
Extension of cross validation with
con�dence to determining number of

communities in Stochastic Block Models

Jining Qin

Aug 2019

Department of Statistics & Data Science
Dietrich College of Humanities and Social Sciences

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Jing Lei

Alessandro Rinaldo
Larry Wasserman

Kehui Chen (University of Pittsburgh)

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2019 Jining Qin

iv

Abstract
Stochastic block model (SBM) and its variants constitute an important family of

methods for modeling network data. There is a rich literature on methods for esti-
mating the block labels and model parameters of stochastic block models, as well as
study on the properties of such methods. Most of these studies would require the
number of communities K as an input, making this an important problem. There
are several methods proposed for this problem such as spectral methods, likeli-
hood based methods, information criteria, Bayesian methods, and cross-validation.
Cross-validation is a natural option for this problem since it is a widely used generic
method for evaluating statistical methods, easy to be adapted for various scenarios.
However, cross-validation is known to be inconsistent and prone to over-�tting
unless using impractical split ratios. Cross-validation with con�dence (CVC) has
recently been proposed as a variation of cross-validation with better theoretical
guarantees in conventional settings.

In this thesis we studied the properties of cross-validation with con�dence for
stochastic block models. Practically, we implemented di�erent variations of this
method by changing the train-test split scheme, approaches of obtaining the sam-
pling distribution for the test statistic, and the loss function in cross-validation.
We checked the performance of our method amongst these variations and against
similar established methods in the literature. We checked its robustness under mis-
speci�cation and di�erent data generating processes. We also tested our algorithm
by applying it to two widely used real-world data sets. In addition, through theo-
retical studies, we show that under certain assumptions, our method is guaranteed
to eliminate under-�tting candidate models. We also further showed that CVC, un-
like standard cross-validation, can consistently pick the optimalK by showing that
the validated loss of the true model is not much worse than that of a slightly over-
�tting model. Therefore, the candidate set output by a CVC procedure will contain
the optimal model with guaranteed probability.

vi

Acknowledgements

First and foremost I would like to thank my advisor Jing Lei. Through the years that we worked
together, he has truly been a caring and supportive mentor. We started our collaboration on
a quite di�erent project, which didn’t eventually pan out. Despite my struggles and procras-
tination over the years, despite the fact that I didn’t quite have an appetite for an academic
career, he has always been understanding and helpful. He would give me spot on advice on
both minute details in my research problem and the guiding principles of conducting myself as
a PhD student. Looking back, I couldn’t wish for a better advisor. I very frequently feel guilty
of wasting his precious time by asking him naive, foolish, and sometimes repetitive questions.
His kindness and patience would touch me every time. Although from his perspective, I could
only hope he wouldn’t regret the decision of taking me as his student too much, just like how
I feel about my decision to pursue a PhD.

I would like to thank my committee members Kehui Chen, Larry Wasserman, Alessandro
Rinaldo, as well as other faculty members who provided me with generous help and valuable
suggestions, including but not limited to Cosma Shalizi, David Krackhardt. I would like to also
thank Professor Joel Greenhouse and Professor Ann Lee. 6 years ago, it was Joel’s decision
which brought me to the wonderful environment of CMU statistics and got me riveted to it.
And 5 years ago, it was with Ann’s help that I would continue my life here pursuing a PhD in
statistics. I am constantly marvelled at the pleasant surprises life brings me. As a non-typical
applicant to our statistics PhD program, I didn’t get to where I am without excessive good
fortune. The opportunity to spend 6 years in such a wonderful place is the piece of chocolate
that I will be forever grateful for.

I would like to also thank fellow students from our department. I was really grateful for the
strong support throughout my stay here. In the �rst couple of years, I can always �nd people
to go to when I have questions about the course work. And in the later years, I could always
�nd just the right collaborators when I get interested in various competitions or side projects.
I de�nitely free-rided my way through a fair amount of them, and I’m constantly grateful to
my teammates for tolerating me. Participating in IM-sports together with fellow students from
our department, especially getting in some deep playo� runs, makes some of my best memories
here.

I would like to thank my future colleagues, including and especially Bo and Xianchao, for
putting their trust in me and giving me a chance to work with them. I realize what a luxury it is
to work on my thesis without needing to worry about job searching in the �nal year in school.
It was a great experience working amongst you guys during my internship and I hope we will
be having more good time working together in the future.

vii

My life in the past �ve years wouldn’t have been nearly as pleasant if not for several people
whom I am fortunate enough to become friends with. I am thankful for all the friends who
spent time with me through happy and frustrating times. Some of these friends are right here
in Pittsburgh and some of them barely met me in person during these years. Some of them are
not here for the whole ride, yet I will always be grateful for the company I enjoyed. My sincere
thanks to Jiaqi, Xiaofeng, Lei, Tippi, Xin, Chong. It is my distinguished privilege to witness the
starting of two wonderful families: Fei, Mo, Nola; Cici, Gary and Adaline. I wish all the best for
you and your babies.

Those who are familiar with me know that I am not the most proactive person. Luckily
I have a lot of sources of inspiration in my life. At times when I need a little stimulus or
motivation, it would always be easy to see someone out there chasing his/her dream, laying
everything on the line. Some of my heroes are people I meet in person from time to time, while
some of them maintain interactions with me mostly thanks to the Internet. Some of my heroes
are people whose stories I only get to know about from reading their books or listening about
their stories. I want to thank all those people nonetheless. Your pursuits, your struggles, and
your enthusiasm remind me that there is always another level and I can always choose to live
my life to the fullest.

I would like to also thank some people who likely wouldn’t expect to be listed here. There
was a time when I was sliding into the vicious spiral of unhealthy life habits and questionable
work ethics. Their appearance in my life served as the critical inspiration to pull myself up
and start thinking more about the present and the future. Their positive attitude to life and
concentration on what really matters make me want to lead my life the same way and obtain
the same kind of joy out of life. To some extent, I believe many people’s life is determined by
the number and timing of their run-ins with such people who shed light on how they should
make decisions about their life. I will always be thankful for the shining lights I am fortunate
enough to encounter.

Last but not least, I want to thank my parents for being supportive most of the time through-
out my excessively long career as a student. Ever since I was a little child, they provided all
they could for me to get well educated. I wouldn’t be who I am today without their in�uences.
I want to thank both of them. I hope I have made you proud at some points in the past, and I
hope I can continue to do so in the future.

viii

Contents

1 Introduction 1
1.1 Prevalence of network data and overview of network study 1
1.2 Stochastic Block Model and Its Variants . 2
1.3 Summary of Our Contribution . 4
1.4 Notation table . 6

2 Background and Algorithm Description 7
2.1 Background and Limitation of Classical Cross-validation 8
2.2 Train-test splitting in Network Settings . 10
2.3 Estimation of Stochastic Block Models . 14
2.4 Cross-validation with Con�dence . 18
2.5 V-fold Cross-validation with Con�dence in the Context of Stochastic Block Models 21
2.6 Using Parametric Bootstrap instead of Gaussian Multiplier Bootstrap 25

3 Simulation Studies and Application on Data Sets 29
3.1 Studies through simulated data . 29

3.1.1 Simulation of adjacency matrices from Stochastic Block Models 29
3.1.2 Illustration of the Hypothesis Testing Step 31
3.1.3 E�ect of the hypothesis testing step: comparison with BIC and NCV . . 32
3.1.4 Sensitivity to mis-speci�cation . 39
3.1.5 One case of unidenti�ability . 42
3.1.6 Sensitivity to di�erent community interaction matrix setting 48
3.1.7 Changing up the train-test splitting: comparison with other CV methods 58
3.1.8 Swapping out Gaussian Multiplier Bootstrap: comparison with para-

metric bootstrap . 61
3.1.9 Note on Computation Speed . 64

3.2 Application on real-world data sets . 67
3.2.1 Political Blog Data Set . 67
3.2.2 Political Books Data Set . 72

4 Theoretical Results 75
4.1 Under-�tting case . 78
4.2 Over-�tting case . 82

ix

5 Conclusions and Future Work 85

A Proofs for results in 4.1 87
A.1 When As is relatively large, and Acs grows su�ciently fast. 88
A.2 When As is relatively large, and Acs grows very slowly. 93
A.3 When As is not large enough. 94

B Proofs for results in 4.2 97
B.1 When all the estimates are moderate from the over-�tting model 98
B.2 When some estimates are extreme from the over-�tting model 101

Bibliography 105

x

List of Figures

1.1 Three examples of network data set. Left plot: a gene co-expression network,
[RCPHLR+16]. Middle plot: Marriage connection network among notable fam-
ilies in 15th Century Florence, originally [PA93], re-introduced in [Jac10]. Right
plot: Payment network between Bitcoin wallet addresses controlled by major
Bitcoin exchanges, [GS18]. 1

1.2 Illustration of a network data set generated from a stochastic block model with
K = 4. The interaction between each two communities clearly have di�erent
frequencies. 3

2.1 Illustration of random edge sampling. Here we show an adjacency matrix of
size 15 × 15 split into 3 folds. Left plot shows the fold indices without being
made symmetric. Right plot shows the fold indices after being made symmetric. 11

2.2 Illustration of block-wise node-pair splitting. 12
2.3 Comparison between edge sampling ([LLZ16]), block-wise node-pair splitting

([CL17]) and LatinCV ([DJ16]). Plot from [Dab16]. 12
2.4 Illustration of latinCV edge sampling. Here we show an adjacency matrix of

size 15 × 15 split into 3 folds. Left plot shows the fold indices without being
made symmetric. Right plot shows the fold indices after being made symmetric. 13

2.5 Left: block-wise node-pair splitting [CL17]. Middle: LatinCV [DJ16]. Right:
random edge sampling [LLZ16]. 13

3.1 P-values when testing whether the candidate K is rejected by CVC. Data sets
are generated to be networks with 1200 nodes with trueK = 4, 6) and di�erent
density (r ∈ {0.025, 0.05, 0.1, 0.15, 0.2}). 31

3.2 Results for simulation. The plots show the proportions of 200 simulated datasets for
which K is correctly estimated. The datasets are generated from SBMs with K = 2,
3, 4, sparsity levels r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, and various levels of community
imbalance. n1 represents the size of the �rst community with other community sizes
being equal. Total number of nodes of 1000. 38

xi

3.3 The same results, but using Network Cross-Validation proposed in [CL17]. The datasets
are generated from SBMs with K = 2, 3, 4, sparsity levels r ∈ {0.01, 0.02, 0.05, 0.1, 0.2},
and various levels of community imbalance. n1 represents the size of the �rst commu-
nity with other community sizes being equal. Total number of nodes of 1000. The top
plot uses the likelihood function as the objective while the bottom plot uses squared
error loss as the objective function. 38

3.4 Left plot shows the variances explained by each principal component of the
political blogs adjacency matrix. Right plot shows the projections of all political
blogs onto �rst two principal components of their adjacency matrix. 67

3.5 P-values for di�erent candidate K values using 3-fold CVC assuming standard
stochastic block model. 68

3.6 P-values for di�erent candidate K values using 3-fold CVC assuming degree-
corrected stochastic block model. 69

3.7 P-values for di�erent candidate K values using 5-fold and 10-fold CVC assuming
degree-corrected stochastic block model. Here we are using the extra squared
error loss function. 70

3.8 P-values for di�erent candidate K values using 5-fold and 10-fold CVC assum-
ing degree-corrected stochastic block model. Here we are using the negative
likelihood loss function. 70

3.9 Left plot shows the variances explained by each principal component of the
political blogs adjacency matrix. Right plot shows the projections of all political
blogs onto �rst two principal components of their adjacency matrix. 72

xii

List of Tables

1.1 Notations used in later part of this thesis . 6

2.1 Example of a test set using LatinCV. Here we are splitting all node pair into 3
fold in a network of 6 nodes. 27

3.1 Percentage of under-�tting, correct and over-�tting model selection results for
NCV and CVC methods, under di�erent network density parameter and true
community numbers. Data sets in this table are generated using the standard
Stochastic Block Model. NCV tends to select under-�tting models when we
are dealing with more true communities, while CVC performs much better. In
low-density network data sets, CVC tends to select under-�tting models. 33

3.2 Percentage of under-�tting (light red on left of green), correct (green), and over-
�tting (blue on right of green) model selection results for NCV and CVC meth-
ods, under di�erent network density parameter and true community numbers.
Data sets in this table are generated using the standard Stochastic Block Model.
NCV tends to select under-�tting models when we are dealing with more true
communities, while CVC performs much better. In low-density network data
sets, CVC tends to select under-�tting models. 34

3.3 Percentage of under-�tting, correct and over-�tting model selection results for
NCV and CVC methods, under di�erent network density parameter and true
community numbers. Data sets in this table are generated using the standard
Stochastic Block Model. We can see CVC outperforms NCV in many scenarios,
especially when we have a high network density and high number of commu-
nities (bottom right corner of the table). In these cases NCV tends to select
over-�tting models, while CVC selects the correct model the majority of times.
Although we observe some cases where CVC is underperforming compared to
NCv, for example, in the top right corner of the table, when we have relatively
high number of communities with low network densities. Cross-validation with
con�dence tends to select under-�tting models in this case. 36

xiii

3.4 Percentage of under-�tting (light red on left of green), correct (green), and over-
�tting (blue on right of green) model selection results for NCV and CVC meth-
ods, under di�erent network density parameter and true community numbers.
Data sets are generated using the standard Stochastic Block Model. We can
see CVC outperforms NCV in many scenarios, especially when we have a high
network density and high number of communities (bottom right corner of the
table). In these cases NCV tends to select over-�tting models, while CVC se-
lects the correct model the majority of times. Although we observe in the top
right corner of the table, when we have relatively high number of communi-
ties with low network densities, NCV outperforms CVC. Cross-validation with
con�dence tends to select under-�tting models in this case. 37

3.5 Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.2, 1). 40

3.6 Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.5, 1). 40

3.7 Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.75, 1). 40

3.8 Under-�tting (light red on left of green), correct (green), and over-�tting (blue
on right of green) percentage for mis-speci�ed models when degree correction
parameters are sampled from Uniform(0.2, 1). 41

3.9 Under-�tting (light red on left of green), correct (green), and over-�tting (blue
on right of green) percentage for mis-speci�ed models when degree correction
parameters are sampled from Uniform(0.5, 1). 41

3.10 Under-�tting (light red on left of green), correct (green), and over-�tting (blue
on right of green) percentage for mis-speci�ed models when degree correction
parameters are sampled from Uniform(0.75, 1). 41

3.11 Proportion of each candidateK being selected using CVC method with squared
error loss using d = 2, under various network density levels. The column for
K̂ = 2 is highlighted since it is the correct number of communities assuming
standard stochastic block model (according to Equation 3.2). 43

3.12 Proportion of each candidateK being selected using CVC method with squared
error loss and weighting each column of the singular vector matrix U by the
square-root of the corresponding singular value di, under various network den-
sity levels. The column for K̂ = 2 is highlighted since it is the correct number of
communities assuming standard stochastic blockmodel (according to Equa-
tion 3.2). 43

3.13 Proportion of each candidateK being selected using CVC method with di�erent
loss functions, under various network density levels. The column for K̂ = 1
is highlighted since it is the correct number of communities assuming degree-
corrected stochastic block model (according to Equation 3.2). 44

3.14 Proportion of each candidateK being selected using NCV method with di�erent
loss functions, under various network density levels. The column for K̂ = 1
is highlighted since it is the correct number of communities assuming degree-
corrected stochastic block model (according to Equation 3.2). 44

xiv

3.15 Frequency for each model to be selected using Algorithm 9. The data sets
here are generated using prototype community interaction matrix as de�ned
in Equation 3.2. 45

3.16 Proportion of each candidateK being selected using CVC method with squared
error loss, under various network density levels. The column for K̂ = 3 is
highlighted since it is the correct number of communities assuming standard
stochastic block model (according to Equation 3.3). 45

3.17 Proportion of each candidateK being selected using CVC method with squared
error loss, under various network density levels. The column for K̂ = 3 is
highlighted since it is the correct number of communities assuming standard
stochastic block model (according to Equation 3.3). 46

3.18 Proportion of each candidateK being selected using CVC method with di�erent
loss functions, under various network density levels. The column for K̂ = 2
is highlighted since it is the correct number of communities assuming degree-
corrected stochastic block model (according to Equation 3.3). 46

3.19 Frequency for each model to be selected using Algorithm 9. The data sets
here are generated using prototype community interaction matrix as de�ned
in Equation 3.3. 46

3.20 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 2. Each community is equally
sized. The entire network has 300 nodes. 48

3.21 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1. Each community is equally
sized. The entire network has 300 nodes. 49

3.22 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

2
. Each community is equally

sized. The entire network has 300 nodes. 49
3.23 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

4
. Each community is equally

sized. The entire network has 300 nodes. 49
3.24 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 2. Each community is equally
sized. The entire network has 600 nodes. 50

3.25 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1. Each community is equally
sized. The entire network has 600 nodes. 50

xv

3.26 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

2
. Each community is equally

sized. The entire network has 600 nodes. 50
3.27 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

4
. Each community is equally

sized. The entire network has 600 nodes. 51
3.28 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 2. Each community is equally
sized. The entire network has 300 nodes. 51

3.29 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1. Each community is equally
sized. The entire network has 300 nodes. 52

3.30 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

2
. Each community is equally

sized. The entire network has 300 nodes. 52
3.31 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

4
. Each community is equally

sized. The entire network has 300 nodes. 52
3.32 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 2. Each community is equally
sized. The entire network has 600 nodes. 53

3.33 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1. Each community is equally
sized. The entire network has 600 nodes. 53

3.34 Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

2
. Each community is equally

sized. The entire network has 600 nodes. 53
3.35 Under-�tting, correct, and over-�tting percentage for CVC method using squared

error loss. Here each data set is generated using prototype community interac-
tion matrix as de�ned in Equation 3.4, where q = 1

4
. Each community is equally

sized. The entire network has 600 nodes. 54
3.36 Under-�tting, correct, and over-�tting model selection percentages for running

Algorithm 8 on network data sets generated on deterministic and non-diagonal-
dominant community interaction matrices. 54

xvi

3.37 Under-�tting (red), correct(green), and over-�tting(blue) model selection per-
centages for running Algorithm 8 on network data sets generated on determin-
istic and non-diagonal-dominant community interaction matrices. 54

3.38 Under-�tting, correct, and over-�tting model selection percentages for running
Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.4. . 55

3.39 Under-�tting, correct, and over-�tting model selection percentages for running
Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.6. . 56

3.40 Under-�tting, correct, and over-�tting model selection percentages for running
Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.8. . 56

3.41 Under-�tting (red), correct (green), and over-�tting (blue) model selection per-
centages for running Algorithm 7 on network data sets generated on random
and non-diagonal-dominant community interaction matrices with absolute av-
erage gap ε = 0.4. 56

3.42 Under-�tting (red), correct (green), and over-�tting (blue) model selection per-
centages for running Algorithm 7 on network data sets generated on random
and non-diagonal-dominant community interaction matrices with absolute av-
erage gap ε = 0.6. 56

3.43 Under-�tting (red), correct (green), and over-�tting (blue) model selection per-
centages for running Algorithm 7 on network data sets generated on random
and non-diagonal-dominant community interaction matrices with absolute av-
erage gap ε = 0.8. 57

3.44 Percentage of under-�tting, correct and over-�tting model selection results for
CVC methods with random edge sampling (’random CV’ in the table) and Lat-
inCV, under di�erent network density parameter and true community numbers. 59

3.45 Under-�tting (light red on left of green), correct (green), and over-�tting (blue
on right of green) percentage of model selection results for CVC methods with
random edge sampling (’random CV’ in the table) and LatinCV, under di�erent
network density parameter and true community numbers. 60

3.46 Percentage of under-�tting, correct and over-�tting model selection results for
CVC methods with parametric bootstrap, under di�erent network density pa-
rameter and true community numbers. Data sets in this table are generated
using the standard Stochastic Block Model. 62

3.47 Percentage of under-�tting(light red on the left of green), correct (green), over-
�tting (blue on right of green), and none (gray) model selection results for CVC
methods with parametric bootstrap. Data sets generated using the standard
Stochastic Block Model. 63

3.48 Example of a test set using LatinCV. Here we are splitting all node pair into 3
fold in a network of 6 nodes. 64

xvii

3.49 Average running time on a network with 600 nodes with 3 equally sized com-
munities and bootstrap sample size B = 200. For all the tasks we are using
32-core computer with 64G memory, each core with 2.6GHz speed. Note that
for the �rst �ve tasks, parallelism doesn’t really help with running time, so a
4-core computer each with 3.6GHz speed (numbers in parentheses) would ac-
tually be faster for the same tasks. Each average running time estimate comes
from average of 100 runs. Note that for the parametric bootstrap tasks, we heav-
ily optimized some slower R functions by re-writing them in C++ with the help
of Rcpp package and parallelism. So this is not really a fair comparison. In fact,
block-wise node pair splitting with Gaussian multiplier bootstrap is much faster
if we implement all of algorithms verbatim. 66

3.50 Confusion matrix between manual labels (columns) and estimated community
labels assuming a degree-corrected stochastic model with K = 2. 68

3.51 Frequency table for selected K values using 3-fold CVC on the political book
data set, with extra squared error loss function. 69

3.52 Confusion matrix between book labels (columns) and estimated communities
(rows) assuming DC-SBM with K = 2. 72

3.53 Most frequent model selection results selecting in both standard stochastic block
models and degree-corrected stochastic block models, using spectral weighting
of the singular vector matrix. We select the most parsimonious model within
the retained K’s in each category. We omitted the results that appear fewer
than 5 times out of 200 runs. 73

xviii

List of Algorithms

1 V-fold classical cross validation for prediction problem 8
2 V-fold train-test splitting via edge sampling . 10
3 V-fold train-test splitting via block-wise node-pair splitting 11
4 V-fold train-test splitting via LatinCV . 12
5 Model estimation for stochastic block models using rectangular spectral clus-

tering, using block-wise node-pair splitting . 14
6 Model estimation for stochastic block models using rectangular spectral clus-

tering, using LatinCV or random edge sampling, with matrix completion 15
7 V-fold cross validation with con�dence for prediction problem 19
8 V-fold block-wise node-pair splitting cross validation with con�dence 21
9 V-fold block-wise node-pair splitting cross validation with con�dence, selecting

among both SBMs and DC-SBMs . 23
10 V-fold block-wise node-pair splitting cross validation with con�dence, via para-

metric bootstrap . 25

11 Random prototype community interaction matrix generation 55

xix

xx

Chapter 1

Introduction

1.1 Prevalence of network data and overview of network
study

We live in an increasingly interconnected world. Many important phenomena occur in the
form of connections between various networks: people form social networks through their
interaction, businesses form a network of payment and supply through �ow of money and
goods, genes form a network through their co-expression activities.

These networks usually carry a great amount of information about the group they occur
in. Careful study of the network data would lead to useful insight into the topics: examination
of the payment network can expose trade relations as well as money laundering activities,
study of of social network can lead to identi�cation of important and in�uential social groups,
exploration of gene co-expression network can help us understand the mechanism of diseases
such as Autism.

Figure 1.1: Three examples of network data set. Left plot: a gene co-expression network,
[RCPHLR+16]. Middle plot: Marriage connection network among notable families in 15th
Century Florence, originally [PA93], re-introduced in [Jac10]. Right plot: Payment network
between Bitcoin wallet addresses controlled by major Bitcoin exchanges, [GS18].

After examining a lot of speci�c cases of networks, people start to realize that the abstract
connection patterns in these networks also have some interesting feature and are worth in-
depth exploration on their own. This leads to the study of networks. This �eld started from
descriptive summary of network and the nodes within them, such as degree distribution, degree

1

centrality. With the development of probability and statistics, models for depicting the random
generation of network data sets emerge, which assume the networks we observe are one-time
realizations of such data generating processes. With the spectacular growth of the Internet, we
are able to collect data and observe the evolution of networks such as Facebook and Tor with
precision never imagined before. The study of dynamic networks thus emerged to model how
networks evolve over time. General overviews of this �eld can be found in [Lin10], [New10].
[GZF+10] is a more concise survey. While [EK+10] and [Jac10] are among the interesting spe-
cial treatments of this topic.

As statisticians, we are interested in the network data not only because they are useful
in practice, but also because their modeling leads to some neat models as well as interesting
estimation and inference problems. Statistical models for modeling network data usually con-
siders the edges in the network to be random and try to depict the generating process of them
using features of the nodes, etc. Depending on whether we take one snapshot of the network
or at least several snapshots at di�erent time points, we will be using either static or dynamic
network modeling techniques. Most notable and well-studied models belong to the static net-
work modeling subset. For example, Erdos-Reyni model assumes that the entire network has
a uniform edge probability and edges form independently. Latent Space Model as introduced
in [HRH02] would assign a position for each node in a feature space, and the edge probability
between two nodes would be inversely proportional to their distance in the space. Our focus
will be on Stochastic Block Models, which stress the structural equivalence within the network.

1.2 Stochastic Block Model and Its Variants
Stochastic block models refer to a family of statistical models for network data. It takes into
account the structural equivalence within a network: each node is assigned a community label,
then the edge probability between any two nodes would depend only on the interaction pattern
between the communities they belong to. In a network of n di�erent nodes. A symmetric binary
adjacency matrix

(
Aij

)
n×n

is used to record whether an edge exists between two nodes: if an
edge exists between node i and node j, then Aij = 1, otherwise Aij = 0. Each node i has
a community label gi ∈ {1, 2, · · · , K}, assigning it to one of K communities. And the edge
between any two nodes depends on the community interaction matrix BK×K :

Aij ∼ Bernoulli(Bgigj)

Figure 1.2 is a simple illustration of a network data set generated from a stochastic block
models with four true communities. After sorting the nodes properly, we can actually obtain
a lot of information about the community interaction matrix B by looking at the interaction
frequency between di�erent communities in the �gure.

The earliest suggestions of stochastic block models can be found in [FW81] [HLL83]. It
refers to the model of networks where each node is assigned a discrete block label and the edge
probability between two nodes is determined solely by the blocks they belong to. More re�ned
version of the SBM includes the degree-corrected SBM (DCSBM) proposed in [KN11], where
the nodes within the same block are allowed more �exibility in terms of degree heterogeneity.

2

Figure 1.2: Illustration of a network data set generated from a stochastic block model with
K = 4. The interaction between each two communities clearly have di�erent frequencies.

Speci�cally, each node is assigned a degree correction parameter θi, i = 1, · · · , n. And the edge
between any two nodes would instead be determined by:

Aij ∼ Bernoulli(θiθjBgigj)

Here each node is assigned its own popularity score, and it can have its own degree distri-
bution despite its community membership. The regular Stochastic Block Model can be seen as
the special case where all θi’s are constant.

Also, in mixed membership stochastic block models([ABFX08]), each node is allowed to
be assigned to several di�erent blocks. SBM and its variants are widely used in modeling of
networks in social science and biology, see [BC09], [DPR08].

There is a rich literature for the estimation of block memberships and interaction probabil-
ities in SBMs. The methods come in several di�erent �avors. [New06], [ZLZ11] approaches it
by optimizing a discrete objective function based on the edges in the network. [Vuo89], [BC09],
and [ACBL13] use likelihood-related methods. [YSJ+14] further showed how to select be-
tween degree-corrected SBMs and the regular SBMs using likelihood-related methods. [DPR08],
[LBA12] solves the estimation problem using variational methods. [RCY11], [FST+13], [KMM+13],
and [Jin15] treats it as a spectral clustering problem. [DKMZ11] proposes a belief propagation
algorithm, borrowing perspectives from statistical physics. There are also many studies explor-
ing the theoretical properties of these methods. [BC09], [RCY11], [CDP12], [BCCZ13], [LR15],
[ABH16] are all examples of such work, studying the asymptotic properties of various meth-
ods mentioned above. However, most of the proposed methods, as well as studies into their
properties, would require the true number of communities in the network K as an input.

Determining the number of communities in SBM has attracted considerable interest in both
statistics and machine learning community. Many methodological studies would propose a cor-
responding approach to determine number of communities. Several approaches are recursive,
for example, [GN02], [NG03b], [NG03a] proposed the idea of recursively splitting up blocks till
some stopping criterion and largely rekindled the community’s interest in community recovery
using stochastic block models. [ZLZ11] and [BS16] also proposed methods of the same �avor.

3

[LL15] gives fast method for estimating K using the spectral properties of some graph opera-
tors. [Lei16] develops a goodness-of-�t test for stochastic block models based on the largest
singular value of the residual matrix. The test is shown to be powerful against models with
�ner structures and thus leads to a sequential testing for estimating number of communities
for SBMs. [WB17] motivates their method by deriving the log-likelihood ratio statistic’s limit-
ing distribution in case of under-�tting and convergence rate in case of over-�tting. [HW08],
[MMFH13] and [CL15] proposed to tackle the problem from Bayesian viewpoint.

[Hof08] proposes cross-validation for model selection in this context. Yet the train-test split
is based on node pairs, which leads to cumbersome computation and unnecessary complica-
tion since the test set node memberships would need to be determined again. [CL17], on the
other hand, examines properties of the network cross-validation method based on block-wise
node-pair splitting. The model is estimated using the rectangular �tting set containing the
interaction between training set nodes and all nodes. The community memberships are deter-
mined simultaneously in the estimation stage and information in the data set gets fully utilized.
[LLZ16] proposes edge sampling, which is to select node pairs at random, then use a low-rank
matrix completion to get the training set on this subset of node-pairs. And then evaluate the
loss function on the held-out node pairs.

Cross validation is widely used for model evaluation and selection in statistics and machine
learning. However, traditional cross validation doesn’t take into account the randomness in the
test set and thus usually selects over-�tting models over the most appropriate ones. [Sha93]
and [Zha93] pointed out that traditional cross validation cannot achieve consistency unless the
testing set dominates the training set in size, which neither leave-one-out CV nor k-fold cross
validation satis�es. In [Lei17], the author developed a new, statistically principled approach
to select optimal model by combining cross validation and Gaussian multiplier bootstrap ap-
proach. In the original paper, the method is developed and validated on relatively straightfor-
ward settings such as linear regression. In principle, CVC applies to a wide range of model
selection problems where there is a well-de�ned loss function yet the estimation of the loss
function is complicated by randomness in the validation set.

1.3 Summary of Our Contribution
In this work we will try to extend the CVC method to the problem of selecting number of com-
munities in Stochastic Block Models and Degree Corrected Stochastic Block Models. We will
de�ne the cross validation with con�dence in this setting and discuss the methodology choices
we make in the process. In network settings, the data splitting step is no-longer straightforward
and we are facing several options, each with its pros and cons. We are also faced with the choice
of two loss functions, as well as di�erent options for conducting the bootstrap step in order to
obtain the sampling distribution for the test statistic. We will then explore its e�ectiveness by
testing the method on simulated data as well as real data sets. We will compare our method
against existing methods in the literature on simulated and real-world data sets. We will also
examine the performance of di�erent versions of our method through simulation. We will then
examine the property of CVC for SBM from a theoretical standpoint. We will prove its validity
by showing that it is guaranteed with high probability to output a set of candidate models that

4

contains the true model under certain mild assumptions. And with a simple model selection
principle, we are guaranteed to arrive at the true model with guaranteed probability.

This thesis is organized as follows: chapter 2 will cover the background, setup of the prob-
lem, and then de�ne the CVC method in Stochastic Block Model setting, as well as the variants
and existing methods in the literature we will be looking into. we will discuss in depth the
choices we are faced with that would lead to di�erent versions of the algorithm. In chapter
3, we will �rst demonstrate the validity of CVC method using simulated data. Then we will
compare the performance of its di�erent versions among themselves as well as against other
methods under representative settings. We will also explore the limit of its e�ectiveness under
less desirable settings. We then apply these methods on real-world data sets. In chapter 4 we
discuss the theoretical properties of CVC for SBM. In particular, we show that the under-�tting
models (i.e. SBMs with fewer number of communities than optimal) are guaranteed to be re-
jected by the CVC procedure, and the over-�tting models won’t be able to eliminate the true
model in the hypothesis testing step. The two conclusions combined would imply the consis-
tency of CVC method for SBMs. And in chapter 5, we would have some discussion and about
the implication of our work and list some potential future directions.

5

1.4 Notation table
Here we list the notations we will be using later in this thesis for reference.

Notation Meaning
Aij Edge between node i and node j, Aij = 1 if there is an edge, 0 otherwise.
n, n(tr), n(te) Number of nodes in the entire network, training set, testing set, respectively.
gi The true community label of node i.
ĝ

(K,tr)
i Estimated community label of node i using model with K communities.

using the training set data only.
K∗ True number of communities in a network.
K Set of candidate K values.
B∗kl Real edge probability between community k and community l.
B̂

(K,tr)
kl Estimated edge probability between estimated community k and l using

the training set and model with K communities.
Ik,k′ {(i, j) : gi = k, gj = k′}. The node pairs where �rst node comes from

true community k and second node comes from true community k′.
Îk,k′ {(i, j) : ĝi = k, ĝj = k′}. The node pairs where �rst node has estimated

community label k and second node has estimated community label k′.
ρn Network density parameter. True edge probabilities are proportional to ρn.
Nv Nodes in the vth fold.
τk,k′,l,l′ Îk,k′ ∩ Il,l′ , the node pairs (i, j) where i ∈ Îk ∩ Il, j ∈ Îk′ ∩ Il′
P̂k,k′,l,l′ the average of Aij over τk,k′,l,l′
Ω(·) Asymptotic lower bound: g(n) = Ω(f(n)) means

∃M > 0, k > 0, s.t.∀n > M, g(n) > k · f(n)
OP (·) Stochastic boundedness notation: if xn = OP (an)

∀ε > 0,∃M > 0, N > 0, s.t.P (|xn
an
| > M) < ε, ∀n > N

Table 1.1: Notations used in later part of this thesis

6

Chapter 2

Background and Algorithm
Description

In this thesis, the method we want to propose and explore is the cross-validation with con�-
dence on network data for the purpose of selecting number of communities in stochastic block
models. Given a network data set in the form of symmetric binary adjacency matrix

(
A
)
n×n

(or equivalently, an adjacency list) and a list of candidate K values K, we want to output the
number of true communities K in this network in the sense that the model estimates given
using a K-community model would be most desirable.

This algorithm has a multi-step process. Some of these steps can actually be altered slightly
and it would end up as a variant of our method. To perform cross-validation, we �rst need to
split the data set into training and testing set, which is not a trivial decision in network setting.
Then we can estimate the community labels of all nodes on the training set, the method for
which would di�er based on the models we are using (for example, SBM vs DC-SBM) and spe-
ci�c preferences of statisticians. We would then evaluate a loss function for the estimated model
using the test set, which involves a choice between di�erent loss functions (we will explore two
of them). Then among di�erent candidateKs in K, we will compare their performance accord-
ing to their respective test set losses. Straightforward V-fold cross-validation would lead to a
simple comparison over the one train-test split without considering the randomness in train-
test splitting and the test set data points. While cross-validation with con�dence would take it
into account and use a formal hypothesis testing step and only choose one K value over an-
other if it is signi�cantly better. In order to obtain the sampling distribution of the test statistic
in the hypothesis testing step, we can either use Gaussian multiplier bootstrap, as proposed in
[Lei17], or use a parametric bootstrap scheme by generating multiple network data sets under
the null hypothesis. In the following section, we will discuss in depth the decisions we make
each step and the variations we will get when we use slightly di�erent methods in some of
these steps.

We are aware of the many routes we can take in constructing the CVC method under net-
work settings. We will try to examine as many of these variants as possible in Chapter 3, where
we explore their performance using simulation and data application, and mostly focus on one
case in Chapter 4, where we try to establish theoretical guarantees for the method.

7

2.1 Background andLimitation ofClassical Cross-validation
The most general statistical problem usually comes in the following form, given a set of data
points generated from an unknown distribution

Z1, Z2, · · · , Zn ∼ P

we would want to �nd a model P̂ based on the information in the data point Zi’s such that
it resembles true data generating process P. We usually characterize how well the model �ts
the data set using some loss function:

L(P̂ ,P)

The loss function is often a positive valued function. It is smaller when the model �ts the
data set well. However, since P is unknown, we can only come up with an estimate using the
data points Z = (Z1, · · · , Zn) generated from P.

L̂(P̂ ,Z)

When we have a set of several candidate models {P̂m1 , · · · , P̂mk
}, then we are faced with the

model selection problem, where we need to select the model most appropriate for the data set.
The straightforward and somewhat naive way of solving this problem is simplistically choosing
the model that would give the smallest estimated loss function value. i.e. pick the model

arg min
mi

L̂(P̂mi
,Z)

The problem with this approach is over-�tting. When we have a set of �exible models,
straightforward loss function minimization would lead to the model that �ts not only the signal
but also the noise in the data set. The model would have great performance in sample, yet
generalizes very poorly outside of the given data set.

Cross-validation is an ingenious approach to the model selection problem while addressing
the over-�tting problem. The classical cross-validation widely used in various �elds in statistics,
largely due to it being very generic and adaptable to many circumstances. It is based on the
notion that the model shouldn’t have ’seen’ the data points it will be later evaluated on during
the training phase, so that it wouldn’t be over-�tting to the data set.

Below we list describe the classical cross-validation algorithm for a prediction problem. In
other words, we have many data points (xi, yi) and we want to �nd a model f̂ such that for a
new value x, we can predict y with good enough accuracy. In other words, we want to minimize
the loss function L(f̂(x), y) for new (x, y) pairs.
Algorithm 1 V-fold classical cross validation for prediction problem
Data: Data points D = {(xi, yi), i = 1, 2, · · · , n}. A loss function we want to minimize for

predictions L(f̂(x), y). A set of candidate models to select from {m1,m2, · · · ,mk}.
Result: The model that will likely yield the lowest out-of-sample prediction loss.

1. Randomly split the data set into V equal-sized subsets {D̂v : 1 ≤ v ≤ V }.
2. For each 1 ≤ v ≤ V , and each m ∈ {m1,m2, · · · ,mk}:

8

(a) Estimate model f̂ (D−v)
m (·) for model m using all the data points except in the vth

fold: D(−v) = {(xi, yi), i 6∈ Dv}.
(b) Evaluate the loss function of f̂ (D−v)

m using the data points in D(v):∑
(xi,yi)∈Dv

L(yi, f̂
(D−v)
m (xi))

3. For each m ∈ {m1,m2, · · · ,mk}, calculate the aggregate cross-validation loss:

L(mi) =
∑

v∈{1,··· ,V }

∑
(xi,yi)∈Dv

L(yi, f̂
(D−v)
m (xi))

4. Return the model with the lowest aggregate cross-validation loss.

Here we are using simple prediction problem just for illustration. In fact, classical cross-
validation can be adapted for a lot of scenarios as long as we have an explicit loss function, and
the model can be trained with a subset of the available data set.

There are, however, limitations of this method. Results in [Sha93] and [Zha93] show that
classical cross-validation cannot achieve model selection consistency in its typical use case. In
essence, we are evaluating the performance of models based on their aggregate error measure
on one instance of train-test splitting, in which case the worse model could look superior just
due to luck. Especially when we are dealing with a series of nested models, classical cross-
validation would still lead us to an over-�tting model.

These limitations of classical cross-validation leads to the proposal of cross-validation with
con�dence in [Lei17], which we will discuss in more detail in 2.4.

9

2.2 Train-test splitting in Network Settings
Under simpler settings such as the prediction problems shown above, the train-test splitting is
almost a trivial process: given a train-test ratio, we randomly select a certain portion of all data
points to be in the training set and the rest becomes the test set, when we need to do V-fold
cross-validation, then we randomly split all data points into V equally sized portions and each
portion would rotate as the test set each time.

However, under network settings, the train-test splitting is also no longer straightforward.
The data set is (V,E), the combination vertices and edges in the network. It is also acceptable to
think of the data set as (V,A), the combination of all vertices and the adjacency matrix, which
records the existence of edges between any two node pairs.

A somewhat naive way of doing train-test splitting in this case would be to directly split all
node-pairs into a train set and a test set base on a given train-test ratio randomly, as proposed
in [Hof08]. For the purpose of model selection, we would still estimate di�erent models on the
train set and then compare their prediction performance on the test set. The problem is that
it is possible that node-pairs would not be equally represented within di�erent folds, and it is
possible that we cannot give prediction for certain nodes pairs at all if one or both of the nodes
don’t show up in the training set. Also, this method would lead to cumbersome computation
problems. [LLZ16] also proposed using this method, but added a matrix completion step after
selecting the random subset of edges. In this way, the (completed) adjacency matrix provided to
the estimation algorithm will not be porous, making it easier for the later steps. This approach
can be described as Algorithm 2. Note here we have an optional step 4 for symmetricizing
the fold index matrix. Note that in our model estimation step, we will �rst conduct eigen-
decomposition of the training set. Making sure the input matrix is symmetric will guarantee
that the eigen-vectors all have real entries.
Algorithm 2 V-fold train-test splitting via edge sampling

Data: Number of nodes n. Fold number V .
Result: A n× n matrix I indicating the fold number of each entry in the n× n adjacency

matrix. Iij ∈ {1, · · · , V }.
1. Randomly shu�e the vector (1, 2, · · · , n2). Let ~a denote the resulting vector.
2. Calculate ~a′ using ~a using the following equation:

~a′i =
(
~ai mod V

)
+ 1 , i = 1, 2, · · · , n2

3. Align ~a′ into a n× n matrix:

I =


a1 a2 · · · an
an+1 an+2 · · · a2n

...
an(n−1)+1 an(n−1)+2 · · · an2


4. (Optional) Set the lower-triangle of I to the transpose of the upper-triangle of I. This

step would make the resulting index matrix symmetric, but might make the fold index
distribution deviate a little from a even split between di�erent folds.

10

5. Return I as the �nal result.

Figure 2.1: Illustration of random edge sampling. Here we show an adjacency matrix of size
15×15 split into 3 folds. Left plot shows the fold indices without being made symmetric. Right
plot shows the fold indices after being made symmetric.

We can also view nodes in the network as subjects in train-test splitting. For example, in
[CL17], the authors proposed block-wise node-pair splitting. In this case all nodes are split into
V folds. Only the interactions between test set nodes (i.e. if both nodes in the node pair belongs
to the vth fold) are considered the test set, while all other node pairs (we will henceforth refer
to as the rectangular set, as the red region shown in Figure 2.2) are considered the test set. We
summarize the block-wise node-pair splitting in Algorithm 3.
Algorithm 3 V-fold train-test splitting via block-wise node-pair splitting

Data: Number of nodes n. Fold number V .
Result: A n× n matrix I indicating the fold number of each entry in the n× n adjacency

matrix. Iij ∈ {1, · · · , V }. Entries in each row will always have the same value.
1. Randomly shu�e the vector (1, 2, · · · , n). Let ~a denote the resulting vector.
2. Align ~a into a n× n matrix by assigning all columns of I to be ~a:

I =
(
~a,~a, · · · ,~a

)
3. Return I as the �nal result.
[Dab16] proposed Latin-CV, a well-calibrated method to get around this problem. Still view-

ing node-pairs as the subjects to be split, the authors made sure to guarantee that in the node-
pair splitting, all nodes-pairs will be equally represented in each fold, and all node pairs will
have a chance to be in the test set. The comparison is illustrated in Figure 2.3. In the latinCV
splitting, the training set is no longer rectangular and the test set is no longer square. Yet all
node-pairs have equal representation in the training and testing set, unlike using block-wise
node-pair splitting. We describe LatinCV in Algorithm 4.

11

Figure 2.2: Illustration of block-wise node-pair splitting.

Figure 2.3: Comparison between edge sampling ([LLZ16]), block-wise node-pair splitting
([CL17]) and LatinCV ([DJ16]). Plot from [Dab16].

Algorithm 4 V-fold train-test splitting via LatinCV
Data: Number of nodes n. Fold number V .

Result: A n× n matrix I indicating the fold number of each entry in the n× n adjacency
matrix. Iij ∈ {1, · · · , V }. Fold index {1, · · · , V } will be (at least approximately)

evenly distributed in each row and column.
1. Randomly shu�e the vector (1, 2, · · · , n) twice. Let ~a,~b denote the resulting vectors.
2. Assign the entries in I using the following equation:

Iij =
(

(~ai +~bj) mod V
)

+ 1

3. (Optional) Set the lower-triangle of I to the transpose of the upper-triangle of I. This
step would make the resulting index matrix symmetric, but might make the fold index
distribution deviate a little from a even split between di�erent folds.

12

4. Return I as the �nal result.

Figure 2.4: Illustration of latinCV edge sampling. Here we show an adjacency matrix of size
15×15 split into 3 folds. Left plot shows the fold indices without being made symmetric. Right
plot shows the fold indices after being made symmetric.

Other proposed methods include [LLZ16]. The authors proposed to sample node-pairs at
random, and then conduct a low-rank matrix completion over the selected sample and use the
completed matrix as the training set. After training the model, it is evaluated on the held-out
node pairs. This can be seen as an improvement upon the more straightforward approach in
[Hof08].

In Figure 2.5, we demonstrate the train-test splitting for one fold under the three splitting
schemes we discuss here. Again, we use the adjacency matrix for a network with 15 nodes and
split the data set into three folds.

Figure 2.5: Left: block-wise node-pair splitting [CL17]. Middle: LatinCV [DJ16]. Right: random
edge sampling [LLZ16].

13

2.3 Estimation of Stochastic Block Models
Throughout this work, we will need to conduct estimation for stochastic block models as well
as degree-corrected stochastic block models given the (partial) adjacency matrix A of the given
network. Spectral clustering [VL07] is one of the mostly widely used method in community
detection. It usually starts with eigen-value decomposition of the adjacency matrix A or the
graph Laplacian. Then the community labels will be assigned by running a clustering algorithm
such as K-means on rows of the matrix formed by a handful of leading eigen-vectors.

However, spectral clustering cannot be directly applied to our case, especially when we use
Algorithm 3 for the train-test splitting, since it would leave us with a rectangular matrix for
model estimation. Therefore we use the following rectangular spectral clustering method to
estimate the community labels for stochastic block models.

The following is an algorithm for estimating stochastic block models given a rectangular
(including square) training adjacency matrix. When we are using block-wise node-pair split-
ting, this is straightforward since the training set is rectangular, as is shown in Figure 2.5. When
we are using LatinCV or random edge sampling, neither the training set not the testing set is
in a well-aligned shape. When using a speci�c train-test split, we extract the edge values of all
node-pairs in the test set, and then ’block out’ these node-pairs by setting the corresponding
edge values to 0 in the original adjacency matrix. We can then optionally conduct a matrix
completion step to this blocked-out version of adjacency matrix. Afterwards, we can feed the
square adjacency matrix to the following algorithm.
Algorithm 5 Model estimation for stochastic block models using rectangular spectral
clustering, using block-wise node-pair splitting
Data: A rectangular network adjacency matrix A, number of communities K , number of

spectral components d (default choice is d = K).
Result: Community labels ĝ ∈ {1, · · · , K}. Community interaction matrix B̂K×K .

1. Conduct singular value decomposition on A:
A = UΣVT

2. Let Ũ be the n× d matrix consisting of the �rst d columns of the singular vectors matrix
U.

3. Run K-means algorithm on row vectors of Ũ (use multiple starts for stability of result).
Set the clustering results to be ĝ.

4. Estimate the community interaction matrix B̂ using the plug-in estimator, i.e. by taking
the average interaction frequency over the corresponding set in the rectangular training
set:

B̂
(K,tr)
k,k =

1(
n
(K,tr)
k

2

)
+ n

(K,tr)
k · n(K,te)

k

∑
(i,j)∈Î(K,tr)

k ×Îk
i<j

Aij

B̂
(K,tr)
k,k′ =

1

n
(K,tr)
k n

(K,tr)
k′ + n

(K,tr)
k · n(K,te)

k′ + n
(K,tr)
k′ · n(K,te)

k

∑
(i,j)∈

(
Î
(K,tr)
k ×Î(K,tr)

k′

)
∪
(
Î
(K,te)
k ×Î(K,te)

k′

)
∪
(
Î
(K,te)

k′ ×Î(K,te)
k

)
Aij

14

(If we are using LatinCV or random edge sampling, we need to adjust for the down-
sampling and use V

V−1
B̂ as the estimate for community interaction matrix, after making

sure all values are within [0, 1].)
5. (Optional) Estimate the community interaction matrix B̂(test) using the community la-

bels and the test set only.

B̂
(test)
k,k =

1(
n
(K,te)
k

2

) ∑
(i,j)∈Î(K,te)

k ×Î(K,te)
k

i<j

Aij

B̂
(test)
k,k′ =

1

n
(K,te)
k n

(K,te)
k′

∑
(i,j)∈Î(K,te)

k ×Î(K,te)

k′

Aij

Note that step 5 in the above algorithm is optional. We will only need it when we obtain the
sampling distribution of the test statistic via parametric bootstrap. In that case, we will need
to generate new network data sets using the existing data set as the null. We will discuss the
reasoning of this in more detail later in section 2.6.

When we are estimating the model after getting the training set obtained via either random
edge sampling or LatinCV, the training set will be a square adjacency matrix with holes. Certain
entries will be assigned to the test set and therefore held out, their values set to 0. We can view
this as a training set with missing edge values. One way to handle the situation is to �rst have
a matrix completion step to reconstruct the training network (as proposed in [LLZ16]). We
would then obtain the community labels of all nodes in the network by running rectangular
spectral clustering on the completed training set. The completed training set, however, will lead
to very biased estimates of the community interaction matrix B. Therefore, when we estimate
the community interaction matrix, we will use the edge values in the original training set A
and adjust for the down-sampling from holding out roughly 1

V
of its existing edges. The version

of model estimation algorithm with matrix completion is described in Algorithm 6. In Chapter
3, we will specify whether the algorithm we are using includes the matrix completion step by
stating whether the algorithm is with or without matrix completion.
Algorithm 6 Model estimation for stochastic block models using rectangular spectral
clustering, using LatinCV or random edge sampling, with matrix completion

Data: A network adjacency matrix A with certain cells being ’blocked out’ (i.e. set to 0),
number of communities K , number of spectral components d (default choice is d = K).
Result: Community labels ĝ ∈ {1, · · · , K}. Community interaction matrix B̂K×K .

1. Conduct low-rank matrix completion on matrix A and obtain Â. Retain only the singular
vectors up to the second largest singular value gap for A. Save both Â and A.

2. Conduct singular value decomposition on Â:

Â = UΣVT

3. Let Ũ be the n× d matrix consisting of the �rst d columns of the singular vectors matrix
U.

15

4. Run K-means algorithm on row vectors of Ũ (use multiple starts for stability of result).
Set the clustering results to be ĝ.

5. Estimate the community interaction matrix B̂ using the plug-in estimator, i.e. by taking
the average interaction frequency over the corresponding set in the original adjacency
matrix A and adjust for the down-sampling:

B̂
(K,tr)
k,k =

V

V − 1
· 1(

n
(K,tr)
k

2

)
+ n

(K,tr)
k · n(K,te)

k

∑
(i,j)∈Î(K,tr)

k ×Îk
i<j

Aij

B̂
(K,tr)
k,k′ =

V

V − 1
· 1

n
(K,tr)
k n

(K,tr)
k′ + n

(K,tr)
k · n(K,te)

k′ + n
(K,tr)
k′ · n(K,te)

k

∑
(i,j)∈

(
Î
(K,tr)
k ×Î(K,tr)

k′

)
∪
(
Î
(K,te)
k ×Î(K,te)

k′

)
∪
(
Î
(K,te)

k′ ×Î(K,te)
k

)
Aij

6. (Optional) Estimate the community interaction matrix B̂(test) using the community la-
bels and the test set only.

B̂
(test)
k,k =

1(
n
(K,te)
k

2

) ∑
(i,j)∈Î(K,te)

k ×Î(K,te)
k

i<j

Aij

B̂
(test)
k,k′ =

1

n
(K,te)
k n

(K,te)
k′

∑
(i,j)∈Î(K,te)

k ×Î(K,te)

k′

Aij

We also need to note that when we are using splitting methods other than the block-wise
node-pair splitting, the estimation of community interaction matrix B̂(K,tr)

k,k′ becomes a little
tricky. When we are using random edge sampling, for example, the training set will still be a
square matrix, though the entries assigned to the training set will be blocked out, i.e. set to 0.
In this case we will optionally do a low-rank matrix completion, using the eigen-values up to
the second largest eigen gap, and achieve community detection by running spectral clustering
on this matrix. Then after we obtain the community labels, we will need to account for the
fact that our interaction probabilities will be underestimated and add a correction term to the
estimates. In other words, when we are using LatinCV or random edge sampling, we will use
the following community interaction matrix estimator:

B̂
(test)
k,k =

V

V − 1
· 1(

n
(K,te)
k

2

) ∑
(i,j)∈Î(K,te)

k ×Î(K,te)
k

i<j

Aij

B̂
(test)
k,k′ =

V

V − 1
· 1

n
(K,te)
k n

(K,te)
k′

∑
(i,j)∈Î(K,te)

k ×Î(K,te)

k′

Aij

16

Also, when we are working instead with degree-corrected stochastic block models, only
need to use the Ũ obtained by scaling each row of U to unit norm, and we will get the spherical
spectral clustering algorithm. Both algorithms are as mentioned in [CL17].

In the input of this algorithm we see a tuning parameter d. When conducting the rectan-
gular spectral clustering, we take only the �rst d columns of the singular vectors in matrix U .
Selection of value d basically requires us to know the number of meaningful rank in the adja-
cency matrix A, which is very close to selection of K . Barring situations where we have extra
knowledge about the rank of the adjacency matrix, we likely cannot know this for sure. Two
options we have are as follows.

1. Using d = K as the default choice. Since we assume the community has K di�erent
communities, the community interaction matrix B will be a K × K matrix. Therefore
the adjacency matrix should be rank-K , beyond which the variation should be random
noise.

2. Weighting each column of the singular vector matrix using the square root of singular
values. In other words, use

Ū = U ·Σ
1
2

instead of U in step 3. Since the singular values indicate the amount of variation explained
by the corresponding rank, the dimensions with relatively low information content will
be given lower weight and thus in�uence the clustering output to a much lesser degree.

17

2.4 Cross-validation with Con�dence
The shortcomings of classical cross-validation include the fact that it doesn’t take into account
the randomness in test sets while evaluating models. Since the evaluation of models is usually
done over one fold assignment (as in Algorithm 1), it is possible that the an inferior model
can appear better just due to luck. Also, an over-�tting model might also be selected by the
procedure since it can have similar performance compared to the true model, and in one random
fold assignment, its cross-validation loss could be slightly smaller.

Cross-validation with con�dence takes this into account and constructs a hypothesis testing
framework. Given a set of candidate models, each model is compared against every other model.
For each candidate model, if the hypothesis that none of the other models is signi�cantly better
than the current model gets rejected, then it is abandoned, otherwise it is kept in the output
con�dence set. Eventually, we have a set of models that are not outperformed by any other
model signi�cantly. Since the randomness in test set is now addressed, the output set of models
would contain the true model with a guaranteed probability. Also, since any under-�tting model
will be rejected by the hypothesis test when compared with the optimal model, while any over-
�tting model wouldn’t look signi�cantly superior compared to the optimal model, the output
set will likely contain the optimal model and some over-�tting models. We need only to pick
the most parsimonious model out of the output set when we want to select one model using
CVC.

Similar to the style of [Lei17], we have the following notations. Given a series of candidate
model estimates {f̂m : m ∈ M} obtained from training data Dtr. We evaluate a �tted model
f̂ by Q(f̂) = E(L(f̂(X), Y)|f̂), where L(f̂(X), Y) denotes a typical loss function. For each
m ∈M , we want to conduct the following hypothesis test:

H0,m : Q(f̂m) ≤ Q(f̂m′),∀m′ 6= m

vs

H1,m : Q(f̂m) > Q(f̂m′), for some m′ 6= m

HypothesisH0,m means that the �tted model f̂m has the best predictive risk among all �tted
models, and H1,m means that there exists another �tted model whose predictive risk is strictly
less than f̂m. Given a chosen α ∈ (0, 1), if we have p-value P̂cv,m for each m ∈ M , then the
con�dence set

Acv = {f̂m : m ∈M, P̂cv,m > α}

Fix an m ∈M , and de�ne random vector ξm = (ξK,K′ : j 6= m) as

ξK,K′ = L(f̂m(X), Y)− L(f̂j(X), Y)

Let µK,K′ = E(ξK,K′|f̂m, f̂j), then the hypothesis testing problem can be simpli�ed as

H0,m : max
j 6=m

µK,K′ ≤ 0, vs H1,m : max
j 6=m

µK,K′ > 0

18

We evaluate a �tted model f̂ by Q(f̂) = E(L(f̂(X), Y)|f̂). The V-fold version of the hy-
pothesis testing problem becomes:

H0,m :
1

V

V∑
v=1

Q(f̂ (v)
m) ≤ 1

V

V∑
v=1

Q(f̂
(v)
m′),∀m

′ 6= m

H1,m :
1

V

V∑
v=1

Q(f̂ (v)
m) >

1

V

V∑
v=1

Q(f̂
(v)
m′), for some m′ 6= m

The challenge in this hypothesis testing framework mostly lies in the fact that there might
be a large number of correlated candidate models, making the minimum testing problem high-
dimensional and correlated. Also, ξK,K′ ’s and ξK,K′′ ’s might be on a di�erent scale. Fortunately,
Gaussian multiplier bootstrap proposed in [CCK+13] provides us with the appropriate tool to
handle these challenges and makes it possible to de�ne a consistent test statistic. The following
algorithm from [Lei17] describes the procedure in more details:
Algorithm 7 V-fold cross validation with con�dence for prediction problem

Data: Data points D = {(xi, yi), i = 1, 2, · · · , n}, let N = {1, · · · , n} be the index set
corresponding to each data point. A loss function we want to minimize for predictions

L(y, ŷ). A set of candidate models to select from {m1,m2, · · · ,mk}. A p-value
threshold αn.

Result: A con�dence set Acv that will include the true model with guaranteed probability.
1. Randomly split the dataset into V equal-sized subsets {D̂v : 1 ≤ v ≤ V }, each fold would

correspond to a subset of the index set Nv using one of Algorithm 2, 3, and 4. Optionally,
conduct low-rank matrix completion before estimating the stochastic block model.

2. For each m ∈ {m1,m2, · · · ,mk}
2.1. For all j ∈ {m1,m2, · · · ,mk} \ {m}, for v ∈ {1, · · · , V },

ξ
(i)
K,K′ = L(f̂ (v)

m (xi), yi)− L(f̂
(v)
j (xi), yi), i = 1, 2, · · · , n

2.2. µ̂(v)
K,K′ = V

n

∑
i∈Nv

ξ(i)K,K′ , for all j 6= m, 1 ≤ i ≤ n. These µ̂(v)
K,K′ ’s are the estimated

group mean e�ect.
2.3. ξ̃(i)

K,K′ = ξ
(i)
K,K′ − µ̂

(v)
K,K′ , for all j 6= m, 1 ≤ i ≤ n. These ξ̃(i)

K,K′ ’s are the group-=wise
centered di�erence of cross-validated predictive loss.

2.4. Let µ̂K,K′ and σ̂K,K′ be the overall mean e�ect and the sample standard deviation of
{ξ̃(i)

K,K′ : 1 ≤ i ≤ n}.
2.5. Let T = max

j 6=m

√
n
µ̂K,K′

σ̂K,K′
.

2.6. For b = 1, · · · , B:
i. Generate i.i.d standard normal random variables ζi, 1 ≤ i ≤ n.

ii. Let

T ∗b = max
j 6=m

1√
n

V∑
v=1

∑
i∈Nv

ξK,K′(i) − µ̂
(v)
K,K′

σ̂K,K′
ζi

19

2.7. p̂cv,m = 1
B

B∑
b=1

I(T ∗b > T). If p̂cv,m < αn, then at least one other model j 6= m is

signi�cantly better than m in the sense that ξK,K′ has a positive expectation. Then
m is eliminated from the candidate set.

3. Return the con�dence set of all models that were not eliminated: Acv = {m : m ∈
{m1, · · · ,mk}, P̂cv,m > αn}.

[Lei17] showed that under certain assumptions, when we select αn ∈ (1
n
, 1), the true model

will be included in the con�dence set with probability at least 1−αn+o(1) and the probability
that an under-�tting model will be included is o(1). Therefore, we can pick the most parsi-
monious model in the con�dence set and it will very likely be the true model we are looking
for.

20

2.5 V-fold Cross-validation with Con�dence in the Con-
text of Stochastic Block Models

In this thesis we want to extend cross-validation with con�dence to selecting number of com-
munities in stochastic block models. The adaptation is mostly straightforward, though it be-
comes tricky and requires some decision on our part. For example, we need to make a choice
between the train-test splitting methods under network context as discussed in section 2.2.
Also, as we will later see in the theory section, we may want to change the normalization of
the loss di�erence slightly for convenience of our later theoretical study into the properties of
the method.

Given a model and a series of candidate models that we want to compare it to, we want to
evaluate the di�erence loss function for each node of the network between any two models.
When we are dealing with a node in fold v ∈ {1, 2, · · · , V }, we use the information of nodes in
the other V − 1 folds (including their interaction with the ith fold) for estimating community
labels and interaction probabilities. With the estimated model, we can then make prediction for
nodes in the ith fold and evaluate the loss function on nodes in the fold for the corresponding
model.

In the context of networks, here we de�ne the calculation of p-value P̂ss,m by block-wise
node-pair splitting. For a network represented by an n×n symmetric binary adjacency matrix
A, we randomly split the nodes into V equal-sized subsets {Nv : 1 ≤ v ≤ V }, and split the
adjacency matrix correspondingly into V × V equal sized blocks:

A = {A(uv) : 1 ≤ u, v ≤ V }

A(uv) = {(i, j), i ∈ Nu, j ∈ Nv}
A(uv) is the sub-matrix of A with rows in Nu and columns in Nv.

We describe the cross-validation with con�dence method in selecting number of commu-
nities in stochastic block models using block-wise node-pair splitting and Gaussian multiplier
bootstrap in the following algorithm:
Algorithm 8 V-fold block-wise node-pair splitting cross validation with con�dence

Data: n× n symmetric binary adjacency matrix A, candidate set of possible values of
community number {K : K ∈ K}, loss function l, cross validation fold number V ,

P-value threshold αn ∈ (0, 1), bootstrap sample size B,.
Result: Con�dence set Acv

1. Randomly split the nodes into V equal-sized subsets {Nv : 1 ≤ v ≤ V }, and split the
adjacency matrix correspondingly into V × V equal sized blocks:

A = (Â(uv) : 1 ≤ u, v ≤ V)

2. For each K ∈ K, and each 1 ≤ v ≤ V :
(a) Using Algorithm 5, estimate model parameters (ĝ(K,−v), B̂(K,−v)) using community

number K using the rectangular sub matrix obtained by removing the rows of A in
subset Nv:

Ã(−v) = {Aij : i 6∈ Nv)

21

With the same approach, we can estimate the model parameters corresponding to
other values in K, for comparison purposes in later steps.

(b) For all K ′ ∈ K\{K}, and i, j ∈ N̄v

ξ
(i,j)
K,K′ = L(Aij, B̂

(K,−v)
ij)− L(Ai,jij, B̂

(K′,−v)
ij)

where B̂(K,−v)
ij) is the edge probability estimate for node pair (i, j) in the test set

Nv × Nv using number of communities K and Ã(−v) as the training set.
(c) Let µ̂(v)

K,K′ and M̂ (v)
K,K′ be the sample mean and uncentered second moment of {ξ(ij)

K,K′ :

i, j ∈ N̄v}.
(d) Let

T = max
j 6=m

√
n2

V 2
· µ̂K,K

′

M̂K,K′
(2.1)

(e) For b = 1, · · · , B, generate iid standard Normal variables ζij, i, j ∈ N̄v, let

T ∗b = max
K′ 6=K

√
n2

V 2

∑
v∈{1,··· ,V }

∑
i,j∈N̄v

ξ
(i,j)
K,K′ − µ̂K,K′
M̂K,K′

ζij

(f) P̂cv,m = 1
B

B∑
b=1

1(T ∗b > T).

3. Return Acv = {m : m ∈M, P̂cv,m > αn}

As mentioned in Chapter 1, there are some variants of the standard stochastic block models
which are more �exible and appropriate for networks with more heterogeneity among its indi-
vidual nodes. For example, degree-corrected stochastic block models allow nodes in the same
community to have di�erent degree-correction parameters, such that each node’s connection
pattern would not only depend on its community a�liation but also its own level of activity in
the network. Mixed-membership stochastic block models allow each node to have membership
in several communities with certain weights. These models add more �exibility to the networks
they can depict and �t real-world data sets better than the standard stochastic block model.

When we observe Algorithm 8 closely, it is easy to realize that it isn’t necessarily limited
to the standard stochastic block models. In fact, the only step that is speci�c to the stochastic
block model is the estimation step in step 2(a). For regular stochastic block models, we usually
estimate the community labels using spectral clustering of the rectangular adjacency matrix,
then obtain the edge probability by calculating the empirical edge frequency between commu-
nities. Therefore, Algorithm 8 can be very easily extended to degree-corrected stochastic block
models (DC-SBM). We just need to notice that in estimating degree-corrected stochastic block
models people usually use spherical projection before conducting spectral clustering for degree
corrected models to accommodate e�ect of the individual degree correction parameters.

Also, we can include both standard stochastic block models and degree-corrected stochastic
block models as candidate models, and select the con�dence set as models not rejected in the
hypothesis testing step. One caveat we have for this method is that since there will possibly
be candidate K’s left from both categories, there might not be a clear-cut most parsimonious

22

model in the con�dence set. There are possible cases to make a comparison between them (for
example, since degree-corrected stochastic block models are more �exible, a standard stochastic
block model with the same number of communities should be seen as more parsimonious than
its degree-corrected counterpart). We describe this algorithm that allows us to select among
both standard stochastic block models and degree-corrected stochastic block models in Algo-
rithm 9.
Algorithm 9 V-fold block-wise node-pair splitting cross validation with con�dence, selecting
among both SBMs and DC-SBMs

Data: n× n symmetric binary adjacency matrix A, candidate set of possible values of
community number {K : K ∈ K}, loss function l, cross validation fold number V ,

P-value threshold αn ∈ (0, 1), bootstrap sample size B,.
Result: Con�dence set Acv

1. Randomly split the nodes into V equal-sized subsets {Nv : 1 ≤ v ≤ V }, and split the
adjacency matrix correspondingly into V × V equal sized blocks:

A = (Â(uv) : 1 ≤ u, v ≤ V)

2. For each K ∈ K, model type in {SBM,DC-SBM},and each 1 ≤ v ≤ V :
(a) Using Algorithm 5 or its extension to degree-corrected stochastic block models, es-

timate model parameters (ĝ(K,−v), B̂(K,−v)) using community number K using the
rectangular sub matrix obtained by removing the rows of A in subset Nv:

Ã(−v) = {Aij : i 6∈ Nv)

With the same approach, we can estimate the model parameters corresponding to
other values in K, for comparison purposes in later steps.

(b) For all K ′ ∈ K\{K} with the same model type, and all K ′ ∈ K with the other
model type, and i, j ∈ N̄v

ξ
(i,j)
K,K′ = L(Aij, B̂

(K,−v)
ij)− L(Ai,jij, B̂

(K′,−v)
ij)

where B̂(K,−v)
ij) is the edge probability estimate for node pair (i, j) in the test set

Nv × Nv using number of communities K and Ã(−v) as the training set.
(c) Let µ̂(v)

K,K′ and M̂ (v)
K,K′ be the sample mean and uncentered second moment of {ξ(ij)

K,K′ :

i, j ∈ N̄v}.
(d) Let

T = max
j 6=m

√
n2

V 2
· µ̂K,K

′

M̂K,K′
(2.2)

(e) For b = 1, · · · , B, generate iid standard Normal variables ζij, i, j ∈ N̄v, let

T ∗b = max
K′ 6=K

√
n2

V 2

∑
v∈{1,··· ,V }

∑
i,j∈N̄v

ξ
(i,j)
K,K′ − µ̂K,K′
M̂K,K′

ζij

23

(f) P̂cv,m = 1
B

B∑
b=1

1(T ∗b > T).

3. Return Acv = {m : m ∈M, P̂cv,m > αn}

We will implement and explore the properties of these extended algorithms in Chapter 3.
In this algorithm we use the uncentered second moment of ξK,K′ ’s to normalize their mean,

which is slightly di�erent in how the normalization is done in Section 2.4. This is mostly out of
convenience for our later work in Chapter 4. Remember that the purpose of the normalization
is to bring all the ξ’s back to the same scale, using the uncentered second moment should
still be able to achieve the goal reasonably well, and we will check its in�uence on the practical
e�ectiveness to the algorithm by comparing di�erent versions using both the standard deviation
and uncentered second moment for scaling in Section 3.

Let Îk,k′ = {(i, j) : (ĝi, ĝj) = (k, k′), i > j} denote the pairs (i, j) where i is assigned
to community k and j is assigned to community k′. The extra squared error loss on cell (i, j)
between using community number K1, K2 is denoted as:

ξ
(K1,K2)
i,j = (Aij − B̂(K1,tr)

ĝ
(K1)
i ,ĝ

(K1)
j

)2 − (Aij − B̂(K2,tr)

ĝ
(K2)
i ,ĝ

(K2)
j

)2 (2.3)

The negative likelihood extra loss on (i, j) would be:

ξ
(K1,K2)
i,j =

(
−Aij log B̂

(K1,tr)

ĝ
(K1)
i ,ĝ

(K1)
j

− (1− Aij) log(1− B̂(K1,tr)

ĝ
(K1)
i ,ĝ

(K1)
j

)

)
(2.4)

−
(
−Aij log B̂

(K2,tr)

ĝ
(K2)
i ,ĝ

(K2)
j

− (1− Aij) log(1− B̂(K2,tr)

ĝ
(K2)
i ,ĝ

(K2)
j

)

)
(2.5)

Both loss functions are very often used in the network literature. In our work, we will
explore both loss functions in the simulation study and concentrate on the squared error loss
in our theoretical studies.

In Chapter 4 we will try to show similar results about the guaranteed probabilities for inclu-
sion of di�erent models in Acv. More speci�cally, we will show that an under-�tting model is
guaranteed (with probability→ 1) to be eliminated in the hypothesis testing procedure, while
the true model will be included in Acv when we select αn ∈ (1

n
, 1). Therefore, if we pick the

most parsimonious model in Acv (or simply, the smallest K value), we will likely have the true
K value for the network.

Note on the regularity conditions for Gaussian multiplier bootstrap: In [CCK+13], there
are certain regularity conditions required for the Gaussian multiplier bootstrap results to be
valid, i.e. for the reference distribution to be a reasonable approximation to the true sampling
distribution of the test statistic. In other words, we want the maximum of a normalized sample
mean of the extra prediction loss to have a similar distribution as the maximum of a Gaussian
random vector with the same covariance structure. In Algorithm 8, we are using the normalized
di�erence in prediction losses and therefore the tail conditions will not be guaranteed for each
normalized ξ’s. Therefore we will not use the Gaussian comparison to control the type I error
probability. Instead, we will use concentration inequalities to control the probability of type I
errors, as will be seen in our work in Chapter 4.

24

2.6 Using Parametric Bootstrap instead of Gaussian Mul-
tiplier Bootstrap

When we observe the problem close enough, we would �nd that in algorithm 7, we are using
Gaussian Multiplier Bootstrap largely because we cannot obtain the sampling distribution of
ξ’s in a generative way. However, in our context, it is in fact possible to obtain the sampling
distribution of the test statistic under the null by generating new network data sets with cer-
tain parameters. we can use the results of this approach to check the correctness of Gaussian
Multiplier Bootstrap.

In other words, in Algorithm 8, after calculating the test statistic using Equation 2.6, we can
obtain the sampling distribution of the test statistic by directly generating network data sets
under the null hypothesis. Recall that the null hypothesis is that the current community number
K is not signi�cantly inferior to other candidate community values, meaning that it could
possibly be the true number of communities. We will generate a series of adjacency matrices
using the model parameters estimated for the current K : (ˆg(K,−v), B̂(K,−v)). Let A(b), b =
1, · · · , B denote these adjacency matrices.

After obtaining such adjacency matrices under the null hypothesis, we can similarly split
A(b) into V folds and calculate the cross validation loss of corresponding to a model of K
communities. We would then be able to calculate ξ’s, and thus get a sample of the test statistic
T ∗b under the null hypothesis. We can then calculate the P-value by comparing our realization
of the test statistic to this sample. We describe this procedure in more detail in the following
algorithm.
Algorithm 10 V-fold block-wise node-pair splitting cross validation with con�dence, via
parametric bootstrap

Data: n× n symmetric binary adjacency matrix A, candidate set of possible values of
community number {K : K ∈ K}, loss function l, cross validation fold number V ,

P-value threshold αn ∈ (0, 1), bootstrap sample size B.
Result: Con�dence set Acv

1. Randomly split the nodes into V equal-sized subsets {Nv : 1 ≤ v ≤ V }, and split the
adjacency matrix correspondingly into V × V equal sized blocks:

A = (Â(uv) : 1 ≤ u, v ≤ V)

2. For each K ∈ K, and each 1 ≤ v ≤ V :
(a) Using Algorithm 5, estimate model parameters (ĝ(K,−v), B̂(K,−v)) using community

number K using the rectangular sub matrix obtained by removing the rows of A in
subset Nv:

Ã(−v) = {Aij : i 6∈ Nv)

Also estimate the community interaction matrix using only the test set B̂(K,−v,test)).
With the same approach, we can estimate the model parameters corresponding to
other values in K, for comparison purposes in later steps.

25

(b) For all K ′ ∈ K\{K}, and i, j ∈ N̄v

ξ
(i,j)
K,K′ = L(Aij, B̂

(K,−v)
ij)− L(Ai,jij, B̂

(K′,−v)
ij)

where B̂(K,−v)
ij) is the edge probability estimate for node pair (i, j) in the test set

Nv × Nv using number of communities K and Ã(−v) as the training set.
(c) Let µ̂(v)

K,K′ and M̂ (v)
K,K′ be the sample mean and uncentered second moment of {ξ(ij)

K,K′ :

i, j ∈ N̄v}.
3. Let

TK = max
j 6=m

√
n2

V 2
· µ̂K,K

′

M̂K,K′
(2.6)

This is the test statistic for the null hypothesis that no alternative model is signi�cantly
outperforming the model with K .

4. Using the estimated community labels ĝ(K,−v) and estimated community interaction ma-
trix over the test set B̂(K,−v,test)), we can generate test sets with the given K value, and
obtain new loss functions for each candidate K , and thus get bootstrap samples for test
statistic T bK , b = 1, 2, · · · , B.

5. P̂cv,m = 1
B

B∑
b=1

1(T bK > TK).

6. Return Acv = {m : m ∈M, P̂cv,m > αn}

Note that here the sampling distribution is the distribution of the test statistic assuming that
K∗ = K . However, this is hard to achieve since we cannot evenly go through all the cases of
B and g given K∗ = K . The compromise we are making is to assume that the true K is the
current value, and the true community interaction matrix is the community interaction matrix
estimated using only the test set B̂(K,−v,test)).

Readers might notice that we are generating bootstrap samples of the test set using the
community interaction matrix estimated on the original test set B̂(K,−v,test), instead of the com-
munity interaction matrix estimated over the training set. We are going this extra step because
when calculating the test statistic, we need to obtain the cross-validation loss using the model
estimates (obtained from the training set) and the observations over the (bootstrap sample of)
test set. If we are generating the bootstrap samples of test set using the model estimates ob-
tained from the training set, then the cross-validation loss would merely be the unavoidable
random noise between the ground truth and realizations of Bernoulli random variables. How-
ever, the cross-validation loss should also include the generalization loss, i.e. the discrepancy
between the model estimated obtained using the training set and the observations from the test
set, since the estimation algorithm has never ’seen’ the test set. If we omit this important source
of the cross-validation loss, we will grossly underestimate the cross-validation loss under the
null hypothesis and thus only get a very biased hypothesis test. In fact, we will likely reject all
candidate K’s, since the problematic sampling distribution of the test statistic will be entirely
smaller than the actual realization of the test statistic.

When we are working with block-wise node-pair splitting, for each bootstrap iteration, we
expand the community labels ĝ(K,−v) into a full matrix form G

(K,−v)
n×K such that

26

G
(K,−v)
i,j = 1i�.ĝ(K,−v)

i = j

where i ∈ {1, · · · ,
(
n(te)

2

)
}, j ∈ {1, · · · , K}.

Combine it with the estimated community interaction matrix over the test set B̂(K,−v,test))
to obtain an edge probability prediction over the test set:

P̂(K,−v,test) = G(K,−v) · B̂(K,−v,test)) ·
(
G(K,−v)

)T
This matrix is of size n(te)×n(te). For each cell in its upper triangle, we generate a Bernoulli

random variable using the corresponding value in the edge probability prediction. After copy-
ing over the upper triangle over to the lower triangle, we arrive at a symmetric adjacency matrix
the same size as our test set under the null hypothesis. And we can calculate its test statistic
value and use it as a bootstrap sample.

When we are working with random edge sampling, or LatinCV sampling, the test set won’t
be in a neat square shape. Instead, it will be a list of row and column coordinates such as the
one shown in Table 2.1. We will loop through each row of the table and get the edge probability
prediction by calculating

B̂
(K,−v,test)
ĝ
(tr,K)
i ,ĝ

(tr,K)
j

Row index Column index
1 1 2
2 2 3
3 1 5
4 3 5
5 2 6

Table 2.1: Example of a test set using LatinCV. Here we are splitting all node pair into 3 fold in
a network of 6 nodes.

Another note we want to add is about the computational speed. When we are working
with Gaussian multiplier bootstrap, we only need to calculate the cross-validation error matrix
once. Then we can calculate the test statistic for each candidate K and obtain the bootstrap
samples of these test statistics by operating on the cross-validation loss matrix. We can bene�t
from the optimizations for matrix operations since these calculations are mostly vectorized.
When we are working with parametric bootstrap, we need to generate a new bootstrap sample
of the test set each time. Then we calculate the entire cross-validation error matrix using this
bootstrap sample of the test set and the model estimates, and then calculate the test statistic
for this bootstrap sample. To get each sample of the test statistic, we need to go through the
process of simulating new test sets, obtaining cross-validation error matrix, and calculating test
statistic. This is a longer cycle compared to the Gaussian multiplier bootstrap alternative and
thus will be computationally more expensive.

27

28

Chapter 3

Simulation Studies and
Application on Data Sets

In this chapter we will examine the e�ectiveness and properties of our method and compare it
with similar alternatives in the literature, by implementing them and testing them on simulated
and real-world data sets.

3.1 Studies through simulated data

3.1.1 Simulation of adjacency matrices from Stochastic Block Models
Given a set of parameters of a network, we can generate an instance of its adjacency matrices
according to the Stochastic Block Model settings. The parameters we will specify characterize
the connectivity matrix B between communities, the size of each community, the edge proba-
bility between di�erent nodes.

To be speci�c, our simulation algorithm takes in the following arguments: the true com-
munity label vector g with K di�erent values (typically ranging from 1 to K), the value q that
characterizes how diagonally dominant the connectivity matrix is, the density parameter ρ.
Note that here we can have a subroutine for generating g, for example, we can simply generate
the following vector that contains equal number of members for each community:

g = (1, · · · , 1, 2, · · · , 2, · · · , K, · · · , K)

Then we turn this community label vector into a matrix:

29

Gn×K =



1 0 0 . . . 0
... . . . · · · · · · 0

1
. . . · · · · · · 0

0 1 · · · · · · 0
... ... · · ·
0 1 · · · · · · 0
...
0 · · · · · · . . . 1


We de�ne the following B0 as the prototype of the connectivity matrix:

B0 =


1 1

q+1
. . . 1

q+1
1
q+1

1 . . . 1
q+1

...
1
q+1

1
q+1

. . . 1


This formation of B is not the only scheme we will be testing, although we will use it in

many cases for its simplicity when B is not the central part of parameters we want to test our
method for. In general, the community interaction matrix can be any symmetric matrix that
doesn’t have any identical rows and has all of its values fall within (0, 1). We will use more
general settings for generating B in section 3.1.9.

The larger q is, the better separation there is in the network in the sense that nodes are
way more likely to be connected with other members within the community rather than with
members from other communities.

The true community connectivity matrix is then de�ned as:

B = ρ ·B0

And the edge probability matrix is as follows:

P = G ·B ·GT =


1 Bg1,g2 Bg1,g3 . . . Bg1,gn

Bg2,g1 1 Bg2,g2 . . . Bg2,gn

Bg3,g1 Bg3,g2 1 . . . Bg3,gn
...

Bgn,g1 Bgn,g2 Bgn,g3 . . . 1

 (3.1)

Then the adjacency matrix A is generated from the corresponding Bernoulli distributions:

Aij ∼ Bernoullli(Pij)

For generating data sets from degree-corrected stochastic block models, we would only need
to add one more step. De�ne the degree correction parameter vector θ, where

θi ∼ Uniform(lo, hi) , 0 < lo < hi ≤ 1

And simply substitute G with diag(θ) · G in Equation 3.1, where diag(θ) is the diagonal
matrix whose diagonal line is θi.

30

3.1.2 Illustration of the Hypothesis Testing Step
In [Lei17], it is shown that cross-validation with con�dence can select the true model with
guaranteed probability. This is due to the fact that the hypothesis testing framework can reject
the under-�tting models as under-performing, yet the over-�tting model won’t outperform
the true model signi�cantly. Therefore if we select the most parsimonious model among the
models not rejected, we would very likely end up with the true model. Ideally we would hope
after being extended to stochastic block model context, cross-validation with con�dence would
still retain this desirable property.

We set up the simulations as following. In each simulation, we generate a network of 1200
nodes with K (K ∈ {2, 3, · · · , 7}) true communities with equal size and various network den-
sity levels ρ. We then conduct the hypothesis test for each candidate K ∈ {1, 2, · · · , 10} and
record the P-value given by the Gaussian multiplier bootstrap test. Figure 3.1 shows the results
from these simulations. We can see that the P-value would typically be very low for under-
�tting models, meaning that they would likely be rejected. While it would have a sharp rise
at the true K and then go down again. When the true number of communities is small, even
the over-�tting models will be rejected in the test. Yet when the true number of communities
is larger, some over-�tting models will remain after the test, although the true model would
also get retained. For example, in Figure 3.1, when K = 4 and the network density is 0.025, the
con�dence set Acv = {4} only contains the true K value, while when the density is 0.3, we can
see the con�dence set becomes {4, 5, 6}, where two over-�tting models are retained. Although
as long as we pick the most parsimonious model (i.e. the smallest number of communities) in
the con�dence set, we will still get back the true K value 4. Similar observations can be made
about the case when true K value is 6.

●●●●● ●●●●● ●●●●●

●●●●●

●●

●

●

●

●●●

●

●

●●●

●

● ●●●●● ●●●●● ●●●●●0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
Candidate K

P
−

va
lu

e

rs
0.025
0.05
0.1
0.2
0.3

True K = 4

●●●●● ●●●●● ●●●●● ●●●●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

● ●●●●●0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
Candidate K

P
−

va
lu

e

rs
0.025
0.05
0.1
0.2
0.3

True K = 6

Figure 3.1: P-values when testing whether the candidate K is rejected by CVC. Data sets are
generated to be networks with 1200 nodes with true K = 4, 6) and di�erent density (r ∈
{0.025, 0.05, 0.1, 0.15, 0.2}).

Theses are mostly illustrations of how Cross-validation with Con�dence would work un-
der stochastic block model context. In the coming section, we will conduct more thorough
experiments and in particular compare it with other established methods in the literature.

31

3.1.3 E�ect of the hypothesis testing step: comparison with BIC and
NCV

The �rst comparison we make is under the setting where all communities have the equal size,
we simulate adjacency matrices according to the Stochastic Block Models with di�erent true
number of communities, and di�erent network densities. Then we conduct model selection
on them using the Bayesian Information Criterion (as proposed in [HRT07], which we will
call BIC from here on), two versions of Network Cross Validation and four versions of Cross-
validation with Con�dence (remember we have two scaling options and two loss functions).
Under each community number/network density combination, we repeat the experiment 200
times and compare the percentage of selecting under-�tting, correct, and over-�tting models
by each method. The results for standard Stochastic Block Models are summarized numerically
in Table 3.1 and visually in Table 3.2. In the table, rows represent di�erent network density
parameters r and columns represent true number of communities K∗. The tuples in the table
represents percentage of under-�tting, correct, over-�tting model selection results. For exam-
ple, (0.2, 0.5, 0.3) means 20% of the time the method chooses an under-�tting model, 50% of the
time it chooses the true model, and 30% of the time it chooses an over-�tting model.

we also make the same comparison between Network Cross Validation and Cross-validation
with Con�dence for degree-corrected stochastic block models, the results are shown numeri-
cally in Table 3.3 and visually in Table 3.4.

In general we see that our method yields at least comparable or better performance com-
pared to NCV, while it yields comparable results as BIC (as proposed in [HRT07]). The advan-
tage of CVC is especially clear when we are in the nice parameters settings, where the network
density is high and number of true communities relatively high. In these settings, NCV tends
to select under-�tting models, while CVC would make mostly correct model selections. CVC
doesn’t perform very well when we are dealing with low-density networks, especially when
there are many true communities. The intuition behind this is likely due to the signal being
very weak in the data set. Since there is no clear separation between true communities, the
under-�tting model can get away with merging some true communities.

Another comparison we make is in the case where the community are not evenly sized.
We consider the situations where the true number of communities K∗ = 2, 3, 4 and set the
community-wise edge probability matrix B = rB0, where B0 has diagonal values 3 and o�-
diagonal values 1. We used sparsity levels of r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}. In other words, for
a network with n = 1000 nodes, the smallest expected degree would be between 12 and 400. We
use the size of the smallest community n1 as a parameter to control community size imbalance.
We assume the other K − 1 communities have the same size. When K = 4, n1 = 250 means
that all communities are equally sized, while if n1 = 100, then the other three communities
will each contain 300 nodes, making the network pretty imbalanced. For each true K value, we
pick several combinations of edge sparsity and community size imbalance level, generate 200
datasets, and check the performance of CVC. The results are shown in Figure 3.2.

For convenience of comparison we also attach Figure 3.3 results from [CL17]. We can see
that our method is an improvement in some cases, in the sense that the correct model is selected
with higher chance. For example, when K = 2 and K = 4, the correct selection percentage by
our method is higher than that given by both versions of NCV.

32

2
3

4
5

6
7

BI
C

(0
,1,

0)
(0

,1,
0)

(0
.19

,0.
81

,0)
(1

,0,
0)

(1
,0,

0)
(1

,0,
0)

0.0
25

N
CV

:l
s

(0
,1,

0)
(0

,1,
0)

(0
.13

,0.
76

5,0
.10

5)
(0

.97
5,0

.02
,0.

00
5)

(1
,0,

0)
(1

,0,
0)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
.08

5,0
.82

5,0
.09

)
(0

.98
,0.

01
,0.

01
)

(1
,0,

0)
(1

,0,
0)

CV
C:

ls
(0

,1,
0)

(0
.00

5,0
.99

5,0
)

(0
.73

5,0
.26

5,0
)

(1
,0,

0)
(1

,0,
0)

(1
,0,

0)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
.71

,0.
29

,0)
(0

.99
5,0

.00
5,0

)
(1

,0,
0)

(1
,0,

0)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
.93

,0.
07

,0)
0.0

5
N

CV
:l

s
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,0.

99
,0.

01
)

(0
.02

,0.
98

,0)
(1

,0,
0)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
99

5,0
.00

5)
(0

,0.
98

5,0
.01

5)
(0

.01
,0.

99
,0)

(1
,0,

0)
CV

C:
ls

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

.00
5,0

.99
,0.

00
5)

(0
.28

5,0
.71

5,0
)

(0
.97

5,0
.02

5,0
)

CV
C:

lik
el

ih
oo

d
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

.22
,0.

77
5,0

.00
5)

(0
.98

5,0
.01

5,0
)

BI
C

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

0.1
N

CV
:l

s
(0

,1,
0)

(0
,1,

0)
(0

,0.
97

,0.
03

)
(0

,0.
96

,0.
04

)
(0

,1,
0)

(1
,0,

0)
N

CV
:l

ik
el

ih
oo

d
(0

,1,
0)

(0
,0.

99
5,0

.00
5)

(0
,0.

96
5,0

.03
5)

(0
,0.

95
5,0

.04
5)

(0
,1,

0)
(1

,0,
0)

CV
C:

ls
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
99

5,0
.00

5)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,0.

99
5,0

.00
5)

(0
,1,

0)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.1

5
N

CV
:l

s
(0

,1,
0)

(0
,0.

98
5,0

.01
5)

(0
,0.

97
,0.

03
)

(0
,0.

94
5,0

.05
5)

(0
,1,

0)
(1

,0,
0)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
98

,0.
02

)
(0

,0.
95

5,0
.04

5)
(0

,1,
0)

(1
,0,

0)
CV

C:
ls

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
95

5,0
.04

5)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
99

5,0
.00

5)
(0

,0.
92

5,0
.07

5)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.2

N
CV

:l
s

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
95

,0.
05

)
(0

,0.
92

5,0
.07

5)
(0

,1,
0)

(1
,0,

0)
N

CV
:l

ik
el

ih
oo

d
(0

,1,
0)

(0
,0.

99
,0.

01
)

(0
,0.

97
5,0

.02
5)

(0
,0.

93
5,0

.06
5)

(0
,1,

0)
(1

,0,
0)

CV
C:

ls
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,0.

87
,0.

13
)

CV
C:

lik
el

ih
oo

d
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,0.

85
5,0

.14
5)

Ta
bl

e
3.1

:P
er

ce
nt

ag
e

of
un

de
r-

�t
tin

g,
co

rr
ec

ta
nd

ov
er

-�
tti

ng
m

od
el

se
le

ct
io

n
re

su
lts

fo
rN

CV
an

d
CV

C
m

et
ho

ds
,u

nd
er

di
�e

re
nt

ne
tw

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
ec

om
m

un
ity

nu
m

be
rs

.D
at

as
et

si
n

th
is

ta
bl

ea
re

ge
ne

ra
te

d
us

in
g

th
es

ta
nd

ar
d

St
oc

ha
st

ic
Bl

oc
k

M
od

el
.N

CV
te

nd
s

to
se

le
ct

un
de

r-
�t

tin
g

m
od

el
s

w
he

n
w

e
ar

e
de

al
in

g
w

ith
m

or
e

tru
e

co
m

m
un

iti
es

,w
hi

le
CV

C
pe

rfo
rm

s
m

uc
h

be
tte

r.
In

lo
w

-d
en

sit
y

ne
tw

or
k

da
ta

se
ts

,C
VC

te
nd

st
o

se
le

ct
un

de
r-

�t
tin

g
m

od
el

s.

33

2
3

4
5

6
7

BI
C

0.0
25

N
CV

:l
s

N
CV

:l
ik

el
ih

oo
d

CV
C:

ls
CV

C:
lik

el
ih

oo
d

BI
C

0.0
5

N
CV

:l
s

N
CV

:l
ik

el
ih

oo
d

CV
C:

ls
CV

C:
lik

el
ih

oo
d

BI
C

0.1
N

CV
:l

s
N

CV
:l

ik
el

ih
oo

d
CV

C:
ls

CV
C:

lik
el

ih
oo

d
BI

C
0.1

5
N

CV
:l

s
N

CV
:l

ik
el

ih
oo

d
CV

C:
ls

CV
C:

lik
el

ih
oo

d
BI

C
0.2

N
CV

:l
s

N
CV

:l
ik

el
ih

oo
d

CV
C:

ls
CV

C:
lik

el
ih

oo
d

Ta
bl

e
3.2

:P
er

ce
nt

ag
e

of
un

de
r-

�t
tin

g
(li

gh
tr

ed
on

le
ft

of
gr

ee
n)

,c
or

re
ct

(g
re

en
),

an
d

ov
er

-�
tti

ng
(b

lu
e

on
rig

ht
of

gr
ee

n)
m

od
el

se
le

ct
io

n
re

su
lts

fo
rN

CV
an

d
CV

C
m

et
ho

ds
,u

nd
er

di
�e

re
nt

ne
tw

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
ec

om
m

un
ity

nu
m

be
rs

.D
at

as
et

si
n

th
is

ta
bl

e
ar

e
ge

ne
ra

te
d

us
in

g
th

e
st

an
da

rd
St

oc
ha

st
ic

Bl
oc

k
M

od
el

.N
CV

te
nd

st
o

se
le

ct
un

de
r-

�t
tin

g
m

od
el

sw
he

n
w

e
ar

e
de

al
in

g
w

ith
m

or
et

ru
ec

om
m

un
iti

es
,w

hi
le

CV
C

pe
rfo

rm
sm

uc
h

be
tte

r.
In

lo
w

-d
en

sit
y

ne
tw

or
k

da
ta

se
ts

,C
VC

te
nd

st
o

se
le

ct
un

de
r-

�t
tin

g
m

od
el

s.

34

35

2
3

4
5

BI
C

(0
,1,

0)
(1

,0,
0)

(1
,0,

0)
(1

,0,
0)

0.0
5

N
CV

:l
s

(0
.00

5,0
.99

5,0
)

(0
.23

,0.
2,0

.57
)

(0
.76

,0.
08

,0.
16

)
(0

.95
,0.

02
5,0

.02
5)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

.16
,0.

14
5,0

.69
5)

(0
.43

,0.
05

5,0
.51

5)
(0

.62
5,0

.19
,0.

18
5)

CV
C:

ls
(0

.30
5,0

.69
5,0

)
(1

,0,
0)

(1
,0,

0)
(1

,0,
0)

CV
C:

lik
el

ih
oo

d
(0

.06
,0.

94
,0)

(0
.93

,0.
07

,0)
(1

,0,
0)

(1
,0,

0)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

.09
,0.

91
,0)

(0
.99

5,0
.00

5,0
)

0.1
N

CV
:l

s
(0

,1,
0)

(0
,0.

99
,0.

01
)

(0
,0.

32
,0.

68
)

(0
.37

,0.
03

5,0
.59

5)
N

CV
:l

ik
el

ih
oo

d
(0

,1,
0)

(0
,1,

0)
(0

.01
,0.

75
,0.

24
)

(0
.59

,0.
08

5,0
.32

5)
CV

C:
ls

(0
,1,

0)
(0

.01
,0.

99
,0)

(0
.58

5,0
.41

5,0
)

(0
.97

5,0
.02

,0.
00

5)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
.22

,0.
78

,0)
(0

.99
5,0

.00
5,0

)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.1

5
N

CV
:l

s
(0

,1,
0)

(0
,0.

99
,0.

01
)

(0
,0.

89
5,0

.10
5)

(0
,0.

58
,0.

42
)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,0.

96
5,0

.03
5)

(0
,0.

76
,0.

24
)

CV
C:

ls
(0

,1,
0)

(0
,1,

0)
(0

,0.
99

,0.
01

)
(0

.02
5,0

.87
5,0

.1)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
98

5,0
.01

5)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.2

N
CV

:l
s

(0
,1,

0)
(0

,1,
0)

(0
,0.

93
5,0

.06
5)

(0
,0.

69
5,0

.30
5)

N
CV

:l
ik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,0.

96
,0.

04
)

(0
,0.

84
5,0

.15
5)

CV
C:

ls
(0

,1,
0)

(0
,1,

0)
(0

,0.
99

,0.
01

)
(0

,0.
89

5,0
.10

5)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
96

5,0
.03

5)
BI

C
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.3

N
CV

:l
s

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
80

5,0
.19

5)
N

CV
:l

ik
el

ih
oo

d
(0

,1,
0)

(0
,1,

0)
(0

,0.
97

,0.
03

)
(0

,0.
71

5,0
.28

5)
CV

C:
ls

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
98

5,0
.01

5)
CV

C:
lik

el
ih

oo
d

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,0.
91

5,0
.08

5)

Ta
bl

e
3.3

:P
er

ce
nt

ag
e

of
un

de
r-

�t
tin

g,
co

rr
ec

ta
nd

ov
er

-�
tti

ng
m

od
el

se
le

ct
io

n
re

su
lts

fo
rN

CV
an

d
CV

C
m

et
ho

ds
,u

nd
er

di
�e

re
nt

ne
tw

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
ec

om
m

un
ity

nu
m

be
rs

.D
at

as
et

si
n

th
is

ta
bl

ea
re

ge
ne

ra
te

d
us

in
g

th
es

ta
nd

ar
d

St
oc

ha
st

ic
Bl

oc
k

M
od

el
.W

ec
an

se
eC

VC
ou

tp
er

fo
rm

sN
CV

in
m

an
y

sc
en

ar
io

s,
es

pe
ci

al
ly

w
he

n
w

eh
av

ea
hi

gh
ne

tw
or

k
de

ns
ity

an
d

hi
gh

nu
m

be
ro

f
co

m
m

un
iti

es
(b

ot
to

m
rig

ht
co

rn
er

of
th

et
ab

le
).

In
th

es
ec

as
es

N
CV

te
nd

st
o

se
le

ct
ov

er
-�

tti
ng

m
od

el
s,

w
hi

le
CV

C
se

le
ct

st
he

co
rr

ec
t

m
od

el
th

em
aj

or
ity

of
tim

es
.A

lth
ou

gh
w

eo
bs

er
ve

so
m

ec
as

es
w

he
re

CV
C

is
un

de
rp

er
fo

rm
in

g
co

m
pa

re
d

to
N

Cv
,f

or
ex

am
pl

e,
in

th
e

to
p

rig
ht

co
rn

er
of

th
e

ta
bl

e,
w

he
n

w
e

ha
ve

re
la

tiv
el

y
hi

gh
nu

m
be

ro
fc

om
m

un
iti

es
w

ith
lo

w
ne

tw
or

k
de

ns
iti

es
.C

ro
ss

-v
al

id
at

io
n

w
ith

co
n�

de
nc

e
te

nd
st

o
se

le
ct

un
de

r-
�t

tin
g

m
od

el
si

n
th

is
ca

se
.

36

2
3

4
5

BI
C

0.0
5

N
CV

:l
s

N
CV

:l
ik

el
ih

oo
d

CV
C:

ls
CV

C:
lik

el
ih

oo
d

BI
C

0.1
N

CV
:l

s
N

CV
:l

ik
el

ih
oo

d
CV

C:
ls

CV
C:

lik
el

ih
oo

d
BI

C
0.1

5
N

CV
:l

s
N

CV
:l

ik
el

ih
oo

d
CV

C:
ls

CV
C:

lik
el

ih
oo

d
BI

C
0.2

N
CV

:l
s

N
CV

:l
ik

el
ih

oo
d

CV
C:

ls
CV

C:
lik

el
ih

oo
d

BI
C

0.3
N

CV
:l

s
N

CV
:l

ik
el

ih
oo

d
CV

C:
ls

CV
C:

lik
el

ih
oo

d

Ta
bl

e
3.4

:P
er

ce
nt

ag
e

of
un

de
r-

�t
tin

g
(li

gh
tr

ed
on

le
ft

of
gr

ee
n)

,c
or

re
ct

(g
re

en
),

an
d

ov
er

-�
tti

ng
(b

lu
e

on
rig

ht
of

gr
ee

n)
m

od
el

se
le

ct
io

n
re

su
lts

fo
rN

CV
an

d
CV

C
m

et
ho

ds
,u

nd
er

di
�e

re
nt

ne
tw

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
e

co
m

m
un

ity
nu

m
be

rs
.D

at
a

se
ts

ar
eg

en
er

at
ed

us
in

g
th

es
ta

nd
ar

d
St

oc
ha

st
ic

Bl
oc

k
M

od
el

.W
ec

an
se

eC
VC

ou
tp

er
fo

rm
sN

CV
in

m
an

y
sc

en
ar

io
s,

es
pe

ci
al

ly
w

he
n

w
e

ha
ve

ah
ig

h
ne

tw
or

k
de

ns
ity

an
d

hi
gh

nu
m

be
ro

fc
om

m
un

iti
es

(b
ot

to
m

rig
ht

co
rn

er
of

th
et

ab
le

).
In

th
es

ec
as

es
N

CV
te

nd
st

o
se

le
ct

ov
er

-�
tti

ng
m

od
el

s,
w

hi
le

CV
C

se
le

ct
st

he
co

rr
ec

tm
od

el
th

em
aj

or
ity

of
tim

es
.A

lth
ou

gh
w

eo
bs

er
ve

in
th

e
to

p
rig

ht
co

rn
er

of
th

e
ta

bl
e,

w
he

n
w

e
ha

ve
re

la
tiv

el
y

hi
gh

nu
m

be
ro

fc
om

m
un

iti
es

w
ith

lo
w

ne
tw

or
k

de
ns

iti
es

,N
CV

ou
tp

er
fo

rm
sC

VC
.C

ro
ss

-v
al

id
at

io
n

w
ith

co
n�

de
nc

e
te

nd
st

o
se

le
ct

un
de

r-
�t

tin
g

m
od

el
si

n
th

is
ca

se
.

37

● ● ● ●

●

●

●

●

● ●● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e
n1

100

200

500

K = 2

● ● ●

●
●

●

●

● ● ●

●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

200

300

K = 3

● ●

●

●
●

●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

250

K = 4

Figure 3.2: Results for simulation. The plots show the proportions of 200 simulated datasets for which
K is correctly estimated. The datasets are generated from SBMs with K = 2, 3, 4, sparsity levels r ∈
{0.01, 0.02, 0.05, 0.1, 0.2}, and various levels of community imbalance. n1 represents the size of the
�rst community with other community sizes being equal. Total number of nodes of 1000.

● ●
●

●

●

●
●

●

● ●● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

200

500

K = 2

● ● ●

●
●

●

●

● ● ●

●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

200

300

K = 3

●

●

●

●

●

●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r
co

rr
ec

t p
er

ce
nt

ag
e

n1

100

250

K = 4

● ● ●
●

●

● ●

●

● ●● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

200

500

K = 2

● ● ●

● ●

●

●

● ● ●

●

● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

200

300

K = 3

●
●

●

●

●

●

● ● ●
●

0.00

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

Sparsity level r

co
rr

ec
t p

er
ce

nt
ag

e

n1

100

250

K = 4

Figure 3.3: The same results, but using Network Cross-Validation proposed in [CL17]. The datasets are
generated from SBMs with K = 2, 3, 4, sparsity levels r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, and various levels of
community imbalance. n1 represents the size of the �rst community with other community sizes being
equal. Total number of nodes of 1000. The top plot uses the likelihood function as the objective while
the bottom plot uses squared error loss as the objective function.

38

3.1.4 Sensitivity to mis-speci�cation
This subsection is motivated by the question of a committee member during the thesis proposal.
He would like to know how sensitive our method would be against mis-speci�ed models. In
particular, if the data set is generated using a more general and �exible model, such as the
degree-corrected stochastic block model, or mixed membership stochastic block model, how
would our method perform if we just treat the data set as a realization of standard stochastic
block model? Intuitively, we would see the answer depends on how ’close’ the mis-speci�ed
model is to the assumption we are making. However, it is not entirely clear what parameter
ranges would correspond to a close enough approximation by the standard stochastic block
model. We will set out to explore this problem in this section.

in this section we explore this question by applying our method for standard Stochastic
Block Models, while using the model selection procedures for standard Stochastic Block Models
on them. Here we are considering evenly-sized communities with changing number of com-
munities, changing network density parameter values, and changing range for the distribution
of the degree correction parameters in the degree-corrected stochastic block models. We then
compare the selected K value with the true value and check the percentage of under-�tting,
correct, and over-�tting selections. Table 3.5 - 3.7 shows the results of these experiments. We
added a more illustrative representation of the results in Table 3.8 - 3.10. Area of di�erent colors
represent the percentage of under-�tting (light red on the left of green), correct (green), and
over-�tting (blue on right of green) model selection results.

From the results we see that there are certain settings where our method works well even
under mis-speci�cation. When the degree correction parameter has a narrow range (sampled
from Uniform(0.8, 1)) our method performs really well. The correct selection percentage is
very high (> 95%) except for the case of low-density network with �ve communities. When
the degree correction parameter is sampled from Uniform(0.5, 1), our method performs decent.
There are many under-�tting models selected when we are working with low-density networks
and more than 3 true communities. The performance is the worst when the degree correction
parameter has a wide range (Uniform(0.2, 1)). In this case we see lots of over-�tting selections
when we are working with high-density networks, while on low-density networks we tend to
select under-�tting models.

The intuition for these results is also easy to understand, standard Stochastic Block Models
can be seen as the limit of Degree Corrected Stochastic Block Models with the distribution of de-
gree correction parameters concentrated to one point. The ’degree’ of mis-speci�cation would
depend on how close the actual distribution is to this limit. From our experiment we see that
when the degree correction parameters have a relatively narrow distribution, stochastic block
models are a good enough approximation for degree-corrected stochastic block models, there-
fore using our method designed for standard SBMs would still yield a reasonable performance
for DC-SBMs.

39

2 3 4 5

0.05 CVC: ls (0,1,0) (0.395,0.49,0.115) (0.965,0.03,0.005) (1,0,0)
CVC: likelihood (0,1,0) (0.155,0.595,0.25) (0.71,0.12,0.17) (0.96,0.025,0.015)

0.1 CVC: ls (0,1,0) (0,0.51,0.49) (0,0.055,0.945) (0.065,0.155,0.78)
CVC: likelihood (0,1,0) (0,0.74,0.26) (0,0.07,0.93) (0.005,0.09,0.905)

0.15 CVC: ls (0,0.995,0.005) (0,0.355,0.645) (0,0,1) (0,0.005,0.995)
CVC: likelihood (0,0.995,0.005) (0,0.57,0.43) (0,0.015,0.985) (0,0.005,0.995)

0.2 CVC: ls (0,1,0) (0,0.39,0.61) (0,0,1) (0,0,1)
CVC: likelihood (0,1,0) (0,0.575,0.425) (0,0,1) (0,0,1)

Table 3.5: Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.2, 1).

2 3 4 5

0.05 CVC: ls (0,1,0) (0,1,0) (0.32,0.68,0) (1,0,0)
CVC: likelihood (0,1,0) (0,1,0) (0.27,0.725,0.005) (0.99,0.01,0)

0.1 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,1,0)
CVC: likelihood (0,1,0) (0,1,0) (0,1,0) (0,1,0)

0.15 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,0.99,0.01)
CVC: likelihood (0,1,0) (0,0.995,0.005) (0,1,0) (0,0.985,0.015)

0.2 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,1,0)
CVC: likelihood (0,1,0) (0,1,0) (0,1,0) (0,0.985,0.015)

Table 3.6: Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.5, 1).

2 3 4 5

0.05 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0.295,0.7,0.005)
CVC: likelihood (0,1,0) (0,1,0) (0,1,0) (0.205,0.795,0)

0.1 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,1,0)
CVC: likelihood (0,1,0) (0,1,0) (0,1,0) (0,1,0)

0.15 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,0.99,0.01)
CVC: likelihood (0,1,0) (0,1,0) (0,0.995,0.005) (0,0.985,0.015)

0.2 CVC: ls (0,1,0) (0,1,0) (0,1,0) (0,1,0)
CVC: likelihood (0,1,0) (0,1,0) (0,1,0) (0,0.99,0.01)

Table 3.7: Under-�tting, correct, and over-�tting percentage for mis-speci�ed models when
degree correction parameters are sampled from Uniform(0.75, 1).

40

2 3 4 5

0.05 CVC: ls
CVC: likelihood

0.1 CVC: ls
CVC: likelihood

0.15 CVC: ls
CVC: likelihood

0.2 CVC: ls
CVC: likelihood

Table 3.8: Under-�tting (light red on left of green), correct (green), and over-�tting (blue on
right of green) percentage for mis-speci�ed models when degree correction parameters are
sampled from Uniform(0.2, 1).

2 3 4 5

0.05 CVC: ls
CVC: likelihood

0.1 CVC: ls
CVC: likelihood

0.15 CVC: ls
CVC: likelihood

0.2 CVC: ls
CVC: likelihood

Table 3.9: Under-�tting (light red on left of green), correct (green), and over-�tting (blue on
right of green) percentage for mis-speci�ed models when degree correction parameters are
sampled from Uniform(0.5, 1).

2 3 4 5

0.05 CVC: ls
CVC: likelihood

0.1 CVC: ls
CVC: likelihood

0.15 CVC: ls
CVC: likelihood

0.2 CVC: ls
CVC: likelihood

Table 3.10: Under-�tting (light red on left of green), correct (green), and over-�tting (blue on
right of green) percentage for mis-speci�ed models when degree correction parameters are
sampled from Uniform(0.75, 1).

41

3.1.5 One case of unidenti�ability
An interesting special case we are interested in is the case where a data set can be seen as being
generated from a degree-corrected stochastic block models, or a more complicated standard
stochastic block model.

For example, if we have a standard stochastic block model with the following community
interaction matrix:

B∗ =

[
1
2

1
4

1
4

1
8

]
=

1

2
·
[

1 1
2

1
2

1
4

]
It can be seen as a degree-corrected stochastic block model with only one community but

two types of nodes, the more active ones have degree-correction parameters three times as
much as the less active ones.

Θ = (1, 1, · · · , 1, 1

2
,
1

2
, · · · , 1

2
)T

We ran our algorithm for several such B∗’s and with di�erent network densities. We re-
peated the experiment under each setting for 200 times to see how stable the results are under
random fold assignment. We compared our algorithm (4 versions) against the network cross-
validation algorithm.

In our �rst experiment, we use

B0 =

[
1 1

2
1
2

1
4

]
(3.2)

as the prototype of the true community interaction matrix. For di�erent values of ρ ∈
{0.05, 0.1, 0.2, 0.4, 0.6}, we generate network data sets with equally sized communities and
interaction matrix B = ρ · B0. Then we use di�erent model selection methods on the data
set to check their e�ectiveness. Table 3.11 - 3.12 shows the percentage of each candidate K ∈
{1, 2, · · · , 6} being selected by the algorithm assuming standard stochastic block model (using
di�erent loss functions).

42

CVC using squared error loss and d = 1

ρ \ K̂ 1 2 3 4 5 6
0.05 0.135 0.86 0.005 0 0 0
0.1 0 1 0 0 0 0
0.2 0 1 0 0 0 0
0.4 0 1 0 0 0 0
0.6 0 1 0 0 0 0

Table 3.11: Proportion of each candidateK being selected using CVC method with squared error
loss using d = 2, under various network density levels. The column for K̂ = 2 is highlighted
since it is the correct number of communities assuming standard stochastic block model
(according to Equation 3.2).

CVC using squared error loss and spectral weighting
ρ \ K̂ 1 2 3 4 5 6

0.05 0.88 0.12 0 0 0 0
0.1 0 0.95 0.04 0.01 0 0
0.2 0 0.98 0.02 0 0 0
0.4 0 0.99 0.01 0 0 0
0.6 0 1 0 0 0 0

Table 3.12: Proportion of each candidate K being selected using CVC method with squared
error loss and weighting each column of the singular vector matrix U by the square-root of the
corresponding singular value di, under various network density levels. The column for K̂ = 2
is highlighted since it is the correct number of communities assuming standard stochastic
block model (according to Equation 3.2).

It is clear that the results are not very satisfactory, the correct number of communities is
very rarely selected even when have relatively high network density. The selection results are
highly unstable over repeated runs, showing great variability under random fold assignment.

Table 3.13 shows the same percentage using CVC method for degree-corrected stochastic
block models. In this case the correct number of communities would be K∗ = 1 since we can
account for the di�erence in degree distribution by di�erent level of degree correction param-
eter alone. It is clear that the CVC method for degree-corrected stochastic block models is very
stable and consistent. The only case where it doesn’t pick the correct number of communities
all the time is when we use it under low network density (ρ = 0.05) with the negative likelihood
loss function.

43

Using squared error loss Using negative likelihood loss
ρ \ K̂ 1 2 3 4 5 6 ρ \ K̂ 1 2 3 4 5 6

0.05 1 0 0 0 0 0 0.05 0.145 0.855 0 0 0 0
0.1 1 0 0 0 0 0 0.1 1 0 0 0 0 0
0.2 1 0 0 0 0 0 0.2 1 0 0 0 0 0
0.4 1 0 0 0 0 0 0.4 1 0 0 0 0 0
0.6 1 0 0 0 0 0 0.6 1 0 0 0 0 0

Table 3.13: Proportion of each candidate K being selected using CVC method with di�erent
loss functions, under various network density levels. The column for K̂ = 1 is highlighted
since it is the correct number of communities assuming degree-corrected stochastic block
model (according to Equation 3.2).

For the purpose of comparison, we also ran the same experiments using network cross-
validation methods as proposed in [CL17]. It is also clear that when assuming standard stochas-
tic block models, the algorithm isn’t very good at selecting the correct number of communities.
The method for degree-corrected stochastic block models, on the other hand, performs very
well. We list the results for the latter (NCV for DC-SBM) in Table 3.14. Note that most of the
time it has very good performance, although in low density situations it under-performs its
counterpart in our work.

NCV for DC-SBM, with squared error loss NCV for DC-SBM, with negative likelihood loss
ρ \ K̂ 1 2 3 4 5 6 ρ \ K̂ 1 2 3 4 5 6

0.05 0.995 0.005 0 0 0 0 0.05 0.005 0.825 0.09 0.03 0.015 0.035
0.1 1 0 0 0 0 0 0.1 0.93 0.035 0.005 0 0.01 0.02
0.2 1 0 0 0 0 0 0.2 1 0 0 0 0 0
0.4 1 0 0 0 0 0 0.4 1 0 0 0 0 0
0.6 1 0 0 0 0 0 0.6 1 0 0 0 0 0

Table 3.14: Proportion of each candidate K being selected using NCV method with di�erent
loss functions, under various network density levels. The column for K̂ = 1 is highlighted
since it is the correct number of communities assuming degree-corrected stochastic block
model (according to Equation 3.2).

We can also apply Algorithm 9 to these data sets. We summarize the frequency of each
model being retained in the con�dence set in Table 3.15. It is clear that when we have higher
network density, the DC-SBM with 1 community is getting more and more likely to be selected,
even over the equally correct model, i.e. standard stochastic block model with K = 2.

44

ρ SBM.1 SBM.2 SBM.3 SBM.4 SBM.5 DCBM.1 DCBM.2 DCBM.3 DCBM.4 DCBM.5
0.05 0.00 0.00 0.00 0.00 0.00 0.41 0.97 0.90 0.86 0.74
0.1 0.00 0.00 0.00 0.00 0.02 0.19 0.99 0.69 0.33 0.06

0.15 0.00 0.00 0.20 0.21 0.89 0.00 0.74 0.35 0.12 0.02
0.2 0.00 0.00 0.30 0.42 0.66 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.00 0.57 0.64 0.69 0.00 0.00 0.00 0.00 0.00

Table 3.15: Frequency for each model to be selected using Algorithm 9. The data sets here are
generated using prototype community interaction matrix as de�ned in Equation 3.2.

We repeat the same experiments as above, but for a new prototype community interaction
matrix:

B0 =

1 1
8

1
8

1
8

1 1
3

1
8

1
3

1
9

 (3.3)

This model would again have di�erent interpretation under di�erent models. When we
assume it comes from the standard stochastic block model, then it has 3 true communities.
While when we use degree-corrected stochastic block model, it can be modeled using a 2-
community network by noting that[

1 1
3

1
3

1
9

]
=

[
1
1
3

]
·
[
1 1

3

]
Here the second community needs to contain two kinds of nodes, the more active ones have

degree correction parameter three times as much as the less active ones. We summarize our
results in Table 3.16, 3.17, and 3.18.

CVC using squared error loss and d = 2

ρ \ K̂ 1 2 3 4 5 6
0.05 0 0.01 0.90 0.09 0 0
0.1 0 0 1 0 0 0
0.2 0 0 1 0 0 0
0.4 0 0 1 0 0 0
0.6 0 0 1 0 0 0

Table 3.16: Proportion of each candidate K being selected using CVC method with squared
error loss, under various network density levels. The column for K̂ = 3 is highlighted since it
is the correct number of communities assuming standard stochastic blockmodel (according
to Equation 3.3).

45

CVC using squared error loss and spectral weighting
ρ \ K̂ 1 2 3 4 5 6

0.05 0 0.44 0.54 0.02 0 0
0.1 0 0 0.98 0.015 0.01 0
0.2 0 0 0.99 0 0.01 0
0.4 0 0 1 0 0 0
0.6 0 0 1 0 0 0

Table 3.17: Proportion of each candidate K being selected using CVC method with squared
error loss, under various network density levels. The column for K̂ = 3 is highlighted since it
is the correct number of communities assuming standard stochastic blockmodel (according
to Equation 3.3).

CVC for DC-SBM using squared error
ρ \ K̂ 1 2 3 4 5 6

0.05 0.06 0.94 0 0 0 0
0.1 0 1 0 0 0 0
0.2 0 1 0 0 0 0
0.4 0 1 0 0 0 0
0.6 0 1 0 0 0 0

Table 3.18: Proportion of each candidate K being selected using CVC method with di�erent
loss functions, under various network density levels. The column for K̂ = 2 is highlighted
since it is the correct number of communities assuming degree-corrected stochastic block
model (according to Equation 3.3).

When we apply Algorithm 9 to these data sets. We summarize the frequency of each model
being retained in the con�dence set in Table 3.19. Here the trend is a little di�erent. When we
are dealing with lower density network data sets, degree-corrected model with K = 2 is se-
lected with very high probability, while standard stochastic block models withK = 3 has a low
yet increasing frequency of being retained. When we increase the network density parameter
above 0.2, all degree-corrected models start to get rejected, while the standard stochastic block
models with K = 3 is retained in the con�dence set with increasingly high frequency.

ρ SBM.1 SBM.2 SBM.3 SBM.4 SBM.5 DCBM.1 DCBM.2 DCBM.3 DCBM.4 DCBM.5
0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.99 0.41 0.17 0.06
0.1 0.00 0.00 0.21 0.29 0.60 0.00 0.99 0.43 0.38 0.12
0.2 0.00 0.00 0.58 0.79 0.71 0.00 0.00 0.00 0.00 0.00

Table 3.19: Frequency for each model to be selected using Algorithm 9. The data sets here are
generated using prototype community interaction matrix as de�ned in Equation 3.3.

46

With the above examples we see that for the constructed examples of un-identi�able net-
work data sets, cross-validation with con�dence can �nd the best approximation within the
range of models it is given. Its performance improves as we are dealing with higher density
networks, as expected, since the spectral clustering results become closer to the actual commu-
nity labels.

One intriguing observation we have for both examples is that when we increase the network
density parameter above a certain level, Algorithm 9 starts to only leave standard stochastic
block models in the con�dence set. We think this goes back to the model estimation step for
degree-corrected stochastic block models. For degree-corrected stochastic block models, we
project the truncated (or weighted) U matrix row vectors onto a sphere and then get commu-
nity labels by running clustering algorithms on these unit vectors. Then we will estimate both
the community interaction matrix B and the degree-correction parameter vector Θ. The esti-
mation of Θ will bring in an extra source of noise, since each node is allowed its own degree-
correction parameter value. When the network density parameter is low, the estimator for
B matrix is noisy even for standard stochastic block models, which makes the more �exible
degree-corrected models still comparable. Yet when density parameter is high enough and the
standard stochastic block models can be more accurate, the degree-corrected models might have
worse performance due to the extra variance introduced in the degree-correction parameter es-
timation.

47

3.1.6 Sensitivity to di�erent community interaction matrix setting
In Section 3.1.1, we set the prototype of community interaction matrix as

B0 =


1 1

q+1
. . . 1

q+1
1
q+1

1 . . . 1
q+1

...
1
q+1

1
q+1

. . . 1

 (3.4)

where we set q to be a integer like 2 or 3. This guarantees that the true community inter-
action matrix is diagonally dominant and each row is di�erent from each other. In this section
we want to see how well our method would work if we relax these conditions. In fact, the cases
in Section 3.1.5 can be seen as one example of not diagonally dominant community interaction
matrix.

Here we want to see how the performance of cross-validation with con�dence is in�uenced
when we make the community interaction matrix ’less’ diagonally dominant. In the following
experiments, we set q = 2, 1, 1

2
, 1

4
. As the value of q gets smaller, the prototype community

interaction matrix B0 becomes less and less diagonally dominant. We can therefore see how
the CVC method would perform. We set the network densities to ρ = 0.075, 0.15, 0.3, 0.45, 0.6
and generate network data sets using community interaction matrix B = ρ · B0, where B0 is
set as Equation 3.4.

In Table 3.20 - 3.27 we summarize the results of these experiments. For each combination
of number of communities K∗, diagonal dominance parameter Q and network density ρ, we
generate 200 data sets and apply our method. Table 3.20 - 3.23 contain the case where each
network has 300 total nodes, and Table 3.24 - 3.27 contain the case where each network has 600
total nodes.

ρ \K∗ 2 3 4 5
0.075 (0.245,0.755,0) (0.995,0.005,0) (1,0,0) (1,0,0)
0.15 (0,1,0) (0.025,0.975,0) (0.81,0.19,0) (1,0,0)
0.3 (0,1,0) (0,1,0) (0,1,0) (0.005,0.995,0)

0.45 (0,1,0) (0,1,0) (0,0.995,0.005) (0,0.995,0.005)
0.6 (0,1,0) (0,1,0) (0,1,0) (0,0.995,0.005)

Table 3.20: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 2. Each community is equally sized. The entire network
has 300 nodes.

48

ρ \K∗ 2 3 4 5
0.075 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (0.1,0.9,0) (0.99,0.01,0) (1,0,0) (1,0,0)
0.3 (0,1,0) (0,1,0) (0.565,0.435,0) (1,0,0)

0.45 (0,1,0) (0,1,0) (0,1,0) (0.15,0.84,0.01)
0.6 (0,1,0) (0,1,0) (0,1,0) (0,1,0)

Table 3.21: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1. Each community is equally sized. The entire network
has 300 nodes.

ρ \K∗ 2 3 4 5
0.075 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.3 (0.175,0.825,0) (1,0,0) (1,0,0) (1,0,0)

0.45 (0,1,0) (0.25,0.75,0) (1,0,0) (1,0,0)
0.6 (0,1,0) (0,1,0) (0.23,0.77,0) (1,0,0)

Table 3.22: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

2
. Each community is equally sized. The entire network

has 300 nodes.

ρ \K∗ 2 3 4 5
0.075 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.3 (1,0,0) (1,0,0) (1,0,0) (1,0,0)

0.45 (0.95,0.05,0) (1,0,0) (1,0,0) (1,0,0)
0.6 (0.06,0.94,0) (1,0,0) (1,0,0) (1,0,0)

Table 3.23: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

4
. Each community is equally sized. The entire network

has 300 nodes.

49

ρ \K∗ 2 3 4 5
0.075 (0,1,0) (0,1,0) (0.73,0.27,0) (1,0,0)
0.15 (0,1,0) (0,1,0) (0,1,0) (0.005,0.99,0.005)
0.3 (0,1,0) (0,1,0) (0,1,0) (0,1,0)

0.45 (0,1,0) (0,1,0) (0,1,0) (0,1,0)
0.6 (0,1,0) (0,1,0) (0,1,0) (0,1,0)

Table 3.24: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 2. Each community is equally sized. The entire network
has 600 nodes.

2 3 4 5
0.075 (0.025,0.975,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (0,1,0) (0,1,0) (0.655,0.345,0) (1,0,0)
0.3 (0,1,0) (0,1,0) (0,1,0) (0,1,0)

0.45 (0,1,0) (0,0.995,0.005) (0,1,0) (0,0.99,0.01)
0.6 (0,1,0) (0,0.995,0.005) (0,1,0) (0,0.99,0.01)

Table 3.25: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1. Each community is equally sized. The entire network
has 600 nodes.

2 3 4 5
0.075 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (0.26,0.74,0) (1,0,0) (1,0,0) (1,0,0)
0.3 (0,1,0) (0,1,0) (0.93,0.07,0) (1,0,0)

0.45 (0,1,0) (0,1,0) (0,1,0) (0.38,0.61,0.01)
0.6 (0,1,0) (0,1,0) (0,1,0) (0,1,0)

Table 3.26: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

2
. Each community is equally sized. The entire network

has 600 nodes.

50

2 3 4 5
0.075 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.15 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
0.3 (0.915,0.085,0) (1,0,0) (1,0,0) (1,0,0)

0.45 (0,1,0) (0.945,0.055,0) (1,0,0) (1,0,0)
0.6 (0,1,0) (0,1,0) (0.945,0.055,0) (1,0,0)

Table 3.27: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

4
. Each community is equally sized. The entire network

has 600 nodes.

When we compare the experiments among networks with the same size (i.e. among Table
3.20 - 3.23 and Table 3.24 - 3.27), we see that as q increases (and the community interaction
matrix becomes less diagonally dominant), the accuracy of our algorithm decreases. Especially
when q = 1

4
, it would select under-�tting model most of the time. The only exception is when

we have relatively few true communities (2 or 3) and high network densities (ρ = 0.45, 0.6).
When we compare between network data sets of di�erent sizes (for example, between Table
3.23 and Table 3.27), we see that when we hold the community interaction matrix constant and
increase the network size, the accuracy increases. This is also very intuitive. As we increase
the size of network, the data set contains more information, and the estimation results tend to
more closely approximate the true data generating process.

For better illustrative e�ect, we can refer to the following tables as alternatives of Table 3.20
- 3.23 and Table 3.24 - 3.27. Area of di�erent colors represent the percentage of under-�tting
(light red on the left of green), correct (green), and over-�tting (blue on right of green) model
selection results.

ρ \K∗ 2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.28: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 2. Each community is equally sized. The entire network
has 300 nodes.

51

ρ \K∗ 2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.29: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1. Each community is equally sized. The entire network
has 300 nodes.

ρ \K∗ 2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.30: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

2
. Each community is equally sized. The entire network

has 300 nodes.

ρ \K∗ 2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.31: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

4
. Each community is equally sized. The entire network

has 300 nodes.

52

ρ \K∗ 2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.32: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 2. Each community is equally sized. The entire network
has 600 nodes.

2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.33: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1. Each community is equally sized. The entire network
has 600 nodes.

2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.34: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

2
. Each community is equally sized. The entire network

has 600 nodes.

53

2 3 4 5
0.075
0.15
0.3

0.45
0.6

Table 3.35: Under-�tting, correct, and over-�tting percentage for CVC method using squared
error loss. Here each data set is generated using prototype community interaction matrix as
de�ned in Equation 3.4, where q = 1

4
. Each community is equally sized. The entire network

has 600 nodes.

We can also examine the e�ectiveness of our algorithm on community interaction matrices
with more general structures. One such structure we are looking at is as in [CL17], deterministic
prototype community interaction matrices B0 where all o�-diagonal elements are 2, while the
diagonal elements are (3, 1), (3, 2, 1), (3, 3, 1, 1), (3, 3, 2, 1, 1) for K = 2, 3, 4, 5. And the true
community interaction matrices are ρ · B0, where ρ ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. Now that the
interaction matrix is no longer diagonal dominant, the network density required for satisfactory
results becomes higher. We summarize our results numerically in Table 3.36 and visually in
Table 3.37.

ρ \K 2 3 4 5
0.15 (0.795,0.105,0.1) (0.085,0.915,0) (0.94,0.05,0.01) (1,0,0)
0.2 (0.02,0.515,0.465) (0,1,0) (0.13,0.855,0.015) (0.955,0.04,0.005)

0.25 (0,1,0) (0,1,0) (0,1,0) (0.81,0.175,0.015)
0.3 (0,1,0) (0,0.995,0.005) (0,1,0) (0.305,0.62,0.075)

Table 3.36: Under-�tting, correct, and over-�tting model selection percentages for running Al-
gorithm 8 on network data sets generated on deterministic and non-diagonal-dominant com-
munity interaction matrices.

ρ \K 2 3 4 5
0.15
0.2

0.25
0.3

Table 3.37: Under-�tting (red), correct(green), and over-�tting(blue) model selection percent-
ages for running Algorithm 8 on network data sets generated on deterministic and non-
diagonal-dominant community interaction matrices.

Another community interaction matrix structure we tested out is the random community
interaction matrix. We generate random prototype community interaction matrices using algo-

54

rithm 11. This algorithm will always generate a random matrix, where the each row and each
column will have enough di�erence, while it isn’t guaranteed to be diagonally dominant.
Algorithm 11 Random prototype community interaction matrix generation

Data: Number of communities K . Standard deviation σ. Average absolute gap ε.
Result: Random symmetric prototype community matrix B0. Its rows are on average at least

ε apart from each other in absolute di�erence.

1. Set B0 =
(

0
)
K×K

as the initial value of the output.
2. Set B01, by sampling from independent normal distributions N(1, σ2).
3. For i ∈ {2, · · · , K}:
4. Generate random vector tmpj ∼ N(1, σ2) of length K − i+ 1 as the tentative value for

row i of B0.
5. If all values of tmp are within (0, 2), and

1

K − i+ 1

K∑
j=i

|tmpj −
(
B0

)
l,j
| > ε, l ∈ {1, · · · , i− 1}

then we accept tmp as the �nal value of the ith row of B0, otherwise, we repeat (a) and
generate the random vector again

6. Copy over the lower triangle part of B0 over to the upper triangle part so that we get a
symmetric B0. Return B0.

Similar to above settings, we generate network data sets with 600 nodes and equally-sized
communities with prototype community interaction matrices generated with Algorithm 11æŁŁ
We summarize the results after running our algorithm in the following tables.

ρ\K 2 3 4 5
0.05 (0.935,0.065,0) (0.995,0.005,0) (1,0,0) (1,0,0)
0.1 (0.73,0.27,0) (0.94,0.055,0.005) (1,0,0) (1,0,0)

0.15 (0.58,0.42,0) (0.82,0.17,0.01) (1,0,0) (1,0,0)
0.2 (0.46,0.535,0.005) (0.67,0.325,0.005) (1,0,0) (1,0,0)

Table 3.38: Under-�tting, correct, and over-�tting model selection percentages for running Al-
gorithm 7 on network data sets generated on random and non-diagonal-dominant community
interaction matrices with absolute average gap ε = 0.4.

55

ρ\K 2 3 4 5
0.05 (0.875,0.125,0) (0.985,0.015,0) (1,0,0) (1,0,0)
0.1 (0.635,0.365,0) (0.88,0.12,0) (0.98,0.02,0) (0.99,0.01,0)

0.15 (0.49,0.51,0) (0.755,0.24,0.005) (0.935,0.06,0.005) (0.97,0.025,0.005)
0.2 (0.425,0.57,0.005) (0.62,0.37,0.01) (0.835,0.165,0) (0.89,0.105,0.005)

Table 3.39: Under-�tting, correct, and over-�tting model selection percentages for running Al-
gorithm 7 on network data sets generated on random and non-diagonal-dominant community
interaction matrices with absolute average gap ε = 0.6.

ρ\K 2 3 4 5
0.05 (0.835,0.165,0) (0.995,0.005,0) (1,0,0) (1,0,0)
0.1 (0.65,0.35,0) (0.9,0.1,0) (0.96,0.035,0.005) (1,0,0)

0.15 (0.505,0.49,0.005) (0.695,0.3,0.005) (0.92,0.08,0) (0.97,0.03,0)
0.2 (0.31,0.685,0.005) (0.61,0.39,0) (0.84,0.155,0.005) (0.87,0.13,0)

Table 3.40: Under-�tting, correct, and over-�tting model selection percentages for running Al-
gorithm 7 on network data sets generated on random and non-diagonal-dominant community
interaction matrices with absolute average gap ε = 0.8.

ρ\K 2 3 4 5
0.05
0.1

0.15
0.2

Table 3.41: Under-�tting (red), correct (green), and over-�tting (blue) model selection percent-
ages for running Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.4.

ρ\K 2 3 4 5
0.05
0.1

0.15
0.2

Table 3.42: Under-�tting (red), correct (green), and over-�tting (blue) model selection percent-
ages for running Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.6.

56

ρ\K 2 3 4 5
0.05
0.1

0.15
0.2

Table 3.43: Under-�tting (red), correct (green), and over-�tting (blue) model selection percent-
ages for running Algorithm 7 on network data sets generated on random and non-diagonal-
dominant community interaction matrices with absolute average gap ε = 0.8.

The general observation we see from simulation studies in this section as well as in Section
3.1.3 is that our algorithm tends to perform better on networks with higher network density
and fewer true communities. This result is quite intuitive. We estimate the community labels
by e�ectively doing clustering on a rotated version of the adjacency matrix’s row vectors. The
higher the network density is, the more non-zero elements the row vectors would have, and
the easier nodes from di�erent true communities can be distinguished. Also, the more true
communities the network contains, the more precise the estimation algorithm needs to be in
distinguishing between di�erent vectors, making it harder (and requiring more edges / higher
density from the network) to get precise estimates.

57

3.1.7 Changing up the train-test splitting: comparison with other CV
methods

We run the same simulations with equally sized community networks as in Subsection 3.1.3
here. We change the train-test splitting method according to Section 2.2, both with and without
the matrix completion after blocking out the test set each time.

Again, we generate network data sets with 600 nodes with di�erent (2, 3, 4, 5) equally sized
communities and di�erent density parameters and apply di�erent model selection algorithms
on them. For each setting, we generate 200 instances of such data sets and record the per-
centage of under-�tting, correct, and over-�tting model selection results. We summarize these
results numerically in Table 3.44 and also visually in Table 3.45. We can see that in general,
the percentage of correct model selection increases as we increase the density parameter, while
decreases as we increase true number of communities. This is pretty intuitive, since higher den-
sity indicates more edges in the realization and thus easier community detection via clustering.
Also, when we have more communities, it might be harder to exactly detect all the communi-
ties, especially when the density parameter is low, which is why we mostly see under-�tting
models being selected for K∗ = 5.

Another observation we have is that random edge sampling outperforms LatinCV by quite
a lot. This is especially obvious when we are dealing with K∗ = 4, 5, where random edge
sampling has much higher correct model selection percentage, while the LatinCV variant would
make a lot of mistakes. Also, it seems that the matrix completion step doesn’t improve the model
selection result. When we have ρ = 0.05 and K∗ = 5, the variant with matrix completion
actually has a signi�cant portion of under-�tting model selection, while the variant without
the step is making most of selections correctly.

58

ρ
A

lg
or

ith
m

2
3

4
5

Bl
oc

k-
w

ise
sp

lit
tin

g
(0

,1,
0)

(0
.00

5,0
.99

5,0
)

(0
.72

5,0
.27

5,0
)

(1
,0,

0)
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
(0

,1,
0)

(0
.00

5,0
.99

5,0
)

(1
,0,

0)
(1

,0,
0)

0.0
25

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,0.
98

5,0
.01

5)
(0

.00
5,0

.98
,0.

01
5)

(1
,0,

0)
(1

,0,
0)

La
tin

CV
w.

o.
co

m
pl

et
io

n
(0

,1,
0)

(0
.01

,0.
99

,0)
(1

,0,
0)

(1
,0,

0)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
.12

,0.
87

5,0
.00

5)
(1

,0,
0)

(1
,0,

0)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

.02
,0.

98
,0)

0.0
5

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,0.
99

,0.
01

)
(0

,0.
99

5,0
.00

5)
(0

,0.
99

5,0
.00

5)
(0

.23
5,0

.76
5,0

)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,1,

0)
(0

,1,
0)

(0
.05

5,0
.65

5,0
.29

)
(1

,0,
0)

La
tin

CV
w.

co
m

pl
et

io
n

(0
,0.

99
5,0

.00
5)

(0
,1,

0)
(0

.12
,0.

54
,0.

34
)

(0
.99

5,0
.00

5,0
)

Bl
oc

k-
w

ise
sp

lit
tin

g
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.1

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,0.

99
5,0

.00
5)

(0
,0.

99
,0.

01
)

(0
,0.

98
,0.

02
)

La
tin

CV
w.

o.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,0.
76

5,0
.23

5)
(0

.72
,0.

08
5,0

.19
5)

La
tin

CV
w.

co
m

pl
et

io
n

(0
,0.

99
5,0

.00
5)

(0
,0.

99
,0.

01
)

(0
,0.

72
5,0

.27
5)

(0
.78

,0.
04

5,0
.17

5)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

0.1
5

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,0.
99

5,0
.00

5)
(0

,0.
97

,0.
03

)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,1,

0)
(0

,1,
0)

(0
,0.

87
,0.

13
)

(0
.65

5,0
.08

5,0
.26

)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,0.
88

5,0
.11

5)
(0

.63
,0.

06
,0.

31
)

Bl
oc

k-
w

ise
sp

lit
tin

g
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
0.2

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,1,
0)

(0
,1,

0)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,1,

0)
(0

,1,
0)

(0
,0.

92
,0.

08
)

(0
.60

5,0
.01

5,0
.38

)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,1,

0)
(0

,0.
94

5,0
.05

5)
(0

.60
5,0

.04
5,0

.35
)

Ta
bl

e3
.44

:P
er

ce
nt

ag
eo

fu
nd

er
-�

tti
ng

,c
or

re
ct

an
do

ve
r-

�t
tin

gm
od

el
se

le
ct

io
n

re
su

lts
fo

rC
VC

m
et

ho
ds

w
ith

ra
nd

om
ed

ge
sa

m
pl

in
g

(’r
an

do
m

CV
’i

n
th

e
ta

bl
e)

an
d

La
tin

CV
,u

nd
er

di
�e

re
nt

ne
tw

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
e

co
m

m
un

ity
nu

m
be

rs
.

59

ρ
A

lg
or

ith
m

2
3

4
5

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.0

25
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n
Bl

oc
k-

w
ise

sp
lit

tin
g

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

0.0
5

Ra
nd

om
CV

w.
co

m
pl

et
io

n
La

tin
CV

w.
o.

co
m

pl
et

io
n

La
tin

CV
w.

co
m

pl
et

io
n

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.1

Ra
nd

om
CV

w.
co

m
pl

et
io

n
La

tin
CV

w.
o.

co
m

pl
et

io
n

La
tin

CV
w.

co
m

pl
et

io
n

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.1

5
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n
Bl

oc
k-

w
ise

sp
lit

tin
g

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

0.2
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n

Ta
bl

e
3.4

5:
Un

de
r-

�t
tin

g
(li

gh
tr

ed
on

le
ft

of
gr

ee
n)

,c
or

re
ct

(g
re

en
),

an
d

ov
er

-�
tti

ng
(b

lu
e

on
rig

ht
of

gr
ee

n)
pe

rc
en

ta
ge

of
m

od
el

se
le

ct
io

n
re

su
lts

fo
rC

VC
m

et
ho

ds
w

ith
ra

nd
om

ed
ge

sa
m

pl
in

g
(’r

an
do

m
CV

’i
n

th
e

ta
bl

e)
an

d
La

tin
CV

,u
nd

er
di

�e
re

nt
ne

tw
or

k
de

ns
ity

pa
ra

m
et

er
an

d
tru

e
co

m
m

un
ity

nu
m

be
rs

.

60

3.1.8 Swapping out Gaussian Multiplier Bootstrap: comparison with
parametric bootstrap

We also test the impact of using parametric bootstrap instead of using Gaussian multiplier boot-
strap. As mentioned in Section 2.6, we now obtain the sampling distribution of the test statistics
in the hypothesis testing step by generating partial network adjacency matrices corresponding
to the testing set according to the null hypothesis, i.e. the current K value is the true number
of communities.

We check the e�ectiveness of parametric bootstrap by running Algorithm 10 on networks
with equally sized communities, just as in Section 3.1.3. In other words, we generate networks
with K = 2, 3, 4, 5 equally sized communities and di�erent density parameters. Repeat such
generations 200 times each and see what percentage of times the algorithm can �nd the correct
number of communitiesK∗. Table 3.46 summarizes the results in this regard. Here we see quite
similar properties as the version with Gaussian multiplier bootstrap. The results become better
when we move from low-density networks to high-density networks. When we are working
with low-density networks, the algorithm �nds it hard to correctly choose the higher K values
(such as 4 or 5). Some unique aspects of these variants also exist. For example, when we look
closely at the ternary arrays, we notice that sometimes they don’t add up to 1. This is because in
some cases, the hypothesis testing step is rejecting all candidate K values, instead of accepting
at least one of them. This is likely because the bootstrap samples of the test statistic we obtained
do not exactly follow the sampling distribution of the test statistic. Although we are using the
community interaction matrix estimators using only the community label and edges from the
test set, it is still likely that the distribution doesn’t exactly follow that given the null hypothesis.
We also see that the Latin CV variants don’t work very well compared to block-wise splitting
and random edge sampling. Also, the matrix completion step doesn’t in�uence the performance
much.

61

ρ
A

lg
or

ith
m

2
3

4
5

Bl
oc

k-
w

ise
sp

lit
tin

g
(0

,0.
83

5,0
)

(0
,0.

64
,0.

01
5)

(0
.37

,0.
42

,0.
09

)
(1

,0,
0)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

95
5,0

)
(0

,0.
9,0

)
(1

,0,
0)

(1
,0,

0)
0.0

25
Ra

nd
om

CV
w.

co
m

pl
et

io
n

(0
,0.

94
,0.

04
5)

(0
,0.

8,0
.10

5)
(1

,0,
0)

(1
,0,

0)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

94
,0)

(0
.01

5,0
.88

,0)
(1

,0,
0)

(1
,0,

0)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
.10

5,0
.86

,0.
03

5)
(1

,0,
0)

(1
,0,

0)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,0.

94
5,0

)
(0

,0.
83

5,0
)

(0
,0.

79
5,0

)
(0

,0.
44

5,0
)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

97
,0)

(0
,0.

92
,0)

(0
,0.

91
5,0

)
(0

.01
,0.

88
5,0

)
0.0

5
Ra

nd
om

CV
w.

co
m

pl
et

io
n

(0
,0.

96
,0.

03
5)

(0
,0.

86
5,0

.02
5)

(0
,0.

83
,0.

02
)

(0
.20

5,0
.62

,0.
09

)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

97
5,0

)
(0

,0.
92

5,0
)

(0
.04

,0.
43

5,0
.36

5)
(1

,0,
0)

La
tin

CV
w.

co
m

pl
et

io
n

(0
,1,

0)
(0

,0.
99

,0.
01

)
(0

.05
5,0

.55
5,0

.39
)

(1
,0,

0)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,0.

91
5,0

)
(0

,0.
85

,0.
05

5)
(0

,0.
79

,0.
08

)
(0

,0.
7,0

.04
5)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

96
5,0

)
(0

,0.
92

,0)
(0

,0.
91

5,0
)

(0
,0.

85
,0)

0.1
Ra

nd
om

CV
w.

co
m

pl
et

io
n

(0
,0.

95
,0.

05
)

(0
,0.

91
5,0

.03
)

(0
,0.

81
5,0

.02
5)

(0
,0.

61
5,0

.02
5)

La
tin

CV
w.

o.
co

m
pl

et
io

n
(0

,0.
98

,0)
(0

,0.
96

5,0
.01

)
(0

,0.
56

5,0
.13

)
(0

.91
5,0

.01
,0.

06
5)

La
tin

CV
w.

co
m

pl
et

io
n

(0
,0.

97
,0.

03
)

(0
,0.

99
,0.

01
)

(0
,0.

70
5,0

.26
)

(0
.87

5,0
.01

5,0
.11

)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,0.

92
,0.

00
5)

(0
,0.

79
,0.

14
)

(0
,0.

84
5,0

.12
5)

(0
,0.

82
,0.

11
)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

97
,0)

(0
,0.

94
,0.

01
5)

(0
,0.

91
,0.

01
5)

(0
,0.

86
,0.

03
)

0.1
5

Ra
nd

om
CV

w.
co

m
pl

et
io

n
(0

,0.
94

,0.
05

)
(0

,0.
91

5,0
.07

)
(0

,0.
85

,0.
05

5)
(0

,0.
80

5,0
.05

5)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

93
,0.

02
)

(0
,0.

96
5,0

.02
5)

(0
,0.

60
5,0

.08
)

(0
.77

5,0
.03

5,0
.17

)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,0.
99

,0.
01

)
(0

,1,
0)

(0
,0.

89
,0.

10
5)

(0
.78

5,0
.04

,0.
17

)
Bl

oc
k-

w
ise

sp
lit

tin
g

(0
,0.

89
,0.

01
5)

(0
,0.

83
5,0

.15
)

(0
,0.

82
,0.

18
)

(0
,0.

81
5,0

.17
5)

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

94
,0)

(0
,0.

93
5,0

.02
)

(0
,0.

95
5,0

.02
)

(0
,0.

81
5,0

.11
)

0.2
Ra

nd
om

CV
w.

co
m

pl
et

io
n

(0
,0.

92
,0.

06
5)

(0
,0.

9,0
.08

)
(0

,0.
91

,0.
05

)
(0

,0.
89

,0.
07

5)
La

tin
CV

w.
o.

co
m

pl
et

io
n

(0
,0.

88
,0.

04
)

(0
,0.

93
,0.

05
)

(0
,0.

76
5,0

.08
)

(0
.72

,0.
02

5,0
.22

)
La

tin
CV

w.
co

m
pl

et
io

n
(0

,1,
0)

(0
,0.

99
5,0

.00
5)

(0
,0.

91
,0.

08
5)

(0
.72

5,0
.02

,0.
24

)

Ta
bl

e3
.46

:P
er

ce
nt

ag
eo

fu
nd

er
-�

tti
ng

,c
or

re
ct

an
d

ov
er

-�
tti

ng
m

od
el

se
le

ct
io

n
re

su
lts

fo
rC

VC
m

et
ho

ds
w

ith
pa

ra
m

et
ric

bo
ot

st
ra

p,
un

de
rd

i�
er

en
tn

et
w

or
k

de
ns

ity
pa

ra
m

et
er

an
d

tru
e

co
m

m
un

ity
nu

m
be

rs
.D

at
a

se
ts

in
th

is
ta

bl
e

ar
e

ge
ne

ra
te

d
us

in
g

th
e

st
an

da
rd

St
oc

ha
st

ic
Bl

oc
k

M
od

el
.

62

ρ
A

lg
or

ith
m

2
3

4
5

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.0

25
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n
Bl

oc
k-

w
ise

sp
lit

tin
g

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

0.0
5

Ra
nd

om
CV

w.
co

m
pl

et
io

n
La

tin
CV

w.
o.

co
m

pl
et

io
n

La
tin

CV
w.

co
m

pl
et

io
n

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.1

Ra
nd

om
CV

w.
co

m
pl

et
io

n
La

tin
CV

w.
o.

co
m

pl
et

io
n

La
tin

CV
w.

co
m

pl
et

io
n

Bl
oc

k-
w

ise
sp

lit
tin

g
Ra

nd
om

CV
w.

o.
co

m
pl

et
io

n
0.1

5
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n
Bl

oc
k-

w
ise

sp
lit

tin
g

Ra
nd

om
CV

w.
o.

co
m

pl
et

io
n

0.2
Ra

nd
om

CV
w.

co
m

pl
et

io
n

La
tin

CV
w.

o.
co

m
pl

et
io

n
La

tin
CV

w.
co

m
pl

et
io

n

Ta
bl

e3
.47

:P
er

ce
nt

ag
eo

fu
nd

er
-�

tti
ng

(li
gh

tr
ed

on
th

el
ef

to
fg

re
en

),
co

rr
ec

t(
gr

ee
n)

,o
ve

r-
�t

tin
g

(b
lu

eo
n

rig
ht

of
gr

ee
n)

,a
nd

no
ne

(g
ra

y)
m

od
el

se
le

ct
io

n
re

su
lts

fo
rC

VC
m

et
ho

ds
w

ith
pa

ra
m

et
ric

bo
ot

st
ra

p.
D

at
as

et
sg

en
er

at
ed

us
in

g
th

es
ta

nd
ar

d
St

oc
ha

st
ic

Bl
oc

k
M

od
el

.

63

3.1.9 Note on Computation Speed
In our above discussions, we tested the properties of our method, as well its several variants.
As we have discussed, there are several steps where we need to make a choice between several
options.

As the discussion in Section 2.2 (and in particular the comparison in Figure 2.3) shows,
block-wise node-pair splitting would always lead to splitting that leaves the entire rows and
columns of the adjacency matrix in one fold only. One important advantage this feature bring
is that we always get to operate on partial adjacency matrices and thus have access to all the
optimizations for matrix operations that come with any modern statistical software. However,
when we are working with random edge sampling or LatinCV edge sampling, each fold would
come as very random subsets of the adjacency matrix. The operations become much harder to
vectorize and thus will take longer time.

For example, after obtaining the model estimation for a givenK , we would need to get edge
probability predictions over the test set. And for convenience, let’s assume now we are dealing
with the �rst fold out of V folds, so the test set contains node 1 through node n

V
. Then given

the model estimates ĝ(tr,K), B̂(tr,K), we simply need to turn the community label vector for the
test set

ĝ
(tr,K)
i 1≤i≤ n

V

into a matrix G n
V
×K , such that

Gi,k = 1 i�. ĝi = k

And we can obtain the predictions by the following:

P̂ (test,K) = G · B̂(tr,K) ·GT

When we are dealing with random edge sampling or LatinCV, however, the test set with
each fold will be a very random set of node pairs which we need to keep track of individually.
In table 3.48 we show an example of such a test set. For the same edge probability prediction
task, we would need to loop through each row of this list and get its prediction by calculating

B̂
(tr,K)

ĝ
(tr,K)
i ,ĝ

(tr,K)
j

and we would lose all the speed up from vectorized operations.

Row index Column index
1 1 2
2 2 3
3 1 5
4 3 5
5 2 6

Table 3.48: Example of a test set using LatinCV. Here we are splitting all node pair into 3 fold
in a network of 6 nodes.

64

When we use the Gaussian multiplier bootstrap for obtaining sampling distribution of our
test statistic, we only need the cross-validated loss matrix, which can be obtained by looping
through each candidate K value and each fold exactly once, in order to obtain the predictions
for each node pair and get the validated loss by calculating the loss function value using the
prediction and its corresponding test set value. While for the parametric bootstrap, we will
need to loop through them multiple times, obtaining the bootstrap samples and calculate the
test statistic for each sample. We thus have to pre-train and store all the model estimates and
test set edge probability predictions for each fold and candidate K combination, which would
sacri�ce some memory but save the time of repeated model estimation. When implemented
completely using native R code, this procedure is painfully slow. Each run would take roughly
180 seconds, making it almost impossible to test its consistency properties comprehensively. We
had to instead pro�le the algorithm and turn its slower components into C++ functions with
the help of Rcpp package ([EFA+11]) as well as utilize parallel computation in the bootstrap
sample generation step (assigning independent generations to di�erent cores). The time for
each run is thus lowered to a relatively tolerable level (∼ 40 seconds).

The low-rank matrix completion step can also be a drag on the computational speed. When
we are dealing with larger networks, calculating the singular value decomposition and giving
the low-rank approximation by adding up the components corresponding to the leading singu-
lar values could take a while. In our experiments, we �nd for a network of 600 nodes, adding
the matrix completion step roughly adds 5 seconds to the running time of the algorithm.

In Table 3.49, we summarize the average runtime of all variants of these algorithms. Most of
the experiments are on two kinds of machines: a 32-core computer with 64G memory and each
core with 2.6GHz speed, a 4-core computer with 16G memory and each core with 3.6GHz speed
(special thanks to the department of mathematics for granting us access to these machines).
Some subroutines of our algorithm are well-optimized R functions that would utilize parallelism
when it is possible, yet we still notice for some variants of our algorithm, the running time is
better on the 4-core machine, likely because the cost of transmitting data back and forth over-
weighs the speedup from parallel computation, especially since gaussian multiplier bootstrap
can be largely vectorized and thus perform almost as well on a single core.

65

A
lg

or
ith

m
Ti

m
e

(se
co

nd
s)

Re
m

ar
k

bl
oc

k-
w

ise
no

de
pa

ir
sp

lit
tin

g
&

m
ul

tip
lie

rb
oo

ts
tra

p
3.6

3
(2

.46
)

Pa
ra

lle
lc

om
pu

tin
g

do
es

n’
t

re
al

ly
he

lp
w

ith
sp

ee
d.

D
at

a
tra

ns
m

iss
io

n
co

st
ov

er
w

ei
gh

s
th

e
ga

in
fro

m
pa

ra
lle

l
co

m
pu

tin
g.

ra
nd

om
ed

ge
sa

m
pl

in
g

w.
o.

m
at

rix
co

m
pl

et
io

n
&

m
ul

tip
lie

rb
oo

ts
tra

p
11

.13
(7

.51
)

ra
nd

om
ed

ge
sa

m
pl

in
g

w.
m

at
rix

co
m

pl
et

io
n

&
m

ul
tip

lie
rb

oo
ts

tra
p

16
.34

(1
1.2

5)
La

tin
CV

w.
o.

m
at

rix
co

m
pl

et
io

n
&

m
ul

tip
lie

rb
oo

ts
tra

p
11

.13
(8

.26
)

La
tin

CV
w.

m
at

rix
co

m
pl

et
io

n
&

m
ul

tip
lie

rb
oo

ts
tra

p
16

.38
(1

0.6
4)

bl
oc

k-
w

ise
no

de
pa

ir
sp

lit
tin

g
&

pa
ra

m
et

ric
bo

ot
st

ra
p

29
.87

Sp
ee

d-
up

po
ss

ib
le

th
ro

ug
h

pa
ra

lle
lc

om
pu

tin
g.

Bo
ttl

en
ec

k
is

in
re

m
ov

in
g

id
en

tic
al

co
lu

m
ns

in
th

e
cr

os
s-

va
lid

at
ed

lo
ss

m
at

rix
.

ra
nd

om
ed

ge
sa

m
pl

in
g

w.
o.

m
at

rix
co

m
pl

et
io

n
&

pa
ra

m
et

ric
bo

ot
st

ra
p

37
.98

ra
nd

om
ed

ge
sa

m
pl

in
g

w.
m

at
rix

co
m

pl
et

io
n

&
pa

ra
m

et
ric

bo
ot

st
ra

p
44

.38
La

tin
CV

w.
o.

m
at

rix
co

m
pl

et
io

n
&

pa
ra

m
et

ric
bo

ot
st

ra
p

37
.58

La
tin

CV
w.

m
at

rix
co

m
pl

et
io

n
&

pa
ra

m
et

ric
bo

ot
st

ra
p

44
.20

Ta
bl

e3
.49

:A
ve

ra
ge

ru
nn

in
gt

im
eo

n
an

et
w

or
kw

ith
60

0n
od

es
w

ith
3e

qu
al

ly
siz

ed
co

m
m

un
iti

es
an

db
oo

ts
tra

p
sa

m
pl

es
iz

eB
=

20
0.

Fo
ra

ll
th

e
ta

sk
sw

e
ar

e
us

in
g

32
-c

or
e

co
m

pu
te

rw
ith

64
G

m
em

or
y,

ea
ch

co
re

w
ith

2.6
GH

zs
pe

ed
.N

ot
e

th
at

fo
rt

he
�r

st
�v

e
ta

sk
s,

pa
ra

lle
lis

m
do

es
n’

tr
ea

lly
he

lp
w

ith
ru

nn
in

g
tim

e,
so

a
4-

co
re

co
m

pu
te

re
ac

h
w

ith
3.6

GH
z

sp
ee

d
(n

um
be

rs
in

pa
re

nt
he

se
s)

w
ou

ld
ac

tu
al

ly
be

fa
st

er
fo

r
th

e
sa

m
e

ta
sk

s.
Ea

ch
av

er
ag

e
ru

nn
in

g
tim

e
es

tim
at

e
co

m
es

fro
m

av
er

ag
e

of
10

0
ru

ns
.

N
ot

e
th

at
fo

r
th

e
pa

ra
m

et
ric

bo
ot

st
ra

p
ta

sk
s,

w
eh

ea
vi

ly
op

tim
iz

ed
so

m
es

lo
w

er
R

fu
nc

tio
ns

by
re

-w
rit

in
g

th
em

in
C+

+
w

ith
th

eh
el

p
of

Rc
pp

pa
ck

ag
e

an
d

pa
ra

lle
lis

m
.S

o
th

is
is

no
tr

ea
lly

a
fa

ir
co

m
pa

ris
on

.I
n

fa
ct

,b
lo

ck
-w

ise
no

de
pa

ir
sp

lit
tin

g
w

ith
Ga

us
sia

n
m

ul
tip

lie
rb

oo
ts

tra
p

is
m

uc
h

fa
st

er
if

w
e

im
pl

em
en

ta
ll

of
al

go
rit

hm
sv

er
ba

tim
.

66

3.2 Application on real-world data sets
In this section, we apply our method on some real-world data sets to test its e�ectiveness. The
data sets we will be using are mostly network data sets that are widely explored in the network
community, particularly for the purpose of community detection.

3.2.1 Political Blog Data Set
The political blog data set contains a set of 1494 American political blogs and their connection
in terms of hyperlinks. This data set was �rst collected and analyzed in [AG05] before the 2004
US Election. It has since been widely used in the network community, especially for commu-
nity detection purposes. [KN11], [ZLZ11], [Jin15], [Lei16], [Lei18] all used it as an example of
network with clear community structures as well as heterogeneous degree distribution within
communities. We have a subset of 1222 political blogs with manual labels of the leaning of each
blog as either liberal or conservative. In Figure 3.4 we show variances explained by the top 15
principal components as well as the projection onto the �rst two principal components of the
adjacency matrix among these blogs. We can see clearly from the �gure that the rank-2 ap-
proximation can explain a decent amount of variance in the data set. Also, there are two major
communities in this network and the division follows the blogs’ party a�liations very closely.

1

2

3

4 8 12

k

V
a
ri
a
n
c
e

0.00

0.05

0.10

0.15

-0.05 0.00 0.05 0.10 0.15
x1

x
2

PartyAffiliation

Conservative
Liberal

Figure 3.4: Left plot shows the variances explained by each principal component of the political
blogs adjacency matrix. Right plot shows the projections of all political blogs onto �rst two
principal components of their adjacency matrix.

Here we apply the cross-validation with con�dence method on this data set. We will try
both the version for standard stochastic block models as well as the version for degree-corrected
stochastic block models. It turns out that when we use the standard SBM version of algorithm 8,
it tends to select an over-�tting model (usually the largest K value in the candidate set). While
the DCBM version of the algorithm would consistently selectK = 2 correctly. This is likely due
to the fact that the political blogs are very heterogeneous in terms of degree distribution. When
using the standard stochastic block model, we cannot account for the individual di�erence in
number of connections each blog makes and therefore end up with an over-�tting model. The
additional �exibility DCBM a�ords us helps with the problem and leads us to the correct model.

67

In Table 3.50, we show the confusion matrix between estimated communities using the
adjacency matrix and the manual labeling of each blog. We see that the estimated communities
are very close to the ground truth.

1 2
1 534 14
2 52 622

Table 3.50: Confusion matrix between manual labels (columns) and estimated community labels
assuming a degree-corrected stochastic model with K = 2.

We ran the algorithms 200 times to see its consistency under randomness of the random
fold assignment. We show the P-values for these repetitions in Figure 3.5 and 3.6. It is clear
that degree-corrected model is the more appropriate assumption to make. When we use the
algorithm for standard stochastic block models, the K value selected is clearly too large and
not stable, while when we use the method for degree-corrected stochastic block models, we
consistently select 2 as the correct K value. The results for 3-fold CVC is also shown in Table
3.51.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 3-fold CVC for political blogs data
 assuming standard SBM

 using extra squared error loss

Figure 3.5: P-values for di�erent candidate K values using 3-fold CVC assuming standard
stochastic block model.

68

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 3-fold CVC for political blogs data
 assuming degree-corrected SBM

 using extra squared error loss

Figure 3.6: P-values for di�erent candidate K values using 3-fold CVC assuming degree-
corrected stochastic block model.

Selected K for SBM Selected K for DC-SBM
K 5 6 7 K 2

Frequency 55 67 78 Frequency 200

Table 3.51: Frequency table for selected K values using 3-fold CVC on the political book data
set, with extra squared error loss function.

In order to check the robustness under di�erent fold numbers and loss functions, we also
ran the algorithm for degree-corrected stochastic block models on the political blogs data set
using 5-fold, 10-fold CVC as well as using the negative likelihood loss function. The results
are still very desirable. We show the results for the 5-fold and 10-fold CVC with extra squared
error loss in Figure 3.7. We see that the algorithm is still consistently choosing K = 2 as the
correct model, although some over-�tting model (such as K = 4, 5, 6) might also end up in
the con�dence set, although they won’t be selected since K = 2 is still the most parsimonious
model in the con�dence set.

69

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 5-fold CVC for political blogs data
 assuming degree-corrected SBM

 using extra squared error loss

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 10-fold CVC for political blogs data
 assuming degree-corrected SBM

 using extra squared error loss

Figure 3.7: P-values for di�erent candidate K values using 5-fold and 10-fold CVC assuming
degree-corrected stochastic block model. Here we are using the extra squared error loss func-
tion.

We also ran the algorithm using negative likelihood loss function. The similar P-value re-
sults are shown in Figure 3.8. The performance are roughly the same. The algorithm will consis-
tently choose K = 2 as the correct output, while some over-�tting models such as K = 4, 5, 6
would remain in the con�dence set when we use 5-fold and 10-fold CVC. The CVC method for
degree-corrected stochastic block models performs very well on the political blogs data set. It
very consistently choose the correct model under random fold assignment and is robust under
changing fold numbers and loss functions.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 5-fold CVC for political blogs data
 assuming degree-corrected SBM

 using negative likelihood loss

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

K

P
-v

a
lu

e

P-value in 10-fold CVC for political blogs data
 assuming degree-corrected SBM

 using negative likelihood loss

Figure 3.8: P-values for di�erent candidate K values using 5-fold and 10-fold CVC assuming
degree-corrected stochastic block model. Here we are using the negative likelihood loss func-
tion.

When we use Algorithm 9, almost 100% of the time, only the degree-corrected stochastic
block model with K = 2 is retained in the con�dence set. In other words, only the degree-
corrected stochastic block model is not rejected by the model selection process. The results are
so robust that there isn’t much variation in 200 runs of the algorithm. We therefore won’t show

70

any visualization of the results here. This is likely due to the fact that the political blog data set
has lots of nodes (1222 total blogs), and thus the randomness in train-test split won’t a�ect the
model selection outcome as much.

71

3.2.2 Political Books Data Set
The political books data set is a set of 105 political books and the undirected link relations
between them according to co-purchase records on Amazon. We also have the manual labeling
of these books according to their party-a�liation: liberal, conservative, and independent. We
visualize the principal component analysis result for this data set as well and show the results
in Figure 3.9. We can see again that the rank-2 approximation would be a decent picture of the
variations in the data set. The projections onto the �rst two principal components show two
clear communities along the party line, although the independent books are mixed with the
two major communities and likely will be hard to distinguish. This might be because people
tend to not buy books written by authors on the other aisle, while they are �ne buying books
with independent viewpoints.

0.5

1.0

4 8 12
k

V
a
ri
a
n
c
e

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2
x1

x
2

PartyAffiliation

Conservative
Liberal
Independent

Figure 3.9: Left plot shows the variances explained by each principal component of the political
blogs adjacency matrix. Right plot shows the projections of all political blogs onto �rst two
principal components of their adjacency matrix.

When we apply the CVC method on this data set with candidate set K = {1, 2, 3, 4, 5}, we
very consistently get K = 2 as the selected number of communities. This is true whether we
use the SBM or the DC-SBM version of the algorithm. This is consistent with what we see from
the previous visualizations. Although the independent books are usually classi�ed separately,
it cannot quite distinguish itself and form its own community. Table 3.52 shows the comparison
between the estimated community labels assuming degree-corrected stochastic block models
and the manual labels which come with the data set. It is clear that each estimated community
mostly corresponds to books with one party a�liation, with the independent books evenly split
between the two communities.

1 2 3
1 7 43 3
2 6 0 46

Table 3.52: Confusion matrix between book labels (columns) and estimated communities (rows)
assuming DC-SBM with K = 2.

72

Selected models Frequency
SBM: 3, DCBM: 2 78
SBM: 3, DCBM: 3 43
SBM: 4, DCBM: 2 15
SBM: 4, DCBM: 3 15
SBM: 2, DCBM: 2 12
SBM: 5, DCBM: 2 8
SBM: 3, DCBM: 4 7

DCBM: 3 5
SBM: 5, DCBM: 3 5

Table 3.53: Most frequent model selection results selecting in both standard stochastic block
models and degree-corrected stochastic block models, using spectral weighting of the singular
vector matrix. We select the most parsimonious model within the retainedK’s in each category.
We omitted the results that appear fewer than 5 times out of 200 runs.

When we use the Algorithm 9, i.e. the CVC method which can select among both standard
stochastic block models and degree-corrected stochastic block models, we get some quite in-
teresting results. Now there are two kinds of models in the con�dence set, so there is not a
clear-cut most parsimonious model any more. We can only pick the smallest candidate K ac-
cepted within each category. Through 200 runs, we summarize the results appearing the most
frequently in Table 3.53 (omitting all the results appearing less than 5 times). In this case, we
see that the degree-corrected stochastic block model with K = 2, which is widely accepted
as the most appropriate model for this data set, is retained in the con�dence set at least half
of the time. There is clearly a lot of variability in the model selection result in this case. We
think this is likely due to the fact that there are only 105 books in the data set and therefore
the randomness in fold assignment would impact the model estimation and selection results
signi�cantly.

73

74

Chapter 4

Theoretical Results

As mentioned in chapter 2, the CVC procedure would take in a set of candidate models and
conduct hypothesis testing between each pair of them. A model would be eliminated as soon
as it fares signi�cantly worse compared to one other model. And the output would be the set
of all models not eliminated in the procedure. Then out of all these models, we would select
the most stringent one as the �nal output.

In order to prove that this output would contain the optimal (true) model with guaranteed
probability, we would need to show that (i) an under-�tting model is guaranteed to be rejected
by the hypothesis test de�ned in chapter 2 and (ii) the true model won’t be rejected when
compared with an over-�tting model. Therefore, the output set should rarely contain an under-
�tting model, and would only contain optimal and some over-�tting models. And the most
stringent model in this set would very likely be the true model.

Compared to the original CVC procedure under linear regression settings as mentioned in
2.4, the technical challenges in this project are as follows:

1. Unlike the relatively straightforward estimation for simple linear models, estimation of
stochastic block models is usually a two-step process, where one �rst determines the
community labels and then estimates the model parameters. As introduced in chapter
1, there are many approaches to determine the community labels, and the properties of
these methods di�er a lot from each other. The estimation with correct K value is well
understood and thoroughly studies in the literature. We want to make study as general
as possible and not to impose unrealistic assumptions on the estimation with incorrect
K value. Therefore we proceed assuming the following:

1.1. When K = K∗, and the network density ρn = Ω(logn
n

), where Ω(·) is the asymp-
totic lower bound notation as de�ned in Table 1.1, we assume that the community
recovery is exact. This is a well-studied result, for example in [CWA12], [CX14],
[AS15]. When this assumption doesn’t hold, our theoretical study would be a little
more di�cult. Given the community labels assigned by the community recovery
algorithm, the edges within the same identi�ed community are no longer indepen-
dent. But intuitively, it should still be possible to overcome this challenge if we make
reasonable assumption about the precision of the recovery algorithm. For example,
we can assume that the symmetric di�erence between an identi�ed community and

75

the true community cannot exceed a certain portion of the true community, leading
to an upper bound in the error of the edge probability estimate in the shape of∣∣∣∣∣B̂k,k′ −B∗k,k′

∣∣∣∣∣ ≤ cρn (4.1)

for some c > 0.
1.2. When K 6= K∗, we make an assumption about the size of each identi�ed com-

munities by the incorrect model. More speci�cally, we assume that each identi�ed
community in the test set at least has size on the order of

√
n

logn
. Noticing that this

is an lower-order term compared to n, this is not a very strong assumption. For
under-�tting models, we know that at least two communities will have signi�cant
mixture since there isn’t enough degrees of freedom in the model, and our proof
will be mostly based on that. While in over-�tting models, we don’t know much
about their behavior, and such size assumptions will help us a lot in characterizing
the behavior of such models and make the proof more convenient.

2. Under the regression setting as addressed in Section 2.4, each validated loss term is in-
dependent and identically distributed in a single fold, while in stochastic block models,
nodes are correlated with each other through their community labels. More speci�cally,
the test set validated losses are no longer i.i.d. They are conditionally independent given
the correct community labels of the nodes. We will need to keep this in mind and be more
cautious while using concentration inequalities to depict the behavior of these validated
losses.

3. When we prove that under-�tting models are guaranteed to be eliminated, it is easy to see
intuitively that the under-�tting model would have extra loss due to the fact that at least
two communities will have signi�cant mixture in the same identi�ed community since
the model doesn’t have large enoughK , just as shown in [CL17]. However, since the test
statistic is normalized, as in Equation 2.6, it isn’t straightforward that this would neces-
sarily lead to the under-�tting model being rejected in the hypothesis testing step. We
would need to characterize the normalizing term with care in order to show it rigorously.

4. When we show over-�tting models would not signi�cantly outperform true models under
our hypothesis testing framework, we would need to upper bound the extra loss for the
true model as well as over-�tting models. This will require completely di�erent technique
compared to the methods we used for proving the under-�tting case. As we would expect,
the over-�tting model might have very similar performances compared to the true model,
especially when it is a re�nement of the true model (i.e. most true communities remain
unchanged, only one or several got split into smaller ones). Then when we recall Equation
2.6, the numerator and denominator might both be very small. We need a community size
assumption to exclude the case that some extremely small identi�ed communities might
lead to extreme edge probability estimates.

Here we prove the consistency of selecting number of communities for stochastic block
models using cross validation with con�dence while using the rectangular set for model es-
timation and assuming exact consistent recovery of the community labels. More speci�cally,

76

we have the following main theorem under certain assumptions for Algorithm 8 we de�ned in
Chapter 2.

The assumptions we will be using will be the following:
A.1 The smallest true community has size at least π′0n.

A.2 The smallest identi�ed community in the test set has size on the order
√

1
ρn

.

A.3 When we use the correct K value: K = K∗, we can achieve exact recovery of communities.
A.4 B = ρnB0, where B0 is a K ×K symmetric matrix with entries in (0, 1], and the rows of

B0 are all distinct. The rate ρn, which controls the network sparsity, satis�es ρn = Ω(logn
n

)

A.5 The P-value threshold in Algorithm 8 is selected to be a sequence αn such that αn ∈ (1
n
, 1)

and αn → 0.
A.6 Number of candidate models |K| is �nite.

Remark: our assumptions still have potential to be relaxed. For example, the lower bound
for size of communities in A.1 can be even smaller. The size of candidate model set |K| can
change slowly with respect to n in A.6 without in�uencing most of the results we will be show-
ing.

Our theoretical results can be summarized as the following theorem:

Theorem 4.1

Under assumptions A.1 - A.6, with the squared error loss as de�ned in Equation 2.3. We
have the following:

1. For K̃ < K∗, we have
P (TK̃,K∗ > Zαn)→ 1

where TK̃,K∗ is the test statistic in our hypothesis testing as de�ned in Equation 2.6,
Zαn is the upper αn quantile of a standard normal distribution.
In other words, an under-�tting model is guaranteed to be eliminated in Algorithm
8.

2. For K̃ > K∗, we have
sup
K>K∗

TK∗,K̃ = OP (1)

Since Zαn →∞ as n→∞ and αn → 0, we know that ∀K > K∗,

P (TK∗,K̃ < Zαn)→ 1

In other words, the true model won’t be eliminated by an over-�tting model and will
be included in the con�dence set Acv.

In the following two sections and the corresponding sections in the appendix we will be
stating and proving the two parts in this main theorem.

77

4.1 Under-�tting case
In [CL17], it is shown that the under �tting model will always be rejected with high probability
since it will surely have higher squared error loss using regular cross validation. This is because
when the nodes are assigned into fewer communities than there truly are, the pigeon hole
principle guarantees that there will be signi�cant portions of at least two true communities
assigned to the same identi�ed community. And that misalignment would lead to signi�cant
extra loss.

In our case, we use the squared error loss for measuring the �t of a model. Let Îk,k′ =
{(i, j) : (ĝi, ĝj) = (k, k′), i > j} denote the pairs (i, j) where i is assigned to community k
and j is assigned to community k′. The extra squared error loss on cell (i, j) between using
community number K1, K2 is denoted as:

ξ
(K1,K2)
i,j = (Aij − B̂(K1,tr)

ij)2 − (Aij − P̂ (K2,tr)
ij)2

= (2Aij − B̂(K1,tr)
ij − B̂(K2,tr)

ij)(B̂
(K2,tr)
ij − B̂(K1,tr)

ij)

= 2Aij(B̂
(K2,tr)
ij − B̂(K1,tr)

ij) +
(
B̂

(K1,tr)
ij

)2

−
(
B̂

(K2,tr)
ij

)2

Here, B̂(K,tr)
ij denotes the the probability assigned to cell (i, j) when using community num-

ber K . In other words, if (i, j) ∈ Îk,k′ , then B̂(K1,tr)
ij = 1

|Î(tr)
k,k′ |

∑
(s,t)∈Î(tr)

k,k′

Ast. In the following part,

when there is no danger of confusion, we would write ξ(K1,K2)
i,j as ξ(i,j). When we do not specify

the models being contrasted, it is most likely the comparison between the correct model and
an over-�tting/under-�tting model. The context should make it very easy to tell.

Our main result is summarized in the following theorem.

78

Theorem 4.2

Under assumptions A.1, A.3 - A.5,
With the squared error loss, we have when K̃ < K ,

P (TK̃,K > Zαn)→ 1

where TK̃,K is the test statistic established using Gaussian multiplier bootstrap approach
and test statistic is de�ned as

TK̃ =

√
n2

V 2
·

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K̃,K)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K̃,K)
i,j

)2

the average extra loss normalized by the second moment of the extra loss, just as de�ned
in Equation 2.6.

Compared to the original cross-validation with con�dence method, here we are normaliz-
ing the empirical mean of ξ’s using their uncentered second moment, instead of the standard
deviation. We are making this choice mostly for the convenience it brings to our later theoret-
ical work. Though we would argue that this won’t a�ect the e�ectiveness of the algorithm by
much. The purpose of normalization is to bring all the ξ’s to the same scale, which uncentered
second moment should work almost as well as standard deviations. Also, the comparisons in
Chapter 3 also show that two versions don’t di�er much in terms of performance.

The proof of this theorem can be found in appendix A. The assumptions made here are also
very similar to those in in [CL17].

In our settings, the pigeon hole principle argument would only apply under some additional
assumptions. Furthermore, the Gaussian multiplier bootstrap approach requires studentization
and therefore complicates the problem. It is possible that dividing by the standard deviation
would make the ratio vanish, if the standard deviation is large enough. So in order to show that
this statistical test will reject under-�tting models, we would need to not only lower bound

µ̂K,K̃ =
1(

n(te)

2

) ∑
(i,j)∈N(te)×N(te)

ξ
(K̃,K)
i,j

but also upper bound
M̂K,K̃ =

1(
n(te)

2

) ∑
(i,j)∈N(te)×N(te)

(
ξ

(K̃,K)
i,j

)2

i.e. the second moment of ξ(K̃,K)
i,j ’s over the test set (from here on we loosely use the notation

M̂ to denote the empirical uncentered second moment of ξ(i,j)’s).
It is possible that over some region the estimates of edge probabilities might ’blow up’ and

thus making the denominator larger than ideal. Therefore we split the Cartesian product of all

79

assigned communities into two parts. When the average of interactions is within a constant
factor of the network density ρn, there is no need to worry about the standard deviation term
blowing up and we can lower bound the empirical mean term using the pigeon hole principle
argument. When the average of interactions is not bounded by a constant multiple of ρn, we
will then show that the corresponding increase in the numerator will also be on the same or-
der and thus the test statistic will still be lower bounded and is guaranteed to be signi�cant
asymptotically.

When we have K̃ < K , where K is the true number of communities in the data generating
process. Also, note that Zαn ≈

√
2 log n when we set αn = 1

n
. And by assumption A.4 we have

αn ∈ (1
n
, 1).We want to show that

P
(
TK̃ ≥

√
2 log n

)
→ 1

In other words, we ultimately want to show that

P


√
n2

V 2
·

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K̃,K)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K̃,K)
i,j

)2
≥
√

2 log n

→ 1 (4.2)

We can further rewrite µ̂K̃,K and M̂K̃,K as follows

µ̂K̃,K =
∑

k,k′∈{1,··· ,K̃}

|Îk,k′|(
n
2

)
 1

|Îk,k′ |

∑
(i,j)∈Îk,k′

ξ(i,j)



M̂K̃,K =

√√√√√ ∑
k,k′∈{1,··· ,K̃}

|Îk,k′ |(
n
2

)
 1

|Îk,k′|

∑
(i,j)∈Îk,k′

(
ξ(i,j)

)2


As we will show later, the denominator terms are controlled by a constant factor of of ρ2

n.
So in order to show Equation 4.2, we need to lower bound the numerator and show that it is
greater than (logn)

3
2

n2 up to a constant.
For each (k, k′) ∈ {1, · · · , K̃} × {1, · · · , K̃}, let tk,k′ be such that B̂(K̃,tr)

k,k′ = tk,k′ρn. Let
As = {Îk,k′ : tk,k′ < s}. Here s can be a large enough constant. Then we can split µ̂K̃,K and

80

M̂K̃,K into

µ̂K̃,K

M̂K̃,K

=

∑
As

|Îk,k′ |

(n
2)

 1

|Îk,k′ |

∑
(i,j)∈Îk,k′

ξ(i,j)

+
∑
Ac

s

|Îk,k′ |

(n
2)

 1

|Îk,k′ |

∑
(i,j)∈Îk,k′

ξ(i,j)


√√√√√∑

As

|Îk,k′ |

(n
2)

 1

|Îk,k′ |

∑
(i,j)∈Îk,k′

(
ξ(i,j)

)2

+
∑
Ac

s

|Îk,k′ |

(n
2)

 1

|Îk,k′ |

∑
(i,j)∈Îk,k′

(
ξ(i,j)

)2


=

(1− w) · (I) + w · (II)√
(1− w) · (III) + w · (IV)

where

w =

∑
Îk,k′∈Ac

s

|Îk,k′ |(
n
2

)
(I) and (II) are the average of ξ(i,j) overAs andAcs, respectively, (III) and (IV) are the average

of
(
ξ(i,j)

)2

over As and Acs, respectively.
We separate the proof into three cases depending on the relative sizes and speed of growth

in As and Acs.
1. As is large enough and Acs grows su�ciently fast. We can lower bound (I) by the pigeon

hole principle argument sinceAs is large enough. We can also lower bound (II) and upper
bound (IV) using Bernstein’s inequality since size ofAcs is growing at a su�cient rate such
that (II) and (IV) cannot deviate too far from their expectations.

2. As is relatively large, andAcs grows very slowly. (I) can still be lower bounded, and notice
that (1−w) is very small and the negative side of (II) can be bounded, we can still obtain
a lower bound for the test statistic since both numerator and denominator is dominated
by the �rst term.

3. As isn’t large enough for using the pigeon hole principle. Now the second term has
comparable weight as the �rst term in both numerator and denominator. And since (II)
is lower bounded above 0 and larger than the lower bound than the negative side of (I),
we can still lower bound the test statistic.

In the above section, our proof is based on the assumption of exact recovery in the model
estimation process when we use the correct K (A.3). However, this is not a very realistic as-
sumption in many cases. It would be an interesting and challenging extension to relax the
assumption and base our argument on a weaker assumption such as approximate recovery, for
example. The challenge would be that the independence conditions we are relying on a lot in
the proof of the above Theorem would no longer hold and we will need to �nd other approaches
for making the same argument. Intuitively, we might still be able to achieve similar guaran-
tees if we add assumptions about the precision of the approximate recovery algorithm, such as
bounding the error of edge probability estimates to a constant factor of ρn, as we mentioned in
Equation 4.1.

81

4.2 Over-�tting case
Here we use some simple scenario to motivate more general settings of over-�tting in order to
depict the behavior of validated loss under CVC. For the convenience of proof, we de�ne the
following:

TK,K̃ =

√
n2

V 2
·

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K,K̃)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K,K̃)
i,j

)2

where n is the total number of nodes in the test set and ξ is de�ned as in section 4.1.
Eventually we want to show that the over-�tting model will not signi�cantly outperform

the true model. Again, since αn ∈ (1
n
, 1) and Z 1

n
<
√

2 log n for large enough n’s, we want to
show the following:

P


√
n2

V 2
·

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K,K̃)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K,K̃)
i,j

)2
>
√

2 log n

→ 0

i.e.

P


1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K,K̃)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K,K̃)
i,j

)2
>

√
2 log n

n

→ 0

for K̃ > K .
Our main result in this case is summarized in the following theorem.

Theorem 4.3

Under assumptions A.1 - A.6, With the squared error loss, we have when K̃ > K∗,

TK∗,K̃ = OP (1)

where TK,K̃ is the test statistic de�ned by the empirical mean of squared error losses over
the test set divided by the square root of its second moment, as in Equation 2.6.

One challenge in proving this result lies in the fact that it is hard to characterize the behavior
of the over-�tting model. It is possible that it would be a re�nement of the true model, i.e. it
is just further splitting some communities in the true model into smaller ones, in which case it
is relatively straightforward to prove the result, since the over-�tting model’s behavior is very

82

clear. This case is very possible when we are dealing a small K . But when we are dealing with
a true model with moderately large K value, it isn’t a practical assumption any more.

Therefore we added an extra assumption about the minimum size of discovered community
in the test set. This is helpful in later trying to bound the behavior of estimated edge probabil-
ities by the over-�tting model. Since the density parameter ρn = Ω

(
logn
n

)
, we know that this

minimum size order is roughly Ω
(√

n
logn

)
, which is a lower order term compared to n. This is

therefore not a very strong assumption.
We will see the other challenge when we expand the test statistic:

TK∗,K̃

=

√
n2

V 2
·

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

ξ
(K̃,K)
i,j√

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
ξ

(K̃,K)
i,j

)2

=
n

V

1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
2Aij − B̂(K,tr)

ĝ
(K)
i ,ĝ

(K)
j

− B̂(K̃,tr)

ĝ
(K̃)
i ,ĝ

(K̃)
j

)(
B̂

(K̃,tr)

ĝ
(K̃)
i ,ĝ

(K̃)
j

− B̂(K,tr)

ĝ
(K)
i ,ĝ

(K)
j

)
√√√√ 1

(n(te)

2)

∑
(i,j)∈N(te)×N(te)

(
2Aij − B̂(K,tr)

ĝ
(K)
i ,ĝ

(K)
j

− B̂(K̃,tr)

ĝ
(K̃)
i ,ĝ

(K̃)
j

)2(
B̂

(K̃,tr)

ĝ
(K̃)
i ,ĝ

(K̃)
j

− B̂(K,tr)

ĝ
(K)
i ,ĝ

(K)
j

)2

Another challenge is that the term (B̂
(K,tr)

ĝi
(K)ĝj

(K) − B̂
(K̃,tr)

ĝi
(K̃)ĝj

(K̃)
) in the numerator and the de-

nominator. It is easy to see that this term can be very small in many cases. For example, when
the over-�tting model is a re�nement of the true model, the over-�tting model should give the
same estimates as the true model on most regions where it didn’t conduct the extra splitting,
while in the other regions it can still give estimates pretty close to what the true model gives.
Therefore the denominator could be very small. Fortunately the same term exists on the same
order in the numerator. We can try to bound the term in the �rst pair of parentheses and then
handle the numerator and denominator simultaneously at the same time.

The strategy we are using is to slice the summation in the numerator and the denominator
into regions according to the assigned community labels by both the true model and the over-
�tting model. Since we don’t have assumption about the over-�tting model’s behavior on the
training set, it is possible that the over-�tting model might give edge probability estimates that
deviates a lot from the network density. Then we split the proof into two cases depending on
whether the edge probability estimates of the over-�tting model.

1. If the over-�tting model’s edge probability estimate B̂(K̃,tr)’s are moderate in the sense
that they are always a constant factor of ρn. Then the ratio can be relatively easy to bound
using the Cauchy-Schwartz inequality after bounding some terms in the numerator and
the denominator.

2. When the over-�tting mode is giving extreme edge probability estimate B̂(K̃,tr)’s over
some regions, we look into the term corresponding to the region in both the numerator

83

and the denominator and realize that dropping both terms from the ratio would lead to
the ratio being larger than the original value. And this over-estimated ratio will fall back
to the �rst scenario, which we can bound using Cauchy-Schwartz inequality.

In the above section, we are still relying on the assumption of exact recovery when using
the correct K (A.3). Besides that we are adding some mild assumptions for the convenience
of the proof, especially to characterize the over-�tting model’s behavior. The proof would be-
come considerably more di�cult if we drop these assumptions, especially since we know too
little about an over-�tting model in general and many extreme corner cases might ruin the
argument.

84

Chapter 5

Conclusions and Future Work

In this thesis, we proposed an extension of cross validation with con�dence to solve the problem
of selecting number of communities for stochastic block models. We started by reviewing the
relevant literature and �nding the critical building blocks to construct our method. Network
cross validation is an intuitive, generic, and widely applicable framework for model selection
problems, yet its classical form isn’t statistical consistent. We therefore adapted the cross val-
idation with con�dence framework make the model selection more systematic by adding a
formal hypothesis testing, and only reject a model if it is underperforming after considering
the randomness in the train-test splitting.

Train-test splitting is no longer a straightforward process in network context. Nodes, edges
and node-pairs can all be seen as entities in the network, while there are subtleties with view-
ing any as the entity to be split. We explored block-wise node-pair splitting, random edge
sampling, and LatinCV node pair splitting by implementing them and testing their e�ective-
ness. It turns out block-wise node-pair splitting is conceptually easier to understand and also
more straightforward to implement. Also, its implementation can naturally take advantage
of many optimized default behavior of statistical software (the R language in our case) such
as vectorized operation and matrix calculation. Therefore it has by far the best running time
when paired with Gaussian multiplier bootstrap. Random edge sampling and LatinCV has very
similar performance in terms of running speed, and both will get further dragged if we add a
low-rank matrix recovery step to it. When we compare the model selection accuracy, however,
we �nd that random edge sampling is performing much better than LatinCV, although the latter
promises equally representation of all nodes in each fold.

Another decision we are facing is how to obtain the reference distribution given the val-
idated loss matrix. If we follow the cross-validation with con�dence procedure closely, we
would go with Gaussian multiplier bootstrap. But we also notice that it is designed mostly for
some less accommodating scenarios (for example, large number of columns, unable to obtain
validated loss bootstrap samples generatively). In our case, we can actually generatively obtain
bootstrap samples of the validated loss matrix. We implemented the parametric bootstrap ap-
proach and paired it with three variants of train-test splitting method, and compared the model
selection performance. It turns out that the reference distribution obtained through this ap-
proach isn’t very ideal. Sometimes the algorithm wouldn’t select any candidate K since none

85

of the P-values turn out to be greater than 0.05. This is also validated by comparing the P-value
distribution under Null hypothesis.

After studying the properties of our method via extensive simulation studies, we applied
the method on real-word data sets such as the US political blog data set and political book data
set. We found that our method pretty consistently picks the correct number of communities for
both data sets when restricting the candidate models to just one category of stochastic block
models. When we put candidate models from both categories as inputs of the algorithm, we still
�nd that the model widely accepted as the consensus truth (degree-corrected stochastic block
model with K = 2) is contained in the con�dence set a lot of the times for the political books
data set, largely due to the fact that it has only 105 nodes and therefore the fold assignment
would have signi�cant impact on the model selection result. The political blog data set, on the
other hand, doesn’t get impacted by the randomness in fold assignment much, since it has over
1000 nodes and therefore is much more robust.

We studies the theoretical property of (one main variant of) our algorithm. It turns out the
under mild conditions (i.e. if the density parameter diminishes at the rate of logn

n
, where n is

the number of nodes in the network), our method with squared error loss and block-wise node-
pair splitting will pick the correct model with guaranteed probability. The proof comes in two
parts, we �rst show that any under-�tting model will be eliminated, since there is always an
overhead when we try to model a more complicated data generating process with a simplistic
model. We then show that any over-�tting model is unlikely to eliminate the true K value in
the hypothesis testing. This part is more challenging since it is hard to model the behavior
of over-�tting models. We had to add an assumption about the minimum community size (on
the order of n

logn
) when using the over-�tting model. Since this is still smaller compared to the

average community size n
K

, it isn’t a very aggressive additional assumption.
Possible future work include more extensively testing and packaging our code for the usage

of the network community. We also note that it might be interesting to look into the deeper rea-
son why parametric approach doens’t give equivalent results compared to the Gaussian multi-
plier bootstrap approach. Extending our theoretical work to more relaxed settings (for example,
not assuming exact recovery, include DC-SBM, etc.) will also be an exciting future direction.
Note that cross-validation with con�dence is a framework that should broadly apply to most
model selection problems where we can conduct classical cross-validation and have a �nite can-
didate model space, therefore it makes sense to explore more areas to extend this framework
to.

86

Appendix A

Proofs for results in 4.1

One result we will be using repeatedly is the following lemma:

Lemma 1.1

Suppose We have a set of node pairs τ = {(i, j)|(i, j) ∈ τ} ⊂ Ak,k′ , and

Aij ∼ Bernoulli(B∗k,k′), i.i.d

Then we have ∣∣∣∣∣∣∣
∑

(i,j)∈τ
Aij

|τ |
−B∗k,k′

∣∣∣∣∣∣∣ = OP

(√
ρn
|τ |

)

where E(Ai,j) = B∗k,k′ ,∀(i, j) ∈ τ ⊂ Ik,k′ .

Proof: Notice that here Aij ∼ Bernoulli(B∗k,k′) and B∗k,k′ = cρn for some constant c.
Notice that

E


∑

(i,j)∈τ
Aij

|τ |
−B∗k,k′


2

=
1

|τ |2
V ar(

∑
(i,j)∈τ

Aij) =
B∗k,k′(1−B∗k,k′)

|τ |
∼ ρn
|τ |

Then using the Markov inequality, we have
∑

(i,j)∈τ
Aij

|τ |
−B∗k,k′


2

= OP

(
ρn
|τ |

)

87

and therefore ∣∣∣∣∣∣∣
∑

(i,j)∈τ
Aij

|τ |
−B∗k,k′

∣∣∣∣∣∣∣ = OP

(√
ρn
|τ |

)

A direct corollary of the lemma 1.1 would be that if we have two sets containing each other
τ1 ⊂ τ2 ⊂ Ik,k′ , let P̂τ1 and P̂τ2 denote the average of Aij’s over τ1 and τ2, respectively. Then

|P̂τ1 − P̂τ2| = OP

(√
ρn
|τ1|

)

A.1 When As is relatively large, and Ac
s grows su�ciently

fast.
To be more speci�c, under this scenario we have

∑
Îk,k′∈Ac

s

|Îk,k′| ≤ (π′0)2

8K̃2 ·
(
n
2

)
, yet still

∑
Îk,k′∈Ac

s

|Îk,k′ | ≥

c0n for some constant c0. In other words, c0n
(n
2)
≤ w ≤ (π′0)2

8K2 .

WhenAs is large enough, the extra loss within it
∑

Îk,k′∈As

∑
(i,j)∈Îk,k′

ξ(i,j) will be lower bounded

using pigeon hole principle in similar fashion as in [CL17]. But since Acs is also growing fast
enough, Berstein’s inequality guarantees the extra loss cannot be too far away from its expec-
tation. Therefore we can lower bound the test statistic in this case.
(i) Lower bound (I)

Given the assumptions above, here we want to show that

(I) & ρ2
n

We will be closely following the argument given in [CL17] using the pigeon hole principle.
When we are considering an under �tting model, there has to be at least two true communi-
ties which have signi�cant portions being falsely assigned to the same community label. The
additional squared error loss is guaranteed to be large enough for this lower bound we want to
show.

Since we have the above assumption, we know that ∀Îk,k′ ∈ Acs, min{|Îk|, |Îk′ |} ≤
√

2 · (π′0)2

8K̃2 ·
(
n
2

)
≤

π′0n

2K̃
(considering it is possible that k = k′ and Îk,k′ is a triangle instead of a rectangle). Let

CK̃ = {k : |Îk| > π′0n

2K̃
}. Then if k, k′ ∈ CK̃ , then Îk,k′ ∈ As, and we have∑

k∈CK̃

|Îk| = n−
∑
k 6∈CK̃

|Îk|

≥ n− K̃ · π
′
0n

2K̃

= n · (1− π′0
2

)

88

In other words, the union of Îk’s all the communities in CK̃ would at most miss π′0n

2
nodes,

which is half the size of the smallest possible community. Therefore, follow the argument of
[CL17] ,∃k ∈ CK̃ and 1 ≤ l1 < l2 < K such that |Îk ∩ Ilj | ≥

|Ilj |
2K̃
≥ π′0n

2K̃
for j = 1, 2. Since

the community interaction matrix B0 doesn’t have identical rows, ∃1 ≤ l3 ≤ K such that
B0(l1, l3) 6= B0(l2, l3). There exists k′ ∈ CK̃ such that |Îk′ ∩ Il3 | ≥

|Il3 |
2K̃
≥ π′0n

2K̃
. Without loss,

we can set k = 1, k′ = 2, l1 = 1, l2 = 2, l3 = 3.
Let τk,k′,l,l′ represent the pairs (i, j) such that i ∈ Îk ∩ Il, j ∈ Îk′ ∩ Il′ , i 6= j. Let P̂ be

the average of Aij over τ1,2,1,3 ∪ τ1,2,2,3 and P̂k,k′,l,l′ be the average of Aij over τk,k′,l,l′ . Here
B1,3 and B2,3 represent the average of Aij’s over I1,3 and I2,3. I1,3 represents the pairs between
community 1 and community 3 according to the labels assigned using community number K .

Then we have

(I) =
1∑

Îk,k′∈As

|Îk,k′ |

∑
Îk,k′∈As

∑
(i,j)∈Îk,k′

ξ(i,j)

=
1∑

Îk,k′∈As

|Îk,k′ |

 ∑
Îk,k′∈(CK̃×CK̃)

∑
(i,j)∈Îk,k′

ξ(i,j) +
∑

Îk,k′∈As\(CK̃×CK̃)

∑
(i,j)∈Îk,k′

ξ(i,j)


=

1∑
Îk,k′∈As

|Îk,k′ |

(∑
(i,j)∈τ1,2,1,3

ξ(i,j) +
∑

(i,j)∈τ1,2,2,3

ξ(i,j) +
∑

Îk,k′∈(CK̃×CK̃)

(k,k′,l,l′)6∈{(1,2,1,3),(1,2,2,3)}

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)

+
∑

Îk,k′∈As\(CK̃×CK̃)

∑
(i,j)∈Îk,k′

ξ(i,j)

)

≥ 1∑
Îk,k′∈As

|Îk,k′ |

(∑
(i,j)∈τ1,2,1,3

[(Aij − P̂)2 − (Aij −B1,3)2] +
∑

(i,j)∈τ1,2,2,3

[(Aij − P̂)2 − (Aij −B2,3)2]

+
∑

Îk,k′∈(CK̃×CK̃)

(k,k′,l,l′)6∈{(1,2,1,3),(1,2,2,3)}

∑
(i,j)∈τk,k′,l,l′

[(Aij − P̂k,k′,l,l′)2 − (Aij −Bl,l′)
2]

+
∑

Îk,k′∈As\(CK̃×CK̃)

∑
(i,j)∈Îk,k′

ξ(i,j)

)

Let λ = |τ1,2,1,3|
|τ1,2,1,3|+|τ1,2,2,3| . We know that (π′0)2

1+(π′0)2
≤ λ ≤ 1

1+(π′0)2

We consider the �rst term �rst.

89

∑
(i,j)∈τ1,2,1,3

ξ(i,j)

= |τ1,2,1,3|[(P̂ − P̂1,2,1,3)2 − (P̂1,2,1,3 −B1,3)2]

= |τ1,2,1,3|[(1− λ)2(P̂1,2,1,3 − P̂1,2,2,3)2 − (P̂1,2,1,3 −B1,3)2] (... plugging in the de�nition of λ)

≥ |τ1,2,1,3|

[
(1− λ)2

2
(B1,3 −B2,3)2 − (1− λ)2[(P̂1,2,1,3 −B1,3)− (P̂1,2,2,3 −B2,3)]2 − (P̂1,2,1,3 −B1,3)2

]
(... di�erence is a perfect square)

≥ |τ1,2,1,3|

[
(1− λ)2

2
(B1,3 −B2,3)2 − 2(1− λ)2(P̂1,2,1,3 −B1,3)2 − 2(1− λ)2(P̂1,2,2,3 −B2,3)2

−(P̂1,2,1,3 −B1,3)2

]
(... di�erence is a perfect square)

≥ c(nρn)2 +OP (ρn)

The �rst term of the last step depends on the fact that |τ1,2,1,3| ≥ (π′0)2n2

K̃2 , and |B1,2−B1,3| ≥
c′ρn, where c′ only depends on B0. The second step again comes from applying the corollary
of Lemma 1.1.

Similarly we can lower bound the second term by c(nρn)2 +OP (ρn).
Also notice that

∑
(i,j)∈τk,k′,l,l′

ξ(i,j) =
∑

(i,j)∈τk,k′,l,l′

[(Aij − P̂k,k′,l,l′)2 − (Aij −Bl,l′)
2]

=
∑

(i,j)∈τk,k′,l,l′

[(Aij −
1

|τk,k′,l,l′|
∑

(i,j)∈τk,k′,l,l′

Aij)
2 − (Aij −Bl,l′)

2]

= −|τk,k′,l,l′|(Bl,l′ − P̂k,k′,l,l′)2

= OP (ρn) · · · · · · (Using Corollary of Lemma 1.1)

where P̂k,k′,l,l′ the average of Aij over τk,k′,l,l′ and Bl,l′ represents the probability assigned
to Il,l′ in the exact model. We can thus limit the negative side of the latter two terms.

Therefore we have
(I) &

1(
n
2

)(n2ρ2
n +O(ρn)) & ρ2

n

(ii) Lower bounding (II)
Here we want to show that

(II) & t2ρ2
n

where t = max
k,k′∈{1,2,··· ,K̃}

tk,k′ .

90

We will see that the expectation of (II) is on the order t2ρ2
n. Since we are assumingAcs is also

growing fast enough, we can apply Bernstein’s inequality to (II) − E(II) and show that (II)
cannot deviate far from its expectation with high probability. Therefore with a high probability
it will be at least on the order of t2ρ2

n.
For Îk,k′ ∈ Acs, we know tk,k′ > s from the de�nition of As. For all the pairs (i, j) ∈ Îk,k′ ,

we have

ξ(i,j) = −2Aij(P̂K̃,ij − P̂K,ij) + P̂ 2
K̃,ij
− P̂ 2

K,ij(
ξ(i,j)

)2

= 4A2
ij(P̂K̃,ij − P̂K,ij)

2 − 4Aij(P̂K̃,ij − P̂K,ij)
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)
+
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2

(noting A2
ij = Aij) = 4Aij(P̂K̃,ij − P̂K,ij)

2(1− P̂K̃,ij − P̂K,ij) +
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2

And thus

Eξ(i,j) = −2P ∗ij(P̂K̃,ij − P̂K,ij) + P̂ 2
K̃,ij
− P̂ 2

K,ij

& t2k,k′ρ
2
n − 2tk,k′ρ

2
n

E
(
ξ(i,j)

)2

= E
[
4Aij(P̂K̃,ij − P̂K,ij)

2(1− P̂K̃,ij − P̂K,ij) +
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2
]

. 4ρn · t2k,k′ρ2
n − 4ρn · tk,k′ρn · t2k,k′ρ2

n + (t2k,k′ρ
2
n)2

. t2k,k′ρ
3
n − 4t3k,k′ρ

4
n + t4k,k′ρ

4
n

we can set ξ̃(i,j) = ξ(i,j) − E(ξ(i,j)), it’s easy to see it has mean 0 and variance P ∗ij(1 −
P ∗ij)(P̂K̃,ij − P̂K,ij)2, where P ∗ij denotes the true interaction probability between i and j and it
would be on the order of ρn. Apply Bernstein’s inequality to ξ̃(i,j)’s over Acs:

P
(

(II) ≤ E(II)− c1t
2ρ2
n

)
= P

(1∑
Îk,k′∈Ac

s

|Îk,k′ |

∑
Îk,k′∈Ac

s

∑
(i,j)∈Îk,k′

ξ̃(i,j) ≤ −c1t
2ρ2
n

)

≤ exp

−
1
2

(
− c1t

2ρ2
n(

∑
Îk,k′∈Ac

s

|Îk,k′|)
)2

∑
Îk,k′∈Ac

s

∑
(i,j)∈Îk,k′

E(ξ̃(i,j))2 + 1
3
M ·

(
c1t2ρ2

n

∑
Îk,k′∈Ac

s

|Îk,k′ |
)


= exp
(
−

1
2
c2

1t
4ρ4
n(

∑
Îk,k′∈Ac

s

|Îk,k′|)2

(∑
Îk,k′∈Ac

s

|Îk,k′ |
)
P ∗ij(1− P ∗ij)(P̂K̃,ij − P̂K,ij)2 + 1

3
M · (c1t2ρ2

n

∑
Îk,k′∈Ac

s

|Îk,k′|)

)

Note here M = max
{
|2P ∗ij(P̂K̃,ij − P̂K,ij)|, |2(P ∗ij − 1)(P̂K̃,ij − P̂K,ij)|

}
∼ tρn

91

Therefore

P
(1∑
Îk,k′∈Ac

s

|Îk,k′|

∑
Îk,k′∈Ac

s

∑
(i,j)∈Îk,k′

ξ̃(i,j) ≤ −c1t
2ρ2
n

)

. exp
(
−

1
2
c2

1t
4ρ4
n

(∑
Îk,k′∈Ac

s

|Îk,k′ |
)2

∑
Îk,k′∈Ac

s

|Îk,k′ |(t2ρ3
n + 1

3
c1t3ρ3

n)

)

= exp
(
−

1
2
c2

1t
2ρn

∑
Îk,k′∈Ac

s

|Îk,k′|

1 + 1
3
c1t

)
Since we know

∑
Îk,k′∈Ac

s

|Îk,k′ | = O(n), ρn ·
∑

Îk,k′∈Ac
s

|Îk,k′ | = O(log n)→∞. This probability

is vanishing as n→∞. In conclusion, we know that with high probability

(II) ≥ (1− c1)E(II) & (1− c1)t2ρ2
n

We can set c1 = 1
2

for example and have that with high probability

(II) & t2ρ2
n

(iii) Upper bound (III)
Here we want to show that (III) . s2ρ2

n.
For (i, j) ∈ Îk,k′ , we already know that(

ξ(i,j)
)2

= 4A2
ij(P̂K̃,ij − P̂K,ij)

2 − 4Aij(P̂K̃,ij − P̂K,ij)
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)
+
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2

(noting A2
ij = Aij) = 4Aij(P̂K̃,ij − P̂K,ij)

2(1− P̂K̃,ij − P̂K,ij) +
(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2

≤ 4(P̂K̃,ij − P̂K,ij)
2(1− P̂K̃,ij − P̂K,ij) +

(
P̂ 2
K̃,ij
− P̂ 2

K,ij

)2

. 4(tk,k′ρn)2 + (t2k,k′ρ
2
n)2

. t2k,k′ρ
2
n

Since for Îk,k′ ∈ As, we have tk,k′ ≤ s.

(III) =
1∑

Îk,k′∈As

|Îk,k′|

 ∑
Îk,k′∈As

∑
(i,j)∈Îk,k′

(
ξ(i,j)

)2


. s2ρ2

n

(iv) Upper bounding (IV)

92

Similar to (iii), we have
(IV) . t2ρ2

n

where t = max
k,k′∈{1,2,··· ,K̃}

tk,k′

(v) Combining the results
From (i) - (iv) we know that

µ̂K̃,K
σ̂K̃,K

≥ (1− w) · (I) + w · (II)√
(1− w) · (III) + w · (IV)

&
(1− w) · ρ2

n + w · 1
2
t2ρ2

n√
(1− w) · s2ρ2

n + w · t2ρ2
n

with high prob.

where c0n

(n
2)
≤ w ≤ (π′0)2

8K2 , in other words, w is between the order 1
n

and a constant. Either w
is on the order 1

n
and the second part will be dominated in the weighted sum and we have

µ̂K̃,K
σ̂K̃,K

&
ρn
s

or w is on the order of a constant, then we have

µ̂K̃,K
σ̂K̃,K

& min{ ρ2
n√
s2ρ2

n

,
1
2
t2ρ2

n√
t2ρ2

n

} & ρn

Either way, we will always have

µ̂K̃,K
σ̂K̃,K

& ρn = Ω(
log n

n
)

A.2 When As is relatively large, and Ac
s grows very slowly.

More speci�cally, we have
∑

Îk,k′∈Ac
s

|Îk,k′ | ≤ (π′0)2

2K̃2 ·
(
n
2

)
, and furthermore

∑
Îk,k′∈Ac

s

|Îk,k′ | ≤ c0n. In

other words, w ≤ c0n

(n
2)

.
Here we still assume that As is large enough yet Acs doesn’t grow fast enough. Therefore

now we cannot use the same argument to lower bound (II). Notice that we can limit the negative
side of (II), and its weight in the numerator will be very small in this case, we can still achieve
our ultimate goal.

In this case we can lower bound (I) and upper bound (III)(IV) in exactly the same way as in
A.1.

93

And apply Lemma 1.1 to (II), noting now for each τk,k′,l,l′ ∈ Acs, we have∑
(i,j)∈τk,k′,l,l′

ξ(i,j) =
∑

(i,j)∈τk,k′,l,l′

(P̂K̃,ij − Aij)
2 − (P̂K,ij − Aij)2

= −|τk,k′,l,l′|(P̂K̃,ij − P̂K,ij)
2

& −|τk,k′,l,l′|
ρn

|τk,k′,l,l′ |
& −ρn

Therefore

(II) =
1∑

τk,k′,l,l′∈Ac
s

|τk,k′,l,l′|
∑

τk,k′,l,l′∈Ac
s

∑
(i,j)∈τk,k′,l,l′

ξ(i,j) ≥ KK̃ · (−ρn)∑
τk,k′,l,l′∈Ac

s

|τk,k′,l,l′ |
& −ρn

µ̂K̃,K
σ̂K̃,K

&
(1− w) · (I) + w · (II)√
(1− w) · (III) + w · (IV)

&
(1− w) · ρ2

n − w · ρn√
(1− w) · s2ρ2

n + w · t2ρ2
n

Here we know that w ≤ c0n

(n
2)

. 1
n

. Therefore the �rst items in the numerator and denomi-
nator would both dominate the latter term. And we have

µ̂K̃,K
σ̂K̃,K

& ρn = Ω(
log n

n
)

A.3 When As is not large enough.

In other words, we have
∑

Îk,k′∈Ac
s

|Îk,k′ | > (π′0)2

2K̃2 ·
(
n
2

)
, and therefore

∑
Îk,k′∈As

|Îk,k′| ≤ (1− (π′0)2

2K̃2)·
(
n
2

)
.

In other words, w >
(π′0)2

2K̃2 .
Now we consider the case where As isn’t large enough for the pigeon hole argument to

hold. Now we can still bound (II), (III), (IV) using the same arguments as in A.1. We will
instead bound the negative side of (I) and show that it doesn’t a�ect the validity of the overall
inequality.

94

Noting now for each τk,k′,l,l′ ∈ As, let Āk,k′,l,l′ represent the average of Aij’s over τk,k′,l,l′ .
We have the following∑

(i,j)∈τk,k′,l,l′

ξ(i,j) =
∑

(i,j)∈τk,k′,l,l′

(P̂K̃,ij − Aij)
2 − (P̂K,ij − Aij)2

≥
∑

(i,j)∈τk,k′,l,l′

(Āk,k′,l,l′ − Aij)2 − (P̂K,ij − Aij)2

= −|τk,k′,l,l′ |(Āk,k′,l,l′ − P̂K,ij)2

= |τk,k′,l,l′|OP

(ρn
|τk,k′,l,l′ |

)
& −ρn

Therefore we have

(I) =
1∑

τk,k′,l,l′∈As

|τk,k′,l,l′|
∑

τk,k′,l,l′∈As

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)

&
KK̃ · (−ρn)∑

τk,k′,l,l′∈As

|τk,k′,l,l′|

& −ρn

So now

µ̂K̃,K
σ̂K̃,K

&
(1− w) · (I) + w · (II)√
(1− w) · (III) + w · (IV)

&

1

(n
2)
· (−ρn) + w · t2ρ2

n√
(1− w) · s2ρ2

n + w · t2ρ2
n

(... plug in the de�nition of (1 - w))

where (π′0)2

2K̃2 < w ≤ 1. In the numerator the second term dominates and in the denominator
both terms are on the same order, therefore we get

µ̂K̃,K
σ̂K̃,K

& ρn = Ω(
log n

n
)

Combining A.1 ∼ AsSmall, we know that in the under �tting case,

µ̂K̃,K
σ̂K̃,K

& Ω(
log n

n
)

95

Therefore

P
(
TK̃ ≥

√
2 log n

)
= P

[√ n2

V 2

µ̂K̃,K
σ̂K̃,K

≥
√

2 log n
]

= P
[1

V

µ̂K̃,K
σ̂K̃,K

≥
√

2 log n

n

]
= P

[
Ω(

log n

n
) ≥
√

2 log n

n

]
→ 1

In summary, using our method, the under �tting models will always be rejected.

96

Appendix B

Proofs for results in 4.2

Here we assume we have a network with K∗ true communities and we are �tting a model
with K̃ > K∗. Again, let Ik represent the set of nodes in the kth true community, while Îl
represent the lth community labeled by the over-�tting model. Let Î(K,tr)

k,k′ represent the node
pairs (i, j) Let τk,k′,l,l′ represent the pairs (i, j) such that i ∈ Îk ∩ Il, j ∈ Îk′ ∩ Il′ , i 6= j, here
k, k′ ∈ {1, · · · , K} and l, l′ ∈ {1, · · · , K̃}. Î(K,tr)

k represents the kth community identi�ed
by model with K in the training set, and n(K,tr)

k represents its size. Similarly with Î(K,tr)
k and

n
(K,te)
k . Î(K)

k represents the kth community, in both training and testing set.
Here B̂(K,tr)

k,k′ represent the edge probability estimate for node pairs (i, j) where i ∈ Îk, j ∈
Îk′ when we use a model with K (when K is the correct value, then Ik = Îk since we assume
exact recovery of communities). These edge probability estimates are the empirical mean of
edges on the corresponding set in the rectangular set:

B̂
(K,tr)
k,k =

1(
n
(K,tr)
k

2

)
+ n

(K,tr)
k · n(K,te)

k

∑
(i,j)∈Î(K,tr)

k ×Îk
i<j

Aij

B̂
(K,tr)
k,k′ =

1

n
(K,tr)
k n

(K,tr)
k′ + n

(K,tr)
k · n(K,te)

k′ + n
(K,tr)
k′ · n(K,te)

k

∑
(i,j)∈

(
Î
(K,tr)
k ×Î(K,tr)

k′

)
∪
(
Î
(K,te)
k ×Î(K,te)

k′

)
∪
(
Î
(K,te)

k′ ×Î(K,te)
k

)
Aij

97

numerator =
1(

n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)

=
1(

n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

[
(Aij − B̂(K,tr)

k,k′)2 − (Aij − B̂(K̃,tr)
l,l′)2

]
=

1(
n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

(2Aij − B̂(K,tr)
k,k′ − B̂

(K̃,tr)
l,l′)(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)

=
1(

n(te)

2

)∑
l,l′

[∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(2Aij − B̂(K,tr)
k,k′ − B̂

(K̃,tr)
l,l′)(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)

]

=
1(

n(te)

2

)∑
l,l′

[∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2Aij(B̂
(K̃,tr)
l,l′ − B̂(K,tr)

k,k′) +
(
B̂

(K,tr)
k,k′

)2

−
(
B̂

(K̃,tr)
l,l′

)2
]

We use the following set to denote such combinations of (l, l′): Dc0 = {(l, l′) : B̂
(K̃,tr)
l,l′ >

c0ρn}. Here we let c0 be a constant that is much larger than 1. And we consider the following
two scenarios:

B.1 When all the estimates are moderate from the over-
�tting model

In this case Dc0 = ∅. i.e. B̂(K̃,tr)
l,l′ ≤ c0ρn for all (l, l′).

Here we can focus on only the summation over I(K̃,te)
l,l′ in the numerator, which is the fol-

lowing:

∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(2Aij − B̂(K,tr)
k,k′ − B̂

(K̃,tr)
l,l′)(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)

=
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

[
2(Aij − B̂(K,tr)

k,k′)− (B̂
(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)
]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)

=
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2(Aij − B̂(K,tr)
k,k′)(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)−
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(B̂
(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

≤
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2(Aij − B̂(K,tr)
k,k′)(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)

=
∑
k,k′

[(∑
(i,j)∈τk,k′,l,l′

Aij − |τk,k′,l,l′ |B̂(K,tr)
k,k′

)
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)
]

98

Using Lemma 1.1, we know that∣∣∣∣∣∣∣
∑

(i,j)∈τk,k′,l,l′
Aij

|τk,k′,l,l′ |
−B∗k,k′

∣∣∣∣∣∣∣ = OP (

√
ρn

|τk,k′,l,l′|
)

therefore ∣∣∣∣∣∣
∑

(i,j)∈τk,k′,l,l′

Aij − |τk,k′,l,l′|B∗k,k′

∣∣∣∣∣∣ = OP (
√
|τk,k′,l,l′|ρn)

Also,

|B̂(K,tr)
k,k′ −B

∗
k,k′| = OP (

√
ρn

|Î(K,tr)
k,k′ |

)

Noting that τk,k′,l,l′ ⊂ Î
(K,te)
k,k′ and |Î(K,te)

k,k′ | < Î
(K,tr)
k,k′ . We can combine these two and we know

that ∑
(i,j)∈τk,k′,l,l′

Aij − |τk,k′,l,l′ |B̂(K,tr)
k,k′ = OP (

√
|τk,k′,l,l′ |ρn)

By de�nition of the Op operator, we know that ∀ε > 0,∃M > 0, such that

P

∣∣∣∣∣ ∑
(i,j)∈τk,k′,l,l′

Aij − |τk,k′,l,l′|B̂(K,tr)
k,k′

∣∣∣∣∣ > M ·
√
|τk,k′,l,l′|ρn

 < ε

In other words, ∃c1 > 0 that is large enough s.t.∣∣∣∣∣∣
∑

(i,j)∈τk,k′,l,l′

Aij − |τk,k′,l,l′ |B̂(K,tr)
k,k′

∣∣∣∣∣∣ ≤ c1 ·
√
|τk,k′,l,l′|ρn with high prob. ∀(k, k′, l, l′)

For the denominator, we have

denominator2

=
1(

n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

(
ξ(i,j)

)2

=
1(

n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

(2Aij − B̂(K,tr)
k,k′ − B̂

(K̃,tr)
l,l′)2(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

=
1(

n(te)

2

) ∑
k,k′,l,l′

∑
(i,j)∈τk,k′,l,l′

[
4Aij − 4Aij(B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′) + (B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′)2

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

We can again look at the sum over I(K̃,te)
l,l′ �rst:

99

∑
k,k′

∑
(i,j)∈τk,k′,l,l′

[
4Aij − 4Aij(B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′) + (B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′)2

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

Notice in the �rst bracket, B̂(K̃,tr)
l,l′ ≤ c0ρn by assumption of this scenario, and B̂(K,tr)

k,k′ ∼
ρn since |Ik,k′ | ∝ n2 by the assumption of the theorem and I(K,tr)

k,k′ is a random subset of it.
Therefore they are both on the order ρn. We can �nd a positive constant c2 > 0, such that

|B̂(K̃,tr)
l,l′ + B̂

(K,tr))
k,k′ | ≤ c2ρn,∀k, k′, l, l′

The the above sum

∑
k,k′

∑
(i,j)∈τk,k′,l,l′

[
4Aij − 4Aij(B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′) + (B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′)2

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

≤
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

[
4Aij + 4Aijc2ρn + c2

2ρ
2
n

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

=
∑

(i,j)∈Î(K̃,te)

l,l′

[
4Aij + 4Aijc2ρn + c2

2ρ
2
n

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

= |Î(K̃,te)
l,l′ |

[
4B̂

(K̃,te)
l,l′ + 4c2B̂

(K̃,te)
l,l′ ρn + c2

2ρ
2
n

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

=
(∑
k,k′

|τk,k′,l,l′|
)
·
[
4B̂

(K̃,te)
l,l′ + 4c2B̂

(K̃,te)
l,l′ ρn + c2

2ρ
2
n

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

Here since we have the size assumption of Î(K̃,tr)
l,l′ , we know that∣∣∣∣∣B̂(K̃,te)

l,l′ −B∗l,l′

∣∣∣∣∣ ≤ c3ρn

for some c3 > 0.
Therefore within the bracket, the �rst term is on the order ρn, the second and third term

are on the order ρ2
n. The �rst term is the leading term. Thus

∑
k,k′

∑
(i,j)∈τk,k′,l,l′

[
4Aij − 4Aij(B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′) + (B̂

(K,tr)
k,k′ + B̂

(K̃,tr)
l,l′)2

]
(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

&
(∑
k,k′

|τk,k′,l,l′|
)
c4ρn(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2

for some c4 > 0. We achieve this lower bound by dropping the less signi�cant term (on the
order ρ2

n) and only retain the leading term.

100

We know therefore that

denominator2

=
1(

n(te)

2

)∑
l,l′

∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(
ξ(i,j)

)2

&
1(

n(te)

2

)∑
l,l′

(∑
k,k′

|τk,k′,l,l′ |c4ρn

(
B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′

)2
)

=
1(

n(te)

2

)∑
l,l′

∑
k,k′

|τk,k′,l,l′ |c4ρn

(
B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′

)2

And then consider the test statistic as a whole:

TK∗,K̃ =

√
n2

V 2

1

(n(te)

2)

∑
l,l′

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)
)

√
1

(n(te)

2)

∑
l,l′

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(
ξ(i,j)

)2
)

.
n

V ·
√(

n(te)

2

)
∑
(l,l′)

(∑
k,k′

c1

√
|τk,k′,l,l′|ρn(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)
)

√∑
(l,l′)

(∑
k,k′

(
c4|τk,k′,l,l′ |ρn(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2
)

≤ n

V ·
√(

n(te)

2

) c1√
c4KK̃

... Cauchy-Schwartz inequality

Here the upper bound for TK∗,K̃ is a constant that doesn’t change with n. It is in�uenced
by some constants only such as c1, c4, V . Therefore in this scenario we have

TK∗,K̃ = OP (1)

B.2 When some estimates are extreme from the over-�tting
model

In this case Dc0 6= ∅. i.e. for some (l, l′), B̂(K̃,tr)
l,l′ > c0ρn.

Then we consider the terms in the numerator and denominator corresponding to (l, l′) ∈
Dc0 separately.

For the numerator, the term corresponding to (l, l′) is∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2Aij(B̂
(K̃,tr)
l,l′ − B̂(K,tr)

k,k′) +
(
B̂

(K,tr)
k,k′

)2

−
(
B̂

(K̃,tr)
l,l′

)2

101

Since we have the size assumption about true communities, we know that∣∣∣∣∣B̂(K,tr)
k,k′ −B

∗
k,k′

∣∣∣∣∣ . ρn

And therefore c5ρn < B̂
(K,tr)
k,k′ < c6ρn for some 0 < c5 < c6.

Therefore for the above term we have∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2Aij(B̂
(K̃,tr)
l,l′ − B̂(K,tr)

k,k′) +
(
B̂

(K,tr)
k,k′

)2

−
(
B̂

(K̃,tr)
l,l′

)2

≤
∑
k,k′

∑
(i,j)∈τk,k′,l,l′

2Aij(B̂
(K̃,tr)
l,l′ − c5ρn) + (c6ρn)2 −

(
B̂

(K̃,tr)
l,l′

)2

=
(∑
k,k′

|τk,k′,l,l′|
)
·

[
2B̂

(K̃,te)
l,l′ (B̂

(K̃,tr)
l,l′ − c5ρn) + (c6ρn)2 −

(
B̂

(K̃,tr)
l,l′

)2
]

Here we know that
(
B̂

(K̃,tr)
l,l′

)2

> c2
0ρ

2
n, while |B̂(K̃,te)

l,l′ −B∗l,l′| ≤ c7ρn, when c0 is the largest
constant among {c0, c5, c6, c7} (which we can make sure by choice), the last term would be the
largest in the bracket. Therefore this term is negative in the numerator.

While at the same time, the denominator term∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(
ξij

)2

is clearly non-negative. If we drop both terms, the ratio will only become larger. And we have

TK∗,K̃ =

√
n2

V 2

1

(n(te)

2)

∑
l,l′

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)
)

√
1

(n(te)

2)

∑
l,l′

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(
ξ(i,j)

)2
)

≤
√
n2

V 2

1

n(
(te)
2)

∑
(l,l′) 6∈Dc0

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

ξ(i,j)
)

√ ∑
(l,l′) 6∈Dc0

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

(
ξ(i,j)

)2
)

≤ n

V ·
√(

n(te)

2

)
∑

(l,l′)6∈Dc0

(∑
k,k′

∑
(i,j)∈τk,k′,l,l′

c1

√
|τk,k′,l,l′ |ρn(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)
)

√ ∑
(l,l′) 6∈Dc1

(∑
k,k′

(
c4|τk,k′,l,l′|ρn(B̂

(K̃,tr)
l,l′ − B̂(K,tr)

k,k′)2
)

≤ n

V ·
√(

n(te)

2

) c1√
c4KK̃

... Cauchy-Schwartz inequality

102

Again, the upper bound of TK∗,K̃ is a constant that doesn’t change with n. And again we have

TK∗,K̃ = OP (1)

for K̃ > K∗.
Combining the results from the two scenarios, we concludes our proof for the theorem.

103

104

Bibliography

[ABFX08] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed
membership stochastic blockmodels. Journal of Machine Learning Research,
9(Sep):1981–2014, 2008. 3

[ABH16] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Transactions on Information Theory, 62(1):471–487,
2016. 3

[ACBL13] Arash A Amini, Aiyou Chen, Peter J Bickel, and Elizaveta Levina. Pseudo-
likelihood methods for community detection in large sparse networks. The An-
nals of Statistics, 41(4):2097–2122, 2013. 3

[AG05] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us
election: divided they blog. In Proceedings of the 3rd international workshop on
Link discovery, pages 36–43. ACM, 2005. 67

[AS15] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic
block models: Fundamental limits and e�cient algorithms for recovery. In 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pages 670–
688. IEEE, 2015. 75

[BC09] Peter J Bickel and Aiyou Chen. A nonparametric view of network models and
newman–girvan and other modularities. Proceedings of the National Academy
of Sciences, pages pnas–0907096106, 2009. 3

[BCCZ13] Peter Bickel, David Choi, Xiangyu Chang, and Hai Zhang. Asymptotic nor-
mality of maximum likelihood and its variational approximation for stochastic
blockmodels. The Annals of Statistics, 41(4):1922–1943, 2013. 3

[BS16] Peter J Bickel and Purnamrita Sarkar. Hypothesis testing for automated com-
munity detection in networks. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(1):253–273, 2016. 3

[CCK+13] Victor Chernozhukov, Denis Chetverikov, Kengo Kato, et al. Gaussian approxi-
mations and multiplier bootstrap for maxima of sums of high-dimensional ran-
dom vectors. The Annals of Statistics, 41(6):2786–2819, 2013. 19, 24

[CDP12] Alain Celisse, Jean-Jacques Daudin, and Laurent Pierre. Consistency of
maximum-likelihood and variational estimators in the stochastic block model.
Electronic Journal of Statistics, 6:1847–1899, 2012. 3

105

[CL15] Etienne Côme and Pierre Latouche. Model selection and clustering in stochastic
block models based on the exact integrated complete data likelihood. Statistical
Modelling, 15(6):564–589, 2015. 4

[CL17] Kehui Chen and Jing Lei. Network cross-validation for determining the number
of communities in network data. Journal of the American Statistical Association,
pages 1–11, 2017. xi, xii, 4, 11, 12, 13, 17, 32, 38, 44, 54, 76, 78, 79, 88, 89

[CWA12] David S Choi, Patrick J Wolfe, and Edoardo M Airoldi. Stochastic blockmodels
with a growing number of classes. Biometrika, 99(2):273–284, 2012. 75

[CX14] Yudong Chen and Jiaming Xu. Statistical-computational tradeo�s in planted
problems and submatrix localization with a growing number of clusters and
submatrices. arXiv preprint arXiv:1402.1267, 2014. 75

[Dab16] Beau Dabbs. Characteristics of cross-validation methods for model selection in the
stochastic block networks. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2016. xi, 11, 12

[DJ16] Beau Dabbs and Brian Junker. Comparison of cross-validation methods for
stochastic block models. arXiv preprint arXiv:1605.03000, 2016. xi, 12, 13

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and
its algorithmic applications. Physical Review E, 84(6):066106, 2011. 3

[DPR08] J-J Daudin, Franck Picard, and Stéphane Robin. A mixture model for random
graphs. Statistics and computing, 18(2):173–183, 2008. 3

[EFA+11] Dirk Eddelbuettel, Romain François, J Allaire, Kevin Ushey, Qiang Kou, N Rus-
sel, John Chambers, and D Bates. Rcpp: Seamless r and c++ integration. Journal
of Statistical Software, 40(8):1–18, 2011. 65

[EK+10] David Easley, Jon Kleinberg, et al. Networks, crowds, and markets, volume 8.
Cambridge university press Cambridge, 2010. 2

[FST+13] Donniell E Fishkind, Daniel L Sussman, Minh Tang, Joshua T Vogelstein, and
Carey E Priebe. Consistent adjacency-spectral partitioning for the stochastic
block model when the model parameters are unknown. SIAM Journal on Matrix
Analysis and Applications, 34(1):23–39, 2013. 3

[FW81] Stephen E. Fienberg and Stanley Wasserman. Categorical data analysis of sin-
gle sociometric relations. In Samuel Leinhardt, editor, Sociological Methodology
1981, pages 156–192. Jossey-Bass, San Francisco, 1981. 2

[GN02] Michelle Girvan and Mark E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences (USA),
99:7821–7826, 2002. 3

[GS18] John M Gri�n and Amin Shams. Is bitcoin really un-tethered? 2018. xi, 1
[GZF+10] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al.

A survey of statistical network models. Foundations and Trends® in Machine
Learning, 2(2):129–233, 2010. 2

106

[HLL83] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137, 1983. 2

[Hof08] Peter Ho�. Modeling homophily and stochastic equivalence in symmetric rela-
tional data. InAdvances in neural information processing systems, pages 657–664,
2008. 4, 10, 13

[HRH02] Peter D Ho�, Adrian E Raftery, and Mark S Handcock. Latent space ap-
proaches to social network analysis. Journal of the american Statistical asso-
ciation, 97(460):1090–1098, 2002. 2

[HRT07] Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. Model-based
clustering for social networks. Journal of the Royal Statistical Society: Series
A (Statistics in Society), 170(2):301–354, 2007. 32

[HW08] Jake M. Hofman and Chris H. Wiggins. A Bayesian approach to network mod-
ularity. Physical Review Letters, 100:258701, 2008. 4

[Jac10] Matthew O Jackson. Social and economic networks. Princeton university press,
2010. xi, 1, 2

[Jin15] Jiashun Jin. Fast community detection by score. The Annals of Statistics,
43(1):57–89, 2015. 3, 67

[KMM+13] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly,
Lenka Zdeborová, and Pan Zhang. Spectral redemption in clustering sparse
networks. Proceedings of the National Academy of Sciences, 110(52):20935–20940,
2013. 3

[KN11] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community
structure in networks. Physical review E, 83(1):016107, 2011. 2, 67

[LBA12] Pierre Latouche, Etienne Birmele, and Christophe Ambroise. Variational
bayesian inference and complexity control for stochastic block models. Sta-
tistical Modelling, 12(1):93–115, 2012. 3

[Lei16] Jing Lei. A goodness-of-�t test for stochastic block models. The Annals of Statis-
tics, 44(1):401–424, 2016. 4, 67

[Lei17] Jing Lei. Cross-validation with con�dence. arXiv preprint arXiv:1703.07904,
2017. 4, 7, 9, 18, 19, 20, 31

[Lei18] Jing Lei. Network representation using graph root distributions. arXiv preprint
arXiv:1802.09684, 2018. 67

[Lin10] Crystal Linkletter. Statistical analysis of network data: Methods and models by
kolaczyk, ed. Biometrics, 66(2):663–664, 2010. 2

[LL15] Can M Le and Elizaveta Levina. Estimating the number of communities in net-
works by spectral methods. arXiv preprint arXiv:1507.00827, 2015. 4

[LLZ16] Tianxi Li, Elizaveta Levina, and Ji Zhu. Network cross-validation by edge sam-
pling. arXiv preprint arXiv:1612.04717, 2016. xi, 4, 10, 12, 13, 15

107

[LR15] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic
block models. The Annals of Statistics, 43(1):215–237, 2015. 3

[MMFH13] Aaron F McDaid, Thomas Brendan Murphy, Nial Friel, and Neil J Hurley. Im-
proved bayesian inference for the stochastic block model with application to
large networks. Computational Statistics & Data Analysis, 60:12–31, 2013. 4

[New06] Mark EJ Newman. Modularity and community structure in networks. Proceed-
ings of the national academy of sciences, 103(23):8577–8582, 2006. 3

[New10] Mark Newman. Networks: an introduction. Oxford university press, 2010. 2
[NG03a] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community

structure in networks. Physical Review E, 69:026113, 2003. 3
[NG03b] Mark E. J. Newman and Michelle Girvan. Mixing patterns and community struc-

ture in networks. In R. Pastor-Satorras, J. Rubi, and A. Diaz-Guilera, editors,
Statistical Mechanics of Complex Networks, pages 66–87, Berlin, 2003. Springer-
Verlag. 3

[PA93] John F Padgett and Christopher K Ansell. Robust action and the rise of the
medici, 1400-1434. American journal of sociology, 98(6):1259–1319, 1993. xi, 1

[RCPHLR+16] Francisco J Romero-Campero, Ignacio Perez-Hurtado, Eva Lucas-Reina, Jose M
Romero, and Federico Valverde. Chlamynet: a chlamydomonas gene co-
expression network reveals global properties of the transcriptome and the early
setup of key co-expression patterns in the green lineage. BMC genomics,
17(1):227, 2016. xi, 1

[RCY11] Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-
dimensional stochastic blockmodel. The Annals of Statistics, 39(4):1878–1915,
2011. 3

[Sha93] Jun Shao. Linear model selection by cross-validation. Journal of the American
statistical Association, 88(422):486–494, 1993. 4, 9

[VL07] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007. 14

[Vuo89] Quang H. Vuong. Likelihood ratio tests for model selection and non-nested
hypotheses. Econometrica, 57:307–333, 1989. 3

[WB17] YX Rachel Wang and Peter J Bickel. Likelihood-based model selection for
stochastic block models. The Annals of Statistics, 45(2):500–528, 2017. 4

[YSJ+14] Xiaoran Yan, Cosma Rohilla Shalizi, Jacob E. Jensen, Florent Krzakala, Cristo-
pher Moore, Lenka Zdeborova, Pan Zhang, and Yaojia Zhu. Model selection
for degree-corrected block models. Journal of Statistical Mechanics: Theory and
Experiment, 2014:P05007, 2014. 3

[Zha93] Ping Zhang. Model selection via multifold cross validation. The Annals of Statis-
tics, pages 299–313, 1993. 4, 9

108

[ZLZ11] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Community extraction for social
networks. Proceedings of the National Academy of Sciences, 2011. 3, 67

109

	1 Introduction
	1.1 Prevalence of network data and overview of network study
	1.2 Stochastic Block Model and Its Variants
	1.3 Summary of Our Contribution
	1.4 Notation table

	2 Background and Algorithm Description
	2.1 Background and Limitation of Classical Cross-validation
	2.2 Train-test splitting in Network Settings
	2.3 Estimation of Stochastic Block Models
	2.4 Cross-validation with Confidence
	2.5 V-fold Cross-validation with Confidence in the Context of Stochastic Block Models
	2.6 Using Parametric Bootstrap instead of Gaussian Multiplier Bootstrap

	3 Simulation Studies and Application on Data Sets
	3.1 Studies through simulated data
	3.1.1 Simulation of adjacency matrices from Stochastic Block Models
	3.1.2 Illustration of the Hypothesis Testing Step
	3.1.3 Effect of the hypothesis testing step: comparison with BIC and NCV
	3.1.4 Sensitivity to mis-specification
	3.1.5 One case of unidentifiability
	3.1.6 Sensitivity to different community interaction matrix setting
	3.1.7 Changing up the train-test splitting: comparison with other CV methods
	3.1.8 Swapping out Gaussian Multiplier Bootstrap: comparison with parametric bootstrap
	3.1.9 Note on Computation Speed

	3.2 Application on real-world data sets
	3.2.1 Political Blog Data Set
	3.2.2 Political Books Data Set

	4 Theoretical Results
	4.1 Under-fitting case
	4.2 Over-fitting case

	5 Conclusions and Future Work
	A Proofs for results in 4.1
	A.1 When As is relatively large, and Asc grows sufficiently fast.
	A.2 When As is relatively large, and Asc grows very slowly.
	A.3 When As is not large enough.

	B Proofs for results in 4.2
	B.1 When all the estimates are moderate from the over-fitting model
	B.2 When some estimates are extreme from the over-fitting model

	Bibliography

