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Abstract

This thesis focuses on developing scalable clustering and anomaly detection methods, with realistic

assumptions and theoretically-sound guarantees, for analyzing high-dimensional data. It also studies the

theory behind the performance of the proposed methods. Specifically, this thesis takes an inferential approach

to searching for evidence that indicates the presence of two or more collections of data, with different

distributions, in a single data set. It addresses two fundamental questions relating to this: (a) How can we

perform clustering that results in statistically significant clusters? (b) In high energy physics, how can we

detect new signals in experimental data, that are not explained by known physics models, without assuming

a model for the new signal?

In order to answer the first question, we consider clustering based on significance tests for Gaussian

Mixture Models (GMMs). Our starting point is the SigClust method developed by Liu et al. (2008), which

introduces a test based on the k-means objective (with k = 2) to decide whether the data should be split into

two clusters. When applied recursively, this test yields a method for hierarchical clustering that is equipped

with significance guarantees. We study the limiting distribution and power of this approach in some examples

and show that there are large regions of the parameter space where the power is low. We then introduce a new

test based on the idea of relative fit. Unlike prior work, we test for whether a mixture of Gaussians provides a

better fit relative to a single Gaussian, without assuming that either model is correct. The proposed test has

a simple critical value and provides provable error control. We then develop several different versions of the

test, one of which provides exact type I error control without requiring any asymptotic approximations. We

show how the test can be applied recursively to obtain a hierarchical clustering of the data with significance

guarantees. We also construct a sequential, non-hierarchical version of the approach that can additionally

be used for model selection. We conclude with an extensive simulation study and a cluster analysis of a gene

expression dataset.

To answer the second question, we search for new signals that appear as deviations from known Standard

Model physics in experimental particle physics data. To do this, we determine whether there is any significant

difference between the distribution of background samples alone (generated from an assumed Monte Carlo

model according to the Standard Model) and the distribution of the actual experimental observations, which

ix



could be a mixture of background and signal samples. Traditionally, model-dependent methods are used

to train a supervised classifier to detect hypothesized signals expected under models of new physics. In

this thesis, we propose a model-independent method, that does not make any assumptions about the signal

and uses a semi-supervised classifier to detect the presence of a signal in the experimental data. We use

a test based on the likelihood ratio test statistic as well as one based on the area under the curve (AUC)

statistic. The second test is based on the assumption that if the experimental data does not contain any

signal then the classifier should find the experimental data indistinguishable from the background data.

Additionally, we explore active subspace methods to interpret the proposed semi-supervised classifier tests

in order to understand properties of the signal detected in the experimental data. We conclude by studying

the performance of the methods on a data set related to the search for the Higgs Boson provided by the

ATLAS experiment at the Large Hadron Collider (LHC) at CERN.
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Introduction

Clustering is the intuitive action of partitioning a set of objects into a collection of clusters so that objects

in the same cluster are similar, while objects in different clusters are dissimilar. This notion arises very

naturally in many fields, whenever there is a heterogeneous set of objects that need to be grouped based on

some underlying similarity measure. Clustering is used as a data analysis tool across very diverse disciplines

such as image segmentation, marketing, genetics and bioinformatics. The wide use of clustering is perhaps

unsurprising as it can be used during different stages of the data analysis process, starting from exploratory

data analysis to discovering new sub-classes, sub-types or partitions in the data.

Despite its popularity, a fundamental question that still requires answering is: How many clusters are

there in the data? Furthermore, when should a clustering even be applied and when is a particular cluster

statistically significant? These are the questions that we want to answer in this dissertation.

Under some circumstances, clustering is just used as an exploratory data analysis tool to understand the

spread of the data or to visualize high-dimensional data. For this task, clustering provides useful information

irrespective of whether any inherent cluster structure is present in the data or not. But in some cases, as

illustrated below, clustering is used to uncover real groupings inherent in the data. In this case, if the data

is split into more clusters than the real groupings in the data, the resulting clusters could be arbitrary and

consequently potentially misleading (Adolfsson et al., 2019).

For example in medical sciences, especially in bioinformatics, scientists look for actual groupings in the

patients to develop different new treatments for the different groups. An example of this is Glioblastoma

multiforme (GBM), which is the most common form of malignant brain cancer in adults. Patients with GBM

have a uniformly poor prognosis, with a median survival of one year. This makes it particularly important to

understand the prognosis of GBM better. One of the things that has been found promising for prognosis or

prediction of response to therapy, is to use clustering methods on gene sequences of patients to find molecular

subclasses of GBM (Verhaak et al., 2010).

A similar need arises for different kinds of breast cancers as well. Genomic studies have established

four major breast cancer intrinsic subtypes (luminal A, luminal B, HER2-enriched, basal-like) and a normal

breast-like group that show significant differences in incidence, survival and response to therapy (Prat et al.,
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2010). This diversity calls for the need to have different tumor classes that are clinically useful with respect

to prognosis or prediction. For example, Metaplastic breast cancers (MBC) are treated in the same fashion as

basal-like or triple receptor-negative ductal cancers even though MBCs are usually chemoresistant. Therefore

over the last few years as gene expression studies have evolved, further subclassification of breast tumors

into new molecular entities has occurred. Clustering methods have been extensively used in this front.

For example, (a) new subclasses of Metaplastic breast cancers (MBC) (Hennessy et al., 2009) have been

found using clustering; (b) subtypes luminal A (LumA), luminal B (LumB), HER2-enriched, basal-like, and

normal-like of breast cancer have been extensively studied by microarray and hierarchical clustering analysis

(Parker et al., 2009); and (c) stable subtypes as well as subtype-specific molecular targets have been identified

for triple-negative breast cancers (Burstein et al., 2015) using clustering techniques.

These examples demonstrate the need for significant clusters that identify the real groupings inherent in

the data. In this direction, Liu et al. (2008) propose an approach called SigClust. They define a cluster as

data coming from a single Gaussian distribution and formulate the problem of assessing statistical significance

of clustering as a testing procedure. Their test statistic is based on the k-means cluster index, with k = 2.

If the test rejects, then the data is split into two clusters. This test can be applied recursively leading to a

top-down hierarchical clustering (Kimes et al., 2017). This approach attempts to distinguish clusters which

are actually present in the data from the natural sampling variability. The method is appealing because

it is simple and because, as we further elaborate in Chapter 3, it provides certain rigorous error control

guarantees. This procedure has already been extensively used in bioinformatics for finding cancer sub-types

by analyzing gene-sequence data sets (Parker et al., 2009; Hennessy et al., 2009; Prat et al., 2010; Burstein

et al., 2015).

However SigClust has two disadvantages. First, it assumes that a cluster is generated from a single

Gaussian and second, as we demonstrate in Chapter 3 of this dissertation, there are large regions of the

parameter space where the method has poor statistical power. To address these two issues with SigClust, we

propose a different approach. We test whether a single multivariate Gaussian is closer to the true distribution

than a mixture of two Gaussians without assuming that either model is true. We call this a test of relative

fit or Rift (Relative Information Fit Test). The result is a test with a simple limiting distribution, that

makes no assumptions about the true distribution of the clusters. Following Kimes et al. (2017), we also

apply the test recursively to obtain a hierarchical clustering of the data with significance guarantees as well

as a sequential, non-hierarchical version, of the approach.

Similar to the life sciences, the physical sciences also face a relatable fundamental problem. The problem

is one of detecting new physics phenomena that are not explained by the Standard Model, which describes

our current understanding of fundamental particles and how they interact with each other. Here the task of

searching for signals that behave anomalously to the known background processes (those that are explained

by the Standard Model) poses as an anomaly detection problem. However, in this specific case, the anomalous
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Figure 1.1: Example of detecting the signal (red) from the background (grey) as a collective anomaly
detection process. (a) Signal as an anomalous cluster on top of the background. (b) The boundary of the
classifier when trained on signal generated from the assumed signal model. (c) When there is a systematic
error in the training signal data, the test completely misses the actual signal data.

signals lie in the domain of the background. Hence each signal data point individually looks like it could

have been generated from the background. So instead of searching for anomalous data points individually,

we need to search for their occurrence together as a collection that seems anomalous. The detection of such

anomalies is called collective anomaly detection (Chandola et al., 2009). This is in a similar spirit to the

previous problem of significant clustering, because in this second problem, we are searching for a significant

cluster of signals (an anomalous collection) over the background.

The objective can be described as determining if there is any significant difference between the distribution

of background samples alone (generated from an assumed Monte Carlo model) and the distribution of the

actual experimental observations, which could be a mixture of background and signal samples. A simple

example of how the signal might look with respect to the background can be found in Figure 1.1(a). An

approach to detect this signal can be designed by using a version of Rift where we first fit the background

using a multivariate Gaussian mixture model. We then fit a mixture of this background model and a number

of additional Gaussians to the experimental data. The test of significance can then be performed by using

a version of Rift where we test if the experimental mixture model fits the experimental data significantly

better than the background mixture model. The procedure is similar to what was proposed by Kuusela et al.

(2012) and Vatanen et al. (2012). They assume the mixture models to be true and use a likelihood ratio test

to compare the fits. On the other hand, we do not assume the models to be true. In either case, since the

signal strength in this setup can be really small and mixture model fits in higher dimensions perform poorly,

we expect both of these methods to have very little power in detecting the signal.

Typically the search for high-dimensional new physics signals is performed in a model-dependent fashion

using supervised classifiers. Such an approach assumes a signal model for the new signal that is being

sought out and generates training signal samples using a Monte Carlo (MC) event generator. It then trains

a supervised classifier on the generated background and signal samples and performs a test structured as

a likelihood ratio test (Williams, 2010; Cowan et al., 2011; ATLAS Collaboration and CMS Collaboration,
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2011). There are two main drawbacks of this type of approach. Firstly, this approach cannot be used to

search for signals that we are not specifically looking for or have not considered yet. Secondly, systematic

errors can be very influential on supervised classifiers and so any error or imprecision in the signal model

will adversely affect the method. Figure 1.1 illustrates the problem more clearly. If a classifier is trained on

training signal data as generated in Figure 1.1(b), it gives the classification boundary as shown. But what

if the signal data actually looks like Figure 1.1(c)? Then the classifier ends up misclassifying the signal as

background. So an algorithm trained on a wrong signal model might completely miss the actual signal.

In contrast, in Part III of this thesis, we propose tests to search for new physics signals in a model-

independent fashion, without assuming any model for the signal (Kuusela et al., 2012; Vatanen et al., 2012;

Casa and Menardi, 2018; Aaboud et al., 2019). Specifically, in the experimental data (as collected from

particle detectors) we search for any signal that deviates from the background process (as explained by the

Standard Model). We use a semi-supervised approach that trains a classifier to differentiate the background

data from the experimental data. We then propose two different tests to detect the presence of signal in

the experimental data. The first test is based on a likelihood ratio test statistic that is estimated using

the classifier output. The second test is based on the performance of the classifier measured using the area

under the curve test statistic. Both the tests are based on the argument that in the absence of signal events

in the experimental data, a classifier should not be able to differentiate the experimental samples from the

background samples. This approach is better than the mixture modelling methods because classifiers work

better in high-dimensional spaces.

We further propose using active subspace methods (Constantine, 2015) to identify the characteristics of

variables and their dependencies on each other, that differ between the background and the experimental data

affecting the outcome of the classifier. This can be used to characterize the signal region in the experimental

data.

In summary, the questions we aim to answer in this thesis are:

1. Clustering: How can we perform clustering that results in significant clusters?

2. Anomaly detection: How can we detect collective anomalies in a model-independent semi-supervised

fashion, in a high-dimensional space, when the anomalies are really small in proportion?

In the following sections, we provide a road-map of the entire thesis, highlighting the chapter-wise

contributions made in the thesis. We then introduce notations that we use throughout this thesis.

1.1 Contributions and the Road-Map of the Thesis

This thesis is organized into four main parts. Part I is the introduction of the thesis. In Part II, we

introduce clustering algorithms that come equipped with significance guarantees. In Part III we introduce
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the model-independent methods to detect new physics signals in the experimental data using tests based

on semi-supervised classifiers. Finally, in Part IV we draw the final conclusions from all of our studies and

outline our vision for future work. Table 1.1 highlights the main contributions that are presented in this

thesis.

Table 1.1: Contributions of the thesis

Chapter Contribution Description

Clustering
(Part I)

3 Power of SigClust
Asymptotic power derivation for SigClust
to detect two clusters that shows the
existence of regions where the power is low.

4
Rift

A test based on relative fit
to detect two clusters.

M-Rift
A robust version of Rift with
exact type I error control.

5
Hierarchical Rift

Top-down and bottom-up hierarchical
versions of Rift, to detect
more than two clusters.

Sequential Rift
Sequential Rift to detect more than
two clusters.

Anomaly Detection
(Part II)

8
Semi-supervised LRT

Model-independent test based on
likelihood-ratio test statistic to
detect signal events.

Semi-supervised AUC test
Model-independent test based on
area under the curve (AUC)
test statistic to detect signal events.

Signal region characterization
Identification of the active subspace of
the classifier which detects the signal.

9 Higgs boson detection

Experiments that compare the performance
of model-dependent methods and
model-independent methods
in detecting the Higgs boson particle.

1.1.1 Contributions in Part I: Clustering

In Chapter 3, we review the SigClust procedure (Liu et al., 2008) and we derive its power in some cases. We

show that SigClust can have poor power against certain alternative hypotheses. This chapter also has results

on the geometric properties of k-means clustering in a special case, which is a prelude to finding the power.

In Chapter 4, we describe our new procedure and its different versions. In Chapter 5, we demonstrate the

use of our new tests in a hierarchical framework as well as a sequential framework which can be used as a

model selection tool for the GMM. We compare the proposed algorithms with SigClust and other methods
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using some simulations studies in Section 6.1 and an analysis of a gene expression data set in Section 6.2

within Chapter 6. We defer the technical details of most proofs to the Appendix.

1.1.2 Contributions in Part II: Anomaly detection

In Chapter 8 we first mathematically set up the problem of detecting the new physics signals in the

experimental data observed by the particle detectors. We then describe comparable supervised methods

in Section 8.2. The proposed model-independent semi-supervised methods are introduced in Section 8.3.

We introduce the two tests, one based on the likelihood ratio test statistic and the other based on the area

under the curve (AUC) test statistic. In Section 8.5 we describe active subspace methods to understand the

subspace most strongly affecting the classifier, leading to an understanding of the signal region. Finally in

Chapter 9, we demonstrate the performance of the proposed methods and compare them to the supervised

approaches as well as nearest neighbor two sample tests introduced in Schilling (1986) and Henze (1988).

1.2 Notation

For Part II of this dissertation we assume that the dimension d is fixed and the sample size n is increasing.

In contrast, Liu et al. (2008) and Kimes et al. (2017) focus on the large d, fixed n case which requires dealing

with challenging issues such as estimating the covariance matrix in high dimensions (see also Vogt and

Schmid (2017)). However, because of the challenges of high dimensional estimation, these prior works only

establish results about power in very specific cases. In contrast, we provide a more detailed understanding

of the power in the fixed-d case.

Throughout this dissertation we use ‖·‖ to denote the Euclidean norm, i.e., for x ∈ Rd, ‖x‖ :=
√∑d

i=1 x
2
i .

We use the symbols
p→ and  to denote the standard stochastic convergence concepts of convergence in

probability and in distribution, respectively.
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Part II

Inference for Clustering:

Gaussian Mixture Clustering Using

Relative Tests of Fit

9





Chapter 2

Introduction to Significant Clustering

Gaussian mixture models (GMMs) are a commonly used tool for clustering. A major challenge in using

GMMs for clustering is in adequately answering inferential questions regarding the number of mixture

components or the number of clusters to use in data analysis. This task typically requires hypothesis

testing or model selection. However, deriving rigorous tests for GMMs is notoriously difficult since the usual

regularity conditions fail for mixture models (Ghosh and Sen, 1984; Dacunha-Castelle et al., 1999; Gassiat,

2002; McLachlan and Peel, 2004; McLachlan and Rathnayake, 2014; Chen, 2017; Gu et al., 2017).

In this direction, Liu et al. (2008) proposed an approach called SigClust. Their method starts by fitting

a multivariate Gaussian to the data. Then a significance test based on k-means clustering, with k = 2, is

applied. If the test rejects, then the data is split into two clusters. This test can be applied recursively leading

to a top-down hierarchical clustering (Kimes et al., 2017). This approach roughly attempts to distinguish

clusters which are actually present in the data from the natural sampling variability. The method is appealing

because it is simple and because, as we further elaborate on in the sequel, it provides certain rigorous error

control guarantees.

In this dissertation we study the power of SigClust and show that there are large regions of the parameter

space where the method has poor power. A natural way to fix this would be to use another statistic designed

to distinguish “a Gaussian” versus “a mixture of two Gaussians” such as the generalized likelihood ratio test.

However, such an approach has two problems: first, as mentioned above, mixture models are irregular and

the limiting distribution of the likelihood ratio test (and other familiar tests) is intractable. Second, such

tests assume that one of the models (Gaussian or mixture of Gaussians) is correct. Instead from a practical

standpoint, for the purposes of clustering, we only regard these models as approximations.

So we consider a different approach. We test whether one model is closer to the true distribution than

the other without assuming either model is true. We call this a test of relative fit. Our test is based on data

splitting. Half the data are used to fit the models and the other half are used to construct the test. The
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result is a test with a simple limiting distribution which makes it easy to determine an appropriate cutoff for

it. In fact, we provide several versions of the test. One version provides exact type I error control without

requiring any asymptotic approximations.

Following Kimes et al. (2017), we also apply the test recursively to obtain a hierarchical clustering of

the data with significance guarantees. We develop a bottom-up version of mixture clustering which can

be regarded as a linkage clustering procedure where we first over-fit a mixture and subsequently combine

elements of the mixture. We also construct a sequential, non-hierarchical version, of the approach. We call

our procedure Rift (Relative Information Fit Test).

Throughout this dissertation we assume that the dimension d is fixed and the sample size n is increasing.

In contrast, Liu et al. (2008) and Kimes et al. (2017) focus on the large d, fixed n case which requires dealing

with challenging issues such as estimating the covariance matrix in high dimensions (see also Vogt and

Schmid (2017)). However, because of the challenges of high dimensional estimation, these prior works only

establish results about power in very specific cases. In contrast, we provide a more detailed understanding

of the power in the fixed-d case.

2.1 Overview of the Related Literature

Estimating the number of clusters has been approached in many ways (Bock, 1985; Milligan and Cooper, 1985;

McLachlan and Peel, 2004). A common approach is to find the optimal number of clusters by optimizing

a criterion function, examples of which are the Hartigan index (Hartigan, 1975), the silhouette statistic

(Rousseeuw, 1987) or the gap statistic (Tibshirani et al., 2001).

Another approach to estimating the number of clusters is to assess the statistical significance of the

clusters. McShane et al. (2002) proposed a method to calculate p-values by assuming that the cluster

structure lies in the first three principal components of the data. Tibshirani and Walther (2005) use

resampling techniques to quantify the prediction strength of different clusters and Suzuki and Shimodaira

(2006) assess the significance of hierarchical clustering using bootstrapping procedures. More recently, Maitra

et al. (2012) proposed a distribution-free bootstrap procedure which assumes that the data in a cluster is

sampled from a spherically symmetric, compact and uni-modal distribution. Engelman and Hartigan (1969)

considered the maximal F-ratio that compares between group dispersions with within group dispersions. Lee

(1979) proposed a subsequent multivariate version and a robust version was recently proposed by Garcia-

Escudero et al. (2009). Another example is a statistical test proposed by Vogt and Schmid (2017). They

develop a fairly general significance test but it relies on assuming that the number of covariates tends to

infinity and that the clusters are, in a certain sense, well-separated (i.e. can be consistently estimated as the

number of features increases).
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Alternatively, and closer to our approach, Gaussian mixture models can be used for cluster analysis. See

for instance, the works Fraley and Raftery (2002); McLachlan and Peel (2004); McLachlan and Rathnayake

(2014) for overviews. There is much prior work for testing the order of a Gaussian mixture. For example,

the works Ghosh and Sen (1984); Hartigan (1985) used the likelihood ratio test with the null hypothesis that

the order is one. Hartigan (1985) explored the impact of non-regularity of the mixture models and Ghosh

and Sen (1984) used a separation condition in order to find the asymptotic distribution of the likelihood

ratio test statistic.

Since finite normal mixture models are irregular and the limiting distribution of the likelihood ratio test

statistic is difficult to derive, deriving a general theory for testing the order of a mixture is hard. Instead

most of the algorithms test for homogeneity in the data. The works Charnigo and Sun (2004); Liu and

Shao (2004); Chen et al. (2009) among others, are examples of this approach. More recently, Li and Chen

(2010) and Chen et al. (2012) constructed a new likelihood-based expectation-maximization (EM) test for

the order of finite mixture models that uses a penalty function on the variance to obtain a bounded penalized

likelihood. Further developments can be found in the works Dacunha-Castelle et al. (1999); Gassiat (2002);

Chen (2017); Gu et al. (2017). Our approach differs in three ways: we use a test that avoids the irregularities,

it avoids assuming that the mixture model is correct and it is valid for multivariate mixtures. We only treat

the mixture model as an approximate working model.

Liu et al. (2008) proposed a Monte Carlo based algorithm (SigClust) that defines a cluster as data

generated from a single multivariate Gaussian distribution. The distribution of the test statistic under

the null hypothesis SigClust depends on the eigenvalues of the null covariance matrix. Huang et al. (2015)

proposed a soft-thresholding method that provides an estimate of these eigenvalues, and this soft-thresholding

method leads to a modified version of SigClust that is better suited to high-dimensional problems.

2.2 Organization of Part I

In Chapter 3 we review the SigClust procedure and we derive its power in some cases. We show that

SigClust can have poor power against certain alternatives. This chapter also has results on the geometric

properties of k-means clustering in a special case, which is a prelude to finding the power. In Chapter 4 we

describe our new procedure. In Chapter 5 we show how to use our new tests in a hierarchical framework

as well as a sequential framework which can be used as a model selection tool for the GMM. We consider

some simulations in Section 6.1, and additionally analyze a gene expression data set in Section 6.2 within

Chapter 6. We defer the technical details of most proofs to the Appendix. We also describe several other

tests that are used for comparison in Section 4.5.
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Chapter 3

Inference Using k-means Clustering:

The SigClust Procedure

In this chapter, we study the SigClust procedure which was introduced by Liu et al. (2008) in detail. Liu

et al. (2008) define a cluster as a population sampled from a single Gaussian distribution. They then propose

SigClust, a testing procedure, that directly targets this Gaussian definition of a cluster to assess the statistical

significance of a clustering. To capture the non-Gaussianity due to the presence of multiple clusters, they

use the k-means cluster index (CI) as the test statistic, which is the within-class sums of squares about the

mean, divided by the total sum of squares about overall mean, in the case where k = 2. The Gaussian

null distribution allows a direct formulation of the p value which can quantify the significance of a given

clustering.

Now we introduce some mathematical notation in order to formally define the SigClust testing procedure.

Let X1, X2, . . . , Xn ∼ P be i.i.d. observations from some distribution with probability measure P on Rd.

The objective of the k-means clustering algorithm is to choose cluster centers bn = (bn1, . . . , bnk) ∈ Rd×k

that minimize the within-cluster sum of squares,

Wn(a) =
1

n

n∑
i=1

min
1≤j≤k

‖Xi − aj‖2 (3.1)

as a function of a = (a1, . . . , ak) ∈ Rd×k. For each center aj , we can also associate a convex polyhedron Aj

which contains all points in Rd closer to aj than to any other center. The sets {A1, . . . , Ak} are the Voronoi

tessellation of Rd. The tessellation defines the clustering. We also define,

W (a) = E[Wn(a)],
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and we let µ = (µ1, . . . , µk) ∈ Rd×k denote the minimizer of W (a). When the minimizers are not unique we

let bn and µ denote arbitrary minimizers of Wn(a) and W (a) respectively.

Then the SigClust test statistic Tn, defined to be the ratio between the within-class sum of squares and

the total sum of squares, is given by

Tn = Tn(bn) =
Wn(bn)

1
n

∑n
i=1 ‖Xi −X‖2

=

∑n
i=1 min1≤j≤2 ‖Xi − bnj‖2∑n

i=1 ‖Xi −X‖2
,

where bn = (bn1, bn2) is the vector of optimal centers chosen by the 2-means clustering algorithm and X

is the sample mean of the data. We note in passing that in their extension of this method to hierarchical

clustering, Kimes et al. (2017) also consider other statistics that arise in hierarchical clustering.

The test rejects the null for small values of this statistic. In order to estimate the p-value we can use a

version of the parametric bootstrap. The (estimated) p-value is an estimate of Pµ̂,Σ̂(T ∗n < Tn) where T ∗n is

computed on the bootstrap samples from Pµ̂,Σ̂, where Pµ̂,Σ̂ = N(µ̂, Σ̂) and where µ̂ = X and Σ̂ is the sample

covariance matrix. We note that in the high dimensional case, as discussed earlier, Liu et al. (2008) use a

regularized estimator of Σ.

3.1 Limiting Distribution of SigClust Under the Null

In order to analytically understand the SigClust procedure and to develop results regarding its power we

first find the limiting distribution of the test statistic under the null in a simplified setup.

We focus in this and subsequent sections on the case when under the null hypothesis, we obtain samples

from {X1, . . . , Xn} ∼ N(0,Σ) where Σ is a diagonal matrix. We assume that the two leading eigenvalues

are distinct which ensures that, under the null, the k-means objective at the population-level has a unique

optimal solution whose optimal value is tractable to analyze in closed-form. For notational convenience, we

will assume that, σ2
1 > σ2

2 ≥ σ3
3 . . . ≥ σ2

d > 0.

Our results extend in a straightforward way to the general non-spherical, axis-aligned case with minor

modifications. These results in turn are easily generalized to the non-spherical, not necessarily axis-aligned,

case by noting the invariance of the test statistic to orthonormal rotations under the null. The spherical case

is more challenging since the population optimal k-means solution is not unique and the limiting distribution

is more complicated. To illustrate some of the difficulties, we derive the limiting distribution of the SigClust

statistic, under the null, for the two-dimensional case in Appendix A.1.3, but do not consider the power of

the test in that setting.

Recall, that µ denotes the (unique) population optimal k-means solution, and we use {A1, A2} to denote

the corresponding Voronoi partition. Our results build on the following result from Pollard (1982) and Bock

(1985):
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Lemma 3.0.1 (Corollary 6.2 of Bock (1985)). The minimum within cluster sum of squares Wn(bn) has an

asymptotically normal distribution given by,

√
n(Wn(bn)−W (µ)) N(0, τ2), as n→∞,

where

τ2 :=

2∑
i=1

P(Ai)E
[
‖X − µi‖4|X ∈ Ai

]
− [W (µ)]

2
.

To analyze the power of the SigClust procedure, and to better understand its limiting distribution, we

need to calculate W (µ), τ2 and the mass of the Voronoi cells. It is easy to verify that under the null the

probability of each of the Voronoi cells corresponding to µ is 1/2. In Appendix A.1.1, we establish the

following claims:

W (µ) =

d∑
i=1

σ2
i −

2σ2
1

π
(3.2)

τ2 = 2

d∑
i=1

σ4
i −

16σ4
1

π2
. (3.3)

As a consequence of these calculations, we obtain the limiting distribution of the SigClust statistic under

the null:

Theorem 3.1. For W (µ) and τ2 defined in (3.2) and (3.3) we have that,

√
n

(
Tn(bn)− W (µ)∑d

i=1 σ
2
i

)
 N

0,

[
τ∑d
i=1 σ

2
i

]2
 , as n→∞.

Remark: Leveraging this result, we are able to characterize the rejection region of the test and in Theorem

3.4 we analyze its power. The proof of Theorem 3.1 is quite long and technical. Most of the work is done in

the Appendix. Here is a brief proof that leverages Lemma 3.0.1 which contains most of the technical details.

Proof for theorem 3.1. From Lemma 3.0.1 we have that,

√
n(Wn(bn)−W (µ)) N(0, τ2), as n→∞.

Furthermore by the Weak Law of Large Numbers we have that,

S2 =
1

n

n∑
i=1

‖Xi −X‖2
p→

d∑
i=1

σ2
i .

Putting these together yields the desired claim.
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3.2 Geometry of k-means Under the Alternative

Our goal is to find special cases where we are able to explicitly calculate SigClust’s power and understand

cases in which it has high power and cases where it has low power. In order to find the power, we first

need to understand the behaviour of 2-means clustering under the alternative. In particular, we need to

understand what the optimal split is and what the optimal within sum of squares is, if the data was indeed

generated from the alternative.

We focus on the case when the data, under the alternative, is generated from a mixture of two Gaussian

distributions of the form

{X1, . . . , Xn} ∼
1

2
N(−θ1, D) +

1

2
N(θ1, D), (3.4)

where θ1 = (a/2, 0, . . . , 0) ∈ Rd, a is a non-zero constant and D is a diagonal matrix,

D =


σ2

1 0 0 . . . 0

0 σ2
2 0 . . . 0

...

0 0 0 . . . σ2
d

 .

In this section, we will consider cases where σ2
1 , σ

2
2 > σ2

3 ≥ . . . ≥ σ2
d, allowing in some cases σ2

2 to be larger

than σ2
1 . We treat the case when a > 0 and 0 < σ2

d ≤ . . . ≤ σ2
2 , σ

2
1 < ∞, are fixed (do not vary with the

sample-size).

For technical reasons, we make a small modification to 2−means clustering. We consider 2−means

clustering with symmetric centers. That is, we consider bn
(0) that minimizes the within-cluster sum of

squares,

W (0)
n (t) := Wn(t,−t) =

1

n

n∑
i=1

min{||Xi − t||2, ||Xi + t||2}, (3.5)

as a function of t ∈ Rd.

We also introduce notation for the optimal split by considering a symmetric population version of the

2-means clustering for the following theorems and lemmas. We define the following terms to be used in the

lemmas. Let

µ∗ =

 µ∗1

µ∗2

 =

 µ∗1

−µ∗1

 ,

where µ∗1 and −µ∗1 denote the optimum cluster centers that minimize the within sum of squares when

symmetric 2-means clustering is performed on the data. The corresponding minimum within sum of squares
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is denoted by W (µ∗). That is,

W (0)(µ∗1) := W (µ∗) = inf
t∈Rd

E
[
min{||X − t||2, ||X + t||2

]
= E

[
min{||X − µ∗1||2, ||X + µ∗1||2}

]
.

We conjecture that this symmetric assumption has no practical effect on SigClust, since the samples

are drawn from a symmetric distribution and in practice the optimum 2-means cluster centers are close to

being symmetric. Moreover, to consider the limiting distribution of Wn(bn), given by Theorem 6.4 (b) of

Bock (1985, pp. 101), we need the population optimal centers to be unique. This is guaranteed only if the

population optimal centers are symmetric about the origin, since if (µ∗1, µ
∗
2) minimizes the population within

sum of squares, then due to the symmetry of the distribution, (−µ∗1,−µ∗2) also minimizes the population

within sum of squares. Therefore for the minimizer to be unique, µ∗2 = −µ∗1.

Therefore we state a result analogous to Theorem 6.4 (b) of Bock (1985, pp. 101) for symmetric 2-means

clustering for our population as follows:

Theorem 3.2. Let the data be generated from 1
2N(−θ1, D)+ 1

2N(θ1, D), as defined above, and bn
(0), µ∗1, µ

∗,W
(0)
n (t)

and W (0)(µ∗1) are as defined above. Suppose

(i) the vector µ∗1 that minimizes W (0)(µ∗1) is unique upto relabeling of its coordinates;

(ii) the matrix G is positive definite, where G as defined in Pollard (1982) (as Γ) is a matrix made up of

d× d matrices of the form,

Gij =

 2P(Ai)Id − 2r−1
ij

∫
Mij

f(x)(x− µ∗i )(x− µ∗i )T dσ(x) for i = j

−2r−1
ij

∫
Mij

f(x)(x− µ∗i )(x− µ∗j )T dσ(x) for i 6= j,
(3.6)

for i, j ∈ {1, 2} where rij = ‖µ∗i − µ∗j‖, A1 is the convex polyhedron that contains all points in Rd

that are closer to µ∗1 compared to −µ∗1 and A2 is vice-versa, Mij denotes the face common to Ai and

Aj, f(·) is the corresponding density function with respect to σ(·), the (d − 1) dimensional Lebesgue

measure on Mij, and Id denotes the d× d identity matrix.

Then as n→∞,
√
n(W (0)

n (bn
(0))−W (µ∗)) N(0, τ∗2),

where

τ∗2 =

2∑
i=1

P (Ai)E[||X − E[X|X ∈ Ai]||4|X ∈ Ai]− [W (µ∗)]2.
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Since µ∗1 and −µ∗1 denote the optimum cluster centers, the corresponding optimal separating hyperplane

passes through the origin. We denote the corresponding optimal separating hyperplane by

H(b∗) =
{
y ∈ Rd : b∗T y = 0

}
, where

d∑
i=1

b∗2i = 1.

Then the corresponding within sum of squares can be written as:

W (b∗) := W (µ∗) = inf
b∈Rd

{
P (bTX > 0)E[||X − E[X|bTX > 0]||2|bTX > 0]

+P (bTX < 0)E[||X − E[X|bTX < 0]||2|bTX < 0]
}

= inf
b∈Rd

E[||X − E[X|bTX > 0]||2|bTX > 0], (Since, −X d
= X)

= E[||X − E[X|b∗TX > 0]||2|b∗TX > 0].

The following theorem gives the optimal separating hyperplane and the optimal within sum of squares

under the alternative.

Theorem 3.3. For data generated from 1
2N(−θ1, D) + 1

2N(θ1, D), where θ1 = (a/2, 0, . . . , 0) ∈ Rd, a > 0

is fixed and D is a diagonal matrix with elements Djj = σ2
j , such that σ2

1 , σ
2
2 > σ2

3 ≥ . . . ≥ σ2
d are fixed.

1. When

σ2
2 < σ2

1 +
a2

4
, (3.7)

the unique optimal separating hyperplane which gives the minimum within sum of squares W (b∗) is

given by H(b) = {y ∈ Rd : y1 = 0}, that is, the unique optimal b∗ is such that b∗1 = 1 and b∗i = 0 for

every i 6= 1. The corresponding optimal within sum of squares is given by

W (µ∗) = W (b∗) =

d∑
j=1

σ2
j +

a2

4
−

(√
2

π
σ1 e

− a2

8σ21 +
a

2
P

(
|Z| < a

2σ1

))2

. (3.8)

2. When

σ2
2 > max

2σ4
1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

,
π

2

(√
2

π
σ1 e

− a2

8 σ21 +
a

2
P

(
|Z| < a

2 σ1

))2
 , (3.9)

the unique optimal separating hyperplane which gives the minimum within sum of squares W (b∗) is

given by H(b) = {y ∈ Rd : y2 = 0}, that is, the unique optimal b∗ is such that b∗2 = 1 and b∗i = 0 for
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every i 6= 2. The corresponding optimal within sum of squares is given by

W (µ∗) = W (b∗) =

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2

2 . (3.10)

In simpler words, the theorem implies that when the condition in (3.7) holds, i.e. when the variance along

the second covariate is small, the optimal symmetric 2-means split at the population-level splits the data

along the first covariate. On the other hand when the condition in (3.9) holds, i.e. when the variance along

the second covariate is large, the optimal symmetric 2-means split at the population-level is along the second

covariate. This is demonstrated in Figure 3.1, where the data is generated from 0.5N(−θ1, D)+0.5N(θ1, D),

where θ1 = (2, 0) and D = diag(1, 5). We see in this case that 2-means clustering splits the data horizontally

instead of vertically.

We conjecture that even for 2-means clustering without the symmetric assumption, as long as the data

is generated from 1
2N(−θ1, D) + 1

2N(θ1, D), the above statement holds. That is, when the condition in (3.7)

holds, the optimal 2-means split at the population-level is along the first covariate and on the other hand

when the condition in (3.9) holds, the optimal 2-means split at the population-level is along the second

covariate.

Additionally we also have the following lemma:

Lemma 3.3.1. In both the cases mentioned in Theorem 3.3, the matrix G given by equation (3.6) is positive

definite.

Therefore Theorem 3.3 and the above Lemma 3.3.1 combined together with Theorem 3.2 give the limiting

distribution under the alternative.

3.3 Power of the SigClust Procedure

In this section we derive the asymptotic power of the test using the previous results on the limiting

distribution. Since in the previous section we assumed using a symmetric 2−means clustering we now

consider the test statistic for the symmetric 2−means clustering. We define

T (0)
n := T (0)

n

(
bn

(0)
)

=
W

(0)
n (bn

(0))
1
n

∑n
i=1 ‖Xi −X‖2

. (3.11)

Let

Powern(a) = P(T (0)
n > tα,n),
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(a) Original Clusters (b) 2-means Clusters

Figure 3.1: A two-dimensional example of Theorem 3.3 and Theorem 3.4 in which SigClust is inconsistent,
where the condition in (3.9) and (3.13) holds. The inconsistency is caused by k-means clustering (k = 2)
incorrectly splitting the data horizontally, instead of vertically. The data in (a) is generated from
0.5N(−θ1, D) + 0.5N(θ1, D), where θ1 = (2, 0) and D = diag(1, 5).

denote the power of the test where tα,n denotes the α-level critical value. Building once again on the result

in Lemma 3.0.1 and additionally on Theorem 3.2, we show the following result:

Theorem 3.4. Suppose that samples are generated according to the model described in (3.4) and let Z ∼

N(0, 1) then:

1. Consistent: If,

σ2
2 < σ2

1 +
a2

4
, (3.12)

then SigClust is consistent, i.e. Powern(a)→ 1 as n→∞.

2. Inconsistent: On the other hand if,

σ2
2 > max

2σ4
1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

,
π

2

(√
2

π
σ1 exp

(
− a2

8σ2
1

)
+
a

2
P

(
|Z| < a

2 σ1

))2
 (3.13)

then SigClust is inconsistent, i.e. Powern(a) < 1 as n→∞.
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Remarks:

1. In order to roughly understand the result, as we show more precisely in the Appendix for small values

of a > 0:

π

2

(√ 2

π
σ1 exp

(
− a2

8σ2
1

)
+
a

2
P
(
|Z| < a

2σ1

))2

≈ σ2
1 +

a2

4
,

where we use ≈ to mean equal up to a small error of size roughly a4/σ2
1 . As a consequence, in our

setup we see that when the variance of the second covariate is sufficiently large SigClust has no power

in detecting departures from Gaussianity along the first covariate.

2. We observe a phase-transition in the power of SigClust, and we provide a precise characterization of

this phase-transition. We highlight that the low power of SigClust is a persistent phenomenon, i.e.

there is a large, non-vanishing part of the parameter space where the test is not consistent. We see

that the power of SigClust is very sensitive to the particular values of the variances in the matrix D.

In the next chapter we consider alternative tests based on relative-fit that address these drawbacks of

SigClust.

3. The proof of this result is quite technical and we defer the details to Appendix A.3. At a high-level, the

proof follows from Theorem 3.3 which characterizes the optimal 2-means split at the population-level,

and uses it to study the distribution of the test statistic under the alternate. We then leverage our

previous characterization of the distribution of the test statistic under the null to study the power of

SigClust.

4. Despite the technical nature of the proof, the intuition behind the phase-transition is quite natural. As

shown in Theorem 3.3, when the condition in (3.12) holds, the optimal 2-means split at the population-

level splits the data along the first covariate and as a result the test is able to detect the non-Gaussianity

of the first covariate. On the other hand when the condition in (3.13) holds, the optimal 2-means split at

the population-level is along the second covariate and the resulting test is asymptotically inconsistent.

This is demonstrated in Figure 3.1, where the 2-means clustering splits the data horizontally instead

of vertically, which results in SigClust not being able to detect the two clusters.

5. Finally, we note in passing that in the case when

π

2

(√ 2

π
σ1 exp

(
− a2

8σ2
1

)
+
a

2
P
(
|Z| < a

2σ1

))2

= σ2
2 ,

the 2-means solution is no longer unique, and we are unable to use our techniques to characterize the

power of the test. However, we conjecture that SigClust remains inconsistent even in this case.
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Chapter 4

A Test for Relative Fit of Mixtures

(Rift)

A natural way to improve the low power of SigClust is to formally test for whether the data are generated

from a Gaussian versus a mixture of Gaussians. There is a long history of research on this problem; see,

for example, Dacunha-Castelle et al. (1999); Gassiat (2002); Chen (2017); Gu et al. (2017) and references

therein. As we mentioned earlier, the mixture model is irregular and there has been little success in deriving

a practical, simple test with valid type I error control. Furthermore, and more importantly, such tests ignore

the fact that we are only using the parametric model as an approximation; we don’t expect that the true

distribution is exactly Gaussian or a mixture of Gaussians. This motivates our new approach where we

test the relative fit of the models without assuming that either model is correct. Also, our test is valid for

multivariate mixtures whereas many of the existing tests are for the univariate case.

4.1 The Basic Test: Rift

Let P1 denote the set of multivariate Gaussians and let P2 denote the set of mixtures of two multivariate

Gaussians. We are given a sample X1, . . . , X2n ∼ P but we do not assume that P is necessarily in either P1

or P2. Note that, for notational simplicity, we denote the total sample size by 2n.

We randomly split the data into two halves D1 and D2. Assume each has size n. Using D1, fit a Gaussian

p̂1 and a mixture of two Gaussians p̂2. Any consistent estimation procedure can be used; in our examples

we use the Expectation Maximization (EM) algorithm. Understanding precise conditions under which EM

yields a global maximizer is an area of active research (Balakrishnan et al., 2017), but we do not pursue this

further in this thesis.
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Instead of testing H0 : P ∈ P1 versus H1 : P ∈ P2 we test whether p̂2 is a significantly better fit for the

data than p̂1. This is a different hypothesis from the usual one, but, arguably, it is more relevant since it is

p̂1 or p̂2 that will be used for clustering. Furthermore, this does not require that the true distribution be in

either P1 or P2.

To formalize the test, let

Γ = K(p, p̂1)−K(p, p̂2), (4.1)

where K(p, q) =
∫
p log(p/q) is the Kullback-Leibler distance and p is the true density. Note that Γ is a

random variable. Formally, we will test, conditional on D1,

H0 : Γ ≤ 0 versus H1 : Γ > 0. (4.2)

Since Γ is a random variable, these are random hypotheses. Let

Γ̂ =
1

n

∑
i∈D2

Ri (4.3)

where Ri = log (p̂2(Xi)/p̂1(Xi)) . Below, we show that, conditionally on D1,

√
n(Γ̂− Γ) ≈ N(0, τ2) as n→∞,

where τ2 ≡ τ2(D1) = E[R2
i ]− Γ2. The quantity τ2 can be estimated by τ̂2 = 1

n

∑
i∈D2

(Ri − R)2. We reject

H0 if

Γ̂ >
zατ̂√
n
,

and we refer to this as the Rift (Relative Information Fit Test). For technical reasons, we make a small

modification to the test statistic. We replace Ri with R̃i = Ri + δZi where Z1, . . . , Zn ∼ N(0, 1), {Zi : i =

1 . . . n} are independent of the observed data and δ is some small positive number, for example, δ = 0.00001.

This has no practical effect on the test and is only needed for the theory.

For the following result, let the fitted Gaussian density be given by p̂1 = N(µ̂, Σ̂) and the fitted mixture

of two Gaussians be given by p̂2 = α̂f̂1 + (1− α̂)f̂2, where f̂1 = N(µ̂1, Σ̂1) and f̂2 = N(µ̂2, Σ̂2). For technical

reasons, we restrict the parameter estimates to lie in a compact set. Formally, we assume that each µ̂i is

restricted to lie in a compact set A and that the eigenvalues of Σ̂ and Σ̂i lie in some interval [c1, c2] for

i = 1, 2, where c1, c2 > 0. As a consequence of data splitting, the test of relative fit has a simple limiting

distribution unlike the usual tests for mixtures which have intractable limits.
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Theorem 4.1. Let Z ∼ N(0, τ2) where τ2 = E[(R̃i − Γ)2|D1]. Then, under H0

sup
t

∣∣∣P(
√
n(Γ̂− Γ) ≤ t | D1)− P(Z ≤ t)

∣∣∣ ≤ C√
n

(4.4)

where C = C0

δ3

[
8C3

1 + δ
(

12C2
1

√
2
π + 6C1δ + 2

√
2
π δ

2
)]

, C0 = 33/4 and C1 is a constant.

Remark: It is also possible to consider the normalized version of the statistic Γ̂. Formally, under the

conditions of the above result conditional on D1:

sup
t

∣∣∣P(√n( Γ̂

τ̂
− Γ

τ

)
≤ t
)
− P(Z ≤ t)

∣∣∣ ≤ C√
n

where Z ∼ N(0, 1). We note that since the constant C does not depend on D1 this result also holds

unconditionally.

We now turn our attention to the power of Rift. Suppose that we consider a distribution p such that,

Γ∗ = inf
p1∈P1

K(p, p1)− inf
p2∈P2

K(p, p2) > 0, (4.5)

i.e. p is a distribution for which the class of mixtures of two Gaussians provides a strictly better fit than a

single Gaussian. Then we have the following result characterizing the power of Rift:

Theorem 4.2. Suppose that Γ∗ in (4.5) is strictly positive, then Rift is asymptotically consistent, i.e. as

n→∞.

Powern(Rift) = P(Γ̂ > zατ̂ /
√
n)→ 1.

Remark: A consequence of this result is that Rift is consistent against any fixed distribution p ∈ P2\P1.

In other words, the power deficiency of SigClust observed in Theorem 3.4 does not happen for our test. This

is demonstrated in Figure 4.1 where Rift works, but as demonstrated in Figure 3.1, SigClust fails.

4.2 Variants of Rift

In this section we introduce and study a few variants of Rift that can be advantageous in various applications.

4.2.1 A Robust, Exact Test

The Kullback-Leibler (KL) distance between two densities p and q is K(p, q) = Ep[W ] where W =

log(p(X)/q(X)). This distance can be sensitive to the tail of the distribution of W . For this reason we

also consider a robustified version of the KL distance, namely, K̃(p, q) = MedianP [W ], that is, the median
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(a) Original Clusters (b) Gaussian Mixture Model Clusters

Figure 4.1: A two-dimensional example of Theorem 3.3 and Theorem 3.4 in which SigClust is inconsistent
but Rift works. The Gaussian Mixture Model correctly splits the data vertically. The data in (a) is
generated from 0.5N(−θ1, D) + 0.5N(θ1, D), where θ1 = (2, 0) and D = diag(1, 5).

of W under p (we will assume for convenience that the median is unique). In this case, the sample median

of W1, . . . ,Wn is a consistent estimator of K̃(p, q), where Wi = log (p(Xi)/q(Xi)).

For relative fit we define

Γ̃ = Medianp[R] (4.6)

where R = log p̂2(X)/p̂1(X). A point estimate is the sample median based on D2. To test H0 : Γ̃ ≤ 0 versus

H1 : Γ̃ > 0 we use the sign test. Hence, under H0, P(rejecting H0) ≤ α. We will refer to this as median-

Rift or M-Rift. This approach has two advantages: it is robust and it does not require any asymptotic

approximations.

4.2.2 `2 Version

The test does not have to be based on Kullback-Leibler distance. We can also use the `2 distance as we now

explain. Define the `2-relative fit by Θ =
∫

(p− p̂1)2 −
∫

(p− p̂2)2. We test, conditional on D1,

H0 : Θ ≤ 0 versus H1 : Θ > 0.

To estimate Θ, note that we can write Θ =
∫
p̂2

1 −
∫
p̂2

2 − 2
∫
p(p̂1 − p̂2) which can be estimated by

Θ̂ =

∫
p̂2

1 −
∫
p̂2

2 −
2

n

∑
i∈D2

Ui
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where Ui = p̂1(Xi)− p̂2(Xi). To evaluate the integrals, we use importance sampling. We sample Y1, . . . , YN ∼

g from a convenient density g (such as a t-distribution) and then use

∫
p̂2

1 ≈
1

N

∑
j

p̂2
1(Yj)

g(Yj)
,

∫
p̂2

2 ≈
1

N

∑
j

p̂2
2(Yj)

g(Yj)
.

Again, for technical reasons, we make a small modification to the test statistic. We replace Ui with Ũi =

Ui + δZi where Z1, . . . , Zn ∼ N(0, 1), {Zi : i = 1 . . . n} are independent of the observed data and δ is some

tiny positive number, for example, δ = 0.00001. Again this has no practical effect on the test and is only

needed for the theory. Recall that the Gaussian density is given by p̂1 = N(µ̂, Σ̂) and the mixture of two

Gaussians is given by p̂2 = αf̂1 + (1 − α)f̂2, where f̂1 = N(µ̂1, Σ̂1) and f̂2 = N(µ̂2, Σ̂2). Once again, we

assume that µ̂i are restricted to lie in a compact set A and that the eigenvalues of Σ̂ and Σ̂i lie in the interval

[c1, c2] for c1, c2 > 0 and for i = 1, 2.

Theorem 4.3. Let Z ∼ N(0, a2) where a2 = var(Ũi). Then, under H0,

sup
t
|P(
√
n(Θ̂−Θ) ≤ t|D1)− P(Z ≤ t)| ≤ C̃√

n
, (4.7)

where C̃ = C0

δ3

[
8C3

2 + δ
(

12C2
2

√
2
π + 6C2δ + 2

√
2
π δ

2
)]

, C0 = 33/4 and C2 is a constant.

4.3 Aside: A Test for Mixtures Using Rift

Our focus is on the relative fit as described in the previous section. However, it is possible to modify our

test so that it tests the more traditional hypotheses

H0 : P ∈ P1 versus H1 : P ∈ P2

where P1 are Normals and P2 are the mixtures of two Normals. There is currently no available test that is

simple, asymptotically valid and has easily computable critical values in the multivariate case. But we can

use our split test for this hypothesis if we modify the test using the idea of Ghosh and Sen (1984) where we

force the fit under the alternative to be bounded away from the null. When combined with data splitting,

this results in a valid test. Specifically, when we fit H1, we will constrain the fitted density p̂2 to satisfy

K(p, p̂2) > ∆ for all p ∈ P1. Here, ∆ is any small, positive constant.

Theorem 4.4. If P ∈ P1 then P(Γ̂ > zατ̂ /
√
n) ≤ α+ o(1). Indeed, it can be shown that, P(Γ̂ > zατ̂ /

√
n) =

o(1) for any fixed α ∈ (0, 1).
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Hence, combining data splitting with the Ghosh-Sen separation idea yields an asymptotically valid test for

mixtures with a simple critical value. To the best of our knowledge, this is the first such test.

4.4 Truncated Rift

If the support of the data is a truncated space, the null hypothesis will be a truncated Normal rather than

a Normal. For example, if we use Rift for top-down hierarchical clustering, as described later in Chapter

5.1, then after the first split, the test is now applied to the data in a cluster which is a truncated space. So

instead of comparing the fit of a Normal p̂1 and a fit of a mixture of two Normals p̂2, we need to compare

the fit of a truncated normal to a fit of a truncated mixture of two Normals. We can use exactly the same

test except that p̂j should be replaced with p̂j/P̂j(S) where S denotes the subset of Rd corresponding to the

cluster being tested. We can estimate Pj(S) as follows. First, generate Z1, Z2, . . . , Zm ∼ P̂j for some large

m. Then set P̂j(S) = 1
m

∑m
i=1 I(Zi ∈ S). Then replace p̂j with with p̂j/P̂j(S) in the test.

4.5 Other Tests for Significance of a Cluster

Another way to decide whether to split a cluster or not is to use a goodness-of-fit test for Normality. In

this section we describe two such tests. Note that such tests can only be used for the first split in the

clustering problem. We include them in our study because they are simple and they provide a point of

comparison. We also note that it is possible to use tests for goodness-of-fit with minimax-optimal power

against neighborhoods defined in particular metrics, based on binning and the χ2-test, but these tests are

complex and have tuning parameters that need to be carefully chosen.

4.5.1 Mardia’s Multivariate Kurtosis Test

Mardia (1974) proposed using the Kurtosis measure to test for normality. If X is a d-dimensional random

(column) vector with expectation µ = E[X] and non-singular covariance matrix Σ = E[(X − µ)(X − µ)T ],

Mardia (1970) defines the multivariate Kurtosis as

β2 = E
[{

(X − µ)TΣ−1(X − µ)
}2
]
.

The proposed test uses the Kurtosis measure to test for multivariate normality. If X1, . . . , Xn ∈ Rd are

independent observations from any multivariate normal distribution, then the sample analogue of Kurtosis

is given by,

b2,d =
1

n

n∑
j=1

{(
Xj −X

)T
S−1
n

(
Xj −X

)}2

,
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where

X =
1

n

n∑
i=1

Xj , Sn =
1

n

n∑
j=1

(
Xj −X

) (
Xj −X

)T
are the sample mean vector and the sample covariance matrix. Mardia (1970) shows that b2,d has a

distribution under the null hypothesis, H0, given by

√
n (b2,d − d(d+ 2))√

8d(d+ 2)

d→ N(0, 1)

as n → ∞. So we reject the null hypothesis for both large and small values of b2,d. This multivariate

normality test is consistent if, and only if,

E
[{

(Xi − µ)
T

Σ−1 (Xi − µ)
}2
]
6= d(d+ 2).

For detecting clusters, the method starts by fitting a multivariate Gaussian to the data. We then perform

the multivariate normality test using the Kurtosis measure and if the test gets rejected then the data is split

into two clusters. We reject H0 at level α if∣∣∣∣∣
√
n (b2,d − d(d+ 2))√

8d(d+ 2)

∣∣∣∣∣ > zα/2.

4.5.2 Nearest Neighbor Goodness of Fit Tests

Nearest neighbor (NN) goodness of fit tests were developed by Bickel and Breiman (1983) and Zhou and

Jammalamadaka (1993). Let X1, . . . , Xn ∈ Rd be samples from P with a density function p(x). We want to

test H0 : P = P0 where P0 has density p0.

In the clustering framework, we consider the null hypothesis that the data is drawn from a single

multivariate Gaussian distribution. That is, we consider p0 to be the multivariate Gaussian distribution,

with some mean µ and covariance matrix Σ. To implement these tests, we first split the data into two halves

D1 and D2 and use D1 in order to estimate the µ and Σ. Therefore in our setting, P0 = N(µ̂, Σ̂) is the

estimated null.

Let Ri = minj 6=i ‖Xi −Xj‖. The first version of this test uses

Wi = exp (−nDi) := exp (−np0(Xi)V (Ri))

where V (r) = Kdr
d is the volume of a ball of radius r and Di = p0(Xi)V (Ri). Under H0, the Wi’s are

approximately Uniform on [0, 1] and hence we can use the Kolmogorov-Smirnov test.
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For the second version, we consider the test proposed by Zhou and Jammalamadaka (1993) that uses

T ∗n =
1√
n

n∑
i=1

[h(nDi)− E0[h(nDi)]]

where h is a bounded function on [0,∞). The authors show that
√
n T ∗n

d→ N(0, σ2(h)) which is independent

of the null distribution P0, where σ2(h) only depends on the function h.

We consider h(x) = exp(−x) and calculate the test statistic in terms of Wi as

T ∗n =
1√
n

n∑
i=1

[exp(−nDi)− E0[exp(−nDi)]] =
1√
n

n∑
i=1

[Wi − E0[Wi]] .

Since under the null distribution P0, Wi ≈ U(0, 1), E0[Wi] = 0.5. Therefore, we reject H0 at level α if∣∣∣∣√n T ∗nσ̂(h)

∣∣∣∣ > zα/2

where σ̂2(h) is the estimated variance of the Wi’s.
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Chapter 5

Hierarchical and Sequential

Clustering

5.1 Hierarchical Clustering

To propose a hierarchical version of Rift, we apply the procedure recursively. We propose both top-down

and bottom-up versions of the algorithm. In both the cases we begin by splitting the data into two halves

D1 and D2. The first half D1 is used to fit the Gaussian and the mixture of two Gaussians whose fits we

compare for the test Rift, and to recursively split the clusters forming a cluster tree. The second half D2 is

used to conduct the significance tests. In the top-down approach, the tests are applied from the top of the

tree downwards and we stop when H0 is not rejected. In the bottom-up approach we start at the bottom of

the tree and combine leaves until the test rejects.

In the top-down case we start with the whole space Rd as the root node and split a node into two nodes

every time we reject the null hypothesis of the test (any version of Rift) using the data at that node. Note

that root node we use Rift, but for subsequent nodes, the nodes represent truncated spaces and hence we

need to use the truncated versions of Rift. This way, by recursively applying the test to each node, we

build a binary tree. The final clustering is given by the leaf nodes of the tree derived by the algorithm.

We detail the algorithm below in Algorithm 1. But before we do that, we define some notation.

Definition 5.1. A collection of sets P = {P1, . . . , Pm} is said to be a partition of a set A, if the sets

(i) are mutually disjoint, Pi ∩ Pj = φ and

(ii) have as union the entire set, ∪mi=1Pi = A.
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Definition 5.2. For a sample D = {X1, . . . , Xn} of random variables in Rd, we define the partition of D with

respect to a partition P = {P1, . . . , Pm} of Rd as PD = {P1D, . . . , PmD}, where

PiD = {Xj : Xj ∈ Pi} ∀ i = 1, . . . ,m.

Algorithm 1: Top-down Hierarchical Rift

Result: Leaf nodes of a binary tree that give the hierarchical clustering at significance level α (B).

Set of “to be split leaf nodes” = A = {Rd}.

Set of “not to be split leaf nodes” = B = φ, the null set.

Partition of Rd = P = A ∪ B.

Initializing node labels: i = 0, T0 = Rd.

Split the data D into two sets D1 and D2. D1 is the training set to be used for fitting the Gaussian

and the mixture of two Gaussians whose fits are compared by Rift and D2 is the test set to be

used for performing the test.

Depth function for sets in A, d : A −→ {0, 1, 2, . . .} s.t. d(T0) = 0.

while A 6= φ do

1. Pick Tj ∈ A, s.t. d(Tj) = mini d(Ti).

2. Use TjD1
to fit a single truncated Gaussian p̂1 and a mixture of two truncated Gaussians p̂2.

3. Use TjD2
along with p̂1 and p̂2 to perform Rift at level α/22d(Tj)+1.

if reject Rift then

Split Tj into Ti+1 and Ti+2 according to p̂2;

if |T(i+1)D| > 2(4d+ 1) and |T(i+2)D| > 2(4d+ 1) then
Remove Tj from A, add Ti+1 and Ti+2 to A and set i = i+ 2 and

d(Ti+1) = d(Ti+2) = d(Tj) + 1;

else

Remove Tj from A and add Tj from B;

end

else

Remove Tj from A and add Tj from B;

end

end
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T0

T1

T3 T4

T2

(a) Testing for the split of T2.

T0

T1

T3 T4

T2

(b) Rift at T2 fails to reject H0.
Testing for the split of T4.

T0

T1

T3 T4

T5 T6

T2

(c) Rift at T4 rejects H0.

Figure 5.1: Example of intermediate steps for the top-down hierarchical Rift procedure.

To demonstrate a splitting step of the top-down clustering process as shown in Algorithm 1, let us say

we pick Tj = T2 as shown in Figure 5.1, where A = {T2, T3, T4} and B = φ. We estimate the truncated

Gaussian (p̂1) and the truncated mixture of two Gaussians (p̂2) using T2D1
and then use T2D1

to perform

Rift at level α/23. As shown in Figure 5.1, if we fail to reject Rift, then A = {T3, T4} and B = {T2}. The

next Tj under consideration is either T3 or T4. Suppose we consider Tj = T4 and repeat all the steps as in

the case of T2 to perform Rift at level α/25. If in this case Rift rejects the null, then we split T4 into T5

and T6. Therefore now A = {T3, T5, T6} and B = {T2}. We continue this way until A is completely empty

and then the final clustering is given by the nodes in B.

T0

T1

T3

T7 T8

T4

T9 T10

T2

T5 T6

T11 T12

(a) Testing for the split of T3 into T7 and T8.

T0

T1

T3 T4

T9 T10

T2

T5 T6

T11 T12

(b) Rift at T3 fails to reject H0.
Testing for the split of T6 into T11 and T12.

T0

T1

T3 T4

T9 T10

T2

T5 T6

T11 T12

(c) Rift at T6 rejects H0.

Figure 5.2: Example of intermediate steps for the bottom-up hierarchical Rift procedure.
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Algorithm 2: Bottom-up Hierarchical Rift

Result: Leaf nodes of a binary tree that give the hierarchical clustering at significance level α (B2).

Set of “to be split leaf nodes” = A1 = {Rd}.

Set of “not to be split leaf nodes” = B1 = φ, the null set.

Set of “parent nodes” = C = φ, the null set.

Partition of Rd = P = A1 ∪ B1.

Initializing node labels: i = 0, T0 = Rd.

Split the data D into two sets D1 and D2 as in Algorithm 1.

Depth function for sets, d : (A1 ∪ B1 ∪ C) −→ {0, 1, 2, . . .} s.t. d(T0) = 0.

Parent function, p : {1, 2, . . .} −→ {0, 1, 2, . . .}.

Building Stage:

while A1 6= φ do

Pick Tj ∈ A1, s.t. d(Tj) = mini d(Ti);

Use TjD1
to fit a single truncated Gaussian p̂1 and a mixture of two truncated Gaussians p̂2;

Split Tj into Ti+1 and Ti+2 according to p̂2;

if |T(i+1)D| > 2(4d+ 1) and |T(i+2)D| > 2(4d+ 1) then

Remove Tj from A1, add Ti+1 and Ti+2 to A1 and set i = i+ 2, p(i+ 1) = p(i+ 2) = j and

d(Ti+1) = d(Ti+2) = d(Tj) + 1;

else

Remove Tj from A1 and add Tj from B1;

end

end

Trimming Stage:

Set of “to be merged leaf nodes” = A2 = B1.

Set of “not to be merged leaf nodes” = B2 = φ, the null set.

Set of “parent nodes” = C.

while A2 6= φ do

Pick Tj ∈ A2, s.t. d(Tj) = maxi d(Ti) and j is even. Then Tj−1 ∈ A2 and Tp(j) ∈ C hold;

Use Tp(j)D2
to perform Rift at level α/22d(Tj)−1;

if reject Rift then

Remove Tj and Tj−1 from A2 and add them to B2;

else

Remove Tj and Tj−1 from A2, remove Tp(j) from C and add Tp(j) to A2;

end

end
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The bottom-up version as shown in Algorithm 2 has two stages. A building stage and a trimming stage.

In the building stage we build a binary tree such that each of the leaf nodes has at least 2(4d + 1) data

points. That is, it has enough data to estimate a mixture of two Gaussians with different diagonal covariance

matrices and to perform a test. In the trimming stage, we start with the leaf nodes, and test whether their

parent should have been split using Rift. If we reject the test, we keep the leaf nodes and if we fail to reject

we trim off the corresponding leaf nodes.

To demonstrate a trimming step of the bottom-down clustering process, let us say we first build the binary

tree given in Figure 5.2(a). Then A2 = {T5, T7, T8, T9, T10, T11, T12}, B2 = φ and C = {T0, T1, T2, T3, T4, T6}.

Suppose we pick Tj = T8 as shown in Figure 5.2(a), then Tj−1 = T7 ∈ A2 and Tp(j) = T3 ∈ C. We estimate

the truncated Gaussian (p̂1) and the truncated mixture of two Gaussians (p̂2) using T3D1
. We use T3D1

to

perform Rift at level α/25. As shown in Figure 5.2(b), if we fail to reject Rift, then we trim the children

of T3 and now A2 = {T3, T5, T9, T10, T11, T12}, B2 = φ and C = {T0, T1, T2, T4, T6}.. The next Tj under

consideration is either T10 or T12. Suppose we consider Tj = T12 and repeat all the steps as in the case of

Tj = T8 to perform Rift at level α/25. If in this case Rift rejects the null, then we keep the split of T6

into T11 and T12. Therefore now A2 = {T3, T5, T9, T10}, B2 = {T11, T12} and C = {T0, T1, T2, T4, T6}.. We

continue this way until A2 is completely empty and then the final clustering is given by the nodes in B2.

In this section, following Kimes et al. (2017), by applying Rift recursively, we obtained a hierarchical

clustering of the data with significance guarantees. We also developed a bottom-up version of mixture

clustering which can be regarded as a linkage clustering procedure where we first over-fit a mixture and

subsequently combine elements of the mixture. While the hierarchical algorithms have some significance

guarantees, the theoretical consistency of these algorithms remains an open problem. For example, if the

data is from a Gaussian mixture with k components, whether the algorithms provide significance guarantees

concerning the number of clusters k is still an open problem.

5.2 A Sequential Approach

Rift can also be used in a sequential model selection framework. Using D1 we fit a mixture of k Gaussians

for k = 1, 2, . . . ,Kn where Kn can be chosen to be quite large, for example, Kn =
√
n. Now, using D2, we

choose k by testing a series of hypotheses. For j = 1, 2, . . . , we test the null that p̂j fits better than any p̂s

for s > j. Formally, we test

H0j := K(p, p̂j)−K(p, p̂s) ≤ 0 for all s > j

versus

H1j := K(p, p̂j)−K(p, p̂s) > 0 for some s > j.
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We reject H0j if

max
j<s≤Kn

√
n Γ̂js
τ̂js

> zα/mj (5.1)

where mj = Kn − j, Γ̂js = 1
n

∑
i∈D2

Ri, Ri = log (p̂s(Xi)/p̂j(Xi)) and τ̂2
js = 1

n

∑
i∈D2

(Ri −R)2.

Let k̂ be the first value of j for which H0j is not rejected. We then use p̂k̂ to define the clusters. Notice

that, unlike procedures like AIC or BIC, this method provides a valid, asymptotic, type I error control.

Lemma 5.2.1. Under H0j,

lim sup
n→∞

P(rejecting H0j) ≤ α. (5.2)

This follows from the results in Section 3. Of course, Γ can be replaced with the `2 version or the median

version.
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Chapter 6

Experimental Performance of the

Tests

6.1 Simulations

In this section we compare SigClust and the Rift variants we proposed through a variety of simulations. In

Section 6.1.1 we investigate the asymptotic normality of the Rift statistic defined in (4.3) under the null. In

Section 6.1.2 we compare the power of various tests for detecting and splitting a mixture of two Gaussians.

Finally, in Sections 6.1.3 and 6.1.4 we study hierarchical clustering using the Rift statistic and evaluate

model selection using the sequential Rift procedure.

6.1.1 Asymptotic Normality of the Rift Test Statistic

In this section we check if the distribution of the Rift test statistic is indeed Normal as claimed in Theorem

4.1. We explore four simulated data sets and use Q-Q plots to check for Normality. For the four examples,

we generate data from the following distributions:

1. 0.5N(µ, Id) + 0.5N(−µ, Id), with d = 2, n = 1000 and µ = (2, 0).

2. A mixture of two uniform distributions over rectangles given by, 0.5 Unif([−2,−1] × [0, 1]) +

0.5 Unif([2, 3]× [0, 1]), with d = 2 and n = 1000.

3. 0.5N(µ, Id) + 0.5N(−µ, Id), with d = 1000, n = 1000 and µ = (10, 0, . . . , 0).

4. A single Gaussian distribution, N(0,Σ), where Σ11 = 100 and Σjj = 1 for j = 2, . . . , d.
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Figure 6.1: Q-Q plots to check Normality of the Rift test statistic.

The test statistic, Γ̂ defined in (4.3) is computed for 100 simulations in each of these cases. Figure 6.1

provides the Q-Q plots of the test statistic. We notice that all of them are close to Normal, confirming the

result in Theorem 4.1.

6.1.2 Comparing the Different Tests for Mixtures of Two Gaussians

We first consider data generated from a collection of mixture of two Gaussians, 0.5N(µ, Id) + 0.5N(−µ, Id),

where µ = (a, 0, . . . , 0), with varying distances (varying a) between their means. We compare the power of

the Rifts, SigClust, Mardia’s Kurtosis Test and two versions of Zhou’s Nearest Neighbour tests in detecting

the two clusters. Mardia’s Kurtosis Test and the two versions of Zhou’s Nearest Neighbour tests are described

in detail in Appendix 4.5. Specifically, we compare the number of times the tests correctly reject the null

hypothesis that the data is generated from a single (Gaussian) cluster.

First, we compare the effect of varying the number of observations (n) for the different tests. We run

100 simulations where we generate observations from a mixture of two 2D Gaussian distributions given by,

0.5N(µ, Id) + 0.5N(−µ, Id), with d = 2 and µ = (2, 0). Figure 6.2 gives the proportion of tests that reject

the null hypothesis that the underlying distribution has just one cluster at level α = 0.05. We see that

M-Rift and SigClust have comparable power, and that they have higher power than the other tests. We

also notice that Mardia’s Kurtosis test and Rift have comparable power, but they do not perform as well

as SigClust or M-Rift.

Next we vary the value of a and see how increasing or decreasing the distance between the two distributions

changes the ability of the tests to reject. We fix n = 1000. Figure 6.2 compares the proportion of times the

tests detect the two distributions at α = 0.05, as we vary the distance between them. Notice that Mardia’s

Kurtosis test and both the Rifts perform better than SigClust in this case. In particular, they detect the

two clusters for smaller values of a when compared to SigClust. Also notice that SigClust does not detect

the presence of the two clusters at all when the distance between the two clusters is ≤ 1.5. For the rest of

our simulations, we consider comparisons between the Rifts and SigClust.
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Figure 6.2: Comparing the power of the tests with increasing distance between the two mixture distributions
(increasing a) and varying the total number of observations, n in terms of log(n).

Signal in One Direction

We compare the power of our test with SigClust while checking whether the tests control the type-I error at

α = 0.05. We consider a mixture of two normal distributions, 0.5N(0,Σ)+0.5N(µ,Σ), where µ = (a, 0, . . . , 0)

with a = 0, 10, 20 and Σ = Id. The sample size is n = 500, we use 450 points to estimate the Gaussian

mixture parameters and 50 points to test the hypothesis. The dimension is d = 1000. Notice that when

a = 0, the distribution reduces to a single Gaussian distribution and as we take larger a, the signal strength

grows. The empirical distributions of p-values, after 30 realizations of the experiment, for Rift, Median

RIFT (M-Rift) and SigClust are shown in Figure 6.3. We notice that the SigClust has very good power

for both a = 10 and a = 20, whereas the Rifts catch up for a = 20.

Signal in All Directions

Now we consider data with signal in all directions and compare the tests at α = 0.05. We consider a mixture

of two normal distributions, 0.5N(0,Σ) + 0.5N(µ,Σ), where µ = (a, a, . . . , a) with a = 0, 0.5, 0.7 and Σ is

a diagonal matrix with Σ11 = 100 and Σjj = 1 for j = 2, . . . , d. We consider a high-dimensional setting

where the sample size is chosen to be n = 100 and the dimension is d = 1000. Figure 6.4 shows the p-values

generated by each of the tests. In this case, we see that all the tests perform similarly well. SigClust performs

only slightly better than the Rifts.
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Figure 6.3: Comparing the empirical distribution of the p-values when signal is exactly in one direction.

Figure 6.4: Comparing the empirical distribution of the p-values when signal is in all directions.

Example where SigClust Fails

Finally, we compare the power of the Rifts with SigClust and Mardia’s Kurtosis test in detecting the signal

in one direction if the variability in another direction is very high, at α = 0.05. We consider a mixture of two

normal distributions, 0.5N(0,Σ) + 0.5N(µ,Σ), where µ = (a, 0, . . . , 0) with a = 0, 10, 20 and Σ is a diagonal

matrix with Σjj = 400 for j = 2 and Σjj = 1 for j 6= 2. That is, we are trying to detect the signal in the

first dimension while the variability in the second dimension is very high. The sample size is n = 100 and

dimension is d = 5.

The empirical distributions of the p-values are shown in Figure 6.5. We notice that SigClust has almost

no power in detecting the signal in one direction when there is high variability in any other direction, whereas

both the Rifts have high power while controlling the type-I error. Mardia’s Kurtosis test also has higher

power than SigClust but has lower power than the Rifts.
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Figure 6.5: Comparing the power of the tests with higher signal in one direction and high variability in
another.

6.1.3 Hierarchical Clustering Example: Four Cluster Setting (K = 4)

In this section, we compare the tests in a hierarchical setting. We compare the Rifts, SigClust and truncated

SigClust, where for the SigClusts the clustering is performed using k-means clustering with k = 2 and mixture

of Gaussians is used in the case of the Rifts. We consider the alternative setting in which observations are

drawn from a mixture of four clusters, each of which is a Gaussian distribution with covariance matrix

Σ = Id. Our motive is to study how the different tests behave at each split in a hierarchical setting.

We compare the methods for two arrangements of the four Gaussian components. In the first setting, the

four components are placed at the vertices of a square with side length δ and in the second setting, the four

components are placed at the vertices of a regular tetrahedron with side length δ. 50 samples were drawn

from each of the Gaussian components for 100 simulations. We control the overall type I error for all the

methods at α = 0.05.

For each of the simulations, we use the four tests Rift, M-Rift, SigClust and truncated SigClust in the

hierarchical setting and record the number of clusters given by each. Table 6.1 gives the simulation results for

some values of d and δ. We notice that M-Rift performs better than the other tests in all the experiments.

We also notice that the top-down hierarchical algorithms tend to give more clusters than the bottom-up

hierarchical algorithms. In the case of Rift and M-Rift, we notice that the top-down algorithms identify
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Table 6.1: Measuring performance of hierarchical algorithms on a mixture of 4 Gaussians using the no. of
simulations (out of 100) that give a particular number of significant clusters.

Method Algorithm type
Parameters Number of clusters

d δ arr. 1 2 3 4 5 ≥ 6

Rift

Top-down 2 6 square

1 3 22 74 0 0
M-Rift 0 0 4 96 0 0
SigClust 16 0 0 43 13 28

Trunc. SigClust 16 0 0 46 14 24

Rift

Bottom-up 2 6 square

10 8 29 53 0 0
M-Rift 0 0 10 90 0 0
SigClust 77 0 0 20 3 0

Trunc. SigClust 57 0 1 30 12 0

Rift

Top-down 3 4 tetrahedral

1 5 27 67 0 0
M-Rift 0 0 5 95 0 0
SigClust 86 0 1 5 1 7

Trunc. SigClust 82 2 0 7 2 7

Rift

Bottom-up 3 4 tetrahedral

9 13 40 38 0 0
M-Rift 0 1 24 75 0 0
SigClust 58 0 24 8 10 0

Trunc. SigClust 50 0 23 12 15 0

Rift

Top-down 3 5 tetrahedral

0 0 9 91 0 0
M-Rift 0 0 0 100 0 0
SigClust 71 0 0 7 4 18

Trunc. SigClust 72 2 0 8 5 13

Rift

Bottom-up 3 5 tetrahedral

0 0 27 73 0 0
M-Rift 0 0 1 99 0 0
SigClust 54 0 29 7 10 0

Trunc. SigClust 48 0 26 11 15 0
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Table 6.2: Comparing the different algorithms for selecting the ideal number of clusters when samples are
generated from a mixture of four Gaussian distributions. n = 400 and Kn =

√
n = 20. The table gives the

number of simulations that identify the particular number of significant clusters over 100 replications.

Method
Parameters Number of clusters

d δ arr. 1 2 3 4 5 ≥ 6

S-Rift (KL)

10 6 Tetrahedral

0 0 32 68 0 0
S-Rift (`2) 60 22 11 7 0 0

AIC 0 0 46 54 0 0
BIC 1 41 58 0 0 0

S-Rift (KL)

10 10 Tetrahedral

0 0 5 93 2 0
S-Rift (`2) 55 16 25 4 0 0

AIC 0 0 7 93 0 0
BIC 0 0 99 1 0 0

S-Rift (KL)

20 80 Tetrahedral

0 4 86 10 0 0
S-Rift (`2) 94 5 1 0 0 0

AIC 0 7 93 0 0 0
BIC 1 99 0 0 0 0

four as the correct number of clusters more often than the bottom-up algorithms. In general, M-Rift and

Rift identify four as the number of significant clusters present, more often than SigClust or truncated

SigClust.

6.1.4 Sequential Rift

Now we compare the proposed sequential model selection approach (Sequential Rift or S-Rift) to AIC and

BIC. We use two versions of the model selection approach - one using the Kullback-Leibler distance and one

using the `2 distance between the estimated and the true densities. Using two simulated experiments, we

compare these methods to using AIC and BIC.

We reconsider the four cluster example used in the hierarchical clustering setting where the four

components are placed at the vertices of a regular tetrahedron with side length δ. 100 samples are drawn

from each of the four Gaussian components (n = 400) for 100 simulations. For each simulation, we use

S-Rift with the two different distances - Kullback-Leibler distance and `2 distance with Kn =
√
n = 20 and

record the number of clusters given by them. We also record the number of clusters that give the minimum

AIC and BIC for each simulation. Table 6.2 gives the results of the simulations when the overall type I error

is controlled at α = 0.05.. We notice that S-Rift using Kullback-Leibler distance out-performs all the other

methods. AIC performs very similar to it for d = 10 and δ = 10, but we notice that for d = 20 and δ = 80,

S-Rift using Kullback-Leibler distance is the only one that detects the four clusters for some simulations.
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To further explore the properties of Sequential Rift, we also study a simulation with 10 clusters. We

generate n data points from 10 Gaussian components with means given by:

µ1 = (a,0,0,0,0), µ6 = (−a,0,0,0,0),

µ2 = (0,a,0,0,0), µ7 = (0,−a,0,0,0),

µ3 = (0,0,a,0,0), µ8 = (0,0,−a,0,0),

µ4 = (0,0,0,a,0), µ9 = (0,0,0,−a,0),

µ5 = (0,0,0,0,a), µ6 = (0,0,0,0,−a),

where a = (a, a, . . . , a) and 0 = (0, 0, . . . , 0) are vectors of length p = d/5. Each Gaussian component has

mean 0 and variance σ2. We generate n/10 data points from each of the Gaussians.

We consider dimensions d = 30, so p = 6 and consider two values of n = 1000, 1500. We vary the

distance between the means by considering two values of a = 200, 500 and consider three variances σ2 =

0.001, 0.04, 0.16. For each of the three variances, we simulate 100 samples and record the number of clusters

given by S-Rift, AIC and BIC. In each case, the largest number of possible clusters is taken to be Kn =
√
n

and the overall type I error is controlled at α = 0.05.

The estimates of the number of clusters given by S-Rift, AIC and BIC are recorded in Table 6.3. We

notice that in every case S-Rift using Kullback-Leibler distance outperforms all the other methods. AIC

performs the next best. We notice that both S-Rift using `2 loss and BIC tend to under estimate the

number of clusters.

6.1.5 Summary of the Simulations

For two clusters which are separated in just one of the dimensions, if the variance in the other dimensions

isn’t too large, SigClust out-performs all the other methods for small sample sizes. Rift and Mardia’s

Kurtosis Test show comparable results. But when the distance between the clusters is small, or when the

variance in some other dimension is much larger than the separation, SigClust loses power completely and

Rift and Mardia’s Kurtosis Test out-perform SigClust. We also observe that as the dimension increases,

Rift has lower power than the SigClust.

For the simulated examples that have more than two clusters, hierarchical clustering using Rift detects

the true number of clusters much better than hierarchical clustering using SigClust. Finally, we notice that

using S-Rift to detect the correct number of clusters is better than minimizing the AIC or BIC. We also

see that the version using the Kullback-Leibler distance out-performs the one using `2 distance, which tends

to under-estimate the number of clusters.
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Table 6.3: Comparing the different algorithms for selecting the ideal number of clusters when samples
are generated from a mixture of 10 Gaussian distributions. The entries of the table give the numbers of
simulations (out of a total of 100) for which a certain estimate of the number of clusters is obtained.

Method
Parameters Number of clusters

n a σ2 ≤ 5 6 7 8 9 10

S-Rift (KL)

1000 200 0.001

0 1 0 45 54 0
S-Rift (`2) 100 0 0 0 0 0

AIC 0 1 1 52 46 0
BIC 13 3 46 38 0 0

S-Rift (KL)

1000 200 0.04

0 2 7 71 20 0
S-Rift (`2) 100 0 0 0 0 0

AIC 2 0 7 84 7 0
BIC 100 0 0 0 0 0

S-Rift (KL)

1000 200 0.16

1 2 21 65 11 0
S-Rift (`2) 100 0 0 0 0 0

AIC 3 0 22 75 0 0
BIC 100 0 0 0 0 0

S-Rift (KL)

1500 200 0.001

0 0 0 0 22 78
S-Rift (`2) 96 3 1 0 0 0

AIC 0 0 0 0 67 33
BIC 0 0 0 0 100 0

S-Rift (KL)

1500 200 0.04

0 0 0 0 72 28
S-Rift (`2) 93 2 0 5 0 0

AIC 0 0 0 0 100 0
BIC 0 0 0 77 23 0

S-Rift (KL)

1500 200 0.16

0 0 0 0 92 8
S-Rift (`2) 95 2 3 0 0 0

AIC 0 0 0 0 100 0
BIC 0 0 0 100 0 0

S-Rift (KL)

1500 500 0.001

0 0 0 0 8 92
S-Rift (`2) 96 3 1 0 0 0

AIC 0 0 0 0 31 69
BIC 0 0 0 0 100 0

S-Rift (KL)

1500 500 0.04

0 0 0 0 45 55
S-Rift (`2) 94 1 0 5 0 0

AIC 0 0 0 0 95 5
BIC 0 0 0 4 96 0

S-Rift (KL)

1500 500 0.16

0 0 0 0 73 27
S-Rift (`2) 95 2 3 0 0 0

AIC 0 0 0 0 97 3
BIC 0 0 0 55 45 0
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Table 6.4: Clusterings given by RIFT and SigClust for the multi-cancer gene expression data set.

True Classes
Rifts Classes

HNSC LUSC LUAD

HNSC 79 21 0
LUSC 7 70 23
LUAD 0 1 99

True Classes
SigClust Classes

HNSC LUSC LUAD

HNSC 90 10 0
LUSC 4 74 22
LUAD 0 1 99

6.2 Application to Gene Expression Data

To further compare the power of the Rifts to the power of the SigClusts in the hierarchical setting, we

apply the approach to a cancer gene expression data set. We consider a data set consisting of three different

cancer types - head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC) and

lung adenocarcinoma (LUAD). Since we have samples from three distinctively different cancers, we expect

the methods to be able to detect the presence of three different clusters. We compare the clusterings given

by hierarchical Rift and M-Rift with hierarchical SigClust at level α = 0.05.

We combine data on 100 tumor samples from each of HNSC, LUSC and LUAD to create a data set

of 300 samples, similar to Kimes et al. (2017). The data is obtained from The Cancer Genome Atlas

(TCGA) project (Network et al., 2012, 2014) whose RNA sequence data v2 is available at https://wiki.

nci.nih.gov/display/TCGA/RNASeq+Version+2. We used the R package TCGA2STAT (Wan et al., 2015)

to download the TCGA data into a format that can be directly used for our statistical analysis.

There are a total of 20,501 genes of which we use the 500 genes that have the highest median absolute

deviation (MAD) about the median. To scale the data appropriately, we consider a log-transformation of

the data. In order to do so, first we replace all expression values that are zero with the smallest non-zero

expression value for all genes over the data and then take a log-transformation.

SigClust was implemented with 1000 simulations at every node. The top-down and the bottom-up

versions of both Rift and M-Rift correctly give 3 clusters. The top-down version of SigClust gives 9

clusters and the bottom-up version gives 5 clusters. All the algorithms first create a split between LUAD

and the other two cancers and then the next split separates HNSC and LUSC. Table 6.4 gives the clusterings

given by the first two splits for the Rifts and SigClust. Note that even though SigClust gives better clusters,

it splits all the clusters further into smaller clusters.

Hence, similar to the simulations with multiple clusters in Section 6.1.3, in this case also hierarchical

clustering using Rift detects the true number of clusters much better than hierarchical clustering using

SigClust.
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Part III

Inference for Anomaly Detection:

Model-Independent Detection of New

Physics Signals Using Interpretable

Semi-Supervised Classifier Tests
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Chapter 7

Introduction to Model-Independent

Detection of New Physics Signals

Statistical and machine learning tools have been extensively used over the past few decades to answer

fundamental questions (Bhat, 2011) such as: What are the basic building blocks of our universe? What are

the fundamental forces of nature? Is there a greater underlying symmetry in our universe?

To answer these fundamental questions, one needs to experimentally test the predictions of the Standard

Model, which describes our current understanding of fundamental particles and how they interact with each

other. These tests can lead to discoveries of new particles and the development of new theories that can

better describe our universe. For example, the recent empirical confirmation of the Higgs boson was an

essential step towards its inclusion in the Standard Model (Aad et al., 2012; Chatrchyan et al., 2012).

In experiments conducted within large particle accelerators, e.g., the Large Hadron Collider (LHC), the

searches for new physics signals have traditionally been conducted using fully supervised model-dependent

data analysis methods. These searches are generally structured as a likelihood ratio test based on a model

assumption for the specific new signal that is being searched for (Williams, 2010; Cowan et al., 2011; ATLAS

Collaboration and CMS Collaboration, 2011). Supervised, multivariate classification algorithms such as

neural networks and boosted decision trees have demonstrated an excellent performance in increasing the

signal-to-background ratio in searches. Therefore, they have been successfully used to separate the signal

events from the background events. Additionally, the classifier output is used to perform the likelihood ratio

tests for the detection of the signal (Aad et al., 2012; Chatrchyan et al., 2012).

In general, in this approach, the training signal samples for the classifier are generated using a Monte

Carlo (MC) event generator based on conjectured physics models. Hence the classifier relies very heavily on

these simulations. There are multiple disadvantages to this approach. Firstly, this approach cannot be used
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Figure 7.1: Decision boundary using a supervised classifier to separate the signal (red) from the background
(grey). (a) The boundary of the classifier when trained on signal generated from the assumed signal model.
(b) When there is a systematic error in the training signal data, the test completely misses the actual signal
data.

to search for signals that we are not specifically looking for or have not considered yet. Secondly, systematic

errors can be influential on supervised classifiers and so any error or imprecision in the signal model will

adversely affect the method. Figure 7.1 illustrates the problem more clearly. If a classifier is trained on

training signal data as shown in Figure 7.1(a), it gives the classification boundary as shown. But what if

the signal data actually looks like Figure 7.1(b)? Then the classifier ends up misclassifying the signal as

background. So an algorithm trained on a wrong signal model might completely miss the actual signal.

In contrast, in this thesis, we propose tests to search for new physics signals in a model-independent

fashion, without assuming any model for the signal. Specifically, we search in the experimental data (as

collected from particle detectors) for any signal that deviates from the background process (as explained by

the Standard Model). The proposed methods are based on the assumption that there exists an accurate

representation of the background, i.e., a sample of particle collisions containing no signal events. In most

cases, the background is simulated using MC simulations, though in some cases it might be possible to

additionally use real measurements.

Since we do not use a signal sample instead of having three collections of data, we only have two. The first

data set is a labelled sample generated from the background process and the second data set is an unlabelled

experimental sample as observed from the particle detectors. The experimental sample is assumed to be

drawn from an unknown distribution, which is a mixture of the background distribution and possibly a signal

distribution. We then use a semi-supervised approach that trains a classifier to differentiate the background

data from the experimental data.

We use the trained classifier to propose two different tests to detect the presence of signal in the

experimental data. The first test is based on a likelihood ratio test statistic that is estimated using the
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classifier output. The second test is based on the performance of the classifier measured using the area under

the curve test statistic. Both the tests are based on the argument that in the absence of signal events in the

experimental data, a classifier should not be able to differentiate the experimental data from the background

data.

We further propose using active subspace methods (Constantine, 2015) to identify the characteristics of

variables and their dependencies on each other that separate the background data from the experimental

data, affecting the outcome of the classifier. This can be used to characterize the signal region in the

experimental data.

The advantage of model-independent tests is that they can detect any discrepancy between the

background data and the experimental data independent of the distribution of the signal events. In the

case that a signal is found in the experimental data, the signal should be investigated further in order to

decide if it results from (a) an inaccurate background MC generator, or (b) a particle detector defect or a

lack of understanding of the detector, or (c) a previously unknown physics process.

Due to their advantages, model-independent approaches have been used for new physics searches at

the Tevatron (Aaltonen et al., 2009; Bertram et al., 2012), HERA (Aktas et al., 2004), and the LHC

(CMS Collaboration, 2017; Aaboud et al., 2019). These methods typically compare a large set of binned

distributions to the prediction from the background Monte Carlo simulation, in search for bins in the

experimental data that exhibit a deviation larger than some predefined threshold. For example, Aaboud

et al. (2019) employed by the ATLAS Collaboration uses a (quasi-)model-independent method that uses

some generic features of the potential new physics signals. These approaches have two problems: (a) they

do not consider the dependency structures between the variables in the data and (b) they might miss certain

signals that do not show a localized excess in one of the studied distributions.

Casa and Menardi (2018), on the other hand, use a semi-supervised nonparametric clustering algorithm

under the assumption that in high energy physics, a new particle manifests itself as a significant peak

emerging from the background process. They use nonparametric modal clustering to search for a signal

that is expected to emerge as a bump in the background distribution. This method suffers from the second

problem as mentioned above, i.e., it might miss certain signals that do not show a localized excess.

Model-independent semi-supervised searches were also proposed by Kuusela et al. (2012) and Vatanen

et al. (2012) who use multivariate Gaussian mixture models to estimate the densities of the background

and the experimental data. They first model the background using a multivariate Gaussian mixture model.

They then fit a mixture of this background model and a number of additional Gaussians to the experimental

data. The test of deviation of the experimental data from the background is performed by testing for

the significance of the additional Gaussian components which quantify the anomalous contribution. The

drawback of this method is that Gaussian mixture models are very difficult to fit in the high-dimensional
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setting. Additionally, since the signal strength is typically very low, the quality of the fit influences the

power of the test in detecting the signal.

As mentioned earlier, classification algorithms have demonstrated an excellent performance in detecting

signals in the model-dependent approaches. This motivates us to use classifiers in order to find the deviations

of the experimental data from the background. The trained multivariate classifiers inherently model the

dependency structures between the variables in the data. This approach is better than the mixture modelling

methods because classifiers tend to work better in high-dimensional spaces. The proposed methods make no

assumptions about the signal at all. By keeping the methods free of any signal model assumptions, we are

more likely to detect any kind of unpredictable new signal as well as be unaffected by inaccuracies in the

MC signal modelling.

7.1 Organization of Part III

In the following chapter, Chapter 8, we first introduce the problem setup mathematically. We then describe

comparable supervised methods in Section 8.2. The proposed model-independent semi-supervised methods

are introduced in Section 8.3. We introduce both tests based on the likelihood ratio test statistic and the

area under the curve (AUC) test statistic. In Section 8.5 we describe active subspace methods to understand

the subspace affecting the classifier the most, leading to an understanding of the signal region. Finally in

Chapter 9, we demonstrate the performance of the proposed methods and compare them to the supervised

approaches as well as nearest neighbor two-sample tests introduced in Schilling (1986) and Henze (1988).
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Chapter 8

Anomaly Detection Algorithms

Let the data be denoted as:

Experimental: W1, . . . ,WN (8.1)

Background: X1, . . . , Xm (8.2)

Signal: Y1, . . . , Yn (8.3)

where the experimental data W1, . . . ,WN is generated from an inhomogeneous Poisson point process with

intensity function

ν(w) = b(w) + µs(w) (8.4)

where b(·) is the intensity function of the background process, s(·) is the intensity function of the signal

process and µ ≥ 0 is the signal strength modifier. Let B =
∫
b(w)dw be the expected background event rate

and S =
∫
s(w)dw be the expected signal event rate. Define pb(w) = b(w)/B and ps(w) = s(w)/S. Then

the background data X1, . . . , Xm and the signal Y1, . . . , Yn are auxiliary samples generated from

Y1, . . . , Yn ∼ ps

X1, . . . , Xm ∼ pb.

The goal is to test H0 : µ = 0.

The unbinned likelihood for the experimental data is

L(µ) = e−(B+µS)
∏
i

(Bpb(Wi) + µSps(Wi)). (8.5)
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We then have that
L(µ)

L(0)
= e−µS

∏
i

[
1 +

µS

B
ψ(Wi)

]
(8.6)

where ψ(w) = ps(w)/pb(w).

Remark. Even though pb and ps are functions of the high-dimensional vector w, if ψ were known then the

ratio (8.6) is one-dimensional in the sense that ψ(w) ∈ R.

The binned likelihood is

L(µ) =
∏
j

(bj + µsj)
nj

nj !
e−(bj+µsj) (8.7)

where nj is the count in bin j, bj =
∫

Ωj
b(w)dw, sj =

∫
Ωj
s(w)dw and Ωj denotes bin j. Then

L(µ)

L(0)
=
∏
j

(
1 +

µsj
bj

)nj
e−µsj =

∏
j

(1 + µψj)
nje−µsj (8.8)

where ψj = sj/bj .

For the rest of this part of the thesis, we assume that we know the total number of events N in the

experimental data and condition on N . Then the likelihood, conditional on the total number of events N is

Lmix(λ) =
∏
i

[(1− λ)pb(Wi) + λps(Wi)] (8.9)

where

λ =
µS

B + µS
.

Since, testing µ = 0 is equivalent to testing λ = 0, the goal is to test H0 : λ = 0. We have that

Lmix(λ)

Lmix(0)
=
∏
i

[(1− λ) + λψ(Wi)] (8.10)

only depends on ψ and not on S and B.

Remark. This connects the Poisson model to the mixture density model.

8.1 Idealized Case

Suppose that the functions b and s are known. Then we can test H0 using the usual LRT, namely, T =

−2 logLmix(0)/Lmix(λ̂).

The null distribution can be obtained exactly by simulating under H0. Of course we can test H0 : λ = λ0

for any λ0. Inverting this test gives a confidence interval for λ.
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Remark. An alternative to the LRT is the score test

∑
i

ps(Wi)

pb(Wi)
−N

which is asymptotically Normal with mean 0 under H0. This has the advantage that there is no need to

estimate λ for the test.

8.2 Model Dependent (Supervised) Case

In this case we assume that additionally, we observe auxiliary samples

Y1, . . . , Yn ∼ ps

X1, . . . , Xm ∼ pb.

The strategy is: use a classifier to estimate ψ = ps/pb then use the test based on (8.10). Note that, in

practice, ps and pb depend on nuisance parameters θ.

First, we combine samples

Z1, . . . , Zn+m = X1, . . . , Xm, Y1, . . . , Yn

and we define Si = 1 if Zi is from the signal distribution and Si = 0 otherwise. We train a classifier h(z)

that separates the signal from the background.

h(z) = P̂ (S = 1|Z = z) . (8.11)

Now,

P (S = 1|Z = z) =
P (Z = z|S = 1)P (S = 1)

P (Z = z|S = 1)P (S = 1) + P (Z = z|S = 0)P (S = 0)

=
nps(z)

nps(z) +mpb(z)

=
nψ(z)

nψ(z) +m
.

Therefore, an estimate of ψ = ps/pb is given by

ψ̂(z) =
mh(z)

n(1− h(z))
. (8.12)
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We can plug this into equation (8.10) and find the maximum likelihood estimate of λ as

λ̂ = arg max
λ

∑
i

log
(

(1− λ) + λψ̂(Wi)
)
. (8.13)

Then as n→∞,

− 2 log Λ = −2 log

(
Lmix(0)

Lmix(λ̂)

)
= 2

∑
i

log
(

(1− λ̂) + λ̂ψ̂(Wi)
)

d
 

1

2
δ0 +

1

2
χ2

1, (8.14)

where δ0 is a degenerate distribution at 0. We can either use the asymptotic distribution to test the

null H0 : λ = 0 vs H1 : λ > 0, or we can simulate additionally from the background model under the

null hypothesis to get the empirical distribution of the test statistic. Furthermore, since under the null

distribution, the background data and the experimental data have the same distribution, we can even

permute the additionally simulated background and the experimental and compute the test statistic on

the permuted data to get the empirical distribution of the test statistic under the null. For the experiments

in Section 9.2, since we have only limited background data, we use a subset of the data for training the

classifier and another subset in order to perform the permutation test. Since the background testing set is

limited in size and under the null, the experimental data has the same distribution as the background, for

the bootstrap method we sample with replacement from a mixture of both test experimental and background

data.

8.2.1 Score Statistic

Similar to the idealized case, an alternative to the LRT statistic is the score test statistic

∑
i

ps(Wi)

pb(Wi)
−N,

where we can again estimate ψ = ps/pb by ψ̂. So an alternate statistic to (8.14) is given by:

S =
1

N

N∑
i=1

ψ̂(Wi). (8.15)

This has the advantage that there is no need to estimate λ for the test and hence the test is not sensitive

to the estimation process of λ. Similar to the LRT, we can find the null distribution by generating

additional simulations from the background model or by permuting the additional background samples

with the experimental and then finding the empirical distribution of the test statistic.
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8.3 Model Independent (Semi-Supervised) Case

In this case, we assume that we don’t have access to (or don’t completely trust) the signal training sample

Y1, . . . , Yn ∼ ps. So we only observe auxiliary samples

X1, . . . , Xm ∼ pb.

So we have

X1, . . . , Xm ∼ pb

W1, . . . ,WN ∼ q = (1− λ)pb + λps.

We want to test H0 : λ = 0 which is equivalent to H0 : pb = q.

One strategy is to use a classifier like before, but this time we estimate ψ̃ = q/pb, where q = (1−λ)pb+λps.

We then use the test based on (8.10). A second strategy is to use the area under the curve statistic (AUC)

to evaluate the performance of the classifier. We discuss both the strategies below.

8.3.1 Test based on likelihood ratio test statistic

The difference between this case and the model dependent case is that, in this case instead of training a

classifier to differentiate between signal and background events, we train a classifier to differentiate between

experimental and background events. We propose three different methods that use the likelihood ratio test

statistic to find test H0 : pb = q.

Method 8.3.1. LRT Permutation Method — this is a slow method.

1. Train a classifier h̃ to differentiate between X1, . . . , Xm and W1, . . . ,WN .

2. Compute the classifier based LRT statistic T based on Equation (8.10) using arguments similar to

Equation (8.12) as

T = log

(
1− π
π

)
+

1

N

∑
i

log

(
h̃(Wi)

1− h̃(Wi)

)
(8.16)

where π = N/(m + N). This is an estimate of the Neyman-Pearson test
∑
i log q(Wi)/p(Wi). Note

that the sum is only over Wi.

3. Get the p-value by permutating the labels of {X1, . . . , Xm,W1, . . . ,WN}, re-training a classifier each

time and finding the corresponding LRT statistic T .
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Method 8.3.2. LRT Asymptotic Method — this is a fast method.

1. Break X1, . . . , Xm into two groups X1 and X2 of sizes m1 and m2 respectively.

2. Break W1, . . . ,WN into two groups W1 and W2 of sizes N1 and N2 respectively.

3. Construct the classifier h̃ to separate X1 and W1.

4. Evaluate T as defined in Equation (8.16) on W2 only as

T = log

(
1− π
π

)
+

1

N2

∑
Wi∈W2

log

(
h̃(Wi)

1− h̃(Wi)

)
(8.17)

where π = N1/(m1 +N1).

5. Then conditional on X1 and W1, under H0, X2 and W2 should have the same distribution. Hence, T

should have the same distribution as T0 defined as

T0 = log

(
1− π
π

)
+

1

m2

∑
Xi∈X2

log

(
h̃(Xi)

1− h̃(Xi)

)
.

Then conditional on X1 and W1, under H0,

√
N2(T − T0)√

2σ0T

d
 N(0, 1),

where

σ2
0T = Var0

(
log

(
h̃(X)

1− h̃(X)

)∣∣∣∣∣X1,W1

)
and Var0 is variance under pb. This can be estimated by the variance of data in X2.

Method 8.3.3. LRT Bootstrap Method — this is faster than permutation method but slower than the

asymptotic method.

1. Repeat steps 1–4 from Method 8.3.2 with N2 = m2.

2. Estimate the null distribution of T by drawing bootstrap samples (sample with replacement) from

X2 ∪W2 of size m2 = N2 and computing T repeatedly. Then get the p-value.

Method 8.3.4. LRT Faster Permutation Method — speed similar to the bootstrap method.

1. Repeat steps 1–4 from Method 8.3.2.

2. Estimate the null distribution of T by drawing N2 permuted samples from X2 ∪W2 and computing T

repeatedly. Then get the p-value.
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8.3.2 Test based on area under the curve (AUC) statistic

We have noticed that under the null H0 : λ = 0, the experimental distribution q = pb. So a classifier

trained to differentiate the experimental data from the background data should have an AUC of 0.5. That

is, an AUC that is significantly greater than 0.5 is an evidence of q 6= pb. Therefore, we argue that testing

H0 : λ = 0 versus H1 : λ > 0 is equivalent to testing H0 : θ = 0.5 versus H1 : θ > 0.5.

Similar to using the likelihood ratio test statistic, this test can also be performed in various ways. The

first method uses in-sample AUC and the remaining three methods (similar to the methods for LRT) use

out-of-sample AUC as the test statistic.

Method 8.3.5. AUC Permutation Method — this is a slow method.

1. Train a classifier h̃ to differentiate between X1, . . . , Xm and W1, . . . ,WN .

2. The AUC (θ) is then defined as

θ = P
(
h̃(W ) > h̃(X)

)
which can be estimated by the AUC test statistic

θ̂ =
1

mN

m∑
i=1

N∑
j=1

I
{
h̃(Wj) > h̃(Xi)

}
. (8.18)

3. Get the p-value by permutating the labels of {X1, . . . , Xm,W1, . . . ,WN}, re-training a classifier each

time and finding the corresponding AUC statistic θ̂ given by (8.18).

Method 8.3.6. AUC Asymptotic Method — this is a fast method.

1. Perform steps 1–3 from Method 8.3.2 to get a classifier h̃ based on X1 and W1.

2. Evaluate θ̂ as defined in Equation (8.18) using X2 and W2 as

θ̂ =
1

m2N2

∑
Xi∈X2

∑
Wj∈W2

I
{
h̃(Wj) > h̃(Xi)

}
. (8.19)

3. Then the expectation and variance of the estimate θ̂ is given by Newcombe (2006) as

E
[
θ̂
]

=
1

m2N2

∑
Xi∈X2

∑
Wj∈W2

E
[
I
{
h̃(Wj) > h̃(Xi)

}]
= P

(
h̃(W ) > h̃(X)

)
= θ,
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V
(
θ̂
)
≈ θ(1− θ)

m2N2

[
1 + (N∗ − 1)

(
1− θ
2− θ

+
θ

1 + θ

)]
=
θ(1− θ)
m2N2

[
2N∗ − 1 +

3N∗ − 3

(2− θ)(1 + θ)

]
,

where N∗ = (m2 +N2)/2. This can be estimated by,

̂
V
(
θ̂
)

=
θ̂(1− θ̂)
m2N2

[
2N∗ − 1 +

3N∗ − 3

(2− θ̂)(1 + θ̂)

]
(8.20)

Then under H0,

θ̂ − 0.5√
̂
V
(
θ̂
) ≈ N(0, 1), (8.21)

which can be used to find the p-value.

The bootstrap method and the faster permutation method for the AUC are very similar to the LRT

versions. We briefly detail them below.

Method 8.3.7. AUC Bootstrap Method — this is faster than permutation method but slower than the

asymptotic method.

1. Repeat steps 1–2 from Method 8.3.6.

2. Draw m2 bootstrapped X’s and N2 bootstrapped W ’s (sample with replacement) from X2 ∪W2 and

compute θ̂ using (8.19).

3. Estimate the null distribution of θ̂ by computing θ̂ using step 3 repeatedly. Then get the p-value.

Method 8.3.8. AUC Faster Permutation Method — speed similar to the bootstrap method.

1. Repeat steps 1–2 from Method 8.3.6.

2. Estimate the null distribution of θ̂ by drawing m2 X’s and N2 W ’s after permuting samples from

X2 ∪W2 and computing θ̂ repeatedly using (8.19). Then get the p-value.

8.3.3 Finding an estimate of the signal strength λ

In the supervised case, we estimate the λ using its MLE during the test itself. Whereas we don’t directly

estimate λ in the semi-supervised case. Recollect that in the semi-supervised case we combine the data:

(Z̃1, . . . , Z̃m+N ) = (X1, . . . , Xm,W1, . . . ,WN ).
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We define π = N/(m+N),

Wi =

0 i ≤ m

1 i > m.

and find the classifier h̃(x) = P̂ (W = 1|Z = z), which is an estimate of h0(x) = P (W = 1|Z = z). Then

h0(x) = P (W = 1|Z = z) =
q(z)π

q(z)π + pb(z)(1− π)
.

Hence

ψ̃ =
q

pb
=

(1− π)h0

π(1− h0)
.

First note that
(1− π)h0

π(1− h0)
=

q

pb
=

(1− λ)pb + λps
pb

= (1− λ) + λψ. (8.22)

It seems that λ and ψ = ps/pb are not identifiable.

But if we can identify a non-signal region NS, then over NS we expect that ψ = 0. Then for all u ∈ NS,

(1− π)h0(u)

π(1− h0(u))
= 1− λ.

So for all u ∈ NS,

λ = 1− (1− π)h0(u)

π(1− h0(u))
.

An estimate of λ is then

λ̂ = 1−
(

1− π
π

)
1

k

∑
Zj∈N̂S

h̃(Zj)

1− h̃(Zj)

where k is the number of observations in N̂S. In this dissertation, we don’t attempt to estimate a non-signal

region and the λ. We expect to address this problem in future work.

8.4 Combining the Two Methods (Best of Both Worlds)

We can also combine the model dependent and model independent methods by using a bigger mixture. We

replace (8.1) with

pW (w) = λ0p0(w) + λ1p1(w) + λ2p2(w) (8.23)

where p0 is the background, p1 is the signal from the model (using the sample Y1, . . . , Yn) and p2 represents

any unknown signal not captured by the model signal p1.
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8.5 Interpreting the Classifier Using Active Subspace Methods

To discover the signal region, first we need to understand what influences the classifier, and then interpret

it. We use active subspace ideas presented in Constantine (2015) to detect the variables that influence the

classifier the most and identify the subspace that could potentially lead us to the signal region.

Given the classifier h̃(·) introduced in sections 8.3.1 and 8.3.2, define

C = E
[(
∇zh̃− E

[
∇zh̃

])(
∇zh̃− E

[
∇zh̃

])T]
,

where ∇z denotes the usual d-dimensional gradient operator. Then C has a real eigen-value decomposition,

C = MΛMT , Λ = diag(λ1, . . . , λd), λ1 ≥ . . . ≥ λd ≥ 0, (8.24)

M has columns {m1, . . . ,md}, the normalized eigenvectors of C. The m1 corresponding to λ1 best captures

the change in h̃, followed by m2 and so on. Therefore the eigen vectors corresponding to the leading eigen

values λ1, λ2, . . ., give an idea about the directions along which the classifier output changes the most.

Towards this end, we propose the following algorithm for the experimental data

W1, . . . ,WN ∼ q = (1− λ)pb + λps.

Method 8.5.1. Active Subspace Method – finding the subspace that captures the most variation in the

classifier h̃(·).

1. Estimate ∇zh̃(Wj) by using a local linear smoother that estimates h̃(·) at W1, . . . ,WN . Let’s call the

estimate ∇zhj =
̂∇zh̃(Wj).

2. Estimate C using

Ĉ =
1

N

N∑
j=1

(
∇zhj −∇zhj

) (
∇zhj −∇zhj

)T
, (8.25)

where ∇zhj =
∑N
j=1∇zhj/N .

3. Find the eigen-value decomposition of Ĉ as

Ĉ = M̂ Λ̂M̂T ,

which gives the estimates M̂ and Λ̂ of M and Λ as defined in (8.24) respectively.

4. Then ∇zhj =
∑N
j=1∇zhj/N , followed by m1,m2, . . . best capture the change in h̃(·).
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We use projections onto these vectors to identify the subspace that most influences the semi-supervised

classifier. We also use sparse PCA instead of PCA to find sparser active vectors.
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Chapter 9

Experiments: Search for the Higgs

Boson

We demonstrate the performance of the proposed anomaly detection classifier tests on the Higgs boson

machine learning challenge hosted by Kaggle at https://www.kaggle.com/c/higgs-boson. The challenge

consists of simulated data provided by the ATLAS experiment at CERN to optimize the analysis of the

Higgs boson.

The goal here is to demonstrate the performance of the proposed tests in identifying the presence of the

Higgs boson particle and their applicability to the search of new physics signals in experimental particle

physics. The presence of such a signal generally reveals itself as a tiny significant excess of certain type of

collision events in a particle detector that are unexplainable by known background processes. So the goal is

to detect and extract these minute signals from a very large set of background events.

9.1 Data Description

The Higgs boson has many different ways through which it can decay in an experiment and produce other

particles. The challenge particularly focusses on the events where it decays into two tau particles (Adam-

Bourdarios et al., 2014). The data provided for the challenge consists of events labelled as background and

signal where the signal class is comprised of events in which the Higgs boson decays into two taus. The

events are simulated using the official ATLAS full detector simulator. The simulator yields simulated events

with properties that mimic the statistical properties of the real events of the signal type as well as several

important backgrounds. The signal consists of events in which Higgs bosons (with fixed mass 125 GeV)

were produced. The background events are generated by other known processes which can produce events
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that mimic the signal. Our objective is to show that semi-supervised classifier tests are able to identify such

signals without any prior knowledge.

The challenge provides a training set, a validation set and a test set. We use the training set to

demonstrate the performance of the classifier tests. The training set has 250K observations, where each

observation is a simulated collision event. There are d = 30 features whose individual details can be found

in the Appendix B of Adam-Bourdarios et al. (2014). Here we give some insight into the most important

characteristics of the features.

The features prefixed with PRI (for PRImitives) are “raw” quantities as measured by the detector. Those

prefixed with DER (for DERived) are quantities computed from the primitive features. The missing values in

the data are structurally absent as some events have no jet ( PRI_jet_num= 0) and hence no such a thing

as a “leading jet”. Thus the associated primitive quantities are all missing (Adam-Bourdarios et al., 2015).

Since the derived quantities are functions of the primitives, we use just the primitive variables (d = 16)

for our analysis. Also to avoid any missing values in the data, we only consider events that have two jets

(PRI_jet_num= 2) which results in 50,379 events, 24,645 background events and 25,734 signal events.

Among the primitive features, five of them provide the azimuth angle φ of the particles generated in the

event (variables ending with _phi). These features are rotation invariant in the sense that the event doesn’t

change if all of them are rotated together with any angle. Hence to interpret these variables more easily

using the active subspace methods, we remove the invariance of the azimuth angle variables by rotating all

the φ’s and setting the azimuth angle of the leading jet at 0 (PRI_leading_phi= 0).

Additionally, we take logarithmic transformations of the variables that give the transverse momentum of

the particles produced (variables ending with _pt), the missing transverse energy (PRI_met) and the total

transverse energy in the detector (PRI_met_sumet).

Exploratory data analysis of data as well as details and justifications for the transformations considered

above, can be found in Appendix B. In the following sections, we explore the power of the classifier tests

described in Section 8.3 to detect the signal from the background and then use the active subspace methods

introduced in Section 8.5 to explore the signal region.

9.2 Anomaly Detection Using the Classifier Tests

We compare the power of the methods introduced in Chapter 8 to nearest neighbor two-sample tests as

introduced in Schilling (1986) and Henze (1988). We consider the asymptotic version of the test and a

permutation version of the test to compare with the classifier tests. We compare the power of the tests in

detecting the signal, by varying the signal strength from λ = 0.2 to λ = 0.01. We also make sure the tests

have the right error control under the null case (λ = 0).
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For the methods introduced in Chapter 8, we consider m =12,322, n =7,322, N =12,323, where the

amount of signal events in the experimental data is varied according to the λ as bNλc. Similarly, the

number of background events in the experimental data is given by dN(1 − λ)e. The data-splitting is done

by taking m1 = 7,322, m2 =5,000, N1 =7,323, N2 =5,000. We also take the splits such that in W1 and W2

there are bN1λc and bN2λc signal events respectively.

Additionally, for the model-dependent methods, since we have only finitely many samples from the

background available and not the background generator itself, we use X1 that has m1 = 7,322 background

samples along with n =7,322 signal samples for training the supervised classifier. Then we bootstrap and

permute from X2 with m2 =5,000 background samples to find the empirical distributions of the test statistics.

In real life, since the MC generator is known, we should be able to generate more training background samples.

For each of the bootstrap and permutation methods we consider 1,000 bootstrap and permutation cycles

respectively. The tests are run on 100 random samplings of the data and the number of times each of the tests

rejects the null that there is no signal, is given in Table 9.1. Permutation 1 indicates the faster permutation

method in Section 8.3, that uses out-of sample test statistics for testing and Permutation 2 indicates the

slower permutation method that uses in-sample test statistics for testing and re-trains the classifier in every

permutation cycle.

Figure 9.1: Supervised Methods
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Table 9.1: Power of detecting the signal for each model in 100 random samplings of the Higgs boson data.
We consider 1000 iterations for the bootstrap and permutation methods.

Signal Strength (λ)
Model Method k 0.2 0.15 0.1 0.07 0.05 0.03 0.01 0
Supervised LRT Asymptotic 100 99 70 22 5 1 0 0

Bootstrap 100 96 46 10 1 0 0 0
Permutation 100 99 93 59 19 8 1 0

Supervised Score Bootstrap 90 83 37 10 2 2 0 0
Permutation 100 99 94 80 51 35 13 7

Semi-Supervised LRT Asymptotic 100 99 63 16 20 8 5 7
Bootstrap 100 93 33 7 6 2 0 1

Permutation 1 100 99 60 17 19 9 5 8
Permutation 2 53 11 1 4 2 1 2 6

Semi-Supervised AUC Asymptotic 100 96 63 17 17 7 6 8
Bootstrap 100 97 62 16 16 7 5 8

Permutation 1 100 97 62 18 16 7 6 8
Permutation 2 100 100 74 38 23 9 4 6

k-NN Two-Sample Test Asymptotic 15 46 30 12 4 7 3 6 2
20 51 30 13 3 7 2 7 2
25 54 29 10 6 9 4 7 3
30 55 30 11 5 8 3 4 2

Permutation 15 94 63 21 14 12 6 9 8
20 98 66 26 13 12 8 9 6
25 98 70 27 12 10 6 8 9
30 98 74 33 10 10 5 8 5

Figure 9.2: Semi-Supervised Methods
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As shown in Table 9.1, among the supervised methods, the permuted score test supersedes all the other

supervised methods and additionally has the right type I error control (Figure 9.1). The supervised tests

that use the LRT statistic seem to be over conservative. This appears to be caused by λ̂MLE, the maximum

likelihood estimator of λ, being zero most of the time for very small λ values.

Among the semi-supervised approaches, the AUC slower permutation method (permutation 2) has

comparable power to the supervised methods and even performs better than some of them as shown in

Table 9.1. For the asymptotic and the faster permutation methods, using LRT gives similar performance to

AUC for the semi-supervised approaches. The permuted two-sample nearest neighbor tests, don’t perform

as well as the semi-supervised AUC methods even though they out-perform their asymptotic versions by a

large margin.

Figure 9.3: Nearest Neighbor Two-Sample Test Methods

Figures 9.2 and 9.3 show the empirical distributions of the p-values for the different λ values. All the

tests appear to have correct type I error control (λ = 0 case). We also notice that none of the tests have

any power to detect signals that are less than 5% of the experimental data (λ = 0.05). The permutation 2

method using LRT appears to have an especially low power for all λ values since it uses an in-sample version

of the test statistic.

In conclusion, we see that the semi-supervised AUC methods generally out-perform nearest neighbor two-

sample tests and LRT methods and additionally give comparable performance to the supervised methods in

detecting the signal in the experimental data.
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9.3 Application of Active Subspace Methods

We demonstrate the application of the active subspace methods, for a single random simulation (one of the

100 simulations explored in Section 9.2) that detects the signal at significance level α, when λ = 0.1, i.e.,

10% of the experimental data is from the signal sample. We consider λ = 0.1, since the random forests

demonstrate some power in detecting the signal (Table 9.1) and it’s more realistic than higher λ values.

As described in Section 9.2, for the semi-supervised methods, we consider a training set of m1 = 7,322

background events and N1 =7,323 experimental events, which contains bN1λc = 732 signal events. We test

for the presence of signal using a test set of m2 = 5,000 background events and N1 =5,000 experimental

events, which contains bN2λc = 500 signal events. We train a random forest classifier on the training data

to differentiate between the background and the experimental events.

(a) Mean Gradient Vector (b) First Eigenvector (c) Second Eigenvector

Figure 9.4: Active Subspace Variables for λ = 0.1.

We then use the Method 8.5.1 presented in Section 8.5 to find the active subspace. The first step of the

algorithm requires us to choose a smoothing parameter as well as a linear smoother. We choose a Gaussian

kernel smoother as the linear smoother and the smoothing parameter selection is described in Appendix B.1.

Figures 9.4 and 9.5 give us the active variables using PCA and sparse PCA respectively.

The first variable is the same in both Figures 9.4 and 9.5, since the first variable is the mean gradient

vector as defined in Method 8.5.1 which gives the direction of change of the classifier. We see that the

transverse momentums of the sub-leading jet (sublead_pt) and the lepton (lep_pt) jointly positively affect

the classifier, which implies that signal events display higher momentums of the sub-leading jet and the lepton

as compared to background events. Additionally signal events demonstrate low hadronic tau transverse

momentum (tau_pt) and total transverse energy (met_sumet) in the detector. Note that the mean gradient
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(a) Mean Gradient Vector (b) First Eigenvector (c) Second Eigenvector

Figure 9.5: Sparse Active Subspace Variables for λ = 0.11.

vector not only captures the dependency of the classifier on each variable, but also captures the variable

dependencies that influence the classifier.

The first eigenvector gives the first principal component of the gradients, which demonstrates the

relationship between the variables that causes the most variability in the gradients of the classifier. The

second eigen vector, i.e. the second principal component of the gradients, indicates that increasing scalar

sum of the transverse momentum of all the jets (all_pt) in the event leads to variability in the classifier,

and hence helps in differentiating the signal from the background.

(a) Mean Gradient Vector (b) First Eigenvector (c) Second Eigenvector

Figure 9.6: Active Subspace Variables for λ = 0.15.
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(a) Mean Gradient Vector (b) First Eigenvector (c) Second Eigenvector

Figure 9.7: Sparse Active Subspace Variables for λ = 0.15

We further increase λ to λ = 0.15 to explore the results of the active subspace methods in a case where

the signal is more easily distinguishable by the random forest classifier. Figures 9.6 and 9.7 give us the

active variables using PCA and sparse PCA respectively for data in which λ = 0.15. In this case, sparse

PCA gives much cleaner results as compared to normal PCA. We note that the mean gradient vector in this

case indicates that low scalar sum of the transverse momentum of all the jets (all_pt) and low transverse

momentum of the leading jet (lead_pt) seems to indicate the presence of a signal event. Furthermore, high

transverse momentum of the hadronic tau (tau_pt) also seems to indicate the presence of a signal event.

These are supported by the λ = 0.1 case as well, since some of the insights gained in the previous case

indicated that (lead_pt) influences the classifier and that high transverse momentum of the lepton (lep_pt)

supports the occurrence of a signal event. The first and second sparse eigen vectors for λ = 0.15 also seem

to indicate that the when lead_pt and all_pt change in the same direction, together it causes variation in

the classifier. Hence both of them increasing together might be an indication of a signal event. Further the

value of sublead_pt influences the classifier as well, which is again supported by the analysis of the data for

λ = 0.1.

From both of these simulations we conclude that, the active subspace methods propose an algorithm to

interpret the classifier that is able to detect the signal in the experimental data. The λ = 0.1 and λ = 0.15

simulations seem to imply that classifier is most influenced by lep_pt, all_pt , lead_pt and lsubead_pt.

Higher sparse principal components for λ = 0.15, also identify the transverse momentum of the hadron tau

(tau_pt) and the relationship between the phi angles between the leading jet and the missing transverse

energy (met_phi) as important for detecting the signal events.
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Part IV

Conclusion
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Conclusion

10.1 Summary

The main contributions presented in this thesis are:

1. A new clustering algorithm for high-dimensional data that is equipped with a significance guarantee.

The algorithm uses a new test, Rift, that is based on the idea of relative fit and does not require the

user to provide a predetermined number of clusters. Additionally, we do the following:

(a) Use the test to derive significant clusters in both a hierarchical and sequential manner.

(b) Study the limiting distribution and power of a similar test called SigClust (Liu et al., 2008), which

introduces a test based on the k-means objective.

2. Model-independent anomaly detection tests using semi-supervised classifiers, that can detect the

presence of signal events hidden in background events in high energy particle physics data sets.

Additionally, we do the following:

(a) Propose active subspace methods to identify the subspace affecting the classifier most strongly,

leading to an understanding of the signal region.

(b) Compare the proposed tests with model-dependent supervised methods as well as nearest neighbor

two-sample tests on a data set related to the search for the Higgs boson.

In our work on inference for clustering, we presented an analysis of the SigClust procedure of Liu et al.

(2008) in certain examples when the dimension d was held fixed. On the other hand, increasing dimension

was considered in the work of Liu et al. (2008), but only under restrictive conditions. A more thorough

understanding of the power of hypothesis testing based approaches when d increases is warranted.

We subsequently presented a different hypothesis testing based approach for clustering with mixtures of

Gaussians based on relative fit. By testing the relative fit of different mixtures based on data splitting we

get a simple test statistic with a Normal limiting distribution. As with any method, there are cases where

the method works well but there are also cases where it fails. The main advantage of our approach is that it
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uses a test with a simple limiting distribution and the test does not rely on the assumption that the model

is correct.

In our work on inference for anomaly detection, we presented multiple model-independent methods that

search for signal without assuming any signal model. By not assuming any signal model, we retain the

ability to detect unknown and unexpected signals. We used a semi-supervised classifier to distinguish the

experimental data from the background data and used the performance of the classifier to perform a test

to detect a significant difference between the two data sets. We demonstrated the use of two statistics, the

likelihood ratio test statistic (LRT) and the area under the curve statistic (AUC).

We compared the power of the methods to detect the Higgs boson at different signal strengths and showed

that a version of the proposed AUC methods has comparable power to the model-independent methods. So

even when the signal model is correctly assumed by the model-dependent methods, the proposed model-

independent methods appear to still have power to detect the presence of the signal. However, when the

signal model is incorrectly assumed, model-dependent methods might totally miss the signal, whereas the

proposed model-independent ones should still be able to detect them. In particular, the proposed methods

demonstrate the ability to find new particles without any a priori knowledge of their properties.

10.2 Vision and Future Work

Moving forward, we aim to increase the usability of the significant clustering methods as well as extend the

use of interpretable model-independent methods in the high energy physics domain. The following are the

ways in which we plan to extend the work presented in this thesis:

High-dimensional Clustering. Clustering in high-dimensions is still a difficult task despite the huge

amount of research available on it. As discussed in the thesis, high dimensional Gaussians are difficult to fit,

which affects the performance of Rift. One possible solution that is worth pursuing, is to perform clustering

after dimension reduction, for example, by using random projections. Another possible solution is to explore

better ways of fitting a mixture of Gaussians to high-dimensional data. Another direction of research is to

look at data generated from a distribution with k clusters and analyze whether the hierarchical clustering

algorithm proposed in Chapter 5 of the thesis, detects these k clusters.

Semi-Supervised Anomaly Detection in Particle Physics. In this thesis, we explore a test that

considers a model for the background data and a model for the experimental data that is a mixture of the

background model and an anomalous component. There is literature on estimating the anomalous component

using non-parametric methods under some moment and symmetry conditions (Bordes et al., 2006; Casa and

Menardi, 2018). There is also research that uses variational autoencoders to do anomaly detection (Hajer

et al., 2018; Cerri et al., 2019). A future direction of work is to evaluate how these methods compare to the
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proposed tests using classifiers. Another direction is to explore the interpretability of model-independent

methods to understand or quantify properties of the detected anomalies.

Relative Fit Methods. In the thesis, we propose a test, Rift, that is based on the relative fit of two

density estimators. But the problem of selecting a density estimator that best fits the data, from two density

estimates, is surprisingly difficult to solve. An important consideration is choosing the distance measure

used for comparing the fits to the true density. For Rift, we used the Kullback-Leibler distance to compare

the fits of two Gaussian mixture models. Some other alternatives are the `1 distance (Devroye et al., 1997;

Devroye and Lugosi, 2012) and the Hellinger distance. An interesting direction of research is to compare the

performance of the different distance measures in detecting the difference in fits.

Interdisciplinary Collaborations. In many fields, clustering is used to uncover real groupings inherent

in the data. If the data is split into more clusters than the real groupings in the data, the resulting clusters

could be arbitrary and consequently potentially misleading. For example in the medical sciences, especially

in bioinformatics, scientists look for actual groupings in the patients for prognosis as well as to develop

treatments for the different groups. These examples demonstrate the need for clustering methods with

significance guarantees, that identify the real groupings inherent in the data. We intend to study how these

approaches could be applied and adapted to these new settings.
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Appendix A

Proofs of Theorems, Lemmas and

Corollaries in Part I

A.1 Proofs of Results Presented Under the Null Hypothesis of

SigClust

In this Appendix, we prove Theorem 3.1 and all the results required to prove it. We first note that the

regularity conditions ((ii), (iii) and (iv)) of Pollard (1982) and hence of Corollary 6.5 in Bock (1985) are

satisfied by a N(0,Σ) distribution. Furthermore, the 2-means solution is unique, under the conditions on Σ.

Additionally, Lemma A.0.1 in Appendix A.1.2 shows that (v) holds. Thus it follows from Pollard’s result

that

√
n(bn − µ) N(0, G−1

0 V G−1
0 ),

where µ is the vector that minimizes the population within cluster sum of squares for the 2-means clustering,

V is the kd× kd diagonal matrix with

Vi = 4E
[
(X − µi)(X − µi)T IAi

]
(A.1)

as its ith diagonal block and G0 is analogously defined to the G as defined in equation (3.6) for the alternative.

So, G0 is a matrix made up of d× d matrixes of the form,

(G0)ij =

 2P(Ai)Id − 2r−1
ij

∫
Mij

f(x)(x− µi)(x− µi)T dσ(x) for i = j

−2r−1
ij

∫
Mij

f(x)(x− µi)(x− µj)T dσ(x) for i 6= j,
(A.2)
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for i, j ∈ {1, 2} where rij = ‖µi − µj‖, f(·) is the corresponding density function and σ(·) is the (d − 1)

dimensional Lebesgue measure. Here Ai denotes the set of points in Rd closer to µi than to any other µj ,

Mij denotes the face common to Ai and Aj and Id denotes the d × d identity matrix. We show that G0 is

positive definite in Lemma A.0.1.

Now using Corollary 6.5 in Bock (1985), Lemma 3.0.1 follows immediately. In the next section,

Appendix A.1.1, we prove Claims (3.2) and (3.3) which together with Lemma 3.0.1 give Theorem 3.1.

A.1.1 Proof of Claims (3.2) and (3.3)

Proof of Claim (3.2): The vector µ that minimizes the population within cluster sum of squares for the

2-means clustering has components given by

µ1 =

(
−σ1

√
2

π
, 0, . . . , 0

)T
, and

µ2 =

(
σ1

√
2

π
, 0, . . . , 0

)T
.

The corresponding (optimal) population clusters are

A1 = {x = (x1, . . . , xd) ∈ Rd : x1 ≤ 0} and,

A2 = {x = (x1, . . . , xd) ∈ Rd : x1 ≥ 0}.

Thus, it follows that,

W (µ) = E
[
‖X − µ1‖2I{X1<0}

]
+ E

[
‖X − µ2‖2I{X1>0}

]
= 2E

[
‖X − µ1‖2I{X1<0}

]
= 2

(
E
[
(X1 − µ11)2I{X1<0}

]
+

d∑
i=2

E
[
X2
i I{X1<0}

])

= 2

(
σ2

1

2

(
1− 2

π

)
+

d∑
i=2

σ2
i

2

)

=

d∑
i=1

σ2
i −

2σ2
1

π
,

which yields Claim (3.2).
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Proof of Claim (3.3): In a similar fashion we can compute τ2. Observe that,

τ2 + [W (µ)]
2

=
1

2

{
E
[
‖X − µ1‖4

∣∣X1 < 0
]

+ E
[
‖X − µ2‖4

∣∣X1 > 0
]}

= E
[
‖X − µ1‖4

∣∣X1 < 0
]

= E

((X1 − µ11)2 +

d∑
i=2

X2
i

)2
∣∣∣∣∣∣X1 < 0


= E

[
(X1 − µ11)4

∣∣X1 < 0
]

+ 2

d∑
i=2

E
[
(X1 − µ11)2

∣∣X1 < 0
]
E
[
X2
i

]
+ 2

d∑
i=2

d∑
j=2,j 6=i

E
[
X2
i

]
E
[
X2
j

]
+

d∑
i=2

E
[
X4
i

]
= σ4

1

(
3− 4

π
− 12

π2

)
+ 2

d∑
i=2

σ2
1σ

2
i

(
1− 2

π

)
+ 2

d∑
i=2

d∑
j=2,j 6=i

σ2
i σ

2
j + 3

d∑
i=2

σ4
i .

Plugging in the value of W (µ) we have,

τ2 = σ4
1

(
2− 16

π2

)
+ 2

d∑
i=2

σ4
i

= 2

d∑
i=1

σ4
i −

16σ4
1

π2
,

which is precisely Claim (3.3). �

A.1.2 Proof of G0 Being Positive Definite

In order to use the result in Pollard (1982) to prove Lemma 3.0.1 we need to verify that condition (v)

holds. The vector µ that minimizes the population within cluster sum of squares for the 2-means clustering

is given above along with the two optimum population clusters. We additionally have that M12 = {x =

(x1, . . . , xd) ∈ Rd : x1 = 0}, P(A1) = P(A2) = 0.5 and r12 = 2σ1

√
2
π . The form of V and G0 can then be

given by:

Lemma A.0.1. If X = (X1, . . . , Xd) ∈ Rd follows N(0,Σ), that is, P is the distribution of N(0,Σ), where

Σ has diagonal elements σ2
1 > σ2

2 ≥ σ2
3 ≥ . . . ≥ σ2

d > 0, then for i, j ∈ {1, 2}, i 6= j,

Vi =



σ2
1

2

(
1− 2

π

)
0 . . . 0

0
σ2
2

2 . . . 0
...

...
. . .

...

0 0 . . .
σ2
d

2
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and the matrix G0 as defined in equation (A.2) is positive definite.

Proof of Lemma A.0.1. The different blocks of the variance matrix are given by,

V1 = V2 = E
[
(X − µ1)(X − µ1)T I{X1<0}

]

=


E
[
(X1 − µ11)2I{X1<0}

]
E
[
(X1 − µ11)X2I{X1<0}

]
. . . E

[
(X1 − µ11)XdI{X1<0}

]
E
[
(X1 − µ11)X2I{X1<0}

]
E
[
X2

2 I{X1<0}
]

. . . E
[
X2XdI{X1<0}

]
...

...
. . .

...

E
[
(X1 − µ11)XdI{X1<0}

]
E
[
X2XdI{X1<0}

]
. . . E

[
X2
dI{X1<0}

]



E
[
(X1 − µ11)2I{X1<0}

]
= E

[
(X2

1 − 2µ11X1 + µ2
11)I{X1<0}

]
=

1

2
E[X2

1 ]− 2µ11

(
1

2
µ11

)
+

1

2
µ2

11

=
1

2
σ2

1 −
1

2

(
2

π
σ2

1

)
=
σ2

1

2

(
1− 2

π

)

For j 6= 1,

E
[
(X1 − µ11)XjI{X1<0}

]
= E

[
(X1 − µ11)I{X1<0}

]
E[Xj ] = 0.

Let i 6= j, and i, j ∈ {2, . . . , d},

E
[
XiXdI{X1<0}

]
= E [Xi]E [Xd]E

[
I{X1<0}

]
= 0.

For j 6= 1,

E
[
X2
j I{X1<0}

]
=

1

2
E
[
X2
j

]
=
σ2
j

2
.

Therefore,

V1 = V2 =



σ2
1

2

(
1− 2

π

)
0 . . . 0

0
σ2
2

2 . . . 0
...

...
. . .

...

0 0 . . .
σ2
d

2

 .
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Now for x ∈M12,

(x− µ1)(x− µ1)T =


(x1 − µ11)2 (x1 − µ11)(x2 − µ12) . . . (x1 − µ11)(xd − µ1d)

(x1 − µ11)(x2 − µ12) (x2 − µ12)2 . . . (x2 − µ12)(xd − µ1d)
...

...
. . .

...

(x1 − µ11)(xd − µ1d) (x2 − µ12)(xd − µ1d) . . . (xd − µ1d)
2



=


µ2

11 −µ11x2 . . . −µ11xd

−µ11x2 x2
2 . . . x2xd

...
...

. . .
...

−µ11xd x2xd . . . x2
d

 ,

(x− µ1)(x− µ2)T =


(x1 − µ11)(x1 − µ21) (x1 − µ11)(x2 − µ22) . . . (x1 − µ11)(xd − µ2d)

(x2 − µ12)(x1 − µ21) (x2 − µ12)(x2 − µ22) . . . (x2 − µ12)(xd − µ2d)
...

...
. . .

...

(xd − µ1d)(x1 − µ21) (xd − µ1d)(x2 − µ22) . . . (xd − µ1d)(xd − µ2d)



=


−µ2

11 −µ11x2 . . . −µ11xd

−µ21x2 x2
2 . . . x2xd

...
...

. . .
...

−µ21xd x2xd . . . x2
d

 .

Also, note that IM12 = I{X∈M12} = I{X1=0}. Therefore,

µ2
11

∫
M12

f(x) dσ(x) =
2σ2

1

π

1√
2πσ1

=

√
2

π3
σ1.

For 2 ≤ j ≤ d,

µ11

∫
M12

xj f(x) dσ(x) = µ11 E[Xj ]
1√

2πσ1

= 0,

µ21

∫
M12

xj f(x) dσ(x) = µ21 E[Xj ]
1√

2πσ1

= 0,∫
M12

x2
j f(x) dσ(x) = E[X2

j ]
1√

2πσ1

=
σ2
j√

2πσ1

.

Let i 6= j, and i, j ∈ {2, . . . , d},

∫
M12

xi xj f(x) dσ(x) = E[Xi] E[Xj ]
1√

2πσ1

= 0.
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Then the matrix G0 can be derived as,

(G0)22 = (G0)11 = Id −
1

σ1

√
π

2



√
2
π3σ1 0 . . . 0

0
σ2
2√

2πσ1
. . . 0

...
...

. . .
...

0 0 . . .
σ2
d√

2πσ1

 =


1− 1

π 0 . . . 0

0 1− σ2
2

2σ2
1

. . . 0

...
...

. . .
...

0 0 . . . 1− σ2
d

2σ2
1

 ,

(G0)21 = (G0)12 = − 1

σ1

√
π

2


−
√

2
π3σ1 0 . . . 0

0
σ2
2√

2πσ1
. . . 0

...
...

. . .
...

0 0 . . .
σ2
d√

2πσ1

 =



1
π 0 . . . 0

0 − σ2
2

2σ2
1

. . . 0

...
...

. . .
...

0 0 . . . − σ2
d

2σ2
1

 .

Using the result from Boyd and Vandenberghe (2004), we have that the symmetric matrix G0 is positive

definite if and only if (G0)11 and G0/(G0)11 (the Schur complement of (G0)11 in G0) are both positive

definite. (G0)11 is a diagonal matrix with strictly positive entries on its diagonal since σ2
1 > σ2

j for j 6= 1.

Therefore, (G0)11 is trivially a positive definite matrix. To show G0/(G0)11 is also positive definite first we

simplify it.

G0/(G0)11 = (G0)22 − (G0)21 [(G0)11]
−1

(G0)12

=


1− 1

π 0 . . . 0

0 1− σ2
2

2σ2
1

. . . 0

...
...

. . .
...

0 0 . . . 1− σ2
d

2σ2
1

−


1
π2

π
π−1 0 . . . 0

0
σ4
2

4σ4
1

2σ2
1

2σ2
1−σ2

2
. . . 0

...
...

. . .
...

0 0 . . .
σ4
d

4σ4
1

2σ2
1

2σ2
1−σ2

d



=


1− 1

π−1 0 . . . 0

0
2(σ2

1−σ
2
2)

2σ2
1−σ2

2
. . . 0

...
...

. . .
...

0 0 . . .
2(σ2

1−σ
2
d)

2σ2
1−σ2

d

 ,

which is again a diagonal matrix with strictly positive entries on its diagonal since σ2
1 > σ2

j for j 6= 1.

Therefore, G0/(G0)11 is also a positive definite matrix, which implies G0 itself is a positive definite matrix.

�
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A.1.3 Limiting Distribution Under the Null When σ2
1 = σ2

2

We will generally focus on the non-spherical case since it yields tractable limiting distributions. But here we

briefly mention what happens when the null distribution is spherical. In this case, the limiting distribution is

quite complicated, For simplicity, we only consider the special case d = 2. To find the distribution of the test

statistic, we first find the distribution of the between-cluster sum of squares, where the between-cluster sum

of squares for a partition given by centers a = (a1, . . . , ak) and the set of corresponding convex polyhedrons

A1, . . . , Ak is defined as,

Bn(a) =
1

n

k∑
j=1

nj‖aj −X‖2, nj =

n∑
i=1

I{Xi∈Aj}.

When 2-means clustering is applied to two dimensional data, the two partitions can also be uniquely

identified using the separating line dividing them. The line containing the optimal centers is perpendicular

to this line. Consider the line joining the centers and the point where it meets the separating line, say p.

This line can uniquely be identified by the angle the line makes with the x-axis, β, and its distance from the

origin, c. Therefore, instead of defining between-cluster sum of squares as a function of the centers of the

partition, we can also define it as a function of β, c and p denoted by Bn(β, c, p). Therefore corresponding

to the two centers of the optimal partition bn = (bn1, bn2), we can also find the optimal hyperplane for the

data, denoted by (βn, cn, pn).

We perform a 2-means clustering on the data which finds the optimal partition of the data in order

to minimize the within-cluster sum of squares Wn(bn) and maximize the between-cluster sum of squares

denoted by Bn(βn, cn, pn). Then,

Bn(βn, cn, pn) = max
β

max
c

max
p

Bn(β, c, p).

We also define Bn(β) = maxc maxpBn(β, c, p).

Theorem A.1. If X1, . . . , Xn ∼ N(0,Σ), Xi ∈ R2, where Σ has diagonal elements σ2
1 = σ2

2 = 1, then
√
n(Bn(βn, cn, pn) − 2/π) is asymptotically distributed as the maximum of a Gaussian process Z(β) on the

circle 0 ≤ β < 2π, where Z(β) has mean 0 and the covariance between Z(β) and Z(φ) is given by

{
8

π2
(sinα+ (π − α) cosα− 2)

}
, α = |β − φ| ≤ π.

Note that Bn(βn, cn, pn) = maxβ maxc maxpBn(β, c, p) = maxβ Bn(β). Let Z(β) =
√
n
(
Bn(β)− 2

π

)
,

then
√
n
(
Bn(βn, cn)− 2

π

)
= maxβ Z(β). Then the proof of the theorem follows directly from Lemmas A.1.1

and A.1.2 stated and proved below. �
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Lemma A.1.1. If X1, . . . , Xn ∼ N(0,Σ), Xi ∈ R2, where Σ has diagonal elements σ2
1 = σ2

2 = 1, then

∀ 0 ≤ β < 2π,
√
n

(
Bn(β)− 2

π

)
 N

(
0,

8

π

(
1− 2

π

))
as n→∞.

Proof of Lemma A.1.1. As the bivariate circular normal is invariant to the angle β, without loss of

generality we can assume β = 0. Then the optimal centers of the partition bn1, bn2 lie on a line parallel

to the x-axis. Now if we condition on cn, then the line containing the centers is deterministic and hence

the between-cluster sum of squares after performing 2-means clustering on the data is same as the between-

cluster sum of squares after projecting the data onto the line joining the centers. So Bn(β) is the same

as between-cluster sum of squares for Y1, . . . , Yn where Yi has the same distribution as Xi1. Now Y ′i s are

univariate with Yi ∼ N(0, 1).

Hartigan (1978) showed that for univariate normal data, Y1, . . . Yn ∼ N(0, 1), on performing 2-means

clustering the asymptotic distribution of between-cluster sum of squares, Bn(bn) can be given as

√
n

(
Bn(bn)− 2

π

)
 N

(
0,

8

π

(
1− 2

π

))
as n→∞,

where bn is the vector of cluster centers for the optimal partition. Therefore,

√
n

(
Bn(β)− 2

π

)∣∣∣∣ cn  N

(
0,

8

π

(
1− 2

π

))
as n→∞,

which does not depend on cn. Hence,

√
n

(
Bn(β)− 2

π

)
 N

(
0,

8

π

(
1− 2

π

))
as n→∞. �

Lemma A.1.2. The asymptotic covariance between
√
nBn(β) and

√
nBn(φ) is given by,

lim
n→∞

n Cov(Bn(β), Bn(φ)) =
16

π2

(
sinα+

(π
2
− α

)
cosα− 1

)
, α = |β − φ| ≤ π.

Proof of Lemma A.1.2. Hartigan (1978) provides a Taylor’s expansion of Bn(β) about the population

between-cluster sum of squares Bn(µ) = 2
π as,

Bn(β) =
2

π
+

1

2
(‖bn1(β)− bn2(β)‖2 − ‖µ1(β)− µ2(β)‖2) ‖µ1(β)− µ2(β)‖2 + op(n

−1),

where (bn1(β), bn2(β)) are the centers for the optimal partition of the data corresponding to Bn(β) and

(µ1, µ2) are the centers for the optimal partition of the entire population. For β = 0, the optimal centers

are µ1(0) = (−
√

2/π, 0) and µ2(0) = (
√

2/π, 0) and hence ‖µ1(0)− µ2(0)‖2 = 2
√

2
π . Also as the density of
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N(0, Id) is rotationally invariant, ‖µ1(β)− µ2(β)‖2 = 2
√

2
π for any β. Therefore,

Bn(β) =
2

π
+

(
‖bn1(β)− bn2(β)‖2 − 2

√
2

π

)√
2

π
+ op(n

−1).

Due to the rotational invariance of the bivariate circular normal, Cov(Bn(β), Bn(φ)) = Cov(Bn(0), Bn(α)),

where α = |β − φ| ≤ π. Therefore it is enough to consider Cov(Bn(0), Bn(α)) where,

lim
n→∞

n Cov(Bn(0), Bn(α)) = lim
n→∞

2

π
Cov

(√
n ‖bn1(0)− bn2(0)‖2,

√
n ‖bn1(α)− bn2(α)‖2

)
.

To find ‖bn1(α)− bn2(α)‖2, if we rotate the axes by an angle of −α, any point (Xi1, Xi2) is now given by

(Xi1 cosα+Xi2 sinα,Xi2 cosα−Xi1 sinα).

For easier notation let us define Zi := Xi1 cosα + Xi2 sinα for i = 1, 2, . . . , n. Let us also define pn :=

1
n

∑n
i=1 I{Xi1>0} and p′n := 1

n

∑n
i=1 I{Zi>0}. Then,

‖bn1(0)− bn2(0)‖2 =

∑n
i=1Xi1I{Xi1>0}

npn
−
∑n
i=1Xi1I{Xi1<0}

n(1− pn)
,

and ‖bn1(α)− bn2(α)‖2 =

∑n
i=1 ZiI{Zi>0}

np′n
−
∑n
i=1 ZiI{Zi<0}

n(1− p′n)
.

Using the Law of Total Covariance,

Cov (‖bn1(0)− bn2(0)‖2, ‖bn1(α)− bn2(α)‖2)

= E [Cov (‖bn1(0)− bn2(0)‖2, ‖bn1(α)− bn2(α)‖2| pn, p′n)]

+ Cov (E [‖bn1(0)− bn2(0)‖2| pn] ,E [‖bn1(α)− bn2(α)‖2| p′n])

= I + II (say).

The second term (II) can be easily simplified as

Cov

(
E
[ ∑n

i=1Xi1I{Xi1>0}

npn
−
∑n
i=1Xi1I{Xi1<0}

n(1− pn)

∣∣∣∣ pn] ,E [ ∑n
i=1 ZiI{Zi>0}

np′n
−
∑n
i=1 ZiI{Zi<0}

n(1− p′n)

∣∣∣∣ p′n])
= Cov

(
E[Xi1I{Xi1>0}]− E[Xi1I{Xi1<0}],E[ZiI{Zi>0}]− E[ZiI{Zi<0}]

)
= Cov

(
2

1√
2π
, 2

1√
2π

)
= 0.
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The first term (I) becomes,

I = E
[
Cov

(∑n
i=1Xi1I{Xi1>0}

npn
−
∑n
i=1Xi1I{Xi1<0}

n(1− pn)
,

∑n
i=1 ZiI{Zi>0}

np′n
−
∑n
i=1 ZiI{Zi<0}

n(1− p′n)

∣∣∣∣ pn, p′n)]
= E

[
Cov (X11, Z1|X11 > 0, Z1 > 0)

∑n
i=1 I{Xi1>0,Zi>0}

n2pnp′n

]
− E

[
Cov (X11, Z1|X11 > 0, Z1 < 0)

∑n
i=1 I{Xi1>0,Zi<0}

n2pn(1− p′n)

]
− E

[
Cov (X11, Z1|X11 < 0, Z1 > 0)

∑n
i=1 I{Xi1<0,Zi>0}

n2(1− pn)p′n

]
+ E

[
Cov (X11, Z1|X11 > 0, Z1 > 0)

∑n
i=1 I{Xi1<0,Zi<0}

n2(1− pn)(1− p′n)

]
.

Due to the symmetry of the Gaussian distribution about the origin,

Cov (X11, Z1|X11 > 0, Z1 > 0) = Cov (X11, Z1|X11 > 0, Z1 > 0) ,

and Cov (X11, Z1|X11 > 0, Z1 < 0) = Cov (X11, Z1|X11 < 0, Z1 > 0) .

Hence the first term becomes,

I = Cov (X11, Z1|X11 > 0, Z1 > 0)E
[∑n

i=1 I{Xi1>0,Zi>0}

n2pnp′n
+

∑n
i=1 I{Xi1<0,Zi<0}

n2(1− pn)(1− p′n)

]
− Cov (X11, Z1|X11 > 0, Z1 < 0)E

[∑n
i=1 I{Xi1>0,Zi<0}

n2pn(1− p′n)
+

∑n
i=1 I{Xi1<0,Zi>0}

n2(1− pn)p′n

]

As npn ∼ Bin(n, 0.5) and np′n ∼ Bin(n, 0.5), 1/pn
p→ 2 and 1/p′n

p→ 2. Hence by Slutsky’s theorem and weak

law of large numbers,

lim
n→∞

n E
[∑n

i=1 I{Xi1>0,Zi>0}

n2pnp′n
+

∑n
i=1 I{Xi1<0,Zi<0}

n2(1− pn)(1− p′n)

]
= 4 (P(X11 > 0, Z1 > 0) + P(X11 < 0, Z1 < 0))

= 8P(X11 > 0, Z1 > 0).

Similarly using Slutsky’s theorem and weak law of large numbers,

lim
n→∞

n E
[∑n

i=1 I{Xi1>0,Zi<0}

n2pn(1− p′n)
+

∑n
i=1 I{Xi1<0,Zi>0}

n2(1− pn)p′n

]
= 8P(X11 > 0, Z1 < 0).
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On the other hand, we can find the covariances as,

Cov (X11, Z1|X11 > 0, Z1 > 0) = E [X11Z1|X11 > 0, Z1 > 0]− E[X11|X11 > 0]E[Z1|Z1 > 0]

=
E
[
X11Z1I{X11>0,Z1>0}

]
P(X11 > 0, Z1 > 0)

− E[X11|X11 > 0]E[Z1|Z1 > 0],

Cov (X11, Z1|X11 > 0, Z1 < 0) =
E
[
X11Z1I{X11>0,Z1<0}

]
P(X11 > 0, Z1 < 0)

− E[X11|X11 > 0]E[Z1|Z1 < 0].

As X11, X12 ∼ N(0, 1), it implies Z1 = X11 cosα+X12 sinα ∼ N(0, 1). Hence,

E[X11|X11 > 0] = E[Z1|Z1 > 0] =

√
2

π
,

and E[Z1|Z1 < 0] = −
√

2

π
.

To find the first expectation, we define R =
√
X2

11 +X2
12 and β = tan−1 (X12/X11) such that X11 = R cosβ

and X12 = R sinβ. Then the Jacobian, ∂(x1, x2)/∂(r, β) can be given by,

∂(x1, x2)

∂(r, β)
=

∣∣∣∣∣∣
∂x1

∂r
∂x1

∂β

∂x2

∂r
∂x2

∂β

∣∣∣∣∣∣ =

∣∣∣∣∣∣ cosβ −r sinβ

sinβ r cosβ

∣∣∣∣∣∣ = r.

Also x1 > 0 can be written as β ∈ [−π/2, π/2] and assuming 0 < α < π/2, x1 cosα+ x2 sinα = r cos(β − α)

and x1 cosα + x2 sinα > 0 can be written as β − α ∈ [−π/2, π/2] or β ∈ [α− (π/2), α+ (π/2)]. x1 cosα +

x2 sinα < 0 can be written as β − α ∈ [−3π/2,−π/2] or β ∈ [α− 3π/2, α− π/2]. Therefore,

E
[
X11Z1I{X11>0,Z1>0}

]
= E

[
X11(X11 cosα+X12 sinα)I{X11>0}I{X11 cosα+X12 sinα>0}

]
=

∫ ∞
−∞

∫ ∞
−∞

x1(x1 cosα+ x2 sinα)I{x1>0}I{x1 cosα+x2 sinα>0}
1

2π
e
−
(
x21
2 +

x22
2

)
dx1 dx2

=

∫ ∞
0

∫ π
2

α−π2
r cosβ r cos(β − α)

1

2π
e−

r2

2 r dβ dr

=
1√
2π

∫ ∞
0

r3 1√
2π

e−
r2

2 dr

∫ π
2

α−π2

1

2
(cos(2β − α) + cosα) dβ

=
1√
2π

√
2

π

∫ π
2

α−π2

1

2
(cos(2β − α) + cosα) dβ

=
1

2π

(
sin(2β − α)

2
+ β cosα

)∣∣∣∣π2
α−π2

=
1

2π

(
sin(π − α)− sin(α− π)

2
+ (π − α) cosα

)
=

1

2π
(sinα+ (π − α) cosα)
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Similarly,

E
[
X11Z1I{X11>0,Z1<0}

]
= E

[
X11(X11 cosα+X12 sinα)I{X11>0}I{X11 cosα+X12 sinα<0}

]
=

1

2π

∫ α−π2

−π2
cos(2β − α) + cosα dβ

=
1

2π

(
sin(2β − α)

2
+ β cosα

)∣∣∣∣α−π2
−π2

=
1

2π

(
sin(α− π)− sin(−α− π)

2
+ α cosα

)
=

1

2π

(
sin(π + α)− sin(π − α)

2
+ α cosα

)
=

1

2π
(α cosα− sinα)

Plugging in all the derivations we get,

lim
n→∞

nI =

( 1
2π (sinα+ (π − α) cosα)

P(X11 > 0, Z1 > 0)
− 2

π

)
8P(X11 > 0, Z1 > 0)

−
( 1

2π (α cosα− sinα)

P(X11 > 0, Z1 < 0)
+

2

π

)
8P(X11 > 0, Z1 < 0)

=
4

π
(2 sinα+ (π − 2α) cosα)− 16

π
(P(X11 > 0, Z1 > 0) + P(X11 > 0, Z1 < 0))

=
8

π

(
sinα+

(π
2
− α

)
cosα

)
− 8

π
.

Therefore,

lim
n→∞

n Cov (Bn(0), Bn(α)) =
2

π

(
8

π

(
sinα+

(π
2
− α

)
cosα

)
− 8

π

)
=

16

π2

(
sinα+

(π
2
− α

)
cosα− 1

)
. �

We also note that setting α = 0, gives us limn→∞ n V(Bn(β)) = 8
π

(
1− 2

π

)
. �
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A.2 Proof of Results Presented Under the Alternate Hypothesis

of SigClust

In Section 3.2, we study the geometry of k−means under the alternative. Recall, under the alternative of

SigClust we suppose that, we observe n samples from:

X ∼ 1

2
N(−θ1, D) +

1

2
N(θ1, D) (A.3)

where θ1 = (a/2, 0, . . . , 0) ∈ Rd and a > 0. Furthermore, D is a diagonal matrix with elements Σjj = σ2
j ,

such that σ2
1 , σ

2
2 > σ2

3 ≥ . . . ≥ σ2
d. Throughout this Appendix and the next, we denote,

u :=
a

2σ1
,

κ :=

[
a

2
P(|Z| ≤ u) +

√
2

π
σ1 exp(−u2/2)

]
,

σ̃2 =

[
d∑
i=1

σ2
i

]
+
a2

4
.

In this Appendix, in Section A.2.1 we first prove Theorem 3.2, which is a result analogous to Theorem

6.4 (b) of Bock (1985, pp. 101) for symmetric 2-means clustering, that gives the limiting distribution of the

within sum of squares under the alternative. This Theorem assumes two things: first, the existence of a

unique minimizer of the within sum of squares and second, the positive definiteness of the matrix G defined

in equation (3.6).

We prove Lemma 3.3.1 that shows the positive definiteness of G in Appendix A.2.3. In Section A.2.2,

we prove Theorem 3.3 that gives the optimal population split which results in the minimum within sum of

squares under the alternative. The idea behind the proof is that when condition (3.7) is true, the population-

level optimal 2-means solution is unique and is given by:

µ∗ =




κ

0
...

0

 ,

−κ

0
...

0



 , (A.4)
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and when condition (3.9) is true then the population-level optimal 2-means solution is unique and is given

by:

µ∗ =




0√
2
πσ2

...

0

 ,


0

−
√

2
πσ2

...

0

 ,
 . (A.5)

Now the reason that we have
√

2
πσ2 in equation (A.5) is because E[X2|X2 > 0] =

√
2
πσ2 and similarly we

have κ in equation (A.4) because E[X1|X1 > 0] = κ, which is given by the following lemma:

Lemma A.1.3. Suppose that

Y ∼ 1

2
N(−a/2, σ2) +

1

2
N(a/2, σ2),

and that Z ∼ N(0, 1), then we have that,

E[Y |Y > 0] =
a

2
P(|Z| ≤ u) +

√
2

π
σ1 exp(−u2/2) = κ.

Additionally, in order to find the within sum of squares for a particular split, we first introduce two

lemmas that give the resulting within sum of squares W (b) corresponding to particular forms of separating

hyperplanes. More specifically, the following lemmas give the within sum of squares W (b) corresponding to

any separating hyperplane H(b) where b is of the form {b ∈ Rd : b1 ≥ 0,
∑d
i=1 b

2
i = 1}. Recollect that,

W (b) = E
[
‖X − E[X|bTX > 0]‖2|bTX > 0

]
.

Lemma A.1.4. For a separating hyperplane H(b) = {y ∈ Rd : bT y = 0} when

b ∈ {b ∈ Rd : b1 ≥ 0, b21 + b22 = 1, bj = 0 ∀ j ≥ 3},

the corresponding within sum of squares W (b) is given by:

W (b) =

d∑
j=1

σ2
j +

a2

4
−
[(

2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

− 4b22σ
4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
,

where φ(·) and Φ(·) are respectively the density function and the distribution function of standard normal

distribution.
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Lemma A.1.5. For any fixed i ≥ 2 and a separating hyperplane H(b) = {y ∈ Rd : bT y = 0}, when

b ∈ {b ∈ Rd : bi = 1 and bj = 0 ∀ j 6= i},

the corresponding within sum of squares W (b) is given by:

W (b) =

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2
i .

Furthermore, to prove Theorem 3.3 we extend projection arguments made in Qiu (2010) to the

d−dimensional scenario. So we provide a lemma that gives the projection of a cluster center onto the

separating hyperplane.

Lemma A.1.6. If Y ∼ N(θ1, D), where θ1 = (a/2, 0, . . . , 0) ∈ Rd and D is a diagonal matrix. Then the

ith coordinate of the projection of E[Y |bTY > 0] onto the separating hyperplane H(b) when
∑d
i=1 b

2
i = 1, is

given by:

Pi =
a

2
I{i = 1} − ab1bi

2
+
biV ar(Yi)− bi

(
bTDb

)
bTDb

(
E
[
bTY

∣∣ bTY > 0
]
− ab1

2

)
.

Finally, in order to compare the resulting within sum of squares from different separating hyperplanes

we need the following lower bound on κ2:

Lemma A.1.7.

κ2 − 2

π

(
σ2

1 +
a2

4

)
≥


a4

240σ2π for 0 ≤ a ≤ 4σ1

a2

40 for a ≥ 4σ1.

We include the proofs of all of these additional lemmas that help us prove Theorem 3.3 in Appendix A.2.4.

A.2.1 Proof of Theorem 3.2

In order to prove this Theorem, we trace the steps followed by Pollard (1982) to prove their main theorem.

First we define for every vector t = [t1, t2] ∈ R2d and every x ∈ Rd,

φ(x, t) = min{‖x− t1‖2, ‖x− t2‖2}, (A.6)
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as defined by Pollard (1982). We additionally define a symmetric version of the function for t∗ ∈ Rd and

every x ∈ Rd,

φ̃(x, t∗) = φ(x, (t∗,−t∗)) = min{‖x− t∗‖2, ‖x+ t∗‖2}. (A.7)

Let us also define a map T from Rd to R2d as T (t∗) = (t∗,−t∗). Then,

φ̃(x, t∗) = φ(x, T (t∗)).

Now note that an analogous version of Lemma A in Pollard (1982) also holds for the map t∗ → φ̃(·, t∗) as

the composite function of two differentiable functions is also differentiable. Now Lemma B in Pollard (1982)

also holds for φ̃(·, t∗) since the class of functions that are to be considered now is a subset of the class of

functions (G) considered for φ(x, t), as we only consider t of the form t = (t∗,−t∗) for some t∗ ∈ Rd. Since

a subset of a Donsker class is also a Donsker class, an analogous Lemma B holds for φ̃(·, t∗).

We can also derive an analogous version of Lemma C and Lemma D by just using the chain rule for

finding the second derivative of a composite function and using the results as obtained in Lemma A and B.

Now putting them all together we can derive an analogous version of the main theorem.

Note that the assumptions (i) and (v) of the main theorem in Pollard (1982) are the same as the ones

assumed here. The assumptions (ii) - (iv) are met by the mixtures of two Normals assumed in the statement.

Therefore, following the arguments presented in the proof of the main theorem in Pollard (1982) and in the

proof of Theorem 6.4 (b) on page 101 of Bock (1985), we arrive at the result that:

√
n(W (0)

n (bn
(0))−W (µ∗)) N(0, τ∗2).

�

A.2.2 Proof of Theorem 3.3

To prove this lemma, we extend projection arguments made in Qiu (2010) to the d−dimensional scenario.

As shown earlier, for any separating hyperplane, H(b) = {y ∈ Rd : bT y = 0} when b1 ≥ 0 and
∑d
i=1 b

2
i = 1,

the corresponding within sum of squares is given by:

W (b) = P (bTX > 0)E[‖X − E[X|bTX > 0]‖2|bTX > 0]

+ P (bTX < 0)E[‖X − E[X|bTX < 0]‖2|bTX < 0]

= E
[
‖X − E[X|bTX > 0]‖2

∣∣ bTX > 0
]
, (Since, −X d

= X).
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The corresponding cluster centers are given by C1 and C2 where C1 = E[X|bTX > 0] and C2 = E[X|bTX <

0] = −C1, due to symmetry.

Step 1: Finding the projection of the 2−means clustering centers onto the separating

hyperplane.

As in the proof of Lemma A.1.4, we define f to be the pdf of N(−θ1, D) and g to be the pdf of N(θ1, D).

We also define a latent variable Q ∼ Ber(0.5) and Y ∼ f if Q = 0 and Y ∼ g if Q = 1. Then X
d
= Y and

similar to the proof of Lemma A.1.4,

C1 = E[X|bTX > 0] = α Ef [Y |bTY > 0] + (1− α) Eg[Y |bTY > 0],

where α = P
(
Q = 0|bTY > 0

)
= 1 − Φ

(
ab1/2

√
bTDb

)
as shown in equation A.26, Ef is the expectation

when the distribution of Y has a pdf f and Eg is the expectation when the pdf is g.

To find the projection of C1 and C2 onto the separating hyperplane H(b), we use lemma A.1.6. Since

C1 is the weighted mean of Ef [Y |bTY > 0] and Eg[Y |bTY > 0], the projection of C1 is the weighted mean

of their projections. Using Lemma A.1.6, we get that the ith coordinate of the projection of C1 onto the

separating hyperplane H(b) is given by:

P(C1)i = α

[
−a

2
I{i = 1}+

ab1bi
2

+
biσ

2
i − bi

(
bTDb

)
bTDb

(
Ef
[
bTY

∣∣ bTY > 0
]

+
ab1
2

)]

+ (1− α)

[
a

2
I{i = 1} − ab1bi

2
+
biσ

2
i − bi

(
bTDb

)
bTDb

(
Eg
[
bTY

∣∣ bTY > 0
]
− ab1

2

)]

= (1− 2α)

[
a

2
I{i = 1} − ab1bi

2
−
biσ

2
i − bi

(
bTDb

)
bTDb

ab1
2

]

+
biσ

2
i − bi

(
bTDb

)
bTDb

(
αEf

[
bTY

∣∣ bTY > 0
]

+ (1− α)Eg
[
bTY

∣∣ bTY > 0
])

= (1− 2α)

[
a

2
I{i = 1} − ab1biσ

2
i

2bTDb

]
+
bi
(
σ2
i − bTDb

)
bTDb

(
αEf

[
bTY

∣∣ bTY > 0
]

+ (1− α)Eg
[
bTY

∣∣ bTY > 0
])
,

where Ef is the expectation when the distribution of Y has a pdf f and Eg is the expectation when the pdf

is g.

Step 2: The projection of the optimum centers has to be the origin.

Since H(b) is a separating hyperplane for 2-means clustering, bT y > 0 for some y ∈ Rd if and only if

‖y−C1‖ > ‖y−C2‖. This gives that the line joining the centers C1 and C2 is perpendicular to the separating

hyperplane and the separating hyperplane bisects the line segment joining the centers. Since the midpoint
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of the centers (C1 + C2)/2 = 0, the projection of C1 and C2 onto the separating hyperplane is the origin.

Therefore, P(C1)i = 0 for every i. This implies that for the optimal separating hyperplane:

1. For i = 1,

(1− 2α)

[
a

2
− ab21σ

2
1

2bTDb

]
+
b1
(
σ2

1 − bTDb
)

bTDb
A = 0, (A.8)

where A = αEf
[
bTY

∣∣ bTY > 0
]

+ (1− α)Eg
[
bTY

∣∣ bTY > 0
]
> 0.

2. For i ≥ 2,

− (1− 2α)

[
ab1biσ

2
i

2bTDb

]
+
bi
(
σ2
i − bTDb

)
bTDb

A = 0. (A.9)

Step 3: Finding values of b ∈ Rd that satisfy the above equations.

Since we assume b1 ≥ 0, α = 1 − Φ
(
ab1/(2

√
bTDb)

)
≤ 0.5, where equality occurs if and only if b1 = 0.

Hence 1− 2α ≥ 0. Now let us consider two cases. One when σ2
1 ≥ σ2

2 and the other when σ2
2 > σ2

1 .

1. Case 1: σ2
1 ≥ σ2

2

Note that bTDb ≤ maxi σ
2
i = σ2

1 and therefore the second expression in equation (A.8) is greater than

or equal to 0. Also b21σ
2
1 ≤ bTDb, therefore the first expression in equation (A.8) is also greater than

or equal to 0. Now for equation (A.8) to hold, we need both the expressions to be zero. Now the

first expression is zero if either b1 = 0 or b21σ
2
1 = bTDb. Note that b21σ

2
1 = bTDb ⇐⇒ b1 = 1 and

bTDb = σ2
1 . The second expression is also zero if either b1 = 0 or {b1 = 1 and bTDb = σ2

1}. So for

equation (A.8) to hold, we need

{b1 = 0} OR {b1 = 1 and bTDb = σ2
1}.

If b1 = 1 and bTDb = σ2
1 , then bi = 0 for all i ≥ 2, so equation (A.9) holds for all i ≥ 2. But if b1 = 0,

equation (A.9) simplifies to bi
(
σ2
i − bTDb

)
= 0 which holds if and only if bi = 0 or bTDb = σ2

i .

Therefore equations (A.8) and (A.9) hold iff

{b1 = 1 and bi = 0, i ≥ 2} OR
{
b1 = 0 and

(
bi = 0 or bTDb = σ2

i , i ≥ 2
)}
.

2. Case 2: σ2
1 < σ2

2

First, we consider equation (A.9) for i = d. bTDb ≥ mini σ
2
i = σ2

d, therefore the second expression

in equation (A.9) has the same sign as bd. The first expression in equation (A.9) also has the same

sign as bd. Therefore, for their sum to be zero, i.e., for equation (A.9) to hold for i = d, we need

both the expressions to be zero. The first expression is zero if either b1 = 0 or bd = 0. The

second expression is zero if either bi = 0 or bTDb = σ2
d. So for i = d, equation (A.9) holds iff{

b1 = 0 and
(
bd = 0 or bTDb = σ2

d, i ≥ 2
)}

OR {b1 6= 0 and bd = 0} .
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If b1 = 0 for 2 ≤ i < d, equation (A.9) simplifies to bi
(
σ2
i − bTDb

)
= 0 which holds if and only if

bi = 0 or bTDb = σ2
i . Now we concentrate on what happens when b1 6= 0, i.e. when b1 > 0. We know

so far that bd = 0.

Now we consider equation (A.9) for i = d− 1. Since bd = 0, bTDb ≥ min1≤i≤d−1 σ
2
i = σ2

d−1, therefore

the second expression in equation (A.9) has the same sign as bd−1. The first expression in equation

(A.9) also has the same sign as bd−1. Therefore, for equation (A.9) to hold for i = d− 1, we need both

the expressions to be zero. The first expression is zero iff bd−1 = 0 since b1 > 0. Similar arguments can

be made by considering equation (A.9) for i = d − 2, . . . , 3 sequentially. We can show that if b1 > 0,

bi = 0 for i ≥ 3. Therefore the separating hyperplane is of the form

H(b) = {y ∈ Rd : bT y = 0} where b1 > 0, b21 + b22 = 1, bj = 0 ∀ j ≥ 3.

We now consider equation (A.8) and equation (A.9) for i = 2. Note that b1 = 1 and b2 = 0 is a feasible

solution.

Let us now consider b1 > 0 and 0 < b22 < 1. In this case to study the feasibility of equation (A.8) and

equation (A.9) for i = 2 we need to look at A. Now recall that if Y ∼ f , then bTY ∼ N(−ab1/2, bTDb)

and if Y ∼ g, then bTY ∼ N(ab1/2, b
TDb). Therefore,

A = αEf
[
bTY

∣∣ bTY > 0
]

+ (1− α)Eg
[
bTY

∣∣ bTY > 0
]

= α

−ab1
2

+

√
2bTDb

π

e−
a2b21

8bTDb

2Φ
(
− ab1

2
√
bTDb

)
+ (1− α)

ab1
2

+

√
2bTDb

π

e−
a2b21

8bTDb

2Φ
(

ab1
2
√
bTDb

)
 .

Recall that α = 1− Φ
(

ab1
2
√
bTDb

)
= Φ

(
− ab1

2
√
bTDb

)
.

Therefore,

A = α

−ab1
2

+

√
2bTDb

π

e−
a2b21

8bTDb

2α

+ (1− α)

ab1
2

+

√
2bTDb

π

e−
a2b21

8bTDb

2(1− α)


= (1− 2α)

ab1
2

+

√
2bTDb

π
e−

a2b21
8bTDb

= (1− 2α)
ab1
2

+ 2
√
bTDb φ

(
ab1

2
√
bTDb

)
.
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Plugging this into the L.H.S. of equation (A.8) we get:

(1− 2α)

[
a

2
− ab21σ

2
1

2bTDb

]
+
b1
(
σ2

1 − bTDb
)

bTDb

(
(1− 2α)

ab1
2

+ 2
√
bTDb φ

(
ab1

2
√
bTDb

))
= (1− 2α)

a

2

[
1 +
−b21σ2

1 + b21
(
σ2

1 − bTDb
)

bTDb

]
+

2b1
(
σ2

1(b21 + b22)− (b21σ
2
1 + b22σ

2
2)
)

√
bTDb

φ

(
ab1

2
√
bTDb

)
= (1− 2α)

a

2

[
1− b21

]
−

2b1b
2
2

(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
= (1− 2α)

a

2
b22 −

2b1b
2
2

(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
= b22

[
(1− 2α)

a

2
−

2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)]
.

Similarly simplifying L.H.S. of equation (A.9) for i = 2 we get:

− (1− 2α)

[
ab1b2σ

2
2

2bTDb

]
+
b2
(
σ2

2 − bTDb
)

bTDb

(
(1− 2α)

ab1
2

+ 2
√
bTDb φ

(
ab1

2
√
bTDb

))
= (1− 2α)

ab1b2
2

[
−σ2

2 + σ2
2 − bTDb

bTDb

]
+

2b2
(
σ2

2(b21 + b22)− (b21σ
2
1 + b22σ

2
2)
)

√
bTDb

φ

(
ab1

2
√
bTDb

)
= − (1− 2α)

ab1b2
2

+
2b2b

2
1

(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
= − b1b2

[
(1− 2α)

a

2
−

2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)]
.

Since b1 > 0, 0 < b22 < 1 and α = 1−Φ
(

ab1
2
√
bTDb

)
, equation (A.8) and equation (A.9) for i = 2 hold if

and only if

(
2 Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
−

2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
= 0 (A.10)

Now we know that for x > 0, 2Φ(x)− 1 > 2xφ(x). So since b1 > 0,

(
2 Φ

(
ab1

2
√
bTDb

)
− 1

)
> 2

ab1

2
√
bTDb

φ

(
ab1

2
√
bTDb

)
.
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Therefore, if σ2
2 ≤ σ2

1 + a2

4 , the L.H.S. of equation (A.10) becomes

(
2 Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
−

2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
> 2

a2b1

4
√
bTDb

φ

(
ab1

2
√
bTDb

)
− 2

a2b1

4
√
bTDb

φ

(
ab1

2
√
bTDb

)
= 0.

Therefore if σ2
2 ≤ σ2

1 + a2

4 , then equation (A.10) cannot hold and hence either b1 = 0 or b2 = 0. Putting

everything together, this implies equations (A.8) and (A.9) hold iff

{b1 = 1 and bi = 0, i ≥ 2} OR
{
b1 = 0 and

(
bi = 0 or bTDb = σ2

i , i ≥ 2
)}
.

For σ2
2 > σ2

1 + a2

4 , we have shown that if b1 = 0, we require bi = 0 or bTDb = σ2
i for all i ≥ 2 and if

b1 > 0, we require bi = 0 for all i ≥ 3. Therefore equations (A.8) and (A.9) hold iff

{b1 = 1 and bi = 0, i ≥ 2} OR
{
b1 = 0 and

(
bi = 0 or bTDb = σ2

i , i ≥ 2
)}

OR
{

0 < b1 < 1, b21 + b22 = 1, bi = 0, i ≥ 3, and Eq A.10 holds
}
.

From cases 1 and 2 we finally come to the conclusion that for equations (A.8) and (A.9) to hold for

σ2
2 ≤ σ2

1 + a2

4 , we need

{b1 = 1 and bi = 0, i ≥ 2} OR
{
b1 = 0 and

(
bi = 0 or bTDb = σ2

i , i ≥ 2
)}
. (A.11)

For σ2
2 > σ2

1 + a2

4 , we need

{b1 = 1 and bi = 0, i ≥ 2} OR
{
b1 = 0 and

(
bi = 0 or bTDb = σ2

i , i ≥ 2
)}

OR
{

0 < b1 < 1, b21 + b22 = 1, bi = 0, i ≥ 3, and Eq A.10 holds
}
. (A.12)

Step 4: Among the possible values of b, finding b∗ that gives the minimum within sum of

squares.

1. Case 1: σ2
2 < σ2

1 + a2

4

If every σ2
i is distinct, then for (A.11) to hold, for some unique i = i0,

bTDb = σ2
i0 , bi0 = 1 and bj = 0 for j 6= i0.

109



Notice that in this case, the optimal separating hyperplane is H(b) = {y ∈ Rd : yi0 = 0} for some

i0. Now if b1 = 1 and bi = 0 for i ≥ 2, we use Lemma A.19 to find the corresponding within sum of

squares as

W ∗1 := W (b) =

d∑
j=1

σ2
j +

a2

4
−

(√
2

π
σ1 e

− a2

8σ21 +
a

2
P

(
|Z| < a

2σ1

))2

. (A.13)

For i0 = 2, that is, when b2 = 1 and bi = 0 for i 6= 2 we can similarly use Lemma A.19 to find the

corresponding within sum of squares as

W ∗2 := W (b) =

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2

2 . (A.14)

From Lemma A.1.5 we get that the corresponding within sum of squares when bi0 = 1 and bj = 0 for

j 6= i0, corresponding to any i0 ≥ 2 is

W ∗i0 := W (b) =

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2
i0 . (A.15)

Now using the lower bound given by Lemma A.1.7 we see that,

[
a

2
P(|Z| ≤ u) +

√
2

π
σ1 exp(−u2/2)

]2

≥ 2

π

(
σ2

1 +
a2

4

)
>

2

π
σ2

2 >
2

π
σ2

2 , for j ≥ 3,

since σ2
2 > σ2

j for j ≥ 3. Therefore, the minimum within sum of squares is achieved if W (b∗) = W ∗1 ,

that is, if b∗1 = 1 and b∗i = 0 for every i 6= 1. Therefore, the unique optimal separating hyperplane is

given by H(b∗) = {y ∈ Rd : y1 = 0}.

If σ2
i are not distinct. Since, σ2

1 , σ
2
2 > σ2

3 ≥ . . . ≥ σ2
d, suppose for some i0 ≥ 3 and i0 + m ≤ d,

σ2
i0

= σ2
i0+1 = . . . = σ2

i0+m = σ2. Then the optimal separating hyperplane can be given by either

H(b) = {y ∈ Rd : yi = 0}, where i /∈ [i0, i0 +m], that is, bi = 1 for some i /∈ [i0, i0 +m] and bj = 0 for

all j 6= i or by H(b) = {y ∈ Rd :
∑i0+m
j=i0

bjyj = 0}, where
∑i0+m
j=i0

b2j = 1.

Suppose if the separating hyperplane is H(b) = {y ∈ Rd :
∑i0+m
j=i0

bjyj = 0}, where
∑i0+m
j=i0

b2j = 1, then

the corresponding within sum of squares is given by

W̃ ∗i0,m := W (b) =
∑

j /∈[i0,i0+m]

σ2
j +

a2

4
+

i0+m∑
k=i0

E
[(
Xk − E

[
Xk|bTX > 0

])2∣∣∣ bTX > 0
]
.
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Since bi for i ∈ [i0, i0 +m] are not all zero and
∑i0+m
i=i0

b2i = 1, we can construct a orthogonal matrix Ã of

dimension (m+1)×(m+1) whose first row is given by (bi0 , . . . , bi0+m). Now define a rotated space such

that v = (yi0 , . . . , yi0+m) is transformed to u = Ãv and define U = ÃV , where V = (Xi0 , . . . , Xi0+m).

Then the separating hyperplane now becomes H(b) = {u ∈ Rd : ui0 = 0} since ui0 =
∑i0+m
j=i0

bjyj = 0.

As V ∼ Nm+1(0, σ2I), we have that U ∼ Nm+1(0, σ2I) and therefore, we can write the within sum of

squares as:

W̃ ∗i0,m =
∑

j /∈[i0,i0+m]

σ2
j +

a2

4
+

m∑
k=1

E
[

(Uk − E [Uk|U1 > 0])
2
∣∣∣U1 > 0

]

=
∑

j /∈[i0,i0+m]

σ2
j +

a2

4
+

i0+m∑
k=i0

E
[

(Xk − E [Xk|Xi0 > 0])
2
∣∣∣Xi0 > 0

]
=
∑
j 6=i0

σ2
j +

a2

4
+ E

[
(Xi0 − E [Xi0 |Xi0 > 0])

2
∣∣∣Xi0 > 0

]
.

Similar to the calculations in Lemma A.1.5, we get

W̃ ∗i0,m =

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2
i0 .

Now similar to the previous case,

(√
2
π σ1 e

− a2

8σ21 + a
2 P

(
|Z| < a

2σ1

))2

≥ 2
π

(
σ2

1 + a2

4

)
> 2

πσ
2
j for

j ≥ 2. Therefore, the minimum within sum of squares is achieved for b∗ if b∗1 = 1 and b∗i = 0 for every

i 6= 1 and the optimal separating hyperplane is given by H(b) = {y ∈ Rd : y1 = 0}.

2. Case 2: σ2
2 > σ2

1 + a2

4

Looking at the first possibility in Expression (A.12), that is, if b1 = 1 and bi = 0 for every i 6= 1,

the corresponding minimum within sum of squares, as seen in the previous case in Equation (A.13), is

given by W ∗1 .

Following similar reasonings as presented in Case 1 for the second possibility (A.12), we argue that if

every σ2
i is distinct, then b1 = 0 and for a unique i0 ≥ 2, bTDb = σ2

i0
, bi0 = 1 and bj → 0 for j 6= i0. As

seen in the previous case, if i0 = 2 the corresponding minimum within sum of squares is W ∗2 (Equation

(A.14)) and for i0 ≥ 2, it is W ∗i0 (Equation (A.15)).

To study the third possibility in A.12, we use Lemma A.1.4 to get the within sum of squares for any

b such that 0 < b1 < 1, b21 + b22 = 1 and find the minimum possible W (b) such that Equation (A.10)
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holds.

W (b) =

d∑
i=1

σ2
i +

a2

4
−
[(

2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

− 4b22σ
4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
.

In order to minimize W (b) notice that we have to maximize

[(
2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

+
4b22σ

4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
,

and for Equation (A.10) to hold, we have

(
2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
=

2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
.

Therefore, we have to maximize the following given b1 satisfies Equation (A.10).

[(
2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

+
4b22σ

4
2

bTDb
φ2

(
ab1

2
√
bTDb

)

=

[
2b1
(
σ2

2 − σ2
1

)
√
bTDb

φ

(
ab1

2
√
bTDb

)
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

+
4b22σ

4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
=

4b21σ
4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
+

4b22σ
4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
=

4σ4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
.

Again by using Equation (A.10) we get that

4σ4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
= 4σ4

2

(
2Φ

(
ab1

2
√
bTDb

)
− 1

)2
a2

4

1

4b21(σ2
2 − σ2

1)2
.

Since 2Φ
(

ab1
2
√
bTDb

)
− 1 ≤ 1√

2π

(
ab1√
bTDb

)
, if b1 satisfies Equation (A.10),

4σ4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
≤ 4σ4

2

1

2π

a2b21
bTDb

a2

4

1

4b21(σ2
2 − σ2

1)2

=
2

π
σ2

2

σ2
2

bTDb

(
a2/4

σ2
2 − σ2

1

)2

≤ 2

π
σ2

2

σ2
2

σ2
1

(
a2/4

σ2
2 − σ2

1

)2

,
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since σ2
1 < σ2

2 and therefore σ2
1 ≤ bTDb. We now show that for large enough σ2

2 ,
σ2
2

σ2
1

(
a2/4
σ2
2−σ2

1

)2

≤ 1, that

is, we want to show σ2
1(σ2

2 − σ2
1)2 ≥ σ2

2
a4

16 . In order to show, we plug in x instead of σ2
2 and consider the

equation:

σ2
1(x− σ2

1)2 − x a4

16
= 0 ⇐⇒ σ2

1x
2 −

(
2σ4

1 +
a4

16

)
x+ σ6

1 = 0 (A.16)

Note that the larger solution to this equation is given by:

x =
2σ4

1 + a4

16 +

√(
2σ4

1 + a4

16

)2 − 4σ8
1

2σ2
1

=
2σ4

1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

.

Therefore for all x >
2σ4

1+ a4

16 + a2

2

√
σ4
1+ a4

64

2σ2
1

, σ2
1(x− σ2

1)2 − x a4

16 > 0. Therefore, for

σ2
2 >

2σ4
1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

=⇒ σ2
2

σ2
1

(
a2/4

σ2
2 − σ2

1

)2

< 1,

which gives
4σ4

2

bTDb
φ2

(
ab1

2
√
bTDb

)
≤ 2

π
σ2

2 .

Therefore, when σ2
2 >

2σ4
1+ a4

16 + a2

2

√
σ4
1+ a4

64

2σ2
1

, for any b1 satisfying Equation (A.10),

W (b) ≥
d∑
i=1

σ2
i +

a2

4
− 2

π
σ2

2 = W ∗2 .

If we additionally have that

σ2
2 >

π

2

(√
2

π
σ1 e

− a2

8 σ21 +
a

2
P

(
|Z| < a

2 σ1

))2

,

then

W2∗ < W ∗1 < W ∗i0 , for i0 ≥ 3.

Therefore, considering all the three possibilities in Expression (A.12), if

σ2
2 > max

2σ4
1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

,
π

2

(√
2

π
σ1 e

− a2

8 σ21 +
a

2
P

(
|Z| < a

2 σ1

))2
 ,

then the minimum within sum of squares is given by W ∗2 which is achieved for the unique b∗ such that b∗2 = 1

and b∗j = 0 if j 6= 2 and the unique optimal separating hyperplane is given by H(b) = {y ∈ Rd : y2 = 0}.
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A.2.3 Proof of Lemma 3.3.1

This proof is analogous to the proof of the matrix being positive definite for the null case as shown in

Lemma A.0.1. We find the matrix G in the two different cases and show that it is positive definite.

1. When condition (3.7) is true, Theorem 3.3 gives us the unique optimum as µ∗1 = −µ∗2 =

(E[X1|X1 > 0], 0, . . . , 0), M12 = {x = (x1, . . . , xd) ∈ Rd : x1 = 0}, P(A1) = P(A2) = 0.5 and

r12 = 2E[X1|X1 > 0], where

E[X1|X1 > 0] =

√
2

π
σ1 e

− a2

8σ21 +
a

2
P
(
|Z| < a

2σ1

)
.

From the proof of lemma A.0.1, we know that for x ∈M12,

(x− µ∗1)(x− µ∗1)T =


µ∗211 −µ∗11x2 . . . −µ∗11xd

−µ∗11x2 x2
2 . . . x2xd

...
...

. . .
...

−µ∗11xd x2xd . . . x2
d

 ,

(x− µ∗1)(x− µ∗2)T =


−µ∗211 −µ∗11x2 . . . −µ∗11xd

−µ∗21x2 x2
2 . . . x2xd

...
...

. . .
...

−µ∗21xd x2xd . . . x2
d

 .

As before, IM12 = I{X1=0}. Therefore,

µ∗211

∫
M12

f(x) dσ(x) = E[X1|X1 > 0]2
e−a

2/8σ2
1

√
2πσ1

.

For 2 ≤ j ≤ d,

µ∗11

∫
M12

xj f(x) dσ(x) = µ∗11 E[Xj ]
e−a

2/8σ2
1

√
2πσ1

= 0,

µ∗21

∫
M12

xj f(x) dσ(x) = µ∗21 E[Xj ]
e−a

2/8σ2
1

√
2πσ1

= 0,∫
M12

x2
j f(x) dσ(x) = E[X2

j ]
e−a

2/8σ2
1

√
2πσ1

=
σ2
j√

2πσ1

e−a
2/8σ2

1 .

Let i 6= j, and i, j ∈ {2, . . . , d},

∫
M12

xi xj f(x) dσ(x) = E[Xi] E[Xj ]
e−a

2/8σ2
1

√
2πσ1

= 0.
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Then the matrix G can be derived as,

G22 = G11 = Id −
1

E[X1|X1 > 0]

e−a
2/8σ2

1

√
2πσ1


E[X1|X1 > 0]2 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
d

 ,

G21 = G12 =
1

E[X1|X1 > 0]

e−a
2/8σ2

1

√
2πσ1


E[X1|X1 > 0]2 0 . . . 0

0 −σ2
2 . . . 0

...
...

. . .
...

0 0 . . . −σ2
d

 .

Boyd and Vandenberghe (2004) now gives that the symmetric matrix G is positive definite if and only

if G11 and G/G11 (the Schur complement of G11 in G) are both positive definite. Let us first look at

the diagonal entries of G11 and define the following:

m1 =
e−a

2/8σ2
1

√
2πσ1

E[X1|X1 > 0], mj =
σ2
j

E[X1|X1 > 0]

e−a
2/8σ2

1

√
2πσ1

, j 6= 1. (A.17)

Then the diagonal entries of G11 are given by 1−mj , for j = 1, . . . , d. Next note that

1√
2π

a

σ1
e−a

2/8σ2
1 ≤ P

(
|Z| < a

2σ1

)
≤ 1√

2π

a

σ1

and therefore we can get the following bounds on E[X1|X1 > 0].

E[X1|X1 > 0] ≤
√

2

π

1

σ1

(
σ2

1 +
a2

4

)
, E[X1|X1 > 0] ≥

√
2

π

e−a
2/8σ2

1

σ1

(
σ2

1 +
a2

4

)
(A.18)

Using these inequalities and observing that ex ≥ 1 + x for x > 0 along with the assumption that

σ2
1 + a2

4 > σ2
j for j 6= 1, one can easily verify that 1−mj > 0 for all j = 1, . . . , d. Therefore, G11 is a

positive definite matrix. To show G/G11 is also positive definite first we simplify it.

G/G11 = G22 −G21 [G11]
−1
G12.

Since all of them are diagonal matrices, G/G11 is also a diagonal matrix with the jth entry given by

1 − mj −
m2
j

1−mj =
1−2mj
1−mj . Since, we have already verified that 1 − mj > 0, we just have to verify

that 1− 2mj is also greater than 0. This can again be easily verified with the properties as mentioned

above. That is, by using the inequalities and the assumption. Therefore, G/G11 is also a positive

definite matrix, which implies G itself is a positive definite matrix.
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2. When condition (3.9) is true, Theorem 3.3 gives us the unique optimum as µ∗1 = −µ∗2 =

(0,E[X2|X2 > 0], 0, . . . , 0), M12 = {x = (x1, . . . , xd) ∈ Rd : x2 = 0}, P(A1) = P(A2) = 0.5 and

r12 = 2E[X2|X2 > 0], where

E[X2|X2 > 0] =

√
2

π
σ2.

Analogous to previous part we can show that for x ∈M12,

(x− µ∗1)(x− µ∗1)T =



x2
1 −µ∗11x1 x1x3 . . . −µ∗11xd

−µ∗11x1 µ∗211 −µ∗11x3 . . . −µ∗11xd

x1x3 −µ∗11x3 x2
3 . . . x3xd

...
...

...
. . .

...

x1xd −µ∗11xd x3xd . . . x2
d


,

(x− µ∗1)(x− µ∗2)T =



x2
1 −µ∗21x1 x1x3 . . . −µ∗11xd

−µ∗11x1 −µ∗211 −µ∗11x3 . . . −µ∗11xd

x1x3 −µ∗21x3 x2
3 . . . x3xd

...
...

...
. . .

...

x1xd −µ∗21xd x3xd . . . x2
d


.

Now, IM12
= I{X2=0}. Therefore,

µ∗211

∫
M12

f(x) dσ(x) =
2σ2

2

π

1√
2πσ2

=

√
2

π3
σ2.

For j 6= 2,

µ∗11

∫
M12

xj f(x) dσ(x) = µ∗11 E[Xj ]
1√

2πσ2

= 0,

µ∗21

∫
M12

xj f(x) dσ(x) = µ∗21 E[Xj ]
1√

2πσ2

= 0,∫
M12

x2
j f(x) dσ(x) = E[X2

j ]
1√

2πσ2

.

Therefore for j ≥ 3, ∫
M12

x2
j f(x) dσ(x) =

σ2
j√

2πσ2

,

and for j = 1, ∫
M12

x2
j f(x) dσ(x) =

σ2
1 + a2

4√
2πσ2

.
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Let i 6= j, and i, j ∈ {1, 3, . . . , d},

∫
M12

xi xj f(x) dσ(x) = E[Xi] E[Xj ]
1√

2πσ2

= 0.

Then the matrix G can be derived as,

G22 = G11 = Id −
1

2σ2
2



σ2
1 + a2

4 0 0 . . . 0

0
2σ2

2

π 0 . . . 0

0 0 σ2
3 . . . 0

...
...

...
. . .

...

0 0 0 . . . σ2
d


,

G21 = G12 =
1

2σ2
2



−σ2
1 − a2

4 0 0 . . . 0

0
2σ2

2

π 0 . . . 0

0 0 −σ2
3 . . . 0

...
...

...
. . .

...

0 0 0 . . . −σ2
d


.

Boyd and Vandenberghe (2004) now gives that the symmetric matrix G is positive definite if and only

if G11 and G/G11 (the Schur complement of G11 in G) are both positive definite. Since σ2
2 > σ2

1 + a2

4

under the assumption (3.9) and σ2
2 > σ2

j for every j ≥ 3, all the diagonal elements of G11 are strictly

positive and therefore G11 is a positive definite matrix. Now as observed in the previous part, G/G11

is given by

G/G11 = G22 −G21 [G11]
−1
G12,

which ends up being a diagonal matrix with the jth entry given by
1−2mj
1−mj , where in this part,

m1 =
σ2

1 + a2

4

2σ2
2

, m2 =
1

π
, mj =

σ2
j

2σ2
2

, j ≥ 3.

1 − mj are the diagonal entries of G11 which we have verified are greater than zero. Again since

σ2
2 > σ2

1 + a2

4 and σ2
2 > σ2

j for every j ≥ 3, 1− 2mj is greater than 0 for every j and therefore, G0/G11

is also a positive definite matrix, which implies G itself is a positive definite matrix.
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A.2.4 Proofs of Additional Lemmas Supporting Theorem 3.3

Proof of Lemma A.1.3

Let Z be a random variable generated from N(0, 1). Then,

E [Y |Y > 0] = 2E[Y I{Y >0}]

=

∫ ∞
0

xf(x)dx+

∫ ∞
0

xg(x)dx

=
1√

2πσ1

[∫ ∞
0

xe
− 1

2σ21
(x+a/2)2

dx+

∫ ∞
0

xe
− 1

2σ21
(x−a/2)2

dx

]
=

1√
2πσ1

[∫ ∞
0

(
x+

a

2

)
e
− 1

2σ21
(x+a/2)2

dx+

∫ ∞
0

(
x− a

2

)
e
− 1

2σ21
(x−a/2)2

dx

]
+
a

2
P
(
|Z| < a

2σ1

)
=

σ1√
2π

[
e
− 1

2σ21
(x+a/2)2

∣∣∣∣0
∞

+ e
− 1

2σ21
(x−a/2)2

∣∣∣∣0
∞

]
+
a

2
P
(
|Z| < a

2σ1

)

=

√
2

π
σ1 e

− a2

8σ21 +
a

2
P
(
|Z| < a

2σ1

)
.

�

Proof of Lemma A.1.4

The within sum of squares can be written as:

W (b) = P (bTX > 0)E[||X − E[X|bTX > 0]||2|bTX > 0]

+ P (bTX < 0)E[||X − E[X|bTX < 0]||2|bTX < 0]

= E
[
||X − E[X|bTX > 0]||2

∣∣ bTX > 0
]
, (Since, −X d

= X).

Since bj = 0 ∀ j ≥ 3, and Xj for j ≥ 3 is independent of X1 and X2,

W (b) = E
[
||X − E[X|bTX > 0]||2

∣∣ bTX > 0
]

= E
[
(X1 − E[X1|bTX > 0])2

∣∣ bTX > 0
]

+ E
[
(X2 − E[X2|bTX > 0])2

∣∣ bTX > 0
]

+

d∑
j=3

σ2
j ,

since for j ≥ 3, E[Xj |bTX > 0] = E[Xj ] = 0 and E[X2
j |bTX > 0] = E[X2

j ] = σ2
j . Therefore,

W (b) = E
[
(X1 − E[X1|bTX > 0])2

∣∣ bTX > 0
]

+ E
[
(X2 − E[X2|bTX > 0])2

∣∣ bTX > 0
]

+

d∑
j=3

σ2
j . (A.19)
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We know that,

E
[
(X1 − E[X1|bTX > 0])2

∣∣ bTX > 0
]

= E
[
X2

1

∣∣ bTX > 0
]
−
(
E[X1|bTX > 0]

)2
,

and similarly,

E
[
(X2 − E[X2|bTX > 0])2

∣∣ bTX > 0
]

= E
[
X2

2

∣∣ bTX > 0
]
−
(
E[X2|bTX > 0]

)2
.

Since −X d
= X, we can write,

E
[
X2

1

]
= P

(
bTX > 0

)
E
[
X2

1

∣∣ bTX > 0
]

+ P
(
bTX < 0

)
E
[
X2

1

∣∣ bTX < 0
]

= P
(
bTX > 0

)
E
[
X2

1

∣∣ bTX > 0
]

+ P
(
bTX < 0

)
E
[
X2

1

∣∣ bTX > 0
]

= E
[
X2

1

∣∣ bTX > 0
]
.

Hence,

E
[
X2

1

∣∣ bTX > 0
]

= E
[
X2

1

]
= σ2

1 +
a2

4
, (A.20)

and following similar arguments,

E
[
X2

2

∣∣ bTX > 0
]

= E
[
X2

2

]
= σ2

2 . (A.21)

To find the conditional first moments, for simplicity of notation, let us define f to be the pdf of N(−θ1, D)

and g to be the pdf of N(θ1, D). Let us define a latent variable Q ∼ Ber(0.5) and define Y ∼ f if Q = 0 and

Y ∼ g if Q = 1. Then X
d
= Y and by the law of total expectation,

E
[
X1| bTX > 0

]
= E

[
Y1| bTY > 0

]
= E

[
E[Y1|bTY > 0, Q]

∣∣ bTY > 0
]

= P
(
Q = 0|bTY > 0

)
Ef [Y1|bTY > 0, Q = 0]

+ P
(
Q = 1|bTY > 0

)
Eg[Y1|bTY > 0, Q = 1]

= α Ef [Y1|bTY > 0] + (1− α) Eg[Y1|bTY > 0],

where α = P
(
Q = 0|bTY > 0

)
, Ef is the expectation when the distribution of Y has a pdf f and Eg is the

expectation when the pdf is g.
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Similarly,

E
[
X2| bTX > 0

]
= α Ef [Y2|bTY > 0] + (1− α) Eg[Y2|bTY > 0]

To simplify further, we consider each of these terms separately. We first start with Ef [Y1|bTY > 0] and

to compute it we define random variable V such that when Y ∼ f , that is, Y ∼ N(−θ1, D),

V =

 V1

V2

 :=

 Y1+a/2
σ1

b1Y1+b2Y2+ab1/2√
bTDb

 ∼ N
 0

0

 ,

 1 b1σ1√
bTDb

b1σ1√
bTDb

1

 .

Note that bTY = b1Y1 + b2Y2 > 0 is equivalent to V2 >
ab1

2
√
bTDb

. In order to find E
[
V1

∣∣∣V2 >
ab1

2
√
bTDb

]
we

use moments derived for truncated bivariate normal distribution, presented in Rosenbaum (1961). We get

E

[
V1

∣∣∣∣V2 >
ab1

2
√
bTDb

]
=

b1σ1√
bTDb

 φ
(

ab1
2
√
bTDb

)
P
(
V2 >

ab1
2
√
bTDb

)


=
b1σ1√
bTDb

 φ
(

ab1
2
√
bTDb

)
1− Φ

(
ab1

2
√
bTDb

)
 .

Note that

E

[
V1

∣∣∣∣V2 >
ab1

2
√
bTDb

]
= Ef

[
Y1 + a/2

σ1

∣∣∣∣ bTY > 0

]
.

Therefore,

Ef
[
Y1| bTY > 0

]
= −a

2
+

b1σ
2
1√

bTDb

 φ
(

ab1
2
√
bTDb

)
1− Φ

(
ab1

2
√
bTDb

)
 . (A.22)

Similarly in order to find Ef [Y2|bTY > 0], we define random variable V ∗ such that when Y ∼ f , that is,

Y ∼ N(−θ1, D),

V ∗ =

 V ∗1

V2

 :=

 Y2

σ2

b1Y1+b2Y2+ab1/2√
bTDb

 ∼ N
 0

0

 ,

 1 b2σ2√
bTDb

b2σ2√
bTDb

1

 .

Then again using moments derived for truncated bivariate normal distribution, presented in Rosenbaum

(1961). We get

E

[
V ∗1

∣∣∣∣V2 >
ab1

2
√
bTDb

]
=

b2σ2√
bTDb

 φ
(

ab1
2
√
bTDb

)
1− Φ

(
ab1

2
√
bTDb

)
 .
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Again note that,

E

[
V ∗1

∣∣∣∣V2 >
ab1

2
√
bTDb

]
= Ef

[
Y2

σ2

∣∣∣∣ bTY > 0

]
.

Therefore,

Ef
[
Y2| bTY > 0

]
=

b2σ
2
2√

bTDb

 φ
(

ab1
2
√
bTDb

)
1− Φ

(
ab1

2
√
bTDb

)
 . (A.23)

In order to find Eg
[
Y1| bTY > 0

]
and Eg

[
Y2| bTY > 0

]
, note that f is the density of N(−θ1, D) and g

is the density of N(θ1, D), where θ = (a/2, 0, . . . , 0). So just replacing a with −a in equations (A.22) and

(A.23) will give us the corresponding expectations when Y ∼ g. So we get

Eg
[
Y1| bTY > 0

]
=
a

2
+

b1σ
2
1√

bTDb

 φ
(

ab1
2
√
bTDb

)
Φ
(

ab1
2
√
bTDb

)
 (A.24)

Eg
[
Y2| bTY > 0

]
=

b2σ
2
2√

bTDb

 φ
(

ab1
2
√
bTDb

)
Φ
(

ab1
2
√
bTDb

)
 (A.25)

To find α we note that,

α = P
(
Q = 0|bTY > 0

)
=

P
(
Q = 0, bTY > 0

)
P (Q = 0, bTY > 0) + P (Q = 1, bTY > 0)

=
Pf
(
bTY > 0

)
Pf (bTY > 0) + Pg (bTY > 0)

.

Now if Y ∼ g, then −Y ∼ f . So Pg
(
bTY > 0

)
= Pf

(
bTY < 0

)
= 1 − Pf

(
bTY > 0

)
. Now if Y ∼ f , then

bTY ∼ N(−ab1/2, bTDb). Therefore,

α = Pf
(
bTY > 0

)
= Pf

(
bTY + ab1/2√

bTDb
>

ab1/2√
bTDb

)
= 1− Φ

(
ab1

2
√
bTDb

)
. (A.26)

Using all of the above equations we get:

E
[
X1| bTX > 0

]
= αEf

[
Y1| bTY > 0

]
+ (1− α)Eg

[
Y1| bTY > 0

]
=

(
2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)
.

Similarly,

E
[
X2| bTX > 0

]
= αEf

[
Y2| bTY > 0

]
+ (1− α)Eg

[
Y2| bTY > 0

]
=

2b2σ
2
2√

bTDb
φ

(
ab1

2
√
bTDb

)
.
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Plugging the expressions for E
[
X1| bTX > 0

]
and E

[
X2| bTX > 0

]
along with equations (A.20) and

(A.21) into equation (A.19), we get that:

W (b) =

d∑
j=1

σ2
j +

a2

4
−
[(

2Φ

(
ab1

2
√
bTDb

)
− 1

)
a

2
+

2b1σ
2
1√

bTDb
φ

(
ab1

2
√
bTDb

)]2

− 4b22σ
4
2

bTDb
φ2

(
ab1

2
√
bTDb

)
.

�

Proof of Lemma A.1.5

The within sum of squares can be written as:

W (b) = P (bTX > 0)E[||X − E[X|bTX > 0]||2|bTX > 0]

+ P (bTX < 0)E[||X − E[X|bTX < 0]||2|bTX < 0]

= E
[
||X − E[X|bTX > 0]||2

∣∣ bTX > 0
]
, (Since, −X d

= X)

= E
[
||X − E[X|Xi > 0]||2

∣∣ bTXi > 0
]

= E
[
(Xi − E[Xi|Xi > 0])

2 |Xi > 0
]

+
∑
j 6=i

E[X2
j ].

Recall that Xi ∼ N(0, σ2
i ), therefore E[Xi|Xi > 0] =

√
2
πσi. This implies that the within sum of squares

is given by,

W (b) = V ar(Xi|Xi > 0) + E[X2
1 ] +

∑
j 6=i,j 6=1

E[X2
j ]

= σ2
i −

2

π
σ2
i + σ2

1 +
a2

4
+

∑
j 6=i,j 6=1

σ2
j

=

d∑
j=1

σ2
j +

a2

4
− 2

π
σ2
i .

�

Proof of Lemma A.1.6

First, for any point v = (v1, . . . , vd) ∈ Rd, its projection, u = (u1, . . . , ud), onto the hyperplane H(b) = {y ∈

Rd : bT y = 0} is given by the following equations:

ui = vi + bit, for some t, ∀ i and bTu = 0,
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solving which gives us that for every i,

ui = vi − bi
d∑
i=1

bivi = vi − bi(bT v).

Now for simplicity, define Z1i = Yi − bi(b
TY ), the projection of Y onto the plane and Z2 = bTY .

Therefore, the ith coordinate of the projection of E[Y |bTY > 0] is given by:

Pi = E [Yi|Z2 > 0]− bi
(
bTE [Y |Z2 > 0]

)
= E

[
Yi − bi(bTY )|Z2 > 0

]
= E [Z1i|Z2 > 0]

=
E [Z1iI{Z2 > 0}]

P (Z2 > 0)

=
E [E [Z1iI{Z2 > 0}|Z2]]

P (Z2 > 0)

=
E [I{Z2 > 0}E [Z1i|Z2]]

P (Z2 > 0)

= E [E [Z1i|Z2]|Z2 > 0]

= E

[
E[Z1i] +

Cov(Z1i, Z2)

V ar(Z2)
(Z2 − E[Z2])

∣∣∣∣Z2 > 0

]
= E[Z1i] +

Cov(Z1i, Z2)

V ar(Z2)
(E [Z2|Z2 > 0]− E[Z2]) .

Note that we can do this because Y is a multivariate normal random variable and therefore Z1i and Z2

are jointly normal. Now since Y ∼ N(θ1, D), where θ1 = (a/2, 0, . . . , 0), and D is a diagonal matrix,

E[Z2] = E
[
bTY

]
= bTE [Y ] =

ab1
2
,

E[Z1i] = E
[
Yi − bi(bTY )

]
= E [Yi − biZ2] = E [Yi]− biE [Z2] =

a

2
I{i = 1} − ab1bi

2
,

V ar(Z2) = V ar
(
bTY

)
= bTD b,

and

Cov(Z1i, Z2) = Cov (Yi − biZ2, Z2) = Cov (Yi, Z2)− biV ar (Z2) = biV ar(Yi)− bi
(
bTD b

)
.

Therefore the projection is given by:

Pi =
a

2
I{i = 1} − ab1bi

2
+
biV ar(Yi)− bi

(
bTDb

)
bTDb

(
E [Z2|Z2 > 0]− ab1

2

)
.

�
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Proof of Lemma A.1.7

Our goal is to lower bound the term:

T :=

[
a

2
P(|Z| ≤ u) +

√
2

π
σ1 exp(−u2/2)

]2

,

where u = a/(2σ1). Defining,

R :=

[
a

2
P(|Z| ≤ u) +

√
2

π
σ1 exp(−u2/2)

]
,

we see that if we can lower bound R with k, i.e., find k such that R ≥ k > 0, then k2 is a lower bound on

T 2. We consider two cases:

Case when 0 ≤ u ≤ 2: We first claim that the following hold for all u ≥ 0:

exp(−u2/2) ≥ 1− u2

2
+
u4

8
− u6

48
+

u8

384
− u10

3840

P(|Z| ≤ u) ≥
√

2

π

[
u− u3

6
+
u5

40
− u7

336
+

u9

3456
− u11

42240

]
,

and both lower bounds are positive for 0 ≤ u ≤ 2. The first bound follows from the Taylor expansion of

exp(x). For the second we use that:

P(|Z| ≤ u) =

√
2

π

∫ u

0

exp(−x2/2)dx

≥
√

2

π

∫ u

0

(
1− x2

2
+
x4

8
− x6

48
+

x8

384
− x10

3840

)
dx.

The fact that the bounds are positive for the specified range can be directly verified.

Now, we can simply plug-in these estimates to obtain the following:

−2

π

(
σ2

1 +
a2

4

)
+ T ≥ −2

π

(
σ2

1 +
a2

4

)
+
a2

2π

[
1

u
+
u

2
− u3

24
+

u5

240
− u7

2688
+

u9

34560
− u11

42240

]2

,

=
a2u2

2π

[
1

6
− u2

30
+

13u4

2520
− u6

1512
+

797u8

26611200
− 233u10

7983360
+

42067u12

17882726400

− 559u14

2554675200
+

1697u16

91968307200
− u18

729907200
+

u20

1784217600

]
.
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and using the fact that u ≤ 2 to bound the negative terms (and dropping some positive terms) we obtain

that,

−2

π

(
σ2

1 +
a2

4

)
+ T ≥ a2u2

2π

[
1

6
− u2

30
+

19u4

7560
− 6929u8

79833600

]
≥ a2u2

2π

[
1

6
− u2

30

]
≥ a2u2

60π
,

as desired.

Case when u ≥ 2: Observe that if u2 ≥ 4, then:

−2

π

(
σ2

1 +
a2

4

)
+ T ≥ a2

40
.

Notice that since u2 ≥ 4, we obtain that,

2

π

(
σ2

1 +
a2

4

)
≤ 5a2

8π
.

We also notice that we can verify numerically that,

T ≥ a2

4
(P(|Z| ≤ 2))2 ≥ 9a2

40
.

Putting these two bounds together yields the desired result.

�

A.3 Proof of Theorem 3.4

Throughout this proof we use c, C, c1, C1, . . . to denote positive constants whose value may change from line

to line. Recall, that in studying the power of SigClust we suppose that, we observe samples:

{X1, . . . , Xn} ∼
1

2
N(−θ1, D) +

1

2
N(θ1, D) (A.27)

where θ1 = (a/2, 0, . . . , 0) ∈ Rd and a > 0. Furthermore, D is a diagonal matrix with elements Σjj = σ2
j ,

such that σ2
1 , σ

2
2 > σ2

3 ≥ . . . ≥ σ2
d. Recall that our goal is to show that when condition (3.7),

σ2
2 < σ2

1 +
a2

4
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holds, SigClust is asymptotically consistent, and when condition (3.9),

σ2
2 > max

2σ4
1 + a4

16 + a2

2

√
σ4

1 + a4

64

2σ2
1

,
π

2
κ2


holds, SigClust is asymptotically inconsistent. Before we embark on the proof of the theorem we first recollect

that Theorem 3.3 gave a characterization of the population-level optimal symmetric 2-means solution in this

model. Under the model in (A.27) described above, the population-level optimal 2-means solution is unique

and is given by (A.4) and (A.5).

Let us now first derive the power of the test in terms of the limiting distribution of the statistic under

the null and alternate. We let P0 denote the Gaussian distribution with mean 0, diagonal covariance matrix:

D0 =


σ2

1 + a2

4 0 0 . . . 0

0 σ2
2 0 . . . 0

...

0 0 0 . . . σ2
d

 .

and use P1 to denote the distribution in (A.27). We let W0(µ0) denote the population optimal 2-means

value under P0, and let

τ2
0 =

2∑
i=1

P0(Ai)EX∼P0
[‖X − E[X|X ∈ Ai]‖4|X ∈ Ai]− [W0(µ0)]2.

Similarly, we let W1(µ1) be the population optimal 2-means value under P1, and let

τ2
1 =

2∑
i=1

P1(Ai)EX∼P1 [‖X − E[X|X ∈ Ai]‖4|X ∈ Ai]− [W1(µ1)]2.

With this notation in place the following result characterizes the power of SigClust. We let Φ denote the

standard normal CDF.

Lemma A.1.8. SigClust has power:

Powern(a) = Φ

(
τ0Φ−1(α)

τ1
+
√
n
W0(µ0)−W1(µ1)

τ1

)
.

We prove this result in Appendix A.3.1, but note that it follows from straightforward calculations based on

Lemma 3.0.1 and Theorem 3.2. As a consequence of this result, we have the following characterization of

SigClust:
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Lemma A.1.9. Suppose that for some constant C > 0,

τ0
τ1
≤ C and, (A.28)

√
n
W0(µ0)−W1(µ1)

τ1
→∞, as n→∞, (A.29)

then SigClust is asymptotically consistent. On the other hand if,

τ0
τ1
≤ C and, (A.30)

W1(µ1) = W0(µ0) (A.31)

then SigClust is asymptotically inconsistent.

This Lemma provides sufficient conditions for consistency and inconsistency respectively and we proceed to

verify these conditions in the sequel. The proof of this Lemma is straightforward and is omitted.

To find the expression for W0(µ0), note that in (3.2) we had calculated the population optimal within sum

of squares for regular 2−means clustering. But now since the test statistic considers a symmetric version of

2−means clustering we need a version of Lemma 3.0.1 for the within sum of squares for symmetric 2−means

clustering,

W (0)
n (t) =

1

n

n∑
i=1

min{||Xi − t||2, ||Xi + t||2},

as given by (3.5). This is easily provided by an analogous version of Theorem 3.2 for a single Normal

distribution as follows:

Lemma A.1.10. Let the data be generated from N(0, D0), as defined above, and τ0 and W0(µ0) be as given

by (3.3) and (3.2). Then as n→∞,

√
n(W (0)

n (bn
(0))−W0(µ0)) N(0, τ2

0 ),

where W
(0)
n (bn

(0)) = mintW
(0)
n (t), the minimum within sum of squares for symmetric 2−means clustering

We skip the proof of this lemma as it follows exactly along the lines of the proof of Theorem 3.2 along

with the observation that the unique µ0 that minimizes the within sum of squares for regular 2−means is

itself symmetric and hence it also minimizes the symmetric version. Additionally the positive definiteness

of the corresponding matrix G0 has already been shown in Lemma A.0.1.

So given the expressions for τ0 and W0(µ0) in (3.3) and (3.2), it now remains to calculate τ1 and W1(µ1)

to analyze the power of SigClust. The following Lemma builds on Theorem 3.3 to calculate these quantities.
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We analyze two cases which depend on whether the optimal population-level split occurs along the first or

second coordinate.

Lemma A.1.11. There are universal constants 0 < c ≤ C such that:

1. If (3.7) holds, then:

W1(µ1) =

d∑
j=1

σ2
j +

a2

4
− κ2.

c ≤ τ2
1 ≤ C.

2. If (3.9) holds, then:

W1(µ1) = W0(µ0),

c ≤ τ2
1 ≤ C.

We prove this result in Appendix A.3.2. To complete the proof of the Theorem we need to put together

Lemmas A.1.9 and A.1.11 to show the consistency and inconsistency of SigClust in different regimes.

We note that using (A.33) and the result of Lemma A.1.11 that both τ2
0 and τ2

1 are bounded by constants

(recall that we take {a, σ2
1 , . . . , σ

2
d} to be fixed) as n → ∞ verifying Conditions (A.28) and (A.30). Thus,

Lemmas A.1.9 and A.1.11 directly yield the inconsistency of SigClust when condition (3.9) holds. On the

other hand, in order to establish consistency when (3.7) holds, to verify Condition (A.29) we note that for

some constant c > 0,

√
n
W0(µ0)−W1(µ1)

τ1
≥ c
√
n [W0(µ0)−W1(µ1)]

= c
√
n

[
κ2 − 2

π
max

{(
σ2

1 +
a2

4

)
, σ2

2

}]
︸ ︷︷ ︸

T

,

so to complete the proof of the Theorem it suffices to lower bound the term T > 0 as n → ∞, when (3.7)

holds. Clearly in this regime κ2 − 2σ2
2/π > 0 so Lemma A.1.7 as stated in Appendix A.2.2, completes the

proof of our Theorem.
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A.3.1 Proof of Lemma A.1.8

Under the null, the distribution of the statistic follows from Theorem 3.1 and Lemma A.1.10. Concretely,

for

W0(µ0) = σ̃2 − 2

π
max

{(
σ2

1 +
a2

4

)
, σ2

2

}
, (A.32)

τ2
0 = 2

d∑
i=2

σ4
i + 2

(
σ2

1 +
a2

4

)2

− 16

π2

[
max

{(
σ2

1 +
a2

4

)
, σ2

2

}]2

, (A.33)

we have by a combination of Theorem 3.1 and Lemma A.1.10 that we would expect under the null that,

√
n
(
T (0)
n − W0(µ0)

σ̃2

)
 N

(
0,
[ τ0
σ̃2

]2 )
, as n→∞.

Thus, we reject at level α, if:

√
n
(
T (0)
n − W0(µ0)

σ̃2

)
≤ τ0Φ−1(α)

σ̃2
.

Under the alternate we can once again use Theorem 3.2 to obtain that,

√
n
(
T (0)
n − W1(µ1)

σ̃2

)
 N

(
0,
[ τ1
σ̃2

]2 )
, (A.34)

where W1(µ1) denotes the optimal 2-means objective under the alternate, and

τ2
1 =

2∑
i=1

P1(Ai)EX∼P1 [‖X − E[X|X ∈ Ai]‖4|X ∈ Ai]− [W1(µ1)]2,

where {A1, A2} denotes the Voronoi partition induced by µ1. Accordingly letting P1 denote the distribution

in (A.27) we have that,

Powern(a) = P1

(√
n
(
T (0)
n − W0(µ0)

σ̃2

)
≤ τ0Φ−1(α)

σ̃2

)
= P1

(√
nσ̃2

τ1

(
T (0)
n − W1(µ1)

σ̃2

)
≤ τ0Φ−1(α)

τ1
+
√
n
W0(µ0)−W1(µ1)

τ1

)
(i)
= Φ

(
τ0Φ−1(α)

τ1
+
√
n
W0(µ0)−W1(µ1)

τ1

)
,

where (i) follows from (A.34).

A.3.2 Proof of Lemma A.1.11

We divide our analysis into two cases, according to the optimal 2-means solution.
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When condition (3.7) holds: In this case, the population optimal 2-means split is along the first

coordinate. The expression for W1(µ1) follows from (3.8), and it only remains to bound τ2
1 . To lower bound

τ2
1 we note that,

τ2
1 =

2∑
i=1

P1(Ai)EX∼P1
[‖X − E[X|X ∈ Ai]‖4|X ∈ Ai]− [W1(µ1)]2

= 3

d∑
j=2

σ4
j +

∑
i,j 6=1,j 6=i

σ2
i σ

2
j + E[(X1 − κ)2|X1 ≥ 0]

∑
j 6=1

σ2
j

+ E[(X1 − κ)4|X1 ≥ 0]−

E[(X1 − κ)2|X1 ≥ 0] +

d∑
j=2

σ2
j

2

= 2

d∑
j=2

σ4
j + var

(
(X1 − κ)2|X1 ≥ 0

)
.

Using the fact that the variances and a are all fixed and bounded above and below we obtain that for two

universal constants 0 < c ≤ C,

c ≤ τ2
1 ≤ C.

When condition (3.9) holds: In this case, the population optimal 2-means split is along the second

coordinate. The expression for W1(µ1) follows from (3.10), and once again it only remains to bound τ2
1 . In

this case,

τ2
1 =

2∑
i=1

P1(Ai)EX∼P1
[‖X − E[X|X ∈ Ai]‖4|X ∈ Ai]− [W1(µ1)]2.

Noting that,

E[X2
1 ] = σ2

1 +
a2

4
, E[X4

1 ] =
a4

16
+ 3σ4

1 + 3σ2
1

a2

2
,

we obtain

τ2
1 =

[
a4

16
+ 3σ4

1 + 3σ2
1

a2

2

]
+ 2

d∑
j=3

σ4
j + var[(X2 −

√
2πσ2)4|X2 ≥ 0]−

[
σ2

1 +
a2

4

]2

= 2
∑
j 6=2

σ4
j + var[(X2 −

√
2πσ2)4|X2 ≥ 0] + σ2

1a
2.
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Once again using the fact that the variances and a are all fixed and bounded above and below we obtain

that for two universal constants 0 < c ≤ C,

c ≤ τ2
1 ≤ C,

as desired.
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A.4 Proof of the Main Results for Rift

In this Appendix, we collect the proofs of the main results for the Rifts in the thesis. In Sections A.4.1

and A.4.3 we consider the limiting distributions of the Rift statistic, and its `2 counterpart under the null

and prove Theorems 4.1 and 4.3. In Section A.4.2 we consider Theorem 4.2 and analyze the power of the

Rift and finally in Section A.4.4 we consider Theorem 4.4 where we verify the validity of the modified

Rift to test for mixtures of two Normals.

A.4.1 Proof of Theorem 4.1

In the following proof all probabilities and expectations are taken conditioned on D1. By the Berry-Esseen

theorem, given D1,

sup
t
|P(
√
n(Γ̂− Γ) ≤ t)− P(Z ≤ t)| ≤ C0ρ

τ3
√
n
,

where C0 is a constant,

ρ = E
[∣∣∣R̃i − Γ

∣∣∣3] and τ2 = E
[(
R̃i − Γ

)2
]
. (A.35)

Now Γ = E
[
R̃i

]
, therefore,

τ2 = Var
(
R̃i

)
= Var (Ri + δZi) ≥ δ2Var(Zi) = δ2 > 0.

Now note that,

|Ri| =
∣∣∣∣log

(
p̂2(Xi)

p̂1(Xi)

)∣∣∣∣ = |log p̂2(Xi)− log p̂1(Xi)|

≤ max
x
{log p̂2(x)− log p̂1(x), log p̂1(x)− log p̂2(x)}

≤ max
x,i∈{1,2}

{
log f̂i(x)− log p̂1(x), log p̂1(x)− log f̂i(x)

}
.

Then we get,

|Ri| ≤ max
i∈{1,2}

{
1

2
log

(
|Σ̂|
|Σ̂i|

)
+

1

2

(
µ̂T Σ̂−1µ̂−

(
Σ̂−1µ̂− Σ̂−1

i µ̂i

)T (
Σ̂−1 − Σ̂−1

i

)−1 (
Σ̂−1µ̂− Σ̂−1

i µ̂i

))
,

1

2
log

(
|Σ̂i|
|Σ̂|

)
+

1

2

(
µ̂Ti Σ̂−1

i µ̂i −
(

Σ̂−1
i µ̂i − Σ̂−1µ̂

)T (
Σ̂−1
i − Σ̂−1

)−1 (
Σ̂−1
i µ̂i − Σ̂−1µ̂

))}
.
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Now we notice that since for i = 1, 2, µ, µ̂i ∈ A and the eigenvalues of Σ̂, Σ̂i lie in a bounded set, there exists

a constant k ≥ 0 such that

µ̂T Σ̂−1µ̂−
(

Σ̂−1µ̂− Σ̂−1
i µ̂i

)T (
Σ̂−1 − Σ̂−1

i

)−1 (
Σ̂−1µ̂− Σ̂−1

i µ̂i

)
≤ k,

µ̂Ti Σ̂−1
i µ̂i −

(
Σ̂−1
i µ̂i − Σ̂−1µ̂

)T (
Σ̂−1
i − Σ̂−1

)−1 (
Σ̂−1
i µ̂i − Σ̂−1µ̂

)
≤ k.

Also note that, ∣∣∣∣∣log

(
|Σ̂|
|Σ̂i|

)∣∣∣∣∣ ≤ d log

(
c2
c1

)
and

∣∣∣∣∣log

(
|Σ̂i|
|Σ̂|

)∣∣∣∣∣ ≤ d log

(
c2
c1

)
.

Therefore

|Ri| ≤
1

2

(
d log

(
c2
c1

)
+ k

)
= C1.

So we can also say,

|Γ| = |E [Ri]| ≤ C1.

Then,

ρ = E
[∣∣∣R̃i − Γ

∣∣∣3] ≤ E
[(
|R̃i|+ |Γ|

)3
]

≤ E
[
(2C1 + δ|Zi|)3

]
= 8C3

1 + 12C2
1δE[|Zi|] + 6C1δ

2E[Z2
i ] + δ3E[|Zi|3]

= 8C3
1 + δ

[
12C2

1

√
2

π
+ 6C1δ + 2

√
2

π
δ2

]
.

Therefore,

C0ρ

τ3
≤ C0

δ3

[
8C3

1 + δ

(
12C2

1

√
2

π
+ 6C1δ + 2

√
2

π
δ2

)]
.

Hence,

sup
t
|P(
√
n(Γ̂− Γ) ≤ t)− P(Z ≤ t)| ≤ C√

n
,

where C = C0

δ3

[
8C3

1 + δ
(

12C2
1

√
2
π + 6C1δ + 2

√
2
π δ

2
)]

. Since the upper bound does not depend on D1, the

result holds unconditionally as well. �

A.4.2 Proof of Theorem 4.2

Let p ∈ P2 − P1. Conditional on D1, E[Γ̂|D1] = Γ = K(p, p̂1) − K(p, p̂2). There exists γ > 0 such that

K(p, p1) ≥ γ > 0 for all p1 ∈ P1. It follows from the law of large numbers, with probability 1, that
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lim infn→∞K(p, p̂1) > γ/2. Since p̂2 is consistent, K(p, p̂2) = oP(1). Thus, with probability 1, Γ > γ/2 for

all large n. Also, with probability 1, τ̂ /τ = 1 + o(1). Combining these facts with the Berry-Esseen result,

we have that

P

(
Γ̂ >

zατ̂√
n

∣∣∣∣∣ D1

)
= P

(√
n(Γ̂− Γ)

τ
> (1 + o(1))zα −

√
nΓ

τ

∣∣∣∣∣ D1

)

= P(Z > (1 + o(1))zα −
√
nΓ/τ |D1) +

C√
n

≥ P(Z > (1 + o(1))zα −
√
nγ/(2τ)) +

C√
n

where Z ∼ N(0, 1) and C is a constant that does not depend on D1. It follows that P(Γ̂ > zατ̂ /
√
n)→ 1. �

A.4.3 Proof of Theorem 4.3

In the following proof all probabilities and expectations are taken conditioned on D1. By Berry-Esseen

theorem, given D1,

sup
t
|P(
√
n(Θ̂−Θ) ≤ t)− P(Z ≤ t)| ≤

C0E
[∣∣∣Ũi −Θ

∣∣∣3]
a3
√
n

,

where C0 is a constant and a2 = E
[(
Ũi −Θ

)2
]
. Let

a2 = Var
(
Ũi

)
. (A.36)

Now Θ = E [Ui] = E
[
Ũi

]
, therefore,

a2 = Var
(
Ũi

)
= Var (Ui + δZi) ≥ δ2Var(Zi) = δ2.

Now note that,

|Ui| = |p̂1(Xi)− p̂2(Xi)|

≤ |p̂1(Xi)|+ |p̂2(Xi)|

≤ 1

(2π)d/2|Σ̂|1/2
+ max
i∈{1,2}

1

(2π)d/2|Σ̂i|1/2
≤ 2

(2πc1)d/2
= C2.
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Therefore we also have that,

|Θ| = |E [Ui]| ≤ C2.

Then following the same arguments as before while finding a bound for ρ, we can see that

E
[∣∣∣Ũi −Θ

∣∣∣3] ≤ 8C3
2 + δ

[
12C2

2

√
2

π
+ 6C2δ + 2

√
2

π
δ2

]
.

Therefore,

C0E
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Hence,
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A.4.4 Proof of Theorem 4.4

Suppose H0 is true. Crucially, the error from the Berry-Esseen theorem does not depend on D1. The

unconditional type I error of the split test is thus

P
(
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zατ̂√
n

)
= P

(√
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[
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+O(n−1/2)

= E
[
Φ

(
zα −

√
nΓ

τ

)]
+O(n−1/2)

where Z ∼ N(0, 1), Φ = 1− Φ and Φ is the normal cdf.

(i) Since p̂1 is a consistent estimator of the true density p under H0, K(p, p̂1) converges to zero. More

precisely, K(p, p̂1) = op(cn/
√
n), where cn is some appropriately chosen, slowly diverging sequence. (ii) By

construction, K(p, p̂2) > ∆, where ∆ > 0 is a fixed positive constant. From (i) and (ii), it follows that with

probability tending to 1,

√
nΓ

τ
:=

√
n(K(p, p̂1)−K(p, p̂1))

τ
≤
√
n({cn/

√
n} −∆)

τ
→ −∞
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and thus

zα −
√
nΓ

τ
→∞

(where τ ≥ δ > 0 as shown on p.45). Hence it follows that

P

(
√
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)
= E

[
Φ

(
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√
nΓ

τ

)]
+O(n−1/2) = o(1)

(where Φ is the standard normal cdf). �
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Appendix B

Exploratory Data Analysis of the

Higgs Boson Data

As mentioned in Chapter 9, the data set is from a machine learning challenge hosted by Kaggle at https:

//www.kaggle.com/c/higgs-boson which consists of simulated data provided by the ATLAS experiment

at CERN to optimize the analysis of the Higgs boson.

We analyze the training set provided by the challenge to demonstrate the performance of the classifier

tests as well as understand the behavior of the signal. The training set has 250K observations, and d = 30

features whose individual details can be found in the Appendix B of Adam-Bourdarios et al. (2014).

As mentioned in Chapter 9 we will only be looking at the “raw” quantities measured by the detector,

i.e. features prefixed with PRI (for PRImitives), since the derived features are just functions of the primitive

features. Additionally, in order to avoid missing data, we only consider the events that have two jets

(PRI_jet_num= 2) which results in 50,379 events, 24,645 background events and 25,734 signal events.

Among the primitive features, five of them provide the azimuth angle φ of the particles generated in

the event (variables ending with _phi). These features are rotation invariant in the sense that the event

doesn’t change if all of them are rotated together with any angle. The first row of Figure B.1 demonstrates

the uniform distribution of the phi variables. The phi variables themselves don’t contain any information,

but the difference between the angles is what contains the information. Hence to interpret these variables

more easily using the active subspace methods, we remove the invariance of the azimuth angle variables

by rotating all the φ’s and setting the azimuth angle of the leading jet at 0 (PRI_leading_phi= 0). The

bottom row of Figure B.1 demonstrates the importance of the change in the distribution of the angles after

the rotation. The symmetry of the distributions is expected as a difference of −π radians is the same as a

difference of −π radians.
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Figure B.1: Top row gives the phi variables before rotation. Bottom row gives the phi variables after
rotation such that the phi of the leading jet is set to 0.

Figure B.2: Distribution of the variables for which we consider a log transformation.

Additionally, we take logarithmic transformations of the variables that give the transverse momentum of

the particles produced (variables ending with _pt), the missing transverse energy (PRI_met) and the total

transverse energy in the detector (PRI_met_sumet). This is done so our analysis is not affectced by the

skewness demonstrated by these variables in Figure B.2. Taking a log transformation of these variables fixes

the problem upto some extent.

Our goal is to detect the presence of the Higgs boson signal in the experimental data, using this data

set. The difficulty of this problem is demonstrated by Figure B.3 which shows that the distributions of the

signal and the background data are not very different. Particularly, when we are searching for signal that
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Figure B.3: Histograms of all the variables for signal (green) data as well as background (grey) data.

is just around 10% of the experimental data or even less, these minute differences are difficult to detect. In

the next section, we explore the random forest classifier trained for a single random simulation (one of the

100 simulations explored in Section 9.2) when λ = 0.1, i.e., 10% of the experimental data is from the signal

sample.

B.1 Analysis of a Single Semi-Supervised Simulation

As described in Section 9.2, for the semi-supervised methods, we consider a training set of m1 = 7,322

background events and N1 =7,323 experimental events, which contains bN1λc = 732 signal events. We test

for the presence of signal using a test set of m2 = 5,000 background events and N1 =5,000 experimental

events, which contains bN2λc = 500 signal events. We train a random forest classifier on the training data to

differentiate between the background and the experimental events. These two data sets differ very slightly

from each other as can be seen in Figure B.4; visually they are almost indistinguishable from the histograms.
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Figure B.4: Histograms of all the variables for training data: experimental (purple) data and background
(grey) data.

To demonstrate this further, we incorporate the dependence of the variables on each other as well. We

demonstrate two different approaches. First we use Principal Component Analysis on just the background

data to find the two principal components of the background data and then project the test experimental

data on those axes. Figure B.5c shows that the signal is not very distinguishable from the background. We

then use t-distributed stochastic neighbor embedding proposed by Maaten and Hinton (2008) to visualize the

data in two dimensions. First we train the algorithm to distinguish experimental data from the background

data. When this fails, as shown in Figure B.5a, we directly train the algorithm to distinguish signal from

background data. As shown in Figure B.5b, this approach fails as well. This emphasizes the difficulty of the

problem to detect differences between the background data and the experimental data.
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(a) Semi-supervised tSNE (b) Supervised tSNE

(c) PCA

Figure B.5: Experimental and background test data containing signal events (green) and background
events (grey). (a) t-distributed stochastic neighbor embedding (tSNE) trained on experimental versus
background training samples. (b) t-distributed stochastic neighbor embedding (tSNE) trained on signal
versus background training samples. (c) Principal component analysis (PCA) trained on background training
samples.

Since in the case of λ = 0.1, the random forests demonstrate some power in detecting the signal, we want

recognize the variables affecting the membership probabilities. This is not an easy task as demonstrated by

Figure B.6, which shows the random forest classifier output (experimental membership probabilities) as a

function of each of the variables in the data.

We notice that the random classifier seems to depend on the transverse momentums of all the particles

produced (variables ending with _pt), as well as the missing transverse energy (met) and the total transverse

energy in the detector (met_sumet).
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Figure B.6: Experimental membership probabilities (the random forest output) versus all the variables for
the test data sets. Signal events in green and background events in grey.
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To understand better how these variables affect the classifier we use active subspace methods introduced

in Section 8.5 and show the results in Section 9.3. In order to select the smoothing parameter for the

local linear smoother being used, we use the standard deviation of the variables scaled by a factor as the

bandwidth. We explore a few scaling factors and calculate the gradients as well as the mean of the gradients

for all of them. Following Method 8.5.1, we find the mean projection corresponding to the mean gradient.

We choose a scaling factor that demonstrates maximum amount of difference between the signal and the

background distributions when the data is projected along that direction.

Figure B.7: Histograms of the signal (green) and background (grey) data projected onto the mean
projection vector when the standard deviation of the variables scaled by a factor is used as the bandwidth
for the local linear smoother

Figure B.7 shows that scaling the standard deviation by anything larger than 4.5 seems to be similar. So

we consider dividing by 5 and use that as the bandwidth for the results presented in Section 9.3. The mean

projection vector as well as the first two active subspace vectors are presented in Section 9.3. Figure B.8
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presents the third, fourth and the fifth active subspace vectors using PCA. Sparse PCA results in only two

non-zero principal components.

Figure B.8: Third to fifth active subspace variables.

We further use the active subspace methods for a simulation with λ = 0.15. Figure B.9 shows that scaling

the standard deviation by 1.5 or 2 seems to result in the most difference between the signal and background

distributions. So we consider dividing the standard deviations of the variables by 2 and using that as the

bandwidth for the results presented in Section 9.3. The mean projection vector as well as the first two active

subspace vectors are presented in Section 9.3. Figures B.10 and B.11 present the third, fourth and the fifth

active subspace vectors using PCA and sparse PCA respectively.

We note that the sparse PCA identifies the transverse momentum of the hadron tau (tau_pt) and the

relationship between the phi angles between the leading jet and the missing transverse energy (met_phi) as

additional eigenvectors important for the detection of the signal.
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Figure B.9: Histograms of the signal (green) and background (grey) data projected onto the mean
projection vector when the standard deviation of the variables scaled by a factor is used as the bandwidth
for the local linear smoother
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Figure B.10: Third to fifth active subspace variables for λ = 0.15.

Figure B.11: Third to fifth sparse active subspace variables for λ = 0.15.
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