

Given that it is easier to work with i.i.d. samples than permutations, the alternative representation of π′ gives

a nice way to investigate a general permuted statistic. The next subsections provide concrete demonstrations

of this coupling approach based on degenerate U -statistics.

8.6.1 Degenerate two-sample U-statistics

We start with the two-sample U -statistic in (8.6). Our strategy is outlined as follows. First, motivated by

Hoeffding’s average (Hoeffding, 1963), we express the permuted U -statistic as the average of more tractable
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statistics. We then link these tractable statistics to quadratic forms of i.i.d. Rademacher random variables

based on the coupling idea described before. Finally we apply existing concentration bounds for quadratic

forms of i.i.d. random variables to obtain the result in Theorem 8.3.

Let us denote the permuted U -statistic associated with π ∈ Πn by

Uπn1,n2
:=

1

(n1)(2)(n2)(2)

∑
(i1,i2)∈i

n1
2

∑
(j1,j2)∈i

n2
2

hts(Xπi1
, Xπi2

;Xπn1+j1
, Xπn1+j2

). (8.26)

By assuming n1 ≤ n2, let L := {`1, . . . , `n1
} be a n1-tuple uniformly drawn without replacement from

{1, . . . , n2}. Given L, we introduce another test statistic

Ũπ,Ln1,n2
:=

1

(n1)(2)

∑
(k1,k2)∈i

n1
2

hts(Xπk1
, Xπk2

;Xπn1+`k1
, Xπn1+`k2

).

By treating L as a random quantity, Uπn1,n2
can be viewed as the expected value of Ũπ,Ln1,n2

with respect to L

(conditional on other random variables), that is,

Uπn1,n2
= EL[Ũπ,Ln1,n2

|Xn, π]. (8.27)

The idea of expressing a U -statistic as the average of more tractable statistics dates back to Hoeffding (1963).

The reason for introducing Ũπ,Ln1,n2
is to connect Uπn1,n2

with a Rademacher chaos. Recall that π = (π1, . . . , πn)

is uniformly distributed over all possible permutations of {1, . . . , n}. Therefore, as explained earlier, the

distribution of Ũπ,Ln1,n2
does not change even if we randomly switch the order between Xπk and Xπn1+`k

for

k ∈ {1, . . . , n1}. More formally, recall that δ1, . . . , δn1
are i.i.d. Bernoulli random variables with success

probability 1/2. For k = 1, . . . , n1, define

X̃πk := δkXπk + (1− δk)Xπn1+`k
and X̃πn1+`k

:= (1− δk)Xπk + δkXπn1+`k
. (8.28)

Then it can be seen that Ũπ,Ln1,n2
is equal in distribution to

Ũπ,L,δn1,n2
:=

1

(n1)(2)

∑
(k1,k2)∈i

n1
2

hts(X̃πk1
, X̃πk2

; X̃πn1+`k1
, X̃πn1+`k2

).

In other words, we link Ũπ,Ln1,n2
to i.i.d. Bernoulli random variables, which are easier to work with.

Furthermore, by the symmetry of g(x, y) in its arguments and letting ζ1, . . . , ζn be i.i.d. Rademacher random
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variables, one can observe that Ũπ,L,δn1,n2
is equal in distribution to the following Rademacher chaos:

Ũπ,L,ζn1,n2
:=

1

(n1)(2)

∑
(k1,k2)∈i

n1
2

ζk1ζk2hts(Xπk1
, Xπk2

;Xπn1+`k1
, Xπn1+`k2

).

Consequently, we observe that Ũπ,Ln1,n2
and Ũπ,L,ζn1,n2

are equal in distribution, i.e.

Ũπ,Ln1,n2

d
= Ũπ,L,ζn1,n2

. (8.29)

We now have all the ingredients ready for obtaining an exponential bound for Uπn1,n2
. By the Chernoff

bound (e.g. Boucheron et al., 2013), for any λ > 0,

Pπ
(
Uπn1,n2

> t|Xn
)
≤ e−λtEπ

[
exp

(
λUπn1,n2

)
|Xn
]

(i)

≤ e−λtEπ,L
[

exp
(
λŨπ,Ln1,n2

)
|Xn
]

(ii)
= e−λtEπ,L,ζ

[
exp

(
λŨπ,L,ζn1,n2

)
|Xn
]

(8.30)

where step (i) uses Jensen’s inequality together with (8.27) and step (ii) holds from (8.29). Finally,

conditional on π and L, we can associate the last equation with the moment generating function of a

quadratic form of i.i.d. Rademacher random variables. This quadratic form has been well-studied in the

literature through a decoupling argument (e.g. Chapter 6 of Vershynin, 2018), which leads to the following

theorem. The remainder of the proof of Theorem 8.3 can be found in Section G.14.

Theorem 8.3 (Concentration of Uπn1,n2
). Consider the permuted two-sample U -statistic Uπn1,n2

(8.26) and

define

Σ2
n1,n2

:=
1

n2
1(n1 − 1)2

sup
π∈Πn

{ ∑
(i1,i2)∈i

n1
2

g2(Xπi1
, Xπi2

)

}
.

Then, for every t > 0 and some constant C > 0, we have

Pπ
(
Uπn1,n2

≥ t |Xn
)
≤ exp

{
− C min

(
t2

Σ2
n1,n2

,
t

Σn1,n2

)}
.

In our application, it is convenient to have an upper bound for Σn1,n2
without involving the supremum

operator. One trivial bound, suitable for our purpose, is given by

Σ2
n1,n2

≤ 1

n2
1(n1 − 1)2

∑
(i1,i2)∈in2

g2(Xi1 , Xi2). (8.31)

171



The next subsection presents an analogous result for degenerate U -statistics in the context of independence

testing.

8.6.2 Degenerate U-statistics for independence testing

Let us recall the U -statistic for independence testing in (8.18) and denote the permuted version by

Uπn :=
1

n(4)

∑
(i1,i2,i3,i4)∈in4

hin

{
(Yi1 , Zπi1 ), (Yi2 , Zπi2 ), (Yi3 , Zπi3 ), (Yi4 , Zπi4 )

}
. (8.32)

We follow a similar strategy taken in the previous subsection to obtain an exponential bound for Uπn . To

this end, we first introduce some notation. Let L := {`1, . . . , `bn/2c} be a bn/2c-tuple uniformly sampled

without replacement from {1, . . . , n} and similarly L′ := {`′1, . . . , `′bn/2c} be another bn/2c-tuple uniformly

sampled without replacement from {1, . . . , n} \ L. By construction, L and L′ are disjoint. Given L and L′,

we define another test statistic Ũπ,L,L
′

n as

Ũπ,L,L
′

n :=
1

bn/2c(2)

∑
(i1,i2)∈i

bn/2c
2

hin

{(
Y`i1 , Zπ`i1

)
,
(
Y`i2 , Zπ`i2

)
,
(
Y`′i2

, Zπ`′
i2

)
,
(
Y`′i1

, Zπ`′
i1

)}
.

By treating L and L′ as random quantities, Uπn can be viewed as the expected value of Ũπ,L,L
′

n with respect

to L and L′, i.e.

Uπn = EL,L′ [Ũπ,L,L
′

n |Xn, π]. (8.33)

From the same reasoning as before, the distribution of Ũπ,L,L
′

n does not change even if we randomly switch

the order between Zπ`k and Zπ`′
k

for k = 1, . . . , bn/2c, which allows us to introduce i.i.d. Bernoulli random

variables with success probability 1/2. By the symmetry of gY (y1, y2) and gZ(z1, z2), we may further observe

that Ũπ,L,L
′

n is equal in distribution to

Ũπ,L,L
′,ζ

n :=
1

bn/2c(2)

∑
(i1,i2)∈i

bn/2c
2

ζi1ζi2×

hin

{(
Y`i1 , Zπ`i1

)
,
(
Y`i2 , Zπ`i2

)
,
(
Y`′i2

, Zπ`′
i2

)
,
(
Y`′i1

, Zπ`′
i1

)}
.

(8.34)

Thus, based on the alternative expression of Uπn in (8.33) along with the relationship Ũπ,L,L
′

n
d
= Ũπ,L,L

′,ζ
n ,

we can establish a similar exponential tail bound as in Theorem 8.3 for Uπn as follows.
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Theorem 8.4 (Concentration I of Uπn ). Consider the permuted U -statistic Uπn (8.32) and define

Σ2
n :=

1

n2(n− 1)2
sup
π∈Πn

{ ∑
(i1,i2)∈in2

g2
Y (Yi1 , Yi2)g2

Z(Zπi1 , Zπi2 )

}
. (8.35)

Then, for every t > 0 and some constant C > 0, we have

Pπ (Uπn ≥ t |Xn) ≤ exp

{
− C min

(
t2

Σ2
n

,
t

Σn

)}
.

We omit the proof of the result as it follows exactly the same line of the proof of Theorem 8.3. Similar

to the upper bound (8.31), Hölder’s inequality yields two convenient bounds for Σ2
n as

Σ2
n ≤

1

n2(n− 1)2
|||g2
Z |||∞

∑
(i1,i2)∈in2

g2
Y (Yi1 , Yi2) and (8.36)

Σ2
n ≤

1

n2(n− 1)2

√ ∑
(i1,i2)∈in2

g4
Y (Yi1 , Yi2)

√ ∑
(i1,i2)∈in2

g4
Z(Zi1 , Zi2).

At the end of this subsection, we provide an application of Theorem 8.4 to a dependent Rademacher chaos.

A refined version. Although Theorem 8.4 presents a fairly strong exponential concentration of Uπn , it may

lead to a sub-optimal result for independence testing. Indeed, for the minimax result, we want to obtain a

similar bound but by replacing the supremum with the average over π ∈ Πn in (8.35). To this end, we borrow

decoupling ideas from Duembgen (1998) and De la Pena and Giné (1999) and present a refined concentration

inequality in Theorem 8.5. The proposed bound (8.38) can be viewed as Bernstein-type inequality in a sense

that it contains the variance term Λn (not depending on the supremum) and maximum term Mn defined as

Λ2
n :=

1

n4

∑
1≤i1,i2≤n

∑
1≤j1,j2≤n

g2
Y (Yi1 , Yi2)g2

Z(Zj1 , Zj2) and

Mn := max
1≤i1,i2,j1,j2≤n

|gY (Yi1 , Yi2)gZ(Zj1 , Zj2)|.
(8.37)

In particular, the revised inequality would be sharper than the one in Theorem 8.4 especially when Λn is

much smaller than nΣn.

Theorem 8.5 (Concentration II of Uπn ). Consider the permuted U -statistic Uπn (8.32) and recall Λn and

Mn from (8.37). Then, for every t > 0 and some constant C1, C2 > 0, we have

Pπ (Uπn ≥ t |Xn) ≤ C1 exp

{
− C2 min

(
nt

Λn
,
nt2/3

M
3/2
n

)}
. (8.38)
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Proof Sketch. Here we sketch the proof of the result while the details are deferred to Appendix G.16. Let

ψ(·) be a nondecreasing convex function on [0,∞) and Ψ(x) = ψ(|x|). Based on the equality in (8.33),

Jensen’s inequality yields

Eπ[Ψ(λUπn )|Xn] ≤ Eπ,L,L′,ζ
[
Ψ
(
λŨπ,L,L

′,ζ
n

)
|Xn
]
,

where Ũπ,L,L
′,ζ

n can be recalled from (8.34). Let π′ be i.i.d. copy of permutation π. Then, by letting

m = bn/2c and observing that (i) {ζi}mi=1
d
= {ζiζi+m}mi=1 and (ii) {L,L′} d

= {π′1, . . . , π′2m}, we have

Ũπ,L,L
′,ζ

n
d
= Ũπ,π

′,ζ
n :=

1

m(2)

∑
(i1,i2)∈im2

ζi1ζi2ζi1+mζi2+m×

hin{(Yπ′i1 , Zπi1 ), (Yπ′i2
, Zπi2 ), (Yπ′i2+m

, Zππi2+m
), (Yπ′i1+m

, Zπi1+m
)}.

Next denote the decoupled version of π by π̃ := (π̃1, . . . , π̃n) whose components are independent and

identically distributed as π1. Let π̃′ be i.i.d. copy of π̃. Building on the decoupling idea of Duembgen

(1998), our proof proceeds by replacing π, π′ in Ũπ,π
′,ζ

n with π̃, π̃′. If this decoupling step succeeds, then we

can view the corresponding U -statistic as a second order degenerate U -statistic of i.i.d. random variables

(conditional on Xn). We are then able to apply concentration inequalities for degenerate U -statistics in De la

Pena and Giné (1999) to finish the proof.

Dependent Rademacher chaos. To illustrate the efficacy of Theorem 8.4, let us consider a Rademacher

chaos under sampling without replacement, which has been recently studied by Hodara and Reynaud-Bouret

(2019). To describe the problem, let ζ̃1, . . . , ζ̃n be dependent Rademacher random variables such that∑n
i=1 ζ̃i = 0 where n is assumed to be even. For real numbers {ai,j}ni,j=1, the Rademacher chaos under

sampling without replacement is given by

TRad :=
∑

(i1,i2)∈in2

ζ̃i1 ζ̃i2ai1,i2 .

Hodara and Reynaud-Bouret (2019) present two exponential concentration inequalities for TRad based on

the coupling argument introduced by Chung and Romano (2013). Intuitively, TRad should behave like

i.i.d. Rademacher chaos, replacing {ζ̃i}ni=1 with {ζi}ni=1, at least in the large sample size. Both of their results,

however, do not fully recover a well-known concentration bound for i.i.d. Rademacher chaos (e.g. Corollary

3.2.6 of De la Pena and Giné, 1999); namely,

P
{∣∣∣∑

(i1,i2)∈in2
ζi1ζi2ai1,i2

∣∣∣ ≥ t} ≤ 2 exp (−Ct/An) , (8.39)
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where A2
n :=

∑
(i1,i2)∈in2

a2
i1,i2

. In the next corollary, we leverage Theorem 8.4 and present an alternative tail

bound for TRad that precisely captures the tail bound (8.39) for large t. Note that, unlike i.i.d. Rademacher

chaos, TRad has a non-zero expectation. Hence we construct a tail bound for the chaos statistic centered by

a := n−1
(2)

∑
(i1,i2)∈in2

ai1,i2 . The proof of the result can be found in Appendix G.15.

Corollary 8.5.1 (Dependent Rademacher chaos). For every t > 0 and some constant C > 0, the dependent

Rademacher chaos is concentrated as

P
{∣∣∣∑

(i1,i2)∈in2
ζ̃i1 ζ̃i2 (ai1,i2 − a)

∣∣∣ ≥ t} ≤ 2 exp

{
− C min

(
t2

A2
n

,
t

An

)}
.

The next section studies adaptive tests based on the combinatorial concentration bounds provided in this

section.

8.7 Adaptive tests

In this section, we revisit two-sample testing and independence testing for Hölder densities considered in

Section 8.4.2 and Section 8.6, respectively. As mentioned earlier, minimax optimality of the multinomial tests

for Hölder densities depends on an unknown smoothness parameter (see Proposition 8.3 and Proposition 8.7).

The aim of this section is to introduce adaptive permutation tests to this unknown parameter at the expense

of an iterated logarithm factor. To this end, we generally follow the Bonferroni-type approach in Ingster

(2000) combined with the exponential concentration bounds in Section 8.6.2. Here and hereafter, we restrict

to our attention to the nominal level α less than e−1 ≈ 0.368, for which log(1/α) is larger than
√

log(1/α),

to simplify our results.

Two-sample testing. Let us start with the two-sample problem. Without loss of generality, assume that

n1 ≤ n2 and consider a set of integers such that K := {2j : j = 1, . . . , γmax} where

γmax :=

⌈
2

d
log2

(
n1

log log n1

)⌉
.

For each κ ∈ K, we denote by φκ,α/γmax
:= 1(Un1,n2

> c1−α/γmax,n), the multinomial two-sample test in

Proposition 8.3 with the bin size κ−1. We note that the type I error of an individual test is controlled

at α/γmax instead of α. By taking the maximum of the resulting tests, we introduce an adaptive test for

two-sample testing as follows:

φadapt := max
κ∈K

φκ,α/γmax
.
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This adaptive test does not require knowledge on the smoothness parameter but is still minimax rate optimal

up to a small factor of log log n1. We describe this result in the following proposition.

Proposition 8.8 (Adaptive two-sample test). Consider the same problem setting in Proposition 8.3 with

an additional assumption that n1 � n2. For a sufficiently large C(s, d, L, α, β) > 0, consider εn1,n2
such that

εn1,n2
≥ C(s, d, L, α, β)

(
log log n1

n1

) 2s
4s+d

.

Then for testing P0 = {(PY , PZ) ∈ P(d,s)
Hölder : fY = fZ} against P1 = {(PY , PZ) ∈ P(d,s)

Hölder : |||fY − fZ |||L2
≥

εn1,n2
}, the type I and II errors of the adaptive test φadapt are uniformly controlled as in (8.1).

Type I error control of the adaptive test is trivial via the union bound. The proof of the type II error

control is an application of Theorem 8.3 and can be found in Appendix G.17. We note that the assumption

n1 � n2 is necessary to apply the concentration result in Theorem 8.3, and it remains an open question

whether the same result can be established without n1 � n2.

Independence testing. Let us now turn to the independence testing problem. Similarly as before, we

define a set of integers by K† := {2j : j = 1, . . . , γ∗max} where

γ∗max :=

⌈
2

d1 + d2
log2

(
n

log log n

)⌉
.

For each κ ∈ K†, we use the notation φ†κ,α/γ∗max
:= 1(Un > c1−α/γ∗max,n

) to denote the multinomial

independence test in Proposition 8.7 with the bin size κ−1. Again we note that the type I error of an

individual test is controlled at α/γ∗max instead of α. We then introduce an adaptive test for independence

testing by taking the maximum of individual tests as

φ†adapt := max
κ∈K†

φ†κ,α/γ∗max
.

As in the two-sample case, the adaptive test does not depend on the smoothness parameter. In addition,

when densities are smooth enough such that 4s > d1 + d2, the adaptive test is minimax rate optimal up to

an iterated logarithm factor as shown in the next proposition.

Proposition 8.9 (Adaptive independence test). Consider the same problem setting in Proposition 8.6 and

suppose that 4s > d1 + d2. For a sufficiently large C(s, d1, d2, L, α, β) > 0, consider εn such that

εn ≥ C(s, d1, d2, L, α, β)

(
log log n

n

) 2s
4s+d1+d2

.
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Then for testing P0 = {PY Z ∈ P(d1+d2,s)
Hölder : fY Z = fY fZ} against P1 = {PY Z ∈ P(d1+d2,s)

Hölder : |||fY Z −
fY fZ |||L2

≥ εn}, the type I and II errors of the resulting permutation test are uniformly controlled as in

(8.1).

The proof of this result relies on Theorem 8.5 and is similar to that of Proposition 8.8. The details can be

found in Appendix G.17. The restriction 4s > d1 + d2 is imposed to guarantee that the first term ntΛ−1
n is

smaller than the second term nt2/3M
−3/2
n in the tail bound (8.38) with high probability. Although it seems

difficult, we believe that this restriction can be dropped with a more careful analysis. Alternatively one

can convert independence testing to two-sample testing via sample-splitting (see Section 8.8.3 for details)

and then apply the adaptive two-sample test in Proposition 8.8. The resulting test has the same theoretical

guarantee as in Proposition 8.9 without this restriction. However the sample-splitting approach should be

considered with caution as it only uses a fraction of the data, which may result in a loss of power in practice.

Remark 8.3 (Comparison to the two moments method). While the exponential inequalities in Section 8.6

lead to the adaptivity at the cost of log log n factor, they are limited to degenerate U -statistics and require

additional assumptions such as n1 � n2 and 4s > d1 + d2 to obtain minimax rates. On the other hand,

the two moments method is applicable beyond U -statistics and yields minimax rates without these extra

assumptions. However we highlight that this generality comes at the cost of log n factor rather than log log n

to obtain the same adaptivity results.

8.8 Further applications

In this section, we further investigate the power performance of permutation tests under different problem

settings. One specific problem that we focus on is testing for multinomial distributions in the `1 distance. The

`1 distance has an intuitive interpretation in terms of the total variation distance and has been considered

as a metric for multinomial distribution testing (see e.g. Paninski, 2008; Chan et al., 2014; Diakonikolas

and Kane, 2016; Balakrishnan and Wasserman, 2019, and also references therein). Unlike the previous

work, we approach this problem using the permutation procedure and study its minimax rate optimality in

the `1 distance. We also consider the problem of testing for continuous distributions and demonstrate the

performance of the permutation tests based on reproducing kernel-based test statistics in Section 8.8.4 and

Section 8.8.5.

8.8.1 Two-sample testing under Poisson sampling with equal sample sizes

Let pY and pZ be multinomial distributions defined on Sd. Suppose that we observe samples from Poisson

distributions as {Y1,k, . . . , Yn,k} i.i.d.∼ Poisson{pY (k)} and {Z1,k, . . . , Zn,k} i.i.d.∼ Poisson{pZ(k)} for each

k ∈ {1, . . . , d}. Assume that all these samples are mutually independent. Let us write Vk :=
∑n
i=1 Yi,k
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and Wk :=
∑n
i=1 Zi,k where Vk and Wk have Poisson distributions with parameters npY (k) and npZ(k),

respectively. Under this distributional assumption, Chan et al. (2014) consider a centered chi-square test

statistic given by

Tχ2 :=

d∑
k=1

(Vk −Wk)2 − Vk −Wk

Vk +Wk
1(Vk +Wk > 0). (8.40)

Based on this statistic, they show that if one rejects the null H0 : pY = pZ when Tχ2 is greater than

C
√

min{n, d} for some constant C, then the resulting test is minimax rate optimal for the class of alternatives

determined by the `1 distance. In particular, the minimax rate is shown to be

ε†n � max

{
d1/2

n3/4
,
d1/4

n1/2

}
. (8.41)

However, in their test, the choice of C is implicit and based on a loose concentration inequality. Here, by

letting {Xi,k}2ni=1 be the pooled samples of {Yi,k}ni=1 and {Zi,k}ni=1, we instead determine the critical value

via the permutation procedure. In this setting the permuted test statistic is

Tπχ2 :=

d∑
k=1

(
∑n
i=1Xπi,k −

∑n
i=1Xπi+n,k)2 − Vk −Wk

Vk +Wk
1(Vk +Wk > 0).

The next theorem shows that the resulting permutation test is also minimax rate optimal.

Theorem 8.6 (Two-sample testing under Poisson sampling). Consider the distributional setting described

above. For a sufficiently large C > 0, let us consider a positive sequence εn such that

εn ≥
C

β

√
log

(
1

α

)
·max

{
d1/2

n3/4
,
d1/4

n1/2

}
.

Then for testing P0 = {(pY , pZ) : pY = pZ} against P1 = {(pY , pZ) : ‖pY − pZ‖1 ≥ εn}, the type I and II

errors of the permutation test based on Tχ2 are uniformly controlled as in (8.1).

It is worth noting that
√

log(1/α) factor in Theorem 8.6 is a consequence of applying the exponential

concentration inequality in Section 8.6. We also note that this logarithmic factor cannot be obtained by the

technique used in Chan et al. (2014) which only bounds the mean and variance of the test statistic. On

the other hand, the dependency on β may be sub-optimal and may be improved via a more sophisticated

analysis. We leave this direction to future work.
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8.8.2 Two-sample testing via sample-splitting

Although the chi-square two-sample test in Theorem 8.6 is simple and comes with a theoretical guarantee

of minimax optimality, it is only valid in the setting of equal sample sizes. The goal of this subsection is to

provide an alternative permutation test via sample-splitting which is minimax rate optimal regardless of the

sample size ratio. When the two sample sizes are different, Bhattacharya and Valiant (2015) modify the chi-

square statistic (8.40) and propose an optimal test but with the additional assumption that εn1,n2 ≥ d−1/12.

Diakonikolas and Kane (2016) remove this extra assumption and introduce another test with the same

statistical guarantee. Their test is based on the flattening idea that artificially transforms the probability

distributions to be roughly uniform. The same idea is considered in Canonne et al. (2018) for conditional

independence testing. Despite their optimality, neither Bhattacharya and Valiant (2015) nor Diakonikolas

and Kane (2016) presents a concrete way of choosing the critical value that leads to a level α test. Here we

address this issue based on the permutation procedure.

Suppose that we observe Y2n1 and Z2n2 samples from two multinomial distributions pY and pZ defined

on Sd, respectively. Without loss of generality, we assume that n1 ≤ n2. Let us define m := min{n2, d} and

denote data-dependent weights, computed based on {Zn2+1, . . . , Zn2+m}, by

wk :=
1

2d
+

1

2m

m∑
i=1

1(Zi+n2
= k) for k = 1, . . . , d.

Under the given scenario, we consider the two-sample U -statistic (8.6) defined with the following bivariate

function:

gMulti,w(x, y) :=

d∑
k=1

w−1
k 1(x = k)1(y = k). (8.42)

We emphasize that the considered U -statistic is evaluated based on the first n1 observations from each

group, i.e. X split
2n1

:= {Y1, . . . , Yn1 , Z1, . . . , Zn1}, which are clearly independent of weights {w1, . . . , wd}. Let

us denote the U -statistic computed in this way by U split
n1,n2

. Let us consider the critical value of a permutation

test obtained by permuting the labels within X split
2n1

. Then the resulting permutation test via sample-splitting

has the following theoretical guarantee.

Proposition 8.10 (Multinomial two-sample testing in the `1 distance). Let P(d)
Multi be the set of pairs

of multinomial distributions defined on Sd. Let P0 = {(pY , pZ) ∈ P(d)
Multi : pY = pZ} and P1(εn1,n2

) =

{(pY , pZ) ∈ P(d)
Multi : ‖pY − pZ‖1 ≥ εn1,n2

} where

εn1,n2 ≥
C

β3/4

√
log

(
1

α

)
·max

{
d1/2

n
1/2
1 n

1/4
2

,
d1/4

n
1/2
1

}
, (8.43)
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for a sufficiently large C > 0. Consider the two-sample U -statistic U split
n1,n2

described above. Then, over the

classes P0 and P1, the type I and II errors of the resulting permutation test via sample-splitting are uniformly

bounded as in (8.1).

Proof Sketch. The proof of this result can be found in Appendix G.20. To sketch the proof, conditional on

weights w1, . . . , wd, the problem of interest is essentially the same as that of Proposition 8.1. One difference

is that U split
n1,n2

is not an unbiased estimator of ‖pY − pZ‖1. However, by noting that
∑d
k=1 wi = 1, one can

lower bound the expected value in terms of the `1 distance by Cauchy-Schwarz inequality as

EP
[
U split
n1,n2

|w1, . . . , wn
]

=

d∑
k=1

{pY (k)− pZ(k)}2
wk

≥ ‖pY − pZ‖21.

The conditional variance can be similarly bounded as in Proposition 8.1 and we use Theorem 8.3 to study

the critical value of the permutation test. Finally, we remove the randomness from the weights w1, . . . , wd

via Markov’s inequality to complete the proof.

The results of Bhattacharya and Valiant (2015) and Diakonikolas and Kane (2016) show that the minimum

separation for `1-closeness testing satisfies

ε†n1,n2
� max

{
d1/2

n
1/4
2 n

1/2
1

,
d1/4

n
1/2
1

}
.

This means that the proposed permutation test is minimax rate optimal for multinomial testing in the

`1 distance. On the other hand the procedure depends on sample-splitting which may result in a loss of

practical power. Indeed all of the previous approaches (Acharya et al., 2014; Bhattacharya and Valiant,

2015; Diakonikolas and Kane, 2016) also depend on sample-splitting, which leaves the important question

as to whether it is possible to obtain the same minimax guarantee without sample-splitting.

8.8.3 Independence testing via sample-splitting

We now turn to independence testing for multinomial distributions in the `1 distance. To take full advantage

of the two-sample test developed in the previous subsection, we follow the idea of Diakonikolas and Kane

(2016) in which the independence testing problem is converted into the two-sample problem as follows.

Suppose that we observe X3n samples from a joint multinomial distribution pY Z on Sd1,d2 . We then take the

first one-third of the data and denote it by Ỹn := {(Y1, Z1), . . . , (Yn, Zn)}. Using the remaining data, we define

another set of samples Z̃n := {(Yn+1, Z2n+1), . . . , (Y2n, Z3n)}. By construction, it is clear that Ỹn consists of

samples from the joint distribution pY Z whereas Z̃n consists of samples from the product distribution pY pZ .

In other words, we have a fresh dataset X̃n := Ỹn ∪ Z̃n for two-sample testing. It is interesting to mention,
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however, that the direct application of the two-sample test in Proposition 8.10 to X̃n does not guarantee

optimality. In particular, by replacing d with d1d2 and letting n1 = n2 = n in condition (8.43), we see that

the permutation test has power when εn1,n2
is sufficiently larger than max

{
d

1/2
1 d

1/2
2 n−3/4, d

1/4
1 d

1/4
2 n−1/2

}
,

whereas by assuming d1 ≤ d2, the minimum separation for independence testing in the `1 distance

(Diakonikolas and Kane, 2016) is given by

ε†n � max

{
d

1/4
1 d

1/2
2

n3/4
,
d

1/4
1 d

1/4
2

n1/2

}
.

The main reason is that, unlike the original two-sample problem where two distributions can be arbitrary

different, we have further restriction that the marginal distributions of pY Z are the same as those of pY pZ .

Therefore we need to consider a more refined weight function for independence testing to derive an optimal

test. To this end, for each (k1, k2) ∈ Sd1,d2 , we define a product weight by

wk1,k2 :=

[
1

2d1
+

1

2m1

m1∑
i=1

1(Y3n/2+i = k1)

]
×
[

1

2d2
+

1

2m2

m2∑
j=1

1(Z5n/2+i = k2)

]
,

where m1 := min{n/2, d1} and m2 := min{n/2, d2} and we assume n is even. Notice that by construction,

the given product weights are independent of the first half of X̃n, denoted by X̃ split
n/2 . Similarly as before, we

use X̃ split
n/2 to compute the two-sample U -statistic (8.6) defined with the following bivariate function:

g∗Multi,w{(x1, y1), (x2, y2)} :=

d1∑
k1=1

d2∑
k2=1

w−1
k1,k2

1(x1 = k1, y1 = k2)1(x2 = k1, y2 = k2),

and denote the resulting test statistic by U split∗
n1,n2

. The critical value is determined by permuting the labels

within X̃ split
n/2 and the resulting test has the following theoretical guarantee.

Proposition 8.11 (Multinomial independence testing in `1 distance). Let P(d1,d2)
Multi be the set of multinomial

distributions defined on Sd1,d2 . Let P0 = {pY Z ∈ P(d1,d2)
Multi : pY Z = pY pZ} and P1(εn) = {pY Z ∈ P(d1,d2)

Multi :

‖pY Z − pY pZ‖2 ≥ εn} where

εn ≥
C

β3/4

√
log

(
1

α

)
·max

{
d

1/4
1 d

1/2
2

n3/4
,
d

1/4
1 d

1/4
2

n1/2

}
,

for a sufficiently large C > 0 and d1 ≤ d2. Consider the two-sample U -statistic U split∗
n1,n2

described above. Then,

over the classes P0 and P1, the type I and II errors of the resulting permutation test via sample-splitting are

uniformly bounded as in (8.1).

The proof of this result follows similarly as that of Proposition 8.10 with a slight modification due to

different kinds of weights. The details are deferred to Appendix G.21. We note again that sample-splitting
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is mainly for technical convenience and it might result in a loss of efficiency in practice. An interesting

direction of future work is therefore to see whether one can obtain the same minimax guarantee without

sample-splitting.

8.8.4 Gaussian MMD

In this subsection we switch gears to continuous distributions and focus on the two-sample U -statistic with

a Gaussian kernel. For x, y ∈ Rd and λ1, . . . , λd > 0, the Gaussian kernel is defined by

gGau(x, y) := Kλ1,...,λd,d(x− y) =
1

(2π)d/2λ1 · · ·λd
exp

{
− 1

2

d∑
i=1

(xi − yi)2

λ2
i

}
. (8.44)

The two-sample U -statistic defined with this Gaussian kernel is known as the Gaussian maximum mean

discrepancy (MMD) statistic due to Gretton et al. (2012) and is also related to the test statistic considered

in Anderson et al. (1994). The Gaussian MMD statistic has a nice property that its expectation becomes

zero if and only if PY = PZ . Given the U -statistic with the Gaussian kernel, we want to find a sufficient

condition under which the resulting permutation test has non-trivial power against alternatives determined

with respect to the L2 distance. In detail, by letting fY and fZ be the density functions of PY and PZ

with respect to Lebesgue measure, consider the set of paired distributions (PY , PZ) such that the infinity

norms of their densities are uniformly bounded, i.e. max{|||fY |||∞, |||fZ |||∞} ≤ Mf,d < ∞. We denote such a

set by Pd∞. Then for the class of alternatives P1(εn1,n2) = {(PY , PZ) ∈ Pd∞ : |||fY − fZ |||L2 ≥ εn1,n2}, the

following proposition gives a sufficient condition on εn1,n2
under which the permutation-based MMD test

has non-trivial power. It is worth noting that a similar result exists in Fromont et al. (2013) where they

study the two-sample problem for Poisson processes using a wild bootstrap method. The next proposition

differs from their result in three different ways: (1) we consider the usual i.i.d. sampling scheme, (2) we do

not assume that n1 and n2 are the same and (3) we use the permutation procedure, which is more generally

applicable than the wild bootstrap procedure.

Proposition 8.12 (Gaussian MMD). Consider the permutation test based on the two-sample U -statistic

Un1,n2 with the Gaussian kernel where we assume
∏d
i=1 λi ≤ 1 and n1 � n2. For a sufficiently large

C(Mf,d, d) > 0, consider εn1,n2 such that

ε2n1,n2
≥ |||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2

+
C(Mf,d, d)

β
√
λ1 · · ·λd

log

(
1

α

)
·
(

1

n1
+

1

n2

)
,

(8.45)
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where ∗ is the convolution operator with respect to Lebesgue measure. Then for testing P0 = {(PY , PZ) ∈
Pd∞ : fY = fZ} against P1 = {(PY , PZ) ∈ Pd∞ : |||fY − fZ |||L2

≥ εn1,n2
}, the type I and II errors of the

resulting permutation test are uniformly controlled as in (8.1).

The proof of this result is based on the exponential concentration inequality in Theorem 8.3 and the

details are deferred to Appendix G.22. One can remove the assumption that n1 � n2 using the two moment

method in Theorem 8.1 but in this case, the result relies on a polynomial dependence on α. The first term on

the right-hand side of condition (8.45) can be interpreted as a bias term, which measures a difference between

the L2 distance and the Gaussian MMD. The second term is related to the variance of the test statistic. We

note that there is a certain trade-off between the bias and the variance, depending on the choice of tuning

parameters {λi}di=1. To make the bias term more explicit, we make some regularity conditions on densities,

following Fromont et al. (2013) and Meynaoui et al. (2019), and discuss the optimal choice of {λi}di=1 under

each condition.

Example 8.1 (Sobolev ball). For s,R > 0, the Sobolev ball Ssd(R) is defined as

Ssd(R) :=

{
q : Rd 7→ R

/
q ∈ L1

(
Rd
)
∩ L2

(
Rd
)
,

∫
Rd
‖u‖2s|q̂(u)|2du ≤ (2π)dR2

}
,

where q̂ is the Fourier transform of q, i.e. q̂(u) :=
∫
Rd q(x)ei〈x,u〉dx and 〈x, u〉 is the scalar product in Rd.

Suppose that fY − fZ ∈ Ssd(R) where s ∈ (0, 2]. Then following Lemma 3 of Meynaoui et al. (2019), it can

be seen that the bias term is bounded by

|||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2
≤ C(R, s, d)

d∑
k=1

λ2s
k .

Now we further upper bound the right-hand side of condition (8.45) using the above result and then optimize

it over λ1, . . . , λd. This can be done by putting λ1 = · · · = λd = (n−1
1 + n−1

2 )2/(4s+d), which in turn yields

εn1,n2
≥ C(Mf,d, R, s, d, α, β)

(
1

n1
+

1

n2

) 2s
4s+d

. (8.46)

In other words, Proposition 8.12 holds over the Sobolev ball as long as condition (8.46) is satisfied.

By leveraging the minimax lower bound result in Meynaoui et al. (2019) and the proof of Proposition 8.2,

it is straightforward to prove that the minimum separation rate for two-sample testing over the Sobolev ball

is n
−2s/(4s+d)
1 for n1 ≤ n2. This means that the permutation-based MMD test is minimax rate optimal

over the Sobolev ball. In the next example, we consider an anisotropic Nikol’skii-Besov ball that can have

different regularity conditions over Rd.
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Example 8.2 (Nikol’skii-Besov ball). For s := (s1, . . . , sd) ∈ (0,∞)d and R > 0, the anisotropic Nikol’skii-

Besov ball N s
2,d(R) defined by

N s
2,d(R) :=

{
q : Rd 7→ R

/
q has continuous partial derivatives D

bsic
i of order bsic

with respect to ui and for all i = 1, . . . , d, u1, . . . , ud, v ∈ R,∣∣∣∣∣∣Dbsici q(u1, . . . , ui + v, . . . , ud)−Dbsici q(u1, . . . , ud)
∣∣∣∣∣∣
L2
≤ R|v|si−bsic

}
.

Suppose that fY − fZ ∈ N s
2,d(R) where s ∈ (0, 2]d. Then similarly to Lemma 4 of Meynaoui et al. (2019), it

can be shown that the bias term is bounded by

|||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2
≤ C(R, s, d)

d∑
k=1

λ2sk
k .

Again we further upper bound the right-hand side of condition (8.45) using the above result and then

minimize it over λ1, . . . , λd. Letting η−1 =
∑d
k=1 s

−1
k , the minimum (up to a constant factor) can be

achieved when λk = (n−1
1 + n−1

2 )2η/{sk(1+4η)} for k = 1, . . . , d, which yields

εn1,n2
≥ C(Mf,d, R, s, d, α, β)

(
1

n1
+

1

n2

) 2η
1+4η

. (8.47)

Therefore we are guaranteed that Proposition 8.12 holds over the Nikol’skii-Besov ball as long as

condition (8.47) is satisfied.

8.8.5 Gaussian HSIC

We now focus on independence testing for continuous distributions. In particular we study the performance of

the permutation test using the U -statistic (8.18) defined with Gaussian kernels. For y1, y2 ∈ Rd1 , z1, z2 ∈ Rd2

and λ1, . . . , λd1 , γ1, . . . , γd2 > 0, let us recall the definition of a Gaussian kernel (8.44) and similarly write

gGau,Y (y1, y2) := Kλ1,...,λd1 ,d1
(y1 − y2) and gGau,Z(z1, z2) := Kγ1,...,γd2 ,d2

(z1 − z2). (8.48)

The U -statistic (8.18) defined with these Gaussian kernels is known as the Hilbert–Schmidt independence

criterion (HSIC) statistic (Gretton et al., 2005). As in the case of the Gaussian MMD, it is well-known that

the expected value of the Gaussian HSIC statistic becomes zero if and only if PY Z = PY PZ . Using this

property, the resulting test can be consistent against any fixed alternative. Meynaoui et al. (2019) consider

the same statistic and study the power of a HSIC-based test over Sobolev and Nikol’skii-Besov balls. It

is important to note, however, that the critical value of their test is calculated based on the (theoretical)
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null distribution of the test statistic, which is unknown in general. The aim of this subsection is to extend

their results to the permutation test that does not require knowledge of the null distribution. To describe

the main result, let us write the density functions of PY Z and PY PZ with respect to Lebesgue measure by

fY Z and fY fZ . As in Section 8.8.4, we use Pd1,d2∞ to denote the set of distributions PY Z whose joint and

product densities are uniformly bounded, i.e. max{|||fY Z |||∞, |||fY fZ |||∞} ≤Mf,d1,d2 <∞. Then the following

proposition presents a theoretical guarantee for the permutation-based HSIC test.

Proposition 8.13 (Gaussian HSIC). Consider the permutation test based on the U -statistic Un with

the Gaussian kernels (8.48) where we assume
∏d1
i=1 λi ≤ 1 and

∏d2
i=1 γi ≤ 1. For a sufficiently large

C(Mf,d1,d2 , d1, d2) > 0, consider εn such that

ε2n ≥ |||(fY Z − fY fZ)− (fY Z − fY fZ) ∗ (Kλ,d1Kγ,d2)|||2L2

+
C(Mf,d1,d2 , d1, d2)

α1/2βn
√
λ1 · · ·λd1γ1 · · · γd2

,

(8.49)

where ∗ is the convolution operator with respect to Lebesgue measure. Then for testing P0 = {PY Z ∈ Pd1,d2∞ :

fY Z = fY fZ} against P1 = {PY Z ∈ Pd1,d2∞ : |||fY Z − fY fZ |||L2
≥ εn}, the type I and II errors of the resulting

permutation test are uniformly controlled as in (8.1).

The proof of this result is based on the two moments method in Proposition 8.2. We omit the proof of

this result since it is very similar to that of Proposition 8.12 and Theorem 1 of Meynaoui et al. (2019). As

before, the first term on the right-hand side of condition (8.49) can be viewed as a bias, which measures

a difference between the L2 distance and the Gaussian HSIC. To make this bias term more tractable, we

now consider Sobolev and Nikol’skii-Besov balls and further illustrate Proposition 8.13. The following two

examples correspond Corollary 2 and Corollary 3 of Meynaoui et al. (2019) but based on the permutation

test.

Example 8.3 (Sobolev ball). Recall the definition of the Sobolev ball from Example 8.1 and assume that

fY Z − fY fZ ∈ Ssd1+d2
(R) where s ∈ (0, 2]. Then from Lemma 3 of Meynaoui et al. (2019), the bias term in

condition (8.49) can be bounded by

|||(fY Z − fY fZ)− (fY Z − fY fZ) ∗ (Kλ,d1Kγ,d2)|||2L2
≤ C(R, s, d1, d2)

{
d1∑
i=1

λ2s
i +

d2∑
j=1

γ2s
j

}
.

For each i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}, we choose λi = γj = n−2/(4s+d1+d2) such that the lower bound of

εn in condition (8.49) is minimized. Then by plugging these parameters, it can be seen that Proposition 8.13

holds as long as εn ≥ C(Mf,d1,d2 , s, R, d1, d2, α, β)n−
2s

4s+d1+d2 . Furthermore this rate matches with the lower

bound given in Meynaoui et al. (2019).
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Example 8.4 (Nikol’skii-Besov ball). Recall the definition of the Nikol’skii-Besov ball from Example 8.2

and assume that fY Z − fY fZ ∈ N s
2,d1+d2

(R) where s ∈ (0, 2]d1+d2 . Then followed by Lemma 4 of Meynaoui

et al. (2019), the bias term in condition (8.49) can be bounded by

|||(fY Z − fY fZ)− (fY Z − fY fZ) ∗ (Kλ,d1Kγ,d2)|||2L2
≤ C(R, s, d1, d2)

{
d1∑
i=1

λ2si
i +

d2∑
j=1

γ
2sj+d1
j

}
.

Let us write η−1 :=
∑d1+d2
i=1 s−1

i . Then by minimizing the lower bound of εn in condition (8.49) using the

above result with λi = n
− 2η
si(1+4η) for i = 1, . . . , d1 and γi = n

− 2η
si+d1

(1+4η) for i = 1, . . . , d2, it can be seen

that the same conclusion of Proposition 8.13 holds as long as εn ≥ C(Mf,d1,d2 , s, R, d1, d2, α, β)n−
2η

1+4η .

From the above two examples, we see that the permutation-based HSIC test has the same power guarantee

as the theoretical test considered in Meynaoui et al. (2019). However, our results do not fully recover those in

Meynaoui et al. (2019) in terms of α. It remains an open question as to whether Proposition 8.13 continues

to hold when α−1/2 is replaced by log(1/α). Alternatively one can employ the sample-splitting idea in

Section 8.8.3 and apply the permutation-based MMD test in Proposition 8.12 for independence testing. The

result of Proposition 8.12 then guarantees that the MMD test achieves the same rate of the power as the

permutation-based HSIC test but it improves the dependency on α in condition (8.49) to a logarithmic

factor.

8.9 Simulations

This section provides empirical results to further justify the permutation approach. As emphasized before,

the most significant feature of the permutation test is that it tightly controls the type I error rate for any

sample size. This is in sharp contrast to non-asymptotic tests based on concentration bounds. The latter

tests are typically conservative as they depend on a loose threshold. More seriously it is often the case

that this threshold depends on a number of unspecified constants or even unknown parameters which raises

the issue of practicality. In the first part of the simulation study, we demonstrate the sensitivity of the

latter approach to the choice of constants in terms of type I error control. For this purpose, we focus on

the problems of multinomial two-sample and independence testing and the simulation settings are described

below.

1. Two-sample testing. We consider various power law multinomial distributions under the two-sample

null hypothesis. Specifically the probability of each bin is defined to be pY (k) = pZ(k) ∝ kγ for

k ∈ {1, . . . , d} and γ ∈ {0.2, . . . , 1.6}. We let the sample sizes be n1 = n2 = 50 and the bin size

be d = 50. Following Chan et al. (2014) and Diakonikolas and Kane (2016), we use the threshold
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Figure 8.3: Type I error rates of the tests based on concentration bounds by varying constant C in their thresholds.
Here we approximated the type I error rates via Monte Carlo simulations under different power law distributions
with parameter γ. The results show that the error rates vary considerably depending on the choice of C.

C‖pY ‖2n−1
1 for some constant C and reject the null when Un1,n2 > C‖pY ‖2n−1

1 where Un1,n2 is the

U -statistic considered in Proposition 8.1.

2. Independence testing. We again consider power law multinomial distributions under the

independence null hypothesis. In particular the probability of each bin is defined to be pY Z(k1, k2) =

pY (k1)pZ(k2) ∝ kγ1kγ2 for k1, k2 ∈ {1, . . . , d} and γ ∈ {0.2, . . . , 1.6}. We let the sample size be n = 100

and the bin sizes be d1 = d2 = 20. Similarly as before, we use the threshold C‖pY pZ‖2n−1 for some

constant C and reject the null when Un > C‖pY pZ‖2n−1 where Un is the U -statistic considered in

Proposition 8.4.

The simulations were repeated 2000 times to approximate the type I error rate of the tests as a function of

C. The results are presented in Figure 8.3. One notable aspect of the results is that, in both two-sample and

independence cases, the error rates are fairly stable over different null scenarios for each fixed C. However

these error rates vary a lot over different C, which clearly shows the sensitivity of the non-asymptotic

approach to the choice of C. Furthermore it should be emphasized that both tests are not practical as they

depend on unknown parameters ‖pY ‖2 and ‖pY pZ‖2, respectively.

It has been demonstrated by several authors (e.g. Hoeffding, 1952) that the permutation distribution of a

test statistic mimics the underlying null distribution of the same test statistic in low-dimensional settings. In

the next simulation, we provide empirical evidence that the same conclusion still holds in high-dimensional

settings. This may further imply that the power of the permutation test approximates that of the theoretical
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Figure 8.4: Q-Q plots between the null distribution and the permutation distribution of the two-sample U -statistic.
The quantiles of the two distributions approximately lie on the straight line y = x in all cases, which demonstrates
the similarity of the two distributions. Here we rescaled the test statistic by an appropriate constant for display
purpose only.

test based on the null distribution of the test statistic. To illustrate, we focus on the two-sample U -statistic

for multinomial testing in Proposition 8.1 and consider two different scenarios as follows.

1. Uniform law under the null. We simulate n1 = n2 = 200 samples from the uniform multinomial

distributions under the null such that pY (k) = pZ(k) = 1/d for k = 1, . . . , d where d ∈ {5, 100, 1000}.
Conditional on these samples, we compute the permutation distribution of the test statistic. On the

other hand, the null distribution of the test statistic is estimated based on n1 = n2 = 200 samples from

the uniform distribution by running a Monte Carlo simulation with 2000 repetitions.

2. Power law under the alternative. In order to argue that the power of the permutation test is

similar to that of the theoretical test, we need to study the behavior of the permutation distribution

under the alternative. For this reason, we simulate n1 = 200 samples from the uniform distribution

pY (k) = 1/d and n2 = 200 samples from the power law distribution pZ(k) ∝ k for k = 1, . . . , d

where d ∈ {5, 100, 1000}. Conditional on these samples, we compute the permutation distribution of
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the test statistic. On the other hand, the null distribution of the test statistic is estimated based on

n1 = n2 = 200 samples from the mixture distribution 1/2× pY + 1/2× pZ with 2000 repetitions.

In the simulation study, due to the computational difficulty of considering all possible permutations, we

approximated the original permutation distribution using the Monte Carlo method. Nevertheless the

difference between the original permutation distribution and its Monte-Carlo counterpart can be made

arbitrary small uniformly over the entire real line, which can be shown by using Dvoretzky–Kiefer–Wolfowitz

inequality (Dvoretzky et al., 1956). In our simulations, we randomly sampled 2000 permutations from the

entire permutations, based on which we computed the empirical distribution of the permuted test statistic.

We recall from Figure 8.1 that the null distribution of the test statistic changes a lot depending on the

size of d. In particular, it tends to be skewed to the right (similar to a χ2 distribution) when d is small and

tends to be symmetric (similar to a normal distribution) when d is large. Also note that the null distribution

tends to be more discrete when d is large relative to the sample size. In Figure 8.4, we present the Q-Q plots

of the null and (approximate) permutation distributions. It is apparent from the figure that the quantiles

of these two distributions approximately lie along the straight line y = x in all the scenarios. In other

words, the permutation distribution closely follows the null distribution, regardless of the size of d, from

which we conjecture that the null distribution and the permutation distribution might have the same even

in high-dimensional settings.

8.10 Discussion

In this work we presented a general framework for analyzing the type II error rate of the permutation test

based on the first two moments of the test statistic. We illustrated the utility of the proposed framework in the

context of two-sample testing and independence testing in both discrete and continuous cases. In particular,

we introduced the permutation tests based on degenerate U -statistics and explored their minimax optimality

for multinomial testing as well as density testing. To improve a polynomial dependency on the nominal level

α, we developed exponential concentration inequalities for permuted U -statistics based on an idea that links

permutations to i.i.d. Bernoulli random variables. The utility of the exponential bounds was highlighted by

introducing adaptive tests to unknown parameters and also providing a concentration bound for Rademacher

chaos under sampling without replacement.

Our work motivates several lines of future directions. First, while this chapter focused on unconditional

independence testing, our results can be extended to conditional independence testing for discrete

distributions (e.g. Canonne et al., 2018). When the conditional variable is discrete, one can apply

unconditional independence tests within categories and combine them, in a suitable way, to test for

conditional independence. When the conditional variable is continuous, however, this strategy does not

work. Recently Berrett et al. (2019) proposed a modified permutation procedure for this purpose, and
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future research could examine the power of this conditional permutation method, leveraging our results.

Second, based on the coupling idea in Section 8.6, further work can be done to develop combinatorial

concentration inequalities for other statistics. It would also be interesting to see whether one can obtain

tighter concentration bounds, especially for Uπn in (8.32). Furthermore, improving a polynomial dependency

on the type II error rate β is another interesting direction for future research. Finally, we recommend future

studies to develop optimal tests for `1-closeness multinomial testing without sample-splitting.
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Chapter 9

Conclusions and future work

In this thesis we have proposed various methods for comparing distributions and investigated their theoretical

and empirical properties. One of the main contributions of this thesis is to present a general framework for

analyzing permutation procedures and demonstrate their efficacy under nontraditional settings. On a broader

perspective, the techniques and results developed throughout this thesis are not limited to the permutation

procedure for two-sample and independence testing. Building on the results of this thesis, we hope to

address other testing problems and provide a theoretical grounding for the power of data-driven testing

procedures under different scenarios. One specific topic that we are currently working on is conditional

independence testing. In view of Shah and Peters (2018), there is no valid test for conditional independence

that has nontrivial power against any alternative. This remarkable result indicates that it is necessary to

make assumptions on the class of null and alternative hypotheses in order to have a meaningful conditional

independence test. While this topic has received increasing attention (e.g. Zhang et al., 2012; Candes et al.,

2018; Berrett et al., 2019; Neykov et al., 2020), it is still unknown whether there exists a data-driven test

that provably controls the type I error rate and also has high power against a broad class of alternatives.

We believe that the results of this thesis can serve as building blocks for this direction. Finally, we conclude

this chapter with few more concrete topics for future work.

9.1 Limiting behavior and robustness of permutation tests

In classical low-dimensional settings, it is often the case that the permutation test has the same local power as

the corresponding asymptotic test while having the advantage of being exact level α under the exchangeability

assumption (e.g. Hoeffding, 1952; Robinson, 1973; Romano, 1989; Janssen and Pauls, 2003; Janssen, 2005).

However it is largely unknown whether the same asymptotic result can be extended to high-dimensional

settings where the sample size increases with other parameters. Leveraging martingale limit theory in
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Pauly (2011), we plan to make an initial step towards this question and study the limiting distribution of the

permuted test statistic under high-dimensional settings. Currently we expect (with some empirical evidence)

that the permutation distribution will have the same limiting law as the corresponding null distribution even

in high-dimensions. Leveraging this preliminary result, we aim to prove that the permutation test does not

lose any power compared to the asymptotic test even for high-dimensional problems.

Along with this direction, we would like to investigate robustness of the permutation test to the

exchangeability assumption. There have been several studies showing that the permutation test based

on a properly studentized statistic can be asymptotically exact even when the exchangeability assumption

is violated (e.g. Chung and Romano, 2013). We plan to extend the previous low-dimensional results to

high-dimensional settings in the context of testing for mean vectors, covariance matrices and regression

coefficients.

9.2 Bootstrap approach to high-dimensional inference

The use of a quadratic statistic is common in multivariate data analysis. Classical asymptotic theory shows

that this quadratic statistic converges to a weighted sum of independent chi-square random variables where

the weights are determined by the covariance structure of the underlying distribution. Over the past decades

researchers have identified sharp conditions under which the quadratic statistic further converges to a normal

distribution in high-dimensions (e.g. Hall, 1984; Peng and Schick, 2018). One core condition for their results

is that the eigenvalues of the covariance are uniformly bounded. However, as observed by Wang and Xu

(2019) and others, the limiting distribution of a high-dimensional quadratic statistic is far from normal when

the eigenvalue condition is violated. For example, in the extreme case where there exists a single spike in

the sequence of eigenvalues, the quadratic statistic essentially has a chi-square distribution with one degree

of freedom even in high-dimensional scenarios. One possible remedy for this problem is to estimate the

effective number of eigenvalues, which can be used to infer the limiting distribution. However estimating the

sequence of eigenvalues is highly non-trivial especially when the dimension is much larger than the sample

size. Moreover the variance arising from this extra estimation procedure may result in an adverse effect on

overall accuracy.

In the future, we plan to leverage Wang and Xu (2019) and show that the bootstrap approach overcomes

the issue. In particular, we plan to generalize the result of Wang and Xu (2019) to a degenerate U -

statistic and prove that the bootstrap distribution (and the permutation distribution if applicable) adapts

to unknown eigenvalues and converges to the same asymptotic distribution of the U -statistic under various

high-dimensional scenarios. As an application of this result, we will try to revisit some high-dimensional

testing problems and emphasize the validity of the bootstrap procedure.
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Appendix A

Appendix for Chapter 2

A.1 Proofs

A.1.1 Proof of Lemma 2.0.1

We will provide a more general result by considering an arbitrary positive diagonal matrix A =

diag{a1, . . . , ad} in the kernel. In other words, we will show the following holds:

d∑
j=1

aj (Yj − nπ0,j)
2

=
∑

1≤i≤n

∑
1≤j≤n

(Xi − π0)>A(Xj − π0). (A.1)

Then the result follows by setting ai = (nπ0,i)
−1

.

First, we decompose the left hand side of (A.1) into the three parts:

d∑
j=1

aj (Yj − nπ0,j)
2

=

d∑
j=1

ajY
2
j︸ ︷︷ ︸

(i)

− 2n

d∑
j=1

ajYjπ0,j︸ ︷︷ ︸
(ii)

+n2
d∑
j=1

ajπ
2
0,j︸ ︷︷ ︸

(iii)

and treat them separately.

Part (i). Recall that Yj =
∑n
i=1 I(Xi,j = 1), and thus

d∑
j=1

aj

(
n∑
i=1

I(Xi,j = 1)

)2

=

d∑
j=1

aj

[
n∑
i=1

I(Xi,j = 1) + 2
∑
i<i′

I(Xi,j = 1)I(Xi′,j = 1)

]

=

n∑
i=1

d∑
j=1

ajI(Xi,j = 1) + 2
∑
i<i′

d∑
j=1

ajI(Xi,j = 1)I(Xi′,j = 1)
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=

n∑
i=1

X>i AXi + 2
∑
i<i′

X>i AXi′ =

n∑
i=1

n∑
i′=1

X>i AXi′ .

Part (ii). Similar to the first part,

2n

d∑
j=1

ajYjπ0,j = 2n

d∑
j=1

aj

(
n∑
i=1

I(Xi,j = 1)

)
π0,j

= 2n

n∑
i=1

d∑
j=1

ajI(Xi,j = 1)π0,j = 2n

n∑
i=1

X>i Aπ0

=

n∑
i=1

n∑
i′=1

(
X>i Aπ0 + X>i′Aπ0

)
.

Part (iii). The last part is straightforward,

n2
d∑
j=1

ajπ
2
0,j =

n∑
i=1

n∑
i′=1

π>0 Aπ0.

Combining the three parts, we can get the desired result.

A.1.2 Proof of Theorem 2.1

The proof is mainly based on Theorem 1 of Arratia et al. (1989). We describe it in Theorem A.1. Before we

get to the main proof, we provide several lemmas.

Recall the following decomposition of UI :

UI =

(
n

2

)−1 ∑
1≤i<j≤n

X>i Xj︸ ︷︷ ︸
W

− 2

n

n∑
i=1

(
X>i π0 + π>0 π0

)
.

Suppose
(
n
2

)
π>0 π0 → η as n, d → ∞. As preliminary results, we are interested in the conditions that

result in

W =
∑

1≤i<j≤n
X>i Xj

d−→ Pois(η) where η ∈ (0,∞).

Note that W is the sum of locally dependent indicator variables. The limiting distribution of W has been

studied under the name of the birthday problem (see e.g., DasGupta, 2005). Let Z be a Poisson random
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variable with E[W ] = E[Z]. Here, our interest is in the total variation distance between W and Z, i.e.

dTV (W,Z) = 2 sup
A∈Z+

∣∣∣P(W ∈ A)− P(Z ∈ A)
∣∣∣.

In order to bound the total variation distance, we employ Theorem 1 of Arratia et al. (1989):

Theorem A.1 (Theorem 1 of Arratia et al. (1989)). Let I be an arbitrary index set, and for α ∈ I, let Xα be

a Bernoulli random variable with pα = P(Xα = 1) > 0. Let K =
∑
α∈I Xα and E[K] =

∑
α∈I pα ∈ (0,∞).

For each α ∈ I, suppose we have chosen Bα ∈ I with α ∈ Bα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ , b2 =
∑
α∈I

∑
α6=β∈Bα

E[XαXβ ], and b3 =
∑
α∈I

E
∣∣∣∣E{Xα − pα

∣∣∣∣ ∑
β∈I−Bα

Xβ

}∣∣∣∣.
Let Z be a Poisson random variable with E[K] = E[Z] = η. Then

dTV (K,Z) ≤ 2

[
(b1 + b2)

1− e−η
η

+ b3(1 ∧ 1.4η−1/2)

]
. (A.2)

As a corollary of Theorem A.1, we present the total variation distance between W and the Poisson

random variable Z.

Corollary A.1.1. Let Z be a Poisson random variable with E[Z] = E[W ] =
(
n
2

)
π>π = ηn,d. Then

dTV (W,Z) ≤ 2n3 1− e−ηn,d
ηn,d

 d∑
i=1

π3
i +

{
d∑
i=1

π2
i

}2
 .

Proof. Denote p1 = P
(
X>1 X2 = 1

)
and p2 = P

(
X>1 X2X

>
1 X3 = 1

)
. In addition, let I be a set of all indices

(i, j) where 1 ≤ i < j ≤ n so that |I| =
(
n
2

)
and Bi be a collection of X>j Xk that is dependent on Xi. Here

|Bi| =
(
n
2

)
−
(
n−2

2

)
= 2n− 3 for all i.

Thus we have

b1 = p2
1|I||Bi| =

{
d∑
i=1

π2
i

}2(
n

2

)
(2n− 3) ≤

{
d∑
i=1

π2
i

}2

n3,

b2 = p2|I| (|Bi| − 1) =

d∑
i=1

π3
i

(
n

2

)
(2n− 4) =

d∑
i=1

π3
i n(n− 1)(n− 2) ≤

d∑
i=1

π3
i n

3.

and b3 = 0 by the construction of Bi. Then the proof is complete by applying Theorem A.1.
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So far, we have investigated the asymptotic results of W . Now, let us turn our attention to UI . Recall

that UI and W are related as

(
n

2

)
UI = W − (n− 1)

n∑
i=1

X>i π0 +

(
n

2

)
π>0 π0.

Hence, in order to attain the Poisson approximation for
(
n
2

)
UI , one might need to control the last two terms

properly. Note that

E

[
(n− 1)

n∑
i=1

X>i π0

]
= 2

(
n

2

)
π>π0 = 2η2 + o(1),

Var

[
(n− 1)

n∑
i=1

X>i π0

]
= (n− 1)2n

[
E
[
X>1 π0X

>
1 π0

]
−
(
E
[
X>1 π0

])2
]

≤ n3

 d∑
i=1

πiπ
2
0,i −

(
d∑
i=1

πiπ0,i

)2
 .

Hence, under (P.2) and (P.3), Chebyshev’s inequality yields

(n− 1)

n∑
i=1

X>i π0
p−→ 2η2. (A.3)

We finish the proof by applying Slutsky’s theorem.

A.1.3 Proof of Corollary 2.1.1 and 2.1.2

These results are direct applications of Theorem 2.1; hence we omit the proof.

A.1.4 Variance of UA

In the next lemma, we calculate the closed-form of the variance of UA.

Lemma A.1.1 (Variance of UA). Let A be a symmetric positive definite matrix and Σ be diag(π) − ππ>.

Then

Var (UA) =

(
n

2

)−1{
tr{(AΣ)2}+ 2(n− 1)(π − π0)>AΣA(π − π0)

}
. (A.4)

Therefore,

Var (Uπ0) =

(
n

2

)−1{
tr{(Dπ0Σ)2}+ 2(n− 1)(π − π0)>Dπ0ΣDπ0(π − π0)

}
and
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Var (UI) =

(
n

2

)−1{
tr
(
Σ2
)

+ 2(n− 1)(π − π0)>Σ(π − π0)
}
,

where Dπ0
is defined in (2.3).

Proof. Without loss of generality, we assume A = I. Otherwise, define X∗1 = A1/2X1, X∗2 = A1/2X2 and

π∗0 = A1/2π0 so that hA(X1,X2) = (X∗1 − π∗0)
>

(X∗2 − π∗0), and proceed similarly. Note that the variance of

double summations becomes

Var

 ∑
1≤i<j≤n

hI(Xi,Xj)


=

(
n

2

)
Var (hI(X1,X2)) + 2(n− 2)Cov (hI(X1,X2), hI(X1,X3)) .

(A.5)

We treat the variance and the covariance separately. First, calculate the variance of the kernel:

Var (hI(X1,X2)) = E
[
h2
I(X1,X2)

]
−
{
E [hI(X1,X2)]

}2

= E
[
h2
I(X1,X2)

]
− ||π − π0||22.

The expected value can be decomposed into:

E
[
h2
I(X1,X2)

]
= E

[{
(X1 − π0)

>
(X2 − π0)

}2
]

= E
[{

(X1 − π + π − π0)
>

(X2 − π + π − π0)
}2
]

= E
[{

(X1 − π)>(X2 − π)
}2
]

+ 2E
[{

(X1 − π)>(π − π0)
}2
]

+ ||π − π0||22.

The first term can be simplified as

E
[{

(X1 − π)>(X2 − π)
}2
]

= E
[
tr
{

(X1 − π)>(X2 − π)(X2 − π)>(X1 − π)
}]

= E
[
tr
{

(X1 − π)(X1 − π)>(X2 − π)(X2 − π)>
}]

= tr
{
E
[
(X1 − π)(X1 − π)>(X2 − π)(X2 − π)>

] }
= tr

{
E
[
(X1 − π)(X1 − π)>

]
E
[
(X2 − π)(X2 − π)>

] }
= tr

(
Σ2
)
.
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On the other hand, the second term becomes

E
[{

(X1 − π)>(π − π0)
}2
]

= E
[
(π − π0)>(X1 − π)(X1 − π)>(π − π0)

]
= (π − π0)>Σ(π − π0).

Hence, the variance of the kernel can be calculated by

Var (hI(X1,X2)) = tr
(
Σ2
)

+ 2(π − π0)>Σ(π − π0). (A.6)

Next, turn our attention to the covariance:

Cov (hI(X1,X2), hI(X1,X3)) = E [hI(X1,X2)hI(X1,X3)]− E [hI(X1,X2)]E [hI(X1,X3)]

= E [hI(X1,X2)hI(X1,X3)]− ||π − π0||42. (A.7)

Note that

E [hI(X1,X2)hI(X1,X3)] = E
[
(X1 − π0)>(X2 − π0)(X1 − π0)>(X3 − π0)

]
= E

[
(A1 +B)>(A2 +B)(A1 +B)>(A3 +B)

]
, (A.8)

where Ai = Xi − π for i = 1, 2, 3, and B = π − π0. In fact, (A.8) is equivalent to

E
[
A>1 BA

>
1 B
]

+B>BB>B = (π − π0)>Σ(π − π0) + ||π − π0||42, (A.9)

due to

E
[
A>1 A2A

>
3 B
]

= E
[
(X1 − π)

>
(X2 − π) (X3 − π)

>
(π − π0)

]
= E

[
(X1 − π)

>
{
E
[

(X2 − π) (X3 − π)
> ∣∣X1

]}
(π − π0)

]
= E

[
(X1 − π)

>
{
E
[
(X2 − π)

∣∣X1

]
E
[

(X3 − π)
> ∣∣X1

]}
(π − π0)

]
= 0.

In the same way, we can see the other terms become zero. Then, we get a simple form of the covariance

from (A.7) and (A.9):

Cov (hI(X1,X2), hI(X1,X3)) = (π − π0)>Σ(π − π0). (A.10)
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We finish the proof by multiplying
(
n
2

)−2
to (A.5) together with (A.6) and (A.10).

A.1.5 Proof of Theorem 2.2

The proof is based on Corollary 3.1 of Hall and Heyde (1980). Under the null, UA is a degenerate centered

U -statistic, which satisfies E [hA(X1,X2)] = 0 and E
[
hA(X1,X2)

∣∣X2

]
= 0. We follow the similar proof steps

in Theorem 1 of Hall (1984), but we adapt the argument to obtain the convergence result for the uniform

null in Corollary 2.2.1.

First, we define the filtration Fk = σ (X1, . . . ,Xk), and let

Yj =

j−1∑
i=1

hA(Xi,Xj) and Sk =

k∑
j=2

Yj ,

for 2 ≤ k ≤ n. It is easy to check that {(Sk,Fk)} is a square integrable martingale sequence with zero mean

as

E [Sj ] = 0 and E
[
Si
∣∣Fj] = Sj +

i∑
k=j+1

E
[
Yk
∣∣Fj] = Sj

for any i ≥ j. Denote the variance of
∑
i<j hA(Xi,Xj) by s2

n =
(
n
2

)
tr{(AΣ)2}. Then, according to Corollary

3.1 of Hall and Heyde (1980), it is enough to show that the following two conditions are satisfied under the

given assumptions:

(C.1) s−2
n

n∑
i=2

E
[
Y 2
i I (|Yi| > εsn)

]
→ 0.

(C.2) s−2
n

n∑
i=2

E
[
Y 2
i

∣∣Fi−1

] p−→ 1.

Let us first verify the first condition (C.1). Since |Yi| > εsn implies

Y 2
i =

|Yi|2+δ

|Yi|δ
≤ |Yi|

2+δ

(εsn)δ
,

for any ε, δ > 0, we have

s−2
n

n∑
i=2

E
[
Y 2
i I (|Yi| > εsn)

]
≤ ε−δs−2−δ

n

n∑
i=2

E
[
|Yi|2+δ

]
.
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By choosing δ = 2, we will show that s−4
n

∑n
i=2 E

[
Y 4
i

]
→ 0 to verify (C.1). From the fact that, for any

distinct (i1, i2, i3, i4) or for any combination (i1, i2, i3, i4) where only one of them is different,

E [hA(X,Xi1)hA(X,Xi2)hA(X,Xi3)hA(X,Xi4)] = 0,

we can see that

E
[
Y 4
i

]
=

i−1∑
i1,i2,i3,i4=1

E [hA(Xi,Xi1)hA(Xi,Xi2)hA(Xi,Xi3)hA(Xi,Xi4)]

= (i− 1)E
[{
hA(X1,X2)

}4
]

+ 3(i− 1)(i− 2)E
[{
hA(X1,X2)

}2{
hA(X1,X3)

}2
]
.

Hence, we have

n∑
i=2

E
[
Y 4
i

]
=
n(n− 1)

2
E
[{
hA(X1,X2)

}4
]

+ n(n− 1)(n− 2)E
[{
hA(X1,X2)

}2{
hA(X1,X3)

}2
]
.

From the second assumption in (2.8), it is easy to see s−4
n

∑n
i=2 E

[
Y 4
i

]
→ 0, which verifies (C.1).

Now, we prove that (C.2) holds under the given conditions, that is to show

2

n(n− 1)tr{(AΣ)2}
n∑
i=2

E
[
Y 2
i

∣∣Fi−1

] p−→ 1.

First, we can see from E [hA(X1,X2)hA(X1,X3)] = 0 and E
[
h2
A(X1,X2)

]
= tr{(AΣ)2}, that

n∑
i=2

E
[
Y 2
i

]
=

n∑
i=2

i−1∑
j1,j2=1

E [hA(Xi,Xj1)hA(Xi,Xj2)]

=

n∑
i=2

(i− 1)E [hA(Xi,X1)] =
n(n− 1)

2
tr{(AΣ)2}.

Therefore, it is sufficient to prove

4

n2(n− 1)2tr{(AΣ)2}2
n∑

i1,i2=2

Cov
(
E
[
Y 2
i1

∣∣Fi1−1

]
,E
[
Y 2
i2

∣∣Fi2−1

])
→ 0.

Let us define

GA(Xi,Xj) = E
[
hA(Xi,Xk)hA(Xj ,Xk)

∣∣σ(Xi,Xj)
]

= (Xi − π0)>AΣ0A(Xj − π0), (A.11)
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so that

E
[
Y 2
i |Fi−1

]
=

i−1∑
j1,j2=1

E
[
hA(Xi,Xj1)hA(Xi,Xj2)

∣∣Fi−1

]
=

i−1∑
j1,j2=1

GA(Xj1 ,Xj2).

Then the covariance becomes

Cov
(
E
[
Y 2
i1

∣∣Fi1−1

]
,E
[
Y 2
i2

∣∣Fi2−1

])
=

i1−1∑
j1,j2=1

i2−1∑
j′1,j
′
2=1

Cov
(
GA(Xj1 ,Xj2), GA(Xj′1

,Xj′2
)
)
.

Note that for j1 ≤ j2 and j′1 ≤ j′2,

Cov
(
GA(Xj1 ,Xj2), GA(Xj′1

,Xj′2
)
)

=


Var (GA(X1,X1)) if j1 = j2 = j′1 = j′2

E
[
GA(X1,X2)2

]
if j1 = j′1 6= j2 = j′2

0 otherwise

.

Hence, if i1 ≥ i2,

Cov
(
E
[
Y 2
i1

∣∣Fi1−1

]
,E
[
Y 2
i2

∣∣Fi2−1

])
= (i2 − 1)Var (GA(X1,X1)) + 2(i2 − 1)(i2 − 2)E

[
GA(X1,X2)2

]
and the sum of the covariance becomes

n∑
i1,i2=2

Cov
(
E
[
Y 2
i1

∣∣Fi1−1

]
,E
[
Y 2
i2

∣∣Fi2−1

])
≤ C1

{
n3Var (GA(X1,X1)) + n4E

[
GA(X1,X2)2

] }
,

where C1 is a constant independent on n. Using (A.11), we have

E
[
GA(X1,X2)2

]
= E

[{
(X1 − π0)>AΣ0A(X2 − π0)

}2
]

= tr
{

(AΣ0)4
}
,

Var (GA(X1,X1)) = E
[{
hA(X1,X2)

}2{
hA(X1,X3)

}2
]
−
{
E
[{
hA(X1,X2)

}2
]}2

≤ E
[{
hA(X1,X2)

}2{
hA(X1,X3)

}2
]
.

Now, under the given conditions, we bound

4

n2(n− 1)2tr{(AΣ)2}2
n∑

i1,i2=2

Cov
(
E
[
Y 2
i1

∣∣Fi1−1

]
,E
[
Y 2
i2

∣∣Fi2−1

])

≤ C2

(
tr{(AΣ)4}+ n−1E

[{
hA(X1,X2)

}2{
hA(X1,X3)

}2]
tr{(AΣ)2}2

)
→ 0
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where C2 is a constant independent on n. This completes the proof.

A.1.6 Proof of Corollary 2.2.1

Note that the variance of UI of the uniform null distribution is

(
n

2

)−1

tr(Σ2) =

(
n

2

)−1
1

d

(
1− 1

d

)
.

Therefore, it is enough to show that if n/
√
d → ∞, then the conditions of Theorem 2.2 are satisfied. To

check the first condition, we calculate tr(Σ4) and tr(Σ2) as

tr(Σ4) =
1

d

(
1− 1

d

){
1

d2

(
1− 1

d

)
+

1

d3

}
and tr(Σ2) =

1

d

(
1− 1

d

)
,

so that

tr(Σ4)

{tr(Σ2)}2 =
1

d
+

1

d(d− 1)
→ 0 as d→∞.

Next, we verify the second condition when n/
√
d→∞:

E
[{
hI(X1,X2)

}4]
+ nE

[{
hI(X1,X2)

}2{
hI(X1,X3)

}2]
n2{tr(Σ2)}2 → 0.

For the first part, we have

E
[{
hI(X1,X2)

}4]
= E

[{
(X1 − π0)>(X2 − π0)

}4]
=

1

d

(
1− 1

d

){
1

d3
+

(
1− 1

d

)3
}
.

Therefore,

E
[{
hI(X1,X2)

}4]
n2{tr(Σ2)}2 =

1
d3

n2 1
d

(
1− 1

d

) +

(
1− 1

d

)3
n2 1

d

(
1− 1

d

) ≤ 1

n2d(d− 1)
+

d

n2
→ 0.

For the second part,

E
[{
hI(X1,X2)

}2{
hI(X1,X3)

}2]
= E

[{
(X1 − π0)>(X2 − π0)

}2{
(X1 − π0)>(X3 − π0)

}2
]

=
1

d2

(
1− 1

d

)2

.
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This gives the second condition:

E
[{
hI(X1,X2)

}2{
hI(X1,X3)

}2]
n{tr(Σ2)}2 =

1

n
→ 0.

Hence, the proof is complete.

A.1.7 Proof of Theorem 2.3

Note that the explicit formula for Var(UA) is established in Lemma A.1.1. Recall the decomposition UA =

Uquad + Ulinear given in the main text. Then under (S.1), we have

UA − ||A1/2(π − π0)||22√
Var(UA)

=
Ulinear − ||A1/2(π − π0)||22√

Var(Ulinear)
+ oP (1),

and the asymptotic normality follows by the usual central limit theorem. On the other hand, under (S.2),

we have

UA − ||A1/2(π − π0)||22√
Var(UA)

=
Uquad√

Var(Uquad)
+ oP (1).

Then we follow the similar steps in the proof of Theorem 2.2 to get the normality of Uquad. Hence the proof

is complete.

A.1.8 Proof of Theorem 2.4

We proceed along the lines of the proof of Theorem 2 in Balakrishnan and Wasserman (2019). Note that

the expectation and variance of Uw (Lemma A.1.1) are given by

E [Uw] = ||A1/2
w (π − π0)||22

Var [Uw] =

(
n

2

)−1{
tr{(AwΣ)2}+ 2(n− 1)(π − π0)>AwΣAw(π − π0)

}
.

Let E0[·], E1[·] be the expected value under the null and the alternative, respectively, and similarly denote

Var0[·], Var1[·]. By Chebyshev’s inequality, under the null, we can see

PH0
(Uw ≥ tα) ≤ Var0 [Uw]

t2α
= α,

and tα =
√
α−1Var0 [Uw]. This shows that φ(Uw) has size at most α.
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For the type II error bound, assume the following two conditions are true:

(i) tα ≤
E1 [Uw]

2
and (ii)

√
Var1 [Uw]

ζ
≤ E1 [Uw]

2
.

Then, we can observe that

PH1
(φ(Uw) = 0) = PH1

(Uw < tα)

≤ PH1

(
Uw <

E1 [Uw]

2

)
by (i)

= PH1

(
Uw < E1 [Uw]− E1 [Uw]

2

)

≤ PH1

(
Uw < E1 [Uw]−

√
Var1 [Uw]

ζ

)
by (ii)

≤ ζ,

where the last inequality follows by Chebyshev’s inequality. Therefore, the proof can be done by showing (i)

and (ii).

We begin with proving the first part (i). After some calculations, we can see

tr{(AwΣ)2} =

d∑
j=1

π2
j

w2
j

− 2

d∑
j=1

π3
j

w2
j

+

 d∑
j=1

π2
j

wj

2

. (A.12)

Therefore, under the null, the variance of Uw can be expanded to

Var0 [Uw] =

(
n

2

)−1
{

d∑
j=1

π2
0,j

w2
j

− 2

d∑
j=1

π3
0,j

w2
j

+

 d∑
j=1

π2
0,j

wj

2}
.

By Cauchy-Schwarz inequality, note that

 d∑
j=1

π2
j

wj

2

=

 d∑
j=1

π
3/2
j

wj
π

1/2
j

2

≤
d∑
j=1

π3
j

w2
j

d∑
j=1

πj =

d∑
j=1

π3
j

w2
j

, (A.13)

which implies

Var0 [Uw] ≤
(
n

2

)−1 d∑
j=1

π2
0,j

w2
j

. (A.14)
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Using (A.14), the critical value is upper bounded by

tα =
√
α−1Var0 [Uw] ≤ 2

n

√√√√ 1

α

d∑
j=1

π2
0,j

w2
j

Note that, from the comparable condition, there exist C1, C2 > 0 and γ ∈ (0, 1) such that

C1{γπ0,i + (1− γ)1/d} ≤ wi ≤ C2{γπ0,i + (1− γ)1/d} for all i = 1, . . . , d. (A.15)

Consequently, the critical value is further upper bounded by

tα ≤
2

n

√√√√ 1

α

d∑
j=1

π2
0,j

w2
j

≤ 2

n

√√√√ 1

α

d∑
j=1

(
π0,j

C1{γπ0,i + (1− γ)1/d}

)2

≤ 2

C1γn

√
d

α
, (A.16)

where the last inequality is due to 1/{C1γπ0,i +C1(1− γ)1/d} ≤ 1/{C1γπ0,i}. On the other hand, Cauchy-

Schwarz inequality together with the comparable condition presents

E1 [Uw] =

d∑
i=1

(πi − π0,i)
2

wi
≥ ||π − π0||21∑d

i=1 wi
≥ ε2n

C2
. (A.17)

Therefore, the first condition (i) is satisfied if

ε2n ≥
4C2

C1γn

√
d

α
.

This is the case from the assumption in (2.15).

Next, we prove the condition (ii). First, observe that

Var1 [Uw] =
1(
n
2

){tr{(AwΣ)2}+ 2(n− 1)(π − π0)>AwΣAw(π − π0)
}
.

By using the result in (A.12) and (A.13), the first trace term is bounded by

1(
n
2

) tr{(AwΣ)2} ≤ 4

n2

d∑
j=1

π2
j

w2
j

,
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for n ≥ 2. On the other hand, the second term is bounded by

4

n
(π − π0)>AwΣAw(π − π0) =

4

n
(π − π0)>Aw

(
diag{π} − ππ>

)
Aw(π − π0)

≤ 4

n
(π − π0)>Awdiag{π}Aw(π − π0) =

4

n

d∑
j=1

∆2
jπj

w2
j

,

where ∆i = π0,i − πi. Therefore, we have

Var1 [Uw] ≤ 4

n2

d∑
j=1

π2
j

w2
j

+
4

n

d∑
j=1

∆2
jπj

w2
j

=
4

n2

d∑
j=1

π2
0,j + ∆2

j − 2π0,j∆j

w2
j

+
4

n

d∑
j=1

∆2
jπ0,j −∆3

j

w2
j

≤ 8

n2

d∑
j=1

π2
0,j

w2
j︸ ︷︷ ︸

U1

+
8

n2

d∑
j=1

∆2
j

w2
j︸ ︷︷ ︸

U2

+
8

n

d∑
j=1

∆2
jπ0,j

w2
j︸ ︷︷ ︸

U3

+
8

n

d∑
j=1

|∆j |3
w2
j︸ ︷︷ ︸

U4

.

To finish the proof, we need to verify

4∑
i=1

2
√
Ui/ζ

E1 [Uw]
≤ 1.

Indeed, this is the case by modifying the result in Balakrishnan and Wasserman (2019) with a different

constant factor. To show the details, using (A.17), the first term is upper bounded by

2
√
U1/ζ

E1 [Uw]
≤ 4

√
2C2√
ζnε2n

√√√√ d∑
j=1

π2
0,j

w2
j

≤ 4
√

2C2√
ζC1γ

√
d

nε2n
≤ 1

4
.

For the second term, note that

U2 =
8

n2

d∑
j=1

∆2
j

w2
j

≤ 8

n2

d∑
j=1

∆2
j

C2
1{γπ0,j + (1− γ)1/d}2 =

8d2

n2C2
1 (1− γ)2

d∑
j=1

∆2
j

{dπ0,jγ/(1− γ) + 1}2

≤ 8d2

n2C2
1 (1− γ)2

d∑
j=1

∆2
j

{dπ0,jγ/(1− γ) + 1} =
8d

n2C2
1 (1− γ)

d∑
j=1

∆2
j

γπ0,j + (1− γ)1/d︸ ︷︷ ︸
let
=ρn

.
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The expected value is lower bounded in terms of ρn by

E1 [Uw] =

d∑
j=1

∆2
j

wj
≥ ρn
C2
,

and similarly to (A.17), it is seen that ρn ≥ ε2n. Using these results,

2
√
U2/ζ

E1 [Uw]
≤ 4C2

√
2d

C1

√
ζ(1− γ)nεn

≤ 1

4
. (A.18)

For the third term, note that

π0,j

wj
≤ π0,j

C1{γπ0,j + (1− γ)1/d} ≤
1

C1γ
.

Using this inequality,

U3 =
8

n

d∑
j=1

∆2
jπ0,j

w2
j

≤ 8

C1γn

d∑
j=1

∆2
j

wj
=

8

C1γn
E1 [Uw] .

As a result,

2
√
U3/ζ

E1 [Uw]
≤ 2

√
2C2√

C1γζnεn
≤ 1

4
.

To control the last term, the monotonicity of the `p norms and the comparable condition present

U4 =
8

n

d∑
j=1

|∆j |3
w2
j

≤ 8

n

 d∑
j=1

∆2
j

w
4/3
j

3/2

≤ 8d1/2

nC2
1 (1− γ)1/2

 d∑
j=1

∆2
j

γπ0,j + (1− γ)1/d

3/2

.

Based on the result,

2
√
U4/ζ

E1 [Uw]
≤ 4

√
2C2d

1/4

C1(1− γ)1/4
√
ζnρ

1/4
n

≤ 4
√

2C2d
1/4

C1(1− γ)1/4
√
ζnε

1/2
n

≤ 1

4
.

This completes the proof.

A.2 Asymptotics under Poissonization

It is a common assumption in the literature on multinomial testing (Diakonikolas et al., 2015; Valiant and

Valiant, 2017; Balakrishnan and Wasserman, 2019) that the sample size n′ has a Poisson distribution with

parameter n. In this case, the number of occurrences in the ith category has an independent Poisson(nπi).
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This approach, so called Poissonization, makes the analysis simple and straightforward. In this section, we

study the asymptotic behavior of some variants of chi-square statistic under Poissonization.

Let n′ be a random sample from Poisson(n) and draw n′ independent samples from a multinomial

distribution with parameters π = (π1, . . . , πd). Denote the number of observations in the jth category by

Yj =
∑n′

i=1 I(Xi,j = 1), which has an independent Poisson(nπj). Given positive weights (w1, . . . , wd), a

weighted Poissonized chi-square statistic is defined by

Tw =

d∑
j=1

(Yj − nπ0,j)
2 − Yj

wj
. (A.19)

For instance, if wj is given as wj = π
2/3
0,j , then Tw corresponds to the test statistic by Valiant and Valiant

(2017), and if wj = max{1/d, π0,j}, it corresponds to the test statistic by Balakrishnan and Wasserman

(2019). Since Y1, . . . , Yd are independent, it is rather straightforward to have the asymptotic normality of

Tw under the null as n, d → ∞. First, note, under the null, that the expected value of Tw is zero, and the

variance of Tw can be obtained by

Var(Tw) =

d∑
j=1

2(nπ0,j)
2

w2
j

. (A.20)

The next theorem provides a sufficient condition that leads to the asymptotic normality of Tw in the high-

dimensional regime.

Theorem A.2 (Asymptotic normality of Tw under the null). Let us denote the variance of Tw by σ2
n,d =

Var(Tw) in (A.20). If

lim
n,d→∞

1

σ4
n,d

d∑
j=1

60(nπ0,j)
4 + 144(nπ0,j)

3 + 8(nπ0,j)
2

w4
j

= 0, (A.21)

then, under the null,

σ−1
n,dTw

d−→ N (0, 1). (A.22)

Proof. Since Yj has an independent Poisson(nπ0,j) under the null, a straightforward but involved calculations

presents

E

{ (Yj − nπ0,j)
2 − Yj

wj

}4
 =

60(nπ0,j)
4 + 144(nπ0,j)

3 + 8(nπ0,j)
2

w4
j

.

The proof is completed by the Lyapounovs condition with δ = 2.
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Note that Theorem A.2 is a generalization of Lemma 6 of Balakrishnan and Wasserman (2019) where

they assume π0,j = d−1 and wj = 1 for all j = 1, . . . , d. In the uniform null case, a sufficient condition for

the normal approximation is n/
√
d→∞. The next theorem shows that if n/

√
d→ c ∈ (0,∞), Tw converges

to a Poisson distribution under the uniform null, which is analogous to Corollary 2.1.1 for UI .

Theorem A.3 (Poissonian asymptotic for Tw under the uniform null). Suppose the weights (w1, . . . , wd)

given in (A.19) have the same value under the uniform null. Without loss of generality, let wj = 2n/
√
d for

all j = 1, . . . , d, and assume n/
√
d→ c ∈ (0,∞). Then we have, under the uniform null,

Tw
d−→ 1

c
Poisson

(
c2

2

)
− c

2
.

Proof. Note that Tw can be decomposed into

Tw =

√
d

n

d∑
j=1

Yj(Yj − 1)

2︸ ︷︷ ︸
D1

− 1√
d

d∑
j=1

Yj +
n

2
√
d︸ ︷︷ ︸

D2

.

Since Yj has an independent Poisson(n/d), we have Var (D2) = n/d→ 0 under the given assumption, which

in turn implies D2
p−→ −c/2. Hence, it is sufficient to show D1

d−→ c−1Poisson(c2/2).

In order to show the Poisson limit, we use the Stein-Chen’s method for Poisson approximations (e.g., Barbour

et al., 1992). Let us denote

W =

d∑
j=1

Yj(Yj − 1)

2
=

d∑
j=1

ψj ,

where ψj = Yj(Yj − 1)/2. At a high-level, if n/
√
d → c, then ψj behaves like an independent indicator

random variable, and the result follows by the law of small numbers. To start with, let λ = E [Tw] and

consider a function f = fλ,A : Z+ → R which is the solution of

λf(j + 1)− jf(j) = I (j ∈ A)− Poiλ(A), j ≥ 0, (A.23)

for all A ∈ Z+. From e.g., Lemma 1.1.1 of Barbour et al. (1992), the solution of (A.23) satisfies

sup
j
|fλ,A(j)| ≤ min

(
1, λ−1/2

)
, sup

j
|fλ,A(j + 1)− fλ,A(j)| ≤ min

(
1, λ−1

)
. (A.24)
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Let F be a class of functions that satisfies (A.24), and Z be a Poisson random variable with λ. Then it is

clear from (A.23) to see that

dTV (W,Z) ≤ sup
f∈F

∣∣E [λf(W + 1)−Wf(W )]
∣∣. (A.25)

For the rest of the proof, we will bound the right-side of (A.25). First, observe that

E [Wf(W )] =

d∑
j=1

E [ψjf(W )]

=

d∑
j=1

E
[
f(W )

∣∣ψj = 1
]
P(ψj = 1) +

d∑
j=1

∞∑
k=2

E
[
ψjf(W )

∣∣ψj = k
]
P (ψj = k)︸ ︷︷ ︸

Rd

.

Since P(ψj = 1) = P(Yj = 2),

E [Wf(W )] =

d∑
j=1

E
[
f(W )

∣∣ψj = 1
] (n/d)2e−n/d

2
+Rd

=

d∑
j=1

E
[
f(Wj + 1)

∣∣ψj = 1
] (n/d)2e−n/d

2
+Rd

=

d∑
j=1

E [f(Wj + 1)]
(n/d)2e−n/d

2
+Rd, (A.26)

where Wj = W − ψj , and (A.26) follows by Wj |= ψj . Now, we have

∣∣∣∣∣E
[
λf(W + 1)−Wf(W )

]∣∣∣∣∣ =

∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(W + 1)− e−nd f(Wj + 1)

}]
+Rd

∣∣∣∣∣
=

∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(W + 1)− f(Wj + 1) + f(Wj + 1)− e−nd f(Wj + 1)

}]
+Rd

∣∣∣∣∣
≤
∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(W + 1)− f(Wj + 1)

}]∣∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(Wj + 1)− e−nd f(Wj + 1)

}]∣∣∣∣∣︸ ︷︷ ︸
(ii)

+Rd.

For the part (i), by telescoping and ||∆f || ≤ 1, we have

∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(W + 1)− f(Wj + 1)

}]∣∣∣∣∣ ≤
d∑
j=1

n2

2d2
||∆f ||E

∣∣W −Wj

∣∣
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≤ n2

2d
E [ψ1] =

n4

4d3
. (A.27)

For the part (ii), by using the triangle inequality and |f | ≤ 1, we have

∣∣∣∣∣
[

d∑
j=1

n2

2d2
E
{
f(Wj + 1)− e−nd f(Wj + 1)

}]∣∣∣∣∣ ≤ n2

2d

(
1− e−nd

)
. (A.28)

Lastly, we control the remainder term:

Rd =

d∑
j=1

∞∑
k=2

E
[
ψjf(W )

∣∣ψj = k
]
P (ψj = k)

≤
d∑
j=1

∞∑
k=2

kP (ψj = k) =

d∑
j=1

∞∑
k=3

kP
(
Yj =

1 +
√

1 + 8k

2

)

=

d∑
j=1

∞∑
k=3

k(k − 1)

2
P (Yj = k) ≤

d∑
j=1

∞∑
k=3

k2P (Yj = k)

=

d∑
j=1

{
E
[
Y 2
j

]
− P(Yj = 1)− 4P(Yj = 2)

}
=

d∑
j=1

{n
d

+
n2

d2
− n

d
e−

n
d − 2

n2

d2
e−

n
d

}

= n
(
1− e−nd

)
+
n2

d

(
1− 2e−

n
d

)
.

Combining (A.27), (A.28) and (A.29),

sup
f∈F

∣∣E [λf(W + 1)−Wf(W )]
∣∣ ≤ n4

4d3
+
n2

2d

(
1− e−nd

)
+ n

(
1− e−nd

)
+
n2

d

(
1− 2e−

n
d

)
→ 0 as n, d→∞ and n/

√
d→ c.

It follows that dTV (W,Z)→ 0, and consequently, W → Poisson(c2/2).

Let us consider a diagonal weight matrix Aw = diag{w−1
1 , . . . , w−1

d }. The next lemma provides the mean

and variance of Tw for a general case.

Lemma A.3.1. Let us denote diag(π) by Γ, and ∆ = π − π0. Then

E [Tw] = n2||A1/2
w ∆||22 and Var(Tw) = 2n2tr

{
(AwΓ)2

}
+ 4n3∆>AwΓAw∆. (A.29)
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We briefly investigate the power of Tw under the Gaussian regime. As in Section 2.3.2, we begin by

providing the two scenarios at the alternative hypothesis, and derive the limiting distribution of Tw under

the considered scenarios. Analogous to (S.1) and (S.2), we define

(S′.1) (Strong Signal-to-Noise) n−1tr((AwΓ)2) = o
(
(π − π0)>AwΓAw(π − π0)

)
(S′.2) (Weak Signal-to-Noise) (π − π0)>AwΓAw(π − π0) = o

(
n−1tr((AwΓ)2)

)
where Γ = diag (π). We then present the following theorem on the asymptotic distribution of Tw under the

given alternatives.

Theorem A.4 (Asymptotic normality of Tw under the alternative). Assume either i) (S′.1) and (π −
π0)>AwΓAw(π − π0) <∞ or ii) (S′.2) and

lim
n,d→∞

1

ς4n,d

d∑
j=1

60(nπj)
4 + 144(nπj)

3 + 8(nπj)
2

w4
j

= 0, (A.30)

where ς2n,d = 2n2
∑d
j=1(πj/wj)

2. Then, under the considered alternatives, we have

Tw − n2||A1/2
w (π − π0)||22√

Var(Tw)

d−→ N (0, 1). (A.31)

Proof. Note that the numerator of the standardized statistic is

Tw − n2||A1/2
w (π − π0)||22 =

d∑
j=1

(Yj − nπj)2 − Yj
wj

+

d∑
j=1

2n(πj − π0,j)(Yj − nπj)
wj

= Tw,quad + Tw,linear,

and the variance of each term is given by

Var (Tw,quad) = 2n2tr((AwΓ)2) = ς2n,d

Var (Tw,linear) = 4n3(π − π0)>AwΓAw(π − π0)

Cov (Tw,quad, Tw,linear) = 0.

Therefore, under (S′.1),

Tw − n2||A1/2
w (π − π0)||22√

Var(Tw)
=

Tw,linear√
Var(Tw,linear)

+ oP (1)
d−→ N (0, 1),

which is followed by the usual central limit theorem.
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Under (S′.2) and the assumption (A.30),

Tw − n2||A1/2
w (π − π0)||22√

Var(Tw)
=

Tw,quad√
Var(Tw,quad)

+ oP (1)
d−→ N (0, 1),

which is followed by Theorem A.2. This finishes the proof.

As in Section 2.3.2, we further assume

(S′.3) n−1tr((AwΓ0)2) = o
(
(π − π0)>AwΓAw(π − π0)

)
,

to simplify the power function. Then under (S′.1) and (S′.3), the power of Tw is approximated by

β′n,d(π0, π1, Aw) = Φ

( √
n||A1/2

w (π − π0)||22√
4(π − π0)>AwΓAw(π − π0)

)
+ o(1).

Whereas, under (S′.2), we have

β′n,d(π0, π1, Aw) = Φ

(
−
√

tr{(AwΓ0)2}√
tr{(AwΓ)2}

zα +
n||A1/2

w (π − π0)||22√
2tr{(AwΓ)2}

)
+ o(1).
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Appendix B

Appendix for Chapter 3

B.1 Proofs

B.1.1 Proof of Theorem 3.1

We start by simplifying m̂LDA(x) as

m̂LDA(Xi)

=
π1 exp

{
− 1

2 (Xi − µ̂1)>S−1(Xi − µ̂1)
}

π1 exp
{
− 1

2 (Xi − µ̂1)>S−1(Xi − µ̂1)
}

+ π0 exp
{
− 1

2 (Xi − µ̂0)>S−1(Xi − µ̂0)
}

=
π1

π1 + π0 exp
{
− 1

2 (Xi − µ̂0)>S−1(Xi − µ̂0) + 1
2 (Xi − µ̂1)>S−1(Xi − µ̂1)

}
=

π1

π1 + π0 exp
{

(Xi − (µ̂0 + µ̂1)/2)
> S−1 (µ̂0 − µ̂1)

}
and write

Wi = (Xi − (µ̂0 + µ̂1)/2)
> S−1 (µ̂0 − µ̂1) .

For some a ∈ (0, 1), Taylor expansion of f(x) = a/{a+ (1− a)ex} at x = 0 provides

∣∣{m̂LDA(Xi)− π1

}2 − π2
0π

2
1W

2
i

∣∣ ≤ C|Wi|3,
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where C is a universal constant. This implies that∣∣∣∣∣
n∑
i=1

{
m̂LDA(Xi)− π1

}2

− π2
0π

2
1

n∑
i=1

W 2
i

∣∣∣∣∣ ≤ C

n∑
i=1

|Wi|3.

Now based on |x+ y|3 ≤ 4|x|3 + 4|y|3 and Cauchy-Schwarz inequality, it can be seen that

n∑
i=1

|Wi|3 ≤ 4n
∣∣((µ̂0 + µ̂1)/2)>S−1(µ̂0 − µ̂1)

∣∣3 + 4

n∑
i=1

∣∣X>i S−1(µ̂0 − µ̂1)
∣∣3 = oP (1).

As a result, nT̂LDA can be approximated by

nT̂LDA =

n∑
i=1

{
m̂LDA(Xi)− π1

}2

= π2
0π

2
1

n∑
i=1

W 2
i + oP (1). (B.1)

Let us denote δn = S−1(µ̂0 − µ̂1) and ∆n = (µ̂0 + µ̂1)/2, and recall S = n−1
∑n
i=1(Xi − µ̂)(Xi − µ̂)> where

µ̂ = n−1
∑n
i=1Xi. Then we observe that

1

n

n∑
i=1

W 2
i =

1

n

n∑
i=1

{
δ>nXi − δ>n ∆n

}2

= δ>n

{
1

n

n∑
i=1

(Xi −∆n) (Xi −∆n)
>
}
δn

= δ>n Sδn + δ>n (µ̂−∆n) (µ̂−∆n)
>
δn

= (µ̂0 − µ̂1)>S−1(µ̂0 − µ̂1) +Rn,

where Rn = δ>n (µ̂−∆n) (µ̂−∆n)
>
δn. Hence, we have

nT̂LDA = nπ2
0π

2
1

{
(µ̂0 − µ̂1)>S−1(µ̂0 − µ̂1) +Rn

}
+ oP (1).

We also note that the residual term is negligible under the null, i.e. nπ2
0π

2
1Rn = oP (1), which results in

nπ−1
0 π−1

1 T̂LDA =
n0n1

n0 + n1
(µ̂0 − µ̂1)>S−1(µ̂0 − µ̂1) + oP (1)

= T 2
Hotelling + oP (1).

The rest of the proof follows by the limiting property of Hotelling’s T 2.
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B.1.2 Proof of Theorem 3.2

Proof. First note that the likelihood ratio for testing (3.8) is given by

Ln =

n1∑
i=1

log
fµ0+h/

√
n(Xi,1)

fµ0
(Xi,1)

.

Since {Pµ, µ ∈ Ω} is q.m.d. at µ0, Theorem 12.2.3 of Lehmann and Romano (2006) under n1/(n0 +n1)→ π1

yields that

Ln d−→ N
(
−π1

2
〈h, I(µ0)h〉, π1〈h, I(µ0)h〉

)
,

where I(µ) is the Fisher information matrix. This implies by Corollary 12.3.1 of Lehmann and Romano (2006)

that the joint distribution of X1,0 and X1,1 under the null and the alternative are mutually contiguous. Since

contiguity implies

nπ−1
0 π−1

1 T̂LDA =
n0n1

n0 + n1
(µ̂0 − µ̂1)>S−1(µ̂0 − µ̂1) + oP (1),

under H1,n, the result follows by the limiting distribution of Hotelling’s T 2 statistic.

B.1.3 Proof of Theorem 3.3

Proof. The exact type I error control of the permutation test is well-known (see e.g. Chapter 15 of Lehmann

and Romano, 2006). Strictly speaking, the considered test is not the usual permutation test since the only

first half of labels are permuted to decide a critical value. However, it also controls the type I error under H0

due to Theorem 15.2.1 of Lehmann and Romano (2006). Indeed, this result holds regardless of i.i.d. sampling

or separate sampling. Hence we focus on the type II error control.

• Type II error control (i.i.d. sampling)

We start with the case of i.i.d. sampling. Based on the inequality (x− y)2 ≤ 2(x− z)2 + 2(z − y)2, we lower

bound the test statistic as

T̂ ′global =
1

n

2n∑
i=n+1

(m̂(Xi)− π̂1)
2

≥ 1

2n

2n∑
i=n+1

(m(Xi)− π̂1)
2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2

≥ 1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
. (B.2)
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Define the events A1,A2,A3,A4 such that

A1 =
{

(π1 − π̂1)2 < C2δn

}
,

A2 =
{ 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
< C3δn

}
,

A3 =
{∣∣∣ 1
n

2n∑
i=n+1

(m(Xi)− π1)
2 − E

[
(m(Xi)− π1)2

] ∣∣∣ < 1

2
E
[
(m(X)− π1)2

] }
,

A4 =
{
tα < C ′0,αδn

}
.

Using Markov’s inequality, we have

P (Ac1) ≤ π1(1− π1)

C2nδn
,

P (Ac2) ≤ 1

C3δn
E
[∫

S

(m̂(x)−m(x))2dPX(x)

]
≤ C0

C3
,

by the condition in (3.9). For the third event, denote ∆n = E
[
(m(X)− π1)2

]
and use Chebyshev’s inequality

to have

P (Ac3) ≤ 4

n∆2
n

Var
[
(m(X)− π1)2

]
≤ 4

n∆2
n

E
[
(m(X)− π1)4

]
≤ 4

n∆2
n

E
[
(m(X)− π1)2

]
since |m(X)− π1| ≤ 1

≤ 4

C1nδn
,

where the last inequality uses the assumption that ∆n ≥ C1δn. Furthermore, under the assumption on the

permutation critical value, P (Ac4) ≤ β/2. Hence, we obtain

P ((A1 ∩ A2 ∩ A3 ∩ A4)c) ≤
4∑
i=1

P (Aci ) < β,

by choosing sufficiently large C1, C2, C3 > 0 with the assumption that δn ≥ n−1. Using (B.2), the type II

error of the regression test is bounded by

P(T̂ ′global ≤ tα)
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≤ P

(
1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2 ≤ tα

)

≤ P

({
1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2 − 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2 ≤ tα

}

⋂{
4⋂
j=1

Aj
})

+ P ((A1 ∩ A2 ∩ A3 ∩ A4)c)

≤ P (∆n < C4δn) + β,

where C4 can be chosen by C4 = 2C ′0,α + C2 + 2C3. Now by choosing C1 > C4 for sufficiently large n, the

type II error can be bounded by β. Hence the result follows.

• Type II error control (Separate Sampling)

The proof for separate sampling is almost the same as before except few details. First, we do not need to

define A1 since π1 is known. In terms of A2, apply Markov’s inequality to obtain

P (Ac2) ≤ 1

C3δn

{
n0

n
E
[∫

S

(m̂(x)−m(x))2dP0(x)

]
+
n1

n
E
[∫

S

(m̂(x)−m(x))2dP1(x)

]}

=
C0

C3
E
[∫

S

(m̂(x)−m(x))2dPX(x)

]
≤ C0

C3
,

where the last line uses the fact that n0

n P0 + n1

n P1 = PX . Similarly, for the event A3, we have by Chebyshev’s

inequality that

P (Ac3) ≤ 4

∆2
n

1

n2

2n∑
i=n+1

Var
[
(m(Xi)− π1)2

]

≤ 4

∆2
n

1

n2

2n∑
i=n+1

E
[
(m(Xi)− π1)2

]
=

4

n∆2
n

E
[
(m(X)− π1)2

]
≤ 4

C1nδn
.

The rest follows exactly the same as before. Hence the proof is complete.

B.1.4 Proof of Corollary 3.3.1

Proof. We prove the corollary by showing that the conditions in Theorem 3.3 are satisfied. In particular, it

suffices to verify that for fixed α ∈ (0, 1) and β ∈ (0, 1− α), there exists a positive constant C ′0,α such that

supf0,f1∈M Pf0,f1(tα < C ′0,αδn) ≥ 1− β/2. Then the rest of the proof proceeds the same as before.

243



• i.i.d. sampling

To start with the case of i.i.d. sampling, let η = (η1, . . . , ηn)> be a permutation of {1, . . . , n}. Now conditioned

on the data X2n = {(X1, Y1), . . . , (X2n, Y2n)}, we denote the probability and expectation under permutations

by Pη[·] = Pη[·|X2n] and Eη[·] = Eη[·|X2n] respectively. Then by Markov’s inequality

Pη
(
T̂ ′global ≥ t

)
= Pη

(
1

n

2n∑
i=n+1

(m̂η(Xi)− π̂1)
2 ≥ t

)

≤ 1

tn

2n∑
i=n+1

Eη
[
(m̂η(Xi)− π̂1)2

]
,

where m̂η(x) =
∑n
i=1 wi(x)Yηi . Since

∑n
i=1 wi(x) = 1 for any x ∈ S,

Eη [m̂η(x)] =
n∑
i=1

wi(x)Eη[Yηi ] =

n∑
i=1

wi(x)π̂1 = π̂1.

Further note that

Eη
[
(m̂η(x)− π̂1)2

]
=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)Eη
[
(Yηi1 − π̂1)(Yηi2 − π̂1)

]
(B.3)

≤
n∑
i=1

w2
i (x)Eη

[
(Yηi − π̂1)2

]
= π̂1(1− π̂1)

n∑
i=1

w2
i (x)

≤ 1

4

n∑
i=1

w2
i (x), (B.4)

where the first inequality uses Eη
[
(Yηi1 − π̂1)(Yηi2 − π̂1)

]
≤ 0 when i1 6= i2.

Note that the permutation samples are not i.i.d. and thus in order to use the condition in (3.9) which holds

for i.i.d. samples, we will associate the upper bound in (B.4) with i.i.d. samples. To do so, let (Y ∗1 , . . . , Y
∗
n )

be i.i.d. Bernoulli random variables with parameter p = 1/2 independent of {X1, . . . , X2n}. Then

EY ∗
[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
= EY ∗

[( n∑
i=1

wi(x)Y ∗i − 1/2
)2∣∣X1, . . . , X2n

]

= EY ∗
[( n∑

i=1

wi(x)(Y ∗i − 1/2)
)2∣∣X1, . . . , X2n

]
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=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)EY ∗ [(Y ∗i1 − 1/2)(Y ∗i2 − 1/2)]

=
1

4

n∑
i=1

w2
i (x).

Therefore, we obtain

Eη
[
(m̂η(x)− π̂1)2

]
≤ EY ∗

[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
which in turn implies that

Pη
(
T̂ ′global ≥ t

)
≤ 1

tn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
.

So the critical value of the permutation distribution is bounded by

t∗α ≤
1

αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
. (B.5)

Now choose C ′0,α such that 2C0/(αβ) ≤ C ′0,α. Then based on the assumption in (3.9) and Markov’s inequality

sup
f0,f1∈M

Pf0,f1
(
t∗α ≥ C ′0,αδn

)
≤ sup

f0,f1∈M
Pf0,f1

(
1

αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
≥ C ′0,αδn

)

≤ C0

C ′0,αα
≤ β/2.

Hence the proof completes.

• Separate Sampling

Let Y ∗∗1 , . . . , Y ∗∗n be Bernoulli random variables with parameter π̂1 such that
∑n
i=1 Y

∗∗
i = nπ̂1 and they are

independent of X1, . . . , X2n. In the case of separate sampling, the proof follows similarly by noting that the

right-hand side of (B.3) is the same as

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)Eη
[
(Yηi1 − π̂1)(Yηi2 − π̂1)

]

=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)EY ∗∗
[
(Y ∗∗i1 − π̂1)(Y ∗∗i2 − π̂1)

]
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= EY ∗∗ [(m̂(x)− π̂1)2|X1, . . . , Xn].

Now by putting the above quantity into the right-hand side of (B.5) and following the same lines afterwards,

we complete the proof.

B.1.5 Proof of Theorem 3.4

This result can be proved by following the same steps in the proof of Theorem 3.3. In fact, it is simpler than

the previous proof since it does not involve sample splitting to estimate the integration error; hence we omit

the proof.

B.1.6 Proof of Example 3.1

Proof. Let mkNN (x) = E[m̂kNN (x)|X1, . . . , Xn]. Then we have the following decomposition.

E
[
(m̂kNN (x)−m(x))

2
]

= E
[
(m̂kNN (x)−mkNN (x))

2
]

︸ ︷︷ ︸
(I)

+E
[
(mkNN (x)−m(x))

2
]

︸ ︷︷ ︸
(II)

.

For a fixed x, Proposition 8.1 of Biau and Devroye (2015) shows that conditioned on {X1, . . . , Xn},

(X1,n(x), Y1,n(x)), . . . , ((Xn,n(x), Yn,n(x)))

are independent. Using this independence property,

(I) = E

( 1

kn

kn∑
i=1

(Yi,n(x)−m(Xi,n(x)))

)2
 ≤ 1

4kn
.

Next for (II),

(II) = E

( 1

kn

kn∑
i=1

(m(Xi,n(x))−m(x))

)2


≤ E

( 1

kn

kn∑
i=1

∣∣m(Xi,n(x))−m(x)
∣∣)2


≤ E

( L

kn

kn∑
i=1

||Xi,n(x)− x||2
)2
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where the last inequality uses the Lipschitz condition. Note that for fixed ε > 0

P (||X1,n(x)− x||2 > ε) = (1− P(X ∈ Bx,ε))n

≤ (1− τxεD)n ≤ e−τxnε
D

(B.6)

by the assumption that P(X ∈ Bx,ε) > τxε
D. Hence,

E
[
||X1,n(x)− x||2

]
=

∫ ∞
0

P
(
||X1,n(x)− x||2 >

√
ε
)
dε

≤
∫ ∞

0

e−τxnε
D/2

dε

=
2Γ(2/D)

Dτ
2/D
x

n−2/D. (B.7)

Similarly to the proof of Theorem 6.2 of Györfi et al. (2002), divide the data into kn + 1 parts where the

first kn parts have size bn/knc and denote the first nearest neighbor of x from the jth partition by X̃x
j . This

implies that

kn∑
i=1

||Xi,n(x)− x||2 ≤
kn∑
i=1

||X̃x
i − x||2

and by Jensen’s inequality,

(II) ≤ E

( L

kn

kn∑
i=1

||X̃x
i − x||2

)2
 ≤ L2

kn

kn∑
i=1

E
[
||X̃x

i − x||22
]

≤ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

by the inequality (B.7). Combining the results, we have

E
[
(m̂kNN (x)−m(x))

2
]

= (I) + (II)

≤ 1

4kn
+ L2 2Γ(2/D)

Dτ
2/D
x

(
kn
n

)2/D

.

This completes the proof.
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B.1.7 Proof of Example 3.2

Proof. Following the proof of Example 3.1, let

mker(x) = E [m̂ker(x)|X1, . . . , Xn]

and thus

E
[
(m̂ker(x)−m(x))

2
]

= E
[
(m̂ker(x)−mker(x))

2
]

︸ ︷︷ ︸
(I)

+E
[
(mker(x)−m(x))

2
]

︸ ︷︷ ︸
(II)

.

Define an event

An =

{
n∑
i=1

K

(
x−Xi

hn

)
≥ λ

}
.

Then

(I) = E
[
(m̂ker(x)−mker(x))

2
I(An)

]
︸ ︷︷ ︸

(I1)

+E
[
(m̂ker(x)−mker(x))

2
I(Acn)

]
︸ ︷︷ ︸

(I2)

.

For (I1), we have

E
[
(m̂ker(x)−mker(x))

2
I(An)|X1, . . . , Xn

]
=

∑n
i=1 Var(Yi|Xi)K

(
x−Xi
hn

)
(∑n

i=1K
(
x−Xi
hn

))2 I(An)

≤ 1

4
∑n
i=1K

(
x−Xi
hn

)I ( n∑
i=1

K

(
x−Xi

hn

)
≥ λ

)

≤ 1 + λ−1

4 + 4
∑n
i=1K

(
x−Xi
hn

)
≤ 1 + λ−1

4 + 4λ
∑n
i=1 I (||x−Xi||2 ≤ rhn)

≤ 1 + λ

4λ2

1

1 +
∑n
i=1 I (||x−Xi||2 ≤ rhn)

.

By Lemma 4.1 of Györfi et al. (2002),

E
[

1

1 +B

]
≤ 1

(n+ 1)p
≤ 1

np
,
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where B ∼ Binominal(n, p). Using this result,

(I1) ≤ 1 + λ

4λ2

1

nP (X ∈ Bx,rhn)
≤
(

1 + λ

4λ2τxrd

)
1

nhdn
.

For (I2), note that (m̂ker(x)−mker(x))
2 ≤ 1 and thus

(I2) ≤ P

(
n∑
i=1

K

(
x−Xi

hn

)
< λ

)

≤ P

(
n∑
i=1

I (||x−Xi||2 ≤ rhn) = 0

)

where the second inequality is because if there exists Xi such that ||x−Xi||2 ≤ rhn, then
∑n
i=1K

(
x−Xi
hn

)
≥ λ

by the assumption on the kernel. In addition,

P

(
n∑
i=1

I (||x−Xi||2 ≤ rhn) = 0

)
= (1− P (X ∈ Bx,rhn))

n

(i)

≤ e−nτxr
DhDn

(ii)

≤
(
e−1

τxrD

)
1

nhDn
,

(B.8)

where (i) uses 1 + x ≤ ex with the assumption P (X ∈ Bx,ε) ≥ τxε
D and (ii) uses supz ze

−z ≤ e−1. As a

result,

(I) = (I1) + (I2) ≤
(

1 + λ

4λ2τxrD
+

e−1

τxrD

)
1

nhDn
.

For (II), we use Jensen’s inequality and the Lipschitz condition to have

(mker(x)−mker(x))
2

=

∑n
i=1 (m(Xi)−m(x))K

(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

)
2

I

(
n∑
i=1

K

(
x−Xi

hn

)
> 0

)
+mker(x)2I

(
n∑
i=1

K

(
x−Xi

hn

)
= 0

)

≤
∑n
i=1 L

2||Xi − x||22K
(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

) I

(
n∑
i=1

K

(
x−Xi

hn

)
> 0

)
+ I

(
n∑
i=1

K

(
x−Xi

hn

)
= 0

)
.

Since K(x) ≤ I(x ∈ B0,R), we observe that

||Xi − x||22K
(
x−Xi

hn

)
≤ R2h2

nK

(
x−Xi

hn

)
.

249



Consequently,

(mker(x)−mker(x))
2 ≤ L2R2h2

n + I

(
n∑
i=1

K

(
x−Xi

hn

)
= 0

)

≤ L2R2h2
n + I

(
n∑
i=1

I (||x−Xi||2 ≤ rhn) = 0

)
,

where the second inequality is by the assumption λI(x ∈ B0,r) ≤ K(x). By taking the expectation,

(II) ≤ L2R2h2
n + (1− P (X ∈ Bx,rhn))

n
(B.9)

≤ L2R2h2
n +

(
1− τxrDhDn

)n
≤ L2R2h2

n +

(
e−1

τxrD

)
1

nhDn
.

Therefore, we conclude that

E
[
(m̂ker(x)−m(x))

2
]

= (I) + (II)

≤
(

1 + λ

4λ2τxrD
+

2e−1

τxrD

)
1

nhDn
+ L2R2h2

n,

which completes the proof.

B.1.8 Proof of Theorem 4.8

Proof. Suppose X has the uniform distribution over [0, B]D and B > 0. In addition, assume that for

0 < ε < 1/2, the regression function is given by

m(x) = ε

D∏
i=1

(
1− xi

Bε

)
I (0 ≤ xi ≤ Bε)

+ ε

D∏
i=1

(
B(1− ε)− xi

Bε

)
I{B(1− ε) ≤ xi ≤ B}+

1

2

(B.10)

for x = (x1, . . . , xD) ∈ [0, B]D and m(x) = 0 otherwise. Therefore, we have π1 = π0 = 1/2. Now for any

x, z ∈ [0, B]D, the telescoping argument gives

|m(x1, . . . , xD)−m(z1, . . . , zD)|

≤ |m(x1, x2, . . . , xD)−m(z1, x2, . . . , xD)|
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+

D−2∑
i=1

|m(z1, . . . , zi, xi+1, . . . , xD)−m(z1, . . . , zi, zi+1, xi+2, . . . , xD)|

+ |m(z1, z2, . . . , zD−1, xD)−m(z1, z2, . . . , zD)|.

For the first term,

|m(x1, x2, . . . , xD)−m(z1, x2, . . . , xD)|

≤ ε

∣∣∣∣∣ (1− x1

Bε

)
I (0 ≤ x1 ≤ Bε)−

(
1− z1

Bε

)
I (0 ≤ z1 ≤ Bε)

∣∣∣∣∣×
D∏
i=2

∣∣∣∣∣ (1− xi
Bε

)
I (0 ≤ xi ≤ Bε)

∣∣∣∣∣
+ε

∣∣∣∣∣
(
B(1− ε)− x1

Bε

)
I
{
B(1− ε) ≤ x1 ≤ B

}
−
(
B(1− ε)− z1

Bε

)
I
{
B(1− ε) ≤ z1 ≤ B

}∣∣∣∣∣
×

D∏
i=2

∣∣∣∣∣
(
B(1− ε)− xi

Bε

)
I
{
B(1− ε) ≤ xi ≤ B

}∣∣∣∣∣
≤ ε

∣∣∣∣∣ (1− x1

Bε

)
I (0 ≤ x1 ≤ Bε)−

(
1− z1

Bε

)
I (0 ≤ z1 ≤ Bε)

∣∣∣∣∣
+ε

∣∣∣∣∣
(
B(1− ε)− x1

Bε

)
I
{
B(1− ε) ≤ x1 ≤ B

}
−
(
B(1− ε)− z1

Bε

)
I
{
B(1− ε) ≤ z1 ≤ B

}∣∣∣∣∣
≤ 2

B
|x1 − z1| ≤

2

B
||x− z||2.

Applying the same logic to the other terms, we see that

|m(x)−m(z)| ≤ 2D

B
||x− z||2.

By choosing B = 2D/L, the regression function m(x) becomes L-Lipschitz with

δn,x = |m(x)− π1|2 = ε2 at x = (0, . . . , 0).

Next, we lower bound the testing error. Denote the product and joint measure of (X,Y ) described above

by P0 and P1 respectively. Using the standard approach to lower bound the testing error (e.g. Baraud, 2002),

we obtain that for any α level test functions φ : {(X1, Y1), . . . , (Xn, Yn)} 7→ {0, 1},

inf
φ∈Φn,α

sup
f0,f1∈MLip(δn,x)

Pf0,f1(φ = 0) ≥ 1− α− TV(Pn0 , P
n
1 )
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where TV denotes total variation distance. Based on Pinsker’s inequality, we get

TV(Pn0 , P
n
1 ) ≤

√
n

2
DKL(P1||P0)

where DKL is the Kullback-Leibler divergence and by the Jensen’s inequality

DKL(P1||P0)

=

∫
π1f(x) log

f(x, Y = 1)

π1f(x)
dx+

∫
(1− π1)f(x) log

f(x, Y = 0)

(1− π1)f(x)
dx

=
1

2

∫
f(x) log

f(x|Y = 1)

f(x)
dx+

1

2

∫
f(x) log

f(x|Y = 0)

f(x)
dx

≤ 1

2

∫
(f(x|Y = 1)− f(x))2

f(x)
dx+

1

2

∫
(f(x|Y = 0)− f(x))2

f(x)
dx.

By the assumption on (X,Y ), X has the marginal density f(x) = B−D and the conditional densities

f(x|Y = 1) = 2B−Dm(x) and f(x|Y = 0) = 2B−D − f(x|Y = 1) for x ∈ [0, B]D. Therefore,

1

2

∫
(f(x|Y = 1)− f(x))2

f(x)
dx+

1

2

∫
(f(x|Y = 0)− f(x))2

f(x)
dx

=

∫
(f(x|Y = 1)− f(x))2

f(x)
dx

= 4B−D
∫

(m(x)− 1/2)
2
dx.

Using the definition of m(x) in (B.10), the above integration is calculated by

4B−D
∫

(m(x)− 1/2)
2
dx =

8

3D
ε2+D.

Now by choosing ε = β2/(2+D)3D/(2+D)2−2/(2+D)n−1/(2+D), we have

inf
φ∈Φn,α

sup
f0,f1∈MLip(C1,xn−2/(2+D))

Pf0,f1(φ = 0) ≥ 1− α− β.

This completes the proof.

B.1.9 Proof of Proposition 3.1

It is enough to show that there exist universal constants C0, C
′
0,α such that

sup
f0,f1∈MLip

E
[
(m̂kNN (x)−m(x))

2
]
≤ C0n

− 2
2+d ,
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sup
f0,f1∈MLip

E
[
(m̂ker(x)−m(x))

2
]
≤ C ′0,αn−

2
2+d .

Then we can apply Theorem 3.4 to complete the proof. To start with kNN regression, we only need to modify

(B.6) and follow the same steps in the proof of Example 3.1. From the definition of the (C, d)-homogeneous

measure, we see that

P (X ∈ Bx,ε) ≥
εd

C
P (X ∈ Bx,1) = C ′εd.

As a result, (B.6) becomes

P (||X1,n(x)− x||2 > ε) = (1− P(X ∈ Bx,ε))n

≤
(
1− C ′εd

)n ≤ e−C′nεd .
Then we end up having

E
[
(m̂kNN (x)−m(x))

2
]
≤ 1

4kn
+ L2 2Γ(2/d)

dC ′2/d

(
kn
n

)2/d

and the result follows by setting kn = n
2

2+d . Similarly, we only need to modify (B.8) and (B.9) in the proof

of Example 3.2. By using the (C, d)-homogeneous measure,

(1− P (X ∈ Bx,rhn))
n ≤

(
1− hdn

C
P (X ∈ Bx,r)

)n
=
(
1− C ′hdn

)n
≤ e−C

′nhdn

and apply this result to (B.8) and (B.9). We complete the proof by following the same steps in the proof of

Example 3.2.

B.1.10 Proof of Theorem 3.6

Proof. We use a combinatorial central limit theorem in Bolthausen (1984) to prove the result. First denote

aij = wi(x)Yj for 1 ≤ i, j ≤ n and

µ = na··, σ2
n =

n∑
1≤i,j≤n

(aij − ai· − a·j + a··)
2/(n− 1),
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where

ai· =

n∑
j=1

aij/n, a·j =

n∑
i=1

aij/n, a·· =

n∑
1≤i,j≤n

aij/n
2.

In our case, µ = π̂1 and σ2
n is given in (3.18). Let dij = aij − ai· − a·j + a·· = (wi(x)− 1/n)(Yj − π̂1). Then

using the theorem in Bolthausen (1984), we obtain

sup
t∈R

∣∣∣∣P(m̂(x)− π̂1

σn
≤ t
∣∣∣X1, . . . , Xn

)
− Φ (t)

∣∣∣∣ ≤ K 1√
n

1
n2

∑
i,j |di,j |3(

1
n2

∑
i,j d

2
i,j

)3/2
,

where K is a universal constant. Note that

1

n2

∑
i,j

|di,j |3 =
1

n

n∑
i=1

∣∣∣wi(x)− 1

n

∣∣∣3 · 1

n

n∑
j=1

∣∣Yj − π̂1

∣∣3
and

1

n2

∑
i,j

d2
i,j =

1

n

n∑
i=1

(
wi(x)− 1

n

)2

· 1

n

n∑
j=1

(Yj − π̂1)
2
.

As a result,

1
n2

∑
i,j |di,j |3(

1
n2

∑
i,j d

2
i,j

)3/2
=

1√
n

1
n

∑n
i=1

∣∣∣wi(x)− 1
n

∣∣∣3{
1
n

∑n
i=1

(
wi(x)− 1

n

)2}3/2
·

1
n

∑n
j=1

∣∣Yj − π̂1

∣∣3(
1
n

∑n
j=1 (Yj − π̂1)

2
)3/2

︸ ︷︷ ︸
(II)

≤ max1≤i≤n(wi(x)− 1/n)2∑n
i=1(wi(x)− 1/n)2︸ ︷︷ ︸

(I)

·(II)

Note that (I) = oP (1) under the given assumption and (II) is stochastically bounded by the law of large

number. Thus we conclude that

sup
t∈R

∣∣∣∣P(m̂(x)− π̂1

σn
≤ t
∣∣∣X1, . . . , Xn

)
− Φ (t)

∣∣∣∣ = oP (1),

which implies the desired result.
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B.1.11 Proof of Corollary 3.6.1

Proof. For kNN regression, there are k and (n−k) number of k−1 and zero in {w1(x), . . . , wn(x)} respectively.

Hence,

n∑
i=1

(
wi(x)− 1

n

)2

= k

(
1

k
− 1

n

)2

+
n− k
n2

.

Furthermore, under the assumption that 2k < n, we have

max
1≤i≤n

∣∣∣∣wi(x)− 1

n

∣∣∣∣ =
1

k
− 1

n
.

After direct calculations, one can show that

max1≤i≤n |wi(x)− 1/n|
{∑n

i=1(wi(x)− 1/n)2}1/2 → 0,

and thus the result follows.

B.1.12 Proof of Corollary 3.6.2

Proof. Note that

m̂ker(x) =

n∑
i=1

wi(x)Yi =

∑n
i=1 YiK

(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

) =

∑n
i=1 YiKhn (x−Xi)∑n
i=1Khn (x−Xi)

.

Hence it suffices to show that

max1≤i≤n(wi(x)− 1/n)2∑n
i=1(wi(x)− 1/n)2

=
max1≤i≤n

(
Kh(x−Xi)− 1

n

∑n
j=1Kh(x−Xj)

)2

∑n
i=1

(
Kh(x−Xi)− 1

n

∑n
j=1Kh(x−Xj)

)2

p−→ 0.

Using the given condition, the numerator is bounded by

max
1≤i≤n

Kh(x−Xi)−
1

n

n∑
j=1

Kh(x−Xj)

2

≤ 4h−DK2.
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Whereas the denominator can be decomposed into two parts:

n∑
i=1

Kh(x−Xi)−
1

n

n∑
j=1

Kh(x−Xj)

2

=

n∑
i=1

K2
h(x−Xi)− 2n

 1

n

n∑
j=1

Kh(x−Xj)

2

Based on the usual bias-variance decomposition of the kernel density estimation (Wasserman, 2006), each

part can be approximated as

1

nhD

n∑
i=1

K2

(
x−Xi

h

)
= f(x)

∫
K2(u)du+O(h) +OP

(
1√
nhD

)
1

nhD

n∑
i=1

K

(
x−Xi

h

)
= f(x) +O(h2) +OP

(
1√
nhD

)
.

Now, the sufficient condition can be further bounded by

max1≤i≤n
(
Kh(x−Xi)− 1

n

∑n
j=1Kh(x−Xj)

)2

∑n
i=1

(
Kh(x−Xi)− 1

n

∑n
j=1Kh(x−Xj)

)2

≤ 4h−DK2

1
h2D

∑n
i=1K

2
(
x−Xi
h

)
− 2n

(
1

nhD

∑n
j=1K

(
x−Xj
h

))2

=
4n−1K2

1
nhD

∑n
i=1K

2
(
x−Xi
h

)
− 2hD

(
1

nhD

∑n
j=1K

(
x−Xj
h

))2 . (B.11)

Then using the previous approximations, the denominator becomes

1

nhD

n∑
i=1

K2

(
x−Xi

h

)
− 2hD

 1

nhD

n∑
j=1

K

(
x−Xj

h

)2

= f(x)

∫
K2(u)du+O(h) +OP

(
1√
nhD

)
− 2hD

(
f(x) +O(h2) +OP

(
1√
nhD

))2

= f(x)

∫
K2(u)du︸ ︷︷ ︸

>0 by the assumption

+oP (1).

Hence (B.11) converges to zero in probability and the result follows.
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B.2 Diffusion Maps

Dimensionality reduction methods can be useful for visualizing and describing low-dimensional structures

that are embedded in higher-dimensional spaces. In this section, we briefly describe diffusion maps (Coifman

et al., 2005; Coifman and Lafon, 2006) and the particular version that we use to visualize the results of our

local two-sample test.

As a starting point for constructing a diffusion map, one first defines a weight that reflects the local

similarity of two points xi and xj in X = {x1, . . . , xn}. A common choice is the Gaussian kernel

w(xi, xj) = exp

(
−s(xi, xj)

2

ε

)
, (B.12)

where s(xi, xj) represents (for example, the Euclidean) distance between the points. These weights are used

to build a Markov random walk on the data with the transition probability from xi to xj defined as

p(xi, xj) =
w(xi, xj)∑
k∈Ω w(xi, xk)

.

The one-step transition probabilities are stored in an n×n matrix denoted by P, and then usually propagated

by a t-step Markov random walk with transition probabilities Pt. Instead of choosing a fixed time parameter

t, however, we here combine diffusions at all times (Coifman et al., 2005) and define an averaged diffusion

map∗ according to

Ψav : x 7→
[(

λ1

1− λ1

)
ψ1(x),

(
λ2

1− λ2

)
ψ2(x), . . . ,

(
λm

1− λm

)
ψm(x)

]
,

where λi and ψi, respectively, represent the first mth eigenvalues and the corresponding right eigenvectors

of P.

In our application for galaxy morphologies, we also use a generalization of the weight in (B.12) proposed

by Zelnik-Manor and Perona (2005) for spectral clustering. In their paper, the authors show that a data-

driven varying bandwidth leads to more meaningful clustering results for data with multiple scales and

propose the weight

ŵ(xi, xj) = exp

(
−s(xi, xj)

2

σiσj

)
,

where σi(j) is the distance between xi(j) and its kth neighbor. For our visualization purposes, we choose

m = 2 and k = 50, but a range of other values give similar results.

∗This is also the default option of the function diffuse() in the R package diffusionMap.
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Appendix C

Appendix for Chapter 4

C.1 Outline

This chapter is organized as follows:

• Appendix C.2 presents the asymptotic behavior of the permutation distribution of a two-sample

degenerate U -statistic.

• Appendix C.3 collects several auxiliary lemmas, based on which we prove the main results of this paper.

• Appendix C.4 contains all proofs for the results in the main text.

• Appendix C.5 collects some details omitted in the main text as well as further applications of projection-

averaging.

• Appendix C.6 contains additional simulation results both under high-dimensional and low-dimensional

settings.

C.2 Permutation Tests

In this section, we study the limiting behavior of the permutation distribution of a two-sample U -statistic

under the conventional asymptotic framework (4.5). Specifically, we establish fairly general conditions

under which the permutation distribution of a two-sample U -statistic is asymptotically equivalent to the

corresponding unconditional null distribution. We first focus on the large sample behavior of the permutation

distribution under the null hypothesis in Section C.2.1 and then discuss how to generalize this result to the

alternative hypothesis via coupling argument in Section C.2.2.
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C.2.1 Asymptotic null behavior of permutation U-statistics

Let us start with some notation. For r ≥ 2, consider a kernel g(x1, . . . , xr; y1, . . . , yr) of degree (r, r) such

that

E [g(X1, . . . , Xr;Y1, . . . , Yr)] = θ,

E
[
{g(X1, . . . , Xr;Y1, . . . , Yr)}2

]
<∞.

(C.1)

Without loss of generality, we assume that g(x1, . . . , xr; y1, . . . , yr) is symmetric in each set of arguments,

which means that the value of the kernel is invariant to the order of the first r arguments as well as the last

r arguments. The reason for this is that we can always redefine the kernel as

g̃(x1, . . . , xr; y1, . . . , yr)

=
1

r!r!

∑
$∈Sr

∑
$′∈Sr

g(x$(1), . . . , x$(r); y$′(1), . . . , y$′(r)),
(C.2)

where Sr is the set of all permutations of {1, . . . , r}.
Let us write the U -statistic based on the kernel g by

Um,n =

(
m

r

)−1(
n

r

)−1 ∑
α1,...,αr

∑
β1,...,βr

g(Xα1 , . . . , Xαr ;Yβ1 , . . . , Yβr ), (C.3)

where the sums are taken over all subsets {α1, . . . , αr} of {1, . . . ,m} and {β1, . . . , βr} of {1, . . . , n} and(
m
r

)
and

(
n
r

)
are the binomial coefficient defined by m!/{r!(m − r)!} and n!/{r!(n − r)!}, respectively. For

0 ≤ c, d ≤ r, let gc,d(x1, . . . , xc; y1, . . . , yd) be the conditional expectation given by

gc,d(x1, . . . , xc; y1, . . . , yd)

:= E
[
g(x1, . . . , xc, Xc+1, . . . , Xr; y1, . . . , yd, Yd+1, . . . , Yr)

]
.

(C.4)

Further write the centered conditional expectation and its variance as

g∗c,d(x1, . . . , xc; y1, . . . , yd) := gc,d(x1, . . . , xc; y1, . . . , yd)− θ, (C.5)

σ2
c,d := Var [gc,d(X1, . . . , Xc;Y1, . . . , Yd)] = E

[{
g∗c,d(X1, . . . , Xc;Y1, . . . , Yd)

}2]
. (C.6)

The kernel g is non-degenerate if both σ0,1 and σ1,0 are strictly positive, and degenerate if σ0,1 = σ1,0 = 0.

For the case where the kernel is non-degenerate, Chung and Romano (2016a) provided a sufficient condition

under which the permutation distribution approximates the unconditional distribution of Um,n. Their result,

however, does not cover some important degenerate U -statistics including UCvM, UEnergy and UMMD in the

main text. To fill this gap, we develop a similar result for the degenerate cases.
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Consider the centered U -statistic scaled by N = m+ n:

U∗m,n(X1, . . . , Xm, Y1, . . . , Yn) := N(Um,n − θ),

and let {Z1, . . . , Zm+n} = {X1, . . . , Xm, Y1, . . . , Yn} be the pooled samples. Then the permutation

distribution function of U∗m,n can be written as

R̂m,n(t) =
1

N !

∑
$∈SN

I
{
U∗m,n(Z$(1), . . . , Z$(N)) ≤ t

}
.

Also, let R(t) be the unconditional limiting null distribution of U∗m,n. Then we present the following theorem.

Theorem C.1 (Limiting behavior of the permutation distribution). Suppose g(x1, . . . , xr; y1, . . . , yr) is

symmetric in each set of arguments and degenerate under H0. Further assume that E[g2] < ∞ and it

satisfies

Condition 1. g∗0,2(z1, z2) = g∗2,0(z1, z2) and g∗1,1(z1, z2) = 1−r
r g∗0,2(z1, z2),

Condition 2. σ2
0,1 = σ2

1,0 = 0 and σ2
0,2, σ

2
2,0, σ

2
1,1 > 0,

Then under the conventional limiting regime (4.5) and H0,

sup
t∈R

∣∣∣R̂m,n(t)−R(t)
∣∣∣ p−→ 0. (C.7)

Proof. The proof can be found in Section C.4.23.

C.2.2 The coupling argument

The proof of Theorem C.1 relies on the fact that Z$(1), . . . , Z$(N) are i.i.d. samples under the null hypothesis

for any permutations. The main difficulty of generalizing this result to the alternative hypothesis is that the

given samples are not identically distributed under H1. We instead have m samples {X1, . . . , Xm} from PX

and n samples {Y1, . . . , Yn} from PY . In order to overcome such difficulty, we employ the coupling argument

considered in Chung and Romano (2013), which is summarized in Algorithm 4.

Note that the output of Algorithm 4 consists of i.i.d. samples from ϑXPX + ϑY PY . We also note that

there are D = |m − B| different observations between the original samples {Z1, . . . , ZN} and the coupled

samples {Z$0(1), . . . ,

Z$0(N)}. The main strategy of studying the permutation distribution under the alternative hypothesis is to
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Algorithm 4: Coupling

Data: {Z1, . . . , ZN} := {X1, . . . , Xm, Y1, . . . , Yn} where {X1, . . . , Xm} i.i.d.∼ PX and

{Y1, . . . , Yn} i.i.d.∼ PY , a random permutation $0 of {1, . . . , N}.
Result: {Z$0(1), . . . , Z$0(N)}.

1 begin
2 B ∼ Binomial(N,ϑX);
3 if B ≥ m then
4 Generate {Xm+1, . . . , XB} i.i.d. samples from PX ;

5 return {Z$0(1), . . . , Z$0(N)} := {X1, . . . , Xm, Y1, . . . , YN−B , Xm+1, . . . , XB};
6 else
7 Generate {Yn+1, . . . , YN−B} i.i.d. samples from PY ;

8 return {Z$0(1), . . . , Z$0(N)} := {X1, . . . , XB , Yn+1, . . . , YN−B , Y1, . . . , Yn};

establish that

U∗m,n(Z$(1), . . . , Z$(N))− U∗m,n(Z$($0(1)), . . . , Z$($0(N)))
p−→ 0. (C.8)

If this is the case, then both statistics have the same limiting behavior, which means that we can still apply

Theorem C.1. We demonstrate this procedure by using the proposed CvM-statistic and prove Theorem 4.5

in the main text. The details can be found in the proof of Theorem 4.5.

C.3 Auxiliary Lemmas

In this section, we collect some auxiliary lemmas used in our main proofs. We start with another expression

for the CvM-distance in Lemma C.1.1 and for the CvM-statistic in Lemma C.1.2. The variance of a two-

sample U -statistic is given in Lemma C.1.3, which is useful to study the robustness of the CvM test in

Theorem 4.7 and the minimax separation in Theorem 5.5. We recall Hoeffding’s condition in Lemma C.1.4.

Lemma C.1.5 extends the result of Chikkagoudar and Bhat (2014) to a multivariate case and studies

the limiting behavior of a degenerate U -statistic under the contiguous alternative. In Lemma C.1.6 and

Lemma C.1.7, we provide lower bounds for the CvM-distance that are used to prove Theorem 4.8. Lastly,

Lemma C.1.8 generalizes Lemma 4.0.2 with three indicator functions.

Lemma C.1.1 (Another expression for the CvM-distance). Let X1, X2, X3
i.i.d.∼ PX and, independently,

Y1, Y2, Y3
i.i.d.∼ PY . Furthermore, assume that β>X1 and β>Y1 have continuous distribution functions for

λ-almost all β ∈ Sd−1. Then the squared multivariate CvM-distance can be written as

W 2
d (PX , PY ) =

1

2π
E [Ang (X1 −X2, Y1 −X2)] +

1

2π
E [Ang (X1 − Y2, Y1 − Y2)]
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− 1

4π
E [Ang (X1 −X3, X2 −X3)]− 1

4π
E [Ang (X1 − Y1, X2 − Y1)]

− 1

4π
E [Ang (Y1 − Y3, Y2 − Y3)]− 1

4π
E [Ang (Y1 −X1, Y2 −X1)] .

Proof. Since the CvM-distance is invariant to the choice of ϑX and ϑY (Theorem 4.1), we may assume that

ϑX = ϑY = 1/2 for simplicity. Then

W 2
d =

∫
Sd−1

∫
R

(
Fβ>X(t)− Fβ>Y (t)

)2
d{Fβ>X(t)/2 + Fβ>Y (t)/2}dλ(β)

= E
[(
Fβ>X(β>Z∗)

)2]
+ Eβ,Z∗

[(
Fβ>Y (β>Z∗)

)2]− 2E
[
Fβ>X(β>Z∗)Fβ>Y (β>Z∗)

]
,

= (I) + (II)− 2(III) (say),

where Z∗ ∼ (1/2)PX + (1/2)PY . By the Fubini’s theorem and the definition of Z∗, the first term (I) has

the identity

(I) = E
[
1(β>X1 ≤ β>Z∗, β>X2 ≤ β>Z∗)

]
=

1

2
E
[
1(β>X1 ≤ β>X3, β

>X2 ≤ β>X3)
]

+
1

2
E
[
1(β>X1 ≤ β>Y1, β

>X2 ≤ β>Y1)
]
.

Similarly,

(II) = E
[
1(β>Y1 ≤ β>Z∗, β>Y2 ≤ β>Z∗)

]
=

1

2
E
[
1(β>Y1 ≤ β>Y3, β

>Y2 ≤ β>Y3)
]

+
1

2
E
[
1(β>Y1 ≤ β>X1, β

>Y2 ≤ β>X1)
]

and

(III) = E
[
1(β>X1 ≤ β>Z∗, β>Y1 ≤ β>Z∗)

]
=

1

2
E
[
1(β>X1 ≤ β>X2, β

>Y1 ≤ β>X2)
]

+
1

2
E
[
1(β>X1 ≤ β>Y2, β

>Y1 ≤ β>Y2)
]
.

We then apply Lemma 4.0.2 to obtain the desired result.

Next we provide another expression for the CvM-statistic with a third-order kernel.

Lemma C.1.2 (Another expression for the CvM-statistic). Consider the kernel of order three

h?CvM(x1, x2, x3; y1, y2, y3) (C.9)
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=
1

2
E
[{
1(β>x1 ≤ β>x3)− 1(β>y1 ≤ β>x3)

}
×
{
1(β>x2 ≤ β>x3)− 1(β>y2 ≤ β>x3)

}]
+

1

2
E
[{
1(β>x1 ≤ β>y3)− 1(β>y1 ≤ β>y3)

}
×
{
1(β>x2 ≤ β>y3)− 1(β>y2 ≤ β>y3)

}]
.

Let us define the corresponding U -statistic by

U?CvM :=
1

(m)3(n)3

m, 6=∑
i1,i2,i3=1

n,6=∑
j1,j2,j3=1

h?CvM(Xi1 , Xi2 , Xi3 ;Yj1 , Yj2 , Yj3).

Then U?CvM is an unbiased estimator of W 2
d . Furthermore when β>X and β>Y are continuous for λ-almost

all β ∈ Sd−1, it is simplified as

U?CvM =
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

hCvM(Xi1 , Xi2 ;Yj1 , Yj2). (C.10)

Proof. The unbiasedness property is trivial. We will show that (C.10) holds under the given conditions.

Since there is no tie with probability one, we have

1

(m)3

m, 6=∑
i1,i2,i3=1

Eβ [1(β>Xi1 ≤ β>Xi3)1(β>Xi2 ≤ β>Xi3)] =
1

3
,

1

(n)3

n,6=∑
j1,j2,j3=1

Eβ [1(β>Yj1 ≤ β>Yj3)1(β>Yj2 ≤ β>Yj3)] =
1

3
.

Also the following identities are true

2

(m)2 · n

m, 6=∑
i1,i2=1

n∑
j=1

Eβ [1(β>Xi1 ≤ β>Xi2)1(β>Yj ≤ β>Xi2)]

= 1− 1

(m)2 · n

m, 6=∑
i1,i2=1

n∑
j=1

Eβ [1(β>Xi1 ≤ β>Yj)1(β>Xi2 ≤ β>Yj)]

and

2

m · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Eβ [1(β>Yj1 ≤ β>Yj2)1(β>Xi ≤ β>Yj2)]
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= 1− 1

m · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Eβ [1(β>Yj1 ≤ β>Xi)1(β>Yj2 ≤ β>Xi)].

After expanding the terms in h?CvM and replacing the above identities, we can obtain

U?CvM =
1

(m)2 · n

m, 6=∑
i1,i2=1

n∑
j=1

Eβ [1(β>Xi1 ≤ β>Yj)1(β>Xi2 ≤ β>Yj)]

+
1

m · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Eβ [1(β>Yj1 ≤ β>Xi)1(β>Yj2 ≤ β>Xi)]−
2

3
,

=
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

hCvM(Xi1 , Xi2 ;Yj1 , Yj2).

Hence the result follows.

In the next lemma, we present an explicit expression for the variance of Um,n, which will be used to

bound the variance of the proposed statistic.

Lemma C.1.3 (Theorem 2 of Lee (1990) in Chapter 2). Let Um,n be a two-sample U -statistic based on a

kernel having degrees k1 and k2. Then

Var (Um,n) =

k1∑
c=0

k2∑
d=0

(
k1
c

)(
k2
d

)(
m−k1
k1−c

)(
n2−k2
k2−d

)(
n1

k1

)(
n2

k2

) σ2
c,d,

where σ2
c,d is defined similarly as (C.6).

Hoeffding (1952) identified a sufficient condition (indeed the necessary condition proved by Chung and

Romano, 2013) under which the permutation distribution approximates the corresponding unconditional

distribution. The condition is stated as follows:

Lemma C.1.4 (Theorem 5.1 of Chung and Romano (2013)). Consider a sequence of random quantities Xn

taking values in a sample space Mn and suppose that Xn has distribution Pn in Mn. Let Gn be a finite

group of transformation from Mn onto itself. Let Tn = Tn(Xn) be any real valued statistic and $n be a

random variable that is uniform on Gn. Also, let $′n have the same distribution as $n, with Xn, $n and

$′n mutually independent. Suppose, under Pn,

(Tn($nX
n), Tn($′nX

n))
d−→ (T, T ′), (C.11)

where T and T ′ are independent, each with common cumulative distribution function R(·). Here, $nX
n

denotes the composition of Xn with $n and $′nX
n is similarly defined. Let R̂n be the randomization
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distribution function of Tn defined by

R̂n(t) =
1

#|Gn|
∑

$n∈Gn
1{Tn($nX

n) ≤ t},

where #|Gn| denotes the cardinality of Gn. Then, under Pn,

R̂n(t)
p−→ R(t), (C.12)

for every t which is a continuity point of R(·). Conversely, if (C.12) holds for some limiting cumulative

distribution function R(·) whenever t is a continuity point, then (C.11) holds.

Chikkagoudar and Bhat (2014) studied the limiting distribution of a two-sample U -statistic under

contiguous alternatives for the univariate case (see Theorem 3.1 therein and also Gregory, 1977). Here

we extend their result to the multivariate case.

First we prepare for some notation. Let PNθ0 and PN
θ0+bN−1/2 denote the joint distribution of the pooled

samples {X1, . . . , Xm, Y1, . . . , Yn} under the null and contiguous alternative, respectively. Let λk,g and φk,g(·)
be the eigenvalue and the corresponding eigenfunction satisfying the following integral equation

E[g∗2,0(x1, X2)φk,g(X2)] = λk,gφk,g(x1) for k = 1, 2, . . . ,

where g∗2,0(·, ·) is defined in (C.5) under the null hypothesis. For a sequence of random variables ZN , we

write ZN = oPNθ0
(1), if

lim
N→∞

PNθ0
(
|ZN | ≥ ε

)
= 0,

for any ε > 0. Then we have the following result.

Lemma C.1.5 (Limiting distribution under contiguous alternatives). Recall the two-sample U -statistic,

Um,n, given in (C.3). Consider the same assumptions used in Theorem C.1 and Theorem 4.4. Then under

PN
θ0+bN−1/2 ,

N(Um,n − Eθ0 [Um,n])
d−→ r(r − 1)

2ϑXϑY

∞∑
k=1

λk,g{(ξk + ϑ
1/2
X ak,g)

2 − 1},

where

ak,g =

∫
Rd
{b>2η(x, θ0)}p−1/2

θ0
(x)φk,g(x)dPθ0(x).
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Proof. Let us denote the likelihood ratio by

LN,h =

∏m
i=1 pθ0(Xi)

∏n
j=1 pθ0+bN−1/2(Yj)∏m

i=1 pθ0(Xi)
∏n
j=1 pθ0(Yj)

=

∏n
j=1 pθ0+bN−1/2(Yj)∏n

j=1 pθ0(Yj)
.

Then under the given conditions, one can establish

logLN,h =
1√
n

n∑
i=1

h>η̃(Yi, θ0)− 1

2
h>I(θ0)h+ oPNθ0

(1), (C.13)

where η̃(x, θ) = 2η(x, θ)/p
1/2
θ (x) (see Example 12.3.7 of Lehmann and Romano, 2006, for details). Then by

Corollary 12.3.1 of Lehmann and Romano (2006), PNθ0 and PN
θ0+bN−1/2 are mutually contiguous.

Without loss of generality, we assume that Eθ0 [Um,n] = 0 and denote the projection of Um,n under

condition 2 in Theorem C.1 by

Ûm,n =
r(r − 1)

m(m− 1)

∑
1≤i1<i2≤m

g∗2,0(Xi1 , Xi2) +
r(r − 1)

n(n− 1)

∑
1≤j1<j2≤m

g∗0,2(Yj1 , Yj2)

+
r2

mn

m∑
i=1

n∑
j=1

g∗1,1(Xi, Yj).

Then as in Lemma 2.2 of Chikkagoudar and Bhat (2014), it can be seen that

NUm,n = NÛm,n + oPNθ0
(1),

and the same approximation holds under PN
θ0+bN−1/2 by contiguity. As a result, it is enough to study the

limiting distribution of NÛm,n.

Now following the same steps in the proof of Theorem 3.1 in Chikkagoudar and Bhat (2014) and using

(C.13), we can arrive at

NÛm,n
d−→ r(r − 1)

2ϑXϑY

∞∑
k=1

λk,g{(ξk + ϑ
1/2
X ak,g)

2 − 1},

under PN
θ0+bN−1/2 . Hence the result follows.

The next two lemmas are used for proving Theorem 4.8, which provides a lower bound for the minimax

separation εm,n. We begin by presenting a lower bound of the multivariate CvM-distance.

Lemma C.1.6 (Lower bound for the CvM-distance). The multivariate CvM-distance is lower bounded by

Wd(PX , PY ) ≥
∫
Sd−1

∣∣∣1
2
− P

(
β>X ≤ β>Y

) ∣∣∣dλ(β). (C.14)
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Proof. Let β>Z have the distribution function Fβ>X(t)/2 + Fβ>Y (t)/2. First notice from the definition of

the multivariate CvM-distance that

W 2
d = E

[{
Fβ>X(β>Z)− Fβ>Y (β>Z)

}2]
≥
{
E
[∣∣∣Fβ>X(β>Z)− Fβ>Y (β>Z)

∣∣∣]}2

,

where the inequality follows by Jensen’s inequality. Let us denote the expectation with respect to X1, X2, Y1

(and X1, Y1, Y2) by EX1,X2,Y1
(and EX1,Y1,Y2

). Then from the definition of β>Z, we have

E
[∣∣Fβ>X(β>Z)− Fβ>Y (β>Z)

∣∣]
=

1

2
E
[∣∣Fβ>X(β>X1)− Fβ>Y (β>X1)

∣∣]+
1

2
E
[∣∣Fβ>X(β>Y1)− Fβ>Y (β>Y1)

∣∣]
≥ 1

2
Eβ
[∣∣∣EX1,X2,Y1

{
1(β>X1 ≤ β>X2)− 1(β>Y1 ≤ β>X2)

}∣∣∣]
+

1

2
Eβ
[∣∣∣EX1,Y1,Y2

{
1(β>X1 ≤ β>Y2)− 1(β>Y1 ≤ β>Y2)

}∣∣∣],
where we used Jensen’s inequality once again to obtain the lower bound. The last expression can be simplified

based on the observation that P(β>X1 ≤ β>X2) = P(β>Y1 ≤ β>Y2) = 1/2 as

Eβ
[∣∣∣1

2
− P

(
β>X ≤ β>Y

) ∣∣∣].
Therefore,

W 2
d ≥

{∫
Sd−1

∣∣∣1
2
− P

(
β>X ≤ β>Y

) ∣∣∣dλ(β)

}2

,

which completes the proof.

Consider two independent random vectors X∗ and Y ∗ such that their first coordinates have normal

distributions as ξ1 ∼ N(µX∗ , 1) and ξ2 ∼ N(µY ∗ , 1) and the other coordinates have the degenerate

distribution at zero, i.e.

X∗ := (ξ1, 0, . . . , 0)> and Y ∗ := (ξ2, 0, . . . , 0)>.

Given β = (β1, . . . , βd)
> ∈ Sd−1, we have β>X∗ ∼ N(β1µX∗ , β

2
1) and β>Y ∗ ∼ N(β1µY ∗ , β

2
1); therefore

β>X∗ and β>Y ∗ have continuous distributions for λ-almost all β ∈ Sd−1. Under this setting, the multivariate

CvM-distance is lower bounded as follows:
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Lemma C.1.7 (Lower bound for the CvM-distance under a Gaussian model). Consider independent random

vectors X∗ and Y ∗ described above with µX∗ = cm−1/2 and µY ∗ = −cn−1/2 for some constant c > 0. Let

us denote the corresponding distributions by PX∗ and PY ∗ . Then there exists another constant C > 0

independent of the dimension satisfying

Wd(PX∗ , PY ∗) ≥ C
(

1√
m

+
1√
n

)
.

Furthermore, the lower bound is tight up to constant factors.

Proof. From Lemma C.1.6, it is enough to show

∫
Sd−1

∣∣∣1
2
− P

(
β>X∗ ≤ β>Y ∗

) ∣∣∣dλ(β) ≥ C
(

1√
m

+
1√
n

)
.

For any fixed β ∈ Sd−1, we have β>(X∗ − Y ∗) ∼ N(β1(µX∗ − µY ∗), 2β2
1). Let Φ(·) and ϕ(·) denote the

cumulative distribution function and the density function of the standard normal distribution respectively.

Then

∣∣∣1
2
− P

(
β>X∗ ≤ β>Y ∗

) ∣∣∣ =

∣∣∣∣12 − Φ

(
−sign(β1) · c√

2

(
1√
m

+
1√
n

)) ∣∣∣∣
≥ c√

2

(
1√
m

+
1√
n

)
· ϕ
(

c√
2

(
1√
m

+
1√
n

))

≥ c√
2

(
1√
m

+
1√
n

)
· ϕ
(

c

2
√

2

)
,

This lower bound holds for λ-almost all β ∈ Sd−1 and thus the result follows. To have an upper bound,

notice that

W 2
d (PX∗ , PY ∗) ≤

∫
Sd−1

sup
t∈R

(
Fβ>X(t)− Fβ>Y (t)

)2
dλ(β)

(i)

≤ 1

2

∫
Sd−1

KL
(
N(β1µX∗ , β

2
1), N(β1µY ∗ , β

2
1)
)
dλ(β)

=
c2

2

(
1√
m

+
1√
n

)2

,

where KL(·, ·) is the Kullback-Leibler divergence between two distributions and we used the Pinsker’s

inequality for (i) (e.g. Lemma 2.5 of Tsybakov, 2009). This shows the tightness of the lower bound.

To prove Theorem 4.13, which presents a closed-form expression for τ∗p,q, we need to generalize

Lemma 4.0.2 with three indicator functions as follows:
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Lemma C.1.8 (Extension of Escanciano (2006)). For arbitrary non-zero vectors U1, U2, U3 ∈ Rd, we have

∫
Sd−1

3∏
i=1

1(β>Ui ≤ 0)dλ(β)

=
1

2
− 1

4π
[Ang (U1, U2) + Ang (U1, U3) + Ang (U2, U3)] .

Proof. The proof of this result can be found in Section C.4.3.

C.4 Proofs

This section collects all proofs for the results in the main text. In addition to the notation given in the main

text, we introduce further notation that will be used throughout this section.

Notation. We denote the probability measure under permutations by P$. The expectation and variance

with respect to P$ are denoted by E$ and Var$, respectively. We write the expectation with respect to

the uniform probability measure λ on Sd−1 by Eβ . The symbol #|A| stands for the cardinality of A. We

denote the Kullback-Leibler divergence between two probability distributions P and Q by KL(P,Q). For

x, y ∈ R, we use x ∨ y and x ∧ y to denote max{x, y} and min{x, y}, respectively. Given a permutation

$ of {1, . . . , N} and the pooled samples {Z1, . . . , Zm+n} = {X1, . . . , Xm, Y1, . . . , Yn}, we may write

UCvM(Z$(1), . . . , Z$(N)) or U$CvM to denote the CvM-statistic computed based on Xm = {Z$(1), . . . , Z$(m)}
and Yn = {Z$(m+1), . . . , Z$(m+n)}. For the original permutation, which is $ = {1, . . . , N}, we write

UCvM or UCvM(Z1, . . . , Z1) to denote the CvM-statistic computed based on Xm = {Z1, . . . , Zm} and

Yn = {Z1, . . . , Zm+n}. The similar notation will be used for other test statistics. In general, we will

write h̃ to denote the symmetrized version of a kernel h in the sense of (C.2). For any two real sequences

{an} and {bn}, we write bn & an or equivalently an . bn if there exists C > 0 such that an ≤ Cbn for each

n. c, C,C0, C1, C2, C3, C4, C5 are some universal constants whose values may differ in different places of this

section.

C.4.1 Proof of Lemma 4.0.1

From the definition of W 2
d , it is clear to see that W 2

d ≥ 0 and it becomes zero if PX = PY . For the other

direction, we will show that if W 2
d = 0, then X and Y have the same characteristic function:

EX
[
eitβ

>X
]

= EY
[
eitβ

>Y
]

for all (β, t) ∈ Sd−1 × R,
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which implies PX = PY .

1. Univariate case

In the univariate case, W 2 = 0 implies that FX(t) = FY (t) for d{ϑXFX(t) + ϑY FY (t)}-almost all t, hence

we conclude PX = PY (see also Lemma 4.1 of Lehmann, 1951).

2. Multivariate case

Recall that λ(·) is the uniform probability measure on Sd−1. From the characteristic property of the univariate

CvM-distance, W 2
d = 0 implies that β>X and β>Y are identically distributed for λ-almost all β ∈ Sd−1.

Now, by continuity of the characteristic function, we conclude that

EX
[
eitβ

>X
]

= EY
[
eitβ

>Y
]

for all (β, t) ∈ Sd−1 × R.

C.4.2 Proof of Lemma 4.0.2

Here we provide an alternative proof of Lemma 4.0.2 based on the orthant probability for normal distribution.

First we state a recent result on the bivariate normal distribution function presented by Monhor (2013).

Lemma C.1.9. (Theorem 4 of Monhor, 2013) Let (ξ1, ξ2)> has a bivariate normal distribution with

expectation (µ1, µ2)> = (0, 0)> and covariance matrix [σij ]2×2 where σ11 = σ22 = 1 and σ12 = σ21 = ρ.

Then for 0 < ρ < 1 and t > 0,

P(ξ1 ≤ t, ξ2 ≤ t) ≤ Φ2(t) +
1

2π
exp

(
− t2

1 + ρ

)
arcsin(ρ) and (C.15)

P(ξ1 ≤ t, ξ2 ≤ t) ≥ Φ2(t) +
1

2π
exp

(
−t2

)
arcsin(ρ). (C.16)

It is not difficult to see that a similar result can be obtained for −1 < ρ ≤ 0 as

P(ξ1 ≤ t, ξ2 ≤ t) ≤ Φ2(t)− 1

2π
exp

(
− t2

1 + ρ

)
arcsin(−ρ) and (C.17)

P(ξ1 ≤ t, ξ2 ≤ t) ≥ Φ2(t)− 1

2π
exp

(
−t2

)
arcsin(−ρ). (C.18)

In fact, the inequalities (C.15), (C.16), (C.17) and (C.18) hold for any t. By taking t → 0 in the previous

inequalities, we have

P(ξ1 ≤ 0, ξ2 ≤ 0) =
1

4
+

1

2π
arcsin(ρ) =

1

2
− 1

2π
arccos(ρ), (C.19)
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for any −1 ≤ ρ ≤ 1. The above identity is classical and can be found in different places (e.g. Slepian, 1962;

Childs, 1967; Xu et al., 2013).

Turning now to Lemma 4.0.2, let Z have a multivariate normal distribution with zero mean vector and

identity covariance matrix. It is well-known that Z/‖Z‖ is uniformly distributed over Sd−1 (e.g. page 15 of

Anderson, 2003). This leads to the key observation that∫
Sd−1

1(β>U1 ≤ 0)1(β>U2 ≤ 0)dλ(β)

= EZ
[
1(Z>U1 ≤ 0)1(Z>U2 ≤ 0)

]
,

(C.20)

where EZ [·] is the expectation with respect to Z. Note that (Z>U1,Z>U2)> follows a bivariate normal

distribution with correlation matrix [%ij ]2×2 where %ij = U>i Uj/{‖Ui‖‖Uj‖}. Using this connection and the

equality (C.19), we can obtain the closed-form expression for the left-hand side of (C.20) and thus complete

the proof.

C.4.3 Proof of Lemma C.1.8

To prove the results, we apply the same argument used in Section C.4.2. Let Z have a multivariate normal

distribution with zero mean vector and identity covariance matrix. Then as in Section C.4.2,

∫
Sd−1

3∏
i=1

1(β>Ui ≤ 0)dλ(β) = EZ
[ 3∏
i=1

1(Z>Ui ≤ 0)

]
. (C.21)

Since (Z>U1,Z>U2,Z>U3)> has a multivariate normal distribution with zero mean vector and correlation

matrix [%ij ]3×3 with %ij = U>i Uj/{‖Ui‖‖Uj‖}, the right-hand side of (C.21) can be computed based on

orthant probabilities for normal distributions (e.g. Childs, 1967; Xu et al., 2013). This completes the proof.

C.4.4 Proof of Theorem 4.1

Since β>X and β>Y are assumed to have continuous distribution functions, β>X1, β
>X2 and β>X3 have

distinct values with probability one. This is also true for β>Y1, β
>Y2 and β>Y3. Therefore, the following
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identities hold for λ-almost all β ∈ Sd−1.∫ (
Fβ>X(t)

)2
dFβ>X(t) = P

(
max{β>X1, β

>X2} ≤ β>X3

)
=

1

3
,∫ (

Fβ>Y (t)
)2
dFβ>Y (t) = P

(
max{β>Y1, β

>Y2} ≤ β>Y3

)
=

1

3
,∫ (

Fβ>X(t)
)2
dFβ>Y (t) = P

(
max{β>X1, β

>X2} ≤ β>Y1

)
,∫ (

Fβ>Y (t)
)2
dFβ>X(t) = P

(
max{β>Y1, β

>Y2} ≤ β>X1

)
.

(C.22)

Also note that

P
(
max{β>X1, β

>X2} ≤ β>Y1

)
+ P

(
max{β>X1, β

>Y1} ≤ β>X2

)
+ P

(
max{β>X2, β

>Y1} ≤ β>X1

)
= 1

and

P
(
max{β>X1, β

>Y1} ≤ β>X2

)
= P

(
max{β>X2, β

>Y1} ≤ β>X1

)
.

These two identities give∫
Fβ>X(t)Fβ>Y (t)dFβ>X(t) = P

(
max{β>X1, β

>Y1} ≤ β>X2

)
=

1

2
− 1

2
P
(
max{β>X1, β

>X2} ≤ β>Y1

)
.

(C.23)

Similarly, ∫
Fβ>X(t)Fβ>Y (t)dFβ>Y (t) = P

(
max{β>Y1, β

>X1} ≤ β>Y2

)
=

1

2
− 1

2
P
(
max{β>Y1, β

>Y2} ≤ β>X1

)
.

(C.24)

Now, combine (C.22), (C.23) and (C.24) to have

∫
Sd−1

∫
R

(
Fβ>X(t)− Fβ>Y (t)

)2
d{ϑXFβ>X(t) + ϑY Fβ>Y (t)}dλ(β)

=

∫
Sd−1

P
(
max{β>X1, β

>X2} ≤ β>Y1

)
dλ(β)

+

∫
Sd−1

P
(
max{β>Y1, β

>Y2} ≤ β>X1

)
dλ(β)− 2

3
.
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Hence,

W 2
d = E

[
1(β>X1 ≤ β>Y1, β

>X2 ≤ β>Y1)
]

+ E
[
1(β>Y1 ≤ β>X1, β

>Y2 ≤ β>X1)
]
− 2

3
.

Then apply Lemma 4.0.2 to obtain the result.

C.4.5 Proof of Theorem 4.2

We first show that h is degenerate under H0. Then apply the limit theorem for two-sample degenerate

U -statistics (Bhat, 1995).

1. Degeneracy

Recall the definition of the kernel hCvM, i.e.

hCvM(x1, x2; y1, y2) =
1

3
− 1

2π
Ang(x1 − y1, x2 − y1)− 1

2π
Ang(y1 − x1, y2 − x1).

We also recall the symmetrized version of hCvM by h̃CvM in the sense of (C.2), i.e.

h̃CvM(x1, x2; y1, y2) =
1

2
hCvM(x1, x2; y1, y2) +

1

2
hCvM(x2, x1; y2, y1).

We first focus on the univariate case where x1, x2, y1, y2 ∈ R and make a connection to Lehmann’s two-

sample statistic (Lehmann, 1951). Let h̃
(1)
CvM denote the symmetrized hCvM for the univariate case, that can

be written as

h̃
(1)
CvM(x1, x2; y1, y2) :=

1

2

{
1(max{x1, x2} ≤ y1) + 1(max{x1, x2} ≤ y2)

+ 1(max{y1, y2} ≤ x1) + 1(max{y1, y2} ≤ x2)
}
− 2

3
.

From the following identity,

1(max{x1, x2} ≤ min{y1, y2}) + 1(max{y1, y2} ≤ min{x1, x2})

= 1(max{x1, x2} ≤ y1) + 1(max{x1, x2} ≤ y2)

+ 1(max{y1, y2} ≤ x1) + 1(max{y1, y2} ≤ x2)− 1,
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the univariate kernel has another expression as

2h̃
(1)
CvM(x1, x2; y1, y2) = 1(max{x1, x2} ≤ min{y1, y2})

+ 1(max{y1, y2} ≤ min{x1, x2})−
1

3
.

Thus h̃
(1)
CvM is equivalent to the kernel for Lehmann’s two-sample statistic (Lehmann, 1951). Using this

connection and the known results for Lehmann’s two-sample statistic, we have

h̃
(1)
CvM,1,0(x1) := E

[
h̃

(1)
CvM(x1, X2;Y1, Y2)

]
= 0,

h̃
(1)
CvM,0,1(y1) := E

[
h̃

(1)
CvM(X1, X2; y1, Y2)

]
= 0,

(C.25)

for any x1, y1 ∈ R under H0. See Chapter 4 of Bhat (1995) for details.

Let us now turn to multivariate cases where x1, x2, y1, y2 ∈ Rd. By the definition of h̃CvM, we have

h̃CvM(x1, x2, y1, y2) =

∫
Sd−1

h̃
(1)
CvM(β>x1, β

>x2;β>y1, β
>x2)dλ(β).

Now the Fubini’s theorem combined with (C.25) gives

E
[
h̃

(1)
CvM(β>x1, β

>X2;β>Y1, β
>Y2)

]
= E

[
h̃

(1)
CvM(β>X1, β

>X2;β>y1, β
>Y2)

]
= 0,

for λ-almost all β ∈ Sd−1. As a consequence, it is seen that

h̃CvM,1,0(x1) := E
[
h̃CvM(x1, X2;Y1, Y2)

]
=

∫
Sd−1

E
[
h̃

(1)
CvM(β>x1, β

>X2;β>Y1, β
>Y2)

]
dλ(β) = 0,

h̃CvM,0,1(y1) := E
[
h̃CvM(X1, X2; y1, Y2)

]
=

∫
Sd−1

E
[
h̃

(1)
CvM(β>X1, β

>X2;β>y1, β
>Y2)

]
dλ(β) = 0.

On the other hand,

h̃CvM,2,0(x1, x2) := E
[
h̃CvM(x1, x2;Y1, Y2)

]
=

1

2

∫
Sd−1

(
1− Fβ>X(max{β>x1, β

>x2})
)2
dλ(β)
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+
1

2

∫
Sd−1

F 2
β>X(min{β>x1, β

>x2})dλ(β)− 1

6
,

h̃CvM,0,2(y1, y2) := E
[
h̃CvM(X1, X2; y1, y2)

]
,

=
1

2

∫
Sd−1

(
1− Fβ>Y (max{β>y1, β

>y2})
)2
dλ(β)

+
1

2

∫
Sd−1

F 2
β>Y (min{β>y1, β

>y2})dλ(β)− 1

6
,

h̃CvM,1,1(x1, y1) := E
[
h̃CvM(x1, X2; y1, Y2)

]
= −1

2
h̃CvM,2,0(x1, y1).

Note that h̃CvM,2,0(x1, x2) 6= 0 for some (x1, x2). For example, when x1 = x2, it is seen that

1

2

{
1− Fβ>X(β>x1)

}2
+

1

2
F 2
β>X(β>x1)− 1

6
≥ 1

12
for all β ∈ Sd−1,

which implies h̃CvM,2,0(x1, x1) ≥ 1/12. By the continuity of h̃CvM,2,0 at (x1, x1), there exist a set with nonzero

measure such that h̃CvM,2,0(x1, x2) > 0. Therefore, we conclude that h̃CvM (and hCvM) has degeneracy of

order one under H0.

2. Limiting distribution of the U-statistic

To obtain the limiting null distribution of UCvM, we apply the result given in Chapter 3 of Bhat (1995) to

have

NUCvM
d−→ 1

ϑX

∞∑
k=1

λk(ξ2
k − 1) +

1

ϑY

∞∑
k=1

λk(ξ′2k − 1)− 2√
ϑXϑY

∞∑
k=1

λkξkξ
′
k,

where ξk, ξ
′
k
i.i.d.∼ N(0, 1). Based on the observation that

√
ϑY ξk −

√
ϑXξ

′
k ∼ N(0, 1),

the result follows.

Remark C.1. The eigenvalues {λi}∞i=1 may depend on the underlying distribution, which implies that the test

statistic is not distribution-free even asymptotically. Nevertheless, for the univariate continuous case, explicit

expressions for the eigenvalues and the eigenfunctions are available as λi = 2/(iπ)2 and φi(x) =
√

2cos(iπx)

for i = 1, 2, . . . (e.g. Chikkagoudar and Bhat, 2014).
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C.4.6 Proof of Theorem 4.3

Let us write

h̃CvM,1,0(x) = E[h̃CvM(x,X1;Y1, Y2)] and

h̃CvM,0,1(y) = E[h̃CvM(X1, X2; y, Y1)].

By Hoeffding’s decomposition of a two-sample U -statistic (e.g. page 40 of Lee, 1990), the CvM-statistic can

be approximated by

UCvM −W 2
d =

2

m

m∑
i=1

h̃CvM,1,0(Xi) +
2

n

n∑
j=1

h̃CvM,0,1(Yj) +OP(N−1).

Then the result follows by the central limit theorem.

C.4.7 Proof of Theorem 4.4

This is a direct consequence of Lemma C.1.5 with r = 2, which completes the proof.

C.4.8 Proof of Theorem 4.5

Under the null hypothesis, we need to verify the conditions given in Theorem C.1 of this supplementary

document. Indeed, these conditions are satisfied with r = 2 as in the proof of Theorem 4.2. Therefore the

permutation distribution of the U -statistic converges in probability to the limiting null distribution of the

unconditional statistic, which is P
(single)
CvM = P

(mix)
CvM where we recall that

• P (single)
CvM : the limiting null distribution ofNUCvM based on i.i.d. samples from the single distribution PX .

• P (mix)
CvM : the limiting null distribution of NUCvM based on i.i.d. samples from the mixture distribution

ϑXPX + ϑY PY .

By construction, the oracle test statistic has the same limit under H0 and the result follows in this case.

Next we focus on the alternative hypothesis. In the next lemma, we first show that condition (C.8) is

satisfied for the CvM-statistic, meaning that the difference between the two CvM-statistics — one is based on

the randomly permuted original samples and the other is based on the corresponding coupled i.i.d. samples

— is asymptotically negligible.

Lemma C.1.10 (Coupling for the CvM-statistic). Consider the two sets of samples {Z1, . . . , ZN} and

{Z$0(1), . . . , Z$0(N)} from Algorithm 4 where PX := PX,N and PY := PY,N can change arbitrary with N .
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Denote their random permutations by {Z$(1), . . . , Z$(N)} and {Z$($0(1)), . . . , Z$($0(N))}. Then, under the

assumption that m/N − ϑX = O(N−1/2), we have

NUCvM(Z$(1), . . . , Z$(N))−NUCvM(Z$($0(1)), . . . , Z$($0(N)))

p−→ 0.

(C.26)

The proof of the above lemma can be found in Section C.4.9 of this material. It is important to note

that the convergence result (C.26) holds for any sequence of underlying distributions PX,N and PY,N , which

should be clear from the proof of Lemma C.1.10. This means that the convergence result (C.26) is true

under both fixed and contiguous alternatives. For simplicity, let us write

UN,$ = NUCvM(Z$(1), . . . , Z$(N)),

UN,$ = NUCvM(Z$($0(1)), . . . , Z$($0(N))).

(C.27)

By letting $′ be an i.i.d. copy of $, we also denote by UN,$′ and UN,$′ the test statistics computed

similarly as UN,$ and UN,$, respectively, but replacing $ with $′. Now by invoking (i) Theorem 4.2, (ii)

Theorem C.1 and (iii) Hoeffding’s condition in Lemma C.1.4, we know that under the fixed alternative

(UN,$, UN,$′)
d−→ (U,U ′),

where U,U ′ are i.i.d. random variables from the Gaussian chaos distribution P
(mix)
CvM . By Slutsky’s theorem,

the convergence result (C.26) further implies that

(UN,$, UN,$′)
d−→ (U,U ′).

By applying Hoeffding’s condition in Lemma C.1.4 again, we know that the permutation distribution of

UN,$ converges to P
(mix)
CvM in probability. As in the main text, let q

(mix)
α,CvM be the upper 1 − α quantile of

P
(mix)
CvM . Then it follows that c∗α,CvM

p−→ q
(mix)
α,CvM (see, e.g. Lemma 11.2.1 of Lehmann and Romano, 2006)

and also cα,CvM
p−→ q

(mix)
α,CvM. Therefore the result follows under the fixed alternative.

Now it remains to prove the same statement under the contiguous alternative where PX = Pθ0 and

PY = Pθ0+bN−1/2 . Using the same argument as before, under the null where PX = PY = Pθ0 , it can

be seen that the permutation distribution of UN,$ converges to the Gaussian chaos distribution P
(single)
CvM in

probability. By the property of contiguity (e.g. Theorem 12.3.2 of Lehmann and Romano, 2006), the limiting

permutation distribution of UN,$ does not change under the contiguous alternative. Based on this result,
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observe that the reverse direction of Hoeffding’s condition in Lemma C.1.4 gives

(UN,$, UN,$′)
d−→ (U,U ′),

under the contiguous alternative where U,U ′ are i.i.d. random variables from P
(single)
CvM . Then, under the same

setting, Slutsky’s theorem together with Lemma C.1.10 yields

(UN,$, UN,$′)
d−→ (U,U ′).

In other words, the unconditional distribution of UN,$ has the same Gaussian chaos limit as the permutation

distribution of UN,$ under the contiguous alternative, that is to say P
(mix)
CvM = P

(single)
CvM . This completes the

proof of Theorem 4.5.

C.4.9 Proof of Lemma C.1.10

In this section, we prove Lemma C.1.10 that is key to the proof of Theorem 4.5. Using the result in

Lemma C.1.2, we work with the third-order kernel h?CvM in (C.9). First notice that the expectations

of both UCvM(Z$(1), . . . , Z$(N)) and UCvM(Z$($0(1)), . . . , Z$($0(N))) are zero. To see this, putting

E = {β, Z1, . . . , ZN , $(2), $(3), $(m+ 2)}, let us consider the conditional expectation given by

f(E) = E$(1),$(m+1)

[{
1(β>Z$(1) ≤ β>Z$(3))

− 1(β>Z$(m+1) ≤ β>Z$(3))
}∣∣ E].

By the linearity of expectation, it is clear to see that f(E) is zero for any E . As a result, the law of total

expectation gives

E
[
{1(β>Z$(1) ≤ β>Z$(3))− 1(β>Z$(m+1) ≤ β>Z$(3))}

× {1(β>Z$(2) ≤ β>Z$(3))− 1(β>Z$(m+2) ≤ β>Z$(3))}
]

= E
[
f(E)× {1(β>Z$(2) ≤ β>Z$(3))− 1(β>Z$(m+2) ≤ β>Z$(3))}

]
= 0.

By applying the same logic to the other terms, it can be seen that the expectations of both test statistics

are zero.
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Let us recall the notation UN,$ and UN,$ from (C.27). Based on the previous observation, it suffices to

prove that the expected value of the squared difference between UN,$ and UN,$ converges to zero as

E
[
(UN,$ − UN,$)2

]
= o(1). (C.28)

If this is the case, then Chebyshev’s inequality guarantees the convergence result (C.26) and completes the

proof.

For simplicity, write

d?$(i1, i2, i3; j1, j2, j3)

= h?CvM

(
Z$(i1), Z$(i2), Z$(i3);Z$(j1+m), Z$(j2+m), Z$(j3+m)

)
−h?CvM

(
Z$($0(i1)), Z$($0(i2)), Z$($0(i3));

Z$($0(j1+m)), Z$($0(j2+m)), Z$($0(j3+m))

)
.

Then the squared difference can be written as

(UN,$ − UN,$)2 =
N2

(m)2
3(n)2

3

×

m,6=∑
i1,i2,i3=1

n,6=∑
j1,j2,j3=1

m, 6=∑
i′1,i
′
2,i
′
3=1

n,6=∑
j′1,j
′
2,j
′
3=1

d?$(i1, i2, i3; j1, j2, j3)d?$(i′1, i
′
2, i
′
3; j′1, j

′
2, j
′
3).

Further write

I3 = {i1, i2, i3} ∩ {i′1, i′2, i′3} and J3 = {j1, j2, j3} ∩ {j′1, j′2, j′3}. (C.29)

We analyze the expected value of the summand depending on the cardinality of I3 and J3. First

consider the cases where #|I3| + #|J3| ≤ 1. By the law of total expectation and putting E ′ =

{β, Z1, . . . , ZN , Z1, . . . , ZN}, it can be shown that

E [d?$(i1, i2, i3; j1, j2, j3)d?$(i′1, i
′
2, i
′
3; j′1, j

′
2, j
′
3)|E ′] = 0,

Thus the unconditional expectation is also zero in these cases.

Next consider the cases where #|I3|+ #|J3| = 2. More specifically, we split the cases into

• Ca = {i1, . . . , i′3, j1, . . . , j′3 : #|I3| = 2 and #|J3| = 0},
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• Cb = {i1, . . . , i′3, j1, . . . , j′3 : #|I3| = 0 and #|J3| = 2},

• Cc = {i1, . . . , i′3, j1, . . . , j′3 : #|I3| = 1 and #|J3| = 1}.

Suppose there are B1 different observations between

{Z$(1), . . . , Z$(m)} and {Z$($0(1)), . . . , Z$($0(m))}

and B2 different observations between

{Z$(m+1), . . . , Z$(m+n)} and {Z$($0(m+1)), . . . , Z$($0(m+n))}.

Hence, we have D = B1 + B2 different observations in total between the original samples and the coupled

samples. In these cases, it can be seen that

#|Ca| . B1m
3n6 +B2m

4n5,

#|Cb| . B1m
5n4 +B2m

6n3,

#|Cc| . B1m
4n5 +B2m

5n4.

Also note that the number of the other cases such that #|I3| + #|J3| > 2 are at most O(N9). Combining

the previous observations together with the boundedness of the kernel d?$ yields

E
[
(UN,$ − UN,$)2

]
. E[D/N ].

On the other hand, under the assumption that m/N−ϑX = O(N−1/2), we have E[D] = O(
√
N) (e.g. Chung

and Romano, 2013), which in turn gives

E
[
(UN,$ − UN,$)2

]
= O

(
1√
N

)
= o(1).

This completes the proof of Lemma C.1.10.

C.4.10 Proof of Theorem 4.6

The type I error control of the oracle test and the permutation test are obvious and well-known (Chapter 15

of Lehmann and Romano, 2006). Hence we focus on the asymptotic power of the tests. When PX and PY

are fixed, it is not difficult to show that all the tests have asymptotic power equal to one; hence the result
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follows. In fact, we can prove a stronger result that even if the CvM-distance between PX and PY shrinks

to zero as the sample size increases, the given tests can be consistent (see, e.g., Theorem 5.5).

Next turning to the contiguous alternative where PX = Pθ0 and PY = Pθ0+bN−1/2 , let us recall that

q
(single)
α,CvM and q

(mix)
α,CvM are the 1 − α quantiles of P

(single)
CvM or P

(mix)
CvM , respectively. Then as we proved in

Theorem 4.5, we have that

cα,CvM
p−→ q

(mix)
α,CvM = q

(single)
α,CvM and c∗α,CvM

p−→ q
(mix)
α,CvM = q

(single)
α,CvM ,

under the contiguous alternative. Then the result follows by Theorem 4.4 and Slutsky’s theorem.

C.4.11 Proof of Theorem 4.7

The outline of the proof of Theorem 4.7 is as follows. We start by presenting two lemmas where we bound the

variance of UCvM (Lemma C.1.11) and study the two moments of UCvM under permutations (Lemma C.1.12).

Based on these two lemmas, we first prove the statement on the CvM test, i.e. limm,n→∞ infGN E1 [φCvM] = 1.

We then turn to the energy test and show that limm,n→∞ infGN E1 [φEnergy] ≤ α. Before we start, we present

one remark.

Remark C.2. From the integral representations in (4.3) and (4.4) of the main text, it is seen that

Ed(PX,N , PY,N ) = (1−ε)Ed(QX , QY ) and Wd(PX,N , PY,N ) ≥ (1−ε)Wd(QX , QY ), which are positive provided

that QX 6= QY . This explains that the poor performance of the energy test is not because of lack of signal in

the contamination model but because of non-robustness of the energy test statistic.

Lemma C.1.11 (Variance of UCvM). Consider the CvM-statistic in (4.7). Then there exist universal

constants C1, C2, C3, C4 > 0 such that

Var [UCvM] ≤ C1E [UCvM]

(
1

m
+

1

n

)
+
C2

m2
+
C3

n2
+
C4

mn
.

Proof. For this proof, it is more convenient to work with the third-order kernel given in (C.9). Let h̃?CvM be

the symmetrized kernel of h?CvM in the sense of (C.2) and define h̃?CvM,c,d in the sense of (C.4) for 0 ≤ c, d,≤ 3.

Further denote the variance of h̃?CvM,c,d by σ2
c,d as in (C.6). Then the variance of UCvM can be written as

(Lemma C.1.3)

Var (UCvM) =

3∑
c=0

3∑
d=0

(
3
c

)(
3
d

)(
m−3
3−c
)(
n−3
3−d
)(

m
3

)(
n
3

) σ2
c,d. (C.30)
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First we bound σ2
1,0. After applying the law of total expectation repeatedly, we can obtain that

h̃?CvM,1,0(x1)− E[h̃?CvM,1,0(x1)]

= E
[{
1(β>x1 ≤ β>X)− Fβ>X(β>X)

}
·
{
Fβ>Y (β>X)− Fβ>X(β>X)

}]
+ E

[{
1(β>x1 ≤ β>Y )− Fβ>X(β>Y )

}
·
{
Fβ>Y (β>Y )− Fβ>X(β>Y )

}]
+

1

2
E
[{
Fβ>X(β>x1)− Fβ>Y (β>x1)

}2]
− 1

2
E
[{
Fβ>X(β>X)− Fβ>Y (β>X)

}2]
= f1(x1) + f2(x1) + f3(x1) (say).

Using the basic inequality {f1(x1) + f2(x1) + f3(x1)}2 ≤ 3f2
1 (x1) + 3f2

2 (x1) + 3f2
3 (x1), we have

σ2
1,0 = E

[{
h̃?CvM,1,0(X)− E[h̃?CvM,1,0(X)]

}2]
≤ 3E

[
f2

1 (X)
]

+ 3E
[
f2

2 (X)
]

+ 3E
[
f2

3 (X)
]
.

By applying Cauchy-Schwarz inequality, the first two terms are bounded by

E
[
f2

1 (X)
]
≤ E

[{
Fβ>X(β>X)− Fβ>Y (β>X)

}2]
and

E
[
f2

2 (X)
]
≤ E

[{
Fβ>X(β>Y )− Fβ>Y (β>Y )

}2]
.

Since 0 ≤ E
[{
Fβ>X(β>x1)− Fβ>Y (β>x1)

}2] ≤ 1 for all x1 ∈ Rd, the third term is also bounded by

E
[
f2

3 (X)
]
≤ 1

4
E
[{

E
[{
Fβ>X(β>X)− Fβ>Y (β>X)

}2]}2]
≤ 1

4
E
[{
Fβ>X(β>X)− Fβ>Y (β>X)

}2]
.

Thus the following fact (see Theorem 4.1 of the main text)

E[UCvM] =
1

2
E
[{
Fβ>X(β>X)− Fβ>Y (β>X)

}2]
+

1

2
E
[{
Fβ>X(β>Y )− Fβ>Y (β>Y )

}2]
,

leads to σ2
1,0 . E[UCvM]. Similarly we have σ2

0,1 . E[UCvM]. The rest of σ2
c,d can be uniformly bounded due

to the boundedness of h̃?CvM. Hence the result follows.
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Lemma C.1.12 (Two moments under permutations). The first and second moments of UCvM under

permutations are

E$ [UCvM] = 0 and E$
[
U2

CvM

]
≤ C

(
1

m
+

1

n

)2

,

where C is a universal constant.

Proof. Working directly with the kernel hCvM is less intuitive to understand the moments of UCvM under

permutations. So we consider the third-order kernel h?CvM in (C.9). Then from Lemma C.1.2, we have

UCvM =
1

(m)3(n)3

m, 6=∑
i1,i2,i3=1

n,6=∑
j1,j2,j3=1

h?CvM(Xi1 , Xi2 , Xi3 ;Yj1 , Yj2 , Yj3).

1. First moment

Let {Z1, . . . , Zm+n} = {X1, . . . , Xm, Y1, . . . , Yn} be the pooled samples. Then the first moment of UCvM

becomes

E$ [UCvM] = E$
[
h?CvM(Z$(1), Z$(2), Z$(3);Z$(m+1), Z$(m+2), Z$(m+3))

]
.

Notice that h?CvM(x1, x2, x3; y1, y2, y3) = −h?CvM(y1, x2, x3;x1, y2, y3). This observation shows that the

conditional expectation of h?CvM given a subset of permutations P$,4 = {$(2), $(3), $(m + 2), $(m + 3)}
becomes zero, i.e.

E$(1),$(m+1)

[
h?CvM

(
Z$(1), Z$(2), Z$(3);

Z$(m+1), Z$(m+2), Z$(m+3)

)∣∣P$,4] = 0,

for all P$,4. Hence, E$ [UCvM] = 0 by the law of total expectation.

2. Second moment

Next we calculate the second moment of UCvM under permutations where

U2
CvM =

1

(m)2
3(n)2

3

×

m, 6=∑
i1,i2,i3=1

n,6=∑
j1,j2,j3=1

m,6=∑
i′1,i
′
2,i
′
3=1

n,6=∑
j′1,j
′
2,j
′
3=1

{
h?CvM(Zi1 , Zi2 , Zi3 ;Zj1+m, Zj2+m, Zj3+m)

× h?CvM(Zi′1 , Zi′2 , Zi′3 ;Zj′1+m, Zj′2+m, Zj′3+m)
}
.
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Recall the definition of I3 and J3 given in (C.29). When #|I3| + #|J3| ≤ 1, we apply the law of total

expectation as in the proof of Lemma (C.1.10) to show that

E$
[
h?CvM(Z$(i1), Z$(i2), Z$(i3);Z$(j1+m), Z$(j2+m), Z$(j3+m))

× h?CvM(Z$(i′1), Z$(i′2), Z$(i′3);Z$(j′1+m), Z$(j′2+m), Z$(j′3+m))
]

= 0.

(C.31)

If #|I3|+ #|J3| > 1, we use the fact that the kernel h?CvM is bounded by one in absolute value to have

∣∣E$[h?CvM(Z$(i1), Z$(i2), Z$(i3);Z$(j1+m), Z$(j2+m), Z$(j3+m))

× h?CvM(Z$(i′1), Z$(i′2), Z$(i′3);Z$(j′1+m), Z$(j′2+m), Z$(j′3+m))
]∣∣ ≤ 1.

Based on the previous observations and the fact that the size of the cases where #|I3| + #|J3| > 1 is at

most
∏4
i=0(m− i)×∏6

j=0(n− j) +
∏5
i=0(m− i)×∏5

j=0(n− j) +
∏6
i=0(m− i)×∏4

j=0(n− j) up to scaling

factors, we conclude that

E$
[
U2

CvM

]
≤ C

(
1

m
+

1

n

)2

as desired.

Having established Lemma C.1.11 and Lemma C.1.12, we are now ready to prove that the CvM test is

consistent under the contamination model.

1. Multivariate CvM-statistic

Note that since we assume that QX 6= QY , there exists a positive constant δ1 such that Wd(PX,N , PY,N ) ≥
(1− ε)Wd(QX , QY ) ≥ δ1. Thus E[UCvM] ≥ δ2

1 . We first upper bound the type II error as

P1 (UCvM ≤ cα,CvM) = P1

(
UCvM ≤ cα,CvM, cα,CvM > δ2

1/2
)

+ P1

(
UCvM ≤ cα,CvM, cα,CvM ≤ δ2

1/2
)

≤ P1

(
cα,CvM > δ2

1/2
)

+ P1

(
UCvM ≤ δ2

1/2
)

= (I) + (II) (say).

For (I), Lemma C.1.12 and Chebyshev’s inequality yield

P$ (UCvM ≥ t) ≤
Var$(UCvM)

t2
≤ C0

t2
·
(

1

m
+

1

n

)2
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where C0 is some universal constant. This shows that the critical value of the permutation test is uniformly

bounded by

cα,CvM ≤
√
C0

α

(
1

m
+

1

n

)
.

Hence, we can bound (I) by

(I) = P1

(
cα,CvM > δ2

1/2
)
≤ 4

δ4
1

E1

[
c2α,CvM

]
≤ 4C0

αδ4
1

(
1

m
+

1

n

)2

.

Next,

(II) = P1

(
UCvM ≤ δ2

1/2
)

= P1

(
UCvM − E1[UCvM]√

Var1(UCvM)
≤ δ2

1/2− E1[UCvM]√
Var1(UCvM)

)

(i)

≤ P1

(
UCvM − E1[UCvM]√

Var1(UCvM)
≤ −δ2

1/2√
Var1(UCvM)

)

= P1

(
−UCvM + E1[UCvM]√

Var1(UCvM)
≥ δ2

1/2√
Var1(UCvM)

)
(ii)

≤ 4Var1(UCvM)

δ4
1

(iii)

≤ C1

δ2
1

(
1

m
+

1

n

)
+
C2

δ4
1

(
1

m
+

1

n

)2

where (i) uses E[UCvM] ≥ δ2
1 , (ii) is by Chebyshev’s inequality and (iii) uses Lemma C.1.11 with universal

constants C1 and C2. In the end, we have

lim
m,n→∞

inf
GN

E1[φCvM] ≥ 1− lim
m,n→∞

inf
GN

{
4C0

αδ4
1

(
1

m
+

1

n

)2

+
C1

δ2
1

(
1

m
+

1

n

)

+
C2

δ4
1

(
1

m
+

1

n

)2
}

= 1,

which completes the proof of the first part.

2. Energy statistic

Assume that GN is a multivariate normal distribution with zero mean vector and covariance matrix σ2
NId

where σ2
N ∈ R is a positive sequence that tends to infinity as N →∞. Let us define the truncated random
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vectors X̃ and Ỹ coupled with X and Y as

X̃ =

(0, . . . , 0)>, if X ∼ QX ,

X/σN , if X ∼ GN ,
andỸ =

(0, . . . , 0)>, if Y ∼ QY ,

Y/σN , if Y ∼ GN .

By construction, it is clear that X̃ and Ỹ have the same mixture distribution as

X̃, Ỹ ∼ P̃ := (1− ε)Qδ0 + εG̃,

whereQδ0 is the degenerate distribution at (0, . . . , 0)> and G̃ is the standard multivariate normal distribution,

i.e. N((0, . . . , 0)>, Id). Now we consider the two energy statistics: one based on the original samples and the

other based on the corresponding truncated samples. Denote these two statistics by UEnergy and ŨEnergy,

respectively. We shall first show that the energy statistic based on the original samples and the other energy

statistic based on the truncated samples are asymptotically equivalent.

Lemma C.1.13. Suppose σ2
N � Nq for some q > 2. Let ŨEnergy be the energy statistic based on

{X̃1, . . . , X̃m, Ỹ1, . . . , Ỹn} coupled with the original samples {X1, . . . , Xm, Y1, . . . , Yn} and UEnergy be the

energy statistic based on the original samples. Then under the asymptotic regime in (4.5),

Nσ−1
N UEnergy −NŨEnergy

p−→ 0.

Proof. Let us denote

∆m,n(X1, X2) = σ−1
N ‖X1 −X2‖ − ‖X̃1 − X̃2‖.

Observe that there are four possible cases for ∆m,n(X1, X2):

∆m,n(X1, X2) =



Case (a): 1
σN
‖X1 −X2‖, if X1, X2 ∼ QX ,

Case (b): 1
σN
‖X1 −X2‖ − 1

σN
‖X2‖, if X1 ∼ QX , X2 ∼ GN ,

Case (c): 1
σN
‖X1 −X2‖ − 1

σN
‖X1‖, if X1 ∼ GN , X2 ∼ QX ,

Case (d): 0, if X1, X2 ∼ Hm.

In any case, one can verify under the finite second moment condition that

E
[
∆2
m,n(X1, X2)

]
. σ−2

N . (C.32)

Similarly, it can be seen that E
[
∆2
m,n(X1, X2)

]
. σ−2

N , E
[
∆2
m,n(Y1, Y2)

]
. σ−2

N and E
[
∆2
m,n(X1, Y1)

]
. σ−2

N .
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Let us write the symmetrized kernel of the energy statistic as

h̃Energy(x1, x2; y1, y2) =
1

2
‖x1 − y1‖+

1

2
‖x1 − y1‖+

1

2
‖x2 − y1‖

+
1

2
‖x2 − y2‖ − ‖x1 − x2‖ − ‖y1 − y2‖.

Then the energy statistic based on the truncated random samples can be written as

ŨEnergy =
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

h̃Energy(X̃i1 , X̃i2 ; Ỹj1 , Ỹj2).

By letting

hD{(Xi1 , X̃i1), (Xi2 , X̃i2); (Yj1 , Ỹj1), (Yj2 , Ỹj2)}

:=
1

σN
h̃Energy(Xi1 , Xi2 ;Yj1 , Yj2)− h̃Energy(X̃i1 , X̃i2 ; Ỹj1 , Ỹj2),

(C.33)

the difference between the two energy statistics is

N
(
σ−1
N UEnergy − ŨEnergy

)
=

N

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

hD{(Xi1 , X̃i1), (Xi2 , X̃i2); (Yj1 , Ỹj1), (Yj2 , Ỹj2)}.

For simplicity we further write

hD(i1, i2; j1, j2) = hD{(Xi1 , X̃i1), (Xi2 , X̃i2); (Yj1 , Ỹj1), (Yj2 , Ỹj2)}.

To show N
(
σ−1
N UEnergy− ŨEnergy

) p−→ 0, we shall prove that the second moment of the difference converges

to zero. To this end, we first apply Cauchy-Schwarz inequality to bound

E
[
hD(i1, i2; j1, j2)hD(i′1, i

′
2; j′1, j

′
2)
]

≤
√

E
[
h2
D(i1, i2; j1, j2)

]√
E
[
h2
D(i′1, i

′
2; j′1, j

′
2)
]
,

. σ−2
N ,

which holds for any set of indices such that i1 6= i2, j1 6= j2, i
′
1 6= i′2, j

′
1 6= j′2. Note that for the second

inequality, we used

E
[
h2
D(i1, i2; j1, j2))

]
. E[∆2

m,n(Xi1 , Xi2)] + E[∆2
m,n(Xi1 , Yj1)]
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+ E[∆2
m,n(Xi1 , Yj2)] + E[∆2

m,n(Xi2 , Yi1)]

+ E[∆2
m,n(Xi2 , Yj2)] + E[∆2

m,n(Yj1 , Yj2)],

. σ−2
N ,

by the bound (C.32) and similarly for the other cases. As a consequence,

E
[
N2
(
σ−1
N UEnergy − ŨEnergy

)2 ]
. σ−2

N N2.

Under the given assumptions that σ2
N � (m + n)q with q > 2 and m/N → ϑX ∈ (0, 1), we obtain

N(σ−1
N UEnergy − ŨEnergy)

p−→ 0 as desired.

Since ŨEnergy has degeneracy of order one, NŨEnergy converges to an infinite weighted sum of chi-square

random variables (Theorem 4.2):

NŨEnergy
d−→

∞∑
k=1

λk(ξ2
k − 1),

for some {λk}∞k=1. Lemma C.1.13 then implies that NUEnergy/σN converges to the same distribution:

N

σN
UEnergy

d−→
∞∑
k=1

λk(ξ2
k − 1).

Furthermore, the permutation distribution of Nσ−1
N UEnergy is asymptotically equivalent to the limiting

distribution of NŨEnergy as shown in the next lemma.

Lemma C.1.14. Consider the same assumptions and notation used in Lemma C.1.13. Let R(t) be the

cumulative distribution function of the limiting distribution of NŨEnergy. Then the permutation distribution

function of Nσ−1
N UEnergy, denoted by R̂m,n(t), satisfies

sup
t∈R

∣∣∣R̂m,n(t)−R(t)
∣∣∣ p−→ 0. (C.34)

Proof. Recall that {Z1, . . . , Zm+n} are the pooled samples of the original observations and we denote similarly

by {Z̃1, . . . , Z̃m+n} the pooled samples of {X̃1, . . . , X̃m, Ỹ1, . . . , Ỹn}. For any random permutation $ =

{$(1), . . . , $(N)} of {1, . . . , N}, we will show that

Nσ−1
N UEnergy(Z$)−NŨEnergy(Z̃$)

p−→ 0, (C.35)
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where Z$ = (Z$(1), . . . , Z$(N)) and Z̃$ = (Z̃$(1), . . . , Z̃$(N)). If this is the case, then for two independent

$ and $′, the following result

(NŨEnergy(Z̃$), NŨEnergy(Z̃$′))
d−→ (U,U ′) (C.36)

implies

(Nσ−1
N UEnergy(Z$), Nσ−1

N UEnergy(Z$′))
d−→ (U,U ′),

by Slutsky’s theorem. Here U and U ′ are independent and identically distributed with the distribution

function R(t). Then Hoeffding’s condition in Lemma C.1.4 establishes the convergence result (C.34). Indeed,

(C.36) holds from Theorem C.1; hence it is enough to show (C.35) to complete the proof.

Note that

Nσ−1
N UEnergy(Z$)−NŨEnergy(Z̃$)

=
N

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

hD

{
(Z$(i1), Z̃$(i1)), (Z$(i2), Z̃$(i2));

(Z$(j1+m), Z̃$(j1+m)), (Z$(j2+m), Z̃$(j2+m))
}
,

where kernel hD is given in (C.33). Note further by (C.32) that

E
[
h2
D

{
(Z$(i1), Z̃$(i1)), (Z$(i2), Z̃$(i2));

(Z$(j1+m), Z̃$(j1+m)), (Z$(j2+m), Z̃$(j2+m))
}]

. E
[
∆2
m,n(Z$(i1), Z$(i2))

]
+ E

[
∆2
m,n(Z$(i1), Z$(j1+m))

]
+ E

[
∆2
m,n(Z$(i1), Z$(j2+m))

]
+ E

[
∆2
m,n(Z$(i2), Z$(j1+m))

]
+ E

[
∆2
m,n(Z$(i2), Z$(j2+m))

]
+ E

[
∆2
m,n(Z$(j1+m), Z$(j2+m))

]
. σ−2

N

and similarly for the other cases. Then it is easy to see that

E
[(
Nσ−1

N UEnergy(Z$)−NŨEnergy(Z̃$)
)2]

. σ−2
N N2 = o(1),

whenever σ2
N � Nq for some q > 2. This implies (C.35), which completes the proof.
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Combining the previous results yields

lim
N→∞

P (UEnergy > cα,Energy) = lim
N→∞

P
(
Nσ−1

N UEnergy > Nσ−1
N cα,Energy

)
= lim

N→∞
P
(
NŨEnergy > c̃α,Energy

)
≤ α,

where c̃α,Energy is the (1−α) quantile of the permutation distribution of NŨEnergy. Hence the result follows.

C.4.12 Proof of Theorem 4.8

The minimax lower bound is based on a standard application of Neyman–Pearson lemma (see e.g. Baraud,

2002). Here we write the joint distributions of samples under the null and alternative hypotheses by Pm,n0

and Pm,n1 , respectively. Then

inf
φ∈Tm,n(α)

sup
PX ,PY ∈F(ε?m,n)

P1 (φ = 0) ≥ 1− α− sup
A∈A

∣∣Pm,n0 (A)− Pm,n1 (A)
∣∣

≥ 1− α−
√

1

2
KL (Pm,n1 , Pm,n0 ), (C.37)

where the second inequality is by Pinsker’s inequality (e.g. Lemma 2.5 of Tsybakov, 2009).

Recall the example considered in Lemma C.1.7:

X∗ := (ξ1, 0, . . . , 0)> and Y ∗ := (ξ2, 0, . . . , 0)>,

where ξ1 ∼ N(µX∗ , 1) and ξ2 ∼ N(µY ∗ , 1). We let µX∗ = µY ∗ = 0 under the null and

µX∗ =

√
2(1− α− ζ)√

m
and µY ∗ = −

√
2(1− α− ζ)√

n
,

under the alternative. Then from Lemma C.1.7, we have PX∗ , PY ∗ ∈ F(ε∗m,n) for all d. In this case, the

Kullback-Leibler divergence is calculated as

KL (Pm,n1 , Pm,n0 ) =
m

2
µ2
X∗ +

n

2
µ2
Y ∗ = 2(1− α− ζ)2.

By plugging this into (C.37), we conclude that

inf
φ∈Tm,n(α)

sup
PX ,PY ∈F(ε?m,n)

P1 (φ = 0) ≥ ζ.

Hence the result follows.
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C.4.13 Proof of Theorem 5.5

Note that the permutation critical value cα,CvM is a random quantity depending on Xm and Yn. To control

the randomness from cα,CvM, we use a similar idea in Fromont et al. (2013) (see also Albert, 2015) where

they considered the quantile of a permutation critical value. Specifically, let c∗ζ/2 be the upper ζ/2 quantile

of the distribution of cα,CvM, and let Var1 be the variance under H1. Then it suffices to show that

E1 [UCvM] ≥ c∗ζ/2 +

√
2

ζ
Var1(UCvM) (C.38)

uniformly over PX , PY ∈ F(ε?m,n) by choosing a sufficiently large c. In detail, we have

P1 (UCvM < cα,CvM)

= P1

(
UCvM < cα,CvM, cα,CvM > c∗ζ/2

)
+ P1

(
UCvM < cα,CvM, cα,CvM ≤ c∗ζ/2

)
≤ P1

(
cα,CvM > c∗ζ/2

)
+ P1

(
UCvM ≤ c∗ζ/2

)
≤ ζ

2
+ P1

(
UCvM ≤ c∗ζ/2

)
,

where the second inequality is by the definition of c∗ζ/2. To control the second term, we apply Chebyshev’s

inequality

P1

(
UCvM ≤ c∗ζ/2

)
= P1

(
UCvM − E1 [UCvM]√

Var1 (UCvM)
≤
c∗ζ/2 − E1 [UCvM]√

Var1(UCvM)

)

= P1

(
−UCvM + E1 [UCvM]√

Var1 (UCvM)
≥

E1 [UCvM]− c∗ζ/2√
Var1(UCvM)

)

≤ Var1 (UCvM)(
E1 [UCvM]− c∗ζ/2

)2

≤ ζ

2
,

where the last inequality uses (C.38). To finish the proof, we only need to verify the condition in (C.38).

Using Chebyshev’s inequality and Lemma C.1.12,

P$ (UCvM ≥ t) ≤
E$[U2

CvM]

t2
≤ C0

t2

(
1

m
+

1

n

)2

.
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As a result, the permutation critical value cα,CvM is upper bounded by
√
C0/α(1/m+ 1/n) with probability

one. This implies that its ζ/2 upper quantile c∗ζ/2 is also bounded by

c∗ζ/2 ≤
√
C0

α

(
1√
m

+
1√
n

)2

.

From Lemma C.1.11, we have

√
ζ

2
Var1 [UCvM] ≤

√√√√ζ

2
·
{
C1E1 [UCvM] ·

(
1

m
+

1

n

)
+
C2

m2
+
C3

n2
+
C4

mn

}

≤ C5

(
1√
m

+
1√
n

)2

.

By choosing a sufficiently large c > 0 in (4.15), we conclude that

E1[UCvM] ≥ c∗ζ/2 +

√
ζ

2
Var1 [UCvM].

This completes the proof of Theorem 5.5.

C.4.14 Proof of Proposition 4.1

Consider PX,N = (1 − ε)QX + εGN , PY,N = (1 − ε)QY + εGN in (4.11) where QX and QY are fixed but

QX 6= QY and they have their finite second moments. Then as noted in Remark C.2, there exists a constant

δ > 0 such that Wd(PX,N , PY,N ) > δ. In other words, PX,N , PY,N ∈ F(ε?m,n). Then the result follows by

Theorem 4.7.

C.4.15 Proof of Theorem 4.10

The proof consists of two parts. In the first part, we will present some lemmas, which investigate the limiting

behavior of h̃CvM under the HDLSS setting, and in part two, we will prove the main result.

• Part 1.

First define the five quantities

Q1 :=
1

3
− 1

2π
arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)
− 1

2π
arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)
,
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Q2 :=
1

3
− 1

2π
arccos

(
σ2
X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)

− 1

2π
arccos

(
σ2
Y

(2σ2
Y )1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)
,

Q3 :=
1

3
− 1

4π

[
arccos

(
1

2

)
+ arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)

+ 2arccos

(
σ2
X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)]
,

Q4 :=
1

3
− 1

4π

[
arccos

(
1

2

)
+ arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)

+ 2arccos

(
σ2
Y

(2σ2
Y )1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)]
,

Q5 := 0.

Then by the weak law of large number and the continuous mapping theorem under (A1) and (A2), it is

not difficult to see that for any distinct indices 1 ≤ i1, i2, i3, i4 ≤ m and 1 ≤ j1, j2, j3, i4 ≤ n,

h̃CvM(Xi1 , Xi2 ;Yj1 , Yj2) = h̃CvM(Yj1 , Yj2 ;Xi1 , Xi2)
p−→ Q1,

h̃CvM(Xi1 , Yj1 ;Xi2 , Yj2) = h̃CvM(Yj1 , Xi1 ;Yj2 , Xi2)
p−→ Q2.

Similarly,

h̃CvM(Xi1 , Xi2 ;Xi3 , Yj1) = h̃CvM(Xi1 , Xi2 ;Yj1 , Xi3)

= h̃CvM(Xi3 , Yj1 ;Xi1 , Xi2) = h̃CvM(Yj1 , Xi3 ;Xi1 , Xi2)
p−→ Q3,

and

h̃CvM(Yj1 , Yj2 ;Yj3 , Xi1) = h̃CvM(Yj1 , Yj2 ;Xi1 , Yj3)

= h̃CvM(Yj3 , Xi1 ;Yj1 , Yj2) = h̃CvM(Xi1 , Yj3 ;Yj1 , Yj2)
p−→ Q4.
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When all components are from the same distribution, then

h̃CvM(Xi1 , Xi2 ;Xi3 , Xi4)
p−→ Q5 = 0 and

h̃CvM(Yj1 , Yj2 ;Yj3 , Yj4)
p−→ Q5 = 0.

In the next lemmas, we show that Q1 is strictly greater than any of Q2, Q3, Q4 and Q5 whenever δ
2

XY > 0

or σ2
X 6= σ2

Y . In addition they all become equivalent to each other only when δ
2

XY = 0 and σ2
X = σ2

Y . We

start by proving that the inverse cosine function is concave on x ∈ [0, 1].

Lemma C.1.15. The inverse cosine function is concave on x ∈ [0, 1].

Proof. The result follows by observing that

d

dx
arccos(x) = − 1√

1− x2
and

d2

dx2
arccos(x) = − x

(1− x2)3/2
.

Lemma C.1.16. Assume (A1) and (A2) hold. Then we have Q1 ≥ Q2 and the equality holds if and only

if δ
2

XY = 0 or σ2
X = σ2

Y .

Proof. From Lemma C.1.15, the inverse cosine function is concave on x ∈ [0, 1]. So we apply reverse Jensen’s

inequality to have

arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)
+ arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)

≤ 2arccos

(
2δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )

)
.

Then it is enough to show that

2arccos

(
2δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )

)
≤ arccos

(
σ2
X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)
(C.39)

+ arccos

(
σ2
Y

(2σ2
Y )1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)
.
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Before we proceed, we introduce the following quantities to simplify the expressions.

TXY =
2δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )
,

TX =
σ2
X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2
,

TY =
σ2
Y

(2σ2
Y )1/2(δ

2

XY + σ2
X + σ2

Y )1/2
,

and

T1 = δ
2

XY (σ2
X + 2σ2

Y + 2δ
2

XY )1/2{2σ2
X + σ2

Y + 2δ
2

XY }1/2,

T2 = δ
2

XY (2δ
2

XY − σXσY ),

T3 = (σ2
X + σ2

Y )(σ2
X + 2σ2

Y + 2δ
2

XY )1/2(2σ2
X + σ2

Y + 2δ
2

XY )1/2,

T4 = − (σ2
X + σ2

Y )(σ2
X + σ2

Y + σXσY ).

Based on the monotonicity of the inverse cosine function and the basic identity

arccos(x) + arccos(y) = arccos
(
xy −

√
1− x2

√
1− y2

)
for 0 ≤ x, y ≤ 1,

it can be seen that proving the inequality (C.39) is equivalent to proving

2T 2
XY − 1 ≥ TXTY − (1− T 2

X)1/2(1− T 2
Y )1/2. (C.40)

After rearrangement, it can be further seen that the inequality (C.40) is equivalent to

T1 + T2 + T3 + T4 ≥ 0. (C.41)

The inequality (C.41) is indeed true and the equality holds only when δXY = 0 and σ2
X = σ2

Y since

T1 + T2 ≥ 0 if and only if

δ
4

XY {(6σ2
X + 4σXσY + 6σ2

Y )δ
2

XY + 2(σ2
X + σ2

Y )2} ≥ 0,

and

T3 + T4 ≥ 0 if and only if
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(σ2
X + σ2

Y )(σX − σY )2 + 2δ
2

XY (2σ2
X + σ2

Y ) + 2δ
2

XY (σ2
X + 2σ2

Y ) ≥ 0.

This completes the proof.

Lemma C.1.17. Assume (A1) and (A2) hold. Then we have Q1 ≥ Q3 and the equality holds if and only

if δ
2

XY = 0 or σ2
X = σ2

Y .

Proof. Using reverse Jensen’s inequality, we have

arccos

(
1

2

)
≥ 1

2
arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)
+

1

2
arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)
,

where the equality holds only when δXY = 0 and σ2
X = σ2

Y . Then it is enough to verify that

arccos

(
σ2
X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2

)

≥ 3

4
arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)
+

1

4
arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)
.

(C.42)

By applying reverse Jensen’s inequality and by the monotonicity of the inverse cosine function, it is seen

that the following statement

4δ
2

XY + 3σ2
X + σ2

Y

4(δ
2

XY + σ2
X + σ2

Y )
≥ σ2

X

(2σ2
X)1/2(δ

2

XY + σ2
X + σ2

Y )1/2
(C.43)

implies (C.42). Since (C.43) is true if and only if

16δ
4

XY + 16δ
2

XY σ
2
X + 8δ

2

XY σ
2
Y + (σ2

X − σ2
Y )2 ≥ 0 (C.44)

and the equality of (C.44) holds only if δXY = 0 and σ2
X = σ2

Y , the result follows.

Lemma C.1.18. Assume (A1) and (A2) hold. Then we have Q1 ≥ Q4 and the equality holds if and only

if δ
2

XY = 0 or σ2
X = σ2

Y .

Proof. The proof is similar to that of Lemma C.1.17. Hence we omit the proof.

Lemma C.1.19. Assume (A1) and (A2) hold. Then we have Q1 ≥ Q5 and the equality holds if and only

if δ
2

XY = 0 or σ2
X = σ2

Y .
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Proof. Using reverse Jensen’s inequality, we see that

1

π
arccos

(
2δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )

)

≥ 1

2π
arccos

(
δ

2

XY + σ2
X

δ
2

XY + σ2
X + σ2

Y

)
+

1

2π
arccos

(
δ

2

XY + σ2
Y

δ
2

XY + σ2
X + σ2

Y

)
.

In addition, the inverse cosine function is monotone decreasing. So

1

π
arccos

(
2δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )

)
≤ 1

π
arccos

(
δ

2

XY + σ2
X + σ2

Y

2(δ
2

XY + σ2
X + σ2

Y )

)
=

1

3
,

where the last step uses

1

π
arccos

(
1

2

)
=

1

3
.

Notice that the first inequality becomes the equality only when σ2
X = σ2

Y . The second inequality becomes

the equality only when δ
2

XY = 0. This proves the result.

Combining the previous lemmas, we give a summary:

Lemma C.1.20. Assume (A1) and (A2) hold. Then we have

Q1 ≥ max{Q2, Q3, Q4, Q5}

and the equality holds as Q1 = Q2 = Q3 = Q4 = Q5 if and only if δ
2

XY = 0 or σ2
X = σ2

Y .

• Part 2.

In this part, we prove Theorem 4.10. Notice that UCvM is a linear combination of kernel h̃CvM evaluated on

different samples. Hence from the previous observation made in Part 1, it is seen that

UCvM
p−→ Q1 under H1.

For a given permutation $ of {1, . . . , N}, let us denote by U$CvM, the U -statistic computed based on

{Z$(1), . . . , Z$(N)}, i.e. UCvM(Z$(1), . . . , Z$(N)). Let $0 = {1, . . . , N} be the original permutation.

Then U$0

CvM becomes UCvM(Z1, . . . , ZN ) computed based on the original samples. Let us define that the

permutation $ is a neighbor of $0 if #|{$(1), . . . , $(m)} ∩ {1, . . . ,m}| = m.
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We first consider the unbalanced case where m 6= n. Observe that U$CvM converges to Q$, which is a

weighted average of Q1, . . . , Q5. According to Lemma C.1.20, Q1 ≥ Q$ and it is not difficult to see that

Q1 = Q$ only if $ is a neighbor of $0. This means that U$0

CvM > U$CvM in the limit for all $ but neighbors of

$0 under H1. Since there are m!n! neighbors of $0 out of N ! permutations, if we choose α > 1/{N !/(m!n!)},
then we have limd→∞ E[φCvM] = 1.

For the balanced case where m = n, the result follows by a similar argument but now we also need to

consider $ that satisfies #|{$(1), . . . , $(m)} ∩ {m + 1, . . . ,m + n}| = n to be a neighbor of $0. This is

because UCvM(Z1, . . . , ZN ) = UCvM(ZN , . . . , Z1) if m = n. Hence now we have 2m!n! neighbors of $0 out

of N ! permutations and if we choose α > 2/{N !/(m!n!)}, then we have limd→∞ E[φCvM] = 1.

C.4.16 Proof of Theorem 4.11

Our strategy to prove the given result is to connect different statistics to the CQ statistic, which is relatively

easy to handle. Each connection can be found in

• Section C.4.16: Connection of U$CvM to U$CQ,

• Section C.4.16: Connection of U$WMW to U$CQ,

• Section C.4.16: Connection of U$Energy to U$CQ,

• Section C.4.16: Connection of U$MMD to U$CQ.

For notational simplicity, we will denote Z∗i , Z
∗
2 , Z

∗
3 , Z

∗
4 by Z1, Z2, Z3, Z4 throughout this section.

Connection of U$CvM to U$CQ

In this subsection, we connect U$CvM to U$CQ under the HDLSS setting. We first list some lemmas and their

proofs. The final connection between U$CvM and U$CQ can be found in Proposition C.1.

Lemma C.1.21. Under (A1), (A2) and (A4), we have

1

d
‖Z1 − Z2‖2 − 2σ2

d = OP(d−1/2) and

1

d
(Z1 − Z3)>(Z2 − Z3) = σ2

d +OP(d−1/2).
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Proof. Under the assumption that Var[‖Z1 − Z2‖2] = O(d), we apply Chebyshev’s inequality to obtain

1

d
‖Z1 − Z2‖2 −

1

d
E[‖Z1 − Z2‖2] = OP(d−1/2).

Note that regardless of the distributions of Z1 and Z2, the expected value of ‖Z1 − Z2‖2 is bounded by

E[‖Z1 − Z2‖2] ≤ ‖µX − µY ‖2 + 2tr(Σ2).

Thus under (A4),

1

d
E[‖Z1 − Z2‖2]− 2σ2

d = O(d−1/2).

By combining the results, we prove the first part. The second part follows similarly.

Lemma C.1.22. Under (A1), (A2) and (A4), we have

√
d

‖Z1 − Z2‖
=

1

(2σ2
d)

1/2
− 1

2(2σ2
d)

3/2

(
d−1‖Z1 − Z2‖2 − 2σ2

d

)
+OP(d−1).

Proof. Consider f(x) = 1/
√
x and represent

f
(
d−1‖Z1 − Z2‖2

)
=

√
d

‖Z1 − Z2‖
.

By using the second order Taylor expansion of f(x) around f(2σ2
d) with Lemma C.1.21, we obtain the

result.

Lemma C.1.23. Under (A1), (A2) and (A4), we have

d

‖Z1 − Z3‖‖Z2 − Z3‖
=

1

2σ2
d

− 1

8σ4
d

(
d−1‖Z1 − Z3‖2 − 2σ2

d

)
− 1

8σ4
d

(
d−1‖Z2 − Z3‖2 − 2σ2

d

)
+OP(d−1).

Proof. Based on Lemma C.1.22, we have

d

‖Z1 − Z3‖‖Z2 − Z3‖

=

{
1

(2σ2
d)

1/2
− 1

2(2σ2
d)

3/2

(
d−1‖Z1 − Z3‖2 − 2σ2

d

)
+OP(d−1)

}
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×
{

1

(2σ2
d)

1/2
− 1

2(2σ2
d)

3/2

(
d−1‖Z2 − Z3‖2 − 2σ2

d

)
+OP(d−1)

}
.

By expanding the right-hand side and the following observations made from Lemma C.1.21,

1

2(2σ2
d)

3/2

(
d−1‖Z1 − Z3‖2 − 2σ2

d

)
= OP(d−1/2),

1

2(2σ2
d)

3/2

(
d−1‖Z2 − Z3‖2 − 2σ2

d

)
= OP(d−1/2),

the result follows.

Lemma C.1.24. Under (A1), (A2) and (A4), we have

arccos

{
(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖

}

= arccos

(
1

2

)
− 2√

3

{
(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− 1

2

}
+OP(d−1).

Proof. First note that

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− 1

2
= OP(d−1/2),

which follows from Lemma C.1.21 and Lemma C.1.23. We then use the second order Taylor expansion of

the inverse cosine function around arccos(1/2) to obtain the result.

Lemma C.1.25. Under (A1), (A2) and (A4), we have

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− 1

2

=
(Z1 − Z3)>(Z2 − Z3)− dσ2

d

2dσ2
d

− 1

8dσ2
d

(
‖Z1 − Z3‖2 + ‖Z2 − Z3‖2 − 4dσ2

d

)
+OP(d−1).

Proof. We split the left-hand side into two terms:

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− 1

2
=

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− (Z1 − Z3)>(Z2 − Z3)

2dσ2
d

+
(Z1 − Z3)>(Z2 − Z3)

2dσ2
d

− 1

2
.
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Now it is enough to show that

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− (Z1 − Z3)>(Z2 − Z3)

2dσ2
d

=− 1

8dσ2
d

(
‖Z1 − Z3‖2 + ‖Z2 − Z3‖2 − 4dσ2

d

)
+OP(d−1).

Note that

(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖
− (Z1 − Z3)>(Z2 − Z3)

2dσ2
d

= (Z1 − Z3)>(Z2 − Z3)×
(

1

‖Z1 − Z3‖‖Z2 − Z3‖
− 1

2dσ2
d

)
= (I)× (II) (say).

From Lemma C.1.21 and Lemma C.1.23, it is seen that

(I) = dσ2
d +OP(d1/2),

(II) = − 1

8dσ4
d

[
d−1‖Z1 − Z3‖2 + d−1‖Z1 − Z3‖2 − 4σ2

d +OP(d−2)

]
.

Expanding the terms in (I)× (II), we obtain the result.

Based on the previous lemmas, we prove the main result of this subsection.

Proposition C.1. Under (A1), (A2) and (A4), we have

h̃CvM(Z1, Z2;Z3, Z4)

=
1

4π
√

3dσ2
d

{(Z1 − Z3)>(Z2 − Z4) + (Z1 − Z4)>(Z2 − Z3)}+OP(d−1)
(C.45)

and thus

U$CvM =
1

2π
√

3dσ2
d

U$CQ +OP(d−1).

Proof. By Lemma C.1.24 and Lemma C.1.25,

arccos

{
(Z1 − Z3)>(Z2 − Z3)

‖Z1 − Z3‖‖Z2 − Z3‖

}
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= arccos

(
1

2

)
− 2√

3

{
(Z1 − Z3)>(Z2 − Z3)

2dσ2
d

− 1

2

− 1

8dσ2
d

(
‖Z1 − Z3‖2 + ‖Z2 − Z3‖2 − 4dσ2

d

)}
+OP(d−1).

We can obtain (C.45) by first plugging the above approximation into h̃CvM for each inverse cosine function

and then simplifying the expression. The second result is trivial by noting that

h̃CQ(x1, x2; y1, y2) =
1

2
(x1 − y1)>(x2 − y2) +

1

2
(x1 − y2)>(x2 − y1)

is the symmetrized kernel of the CQ statistic.

Connection of U$WMW to U$CQ

Note that the symmetrized kernel of the WMW statistic can be written as

h̃WMW(x1, x2; y1, y2) =
1

2

(x1 − y1)>(x2 − y2)

‖x1 − y1‖‖x2 − y2‖
+

1

2

(x1 − y2)>(x2 − y1)

‖x1 − y2‖‖x2 − y1‖
.

We first provide a couple of lemmas and their proofs. We then present the main result in Proposition C.2.

Lemma C.1.26. Under (A1), (A2), (A3) and (A4), we have

d

‖Z1 − Z2‖‖Z3 − Z4‖
=

1

2σ2
d

− 1

8σ4
d

(
d−1‖Z1 − Z2‖2 − 2σ2

d

)
− 1

8σ4
d

(
d−1‖Z3 − Z4‖2 − 2σ2

d

)
+OP(d−1).

The proof of this result is similar to Lemma C.1.23; hence omitted.

Lemma C.1.27. Under (A1), (A2), (A3) and (A4), we have

(Z1 − Z3)>(Z2 − Z4)

‖Z1 − Z3‖‖Z2 − Z4‖
=

(Z1 − Z3)>(Z2 − Z4)

2dσ2
d

+OP(d−1).

Proof. Under (A3), it can be seen as similar to Lemma C.1.21 that

d−1(Z1 − Z3)>(Z2 − Z4) = OP(d−1/2).
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Then combining the above with Lemma C.1.21 and Lemma C.1.26,

(Z1 − Z3)>(Z2 − Z4)

‖Z1 − Z3‖‖Z2 − Z4‖
− (Z1 − Z3)>(Z2 − Z4)

2dσ2
d

= d−1(Z1 − Z3)>(Z2 − Z4)×
{

d

‖Z1 − Z3‖‖Z2 − Z4‖
− 1

2σ2
d

}

= OP(d−1/2)×OP(d−1/2).

Hence the result follows.

Based on the previous lemmas, we prove the main result of this subsection.

Proposition C.2. Under (A1), (A2), (A3) and (A4), we have

h̃WMW(Z1, Z2;Z3, Z4)

=
1

2dσ2
d

{(Z1 − Z3)>(Z2 − Z4) + (Z1 − Z4)>(Z2 − Z3)}+OP(d−1)

and thus

UWMW =
1

2dσ2
d

UCQ +OP(d−1).

Proof. The result is a direct consequence of Lemma C.1.27.

Connection of U$Energy to U$CQ

Next we find a connection between U$Energy and U$CQ. Note that the symmetrized kernel of the energy statistic

can be written as

h̃Energy(x1, x2; y1, y2) =
1

2
‖x1 − y1‖+

1

2
‖x1 − y2‖+

1

2
‖x2 − y1‖

+
1

2
‖x2 − y2‖ − ‖x1 − x2‖ − ‖y1 − y2‖.

Using this kernel expression, we connect UEnergy to UCQ in Proposition C.3.

We start with one lemma.
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Lemma C.1.28. Under (A1) and (A2), we have

1√
d
‖Z1 − Z2‖ = (2σ2

d)
1/2 +

1

2(2σ2
d)

1/2

(
d−1‖Z1 − Z2‖2 − 2σ2

d

)
+OP(d−1).

Proof. We use the second order Taylor expansion of f(x) =
√
x around f(2σ2

d) with Lemma C.1.21 to prove

this result.

The main result of this subsection is stated as follows.

Proposition C.3. Under (A1) and (A2), we have

h̃Energy(Z1, Z2;Z3, Z4)

=
1

2(2dσ2
d)

1/2
{(Z1 − Z3)>(Z2 − Z4) + (Z1 − Z4)>(Z2 − Z3)}+OP(d−1/2)

and thus

UEnergy =
1

2(dσ2
d)

1/2
UCQ +OP(d−1/2).

Proof. We use Lemma C.1.28 to approximate h̃Energy to h̃CQ and simplify the expression to obtain the first

result. The second result is trivial.

Connection of U$MMD to U$CQ

In this subsection, we find a connection between U$MMD and U$CQ. The symmetrized kernel of the MMD

statistic can be written as

h̃MMD(x1, x2; y1, y2)

= − 1

2
exp

(
− 1

2ς2d
‖x1 − y1‖2

)
− 1

2
exp

(
− 1

2ς2d
‖x1 − y2‖2

)

− 1

2
exp

(
− 1

2ς2d
‖x2 − y1‖2

)
− 1

2
exp

(
− 1

2ς2d
‖x2 − y2‖2

)

+ exp

(
− 1

2ς2d
‖x1 − x2‖2

)
+ exp

(
− 1

2ς2d
‖y1 − y2‖2

)
,

and we assume that ς2d � d. We first provide an approximation of the Gaussian kernel.
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Lemma C.1.29. Under (A1), (A2) and ς2d � d, we have

exp

(
− 1

2ς2d
‖Z1 − Z2‖2

)

= exp

(
−dσ

2
d

ς2d

)
− exp

(
−dσ

2
d

ς2d

)[
1

2ς2d
‖Z1 − Z2‖2 −

dσ2
d

ς2d

]
+OP(d−1).

Proof. We consider the second order Taylor expansion of f(x) = e−x around f(dσ2
d/ς

2
d). Notice that under

ς2d � d, we have dσ2
d/ς

2
d = O(1) and

1

2ς2d
‖Z1 − Z2‖2 −

dσ2
d

ς2d
=

d

2ς2d

(
d−1‖Z1 − Z2‖2 − 2σ2

d

)
= OP(d−1/2)

from Lemma C.1.21. Thus the result follows.

The main result of this subsection is stated as follows.

Proposition C.4. Under (A1), (A2) and ς2d � d, we have

h̃MMD(Z1, Z2;Z3, Z4)

=
e−dσ

2
d/ς

2
d

2ς2d
{(Z1 − Z3)>(Z2 − Z4) + (Z1 − Z4)>(Z2 − Z3)}+OP(d−1),

and thus

UMMD = ς−2
d e−dσ

2
d/ς

2
dUCQ +OP(d−1/2).

Proof. We use Lemma C.1.29 to approximate h̃MMD to h̃CQ and simplify the expression to obtain the first

result. The second result is trivial.

• Main proof of Theorem 4.11.

By collecting the results in Proposition C.1, Proposition C.2, Proposition C.3 and Proposition C.4, it is

easily checked that Theorem 4.11 holds and thus we complete the proof.
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C.4.17 Proof of Corollary 4.11.1

We will only show that cα,CvM = cα,CQ + OP(d−1/2). The remaining results follow similarly. From

Theorem 4.11, we know that

2π
√

3dσ2
d(U

$1

CvM, . . . , U
$N!

CvM) = d−1/2(U$1

CQ, . . . , U
$N!

CQ ) +OP(d−1/2)

where $i is an element of SN for i = 1, . . . , N !. For simplicity, let us write 2π
√

3dσ2
dU

$i
CvM = U$iCvM,s and

d−1/2U$iCQ = U$iCQ,s. Then cα,CvM and cα,CQ are the dN !(1−α)eth order statistic of {U$1

CvM,s, . . . , U
$N!

CvM,s} and

{U$1

CQ,s, . . . , U
$N!

CQ,s}, respectively. It is well-known that the order statistic is a Lipschitz function (e.g. page

43 of Wainwright, 2019). More specifically, using Pigeonhole principle, it can be seen that

|cα,CvM − cα,CQ| ≤
{

N !∑
i=1

(U$iCvM,s − U$iCQ,s)
2

}1/2

= OP(d−1/2).

Hence the result follows.

C.4.18 Proof of Proposition 4.2

From the definition of ρAngle, it is seen that

2E [ρAngle(X1, Y1)]− E [ρAngle(X1, X2)]− E [ρAngle(Y1, Y2)]

=
1

π
E [Ang(X1 −X2, Y1 −X2)] +

1

π
E [Ang(X1 − Y2, Y1 − Y2)]

− 1

2π
E [Ang(X1 −X3, X2 −X3)]− 1

2π
E [Ang(X1 − Y1, X2 − Y1)]

− 1

2π
E [Ang(Y1 −X2, Y2 −X2)]− 1

2π
E [Ang(Y1 − Y3, Y2 − Y3)] .

Then the result follows by Lemma C.1.1.

C.4.19 Proof of Proposition 4.3

Given β ∈ Sd−1, note that

(
P(β>Z1 > 0)− 1

2

)2

=
1

4
− E

[
1(β>Z1 > 0)

]
+ E

[
1(β>Z1 > 0)1(β>Z2 > 0)

]
.
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Applying Lemma 4.0.2 with Fubini’s theorem yields

E
[∫

Sd−1

1(β>Z1 > 0)dλ(β)

]
=

1

2
,

E
[∫

Sd−1

1(β>Z1 > 0)1(β>Z2 > 0)dλ(β)

]
=

1

2
− 1

2π
E [Ang (Z1, Z2)] .

This completes the proof.

C.4.20 Proof of Proposition 4.4

The result follows by replacing Z1, Z2 with X1 − Y1, X2 − Y2 in Proposition 4.3.

C.4.21 Proof of Theorem 4.12

Given α ∈ Sp−1, β ∈ Sq−1, expand the square term to have

{
4P
(
α>(X1 −X2) < 0, β>(Y1 − Y2) < 0

)
− 1
}2

= 16E
[
1(α>(X1 −X2) < 0, α>(X3 −X4) < 0)× 1(β>(Y1 − Y2) < 0, β>(Y3 − Y4) < 0)

]
−8E

[
1(α>(X1 −X2) < 0)× 1(β>(Y1 − Y2) < 0)

]
+ 1.

By applying Lemma 4.0.2, the first term becomes

E
[(

2− 2

π
Ang (X1 −X2, X3 −X4)

)
·
(

2− 2

π
Ang (Y1 − Y2, Y3 − Y4)

)]

and the remainder terms become −1, which yields the expression.

C.4.22 Proof of Theorem 4.13

From Bergsma and Dassios (2014), the univariate τ∗ can be written as

τ∗ = 4P (X1 ∨X2 < X3 ∧X4, Y1 ∨ Y2 < Y3 ∧ Y4)

+ 4P (X1 ∨X2 < X3 ∧X4, Y1 ∧ Y2 > Y3 ∨ Y4)

− 8P (X1 ∨X2 < X3 ∧X4, Y1 ∨ Y3 < Y2 ∧ Y4) .
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Notice that

1(X1 ∨X2 < X3 ∧X4)

= 1(X1 < X2 < X3 < X4) + 1(X2 < X1 < X3 < X4)

+ 1(X1 < X2 < X4 < X3) + 1(X2 < X1 < X4 < X3)

= 1(X1 < X2)1(X2 < X3)1(X3 < X4) + 1(X2 < X1)1(X1 < X3)1(X3 < X4)

+ 1(X1 < X2)1(X2 < X4)1(X4 < X3) + 1(X2 < X1)1(X1 < X4)1(X4 < X3).

Similarly, we have

1(Y1 ∨ Y2 < Y3 ∧ Y4)

= 1(Y1 < Y2)1(Y2 < Y3)1(Y3 < Y4) + 1(Y2 < Y1)1(Y1 < Y3)1(Y3 < Y4)

+ 1(Y1 < Y2)1(Y2 < Y4)1(Y4 < Y3) + 1(Y2 < Y1)1(Y1 < Y4)1(Y4 < Y3).

Therefore, the product I(X1∨X2 < X3∧X4)1(Y1∨Y2 < Y3∧Y4) can be expressed as the linear combination

of

1(Xi1 < Xi2)1(Xi2 < Xi3)1(Xi3 < Xi4)1(Yj1 < Yj2)1(Yj2 < Yj3)1(Yj3 < Yj4).

Using Lemma C.1.8,

∫
Sp−1

1(α>Xi1 < α>Xi2)1(α>Xi2 < α>Xi3)1(α>Xi3 < α>Xi4)dλ(α)

=
1

2
− 1

4π
[Ang (U1, U2) + Ang (U1, U3) + Ang (U2, U3)] ,

where U1 = Xi1 −Xi2 , U2 = Xi2 −Xi3 and U3 = Xi3 −Xi4 .

Similarly,

∫
Sq−1

1(β>Yj1 < β>Yj2)1(β>Yj2 < β>Yj3)1(β>Yj3 < β>Yj4)dλ(β)

=
1

2
− 1

4π
[Ang (V1, V2) + Ang (V1, V3) + Ang (V2, V3)] ,

where V1 = Yj1 − Yj2 , V2 = Yj2 − Yj3 and V3 = Yj3 − Yj4 .
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As a result, we have

∫
Sp−1

∫
Sq−1

P(α>X1 ∨ α>X2 < α>X3 ∧ α>X4,

β>Y1 ∨ β>Y2 < β>Y3 ∧ β>Y4)dλ(α)dλ(β)

= E [hp(X1, X2, X3, X4)hq(Y1, Y2, Y3, Y4)] .

Applying the same argument to the rest, we can obtain the explicit expression for τ∗p,q as in Theorem 4.13.

C.4.23 Proof of Theorem C.1

Let us write

U∗m,n(Zm,n) := U∗m,n(Z1, . . . , ZN )

= N{Um,n(Z1, . . . , ZN )− E [Um,n(Z1, . . . , ZN )]}

and denote U∗m,n(Z$(1), . . . , Z$(N)) by U∗m,n(Z$). Our goal is to show that for two independent random

permutations $,$′,

(
U∗m,n(Z$), U∗m,n(Z$′)

) d−→ (T, T ′), (C.46)

where T, T ′ are independent and identically distributed with the distribution function R(t). Then the desired

result follows by Lemma C.1.4. The proof consists of several pieces and closely follows the proof of the limiting

distribution of a two-sample degenerate U -statistic in Chapter 3 of Bhat (1995).

We start with the projection of the two-sample U -statistic via Hoffding’s decomposition. Consider the

projection of the two-sample degenerate U -statistic based on Zm,n:

Ûm,n(Zm,n) =
r(r − 1)

m(m− 1)

∑
1≤i1<i2≤m

g∗2,0(Zi1 , Zi2)

+
r(r − 1)

n(n− 1)

∑
1≤j1<j2≤n

g∗0,2(Zj1+m, Zj2+m) +
r2

mn

m∑
i=1

n∑
j=1

g∗1,1(Zi, Zj+m).

Then it can be seen that

E[(Um,n(Zm,n)− Ûm,n(Zm,n)] = 0 and

Var[Um,n(Zm,n)− Ûm,n(Zm,n)] = O(N−3),
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which implies

N(Um,n(Zm,n)− θ) = N(Ûm,n(Zm,n)− θ) + oP(1). (C.47)

Under the finite second moment of the kernel g, we may have the decompositions

g∗2,0(x, y) =

∞∑
i=1

λiφi(x)φi(y),

g∗0,2(x, y) =

∞∑
i=1

γiψi(x)ψi(y),

g∗1,1(x, y) =

∞∑
i=1

αiφ
∗
i (x)ψ∗i (y),

where {φi(·)}, {ψi(·)}, {φ∗(·), ψ∗(·)} are orthonormal eigenfunctions and the corresponding eigenvalues

{λi}, {γi}, {αi}, associated with g∗2,0, g
∗
0,2 and g∗1,1, respectively (see e.g. Bhat, 1995, for details). From

the given conditions of the theorem, the eigenvalues and the eigenfunctions are related as follows:

φi(z) = ψi(z) = φ∗i (z) = ψ∗i (z),

γi = λi and αi =
1− r
r

λi.

Therefore,

NÛm,n(Zm,n) = â1

 1

m

∑
1≤i1 6=i2≤m

∞∑
i=1

λiφi(Zi1)φi(Zi2)


+ â2

 1

n

∑
1≤j1 6=j2≤n

∞∑
j=1

λjφj(Zj1+m)φj(Zj2+m)



+ â3

 1√
mn

m∑
i1=1

n∑
j1=1

∞∑
k=1

λkφk(Zi1)φk(Zj1+m)


= â1Tm + â2T

′
n + â3T

′′
mn,

where

â1 =
r(r − 1)

2

N

m− 1
, â2 =

r(r − 1)

2

N

n− 1
and â3 = −r(r − 1)

N√
mn

.
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Denote the centered and scaled projection of the U -statistic by

Ũm,n := N(Ûm,n(Z$)− θ) and Ũ ′m,n := N(Ûm,n(Z$′)− θ).

Then due to (C.47),

(
U∗m,n(Z$), U∗m,n(Z$′)

)
=
(
Ũm,n(Z$), Ũ ′m,n(Z$′)

)
+ oP(1).

Therefore it suffices to show

(
Ũm,n, Ũ

′
m,n

)
d−→ (T, T ′)

to complete the main proof. Having this goal in mind, we start with a truncation of the degenerate U -statistic.

• Truncation of the U-statistics.

Now, define a truncated version of N(Ûm,n(Zm,n)− θ) by

N(Ûm,n,K(Zm,n)− θ) = â1

 1

m

∑
1≤i1 6=i2≤m

K∑
i=1

λiφi(Zi1)φi(Zi2)


+ â2

 1

n

∑
1≤j1 6=j2≤n

K∑
j=1

λjφj(Zj1+m)φj(Zj2+m)



+ â3

 1√
mn

m∑
i1=1

n∑
j1=1

K∑
k=1

λkφk(Zi1)φk(Zj1+m)


= â1TmK + â2T

′
nK + â3T

′′
mnK .

(C.48)

Write

â1TmK + â2T
′
nK + â3T

′′
mnK

= â1

[
K∑
k=1

λk
(
W 2
km − Vkm

)]
+ â2

[
K∑
k=1

λk
(
W ′2kn − V ′kn

)]
+ â3

[
K∑
k=1

λkWkmW
′
kn

]

=
r(r − 1)

2

{
K∑
k=1

λk

(√
N

m
Wkm −

√
N

n
W ′kn

)2

−
K∑
k=1

λk

(
N

m
Vkm +

N

n
V ′kn

)}
,
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where

Wkm =
1√
m

m∑
i1=1

φk(Zi1), W ′kn =
1√
n

n∑
j1=1

φk(Zj1+m),

Vkm =
1

m

m∑
i1=1

φ2
k(Zi1), V ′kn =

1

n

n∑
j1=1

φ2
k(Zj1+m),

for k = 1, . . . ,K.

By strong law of large numbers,

V ∗>mn := (V1m, . . . , VKm, V
′
1n, . . . , V

′
Kn)>

a.s.−→ V ∗> = (V1, . . . , VK , V
′
1 , . . . , V

′
K)>

and by the assumption that m/N → ϑX , n/N → ϑY ,

N(Ûm,n,K − θ)

=
r(r − 1)

2

{
K∑
k=1

λk

(√
N

m
Wkm −

r(r − 1)

2

√
N

n
W ′kn

)2

− 1

ϑXϑY

K∑
k=1

λk

}

+ oP(1)

=
r(r − 1)

2

{
N

K∑
k=1

λk

 1

m

m∑
i=1

φk(Zi)−
1

n

n∑
j=1

φk(Zj+m)

2

− 1

ϑXϑY

K∑
k=1

λk

}

+ oP(1)

=
r(r − 1)

2

{
N

K∑
k=1

λk

(
N∑
i=1

εiφk(Zi)

)2

− 1

ϑXϑY

K∑
k=1

λk

}
+ oP(1)

where

(ε1, . . . , εm, εm+1, . . . , εm+n) = (m−1, . . . ,m−1︸ ︷︷ ︸
m terms

,−n−1, . . . ,−n−1︸ ︷︷ ︸
n terms

).

• Proving independence of the truncated U-statistics.

Consider the truncated permutation statistics

Ũm,n,K := N(Ûm,n,K(Z$)− θ)
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=
r(r − 1)

2

{
N

K∑
k=1

λk

(
N∑
i=1

ε$(i)φk(Zi)

)2

− 1

ϑXϑY

K∑
k=1

λk

}
+ oP(1)

Ũ ′m,n,K := N(Ûm,n,K(Z$′)− θ)

=
r(r − 1)

2

{
N

K∑
k=1

λk

(
N∑
i=1

ε$′(i)φk(Zi)

)2

− 1

ϑXϑY

K∑
k=1

λk

}
+ oP(1).

Note that ε$(i) and ε$′(i) are independent random variables by the assumption having either 1/m or −1/n

with m/N and n/N probabilities; hence

Cov
(
ε$(i)φk(Zi), ε$′(i)φk(Zi)

)
= E

[
ε$(i)

]
E
[
ε$′(i)

]
E
[
φ2
k(Zi)

]
= 0.

By the Cramér-Wold device and the Lindeberg condition, we see that

√
N

(
N∑
i=1

ε$(i)φ1(Zi), . . . ,

N∑
i=1

ε$(i)φK(Zi),

N∑
i=1

ε$′(i)φ1(Zi), . . . ,

N∑
i=1

ε$′(i)φK(Zi)

)>
d−→ N(0, ϑX

−1ϑY
−1I2K).

Thus the components of the vector are asymptotically independent to each other. Then apply the continuous

mapping theorem together with Slutsky’s theorem to have

(Ũm,n,K , Ũ
′
m,n,K)

d−→ (TK , T
′
K) (C.49)

where TK and T ′K are independent and have the same distribution as

r(r − 1)

2ϑXϑY

K∑
k=1

λk(ξ2
k − 1),

where ξk
i.i.d.∼ N(0, 1).

• Bounding the difference between characteristic functions.

We will use the characteristic functions to show

(
Ũm,n, Ũ

′
m,n

)
d−→ (T, T ′).
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More specifically, we will show that for any x, y ∈ R and any ε > 0 and sufficiently large N ,

∣∣∣E [ei(xŨm,n+yŨ ′m,n)
]
− E

[
ei(xT+yT ′)

] ∣∣∣ ≤ (I) + (II) + (III) < ε

where

(I) =
∣∣∣E [ei(xŨm,n+yŨ ′m,n)

]
− E

[
ei(xŨm,n,K+yŨ ′m,n,K)

] ∣∣∣,
(II) =

∣∣∣E [ei(xŨm,n,K+yŨ ′m,n,K)
]
− E

[
ei(xTK+yT ′K)

] ∣∣∣,
(III) =

∣∣∣E [ei(xTK+yT ′K)
]
− E

[
ei(xT+yT ′)

] ∣∣∣.
We bound these terms in sequence.

1. Bounding (I).

Based on |eiz| = 1 and |eiz − 1| ≤ |z|, we bound (I) by

(I) =
∣∣∣E [ei(xŨm,n+yŨ ′m,n)

]
− E

[
ei(xŨm,n,K+yŨ ′m,n,K))

] ∣∣∣
≤ |x|

[
E
(
Ũm,n,K − Ũm,n

)2
]1/2

+ |y|
[
E
(
Ũ ′m,n,K − Ũ ′m,n

)2
]1/2

≤ (|x|+ |y|)
{
r(r − 1)

2ϑ̂1

(
2

∞∑
k=K+1

λ2
k

)1/2

+
r(r − 1)

2ϑ̂2

(
2

∞∑
k=K+1

λ2
k

)1/2

− r(r − 1)√
ϑ̂1ϑ̂2

( ∞∑
k=K+1

λ2
k

)1/2}

= (|x|+ |y|) r(r − 1)√
2

 1√
ϑ̂1

− 1√
ϑ̂2

2( ∞∑
k=K+1

λ2
k

)1/2

≤ (|x|+ |y|) r(r − 1)√
2ϑ̂1ϑ̂2

( ∞∑
k=K+1

λ2
k

)1/2

where ϑ̂1 = m/N and ϑ̂2 = n/N .

Now, for fixed x and y and any given ε > 0, we choose K large enough to bound

(|x|+ |y|) r(r − 1)√
2ϑXϑY

( ∞∑
k=K+1

λ2
k

)1/2

<
ε

3
. (C.50)
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Since ϑ̂1 → ϑX and ϑ̂2 → ϑY as N →∞, we have

(I) ≤ (|x|+ |y|) r(r − 1)√
2ϑ̂1ϑ̂2

( ∞∑
k=K+1

λ2
k

)1/2

<
ε

3
,

for all sufficiently large N .

2. Bounding (II).

From the result established in (C.49), we have

(II) =
∣∣∣E [ei(xŨm,n,K+yŨ ′m,n,K))

]
− E

[
ei(xTK+yT ′K)

] ∣∣∣ < ε

3

for all sufficiently large N .

3. Bounding (III).

From Chapter 3 of Bhat (1995) with the conditions given on the kernel, the asymptotic distribution of a

degenerate U -statistic converges to

N (Um,n − θ) d−→ r(r − 1)

2ϑX

∞∑
k=1

λk(ξ2
k − 1) +

r(r − 1)

2ϑY

∞∑
k=1

λk(ξ′2k − 1)

− r(r − 1)√
ϑXϑY

∞∑
k=1

λkξkξ
′
k

(C.51)

where {ξk} and {ξ′k} are independent standard normal random variables and {λk} are eigenvalues associated

with the kernel. Note that the right-side of (C.51) can be re-written as

r(r − 1)

2ϑXϑY

∞∑
k=1

λk

[
(
√
ϑY ξk −

√
ϑXξ

′
k)2 − 1

]
,

where
√
ϑY ξk −

√
ϑXξ

′
k ∼ N(0, 1). Therefore, T, T ′ are identically distributed as

r(r − 1)

2ϑXϑY

∞∑
k=1

λk(ξ2
k − 1).

Recall that TK , T
′
K have the same distribution as

r(r − 1)

2ϑXϑY

K∑
k=1

λk(ξ2
k − 1).
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Consequently,

∣∣∣E [ei(xTK+yT ′K)
]
− E

[
ei(xT+yT ′)

] ∣∣∣
≤ |x|

[
E (TK − T )

2
]1/2

+ |y|
[
E (T ′K − T ′)

2
]1/2

≤ (|x|+ |y|) r(r − 1)√
2ϑXϑY

( ∞∑
k=K+1

λ2
k

)1/2

<
ε

3
,

with the same choice of x, y, ε,K in (C.50).

• Combining the bounds.

From the previous results, we conclude that for any x, y ∈ R and any ε > 0 with sufficiently large N ,

∣∣∣E [ei(xŨm,n+yŨ ′m,n)
]
− E

[
ei(xT+yT ′)

] ∣∣∣ < ε,

and therefore

(
Ũm,n, Ũ

′
m,n

)
d−→ (T, T ′).

This completes the proof.

C.5 Additional Results

This section presents some details omitted in the main text and also additional results. In particular,

• Appendix C.5.1 verifies the condition (4.16) in the main text.

• Appendix C.5.2 extends Lemma 4.0.2 to the integration involving four indicator functions.

• Appendix C.5.3 provides details on Remark 4.8 and shows the asymptotic equivalence between

projection-averaging and spatial-sign statistics.

• Appendix C.5.4 collects some variants of the CvM-statistic.

• Appendix C.5.5 describes the power functions of the tests in the HDLSS setting.

• Appendix C.5.6 proves that the angular distance is a metric of negative-type.
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• Appendix C.5.7 provides details on Remark 4.6.

• Appendix C.5.8 collects further applications of projection-averaging.

C.5.1 Verification of (4.16) in the main text

First we state the distributional assumptions made in Bai and Saranadasa (1996) and Chen and Qin (2010):

X = ΓXVX + µX and Y = ΓY VY + µY , (C.52)

where VX and VY are independent random vectors in Ru for some u ≥ d such that E(VX) = E(VY ) = 0 and

Var(VX) = Var(VY ) = Iu, the u× u identity matrix. ΓX and ΓY are non-random d× u matrices such that

ΣX = ΓXΓ>X and ΣY = ΓY Γ>Y are positive definite and µX and µY are non-random d-dimensional vectors.

Write VX = (VX,1, . . . , VX,m) and VY = (VY,1, . . . , VY,m). Assume that E(V 4
X,i) = E(VY,i) = 3 + ∆ < ∞ for

i = 1, . . . ,m where ∆ is the difference between the fourth moment of VX,i and N(0, 1). In addition assume

that

E(V α1

X,l1
V α2

X,l2
· · ·V αqX,lq ) =

q∏
i=1

E(V αiX,li) and

E(V α1

Y,l1
V α2

Y,l2
· · ·V αqY,lq ) =

q∏
i=1

E(V αiY,li)

for a positive integer q such that
∑q
l=1 αl ≤ 8 and l1 6= l2 6= · · · 6= lq.

Our goal here is to show that Var(‖Z1−Z2‖2) = O(d) and Var{(Z1−Z3)>(Z2−Z3)} = O(d) are implied

by

(µX − µY )>(ΣX + ΣY )(µX − µY ) = O(d) and

tr{(ΣX + ΣY )2} = O(d),

where Z1, Z2, Z3 are independent and each Zi is identically distributed as either X or Y in the model (C.52).

First let us focus on Var(‖Z1−Z2‖2). Denote Z1 = Z1−E(Z1), Z2 = Z2−E(Z2) and δ12 = E(Z1)−E(Z2).

Based on the basic inequality that

Var
( k∑
i=1

Xi

)
≤ k

k∑
i=1

Var(Xi) for any k ≥ 1,
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we have

Var(‖Z1 − Z2‖2) = Var{(Z1 − Z2)>(Z1 − Z2) + 2δ>12(Z1 − Z2)}

≤ 8Var(Z
>
1 Z1) + 8Var(Z

>
2 Z2) + 16Var(Z

>
1 Z2)

+ 8δ>12Var(Z1 − Z2)δ12.

Now using Proposition A.1 of ?, we have that

Var(Z
>
1 Z1) ≤ (2 +∆)tr(Σ2

Z1
) and

Var(Z
>
2 Z2) ≤ (2 +∆)tr(Σ2

Z2
),

where ΣZi = Var(Zi) for i = 1, 2. Additionally we know that Var(Z
>
1 Z2) ≤ E{(Z>1 Z2)2} = tr(ΣZ1

ΣZ2
).

Combining the results,

Var(‖Z1 − Z2‖2) . tr{(ΣX + ΣY )2}+ (µX − µY )>(ΣX + ΣY )(µX − µY ).

Hence Var(‖Z1 − Z2‖2) = O(d) under the model assumption (4.16).

Next moving onto Var{(Z1 − Z3)>(Z2 − Z3)}, write Z3 = Z3 − E(Z3), δ13 = E(Z1) − E(Z3) and δ23 =

E(Z2)− E(Z3). Then it can be shown that

Var{(Z1 − Z3)>(Z2 − Z3)}

≤ 12Var(Z
>
1 Z2) + 12Var(Z

>
1 Z3) + 12Var(Z

>
3 Z2) + 12Var(Z

>
3 Z3)

+ 3δ>13Var(Z2 − Z3)δ13 + 3δ>23Var(Z1 − Z3)δ23.

Now similarly as before,

Var{(Z1 − Z3)>(Z2 − Z3)} . tr{(ΣX + ΣY )2}+ (µX − µY )>(ΣX + ΣY )(µX − µY ).

Hence Var{(Z1 − Z3)>(Z2 − Z3)} = O(d) under the model assumption (4.16).

C.5.2 Generalization of Lemma 4.0.2 and Lemma C.1.8

Here we provide the explicit formula for the integration involving four indicator functions, which extends

Lemma 4.0.2 in the main text and Lemma C.1.8 in this supplementary material.
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Lemma C.1.30 (Extension of Escanciano (2006)). For arbitrary non-zero vectors U1, U2, U3, U4 ∈ Rd, let

us denote %ij = UiUj/{‖Ui‖‖Uj‖} for i, j ∈ {1, 2, 3, 4}. Then

∫
Sd−1

4∏
i=1

1(β>Ui ≤ 0)dλ(β) =
7

16
+

1

8π

3∑
i=1

4∑
j=i+1

Ang (Ui, Uj) +Q, (C.53)

where

Q =
1

4π2

4∑
`=1

∫ 1

0

%1`

(1− %2
1`u

2)1/2
arcsin

{
γ1,`(u)

γ2,`(u)γ3,`(u)

}
du,

with

γ1,2 = %34 − %23%24 − [%13%14 + %12(%12%34 − %14%23 − %13%24)]u2,

γ1,3 = %24 − %23%34 − [%12%14 + %13(%13%24 − %14%23 − %12%34)]u2,

γ1,4 = %23 − %24%34 − [%12%13 + %14(%14%23 − %13%24 − %12%34)]u2,

γ2,2 = γ2,3 = [1− %2
23 − (%2

12 + %2
13 − 2%12%13%23)u2]1/2,

γ3,2 = γ2,4 = [1− %2
24 − (%2

12 + %2
14 − 2%12%14%24)u2]1/2,

γ3,3 = γ3,4 = [1− %2
34 − (%2

13 + %2
14 − 2%13%14%34)u2]1/2.

Proof. To prove the results, we apply the same argument used in Section C.4.2. Let Z have a multivariate

normal distribution with zero mean vector and identity covariance matrix. Then as in Section C.4.2, we have

∫
Sd−1

4∏
i=1

1(β>Ui ≤ 0)dλ(β) = EZ
[ 4∏
i=1

1(Z>Ui ≤ 0)

]
. (C.54)

Since (Z>U1,Z>U2,Z>U3,Z>U4)> has a multivariate normal distribution with zero mean vector and

correlation matrix [%ij ]4×4 with

%ij =
U>i Uj
‖Ui‖‖Uj‖

,

the right-hand side of (C.54) can be computed based on orthant probabilities for normal distributions (e.g.

Childs, 1967; Xu et al., 2013). This completes the proof.
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Remark C.3. Although the explicit formula given in Lemma C.1.30 looks complicated, it reduces the integral

over Sd−1 to a more tractable single integral over the unit interval. Hence it would help significantly improve

computational time and efficiency in practical applications.

Remark C.4. Childs (1967) also provided expressions for higher order integrations. Using the same

argument as before, it is possible to further generalize Lemma C.1.30.

C.5.3 Asymptotic Equivalence between Projection-Averaging and Spatial-Sign

Statistics

In this section, we provide details on Remark 4.8 in the main text. Building on U -statistics, the multivariate

one-sample sign test statistic and the two-sample WMW test statistic via projection-averaging can be defined

as

USign-Proj =
1

(m)2

m, 6=∑
i,j=1

hSign-Proj(Xi, Xj) and

UWMW-Proj =
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

hWMW-Proj(Xi1 , Xi2 ;Yj1 , Yj2),

where

hSign-Proj(x, y) =
1

4
− 1

2π
Ang(x, y) and

hWMW-Proj(x1, x2; y1, y2) =
1

4
− 1

2π
Ang(x1 − y1, x2 − y2).

On the other hand, the multivariate one-sample sign test statistic and two-sample WMW test statistic based

on the spatial sign are

USign-SS =
1

(m)2

m, 6=∑
i,j=1

X>i Xj

‖Xi‖‖Xj‖
,

UWMW-SS =
1

(m)2(n)2

m, 6=∑
i1,i2=1

n,6=∑
j1,j2=1

(Xi1 − Yj1)>(Xi2 − Yj2)

‖Xi1 − Yj1‖‖Xi2 − Yj2‖
.

We provide the following proposition for the one-sample case where we prove the asymptotic equivalence

between USign-Proj and USign-SS.
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Proposition C.5. Suppose that Var[X>1 X2] = O(d) and Var[‖X1‖2] = O(d). Let us write and assume that

ηX,d =
‖µX‖2

‖µX‖2 + tr(ΣX)
→ ηX ∈ [0, 1),

δX,d =
1

4
− 1

2π
arccos(ηX,d)−

ηX,d
2π(1− η2

X,d)
1/2

.

Then under the HDLSS setting,

USign-Proj = δX,d +
1

2π(1− η2
X,d)

1/2
USign-SS +OP(d−1).

When µX = 0, the expression can be simplified as

USign-Proj =
1√
2π
USign-SS +OP(d−1).

Proof. Similarly as in Section C.4.16, we use the Taylor expansion and the weak law of large numbers to

obtain

X>1 X2

‖X1‖‖X2‖
= ηX,d +OP(d−1/2).

Next applying the second order Taylor expansion of f(x) = arccos(x) around f(ηX,d) yields

arccos

{
X>1 X2

‖X1‖‖X2‖

}

= arccos(ηX,d)−
1

(1− η2
X,d)

1/2

(
X>1 X2

‖X1‖‖X2‖
− ηX,d

)
+OP(d−1).

We finish the proof by plugging this approximation into USign-Proj.

For the two-sample case, we present the following result.

Proposition C.6. Suppose that Var[(X1 − Y1)>(X2 − Y2)] = O(d), Var[‖X1 − Y1‖2] = O(d). Let us write

and assume that

ηXY,d =
‖µX − µY ‖2

‖µX − µY ‖2 + tr(ΣX) + tr(ΣY )
→ ηXY ∈ [0, 1).

δXY,d =
1

4
− 1

2π
arccos(ηXY,d)−

ηXY,d
2π(1− η2

XY,d)
1/2

.
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Then under the HDLSS setting,

UWMW-Proj = δXY,d +
1

2π(1− η2
XY,d)

1/2
UWMW-SS +OP(d−1).

When µX = µY , the expression can be simplified as

UWMW-Proj =
1√
2π
UWMW-SS +OP(d−1).

The proof of this result is similar to that of Proposition C.5; hence omitted.

C.5.4 Some variants

In this section, we provide several variants of the proposed test statistics. We first present the linear-type

test statistic, which is computationally more efficient than UCvM, defined as follows:

LCvM =
1

M

M∑
i=1

1

2

[
hCvM(X2i−1, X2i;Y2i−1, Y2i)

+ hCvM(X2i, X2i−1;Y2i, Y2i−i)
]
,

(C.55)

where M = bn/2c and m = n for simplicity. While LCvM is also an unbiased estimator of W 2
d and can be

computed in linear time, the test based on LCvM is sub-optimal in terms of minimax power. This illustrates

a trade-off between computational complexity and statistical power. In detail, we show that the oracle test

based on LCvM can have full power only against alternatives shrinking slower than N−1/4 rate, whereas the

minimax optimal rate is N−1/2 when m = n. We build on the observation that LCvM converges to a normal

distribution under both H0 and H1 to prove the following result.

Proposition C.7 (Non-optimality of the linear time test). Let cα,linear be the α level critical value of the

oracle test (see Section 4.2.2 of the main text) based on LCvM in (C.55) and define the corresponding test

function by

φLCvM := 1(LCvM > cα,linear).

Consider a sequence of alternatives such that

Wd(PX , PY ) � N−ε where ε > 1/4.
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Then for 0 < α < 1/2,

lim
m,n→∞

P1(φLCvM
= 1) ≤ 1/2.

Proof. Let σ2
0 and σ2

1 be the variance of

h̃CvM(X1, X2;Y1, Y2) =
1

2
{hCvM(X1, X2;Y1, Y2) + hCvM(X2, X1;Y2, Y1)},

under the null and alternative, respectively. From the boundedness of hCvM, we have 0 < σ2
0 , σ

2
1 <∞. Then

by the central limit theorem, the null distribution approximates

√
MLCvM

σ0

d−→ N(0, 1) under H0,

which implies that
√
Mσ−1

0 cα,linear → −zα where zα is the α quantile of the standard normal distribution

and zα < 0 for α < 1/2. Hence, the power function approximates

lim
N→∞

P1 (LCvM > cα,linear)

= lim
N→∞

P1

(√
M(LCvM −W 2

d )

σ1
>

√
Mcα,linear

σ1
−
√
MW 2

d

σ1

)

= lim
N→∞

P1

(√
M(LCvM −W 2

d )

σ1
> −σ0

σ1
zα −

√
MW 2

d

σ1

)

≤ lim
N→∞

P1

(√
M(LCvM −W 2

d )

σ1
> −
√
MW 2

d

σ1

)

=
1

2
,

where the last equality uses

√
M(LCvM −W 2

d )

σ1

d−→ N(0, 1) under H1

and
√
MW 2

d

p−→ 0 by the assumption. This completes the proof.

Continuing our discussion from Remark 4.7 in the main text, one can come up with different test statistics

by modifying the CvM-distance. As explained there, H0 holds if and only if Txy = Txx and Txy = Tyy

where Txy = E[ρAngle(X1, Y1)], Txx = E[ρAngle(X1, X2)] and Tyy = E[ρAngle(Y1, Y2)]. Empirical estimates of
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these quantities can be given by

T̂xy =
1

2π(m)2 · n

m,6=∑
i1,i2=1

n∑
j=1

Ang(Xi1 −Xi2 , Yj −Xi2)

+
1

2πm · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Ang(Xi − Yj2 , Yi1 − Yi2),

T̂xx =
1

2π(m)3

m, 6=∑
i1,i2,i3=1

Ang(Xi1 −Xi3 , Xi2 −Xi3)

+
1

2π(m)2 · n

m,6=∑
i1,i2=1

n∑
j=1

Ang(Xi1 − Yj , Xi2 − Yj),

T̂yy =
1

2π(n)3

n,6=∑
j1,j2,j3=1

Ang(Yj1 − Yj3 , Yj2 − Yj3)

+
1

2πm · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Ang(Yj1 −Xi, Yj2 −Xi).

One possible test statistic that combines T̂xy, T̂xx and T̂yy is given by

VCvM =
(
T̂xy − T̂xx

)2
+
(
T̂xy − T̂yy

)2
. (C.56)

More generally, from Lemma C.1.1 and its proof, one can see that

W 2
d = ϑX(2T1 − T2 − T3) + ϑY (2T4 − T5 − T6),

where

T1 =
1

2π
E[Ang(X1 −X2, Y1 −X2)], T2 =

1

2π
E[Ang(X1 −X3, X2 −X3)],

T3 =
1

2π
E[Ang(Y1 −X1, Y2 −X1)], T4 =

1

2π
E[Ang(X1 − Y2, Y1 − Y2)],

T5 =
1

2π
E[Ang(X1 − Y1, X2 − Y1)], T6 =

1

2π
E[Ang(Y1 − Y3, Y2 − Y3)].

As one of the reviewers pointed out, H0 is true if and only if all the four equalities hold together: T1 = T2,

T1 = T3, T4 = T5 and T4 = T6. Notice that T1, . . . ,T6 can be estimated in a straightforward manner as

T̂1 =
1

2π(m)2 · n

m,6=∑
i1,i2=1

n∑
j=1

Ang(Xi1 −Xi2 , Yj −Xi2),
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T̂2 =
1

2π(m)3

m, 6=∑
i1,i2,i3=1

Ang(Xi1 −Xi3 , Xi2 −Xi3),

T̂3 =
1

2πm · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Ang(Yj1 −Xi, Yj2 −Xi),

T̂4 =
1

2πm · (n)2

m∑
i=1

n,6=∑
j1,j2=1

Ang(Xi − Yj2 , Yi1 − Yi2),

T̂5 =
1

2π(m)2 · n

m,6=∑
i1,i2=1

n∑
j=1

Ang(Xi1 − Yj , Xi2 − Yj),

T̂6 =
1

2π(n)3

n,6=∑
j1,j2,j3=1

Ang(Yj1 − Yj3 , Yj2 − Yj3).

Based on these estimators, another test statistic, suggested by one of the reviewers, can be proposed as

V ∗CvM =
m

m+ n

{(
T̂1 − T̂2

)2
+
(
T̂1 − T̂3

)2}
+

n

m+ n

{(
T̂4 − T̂5

)2
+
(
T̂4 − T̂6

)2}
.

(C.57)

As demonstrated in Appendix C.6, the tests based on VCvM and V ∗CvM tend to have higher power than that

based on UCvM against scale alternatives but lower power against location alternatives.

C.5.5 Power expression in HDLSS regime

Recall the five test statistics considered in Section 4.5 of the main text. This subsection provides an explicit

expression for the limiting power function under the HDLSS regime. To this end, we need more restrictions

on X and Y such as stationary ρ-mixing condition. Then we build on the asymptotic results established in

Chakraborty and Chaudhuri (2017) combined with Theorem 4.11 to have the following corollary.

Corollary C.1.1 (Power of asymptotic tests). Consider the same assumptions made in Theorem 4.11.

Assume that X = µX + VX and Y = µY + VY where E(VX) = E(VY ) = 0 and VX and VY are mutually

independent random vectors in Rd. In addition, assume that the components of VX = (VX,1, VX,2, . . . , ) are

strictly stationary and satisfy
∑∞
k=1 ρX(2k) < ∞ where ρX(·) is the ρ-mixing coefficient. The components

of VY = (VY,1, VY,2, . . . , ) are similarly defined with another mixing coefficient ρY (·). Let {Xi}mi=1 be i.i.d.

copies of X and {Yi}ni=1 be i.i.d. copies of Y . Denote

ψm,n = tr(Σ2){2/m(2) + 2/n(2) + 4/(mn)},
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and write the test functions by

φ′CvM = 1(2π
√

3dσ2UCvM > zαψ
1/2
m,n),

φ′Energy = 1(
√

2dσUEnergy > zαψ
1/2
m,n),

φ′MMD = 1(ς2de
−dσ2

d/ς
2
dUMMD > zαψ

1/2
m,n),

φ′CQ = 1(UCQ > zαψ
1/2
m,n) and

φ′WMW = 1(dσ2UWMW > zαψ
1/2
m,n).

Then under the HDLSS setting,

lim
d→∞

E[φ′CvM] = lim
d→∞

E[φ′Energy] = lim
d→∞

E[φ′MMD] = lim
d→∞

E[φ′CQ] = lim
d→∞

E[φ′WMW],

which converges to

Φ
(
− zα + ψ−1/2

m,n ‖µX − µY ‖2
)
,

where zα is the upper α quantile of the standard normal distribution.

Proof. Under the stated assumptions, Theorem 2.1 of Chakraborty and Chaudhuri (2017) is satisfied. Hence

the results for the CQ and WMW tests follow. For the rest of the tests, we apply Slutsky’s theorem combined

with Theorem 4.11 to obtain the results. This completes the proof.

C.5.6 Angular distance is a metric of negative-type

Recall that MX and MY are the support of X and Y respectively and M = MX ∪MY ⊆ Rd. The next

lemma shows that ρAngle (see Definition 4.2) is a metric of negative type defined on M.

Lemma C.1.31. For ∀z, z′, z′′ ∈M and ρAngle :M×M 7→ [0,∞), the following conditions are satisfied

1. ρAngle(z, z′) ≥ 0 and ρAngle(z, z′) = 0 if and only if z = z′.

2. ρAngle(z, z′) = ρAngle(z′, z).

3. ρAngle(z, z′) ≤ ρAngle(z, z′′) + ρAngle(z′, z′′).
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In addition, for ∀n ≥ 2, z1, . . . , zn ∈M, and α1, . . . , αn ∈ R, with
∑n
i=1 αi = 0,

n∑
i=1

n∑
j=1

αiαjρAngle(zi, zj) ≤ 0.

Proof. For given w ∈ Rd, it is seen that

∫
Sd−1

∣∣∣1(β>z ≤ β>w)− 1(β>z′ ≤ β>w)
∣∣∣dλ(β) (C.58)

=

∫
Sd−1

1(β>z ≤ β>w < β>z′) + 1(β>z′ ≤ β>w < β>z)dλ(β)

=
1

2
− 1

2π
arccos

{
(z − w)>(w − z′)
‖z − w‖‖w − z′‖

}
+

1

2
− 1

2π
arccos

{
(z′ − w)>(w − z)
‖z′ − w‖‖w − z‖

}

= 1− 1

π
arccos

{
(z − w)>(w − z′)
‖z − w‖‖w − z′‖

}

=
1

π

(
π − arccos

{
(z − w)>(w − z′)
‖z − w‖‖w − z′‖

})

(i)
=

1

π
arccos

{
(z − w)>(z′ − w)

‖z − w‖‖z′ − w‖

}
:= ρAngle(z, z′;w),

where (i) is due to arccos(x) + arccos(−x) = π. Then ρAngle(z, z′) is the expected value of ρAngle(z, z′;Z∗)

over Z∗ ∼ (1/2)PX + (1/2)PY , i.e.

ρAngle(z, z′) = E [ρAngle(z, z′;Z∗)]

=
1

π
E

[
arccos

{
(z − Z∗)>(z′ − Z∗)
‖z − Z∗‖‖z′ − Z∗‖

}]
.

Now, if z = z′, it is trivial to see ρAngle(z, z′) = 0. In addition, if ρAngle(z, z′) = 0, then we have z = z′. In

order to show the second direction, note that arccos(x) is positive and monotone decreasing over x ∈ [−1, 1]

and so ρAngle(z, z′) = 0 implies that

(z − Z∗)>(z′ − Z∗)
‖z − Z∗‖‖z′ − Z∗‖ = 1,

almost surely with respect to (1/2)PX +(1/2)PY . By Cauchy-Schwarz inequality, the inner product becomes

one if and only if (z−Z∗) or (z′−Z∗) is a multiple of the other. This is only possible when z−Z∗ = z′−Z∗

almost surely, which implies z = z′. The symmetry property follows easily by the definition of ρAngle. In
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addition, from triangle inequality, we have

∫
Sd−1

∣∣∣1(β>z ≤ β>w)− 1(β>z′ ≤ β>w)
∣∣∣dλ(β)

≤
∫
Sd−1

∣∣∣1(β>z ≤ β>w)− 1(β>z′′ ≤ β>w)
∣∣∣dλ(β) +

∫
Sd−1

∣∣∣1(β>z′′ ≤ β>w)− 1(β>z′ ≤ β>w)
∣∣∣dλ(β),

and therefore by the equality in (C.58), we can establish

ρAngle(z, z′;w) ≤ ρAngle(z, z′′;w) + ρAngle(z′, z′′;w).

Now, by taking the expectation over Z∗, we conclude that

ρAngle(z, z′) ≤ ρAngle(z, z′′) + ρAngle(z′, z′′).

Next, we will show that for ∀n ≥ 2, z1, . . . , zn ∈ S, and α1, . . . , αn ∈ R, with
∑n
i=1 αi = 0,

n∑
i=1

n∑
j=1

αiαjρAngle(zi, zj) ≤ 0.

The result follows from Section 6 of Bogomolny et al. (2007) who showed that for each fixed z∗,

n∑
i=1

n∑
j=1

αiαjρAngle(zi, zj ; z
∗) ≤ 0, (C.59)

for any α1, . . . , αn ∈ R, with
∑n
i=1 αi = 0. Therefore, by taking the expected value over z∗ in (C.59), we

conclude that ρAngle is of negative-type.

C.5.7 Details on Remark 4.6

Regarding Remark 4.6, note that

∫
Rd
ρAngle(z, z′; t)dt

=

∫
Sd−1

∫
R
I(β>z ≤ β>t < β>z′) + 1(β>z′ ≤ β>t < β>z)dβ>tdλ(β)

(i)
=

∫
Sd−1

|β> (z − z′) |dλ(β)

(ii)
= γd‖z − z′‖,
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where (i) and (ii) are due to Lemma 2.1 and Lemma 2.3 of Baringhaus and Franz (2004) and

γd =

√
π(d− 1)Γ ((d− 2)/2)

2Γ(d/2)
.

Therefore, the generalized angular distance with Lebesgue measure corresponds to the Euclidean distance.

C.5.8 Further applications of projection-averaging

Given (Xi, Yi)
i.i.d.∼ PXY , recall that Kendall’s tau is an estimate of 4P(X1 < X2, Y1 < Y2) − 1. Another

common measure of association is Spearman’s rho defined by

ρsp = 12P(X1 < X2, Y1 < Y3)− 3.

Now for X ∈ Rp and Y ∈ Rq, its multivariate extension via projection-averaging can be given by

ρsp
p,q =

∫
Sd−1

∫
Sq−1

[
12P(α>X1 < α>X2, β

>Y1 < β>Y3)− 3
]2
dλ(α)dλ(β).

The next proposition gives a closed-form expression for ρp,q via Lemma 4.0.2.

Proposition C.8 (Spearman’s rho). For i.i.d. pairs of random vectors (X1, Y1), . . . , (X6, Y6) from a joint

distribution PXY where X ∈ Rp and Y ∈ Rq, the multivariate extension of Spearman’s rho via projection-

averaging is given by

ρsp
p,q = 144E

[(
1

2
− 1

2π
Ang(X1 −X2, X4 −X5)

)
×
(

1

2
− 1

2π
Ang(Y1 − Y3, Y5 − Y6)

)]
− 9.

Proof. Given α ∈ Sp−1, β ∈ Sq−1, expand the square term of ρsp
p,q to have

[
12P(α>X1 < α>X2, β

>Y1 < β>Y3)− 3
]2

= 144E
[
1{α>(X1 −X2) < 0}1{β>(Y1 − Y3) < 0} × 1{α>(X4 −X5) < 0}1{β>(Y4 − Y6) < 0}

]
−72E

[
1{α>(X1 −X2) < 0}1{β>(Y1 − Y3) < 0}

]
+ 9.

Then applying Lemma 4.0.2 with Fubini’s theorem yields the expression.

For a multivariate case, Zhu et al. (2017) extended Hoeffding’s coefficient (Hoeffding, 1948) via projection-

averaging. Specifically, they defined the projection correlation between X ∈ Rp and Y ∈ Rq as

∫
Sp−1

∫
Sq−1

∫
R2

[
Fα>X,β>Y (u, v)− Fα>X(u)Fβ>Y (v)

]2
dω1(u, v, α, β), (C.60)
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where dω1(u, v, α, β) = dFα>X,β>Y (u, v)dλ(α)dλ(β). Although the projection correlation is more broadly

sensitive than Kendall’s tau or Pearson’s correlation in detecting dependence among random variables, it

can still be zero even when X and Y are dependent. A counterexample for the univariate case can be found

in Hoeffding (1948).

On the other hand, the coefficient introduced by Blum et al. (1961) overcomes this issue by replacing

dFX,Y with dFXdFY . The univariate Blum–Kiefer–Rosenblatt (BKR) coefficient (Blum et al., 1961) is

defined by

∫
R2

[FXY (u, v)− FX(u)FY (v)]
2
dFX(u)dFY (v).

Leveraging Lemma 4.0.2, the next proposition generalizes the univariate BKR coefficient to a multivariate

space.

Proposition C.9 (Blum–Kiefer–Rosenblatt (BKR) coefficient). Let us consider weight function dω2(u, v, α, β) =

dFα>X(u)dFβ>Y (v)dλ(α)dλ(β). For i.i.d. random vectors (X1, Y1), . . . , (X6, Y6) from a joint distribution

PXY where X ∈ Rp and Y ∈ Rq, the univariate BKR coefficient can be extended to a multivariate case by

∫
Sp−1

∫
Sq−1

∫
R2

[
Fα>X,β>Y (u, v)− Fα>X(u)Fβ>Y (v)

]2
dω2(u, v, α, β)

= E
[(

1

2
− 1

2π
Ang (X1 −X3, X2 −X3)

)
·
(

1

2
− 1

2π
Ang (Y1 − Y4, Y2 − Y4)

)]

+ E
[(

1

2
− 1

2π
Ang (X1 −X5, X2 −X5)

)
·
(

1

2
− 1

2π
Ang (Y3 − Y6, Y4 − Y6)

)]

−2E
[(

1

2
− 1

2π
Ang (X1 −X4, X2 −X4)

)
·
(

1

2
− 1

2π
Ang (Y1 − Y5, Y3 − Y5)

)]
.

Proof. Given α ∈ Sp−1 and β ∈ Sq−1,

∫
R2

[
Fα>X,β>Y (u, v)− Fα>X(u)Fβ>Y (v)

]2
dFα>X(u)dFβ>Y (v)

= E
[
1(α>(X1 −X3) ≤ 0, α>(X2 −X3) ≤ 0)× 1(β>(Y1 − Y4) ≤ 0, β>(Y2 − Y4) ≤ 0)

]
+ E

[
1(α>(X1 −X5) ≤ 0, α>(X2 −X5) ≤ 0)× 1(β>(Y3 − Y6) ≤ 0, β>(Y4 − Y6) ≤ 0)

]
−2E

[
1(α>(X1 −X4) ≤ 0, α>(X2 −X4) ≤ 0)× 1(β>(Y1 − Y5) ≤ 0, β>(Y3 − Y5) ≤ 0)

]
.

Then apply Lemma 4.0.2 to obtain the expression.

We end this subsection with one example that motivates Lemma C.1.30. Notice that most of the

univariate test statistics extended via projection-averaging are based on a squared difference between
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distribution functions. In such a case, Lemma 4.0.2 is enough to obtain their multivariate extensions.

Suppose that one is interested in the fourth power of difference between two distribution functions:

∫
Sd−1

∫
R

[
Fβ>X(t)− Fβ>Y (t)

]4
dHβ(t)dλ(β).

In this case, however, it is necessary to use the explicit formula for the integration involving four indicator

functions. For example, by expanding the fourth power, we may have different terms including

∫
Sd−1

∫
R

(
Fβ>X(t)

)4
dFβ>X(t)dλ(β)

= E
[
1(β>(X1 −X5) ≤ 0)1(β>(X2 −X5) ≤ 0)× 1(β>(X3 −X5) ≤ 0)1(β>(X4 −X5) ≤ 0)

]
.

This expectation requires the integration over Sd−1, but one can apply Lemma C.1.30 to reduce it to one-

dimensional integration, which is much more tractable in practice.

C.6 Additional Simulations

This section provides additional simulation results to further evaluate the performance of the considered

tests under different scenarios.

C.6.1 High-dimensional power under strong dependence

Let us first consider the setting where the component variables are strongly dependent. Specifically, we

assume that X has a multivariate t-distribution with the location parameter µX = (0, . . . , 0)>, the degrees

of freedom υ and the d × d shape matrix S where [S]ij = 1 if i = j and [S]ij = 0.9 otherwise. Note that

when υ > 2, the covariance matrix of X is given by υ
υ−2S. Similarly, we assume that Y has a multivariate

t-distribution with the location parameter µX = (0.2, . . . , 0.2)>, the degrees of freedom υ and the shape

matrix S. Under the given setting, we generated m = n = 20 random samples from each distribution with

d = 200 and carried out the permutation tests as in Section 8.9. We increased the degrees of freedom from

υ = 1 to υ =∞ to vary the moment conditions. As shown in Table C.1, the WMW test performs the best

when υ ≤ 7 closely followed by the CvM test. When υ is large (e.g. υ ≥ 20) meaning that X and Y have

relatively light-tailed distributions, the power of the five tests (CvM, Energy, MMD, CQ, WMW) are very

similar as observed in Section 8.9. These empirical results provide evidence that the findings in Section 4.5

may hold under even more general settings where the component variables are strongly dependent.
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Table C.1: Empirical power of the considered tests at α = 0.05 against the location models when the component
variables are strongly dependent.

m = 20, n = 20 υ = 1 υ = 3 υ = 5 υ = 7 υ = 9 υ = 11 υ = 20 υ =∞

CvM 0.118 0.653 0.823 0.880 0.907 0.918 0.943 0.943

Energy 0.053 0.332 0.642 0.808 0.865 0.887 0.937 0.945

MMD 0.075 0.162 0.363 0.595 0.755 0.810 0.923 0.945

CQ 0.063 0.470 0.692 0.815 0.842 0.892 0.920 0.943

WMW 0.340 0.767 0.865 0.892 0.892 0.930 0.942 0.943

NN 0.293 0.490 0.528 0.532 0.528 0.533 0.577 0.583

FR 0.225 0.322 0.305 0.313 0.307 0.293 0.283 0.378

MBG 0.047 0.062 0.053 0.043 0.048 0.052 0.050 0.100

Ball 0.063 0.050 0.057 0.053 0.070 0.070 0.075 0.620

CM 0.052 0.067 0.057 0.057 0.065 0.075 0.093 0.125

BG 0.040 0.045 0.047 0.040 0.065 0.048 0.058 0.185

Run 0.112 0.112 0.155 0.152 0.167 0.187 0.198 0.325

C.6.2 Low-dimensional Gaussian alternatives

Next we compare low-dimensional Gaussian distributions with different location or scale parameters. Suppose

that X has a multivariate Gaussian distribution with zero mean µX = (0, . . . , 0)> and identity covariance

matrix ΣX = Id. Similarly Y has a multivariate Gaussian distribution with mean µY = (µ, . . . , µ)> and a

diagonal covariance matrix ΣY = σ× Id. For the location alternatives, we fix the scale parameter σ = 1 and

change the value of µ, whereas for the scale alternatives, we fix the location parameter µ = 0 and change

the value of σ. Throughout the simulation study, we set the dimension to be either d = 2 or d = 8 while

the sample sizes are m = n = 40. In this simulation study, we consider the CvM test, the NN test and

three other tests based on the modified test statistics LCvM, VCvM and V ∗CvM in (C.55), (C.56) and (C.57),

respectively. We also add Hotelling’s test (e.g. page 188 of Anderson, 2003) and the LRT test (e.g. page 412

of Anderson, 2003) as a reference point for the location alternative and the scale alternative, respectively.

All tests were carried out by the permutation procedure as in Section 8.9. The simulation results are given

in Figure C.1 and Figure C.2.

Let us first look at the power of the tests under mean differences in Figure C.1. What stands out in

this figure is that the CvM test has approximately the same power as Hotelling’s test, which has a certain

optimality property under the considered location alternatives (e.g. Chapter 5 of Anderson, 1962). However

we should emphasize that, unlike Hotelling’s test, the CvM test can have power against much broader

alternatives. The modified CvM tests based on VCvM and V ∗CvM show a good power performance against

the same location alternatives and they are slightly more powerful than the NN test but less powerful than
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Figure C.1: Empirical power of the considered tests at α = 0.05 under Gaussian location alternatives.
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Figure C.2: Empirical power of the considered tests at α = 0.05 under Gaussian scale alternatives.

the original CvM test. Interestingly these modified tests observe a huge power enhancement against scale

differences in Figure C.2, outperforming the other nonparametric tests. In fact they perform comparable to

or even better than the LRT test as the dimension increases. The original CvM test tends to have lower

or comparable power to the NN test against these light-tailed scale alternatives. The empirical results also

confirm Proposition C.7, which shows that the test based on the linear-type statistic suffers from low power

while having a linear time complexity.
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Appendix D

Appendix for Chapter 5

D.1 Proofs

In this section, we collect the proofs of the theorems in the main text. Throughout this section, we use

C1, C2, . . . to denote some constants that may change from line to line.

D.1.1 Proof of Theorem 5.1

The following proof is built upon the proof of Theorem 4.1 of Drton et al. (2018) and extends theirs to two-

sample V -statistics and unbounded eigenfunctions. We start with another representation of V̂2
12 in terms of

{λv}∞v=1 and {ϕv(·)}∞v=1. Since h(z1, z2) is symmetric in its arguments, V̂2
12 can also be represented in terms

of the centered kernel as

V̂2
12 =

1

n2
1

n1∑
i1,i2=1

h(Xi1,1, Xi2,1) +
1

n2
2

n2∑
i1,i2=1

h(Xi1,2, Xi2,2)− 2

n1n2

n1∑
i1=1

n2∑
i2=1

h(Xi1,1, Xi2,2).

Furthermore, based on the decomposition given in (5.2), V̂2
12 can be written as

V̂2
12 =

∞∑
v=1

λv

{
1

n1

n1∑
i1=1

ϕv(Xi1,1)− 1

n2

n2∑
i2=1

ϕv(Xi2,2)

}2

.

In what follows, we consider two different cases: 1) x is bounded and 2) x tends to infinity and prove

Theorem 5.1 under each scenario.

Case 1: x is bounded
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First write the corresponding degenerate two-sample U -statistic by

Û12 =
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

h(Xi1,1, Xi2,1) +
1

n2(n2 − 1)

∑
1≤i1 6=i2≤n2

h(Xi1,2, Xi2,2)

− 2

n1n2

n1∑
i1=1

n2∑
i2=1

h(Xi1,1, Xi2,2).

Then using the result on Chapter 3 of Bhat (1995),

n1n2

N
Û12

d−→
∞∑
v=1

λv(ξ
2
v − 1).

Now the difference between the V -statistic and U -statistic is

V̂2
12 − Û12 =

1

n2
1

n1∑
i1=1

h(Xi1,1, Xi1,1) +
1

n2
2

n2∑
i2=1

h(Xi2,2, Xi2,2)

− 1

n2
1(n1 − 1)

∑
1≤i1 6=i2≤n1

h(Xi1,1, Xi2,1)− 1

n2
2(n2 − 1)

∑
1≤i1 6=i2≤n2

h(Xi1,2, Xi2,2).

Under the assumption that E[|h(X1, X1)|] < ∞, we apply the strong law of large numbers for U -statistics

(e.g. Theorem A of Section 5.4 in Serfling, 1980) to have

n1n2

N

(
V̂2

12 − Û12

)
a.s−→ E[h(X1, X1)] =

∞∑
v=1

λv.

Hence we establish that

n1n2

N
V̂2

12
d−→

∞∑
v=1

λvξ
2
v ,

which leads to (5.4) for any bounded x.

Case 2: x tends to infinity

Next we focus on the case where x tends to infinity at a certain rate. To start, for a sufficiently large positive

integer T to be specified later, let us define the truncated statistic

V̂2
T =

T∑
v=1

λv

{
1√
n1

n1∑
i=1

ϕv(Xi,1)− 1√
n2

n2∑
i=1

ϕv(Xi,2)

}2

.
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Based on Slutsky’s argument,

P
(n1n2

N
V̂2

12 ≥ x
)
≤ P

(n1n2

N
V̂2
T ≥ x− ε1

)
+ P

{∣∣∣n1n2

N

(
V̂2

12 − V̂2
T

) ∣∣∣ ≥ ε1}
:= (I) + (II) (say).

Here and hereafter ε1, ε2, ε3 are some positive constants that will be specified later. Let us rewrite

√
λv
n1

n1∑
i1=1

ϕv(Xi1,1)−
√
λv
n2

n2∑
i2=1

ϕv(Xi2,2) =

N∑
i=1

√
λvwiϕv(Zi)

where

(w1, . . . , wN ) = (n
−1/2
1 , . . . , n

−1/2
1 ,−n−1/2

2 , . . . ,−n−1/2
2 ),

(Z1, . . . , ZN ) = (X1,1, . . . , Xn1,1, X1,2, . . . , Xn2,2).

Further let ϕλ1,...,T (Zi) = (
√
λ1wiϕ1(Zi), . . . ,

√
λTwiϕT (Zi))

>. For each i = 1, . . . , N , we verify the

multivariate Bernstein condition used in Zaitsev (1987). Specifically, for any u, v ∈ RT and m = 3, 4, . . ., we

have that

∣∣E[{ϕλ1···T (Zi)
>u}2{ϕλ1···T (Zi)

>v}m−2
]∣∣

(i)

≤
(√

λ1

n1
+

√
λ1

n2

)m ∣∣E[{ϕ1···T (Zi)
>u}2{ϕ1···T (Zi)

>v}m−2
]∣∣

(ii)

≤
(√

λ1

n1
+

√
λ1

n2

)m
γmmm/2‖u‖22‖v‖m−2

2

(iii)

≤
(√

λ1

n1
+

√
λ1

n2

)m
γmm!‖v‖m−2

2 E
[
{ϕ1···T (Zi)

>u}2
]

where

• (i) follows since λ1 ≤ λ2 ≤ . . . and max{1/√n1, 1/
√
n2} ≤ 1/

√
n1 + 1/

√
n2.

• (ii) uses the condition (A2).

• (iii) uses m! ≥ mm/2 for all m ≥ 3 and E
[
{ϕ1···T (Zi)

>u}2
]

= ‖u‖22.

Thus together with the assumption that C−1
1 ≤ n1/n2 ≤ C1, the multivariate Bernstein condition in Zaitsev

(1987) is fulfilled with his notation τ = C2N
−1/2 for sufficiently large C2. Consequently, we can apply
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Theorem 1.1 of Zaitsev (1987) to show that

P
(n1n2

N
V̂2
T ≥ x− ε1

)
≤ P

[
T∑
v=1

λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2

]

+ C3T
5/2 exp

(
−
√
Nε2

C4T 5/2

)
.

By applying Slutsky’s argument again, the first term is bounded by

P

[
T∑
v=1

λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2

]
≤ P

[ ∞∑
v=1

λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2 − ε3

]

+ P

(∣∣∣∣ ∞∑
v=T+1

λvξ
2
v

∣∣∣∣ ≥ ε3
)
.

For a random variable X, let us denote the sub-Gaussian norm and sub-exponential norm by ‖X‖ψ2 :=

inf{t > 0 : E[exp(X2/t2)] ≤ 2} and ‖X‖ψ1
:= inf{t > 0 : E[exp(|X|/t)] ≤ 2}, respectively. By the property

of the norm, Example 2.5.8 of Vershynin (2018) and Lemma 2.7.6 of Vershynin (2018), we observe that

∥∥∥∥ ∞∑
v=T+1

λvξ
2
v

∥∥∥∥
ψ1

≤
∞∑

v=T+1

λv
∥∥ξ2
v

∥∥
ψ1

=

∞∑
v=T+1

λv
∥∥ξv∥∥2

ψ2
≤ C5

∞∑
v=T+1

λv.

Then by Proposition 2.7.1 of Vershynin (2018),

P

(∣∣∣∣ ∞∑
v=T+1

λvξ
2
v

∣∣∣∣ ≥ ε3
)
≤ 2 exp

(
− ε3
C5

∑∞
v=T+1 λv

)
.

Thus

(I) ≤ P

[ ∞∑
v=1

λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2 − ε3

]

+ C3T
5/2 exp

(
−
√
Nε2

C4T 5/2

)
+ 2 exp

(
− ε3
C5

∑∞
v=T+1 λv

)
.

Next we focus on the term (II). Note that the multivariate moment condition in (5.3) implies the

univariate sub-Gaussian condition for ϕv(X1) and v = 1, 2, . . .. That is, there exists a constant C6 > 0

independent of v such that

E[{ϕv(X1)}m] ≤ C6m
m/2E[{ϕv(X1)}2] = C6m

m/2 for all m ≥ 1.
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Thus, followed by Proposition 2.7.1 of Vershynin (2018), ϕv(X1) has a finite sub-Gaussian norm and

furthermore supv≥1 ‖ϕv(X1)‖ψ2
:= C7 <∞. Then

∥∥∥∥n1n2

N

(
V̂2 − V̂2

T

)∥∥∥∥
ψ1

(i)

≤ n1n2

N

∞∑
v=T+1

λv

∥∥∥∥∥
[

1

n1

n1∑
i1=1

ϕv(Xi1,1)− 1

n2

n2∑
i2=1

ϕv(Xi2,2)

]2∥∥∥∥∥
ψ1

(ii)
=

n1n2

N

∞∑
v=T+1

λv

∥∥∥∥∥ 1

n1

n1∑
i1=1

ϕv(Xi1,1)− 1

n2

n2∑
i2=1

ϕv(Xi2,2)

∥∥∥∥∥
2

ψ2

(iii)

≤ C8
n1n2

N

∞∑
v=T+1

λv

[
1

n1

n1∑
i1=1

∥∥ϕv(Xi1,1)
∥∥2

ψ2
+

1

n2

n2∑
i2=1

∥∥ϕv(Xi2,2)
∥∥2

ψ2

]

(iv)

≤ C9

∞∑
v=T+1

λv

where

• (i) uses the triangle inequality.

• (ii) uses Lemma 2.7.6 of Vershynin (2018).

• (iii) holds by Proposition 2.6.1 of Vershynin (2018).

• (iv) follows since supv≥1 ‖ϕv(X1)‖ψ2
<∞.

Based on the above result, we apply Markov’s inequality to bound

(II) ≤ exp

(
− ε1
C9

∑∞
v=T+1 λv

)
.

To summarize, we have obtain that

P(n1n2V̂2/N ≥ x)

P(
∑∞
v=1 λvξ

2
v ≥ x)

≤
{
P

( ∞∑
v=1

λvξ
2
v ≥ x

)}−1

·
{
P

( ∞∑
v=1

λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2 − ε3

)

+ C3T
5/2 exp

(
−
√
Nε2

C4T 5/2

)
+ 2 exp

(
− ε3
C5

∑∞
v=K+1 λv

)

+ exp

(
− ε1
C9

∑∞
v=T+1 λv

)}
. (D.1)

Our goal is now to show that the right-hand side of (D.1) converges to one by properly choosing x, ε1, ε2, ε3, T .

To simplify the notation, we let ζ
d
=
∑∞
v=1 λvξ

2
v and denote F ζ(x) = P(

∑∞
v=1 λvξ

2
v ≥ x). We also write the

density function of ζ by fζ(x).
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We start with the first term of (D.1). Write

ε := x−
{

(x− ε1)1/2 − ε2
}2 − ε3.

Followed by Zolotarev (1961), we can approximate the survival function and density function of ζ as

F ζ(x) =
κ

Γ(µ1/2)

(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)
{1 + o(1)}

fζ(x) =
κ

2λ1Γ(µ1/2)

(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)
{1 + o(1)}

for all x > −∑∞v=1 λv := −Λ that tends to infinity and κ =
∏∞
v=µ1+1(1−λv/λ1)−1/2. Then followed similarly

by (A.13) of Drton et al. (2018), it is seen that there exists a constant x0 such that for all 0 < ε ≤ λ1/2,

sup
x≥x0

∣∣F−1

ζ (x) · max
x′∈[x−ε,x]

fζ(x
′)
∣∣ ≤ 2λ−1

1 .

Using this, the first term is bounded by

P
[∑∞

v=1 λvξ
2
v ≥ {(x− ε1)1/2 − ε2}2 − ε3

]
F ζ(x)

≤ P
(∑∞

v=1 λvξ
2
v ≥ x

)
F ζ(x)

+
ε ·maxx′∈[x−ε,x] fζ(x

′)

F ζ(x)

≤ 1 + 2ελ−1
1

for all x ≥ x0. Next we shall choose ε1, ε2, ε3 decreasing in N so that 1 + 2ελ−1
1 converges uniformly to one

for all x ≥ x0. Thus the upper bound of the first term converges to one uniformly over x ≥ x0. Hence, we

only need to study the last three terms in (D.1) to finish the proof.

Let us first specify T = bN (1−3θ)/5c where θ satisfies

θ < sup
{
q ∈ [0, 1/3) :

∑
v>bN(1−3q)/5c

λv = O(N−q)
}
.
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Note that by the definition of θ, there exists a positive constant C10 such that
∑∞
v=T+1 λv ≤ C10N

−θ for a

sufficiently large N . Hence it now suffices to show that for all x ∈ (0, o(Nθ)),

{(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)}−1

exp

(
− ε1
C11N−θ

)
≤ o(1),

{(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)}−1

N (1−3θ)/2 exp

(
−

√
Nε2

C4N (1−3θ)/2

)
≤ o(1),

{(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)}−1

exp

(
− ε3
C12N−θ

)
≤ o(1).

(D.2)

For this purpose, we choose ε1, ε2 and ε3 such that

ε1 = C11N
−θ
(

x

2λ1
+Nθ/2

)
, ε2 = N−θ/2, ε3 = C12N

−θ
(

x

2λ1
+Nθ/2

)
,

which tend to zero as N → ∞ under x ∈ (0, o(Nθ)). It is then straightforward to see that the three

inequalities in (D.2) hold under the given setting. Consequently,

P(n1n2V̂2
12/N ≥ x)

P (
∑∞
v=1 λvξ

2
v ≥ x)

≤ 1 + o(1).

The other direction follows similarly, which concludes

P(n1n2V̂2
12/N ≥ x)

P (
∑∞
v=1 λvξ

2
v ≥ x)

= 1 + o(1)

uniformly over x ∈ (0, o(Nθ)). This completes the proof.

D.1.2 Proof of Theorem 5.2

Continuing our discussion from Section 5.3.2, we apply Lemma 5.1.1 together with Theorem 5.1 to obtain

the result. Specifically, we set

x = 4λ1 logK + λ1(µ1 − 2) log logK + λ1y.

Then by the triangle inequality∣∣∣∣P(nV̂2
h,max/2 ≤ x

)
− exp

{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
−y

2

)}∣∣∣∣
≤
∣∣∣∣P(nV̂2

h,max/2 ≤ x
)
− exp

{
− K(K − 1)

2
P
(
nV̂2

12/2 > x
)}∣∣∣∣
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+

∣∣∣∣ exp

{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
−y

2

)}
− exp

{
− K(K − 1)

2
P
(
nV̂2

12/2 > x
)}∣∣∣∣

= (I) + (II) (say).

By setting I = {(i, j) : 1 ≤ i < j ≤ K} and Bui,j = {(k, l) ∈ I : Card{(k, l) ∩ (i, j)} 6= 0} where

ui,j := (i, j) ∈ I and Card{A} denotes the cardinality of a set A, Lemma 5.1.1 yields (I) ≤ b1 + b2 + b3.

Here, in our setting,

b1 =
K(K − 1)(2K − 3)

2

{
P
(
nV̂2

12/2 > x
)}2

,

b2 = K(K − 1)(K − 2)
{
P
(
nV̂2

12/2 > x
)}2

and b3 = 0.

Therefore it is enough to verify that P(nV̂2
12/2 > x) = O(K−2) under the given conditions. Then we have

(I)→ 0 as n,K →∞.

In what follows, we prove P(nV̂2
12/2 > x) = O(K−2) and (II) → 0. First we apply Theorem 5.1 with

x � 4λ1 logK = o(nθ) to have

K(K − 1)

2
P
(
nV̂2

12/2 > x
)

=
K(K − 1)

2
P
( ∞∑
v=1

λvξ
2
v > x

)
{1 + o(1)}.

Using the tail approximation given by Zolotarev (1961) as x→∞:

P
( ∞∑
v=1

λvξ
2
v > x

)
=

κ

Γ(µ1/2)

(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)
{1 + o(1)},

we have

K(K − 1)

2
P
(
nV̂2

12/2 > x
)

=
κ

Γ(µ1/2)

(
x

2λ1

)µ1/2−1

exp

(
− x

2λ1

)
{1 + o(1)}

= exp

{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
−y

2

)}
{1 + o(1)}.

Therefore P(nV̂2
12/2 > x) = O(K−2) and (II)→ 0 as n,K →∞, which completes the proof.

D.1.3 Proof of Theorem 5.5

Let us start by presenting some observations that are useful in the proof.
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• (O1). From Lemma 5.4.1, we know that there exists a fixed constant C1 > 0 such that

max
1≤k<l≤K

∣∣V̂kl − Vkl∣∣ ≤ C1

√
B

nmin
log

(
K

β

)

with probability at least 1− β.

• (O2). Let us define cα such that

cα := inf

{
t ∈ R :

1

N !

∑
b∈BN

1
(
V̂(b)
h,max ≥ t

)
≤ α

}
. (D.3)

From Theorem 5.4 and (B2), there exists another fixed constant C2 > 0 such that

cα ≤ C2

√
B

nmin
log

(
K

α

)

with probability one. Here we used the fact that σ̂2
K ≤ max1≤i<j≤N h̃(Zi, Zj) ≤ B. Thus the same

inequality can be derived from (5.11) in Theorem 5.4 by replacing σ̂2
K with max1≤i<j≤N h̃(Zi, Zj),

which is more efficient to compute.

• (O3). Based on the definition of cα in (D.3), observe that the event {pperm > α}, which is equivalent

to

{
1

N !

∑
b∈BN

1
(
V̂(b)
h,max ≥ V̂h,max

)
> α

}
,

implies that {V̂h,max ≤ cα}.

Having these observations in mind, let us define an event Aβ such that

Aβ =

{
max

1≤k<l≤K

∣∣V̂kl − Vkl∣∣ ≤ C1

√
B

nmin
log

(
K

β

)}
.

Then for sufficiently large nmin, the type II error of the permutation test is bounded by

P
{
pperm > α

}
(i)

≤ P
{

max
1≤k<l≤K

V̂kl ≤ cα
}
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(ii)

≤ P

{
max

1≤k<l≤K
V̂kl ≤ C2

√
B

nmin
log

(
K

α

)}

= P

{
max

1≤k<l≤K
V̂kl ≤ C2

√
B

nmin
log

(
K

α

)
, Aβ

}
+ P

{
max

1≤k<l≤K
V̂kl ≤ C2

√
B

nmin
log

(
K

α

)
, Acβ

}

(iii)

≤ P

{
max

1≤k<l≤K
V̂kl ≤ C2

√
B

nmin
log

(
K

α

)
, Aβ

}
+ β,

where step (i) uses (O3), step (ii) follows by (O2) and step (iii) uses (O1). Furthermore, using the

triangle inequality, we see that max1≤k<l≤K V̂kl ≥ max1≤k<l≤K Vkl − max1≤k<l≤K
∣∣V̂kl − Vkl∣∣. Also note

that max1≤k<l≤K Vkl ≥ bNr?N under the given condition. Thus

P

{
max

1≤k<l≤K
V̂kl ≤ C2

√
B

nmin
log

(
K

α

)
, Aβ

}

≤ P

{
bNr

?
N ≤ C1

√
B

nmin
log

(
K

β

)
+ C2

√
B

nmin
log

(
K

α

)}
.

This gives an upper bound for the type II error that does not depend on (P1, . . . , PK). Since B is constant

under (B1), the upper bound goes to zero by taking e.g. β = 1/bN . This completes the proof.

D.1.4 Proof of Corollary 5.5.1

First by the triangle inequality and Slutsky’s argument,

P(pMC > α) ≤ P(|pMC − pperm|+ pperm > α)

≤ P(|pMC − pperm| > α/2) + P(pperm > α/2).

Followed by Theorem 5.5, we have that

lim sup
nmin→∞

sup
(P1,...,PK)∈Fh(bNr?N )

P(pperm > α/2) = 0.

Therefore it suffices to control the first term. Let us write

F (t) =
1

N !

∑
b∈BN

1
(
V̂(b)
h,max ≤ t

)
and FM (t) =

1

M

M∑
i=1

1
(
V̂(b′i)
h,max ≤ t

)
.
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Then it can be shown that

|pperm − pMC| ≤ sup
t∈R

∣∣F (t)− FM (t)
∣∣+

2

M + 1
.

Hence the first term is bounded by

P(|pMC − pperm| > α/2) ≤ P
(

sup
t∈R

∣∣F (t)− FM (t)
∣∣ > α

4

)
+ P

(
2

M + 1
>
α

4

)
.

Notice that by the DKW inequality (e.g. Massart, 1990),

P
(

sup
t∈R

∣∣F (t)− FM (t)
∣∣ > α

4

)
≤ 2e−Mα2/8.

Thus

lim
M→∞

lim sup
nmin→∞

sup
(P1,...,PK)∈Fh(bNr?N )

P(|pMC − pperm| > α/2) = 0,

which results in the conclusion.

D.1.5 Proof of Theorem 5.6

Motivated by Theorem 1 of Tolstikhin et al. (2017), we use discrete distributions to prove the result.

Specifically, we choose two distinct points z1, z2 on Rd such that ϕ(0) − ϕ(z1 − z2) ≥ κ1. Consider the

discrete distribution p0 supported on the two points z1, z2 with probability p0(z1) = 1/2 and p0(z2) = 1/2.

Consider another discrete distribution p1 on the same support such that p1(z1) = 1/2+δ and p1(z2) = 1/2−δ
where δ = br?N/

√
2κ1 and b will be specified later. Then based on the translation invariant property of h,

the MMD between p0 and p1 is calculated as

Vh(p0, p1) = δ
√

2{ϕ(0)− ϕ(z1 − z2)} ≥ δ
√

2κ1. (D.4)

See Tolstikhin et al. (2017) for details.

Next let k be a discrete random variable uniformly distributed on {1, . . . ,K}. Then we set P1,k =

p01(k 6= 1) + p11(k = 1), . . . , PK,k = p01(k 6= K) + p11(k = K). Under this setting, it can be seen that

(P1,k, . . . , PK,k) ∈ Fh(br?N ) using (D.4).

For each k ∈ {1, . . . ,K}, let qk be the joint probability function of X1,1, . . . , XnK ,K given by

qk(x1,1, . . . , xnK ,K) =

n1∏
i=1

{p0(xi,1)1(k 6= 1) + p1(xi,1)1(k = 1)}×
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· · · ×
nK∏
i=1

{p0(xi,K)1(k 6= K) + p1(xi,K)1(k = K)}.

Then we consider a mixture distribution given by qH1
= 1

K

∑K
k=1 qk. Also denote

qH0
(x1,1, . . . , xnK ,K) =

n1∏
i=1

p0(xi,1)× · · · ×
nK∏
i=1

p0(xi,K).

Then the likelihood ratio between qH1
and qH0

is

LN =
qH1

(X1,1, . . . , XnK ,K)

qH0(X1,1, . . . , XnK ,K)
=

1

K

K∑
k=1

nk∏
i=1

p1(Xi,k)

p0(Xi,k)
=

1

K

K∑
k=1

nk∏
i=1

p0(Xi,k) + δγ(Xi,k)

p0(Xi,k)

=
1

K

K∑
k=1

nk∏
i=1

{1 + 2δγ(Xi,k)},

where γ(Xi,k) = {1(Xi,k = z1)− 1(Xi,k = z2)}. Moreover, the expected value of L2
N under H0 is

E0(L2
N ) =

1

K2

K∑
k=1

K∑
k′=1

E0

[
nk∏
i=1

{1 + 2δγ(Xi,k)}
n′k∏
i=1

{1 + 2δγ(Xi,k′)}
]

=
1

K2

K∑
k=1

E0

[
nk∏
i=1

{1 + 2δγ(Xi,k)}2
]

+
1

K2

K∑
k 6=k′

E0

[
nk∏
i=1

{1 + 2δγ(Xi,k)}
n′k∏
i=1

{1 + 2δγ(Xi,k′)}
]

=
1

K2

K∑
k=1

nk∏
i=1

{1 + 4δ2}+
1

K2

K∑
k 6=k′

nk∏
i=1

n′k∏
i=1

{1}

≤ 1

K2

K∑
k=1

exp
(
4nkδ

2
)

+
K(K − 1)

K2

where the last inequality uses 1 + x ≤ ex for all x. From the assumption (B2), we know that there exists a

fixed constant C3 > 0 such that

1

K2

K∑
k=1

exp
(
4nkδ

2
)
≤ 1

K
exp

(
C3nminδ

2
)
.

Finally, based on the standard χ2 method for minimax testing (e.g. Baraud, 2002), it is enough to find a

positive constant b such that δ = br?N/
√

2κ1 < 1/2 and E0[L2
N ] ≤ 1 + 4(1 − α − ζ)2. Indeed, this holds for

any b < min{
√

2κ1/C3,
√
κ1/(
√

2κ2)} for sufficiently large K, which completes the proof.
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Appendix E

Appendix for Chapter 6

E.0.1 Proof of Lemma 1

To prove Lemma 1, we use the central limit theorem for a stationary α-mixing sequence.

Lemma E.0.1. (Corollary 16.3.6 of Athreya and Lahiri, 2006) Let {Un}n≥1 be a sequence of stationary

random variables with E(U1) = µU ∈ R, E|U1|2+δ < ∞ and
∑∞
i=1 αU (n)δ/2+δ < ∞ for some δ ∈ (0,∞).

Suppose that σ2
∞,U is positive where

σ2
∞,U = lim

n→∞
n−1var

(
n∑
i=1

Ui

)
.

Then

√
n

(
1

n

n∑
i=1

Ui − µU
)

converges to the normal distribution with mean zero and variance σ2
∞,U .

We first establish the multivariate central limit theorem for d−1/2{(W 2
1 − µ2

1), . . . , (W 2
M − µ2

M )} based

on Lemma E.0.1 and apply the multivariate delta method to complete the proof. Let SM−1 be the M

dimensional unit sphere defined by

SM−1 =

{
a ∈ RM :

M∑
i=1

a2
i = 1

}
.

Then it is enough to show that for any a = (a1, . . . , aM )> ∈ SM−1,

1√
d
{a1(W 2

1 − µ2
1) + · · ·+ aM (W 2

M − µ2
M )} (E.1)
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converges to a normal distribution with mean zero and variance

σ2
∞,a = lim

d→∞
d−1var{a1(W 2

1 − µ2
1) + · · ·+ aM (W 2

M − µ2
M )}.

Here µ2
i is one of the values among 2dσ2

x, 2dσ2
y and dσ2

x + dσ2
y + d(µx − µy)2 depending on the class of Zi2

and Zi2 where W 2
i = ||Zi1 − Zi2 ||22. In addition, the variance σ2

∞,a is positive for all a ∈ SM−1 from the

minimum eigenvalue condition (iii) in the main text.

Let V1i = (Z1i − Z2i)
2, . . . , VMi = (Z(N−1)i − ZNi)2 for i = 1, . . . , d. Then we can rewrite

1√
d
{a1(W 2

1 − µ2
1) + · · ·+ aM (W 2

M − µ2
M )} =

√
d

{
1

d

d∑
i=1

M∑
j=1

ajVji −
M∑
j=1

ajµ
2
j

}
.

Further let V1:M,i,a =
∑M
j=1 ajVji. Now we will show in two steps that E|V1:M,1,a|2+δ < ∞ and∑∞

r=1 αV1:M,a
(r)δ/2+δ <∞ where V1:M,a = {V1:M,i,a}∞i=1. Then apply Lemma E.0.1 to obtain the asymptotic

multivariate normality of (E.1).

Step 1. In step 1, we will verify that E|V1:M,1,a|2+δ <∞. By Cauchy-Schwartz inequality and ||a||2 = 1,

we have

E|V1:M,1,a|2+δ ≤ E

 M∑
j=1

V 2
j1

1+δ/2

≤Mδ/2
M∑
i=1

E|Vj1|2+δ,

where the second inequality uses cr-inequality. Therefore,

E|V1,a|2+δ ≤Mδ/2
[
E{(Z11 − Z21)4+2δ}+ · · ·+ E{(Z(N−1)1 − ZN1)4+2δ}

]
≤ 24+2δMδ/2+1 max{E|X11|4+2δ, E|Y11|4+2δ}.

Since M is fixed and E|X11|4+2δ < ∞, E|Y11|4+2δ < ∞ by the assumption (i) in the main text, the result

follows.

Step 2. In step 2, we will show that
∑∞
r=1 αV1:M,a

(r)δ/2+δ <∞. In this part of the proof, we proceed

along the line with the proof of Theorem 2 in Li (2018). Recall that {Zi}Ni=1 = {X1, . . . , Xm, Y1, . . . , Yn}.
Let Z1:N,i = (Z1i, . . . , ZNi)

> for i = 1, . . . , d. Since the components of Z1:N,i are independent, the α-mixing
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coefficient between two sigma fields σ({Z1:N,i}ki=1) and σ({Z1:N,i}di=r+k) is bounded by

α{σ({Z1:N,i}ki=1), σ({Z1:N,i}di=r+k)}

≤
N∑
j=1

α{σ({Zji}ki=1), σ({Zji}di=r+k)}

≤ mα{σ({X1i}ki=1), σ({X1i}di=r+k)}+ nα{σ({Y1i}ki=1), σ({Y1i}di=r+k)}

for k = 1, . . . , d − r. We now have σ(V1:M,i,a) ⊆ σ(Z1:N,i) since V1:M,i,a is a continuous function of Z1:N,i.

Therefore,

α{σ({V1:M,i,a}ki=1), σ({V1:M,i,a)}di=r+k}

≤ α{σ({Z1:N,i}ki=1), σ({Z1:N,i}di=r+k)}

≤ mα{σ({X1i}ki=1), σ({X1i}di=r+k)}+ nα{σ({Y1i}ki=1), σ({Y1i}di=r+k)}.

This further implies that

αV1:M,a
(r) ≤ mαX(r) + nαY (r).

As a result, we obtain

∞∑
r=1

αV1:M,a
(r)δ/2+δ ≤ Cδ

{
mδ/2+δ

∞∑
r=1

αX(r)δ/2+δ + nδ/2+δ
∞∑
r=1

αY (r)δ/2+δ

}
,

where Cδ = max{1, 23/2δ−1}. Since
∑∞
r=1 αX(r)δ/2+δ <∞,

∑∞
r=1 αY (r)δ/2+δ <∞ from the assumption (ii)

in the main text and m,n are fixed, the result follows.

Finally, we conclude that d−1/2{(W 2
1 − µ2

1), . . . , (W 2
M − µ2

M )} converges to a multivariate normal

distribution with mean zero and a positive definite covariance matrix and complete the proof by applying

the multivariate delta method.

E.0.2 Proof of Theorem 1

We prove the given statement for each test as follows.

• Friedman and Rafsky’ test: recall that we reject the null for a small value of TFR
m,n, and hence,

it is enough to verify that the maximum of TFR
m,n can be observed with nonzero probability under
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the alternative. The maximum of TFR
m,n is obtained as TFR

m,n = N when any edge on the minimal

spanning tree connects two observations from the different distributions. This maximum value can

be observed, for example, when the maximum of between class distances is less than the minimum

of within class distances. The probability of the described event converges to some positive value

δ > 0 as d → ∞, due to Lemma 1 under the given conditions. Let us denote the cut-off value

of TFR
m,n by cα for some α ∈ (0, 1). Then the asymptotic power of the test is calculated by

limd→∞ prH1
(TFR
m,n < cα) ≤ 1 − limd→∞ prH1

(TFR
m,n = N) < 1 − δ as d → ∞. This shows that

the Friedman and Rafsky’ test cannot be consistent for any α ∈ (0, 1).

• Nearest neighbor test: the nearest neighbor test rejects the null for a large value of TNN
m,n. Again, it is

enough to show that the minimum value of TNN
m,n has a positive probability under the alternative. This

can be shown by taking the same example considered in Friedman and Rafsky’s test, which in turn

gives the result.

• Baringhaus and Franz’s test: for Baringhaus and Franz’s test, we reject the null for a large value of

TBF
m,n. Since TBF

m,n is a linear combination of (W1, . . . ,WM ), we have the asymptotic normality of TBF
m,n

under both the null and alternative hypotheses. Let us denote the asymptotic variance of TBF
m,n by

σ2
0,BF and σ2

1,BF under the null and alternative, respectively. Since the asymptotic means of TBF
m,n are

identical under both null and alternative hypotheses, the power of TBF
m,n converges to

Φ

(
−σ0,BF

σ1,BF
zα

)
, (E.2)

where Φ is the standard normal distribution function and zα is the corresponding upper α quantile.

Therefore, for any α ∈ (0, 1), Baringhaus and Franz’s test cannot be consistent.

E.0.3 Proof of Theorem 2

Under the given assumptions, the usual multivariate central limit theorem shows that there exists a covariance

matrix Σ such that

1√
d
{(W 2

1 , . . . ,W
2
M )> − (µ2

1, . . . , µ
2
M )>}

converges to Nd(0,Σ). Since E|X11|p = E|Y11|p < ∞ for p = 1, 2, 3, 4, it is seen that the mean vector

(µ2
1, . . . , µ

2
M )> and the covariance matrix Σ are the same under both null and alternative hypotheses. As a
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result, the asymptotic null and alternative distributions of g(W1, . . . ,WM )− g(µ1, . . . , µM ) are the same by

the delta method. Therefore, the result follows.

E.0.4 Proof of Lemma 2

Based on Lemma 2.1 of Baringhaus and Franz (2004), it is seen that

E|X11 −X21| = 2

∫ ∞
−∞

FX11(t) (1− FX11(t)) dt,

E|Y11 − Y21| = 2

∫ ∞
−∞

GY11(t) (1−GY11(t)) dt,

E|X11 − Y11| =
∫ ∞
−∞

GY11
(t) (1− FX11

(t)) dt+

∫ ∞
−∞

FX11
(t) (1−GY11

(t)) dt.

(E.3)

Therefore, we have γx = E|X11 −X21|, γy = E|Y11 − Y21| and γxy = E|X11 − Y11|. Suppose that we are at

the null hypothesis. Then it is trivial to see that γx = γy = γxy. Now suppose that γx = γy = γxy, which in

turn implies 2γxy = γx+γy. According to Lemma 2.2 of Baringhaus and Franz (2004), it is always true that

2γxy ≥ γx + γy and the equality holds if and only if FX11
= GY11

. Hence, we conclude that γx = γy = γxy if

and only if the marginal distributions of X and Y are the same.

Consider sequences Dx = {|X1i − X2i|}∞i=1, Dy = {|Y1i − Y2i|}∞i=1 and Dxy = {|X1i − Y1i|}∞i=1. Then

similarly to step 2 of the proof of Lemma 1, it is seen that

∞∑
r=1

αDx(r)δ/2+δ <∞,
∞∑
r=1

αDy (r)δ/2+δ <∞,
∞∑
r=1

αDxy (r)δ/2+δ <∞.

Now based on Proposition 16.3.1 of Athreya and Lahiri (2006) together with Chebyshev’s inequality, we

conclude that d−1||X1−X2||1, d−1||Y1−Y2||1 and d−1||X1−Y1||1 converge in probability to γx, γy and γxy,

respectively.

E.0.5 Details of Example 1

Since X1 and X2 are independent and have the standard normal distribution, |X1 − X2| has the folded

normal with parameters (µ = 0, σ2 = 2). Hence from (E.3), we have

γx = E|X1 −X2| =
2√
π
.
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Let U have the normal distribution with mean µ1 and variance σ2
1 . Similarly, let V have the normal

distribution with mean µ2 and variance σ2
2 . In this case, the expected value of |Y1−Y2| can be calculated by

E|Y1 − Y2| = λ2E|U1 − U2|+ 2λ(1− λ)E|U1 − V1|+ (1− λ)2E|V1 − V2|.

Since |U1−U2| has the folded normal distribution with parameters (µ = 0, σ2 = 2σ2
1), we obtain E|U1−U2| =

f(0, 2σ2
1). Similarly, we have E|U1 − V1| = f(µ1 − µ2, σ

2
1 + σ2

2) and E|V1 − V2| = f(0, 2σ2
2). This gives the

expression for γy. Lastly, we have

E|X1 − Y1| = λE|X1 − U1|+ (1− λ)E|X1 − V1|,

which gives the expression for γxy.

E.0.6 Proof of Theorem 3

(i) The first result is a direct consequence of Theorem 2 in Biswas et al. (2014), and so is omitted.

(ii) When FX 6= GY , the nearest neighbor test statistic TNN
m,n converges in probability to one as d → ∞.

Since the maximum value of TNN
m,n is equal to one, it is enough to show that the α level critical value of the

permutation test is less than one.

Without loss of generality, assume that m ≤ n. We claim that there are 1 + n!/{m!(m − n)!}
permutations of the class labels that can potentially achieve the maximum under the given conditions.

If this is the case, then the α level critical value of the permutation test becomes less than one by

choosing α > [1 + n!/{m!(m − n)!}]/{N !/(m!n!)}. Hence the result follows. We write the original samples

{X1, . . . , Xm, Y1, . . . , Yn} by {(Z1, L1), . . . , (Zm, Lm), (Zm+1, Lm+1), . . . , (Zm+n, Lm+n)} where Zi ∈ Rd and

(L1, . . . , LN ) = (1, . . . , 1, 0, . . . , 0). By the assumption that γxy > max{γx, γy} and k < m, there will be no

connected edge between Zm = {Z1, . . . , Zm} and Zn = {Zm+1, . . . , Zm+n} in the k-nearest neighbor graph

as d→∞. This means that the k nearest neighbor of any Zi ∈ Zm is an element of Zm. Now assume that

the first m permuted labels are neither (L1, . . . , Lm) = (1, . . . , 1) nor (L1, . . . , Lm) = (0, . . . , 0). Then by the

assumption that k ≥ m/2, there exists at least one Zi ∈ Zm such that

k∑
r=1

Ii(r) < k

where Ii(r) is the indicator variable equal to one if and only if Zi and its rth nearest neighbor have the same

class label. This implies that TNN
m,n < 1. Now the number of permutations which have either (L1, . . . , Lm) =
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(1, . . . , 1) or (L1, . . . , Lm) = (0, . . . , 0) is 1+n!/{m!(m−n)!} out of N !/(m!n!) total permutations. Therefore

the result follows.

(iii) For Baringhaus and Franz’s test, let us write

Dxy,m,n =
1

mn

m∑
i=1

n∑
j=1

d−1||Xi − Yj ||1, Dx,m =
1

m2

m∑
i=1

m∑
j=1

d−1||Xi −Xj ||1,

Dy,n =
1

n2

n∑
i=1

n∑
j=1

d−1||Yi − Yj ||1.

Then from Lemma 2, we see that Dxy,m,n converges in probability to γxy. Similarly, we have that Dx,m

and Dy,n converge in probability to {(m− 1)/m}γx and {(n− 1)/n}γy, respectively. Consequently, d−1TBF
m,n

converges to γxy − {(m− 1)/(2m)}γx − {(n− 1)/(2n)}γy in probability.

Suppose that γxy > max{γx, γy}. Then it can be seen that d−1TBF
m,n becomes the maximum value among

the N !/{m!n!} permutation statistics as d tends to infinity. If m 6= n, there exists one unique permutation

that returns the maximum value of d−1TBF
m,n. On the other hand, if m = n, there exist two permutations

(the original permutation and its complement) that return the maximum value of d−1TBF
m,n. Hence, if

α > (m!n!)/N ! for m 6= n and if α > 2(m!n!)/N ! when m = n, the power of Baringhaus and Franz’s test

converges to one as d→∞.

E.0.7 Additional Simulations

This section provides additional simulation results. Let A be an autocorrelation matrix where [A]i,i = 1 and

[A]i,j = 0.2|i−j| for i 6= j. Then we transform random vectors by X̃ = AX and Ỹ = AY where X ∼ FX and

Y ∼ GY . We consider the same location, scale and kurtosis examples for FX and GY in Section 5 of the main

text, but now the components of X̃ and Ỹ are weakly dependent. The results are presented in Table E.1. As

in the independent case in the main text, the Manhattan-based tests outperform the Euclidean-based tests

against the kurtosis alternative, whereas they have similar performance to the Euclidean-based tests against

the location and scale alternatives.
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Table E.1: Empirical power of the tests over different dimensions at significance level α = 0.05 and
m = n = 20 when covariates are weakly dependent.

Location Scale Kurtosis

d 100 500 1000 100 500 1000 100 500 1000

TBF
m,n

Manhattan 0.950 1.000 1.000 0.087 0.160 0.199 0.320 0.893 0.994

Euclidean 0.961 1.000 1.000 0.086 0.156 0.209 0.061 0.044 0.051

TNN
m,n

Manhattan 0.697 0.997 1.000 0.067 0.012 0.002 0.273 0.615 0.805

Euclidean 0.712 1.000 1.000 0.074 0.012 0.001 0.063 0.050 0.062

TFR
m,n

Manhattan 0.533 0.967 0.999 0.068 0.001 0.000 0.240 0.430 0.573

Euclidean 0.557 0.971 1.000 0.062 0.001 0.000 0.078 0.068 0.075

TMGB
m,n

Manhattan 0.170 0.786 0.985 0.798 1.000 1.000 0.101 0.385 0.686

Euclidean 0.191 0.807 0.984 0.799 1.000 1.000 0.071 0.070 0.080

TCF
m,n

Manhattan 0.178 0.643 0.919 0.671 0.998 1.000 0.135 0.358 0.613

Euclidean 0.181 0.655 0.922 0.678 0.997 1.000 0.099 0.090 0.079
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Appendix F

Appendix for Chapter 7

F.1 Outline

This chapter is organized as follows. In Section F.2, we discuss some open problems, raised by our main

results. Section F.3.1 contains some lemmas that will prove useful in many of the proofs. In Section F.3.2,

we provide the proof of Proposition 7.1, which shows the asymptotic expression for the minimax power.

Section F.3.3 presents the proof of Theorem 7.1, which demonstrates the optimality of Hotelling’s T 2 test

when d/n → 0. Section F.3.4 focuses on Proposition 7.2 and proves the asymptotic normality of WA. In

Section F.3.5, Theorem 7.2 and Theorem 7.4 are proved, verifying the asymptotic normality of W †A and the

asymptotic power of the naive Bayes classifier test. Section F.3.6 proves Lemma F.0.4. By building on some

moment expressions for (scaled) inverse chi-square random variables in Section F.3.7, we provide the proof

of Lemma F.0.5 in Section F.3.8. Section F.3.9 provides the proof of Theorem 7.5, which is an extension of

our main result to elliptical distributions. In Section F.3.10 and Section F.3.11, we prove the type-1 error

control and consistency result of the asymptotic test and the permutation test, respectively. Lastly, some

simulation results on sample-splitting ratio are presented in Section F.4.

F.2 Open problems

Here we discuss how our results may be extended to a larger context while we leave a detailed analysis to

future work. Four open problems that we first highlight are as follows:

• The most obvious open problem is to extend our power guarantees, and most other published ones in

the high-dimensional two-sample testing literature, to be uniform over an entire class of alternative

distributions rather than just holding pointwise. Viewing our proofs in this material, uniform control

of the relevant error terms seems extremely challenging.
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• Determining whether our minimax lower bound can be achieved by any test when d = O(n), or if

tighter lower bounds can be proved, is an important open problem. Of course, we have settled this

problem for d = o(n) in Section 7.4 even from the perspective of uniformity.

• Given that the focus of this study is mainly on Fisher’s LDA classifier and its variants, there is

a possibility that some other linear discrimination rules (e.g. via empirical risk minimization) may

achieve optimal power.

• Beyond the consistency result, proving that one can achieve the same non-trivial power as the

asymptotic tests using permutations seems like an interesting open problem.

From the perspective of the title of the current paper, we provide other four natural directions for future

explorations.

Leave-one-out accuracy Another natural estimator for accuracy, as an alternative to sample-splitting,

is a leave-one-out estimator ÊL, defined as ÊL
def
= (ÊL0 + ÊL1 )/2, with

ÊL0
def
=

1

n0

n0∑
i=1

I
[
LDAn0\i,n1

(Xi) = 1
]
, (F.1)

ÊL1
def
=

1

n1

n1∑
i=1

I
[
LDAn0,n1\i(Yi) = 0

]
,

where LDAn0\i,n1
(or LDAn0,n1\i) denotes the LDA classifier using all points except Xi (or Yi).

Ensemble accuracy The sample-splitting estimator ÊS in (7.5) is based on an arbitrary split in training

and test sets. Hence the resulting test is potentially unstable depending on the result of sample splitting.

This issue can be simply overcome by considering all possible splits. Let σ := {σ(1), . . . , σ(n0,tr)} be a subset

of {1, . . . , n0} drawn without replacement. Similarly, let σ′ := {σ′(1), . . . , σ′(n1,tr)} be a subset of {1, . . . , n1}
drawn without replacement. By setting {Xσ(1), . . . , Xσ(n0,tr)}∪{Yσ′(1), . . . , Yσ′(n1,tr)} as the training set and

the remaining as the test set, one can calculate ÊS := ÊS(σ, σ′). The ensemble estimator is then defined by

ÊEns =
1(

n0

n0,tr

)(
n1

n1,tr

) ∑
σ

∑
σ′

ÊS(σ, σ′),

where the first sum is taken over all possible subsets of size n0,tr from {1, . . . , n0} and the second sum is

taken over all possible subsets of size n1,tr from {1, . . . , n1}. Although it looks similar to the U -statistic
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considered in Hediger et al. (2019), the ensemble estimator differs from theirs by allowing ÊS(σ, σ′) to be a

function of the entire dataset rather than a subset. Hence the proposed one uses the dataset more efficiently.

Resubstitution accuracy Since leave-one-out estimators and ensemble estimators are computationally

intensive, one might be tempted to use the training data itself to test the classifier. This resubstitution error

would be defined as ÊR
def
= (ÊR0 + ÊR1 )/2, with

ÊR0
def
=

1

n0

n0∑
i=1

I
[
LDAn0,n1

(Xi) = 1
]
, (F.2)

ÊR1
def
=

1

n1

n1∑
i=1

I
[
LDAn0,n1

(Yi) = 0
]
,

where we first train on all the data and then test on all the data. Of course such an estimate would be

overoptimistic, and would be scorned upon as an estimate of the true accuracy E of the classifier. However,

one might hope that the null distribution or permutation distribution would be similarly optimistically

biased (instead of being centered around a half), thus nullifying the optimistic bias of ÊR. From simulation

studies, we observed that the accuracy test based on the resubstitution error performs slightly better than

the test based on sample splitting in low-dimensional scenarios but overall performs similarly (e.g. Figure

7.3). It will be interesting to theoretically justify the asymptotic behavior of resubstitution accuracy (and

also leave-one-out and ensemble accuracy) and see whether the resulting test is also minimax rate optimal.

Non-linear classification Another natural setting is that of nonlinear classification. An examination of

the test statistics used (Hotelling and its variants) shows that they are closely related to the statistics based

on the kernel Maximum Mean Discrepancy (Gretton et al., 2012) and the kernel FDA (Eric et al., 2008),

when specifically instantiated with the linear kernel. Similarly, for classification, a kernelized LDA (Mika

et al., 1999) specializes to Fisher’s LDA when the linear kernel is employed.

Given the parallels observed, and given that a kernel classifier or two-sample test is effectively a linear

method in a higher dimensional space, one might naturally conjecture that the spirit of the results of this

paper can be extended to such kernelized nonlinear settings as well. As mentioned before, very recent progress

has been made by Hediger et al. (2019) for random forests (but not in the high dimensional setting).

The use of neural network type classifiers for classifier-based testing on structured data is certainly an

interesting direction, though precise theoretical characterizations, such as the ones provided in this paper,

seem unlikely given our current understanding.
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F.3 Technical proofs

F.3.1 Supporting lemmas

Before we present the detailed proofs of all our results, we collect some supporting lemmas. The first lemma

provides the mean and variance of a quadratic form of Gaussian random vectors.

Lemma F.0.1 (Chapter 5.2 in Rencher and Schaalje (2008)). Suppose that Z has a multivariate Gaussian

distribution with mean µ and covariance Σ. Then, we have

E[Z>ΛZ] = tr[ΛΣ] + µ>Λµ and

V[Z>ΛZ] = 2tr[ΛΣΛΣ] + 4µ>ΛΣΛµ.

Next we present the Berry-Esseen theorem for non-identically distributed summands, which will be used to

prove Proposition 7.2.

Lemma F.0.2 (Berry-Esseen theorem, Berry (1941)). Let X1, X2, . . . , be independent random variables with

E[Xi] = 0, E[X2
i ] = σ2

i > 0 and E[|Xi|3] = ρi < ∞. Define Sn =
∑n
i=1Xi√∑n
i=1 σ

2
i

and let Fn(·) be its CDF. Then

there exists a constant C1 > 0 such that

sup
t∈R
|Fn(t)− Φ(t)| ≤ C1

(
∑n
i=1 σ

2
i )

1/2
max

1≤i≤n
ρi
σ2
i

.

The following lemma bounds the trace of a product of two matrices in terms of their eigenvalues.

Lemma F.0.3 (Fan’s inequality, page 10 of Borwein and Lewis (2010)). For any symmetric matrices A,B ∈
Rd×d, we have tr(AB) ≤∑d

i=1 λi(A)λi(B).

Before stating the next two lemmas, let us recall some notation from the main text. First E0,A and E1,A
are the errors of the generalized LDA conditional on the input data. These can be written as E0,A =

Φ(V0,A/
√
UA) and E1,A = Φ(V1,A/

√
UA) where V0,A = δ̂>A(µ0 − µ̂pool), V1,A = δ̂>A(µ̂pool − µ1) and

UA = δ̂>AΣAδ̂. Further recall ΨA,n,d = −δ>Aδ/2, ΛA,n,d = δ>AΣAδ + (1/n0,tr + 1/n1,tr) tr{(AΣ)2} and

ΞA,n,d = (n−1
0,tr − n−1

1,tr)tr(AΣ)/2.

The following lemma presents approximations of E0,A, E1,A and E0,A+E1,A, which plays a key role in proving

Theorem 7.2.

Lemma F.0.4. Under the assumptions (A1)–(A6), E0,A, E1,A and E0,A + E1,A are

E0,A = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+OP

(
n−1/2

)
,
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E1,A = Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
+OP

(
n−1/2

)
and

E0,A + E1,A = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
+ oP

(
n−1/2

)
.

Furthermore, when n0,tr = n1,tr,

E0,A + E1,A = 2Φ

(
ΨA,n,d√
ΛA,n,d

)
+OP (n−3/4).

One thing to notice from the above lemma is that the sum of E0,A and E1,A converges faster than the individual

components because the higher order error terms cancel out in the sum. This critical phenomenon allows us

to replace E0,A/2 + E1,A/2 in WA with a non-random counterpart. The proof of Lemma F.0.4 can be found

in Section F.3.6.

The following lemma is similar to Lemma F.0.4 but by replacing a non-random matrix A with random

diagonal matrix D̂−1 = diag(Σ̂)−1. This lemma will be used to prove Theorem 7.4 where we present the

power of the naive Bayes classifier test.

Lemma F.0.5. Assume that n0 = n1, n0,tr = n1,tr and ntr = nte. Then under the assumptions (A1),

(A2) and (A5), E0,D̂−1 , E1,D̂−1 and E0,D̂−1 + E1,D̂−1 are

E0,D̂−1 = Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+OP

(
n−1/2

)
,

E1,D̂−1 = Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+OP

(
n−1/2

)
and

E0,D̂−1 + E1,D̂−1 = 2Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+OP

(
n−3/4

)
.

As in Lemma F.0.4, due to the cancellation of higher order error terms, we observe that the sum of E0,D̂−1

and E1,D̂−1 converges faster than either individual component. The proof of Lemma F.0.5 can be found in

Section F.3.8.

We now have all the results in place to prove the main results in the paper.

F.3.2 Proof of Proposition 7.1 (minimax lower bound)

We begin by recalling the result by Luschgy (1982) in (7.6), which implies that to derive a bound on the

minimax power, one only needs to analyze the power of the oracle Hotelling’s procedure ϕ∗H with known
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Σ. Next, note that n0n1

n0+n1
(µ̂0 − µ̂1)>Σ−1(µ̂0 − µ̂1) has a noncentral chi-square distribution with d degrees

of freedom and noncentrality parameter n0n1

n0+n1
(µ0 − µ1)>Σ−1(µ0 − µ1). Using the monotonicity of the

distribution function of a noncentral chi-square random variable in its non-centrality parameter, it can thus

be seen that

sup
ϕα∈Tα

inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕα] = inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕ∗H ] = P

(
d∑
i=1

Z2
i ≥ cα,d

)
, (F.3)

where Zi
i.i.d.∼ N(ρn, 1) and ρn

def
=
√

n0n1

n0+n1
ρ. Note that the right-hand side of (F.3) rearranges to

P

(∑d
i=1 Z

2
i − d− ρ2

n√
2(d+ 2ρ2

n)
≥ cα,d − d√

2d

√
2d√

2(d+ 2ρ2
n)
− ρ2

n√
2(d+ 2ρ2

n)

)
.

By Lyapunov’s central limit theorem, we know that

∑d
i=1 Z

2
i − d− ρ2

n√
2(d+ 2ρ2

n)

d−→ N(0, 1) and
cα,d − d√

2d
→ zα, (F.4)

using which the statement of Proposition 7.1 immediately follows.

F.3.3 Proof of Theorem 7.1 (optimality of Hotelling’s T 2 test)

We first describe a couple of preliminaries and then prove the main theorem.

Preliminaries Under the Gaussian setting, it is well-known (?) that

n0 + n1 − 1− d
d(n0 + n1 − 2)

n0n1

n0 + n1
TH ∼ F (d, n− 1− d; ρ2

n),

where F (d, n− 1− d; ρ2
n) has the non-central F -distribution with noncentrality parameter ρ2

n = n0n1

n0+n1
(µ0 −

µ1)>Σ−1(µ0 − µ1) and d and n − 1 − d degrees of freedom. Let χ2
d(ρ

2
n) be a noncentral chi-square random

variable with noncentrality parameter ρ2
n and d degrees of freedom and write χ2

n−1−d(0) = χ2
n−1−d for

simplicity. Using the monotonicity of the distribution function of a noncentral F random variable in its

non-centrality parameter, it can be seen that

inf
p0,p1∈P1(ρ)

Ep0,p1 [ϕH ] = P{F (d, n− 1− d; ρ2
n) ≥ qα,n,d}.

Hence it is enough to study the asymptotic behavior of the right-hand side of the above equality. Note that

the noncentral F -distribution can be written in terms of the ratio of two independent chi-square random

360



variables as

F (d, n− 1− d; ρ2
n)

d
=

χ2
d(ρ

2
n)/d

χ2
n−1−d/(n− 1− d)

.

For notational convenience, let us write Vn,d def
= χ2

n−1−d/(n−1−d). Then, by the weak law of large number,

it is clear to see that Vn,d p−→ 1 as n, d→∞ with d/n→ 0.

Main proof Our main strategy to prove the given claim is to split the cases into two: 1) ρ2
n/n → 0 and

2) lim infn,d→∞ ρ2
n/n > 0. In the first case, we shall show that χ2

d(ρ
2
n) and F (d, n− 1− d; ρ2

n) have the same

asymptotic distribution after proper studentization. In the second case, we will verify that the power of both

tests converge to one.

• Case 1. To begin, we assume ρ2
n/n→ 0 and prove that

χ2
d(ρ

2
n)/Vn,d − d− ρ2

n√
2d+ 4ρ2

n

=
χ2
d(ρ

2
n)− d− ρ2

n√
2d+ 4ρ2

n

+ oP (1)
d−→ N(0, 1). (F.5)

If (F.5) holds, then the result follows since

n0+n1−1−d
n0+n1−2

n0n1

n TH − d− ρ2
n√

2d+ 4ρ2
n

d−→ N(0, 1) and
dqα,n,d − d√

2d
→ zα.

To show (F.5), note that a simple algebraic manipulation yields

χ2
d(ρ

2
n)/Vn,d − d− ρ2

n√
2d+ 4ρ2

n

=
1

Vn,d

[
χ2
d(ρ

2
n)− d− ρ2

n√
2d+ 4ρ2

n

]
+

d+ ρ2
n√

2d+ 4ρ2
n

(
1

Vn,d
− 1

)
. (F.6)

Using the moments of an inverse chi-square distribution,

E
[

1

Vn,d

]
=
n− 1− d
n− 3− d , and V

[
1

Vn,d

]
=

2(n− 1− d)2

(n− 3− d)2(n− 5− d)
,

one can conclude that

d+ ρ2
n√

2d+ 4ρ2
n

(
1

Vn,d
− 1

)
p−→ 0.

Then the result follows by Slutsky’s theorem combined with Vn,d p−→ 1 and (F.4).

• Case 2. In the second case where lim infn,d→∞ ρ2
n/n > 0, there is no guarantee of (F.5). Nevertheless, we

can show that the power of both tests converge to one when lim infn,d→∞ ρ2
n/n > 0. Since the first term in
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(7.7) is bounded and

ρ2
n√

2d+ 4ρ2
n

→∞,

we can conclude that the power of ϕ∗H converges to one when lim infn,d→∞ ρ2
n/n > 0.

Now we compute the limiting power of the test based on TH . By putting

rn,d =
n0 + n1 − 1− d
n0 + n1 − 2

n0n1

n0 + n1
,

one can note that

P
(
rn,dTH − d√

2d
≥ qα,n,d − d√

2d

)

= P

(
rn,dTH − E[rn,dTH ]√

V[rn,dTH ]
>
qα,n,d − d√

2d

√
2d

V[rn,dTH ]
+
d− E[rn,dTH ]√

V[rn,dTH ]

)
.

Using the mean and variance formula for a noncentral F -distribution, we have

E[rn,dTH ] =
(n− 1− d)(d+ ρ2

n)

n− 3− d = (d+ ρ2
n){1 + o(1)}, and

V[rn,dTH ] = 2(n− 1− d)2 (d+ ρ2
n)2 + (d+ 2ρ2

n)(n− 3− d)

(n− 3− d)2(n− 5− d)

� (d+ ρ2
n)2

n
+
d+ ρ2

n

n2
.

From this, we may infer that

rn,dTH − E[rn,dTH ]√
V[rn,dTH ]

= OP (1),
qα,n,d − d√

2d

√
2d

V[rn,dTH ]
= O(1) and

d− E[rn,dTH ]√
V[rn,dTH ]

→ −∞.

This immediately implies that

lim inf
n,d→∞

P
(
rn,dTH − d√

2d
≥ qα,n,d − d√

2d

)
= 1,

thus completing the proof of Theorem 7.1.
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F.3.4 Proof of Proposition 7.2 (asymptotic normality of WA)

As described in the main text, the sample-splitting error of the generalized LDA classifier is an average of

independent (but not all identically distributed) random variables when conditioning on the training set.

Hence we apply the Berry-Esseen theorem in Lemma F.0.2 to first establish the conditional central limit

theorem for WA. Then we use the bounded convergence theorem to prove the unconditional counterpart.

Conditional Part Conditional on the training set Ttr
def
= Xn0,tr

1 ∪ Yn1,tr

1 , ÊSA is the sum of independent

random variables. Specifically,

nteÊ
S
A =

n0,te∑
i=1

Q0,i +

n1,te∑
i=1

Q1,i,

where Q0,i =
nte

2n0,te
I
[
LDAA,n0,tr,n1,tr(Xn0,tr+i) = 1

]
,

and Q1,i =
nte

2n1,te
I
[
LDAA,n0,tr,n1,tr

(Yn1,tr+i) = 0
]
.

Notice that for k = 0, 1, we have

E[|Qk,i − E[Qk,i|Ttr]|3|Ttr] ≤
n3

te

8n3
k,te

, and

E[(Qk,i − E[Qk,i|Ttr])
2|Ttr] =

n2
te

4n2
k,te

E1,A(1− E1,A).

We may then apply Lemma F.0.2 to yield

sup
t∈R
|Pr(WA ≤ t|Ttr)− Φ(t)| ≤ C1anbncn, (F.7)

where an =

{
n2

te

4n0,te
E0,A(1− E0,A) +

n2
te

4n1,te
E1,A(1− E1,A)

}−1/2

,

bn =
n3

te

8n3
0,te

+
n3

te

8n3
1,te

,

and cn =
4n2

0,te

n2
teE0,A(1− E0,A)

+
4n2

1,te

n2
teE1,A(1− E1,A)

.

Under the eigenvalue conditions for A and Σ in (A5) and (A6), one can find constants C0, C1 > 0

such that C0 ≤ tr{(AΣ)2}/d ≤ C1 and C0 ≤ tr(AΣ)/d ≤ C1 due to dλ2
min(A)λ2

min(A) ≤ tr{(AΣ)2} ≤
dλ2

max(A)λ2
max(A) and dλmin(A)λmin(A) ≤ tr(AΣ) ≤ dλmax(A)λmax(A). Then under (A1)–(A4), there

exists another constant C2 > 0 such that −C2 ≤ (ΨA,n,d + ΞA,n,d)/
√

ΛA,n,d ≤ C2 and −C2 ≤
(ΨA,n,d−ΞA,n,d)/

√
ΛA,n,d ≤ C2 for large n. Therefore both Φ{(ΨA,n,d+ΞA,n,d)/

√
ΛA,n,d} and Φ{(ΨA,n,d−
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ΞA,n,d)/
√

ΛA,n,d} are strictly bounded below by zero and above by one for large n. Based on this observation

together with Lemma F.0.4, it can be seen that an = OP (n−1/2), bn = O(1) and cn = OP (1). Thus the

right-hand side of (F.7) is OP (n−1/2), which completes the proof of the conditional part.

Unconditional Part For each t ∈ R, the previous result gives Pr(WA ≤ t|Xn0,tr

1 ,Yn1,tr

1 ) − Φ(t) = oP (1).

We then apply the bounded convergence theorem to have Pr(WA ≤ t)−Φ(t) = o(1). Since Φ(·) is continuous,

Polya’s theorem yields the final result (e.g. Lemma 2.11 of Van der Vaart, 2000). This completes the proof

of Proposition 7.2.

F.3.5 Proof of Theorem 7.2 and 7.4

Proof of Theorem 7.2 (Asymptotic normality of W †A) Based on Lemma F.0.4 and the facts that

ΨA,n,d = O(n−1/2), ΞA,n,d = O(1) and lim infn,d→∞ ΛA,n,d > 0 (see the proof of Proposition 7.2 for details),

we have

E0,A(1− E0,A) = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

){
1− Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)}
+OP (n−1/2)

= Φ

(
ΞA,n,d√
ΛA,n,d

){
1− Φ

(
ΞA,n,d√
ΛA,n,d

)}
+OP (n−1/2), (F.8)

where the second line uses the first-order Taylor expansion:

Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
= Φ

(
ΞA,n,d√
ΛA,n,d

)
+O

(
ΨA,n,d√
ΛA,n,d

)

= Φ

(
ΞA,n,d√
ΛA,n,d

)
+O(n−1/2).

Similarly, one can obtain

E1,A(1− E1,A) = Φ

(
ΞA,n,d√
ΛA,n,d

){
1− Φ

(
ΞA,n,d√
ΛA,n,d

)}
+OP (n−1/2). (F.9)

Then by substituting (F.8) and (F.9) into the definition of WA,

WA =
ÊSA − E0,A/2− E1,A/2√

E0,A(1− E0,A)/(4n0,te) + E1,A(1− E1,A)/(4n1,te)

= 2

√
n0,ten1,te

n0,te + n1,te
×
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ÊSA − E0,A/2− E1,A/2√
Φ(ΞA,n,d/

√
ΛA,n,d){1− Φ(ΞA,n,d/

√
ΛA,n,d)}+OP (n−1/2)

. (F.10)

By the Taylor expansion,

1√
Φ(ΞA,n,d/

√
ΛA,n,d){1− Φ(ΞA,n,d/

√
ΛA,n,d)}+OP (n−1/2)

=
1√

Φ(ΞA,n,d/
√

ΛA,n,d){1− Φ(ΞA,n,d/
√

ΛA,n,d)}
+OP (n−1/2).

Now by plugging this into (F.10) and using the fact that ÊSA−E0,A/2−E1,A/2 = OP (n−1/2), one can obtain

that

WA = 2

√
n0,ten1,te

n0,te + n1,te
×

ÊSA − E0,A/2− E1,A/2√
Φ(ΞA,n,d/

√
ΛA,n,d){1− Φ(ΞA,n,d/

√
ΛA,n,d)}

+OP (n−1/2).

Lemma F.0.4 further allows us to replace E0,A/2 + E1,A/2 with its non-random counterpart as

WA = 2

√
n0,ten1,te

n0,te + n1,te

1√
Φ(ΞA,n,d/

√
ΛA,n,d){1− Φ(ΞA,n,d/

√
ΛA,n,d)}

×

{
ÊSA −

1

2
Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+

1

2
Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)}
+ oP (1). (F.11)

Additionally, using Taylor expansion of Φ(x) around x = ΞA,n,d/
√

ΛA,n,d or x = −ΞA,n,d/
√

ΛA,n,d, it is

seen that

Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
= Φ

(
ΞA,n,d√
ΛA,n,d

)
+ φ

(
ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

+ o(n−1/2),

Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
= Φ

(
−ΞA,n,d√

ΛA,n,d

)
+ φ

(
−ΞA,n,d√

ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

+ o(n−1/2).

This, together with Φ(x) + Φ(−x) = 1 and φ(x) = φ(−x), gives

Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)

= 1 + 2φ

(
ΞA,n,d√
ΛA,n,d

)
ΨA,n,d√
ΛA,n,d

+ o(n−1/2).

(F.12)
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Now combining (F.11) with (F.12), our final approximation is given by WA = W †A + oP (1). This proves the

first part of Theorem 7.2.

For the second part, since Φ(x) + Φ(−x) = 1 for all x ∈ R and ΨA,n,d = −δ>Aδ/2 = o(1), we have that

Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
= 1 + o(1).

Thus the result follows by Lemma F.0.4, which completes the proof of Theorem 7.2.

Proof of Theorem 7.4 (Power of the naive Bayes classifier test) Based on Lemma F.0.5, one can

establish as in Theorem 7.2 that

√
2n

(
ÊS
D̂−1 −

1

2
− ΨD−1,n,d√

2πΛD−1,n,d

)
d−→ N(0, 1),

where we used n0 = n1, n0,tr = n1,tr and ntr = nte. It is then straightforward to derive the power as in

Section 7.6. Hence the result follows.

F.3.6 Proof of Lemma F.0.4

The proof of Lemma F.0.4 consists of three parts. In Part 1, we provide approximations of V0,A, V1,A and

V0,A + V1,A, which are defined around (7.11) (also recalled in Section F.3.1). In Part 2, we focus on UA and

present its approximation. In Part 3, by building on the results from the first two parts, we prove the main

statements of Lemma F.0.4.

• Part 1.

Using Fan’s inequality in Lemma F.0.3 under (A5) and (A6), observe that

tr
{

(AΣ)2
}

= tr(AΣAΣ) ≤ dλ2
max(A)λ2

max(Σ) . d. (F.13)

Then under (A1), tr
{

(AΣ)2
}

= O(n). Next based on the sub-multiplicative property of the operator norm

and (A2),

0 ≤ δ>AΣAδ ≤ λmax(AΣA)δ>δ ≤ λ2
max(A)λmax(Σ)δ>δ = O(n−1/2). (F.14)

Similarly, one can show that

δ>AΣAΣAΣAδ = O(n−1/2). (F.15)
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Using the ingredients above, we shall prove

V0,A = −1

2
δ>Aδ +

1

2

(
1

n0,tr
− 1

n1,tr

)
tr(AΣ) +OP (n−1/2),

V1,A = −1

2
δ>Aδ +

1

2

(
1

n1,tr
− 1

n0,tr

)
tr(AΣ) +OP (n−1/2), and

V0,A + V1,A = −δ>Aδ +OP (n−3/4),

(F.16)

where V0,A and V1,A are defined around (7.11). To this end, we need to calculate the mean and variance of

V0,A and V1,A. The calculation of the mean is rather straightforward as

E[V0,A] = −1

2
δ>Aδ +

1

2

(
1

n0,tr
− 1

n1,tr

)
tr(AΣ),

E[V1,A] = −1

2
δ>Aδ +

1

2

(
1

n1,tr
− 1

n0,tr

)
tr(AΣ).

Turning to the variances, we will show that Var[V0,A] = Var[δ̂>A(µ0 − µ̂pool)] is O(n−1). First note that

(δ̂, µ0 − µ̂pool)
> has a multivariate normal distribution as

 δ̂

µ0 − µ̂pool

 ∼ N

 µ1 − µ0

1
2µ0 − 1

2µ1

 ,

Σ11 Σ12

Σ21 Σ22


 ,

where Σ11 Σ12

Σ21 Σ22

 =

 (n−1
0,tr + n−1

1,tr)Σ
1
2 (n−1

1,tr − n−1
0,tr)Σ

1
2 (n−1

1,tr − n−1
0,tr)Σ

1
4 (n−1

0,tr + n−1
1,tr)Σ

 .

We also note that the conditional distribution of µ0 − µ̂pool given δ̂ follows

µ0 − µ̂pool|δ̂ ∼ N (µ∗,Σ∗) , (F.17)

where µ∗ = −δ/2 + Σ21Σ−1
11 (δ̂ − δ) and Σ∗ = Σ22 − Σ21Σ−1

11 Σ12. Next, by the law of total variance,

Var[δ̂>A(µ0 − µ̂pool)] = E[Var[δ̂>A(µ0 − µ̂pool)|δ̂]]︸ ︷︷ ︸
(I)

+ Var[E[δ̂>A(µ0 − µ̂pool)|δ̂]]︸ ︷︷ ︸
(II)

.

Using (F.17), (I) and (II) are simplified as

(I) = E[δ̂>AΣ∗Aδ̂] and (II) = Var[δ̂>A{−δ/2 + Σ21Σ−1
11 (δ̂ − δ)}].
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By recalling the definitions of Σ∗, Σ21 and Σ11,

(I) .

(
1

n0,tr
+

1

n1,tr

)
E[δ̂>AΣAδ̂]

+

(
1

n1,tr
− 1

n0,tr

)2(
1

n0,tr
+

1

n1,tr

)−1

E[δ̂>AΣAδ̂]

.
1

n
E[δ̂>AΣAδ̂], (F.18)

where the second line uses the assumptions (A3) and (A4). Here the symbol an . bn means that there

exists a constant C > 0 such that an ≤ Cbn for large n. In addition, it can be checked that

(II) . Var[δ̂>Aδ] + Var[δ̂>Aδ̂]. (F.19)

Now, based on Lemma F.0.1, one can verify that

E[δ̂>AΣAδ̂] =

(
1

n0,tr
+

1

n1,tr

)
tr(AΣAΣ) + δ>AΣAδ,

Var[δ̂>Aδ] =

(
1

n0,tr
+

1

n1,tr

)
δ>AΣAδ,

Var[δ̂>Aδ̂] = 2

(
1

n0,tr
+

1

n1,tr

)2

tr(AΣAΣ) + 4

(
1

n0,tr
+

1

n1,tr

)
δ>AΣAδ.

By substituting the above expressions into (F.18) and (F.19) together with the preliminaries in (F.13)

and (F.14), we have that Var[V0,A] = O(n−1) as desired. The same lines of argument also show that

Var[V1,A] = O(n−1) and therefore the first two lines in (F.16) follow. Additionally, by noting that V0,A +

V1,A = δ̂>A(µ0 − µ1), we have

E[V0,A + V1,A] = −δ>Aδ,

Var[V0,A + V1,A] =

(
1

n0,tr
+

1

n1,tr

)
δ>AΣAδ.

The above means and variances, together with (F.13) and (F.14), yield the claim (F.16).

• Part 2.
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Applying Lemma F.0.1 yields

E[UA] = δ>AΣAδ +

(
1

n0,tr
+

1

n1,tr

)
tr
{

(AΣ)2
}

and

Var[UA] = 2

(
1

n0,tr
+

1

n1,tr

)2

tr
{

(AΣ)4
}

+ 4

(
1

n0,tr
+

1

n1,tr

)
δ>AΣAΣAΣAδ.

(F.20)

As in (F.13), Fan’s inequality shows tr
{

(AΣ)4
}

= O(n). This fact, together with (F.15) and (F.20), gives

UA = δ>AΣAδ +

(
1

n0,tr
+

1

n1,tr

)
tr
{

(AΣ)2
}

+OP (n−1/2), (F.21)

which completes the second part.

• Part 3.

Consider a bivariate function f(v, u) = Φ(v/
√
u). Recall the definition of ΨA,n,d, ΛA,n,d and ΞA,n,d in (7.12)

(also recalled in Section F.3.1). Then by the Taylor expansion of f(v, u) around (ΨA,n,d + ΞA,n,d,ΛA,n,d)

together with (F.16) and (F.21), we have

E0,A = f(V0,A, UA)

= Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
1√

ΛA,n,d
(V0,A −ΨA,n,d − ΞA,n,d)

− φ
(

ΨA,n,d + ΞA,n,d√
ΛA,n,d

)
ΨA,n,d + ΞA,n,d

(ΛA,n,d)3/2
(UA − ΛA,n,d) +OP

(
n−1

)
,

(F.22)

where we recall that φ(·) is the density function of N(0, 1). Similarly,

E1,A = f(V1,A, UA)

= Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
+ φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
1√

ΛA,n,d
(V1,A −ΨA,n,d + ΞA,n,d)

− φ
(

ΨA,n,d − ΞA,n,d√
ΛA,n,d

)
ΨA,n,d − ΞA,n,d

(ΛA,n,d)3/2
(UA − ΛA,n,d) +OP

(
n−1

)
.

(F.23)

Since the normal density function φ(·) is bounded and lim infn,d→∞ ΛA,n,d is a (strictly) positive constant

under the given conditions (see the proof of Proposition 7.2), the first two claims in Lemma F.0.4 follow, i.e.

E0,A = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+OP

(
n−1/2

)
,
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E1,A = Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
+OP

(
n−1/2

)
.

Combining (F.22) and (F.23) yields that

E0,A + E1,A = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)

+ (I)′ − (II)′ +OP (n−1),

(F.24)

where

(I)′ = φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
1√

ΛA,n,d
(V0,A −ΨA,n,d − ΞA,n,d)

+ φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
1√

ΛA,n,d
(V1,A −ΨA,n,d + ΞA,n,d) and

(II)′ = φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
ΨA,n,d + ΞA,n,d

(ΛA,n,d)3/2
(UA − ΛA,n,d)

+ φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
ΨA,n,d − ΞA,n,d

(ΛA,n,d)3/2
(UA − ΛA,n,d).

Focusing on (I)′, we use the fact that φ(x) = φ(−x) to obtain

(I)′ = φ

(
ΞA,n,d√
ΛA,n,d

)
1√

ΛA,n,d
(V0,A + V1,A − 2ΨA,n,d)

+

[
φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
− φ

(
ΞA,n,d√
ΛA,n,d

)]
1√

ΛA,n,d
(V0,A −ΨA,n,d − ΞA,n,d)

+

[
φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
− φ

(
−ΞA,n,d√

ΛA,n,d

)]
1√

ΛA,n,d
(V1,A −ΨA,n,d + ΞA,n,d).

By using the asymptotic relationships in (F.16) and ΨA,n,d = o(1),

(I)′ = O(1) ·OP (n−3/4) + o(1) ·OP (n−1/2) + o(1) ·OP (n−1/2)

= oP (n−1/2).
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Similarly, one can establish by using (F.21) and ΨA,n,d = o(1) that

(II)′ =

[
φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
ΨA,n,d + ΞA,n,d

(ΛA,n,d)3/2

+ φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
ΨA,n,d − ΞA,n,d

(ΛA,n,d)3/2

]
(UA − ΛA,n,d)

= o(1) ·OP (n−1/2) = oP (n−1/2).

Now by substituting these results to (F.24),

EA,0 + EA,1 = Φ

(
ΨA,n,d + ΞA,n,d√

ΛA,n,d

)
+ Φ

(
ΨA,n,d − ΞA,n,d√

ΛA,n,d

)
+ oP (n−1/2),

as desired. If n0,tr = n1,tr, then the approximations of (I)′ and (II)′ become much more straightforward

with ΞA,n,d = 0. Indeed, one can infer that (I)′ = OP (n−3/4) and (II)′ = OP (n−3/4), which yields

EA,0 + EA,1 = 2Φ

(
ΨA,n,d√
ΛA,n,d

)
+OP (n−3/4).

This completes the proof of Lemma F.0.4.

F.3.7 Some moments of (scaled) inverse chi-square random variables

In this section, we provide two lemmas (Lemma F.0.6 and Lemma F.0.7) where we present some moments of

(scaled) inverse chi-square random variables. These results will be used to prove Lemma F.0.5. Throughout

this section, we assume that n0,tr = n1,tr. Let us denote the diagonal elements of D̂ by s2
1, . . . , s

2
d where

s2
k =

1

2(n0,tr − 1)

n0,tr∑
i=1

(Xik −Xk)2 +
1

2(n1,tr − 1)

n1,tr∑
i=1

(Yik − Y k)2,

for k = 1, . . . , d. Here Xk and Y k are the sample means based on the training set, i.e. Xk = n−1
0,tr

∑n0,tr

i=1 Xik

and Y k = n−1
1,tr

∑n1,tr

i=1 Yik. Then by putting σ2
k = [Σ]k,k, we have

1

s2
k

∼ ntr − 2

σ2
k

inv-χ2
ntr−2, and

(ntr − 2)s2
k

σ2
k

∼ χ2
ntr−2, (F.25)

where inv-χ2
ntr−2 represents the inverse-chi-squared distribution with ntr − 2 degrees of freedom.

Let us investigate some moments of s−2
k , which will be used to control the inverse of D̂.
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Lemma F.0.6. Suppose that n0,tr = n1,tr. Then under (A4), some of non-central moments of s−2
k are

given by

E
[

1

s2
k

]
=

ntr − 2

σ2
k

1

ntr − 4
=

1

σ2
k

{
1 +O(n−1)

}
,

E
[

1

s4
k

]
=

(ntr − 2)2

σ4
k

1

(ntr − 4)(ntr − 8)
=

1

σ4
k

{
1 +O(n−1)

}
,

E
[

1

s6
k

]
=

(ntr − 2)3

σ6
k

1

(ntr − 12)(ntr − 8)(ntr − 2)

=
1

σ6
k

{
1 +O(n−1)

}
,

E
[

1

s8
k

]
=

(ntr − 8)4

σ8
k

1

(ntr − 16)(ntr − 12)(ntr − 8)(ntr − 4)

=
1

σ8
k

{
1 +O(n−1)

}
.

In addition, a couple of the central moments are

E

[(
1

s2
k

− E
[

1

s2
k

])2
]

=
(ntr − 2)2

σ4
k

2

(ntr − 4)2(ntr − 6)

=
1

σ2
k

·O(n−1),

E

[(
1

s2
k

− E
[

1

s2
k

])4
]

=
(ntr − 2)4

σ8
k

12(ntr − 2)2 + 72(ntr − 2)− 480

(ntr − 8)(ntr − 10)(ntr − 4)4(ntr − 6)2

=
1

σ8
k

·O(n−2).

Proof. Suppose that X ∼ χ2
ν . Then for ν ≥ 2k + 1,

E[X−k] =

∫ ∞
0

x−k
1

2ν/2Γ(ν/2)
xν/2−1e−x/2dx

=
1

22k

Γ(ν/2− k)

Γ(ν/2)

∫ ∞
0

1

2
ν−2k

2 Γ{(ν − 2k)/2}
x
ν−2k

2 −1e−x/2dx

=
1

22k

Γ(ν/2− k)

Γ(ν/2)
,

where the last equality uses the fact that a density integrates to one. Using this exact inverse moment

expression and the relationship in (F.25), the results follows by straightforward algebra.

Next we study some product moments of (scaled) inverse chi-square random variables.
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Lemma F.0.7. Suppose that n0,tr = n1,tr. Then under (A4), for any 1 ≤ i, j, k, l ≤ d,

E

[
1

s2
i s

2
j

− 1

σ2
i σ

2
j

]
= O(n−1), (F.26)

E

[
1

s2
i s

2
js

2
k

− 1

σ2
i σ

2
jσ

2
k

]
= O(n−1) and (F.27)

E

[
1

s2
i s

2
js

2
ks

2
l

− 1

σ2
i σ

2
jσ

2
kσ

2
l

]
= O(n−1). (F.28)

Proof. To prove claim (F.26), write

1

s2
i s

2
j

− 1

σ2
i σ

2
j

=

(
1

s2
i

− 1

σ2
i

)(
1

s2
j

− 1

σ2
j

)
+

(
1

s2
i

− 1

σ2
i

)
1

σ2
j

+

(
1

s2
j

− 1

σ2
j

)
1

σ2
i

.

Then by using Cauchy-Schwarz inequality, we see that∣∣∣∣∣E
[

1

s2
i s

2
j

− 1

σ2
i σ

2
j

] ∣∣∣∣∣ ≤ E

[(
1

s2
i

− 1

σ2
i

)2
]

+
1

σ2
j

∣∣∣∣∣E
[

1

s2
i

− 1

σ2
i

] ∣∣∣∣∣
+

1

σ2
i

∣∣∣∣∣E
[

1

s2
j

− 1

σ2
j

] ∣∣∣∣∣.
(F.29)

The three terms on the right-hand side are O(n−1) by Lemma F.0.6 and thus (F.26) follows.

Next we prove (F.27); the result in (F.28) follows similarly. Write

1

s2
i s

2
js

2
k

− 1

σ2
i σ

2
jσ

2
k

=

(
1

s2
i s

2
j

− 1

σ2
i σ

2
j

)(
1

s2
k

− 1

σ2
k

)

+

(
1

s2
i s

2
j

− 1

σ2
i σ

2
j

)
1

σ2
k

+

(
1

s2
k

− 1

σ2
k

)
1

σ2
i σ

2
j

.

(F.30)

Note that the expected values of the last two terms in (F.30) are O(n−1) by Lemma F.0.6 and (F.26).

Therefore we focus on the first term and show that its expected value is O(n−1). The first term can be

decomposed as (
1

s2
i s

2
j

− 1

σ2
i σ

2
j

)(
1

s2
k

− 1

σ2
k

)

=

[(
1

s2
i

− 1

σ2
i

)(
1

s2
j

− 1

σ2
j

)
+

(
1

s2
i

− 1

σ2
i

)
1

σ2
j

+

(
1

s2
j

− 1

σ2
j

)
1

σ2
i

](
1

s2
k

− 1

σ2
k

)
. (F.31)
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We only need to handle the following term in (F.31)

(
1

s2
i

− 1

σ2
i

)(
1

s2
j

− 1

σ2
j

)(
1

s2
k

− 1

σ2
k

)
, (F.32)

since the expected values of the other terms are O(n−1), which follows as in (F.29) using Cauchy-Schwarz

inequality. But the expectation of (F.32) is O(n−1) again by Cauchy-Schwarz inequality and Lemma F.0.6.

Thus the expectation of (F.31) is O(n−1). Finally, after substituting this result into the expectation of

(F.30), we may obtain the result in (F.27). Hence Lemma F.0.7 follows.

F.3.8 Proof of Lemma F.0.5

Let us denote

V0,D̂−1

def
= δ̂>D̂−1(µ0 − µ̂pool),

V1,D̂−1

def
= δ̂>D̂−1(µ̂pool − µ1), and

UD̂−1

def
= δ̂>D̂−1ΣD̂−1δ̂.

By assuming (A1)–(A5) with n0 = n1, n0,tr = n1,tr and ntr = nte, we break the proof up into three parts:

• Part 1. V0,D̂−1 = ΨD−1,n,d +OP
(
n−1/2

)
and V1,D̂−1 = ΨD−1,n,d +OP

(
n−1/2

)
.

• Part 2. UD̂−1 = ΛD−1,n,d +OP
(
n−1/2

)
.

• Part 3. V0,D̂−1 + V1,D̂−1 = 2ΨD−1,n,d +OP
(
n−3/4

)
.

Suppose that the above claims hold. Then the final result of Lemma F.0.5 follows similarly as in the proof

of Lemma F.0.4 via Taylor expansion. We now verify each claim in order.

• Part 1.

We only prove that

V0,D̂−1 = −1

2
δ>D−1δ +OP

(
1√
n

)
.
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The argument for V1,D̂−1 follows analogously. Under the Gaussian assumption with mutually independent

random samples, one can see that the following vector

(X1, . . . , Xd, Y 1, . . . , Y d︸ ︷︷ ︸
(A)

, X11 −X1, . . . , Xn01 −X1, Y11 − Y 1, . . . , Yn1d − Y d︸ ︷︷ ︸
(B)

)

has a multivariate normal distribution. Furthermore, a little algebra shows that the cross-covariance matrix

between (A) and (B) is a zero matrix, which implies that (A) and (B) are independent under the Gaussian

assumption. Since D̂−1 is a function of (B), it shows that D̂−1 is independent of δ̂ and µ̂pool, which are

functions of (A). In addition, when n0,tr = n1,tr, the covariance between δ̂ and µ̂pool is a zero matrix as

Cov(µ̂1 − µ̂0, µ̂1/2 + µ̂0/2) =

(
1

2n1,tr
− 1

2n0,tr

)
Σ = 0,

which further implies that D̂−1, δ̂ and µ̂pool are mutually independent. Based on this observation, the

expectation becomes

E[V0,D̂−1 ] = −1

2
δ>E[D̂−1]δ = −1

2

d∑
i=1

δ2
i E
[

1

s2
i

]
= −1

2
δ>D−1δ + δ>δ ·O(n−1)

= −1

2
δ>D−1δ +O

(
1

n3/2

)
, (F.33)

since δ>δ = O(n−1/2) under (A1), (A2) and (A5).

Next calculate the second moment using Lemma F.0.1 as

E[V 2
0,D̂−1 ]

= E

[
tr

{
E
[
δ̂δ̂>

]
D̂−1E

[
(µ0 − µ̂pool)(µ0 − µ̂pool)

>] D̂−1

}]

= E

[
tr

{[
δδ> +

4

ntr
Σ

]
D̂−1

[
1

4
δδ> +

1

ntr
Σ

]
D̂−1

}]

=
1

4
E
[(
δ>D̂−1δ

)2
]

︸ ︷︷ ︸
(I)

+
2

ntr
E
[
δ>D̂−1ΣD̂−1δ

]
︸ ︷︷ ︸

(II)

+
4

n2
tr

E
[
tr

{(
ΣD̂−1

)2
}]

︸ ︷︷ ︸
(III)

.

For (I), we apply Lemma F.0.7 to have

(I) =
1

4

d∑
i=1

d∑
j=1

δ2
i δ

2
jE

[
1

s2
i s

2
j

]
=

1

4

(
δ>D−1δ

)2
+O

(
1

n2

)
.
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For (II), by writing σij = [Σ]ij , we infer that

(II) =
2

ntr
E
[
δ>D̂−1ΣD̂−1δ

]
=

2

ntr

d∑
i=1

d∑
j=1

δiδjσijE

[
1

s2
i s

2
j

]

=
2

ntr
δ>D−1ΣD−1δ +O

(
δ>Σδ

n2

)
=

2

ntr
δ>D−1ΣD−1δ +O

(
1

n5/2

)
.

The last term simplifies as

(III) =
4

n2
tr

E
[
tr

{(
ΣD̂−1

)2
}]

=
4

n2
tr

d∑
i=1

d∑
j=1

σ2
ijE

[
1

s2
i s

2
j

]

=
4

n2
tr

tr
{ (

ΣD−1
)2 }

+O

(
tr(Σ2)

n3

)
=

4

n2
tr

tr
{ (

ΣD−1
)2 }

+O

(
1

n2

)
.

Under the given assumptions, one can check that δ>D−1ΣD−1δ = O(n−1/2) and tr{(ΣD−1)2} = O(d). Thus

E[V 2
0,D̂−1 ] = (I) + (II) + (III) =

1

4

(
δ>D−1δ

)2
+O(n−1),

which yields together with (F.33) that Var[V0,D̂−1 ] = O(n−1). Hence the result follows.

• Part 2.

First calculate the expectation. Conditioned on D̂−1, apply Lemma F.0.1 to have

E[UD̂−1 ] = E
[
E
[
δ̂>D̂−1ΣD̂−1δ̂|D̂

]]
= E

[
δ>D̂−1ΣD̂−1δ

]
︸ ︷︷ ︸

(I)

+
4

ntr
E
[
tr
(
D̂−1ΣD̂−1Σ

) ]
︸ ︷︷ ︸

(II)

.

For (I), by putting σij = [Σ]ij , we apply Lemma F.0.7 to have

(I) =

d∑
i=1

d∑
j=1

δiδjσijE

[
1

s2
i s

2
j

]
= δ>D−1ΣD−1δ +O

(
1

n3/2

)
.

For (II),

(II) =
4

ntr

d∑
i=1

d∑
j=1

σ2
ijE

[
1

s2
i s

2
j

]
=

4

ntr
tr
(
D−1ΣD−1Σ

)
+O

(
1

n

)
.
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Therefore

E[UD̂−1 ] = ΛD−1,n,d +O(n−1).

Next compute the variance of UD̂−1 .

Var[UD̂−1 ] = E{Var[UD̂−1 |D̂]}+ Var{E[UD̂−1 |D̂]}. (F.34)

Using Lemma F.0.1 and the fact that δ̂, D̂−1 and µ̂pool are mutually independent (see Part 1),

Var[UD̂−1 |D̂] =
32

n2
tr

tr
{(
D̂−1Σ

)4}
+

16

ntr
δ>D̂−1ΣD̂−1ΣD̂−1ΣD̂−1δ. (F.35)

For the first term, we use Lemma F.0.7 to obtain

E

[
32

n2
tr

tr
{(
D̂−1Σ

)4}]
=

32

n2
tr

E

[
d∑
i=1

d∑
j=1

(
d∑
k=1

σikσkj
s2
i s

2
k

)2 ]

=
32

n2
tr

tr
{(
D−1Σ

)4}
+O

(
tr{Σ4}
n2

)

=
32

n2
tr

tr
{(
D−1Σ

)4}
+O

(
1

n

)

= O

(
1

n

)
. (F.36)

Similarly for the second term,

16

ntr
E
[
δ>D̂−1ΣD̂−1ΣD̂−1ΣD̂−1δ

]
=

16

ntr
δ>D−1ΣD−1ΣD−1ΣD−1δ +O

(
δ>Σ3δ

n2

)

= O

(
1

n3/2

)
. (F.37)

By substituting (F.36) and (F.37) into the the expectation of (F.35), we can conclude that

E{Var[UD̂−1 |D̂]} = O(n−1).

Returning to decomposition (F.34) and next focusing on Var{E[UD̂−1 |D̂]}, note that

E[UD̂−1 |D̂] = δ>D̂−1ΣD̂−1δ +
4

ntr
tr
{

(D̂−1Σ)2
}
.
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Thus

Var{E[UD̂−1 |D̂]} ≤ 2 Var
[
δ>D̂−1ΣD̂−1δ

]
︸ ︷︷ ︸

(I)′

+4 Var
[
2n−1

tr tr
{

(D̂−1Σ)2
}]

︸ ︷︷ ︸
(II)′

. (F.38)

For (I)′, we use Lemma F.0.7 to obtain

E
[(
δ>D̂−1ΣD̂−1δ

)2]
=

d∑
i=1

d∑
j=1

d∑
i′=1

d∑
j′=1

δiδjδi′δj′σijσi′j′E

[
1

s2
i s

2
js

2
i′s

2
j′

]

=
(
δ>D−1ΣD−1δ

)2
+O

((
δ>Σδ

)2
n

)

=
(
δ>D−1ΣD−1δ

)2
+O

(
1

n2

)
,

and

E
[
δ>D̂−1ΣD̂−1δ

]
=

d∑
i=1

d∑
j=1

δiδjσijE

[
1

s2
i s

2
j

]

= δ>D−1ΣD−1δ +O

(
δ>Σδ

n

)

= δ>D−1ΣD−1δ +O

(
1

n3/2

)
.

Therefore, (I)′ = E
[(
δ>D̂−1ΣD̂−1δ

)2]− {E[δ>D̂−1ΣD̂−1δ
]}2

= O(n−2).

Moving onto (II)′, we have

E
[(

2n−1
tr tr

{
(D̂−1Σ)2

})2]
= 4n−2

tr

d∑
i=1

d∑
j=1

d∑
i′=1

d∑
j′=1

σ2
ijσ

2
i′j′E

[
1

s2
i s

2
js

2
i′s

2
j′

]

= 4n−2
tr

[
tr
{

(D−1Σ)2
}]2

+O

({
tr(Σ2)

}2

n3

)

= 4n−2
tr

[
tr
{

(D−1Σ)2
}]2

+O(n−1),

and

E
[
2n−1

tr tr
{

(D̂−1Σ)2
}]

= 2n−1
tr

d∑
i=1

d∑
j=1

σ2
ijE

[
1

s2
i s

2
j

]
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= 2n−1
tr tr

{
(D−1Σ)2

}
+O

(
tr{Σ2}
n2

)
= 2n−1

tr tr
{

(D−1Σ)2
}

+O(n−1).

Hence (II)′ = O(n−1). Substituting the bounds (I)′ = O(n−2) and (II)′ = O(n−1) into the right-hand side

of (F.38), we obtain that

Var[UD̂−1 ] = O(n−1).

This verifies the second part.

• Part 3.

Let us start with the expectation. Based on the fact that δ̂, D̂−1 and µ̂pool are mutually independent (see

Part 1),

E[V0,D̂−1 + V1,D̂−1 ] = E
[
δ̂>D̂−1(µ0 − µ̂pool) + δ̂>D̂−1(µ̂pool − µ1)

]
= −δ>D−1δ ·

{
1 +O(n−1)

}
.

Next calculate the second moment.

E[(V0,D̂−1 + V1,D̂−1)2] = E
[
tr
(
δ̂δ̂>D̂−1δδ>D̂−1

)]
= E

[
tr
{(
δδ> + 4n−1

tr Σ
)
D̂−1δδ>D̂−1

}]
= E

[(
δ>D̂−1δ

)2
]

︸ ︷︷ ︸
(I)′′

+ 4n−1
tr E

[
δ>D̂−1ΣD̂−1δ

]
︸ ︷︷ ︸

(II)′′

.

For (I)′′, applying Lemma F.0.7 yields

(I)′′ =

d∑
i=1

d∑
j=1

d∑
i′=1

d∑
j′=1

δiδjδi′δj′E

[
1

s2
i s

2
js

2
i′s

2
j′

]

=

d∑
i=1

d∑
j=1

d∑
i′=1

d∑
j′=1

δiδjδi′δj′

[
1

σ2
i σ

2
jσ

2
i′σ

2
j′

+O(n−1)

]

=
(
δ>D−1δ

)2
+
(
δ>δ

)2 ·O(n−1).
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Similarly, for (II)′′, Lemma F.0.7 yields

(II)′′ = 4n−1
tr δ
>D−1ΣD−1δ + δ>Σδ ·O(n−2).

Since the eigenvalues of Σ are uniformly bounded and δ>Σ−1δ = O(n−1/2), the variance is bounded by

Var[V0,D̂−1 + V1,D̂−1 ] =
(
δ>D−1δ

)2 ·O(n−1) +
(
δ>δ

)2 ·O(n−1)

+ 4n−1
tr δ
>D−1ΣD−1δ + δ>Σδ ·O(n−2)

= O

(
1

n3/2

)
.

This verifies the third part.

• Concluding the proof.

Consider a bivariate function f(v, u) = Φ(v/
√
u). Then by the Taylor expansion of f(v, u) around

(ΨD−1,n,d,ΛD−1,n,d) together with the results in Part 1 and Part 2, we have

E0,D̂−1 = f(V0,D̂−1 , UD̂−1)

= Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+ φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
1√

ΛD−1,n,d

(V0,D̂−1 −ΨD−1,n,d)

−φ
(

ΨD−1,n,d√
ΛD−1,n,d

)
ΨD−1,n,d

(ΛD−1,n,d)3/2
(UD̂−1 − ΛD−1,n,d) +OP

(
n−1

)
,

where φ(·) is the density function of N(0, 1). Similarly,

E1,D̂−1 = f(V1,D̂−1 , UD̂−1)

= Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+ φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
1√

ΛD−1,n,d

(V1,D̂−1 −ΨD−1,n,d)

−φ
(

ΨD−1,n,d√
ΛD−1,n,d

)
ΨD−1,n,d

(ΛD−1,n,d)3/2
(UD̂−1 − ΛD−1,n,d) +OP

(
n−1

)
.

Combining these approximations with the result in Part 3,

E0,D̂−1 + E1,D̂−1

2

= Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+ φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
1√

ΛD−1,n,d

(
V0,D̂−1 + V1,D̂−1

2
−ΨD−1,n,d

)
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−φ
(

ΨD−1,n,d√
ΛD−1,n,d

)
ΨD−1,n,d

(ΛD−1,n,d)3/2
(UD̂−1 − ΛD−1,n,d) +OP

(
n−1

)

= Φ

(
ΨD−1,n,d√
ΛD−1,n,d

)
+OP

(
1

n3/4

)
.

This completes the proof of Lemma F.0.5.

F.3.9 Proof of Theorem 7.5

The proof of Theorem 7.5 basically follows the same lines of arguments as in the proof of Theorem 7.3 under

the given assumptions. However we note that the proof of Theorem 7.3 relies on Lemma F.0.1, which is

tailored to the normality assumption. Hence, in order to complete the proof, we need to verify that the

parts that build on Lemma F.0.1 are also valid for elliptical distributions. More specifically there are two

parts that depend on Lemma F.0.1: (i) the approximations of V0,A, V1,A and V0,A+V1,A given in (F.16) and

(ii) the approximation of UA given in (F.21). In the rest of the proof, we prove that these approximations

are still valid for elliptical distributions.

•Moments of elliptical distributions. Let us start with some useful moment expressions of an elliptical

random vector.

Lemma F.0.8 (Chapter 3.2 of Mathai et al. (2012)). Suppose that Z = (Z1, . . . , Zd)
> ∈ Rd has

a multivariate elliptical distribution with parameters (µ, S, ξ) where µ = (µ1, . . . , µd)
> and [Σ]jk =

−2ξ′(0)[S]jk = σjk for j, k = 1, . . . , d such that

E
[
eit
>Z
]

= eit
>µξ

(
t>St

)
for all t ∈ Rd.

Then we have

1. E[Zj ] = µj,

2. E[ZjZk] = µjµk + σjk,

3. E[ZjZkZl] = µjµkµl + µjσlk + µkσjl + µlσjk.

Moreover for a symmetric matrix A, we have

1. E[Z>AZ] = µ>Aµ+ tr(AΣ),

2. Var[Z>AZ] = 4µ>AΣAµ+ ζkurt{tr(AΣ)}2 + 2(ζkurt + 1)tr{(AΣ)2},
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where

ζkurt =
ξ
′′
(0)

{ξ′(0)}2 − 1 =
E
[{

(Z − µ)>Σ−1(Z − µ)
}2]

d(d+ 2)
− 1.

Note that when Z has an multivariate normal distribution, the kurtosis parameter becomes ζkurt = 0

and the above result coincides with Lemma F.0.1.

• Part 1. Approximation (F.16) Leveraging Lemma F.0.8, we first prove that the approximations of

V0,A = δ̂>A(µ0 − µ̂pool), V1,A = δ̂>A(µ̂pool − µ1) and V0,A + V1,A = δ̂>A(µ0 − µ1) in (F.16) hold true for

elliptical distributions under (A7). By assuming n0,tr = n1,tr, it is straightforward to see that the expected

values of these quantities are

E[V0,A] = E[V1,A] = −1

2
δ>Aδ and

E[V0,A + V1,A] = −δ>Aδ.

Turning to the variances, we shall prove that Var[V0,A] = O(n−1), Var[V1,A] = O(n−1) and Var[V0,A+V1,A] =

O(n−3/2), which in turn yields the claim (F.16). Focusing on the variance of V0,A and using n0,tr = n1,tr,

we see that

Var[V0,A] =
1

n4
0,tr

Var

[
n0,tr∑
i=1

{(
Xi − Yi

)>
A

(
µ0 −

1

2
Xi −

1

2
Yi

)}

+
∑

1≤i6=j≤n0,tr

{(
Xi − Yi

)>
A

(
µ0 −

1

2
Xj −

1

2
Yj

)}]

≤ 2

n4
0,tr

Var

[
n0,tr∑
i=1

{(
Xi − Yi

)>
A

(
µ0 −

1

2
Xi −

1

2
Yi

)}]
︸ ︷︷ ︸

(I)

+
2

n4
0,tr

Var

[ ∑
1≤i 6=j≤n0,tr

{(
Xi − Yi

)>
A

(
µ0 −

1

2
Xj −

1

2
Yj

)}]
︸ ︷︷ ︸

(II)

where the last inequality follows by Var[X+Y ] ≤ 2Var[X]+2Var[Y ]. For the first term (I), since we assume

Xn0
0 and Yn1

0 are mutually independent, we have

(I) =
1

2n3
0,tr

Var
{

(X1 − Y1)>A(2µ0 −X1 − Y1)
}
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=
1

n3
0,tr

[
2(ζkurt + 1)tr

{
(AΣ)2

}
+ ζkurt

{
tr(AΣ)

}2
+ 2δ>AΣAδ

]
,

where the second equality follows by straightforward calculation using Lemma F.0.8. Thus under the given

conditions, we have established that (I) = O(n−1). For the second term (II), by expanding the variance of

the sum of random variables, we see that

(II) = O(n−2) · Cov
{

(X1 − Y1)>A(2µ0 −X2 − Y2), (X1 − Y1)>A(2µ0 −X2 − Y2)
}

+ O(n−2) · Cov
{

(X1 − Y1)>A(2µ0 −X2 − Y2), (X2 − Y2)>A(2µ0 −X1 − Y1)
}

+ O(n−1) · Cov
{

(X1 − Y1)>A(2µ0 −X2 − Y2), (X2 − Y2)>A(2µ0 −X3 − Y3)
}

+ O(n−1) · Cov
{

(X1 − Y1)>A(2µ0 −X2 − Y2), (X3 − Y3)>A(2µ0 −X1 − Y1)
}

def
= O(n−2) · (II1) +O(n−2) · (II2) +O(n−1) · (II3) +O(n−1) · (II4).

Again, leveraging Lemma F.0.8, it can be seen that

(II1) = 4δ>AΣAδ + 4tr{(AΣ)2},

(II2) = − 4δ>AΣAδ + 4tr{(AΣ)2},

(II3) = 2δ>AΣAδ and

(II4) = 2δ>AΣAδ.

Thus, under the given conditions, we can conclude that Var[V0,A] = O(n−1). By symmetry we similarly have

Var[V1,A] = O(n−1). For the last quantity V0,A + V1,A,

Var[V0,A + V1,A] = Var[δ̂>A(µ0 − µ1)] =
1

n2
0,tr

Var[(X1 − Y1)>A(µ0 − µ1)]

=
2

n2
0,tr

δ>AΣAδ = O(n−3/2).

Combining the pieces together proves the validity of the approximations (F.16).

• Part 2. Approximation (F.21) Recall that UA = δ̂>AΣAδ̂ and it is relatively straightforward to

compute the expectation under n0,tr = n1,tr as

E[UA] = δ>AΣAδ +
2

n2
0,tr

tr
{

(AΣ)2
}
.
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Therefore it is enough to show that the variance of UA is O(n−1), which in turns proves the claim (F.21).

Similarly as before in part 1, we can upper bound the variance of UA by

Var[UA] ≤ 2

n3
0,tr

Var
{

(X1 − Y1)>AΣA(X1 − Y1)
}

︸ ︷︷ ︸
(I)

+
2

n4
0,tr

Var

{ ∑
1≤i6=j≤n0,tr

(Xi − Yi)>AΣA(Xj − Yj)
}

︸ ︷︷ ︸
(II)

.

For the first term (I), we observe that by the independence between X1 and Y1, the characteristic function

of Z1
def
= X1 − Y1 is

E
[
eit
>Z1
]

= eit
>δξ2(t>St).

In other words, Z1 has an elliptical distribution with parameters (δ, S, ξ2). Also the corresponding covariance

matrix and the kurtosis parameter of Z1 are 2Σ and ζkurt/2, respectively. Then using Lemma F.0.8 yields

(I) =
4

n3
0,tr

[
4δ>AΣAΣAΣAδ + ζkurt{tr(AΣAΣ)}2 + 2(ζkurt + 2)tr{(AΣ)4}

]
= O(n−1).

Let Z2, Z3 be independent copies of Z1. Then for the second term (II),

(II) = O(n−2) · Cov
{
Z>1 AΣAZ2, Z

>
1 AΣAZ2

}︸ ︷︷ ︸
(II1)

+O(n−1) · Cov
{
Z>1 AΣAZ2, Z

>
1 AΣAZ3

}︸ ︷︷ ︸
(II2)

.

Building on Lemma F.0.8, it can be shown that

(II1) = 4δ>AΣAΣAΣAδ + 4tr{(AΣ)4}

(II2) = 2δ>AΣAΣAΣAδ.

Therefore the second term also satisfies (II) = O(n−1), which verifies the claim (F.21). This completes the

proof of Theorem 7.5.
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F.3.10 Proof of Proposition 7.3

We let denote the conditional expectations of ÊS0 (Ĉ) and ÊS1 (Ĉ) given the training set by

E0(Ĉ)
def
= Pr

Z∼P0

(
Ĉ(Z) = 1 | Xn0,tr

1 ,Yn1,tr

1

)
and

E1(Ĉ)
def
= Pr

Z∼P1

(
Ĉ(Z) = 0 | Xn0,tr

1 ,Yn1,tr

1

)
.

For the rest of the proof, we omit the dependence of Ĉ on the classification errors to simplify the notation.

Now, since ÊS0 and ÊS1 are uniformly bounded, the convergence in probability implies that the convergence

in moment. Hence we have that E
[
ÊS0
]
→ E0 and E

[
ÊS1
]
→ E1, which implies E0 p−→ E0 and E1 p−→ E1

using Markov’s inequality. Consequently,

ÊS0 (1− ÊS0 )
/
n0,te + ÊS1 (1− ÊS1 )

/
n1,te

E0(1− E0)
/
n0,te + E1(1− E1)

/
n1,te

p−→ 1. (F.39)

Suppose that the null hypothesis is true. Then under the given conditions, following the same lines of the

proof of Proposition 7.2 yields

2ÊS − 1√
E0(1− E0)

/
n0,te + E1(1− E1)

/
n1,te

d−→ N(0, 1),

where we use the fact that E0 +E1 = 1 under the null hypothesis. It is worth mentioning that Proposition 7.2

also requires (A1), (A2), (A5) and (A6). These assumptions are made to show that E0,A and E1,A are

asymptotically bounded below by 0 and above by 1, which are guaranteed by the assumption (A9) under

the current setting.

Next Slutsky’s theorem together with the observation (F.39) further shows that

2ÊS − 1√
ÊS0 (1− ÊS0 )

/
n0,te + ÊS1 (1− ÊS1 )

/
n1,te

d−→ N(0, 1).

Therefore ϕĈ,Asymp asymptotically controls the type-1 error rate under the given conditions. In terms of

power, the assumption (A9) guarantees that 2ÊS − 1
p−→ −2ε < 0 and

ÊS0 (1− ÊS0 )
/
n0,te + ÊS1 (1− ÊS1 )

/
n1,te

p−→ 0.

Building on this observation, we have under the alternative that

EH1

[
ϕĈ,Asymp

]
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= PH1

 2ÊS − 1√
ÊS0 (1− ÊS0 )

/
n0,te + ÊS1 (1− ÊS1 )

/
n1,te

< −zα


= PH1

[
2ÊS − 1 < −zα

√
ÊS0 (1− ÊS0 )

/
n0,te + ÊS1 (1− ÊS1 )

/
n1,te

]

→ 1,

which proves consistency of the asymptotic test.

F.3.11 Proof of Theorem 7.6

As mentioned in the main text, both half- and entire-permutation methods yield a valid level α test (see,

e.g., Theorem 1 of Hemerik and Goeman, 2018b). Hence we focus on proving consistency of the resulting

test under the given conditions. To ease notation, we drop the dependence of Ĉ on the sample-splitting

errors throughout this proof.

Let us consider all possible permutations first, that is m!
def
= nte! for method 1 and m!

def
= n! for

method 2, and denote the sample-splitting errors (or 1 − accuracies) by ÊS,1, . . . , ÊS,m! computed based

on each permutation. We then let ẼS,1, . . . , ẼS,P be P independent samples from ÊS,1, . . . , ÊS,m! without

replacement. Then the permutation test can be equivalently written as

ϕĈ,Perm = I

[
1

P

P∑
i=1

I
(
ÊS < ẼS,i

)
≥ 1− αP

]
, (F.40)

where 1 − αP def
= d(1 − α)(1 + P )e/P → 1 − α as P → ∞. We note that in order for the test (F.40) to

have power, 1− αP should be less than one (otherwise the test function is always zero), which requires the

condition P > (1− α)/α.

Let us denote the αP quantile of ẼS,1, . . . , ẼS,P by qαP . Using the representation (F.40), it can be

verified that if the test statistic is less than this quantile, i.e. ÊS < qαP , then the permutation test is equal

to one, i.e. ϕĈ,Perm = 1. This fact implies that if I(ÊS < qαP ) is a consistent test, then the permutation test

is also consistent. Therefore it is enough to work with I(ÊS < qαP ) and show that it is consistent.

A high-level proof strategy is as follows. By the assumption, ÊS converges in probability to a constant

strictly less than 1/2 − ε/2 under the alternative. Therefore the proof is complete if we show that a lower

bound for qαP converges to a constant that is strictly larger than 1/2 − ε/2. To do so, we let n be a

random variable uniformly distributed over {1, . . . , P} and write the distribution of n by Pn (conditional on

everything else) and the expectation with respect to Pn by En.
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For a given t ∈ (0, 1/2), applying Markov’s inequality yields

Pn

(
ẼS,n < t

)
= Pn

(
− ẼS,n + 1/2 > −t+ 1/2

)
≤ Pn

(∣∣ẼS,n − 1/2
∣∣ > −t+ 1/2

)
≤ En

[(
ẼS,n − 1/2

)2]
(1/2− t)2

.

Now by setting the right-hand side to be αP , we know that the quantile qαP is lower bounded by

qαP ≥
1

2
−
√

1

αP
En

[(
ẼS,n − 1/2

)2]
.

Here the expected value of the squared difference is

En

[(
ẼS,n − 1/2

)2]
=

1

P

P∑
i=1

(
ẼS,i − 1/2

)2

. (F.41)

In the rest of the proof, we show that the above quantity converges in probability to zero as n→∞ for both

method 1 and method 2. Hence the quantile qαP is lower bounded by 1/2− ε/2 in the limit as claimed.

• Method 1 (Half-permutation test).

To start with method 1, we let m be a random variable uniformly distributed over {1, . . . , nte!} and write

the expectation and the variance over m (conditional on everything else) by Em and Vm, respectively. We

note that for each i ∈ {1, . . . , P}, ẼS,i has the same distribution as ÊS,m and that the expected value of

ÊS,m is calculated as

Em

[
ÊS,m

]
=

1

nte!

nte!∑
i=1

ÊS,i =
1

2
. (F.42)

Therefore the squared difference (F.41) is an unbiased estimator of the variance of ÊS,m.

We next upper bound the variance of ÊS,m. To do so, let us write the test set by

{X1+n0,tr , . . . , Xn0 , Y1+n1,tr , . . . , Yn1}
def
= {Z1, . . . , Znte}.
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Notice that for each m, there exists the corresponding permutation of {1, . . . , nte}, denoted by ωm def
=

{ωm
1 , . . . , ω

m
nte
}, such that the test statistic ÊS,m can be written as

ÊS,m =
1

2n0,te

n0,te∑
i=1

I
[
Ĉ(Zωm

i
) = 1

]
︸ ︷︷ ︸

(I)

+
1

2n1,te

n1,te∑
i=1

I
[
Ĉ(Zωm

i+n0,te
) = 0

]
︸ ︷︷ ︸

(II)

.

The variance of the first term (I) is

Varm[(I)] =
1

4n2
0,te

n0,te∑
i=1

Varm

{
I
[
Ĉ(Zωm

i
) = 1

]}
+

1

4n2
0,te

∑
1≤i6=j≤n0,te

Covm

{
I
[
Ĉ(Zωm

i
) = 1

]
, I
[
Ĉ(Zωm

j
) = 1

]}
,

where the individual variance and covariance terms are given as

Varm

{
I
[
Ĉ(Zωm

i
) = 1

]}
=

1

nte

nte∑
i=1

I
[
Ĉ(Zi) = 1

]
·
{

1− 1

nte

nte∑
i=1

I
[
Ĉ(Zi) = 1

]}
≤ 1

and

Covm

{
I
[
Ĉ(Zωm

i
) = 1

]
, I
[
Ĉ(Zωm

j
) = 1

]}
=

1

nte(nte − 1)

∑
1≤i 6=j≤nte

I
[
Ĉ(Zi) = 1

]
· I
[
Ĉ(Zj) = 1

]
−
{

1

nte

nte∑
i=1

I
[
Ĉ(Zi) = 1

]}2

≤ 0.

Hence the variance of (I) is bounded by Varm[(I)] ≤ 1/(4n0,te) and similarly one can show that Varm[(II)] ≤
1/(4n1,te). Now applying the basic inequality Var(X + Y ) ≤ 2Var(X) + 2Var(Y ) yields

Varm
[
ÊS,m

]
≤ 1

2n0,te
+

1

2n1,te
. (F.43)

This in turn implies that (ẼS,i − 1/2)2 p−→ 0 as n→∞ for any i ∈ {1, . . . , P} and thus

1

P

P∑
i=1

(
ẼS,i − 1/2

)2 p−→ 0 as n→∞. (F.44)

This completes the proof for method 1.

• Method 2 (Entire-permutation test).
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Next we show that the squared difference (F.41) converges to zero in probability for method 2. We first note

that the half-permutation procedure can be understood as the entire-permutation procedure conditional on

the first ntr permutation labels. From this perspective, Em and Varm are the conditional expectation and the

conditional variance of the permuted test statistic given the first ntr permutation labels. More specifically

we let m∗ be a random variable uniformly distributed over {1, . . . , n!} and write the distribution of m∗ by

Pm∗ (conditional on everything else) and the expectation and the variance with respect to Pm∗ by Em∗ and

Vm∗ , respectively. Then for each m∗, there exists the corresponding permutation of {1, . . . , n}, denoted by

ωm∗ def
= {ωm∗

1 , . . . , ωm∗

n }, such that the permuted test statistic can be expressed as a function of ωm∗ as

ÊS,m
∗ def

= ÊS,m
∗
(Zωm∗

1
, . . . , Zωm∗

n
),

where {Z1, . . . , Zn} are the pooled samples denoted by

{Z1, . . . , Zn} def
= {X1, . . . , Xn0,tr

, Y1, . . . , Yn1,tr
, X1+n0,tr

, . . . , Xn0
, Y1+n1,tr

, . . . , Yn1
}.

Following the same reasoning in (F.42), it can be seen that the conditional expectation of ÊS,m
∗

given the

first ntr components of ωm∗ is always equal to half, that is

Em∗

[
ÊS,m

∗
∣∣∣ ωm∗

1 , . . . , ωm∗

ntr

]
=

1

2
.

Hence applying the law of total expectation yields that the unconditional expectation is also equal to half.

Next we use the law of total variance and observe that

Vm∗

[
ÊS,m

∗
]

= Vm∗

[
Em∗

{
ÊS,m

∗
∣∣∣ ωm∗

1 , . . . , ωm∗

ntr

}]
+ Em∗

[
Varm∗

{
ÊS,m

∗
∣∣∣ ωm∗

1 , . . . , ωm∗

ntr

}]
= Em∗

[
Varm∗

{
ÊS,m

∗
∣∣∣ ωm∗

1 , . . . , ωm∗

ntr

}]
≤ 1

2n0,te
+

1

2n1,te
,

where the last inequality can be similarly proved as in the bound (F.43). Having these two observations at

hand, we know that conclusion (F.44) is also true for method 2 and thus complete the proof of Theorem 7.6.

F.4 Simulation results on sample-splitting ratio

In this section we examine the power of classification tests under the Gaussian setting by varying the splitting

ratio κ for the balanced sample case. As in Section 7.10 of the main text, we set n0 = n1 = d = 200 and

consider the accuracy tests ϕΣ−1 and ϕD̂−1 based on the Fisher’s LDA classifier and the naive Bayes classifier,
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respectively. Note that the critical values of ϕΣ−1 and ϕD̂−1 are chosen based on a normal approximation.

Given κ ∈ {0.1, 0.2, . . . , 0.9}, the number of samples in the training set is decided by n0,tr = bκn0c and

n1,tr = bκn1c, which leads to n0,te = n0 − n0,tr and n1,te = n1 − n1,tr.

Table F.1: Comparisons of the empirical power of classification tests by varying the sample-splitting ratio κ. The
results show that the power is approximately maximized when the splitting ratio is κ = 1/2. See Appendix F.4 for
details.

Ratio κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ = 0.15
LDA 0.155 0.189 0.212 0.220 0.224 0.207 0.176 0.157 0.103
Bayes 0.150 0.185 0.218 0.221 0.222 0.212 0.176 0.156 0.100

δ = 0.25
LDA 0.437 0.616 0.691 0.714 0.715 0.686 0.598 0.499 0.301
Bayes 0.406 0.613 0.682 0.710 0.714 0.677 0.596 0.496 0.306

The results are presented in Table F.1. It is apparent from Table F.1 that the power is maximized when

the training set and the testing set are well-balanced, i.e. κ = 1/2. This coincides with our theoretical

result discussed in Section 7.6. However, unlike our asymptotic power expression in (7.17) with λ = 1/2, the

empirical power seems asymmetric in κ. This unexpected result might be attributed to the fact that when

κ is far from 1/2, either ntr or nte becomes too small to justify a normal approximation. Nevertheless, the

powers in these extreme cases are less than the power in the balanced case.

390



Appendix G

Appendix for Chapter 8

G.1 Overview of Appendix

In this supplementary material, we provide some additional results and the technical proofs omitted in the

main text. The remainder of this material is organized as follows.

• In Appendix G.2, we develop exponential inequalities for permuted linear statistics, building on the

concept of negative association.

• In Appendix G.3, we provide the result that improves Theorem 8.1 based on the exponential bound in

Theorem 8.3 with an extra assumption that n1 � n2.

• The proof of Lemma 8.0.1 on the two moments method is provided in Appendix G.4.

• The proofs of the results on two-sample testing in Section 8.4 are presented in Appendix G.5, G.6, G.7

and G.8.

• The proofs of the results on independence testing in Section 8.5 are presented in Appendix G.9, G.10,

G.11, G.12 and G.13.

• The proofs of the results on combinatorial concentration inequalities in Section 8.6 are presented in

Appendix G.15 and G.16.

• The proofs of the results on adaptive tests in Section 8.7 are presented in Appendix G.17 and G.18.

• The proofs of the results on multinomial tests and Gaussian kernel tests in Section 8.8 are presented

in Appendix G.19, G.20, G.21 and G.22.
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G.2 Exponential inequalities for permuted linear statistics

Suppose that Xn = {(Y1, Z1), . . . , (Yn, Zn)} is a set of bivariate random variables where Yi ∈ R and Zi ∈ R.

Following the convention, let us write the sample means of Y and Z by Y := n−1
∑n
i=1 Yi and Z :=

n−1
∑n
i=1 Zi, respectively. The sample covariance, which measures a linear relationship between Y and Z,

is given by

Ln :=
1

n

n∑
i=1

(Yi − Y )(Zi − Z).

We also call Ln as a linear statistic as opposed to quadratic statistics or degenerate U -statistics considered

in the main text. Let us denote the permuted linear statistic, associated with a permutation π of {1, . . . , n},
by

Lπn =
1

n

n∑
i=1

(Yi − Y )(Zπi − Z).

In this section, we provide two exponential concentration bounds for Lπn conditional on Xn; namely Hoeffding-

type inequality (Proposition G.1) and Bernstein-type inequality (Proposition G.2). These results have

potential applications in studying the power of the permutation test based on Ln and also concentration

inequalities for sampling without replacement. We describe the second application in more detail in

Appendix G.2.1 after we develop the results.

Related work and negative association. We should note that the same problem has been considered by

several authors using Stein’s method (Chatterjee, 2007), a martingale method (Chapter 4.2 of Bercu et al.,

2015) and Talagrand’s inequality (Albert, 2019). In fact they consider a more general linear statistic which

has the form of
∑n
i=1 di,πi where {di,j}ni,j=1 is an arbitrary bivariate sequence. Thus their statistic includes

Ln as a special case by letting di,πi = (Yi − Y )(Zπi − Z). However their proofs are quite involved at the

expense of being more general. Here we provide a much simpler proof with sharper constant factors by

taking advantage of the decomposability of di,j . To this end, we utilize the concept of negative association

(e.g. Joag-Dev and Proschan, 1983; Dubhashi and Ranjan, 1998), defined as follows.

Definition G.1 (Negative association). Random variables X1, . . . , Xn are negatively associated (NA) if for

every two disjoint index sets I,J ⊆ {1, . . . , n},

E[f(Xi, i ∈ I)g(Xj , j ∈ J )] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J )]

for all functions f : R|I| 7→ R and g : R|J | 7→ R that are both non-decreasing or both non-increasing.
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Let us state several useful facts about negatively associated random variables that we shall leverage to

prove the main results of this section. The proofs of the given facts can be found in Joag-Dev and Proschan

(1983) and Dubhashi and Ranjan (1998).

• Fact 1. Let {x1, . . . , xn} be a set of n real values. Suppose that {X1, . . . , Xn} are random variables

with the probability such that

P(X1 = xπ1
, . . . , Xn = xπn) =

1

n!
for any permutation π of {1, . . . , n}.

Then {X1, . . . , Xn} are negatively associated.

• Fact 2. Let {X1, . . . , Xn} be negatively associated. Let I1, . . . , Ik ⊆ {1, . . . , n} be disjoint index sets,

for some positive integer k. For j ∈ {1, . . . , n}, let hj : R|Ik| 7→ R be functions that are all non-

decreasing or all non-increasing and define Yj = hj(Xi, i ∈ Ij). Then {Y1, . . . , Yk} are also negatively

associated.

• Fact 3. Let {X1, . . . , Xn} be negatively associated. Then for any non-decreasing functions fi, i ∈
{1, . . . , n}, we have that

E
[ n∏
i=1

fi(Xi)

]
≤

n∏
i=1

E[fi(Xi)]. (G.1)

Description of the main idea. Notice that Lπn is a function of non-i.i.d. random variables for which

standard techniques relying on i.i.d. assumptions do not work directly. We avoid this difficulty by connecting

Lπn with negatively associated random variables and then applying Chernoff bound combined with the

inequality (G.1). The details are as follows. For notational simplicity, let us denote

{a1, . . . , an} = {Y1 − Y , . . . , Yn − Y } and

{bπ1
, . . . , bπn} = {Zπ1

− Z, . . . , Zπn − Z}.

To proceed, we make several important observations.

• Observation 1. First, since {bπ1 , . . . , bπn} has a permutation distribution, we can use Fact 1 and

conclude that {bπ1
, . . . , bπn} are negatively associated.

• Observation 2. Second, let I+ be the set of indices such that ai > 0 and similarly I− be the set

of indices such that ai < 0. Since hi(Xi, i ∈ I+) = aiXi is non-decreasing function and hi(Xi, i ∈
I−) = aiXi is non-increasing functions, it can be seen that {aibπi}i∈I+ and {aibπi}i∈I− are negatively
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associated by Fact 2. Using this notation, the linear statistic can be written as

Lπn =
1

n

∑
i∈I+

aibπi +
1

n

∑
i∈I−

aibπi .

It can be easily seen that Eπ[bπi |Xn] = 0 for each i and thus Eπ[Lπn|Xn] = 0 by linearity of expectation.

Hence, for λ > 0, applying the Chernoff bound yields

Pπ(Lπn ≥ t|Xn)

≤ e−λtEπ

[
exp

(
λn−1

∑
i∈I+

aibπi + λn−1
∑
i∈I−

aibπi

)∣∣∣∣∣Xn
]

≤ e−λt

2
Eπ

[
exp

(
2λn−1

∑
i∈I+

aibπi

)∣∣∣∣∣Xn
]

+
e−λt

2
Eπ

[
exp

(
2λn−1

∑
i∈I−

aibπi

)∣∣∣∣∣Xn
]

:= (I) + (II),

where the last inequality uses the elementary inequality xy ≤ x2/2 + y2/2.

• Observation 3. Third, based on fact that {aibπi}i∈I+ and {aibπi}i∈I− are negatively associated, we

may apply Fact 3 to have that

(I) ≤ e−λt

2

∏
i∈I+

Eb̃
[

exp
(
2λn−1aib̃i

)∣∣Xn] =
e−λt

2

n∏
i=1

Eb̃
[

exp
(
2λn−1a+

i b̃i
)∣∣Xn] and

(II) ≤ e−λt

2

∏
i∈I−

Eb̃
[

exp
(
2λn−1aib̃i

)∣∣Xn] =
e−λt

2

n∏
i=1

Eb̃
[

exp
(
− 2λn−1a−i b̃i

)∣∣Xn],
(G.2)

where b̃1, . . . , b̃n are i.i.d. random variables uniformly distributed over {b1, . . . , bn}. Here a+
i and a−i

represent a+
i = ai1(ai ≥ 0) and a−i = −ai1(ai ≤ 0) respectively.

With these upper bounds for (I) and (II) in place, we are now ready to present the main results of this

section. The first one is a Hoeffding-type bound which provides a sharper constant factor than Duembgen

(1998).

Proposition G.1 (Hoeffding-type bound). Let us define arange := Yn − Y1 and brange := Zn − Z1. Then

Pπ(Lπn ≥ t|Xn) ≤ exp

[
−max

{
n2t2

a2
range

∑n
i=1 b

2
i

,
n2t2

b2range

∑n
i=1 a

2
i

}]
.
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Proof. The proof directly follows by applying Hoeffding’s lemma (Hoeffding, 1963), which states that when

Z has zero mean and a ≤ Z ≤ b,

E[eλZ ] ≤ eλ2(b−a)2/8.

Notice that Hoeffding’s lemma yields

n∏
i=1

Eb̃
[

exp
(
2λn−1a+

i b̃i
)∣∣Xn] ≤ exp

{
λ2b2range

2n2

n∑
i=1

(a+
i )2

}
≤ exp

{
λ2b2range

2n2

n∑
i=1

a2
i

}
and

n∏
i=1

Eb̃
[

exp
(
2λn−1a−i b̃i

)∣∣Xn] ≤ exp

{
λ2b2range

2n2

n∑
i=1

(a−i )2

}
≤ exp

{
λ2b2range

2n2

n∑
i=1

a2
i

}
.

Thus combining the above with the upper bounds for (I) and (II) in (G.2) yields

Pπ(Lπn ≥ t|Xn) ≤ exp

{
− λt+

λ2b2range

2n2

n∑
i=1

a2
i

}
.

By optimizing over λ on the right-hand side, we obtain that

Pπ(Lπn ≥ t|Xn) ≤ exp

{
− n2t2

b2range

∑n
i=1 a

2
i

}
. (G.3)

Since
∑n
i=1 aπibi and

∑n
i=1 aibπi have the same permutation distribution, it also holds that

Pπ(Lπn ≥ t|Xn) ≤ exp

{
− n2t2

a2
range

∑n
i=1 b

2
i

}
. (G.4)

Then putting together these two bounds (G.3) and (G.4) gives the desired result.

Note that Proposition G.1 depends on the variance of either {ai}ni=1 or {bi}ni=1. In the next proposition,

we provide a Bernstein-type bound which depends on the variance of the bivariate sequence {aibj}ni,j=1.

Similar results can be found in Bercu et al. (2015) and Albert (2019) but in terms of constants, the bound

below is much shaper than the previous ones.

Proposition G.2 (Bernstein-type bound). Based on the same notation in Proposition G.1, a Bernstein-type

bound is provided by

Pπ(Lπn ≥ t|Xn) ≤ exp

{
− nt2

2n−2
∑n
i,j=1 a

2
i b

2
j + 2

3 tmax1≤i,j≤n |aibj |

}
.
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Proof. Once we have the upper bounds for (I) and (II) in (G.2), the remainder of the proof is routine. First

it is straightforward to verify that for |Z| ≤ c, E[Z] = 0 and E[Z2] = σ2, we have that

E[eλZ ] = 1 +

∞∑
k=2

E[(λZ)k]

k!
≤ 1 +

σ2

c2

∞∑
k=2

λkck

k!
≤ exp

{
σ2

c2
(
eλc − 1− λc

)}
.

Let us write σ̂2
i = n−3a2

i

∑n
j=1 b

2
i and M = n−1 max1≤i,j≤n |aibj |. Then based on the above inequality, we

can obtain that

n∏
i=1

Eb̃
[

exp
(
2λn−1a+

i b̃i
)∣∣Xn] ≤ exp

{∑n
i=1 σ̂

2
i

M2

(
eλM − 1− λM

)}
and

n∏
i=1

Eb̃
[

exp
(
2λn−1a−i b̃i

)∣∣Xn] ≤ exp

{∑n
i=1 σ̂

2
i

M2

(
eλM − 1− λM

)}
.

Combining these two upper bounds with the result in (G.2) yields

Pπ (Lπn ≥ t|Xn) ≤ e−λt exp

{∑n
i=1 σ̂

2
i

M2

(
eλM − 1− λM

)}
.

By optimizing the right-hand side in terms of λ, we obtain a Bennett-type inequality

Pπ (Lπn ≥ t|Xn) ≤ exp

{
−
∑n
i=1 σ̂

2
i

M2
h

(
tM∑n
i=1 σ̂

2
i

)}
,

where h(x) = (1 + x) log(1 + x)− x. Then the result follows by noting that h(x) ≥ x2/(2 + 2x/3).

In the next subsection, we apply our results to derive concentration inequalities for sampling without

replacement.

G.2.1 Concentration inequalities for sampling without replacement

To establish the explicit connection to sampling without replacement, we focus on the case where Zi is

binary, say Zi ∈ {−a, a}. Then the linear statistic Ln is related to the unscaled two-sample t-statistic. More

specifically, let us write n1 =
∑n
i=1 1(Zi = a) and n2 =

∑n
i=1 1(Zi = −a). Additionally we use the notation

Y 1 = n−1
1

∑n
i=1 Yi1(Zi = a) and Y 2 = n−1

2

∑n
i=1 Yi1(Zi = −a). Then some algebra shows that the sample

covariance Ln is exactly the form of

Ln = 2a
n1n2

n2
(Y 1 − Y 2).
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Without loss of generality, we assume a = 1, i.e. Zi ∈ {−1, 1}. Then Proposition G.1 gives a concentration

inequality for the unscaled t-statistic as

Pπ

{
2n1n2

n2

(
Y 1,π − Y 2,π

)
≥ t
∣∣∣∣∣Xn

}
= Pπ

{(
Y 1,π − Y 2,π

)
≥ tn2

2n1n2

∣∣∣∣∣Xn
}

≤ exp

{
− n2t2

4
∑n
i=1(Yi − Y )2

}
,

where Y 1,π = n−1
1

∑n
i=1 Yπi1(Zi = 1) and Y 2,π = n−1

2

∑n
i=1 Yπi1(Zi = −1). This implies that

Pπ
(
Y 1,π − Y 2,π ≥ t

∣∣Xn) ≤ exp

(
−n

2
1n

2
2t

2

n3σ̂2
lin

)
,

where σ̂2
lin = n−1

∑n
i=1(Zi − Z)2. By symmetry, it also holds that

Pπ
(
|Y 1,π − Y 2,π| ≥ t

∣∣Xn) ≤ 2 exp

(
−n

2
1n

2
2t

2

n3σ̂2
lin

)
.

Let us denote the sample mean of the entire samples by Y = n−1
∑n
i=1 Yi. Then using the exact relationship

|Y 1,π − Y 2,π| =
n

n2
|Y 1,π − Y |, (G.5)

the above inequality is equivalent to

Pπ
(
|Y 1,π − Y | ≥ t

∣∣Xn) ≤ 2 exp

(
− n

2
1t

2

nσ̂2
lin

)
. (G.6)

Notice that Y 1,π is the sample mean of n1 observations sampled without replacement from {Y1, . . . , Yn}. This

implies that the permutation law of the sample mean is equivalent to the probability law under sampling

without replacement. The same result (including the constant factor) exists in Massart (1986) (see Lemma

3.1 therein). However, the result given there only holds when n = n1 × m where m is a positive integer

whereas our result does not require such restriction.

An improvement via Berstein-type bound. Although the tail bound (G.6) is simple depending only on

the variance term σ̂2
lin, it may not be effective when n1 is much smaller than n (e.g. n2

1/n→ 0 as n1 →∞).

In such case, Proposition G.2 gives a tighter bound. More specifically, following the same steps as before,

Proposition G.2 presents a concentration inequality for the two-sample (unscaled) t-statistic as

Pπ(Lπn ≥ t|Xn) = Pπ

{(
Y 1,π − Y 2,π

)
≥ tn2

2n1n2

∣∣∣∣∣Xn
}
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≤ exp

{
− nt2

8n1n2

n2 σ̂2
lin + 4

3 t ·max
(
n1

n ,
n2

n

)
·MZ

}
,

where MZ := max1≤i≤n |Zi − Z|. Furthermore, using the relationship (G.5) and by symmetry,

Pπ
(
|Y 1,π − Y | ≥ t

∣∣Xn) ≤ 2 exp

{
− 12n1t

2

24n2

n σ̂
2
lin + 8n2

n MZt

}
, (G.7)

where we assumed n1 ≤ n2.

Remark G.1. We remark that the bounds in (G.6) and (G.7) are byproducts of more general bounds and

are not necessary the sharpest ones in the context of sampling without replacement. We refer to Bardenet

and Maillard (2015) and among others for some recent developments of concentration bounds for sampling

without replacement.

G.3 Improved version of Theorem 8.1

In this section, we improve the result of Theorem 8.1 based on the exponential bound in Theorem 8.3.

In particular we replace the dependency on α−1 there with log(1/α) by adding an extra assumption that

n1 � n2 as follows.

Lemma G.0.1 (Two-sample U -statistic). For 0 < α < e−1, suppose that there is a sufficiently large constant

C > 0 such that

EP [Un1,n2
] ≥ C max

{√
ψY,1(P )

βn1
,

√
ψZ,1(P )

βn2
,

√
ψY Z,2(P )

β
log

(
1

α

)
·
(

1

n1
+

1

n2

)}
, (G.8)

for all P ∈ P1 ⊂ Phts
. Then under the assumptions that n1 � n2, the type II error of the permutation test

over P1 is uniformly bounded by β, that is

sup
P∈P1

P(n1,n2)
P (Un1,n2 ≤ c1−α,n1,n2) ≤ β.

Proof. To prove the above lemma, we employ the quantile approach described in Section 8.3 (see also Fromont

et al., 2013). More specifically we let q1−β/2,n denote the quantile of the permutation critical value c1−α,n

of Un1,n2 . Then as shown in the proof of Lemma 8.0.1, if

EP [Un1,n2
] ≥ q1−β/2,n +

√
2VarP [Un1,n2

]

β
,
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then the type II error of the permutation test is controlled as

sup
P∈P1

PP (Un1,n2
≤ c1−α,n) ≤ sup

P∈P1

PP (Un1,n2
≤ q1−β/2,n) + sup

P∈P1

PP (q1−β/2,n < c1−α,n)

≤ β.

Therefore it is enough to verify that the right-hand side of (G.8) is lower bounded by q1−β/2,n +√
2VarP [Un1,n2 ]/β. As shown in the proof of Theorem 8.1, the variance is bounded by

VarP [Un1,n2 ] ≤ C1
ψY,1(P )

n1
+ C2

ψZ,1(P )

n2
+ C3ψY Z,2(P )

(
1

n1
+

1

n2

)2

. (G.9)

Moving onto an upper bound for q1−β/2,n, let us denote

Σ†n1,n2
:=

1

n2
1(n1 − 1)2

∑
(i1,i2)∈in2

g2(Xi1 , Xi2).

From Theorem 8.3 together with the trivial bound (8.31), we know that c1−α,n is bounded by

c1−α,n ≤ max

{√
Σ†2n1,n2

C4
log

(
1

α

)
,

Σ†n1,n2

C4
log

(
1

α

)}

≤ C5Σ†n1,n2
log

(
1

α

)
,

(G.10)

where the last inequality uses the assumption that α < e−1. Now applying Markov’s inequality yields

PP
(
Σ†n1,n2

≥ t
)
≤ EP [Σ†2n1,n2

]

t2
≤ C6

ψY Z,2(P )

t2n2
1

.

By setting the right-hand side to be β/2, we can find an upper bound for the 1 − β/2 quantile of Σ†n1,n2
.

Combining this observation with inequality (G.10) yields

q1−β/2,n ≤
C7

β1/2
log

(
1

α

) √
ψY Z,2(P )

n1
.

Therefore, from the above bound and (G.9),

q1−β/2,n +

√
2VarP [Un1,n2

]

β

≤ C

√√√√max

{
ψY,1(P )

βn1
,
ψZ,1(P )

βn2
,
ψY Z,2(P )

β
log2

(
1

α

)
·
(

1

n1
+

1

n2

)2
}
.
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This completes the proof of Lemma G.0.1.

G.4 Proof of Lemma 8.0.1

As discussed in the main text, the key difficulty of studying the type II error of the permutation test lies in

the fact that its critical value is data-dependent and thereby random. Our strategy to overcome this problem

is to bound the random critical value by a quantile value with high probability (see also Fromont et al., 2013).

We split the proof of Lemma 8.0.1 into three steps. In the first step, we present a sufficient condition under

which the type II error of the test with a non-random cutoff value is small. In the second step, we provide a

non-random upper bound for the permutation critical value, which holds with high probability. In the last

step, we combine the results and complete the proof.

Step 1. For a given P ∈ P1, let ω(P ) be any constant depending on P such that

EP [Tn] ≥ ω(P ) +

√
3VarP [Tn]

β
. (G.11)

Based on such ω(P ), we define a test 1{Tn > ω(P )}, which controls the type II error by β/3. To see this,

let us apply Chebyshev’s inequality

β/3 ≥ PP
(∣∣Tn − EP [Tn]

∣∣ ≥√3β−1VarP [Tn]
)

≥ PP
(
− Tn + EP [Tn] ≥

√
3β−1VarP [Tn]

)
≥ PP

(
ω(P ) ≥ Tn

)
,

where the last inequality uses the condition of ω(P ) in (G.11). In other words, the type II error of the test

1{Tn > ω(P )} is less than or equal to β/3 as desired.

Step 2. In this step, we provide an upper bound for c1−α,n, which may hold with high probability. First,

applying Chebyshev’s inequality yields

Pπ
(∣∣Tπn − Eπ[Tπn |Xn]

∣∣ ≥√α−1Varπ[Tπn |Xn]
∣∣Xn) ≤ α.

Therefore, by the definition of the quantile, we see that c1−α,n satisfies

c1−α,n ≤ Eπ[Tπn |Xn] +
√
α−1Varπ[Tπn |Xn]. (G.12)

400



Note that the two terms on the right-hand side are random variables depending on Xn. In order to use the

result from the first step, we want to further upper bound these two terms by some constants. To this end,

let us define two good events:

A1 :=
{
Eπ[Tπn |Xn] < EP [Eπ{Tπn |Xn}] +

√
3β−1VarP [Eπ{Tπn |Xn}]

}
,

A2 :=
{√

α−1Varπ[Tπn |Xn] <
√

3α−1β−1EP [Varπ{Tπn |Xn}]
}
.

Then by applying Markov and Chebyshev’s inequalities, it is straightforward to see that

PP (Ac1) ≤ β/3 and PP (Ac2) ≤ β/3. (G.13)

Step 3. Here, building on the first two steps, we conclude the result. We begin by upper bounding the

type II error of the permutation test as

PP (Tn ≤ c1−α,n) = PP (Tn ≤ c1−α,n, A1 ∪ A2) + PP (Tn ≤ c1−α,n, Ac1 ∩ Ac2)

≤ PP (Tn ≤ ω′(P )) + PP (Ac1 ∩ Ac2),

where, for simplicity, we write

ω′(P ) := EP [Eπ{Tπn |Xn}] +
√

3β−1VarP [Eπ{Tπn |Xn}] +
√

3α−1β−1EP [Varπ{Tπn |Xn}].

One may check that the type II error of 1{Tn > ω′(P )} is controlled by β/3 as long as ω′(P ) +√
3VarP [Tn]/β ≤ EP [Tn] from the inequality (G.11) in Step 1. However, this sufficient condition is ensured

by condition (8.3) of Lemma 8.0.1. Furthermore, the probability of the intersection of the two bad events

Ac1∩Ac2 is also bounded by 2β/3 due to the concentration results in (G.13). Hence, by taking the supremum

over P ∈ P1, we may conclude that

sup
P∈P1

PP (Tn ≤ c1−α,n) ≤ β.

This completes the proof of Lemma 8.0.1.

G.5 Proof of Theorem 8.1

We proceed the proof by verifying the sufficient condition in Lemma 8.0.1. We first verify that the expectation

of Uπn1,n2
is zero under the permutation law. Let us recall the permuted U -statistic Uπn1,n2

in (8.26). In fact,
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by the linearity of expectation, it suffices to prove

Eπ[hts(Xπ1
, Xπ2

;Xπn1+1
, Xπn1+2

)|Xn] = 0.

This is clearly the case by recalling the definition of kernel hts in (8.5) and noting that the expectation

Eπ[g(Xπi , Xπj )|Xn] is invariant to the choice of (i, j) ∈ in2 , which leads to Eπ[Uπn1,n2
|Xn] = 0. Therefore we

only need to verify the simplified condition (8.4) under the given assumptions in Theorem 8.1.

The rest of the proof is divided into two parts. In each part, we prove the following conditions separately,

EP [Un1,n2
] ≥ 2

√
2VarP [Un1,n2 ]

β
and (G.14)

EP [Un1,n2 ] ≥ 2

√
2EP [Varπ{Uπn1,n2

|Xn}]
αβ

. (G.15)

We then complete the proof of Theorem 8.1 by noting that (G.14) and (G.15) imply the simplified condition

(8.4).

Part 1. Verification of condition (G.14): In this part, we verify condition (G.14). To do so, we state

the explicit variance formula of a two-sample U -statistic (e.g. page 38 of Lee, 1990). Following the notation

of Lee (1990), we let σ̌2
i,j denote the variance of a conditional expectation given as

σ̌2
i,j = VarP [EP {hts(y1, . . . , yi, Yi+1, . . . , Y2; z1, . . . , zj , Zj+1, . . . , Z2)}] for 0 ≤ i, j ≤ 2.

Then the variance of Un1,n2
is given by

VarP [Un1,n2
] =

2∑
i=0

2∑
j=0

(
2

i

)(
2

j

)(
n1 − 2

2− i

)(
n2 − 2

2− j

)(
n1

2

)−1(
n2

2

)−1

σ̌2
i,j . (G.16)

By the law of total variance, one may see that σ̌2
i,j ≤ σ̌2

2,2 for all 0 ≤ i, j ≤ 2. This leads to an upper bound

for VarP [Un1,n2
] as

VarP [Un1,n2 ] ≤ C1

σ̌2
1,0

n1
+ C2

σ̌2
0,1

n2
+ C3

(
1

n1
+

1

n2

)2

σ̌2
2,2.

Now applying Jensen’s inequality, repeatedly, yields

σ̌2
2,2 ≤ EP [h

2

ts(Y1, Y2;Z1, Z2)] ≤ EP [h2
ts(Y1, Y2;Z1, Z2)] ≤ C4ψY Z,2(P ).
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Then by noting that σ̌2
1,0 and σ̌2

0,1 correspond to the notation ψY,1(P ) and ψZ,1(P ), respectively,

VarP [Un1,n2
] ≤ C1

ψY,1(P )

n1
+ C2

ψZ,1(P )

n2
+ C4

(
1

n1
+

1

n2

)2

ψY Z,2(P ).

Hence condition (G.14) is satisfied by taking the constant C in Theorem 8.1 sufficiently large.

Part 2. Verification of condition (G.15): In this part, we verify condition (G.15). Intuitively, the

permuted U -statistic behaves similarly as the unconditional U -statistic under a certain null model. This

means that the variance of Uπn1,n2
should have a similar convergence rate as (n−1

1 + n−1
2 )2ψY Z,2(P ) since

ψY,1(P ) and ψZ,1(P ) are zero under the null hypothesis. We now prove that this intuition is indeed correct.

Since Uπn1,n2
is centered under the permutation law, it is enough to study EP [Eπ{(Uπn1,n2

)2|Xn}]. Let us write

a set of indices Itotal := {(i1, i2, j1, j2, i′1, i′2, j′1, j′2) ∈ N8
+ : (i1, i2) ∈ in1

2 , (j1, j2) ∈ in2
2 , (i′1, i

′
2) ∈ in1

2 , (j′1, j
′
2) ∈

in2
2 } and define IA = {(i1, i2, j1, j2, i′1, i′2, j′1, j′2) ∈ Itotal : #|{i1, i2, j1, j2} ∩ {i′1, i′2, j′1, j2}| ≤ 1} and IAc =

{(i1, i2, j1, j2, i′1, i′2, j′1, j′2) ∈ Itotal : #|{i1, i2, j1, j2} ∩ {i′1, i′2, j′1, j2}| > 1}. Here #|B| denotes the cardinality

of a set B. Then it is clear that Itotal = IA ∪ IAc . Based on this notation and the linearity of expectation,

Eπ[(Uπn1,n2
)2|Xn] =

1

(n1)2
(2)(n2)2

(2)

∑
(i1,...,j′2)∈Itotal

Eπ
[
hts(Xπi1

, Xπi2
;Xπn1+j1

, Xπn1+j2
)

× hts(Xπi′1
, Xπi′2

;Xπn1+j′1
, Xπn1+j′2

)
∣∣∣Xn]

= (I) + (II),

where

(I) :=
1

(n1)2
(2)(n2)2

(2)

∑
(i1,...,j′2)∈IA

Eπ
[
hts(Xπi1

, Xπi2
;Xπn1+j1

, Xπn1+j2
)

× hts(Xπi′1
, Xπi′2

;Xπn1+j′1
, Xπn1+j′2

)
∣∣∣Xn],

(II) :=
1

(n1)2
(2)(n2)2

(2)

∑
(i1,...,j′2)∈IAc

Eπ
[
hts(Xπi1

, Xπi2
;Xπn1+j1

, Xπn1+j2
)

× hts(Xπi′1
, Xπi′2

;Xπn1+j′1
, Xπn1+j′2

)
∣∣∣Xn].

We now claim that the first term (I) = 0. This is the key observation that makes the upper bound for the

variance of the permuted U -statistic depend on (n−1
1 + n−1

2 )2 rather than a slower rate (n1 + n2)−1. First

consider the case where #|{i1, i2, j1, j2} ∩ {i′1, i′2, j′1, j2}| = 0, that is, all indices are distinct. Let us focus

on the summands of (I). By symmetry, we may assume the set of indices (i1, i2, n1 + j1, n1 + j2, i
′
1, i
′
2, n1 +
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j′1, n1 + j′2) to be (1, . . . , 8) and observe that

Eπ
[
hts(Xπ1

, Xπ2
;Xπ3

, Xπ4
)hts(Xπ5

, Xπ6
;Xπ7

, Xπ8
)
∣∣∣Xn]

(i)1
= Eπ

[
hts(Xπ3 , Xπ2 ;Xπ1 , Xπ4)hts(Xπ5 , Xπ6 ;Xπ7 , Xπ8)

∣∣∣Xn]
(ii)1
= − Eπ

[
hts(Xπ1

, Xπ2
;Xπ3

, Xπ4
)hts(Xπ5

, Xπ6
;Xπ7

, Xπ8
)
∣∣∣Xn]

(iii)1
= 0,

where (i)1 holds since the distribution of the product kernels does not change even after π1 and π3 are switched

and (ii)1 uses the fact that hts(y1, y2; z1, z2) = −hts(z1, y2; y1, z2). (iii)1 follows directly by comparing the

first line and the third line of the equations. Next consider the case where #|{i1, i2, j1, j2}∩{i′1, i′2, j′1, j2}| = 1.

Without loss of generality, assume that i1 = i′1. In this case, by symmetry again, we have

Eπ
[
hts(Xπ1

, Xπ2
;Xπ3

, Xπ4
)hts(Xπ1

, Xπ5
;Xπ6

, Xπ7
)
∣∣∣Xn]

(i)2
= Eπ

[
hts(Xπ1

, Xπ4
;Xπ3

, Xπ2
)hts(Xπ1

, Xπ5
;Xπ6

, Xπ7
)
∣∣∣Xn]

(ii)2
= − Eπ

[
hts(Xπ1 , Xπ2 ;Xπ3 , Xπ4)hts(Xπ1 , Xπ5 ;Xπ6 , Xπ7)

∣∣∣Xn]
(iii)2
= 0,

where (i)2 follows by the same reasoning for (i)2 and (ii)2 holds since hts(y1, y2; z1, z2) = −hts(y1, z2; y1, y2).

Then (iii)2 is obvious by comparing the first line and the third line of the equations. Hence, for any choice

of indices (i1, . . . , j
′
2) ∈ IA, the summands of (I) becomes zero, which leads to (I) = 0.

Now turning to the second term (II), for any 1 ≤ i1 6= i2, i3 6= i4 ≤ n, we have

∣∣EP [Eπ{g(Xπi1
, Xπi2

)g(Xπi3
, Xπi4

)|Xn}
]∣∣

(i)3
=

∣∣Eπ[EP {g(Xπi1
, Xπi2

)g(Xπi3
, Xπi4

)|πi1 , . . . , πi4}
]∣∣

(ii)3
≤ 1

2
Eπ
[
EP {g2(Xπi1

, Xπi2
)|πi1 , πi2}

]
+

1

2
Eπ
[
EP {g2(Xπi3

, Xπi4
)|πi3 , πi4}

]
(iii)3
≤ ψY Z,2(P ),

where (i)3 uses the the law of total expectation, (ii)3 uses the basic inequality xy ≤ x2/2 + y2/2 and (iii)3

clearly holds by recalling the definition of ψY Z,2(P ). Using this observation, it is not difficult to see that for
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any (i1, . . . , j
′
2) ∈ Itotal,

∣∣∣Eπ[hts(Xπi1
, Xπi2

;Xπn1+j1
, Xπn1+j2

)hts(Xπi′1
, Xπi′2

;Xπn1+j′1
, Xπn1+j′2

)
∣∣Xn]∣∣∣ ≤ C5ψY Z,2(P ).

Therefore, by counting the number of elements in IAc ,

EP [Varπ{Uπn1,n2
|Xn}] = EP [(II)] ≤ C5ψY Z,2(P )× 1

(n1)2
(2)(n2)2

(2)

∑
(i1,...,j′2)∈IAc

1

≤ C6ψY Z,2(P )

(
1

n1
+

1

n2

)2

.

Hence condition (G.15) is satisfied by taking the constant C in Theorem 8.1 sufficiently large. This completes

the proof of Theorem 8.1.

G.6 Proof of Proposition 8.1

As discussed in the main text, we start proving that the three inequalities in (8.14) are fulfilled. Focusing

on the first one, we want to show that

ψY,1(P ) ≤ C1

√
b(1)‖pY − pZ‖22 for some C1 > 0.

By denoting the kth component of pY and pZ by pY (k) and pZ(k), respectively, note that

EP [hts(Y1, Y2;Z1, Z2)|Y1] =

d∑
k=1

[1(Y1 = k)− pZ(k)][pY (k)− pZ(k)]

and so ψY,1(P ), which is the variance of the above expression, becomes

ψY,1(P ) = EP
[( d∑

k=1

[1(Y1 = k)− pY (k)][pY (k)− pZ(k)]

)2]
.

Furthermore, observe that

ψY,1(P )
(i)

≤ 2EP
[( d∑

k=1

1(Y1 = k)[pY (k)− pZ(k)]

)2]
+ 2

( d∑
k=1

pY (k)[pY (k)− pZ(k)]

)2

= 2

d∑
k=1

pY (k)[pY (k)− pZ(k)]2 + 2

( d∑
k=1

pY (k)[pY (k)− pZ(k)]

)2
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(ii)

≤ 2

√√√√ d∑
k=1

p2
Y (k)

√√√√ d∑
k=1

[pY (k)− pZ(k)]4 + 2

d∑
k=1

p2
Y (k)

d∑
k=1

[pY (k)− pZ(k)]2

(iii)

≤ 4
√
b(1)‖pY − pZ‖22,

where (i) is based on (x+y)2 ≤ 2x2+2y2, (ii) uses Cauchy-Schwarz inequality and (iii) uses the monotonicity

of `p norm (specifically, `4 ≤ `2) as well as the fact that ‖pY ‖22 ≤ ‖pY ‖2. By symmetry, we can also have

that

ψZ,1(P ) ≤ 4
√
b(1)‖pY − pZ‖22.

Now focusing on the third line of the claim (8.14), recall that

ψY Z,2(P ) := max{EP [g2
Multi(Y1, Y2)], EP [g2

Multi(Y1, Z1)], EP [g2
Multi(Z1, Z2)]}

and by noting that gMulti(x, y) is either one or zero,

EP [g2
Multi(Y1, Y2)] =

d∑
k=1

p2
Y (k),

EP [g2
Multi(Z1, Z2)] =

d∑
k=1

p2
Z(k) and

EP [g2
Multi(Y1, Z1)] =

d∑
k=1

pY (k)pZ(k) ≤ 1

2

d∑
k=1

p2
Y (k) +

1

2

d∑
k=1

p2
Z(k),

where the last inequality uses xy ≤ x2/2 + y2/2. This clearly shows that ψY Z,2 ≤ b(1), which confirms the

claim (8.14). Since the expectation of Un1,n2
is ‖pY − pZ‖22, one may see that

EP [Un1,n2 ] ≥ ε2n1,n2
≥ C1

√
b(1)

α1/2β

(
1

n1
+

1

n2

)

≥ C2

√√√√max

{
ψY,1(P )

βn1
,
ψZ,1(P )

βn2
,
ψY Z,2(P )

αβ

(
1

n1
+

1

n2

)2
}
.

Now we apply Theorem 8.1 and finish the proof of Proposition 8.1.
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G.7 Proof of Proposition 8.2

We first note that Proposition 8.1 establishes an upper bound for the minimum separation as ε†n1,n2
.

b
1/4
(1) n

−1/2
1 where n1 ≤ n2. Hence once we identify a lower bound such that ε†n1,n2

& b
1/4
(1) n

−1/2
1 , the proof

is completed. As briefly explained in the main text, our strategy to prove this result is to consider the

one-sample problem, which is conceptually easier than the two-sample problem, and establish the matching

lower bound. In the one-sample problem, we assume that pZ is known and observe n1 samples from the

other distribution pY . Based on these n1 samples, we want to test whether pY = pZ or ‖pY − pZ‖2 ≥ εn1
.

As formalized by Arias-Castro et al. (2018) (see their Lemma 1), the one-sample problem can be viewed as

a special case of the two-sample problem where one of the sample sizes is taken to be infinite and thus the

minimum separation for the one-sample problem is always smaller than or equal to that for the two-sample

problem. This means that if the minimum separation for the one-sample problem, denoted by ε†n1
, satisfies

ε†n1
& b

1/4
(1) n

−1/2
1 , then we also have that ε†n1,n2

& b
1/4
(1) n

−1/2
1 . In the end, it suffices to verify ε†n1

& b
1/4
(1) n

−1/2
1

to complete the proof. We show this result based on the standard lower bound technique due to Ingster

(1987, 1993).

• Ingster’s method for the lower bound. Let us recall from Section 8.2.2 that the minimax type II

error is given by

R†n,εn := inf
φ∈Φn,α

sup
P∈P1(εn)

P(n)
P (φ = 0).

For P1, . . . , PN ∈ P1(εn), define a mixture distribution Q given by

Q(A) =
1

N

N∑
i=1

Pni (A).

Given n i.i.d. observations X1, . . . , Xn, we denote the likelihood ratio between Q and the null distribution

P0 by

Ln =
dQ

dPn0
=

1

N

N∑
i=1

n∏
j=1

pi(Xj)

p0(Xj)
.

Then one can relate the variance of the likelihood ratio to the minimax type II error as follows.

Lemma G.0.2 (Lower bound). Let 0 < β < 1− α. If

EP0
[L2
n] ≤ 1 + 4(1− α− β)2,

then R†n,εn ≥ β.
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Proof. We present the proof of this result only for completeness. Note that PnP0
(φ = 1) ≤ α for φ ∈ Φn,α.

Thus

R†n,εn ≥ inf
φ∈Φn,α

PQ(φ = 0) = inf
φ∈Φn,α

[
PP0

(φ = 0) + PQ(φ = 0)− PP0
(φ = 0)

]
(i)

≥ 1− α+ inf
φ∈Φn,α

[
PQ(φ = 0)− PP0

(φ = 0)
]

(ii)

≥ 1− α− sup
A

∣∣PQ(A)− PP0
(A)
∣∣

(iii)
= 1− α− 1

2

∥∥Q− Pn0 ∥∥1
.

where (i) uses the fact that PnP0
(φ = 1) ≤ α, (ii) follows by taking the supremum over all measurable sets,

(iii) uses the alternative expression for the total variation distance in terms of L1-distance. The result then

follows by noting that

∥∥Q− Pn0 ∥∥1
= EP0 [|Ln(X1, . . . , Xn)− 1|] ≤

√
EP0 [L2

n(X1, . . . , Xn)]− 1.

This proves Lemma G.0.2.

Next we apply this method to find a lower bound for ε†n1
. To apply Lemma G.0.2, we first construct Q

and P0.

• Construction of Q and P0. Suppose that pZ is the uniform distribution over Sd, that is pZ(k) = 1/d

for k = 1, . . . , d. Let ζ̃ = {ζ̃1, . . . , ζ̃d} be dependent Rademacher random variables uniformly distributed

over {−1, 1}d such that
∑d
i=1 ζ̃i = 0 where d is assumed to be even. More formally we define such a set by

Md :=
{
x ∈ {−1, 1}d :

d∑
i=1

xi = 0
}
. (G.17)

If d is odd, then we set ζ̃d = 0 and the proof follows similarly. Given ζ̃ ∈Md, let us define a distribution pζ̃

as

pζ̃(k) := pZ(k) + δ

d∑
i=1

ζ̃i1(k = i),

where δ is specified later but δ ≤ 1/d. There are N such distributions where N is the cardinality of Md

and we denote them by pζ̃(1), . . . , pζ̃(N). By construction we make three observations. First pζ̃ is a proper

distribution as each component pζ̃(k) is non-negative and
∑d
k=1 pζ̃(k) = 1. Second the `2 distance between
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pζ̃ and pZ is

‖pζ̃ − pZ‖2 = δ
√
d. (G.18)

Third we see that b(1) = max{‖pZ‖22, ‖pζ̃‖22} is lower and upper bounded by

1

d
≤ b(1) ≤

2

d
, (G.19)

which can be verified based on Cauchy-Schwarz inequality and the fact that δ ≤ 1/d. Finally we denote the

uniform mixture of pζ̃(1), . . . , pζ̃(N) by

Q :=
1

N

N∑
i=1

pζ̃(i)

and let P0 = pZ . Having Q and P0 at hand, we are now ready to compute the expected value of the squared

likelihood ratio.

• Calculation of EP0
[L2
n]. For each ζ̃(i) ∈ Md and i = 1, . . . , N , let us denote the components of ζ̃(i) by

{ζ̃1,(i), . . . , ζ̃d,(i)}. Based on this notation as well as the definition of Q and P0, the squared the likelihood

ratio L2
n can be written as

L2
n =

1

N2

N∑
i1=1

N∑
i2=1

n1∏
j=1

pζ̃(i1)(Xj)pζ̃(i2)(Xj)

p0(Xj)p0(Xj)

=
1

N2

N∑
i1=1

N∑
i2=1

n1∏
j=1

{1/d+ δ
∑d
k=1 ζ̃k(i1)1(Xj = k)}{1/d+ δ

∑d
k=1 ζ̃k(i2)1(Xj = k)}

1/d2

=
1

N2

N∑
i1=1

N∑
i2=1

n1∏
j=1

{
1 + dδ

d∑
k=1

ζ̃k(i1)1(Xj = k)

}{
1 + dδ

d∑
k=1

ζ̃k(i2)1(Xj = k)

}
.

Now by taking the expectation under P0, it can be seen that

EP0 [L2
n] =

1

N2

N∑
i1=1

N∑
i2=1

(
1 + dδ2

d∑
k=1

ζ̃k(i1)ζ̃k(i2)

)n1

≤ 1

N2

N∑
i1=1

N∑
i2=1

exp

(
n1dδ

2
d∑
k=1

ζ̃k(i1)ζ̃k(i2)

)
,
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where the inequality uses 1 + x ≤ ex for all x ∈ R. By letting ζ̃∗ be i.i.d. copy of ζ̃, we may see that

1

N2

N∑
i1=1

N∑
i2=1

exp

(
n1dδ

2
d∑
k=1

ζ̃k(i1)ζ̃k(i2)

)
= Eζ̃,ζ̃∗

[
exp

(
n1dδ

2
〈
ζ̃, ζ̃∗

〉)]
.

Moreover {ζ̃1, . . . ζ̃d} are negatively associated (Dubhashi and Ranjan, 1998). Hence applying Lemma 2 of

Dubhashi and Ranjan (1998) yields

EP0
[L2
n] ≤ Eζ̃,ζ̃∗

[
exp

(
n1dδ

2
〈
ζ̃, ζ̃∗

〉)]
≤

d∏
i=1

Eζ̃i,ζ̃∗i

[
exp

(
n1dδ

2ζ̃iζ̃
∗
i

)]
=

d∏
i=1

cosh(n1dδ
2)

(i)

≤
d∏
i=1

en
2
1d

2δ4/2 = en
2
1d

3δ4/2,

where (i) uses the inequality cosh(x) ≤ ex2/2 for all x ∈ R.

• Completion of the proof. Based on this upper bound, we have from Lemma G.0.2 that if

δ ≤ 1√
n1d3/4

[
log
{

1 + 4(1− α− β)2
}]1/4

the minimax type II error is lower bounded by β. Furthermore, based on the expression for the `2 norm in

(G.18) and the bound for b(1) in (G.19). The above condition is further implied by

εn1
≤
b
1/4
(1)√
n1

[
log
{

1 + 4(1− α− β)2
}]1/4

.

This completes the proof of Proposition 8.2.

G.8 Proof of Proposition 8.3

The proof of Proposition 8.3 is fairly straightforward based on Proposition 8.1 and Lemma 3 of Arias-Castro

et al. (2018). For two vectors v = (v1, . . . , vd) ∈ Rd and w = (w1, . . . , wd) ∈ Rd where vi ≤ wi for all i, we

borrow the notation from Arias-Castro et al. (2018) and denote the hyperrectangle by

[v,w] =

d∏
i=1

[vi, wi].
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Recall that κ(1) = bn2/(4s+d)
1 c and define H` := [(`− 1)/κ(1), `/κ(1)] where ` ∈ {1, 2, . . . , κ(1)}d,

pY (`) :=

∫
H`

fY (t)dt and pZ(`) :=

∫
H`

fZ(t)dt.

Since both fY and fZ are in Hölder’s density class P(d,s)
Hölder where |||fY |||∞ ≤ L and |||fZ |||∞ ≤ L, it is clear to

see that

pY (`) ≤ |||fY |||∞κ−d(1) ≤ Lκ−d(1) and pZ(`) ≤ |||fZ |||∞κ−d(1) ≤ Lκ−d(1) for all `.

This gives

b(1) = max{‖pY ‖22, ‖pZ‖22} ≤ Lκ−d(1). (G.20)

Based on Lemma 3 of Arias-Castro et al. (2018), one can find a constant C1 > 0 such that

‖pY − pZ‖22 ≥ C1κ
−d
(1)ε

2
n1,n2

, (G.21)

where εn1,n2
is the lower bound for ‖fY − fZ‖L2

. By combining (G.20) and (G.21), the condition of

Proposition 8.1 is satisfied when

κ−d(1)ε
2
n1,n2

≥ C2

L1/2κ
−d/2
(1)

α1/2β

(
1

n1
+

1

n2

)
.

Equivalently,

εn1,n2
≥ C3

L1/4κ
d/4
(1)

α1/4β1/2

(
1

n1
+

1

n2

)1/2

.

Since κ(1) = bn2/(4s+d)
1 c and we assume n1 ≤ n2, the above inequality is further implied by

εn1,n2 ≥
C4

α1/4β1/2

(
1

n1
+

1

n2

) 2s
4s+d

,

where C4 is a constant that may depend on s, d, L. This completes the proof of Proposition 8.3.

G.9 Proof of Theorem 8.2

The proof of Theorem 8.2 is similar to that of Theorem 8.1. First we verify that the permuted U -statistic

Uπn , which can be recalled from (8.32), has zero expectation. By the linearity of expectation, the problem
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boils down to showing

Eπ[hin{(Y1, Zπ1
), (Y2, Zπ2

), (Y3, Zπ3
), (Y4, Zπ4

)}|Xn] = 0.

Since Y1, . . . , Y4 are constant under permutations, it further boils down to proving

Eπ[gZ(Zπ1 , Zπ2) + gZ(Zπ3 , Zπ4)− gZ(Zπ1 , Zπ3)− gZ(Zπ2 , Zπ4)|Xn] = 0.

In fact, this equality is clear by noting that Eπ[gZ(Zπi , Zπj )] is invariant to the choice of (i, j) ∈ in2 , which

leads to Eπ[Uπn |Xn] = 0. Therefore we can focus on the simplified condition (8.4) to proceed.

The rest of the proof is split into two parts. In each part, we prove the following conditions separately,

EP [Un] ≥ 2

√
2VarP [Un]

β
and (G.22)

EP [Un] ≥ 2

√
2EP [Varπ{Uπn |Xn}]

αβ
. (G.23)

We then complete the proof of Theorem 8.2 by noting that (G.22) and (G.23) imply the simplified condition

(8.4).

Part 1. Verification of condition (G.22): This part verifies condition (G.22). The main ingredient of

this part of the proof is the explicit variance formula of a U -statistic (e.g. page 12 of Lee, 1990). Following

the notation of Lee (1990), we define σ̌2
i to be the variance of the conditional expectation by

σ̌2
i := VarP [EP {hin(x1, . . . , xi, Xi+1, . . . , X4)}] for 1 ≤ i ≤ 4.

Then the variance of Un is given by

VarP [Un] =

4∑
i=1

(
4

i

)(
n− 4

4− i

)(
n

4

)−1

σ̌2
i .

By the law of total variance, it can be seen that σ̌2
i ≤ σ̌2

4 for all 1 ≤ i ≤ 4, which leads to an upper bound

for VarP [Un] as

VarP [Un] ≤ C1
σ̌2

1

n
+ C2

σ̌2
4

n2
.
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Now applying Jensen’s inequality, repeatedly, yields

σ̌2
4 ≤ EP [h

2

in(X1, X2, X3, X4)] ≤ EP [h2
in(X1, X2, X3, X4)] ≤ C3ψ

′
2(P ).

Then by noting that σ̌2
1 corresponds to the notation ψ′1(P ), we have that

VarP [Un1,n2 ] ≤ C1
ψ′1(P )

n
+ C2

ψ′2(P )

n2
.

Therefore condition (G.22) is satisfied by taking constant C sufficiently large in Theorem 8.2.

Part 2. Verification of condition (G.23): This part verifies condition (G.23). As mentioned in the

main text, the permuted U -statistic Uπn mimics the behavior of Un under the null hypothesis. Hence one

can expect that the variance of Uπn is similarly bounded by ψ′2(P )n−2 up to some constant as ψ′1(P )

becomes zero under the null hypothesis. To prove this statement, we first introduce some notation. Let

us define a set of indices Jtotal := {(i1, i2, i3, i4, i′1, i′2, i′3, i′4) ∈ N8
+ : (i1, i2, i3, i4) ∈ in4 , (i

′
1, i
′
2, i
′
3, i
′
4) ∈ in4}

and let JA := {(i1, i2, i3, i4, i′1, i′2, i′3, i′4) ∈ Jtotal : #|{i1, i2, i3, i4} ∩ {i′1, i′2, i′3, i′4}| ≤ 1} and JAc :=

{(i1, i2, i3, i4, i′1, i′2, i′3, i′4) ∈ Jtotal : #|{i1, i2, i3, i4} ∩ {i′1, i′2, i′3, i′4}| > 1}. By construction, it is clear that

Jtotal = JA ∪ JAc . To shorten the notation, we simply write

hin(x1, x2, x3, x4) = hin,Y (y1, y2, y3, y4)hin,Z(z1, z2, z3, z4),

where hin,Y (y1, y2, y3, y4) := gY (y1, y2) + gY (y3, y4) − gY (y1, y3) − gY (y2, y4) and hin,Z(z1, z2, z3, z4) :=

gZ(z1, z2) + gZ(z3, z4) − gZ(z1, z3) − gZ(z2, z4). Since Uπn is centered, our interest is in bounding

EP [Eπ{(Uπn )2|Xn}]. Focusing on the conditional expectation inside, observe that

Eπ[(Uπn )2|Xn] =
1

n2
(4)

∑
(i1,...,i′4)∈Jtotal

hin,Y (Yi1 , Yi2 , Yi3 , Yi4)hin,Y (Yi′1 , Yi′2 , Yi′3 , Yi′4)

× Eπ
[
hin,Z(Zπi1 , Zπi2 , Zπi3 , Zπi4 )hin,Z(Zπi′1

, Zπi′2
, Zπi′3

, Zπi′4
)|Xn

]
= (I ′) + (II ′),

where

(I ′) :=
1

n2
(4)

∑
(i1,...,i′4)∈JA

hin,Y (Yi1 , Yi2 , Yi3 , Yi4)hin,Y (Yi′1 , Yi′2 , Yi′3 , Yi′4)

× Eπ
[
hin,Z(Zπi1 , Zπi2 , Zπi3 , Zπi4 )hin,Z(Zπi′1

, Zπi′2
, Zπi′3

, Zπi′4
)|Xn

]
,
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(II ′) :=
1

n2
(4)

∑
(i1,...,i′4)∈JAc

hin,Y (Yi1 , Yi2 , Yi3 , Yi4)hin,Y (Yi′1 , Yi′2 , Yi′3 , Yi′4)

× Eπ
[
hin,Z(Zπi1 , Zπi2 , Zπi3 , Zπi4 )hin,Z(Zπi′1

, Zπi′2
, Zπi′3

, Zπi′4
)|Xn

]
.

We now claim that the first term (I ′) = 0, which is critical to obtain a faster rate n−2 rather than n−1 in

the bound (8.21). However we have already proved in the second part of the proof of Theorem 8.1 that

Eπ
[
hin,Z(Zπi1 , Zπi2 , Zπi3 , Zπi4 )hin,Z(Zπi′1

, Zπi′2
, Zπi′3

, Zπi′4
)|Xn

]
= 0,

whenever (i1, . . . , i
′
4) ∈ JA. This concludes (I ′) = 0 and so Eπ[(Uπn )2|Xn] = (II ′). To bound EP [(II ′)], we

make an observation that for any 1 ≤ i1 6= i2, i
′
1 6= i′2 ≤ n,

∣∣EP [gY (Yi1 , Yi2)gY (Yi′1 , Yi′2)Eπ
{
gZ(Zπi1 , Zπi2 )gZ(Zπi′1

, Zπi′2
)|Xn

}]∣∣
(i)
=
∣∣Eπ[EP{gY (Yi1 , Yi2)gY (Yi′1 , Yi′2)gZ(Zπi1 , Zπi2 )gZ(Zπi′1

, Zπi′2
)|π
}]∣∣

(ii)

≤ 1

2
Eπ
[
EP
{
g2
Y (Yi1 , Yi2)g2

Z(Zπi1 , Zπi2 )|π
}]

+
1

2
Eπ
[
EP
{
g2
Y (Yi′1 , Yi′2)g2

Z(Zπi′1
, Zπi′2

)|π
}]

(iii)

≤ ψ′2(P ),

where (i) uses the law of total expectation, (ii) uses the basic inequality xy ≤ x2/2 + y2/2 and (iii) follows

by the definition of ψ′2(P ). Based on this observation, it is difficult to see that for any (i1, . . . , i
′
4) ∈ Jtotal,

∣∣EP [Eπ{hin(Xπi1
, Xπi2

, Xπi3
, Xπi4

)hin(Xπi′1
, Xπi′2

, Xπi′3
, Xπi′4

)|Xn}]
∣∣ ≤ C1ψ

′
2(P ).

Therefore, by counting the number of elements in JAc ,

EP [Varπ{Uπn |Xn}] = EP [(II ′)]

≤ C2ψ
′
2(P )

1

n2
(4)

∑
(i1,...,i′4)∈JAc

1

≤ C3
ψ′2(P )

n2
.

Now by taking constant C in Theorem 8.2 sufficiently large, one may see that condition (G.23) is satisfied.

This completes the proof of Theorem 8.2.

414



G.10 Proof of Proposition 8.4

To prove Proposition 8.4, it suffices to verify that the two inequalities (8.24) hold. Then the result follows

by Theorem 8.2. To start with the first inequality in (8.24), we want to upper bound ψ′1(P ) as ψ′1(P ) ≤
C1

√
b(2)‖pY Z − pY pZ‖22. A little algebra shows that

EP [hin(X1, X2, X3, X4)|X2, X3, X4]− 4‖pY Z − pY pZ‖22

= 2

d1∑
k=1

d2∑
k′=1

[
1(Y1 = k)1(Z1 = k′)− pY Z(k, k′)

][
pY Z(k, k′)− pY (k)pZ(k′)

]

−2

d1∑
k=1

d2∑
k′=1

[
1(Y1 = k)− pY (k)

]
pZ(k′)

[
pY Z(k, k′)− pY (k)pZ(k′)

]

−2

d1∑
k=1

d2∑
k′=1

[
1(Z1 = k′)− pZ(k′)

]
pY (k)

[
pY Z(k, k′)− pY (k)pZ(k′)

]
:= 2(I)− 2(II)− 2(III) (say).

Then by recalling the definition of ψ′1(P ) in (8.19) and based on the elementary inequality (x1 +x2 +x3)2 ≤
3x2

1 + 3x2
2 + 3x2

3, we have

ψ′1(P ) ≤ 12EP [(I)2] + 12EP [(II)2] + 12EP [(III)2].

For convenience, we write ∆k,k′ := pY Z(k, k′)− pY (k)pZ(k′). Focusing on the first expectation in the above

upper bound, the basic inequality (x+ y)2 ≤ x2/+ y2/2 gives

EP [(I)2] ≤ 1

2
EP
[{ d1∑

k=1

d2∑
k′=1

1(Y1 = k)1(Z1 = k′)∆k,k′

}2]
+

1

2

{ d1∑
k=1

d2∑
k′=1

pY Z(k, k′)∆k,k′

}2

(i)

≤ 1

2

d1∑
k=1

d2∑
k′=1

pY Z(k, k′)∆2
k,k′ +

1

2

d1∑
k=1

d2∑
k′=1

p2
Y Z(k, k′)

d1∑
k=1

d2∑
k′=1

∆2
k,k′

(ii)

≤ 1

2

√√√√ d1∑
k=1

d2∑
k′=1

p2
Y Z(k, k′)

√√√√ d1∑
k=1

d2∑
k′=1

∆4
k,k′ +

1

2

d1∑
k=1

d2∑
k′=1

p2
Y Z(k, k′)

d1∑
k=1

d2∑
k′=1

∆2
k,k′

(iii)

≤
√
b(2)‖pY Z − pY pZ‖22,

where (i) and (ii) use Cauchy-Schwarz inequality and the monotonicity of `p norm (specifically, `4 ≤ `2).

(iii) follows by the definition of b(2) in (8.23) and the fact that ‖pY Z‖22 ≤ ‖pY Z‖2. Turning to the second
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term (II), one may see that

EP [(II)2] ≤ 1

2
EP
[{ d1∑

k=1

d2∑
k′=1

1(Y1 = k)pZ(k′)∆k,k′

}2]
+

1

2

{ d1∑
k=1

d2∑
k′=1

pY (k)pZ(k′)∆k,k′

}2

=
1

2
(II)a +

1

2
(II)b (say).

Using the fact that 1(Y1 = k1)1(Y1 = k2) = 1(Y1 = k1)1(k1 = k2), we may upper bound (II)a by

EP [(II)a] =

d1∑
k=1

pY (k)

[
d2∑
k′=1

pZ(k′)∆k,k′

]2

(i)

≤

√√√√ d1∑
k=1

p2
Y (k)

√√√√ d1∑
k=1

(
d2∑
k′=1

pZ(k′)∆k,k′

)4

(ii)

≤

√√√√ d1∑
k=1

p2
Y (k)

√√√√ d1∑
k=1

(
d2∑
k′=1

p2
Z(k′)

d2∑
k′′=1

∆2
k,k′′

)2

(iii)

≤

√√√√ d1∑
k=1

p2
Y (k)

d2∑
k′=1

p2
Z(k′)

√√√√ d1∑
k=1

(
d2∑
k′=1

∆2
k,k′

)2

(iv)

≤
√
b(2)‖pY Z − pY pZ‖22,

where both (i) and (ii) use Cauchy-Schwarz inequality, (iii) uses ‖pZ‖22 ≤ ‖pZ‖2 and (iii) follows by the

monotonicity of `p norm (specifically, `2 ≤ `1) and the definition of b(2) in (8.23). The second term (II)b is

bounded similarly by Cauchy-Schwarz inequality and ‖pY ‖22 ≤ ‖pY ‖2 and ‖pZ‖22 ≤ ‖pZ‖2. In particular,

EP [(II)b] ≤
d1∑
k=1

d2∑
k′=1

p2
Y (k)p2

Z(k′)‖pY Z − pY pZ‖22 ≤
√
b(2)‖pY Z − pY pZ‖22.

By symmetric, EP [(III)2] is also upper bounded by
√
b(2)‖pY Z − pY pZ‖22. Hence, putting things together,

we have ψ′1(P ) ≤ C1

√
b(2)‖pY Z − pY pZ‖22.

Next we show that the second inequality of (8.24), which is ψ′(2)(P ) ≤ C2b(2), holds. By recalling the

definition of ψ′(2)(P ) in (8.19) and noting that g2
Y (Y1, Y2) = gY (Y1, Y2) and g2

Z(Z1, Z2) = gZ(Z1, Z2), we shall

see that

EP [gY (Y1, Y2)gZ(Z1, Z2)] =

d1∑
k=1

d2∑
k′=1

p2
Y Z(k, k′) ≤ b(2),
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EP [gY (Y1, Y2)gZ(Z1, Z3)] =

d1∑
k=1

d2∑
k′=1

pY Z(k, k′)pY (k)pZ(k′)

≤ 1

2

d1∑
k=1

d2∑
k′=1

p2
Y Z(k, k′) +

1

2

d1∑
k=1

d2∑
k′=1

p2
Y (k)p2

Z(k′) ≤ b(2),

EP [gY (Y1, Y2)gZ(Z3, Z4)] =

d1∑
k=1

d2∑
k′=1

p2
Y (k)p2

Z(k′) ≤ b(2).

Hence both conditions in (8.24) are satisfied under the assumption in Proposition 8.4. This concludes

Proposition 8.4.

G.11 Proof of Proposition 8.5

As in the proof of Proposition 8.2, we properly construct a mixture distribution Q and a null distribution

P0 and apply Lemma G.0.2 to prove the result. To start we consider P0 to be the product of the uniform

discrete distributions given by

P0(k1, k2) := pY (k1)pZ(k2) =
1

d1d2
for all k1 = 1, . . . , d1 and k2 = 1, . . . , d2.

Let ζ̃ = {ζ̃1, . . . , ζ̃d1} and ξ̃ = {ξ̃1, . . . , ξ̃d2} be dependent Rademacher random variables uniformly distributed

over Md1 and Md2 , respectively, where Md1 and Md2 are hypercubes defined in (G.17). Assume that ζ̃

and ξ̃ are independent. Let us denote the cardinality of Md1 and Md2 by N1 and N2, respectively. Given

ζ̃ ∈Md1 and ξ̃ ∈Md2 , we define a distribution pζ̃,ξ̃ such that

pζ̃,ξ̃(k1, k2) :=
1

d1d2
+ δ

d1∑
i1=1

d2∑
i2=1

ζ̃i1 ξ̃i21(k1 = i1)1(k2 = i2),

where δ ≤ 1/(d1d2) and thus ‖pζ̃,ξ̃‖22 ≤ 2/(d1d2). Since ζ̃ ∈Md1 and ξ̃ ∈Md2 , it is straightforward to check

that

d1∑
k1=1

pζ̃,ξ̃(k1, k2) =
1

d2
+ δ

{
d1∑
i1=1

ζ̃i1

}
×
{

d2∑
i2=1

ξ̃i21(k2 = i2)

}
=

1

d2
,

d2∑
k2=1

pζ̃,ξ̃(k1, k2) =
1

d1
+ δ

{
d1∑
i1=1

ζ̃i11(k1 = i1)

}
×
{

d2∑
i2=1

ξ̃i2

}
=

1

d1
and

d1∑
k1=1

d2∑
k2=1

pζ̃,ξ̃(k1, k2) = 1.
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Therefore pζ̃,ξ̃ is a joint discrete distribution whose marginals are equivalent to those of the product

distribution. Let us denote such distributions by pζ̃(1),ξ̃(1), . . . , pζ̃(N1),ξ̃(N2). We then consider the uniform

mixture Q given by

Q :=
1

N1N2

N1∑
i=1

N2∑
j=1

pζ̃(i),ξ̃(j).

Note that both {ζ̃1, . . . , ζ̃d1} and {ξ̃1, . . . , ξ̃d2} are negatively associated and these two sets are mutually

independent by construction. Hence, following Proposition 7 of Dubhashi and Ranjan (1998), the pooled

random variables {ζ̃1, . . . , ζ̃d1 , ξ̃1, . . . , ξ̃d2} are also negatively associated. Having this observation at hand,

the remaining steps are exactly the same as those in the proof of Proposition 8.2. This together with

Proposition 8.4 completes the proof of Proposition 8.5.

G.12 Proof of Proposition 8.6

The proof of Proposition 8.6 is based on Proposition 8.4 and similar to that of Proposition 8.3. By recalling

the notation from Appendix G.8 and κ(2) = bn2/(4s+d1+d2)c, we define H`Y := [(`Y − 1)/κ(2), `Y /κ(2)] and

H`Z := [(`Z − 1)/κ(2), `Z/κ(2)] where `Y ∈ {1, 2, . . . , κ(2)}d1 and `Z ∈ {1, 2, . . . , κ(2)}d2 . Then we denote

the joint and product discretized distributions by

pY Z(`Y , `Z) :=

∫
H`Y

×H`Z

fY Z(tY , tZ)dtY dtZ and

pY pZ(`Y , `Z) :=

∫
H`Y

×H`Z

fY (tY )fZ(tZ)dtY dtZ .

Since both fY Z and fY fZ are in Hölder’s density class P(d1+d2,s)
Hölder where |||fY fZ |||∞ ≤ L and |||fY Z |||∞ ≤ L, it

is clear to see that

pY Z(`Y , `Z) ≤ |||fY Z |||∞κ−(d1+d2)
(2) ≤ Lκ−(d1+d2)

(2) and

pY pZ(`Y , `Z) ≤ |||fY fZ |||∞κ−(d1+d2)
(2) ≤ Lκ−(d1+d2)

(2) for all `Y , `Z .

This leads to

b(2) = max{‖pY Z‖22, ‖pY pZ‖22} ≤ Lκ−(d1+d2)
(2) . (G.24)
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Furthermore, based on Lemma 3 of Arias-Castro et al. (2018), one can find a constant C1 > 0 such that

‖pY Z − pY pZ‖22 ≥ C1κ
−(d1+d2)
(2) ε2n, (G.25)

where εn is the lower bound for ‖fY Z − fY fZ‖L2
. By combining (G.24) and (G.25), the condition of

Proposition 8.4 is satisfied when

κ
−(d1+d2)
(2) ε2n ≥ C2

L1/2κ
−(d1+d2)/2
(2)

α1/2βn
.

By putting κ(2) = bn2/(4s+d1+d2)c and rearranging the terms, the above inequality is equivalent to

εn ≥
C3

α1/4β1/2

(
1

n

) 2s
4s+d1+d2

,

where C3 is a constant that may depend on s, d1, d2, L. This completes the proof of Proposition 8.6.

G.13 Proof of Proposition 8.7

The proof of Proposition 8.7 is standard based on Ingster’s method in Lemma G.0.2. In particular we closely

follow the proof of Theorem 1 in Arias-Castro et al. (2018) which builds on Ingster (1987). Let us start with

the construction of a mixture distribution Q and a null distribution P0.

• Construction of Q and P0. Let fY and fZ be the uniform density functions on [0, 1]d1 and [0, 1]d2 ,

respectively. Then the density function of the baseline product distribution P0 is defined by

f0(y, z) := fY (y)fZ(z) = 1 for all (y, z) ∈ [0, 1]d1+d2 .

We let ϕY : Rd1 7→ R and ϕZ : Rd2 7→ R be infinitely differentiable functions supported on [0, 1]d1 and [0, 1]d2

respectively. Furthermore these two functions satisfy

∫
[0,1]d1

ϕY (y)dy =

∫
[0,1]d2

ϕZ(z)dz = 0 and

∫
[0,1]d1

ϕ2
Y (y)dy =

∫
[0,1]d2

ϕ2
Z(z)dz = 1.

For i ∈ Zd1 , j ∈ Zd2 and a positive integer κ, we write ϕY,i(x) = κd1/2ϕY (κx − i + 1) and ϕZ,j(x) =

κd2/2ϕZ(κx−j+1) where ϕY,i and ϕZ,j are supported on [(i−1)/κ, i/κ] and [(j−1)/κ, j/κ]. By construction,
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it can be seen that

∫
[0,1]d1

ϕ2
Y,i(y)dy =

∫
[0,1]d2

ϕ2
Z,j(z)dz = 1,

∫
[0,1]d1

ϕY,i(y)dy =

∫
[0,1]d2

ϕZ,j(z)dz = 0 and

∫
[0,1]d1

ϕY,i(y)ϕY,i′(y)dy =

∫
[0,1]d2

ϕZ,j(z)ϕZ,j′(z)dz = 0,

for i 6= i′ and j 6= j′. We denote by ζk ∈ {0, 1} an i.i.d. sequence of Rademacher variables where k :=

(i, j) ∈ [κ]
d1+d2 . Now for ρ > 0 specified later, let us define the density function of a mixture distribution

Q by

fζ(y, z) := f0(y, z) + ρ
∑

k∈[κ]d1+d2

ζkϕY,i(y)ϕZ,j(z).

By letting ρ such that ρκ(d1+d2)/2|||ϕY,Z |||∞ ≤ 1 where ϕY,Z(y, z) := ϕY (y)ϕZ(z), it is seen that fζ is a proper

density function supported on [0, 1]d1+d2 such that

∫
[0,1]d1

fζ(y, z)dy =

∫
[0,1]d2

fζ(y, z)dz =

∫
[0,1]d1+d2

fζ(y, z)dydz = 1.

Therefore fζ has the same marginal distributions as the product distribution f0. Furthermore when

ρκ(d1+d2)/2+sM/L ≤ 1 where M := max
{

4|||ϕ(bsc)
Y,Z |||∞, 2|||ϕ

(bsc+1)
Y,Z |||∞

}
, it directly follows from the proof

of Theorem 1 in Arias-Castro et al. (2018) that fζ ∈ P(d1+d2,s)
Hölder . Having these two densities f0 and fζ such

that

|||fζ − f0|||2L2
= ρ2κd1+d2 = ε2n,

we next compute EP0
[L2
n].

• Calculation of EP0 [L2
n]. By recalling that f0(y, z) = 1 for (y, z) ∈ [0, 1]d1+d2 , let us start by writing L2

n

as

L2
n =

1

22κd1+d2

∑
ζ,ζ′∈{−1,1}κd1+d2

n∏
i=1

fζ(Yi, Zi)fζ′(Yi, Zi).
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We then use the orthonormal property of ϕY,i and ϕZ,j to see that

EP0
[L2
n] =

1

22κd1+d2

∑
ζ,ζ′∈{−1,1}κd1+d2

n∏
i=1

E0

[
1 + ρ2

∑
k∈[κ]d1+d2

ζkζ
′
kϕ

2
Y,i(Yi)ϕ

2
Z,j(Zi)

]

=
1

22κd1+d2

∑
ζ,ζ′∈{−1,1}κd1+d2

[
1 + ρ2

∑
k∈[κ]d1+d2

ζkζ
′
k

]n

≤ Eζ,ζ′
[
enρ

2〈ζ,ζ′〉
]
,

where the last inequality uses (1 + x)n ≤ enx. Based on the independence among the components of ζ and

ζ ′, we further observe that

Eζ,ζ′
[
enρ

2〈ζ,ζ′〉
]

=
{

cosh(nρ2)
}κd1+d2 ≤ exp

(
κd1+d2n2ρ4/2

)
where the last inequality follows by cosh(x) ≤ ex2/2 for all x ∈ R.

• Completion of the proof. We invoke Lemma G.0.2 to finish the proof. From the previous step, we

know that

EP0
[L2
n] ≤ exp

(
κd1+d2n2ρ4/2

)
.

Therefore the condition in Lemma G.0.2 is fulfilled when

κd1+d2n2ρ4 ≤ 2 log{1 + 4(1− α− β)2}.

Now by setting κ = bn2/(4s+d1+d2)c and ρ = cn−(2s+d1+d2)/(4s+d1+d2), the above condition is further implied

by

c ≤ 2 log{1 + 4(1− α− β)2}.

Previously we also use the assumptions that ρκ(d1+d2)/2|||ϕY,Z |||∞ ≤ 1 and ρκ(d1+d2)/2+sM/L ≤ 1. These are

satisfied by taking c sufficiently small. This means that when

εn ≤ ce−2s/(4s+d1+d2),

for a small c > 0, the minimax type II error is less than β. Therefore, combined with Proposition 8.6, we

complete the proof of Proposition 8.7.
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G.14 Proof of Theorem 8.3

We continue the proof of Theorem 8.3 from the last line of (8.30). First we view Ũπ,L,ζn1,n2
as a quadratic

form of ζ conditional on π and L. We then borrow the proof of Hanson–Wright inequality (see e.g.

Rudelson and Vershynin, 2013; Vershynin, 2018) to proceed. To do so, let us denote ak1,k2(π, L) =

hts(Xπk1
, Xπk2

;Xπn1+`k1
, Xπn1+`k2

) for 1 ≤ k1 6= k2 ≤ n and ak1,k2(π, L) = 0 for 1 ≤ k1 = k2 ≤ n.

Let Aπ,L be the n × n matrix whose elements are ak1,k2(π, L). By following the proof of Theorem 1.1 in

Rudelson and Vershynin (2013), we can obtain

e−λtEπ,L,ζ
[

exp
(
λŨπ,L,ζn1,n2

)
|Xn
]
≤ Eπ,L

[
exp

(
− λt+ Cλ2‖Aπ,L‖2F

)]
,

which holds for 0 ≤ λ ≤ c/‖Aπ,L‖op. Here, ‖Aπ,L‖F and ‖Aπ,L‖op denote the Frobenius norm and the

operator norm of Aπ,L, respectively. By optimizing over 0 ≤ λ ≤ c/‖Aπ,L‖op, we have that

Pπ(Uπn1,n2
≥ t |Xn) ≤ Eπ,L

[
exp

{
− C1 min

(
t2

‖Aπ,L‖2F
,

t

‖Aπ,L‖op

)}]
.

The proof of Theorem 8.3 is completed by noting that ‖Aπ,L‖op ≤ ‖Aπ,L‖F ≤ C2Σn1,n2 .

G.15 Proof of Corollary 8.5.1

Note that the following equality holds:

∑
(i,j)∈in2

ζ̃iζ̃j (ai,j − a) =
1

4(n− 1)(n− 2)

∑
(i1,i2,i3,i4)∈in4

{
(ζ̃i1 ζ̃i3 + ζ̃i2 ζ̃i4 − ζ̃i1 ζ̃i4 − ζ̃i2 ζ̃i3) (ai1,i3 + ai2,i4 − ai1,i4 − ai2,i3)

}
,

which can be verified by expanding the summation on the right-hand side. We also note that {ζ̃1, . . . , ζ̃n} d
=

{bπ1 , . . . , bπn} where bi = 1 for i = 1, . . . , n/2 and bi = −1 for i = n/2 + 1, . . . , n. Therefore, we can apply

Theorem 8.4 with the bound of Σ2
n in (8.36). To be clear, ai,j does not need to be symmetric in its arguments.

Theorem 8.4 still holds as long as gZ is symmetric (gY is not necessarily symmetric), which is the case for

this application. Alternatively, one can work with the symmetrized version of ai,j , i.e. ãi,j := (ai,j + aj,i)/2

by observing that a = ã := n−1
(2)

∑
(i1,i2)∈in2

ãi1,i2 and

∑
(i,j)∈in2

ζ̃iζ̃j (ai,j − a) =
∑

(i,j)∈in2

ζ̃iζ̃j

(
ãi,j − ã

)
.

This completes the proof of Corollary 8.5.1.
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G.16 Proof of Theorem 8.5

Continuing our discussion from the main text, we prove Theorem 8.5 in two steps. In the first step, we replace

two independent permutations π, π′ in Ũπ,π
′,ζ

n with their i.i.d. counterparts π̃, π̃′. Once this decoupling step

is done, the resulting statistic can be viewed as a usual degenerate U -statistic of i.i.d. random variables

conditional on Xn. This means that we can apply the concentration inequalities for degenerate U -statistics

in De la Pena and Giné (1999) to finish the proof. This shall be done in the second step. For notational

convenience, we write

hπ,π′(i1, i2, i1 +m, i2 +m)

:= hin{(Yπ′i1 , Zπi1 ), (Yπ′i2
, Zπi2 ), (Yπ′i2+m

, Zππi2+m
), (Yπ′i1+m

, Zπi1+m
)},

(G.26)

throughout this proof.

1. Decoupling. We start with the decoupling part. Let Ũ π̃,π̃
′,ζ

n be defined similarly as Ũπ,π
′,ζ

n but with

decoupled permutations (π̃, π̃′) instead of the original permutations (π, π′). Our goal here is to bound

Eπ,π′,ζ
[
Ψ
(
λŨπ,π

′,ζ
n

)
|Xn
]
≤ Eπ̃,π̃′,ζ

[
Ψ
(
CnλŨ

π̃,π̃′,ζ
n

)
|Xn
]
, (G.27)

where c < Cn < C is some deterministic sequence depending on n with some positive constants c, C > 0.

The way how we associate the original statistic Ũπ,π
′,ζ

n with the decoupled couterpart Ũ π̃,π̃
′,ζ

n is as follows.

First, we construct a random subset K of {1, . . . , n} such that {π}i∈K and {π̃}i∈K have the same distribution

so that two test statistics based on {π}i∈K and {π̃}i∈K , respectively, shall have the same distribution. The

remainder of the proof is devoted to replacing the subset of permutations {πi}i∈K and {π̃}i∈K with the entire

set of permutations {πi}ni=1 and {π̃i}ni=1. As far as we know, this idea was first employed by Duembgen

(1998) to decouple the simple linear permuted statistic.

Let us make this decoupling idea more precise. To do so, we define K to be a random subset of {1, . . . , n}
independent of everything else except π̃. Specifically, we assume that the conditional distribution of K given

π̃ has the uniform distribution on the set of all J ∈ {1, . . . , n} such that

{π̃i : 1 ≤ i ≤ n} = {π̃i : i ∈ J} and #|{π̃i : 1 ≤ i ≤ n}| = #|J |,

where #|A| denotes the cardinality of a set A. Then as noted in Duembgen (1998), {πi}i∈K d
= {π̃i}i∈K

follows. In the same way, define another random subset K ′ of {1, . . . , n} only depending on π̃′ such

that {π′i}i∈K′
d
= {π̃′i}i∈K′ ; note that, by construction, K and K ′ are independent. Furthermore, we let

BK,n(i1, i2, i1 +m, i2 +m) be the event such that all of {i1, i2, i1 +m, i2 +m} are in the random subset K.
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Then, as {πi}i∈K d
= {π̃i}i∈K and {π′i}i∈K′

d
= {π̃′i}i∈K′ , we may observe that

Ũπ,π
′,ζ

n (K,K ′)
d
= Ũ π̃,π̃

′,ζ
n (K,K ′), (G.28)

where

Ũπ,π
′,ζ

n (K,K ′) :=
1

m(2)

∑
(i1,i2)∈im2

ζi1ζi2ζi1+mζi2+mhπ,π′(i1, i2, i1 +m, i2 +m)×

1{BK,n(i1, i2, i1 +m, i2 +m)}1{BK′,n(i1, i2, i1 +m, i2 +m)},

Ũ π̃,π̃
′,ζ

n (K,K ′) :=
1

m(2)

∑
(i1,i2)∈im2

ζi1ζi2ζi1+mζi2+mhπ̃,π̃′(i1, i2, i1 +m, i2 +m)×

1{BK,n(i1, i2, i1 +m, i2 +m)}1{BK′,n(i1, i2, i1 +m, i2 +m)}.

Next we calculate the probability of BK,n(i1, i2, i1 + m, i2 + m). By symmetry, we may assume that i1 =

1, i2 = 2, i1 +m = 3, i2 +m = 4. In fact, this probability is the same as the probability that all of the first

four urns are not empty when one throws n balls independently into n urns (here, each urn is equally likely

to be selected). Based on the inclusion–exclusion formula, this probability can be computed as

Bn := P{BK,n(1, 2, 3, 4)} = 1− 4

(
1− 1

n

)n
+ 6

(
1− 2

n

)n
− 4

(
1− 3

n

)n
+

(
1− 4

n

)n
.

Indeed, Bn is monotone increasing for all n ≥ 4. Hence we have that ` ≤ Bn ≤ u for any n ≥ 4 where

` = 1− 4(3/4)4 + 6 (1/2)
4 − 4 (1/4)

4
= 0.09375 and u = 1− 4e−1 + 6e−2 − 4e−3 + e−4 ≈ 0.1597. In the next

step, we replace the subset of permutations {πi}i∈K with the entire set of permutations {πi}ni=1 as follows:

Eπ,π′,ζ
[
Ψ
(
λŨπ,π

′,ζ
n

)
|Xn
] (i)

≤ Eπ,π′,ζ,K,K′
[
Ψ
{
B−2
n λŨπ,π

′,ζ
n (K,K ′)

}
|Xn
]

(ii)
= Eπ̃,π̃′,ζ,K,K′

[
Ψ
{
B−2
n λŨ π̃,π̃

′,ζ
n (K,K ′)

}
|Xn
]

(iii)

≤ Eπ̃,π̃′,ζ
[
Ψ
(
B−2
n λŨ π̃,π̃

′,ζ
n

)
|Xn
]
,

where (i) holds by Jensen’s inequality with EK,K′ [Ũπ,π
′,ζ

n (K,K ′)] = B2
nŨ

π,π′,ζ
n , (ii) is due to the relationship

(G.28) and (iii) uses Jensen’s inequality again with

Ũ π̃,π̃
′,ζ

n (K,K ′) = Eζ
[
Ũ π̃,π̃

′,ζ
n

∣∣ {ζi}i∈K ,{ζi}i∈K′ ,K,K ′,Xn, π̃, π̃′].
This proves the decoupling inequality in (G.27).
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2. Concentration. Having established the decoupled bound in (G.27), we are now ready to obtain the

main result of Theorem 8.5. This part of the proof is largely based on Chapter 4.1.3 of De la Pena and Giné

(1999). Recall that

Ũ π̃,π̃
′,ζ

n
d
=

1

m(2)

∑
(i1,i2)∈im2

ζi1ζi2hπ̃,π̃′(i1, i2, i1 +m, i2 +m)

and hπ̃,π̃′(i1, i2, i1 + m, i2 + m) is given in (G.26). Let us write Qi1 = ((Yπ̃′i1
, Zπ̃i1 ), (Yπ̃′i1+m

, Zπ̃i1+m
)) and

Qi2 = ((Yπ̃′i2
, Zπ̃i2 ), (Yπ̃′i2+m

, Zπ̃i2+m
)), which are random vectors with four main components. Note that

Q1, . . . ,Qm are independent and identically distributed conditional on Xn. Define

h(Qi1 ,Qi2) := hπ̃,π̃′(i1, i2, i1 +m, i2 +m).

Then Ũ π̃,π̃
′,ζ

n can be viewed as a randomized U -statistic with the bivariate kernel h(Qi1 ,Qi2). To summarize,

we have established that

Eπ[Ψ(λUπn )|Xn] ≤ Eζ,Q

[
Ψ

(
B−2
n λ

1

m(2)

∑
(i1,i2)∈im2

ζi1ζi2h(Qi1 ,Qi2)

) ∣∣∣∣∣ Xn
]
.

Here, by letting h∗(Qi1 ,Qi2) = h(Qi1 ,Qi2)/2 + h(Qi2 ,Qi1)/2, we may express the right-hand side of the

above inequality with the symmetrized kernel as

Eζ,Q

[
Ψ

(
B−2
n λ

2

m(2)

∑
1≤i1<i2≤m

ζi1ζi2h
∗(Qi1 ,Qi2)

) ∣∣∣∣∣ Xn
]
.

The rest of the proof follows exactly the same line of that of Theorem 4.1.12 in De la Pena and Giné (1999)

based on (i) Chernoff bound, (ii) convex modification, (iii) Bernstein’s inequality, (iv) hypercontractivity

of Rademacher chaos variables and (v) Hoeffding’s average (Hoeffding, 1963). In the end, we obtain

Pπ(nUπn ≥ t |Xn) ≤ C1 exp

(
−λt2/3 + C2λ

3Λ2
n +

16C2
2Λ2

nM
2
nλ

6

n− (16/3)C2M2
nλ

3

)
,

for n > (4/3)C2M
2
nλ

3, which corresponds to Equation (4.1.27) of De la Pena and Giné (1999). We complete

the proof of Theorem 8.5 by optimizing the right-hand side over λ as detailed in De la Pena and Giné (1999).

G.17 Proof of Proposition 8.8

The proof of this result is motivated by Ingster (2000); Arias-Castro et al. (2018) and follows similarly as

theirs. First note that type I error control of the adaptive test is trivial by the union bound. Hence we focus
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on the type II error control. Note that by construction

(
n1

log log n1

) 2
4s+d

≤ 2γmax .

Therefore there exists an integer j ∈ {1, . . . , γmax} such that

2j−1 <

(
n1

log logn1

) 2
4s+d

≤ 2j .

We take such j and define κ∗ := 2j ∈ K. In the rest of the proof, we show that under the given condition,

φκ∗,α/γmax
has the type II error at most β. If this is the case, then the proof is completed since PP (φadapt =

0) ≤ PP (φκ∗,α/γmax
= 0) ≤ β. To this end, let us start by improving Proposition 8.1 based on Lemma G.0.1.

Using (8.14) and Lemma G.0.1, one can verify that Proposition 8.1 holds if

‖pY − pZ‖22 ≥
C

β
log

(
1

α

) √
b(1)

n1
, (G.29)

for some large constant C > 0 and n1 � n2. Hence the multinomial test φκ∗,α/γmax
has the type II error at

most β if condition (G.29) is fulfilled by replacing α with α/γmax. Following the proof of Proposition 8.3

but with κ∗ instead of κ(1), we can see that

b(1) = max{‖pY ‖22, ‖pZ‖22} ≤ L(κ∗)−d and

‖pY − pZ‖22 ≥ C1(s, d, L)(κ∗)−dε2n1,n2
.

Therefore condition (G.29) with α/γmax is satisfied when

ε2n1,n2
≥ C2(s, d, L)

β
log
(γmax

α

) L1/2κ∗d/2

n1
.

Based on the definition of γmax and κ∗, the above inequality is further implied by

ε2n1,n2
≥ C(s, d, L, α, β)

(
log log n1

n1

) 4s
4s+d

.

This completes the proof of Proposition 8.8.

G.18 Proof of Proposition 8.9

The proof is almost identical to that of Proposition 8.8 once we establish the following lemma which is an

improvement of Proposition 8.4.
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Lemma G.0.3 (Multinomial independence testing). Let Y and Z be multinomial random vectors in Sd′1 and

Sd′2 , respectively. Consider the multinomial problem setting in Proposition 8.4 with an additional assumption

that n ≥ C1d
′
1d
′
2 for some positive constant C1 > 0. Suppose that under the alternative hypothesis,

‖pY Z − pY pZ‖2 ≥
C2

β1/2

√
log

(
1

α

)
b
1/4
(2)

n1/2
,

for a sufficiently large C2 > 0. Then the permutation test in Proposition 8.4 has the type II error at most β.

Proof. Following the proofs of Lemma G.0.1 and Proposition 8.4, we only need to show that the 1 − β/2
quantile of the permutation critical value c1−α,n of Un, denoted by q1−β/2,n, is bounded as

q1−β/2,n ≤
C3

β
log

(
1

α

)
b
1/2
(2)

n
. (G.30)

To establish this result, we first use the concentration bound in Theorem 8.5 to have

c1−α,n ≤ C4 max

{
Λn
n

log

(
1

α

)
,

1

n3/2
log

(
1

α

)}
,

where we use the fact that Mn ≤ 1 and α ≤ 1/2. Hence, by Markov’s inequality as in Lemma G.0.1, it can

be seen that the quantile q1−β/2,n is bounded by

q1−β/2,n ≤ C4 max

{√
2E[Λ2

n]

β1/2n
log

(
1

α

)
,

1

n3/2
log

(
1

α

)}
.

On the other hand, one can easily verify that

EP [Λ2
n] =

1

n4

∑
1≤i1,i2≤n

∑
1≤j1,j2≤n

E
[
g2
Y (Yi1 , Yi2)g2

Z(Zj1 , Zj2)
]
≤ b(2) +

C5

n
.

Furthermore, Cauchy-Schwarz inequality shows that

b(2) = max{‖pY Z‖22, ‖pY pZ‖22} ≥
1

d′1d
′
2

≥ C1

n
, (G.31)

where the last inequality uses the assumption n ≥ C1d
′
1d
′
2. Therefore we have EP [Λ2

n] ≤ C6b(2). This further

implies that

q1−β/2,n ≤ C7 max

{√
2E[Λ2

n]

β1/2n
log

(
1

α

)
,

1

n3/2
log

(
1

α

)}
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≤ C8

β
log

(
1

α

)
b
1/2
(2)

n
,

where the last inequality uses β ≤ β1/2 and n1/2 ≥ C
1/2
1 b

−1/2
(2) from the previous result (G.31). Hence the

quantile is bounded as (G.30). This completes the proof of Lemma G.0.3.

Let us come back to the proof of Proposition 8.9. Since type I error control is trivial by the union bound,

we only need to show the type II error control of the adaptive test. As in the proof of Proposition 8.8, we

know that there exists an integer j ∈ {1, . . . , γ∗max} such that

2j−1 <

(
n

log log n

) 2
4s+d1+d2

≤ 2j . (G.32)

We take such j and define κ∗ := 2j ∈ K†. Since PP (φ†adapt = 0) ≤ PP (φ†κ∗,α/γ∗max
= 0), it suffices to show

that the resulting multinomial test φ†κ∗,α/γ∗max
controls the type II error by β under the given condition. To

this end, we invoke Lemma G.0.3. Note that there are (κ∗)d1+d2 number of bins for φ†κ∗,α/γ∗max
, which is

bounded by

(κ∗)d1+d2
(i)

≤ 2d1+d2

(
n

log log n

) 2(d1+d2)
4s+d1+d2 (ii)

≤ 2d1+d2

(
n

log log n

)
,

where (i) follows by the bound (G.32) and (ii) follows since 4s ≥ d1 +d2. Thus the condition of Lemma G.0.3

is fulfilled as the number of bins is smaller than the sample size n up to a constant factor which depends on

d1 and d2. From the proof of Proposition 8.6, we know that

b(2) = max{‖pY Z‖22, ‖pY pZ‖22} ≤ L(κ∗)−(d1+d2) and

‖pY Z − pY pZ‖22 ≥ C1(s, L, d1, d2)(κ∗)−(d1+d2)ε2n,

where εn is the lower bound for |||fY Z −fY fZ |||L2
. Combining this observation with Lemma G.0.3 shows that

φ†κ∗,α/γ∗max
has non-trivial power when

ε2n ≥
C2(s, L, d1, d2)

β
log

(
γ∗max

α

)
L1/2 · (κ∗)(d1+d2)/2

n
.

By the definition of γ∗max and κ∗, this inequality is further implied by

ε2n ≥ C3(s, L, d1, d2)

(
log log n

n

) 4s
4s+d1+d2

.

This completes the proof of Proposition 8.9.
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G.19 Proof of Theorem 8.6

We use the quantile approach described in Section 8.3 to prove the result (see also Fromont et al., 2013).

More specifically we let q1−β/2,n denote the quantile of the permutation critical value c1−α,n of Tχ2 . Then

as shown in the proof of Lemma 8.0.1, if

EP [Tχ2 ] ≥ q1−β/2,n +

√
2VarP [Tχ2 ]

β
, (G.33)

then the type II error of the permutation test is controlled as

sup
P∈P1

PP (Tχ2 ≤ c1−α,n) ≤ sup
P∈P1

PP (Tχ2 ≤ q1−β/2,n) + sup
P∈P1

PP (q1−β/2,n < c1−α,n)

≤ β.

Therefore we only need to show that the inequality (G.33) holds under the condition given in Theorem 8.6.

Note that Chan et al. (2014) present a lower bound for EP [Tχ2 ] as

EP [Tχ2 ] =

d∑
k=1

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

n

(
1− 1− e−n{pY (k)+pZ(k)}

n{pY (k) + pZ(k)}

)

≥ n2

4d+ 2n
‖pY − pZ‖21,

(G.34)

and an upper bound for VarP [Tχ2 ] by

VarP [Tχ2 ] ≤ 2 min{n, d}+ 5n

d∑
k=1

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

. (G.35)

In the rest of the proof, we show that for some constant C1 > 0,

q1−β/2,n ≤
C1

β
log

(
1

α

)√
min{n, d}. (G.36)

Building on these three observations (G.34), (G.35) and (G.36), we can verify that the sufficient

condition (G.33) is satisfied under the assumption made in Theorem 8.6. Although it can be done by

following Chan et al. (2014), their proof may be too concise for some readers (also there is a typo in their

algorithm in Section 2 — the critical value should be C
√

min{n, d} instead of C
√
n) and so we decide to

give detailed explanations in Appendix G.19.3. Hence all we need to show is condition (G.36).
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G.19.1 Verification of condition (G.36)

Recall the permuted chi-square statistic Tπχ2 given as

Tπχ2 =

d∑
k=1

(
∑n
i=1Xπi,k −

∑n
i=1Xπi+n,k)2 − Vk −Wk

Vk +Wk
1(Vk +Wk > 0).

For simplicity, let us write ωk := Vk + Wk for k = 1, . . . , d. Note that ω1, . . . , ωd are permutation invariant

and they should be constant under the permutation law. Having this observation in mind, we split the

permuted statistic into two parts:

Tπχ2 =
∑

(i,j)∈in2

d∑
k=1

(Xπi,k −Xπi+n,k)(Xπj ,k −Xπj+n,k)

ωk
1(ωk > 0)

+

n∑
i=1

d∑
k=1

(Xπi,k −Xπi+n,k)2

ωk
1(ωk > 0)−

d∑
k=1

1(ωk > 0)

= Tπχ2,a + Tπχ2,b (say).

Let us first compute an upper bound for the 1− α critical value of Tπχ2 . To do so, recall that ξ1, . . . , ξn are

i.i.d. Rademacher random variables. From the same reasoning made in Section 8.6.1, one can see that Tπξ2,a

have the same distribution as

∑
(i,j)∈in2

ξiξj

[
d∑
k=1

(Xπi,k −Xπi+n,k)(Xπj ,k −Xπj+n,k)

ωk
1(ωk > 0)

]
.

Then following the same line of the proof of Theorem 8.3 with the trivial bound in (8.31), we have that for

any t > 0,

Pπ
(
Tπχ2,a ≥ t |Xn

)
≤ exp

{
− C2 min

(
t2

Σ2
n,pois

,
t

Σn,pois

)}
, (G.37)

where

Σ2
n,pois :=

∑
(i,j)∈i2n2

{
d∑
k=1

Xi,kXj,k

ωk
1(ωk > 0)

}2

(G.38)
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and {X1,k, . . . , X2n,k} := {Y1,k, . . . , Yn,k, Z1,k, . . . , Zn,k}. Also note that

Tπχ2,b =

n∑
i=1

d∑
k=1

(Xπi,k −Xπi+n,k)2

ωk
1(ωk > 0)−

d∑
k=1

1(ωk > 0)

≤
2n∑
i=1

d∑
k=1

X2
i,k

ωk
1(ωk > 0)−

d∑
k=1

1(ωk > 0)

:= Tχ2,b,up

(G.39)

where Tχ2,b,up is independent of π. Furthermore, since each Xi,k can have a nonnegative integer and ωk =∑2n
i=1Xi,k, it is clear that

∑2n
i=1X

2
i,k/ωk ≥ 1 whenever ωk > 0. This means that Tχ2,b,up is nonnegative.

Combining the results (G.37) and (G.39), for any t > 0,

Pπ
(
Tπχ2 ≥ t+ Tχ2,b,up |Xn

)
≤ Pπ

(
Tπχ2,a ≥ t |Xn

)
≤ exp

{
− C3 min

(
t2

Σ2
n,pois

,
t

Σn,pois

)}
.

By setting the upper bound to be α and assuming α < e−1, it can be seen that

c1−α,n ≤ C4Σn,pois log

(
1

α

)
+ Tχ2,b,up.

Let q∗1−β/2,n be the 1− β/2 quantile of the above upper bound, which means that q1−β/2,n ≤ q∗1−β/2,n. For

now, we take the following two bounds for granted:

EP [Σ2
n,pois] ≤ C5 min{n, d} and EP [Tχ2,b,up] ≤ C6, (G.40)

which are formally proved in Appendix G.19.2. Then by using Markov’s inequality, for any t1, t2 > 0 and

t = t1 + t2,

PP
[
C5Σn,pois log(α−1) + Tχ2,b,up ≥ t

]
≤ PP

[
C5Σn,pois log(α−1) ≥ t1

]
+ PP

[
Tχ2,b,up ≥ t2

]
≤ C6

EP [Σ2
n,pois]{log(α−1)}2

t21
+ C7

EP [Tχ2,b,up]

t2

≤ C7
min(n, d){log(α−1)}2

t21
+
C8

t2
.

Then by setting the upper bound to be β/2, one may see that for sufficiently large C9 > 0,

q∗1−β/2,n ≤
C9

β1/2
log

(
1

α

)√
min{n, d}+

C10

β
,

which in turn shows that condition (G.36) is satisfied.
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G.19.2 Verification of two bounds in (G.40)

This section proves the bounds in (G.40), namely, (a) EP [Σ2
n,pois] ≤ C1 min{n, d} and (b) EP [Tχ2,b,up] ≤ C2.

• Bound (a). We start by proving EP [Σ2
n,pois] ≤ C1 min{n, d}. By recalling the definition of Σn,pois in

(G.38), note that

Σ2
n,pois =

∑
(i,j)∈in2

{
d∑
k=1

Yi,kYj,k
ωk

1(ωk > 0)

}2

+
∑

(i,j)∈in2

{
d∑
k=1

Zi,kZj,k
ωk

1(ωk > 0)

}2

+2
∑

1≤i,j≤n

{
d∑
k=1

Yi,kZj,k
ωk

1(ωk > 0)

}2

:= Σ2
n,Y + Σ2

n,Z + 2Σ2
n,Y Z (say).

Given 1 ≤ i 6= j ≤ n, expand the first squared term as

{
d∑
k=1

Yi,kYj,k
ωk

1(ωk > 0)

}2

=

d∑
k=1

ω−2
k Y 2

i,kY
2
j,k1(ωk > 0)

+
∑

(k1,k2)∈id2

ω−1
k1
ω−1
k2
Yi,k1Yj,k1Yi,k2Yj,k21(ωk1 > 0)1(ωk2 > 0)

= (I) + (II) (say).

Let us first look at the expectation of (I). Suppose that Q1, . . . , Qn are independent Poisson random variables

with parameters λ1, . . . , λn, respectively. To calculate the above expectation, we use the fact that conditional

on the event
∑n
i=1Qi = N , (Q1, . . . , Qn) has a multinomial distribution as

(Q1, . . . , Qn) ∼ Multinomial

(
N,

{
λ1∑n
i=1 λi

, . . . ,
λn∑n
i=1 λi

})
.

Therefore, conditioned on ωk = N , we observe that

(Yi,k, Yj,k, ωk − Yi,k − Yj,k)

∼ Multinomial

(
N,

[
pY (k)

n{pY (k) + pZ(k)} ,
pY (k)

n{pY (k) + pZ(k)} , 1− 2pY (k)

n{pY (k) + pZ(k)}

])
.
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Using this property and the moment generating function (MGF) of a multinomial distribution (see

Appendix G.19.4),

E
[
Y 2
i,kY

2
j,k | ωk = N

]
= N(N − 1)(N − 2)(N − 3)p̃4

k,n

+ 2N(N − 1)(N − 2)p̃3
k,n +N(N − 1)p̃2

k,n,

where

p̃k,n :=
pY (k)

n{pY (k) + pZ(k)} .

This gives

E

[
Y 2
i,kY

2
j,k

ω2
k

1(ωk > 0)

]
= EN

[
Y 2
i,kY

2
j,k

ω2
k

1(ωk > 0)

∣∣∣∣∣ ωk = N

}]

≤ EN
[
N2p̃4

k,n1(N > 0)
]

+ 2EN
[
Np̃3

k,n1(N > 0)
]

+ EN
[
p̃2
k,n1(N > 0)

]
.

By noting that N ∼ Poisson(n{pY (k) + pZ(k)}),

EN
[
N2p̃4

k,n1(N > 0)
]

= p̃4
k,nEN

[
N21(N > 0)

]
=

(
pY (k)

n{pY (k) + pZ(k)}

)4

(n{pY (k) + pZ(k)})2

+

(
pY (k)

n{pY (k) + pZ(k)}

)4

n{pY (k) + pZ(k)}

≤ pY (k)4

(n{pY (k) + pZ(k)})2
+

pY (k)4

(n{pY (k) + pZ(k)})3
,

and

EN
[
Np̃3

k,n1(N > 0)
]

= p̃3
k,nEN [N1(N > 0)]

=
pY (k)3

(n{pY (k) + pZ(k)})2
,

EN
[
p̃2
k,n1(N > 0)

]
= p̃2

k,nEN [1(N > 0)]

=

(
pY (k)

n{pY (k) + pZ(k)}

)2

×
(

1− e−n{pY (k)+pZ(k)}
)
.
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Putting these together,

E[(I)] =

d∑
k=1

E

[
Y 2
i,kY

2
j,k

ω2
k

1(ωk > 0)

]

≤
d∑
k=1

pY (k)4

(n{pY (k) + pZ(k)})2
+

d∑
k=1

pY (k)4

(n{pY (k) + pZ(k)})3
+

d∑
k=1

pY (k)3

(n{pY (k) + pZ(k)})2

+

d∑
k=1

(
pY (k)

n{pY (k) + pZ(k)}

)2

×
(

1− e−n{pY (k)+pZ(k)}
)

≤ 1

n2
+

1

n3
+

1

n2
+

1

n2
min{d, 2n}, (G.41)

where the last inequality uses 1− e−x ≤ min{x, 1}.
Next moving onto the expected value of (II), the independence between Poisson random variables gives

E
[
Yi,k1Yj,k1
ωk1

Yi,k2Yj,k2
ωk2

1(ωk1 > 0)1(ωk2 > 0)

]

= E
[
Yi,k1Yj,k1
ωk1

1(ωk2 > 0)

]
E
[
Yi,k2Yj,k2
ωk2

1(ωk1 > 0)

]
.

Again, (Yi,k1 , Yj,k1 , ωk1 −Yi,k1 −Yj,k1) has a multinomial distribution conditional on ωk1 = N . Based on this

property, we have

E[Yi,k1Yj,k1 |ωk1 = N ] = N(N − 1)p̃2
k1,n.

Thus

E
[
Yi,k1Yj,k1
ωk1

1(ωk1 > 0)

]
= EN

[
E

{
Yi,k1Yj,k1
ωk1

1(ωk1 > 0)

∣∣∣∣∣ωk1 = N

}]

= p̃2
k1,nEN [(N − 1)1(N > 0)]

= p̃2
k1,n

[
n{pY (k1) + pZ(k1)} − 1 + e−n{pY (k1)+pZ(k1)}

]

≤ p2
Y (k1)

n{pY (k1) + pZ(k1)} .

This gives

E[(II)] = E

[ ∑
(k1,k2)∈id2

ω−1
k1
ω−1
k2
Yi,k1Yj,k1Yi,k2Yj,k21(ωk1 > 0)1(ωk2 > 0)

]
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≤
(

d∑
i1=1

p2
i1

n{pi1 + qi1}

)
·
(

d∑
i2=1

p2
i2

n{pi2 + qi2}

)
≤ 1

n2
. (G.42)

Therefore based on (G.41) and (G.42), it is clear that EP [Σ2
n,Y ] ≤ C2 min{n, d}. The same analysis

further shows that EP [Σ2
n,Z ] ≤ C3 min{n, d} and EP [Σ2

n,Y Z ] ≤ C4 min{n, d}, which leads to EP [Σ2
n,pois] ≤

C1 min{n, d} as desired.

• Bound (b). Next we prove that EP [Tχ2,b,up] ≤ C2. Recall that Tχ2,b,up is a nonnegative random variable

defined in (G.39). Since ωk ∼ Poisson(n{pY (k) + pZ(k)}), the second term of Tχ2,b,up satisfies

d∑
k=1

E[1(ωk > 0)] =

d∑
k=1

(
1− e−n{pY (k)+pZ(k)}

)
.

Next consider the first term of Tχ2,b,up:

2n∑
i=1

d∑
k=1

X2
i,k

ωk
1(ωk > 0).

Note that based on the moments of a multinomial distribution (see Appendix G.19.4), one can compute

E
[
Y 2
i,k|ωk = N

]
= N(N − 1)p̃2

k,n + np̃k,n,

E
[
Z2
i,k|ωk = N

]
= N(N − 1)q̃2

k,n + nq̃k,n,

where p̃k,n := pY (k)/{n(pY (k) + pZ(k)} and q̃k,n := pZ(k)/{n(pY (k) + pZ(k))}. Therefore, by the law of

total expectation,

E

[
Y 2
i,k

ωk
1(ωk > 0)

]
= EN

[
E

{
Y 2
i,k

ωk
1(ωk > 0)

∣∣∣∣∣ωk = N

}]

= p̃2
k,nEN [(N − 1)1(N > 0)] + p̃k,nEN [1(N > 0)]

= p̃2
k,n

(
n{pY (k) + pZ(k)} − 1 + e−n{pY (k)+pZ(k)}

)
+p̃k,n

(
1− e−n{pY (k)+pZ(k)}

)
.

Similarly, one can compute

E

[
Z2
i,k

ωk
1(ωk > 0)

]
= q̃2

k,n

(
n{pY (k) + pZ(k)} − 1 + e−n{pY (k)+pZ(k)}

)
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+q̃k,n

(
1− e−n{pY (k)+pZ(k)}

)
.

Based on the definition of p̃k,n and q̃k,n, we have the identity

n∑
i=1

d∑
k=1

p̃k,n

(
1− e−n{pY (k)+pZ(k)}

)
+

n∑
i=1

d∑
k=1

q̃k,n

(
1− e−n{pY (k)+pZ(k)}

)

=

d∑
k=1

(
1− e−n{pY (k)+pZ(k)}

)
,

which is the expected value of
∑d
k=1 1(ωk > 0). Putting everything together,

E
[
Tχ2,b,up

]
=

2n∑
i=1

d∑
k=1

E

[
X2
i,k

ωk
1(ωk > 0)

]
−

d∑
k=1

E[1(ωk > 0)]

≤
n∑
i=1

d∑
k=1

p2
Y (k)

n{pY (k) + pZ(k)} +

n∑
i=1

d∑
k=1

p2
Z(k)

n{pY (k) + pZ(k)}

≤ 2.

This proves the bound E[Tχ2,b,up] ≤ C2.

G.19.3 Details on verifying the sufficient condition (G.33)

First assume that n < d. Then the variance (G.35) is dominated by the first term and thus condition (G.33)

is fulfilled when

EP [Tχ2 ]
(i)

≥ n2

6d
‖pY − pZ‖21

(ii)

≥ n2

6d
ε2n

(iii)

≥ C2

β1/2
log

(
1

α

)√
n

≥ q1−β/2,n +

√
2VarP [Tχ2 ]

β
,

where (i) follows by the bound (G.34), (ii) uses ‖pY − pZ‖1 ≥ εn and (iii) holds from the bounds (G.35)

and (G.36) and the condition on εn, i.e.

εn ≥
C3

β1/2

√
log

(
1

α

)
d1/2

n3/4
,

for some large constant C3 > 0.
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Next assume that n ≥ d. For convenience, let us write

ϕk := 1− 1− e−npY (k)−npZ(k)

npY (k) + npZ(k)
for k = 1, . . . , d.

We define Id := {k ∈ {1, . . . , d} : 2ϕk ≥ 1} and denote its complement by Icd. Note that npY (k) +npZ(k) < 2

for k ∈ Icd and thus

n

d∑
k=1

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

= n
∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

+ n
∑
k∈Icd

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

≤ n
∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

+ 2d.

Based on this observation with n ≥ d, the variance of Tχ2 can be further bounded by

VarP [Tχ2 ] ≤ 4d+ 5n
∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

. (G.43)

Let us make one more observation that n2‖pY − pZ‖21/(4d + 2n) ≥ C4β
−1 for some large constant C4 > 0,

which holds under the assumption on εn in Theorem 8.6 and n ≥ d. Based on this, the expectation of Tχ2

is bounded by

EP [Tχ2 ] ≥

√√√√ d∑
k=1

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

nϕk

√
n2

4d+ 2n
‖pY − pZ‖21

≥
√√√√C4n

2β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

,

(G.44)

where the last inequality uses the definition of Id. This gives

EP [Tχ2 ]
(i)

≥ 1

2
EP [Tχ2 ] +

1

2

√√√√C4n

2β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

(ii)

≥ n

12
‖pY − pZ‖21 +

1

2

√√√√C4n

2β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

(iii)

≥ n

12
ε2n +

1

2

√√√√C4n

2β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

(iv)

≥ C5

β
log

(
1

α

)
d1/2 +

1

2

√√√√C4n

2β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)
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(v)

≥ C1

β
log

(
1

α

)
d1/2 +

√
8d

β
+

√√√√10n

β

∑
k∈Id

{pY (k)− pZ(k)}2
pY (k) + pZ(k)

(vi)

≥ q1−β/2,n +

√
2VarP [Tχ2 ]

β
,

where (i) uses the lower bound (G.44), (ii) and (iii) follow by the bound (G.34) and ‖pY − pZ‖1 ≥ εn,

respectively, (iv) follows from the lower bound for εn in the theorem statement, (v) holds by choosing C4, C5

large and lastly (vi) uses (G.36) and (G.43).

G.19.4 Multinomial Moments

This section collects some moments of a multinomial distribution that are used in the proof of Theorem 8.6.

Suppose that X = (X1, . . . , Xd) has a multinomial distribution with the number of trials n and probabilities

(p1, . . . , pd). The MGF of X is given by

MX(t) =

(
d∑
i=1

pie
ti

)n
.

We collect some of partial derivatives of the MGF.

∂

∂ti
MX(t) = n

(
d∑
i=1

pie
ti

)n−1

pie
ti ,

∂2

∂ti∂tj
MX(t) = n(n− 1)

(
d∑
i=1

pie
ti

)n−2

pie
tipje

tj ,

∂2

∂t2i
MX(t) = n(n− 1)

(
d∑
i=1

pie
ti

)n−2

p2
i e

2ti + n

(
d∑
i=1

pie
ti

)n−1

pie
ti ,

∂3

∂t2i ∂tj
MX(t) = n(n− 1)(n− 2)

(
d∑
i=1

pie
ti

)n−3

p2
i pje

2tietj

+ n(n− 1)

(
d∑
i=1

pie
ti

)n−2

pipje
tietj ,

∂4

∂t2i ∂t
2
j

MX(t) = n(n− 1)(n− 2)(n− 3)

(
d∑
i=1

pie
ti

)n−4

p2
i p

2
je

2tie2tj

+ n(n− 1)(n− 2)

(
d∑
i=1

pie
ti

)n−3

p2
i pje

2tietj
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+ n(n− 1)(n− 2)

(
d∑
i=1

pie
ti

)n−3

pip
2
je
tie2tj

+ n(n− 1)

(
d∑
i=1

pie
ti

)n−2

pipje
tietj .

By setting t = 0, for i 6= j,

E[Xi] = npi,

E[X2
i ] = n(n− 1)p2

i + npi,

E[XiXj ] = n(n− 1)pipj ,

E[X2
iXj ] = n(n− 1)(n− 2)p2

i pj + n(n− 1)pipj ,

E[X2
iX

2
j ] = n(n− 1)(n− 2)(n− 3)p2

i p
2
j + n(n− 1)(n− 2)p2

i pj

+n(n− 1)(n− 2)pip
2
j + n(n− 1)pipj .

G.20 Proof of Proposition 8.10

Recall that the test is carried out via sample-splitting and the critical value of the permutation test is

obtained by permuting the labels within X split
2n1

= {Y1, . . . , Yn1
, Z1, . . . , Zn1

}. Nevertheless, the distribution

of the test statistic is invariant to any partial permutation under the null hypothesis. Based on this property,

it can be shown that type I error control of the permutation test via sample-splitting is also guaranteed (see

e.g. Theorem 15.2.1 of Lehmann and Romano, 2006). Hence we focus on the type II error control. Note that

conditional on w1, . . . , wd, the test statistic U split
n1,n2

can be viewed as a U -statistic with kernel gMulti,w(x, y)

given in (8.42). Moreover this U -statistic is based on the two samples of equal size, which allows us to

apply Lemma G.0.1. Based on this observation, we first study the performance of the test conditioning on

w1, . . . , wd. We then remove this conditioning part using Markov’s inequality and conclude the result.

• Conditional Analysis. In this part, we investigate the type II error of the permutation test conditional

on w1, . . . , wd. As noted earlier, U split
n1,n2

can be viewed as a U -statistic and so we can apply Lemma G.0.1 to

proceed. To do so, we need to lower bound the conditional expectation of U split
n1,n2

and upper bound ψY,1(P ),

ψZ,1(P ) and ψY Z,2(P ). On the one hand, the conditional expectation of U split
n1,n2

is lower bounded by the

squared `1 distance as

EP
[
U split
n1,n2

|w1, . . . , wn
]

=

d∑
k=1

[pY (k)− pZ(k)]2

wk
≥ ‖pY − pZ‖21,
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where the inequality follows by Cauchy-Schwarz inequality and
∑d
k=1 wk = 1. On the other hand, ψY,1(P ),

ψZ,1(P ) and ψY Z,2(P ) are upper bounded by

ψY,1(P ) ≤ 4

√√√√ d∑
k=1

p2
Y (k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk

ψZ,1(P ) ≤ 4

√√√√ d∑
k=1

p2
Z(k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk

ψY Z,2(P ) ≤ max

{
d∑
k=1

p2
Y (k)

w2
k

,

d∑
k=1

p2
Z(k)

w2
k

}
.

(G.45)

The details of the derivations are presented in Section G.20.1. Further note that

d∑
k=1

p2
Y (k)

w2
k

(i)

≤ 2

d∑
k=1

[pY (k)− pZ(k)]2

w2
k

+ 2

d∑
k=1

p2
Z(k)

w2
k

(ii)

≤ 4d

d∑
k=1

[pY (k)− pZ(k)]2

wk
+ 2

d∑
k=1

p2
Z(k)

w2
k

,

(G.46)

where (i) uses (x + y)2 ≤ 2x2 + 2y2 and (ii) follows since wk ≥ 1/(2d) for k = 1, . . . , d. For notational

convenience, let us write

‖pY − pZ‖2w :=

d∑
k=1

[pY (k)− pZ(k)]2

wk
and

‖pZ/w‖22 :=

d∑
k=1

p2
Z(k)

w2
k

.

Having this notation in place, we see that the condition (G.8) in Lemma G.0.1 is fulfilled when

√
ψY,1(P )

βn1
≤ C1‖pY − pZ‖2w,√

ψZ,1(P )

βn1
≤ C2‖pY − pZ‖2w and

√
ψY Z,2(P )

β
log

(
1

α

)
1

n1
≤ C3‖pY − pZ‖2w.
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Based on the results in (G.45) and (G.46), it can be shown that these three inequalities are implied by

‖pY − pZ‖2w ≥
C4

β
log

(
1

α

) ‖pZ/w‖2
n1

and

‖pY − pZ‖2w ≥
C5

β2
log2

(
1

α

)
d

n2
1

.

Moreover, using the lower bound of the conditional expectation ‖pY − pZ‖2w ≥ ‖pY − pZ‖21 ≥ ε2n1,n2
and the

boundedness of `1 norm so that ε2n1,n2
≤ 4, the above two inequalities are further implied by

ε2n1,n2
≥ C4

β
log

(
1

α

) ‖pZ/w‖2
n1

and

ε2n1,n2
≥ 2

√
C5

β
log

(
1

α

)
d1/2

n1
.

In other words, for a sufficiently large C6 > 0, the type II error of the permutation test is at most β when

ε2n1,n2
≥ C6

β
log

(
1

α

)
max

{
‖pZ/w‖2

n1
,
d1/2

n1

}
. (G.47)

Note that the above condition is not deterministic as w1, . . . , wd are random variables. Next we remove this

randomness.

• Unconditioning w1, . . . , wd. Recall that m = min{n2, d} and thus wk is clearly lower bounded by

wk =
1

2d
+

1

2m

m∑
i=1

1(Zi+n2 = k) ≥ 1

2d

[
1 +

m∑
i=1

1(Zi+n2 = k)

]
.

Based on this bound, one can see that ‖pZ/w‖22 has the expected value upper bounded by

EP

[
d∑
k=1

p2
Z(k)

w2
k

]
≤ 4d2

d∑
k=1

EP
[

p2
Z(k)

{1 +
∑m
i=1 1(Zi+n2 = k)}2

]

≤ 4d2
d∑
k=1

EP
[

p2
Z(k)

1 +
∑m
i=1 1(Zi+n2 = k)

]
(i)

≤ 4d2
d∑
k=1

p2
Z(k)

(m+ 1)pZ(k)

≤ 4d2

m
,
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where (i) uses the fact that when X ∼ Binominal(n, p), we have

E
[

1

1 +X

]
=

1− (1− p)n+1

(n+ 1)p
≤ 1

(n+ 1)p
. (G.48)

See e.g. Canonne et al. (2018) for the proof. Using this upper bound of the expected value, Markov’s

inequality yields

PP


√√√√ d∑
k=1

p2
Z(k)

w2
k

≥ t

 ≤ 1

t2
E

[
d∑
k=1

p2
Z(k)

w2
k

]
≤ 4d2

mt2
.

By letting the right-hand side be β and A be the event such that A := {‖pZ/w‖2 < 2d/
√
mβ}, we know

that PP (A) ≥ 1− β. Under this good event A, the sufficient condition (G.47) is fulfilled when

ε2n1,n2
≥ C7

β3/2
log

(
1

α

)
max

{
d√
mn1

,
d1/2

n1

}

=
C7

β3/2
log

(
1

α

)
max

{
d

n1
√
n2
,
d1/2

n1

}
.

(G.49)

• Completion of the proof. To complete the proof, let us denote the critical value of the permutation

test by c1−α,n1,n2
. Then the type II error of the permutation test is bounded by

PP (U split
n1,n2

≤ c1−α,n1,n2
) = PP (U split

n1,n2
≤ c1−α,n1,n2

,A) + PP (U split
n1,n2

≤ c1−α,n1,n2
,Ac)

≤ PP (U split
n1,n2

≤ c1−α,n1,n2
,A) + PP (Ac).

As shown before, the type II error under the event A is bounded by β, which leads to PP (U split
n1,n2

≤
c1−α,n1,n2

,A) ≤ β. Also we have PP (Ac) ≤ β proved by Markov’s inequality. Thus the unconditional

type II error is bounded by 2β. Notice that condition (G.49) is equivalent to condition (8.43) given in

Proposition 8.10. Hence the proof is completed by letting 2β = β′.

G.20.1 Details on Equation (G.45)

We start with bounding ψY,1(P ). Following the proof of Proposition 8.1, it can be seen that

ψY,1(P ) = EP
[( d∑

k=1

w−1
k [1(Y1 = k)− pY (k)][pY (k)− pZ(k)]

)2∣∣∣∣w1, . . . , wd

]

≤ 2

d∑
k=1

w−2
k pY (k)[pY (k)− pZ(k)]2 + 2

( d∑
k=1

w−1
k pY (k)[pY (k)− pZ(k)]

)2
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:= 2(I) + 2(II).

For the first term (I), we apply Cauchy-Schwarz inequality to have

d∑
k=1

w−2
k pY (k)[pY (k)− pZ(k)]2 ≤

√√√√ d∑
k=1

p2
Y (k)

w2
k

√√√√ d∑
k=1

[pY (k)− pZ(k)]4

w2
k

≤

√√√√ d∑
k=1

p2
Y (k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk
,

where the second inequality follows by the monotonicity of `p norm. For the second term (II), we apply

Cauchy-Schwarz inequality repeatedly to have

( d∑
k=1

w−1
k pY (k)[pY (k)− pZ(k)]

)2

≤
d∑
k=1

p2
Y (k)

wk

d∑
k=1

[pY (k)− pZ(k)]2

wk

≤

√√√√ d∑
k=1

p2
Y (k)

w2
k

√√√√ d∑
k=1

p2
Y (k)

d∑
k=1

[pY (k)− pZ(k)]2

wk

(i)

≤

√√√√ d∑
k=1

p2
Y (k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk

where (i) uses
∑d
k=1 p

2
Y (k) ≤ 1. Combining the results yields

ψY,1(P ) ≤ 4

√√√√ d∑
k=1

p2
Y (k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk
.

By symmetry, it similarly follows that

ψZ,1(P ) ≤ 4

√√√√ d∑
k=1

p2
Z(k)

w2
k

d∑
k=1

[pY (k)− pZ(k)]2

wk
.

These establish the first two inequalities in (G.45). Next we find an upper bound for ψY Z,2(P ). By recalling

the definition of ψY Z,2(P ), we have

ψY Z,2(P ) := max
{
EP [g2

Multi,w(Y1, Y2)|w1, . . . , wd], EP [g2
Multi,w(Y1, Z1)|w1, . . . , wd],

EP [g2
Multi,w(Z1, Z2)|w1, . . . , wd]

}
.
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Moreover each conditional expected value is computed as

EP [g2
Multi,w(Y1, Y2)|w1, . . . , wd] =

d∑
k=1

w−2
k p2

Y (k),

EP [g2
Multi,w(Z1, Z2)|w1, . . . , wd] =

d∑
k=1

w−2
k p2

Z(k),

EP [g2
Multi,w(Y1, Z1)|w1, . . . , wd] =

d∑
k=1

w−2
k pY (k)pZ(k)

≤ 1

2

d∑
k=1

w−2
k p2

Y (k) +
1

2

d∑
k=1

w−2
k p2

Z(k)

≤ max

{
d∑
k=1

w−2
k p2

Y (k),

d∑
k=1

w−2
k p2

Z(k)

}
.

This leads to

ψY Z,2(P ) ≤ max

{
d∑
k=1

w−2
k p2

Y (k),

d∑
k=1

w−2
k p2

Z(k)

}
.

G.21 Proof of Proposition 8.11

We note that the test statistic considered in Proposition 8.11 is essentially the same as that considered in

Proposition 8.10 with different weights. Hence following the same line of the proof of Proposition 8.10, we

may arrive at the point (G.47) where the type II error of the considered permutation test is at most β when

ε2n ≥
C

β
log

(
1

α

)
max

{√√√√ d1∑
k1=1

d2∑
k2=1

p2
Y (k)p2

Z(k)

w2
k1,k2

1

n
,
d

1/2
1 d

1/2
2

n

}
. (G.50)

Similarly as before, let us remove the randomness from w1,1, . . . , wd1,d2 by applying Markov’s inequality.

First recall that m1 = min{n/2, d1} and m2 = min{n/2, d2} and thus

wk1,k2 =

[
1

2d1
+

1

2m1

m1∑
i=1

1(Y3n/2+i = k1)

]
×
[

1

2d2
+

1

2m2

m2∑
j=1

1(Z5n/2+i = k2)

]

≤ 1

4d1d2

[
1 +

m1∑
i=1

1(Y3n/2+i = k1)

]
×
[

1 +

m2∑
j=1

1(Z5n/2+i = k2)

]
.
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Based on this observation, we have

EP

[
d1∑
k1=1

d2∑
k2=1

p2
Y (k)p2

Z(k)

w2
k1,k2

]

≤ 16d2
1d

2
2

d1∑
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d2∑
k2=1

EP
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p2
Y (k)p2

Z(k)

{1 +
∑m1

i=1 1(Y3n/2+i = k1)}2{1 +
∑m2
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]

≤ 16d2
1d

2
2

d1∑
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d2∑
k2=1

EP
[

p2
Y (k)p2

Z(k)

{1 +
∑m1

i=1 1(Y3n/2+i = k1)}{1 +
∑m2

j=1 1(Z5n/2+i = k2)}

]
(i)

≤ 16d2
1d

2
2

d1∑
k1=1

d2∑
k2=1

p2
Y (k)p2

Z(k)

(m1 + 1)(m2 + 1)pY (k)pZ(k)

≤ 16d2
1d

2
2

(m1 + 1)(m2 + 1)
,

where (i) uses the independence between {Y3n/2+1, . . . , Y3n/2+m1
} and {Z5n/2+1, . . . , Z5n/2+m2

} and also the

inverse binomial moment in (G.48). Therefore Markov’s inequality yields

PP


√√√√ d1∑
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d2∑
k2=1

p2
Y (k)p2

Z(k)

w2
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≤ 16d2
1d

2
2

t2(m1 + 1)(m2 + 1)
.

This implies that with probability at least 1− β, we have

√√√√ d1∑
k1=1

d2∑
k2=1

p2
Y (k)p2

Z(k)

w2
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≤ 4d1d2√
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.

Under this event, condition (G.50) is implied by

ε2n ≥
C1

β3/2
log
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1

α

)
max
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1 m
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}
.

By putting the definition of m1 = min{n/2, d1} and m2 = min{n/2, d2} where d1 ≤ d2 and noting that

ε2n ≤ 4, the condition is further implied by

ε2n ≥
C2

β3/2
log

(
1

α

)
max

{
d

1/4
1 d

1/2
2

n3/4
,
d

1/2
1 d
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2
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}
,
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for a sufficiently large C2 > 0. The remaining steps are exactly the same as those in the proof of

Proposition 8.10. This completes the proof of Proposition 8.11.

G.22 Proof of Proposition 8.12

The proof of Proposition 8.12 is motivated by Meynaoui et al. (2019) who study the uniform separation rate

for the HSIC test. In contrast to Meynaoui et al. (2019) who use the critical value based on the (unknown)

null distribution, we study the permutation test base on the MMD statistic. The structure of the proof is

as follows. We first upper bound ψY,1(P ), ψZ,1(P ) and ψY Z,2(P ) to verify the sufficient condition given

in Lemma G.0.1. We then provide a connection between the expected value of the MMD statistic and L2

distance |||fY − fZ |||L2
. Finally, we conclude the proof based on the previous results. Throughout the proof,

we write the Gaussian kernel Kλ1,...,λd,d(x− y) in (8.44) as Kλ,d(x− y) so as to simplify the notation.

• Verification of condition (G.8). In this part of the proof, we find upper bounds for ψY,1(P ), ψZ,1(P )

and ψY Z,2(P ). Let us start with ψY,1(P ). Recall that ψY,1(P ) is given as

ψY,1(P ) = VarP {EP [hts(Y1, Y2;Z1, Z2)|Y1]},

where hts is the symmetrized kernel (8.7). Using the definition, it is straightforward to see that

ψY,1(P ) = VarP {EP [gGau(Y1, Y2)|Y1]− EP [gGau(Y1, Z1)|Y1]}

≤ EP [{EP [gGau(Y1, Y2)|Y1]− EP [gGau(Y1, Z1)|Y1]}2].

Let us denote the convolution fY − fZ and Kλ,d by

(fY − fZ) ∗Kλ,d(x) =

∫
Rd

[fY (t)− fZ(t)]Kλ,d(x− t)dt,

where Kλ,d can be recalled from (8.44). Then the upper bound of ψY,1(P ) is further bounded by

EP [{EP [gGau(X1, X2)|X1]− EP [gGau(X1, Y1)|X1]}2] =

∫
Rd
fY (x)

[
(fY − fZ) ∗Kλ,d(x)

]2
dx

≤ |||fY |||∞|||(fY − fZ) ∗Kλ,d|||2L2
.
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By symmetry, ψZ,1(P ) can be similarly bounded. Thus

ψY,1(P ) ≤ |||fY |||∞|||(fY − fZ) ∗Kλ,d|||2L2
,

ψZ,1(P ) ≤ |||fZ |||∞|||(fY − fZ) ∗Kλ,d|||2L2
.

(G.51)

Moving onto ψY Z,2(P ), we need to compute EP [g2
Gau(Y1, Y2)], EP [g2

Gau(Z1, Z2)] and EP [g2
Gau(Y1, Z1)]. Note

that

K2
λ,d(x) =

1

(4π)d/2λ1 · · ·λd
Kλ/

√
2,d(x),

where Kλ/
√

2,d(x) is the Gaussian density function (8.44) with scale parameters λ1/
√

2, . . . , λd/
√

2. Therefore

it can be seen that

EP [g2
Gau(Y1, Y2)] =

∫
Rd

∫
Rd
K2
λ,d(y1 − y2)fY (y1)fY (y2)dy1dy2

=
1

(4π)d/2λ1 · · ·λd

∫
Rd

∫
Rd
Kλ/

√
2,d(y1 − y2)fY (y1)fY (y2)dy1dy2

≤ |||fY |||∞
(4π)d/2λ1 · · ·λd

∫
Rd

[ ∫
Rd
Kλ/

√
2,d(y1 − y2)dy1

]
fY (y2)dy2

≤ Mf,d

(4π)d/2λ1 · · ·λd
,

where max{|||fY |||∞, |||fZ |||∞} ≤ Mf,d. The other two terms EP [g2
Gau(Z1, Z2)] and EP [g2

Gau(Y1, Z1)] are

similarly bounded. Thus we have

ψY Z,2(P ) ≤ Mf,d

(4π)d/2λ1 · · ·λd
. (G.52)

Given bounds (G.51) and (G.52), Lemma G.0.1 shows that the type II error of the considered permutation

test is at most β when

EP [Un1,n2 ] ≥ C1(Mf,d, d)

√
|||(fY − fZ) ∗Kλ,d|||2L2

β

(
1

n1
+

1

n2

)

+
C2(Mf,d, d)√
λ1 · · ·λd

1√
β

log

(
1

α

)(
1

n1
+

1

n2

)
.

(G.53)
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• Relating EP [Un1,n2 ] to L2 distance. Next we related the expected value of Un1,n2 to L2 distance

between fY and fZ . Based on the unbiasedness property of a U -statistic, one can easily verify that

EP [Un1,n2
] =

∫
Rd

∫
Rd
Kλ,d(t1 − t2)[fY (t1)− fZ(t1)][fY (t2)− fZ(t2)]dt1dt2

=

∫
Rd

[fY (t2)− fZ(t2)](fY − fZ) ∗Kλ,d(t2)dt2

=
1

2
|||fY − fZ |||2L2

+
1

2
|||(fY − fZ) ∗Kλ,d|||2L2

−1

2
|||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2

.

(G.54)

where the last equality uses the fact that 2xy = x2 + y2 − (x− y)2.

• Completion of the proof. We now combine the previous results (G.53) and (G.54) to conclude the

result. To be more specific, based on equality (G.54), it is seen that condition (G.53) is equivalent to

|||fY − fZ |||2L2
≥ |||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2

− |||(fY − fZ) ∗Kλ,d|||2L2

+ C3(Mf,d, d)

√
|||(fY − fZ) ∗Kλ,d|||2L2

β

(
1

n1
+

1

n2

)

+
C4(Mf,d, d)√
λ1 · · ·λd

1√
β

log

(
1

α

)(
1

n1
+

1

n2

)
.

(G.55)

Based on the basic inequality
√
xy ≤ x + y for x, y ≥ 0, we can upper bound the third line of the above

equation as

C3(Mf,d, d)

√
|||(fY − fZ) ∗Kλ,d|||2L2

β

(
1

n1
+

1

n2

)
≤ C5(Mf,d, d)

β

(
1

n1
+

1

n2

)
+ |||(fY − fZ) ∗Kλ,d|||2L2

.

Therefore the previous inequality (G.55) is implied by

ε2n1,n2
≥ |||(fY − fZ)− (fY − fZ) ∗Kλ,d|||2L2

+
C(Mf,d, d)

β
√
λ1 · · ·λd

log

(
1

α

)
·
(

1

n1
+

1

n2

)
,

where we used the condition
∏d
i=1 λi ≤ 1. This completes the proof of Proposition 8.12.

448


	Acknowledgements
	Quote
	List of Tables
	List of Figures
	Introduction
	Problem Statements
	Permutation Approach
	Overview of this thesis

	Multinomial Goodness-of-Fit Based on U-Statistics: High-Dimensional Asymptotic and Minimax Optimality
	Introduction
	Pearson's Chi-squared Statistic based on the U-statistic
	High-Dimensional Asymptotics
	Poisson Approximation
	Gaussian Approximation

	Minimax Optimality
	U-statistic weighted by a mixture distribution
	Generalization

	Simulations
	Summary and Discussion

	Global and Local Two-Sample Tests via Regression
	Introduction
	Motivating Example
	Related Work
	Overview of this chapter

	Framework
	Metrics
	Test Statistics and Algorithms
	Sampling Schemes

	Global Two-Sample Tests via Regression
	Fisher's Linear Discriminant Analysis
	The MISE and Testing Error for Global Regression
	Examples

	Local Two-Sample Tests via Regression
	The MSE and Testing Error for Local Regression
	Minimax Optimality over the Lipschitz Class
	An Approach to Intrinsic Dimension
	Limiting Distribution of Local Permutation Test Statistics

	Simulations
	Random Forests Two-Sample Testing
	A Comparison between Regression and Classification Accuracy Tests
	Toy Examples for Local Two-Sample Testing

	Application to Astronomy Data
	Analysis and Result

	Conclusions

	Robust Multivariate Nonparametric Tests via Projection-Averaging
	Introduction
	Summary of our results
	Literature review

	Projection Averaging-Type Cramér–von Mises Statistics
	Test Statistic and Limiting Distributions
	Critical Value and Permutation Test

	Robustness
	Theoretical Analysis
	Empirical Analysis

	Minimax Optimality
	High Dimension, Low Sample Size Analysis
	HDLSS Consistency
	HDLSS Asymptotic Equivalence of CvM-statistic and Others

	Connection to the Generalized Energy Distance and MMD
	Other Multivariate Extensions via Projection-Averaging
	Simulations
	Concluding Remarks

	Comparing a Large Number of Multivariate Distributions
	Introduction
	Test Statistic
	Limiting distribution
	Cramér-type moderate deviation
	Gumbel limiting distribution
	Examples

	Permutation Approach
	Concentration inequalities under permutations
	Bobkov's inequality
	Two-Sample Case
	Numerical Illustrations
	K-Sample Case

	Power Analysis
	Power of the permutation test
	Minimax rate optimality

	Simulations
	Other multivariate K-sample tests
	Set-up
	Results

	Conclusions

	Euclidean and Manhattan Distance for High-Dimensional Two-Sample Testing
	Introduction
	Motivating Example
	The Problem of High-Dimensional Euclidean Distance
	Alternative approach based on Manhattan Distance
	Simulations

	Classification accuracy as a proxy for two-sample testing
	Introduction
	Practical motivation
	Overview of the main results
	Interpreting our results and practical takeaway messages
	Related work

	Background
	Two-sample mean testing
	Fisher's linear discriminant classifier

	Lower bounds for two-sample mean testing
	Minimax optimality of Hotelling's test when d = o(n)
	Asymptotic normality of the accuracy of generalized LDA
	Assumptions
	Asymptotic normality for non-random A

	Asymptotic power of generalized LDA with non-random A
	Naive Bayes: power of generalized LDA with unknown 
	Extension to elliptical distributions
	Results on general classifiers
	Asymptotic test
	Permutation tests

	Experiments
	Empirical power vs. theoretical power
	Sample-splitting vs. resubstitution
	Asymptotic power of Hotelling's Test

	Conclusions

	Minimax optimality of permutation tests
	Introduction
	Alternative approaches and their limitations
	Challenges in power analysis and related work
	Overview of our results
	Outline of the paper

	Background
	Permutation procedure
	Minimax optimality

	A general strategy with first two moments
	The two moments method for two-sample testing
	Two-sample testing for multinomials
	Two-sample testing for Hölder densities

	The two moments method for independence testing
	Independence testing for multinomials
	Independence testing for Hölder densities

	Combinatorial concentration inequalities
	Degenerate two-sample U-statistics
	Degenerate U-statistics for independence testing

	Adaptive tests
	Further applications
	Two-sample testing under Poisson sampling with equal sample sizes
	Two-sample testing via sample-splitting
	Independence testing via sample-splitting
	Gaussian MMD
	Gaussian HSIC

	Simulations
	Discussion

	Conclusions and future work
	Limiting behavior and robustness of permutation tests
	Bootstrap approach to high-dimensional inference

	Bibliography
	Appendix for Chapter 2
	Proofs
	Proof of Lemma 2.0.1
	Proof of Theorem 2.1
	Proof of Corollary 2.1.1 and 2.1.2
	Variance of UA
	Proof of Theorem 2.2
	Proof of Corollary 2.2.1
	Proof of Theorem 2.3
	Proof of Theorem 2.4

	Asymptotics under Poissonization

	Appendix for Chapter 3
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Corollary 3.3.1
	Proof of Theorem 3.4
	Proof of Example 3.1
	Proof of Example 3.2
	Proof of Theorem 4.8
	Proof of Proposition 3.1
	Proof of Theorem 3.6
	Proof of Corollary 3.6.1
	Proof of Corollary 3.6.2

	Diffusion Maps

	Appendix for Chapter 4
	Outline
	Permutation Tests
	Asymptotic null behavior of permutation U-statistics
	The coupling argument

	Auxiliary Lemmas
	Proofs
	Proof of Lemma 4.0.1
	Proof of Lemma 4.0.2
	Proof of Lemma C.1.8
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Lemma C.1.10
	Proof of Theorem 4.6
	Proof of Theorem 4.7
	Proof of Theorem 4.8
	Proof of Theorem 5.5
	Proof of Proposition 4.1
	Proof of Theorem 4.10
	Proof of Theorem 4.11
	Proof of Corollary 4.11.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	Proof of Theorem 4.12
	Proof of Theorem 4.13
	Proof of Theorem C.1

	Additional Results
	Verification of (4.16) in the main text
	Generalization of Lemma 4.0.2 and Lemma C.1.8
	Asymptotic Equivalence between Projection-Averaging and Spatial-Sign Statistics
	Some variants
	Power expression in HDLSS regime
	Angular distance is a metric of negative-type
	Details on Remark 4.6
	Further applications of projection-averaging

	Additional Simulations
	High-dimensional power under strong dependence
	Low-dimensional Gaussian alternatives


	Appendix for Chapter 5
	Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.5
	Proof of Corollary 5.5.1
	Proof of Theorem 5.6


	Appendix for Chapter 6
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 2
	Details of Example 1
	Proof of Theorem 3
	Additional Simulations


	Appendix for Chapter 7
	Outline
	Open problems
	Technical proofs
	Supporting lemmas
	Proof of Proposition 7.1 (minimax lower bound)
	Proof of Theorem 7.1 (optimality of Hotelling's T2 test)
	Proof of Proposition 7.2 (asymptotic normality of WA)
	Proof of Theorem 7.2 and 7.4
	Proof of Lemma F.0.4
	Some moments of (scaled) inverse chi-square random variables
	Proof of Lemma F.0.5
	Proof of Theorem 7.5
	Proof of Proposition 7.3
	Proof of Theorem 7.6

	Simulation results on sample-splitting ratio

	Appendix for Chapter 8
	Overview of Appendix
	Exponential inequalities for permuted linear statistics
	Concentration inequalities for sampling without replacement

	Improved version of Theorem 8.1
	Proof of Lemma 8.0.1
	Proof of Theorem 8.1
	Proof of Proposition 8.1
	Proof of Proposition 8.2
	Proof of Proposition 8.3
	Proof of Theorem 8.2
	Proof of Proposition 8.4
	Proof of Proposition 8.5
	Proof of Proposition 8.6
	Proof of Proposition 8.7
	Proof of Theorem 8.3
	Proof of Corollary 8.5.1
	Proof of Theorem 8.5
	Proof of Proposition 8.8
	Proof of Proposition 8.9
	Proof of Theorem 8.6
	Verification of condition (G.36)
	Verification of two bounds in (G.40)
	Details on verifying the sufficient condition (G.33)
	Multinomial Moments

	Proof of Proposition 8.10
	Details on Equation (G.45)

	Proof of Proposition 8.11
	Proof of Proposition 8.12


