
Resource-Constrained State Estimation with
Multi-Modal Sensing

John W. Yao

CMU-RI-TR-20-05

April 2020

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Nathan Michael, Chair

William “Red” Whittaker
Michael Kaess

Hatem Alismail, Argo AI

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics

Copyright c© 2020 John W. Yao

Abstract
Accurate and reliable state estimation is essential for safe mobile robot operation in real-

world environments because ego-motion estimates are required by many critical autonomy
functions such as control, planning, and mapping. Computing accurate state estimates depends
on the physical characteristics of the environment, the selection of suitable sensors to capture
that information, and the availability of compute to perform inference on sensor observations.
Because environment characteristics cannot be controlled in typical field operation scenarios,
careful sensor selection and efficient fusion algorithms are required to achieve accurate, high-
rate state estimation on mobile robots.

Visual-inertial odometry is well-suited to onboard state estimation in environments that have
rich visual texture. As with other vision-based methods, it performs poorly when operating on
images with non-ideal characteristics such as low visual texture, dynamic objects, or far away
scenes. Common methods to mitigate these problems include introducing visual observations
from different fields of view and using depth observations. However, processing additional
sources and types of observations requires more computation, which is extremely limited on
size, weight, and power constrained robots such as micro aerial vehicles. Therefore, there is a
need to reduce the computational burden associated with using more observations to increase
accuracy through efficient selection of useful observations from multiple heterogeneous sen-
sors.

In this thesis, we propose an optimization-based state estimator that fuses observations from
multiple heterogeneous sensors to achieve reliable performance in scenarios that are challenging
for typical minimal sensing configurations. The foundation is a baseline monocular sparse
visual-inertial odometry algorithm using fixed-lag smoothing augmented with improvements in
covariance estimation and initialization from rest. We extend this formulation to improve state
estimation performance in non-ideal sensing conditions by (1) modifying the visual-inertial
odometry framework to support multiple asynchronous cameras with disjoint fields of view,
(2) leveraging depth observations to boost performance in visually degraded environments, and
(3) developing methods to allocate limited computational resources to process exteroceptive
observations that are more informative for estimation. The proposed methods are evaluated
both in real time onboard an aerial robot flying in a variety of challenging environments, as
well as in postprocessing on datasets collected using the aerial robot.

iv

Acknowledgments
First and foremost, I would like to thank my advisor, Prof. Nathan Michael, for his guidance,

feedback, and insight throughout my time at CMU. He fostered an environment where I could
learn to become a better roboticist through theory and practice, and repeatedly challenged me
to go above and beyond my personal limits in pursuing that goal. I am also grateful to my thesis
committee members, Prof. Red Whittaker, Prof. Michael Kaess, and Dr. Hatem Alismail, who
provided valuable advice and encouragement throughout this process.

I also have to thank my friends and colleagues who have collaborated with me over the past
years and helped improve my graduate school experience. I would like to thank my reliable
senpais Vishnu Desaraju and Humphrey Hu for always being willing to listen to my problems
and offer feedback on my research ideas. I am grateful to Erik Nelson for patiently helping me
get up to speed with the practical side of aerial robotics and helping me survive the storm of
demos and sponsor deliverables in the lab’s early years. I would like to thank Curtis Boirum
for designing, building, flying, and repairing our lab’s aerial robots - without him none of the
hardware experimental results in this thesis would have been possible. I am thankful for Wennie
Tabib’s leadership of the cave exploration project, as well for her help in encouraging me to see
the big picture and not get lost in dead-end research endeavors. I am grateful to Kshitij Goel for
his help in running many of the aerial robot experiments as well as working on the infrastructure
that facilitates them. I would like to thank Aditya Dhawale and Cormac O’Meadhra for their
help with depth-based odometry. I am grateful to past and present members of the Resilient
Intelligent Systems Laboratory for making my time at CMU memorable, especially Kumar
Shaurya Shankar, Ellen Cappo, Matt Collins, Micah Corah, Xuning Yang, Alex Spitzer, Arjav
Desai, Mike Lee, and Mosam Dabhi. I would like to thank Chuck Whittaker, Karen Widmaier,
Nora Kazour, Suzanne Lyons Muth, and Alison Day for their support and help with various
things throughout my time at CMU.

Finally, I would like to thank my friends and family for their support and encouragement
throughout the course of my Ph.D. I am grateful that they served as constant reminders, espe-
cially in the most trying of times, that there is more to life than graduate school.

Contents

1 Introduction 1

2 Background 3
2.1 Camera Configuration . 3

2.1.1 Stereo . 3
2.1.2 Monocular . 3

2.2 Image Processing . 4
2.2.1 Indirect Methods . 4
2.2.2 Direct Methods . 5
2.2.3 Sparse Methods . 5
2.2.4 Dense Methods . 5

2.3 Probabilistic Inference . 5
2.3.1 Loosely-Coupled vs. Tightly-Coupled . 6
2.3.2 Filtering . 6
2.3.3 Optimization . 6
2.3.4 Feature Selection . 7

2.4 Depth-based Methods . 7
2.4.1 Sparse Methods . 8
2.4.2 Dense Methods . 8

3 Sliding Window Visual-Inertial Odometry 9
3.1 Feature Detection and Tracking . 9

3.1.1 Feature Detection . 10
3.1.2 Feature Tracking . 10
3.1.3 Outlier Rejection . 10
3.1.4 Implementation Details . 12

3.2 IMU Preintegration . 12
3.2.1 IMU Measurement Model . 12
3.2.2 Motion Integration . 13
3.2.3 Motion Delta Error Dynamics Model . 15
3.2.4 Implementation Details . 18

3.3 IMU Factor . 18
3.3.1 Residual . 19
3.3.2 Covariance . 19
3.3.3 Jacobians . 19

3.4 Reprojection Factor . 22
3.4.1 Reprojection Geometry . 22

vi

CONTENTS vii

3.4.2 Residual . 23
3.4.3 Covariance . 23
3.4.4 Jacobians . 24

3.5 Single Camera Optimization . 25
3.5.1 Problem Definition . 25
3.5.2 Incorporation of New Feature Trails into Optimization 26
3.5.3 Implementation Details . 27

3.6 Marginalization . 28
3.6.1 Marginalization as an Approximation of Batch Optimization 28
3.6.2 Prior Residual . 30
3.6.3 Selection of States to Marginalize . 31
3.6.4 Implementation Details . 31

3.7 Initialization . 32
3.7.1 Structure From Motion . 32
3.7.2 Gyroscope Bias Estimation . 34
3.7.3 Velocity, Gravity, and Scale Estimation . 35
3.7.4 Initial Guess for Optimization . 36

3.8 Public Dataset Evaluation . 36
3.9 Realtime Evaluation on Flight Platform . 37

3.9.1 Motion Capture Flight . 37
3.9.2 Outdoor Flight . 40
3.9.3 Cave Flight . 41

4 Practical Considerations for VIO Deployment 44
4.1 Efficient Covariance Estimation . 44
4.2 Gauge Ambiguity Handling . 44

4.2.1 Problems Caused By Gauge Ambiguity . 45
4.2.2 Gauge Ambiguity Mitigation Strategies . 45
4.2.3 Gauge Prior Implementation Details . 45
4.2.4 Numerical Example . 47

4.3 Auxiliary Estimator . 48
4.3.1 Horizontal Velocity Estimation . 51
4.3.2 Altitude Estimation . 52
4.3.3 Unscented Kalman Filter . 52
4.3.4 Odometry Assembly . 54

4.4 Odometry Management . 54
4.4.1 Finite State Machine . 55
4.4.2 Smooth Odometry Source Switching . 57

5 VIO for Multiple Cameras with Disjoint Fields of View 60
5.1 Multi-Camera Optimization Problem Formulation . 60

5.1.1 Synchronized Cameras . 60
5.1.2 Asynchronous Cameras . 61

5.2 Image Plane Feature Trail Interpolation . 62
5.2.1 Lagrange Polynomial Interpolation of Feature Observations 63
5.2.2 Simulation Comparison of Pose Interpolation and Image Plane Feature Trail Inter-

polation . 63
5.3 Modifications to Single Camera VIO . 65

viii CONTENTS

5.3.1 Selection of Keyframes from Streaming Image Frames 65
5.3.2 Optimization . 68
5.3.3 Incorporation of New Feature Trails into Optimization 68
5.3.4 Initialization . 68
5.3.5 Selection of Keyframes for Marginalization . 68

5.4 Experimental Results . 68
5.4.1 Motion Capture Arena . 69
5.4.2 Parking Garage . 72

6 Sensor Resource Allocation 75
6.1 Problem Formulation . 75

6.1.1 Log Determinant Evaluation . 76
6.1.2 Feature Observation Prediction Model Assumptions 77
6.1.3 Feature Information Gain Evaluation . 77

6.2 Greedy Feature Selection . 78
6.3 Simulation Results . 79
6.4 Experimental Results . 82

6.4.1 Motion Capture Arena . 82
6.4.2 Pavement . 87
6.4.3 Volleyball Court . 90

7 Visual-Inertial-Depth Odometry 93
7.1 Depth Sensor . 93
7.2 Relative Pose from Dense Depth Observations . 93
7.3 Relative Pose from Depth-Aided 3D-to-2D Feature Correspondences 94
7.4 Primary Estimator Modifications . 95

7.4.1 Relative Pose Residual . 95
7.4.2 Relative Pose Jacobians . 96

7.5 Auxiliary Estimator Modifications . 97
7.6 Experimental Results . 98

7.6.1 Primary Estimator . 98
7.6.2 Auxiliary Estimator . 102

8 Conclusion 104
8.1 Summary of Contributions . 104
8.2 Future Work . 105

Appendices 107

A Lie Theory 107
A.1 Cross and Vee Operators . 107
A.2 Rotation Matrices . 108

A.2.1 Exponential Map . 108
A.2.2 Logarithmic Map . 108

A.3 Quaternions . 109
A.3.1 Exponential Map . 109
A.3.2 Logarithmic Map . 110

A.4 Euler Angles . 110

CONTENTS ix

A.5 Rigid Body Transforms . 111
A.6 Useful SO(3) Identities and Approximations . 111

B IMU Preintegration Derivations 113
B.1 Continuous Time Error State Dynamics . 113

B.1.1 Position Error State Dynamics . 113
B.1.2 Linear Velocity Error State Dynamics . 113
B.1.3 Attitude Error State Dynamics . 114
B.1.4 IMU Bias Error State Dynamics . 115
B.1.5 Assembly into Linear Time Varying System . 115

B.2 Midpoint Rule Preintegration . 115
B.2.1 Nominal State . 115
B.2.2 Error State . 115

B.3 Extension to Support Online IMU Intrinsic Calibration . 116
B.3.1 True and Nominal State Continuous Time Dyanmics 117
B.3.2 Error State Continuous Time Dynamics . 118
B.3.3 Midpoint Rule for Error State Dynamics . 119
B.3.4 IMU Bias and Intrinsics Perturbation Model . 119
B.3.5 IMU Preintegration Factor . 120
B.3.6 IMU Intrinsics Factor . 120

C Nonlinear Least Squares Regression 121
C.1 Trust Region Minimization . 121
C.2 Dogleg Strategy . 122
C.3 Schur Complement Linear Solver . 122
C.4 Loss Functions . 123
C.5 Manifold Optimization . 123

D Offline Calibration 125
D.1 IMU to Motion Capture Model Extrinsics . 125
D.2 Camera to IMU Extrinsics . 126

E Online Calibration 129
E.1 Camera IMU Extrinsic Transform . 129
E.2 Camera IMU Time Offset . 130

E.2.1 Feature Velocity . 130
E.2.2 Time Offset Definition . 130
E.2.3 Time Shifted Feature Observations . 130
E.2.4 Incorporating Time Offsets into the Standard Reprojection Residual 131
E.2.5 Time Offset Jacobian . 131
E.2.6 Estimation Procedure . 131

F Interpolated Reprojection Factor 133
F.1 Master and Secondary Camera Keyframe Timestamps . 133
F.2 Pose Interpolation . 133
F.3 Reprojection Residual with Interpolated Poses . 134
F.4 Jacobians of the Reprojection Residual with Interpolated Poses 135

F.4.1 Position Jacobians . 135

x CONTENTS

F.4.2 Jacobian of Interpolated Attitude Perturbation with respect to Earlier Master Camera
Attitude Perturbation . 136

F.4.3 Jacobian of Interpolated Attitude Perturbation with respect to Later Master Camera
Attitude Perturbation . 137

F.4.4 Time Offset Jacobians . 138

G Experiment Infrastructure 140
G.1 Hardware . 140

G.1.1 First Generation Flight Platform . 140
G.1.2 Second Generation Flight Platform . 141
G.1.3 Motion Capture Arena . 142
G.1.4 Ground Control Station . 143

G.2 Software . 143
G.2.1 Onboard Computer . 143
G.2.2 Autopilot Computer . 146

H Motion Estimate Accuracy Evaluation 148
H.1 Time Offset Compensation . 148
H.2 Trajectory Interpolation . 149
H.3 4DOF Trajectory Alignment . 149

H.3.1 Using Initial Pose Correspondence . 149
H.3.2 Using Multiple Position Correspondences . 150

H.4 Error Metrics . 150
H.4.1 Absolute Trajectory Error . 150
H.4.2 Final Position Drift . 151

H.5 Covariance Alignment . 151

List of Figures

3.1 Sliding window visual-inertial odometry information flow diagram 9
3.2 Keyframe timing and selection . 10
3.3 Geometry for determining up-to-scale translation between camera frames k and k + 1 11
3.4 Two point RANSAC outlier rejection . 11
3.5 Flowchart of initialization process . 32
3.6 3D plot of trajectory used to evaluate state estimation performance 38
3.7 Position estimation performance . 38
3.8 Velocity estimation performance . 39
3.9 Attitude estimation performance . 39
3.10 Motion overlay of robot flight over treetops . 40
3.11 Estimated flight path over treetops superimposed on satellite imagery 40
3.12 Estimated flight path over treetops . 41
3.13 Motion overlay of robot flight along forest path . 41
3.14 Motion overlay of robot flying from inside the forest to above the treetops 42
3.15 Estimated flight path inside forest and over treetops . 42
3.16 Aerial robot flying autonomously in a chamber of the Laurel Caverns cave system in South-

western Pennsylvania. 43
3.17 Estimated flight path inside cave chamber . 43

4.1 Hessian singular values with and without a gauge prior . 48
4.2 Null space basis vectors of the no-gauge-prior Hessian . 49
4.3 1-σ uncertainty envelopes associated with the position and yaw states of sliding window

keyframes . 49
4.4 Auxiliary state estimator data flow . 50
4.5 Auxiliary UKF velocity estimation . 54
4.6 Information flow between primary estimator, auxiliary estimator, and odometry switcher . . 55
4.7 Finite state machine for switching between primary and auxiliary estimator 55
4.8 Attitude estimates of primary estimator, auxiliary estimator, and motion capture during takeoff 57
4.9 Impact of rest detector on estimation performance after landing 58

5.1 Simulated trajectory vs. time . 64
5.2 Simulated trajectory in 3D . 65
5.3 Reprojected features using pose interpolation and image plane feature trail interpolation . . . 66
5.4 Inverse cumulative distribution plots for projection error at each evaluation time 66
5.5 Comparison of predicted and actual feature trails . 67
5.6 Timing diagram for selecting frames to use for image plane interpolation 67

xi

xii LIST OF FIGURES

5.7 3D plots of the trajectories estimated by VIO with different camera combinations on the
motion capture dataset . 69

5.8 Position and error vs. time for multi-camera vs. single camera estimation 70
5.9 Velocity and error vs. time for multi-camera vs. single camera estimation 70
5.10 Attitude and error vs. time for multi-camera vs. single camera estimation 71
5.11 Reprojection residual values for single and double camera VIO 71
5.12 The parking garage environment contains variable lighting conditions. 72
5.13 Planar trajectory estimates for parking garage dataset . 73
5.14 Elevation estimates for parking garage trajectory . 73

6.1 Geometry associated with the simplified linear measurement model (6.15) 77
6.2 Simulation comparison of baseline and proposed feature selection strategies on high hallway

dataset . 80
6.3 Simulation comparison of baseline and proposed feature selection strategies on low hallway

dataset . 81
6.4 Simulation comparison of baseline and proposed feature selection strategies on room circle

dataset . 81
6.5 3D plots of trajectories estimated by different feature selection strategies on motion capture

dataset . 83
6.6 Vertical motion estimates, error, and percentage of feature budget allocated to downward

camera on motion capture dataset . 84
6.7 Feature allocation at t = 51.6 s on motion capture dataset 85
6.8 Feature allocation at t = 70.6 s on motion capture dataset 85
6.9 Relationships between estimation accuracy, number of features used in optimization, and

compute time . 86
6.10 Paved asphalt driveway and loading bay environment used for a multirotor data collection

flight test . 87
6.11 3D plots of the trajectories estimated by VIO with different feature selection strategies for

the pavement flight. 88
6.12 Vertical motion estimates, error, and percentage of feature budget allocated to downward

camera on pavement dataset . 88
6.13 Feature allocation at t = 4.1 s on pavement dataset . 89
6.14 Feature allocation at t = 7.6 s on pavement dataset . 90
6.15 Volleyball court used for outdoor flight test data collection on a multirotor aerial robot 91
6.16 3D plots of the trajectories estimated by VIO with different feature selection strategies for

each of the 6 flight datasets taken around the volleyball court. 91
6.17 Final position drift of the 3 feature selection strategies for each of the 6 volleyball court

trajectories . 92

7.1 Downward camera feature tracking before and after sharp drop in illumination 99
7.2 Number of tracked feature trails and estimation error vs. time 99
7.3 A comparison of visual-inertial odometry and visual-inertial-depth odometry on a dataset

where the illumination decreases significantly. 100
7.4 An aerial robot equipped with an onboard light flies around a corner in an industrial tunnel

environment. 100
7.5 Color and depth images of a constant cross section tunnel 101
7.6 2D plot of estimated and ground truth trajectories on the industrial tunnel dataset 101
7.7 Forward camera, forward depth, and downward camera images 102

LIST OF FIGURES xiii

7.8 Navigation frame horizontal velocity estimates using baseline and depth-aided auxiliary es-
timators . 103

8.1 Information flow diagram of proposed state estimation system 105

G.1 Hexrotor top-down and underside views . 141
G.2 A frontal view of the hexrotor flight platform. 141
G.3 Second generation flight platform . 142
G.4 The Vicon motion capture arena. 143
G.5 The walking ground control station is designed to be carried in front of the robot operator. . 144
G.6 Cart-mounted ground control station . 144
G.7 Diagram of wired and wireless connections between sensors, actuators, compute, and ground

station components. 145
G.8 Software diagram . 145

List of Tables

2.1 Examples of image processing front-ends . 4
2.2 Examples of motion inference back-ends . 5

3.1 EuRoC dataset root mean square absolute trajectory error in meters 37

4.1 Finite state machine state descriptions . 56
4.2 Optimization failure threshold parameters . 58

5.1 Comparison of pose interpolation and image plane feature trail interpolation 63
5.2 Drift in position and heading estimates at the end of the motion capture arena flight 72
5.3 Drift in elevation and heading estimates at the end of the parking garage flight 74

6.1 Translational absolute trajectory errors of the 3 feature selection strategies between t = 45
s and t = 80 s on the motion capture dataset . 84

6.2 Translational absolute trajectory errors of the 3 feature selection strategies on the pavement
dataset . 89

8.1 Summary of thesis results . 105

C.1 Comparison of optimization in Euclidean space and manifold 124

F.1 Evaluation of partial derivatives involving a in (F.17)-(F.27) 136

xiv

Chapter 1

Introduction

Accurate and reliable navigation using onboard sensors is fundamental to the deployment of autonomous
robots to execute tasks in real-world environments. State estimation is the most important building block
of any intelligent mobile robot’s autonomy framework because it provides information that is consumed
by other system components such as planning, control, and mapping. For example, the controller com-
pares state estimates with reference signals to compute actuator inputs, the planner uses state estimates to
compute trajectories with desirable properties, and the mapper uses state estimates to stitch together range
observations into consistent maps.

In the context of mobile robot navigation, a state estimator uses sensor observations to compute a best
guess about the robot’s current motion, including but not limited to 3D position, orientation, linear velocity,
and angular velocity. Visual, inertial, and depth sensors are commonly used in mobile robot state estima-
tion due to the complementary nature of their observations. Inertial measurement units (IMUs) have noisy,
drift-prone, but outlier-free observations that are good for short-term tracking of dynamic motions, while
cameras provide rich, high-dimensional image observations that are suitable for navigation at larger spatial
scales but also susceptible to outliers. Depth sensors provide 3D information about the presence or absence
of matter within the field of view and are less sensitive to visual texture and environmental lighting con-
ditions than cameras. Observations from these sensors are fed into a probabilistic model of environment
structure and robot motion, enabling the application of maximum likelihood approaches to estimate the
hidden parameters.

State estimation algorithms for size, weight, and power constrained robots must reconcile the competing
requirements of achieving high localization accuracy in a wide range of environments and keeping compu-
tational costs low. Localization accuracy depends on the information provided by sensor observations, the
fidelity of sensor observation models, and the availability of compute. For exteroceptive sensors, the infor-
mation that can be provided to state estimation is determined by sensor properties and the environment’s
physical characteristics. Examples of methods to increase robustness to varying environment characteristics
include using different types of exteroceptive sensors and using higher performance sensors, but these come
at the cost of higher size, weight, and power requirements. Another avenue of improving localization accu-
racy is through the use of high fidelity sensor models and probabilistic inference strategies that come at the
cost of greater computation.

Many computationally constrained systems use visual-inertial odometry (VIO) for minimal sensor con-
figurations consisting of only a single camera and IMU. These types of setups can achieve accurate motion
estimation in environments with constant lighting and non-trivial visual texture due to the richness of visual
information. However, their performance is highly sensitive to the quality of visual observations used to
bound drift caused by inertial observations. Image sequences taken by cameras operating in visually de-
graded conditions such as underground, around abandoned buildings, under foliage, and outdoors at dawn

1

2 CHAPTER 1. INTRODUCTION

or dusk have non-constant lighting, low contrast, low brightness and repetitive texture. These characteristics
are challenging for visual-inertial state estimation algorithms due to their violation of common simplify-
ing assumptions about the environment. To overcome these limitations and enable estimation in a wider
range of environmental conditions, depth sensors can be used to provide information in regions with low
visual saliency but high geometric saliency. However, strategies for incorporating depth observations must
be tailored to avoid excessive increases in required computation.

Computational tractability problems stem from the limited onboard processing power available on many
mobile robots, coupled with the high dimensionality of visual and depth observations. Kinematic models
used to incorporate inertial observations and geometric models used to incorporate exteroceptive observa-
tions are highly nonlinear, increasing the cost and complexity of probabilistic inference algorithms. To ex-
acerbate the problem, other autonomy functions such as planning and control compete with state estimation
for limited computational resources. Agile, small form factor systems such as micro aerial vehicles require
high-rate control driven by high-rate state estimation, but have the most severe size, weight, and power con-
straints of all mobile robots. Consequently, improving the computational efficiency of multi-sensor state
estimation is key to building robust autonomy frameworks for these systems.

This thesis seeks to address these challenges through the implementation and validation of an optimization-
based state estimator that fuses information from vision, inertial, and depth sensors to improve reliability
in situations that are challenging for typical minimal sensing configurations. We reduce state estimation
optimization problem size by selecting a subset of highly informative observations across multiple sen-
sors determined by a predictive model of anticipated motion, facilitating accurate odometry with a limited
computational footprint. The contributions of this thesis are summarized below and detailed in subsequent
chapters.

Monocular sliding window visual-inertial odometry: A baseline tightly-coupled optimization-based state
estimator that fuses IMU and sparse feature observations from a single camera and an auxiliary estimator
for takeoff and mid-air reinitialization. (Chapters 3, 4)

Multi-camera sliding window visual-inertial odometry: Extension of baseline state estimator to effi-
ciently process sparse feature observations from multiple asynchronous cameras with disjoint fields of view.
(Chapter 5)

Sensor resource allocation for computationally constrained state estimation: A method for selecting
informative visual features that facilitate accurate state estimation while keeping optimization problem size
small. (Chapter 6)

Depth-aided visual-inertial odometry: Methods for incorporating depth observations into sparse visual-
inertial state estimation that make the latter more robust to environments with poor lighting and/or visual
texture. (Chapter 7)

Implementation and experimental evaluation on an aerial robot: A set of flight experiments conducted
to evaluate the performance of baseline and proposed state estimation methods in indoor and outdoor en-
vironments subject to different visual texture and lighting conditions. (Appendix G, Sections 3.9, 5.4, 6.4,
7.6)

Chapter 2

Background

This chapter reviews existing research on state estimation techniques for visual, inertial, and depth sensors.
We cover not only the methods used in our proposed formulation, but also survey related works to provide
context for our design decisions. Given that our baseline state estimation framework uses visual and inertial
sensors, we cover visual-inertial odometry in Sections 2.1-2.3. Research relevant to the proposed work on
feature selection and depth-based estimation is presented in Sections 2.3.4 and 2.4.

2.1 Camera Configuration

2.1.1 Stereo

Stereo camera setups consist of two cameras with overlapping fields of view separated by a known distance
called the baseline. Assuming both cameras are calibrated, the 3D location of a real-world point observed in
both cameras can be computed via triangulation. Using epipolar geometry, the problem of finding a point in
the second camera’s image that corresponds to a point observed in the first camera’s image can be reduced
to a search along a 1D epipolar line.

Although stereo cameras can provide metric information about the scene without moving, triangulation
and motion estimation are extremely sensitive to the accuracy of the inter-camera extrinsic calibration. On
robots undergoing non-trivial motions, shocks and vibration may cause the cameras to become misaligned,
necessitating periodic re-calibration. Another drawback of stereo cameras is that large baselines are required
to accurately estimate the depth of far-away objects, which is challenging to reliably perform online. Size
constraints limit stereo cameras deployed on small mobile robots to small baselines, limiting their usefulness
for handling wide open outdoor environments.

2.1.2 Monocular

A monocular camera setup uses a single camera to estimate motion and the 3D structure of the scene. Unlike
the stereo setup, absolute scale is unobservable without extra information in the form of other sensor ob-
servations, knowledge about objects in the environment, or motion constraints. In many cases a monocular
camera is combined with an IMU to provide scale observability, creating a minimal sensor suite for esti-
mating rigid body motion [1]. The single camera and IMU setup provides superior accuracy during highly
dynamic motion, as well as smaller size and processing requirements than the stereo setup.

An extension of the monocular camera setup is one comprised of multiple cameras with non-overlapping
fields of view. Although the lack of overlap precludes the use of stereo techniques and hence depth recovery,
gaining access to visual information from different parts of the scene improves the robustness of motion
estimation to unfavorable visual conditions in any single camera.

3

4 CHAPTER 2. BACKGROUND

2.2 Image Processing
The first task of a vision-based state estimation algorithm is to perform data association between different
image observations in preparation for inferring motion. This is a non-trivial problem, given that camera
images are high dimensional measurements on the order of 105 pixel values. The part of a vision-based state
estimation algorithm that handles this task is called the front-end. Front-ends can be classified as indirect or
direct, and as dense or sparse (see Table 2.1).

Table 2.1: Examples of image processing front-ends

Sparse Dense
Indirect PTAM [2], ORB-SLAM [3],

OKVIS [4], VINS-Mono [5]
Ranft et al. [6]

Direct DSO [7], DSVIO [8] DTAM [9], LSD-SLAM [10]

2.2.1 Indirect Methods
Indirect methods infer a camera’s motion by first preprocessing images into an intermediate representa-
tion and then performing probabilistic inference with that representation. The preprocessing step typically
consists of feature detection and feature tracking. Feature detection involves the selection of distinctive lo-
cations in the current image that are expected to be easily identifiable in subsequent images, while feature
tracking seeks to find the locations of detected features in subsequent images. Feature correspondences are
used to estimate the rigid body transform between image frames by minimizing geometric error associated
with reprojecting features from one image frame to the other image frame.

The primary benefit of indirect methods is that features can provide robustness to geometric and pho-
tometric distortions that occur in low-cost cameras. Examples of these effects include vignetting, gamma
correction, and auto-exposure changes. Increasing the reliability of feature correspondences between image
frames can incur non-trivial computational cost, typically through the use of complex feature descriptors
and/or outlier rejection schemes. On computationally constrained systems that can only support simpler
feature descriptors, data association is degraded by scenes with repetitive visual texture. Another drawback
of indirect methods is that they can fail when an insufficient number of features are tracked, such as when
the camera’s field of view changes too quickly.

Features can be classified as point-based or line-based.

Point Features

Point features, also known as corners, are locations within an image where intensity changes sharply in two
directions. For example, the Shi-Tomasi corner [11] is used in the computationally efficient Kanade-Lucas-
Tomasi (KLT) tracking algorithm [12]. KLT tracking across image frames seeks to minimize photometric
error in small patches around the original image’s Shi-Tomasi corner location and potential matching feature
locations in the subsequent image. To improve feature matching reliability, patch photometric error can be
replaced with descriptors that use other criteria to uniquely identify features across different images, such
as SIFT [13], SURF [14], FAST [15], and BRISK [16].

Line Features

Line features, also known as edges, are regions with sharp intensity gradients in a single direction. They are
more robust to lighting changes than point features but require more complicated detection and matching
routines [17]. Line features are more robust to motion blur but provide less accuracy than point features in
nominal tracking scenarios [18]. [19, 20] use line features in addition to point features, while [21] uses lines
as sources of high-value point features.

2.3. PROBABILISTIC INFERENCE 5

2.2.2 Direct Methods
Direct methods use raw pixel intensity values as measurements in a probabilistic model for inferring a
camera’s rigid body transformation between images. While probabilistic inference for indirect methods
operates on geometric errors, for direct methods it operates on photometric errors.

The main advantage of direct methods is that they do not require individual points to be recognizable,
which provides robustness in low texture scenes where very few features can be detected. Another benefit is
that direct methods can more fully exploit camera sensor model knowledge than indirect methods by virtue
of incorporating more aspects of the image formulation process in probabilistic inference.

Standard direct methods rely on the photo-consistency assumption, which asserts that all parts of the
scene have the same intensity value across a pair of frames. While serving as a convenient justification for
using photometric error, this assumption is often violated in real-world conditions due to changes in camera
exposure time, gain, view angle, and ambient lighting. To address this modeling gap, camera-controlled
effects such as vignetting and exposure time variation can be accounted for through calibration [22]. How-
ever, capturing the effects of optical properties of surfaces in the environment in a photometric error model
is a non-trivial task. One step towards a more realistic model is to replace the photo-consistency assumption
with the irradiance consistency assumption [7]. This approach can be extended by modeling irradiance,
illumination gain and illumination bias as random variables to be jointly estimated alongside camera motion
and scene structure [23].

2.2.3 Sparse Methods
Sparse methods use only a selected subset of pixels within an image for motion estimation. The primary ad-
vantage of sparse methods over dense methods is the reduction in computation required to perform inference
over image observations. For example, extracting 100 features from a 640×480 image reduces observation
dimensionality by three orders of magnitude.

2.2.4 Dense Methods
Dense methods use all pixels within an image for motion estimation. While sparse methods assume parts
of the scene are conditionally independent given camera poses and intrinsic parameters, dense methods can
exploit geometry priors for increased local accuracy. However, the introduction of correlations between
geometry parameters densifies the bundle adjustment Hessian, precluding efficient solutions via the Schur
complement. Additionally, direct dense methods have a small basin of attraction and are not robust to large
frame-to-frame motions [24].

2.3 Probabilistic Inference
After obtaining either direct pixel values or keypoints, a vision-based state estimator performs probabilistic
inference to estimate the motion that is the most consistent with available observations. This component
of the estimator is called the back-end. Back-ends can be classified as loosely-coupled or tightly-coupled
depending when visual observations are fused with inertial observations, and as filter-based or optimization-
based depending on the method of data fusion. Table 2.2 provides examples of back-ends used in recent
works.

Table 2.2: Examples of motion inference back-ends

Filtering
EKF OC-EKF [25], MSF [26], ROVIO [27]
UKF OC-UKF [28], Semi-Dense VIO [29]

MSCKF MSCKF [30], MSCKF 2.0 [25], Robocentric VIO [31]

Optimization Fixed lag OC-SWF [32], OKVIS [4], VINS-Mono [5]
Incremental iSAM [33], iSAM2 [34]

6 CHAPTER 2. BACKGROUND

2.3.1 Loosely-Coupled vs. Tightly-Coupled
Loosely-coupled methods process visual measurements into pose observations before fusing them with iner-
tial observations. They sacrifice accuracy for lower computational cost and greater ease of implementation.
On the other hand, tightly-coupled formulations directly use visual measurements (either features or pixel
intensity values) in motion estimation. Because tightly-coupled methods account for cross-correlations be-
tween visual and inertial sensor model parameters (e.g. feature depth, IMU biases, etc.), they can achieve
greater accuracy than loosely-coupled methods. However, tightly-coupled methods are more computation-
ally expensive and have higher complexity than loosely-coupled methods.

2.3.2 Filtering
Filtering imposes a Markov assumption on the probabilistic graphical model of visual and inertial sensor
observations. The current hidden state, consisting of quantities such as pose, twist, IMU biases, and feature
locations, is conditionally independent of all past states and observations given the immediately previous
state. Filtering consists of a prediction step and a correction step. In the context of visual-inertial odometry
systems, the prediction step uses IMU observations and the correction step uses visual observations. The
Markov assumption enables computationally efficient inference but comes at the cost of lower accuracy due
to its inability to model dependencies across longer time intervals.

Extended Kalman Filter

The Extended Kalman Filter (EKF) models the state as a Gaussian distribution and employs first-order
linearizations for its prediction and correction models. While particle filters are more suited to handling non-
Gaussian state distributions and transition models, their high computational overhead limits them to low-
dimensional applications [35]. The main drawbacks of the EKF are its limited ability to handle nonlinearities
as well as the implementation difficulty of computing the Jacobians of prediction and correction models.

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) uses a weighted sum of sigma points to approximate the effect of pass-
ing Gaussian distributions through nonlinear functions [36]. For an n-dimensional state vector, 2n+1 sigma
points are chosen symmetrically about the mean and individually passed through the nonlinear function be-
fore being summed to compute the final mean and covariance. The UKF performs a statistical linearization
of nonlinear process and correction model functions, as opposed to the EKF’s analytical linearization. The
unscented transform used by the UKF is accurate to third order for Gaussian inputs and second order for
non-Gaussian inputs [37], giving it superior performance compared with the EKF. Another advantage of the
UKF is that jacobian computation is not required.

Multi-State Constraint Kalman Filter

The Multi-State Constraint Kalman Filter’s (MSCKF) state vector consists of the states at the times corre-
sponding to a fixed number of the most recent image observations. While the process update is driven by
IMU observations, the correction update applies geometric constraints between recent poses based on ob-
servations of all feature trails that have disappeared from view in the current image. Unlike standard EKF-
SLAM approaches, the MSCKF does not include features in its state vector and thereby achieves greater
computational efficiency [30]. The MSCKF’s consistency and accuracy can be improved by computing ja-
cobian matrices from the first estimates of each state and estimating IMU-to-camera extrinsic parameters
online [38]. Although the MSCKF formulation is computationally cheaper than equivalent optimization-
based approaches, it has lower accuracy and is harder to tune [39].

2.3.3 Optimization
Optimization-based approaches estimate motion by solving a minimization problem that involves visual
and inertial observations. Because sensor measurement models are highly nonlinear, iterative minimization

2.4. DEPTH-BASED METHODS 7

techniques are used. Compared with filtering techniques, optimization-based techniques achieve higher
accuracy at the cost of more computation. Optimization-based techniques can be classified as full batch
smoothing, fixed lag smoothing, and incremental smoothing [40].

Full batch smoothing uses all visual and inertial observations to estimate the entire history of motion
states. Although this results in the highest accuracy, problem size growth over time makes it unsuitable
for online use on computationally constrained systems. Fixed lag smoothing estimates motion for a fixed
number of states in a sliding window that extends a limited interval of time into the past. Computational
complexity is kept constant by marginalizing old states as new states are added. Although marginalization
can cause accuracy losses due to premature fixation of linearization points, fixed lag smoothing is a widely
used compromise between the accuracy of full batch smoothing and the low cost of filtering-based methods.
Incremental smoothing techniques solve for the entire history of states but bound growth in computational
complexity by only updating variables affected by new observations. However, the need to store the entire
history of states causes unbounded growth in memory usage. Additionally, as the factor graph connecting
past states grows with time, new updates will tend to impact larger parts of the graph and drive up the cost
of incremental updates.

Commonly used frameworks for optimization-based state estimation include iSAM2 [34], g2o [41],
Ceres [42], and SLAM++ [43].

2.3.4 Feature Selection
When using sparse indirect methods on computationally constrained systems, the number of features that
can be tracked and used for real-time motion inference is limited by onboard processing power. The fact
that not all features are equally beneficial for improving estimation accuracy motivates the development of
strategies to select the features that are most useful for reducing uncertainty. For example, far away features
are useful for estimating rotation, while nearby features are useful for estimating depth [3, 44]. Despite this,
many traditional sparse indirect methods select features to be uniformly distributed across the field of view
and have a bias towards more distinctive features [45].

[46] selected features by computing an observability score for each feature and running a greedy selec-
tion algorithm. [47] simplified the feature selection problem for two cameras with disjoint fields of view into
a problem of allocating a distribution of features between the two cameras. Their selection strategy sought
to maximize expected information gain from the features predicted to be visible in each camera. Although
their simplifications yielded a computationally tractable quartic equation zero-finding problem, their ad-hoc
assumptions on feature distribution and the impact of velocity on information gain limit the method’s gen-
eral applicability. [48] incorporated the effect of predicted sensor motion on expected information gain and
proposed a greedy feature selection algorithm. Their information gain model made less restrictive assump-
tions about the distribution of features in the environment and accounted for stochastic loss of feature trail
tracking as well as IMU noise.

2.4 Depth-based Methods
Depth sensors provide 3D information about the environment in the form of range observations to non-
occluded surfaces within their fields of view. Depth observations can aid vision-based state estimation by
eliminating scale ambiguity. When vision-based techniques fail due to insufficient illumination or visual
texture, depth-based techniques can leverage geometric information in the environment to estimate motion.
However, depth-based techniques perform poorly in regions with few distinctive geometric features, such as
long corridors. Additionally, depth sensors may not provide range observations for all parts of their field of
view due to range limits, unfavorable surface reflectance properties, and direct sunlight. Due to these draw-
backs, depth sensors are most commonly used alongside other sensors with complementary characteristics
in state estimators.

State estimation techniques that utilize both depth and vision need to compensate for spatial and tem-

8 CHAPTER 2. BACKGROUND

poral misalignment of image and range observations. For many consumer-grade RGB-D sensors, this task
is performed within the sensor itself. In the case of a separate camera and depth sensors without hardware
integration, extrinsic and temporal calibration are required to achieve spatial and temporal alignment. Al-
ternatively, hardware triggering can be set up to ensure temporal alignment between the image and depth
observations.

Techniques for incorporating depth observations in state estimation can be divided into sparse methods
and dense methods.

2.4.1 Sparse Methods
The primary advantage of using sparse depth information is that it incurs lower computational cost than
using all the depth information within the scene. One way of extracting sparse data from dense range data
is to extract 3D features [49, 50]. However, 3D feature extraction is very computationally expensive.

Due to the ubiquity of RGB-D sensors with hardware-level alignment for RGB and depth images, a
computationally efficient way to extract sparse depth information is to use only the depth values associated
with features tracked in the RGB image. Given registered RGB (or monochrome) and depth images, sparse
vision-based state estimation algorithms can trivially obtain the depth for each visual feature by reading off
the pixel value in the corresponding depth image. Depth information fixes the scale of the scene, which
makes the motion inference problem easier. This method is used by [51] to obtain two sets of 3D features
in successive RGB-D frames, from which relative pose is estimated via minimizing reprojection error. [52]
proposes a similar technique that replaces optimization with the Kabsch algorithm [53]. While both [51]
and [52] only use features that have associated depth values, [54] also uses features without depth values for
greater robustness to scenes with indistinctive geoemtry. [55] uses depth information to project points and
lines to 3D space in a visual-inertial odometry framework designed for indoor and urban environments.

2.4.2 Dense Methods
By utilizing all valid range values produced by a depth sensor, dense methods can achieve highly accurate
relative pose estimation but incur significant computational cost. Iterative Closest Point (ICP) [56] is an
iterative algorithm that aligns point clouds by minimizing distances between corresponding points. Point-
to-plane ICP [57] minimizes the distance between points and their corresponding tangent planes in the
other point cloud to achieve improved robustness and accuracy. Generalized ICP [58] models point clouds
as Gaussian distributions and uses maximum likelihood estimation for alignment. Although ICP-based
algorithms are sensitive to initial conditions, they can be used with lower density lidar depth data. To
improve convergence, [59] uses visual odometry as the initial guess for ICP.

An alternate depth-only dense method is KinectFusion [60], which represents occupied regions of the
environment as a truncated signed distance field and estimates motion by registering incoming point clouds
against the model. While KinectFusion only uses depth observations, [61] estimates motion by minimizing a
combination of photometric and depth error between pairs of RGB-D frames. [62] also minimizes a similar
cost function, but switches to a sparse method [51] when the environment geometry becomes degenerate.
[24] models the photometric error with a Student’s t-distribution instead of a Gaussian distribution to im-
prove robustness to outliers. [63] uses an inverse depth parametrization to improve the modeling of range
error. To improve robustness to lighting changes, [64] jointly estimates frame-to-frame relative pose and the
parameters of an affine illumination model. Rather than using both RGB and depth data simultaneously, [65]
estimates motion from downsampled depth images using the range change constraint equation and switches
to using RGB images in environments with ill-conditioned geometry.

Chapter 3

Sliding Window Visual-Inertial Odometry

This chapter describes a tightly-coupled optimization-based fixed-lag smoother that utilizes IMU and image
observations to estimate robot motion (Fig. 3.1). The system’s front-end preprocesses IMU and image
observations into features (Sect. 3.1) and relative motion constraints (Sect. 3.2), while the back-end performs
inference on robot motion, IMU biases, and feature locations via maximum a posteriori (MAP) estimation
on a factor graph model of preprocessed observations (Sect. 3.4, 3.5, 3.6). An initialization procedure
(Sect. 3.7) that aligns IMU-derived and camera-derived motions is used to provide an accurate initial guess
for the highly nonlinear optimization solved by the back-end. The state estimation system is evaluated in
postprocessing on a publicly available dataset (Sect. 3.8) and in real time on hardware flight experiments
(Sect. 3.9).

Feature
Detection and

Tracking
IMU

Preintegration

Update Sliding
Window Factor

Graph

Nonlinear
Optimization

MarginalizationStructure from
Motion

Visual-inertial
Alignment

IMU-rate
Upsampling

IMU Camera

Front-end
Preprocessing

Back-end
InferenceInitialization

Sensors

Current state
estimate

Figure 3.1: Sliding window visual-inertial odometry information flow diagram

3.1 Feature Detection and Tracking
Given a stream of grayscale images from a camera, the vision front-end detects features and tracks them
over successive frames. We use the term frame both to refer to a camera image observation as well as the

9

10 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

set of feature observations extracted from that image.

3.1.1 Feature Detection
The feature detector finds new Shi-Tomasi corners [11] such that the total number of already tracked and
new corner features meets a user-defined threshold. New corners are added in order of decreasing feature
quality scores, which are indicative of visual distinctiveness, until the threshold is met. A uniform feature
distribution over each image is achieved by enforcing a minimum separation distance between neighboring
features.

3.1.2 Feature Tracking
Given a set of features in a previous image frame, the pyramidal Lucas-Kanade method [66] is used to esti-
mate optical flow and find their correspondences in the current image frame. Outlier feature correspondences
are discarded using a RANSAC scheme with a fundamental matrix model1.

Although feature tracking occurs at camera frame rate (∼50 Hz), only a subset of frames are desig-
nated as keyframes and used in visual-inertial bundle adjustment. Keyframes are selected from incoming
image frames in a manner that ensures that keyframe frequency matches optimization frequency (∼10 Hz)
as closely as possible (Fig. 3.2). Keyframes that occur in motionless time intervals are managed by the
marginalization strategy described in Sect. 3.6.3 to prevent estimation drift.

0.02 s

0.1 s

time

keyframe rate = 10 Hz
camera frame rate = 50 Hz

Figure 3.2: An incoming camera frame is selected to be a keyframe if the elapsed time since the previous keyframe is
close to the desired time interval between keyframes.

3.1.3 Outlier Rejection
Even after using fundamental matrix RANSAC, feature tracking sometimes produces incorrect matches
due to factors such as dynamic objects, shadows, highly repetitive texture, and rapid camera motion. To
further improve tracking quality, we use relative rotation priors from the integration of high frequency IMU
gyro observations over short time intervals to identify and reject wrongly matched features between two
successive camera frames in a 2-point RANSAC scheme [67].

The 2-point RANSAC algorithm operates on a set of potential feature correspondences between frames
k and k + 1. At each iteration, two features are randomly selected and used to compute the up-to-scale
translation tk+1,k between the camera frames. Model quality is determined by the reprojection error of all
features in frames k and k + 1, where the 3D feature locations are triangulated using tk+1,k.

Given two features pa and pb whose observations appear in successive image frames k and k + 1, let
ua,k,ua,k+1,ub,k,ub,k+1 be the unit direction vectors associated with their observations in each camera
frame (Figure 3.3). The rotation Rk,k+1 takes vectors from the reference frame of the camera at time k + 1
to the reference frame of the camera at time k.

Rk,k+1 = RT
bcRω(tk, tk+1)Rbc (3.1)

1 If the camera’s intrinsic parameters are known, the essential matrix model can be used in RANSAC to reduce the degrees of
freedom from 7 to 5.

3.1. FEATURE DETECTION AND TRACKING 11

��

��

��,� ��,�+1

��,�+1��,�

�� ��

��+1,�camera
frame k camera

frame k+1

Figure 3.3: Geometry for determining up-to-scale translation between camera frames k and k + 1

Rbc is the extrinsic rotation matrix that takes vectors from the camera frame to the body frame (assumed
without loss of generality to be coincident with the IMU frame). Rω(tk, tk+1) is the rotation that takes
vectors from the IMU frame at time tk+1 to the IMU frame at tk. Let {ti,ωi}ni=1, tk = t1, tk+1 = tn be a
set of timestamped IMU gyro observations taken during this time interval. The quaternion representation of
Rω(tk, tk+1) is approximated as

qk,k+1 ≈
[

1
1
2(t2 − t1)ω2

]
⊗ · · · ⊗

[
1

1
2(tn − tn−1)ωn

]
(3.2)

using Euler integration.
The normal vectors of the epipolar planes associated with the features are given by

na = ua,k ×Rk,k+1ua,k+1 (3.3)

nb = ub,k ×Rk,k+1ub,k+1 (3.4)

The intersection of the pair of epipolar planes yields the up-to-scale translation between camera frames.

tk+1,k = na × nb (3.5)

Figure 3.4 depicts the application of 2-point RANSAC to reject outliers caused by moving shadows on
downward images taken from an aerial robot during takeoff.

Figure 3.4: 2 point RANSAC can detect outlier feature correspondences caused by moving shadows. On the left image,
magenta dots represent features from the previous image frame, yellow dots represent their tracked locations in the
current image frame, and green lines represent correspondences. On the right image, 2 point RANSAC has been used
to classify the set of all correspondences into a set of inliers (cyan) and outliers (red).

12 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

3.1.4 Implementation Details
• Contrast limited adaptive histogram equalization [68] is applied to grayscale images to improve their

contrast prior to being used in feature detection or tracking.
• Optical flow pyramids are pre-built to speed up Lucas-Kanade tracking.
• A mask is used to prevent features from being detected or tracked in regions of the image that are

occluded by parts of the same rigid body the camera is mounted on (e.g. landing gear or propellers in
the case of an aerial robot).

• When two tracked features are closer than a user-defined minimum separation distance, the one that
has been tracked for more frames is retained while the one that has been tracked for fewer frames is
discarded.

3.2 IMU Preintegration
IMU preintegration is a method of summarizing multiple linear acceleration and angular velocity observa-
tions into relative motion constraints between robot states at different points in time. If IMU observations
are directly incorporated into a factor graph, each new observation adds a new node and edge. Since IMU
observations are typically available at frequencies of greater than 100 Hz, such a strategy would result in a
large factor graph and a costly optimization.

IMU preintegration accumulates successive IMU observations into a single pseudo-observation, reduc-
ing the number of nodes and edges required to represent observations within the same temporal interval.
Instead of adding a new node whenever a new IMU observation arrives, IMU preintegration makes it possi-
ble for a new node to be added only when a new keyframe arrives from the feature tracker.

IMU preintegration was first introduced in [69], which used Euler angles to parameterize relative rota-
tions. [70] reformulated IMU preintegration on the SO(3) manifold to remove singularities. Building on
this foundation, rotation was parametrized by quaternions instead of rotation matrices in [5]. Discrete-time
integration of IMU measurements was replaced with closed-form continuous time integration in [71], but
this change only makes a performance impact for highly dynamic motions.

3.2.1 IMU Measurement Model
Let {w} be the world frame and {b} be the body frame. We assume that the IMU is located at the body
frame origin and has the same orientation as the body frame2. We use a simplified version of the body frame
IMU measurement model described in [72].

âb = diag(sa) MaR
T
wb (aw − gw) + ba + na (3.6)

ω̂b = diag(sω) Mωωb + bω + nω (3.7)

The diag(·) function turns a 3 × 1 vector into a 3 × 3 diagonal matrix. The measured body frame linear
acceleration (âb) captures the sum of true world frame linear acceleration (aw) and negative gravity (-gw)
rotated into the body frame. sa ∈ R3 is a vector of accelerometer axes scale factors, while Ma ∈ R3×3

is a lower triangular matrix that represents accelerometer axis misalignment and coupling. The measured
body frame linear acceleration is corrupted by additive bias (ba) and noise (na). The measured body frame
angular velocity (ω̂b) is the sum of true body angular velocity (ωb), bias (bω), and noise (na). sω ∈ R3

is a vector of gyroscope axes scale factors, while Mω ∈ R3×3 is a matrix that represents gyroscope axis
misalignment and coupling. Note that Ma is lower triangular because we assume that the accelerometer’s
x-axis is aligned with the IMU’s input reference axes. On the other hand, Mω is a full matrix in order to
capture the full misalignment between the gyroscopes and accelerometers.

2If this is not the case, Sect. 3.2.4 describes how to compensate for the offset

3.2. IMU PREINTEGRATION 13

Unlike [72], we do not model separate displacements between each accelerometer and gyroscope axes
and the body frame. We do not model g-sensitivity, which captures the impact of accelerometer observations
on gyroscope observations, because its effects are small relative to axis scaling and misalignment.

To minimize the number of parameters in the IMU model, we define combined scale and misalignment
matrices

La = (diag(sa) Ma)
−1 (3.8)

Lω = (diag(sω) Mω)−1 (3.9)

where La is lower diagonal and Lω is a full matrix.

L =

La,xx 0 0
La,yx La,yy 0
La,zx La,zy La,zz

 , Lω =

Lω,xx Lω,xy Lω,xz
Lω,yx Lω,yy Lω,yz
Lω,zx Lω,yz Lω,zz

 (3.10)

Note that IMUs without scale or misalignment errors can be modeled with La = Lω = I. Substitute
(3.8)-(3.9) into (3.6)-(3.7) and isolate world frame coordinate acceleration and body frame angular velocity.

aw = RwbLa (âb − ba − na) + gw (3.11)

ωb = Lω (ω̂b − bω − nω) (3.12)

Accelerometer and gyroscope additive noise terms are modeled as isotropic Gaussian white noise

na ∼ N
(
0, σ2

naI
)

(3.13)

nω ∼ N
(
0, σ2

nωI
)

(3.14)

Linear acceleration and angular velocity biases are modeled as random walks whose derivatives are isotropic
Gaussian white noise

nba ∼ N
(
0, σ2

baI
)

(3.15)

nbω ∼ N
(
0, σ2

bωI
)

(3.16)

ḃa = nba (3.17)

ḃω = nbω (3.18)

The additive noise intensities σna and σnω can be found empirically by taking the standard deviation of de-
trended in-flight IMU observations. The random walk noise intensities σba and σbω can be found empirically
by performing Allan variance analysis on in-flight IMU observations.

3.2.2 Motion Integration

Global Frame

World frame linear acceleration and body frame angular velocity are related to world frame position, veloc-
ity, and attitude by the following kinematic model:

ṗw = vw (3.19)

v̇w = aw (3.20)

q̇wb =
1

2
qwb ⊗

[
0
ωb

]
(3.21)

14 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

The quaternion time derivative (3.21) is derived from first principles in equations 195-199 of [73]. Euler
integration of (3.19)-(3.21) over a time interval ∆t yields

pw(t+ ∆t) = pw(t) + vw(t)∆t+
1

2
aw(t)∆t2 (3.22)

vw(t+ ∆t) = vw(t) + aw(t)∆t (3.23)

qwb(t+ ∆t) = qwb(t)⊗ Exp (ωb∆t) (3.24)

Note that (3.24) uses zeroth order forward quaternion integration, which is derived from (3.21) in equations
210-214 of [73].

The equations used to update position, velocity, and attitude with IMU observations are obtained by
substituting (3.11) -(3.12) into (3.22)-(3.24).

pw(t+ ∆t) = pw(t) + vw(t)∆t+
1

2
[R(qwb(t))La (âb(t)− ba(t)− na(t)) + gw] ∆t2 (3.25)

vw(t+ ∆t) = vw(t) + [R(qwb(t))La (âb(t)− ba(t)− na(t)) + gw] ∆t (3.26)

qwb(t+ ∆t) = qwb(t)⊗ Exp [Lω (ω̂b(t)− bω(t)− nω(t)) ∆t] (3.27)

Suppose we have a set of IMU observations {ai,ωi}ni=0 corresponding to times t0, t1, ..., tn. We apply
(3.25)-(3.27) n times to an initial motion state (p0,v0,q0) to find the final motion state.

pn = p0 +
1

2
gw∆T 2 +

n−1∑
i=0

[
vi∆ti +

1

2
R(qi)La (âi − ba,i − na,i) ∆t2i

]
(3.28)

vn = v0 + gw∆T +

n−1∑
i=0

R(qi)La (âi − ba,i − na,i) ∆ti (3.29)

qn = q0 ⊗ Exp [Lω (ω̂0 − bω,0 − nω,0) ∆t0]⊗ . . .⊗ Exp [Lω (ω̂n−1 − bω,n−1 − nω,n−1) ∆tn−1]
(3.30)

Note that in the above motion state propagation equations we drop the frame subscripts because they are
clear from context and replace them with time index subscripts, where (·)i ≡ (·)(ti). Also, we define
∆ti ≡ ti+1 − ti and ∆T ≡ tn − t0.

Local Frame

Although equations (3.28)-(3.30) can be used in optimization, they must be reevaluated whenever the initial
motion state changes. To avoid this computational cost, define motion deltas by rearranging (3.28)-(3.30) to
separate motion states and gravity from quantities that only depend on IMU observations, biases, noise, and
time increments.

γn ≡ q−1
0 ⊗ qn = Exp [Lω (ω̂0 − bω,0 − nω,0) ∆t0]⊗ . . .⊗ Exp [Lω (ω̂n−1 − bω,n−1 − nω,n−1) ∆tn−1]

(3.31)

βn ≡ R(q0)T (vn − v0 − gw∆T) =
n−1∑
i=0

R(γi)La (âi − ba,i − na,i) ∆ti (3.32)

αn ≡ R(q0)T
(

pn − p0 − v0∆T − 1

2
gw∆T 2

)
=

n∑
i=0

[
βi∆ti +

1

2
R(γi)La (âi − ba,i − na,i) ∆t2i

]
(3.33)

3.2. IMU PREINTEGRATION 15

The motion deltas can be updated recursively with IMU observations starting from α0 = β0 = 0 and
γ0 = [1 0 0 0]T.

αi+1 = αi + βi∆ti +
1

2
R(γi)La (âi − ba,i − na,i) ∆t2i (3.34)

βi+1 = βi + R(γi)La (âi − ba,i − na,i) ∆ti (3.35)

γi+1 = γi ⊗ Exp [Lω (ω̂i − bω,i − nω,i) ∆ti] (3.36)

Although the motion deltas no longer depend on motion states, they still depend on the IMU biases. To
avoid repropagating (3.34)-(3.36) when IMU bias estimates change during optimization, we approximate
the effect of IMU bias changes on the motion deltas to first order. First order approximation requires the
Jacobian of motion deltas with respect to IMU bias perturbations, which can be derived using a motion delta
error dynamics model.

3.2.3 Motion Delta Error Dynamics Model
The motion delta error dynamics model is an integral part of an error state Kalman filter (ESKF). The ESKF
state is called the true state and can be divided into nominal and error states. The nominal state incorporates
raw observations, while the error state accounts for perturbations and noise. The nominal state is a large
signal that evolves in a nonlinear manner, while the error state is a small signal that evolves as a time-varying
linear dynamic system suitable for Kalman filtering.

In the context of IMU preintegration, the ESKF’s true state vector is x = [αT βT γT bT
a bT

ω]T ∈ R16

and its nominal state vector is x̄ = [ᾱT β̄
T
γ̄T b̄T

a b̄T
ω]T ∈ R16. Each parameter block in x is expressed as

the composition of a nominal state (̄·) and a perturbation δ(·).

α = ᾱ+ δα (3.37)

β = β̄ + δβ (3.38)

γ = γ̄ ⊗ δγ (3.39)

ba = b̄a + δba (3.40)

bω = b̄ω + δbω (3.41)

Define the rotational perturbation δθ ∈ R3 via the capitalized quaternion logarithmic map (A.29) and
use it in place of the quaternion δγ to ensure that the error state has a minimal parameterization.

δθ = Log δγ (3.42)

The IMU preintegration ESKF’s error state vector is δx = [δαT δβT δθT δbT
a δb

T
ω]T ∈ R15.

True State Continuous Time Dynamics

The continuous time dynamics of the motion deltas are given by the continuous time differential forms
of (3.34)-(3.36), while the IMU bias dynamics are restated from (3.17)-(3.18).

α̇ = β (3.43)

β̇ = R(γ)La (â− ba − na) (3.44)

γ̇ =
1

2
γ ⊗

[
0

Lω (ω̂ − bω − nω)

]
(3.45)

ḃa = nba (3.46)

ḃω = nbω (3.47)

16 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

Nominal State Continuous Time Dynamics

The nominal state dynamics are obtained by substituting (3.37)-(3.42) into (3.43)-(3.47) and setting all error
state and noise terms to zero.

˙̄α = β̄ (3.48)
˙̄β = R(γ̄)La

(
â− b̄a

)
(3.49)

˙̄γ =
1

2
γ̄ ⊗

[
0

Lω
(
ω̂ − b̄ω

)] (3.50)

˙̄ba = 0 (3.51)
˙̄bω = 0 (3.52)

Nominal State Discrete Time Dynamics

The nominal motion delta states can be updated recursively with IMU observations starting from ᾱ0 =
β̄0 = 0 and γ̄0 = [1 0 0 0]T.

ᾱi+1 = ᾱi + β̄i∆ti +
1

2
R(γ̄i)La

(
âi − b̄a,i

)
∆t2i (3.53)

β̄i+1 = β̄i + R(γ̄i)La
(
âi − b̄a,i

)
∆ti (3.54)

γ̄i+1 = γ̄i ⊗ Exp
[
Lω
(
ω̂i − b̄ω,i

)
∆ti
]

(3.55)

Error State Continuous Time Dynamics

Substitute (3.37)-(3.42) into (3.43)-(3.47), subtract the nominal dynamics equations (3.48)-(3.52), linearize
rotations, and ignore second-order terms to obtain

δẋ = Fcδx + Gcn (3.56)

Fc =


0 I 0 0 0
0 0 −R(γ̄)

[
La
(
â− b̄a

)]
× −R(γ̄)La 0

0 0 −
[
Lω
(
ω̂ − b̄ω

)]
× 0 −Lω

0 0 0 0 0
0 0 0 0 0

 (3.57)

Gc =


0 0 0 0

−R(γ̄)La 0 0 0
0 −Lω 0 0
0 0 I 0
0 0 0 I

 (3.58)

where n =
[
nT
a nT

ω nT
ba nT

bω

]T ∈ R12 is a concatenated vector of noise terms defined in (3.13)-(3.16).
See Appendix B.1 for a full derivation of the continuous time error state dynamics.

Error State Discrete Time Dynamics

Obtain an approximation of the discrete time error dynamics by applying Euler integration3 to the continuous
time error dynamics (3.56)-(3.58).

δxk+1 = Fkδxk + Gknk (3.59)

3See Appendix B.2.2 for an approximation of the discrete time error dynamics using midpoint intergration.

3.2. IMU PREINTEGRATION 17

Fk = I + ∆tkFc(tk) (3.60)

Gk = ∆tkGc(tk) (3.61)

Rewrite (3.59) by expressing {δxi}ki=1 in terms of δx0 to identify the Jacobian (Jk) of the motion delta error
states with respect to their original values.

δxk+1 =

(
k∏
i=0

Fi

)
δx0 + . . . (3.62)

Jk =
k∏
i=0

Fi (3.63)

The discrete time covariance is updated recursively:

Pk+1 = FkPkF
T
k + GkQGT

k (3.64)

Q = blkdiag{σ2
naI, σ

2
nωI, σ2

baI, σ
2
bωI} (3.65)

P0 = 0 (3.66)

IMU Bias Perturbation Model

The first order approximation of the perturbed delta motion states at the end of the preintegration interval
with respect to perturbations in IMU bias states at the beginning of the preintegration interval can be obtained
by substituting (3.63) into (3.62) and extracting relevant sub-blocks of Jn.

δxn = Jnδx0 + . . . (3.67)
δαn
δβn
δθn
δba,n
δbω,n

 =


Jαα Jαβ Jαθ Jαba Jαbω
Jβα Jββ Jβθ Jβba Jβbω
Jθα Jθβ Jθθ Jθba Jθbω
Jbaα Jbaβ Jbaθ Jbaba Jbabω
Jbωα Jbωβ Jbωθ Jbωba Jbωbω



δα0

δβ0

δθ0

δba,0
δbω,0

+ . . . (3.68)

δαn ≈ Jαbaδba,0 + Jαbωδbw,0 + . . . (3.69)

δβn ≈ Jβbaδba,0 + Jβbωδbw,0 + . . . (3.70)

δθn ≈ Jθbωδbω,0 + . . . (3.71)

Note that Jθba = 0 because the linear acceleration bias does not affect rotation. Let the IMU bias per-
turbations represent the difference between the current IMU bias estimate at the start of the preintegration
time interval (ba,0,bω,0) and the initial IMU bias estimate at the start of the preintegration time interval
(b̄a,0, b̄ω,0) used to compute the nominal motion delta states ᾱn, β̄n, and γ̄n.

δba,0 = ba,0 − b̄a,0 (3.72)

δbω,0 = bω,0 − b̄ω,0 (3.73)

Let the final motion delta perturbations represent the difference between the motion deltas evaluated at the
current IMU bias estimate and the motion deltas evaluated at the initial IMU bias estimate.

δαn = α′n (ba,0,bω,0)− ᾱn
(
b̄a,0, b̄ω,0

)
(3.74)

δβn = β′n (ba,0,bω,0)− β̄n
(
b̄a,0, b̄ω,0

)
(3.75)

δθn = Log
[
γ̄n
(
b̄ω,0

)−1 ⊗ γ ′n (bω,0)
]

(3.76)

18 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

The first order approximation of changes in motion deltas due to changes in initial IMU bias estimates is
obtained by substituting (3.72)-(3.76) into (3.69)-(3.71).

α′n (ba,0,bω,0) ≈ ᾱn
(
b̄a,0, b̄ω,0

)
+ Jαba

(
ba,0 − b̄a,0

)
+ Jαbω

(
bω,0 − b̄ω,0

)
(3.77)

β′n (ba,0,bω,0) ≈ β̄n
(
b̄a,0, b̄ω,0

)
+ Jβba

(
ba,0 − b̄a,0

)
+ Jβbω

(
bω,0 − b̄ω,0

)
(3.78)

γ ′n (bω,0) ≈ γ̄n
(
b̄ω,0

)
⊗ Exp

[
Jθbω

(
bω,0 − b̄ω,0

)]
(3.79)

3.2.4 Implementation Details

Body to IMU Frame Offset Compensation

An IMU observation consists of linear acceleration (âi) and angular velocity (ω̂i) measured in the IMU
frame {i}. If the IMU frame is located at a known rigid offset from the body frame {b}, we use the
observation that would be measured by a virtual IMU coincident with the body frame for state estimation.
Let pbi be the IMU’s location in the body frame and Rbi be the IMU frame’s orientation with respect to the
body frame4. According to rigid body kinematics, the virtual IMU body frame linear acceleration is

âb = Rbi

[
âi + ˙̂ωi × pib + ω̂i × (ω̂i × pib)

]
(3.80)

where pib = −RT
bipbi. Note that IMU frame angular acceleration (˙̂ωi) required by (3.80) can be obtained

by numerical differentiation of IMU frame angular velocity, but care must be taken to mitigate noise ampli-
fication. The virtual IMU body frame angular velocity is computed as

ω̂b = Rbiω̂i (3.81)

Although virtual body frame IMU observations (3.80) and (3.81) can be substituted for true body frame IMU
observations, linear acceleration additive noise and bias rate noise intensities should be increased to capture
the noise introduced by numerical differentiation. If IMU noise is not isotropic, both linear acceleration and
angular velocity noise covariance matrices should be transformed using Rbi.

Approximations

We assume that the time interval ∆t between successive IMU observations is small, which causes delta
rotations ωb∆t to be small. Also, we assume that rotation perturbations in optimization are always small
because the optimization will always start with a good initial guess from either initialization or the pre-
vious optimization. To reduce computational cost, we apply the approximations (A.28) and (A.30) to all
capitalized quaternion exponential and logarithmic maps in preintegration-related equations.

Midpoint Integration

Although (3.34)-(3.36) and (3.59) are discretized using Euler integration, the implementation uses midpoint
integration (see Appendix B.2) to improve accuracy without significantly increasing computational cost.

3.3 IMU Factor
A set of consecutive IMU observations over a time interval between a pair of images establishes a motion
constraint between the IMU poses at those times. The IMU factor encodes this information as a cost term in
a visual-inertial optimization problem’s factor graph via IMU preintegration techniques.

4These quantities can be obtained using a calibration that aligns motion capture and IMU-derived accelerations (see Ap-
pendix D.1)

3.3. IMU FACTOR 19

3.3.1 Residual
The IMU preintegration residual represents a soft constraint between the motion state and IMU bias esti-
mates of two successive keyframes i and j = i+ 1. Starting from this section, we replace IMU observation
indices 0 and n from the preceding derivation with keyframe indices i and j, respectively. Accordingly,
(·)′i,j = (·)′n for (·) = {α,β,γ} and ∆T = tj − ti = tn − t0. The position, orientation, and velocity com-
ponents of the IMU preintegration residual are formed by taking the manifold difference of observation-
independent relative motion (left hand sides of (3.31)-(3.33)) and observation-dependent relative motion
(3.77)-(3.79).

rα = R(qi)
T
(

pj − pi − vi∆T −
1

2
gw∆T 2

)
−α′i,j (ba,i,bω,i) (3.82)

rβ = R(qi)
T (vj − vi − gw∆T)− β′i,j (ba,i,bω,i) (3.83)

rθ = Log
[
γ ′i,j (bω,i)

−1 ⊗ q−1
i ⊗ qj

]
(3.84)

The bias components of the IMU preintegration residual encode the assumption that IMU biases remain
constant over the preintegration time interval5.

rba = ba,j − ba,i (3.85)

rbω = bω,j − ba,i (3.86)

The IMU preintegration residual is formed by stacking (3.82)-(3.86).

rimu(x) =


rα (pi,vi,qi,ba,i,bω,i,pj)

rβ (vi,qi,ba,i,bω,i,vj)
rθ (qi,bω,j ,qj)
rba (ba,i,ba,j)
rbω (bω,i,bω,j)

 ∈ R15 (3.87)

x =
[
pT
i vT

i qT
i bT

a,i bT
ω,i pT

j vT
i qT

j bT
a,j bT

ω,j

]T ∈ R32 (3.88)

3.3.2 Covariance
The IMU factor residual’s covariance is the covariance of the motion delta error dynamics (3.64) at the end
of preintegration time interval.

3.3.3 Jacobians
This section derives the nonzero Jacobians of the IMU factor’s residuals. All Jacobians presented in this
section are 3× 3 matrices.

Vector Space Jacobians

The Jacobians of the residuals rα, rβ , rba, and rbω with respect to vector space parameter blocks pi, vi,
ba,i, bω,i, pj , vj , ba,j , bω,j are obtained by isolating the term in the relevant residual that involves each
parameter block and taking the derivative. The Jacobians of rα with respect to pi, vi, ba,i, bω,i, and pj are

∂rα
∂pi

= −R(qi)
T (3.89)

∂rα
∂vi

= −∆TR(qi)
T (3.90)

5Given typical time intervals of < 0.1 s between successive keyframes, this is a reasonable assumption

20 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

∂rα
∂ba,i

= −Jαba (3.91)

∂rα
∂bω,i

= −Jαbω (3.92)

∂rα
∂pj

= R(qi)
T (3.93)

The Jacobians of rβ with respect to vi, ba,i, bω,i, and vj are

∂rβ
∂vi

= −R(qi)
T (3.94)

∂rβ
∂ba,i

= −Jβba (3.95)

∂rβ
∂bω,i

= −Jβbω (3.96)

∂rβ
∂vj

= R(qi)
T (3.97)

The Jacobians of rba and rbω with respect to the IMU bias states are

∂rba
∂ba,i

= −I (3.98)

∂rba
∂ba,j

= I (3.99)

∂rbω
∂bω,i

= −I (3.100)

∂rbω
∂bω,j

= I (3.101)

Manifold Jacobians

Instead of taking Jacobians with respect to the quaternions qi and qj , we take Jacobians with respect to
minimal parameterizations of their perturbations, δθi and δθj .

We use the perturbation method to obtain the Jacobian of rα with respect to δθi. First rewrite (3.82)
with the temporary variable ∆pw,ij .

rα = R(qi)
T∆pw,ij −α′i,j (3.102)

∆pw,ij = pj − pi − vi∆T −
1

2
gw∆T 2 (3.103)

Apply an additive perturbation to the left hand side of (3.102) and a rotational perturbation to the base
rotation R(qi) on the right hand side of (3.102).

rα + δrα = [R(qi) Exp(δθi)]
T ∆pw,ij −α′i,j (3.104)

Assuming the rotational perturbation δθi is small, use the approximation (A.14).

rα + δrα ≈
[
R(qi)

(
I + [δθi]×

)]T
∆pw,ij −α′i,j (3.105)

rα + δrα ≈ R(qi)
T∆pw,ij −α′i,j + [δθi]

T
×R(qi)

T∆pw,ij (3.106)

3.3. IMU FACTOR 21

δrα
(3.102)
≈ [δθi]

T
×R(qi)

T∆pw,ij (3.107)

δrα
(A.4)
≈ − [δθi]×R(qi)

T∆pw,ij (3.108)

δrα
(A.3)
≈
[
R(qi)

T∆pw,ij
]
× δθi (3.109)

We obtain the approximate Jacobian of rα with respect to δθi by substituting (3.103) into (3.109).

∂rα
∂δθi

≈
[
R(qi)

T
(

pj − pi −∆Tvi −
1

2
g∆T 2

)]
×

(3.110)

Using a similar method, we obtain the approximate Jacobian of rβ with respect to δθi as

∂rβ
∂δθi

≈
[
R(qi)

T (vj − vi − g∆T)
]
× (3.111)

We use the perturbation method to derive the Jacobians of rθ with respect to δθi, bω,i, and δθj . First,
rewrite (3.79) in terms of rotation matrices instead of quaternions

Rγ′ij
(bω,i) ≈ Rγ̄ij (b̄ω,i) Exp

[
Jθbω

(
bw,i − b̄w,i

)]
(3.112)

Rγ′ij
≡ Rγ′ij

(bω,i) ≡ R
(
γ ′ij(bω,i)

)
(3.113)

Rγ̄ij ≡ Rγ̄ij (b̄ω,i) ≡ R
(
γ̄ij(b̄ω,i)

)
(3.114)

Next, rewrite (3.84) in terms of rotation matrices instead of quaternions

rθ = Log
[
Rγ′ij

(bω,i)
T RT

i Rj

]
(3.115)

Ri ≡ R(qi) (3.116)

Rj ≡ R(qj) (3.117)

Substitute (3.112) into (3.115)

rθ ≈ Log
{[

Rγ̄ij Exp
[
Jθbω

(
bw,i − b̄w,i

)]]T
RT
i Rj

}
(3.118)

Apply an additive perturbation to the left hand side of (3.118), rotational perturbations Ri and Rj , and an
additive perturbation to the gyro bias bω,i.

rθ + δrθ ≈ Log
{[

Rγ̄ij Exp
[
Jθbω

(
bw,i − b̄w,i + δbw,i

)]]T
[Ri Exp(δθi)]

T Rj Exp(δθj)
}

(3.119)

rθ + δrθ
(A.13)
≈ Log

{
Exp

[
−Jθbω

(
bw,i − b̄w,i + δbw,i

)]
RT
γ̄ij Exp(−δθi)RT

i Rj Exp(δθj)
}

(3.120)

rθ + δrθ
(A.46)
≈ Log

{
Exp

[
−Jθbω

(
bw,i − b̄w,i + δbw,i

)]
RT
γ̄ijR

T
i Rj Exp(−RT

jRiδθi) Exp(δθj)
}

(3.121)

rθ + δrθ
(A.46)
≈ Log

{
RT
γ̄ijR

T
i Rj Exp

[
−RT

jRiRγ̄ijJθbω
(
bw,i − b̄w,i + δbw,i

)]
Exp(−RT

jRiδθi) Exp(δθj)
}

(3.122)

rθ + δrθ
(A.49)
≈ Log

{
RT
γ̄ijR

T
i Rj Exp

[
−RT

jRiRγ̄ijJθbω
(
bw,i − b̄w,i + δbw,i

)
−RT

jRiδθi + δθj
]}

(3.123)

rθ + δrθ
(3.115)
≈ Log

{
Exp(rθ) Exp

[
−RT

jRiRγ̄ijJθbω
(
bw,i − b̄w,i + δbw,i

)
−RT

jRiδθi + δθj
]}

(3.124)

22 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

rθ + δrθ
(A.48)
≈ rθ + J−1

r (rθ)
[
−RT

jRiRγ̄ijJθbω
(
bw,i − b̄w,i + δbw,i

)
−RT

jRiδθi + δθj
]

(3.125)

δrθ ≈ J−1
r (rθ)

[
−RT

jRiRγ̄ijJθbωδbw,i −RT
jRiδθi + δθj

]
+ const (3.126)

Apply the small angle approximation J−1
r (φ) ≈ I + 1

2 [φ]× for the inverse of the right Jacobian of SO(3).

δrθ ≈
(

I +
1

2
[rθ]×

)[
−RT

jRiRγ̄ijJθbωδbw,i −RT
jRiδθi + δθj

]
+ const (3.127)

The approximate Jacobians of the orientation residual are

∂rθ
∂δθi

= −
(

I +
1

2
[rθ]×

)
RT
jRi (3.128)

∂rθ
∂bω,i

= −
(

I +
1

2
[rθ]×

)
RT
jRiRγ̄ijJθbω (3.129)

∂rβ
∂δθj

= I +
1

2
[rθ]× (3.130)

3.4 Reprojection Factor
A feature observed from a pair of images establishes a geometric constraint between the camera poses from
which the images were taken. The reprojection factor encodes this information as a cost term in a visual-
inertial optimization problem’s factor graph.

3.4.1 Reprojection Geometry
Let the feature with index l be observed in keyframe images indexed i and j. Let {b} denote the body
frame, {c} denote the camera frame, and {w} denote the world frame. Let Rbc ∈ SO(3) be the orientation
of the camera frame with respect to the body frame. Let pbc ∈ R3 be the position of the camera’s optical
center with respect to the body frame6. Let z(·) be the function that projects a camera frame position to the
normalized image plane, which is the plane perpendicular to the camera’s optical axis at a unit distance in
front of the camera frame origin.

z

axay
az

 =

[ax
azay
az

]
(3.131)

Let hl,i =
[
hlix hliy 1

]T be the homogeneous point representation of feature l’s observation in keyframe i

and hl,j =
[
hljx hljy 1

]T be the homogeneous point representation of feature l’s observation in keyframe
j. Let ρl ∈ R+ be feature l’s inverse depth in keyframe i. Let pi and pj be the positions of the body frame
origin in the world frame at the times corresponding to keyframes i and j.

pi = pwbi (3.132)

pj = pwbj (3.133)

Let qi and qj be quaternions representing the orientation of the body frame with respect to the world frame
at the times corresponding to keyframes i and j.

R(qi) = Rwbi (3.134)

6See Appendices D.2 and E.1, respectively, for offline and online methods to estimate pbc and Rbc.

3.4. REPROJECTION FACTOR 23

R(qj) = Rwbj (3.135)

The position of feature l in the camera frame associated with keyframe i is

pl,ci =
1

ρl
hl,i (3.136)

The position of feature l in the body frame associated with keyframe i is

pl,bi = Rbcpl,ci + pbc (3.137)

The position of feature l in the world frame is

pl,w = R(qi)pl,bi + pi (3.138)

The position of feature l in the body frame associated with keyframe j is

pl,bj = R(qj)
T (pl,w − pj) (3.139)

The position of feature l in the camera frame associated with keyframe j is

pl,cj = RT
bc

(
pl,bj − pbc

)
(3.140)

Combine (3.136)-(3.140) to obtain an expression for feature l’s estimated position in the camera frame
associated with keyframe j in terms of feature l’s observation in the camera frame associated with keyframe
i.

pl,cj = RT
bc

(
R(qj)

T
(

R(qi)

(
Rbc

1

ρl
hl,i + pbc

)
+ pi − pj

)
− pbc

)
(3.141)

3.4.2 Residual
Under idealized conditions, the reprojection of feature l’s estimated world frame location onto the camera’s
image plane at keyframe j exactly matches the image observation of feature l at keyframe j. Because
camera pose and feature depth are estimated quantities, we use the reprojection residual to represent the
error between feature observations in keyframe j and the reprojections associated with the estimated camera
poses and feature depth in keyframe i.

The reprojection residual is a 2D quantity that represents the 2D vector difference on the normalized
image plane between feature l’s observed and reprojected locations in keyframe j, where the reprojection is
computed using the observation of feature l in keyframe i.

rproj (pi,qi,pj ,qj , ρl) = z
(
pl,cj

)
−
[
1 0 0
0 1 0

]
hl,j (3.142)

In the standard reprojection residual, the extrinsic transform quantities Rbc and pbc are constant. Note that
we have chosen to write the residual as (prediction - observation) rather than the common convention of
(observation - prediction) in order to avoid an extra negative sign in front of all the Jacobians.

3.4.3 Covariance
The covariance associated with the reprojection residual error is related to the accuracy of feature tracking
between image keyframes. Because features are matched across image frames by minimizing grayscale
intensity differences between a small surrounding patch of pixels in each image, features in regions with
small intensity variations are more likely to be matched incorrectly and thus have higher uncertainty. Math-
ematically, feature location uncertainty is described by a covariance matrix computed from the inverse of
the grayscale intensity Hessian over a patch of pixels surrounding the feature location [74]. However, in
many cases assuming isotropic uniform covariance is sufficient for good optimization performance.

24 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

3.4.4 Jacobians
The standard reprojection residual written as a function of any of the variables x = {pi,qi,pj ,qj , ρl} has
the form z (a(x)) + constant, where z(·) is defined in (3.131) and a(·) , pl,cj (·) represents the expression
in (3.141). By chain rule, the Jacobian for any parameter block x is given by

∂z

∂x
=
∂z

∂a

∂a

∂x
(3.143)

The first term on the left hand side is the Jacobian of the image plane projection function

∂z

∂a
=

[
1
az

0 −ax
a2z

0 1
az
−ay
a2z

]
(3.144)

and is obtained by straightforward differentiation of (3.131).

Vector Space Jacobians

The Jacobians with respect to vector space parameter blocks pi, pj , and ρl can be obtained by expanding
out (3.141), isolating the term that involves each parameter block, and then taking the derivative. Using this
method, the Jacobians of a with respect to pi and pj are

∂a

∂pi
= RT

bcR(qj)
T (3.145)

∂a

∂pj
= −RT

bcR(qj)
T (3.146)

The Jacobian of a with respect to ρl is

∂a

∂ρl
=

∂a

∂(1
ρl

)
· ∂
∂ρl

(
1

ρl

)
(3.147)

= RT
bcR(qj)

TR(qi)Rbchl,i ·
−1

ρ2
l

(3.148)

Manifold Jacobians

Instead of taking Jacobians with respect to the quaternions qi and qj , we take Jacobians with respect to
minimal parameterizations of their perturbations, δθi and δθj .

We use the perturbation method to obtain the Jacobian of a with respect to δθi. First rewrite (3.140) to
separate the term that depends on qi from all other terms, denoted as const.

a = RT
bcR(qj)

TR(qi)pl,bi + const (3.149)

Apply an additive perturbation to the left hand side of (3.149) and a rotational perturbation to the base
rotation R(qi) on the right hand side of (3.149)

a + δa = RT
bcR(qj)

TR(qi) Exp(δθi)pl,bi + const (3.150)

Assuming the rotational perturbation δθi is small, use the approximation (A.14)

a + δa ≈ RT
bcR(qj)

TR(qi)
(
I + [δθi]×

)
pl,bi + const (3.151)

a + δa ≈ RT
bcR(qj)

TR(qi)pl,bi + const+ RT
bcR(qj)

TR(qi) [δθi]× pl,bi (3.152)

δa
(3.149)
≈ RT

bcR(qj)
TR(qi) [δθi]× pl,bi (3.153)

3.5. SINGLE CAMERA OPTIMIZATION 25

δa
(A.3)
≈ −RT

bcR(qj)
TR(qi) [pl,bi]× δθi (3.154)

We obtain the approximate Jacobian of a with respect to δθi by substituting (3.137) into (3.154).

∂a

∂δθi
≈ −RT

bcR(qj)
TR(qi)

[
Rbc

1

ρl
hl,i + pbc

]
×

(3.155)

We use the perturbation method to obtain the Jacobian of a with respect to δθj . First rewrite (3.140) to
separate the term that depends on qj from all other terms, denoted as const.

a = RT
bcR(qj)

T (pl,w − pj) + const (3.156)

Apply an additive perturbation to the left hand side of (3.156) and a rotational perturbation to the base
rotation R(qj) on the right hand side of (3.156).

a + δa = RT
bc [R(qj) Exp(δθj)]

T (pl,w − pj) + const (3.157)

Assuming the rotational perturbation δθj is small, use the approximation (A.14)

a + δa ≈ RT
bc

[
R(qj)

(
I + [δθj]×

)]T
(pl,w − pj) + const (3.158)

a + δa ≈ RT
bc

(
I + [δθj]×

)T
R(qj)

T (pl,w − pj) + const (3.159)

a + δa ≈ RT
bcR(qj)

T (pl,w − pj) + const+ RT
bc [δθj]

T
×R(qj)

T (pl,w − pj) (3.160)

δa
(3.156)
≈ RT

bc [δθj]
T
×R(qj)

T (pl,w − pj) (3.161)

δa
(A.4)
≈ −RT

bc [δθj]×R(qj)
T (pl,w − pj) (3.162)

δa
(A.3)
≈ RT

bc

[
R(qj)

T (pl,w − pj)
]
× δθj (3.163)

We obtain the approximate Jacobian of a with respect to δθj by substituting (3.138) into (3.163).

∂a

∂δθj
≈ RT

bc

[
R(qj)

T
(

R(qi)

(
Rbc

1

ρl
hl,i + pbc

)
+ pi − pj

)]
×

(3.164)

3.5 Single Camera Optimization
3.5.1 Problem Definition
The sliding window visual-inertial indirect bundle adjustment problem seeks to estimate IMU motion, bi-
ases, and feature locations over a finite sliding window of image keyframes by minimizing a nonlinear
objective function that encodes vision-derived and IMU-derived motion constraints.

Consider a sliding window of n image keyframes corresponding to timestamps t1 < . . . < tn. Each
keyframe is associated with a motion state that consists of world frame position, orientation, and velocity
and IMU accelerometer and gyroscope biases.

xk =


pwb,k
qwb,k
vwb,k
ba,k
bω,k

 ∈ R16 (3.165)

In subsequent equations we drop the frame subscripts wb for conciseness.

26 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

We assume that all images are obtained from a single7 camera and time synchronized with IMU obser-
vations after applying time offset compensation. Suppose there are m feature trails that have been observed
in at least two consecutive keyframes, starting on or before a threshold number of keyframes before the
sliding window’s last keyframe. The location of feature i in the world frame is parametrized by its inverse
depth (ρi) in the camera frame of the first keyframe in which it was observed.

We concatenate position, orientation, velocity, IMU bias, and inverse depths to form the full state vector
x.

x =
[
xT

1 . . . xT
n ρ1 . . . ρm

]T ∈ R16n+m (3.166)

The unconstrained optimization problem has the form:

x∗ = arg min
x

[
fprior (x) + fimu (x) + fcam (x)

]
(3.167)

Because each of the objective function’s terms consists of sums of squared residual norms, (3.167) is a non-
linear least squares problem that can be solved via the methods in Appendix C. After associating individual
squared residual norm terms with the negative log likelihoods of factors within a factor graph, it becomes
clear that the minimization problem performs maximum a posterior estimation.

The prior cost encodes constraints on current sliding window states associated with previous obser-
vations and states that have been discarded. Section 3.6 describes the prior residual (also known as the
marginalization residual) in more detail.

fprior (x) =
1

2

∥∥rprior (x)
∥∥2 (3.168)

The IMU cost encodes constraints on sliding window motion and IMU bias states using preintegrated
IMU motion deltas. Section 3.3.1 describes the IMU preintegration residual in more detail.

fimu (x) =
1

2

n−1∑
k=1

‖rimu (xk,xk+1)‖2Pk,k+1
(3.169)

The camera cost encodes geometric constraints on sliding window poses and inverse depths derived
from feature matches across sliding window keyframes.

fcam (x) =
1

2

m∑
l=1

|Kl|∑
i=2

λ
(∥∥rproj

(
pk(l,1),qk(l,1),pk(l,i),qk(l,i), ρl

)∥∥2

Σ

)
(3.170)

Kl is the set of keyframe indices where feature l is observed, k(l, i) is a function that returns the keyframe
index of the ith observation of feature l, λ(·) is a loss function, and Σ ∈ R2×2 is the feature observation
noise covariance matrix. Section 3.4 describes the reprojection residual in more detail.

3.5.2 Incorporation of New Feature Trails into Optimization
Newly detected features must be successfully tracked for a threshold number of keyframes before their
inverse depths are included as states in the optimization vector. While this threshold may be set as low
as two keyframes, which is the minimum number required to obtain an initial guess for the inverse depth
via triangulation, in practice a higher threshold is used to improve triangulation quality. This helps avoid
situations where introducing a large number of new inverse depth states with poor initial guesses causes the
visual-inertial optimization to diverge.

7See Chapter 5 for the multi-camera problem formulation.

3.5. SINGLE CAMERA OPTIMIZATION 27

When running on a system with limited computation, it is desirable to keep the total optimization vector
size constant. This requires the number of keyframes in the sliding window, n, as well as the number of
feature trails, m, to remain constant over successive optimizations. A method to maintain a constant sliding
window size is described in Sect. 3.6.3, while the number of features may be kept constant by initially
adding new features up to a fixed feature budget and subsequently adding new features only when older
features are discarded.

3.5.3 Implementation Details

Rotational Perturbation Convention

The quaternion � operator is defined using right perturbations (C.24).

Loss Function

The Cauchy loss function is used in (3.170).

λ(s) = log (s+ 1) (3.171)

Jacobian Scaling

Cost function terms defined using the Mahalanobis norm can be rewritten as L2 norms by replacing the
original residual and Jacobian with

rΣ(x) = LTr(x) (3.172)

JΣ(x) = LTJ(x) (3.173)

where Σ−1 = LLT.

Ignore IMU Factors Associated with Long Preintegration Time Intervals

The IMU cost function (3.169) is modified to exclude IMU factors associated with preintegration time inter-
vals that are greater than a user-defined threshold in order to prevent their inaccurate motion constraints from
degrading the optimization problem. Long preintegration time intervals typically occur during motionless
periods when the marginalization strategy (Sect. 3.6.3) repeatedly discards the second newest keyframe and
causes the time gap between the latest two sliding window keyframes to grow. As a result, the IMU factor
between the latest two sliding window keyframes is based on the preintegration of a large number of IMU
observations. Such IMU factors often represent severely inaccurate motion constraints because errors from
imperfectly estimated IMU bias estimates are propagated over non-trivial time intervals. In practice, this
problem can be avoided by removing long time interval IMU factors from the visual-inertial optimization
problem and relying solely on vision-based geometric constraints to relate keyframes with large temporal
separation.

IMU-Rate Odometry Upsampling

Sliding window optimization occurs at the keyframe rate, which is typically around 10 Hz. In order to
obtain odometry estimates at higher frequencies for closed loop control, the latest available optimization
motion state is propagated forward with more recent IMU observations according to the following recursive
midpoint integration scheme:

∆tk = tk+1 − tk (3.174)

ak = R(qk) (âk − ba,k) + g (3.175)

ω̄k,k+1 =
1

2
(ω̂k + ω̂k+1)− bω,k (3.176)

28 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

qk+1 = qk ⊗
[

1
1
2∆tkω̄k,k+1

]
(3.177)

ak+1 = R(qk+1) (âk+1 − ba,k) + g (3.178)

āk,k+1 =
1

2
(ak + ak+1) (3.179)

pk+1 = pk + ∆tkvk +
1

2
āk,k+1∆t2k (3.180)

vk+1 = vk + ∆tkāk,k+1 (3.181)

Whenever a new optimization motion state becomes available, the IMU-rate odometry estimate is updated
by repropagating all IMU observations received since the delay-compensated timestamp of the sliding win-
dow’s latest keyframe. The magnitude of the IMU-rate odometry discontinuities associated with these resets
depends on the accuracy of camera extrinsics and time delay parameters as well as IMU bias estimates.

3.6 Marginalization
The difference between sliding window optimization and full batch estimation is that the former optimizes
a subset of recent states and observations, while the latter optimizes the entire history of states and observa-
tions. Because problem size remains constant in sliding window optimization but grows linearly with time in
full batch estimation, the former is more suitable for real-time performance on computationally constrained
systems. In order to maintain a constant problem size, sliding window optimization culls less informative
states from its factor graph as new states are added.

Marginalization is the process of encoding the information associated with removed states as constraints
on remaining states in order to approximate the full batch optimization solution. Over successive slid-
ing window optimizations, these additional constraints increase the sliding window factor graph’s density,
which in turn increases the Jacobian matrix’s fill-in8 and ultimately solve time. Although it is possible to
sparsify the information matrix associated with the optimization to mitigate marginalization-induced fill-in
while reducing linearization error [75–77], in many cases the sparsification utilizes an extra optimization
whose computational cost outweighs the computational savings associated with a sparser information ma-
trix. Consequently, we do not employ such techniques in this work for the sake of computational efficiency.

3.6.1 Marginalization as an Approximation of Batch Optimization

Consider a batch optimization problem where the full history of states can be partitioned into marginalized
states (xm), remaining states (xr), and new states (xn). When the total number of states is sufficiently small
(i.e. x = {xm,xr}), the batch and sliding window optimization problem formulations are the same. As
more states (xn) are added, batch estimation keeps all past states in its optimization but sliding window
estimation discards xm to keep the problem size constant.

The goal of marginalization is to approximate the batch optimization cost function that depends on xm,
xr, and xn with a sliding window cost function that only depends on xr and xn. We first rewrite the batch
optimization cost function as

c (xm,xr,xn) = cm (xm,xr) + cn (xr,xn) (3.182)

where cm contains all cost terms involving one or more states in xm and cn contains all other cost terms.
In the sliding window framework, there are no cost terms involving states in both xm and xn because the
former are discarded before the latter are incorporated.

8Fill-in refers to the number of non-zero entries in a matrix

3.6. MARGINALIZATION 29

With the cost factorization (3.182), the batch optimization problem can be rewritten as

min
xm,xr,xn

c (xm,xr,xn) = min
xr,xn

(
min
xm

c (xm,xr,xn)

)
= min

xr,xn

(
cn (xr,xn) + min

xm

cm (xm,xr)

)
(3.183)

The second-order Taylor series approximation of cm is

cm (xm,xr) ≈ cm (x̂m, x̂r) +

[
bm
br

]T [
∆xm
∆xr

]
+

1

2

[
∆xm
∆xr

]T [
Amm Amr

Arm Arr

] [
∆xm
∆xr

]
(3.184)

∆xm = xm − x̂m

∆xr = xr − x̂r

where b and A are respectively the Jacobian and Hessian of cm evaluated at the old sliding window estimates
x̂m and x̂r.

We find a closed form solution to the approximation of the subproblem minxm cm (xm,xr) from (3.183)
by setting the gradient of (3.184)’s right hand side to zero.[

Amm Amr

Arm Arr

] [
∆xm
∆xr

]
= −

[
bm
br

]
(3.185)

Rearranging the upper block row of (3.185) yields the minimizing value of ∆xm.

∆xm = −A−1
mm (bm + Amr∆xr) (3.186)

Substitute (3.186) into (3.184) to obtain the minimum cost.

cm,min (xm,xr) ≈ C + b̃T∆xr +
1

2
∆xT

r Ã∆xr (3.187)

Ã = Arr −ArmA−1
mmAmr (3.188)

b̃ = br −ArmA−1
mmbm (3.189)

Substitute (3.187) into (3.183) to eliminate the latter’s dependence on xm.

min
xm,xr,xn

c (xm,xr,xn) ≈ min
xr,xn

[
cn (xr,xn) + b̃T (xr − x̂r) +

1

2
(xr − x̂r)

T Ã (xr − x̂r)

]
(3.190)

Note that on the right hand side of (3.190), information about cm,min is encoded in Ã, b̃, and x̂r. In sliding
window estimation, these terms are stored after each optimization and used in the cost function of the next
optimization to form the prior residual (Sect. 3.6.2).

The only approximation made when deriving the sliding window cost function (3.190) from the original
batch cost function (3.183) is permanently replacing cm (xr,xr) with a second-order Taylor series evaluated
at the previous optimization’s final solution’s marginalized states. The effect of this early linearization
point fixation is small if the marginalized state estimates are very close to their true values at the time of
marginalization, which is usually the case when the marginalized states are the oldest states in the sliding
window. Consequently, marginalization enables sliding window estimators to maintain a constant problem
size at the cost of a small loss of accuracy.

30 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

3.6.2 Prior Residual

The prior residual encodes constraints between current sliding window states that were used in previous
sliding window residuals that involve marginalized states. In this section we rewrite the second and third
terms of (3.190) as a squared norm (3.168).

We begin by taking the eigendecomposition of (3.188):

Ã = ṼD̃Ṽ−1 (3.191)

D̃ = diag
{
λ̃1, . . . , λ̃dim(∆xr)

}
(3.192)

Ṽ =
[
ṽ1 . . . ṽdim(∆xr)

]
(3.193)

Ṽ is an orthogonal matrix because Ã is symmetric:

Ã = ṼD̃ṼT (3.194)

ṼṼT = I (3.195)

Define diagonal matrices corresponding to the square root and inverse square root of D̃:

D̃
1
2 = diag

{√
λ̃1, . . . ,

√
λ̃dim(∆xr)

}
(3.196)

D̃−
1
2 = diag

 1√
λ̃1

, . . . ,
1√

λ̃dim(∆xr)

 (3.197)

Complete the square on the second and third terms of (3.190) by adding a constant term.

fprior(x) =
1

2
(xr − x̂r)

T Ã (xr − x̂r) + b̃T (xr − x̂r) +
1

2
b̃TÃ−1b̃ (3.198)

Substitute (3.194)-(3.197) into (3.198) and factor:

fprior(x) =
1

2
(xr − x̂r)

T ṼD̃
1
2 D̃

1
2 ṼT (xr − x̂r) + b̃TṼṼT (xr − x̂r) +

1

2
b̃TṼD̃−

1
2 D̃−

1
2 ṼTb̃ (3.199)

fprior(x) =
1

2

∥∥∥D̃ 1
2 ṼT (xr − x̂r)− D̃−

1
2 ṼTb̃

∥∥∥2

2
(3.200)

fprior(x) =
1

2

∥∥Aprior (xr − x̂r) + bprior
∥∥2

2
(3.201)

The prior residual is

rprior(x) = Aprior (xr � x̂r) + bprior (3.202)

The� operator generalizes Euclidean vector space subtraction to manifolds and is equivalent to vector space
subtraction for parameter blocks defined over Euclidean space. The Jacobian of the prior residual is:

∂rprior

∂δxr
= Aprior (3.203)

3.6. MARGINALIZATION 31

3.6.3 Selection of States to Marginalize
One of the simplest strategies for maintaining a constant size sliding window is to marginalize the oldest
states after each optimization. However, such a strategy renders the scale of features unobservable during
hover intervals when the sliding window does not contain sufficient acceleration excitation. To address this
issue, we use the two-way marginalization strategy described in [78].

Before a new keyframe is incorporated into the current sliding window, either the oldest keyframe is
marginalized or the newest frame is dropped. If the current sliding window’s two newest keyframes have
sufficient parallax (i.e. their associated poses are separated by a sufficient translation), the oldest keyframe
is marginalized. Otherwise, the newest keyframe is dropped without being marginalized9.

This strategy keeps older states containing nontrivial acceleration excitation in the sliding window when
the robot is hovering, rendering the scale observable. Old states are marginalized during dynamic motion
because newer states have sufficient acceleration excitation. Note that during constant speed motion, there
is no way to prevent scale drift without loop closure.

3.6.4 Implementation Details
This section describes the steps to form the prior residual from the previous optimization’s final estimate
(x̂), final Jacobian (J), and final residual (r).

The first step is to identify the subset of states to be marginalized (x̂m). When marginalizing the oldest
frame, x̂m consists of the first motion state (p̂1, q̂1, v̂1), first IMU bias state (b̂a,1, b̂ω,1), and inverse depths
of feature trails first observed in the first frame {ρ̂i}.

Identify the residuals corresponding to cm (x̂m, x̂r) by finding all rows of J that have nonzero entries
in any of the columns corresponding to x̂m. Permute the rows of J and r to move all cm residuals to a
contiguous block at the top while preserving relative ordering within the cm and non-cm blocks.

Identify the x̂r states by finding columns of J not already corresponding to x̂m that have nonzero entries
in any of the rows corresponding to cm residuals. Permute the columns of J to move all x̂m to a contiguous
block on the left, x̂r to a contiguous block in the center, and all remaining states to a contiguous block the
right while preserving relative column ordering within each block. After row and column permutations, J
and r should have the following block structure:

J =

[
Jmm Jmr ∗
∗ ∗ ∗

]
, r =

[
rm
∗

]
(3.204)

Construct the quantities used in (3.185):[
Amm Amr

Arm Arr

]
=

[
JT
mmJmm JT

mmJmr
JT
mrJmm JT

mrJmr

]
(3.205)[

bm
br

]
=

[
JT
mmrm

JT
mrrm

]
(3.206)

Compute the Schur complement quantities (3.188)-(3.189) and compute the eigendecomposition (3.191).
When forming the prior residual (3.202), use the following expressions in place of (3.196)-(3.197):

D̃
1
2 = diag

{
λ̃1 > ε ?

√
λ̃1 : 0, . . . , λ̃dim(∆xr) > ε ?

√
λ̃dim(∆xr) : 0

}
(3.207)

D̃−
1
2 = diag

λ̃1 > ε ?
1√
λ̃1

: 0, . . . , λ̃dim(∆xr) > ε ?
1√

λ̃dim(∆xr)

: 0

 (3.208)

9 Because the estimation error of newer states is typically higher than that of older states within a sliding window, not marginal-
izing newer states avoids the risk of adding constraints that are based on potentially inaccurate estimates.

32 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

0 < ε� 1 is an eigenvalue threshold for numerical stability, while the ternary operator a ? b : c returns b if
predicate a is true and c otherwise.

When evaluating the prior residual in the next optimization, each parameter block in xr must be associ-
ated with the matching parameter block in x̂r. For blocks of xr and x̂r corresponding to quaternion states,
the � operator in (3.202) is defined as

qr � q̂r = Log
(
q̂−1
r ⊗ qr

)
≈ 2vec

(
q̂−1
r ⊗ qr

)
(3.209)

3.7 Initialization
Visual-inertial bundle adjustment is a highly nonlinear optimization problem that requires accurate initial-
ization in order to achieve acceptable performance. This section describes a procedure to estimate initial
motion, gyroscope biases, and feature locations by aligning IMU preintegration with up-to-scale vision-
based estimates of scene structure. The initialization procedure is based on [79] with minor modifications.

Compute
correspondences

and parallax

Estimate
relative pose

Estimate
essential matrix

Decompose
essential matrix

Choose solution
with the most valid
reprojected points

Structure from
Motion

Find frame
poses using

PnP

Triangulate
features

Up-to-scale
Optimization

Estimate
gyroscope bias

Estimate scale,
gravity and

velocity

Rotate motion and
structure estimate

into level frame

Are there enough
correspondences with

sufficient parallax?

Is scale positive and gravity
magnitude reasonable?

Are there enough
correspondences between

keyframe pairs?

Final cost < threshold

Yes

Yes

Yes

Yes

No

No

No

No

Images

Preintegrated
IMU

observations

Sliding window
motion states, gyro
bias, feature depths

Restart
initialization

Restart
initialization

Restart
initialization

Restart
initialization

Figure 3.5: Flowchart of initialization process

3.7.1 Structure From Motion
The vision-only component of the initialization procedure estimates scaled camera poses and feature loca-
tions given a sliding window of image keyframes. This procedure is also known as Structure from Motion
(SFM).

3.7. INITIALIZATION 33

Relative Pose Estimation

The first step is to compute feature correspondences between the last keyframe and all previous frames.
Starting from the oldest keyframe and moving forward in time, identify the first keyframe that has a sufficient
number of feature correspondences and sufficient parallax with the last keyframe. These conditions ensure
that most sliding window keyframes contain stable feature trails and non-trivial camera translation. Finally,
find the relative rotation and arbitrarily scaled translation between the chosen pair of keyframes using the 5-
point algorithm [80]. The 5-point algorithm’s main steps are finding the essential matrix within a RANSAC
scheme to reject outliers, decomposing the essential matrix into four rotation-translation pairs, and selecting
the rotation-translation pair associated with the greatest number of positive depth points.

Initial Pose and Feature Estimation

Consider a sliding window of n keyframes used in initialization. Let l be the index of the first sliding
window keyframe that has sufficient correspondences and parallax with the last keyframe. Set the pose of
the last keyframe to the relative rotation and arbitrarily scaled translation found in Sect. 3.7.1. Set the pose
of keyframe l to identity and triangulate features observed in keyframes l and n. Estimate the poses of
all other sliding window keyframes relative to keyframe l by triangulating remaining features and solving
perspective-n-point problems [81]. Note that when relying solely on feature correspondences, keyframe
positions and triangulated feature positions can only be estimated up to an arbitrary scale factor.

Bundle Adjustment

The structure from motion bundle adjustment optimization problem is

x∗ = arg min
x

L∑
l=1

Ml∑
j=1

∥∥rsfm
(
pk(l,j),qk(l,j), ll,hlj

)∥∥2 (3.210)

rsfm (p,q, l,h) = z
(
p′
)
− z (h) (3.211)

p′ = R (q) l + p (3.212)

x =
[
pT

1 qT
1 . . . pT

n qT
n lT

1 . . . lT
L

]T (3.213)

L is the number of successfully triangulated landmarks from Sect. 3.7.1, Ml is the number of sliding win-
dow keyframes that the lth landmark was observed in, z(·) is the image plane projection function defined
in (3.131), k(l, j) is a function that returns the keyframe index of the lth landmark’s jth observation, hlj is
the homogeneous point associated with the lth landmark’s jth observation, and n is the number of keyframes
in the sliding window.

The optimization vector consists of the orientations and scaled positions of all sliding window keyframes,
{pi,qi}ni=1, together with the scaled 3D positions of all successfully triangulated landmarks, {ll}Ll=1. Due
to the presence of quaternions in the optimization vector, manifold optimization (Appendix C.5) must be
used. The SFM residual (3.211) represents the reprojection error of global frame landmarks with respect to
their associated normalized image plane homogeneous point observations.

The Jacobians of the SFM residual are

∂rsfm

∂δp
=
∂z(p′)

∂p′
(3.214)

∂rsfm

∂δθ
= −∂z(p′)

∂p′
[R(q)l]× (3.215)

∂rsfm

∂δl
=
∂z(p′)

∂p′
R(q) (3.216)

where ∂z(p′)
∂p′ is the image plane projection Jacobian defined in (3.144).

34 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

To avoid seeding the sliding window estimator with a bad initial guess, initialization is allowed to pro-
ceed beyond SFM bundle adjustment only if the final optimization cost is less than a user-defined threshold.

3.7.2 Gyroscope Bias Estimation
After obtaining a successful structure from motion bundle adjustment result, camera extrinsic parameters
are used to convert camera frame orientations and scaled positions to their body frame equivalents. The
SFM-derived rotation deltas between keyframes can be compared with IMU preintegration rotation deltas
to estimate gyroscope bias.

The minimization problem for gyroscope bias estimation is

min
bω

n−1∑
k=1

∥∥Log
(
q−1
k+1 ⊗ qk ⊗ γk,k+1(bω)

)∥∥2 (3.217)

where {qk}n−1
k=1 are the SFM-derived body-in-world orientations associated with keyframe images and the

first order bias-corrected IMU preintegration rotation delta is

γk,k+1(bω) ≈ γ̂k,k+1 ⊗
[

1
1
2Jθ,bω(k, k + 1)bω

]
(3.218)

γ̂k,k+1 is the local frame delta rotation obtained by integrating IMU angular velocity observations without
any bias compensation and Jθ,bω is defined in (3.71).

Achieving perfect alignment between SFM-derived and bias-compensated IMU-derived delta rotations
results in the following condition:

γk,k+1(bω) = q−1
k ⊗ qk+1 (3.219)

Substitute (3.218) into (3.219):[
1

1
2Jθ,bω(k, k + 1)bω

]
≈ γ̂−1

k,k+1 ⊗ q−1
k ⊗ qk+1 (3.220)

Because the right hand side is supposed to be a very small rotation, we apply the small angle approximation[
1

1
2Jθ,bω(k, k + 1)bω

]
≈

[
1

vec
(
γ̂−1
k,k+1 ⊗ q−1

k ⊗ qk+1

)] (3.221)

where vec(·) is the operator that extracts the vector component of a quaternion (A.25). Construct an overde-
termined linear system to capture the constraint that SFM-derived and bias-compensated IMU-derived delta
rotations should match between all successive keyframe pairs within the sliding window:


Jθ,bω(1, 2)

...
Jθ,bω(k, k + 1)

...
Jθ,bω(n− 1, n)

bω =



2vec
(
γ̂−1

1,2 ⊗ q−1
1 ⊗ q2

)
...

2vec
(
γ̂−1
k,k+1 ⊗ q−1

k ⊗ qk+1

)
...

2vec
(
γ̂−1
n−1,n ⊗ q−1

n−1 ⊗ qn

)


(3.222)

Abω = B (3.223)

3.7. INITIALIZATION 35

Find the bω that minimizes ‖Abω − B‖ by solving the normal equations(
ATA

)
bω = ATB (3.224)

which can be rewritten as

Abω = b (3.225)

A =

n−1∑
k=1

Jθ,bw(k, k + 1)TJθ,bω(k, k + 1) (3.226)

b =
n−1∑
k=1

Jθ,bw(k, k + 1)T
[
2vec

(
γ̂−1
k,k+1 ⊗ q−1

k ⊗ qk+1

)]
(3.227)

After solving the linear system (3.225) to obtain a gyroscope bias estimate, repropagate all IMU preintegra-
tion motion deltas (3.34)-(3.36) using the updated gyroscope bias estimate.

3.7.3 Velocity, Gravity, and Scale Estimation
This section describes a method for jointly estimating gravity in the first sliding window camera frame
(gc), metric scale (s), and body frame velocities of all keyframes ({vk}nk=1) by aligning SFM-derived scene
structure with IMU-derived preintegration motion deltas. The concatenated vector of estimated quantities is

x =
[
vT

1 . . . vT
n gT

c s
]T ∈ R3n+4 (3.228)

Let {Rk}nk=1 be the SFM-estimated rotation matrices that represent sliding window keyframe body
orientations with respect to the first keyframe’s camera frame. Let {p̄k}nk=1 be the SFM-estimated scaled
translations of sliding window keyframe camera positions with respect to the first keyframe’s camera frame.
Let ∆tk = tk+1 − tk. The IMU preintegration position (α̂k,k+1) and velocity (β̂k,k+1) deltas between
keyframes k and k + 1 are

α̂k,k+1 = RT
k

[
s (p̄k+1 − p̄k) +

1

2
gc∆t

2
k −Rk+1pbc

]
+ pbc −∆tkvk (3.229)

β̂k,k+1 = RT
k [Rk+1vk+1 + gc∆tk]− vk (3.230)

where pbc is the camera’s position with respect to the body frame. Rewrite (3.229)-(3.230) as the following
system of equations:

[
−I∆tk 0 1

2RT
k∆t2k RT

k (p̄k+1 − p̄k)
−I RT

kRk+1 RT
k∆tk 0

]
vk

vk+1

gc
s

 =

[
α̂k,k+1 − pbc + RT

kRk+1pbc
β̂k,k+1

]
(3.231)

Stack equations of the form (3.231) for k = 1, . . . , n− 1 (i.e. between every pair of successive keyframes)
to form a linear least squares problem in x and solve for velocity, gravity, and metric scale using the normal
equations method.

The next step is to solve a modified version of the above problem subject to a gravity norm constraint.
This requires the gravity vector to be parametrized by a 2D perturbation on the tangent space of the sphere
with gravity norm radius at the point associated with the direction of the current gravity estimate. Let g be
the known gravity magnitude and gc be the gravity estimate from the previous linear least squares problem.

36 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

Let b1 and b2 be arbitrary orthogonal unit vectors that span the tangent space associated with the direction
of gc. The magnitude-constrained parameterization of gravity has 2 degrees of freedom:

gc(w1, w2) = g
gc
‖gc‖

+ w1b1 + w2b2 (3.232)

Substituting (3.232) into (3.231) produces

[
−I∆tk 0 1

2RT
k∆t2k

[
b1 b2

]
RT
k (p̄k+1 − p̄k)

−I RT
kRk+1 RT

k∆tk
[
b1 b2

]
0

]
vk

vk+1

w1

w2

s

 =

[
α̂k,k+1 − pbc + RT

k

(
Rk+1pbc −

∆t2k
2 gc

)
β̂k,k+1 −RT

kgc∆tk

]

(3.233)

Stack equations of the form (3.233) for k = 1, . . . , n − 1 to form a linear least squares problem and solve
for velocity, gravity perturbation, and metric scale using the normal equations method. Given w1 and w2

estimated from the above procedure, the magnitude-constrained gravity vector estimate is updated as

gc ←
g′c(w1, w2)

‖g′c(w1, w2)‖
g (3.234)

The constrained gravity magnitude linear system is solved several times until the gravity estimate converges.
To avoid seeding the optimization with a bad initial guess, initialization is allowed to proceed beyond

velocity, gravity, and scale estimation only if the final scale estimate is positive.

3.7.4 Initial Guess for Optimization
After successfully estimating gravity and scale, scale sliding window positions and velocities as well as
feature depths to metric units.

The world frame used for sliding window optimization is a level frame10 with the same origin location
and heading direction as the body frame associated with the first keyframe in the sliding window used
in a successful initialization. Consequently, the rotation Rwc between the camera world frame used in
initialization and the level world frame used for sliding window optimization has zero yaw and can be
computed by rotating gc to the vector

[
0 0 ‖gc‖

]T. Rotate all sliding window position, velocity, and
quaternion states to be in the world frame and populate the initial optimization vector with them. Also
populate the initial optimization vector with gyroscope biases and inverse metric feature depths. Note that
the initial optimization vector’s acceleration biases are set to zero because they are not estimated during
initialization.

3.8 Public Dataset Evaluation
We evaluate the proposed single camera sliding window state estimator on the EuRoC dataset [82]. The
EuRoC dataset consists of 11 trajectories recorded on an aerial robot with an IMU and a stereo camera pair
inside two different rooms (V1, V2) and an industrial environment (MH). Within each environment, the
trajectories are classified as easy, medium, or difficult depending on how aggressive the motions are and the
presence of unfavorable lighting conditions. Although images from a stereo pair of cameras are available,
we only use images from the left camera to evaluate monocular visual-inertial odometry.

We compare the proposed approach against VINS-Mono [5], a recent state-of-the-art monocular visual-
inertial state estimator11. In order to compare only the fixed lag smoothing functionality of VINS-Mono

10A level frame is a frame whose z-axis is aligned with the gravity vector
11Open source code available at https://github.com/HKUST-Aerial-Robotics/VINS-Mono

https://github.com/HKUST-Aerial-Robotics/VINS-Mono

3.9. REALTIME EVALUATION ON FLIGHT PLATFORM 37

with our approach, we disabled VINS-Mono’s loop closure module. Additionally, VINS-Mono’s online
extrinsics and time delay calibration functionalities were disabled. To facilitate a fair comparison, we fixed
an error12 in VINS-Mono’s IMU preintegration noise Jacobian. Lastly, we rectified camera images before
passing them to VINS-Mono instead of utilizing its non-pinhole distortion models to bring it in line with the
visual front-end implemented in the proposed approach.

All results were generated via postprocessing on a Lenovo Thinkpad T470p laptop13 running Ubuntu
16.04 LTS. The multiple position correspondences trajectory alignment method (Appendix H.3.2) and root
mean square absolute trajectory error (H.13) were used to evaluate each estimated trajectory against ground
truth. Table 3.1 shows that our proposed approach slightly outperforms VINS-Mono on 10 out of the 11
EuRoC trajectories. These results indicate that the single-camera formulation and implementation of our
approach is comparable to a state-of-the-art strategy and thus constitutes a suitable baseline for extensions
detailed in subsequent chapters.

Table 3.1: EuRoC dataset root mean square absolute trajectory error in meters

Trajectory VINS-Mono Proposed
V1 01 easy 0.116 0.114

V1 02 medium 0.120 0.116
V1 03 difficult 0.260 0.217

V2 01 easy 0.134 0.132
V2 02 medium 0.218 0.200
V2 03 difficult 0.378 0.364
MH 01 easy 0.165 0.162
MH 02 easy 0.168 0.158

MH 03 medium 0.459 0.418
MH 04 difficult 0.436 0.437
MH 05 difficult 0.425 0.389

3.9 Realtime Evaluation on Flight Platform
This section presents real-time state estimation performance results on flight experiments conducted with a
hexrotor aerial robot (Sect. G.1.1) and quadrotor aerial robot (Sect. G.1.2).

3.9.1 Motion Capture Flight

The trajectory in the motion capture (Sect. G.1.3) arena consists of horizontal and vertical line segments at
various speeds over two minutes (Fig. 3.6). Although the robot’s controller used motion capture odometry
for repeatability, the visual-inertial state estimation pipeline was running passively on the onboard computer
during flight.

The initial pose trajectory alignment method (Appendix H.3.1) was used to align the state estimate with
motion capture ground truth. All estimated quantities depicted in this section’s plots are aligned with motion
capture ground truth. The notation used in the captions of this section’s figures is defined in Appendix H.3.1.

The final position drift (as defined in Appendix H.4.2) is 14.6 cm over 52.9 m, which is equivalent to
0.28% of the entire trajectory. The translational and rotational absolute trajectory errors, given by (H.13)-
(H.14), are 11.4 cm and 2.0 deg, respectively.

12Missing negative signs in lines 113-115 and 117 of https://github.com/HKUST-Aerial-Robotics/
VINS-Mono/blob/master/vins_estimator/src/factor/integration_base.h as of November 1, 2019.

13Intel Core i7-7820HQ 2.9 GHz × 8, 32 GB RAM

https://github.com/HKUST-Aerial-Robotics/VINS-Mono/blob/master/vins_estimator/src/factor/integration_base.h
https://github.com/HKUST-Aerial-Robotics/VINS-Mono/blob/master/vins_estimator/src/factor/integration_base.h

38 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

1

y [m]

0
0.5

1

-1

1.5

-1

x [m]

2

-0.5

z
 [

m
]

2.5

0

3

0.5

3.5

Figure 3.6: A 3D plot of the trajectory used for state estimation performance evaluation. Estimated position is in red,
while motion capture capture ground truth is in black.

0 20 40 60 80 100 120

time [s]

-1

-0.5

0

0.5

x
 [

m
]

0 20 40 60 80 100 120

time [s]

-1

0

1

y
 [

m
]

0 20 40 60 80 100 120

time [s]

1

2

3

z
 [

m
]

0 20 40 60 80 100 120

time [s]

0

0.05

0.1

0.15

x
 e

rr
o

r
[m

]

0 20 40 60 80 100 120

time [s]

0

0.1

0.2

0.3

y
 e

rr
o

r
[m

]

0 20 40 60 80 100 120

time [s]

0

0.1

0.2

z
 e

rr
o

r
[m

]

(a) Aligned position estimate pal(t) (red) vs. motion capture
ground truth position pgt(t) (black)

0 20 40 60 80 100 120

time [s]

-1

-0.5

0

0.5

x
 [

m
]

0 20 40 60 80 100 120

time [s]

-1

0

1

y
 [

m
]

0 20 40 60 80 100 120

time [s]

1

2

3

z
 [

m
]

0 20 40 60 80 100 120

time [s]

0

0.05

0.1

0.15

x
 e

rr
o

r
[m

]

0 20 40 60 80 100 120

time [s]

0

0.1

0.2

0.3

y
 e

rr
o

r
[m

]

0 20 40 60 80 100 120

time [s]

0

0.1

0.2

z
 e

rr
o

r
[m

]

(b) Aligned position estimate covariance 3 σ envelope
3
√

diag(Σpp,al(t)) (red) vs. absolute value of position error
with respect to ground truth |pal(t)− pgt(t)| (black)

Figure 3.7: Position estimation performance

3.9. REALTIME EVALUATION ON FLIGHT PLATFORM 39

0 20 40 60 80 100 120

time [s]

-1

0

1

v
x
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

-2

0

2

v
y
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

-1

0

1

v
z
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

0.02
0.04
0.06
0.08

0.1
0.12

v
x
 e

rr
o
r

[m
/s

]

0 20 40 60 80 100 120

time [s]

0.05

0.1

0.15

v
y
 e

rr
o
r

[m
/s

]

0 20 40 60 80 100 120

time [s]

0.02

0.04

0.06

0.08

v
z
 e

rr
o
r

[m
/s

]

(a) Aligned velocity estimate val(t) (red) vs. motion capture
ground truth velocity vgt(t) (black)

0 20 40 60 80 100 120

time [s]

-1

0

1

v
x
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

-2

0

2

v
y
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

-1

0

1

v
z
 [
m

/s
]

0 20 40 60 80 100 120

time [s]

0.02
0.04
0.06
0.08

0.1
0.12

v
x
 e

rr
o
r

[m
/s

]

0 20 40 60 80 100 120

time [s]

0.05

0.1

0.15

v
y
 e

rr
o
r

[m
/s

]

0 20 40 60 80 100 120

time [s]

0.02

0.04

0.06

0.08

v
z
 e

rr
o
r

[m
/s

]

(b) Aligned velocity estimate covariance 3 σ envelope
3
√

diag(Σvv,al(t)) (red) vs. absolute value of velocity error
with respect to ground truth |val(t)− vgt(t)| (black)

Figure 3.8: Velocity estimation performance

0 20 40 60 80 100 120

time [s]

-0.4

-0.2

0

0.2

ro
ll

[r
a

d
]

0 20 40 60 80 100 120

time [s]

-0.4

-0.2

0

0.2

0.4

p
it
c
h

 [
ra

d
]

0 20 40 60 80 100 120

time [s]

0

0.5

1

y
a

w
 [

ra
d

]

0 20 40 60 80 100 120

time [s]

0.1

0.2

0.3

ro
ll

e
rr

o
r

[r
a

d
]

0 20 40 60 80 100 120

time [s]

0.1

0.2

0.3

p
it
c
h

 e
rr

o
r

[r
a

d
]

0 20 40 60 80 100 120

time [s]

0

0.02

y
a

w
 e

rr
o

r
[r

a
d

]

(a) Aligned attitude estimate [φal(t), θal(t), ψal(t)] (red) vs.
motion capture ground truth velocity [φgt(t), θgt(t), ψgt(t)]
(black)

0 20 40 60 80 100 120

time [s]

-0.4

-0.2

0

0.2

ro
ll

[r
a

d
]

0 20 40 60 80 100 120

time [s]

-0.4

-0.2

0

0.2

0.4

p
it
c
h

 [
ra

d
]

0 20 40 60 80 100 120

time [s]

0

0.5

1

y
a

w
 [

ra
d

]

0 20 40 60 80 100 120

time [s]

0.1

0.2

0.3

ro
ll

e
rr

o
r

[r
a

d
]

0 20 40 60 80 100 120

time [s]

0.1

0.2

0.3

p
it
c
h

 e
rr

o
r

[r
a

d
]

0 20 40 60 80 100 120

time [s]

0

0.02

y
a

w
 e

rr
o

r
[r

a
d

]

(b) Attitude estimate covariance 3 σ envelope
3
√

diag(Σrr(t)) (red) vs. absolute value of ZYX
Euler angle error with respect to ground truth
[|φal(t)− φgt(t)| , |θal(t)− θgt(t)| , |ψal(t)− ψgt(t)|]
(black)

Figure 3.9: Attitude estimation performance

40 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

The 3 σ envelopes associated with the position, velocity, and yaw covariance estimates (Fig. 3.7b, 3.8b,
3.9b) are greater than their corresponding estimation errors for most of the flight. This indicates that the
estimator is consistent in those dimensions of the state space. On the other hand, roll and pitch covari-
ances are sometimes lower than their corresponding estimation errors due to minor motion capture model
misalignments. Position and yaw covariances increase over time, which accurately reflects the increase
in uncertainty in the unobservable directions of a visual-inertial odometry system. Velocity covariances are
strongly correlated with speed because higher speeds at the same scene depth tend to result in shorter feature
trails, which reduces the number of reprojection residuals in the optimization problem that can counteract
motion drift in the IMU residuals.

3.9.2 Outdoor Flight
This section presents real-time state estimation performance results on flight experiments conducted with a
hexrotor aerial robot in and above a forested outdoor environment. In these flights, the visual-inertial state
estimator’s output was used by the local planner and controller to enable the robot to track teleoperation
motion primitives associated with the operator’s joystick inputs. Because no ground truth was available for
these outdoor flights, final position drift (Appendix H.4.2) was used to assess state estimation performance.

Treetop Flight

This flight consisted of horizontal line segments at a constant altitude and heading above the treetops of a
wooded area (Fig. 3.10-3.12). The total distance traveled is approximately 129 m, while the final position
drift is 2.4 m (2% of estimated path length). Given that the takeoff and landing locations have the same
elevation, Figure 3.12b indicates that most of the final position drift is in the vertical direction.

Figure 3.10: Motion overlay of robot flight over treetops

Start End

Figure 3.11: Estimated flight path over treetops superimposed on satellite imagery

3.9. REALTIME EVALUATION ON FLIGHT PLATFORM 41

-5 0 5 10 15 20 25

x [m]

2

4

6

8

10

y
 [

m
]

-5 0 5 10 15 20 25

x [m]

-2

0

2

z
 [

m
]

-2

0

2

z
 [

m
]

0

x [m]

10
108

y [m]

620 42

(a) Top-down view

-5 0 5 10 15 20 25

x [m]

2

4

6

8

10

y
 [
m

]

-5 0 5 10 15 20 25

x [m]

-2

0

2

z
 [
m

]

-2

0

2

z
 [
m

]

0

x [m]

10
108

y [m]

620 42

(b) Elevation view

-5 0 5 10 15 20 25

x [m]

2

4

6

8

10
y
 [
m

]

-5 0 5 10 15 20 25

x [m]

-2

0

2

z
 [
m

]

-2

0

2

z
 [
m

]

0

x [m]

10
108

y [m]

620 42

(c) 3D view

Figure 3.12: Estimated flight path over treetops

Forest and Treetop Flight

This flight consists of an initial segment along a paved forest path and a final segment over the forest treetops
(Fig. 3.13-3.15). The total distance traveled is approximately 167 m, while the final position drift is 5 m (3%
of estimated path length). Given that the takeoff and landing locations are at the same elevation, Figure 3.15b
indicates that most of the final position drift is in the vertical direction.

Figure 3.13: Motion overlay of robot flight along forest path

3.9.3 Cave Flight
This section presents real-time state estimation performance results on flight experiments conducted on a
quadrotor aerial robot inside a natural cave. In this flight, the visual-inertial state estimator’s output was used
by a planner and controller to enable the robot to autonomously explore an underground chamber that forms
part of the Laurel Caverns cave system in Southwestern Pennsylvania. Onboard lights provided sufficient
illumination to enable feature tracking on the downward camera over a rocky environment (Fig. 3.16).
Because no ground truth was available for this flight, final position drift (Appendix H.4.2) was used to
assess state estimation performance. The total distance traveled is approximately 46 m, while the final
position drift is 0.47 m, or 1% of estimated path length (Fig. 3.17).

42 CHAPTER 3. SLIDING WINDOW VISUAL-INERTIAL ODOMETRY

Figure 3.14: Motion overlay of robot flying from inside the forest to above the treetops

0

5

10

15

x
 [
m

]

-15-10-5051015

y [m]

-15-10-5051015

y [m]

0

2

4

6

8

z
 [
m

]

-10

y [m]

0
0

2

4

z
 [
m

]

6

8

15

x [m]

1010
5

0

(a) Top-down view

0

5

10

15

x
 [

m
]

-15-10-5051015

y [m]

-15-10-5051015

y [m]

0

2

4

6

8

z
 [

m
]

-10

y [m]

0
0

2

4

z
 [

m
]

6

8

15

x [m]

1010
5

0

(b) Elevation view

0

5

10

15

x
 [
m

]

-15-10-5051015

y [m]

-15-10-5051015

y [m]

0

2

4

6

8

z
 [
m

]

-10

y [m]

0
0

2

4

z
 [
m

]

6

8

15

x [m]

1010
5

0

(c) 3D view

Figure 3.15: Estimated flight path inside forest and over treetops

3.9. REALTIME EVALUATION ON FLIGHT PLATFORM 43

Figure 3.16: Aerial robot flying autonomously in a chamber of the Laurel Caverns cave system in Southwestern
Pennsylvania.

-3 -2 -1 0 1 2 3

x [m]

-3

-2

-1

0

1

y
 [
m

]

-3-2-101

y [m]

-1

-0.5

0

0.5

1

z
 [
m

]

2
-1

0

x [m]

0

1

z
 [
m

]

1

0

y [m]

-2-1
-2

-3

(a) Top-down view

-3 -2 -1 0 1 2 3

x [m]

-3

-2

-1

0

1

y
 [

m
]

-3-2-101

y [m]

-1

-0.5

0

0.5

1

z
 [

m
]

2
-1

0

x [m]

0

1

z
 [

m
]

1

0

y [m]

-2-1
-2

-3

(b) Elevation view

-3 -2 -1 0 1 2 3

x [m]

-3

-2

-1

0

1

y
 [
m

]

-3-2-101

y [m]

-1

-0.5

0

0.5

1

z
 [
m

]

2
-1

0

x [m]

0

1

z
 [
m

]

1

0

y [m]

-2-1
-2

-3

(c) 3D view

Figure 3.17: Estimated flight path inside cave chamber

Chapter 4

Practical Considerations for VIO
Deployment in Real World Scenarios

This chapter describes a number of techniques that improve the accuracy and consistency of sliding win-
dow visual-inertial odometry as well as enable it to be used for closed loop control of multirotor aerial
robots. Section 4.1 describes a computationally efficient covariance computation method, while Section 4.2
describes a way to maintain covariance consistency by enforcing visual-inertial odometry’s lack of observ-
ability in global position and yaw. Section 4.3 describes an auxiliary estimator used for closed loop control
during takeoff and before the primary optimization-based estimator has initialized. Section 4.4 describes a
finite state machine for switching between primary and auxiliary estimator odometry sources for closed loop
control as well as triggering mid-air reinitialization when the optimization-based state estimate becomes de-
graded.

4.1 Efficient Covariance Estimation
The covariance associated with the solution of a nonlinear least squares (NLS) optimization problem can
be found by taking the inverse of its final iteration’s Hessian matrix. However, sliding window bundle ad-
justment problems typically involve hundreds of variables and thousands of residuals, which yield Hessians
that are too large to invert in real time with limited computational resources.

To obtain the covariance matrix more efficiently, we employ [83]’s method of first performing a Cholesky
decomposition on the Hessian matrix and using the result to recursively compute entries of the inverse Hes-
sian starting from the bottom right corner. Although this method still takes a long time to compute the
entire covariance matrix, it is very quick to compute the covariance matrix’s bottom right corner. Given
this property, we exploit the fact that we are typically only interested in the covariance of the most recent
pose and twist in the sliding window optimization and permute the Hessian’s rows and columns so that the
block corresponding to the latest motion state is at the bottom right corner prior to performing the Cholesky
decomposition. Consequently, the cost of computing motion state covariance is reduced to the cost of a
Cholesky decomposition on the NLS problem’s Hessian matrix.

4.2 Gauge Ambiguity Handling
Gauge ambiguity refers to the unobservability of global position and yaw in a visual-inertial odometry
system [84]. If all poses and feature locations are translated and rotated about the gravity axis by the
same amount, the visual-inertial optimization problem’s IMU residuals and reprojection residuals remain
unchanged. On the other hand, roll and pitch are observable because applying a roll or pitch rotation to all
estimates changes their gravity alignment and hence IMU residual values.

44

4.2. GAUGE AMBIGUITY HANDLING 45

4.2.1 Problems Caused By Gauge Ambiguity

Gauge ambiguity causes the visual-inertial optimization problem to have infinitely many minimizers. During
the nonlinear least squares regression, the Hessian matrix of a cost function comprised solely of IMU and
reprojection residuals has a rank deficiency of 4 corresponding to global position and yaw (see Fig. 4.2).
This makes it difficult to solve the linear system for the Gauss-Newton step during individual optimization
iterations. Additionally, the rank deficiency caused by gauge ambiguity prevents covariance computation,
which requires inverting the final Hessian.

4.2.2 Gauge Ambiguity Mitigation Strategies

There are three main approaches to mitigate the problems caused by gauge ambiguity.

Free Gauge

The free gauge approach used in VINS-Mono [5] relies on Levenberg-Marquardt damping to overcome
Hessian rank deficiency when computing Gauss-Newton steps. This approach suffers from reduced step
accuracy, which may potentially cause the optimization’s iterations to diverge. To prevent optimization
solution drift along the four unobservable directions, the free gauge approach applies a 4DOF transform to
the final solution to align with the position and yaw of the initial guess.

The free gauge approach1 computes covariance by taking the pseudo-inverse of the rank deficient Hes-
sian. However, this produces a geometrically meaningless quantity where uncertainty is spread out over all
poses (see Fig. 4.3). Although [85] proposed a method to transform free gauge covariance into a geometri-
cally meaningful quantity, it requires extra computationally expensive matrix multiplications

Fixed Gauge

The fixed gauge approach reparameterizes the optimization variables such that the first sliding window
frame’s attitude is decomposed into a roll/pitch component and a yaw component. This breakdown enables
the first frame’s position and yaw to be held constant during optimization, which reduces the problem di-
mension by four and makes the Hessian full rank. Although gauge fixation enables Gauss-Newton step and
covariance computation, parameterizing the first sliding window keyframe’s orientation differently from all
other keyframes increases implementation complexity.

Gauge Prior

The gauge prior approach adds a residual term to the visual-inertial odometry cost function that acts as
a soft constraint to keep the sliding window’s first position and yaw constant. This extra term, called a
gauge prior, eliminates the Hessian’s 4D nullspace and enables numerically stable covariance computation2

(see Fig. 4.1). The advantage of using a gauge prior over gauge fixation is that it does not require any
reparameterization of optimization variables. Additionally, it enables the user to specify the confidence of
the initial position and yaw estimate via a prior covariance matrix that weights gauge prior relative to other
cost function terms. For these reasons, we use the gauge prior approach to handle gauge ambiguity in our
visual-inertial odometry system.

4.2.3 Gauge Prior Implementation Details

Let p and q be the components of the current optimization vector corresponding respectively to the first
position vector and orientation quaternion of the sliding window. Let p0 and q0 be their corresponding
initial values.

1Note that VINS-Mono does not compute covariance.
2The gauge prior only needs to be used in the very first sliding window if marginalization is enabled because it gets embedded

in the marginalization residuals of subsequent sliding window optimizations.

46 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

Cost Function

The gauge prior cost function is given by

fprior =
1

2

∥∥rprior
∥∥2

Σprior
(4.1)

fprior =
1

2
rT

priorΣ
−1
priorrprior (4.2)

fprior =
1

2

∥∥LT
priorrprior

∥∥2
(4.3)

where Σ−1
prior = Lprior LT

prior and the prior covariance is diagonal:

Σprior = diag
{
σ2
x0, σ

2
y0, σ

2
z0, σ

2
ψ0

}
(4.4)

In actual flight experiments, the prior uncertainty take on the following values:

σx0 = σy0 = σy0 = 0.01 m (4.5)

σψ0 = 1× 10−4 rad (4.6)

Residual

The position component of the prior residual is simply vector subtraction, while the yaw component is the
signed shortest angular distance between the initial yaw and the yaw estimate.

rprior =

[
p− p0

shortest angular distance (QuatToYaw (q0) ,QuatToYaw (q))

]
(4.7)

The QuatToYaw function is given by (A.40).

Jacobian

The prior Jacobian consists of the prior residuals’ partial derivatives with respect to perturbations δp ∈ R3

and δθ ∈ R3 of the first position and orientation. The perturbed position and quaternion are expressed as

p = p̄ + δp (4.8)

q = q̄⊗ Exp(δθ) ≈ q̄⊗
[

1
1
2δθ

]
(4.9)

Substitute the above expressions into the prior residual and differentiate with respect to the perturbations to
obtain the partial derivatives that make up the prior Jacobian. The partials of the position residual and the
partial of the yaw residual with respect to the position perturbation are trivial.

∂rprior(1 : 3)

∂δp
= I3×3 (4.10)

∂rprior(1 : 3)

∂δθ
= 03×3 (4.11)

∂rprior(4)

∂δp
= 01×3 (4.12)

The partial of the yaw residual with respect to the attitude perturbation is more involved.

rprior(4) = shortest angular distance (QuatToYaw (q0) ,QuatToYaw (q)) (4.13)

4.2. GAUGE AMBIGUITY HANDLING 47

Because additive offsets do not influence the derivative, we take the derivative of the related function

f = QuatToYaw (q)− QuatToYaw (q0) (4.14)

The second term is a constant, so we ignore it for the purpose of taking derivatives with respect to δθ. Call
the remaining term g:

g = atan2 (b, a) (4.15)

a = 1− 2(q2
y + q2

z) (4.16)

b = 2(qwqz + qxqy) (4.17)

where 
qw
qx
qy
qz

 =


q̄w
q̄x
q̄y
q̄z

⊗ [
1

1
2δθ

]
(4.18)

We apply the chain rule for total derivatives to

∂g

∂δθ
=
[
∂g
∂δθx

∂g
∂δθy

∂g
∂δθz

]
(4.19)

∂g

∂δθ
=
[
∂g
∂a

∂a
∂δθx

+ ∂g
∂b

∂b
∂δθx

∂g
∂a

∂a
∂δθy

+ ∂g
∂b

∂b
∂δθy

∂g
∂a

∂a
∂δθz

+ ∂g
∂b

∂b
∂δθz

]
(4.20)

where

∂g

∂a
=

−b
a2 + b2

(4.21)

∂g

∂b
=

a

a2 + b2
(4.22)

∂a

∂δθx
= −

(
q̄2
y + q̄2

z

)
δθx + (q̄xq̄y − q̄wq̄z) δθy + (q̄wq̄y + q̄xq̄z) δθz (4.23)

∂a

∂δθy
= (q̄xq̄y − q̄wq̄z) δθx −

(
q̄2
w + q̄2

x

)
δθy − 2 (q̄wq̄y + q̄xq̄z) (4.24)

∂a

∂δθz
= (q̄wq̄y + q̄xq̄z) δθx −

(
q̄2
w + q̄2

x

)
δθz + 2 (q̄xq̄y − q̄wq̄z) (4.25)

∂b

∂δθx
= (q̄wq̄z + q̄xq̄y) δθx +

1

2

(
q̄2
w + q̄2

y − q̄2
x − q̄2

z

)
δθy + (q̄y q̄z − q̄wq̄x) δθz (4.26)

∂b

∂δθy
=

1

2

(
q̄2
w + q̄2

y − q̄2
x − q̄2

z

)
δθx − (q̄wq̄z + q̄xq̄y) δθy + 2 (q̄wq̄x − q̄y q̄z) (4.27)

∂b

∂δθz
= (q̄y q̄z − q̄wq̄x) δθx − (q̄wq̄z + q̄xq̄y) δθz +

(
q̄2
w + q̄2

y − q̄2
x − q̄2

z

)
(4.28)

4.2.4 Numerical Example
The effect of using a gauge prior term on the visual-inertial bundle adjustment optimization problem’s
Hessian matrix is shown in Figure 4.1, which compares singular values. Singular values and singular vectors
obtained by performing singular value decomposition on the Hessian provide information about its effective
rank and nullspace. The bottom plot of Figure 4.1 shows that the four smallest singular values of the no-
gauge-prior Hessian are three orders of magnitude smaller than the next smallest singular value. Because

48 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

50 100 150 200

Hessian singular values

0

5

10

lo
g

1
0

 |
 v

a
lu

e
 |

Without gauge prior

With gauge prior

230 232 234 236 238 240 242

Hessian singular values

-3

-2

-1

0

lo
g

1
0

 |
 v

a
lu

e
 |

Without gauge prior

With gauge prior

Figure 4.1: Hessian singular values with and without a gauge prior. The lower plot shows the smallest singular values
at the extreme right of the upper plot.

these singular values are very close to zero, the effective rank of the no-gauge-prior Hessian is four less than
its dimension. On the other hand, using a gauge prior causes the Hessian to be full rank, as shown by the
lack of near-zero singular values for the with-gauge-prior Hessian in Figure 4.1.

The effective nullspace spanned by the singular vectors corresponding to the no-gauge-prior Hessian’s
four near-zero singular values is depicted in Figure 4.2. In this numerical example, the visual-inertial bundle
adjustment problem involves 10 sliding window keyframes, each of which is parameterized by 15 local
states. Within each keyframe’s 15 × 1 parameter block, the first three components represent position while
the next three components represent attitude. Figure 4.2 shows that the effective nullspace basis vectors
have nonzero components corresponding to the position and yaw of all keyframes, which implies that the
no-gauge-prior Hessian’s effective nullspace corresponds to global position and heading.

Figure 4.3 depicts the 1-σ uncertainty envelopes associated with the position and yaw states of sliding
window keyframes when covariance is computed by taking the pseudo-inverse of the no-gauge-prior Hessian
and when it is computed by inverting the with-gauge-prior Hessian. The former approach distributes un-
certainty across keyframes, while the latter approach assigns Σprior to the first keyframe and yields mostly
increasing uncertainties for subsequent keyframes. Only the latter approach reflects the growth of uncer-
tainty due to lack of global position and yaw observations or constraints.

4.3 Auxiliary Estimator
The auxiliary estimator provides odometry for closed-loop control during time intervals when the primary
optimization-based estimator’s odometry is unavailable. The requirement of non-trivial translational motion
in order to obtain a set of image frames with sufficient parallax and spatial displacement (Sect. 3.7) prevents
aerial robots from successfully initializing monocular visual-inertial estimators before takeoff. To enable
fully autonomous flight without relying on feedforward-only or RC-assisted takeoff, we develop an auxiliary
state estimator that provides odometry during times such as takeoff or mid-air failure recovery when the
primary estimator is still initializing.

The auxiliary state estimator uses an Unscented Kalman filter (UKF) that fuses IMU, downward camera
horizontal velocity, and downward rangefinder observations to estimate velocity and height. Attitude and
angular velocity are taken directly from the IMU, while horizontal position is integrated without correction
from the UKF’s estimated horizontal velocity. Note that horizontal translation and heading drift are not

4.3. AUXILIARY ESTIMATOR 49

50 100 150 200

optimization vector state index

0

0.1

0.2

0.3

|
v
a
lu

e
 | 1

2

3

4

2 4 6 8 10 12 14

optimization vector state index

0

0.1

0.2

0.3

|
v
a
lu

e
 | 1

2

3

4

Figure 4.2: The null space basis vectors of the no-gauge-prior Hessian are each shown in a different color. The lower
plot shows the first 15 components of the singular vectors corresponding to the four smallest singular values of the
no-gauge-prior Hessian. The four basis vectors span position (components 1-3) and yaw (component 6) of all sliding
window keyframes.

1 2 3 4 5 6 7 8 9 10

sliding window keyframe index

0.2
0.4
0.6
0.8

1
1.2

x

 [
c
m

]

1 2 3 4 5 6 7 8 9 10

sliding window keyframe index

0.5

1

1.5

y

 [
c
m

]

1 2 3 4 5 6 7 8 9 10

sliding window keyframe index

0.2
0.4
0.6
0.8

1
1.2

z

 [
c
m

]

1 2 3 4 5 6 7 8 9 10

sliding window keyframe index

0.15
0.2

0.25
0.3

0.35

 [

d
e

g
]

Figure 4.3: 1-σ uncertainty envelopes associated with the position and yaw states of sliding window keyframes.
Red denotes covariance computed from taking the pseudo-inverse of the no-gauge-prior Hessian, while blue denotes
covariance computed by inverting the with-gauge prior Hessian. The rank deficient Hessian spreads out uncertainty
over the entire sliding window’s keyframes, while the full rank Hessian correctly models the increase in uncertainty
over the sliding window.

50 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

IMU
Observations

Downward
Rangefinder
Observations

Downward
Camera Images

Gyro buffer
Feature

Tracking and
Detection

Homography
Estimation

Homography
Decomposition

Scale with depth
and divide by
elapsed time

Reject Outliers

�avg

Rotate into
Level Frame

�, �

�

Unscented
Kalman Filter

Compensate for
camera-IMU rigid

body offset

Rotate to level
frame

Compute yaw
rate

�, �

�avg

Rest Detector

start / stop

�

��

�, �, �

�˙ ,��� ���

�

�

�

�

�

Integrate
Horizontal
Velocity

,��� ���

Assemble state
estimate

�, �,�

�, �
, ���

auxiliary
odometry

�, �,

,�� ��

Yaw
Passthrough

�

�

�

Compute level
frame

acceleration

��

Figure 4.4: Auxiliary state estimator data flow

4.3. AUXILIARY ESTIMATOR 51

corrected because in typical flight scenarios the robot only uses auxiliary odometry for a short time before
primary odometry is available.

4.3.1 Horizontal Velocity Estimation
In near-hover flight regimes above an approximately level surface, the robot’s horizontal velocity can be
estimated using images from a downward-facing camera, angular velocity from an IMU gyroscope, and
range from a downward rangefinder. This section describes a horizontal velocity estimation method based
on the correction model of [86] that utilizes the planar ground assumption, which is valid in most takeoff
scenarios.

Given a set of feature correspondences between downward camera image frames k and k+ 1 that lie on
a common plane, a point observation pk+1 in the later image frame is related to its corresponding point pk
in the earlier image frame via a homography H.

pk+1 = Hpk (4.29)

H = K
(
R + t · nT)K−1 (4.30)

K ∈ R3×3 is the pinhole camera intrinsic matrix, n is the unit normal of the plane, and (R, t) are the
rotation and up-to-scale translation that take vectors from frame k to k + 1. H is found in a robust manner
via a RANSAC scheme that uses reprojection error as a measure of model quality.

The homography matrix is decomposed into four (R, t,n) triplets of potential solutions. Two of the
four potential solutions whose planes are behind the cameras (i.e. their plane normals satisfy eT

3n < 0) are
rejected due to their physical impossibility. Of the remaining two solutions, the one whose relative rotation
R is closest to the IMU gyro-derived relative rotation (3.2) is selected.

We assume that the downward rangefinder’s measurement axis is parallel to the downward camera’s z-
axis and that the origins of the two frames are coincident. The first assumption is easy to ensure by mounting
both sensors pointing downward underneath the body of an aerial robot. Although the second assumption is
physically impossible to meet, in typical takeoff scenarios with a level ground plane and low roll and pitch
angles, the downward rangefinder’s observations will be quite close to the downward camera’s true scene
depth regardless of how far apart the two sensors are mounted.

Let r be the range observation from the downward rangefinder. The intersection point of the rangefinder’s
measurement axis with the ground plane is r = [0, 0, r]T in the camera frame. The dot product of r with
the level ground plane’s unit normal n yields rangefinder’s altitude d, which is also the downward camera’s
scene depth.

d = rTn (4.31)

Camera velocity is obtained by scaling t/ ‖t‖ (unit direction vector associated with the homography trans-
lation) by d and dividing by elapsed time.

vc =
t

‖t‖
d

tk+1 − tk
(4.32)

The body frame velocity associated with vc is

vb = Rbc

(
vc + RT

bcωb × pcb
)

(4.33)

where pcb is the body frame’s location in the camera frame, Rbc is the rotation that takes camera frame
vectors to the body frame, and ωb is the body frame angular velocity.

Finally, the level frame horizontal velocity vl is obtained by compensating for the roll and pitch of the
current body frame:

vl =

[
1 0 0
0 1 0

]
Ry(θ)Rx(φ)vb (4.34)

52 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

Rwb (φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (4.35)

4.3.2 Altitude Estimation
The downward rangefinder provides time-of-flight range observations to the first surface in the direction it is
pointing. Assume that the downward rangefinder is mounted at the body frame z-axis (pbr =

[
0 0 zoffset

]T)

and points along the body frame −z axis. The body frame range observation is rb =
[
0 0 −r

]T, which
can be transformed into the world frame using an attitude estimate derived solely from IMU measurements.

rw = Rimurb (4.36)

The z-component of rw is unaffected by yaw drift in the IMU attitude estimate because it only depends on
the drift-free roll (φ) and pitch (θ) components of the IMU attitude estimate. The altitude observation used
to update the UKF is

zalt = r cosφ cos θ + zoffset (4.37)

To suppress noise in raw range observations, apply a low pass filter them before using them in (4.37).

4.3.3 Unscented Kalman Filter

Theory

The Kalman filter is a recursive, online algorithm that estimates the values of unknown variables from se-
quences of noisy measurements. Let x be the concatenation of the unknown variables of interest. The
Kalman filter recursively updates an estimate, x̂, of the true state vector together with the estimated co-
variance of the estimation error, P = E[(x̂ − x)(x̂ − x)T]. In the Kalman filter’s prediction step, a state
transition model (usually derived from physical laws) is used to propagate the state estimate forward in
time (with optional input from external observations). In the correction step, the state estimate is updated
with external observations using an observation model. The influence of the prediction step observations
and correction step observations on the state estimate is determined by their relative uncertainties. While
the standard Kalman filter only supports linear prediction and correction models, the unscented Kalman
filter [36] supports nonlinear models by using the unscented transform to approximate the propagation of
Gaussian probability distributions through nonlinear functions with a fixed set of sample points.

Implementation

The auxiliary state estimator uses a discrete time UKF that fuses IMU, altimeter, and horizontal velocity
observations to produce smooth altitude and velocity estimates (see Fig. 4.5). The state vector consists of
the world frame altitude (z), navigation frame3 velocity (vn), and IMU acceleration bias (ba):

x =

 zvn
ba

 ∈ R7 (4.38)

The initial states are all set to zero with the exception of altitude, which is set from the first downward
altimeter observation. The initial covariance is set to a diagonal matrix comprised of user-defined sigma
values:

P0 = diag
{
σ2
z0, σ

2
vx0, σ

2
vy0, σ

2
vz0, σ

2
bax0, σ

2
bay0, σ

2
baz0

}
(4.39)

3The navigation frame is obtained by rotating the body frame’s z-axis to align with the gravity vector while keeping heading
unchanged.

4.3. AUXILIARY ESTIMATOR 53

The discrete time process update model is zk+1

vn,k+1

ba,k+1

 =

 zk
vn,k
ba,k

+ ∆tk

 eT
3vn,k

Ry(θm)Rx(φm) (am − ba,k − na,k)− ge3 − ψ̇me3 × vn,k
nb,k

 (4.40)

ψ̇m =
1

cos θm
(ωm,y sinφm + ωm,z cosφm) (4.41)

where e3 =
[
0 0 1

]T. The process input observation vector consists of IMU roll, pitch, linear accelera-
tion, and y and z angular velocities:

u =
[
φm θm am,x am,y am,z ωm,y ωm,z

]T ∈ R7 (4.42)

The process noise vector consists of additive acceleration noise and acceleration bias derivative noise.

n =

[
na
nb

]
∼ N (0,Q) (4.43)

The process noise covariance is a diagonal matrix that can used to adjust the state estimate’s smoothness.

Q = diag
{
σ2
ax, σ

2
ay, σ

2
az, σ

2
bx, σ

2
by, σ

2
bz

}
(4.44)

The altitude correction update has the form

zalt = z + nalt (4.45)

nalt ∼ N (0, σ2
alt) (4.46)

where zalt is defined in (4.37) and σalt is the empirical standard deviation of altitude observations.
The horizontal velocity correction update has the form

zvxy =

[
vnx
vny

]
+ nvxy (4.47)

nvxy ∼ N
(

0,

[
s2
vx 0
0 s2

vy

])
(4.48)

where zvxy is the final output of Sect. 4.3.1. The horizontal velocity observation’s covariance at timestep k
is assumed to be diagonal and computed empirically from running standard deviations of zvxy observations
over a window of size N .

v̄nj,k =
1

N

N∑
i=1

vnj,k−N+i j ∈ {x, y} (4.49)

svj,k = svj,base + svj,scale

√√√√ 1

N

N∑
i=1

(vnj,k−N+i − v̄nj,k) j ∈ {x, y} (4.50)

The parameters svx,base, svy,base, svx,scale, and svy,scale are used to adjust the magnitude of the horizontal
velocity observation’s covariance.

54 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

Figure 4.5: Auxiliary UKF velocity estimation. The UKF navigation frame velocity vn is depicted as a red line, its
associated 3 σ uncertainty envelope is in pink, the motion capture ground truth is in black, and the homography-
derived horizontal velocity is in green.

4.3.4 Odometry Assembly

The auxiliary estimator odometry’s vertical position and linear velocity components are set directly from
the states of the UKF described in Sect. 4.3.3.

The auxiliary estimator’s orientation is obtained directly from an IMU complementary attitude filter that
fuses gyroscope angular velocities and accelerometer linear accelerations. Although it is possible to use
magnetometer heading corrections in the IMU’s complementary attitude filter, we avoid using the magne-
tometer because we need to operate in indoor environments with significant magnetic anomalies. Due to the
lack of a heading correction, only the roll and pitch components of the complementary filter attitude estimate
are drift-free. We also use the yaw component of the estimate because it does not incur significant drift over
the typical lengths of time the auxiliary estimator needs to run for (i.e. when waiting for primary estimator
initialization to finish) when the filter parameters are properly tuned. We set the auxiliary estimator’s angular
velocity to the IMU complementary attitude filter’s bias-corrected gyroscope observations.

The horizontal position component of the auxiliary estimator odometry are obtained by rotating the
horizontal navigation frame velocities from the UKF into the world frame and integrating the result with
respect to time. By default, the world frame is set to the navigation frame at the time the UKF initializes.
Although forward integration of velocities without correction leads to significant drift over time, we mitigate
the total amount of horizontal position drift by only initializing the UKF upon takeoff see Sect. 4.4.1). This
ensures that the auxiliary estimator runs for the shortest possible amount of time before the primary estimator
finishes initialization.

4.4 Odometry Management
The odometry management system acts as a switch on primary and auxiliary odometry signals, outputting
a single odometry signal that can be used for closed loop control. To reduce unnecessary computation, a
finite state machine is used to start or stop the primary and auxiliary state estimators depending on flight
conditions. 4DOF level transforms are applied to the current odometry source to ensure a smooth transition
during odometry source switches. Figure 4.6 depicts the information flow between the primary estimator,
auxiliary estimator, and odometry switcher.

4.4. ODOMETRY MANAGEMENT 55

Feature
Detection and

Tracking
IMU

Preintegration

Update Sliding
Window Factor

Graph

Nonlinear
Optimization

MarginalizationStructure from
Motion

Visual-inertial
Alignment

IMU-rate
Upsampling

IMU Downward
Camera

Downward
Rangefinder

Unscented
Kalman Filter

Homography
Velocity

Estimator

Odometry
Switcher

Front-end
Preprocessing

Back-end
Inference

Auxiliary
State

Estimator

Initialization

Sensors

Current
state

estimate

Figure 4.6: Information flow between primary estimator, auxiliary estimator, and odometry switcher

4.4.1 Finite State Machine

The finite state machine that manages starting, stopping, and switching between the primary and auxiliary
estimators is depicted in Figure 4.7, while Table 4.1 describes the states in more detail.

Rest

Nominal

Pre-rest Pre-nonideal

Nonideal

Vehicle is
in the air

Vehicle is on
the ground

Use auxiliary
odometry (Filtering)

Use primary odometry
(Optimization)

optimization

failure

downward range AND
angular velocity norm
are below thresholds

downward range OR
angular velocity norm
are above thresholds

do
wn

wa
rd

 ra
ng

e

be
low

 th
re

sh
old

difference
between

primary and
auxiliary

velocity, roll,
and pitch is

below
threshold Auxiliary

estimator is
initialized

Auxiliary
estimator is
initialized

Figure 4.7: Finite state machine for switching between primary and auxiliary estimator

In a typical operating scenario, the aerial robot starts on the ground in the rest state. Although the
auxiliary estimator’s UKF initializes and runs, the auxiliary odometry’s horizontal position and yaw states
are clamped to avoid drift during the arbitrarily long time interval that the robot can remain on the ground.
The primary estimator is disabled in rest state to avoid unnecessary computation.

Takeoff is detected when either the downward rangefinder range or the IMU’s angular velocity norm
exceeds predefined thresholds. After takeoff, the FSM enters the non-ideal state and enables the primary
estimator. The primary estimator begins receiving keyframes and preintegrated IMU deltas only after takeoff

56 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

to improve initialization quality by maximizing the translational motion contained within its sliding window.
Once the vehicle is in the air, the auxiliary estimator begins using IMU complementary filter yaw and
integrating horizontal velocities to obtain horizontal position. Because both primary and auxiliary estimators
are active, non-ideal state is the most computationally expensive FSM state. If the robot comes back to rest
on the ground before the primary odometry is safe to use, the FSM re-enters the rest state. This transition
only occurs when both the downward rangefinder range and the IMU angular velocity norm are below
predefined thresholds.

The FSM transitions from non-ideal to nominal only when the primary odometry is safe to use, which
is true when the following conditions are met:
• norm of the velocity difference between primary and auxiliary odometries falls belows a predefined

threshold
• absolute difference of the primary and auxiliary roll estimates falls below a predefined threshold
• absolute difference of the primary and auxiliary pitch estimates falls below a predefined threshold

These conditions enable the user to control the magnitude of the velocity, roll, and pitch discontinuities in
the final odometry sent to closed loop control that arise due to instantaneously switching from auxiliary to
primary odometry. If the FSM remains in the non-ideal state for more than a threshold amount of time after
a successful initialization, it is likely that the mismatch between primary and auxiliary odometries is caused
by an inaccurate initialization. In such situations, initialization is restarted while remaining in the non-ideal
state (Figure 4.8).

Table 4.1: Finite state machine state descriptions

FSM State Description Actions upon entry Persistent Actions Active estimator
Rest Initial state, on the

ground
Restart primary esti-
mator

Clamp auxiliary
odometry yaw and
horizontal position

auxiliary

Non-ideal Primary estimator is
uninitialized or primary
odometry is unsafe to use

Unclamp auxiliary
odometry yaw and
horizontal position

primary and auxil-
iary

Nominal Primary estimator is
initialized and primary
odometry is ready to use

primary

Pre-rest Using primary odome-
try after landing while
waiting for auxiliary esti-
mator to initialize

Trigger auxiliary es-
timator initialization

primary

Pre-nonideal Using primary odometry
after in-flight optimiza-
tion failure while waiting
for auxiliary estimator to
initialize

Trigger auxiliary es-
timator initialization

primary

Upon entering the nominal state, the auxiliary estimator shuts down and closed loop control uses pri-
mary odometry. The FSM remains in the nominal state until the downward rangefinder range falls below a
predefined threshold during landing, after which it transitions to pre-rest. Pre-rest is an intermediate state
between nominal and rest whose only function is to wait for the auxiliary estimator’s UKF to initialize.
Upon entering rest, the primary estimator is stopped to prevent its sliding window from accumulating IMU
observations into the second-latest preintegration motion delta as dictated by the two-way marginalization

4.4. ODOMETRY MANAGEMENT 57

0 5 10 15 20 25 30 35 40 45 50

time [s]

-0.2

0

0.2

ro
ll

[r
a
d
]

A B C

0 5 10 15 20 25 30 35 40 45 50

time [s]

-0.1

0

0.1

0.2

p
it
c
h
 [
ra

d
]

A B C

0 5 10 15 20 25 30 35 40 45 50

time [s]

0.1

0.2

0.3

0.4

y
a
w

 [
ra

d
]

A B C

Figure 4.8: This plot compares the ZYX Euler angle estimates from the primary estimator (red), auxiliary estimator
(blue), and mocap (green) during and after takeoff. Although the primary estimator initializes at point A, the odom-
etry switcher continues using auxiliary estimator odometry because the roll and pitch differences between the two
estimators is too large. After this condition persists for more than a threshold amount of time, the odometry switcher
retriggers initialization at point B. At point C the primary estimator initializes for the second time with roll and pitch
estimates that are sufficiently close to the auxiliary estimator. The odometry switcher stops the auxiliary estimator and
begins using the primary estimator’s odometry from this point forward.

strategy (Sect. 3.6.3). Because primary odometry obtained from such temporally imbalanced sliding win-
dows tends to diverge (see Figure 4.9), auxiliary odometry is passed to the control system.

If any of the below optimization failure conditions are met while the FSM is in nominal, it transitions to
pre-nonideal.
• Norm of difference between current optimization’s last sliding window frame position and previous

optimization’s last sliding window frame position exceeds a threshold dmax

• Rotation angle between current optimization’s last sliding window orientation and previous optimiza-
tion’s last sliding window frame orientation exceeds a threshold ϕmax

• Norm of current optimization’s acceleration bias estimate exceeds threshold ba,max

• Norm of current optimization’s gyroscope bias estimate exceeds threshold bω,max

• Average value of reprojection residuals after applying loss function exceeds threshold λproj,max on
more than a threshold number of consecutive optimizations nproj,max

Table 4.2 lists the threshold parameter values used in actual flight experiments. pre-nonideal is an inter-
mediate state between nominal and non-ideal whose only function is to wait for the auxiliary estimator’s
UKF to initialize. After transitioning to non-ideal, the primary estimator begins reinitialization while the
controller switches to using auxiliary odometry.

4.4.2 Smooth Odometry Source Switching
In order to avoid significant discontinuities in the final odometry, switching between primary and auxiliary
odometry sources must ensure continuity in at least position and yaw.

Let {b} be the body frame, {n} be the navigation frame (the same as {b} but with zero roll and pitch),
{pi} be the primary odometry’s frame on its ith reinitialization, and {aj} be the auxiliary odometry’s frame

58 CHAPTER 4. PRACTICAL CONSIDERATIONS FOR VIO DEPLOYMENT

90 91 92 93 94 95 96 97 98 99 100

time [s]

0.2

0.4

0.6

0.8

z
 [

m
]

Downward range

Ground truth

Without rest detection

With rest detection

90 91 92 93 94 95 96 97 98 99 100

time [s]

1

2

3

4

5

6

7

s
lid

in
g

 w
in

d
o

w
 l
e

n
g

th
 [

s
]

Without rest detection

With rest detection

Figure 4.9: When the vehicle lands and comes to rest, the two-way marginalization strategy (without rest detection)
repeatedly discards the second-newest sliding window keyframe. This causes the total time interval covered by sliding
window keyframes to rise, resulting in temporally imbalanced sliding windows and estimator divergence (red line after
t = 98 s in top plot). The FSM’s rest detector stops the primary estimator after the vehicle comes to rest on the ground
(blue line at t = 94 s) and avoids estimator divergence.

Table 4.2: Optimization failure threshold parameters

Threshold Value
dmax 5.0 m
ϕmax 0.873 rad
ba,max 2.5 m/s2

bω,max 1.0 rad/s
λproj,max 2
nproj,max 5

4.4. ODOMETRY MANAGEMENT 59

on its jth reinitialization. We assume that both primary and auxiliary odometry are defined in level reference
frames corresponding to the true position and yaw at the time of their most recent initializations.

The auxiliary estimator’s odometry after its first initialization is Ta0b, while the primary estimator’s
odometry after its first initialization is Tp0b. At the moment of switchover, create level transforms Ta0n and
Tp0n by zeroing out the auxiliary and primary odometry’s roll and pitch. To ensure a smooth switchover,
pre-multiply the primary odometry pose with the level transform Ta0p0 = Ta0nT

−1
p0n to align its position

and yaw with the auxiliary odometry pose. Additionally, rotate the primary odometry’s linear velocity by the
yaw associated with Ta0p0 . This process is performed with the roles of the auxiliary and primary odometries
reversed when switching from primary to auxiliary odometry.

The proposed odometry alignment method does not ensure that velocity, roll, pitch, or angular velocity
states are aligned when switching between primary and auxiliary odometry. However, angular velocity usu-
ally does not differ significantly between the different odometry sources because it is a body frame quantity
that closely follows gyroscope observations. Discontinuities in roll, pitch, and velocity are mitigated by only
switching between odometry sources when roll, pitch, and velocity estimates are sufficiently close.

Chapter 5

VIO for Multiple Cameras with Disjoint
Fields of View

Although a single camera and IMU form a minimal sensor suite for visual-inertial odometry, achieving
good performance depends on good template matching or feature tracking, which require the viewed scene
to have adequate lighting, no moving objects, and no motion blur. A common method to obtain more visual
information is to use a stereo configuration where two hardware-synchronized cameras observe the same
spatial volume. Assuming the baseline between the two cameras is known, stereo configurations render
scene depth observable in the absence of sensor motion. However, stereo visual-inertial odometry methods
still suffer if the visible scene has poor lighting, moving objects, or non-trivial motion blur.

We propose to use multiple cameras with disjoint fields of view to improve the accuracy and robustness
of visual-inertial state estimation by increasing the probability that image observations from at least one of
the cameras contain sufficient visual information for motion estimation. In many flight scenarios, the benefit
of additional visual information is greater than the benefit of vision-only scale recovery.

5.1 Multi-Camera Optimization Problem Formulation
We first extend the single camera optimization problem formulation from Sect. 3.5.1 to multiple synchro-
nized cameras (Sect. 5.1.1) and then present modifications that are needed to support asynchronous cameras
(Sect. 5.1.2).

5.1.1 Synchronized Cameras
This section adapts the single camera optimization problem formulation in Sect. 3.5.1 to the case where there
are multiple synchronized cameras. Because corresponding image frames from multiple cameras are taken
at the same instance in time, corresponding keyframes from multiple cameras are exactly matched in time. In
this setup, a single set of IMU motion states corresponding to all sliding window keyframes, augmented with
camera-IMU extrinsic transforms to each camera, is sufficient to fully characterize reprojection geometry
relationships for all cameras.

Let there be p synchronized cameras with feature observations in the sliding window. Suppose there are
mc feature trails from the cth camera that have been observed in at least two consecutive keyframes, starting
on or before a threshold number of keyframes before the sliding window’s last keyframe. The location of
feature l of camera c in the world frame is parametrized by its inverse depth (ρcl) in camera c’s frame at the
pose corresponding to the first sliding window keyframe in which it was observed.

We concatenate motion, IMU bias, and inverse depths of each camera’s features to form the full state
vector x.

x =
[
xT

1 . . . xT
n ρ11 . . . ρ1m1 . . . ρp1 . . . ρpmp

]T ∈ R16n+
∑p

c=1mc (5.1)

60

5.1. MULTI-CAMERA OPTIMIZATION PROBLEM FORMULATION 61

This is the multi-camera equivalent of (3.166). The multi-camera unconstrained optimization problem has
the form:

x∗ = arg min
x

[
fprior (x) + fimu (x) +

p∑
c=1

fcam,c (x)

]
(5.2)

This is the multi-camera equivalent of (3.167).
The camera cost encodes feature-derived geometric constraints on sliding window poses and inverse

depths.

fcam,c (x) =
1

2

mc∑
l=1

|Kcl|∑
i=2

λ
(∥∥rproj

(
pk(c,l,1),qk(c,l,1),pk(c,l,i),qk(c,l,i), ρcl

)∥∥2

Σ

)
(5.3)

Kcl is the set of keyframe indices where feature l from camera c is observed, k(c, l, i) is a function that
returns the keyframe index of the ith observation of feature l from camera c, λ(·) is a loss function, and
Σ ∈ R2×2 is the feature observation noise covariance matrix. This is the multi-camera equivalent of (3.170).

5.1.2 Asynchronous Cameras
Although a synchronized camera rig enables a straightforward extension of single camera optimization to
the multi-camera case, asynchronous camera rigs have two advantages:
• Hardware synchronization of multi-camera rigs incurs additional engineering effort and complexity.
• Asynchronous triggering is often required to enable different auto-exposure settings (i.e. different

image frequencies) across multiple cameras that view scenes with different lighting conditions.

Problem

Without specialized hardware to synchronize the triggering of multiple cameras, image observations from
each camera are taken at different times. Consequently, image frames and keyframes from different cameras
occur at different points in time. A straightforward way to incorporate observations from multiple cameras
is to include pose states for each camera in the optimization vector. However, this leads to a number of
consequences:

1. The optimization vector grows by number of keyframes in sliding window × number of motion states
per keyframe for each additional camera whose observations are incorporated.

2. The number of IMU factors between keyframe motion states increases by approximately number of
keyframes in sliding window, since the action of inserting a keyframe into the sliding window splits a
single IMU factor into two IMU factors unless inserting at the beginning or end of the sliding window.

3. Although keyframes from different cameras are not synchronized, it is possible for some keyframes
from different cameras to be very close together in time by chance. The IMU factor between such a
pair of keyframes is associated with a preintegration motion delta formed from very few IMU observa-
tions, which is undesirable because the effect of IMU noise will be passed through to the preintegration
motion delta without the averaging effect of a large number of observations.

In the remainder of this section we describe three methods for formulating a multi-camera optimization
problem that avoids these consequences.

Pose Interpolation

The pose interpolation strategy only includes motion states associated with a single camera’s keyframes
in the optimization vector and linearly interpolates pose at the times corresponding to all other camera
keyframes [87]. The camera whose keyframes are associated with IMU motion states in the optimization
vector is designated as the master camera, while all other cameras are designated as secondary cameras.

62 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

Ideally, all secondary camera timestamps fall within or not too far outside of the time interval formed by the
first and last master camera keyframe observations. The key assumption of the pose interpolation method
is that the rigid body on which all cameras are mounted moves with constant linear and angular velocity
between any two successive master camera keyframes.

The optimization problem formulation for the pose interpolation strategy is largely the same as synchro-
nized camera formulation in Sect. 5.1.1 with the exception that reprojection factors for secondary camera
features are replaced with interpolated pose reprojection factors. Appendix F formulates the interpolated
pose reprojection factor and provides detailed derivations of its residual and Jacobians. The interpolated
reprojection factor is more expensive to evaluate than the standard reprojection factor because it involves up
to two extra pose states. This increases the connectedness of the sliding window bundle adjustment factor
graph, which increases the fill-in of the Jacobian matrix and therefore increases the cost of iterative opti-
mization. Another disadvantage of the pose interpolation strategy is that the assumption of constant linear
and angular velocity over typical inter-keyframe time intervals is often violated. Errors in reprojection ge-
ometry caused by the incorrect constant velocity assumption have a significant impact on depth estimation
and can quickly cause iterative nonlinear solvers to converge to incorrect solutions.

Image Plane Feature Trail Interpolation

See Section 5.2.

Continuous Trajectory Estimation

The continuous trajectory estimation approach reformulates the sliding window bundle adjustment opti-
mization problem by parameterizing motion as linear combinations of splines instead of discrete sets of
poses and twists. In [88], the optimization vector’s position, velocity, orientation, and IMU bias states at a
fixed set of keyframe times are replaced by a set of B-spline coefficients. The main benefit of a continuous
trajectory representation is that poses can be evaluated at arbitrary points in time, which enables modeling
secondary camera reprojection residuals in an asynchronous multi-camera rig.

5.2 Image Plane Feature Trail Interpolation
In a similar manner as the pose interpolation strategy, the image plane feature trail interpolation strategy only
includes motion states associated with a single camera’s keyframes in the optimization vector. Instead of in-
terpolating IMU pose at secondary camera keyframe times with respect to IMU pose at temporally proximal
master camera keyframes, the image plane feature trail interpolation strategy interpolates secondary camera
feature locations at master camera keyframe times with respect to their locations in temporally proximal sec-
ondary camera frames. A minimum of two frames are required for linear interpolation, while three frames
are required for quadratic interpolation. Each secondary camera feature observation’s interpolant is evalu-
ated at the time of the closest master camera keyframe to obtain an estimate of its location as captured by a
hypothetical secondary camera that is time synchronized with the master camera. This pseudo-observation
enables the synchronized multi-camera optimization formulation (Sect. 5.1.1) to be used without modifica-
tion.

Unlike in the pose interpolation method, secondary camera reprojection geometry can be represented by
standard reprojection factors (Sect. 3.4), avoiding the need to use the more costly interpolated reprojection
factors (Appendix F) that not only involve two extra pose states but also require evaluation of the capitalized
exponential map and capitalized logarithmic map. When using standard reprojection factors for secondary
cameras, feature observations hc,l,i and hc,l,j in (3.141)-(3.142) are approximated by either linear (5.4) or
quadratic (5.5) interpolation. Table 5.1 compares the differences of the pose interpolation and image plane
feature trail interpolation methods.

5.2. IMAGE PLANE FEATURE TRAIL INTERPOLATION 63

Table 5.1: Comparison of pose interpolation and image plane feature trail interpolation

Pose Interpolation Image Plane Feature Trail
Interpolation

Interpolation space SE(3) or SO(3)× R3 R2

Time grid points used for
interpolation correspond to

closest master camera
keyframes before and after the
considered secondary camera
keyframe

closest secondary camera
frames before and after the
considered secondary camera
keyframe

Typical separation of
neighboring points on time grid
used for interpolation

∼ 0.1 s ∼ 0.016 s

Interpolant is evaluated at
secondary camera keyframe
time

master camera keyframe time

Assumption
Camera moves with constant
linear and angular velocity over
interpolation time interval

Feature location moves with
constant velocity (or
acceleration) on the image plane
over interpolation time interval

5.2.1 Lagrange Polynomial Interpolation of Feature Observations
Let τj−1, τj , and τj+1 be three successive secondary camera image frame timestamps. Let ti be a master
camera keyframe that satisfies τj < ti < τj+1. Let hc,l(t) be the homogeneous coordinate representation
of feature l in camera c at time t. Feature tracking yields observations hc,l(τj−1), hc,l(τj), and hc,l(τj+1).
The image plane feature trail interpolation strategy estimates hc,l(ti) from these observations and their
corresponding timestamps via componentwise Lagrange polynomial interpolation.

Linear interpolation only requires observations at τj and τj+1.

hc,l,lin(ti) =
ti − τj+1

τj − τj+1
hc,l(τj) +

ti − τj
τj+1 − τj

hc,l(τj+1) (5.4)

Quadratic interpolation requires observations at τj−1, τj , and τj+1.

hc,l,quad(ti) =
ti − τj
τj−1 − τj

ti − τj+1

τj−1 − τj+1
hc,l(τj−1) +

ti − τj−1

τj − τj−1

ti − τj+1

τj − τj+1
hc,l(τj)

+
ti − τj−1

τj+1 − τj−1

ti − τj
τj+1 − τj

hc,l(τj+1) (5.5)

Linear interpolation models the observation of feature l as moving with constant velocity on the image
plane, while quadratic interpolation models it as moving with constant acceleration on the image plane.
These assumptions are valid over typical interpolation time intervals (τj+1− τj or τj+1− τj−1) on the order
of tens of milliseconds unless the multi-camera rig undergoes highly dynamic motions.

5.2.2 Simulation Comparison of Pose Interpolation and Image Plane Feature Trail Interpo-
lation

In this section we present a small toy example to illustrate the differences between the pose interpolation
and image plane feature trail interpolation strategies. A simulated camera moves over and observes a set of
known features in 3D space. The camera-body extrinsic transform is

pbc =

0.0615
0.015
−0.093

 m (5.6)

64 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

φbc = 3.064 rad (5.7)

θbc = 0.016 rad (5.8)

ψbc = −1.611 rad (5.9)

The body frame’s position and attitude with respect to the world frame are given by

pwb(t) =

cos
(

2πt
1.5

)
sin
(

2πt
1.5

)
t+ 3

 m (5.10)

φwb(t) = 0 rad (5.11)

θwb(t) = 0.1 sin

(
2πt

0.3

)
rad (5.12)

ψwb(t) =
π

2
+ sin

(
2πt

1.5

)
rad (5.13)

over the trajectory time interval of 0 ≤ t ≤ 5 s (Fig. 5.2). The camera’s frame rate is 45 Hz and the set of
camera keyframe times is {0, 0.1, 0.2, 0.3, 0.4, 0.5} s. We simulate 49 features in a regular horizontal grid
below the trajectory (Fig. 5.2a). Feature heights are normally distributed around z = 0.5 m with a standard
deviation of 0.3 m.

The objective of this toy example is to compare the pose interpolation, linear image plane feature trail
interpolation, and quadratic image plane feature trail interpolation strategies for predicting feature locations
at non-keyframe evaluation times t = 0.05 s and t = 0.43 s. While the pose interpolation strategy is
restricted to using information at keyframe times, the image plane feature trail interpolation strategies have
access to information from grids of two or three frames around the evaluation times. Linear interpolation
only uses the two frames closest to each evaluation time, while quadratic interpolation uses all three frames
corresponding to each evaluation time.

0 0.1 0.2 0.3 0.4 0.5

time [s]

0

0.5

1

x
 [
m

]

0 0.1 0.2 0.3 0.4 0.5

time [s]

0

0.5

y
 [
m

]

0 0.1 0.2 0.3 0.4 0.5

time [s]

3

3.5

z
 [
m

]

(a) Position vs. time, (5.10)

0 0.1 0.2 0.3 0.4 0.5

time [s]

-1

0

1

ro
ll

[r
a
d
]

0 0.1 0.2 0.3 0.4 0.5

time [s]

-0.05

0

0.05

p
it
c
h
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5

time [s]

2

2.5

y
a
w

 [
ra

d
]

(b) Attitude vs. time, (5.11)-(5.13)

Figure 5.1: Simulated trajectory: ground truth (black), keyframe times (red), image plane feature trail interpolation
grid times (green), evaluation times (blue)

The pose interpolation strategy uses the poses of the two keyframes closest to each evaluation time to
interpolate pose at each evaluation time via (F.5), (F.7)-(F.8). The non-trivial difference between the ground
truth and interpolated poses in Figure 5.2b indicates that the assumption of constant linear and angular
velocity between successive keyframes is violated for the relatively simple trajectory in this toy example.

5.3. MODIFICATIONS TO SINGLE CAMERA VIO 65

0

1

0.5

1

1

x [m]

1.5

0.5

y [m]

2

z
 [

m
]

0.5

2.5

0

3

0

3.5

-0.5-0.5

(a) 3D trajectory and feature locations

1
2.8

3

0.5

3.2

z
 [
m

]

x [m]

1

3.4

y [m]

00.5

0 -0.5

(b) Close-up of 3D trajectory

Figure 5.2: Simulated trajectory in 3D: ground truth path (red), features (black), ground truth poses at keyframe times
(blue), ground truth poses at evaluation times (green), interpolated poses at evaluation times (orange)

Figure 5.3 compares reprojected features from each interpolation method with the ground truth feature
observations at the evaluation times. The pose interpolation method predicts feature observations by trian-
gulating 3D feature locations from the two surrounding keyframes and projecting the result into the camera
frame associated with the interpolated pose at the evaluation time. The image plane feature trail interpo-
lation methods predict feature observations by linear or quadratic interpolation of corresponding feature
observations in a grid of frames clustered around the evaluation time. The inset figure shows that the re-
projection error with respect to ground truth is the greatest for the pose interpolation method and the lowest
for the quadratic image plane feature trail interpolation method. This trend is more clearly illustrated by
the inverse cumulative distribution plots of Figure 5.4. Both figures additionally suggest that the benefit of
using quadratic over linear image plane feature trail interpolation is smaller than the benefit of using linear
image plane feature trail interpolation over pose interpolation.

Figure 5.5 depicts the feature trails predicted by each method over time intervals around each evaluation
time. The time interval around t = 0.05 s corresponds to a large rotation about the camera axis that is
associated with high optical flow. Consequently, the contrast between the feature trails predicted by different
interpolation strategies is significant. On the other hand, the time interval around t = 0.43 s corresponds to
lower optical flow and yields a lesser difference between the feature trails predicted by different interpolation
strategies.

This toy example demonstrated that the image plane interpolation method yields more accurate feature
predictions than the pose interpolation method under a typical operating scenario. The two main factors that
account for the former method’s superior performance are greater validity of its assumptions and the greater
temporal proximity of its interpolation grids to their corresponding evaluation points.

5.3 Modifications to Single Camera VIO
This section describes aspects of the single camera visual-inertial odometry algorithm that need to be mod-
ified for compatibility with multiple cameras.

5.3.1 Selection of Keyframes from Streaming Image Frames

Figure 5.6 depicts the relationship of secondary camera image frames and interpolated pseudo-keyframes
with master camera image frames and keyframes. The secondary camera pseudo-keyframe is interpolated

66 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

-0.6 -0.4 -0.2 0 0.2

x

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
y

(a) Reprojected features at t = 0.05 s

-0.4 -0.2 0 0.2 0.4

x

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

(b) Reprojected features at t = 0.43 s

-0.6 -0.55 -0.5 -0.45

x

-0.2

-0.18

-0.16

-0.14

-0.12

y

(c) Close-up of blue inset from (a)

-0.15 -0.1 -0.05 0

x

0.32

0.34

0.36

0.38

0.4
y

(d) Close-up of blue inset from (b)

Figure 5.3: Comparison of feature reprojections computed via the pose interpolation (red), linear image plane feature
trail interpolation (orange), and quadratic image plane feature trail interpolation (green) methods with the ground
truth feature observation (black) at the evaluation times.

0 20 40 60 80 100

Percentile

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

je
c
ti
o
n
 E

rr
o
r

Pose Interpolation

Linear Feature Interpolation

Quadratic Feature Interpolation

(a) t = 0.05 s

0 20 40 60 80 100

Percentile

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P
ro

je
c
ti
o
n
 E

rr
o
r

Pose Interpolation

Linear Feature Interpolation

Quadratic Feature Interpolation

(b) t = 0.43 s

Figure 5.4: Inverse cumulative distribution plots for projection error at each evaluation time

5.3. MODIFICATIONS TO SINGLE CAMERA VIO 67

-0.6 -0.4 -0.2 0 0.2

x

-0.8

-0.6

-0.4

-0.2

0

0.2

y

(a) 0.02 s < t < 0.07 s

-0.4 -0.2 0 0.2 0.4

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y
(b) 0.39 s < t < 0.45 s

Figure 5.5: Comparison of ground truth feature trails (black) with corresponding feature trails predicted by pose
interpolation (red), linear image plane feature trail interpolation (orange), and quadratic image plane feature trail
interpolation (green) over time intervals around each evaluation time.

time

master
camera

secondary
camera 1

secondary
camera n

...

Figure 5.6: Each master camera keyframe (solid red rectangle) is associated with the two secondary camera frames
that bracket it (blue rectangles). A secondary camera pseudo-keyframe observation (red dotted border rectangle)
at the same time as the corresponding master camera keyframe is interpolated from neighboring secondary camera
frames (blue rectangles). Note that three neighboring secondary camera frames, rather than the two depicted in this
figure, are required for quadratic interpolation.

68 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

from the set of two or three secondary camera frames whose compensated timestamps are closest to the
master camera keyframe’s compensated timestamp. This set is chosen such that the second last and last
frames’ compensated times bracket the latest master camera keyframe’s compensated time. Each secondary
camera’s feature tracking front-end sends a batch of frames associated with the master camera keyframe’s
compensated timestamp to the optimization back-end in order to provide the latter with raw observations for
feature trail interpolation.

5.3.2 Optimization

The sliding window optimization back-end only utilizes secondary camera observations that have arrived
before the latest master camera keyframe, which enables optimization frequency to solely depend on master
camera keyframe rate (as opposed to having to wait for secondary camera observations to arrive). This ar-
rangement enables the sliding window optimization to naturally handle the case where no secondary camera
observations are available.

Interpolated feature observations must be used when triangulating feature depths using sliding window
poses that correspond to the times of master camera keyframes. These triangulated depths are used as initial
guesses when incorporating new feature trails into the optimization problem.

5.3.3 Incorporation of New Feature Trails into Optimization

The criteria for adding new feature trails to the optimization problem described in Sect. 3.5.2 applies to
secondary cameras as well as the master camera. When computation is limited and the optimization size
must be kept constant, a single feature budget must be enforced across all cameras when incorporating new
feature trails into the optimization problem. A default strategy is to evenly split the feature budget across
all cameras and enforce the per-camera feature budget when selecting new feature trails from an individual
camera to add to the optimization problem. We will call this the even split strategy to distinguish it from
a more sophisticated information gain-based approach for selecting new features to include in optimization
that will be described in Sect. 6.

5.3.4 Initialization

The full initialization procedure described in Sect. 3.7 is only performed for the master camera. Assuming
that each master camera keyframe is associated with a batch of frames from each secondary camera, after
a successful master camera initialization the poses at master camera keyframe compensated timestamps are
used to triangulate depths of interpolated secondary camera features.

5.3.5 Selection of Keyframes for Marginalization

The marginalization strategy described in Sect. 3.6.3 is applied to the master camera’s keyframes in order
to prevent secondary camera visual information from influencing keyframe selection. This design deci-
sion was made to simplify implementation changes with respect to the single camera case. Adapting the
marginalization strategy to consider parallax in multiple cameras is an avenue for potential future work.

5.4 Experimental Results
This section presents postprocessed results that demonstrate the superiority of multiple camera sliding
window visual-inertial odometry over single camera sliding window visual-inertial odometry on in-flight
datasets taken in environments with different visual textures and lighting conditions. To achieve this, im-
ages and IMU observations collected during each trajectory were used to run sliding window visual-inertial
odometry in three settings - with the downward camera as the only source of visual observations, with the
forward camera as the only source of visual observations, and with both cameras supplying visual observa-
tions.

5.4. EXPERIMENTAL RESULTS 69

5.4.1 Motion Capture Arena

In this dataset the aerial robot flies along a horizontal square trajectory (Fig. 5.7) consisting of four short
segments separated by aggressive stopping maneuvers. Because this flight occurs inside a motion capture
arena (Fig. G.4), full ground truth is available.

3
2

1

2

y [m]

1

3

z
 [
m

]

0

4

5

x [m]

02
-14

Ground Truth

Downward Only

Forward Only

Downward and Forward

Figure 5.7: 3D plots of the trajectories estimated by VIO with different camera combinations on the motion capture
dataset

Figures 5.8-5.9 show that forward camera only estimation experiences a sharp increase in position and
velocity error after t = 15 s. Around this time downward camera only estimation experiences a smaller
increase in translational error, while two camera estimation experiences the smallest increase in translational
error. However, two camera estimation incurs the greatest heading error after t = 15 s (Fig. 5.10b).

Estimation performance degradation at t = 15 s is caused by a high forward acceleration, which results
in a rapid change in pitch angle (Fig. 5.10a). This rotation caused a rapid field of view change in each camera,
resulting in most existing feature trails disappearing and requiring the initialization of many new feature
trails. Triangulation is required to initialize the value of each new feature trail added to the optimization
problem. Because the forward camera’s average scene depth at this point in the trajectory was greater than
the downward camera’s, triangulation was much less accurate for the forward camera. This is reflected by
the fact that after t = 15 s a high proportion of downward camera reprojection residuals have low values
after optimization (Fig. 5.11a, Fig. 5.11c bottom) while a low proportion of forward camera reprojection
residuals have low values after optimization (Fig. 5.11b, Fig. 5.11c top).

Poor feature triangulation is directly responsible for the greater translational error in forward camera
only estimation. Although downward only estimation avoids a rapid increase in translational error between
t = 16 s and t = 21 s, it has a non-trivial elevation error due to poor scale initialization during takeoff.
By using the forward camera to initialize during takeoff and relying more heavily on downward camera
observations immediately after t = 15 s, two camera estimation is able to achieve lower translational error
than with either camera alone.

Despite having better translational accuracy, two camera estimation has worse heading accuracy than
when using either camera alone (Table 5.2). This is mainly due to the optimizations in the dynamic motion

70 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

10 15 20 25 30 35

time [s]

0

2

4

x
 [

m
]

10 15 20 25 30 35

time [s]

-1

0

1

2

3

y
 [

m
]

10 15 20 25 30 35

time [s]

2

4

z
 [

m
]

10 15 20 25 30 35

time [s]

0

5

x
 e

rr
o

r
[m

]

10 15 20 25 30 35

time [s]

0

1

2

y
 e

rr
o

r
[m

]

10 15 20 25 30 35

time [s]

0

2

4

z
 e

rr
o

r
[m

]

(a) Position estimates and motion capture ground truth
(black)

10 15 20 25 30 35

time [s]

0

2

4

x
 [

m
]

10 15 20 25 30 35

time [s]

-1

0

1

2

3

y
 [

m
]

10 15 20 25 30 35

time [s]

2

4

z
 [

m
]

10 15 20 25 30 35

time [s]

0

5

x
 e

rr
o

r
[m

]

10 15 20 25 30 35

time [s]

0

1

2

y
 e

rr
o

r
[m

]

10 15 20 25 30 35

time [s]

0

2

4

z
 e

rr
o

r
[m

]

(b) Absolute value of position error

Figure 5.8: Position estimates and errors of visual-inertial odometry using only the downward camera (red), only the
forward camera (green), and both cameras (blue) on the motion capture dataset.

10 15 20 25 30 35

time [s]

-2

0

2

v
x
 [
m

/s
]

10 15 20 25 30 35

time [s]

-1

0

1

2

v
y
 [
m

/s
]

10 15 20 25 30 35

time [s]

-0.5

0

0.5

1

1.5

v
z
 [
m

/s
]

10 15 20 25 30 35

time [s]

1

2

3

v
x
 e

rr
o
r

[m
/s

]

10 15 20 25 30 35

time [s]

0.5

1

1.5

2

v
y
 e

rr
o
r

[m
/s

]

10 15 20 25 30 35

time [s]

0.5

1

1.5

v
z
 e

rr
o
r

[m
/s

]

(a) Velocity estimates and motion capture ground truth
(black)

10 15 20 25 30 35

time [s]

-2

0

2

v
x
 [
m

/s
]

10 15 20 25 30 35

time [s]

-1

0

1

2

v
y
 [
m

/s
]

10 15 20 25 30 35

time [s]

-0.5

0

0.5

1

1.5

v
z
 [
m

/s
]

10 15 20 25 30 35

time [s]

1

2

3

v
x
 e

rr
o
r

[m
/s

]

10 15 20 25 30 35

time [s]

0.5

1

1.5

2

v
y
 e

rr
o
r

[m
/s

]

10 15 20 25 30 35

time [s]

0.5

1

1.5

v
z
 e

rr
o
r

[m
/s

]

(b) Absolute value of velocity error

Figure 5.9: Velocity estimates and errors of visual-inertial odometry using only the downward camera (red), only the
forward camera (green), and both cameras (blue) on the motion capture dataset.

5.4. EXPERIMENTAL RESULTS 71

10 15 20 25 30 35

time [s]

-0.2

0

0.2

ro
ll

[r
a

d
]

10 15 20 25 30 35

time [s]

-0.2

0

0.2

0.4

p
it
c
h

 [
ra

d
]

10 15 20 25 30 35

time [s]

0

0.05

0.1

0.15

y
a

w
 [

ra
d

]

10 15 20 25 30 35

time [s]

0.05

0.1

0.15

ro
ll

e
rr

o
r

[r
a

d
]

10 15 20 25 30 35

time [s]

0.05

0.1

0.15

0.2

p
it
c
h

 e
rr

o
r

[r
a

d
]

10 15 20 25 30 35

time [s]

0

0.05

y
a

w
 e

rr
o

r
[r

a
d

]
(a) Attitude estimates and motion capture ground truth
(black)

10 15 20 25 30 35

time [s]

-0.2

0

0.2

ro
ll

[r
a

d
]

10 15 20 25 30 35

time [s]

-0.2

0

0.2

0.4

p
it
c
h

 [
ra

d
]

10 15 20 25 30 35

time [s]

0

0.05

0.1

0.15

y
a

w
 [

ra
d

]

10 15 20 25 30 35

time [s]

0.05

0.1

0.15

ro
ll

e
rr

o
r

[r
a

d
]

10 15 20 25 30 35

time [s]

0.05

0.1

0.15

0.2

p
it
c
h

 e
rr

o
r

[r
a

d
]

10 15 20 25 30 35

time [s]

0

0.05

y
a

w
 e

rr
o

r
[r

a
d

]

(b) Absolute value of attitude error

Figure 5.10: Attitude estimates and errors of visual-inertial odometry using only the downward camera (red), only the
forward camera (green), and both cameras (blue) on the motion capture dataset.

10 15 20 25 30 35

time [s]

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r

o
f
D

o
w

n
w

a
rd

 C
a
m

e
ra

 R
e
s
id

u
a
ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

s
id

u
a

l
V

a
lu

e
 A

ft
e

r
O

p
ti
m

iz
a

ti
o

n

(a) Downward camera only

10 15 20 25 30 35

time [s]

0

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r

o
f
F

o
rw

a
rd

 C
a
m

e
ra

 R
e
s
id

u
a
ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

s
id

u
a

l
V

a
lu

e
 A

ft
e

r
O

p
ti
m

iz
a

ti
o

n

(b) Forward camera only

10 15 20 25 30 35

time [s]

0

200

400

N
u
m

 F
o
rw

a
rd

 R
e
s

0

0.5

1

F
in

a
l
R

e
s
 V

a
lu

e

10 15 20 25 30 35

time [s]

0

100

200

300

N
u
m

 D
o
w

n
w

a
rd

 R
e
s

0

0.5

1

F
in

a
l
R

e
s
 V

a
lu

e

(c) Both cameras

Figure 5.11: Distribution of post-optimization reprojection residual values for VIO with different camera configura-
tions on the motion capture dataset. The upper boundary of the colored region represents the total number of repro-
jection residuals from a given camera as a function of time. The color at location (x, y) denotes the after-optimization
value of the yth smallest value reprojection residual at time x, where blue denotes smaller values and yellow denotes
larger values.

72 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

interval between t = 16 s and t = 21 s that achieved greater horizontal translational accuracy at the expense
of elevation and heading accuracy. The results of postprocessing on the motion capture arena flight dataset
demonstrate that although using more cameras does not always lead to better estimation accuracy in all
degrees of freedom, it is a reliable way to avoid failures in scenarios that are unfavorable for single camera
estimation.

Table 5.2: Drift in position and heading estimates at the end of the motion capture arena flight. The total trajectory
length is 9.67 m.

Camera Configuration Position Error [m] Heading Error [deg]
Downward only 0.81 1.1

Forward only 5.23 2.8
Downward and forward 0.15 3.4

5.4.2 Parking Garage
In this dataset, the aerial robot (Sect. G.1.1) started at the bottom level of a multi-storey parking garage
(Fig. 5.12) and flew along the center of the single driving lane until it landed two floors above its takeoff
location. This approximately 250 m long trajectory consists of two clockwise rectangular segments with
continuously increasing elevation that follow the driving lane as it spirals up two floors (see Fig. 5.13).

Figure 5.12: The parking garage environment contains variable lighting conditions.

Figure 5.13 shows that using both downward and forward cameras for state estimation yields a more
accurate horizontal position estimate than either downward or forward cameras alone. Although horizontal
ground truth was not available for this dataset, we can qualitatively determine that the two-camera estimate
is closest to being rectangular, which is the approximate shape of the actual trajectory. Using the downward
camera alone results in high drift because ground features move out of the field of view too quickly to
impose constraints that bound motion estimate drift. When using the forward camera alone, initialization
does not succeed until almost a minute into the four-minute trajectory (Fig. 5.14). This may be caused by
poor feature tracking due to high contrast induced by variable lighting conditions that affect the forward
camera image more than the downward camera image. Despite this, forward-camera only estimation yields
a qualitatively better horizontal trajectory estimate (Fig. 5.13) and a quantitatively better heading estimate
(Table 5.3) than downward-camera only estimation. Both sets of single-camera estimation results have high
elevation estimate drift in different directions. By fusing both cameras together, two-camera estimation
achieves lower elevation error (Fig. 5.14, Table 5.3).

5.4. EXPERIMENTAL RESULTS 73

0 10 20 30 40 50 60 70

x [m]

0

5

10

15

20

25

30

35

40

45

50

y
 [

m
]

Downward Only

Forward Only

Downward and Forward

Figure 5.13: Trajectory estimates using downward camera, forward camera, and both cameras are overlaid on a floor
plan of the parking garage’s lower level. Although the second loop of the trajectory occurs in the parking garage’s
upper level, we do not show the upper level floor plan to avoid clutter.

0 50 100 150 200

time [s]

0

1

2

3

4

5

6

7

8

9

z
 [
m

]

Ground Truth Final Elevation

Downward Only

Forward Only

Downward and Forward

Figure 5.14: Elevation estimates over the length of the trajectory for each camera configuration compared with the
ground truth final elevation.

74 CHAPTER 5. VIO FOR MULTIPLE CAMERAS WITH DISJOINT FIELDS OF VIEW

Table 5.3: Drift in elevation and heading estimates at the end of the parking garage flight. The total elevation change
and heading change over the trajectory are +6.17 m and −11.78 rad, respectively.

Camera Configuration Elevation Error [m] Heading Error [deg]
Downward only 2.63 72

Forward only 2.18 31
Downward and forward 1.25 4

Chapter 6

Sensor Resource Allocation

State estimation with limited computational resources is an important capability for robots with non-trivial
size, weight, and power constraints. For visual-inertial odometry, the main computational cost comes from
solving optimization problems to perform probabilistic inference over sliding window motion states and
features. The time required to perform an iteration of nonlinear least squares optimization scales with the
size of the optimization vector, which consists of motion states and feature trails. For a sliding window with
a fixed number of motion states, achieving computationally efficient state estimation requires balancing the
competing objectives of maximizing localization accuracy while minimizing the number of feature trails in
the optimization vector.

In standard sparse visual-inertial odometry algorithms, the front-end typically selects new features based
only on their distinctiveness while enforcing heuristics such as uniform distribution across the camera’s field
of view (Sect. 3.1.1). However, the utility of each individual feature for state estimation varies. Features that
remain in the field of view for long periods of time and can be reliably tracked provide more useful informa-
tion than features that lack these properties. An algorithm that selects the most informative features requires
a way to simulate them over the near-term time horizon, which in turn requires knowledge about future
platform motion and the surrounding environment. In real-world scenarios, simplifying assumptions and
approximations must be made to facilitate forward simulations of robot dynamics and feature observations.

6.1 Problem Formulation
The proposed problem formulation is inspired by [48] with a few modifications. We divide the set of
all feature trails of sufficient length that are visible in the current keyframe into H, the features that are
already being used in optimization, and F , the features that have not yet been used in optimization. The
sensor resource allocation problem selects a subset G from F for inclusion in visual-inertial optimization
to maximize predicted motion estimation accuracy while respecting a limit on optimization problem size
imposed by the amount of available computation.

max
G⊂F

log det M(G ∪ H)

|G ∪ H| ≤ L (6.1)

Predicted motion estimation accuracy is represented by the log determinant of the joint information matrix,
M, associated with n position estimates over the upcoming sliding window, {pi}ni=1. The determinant of
the joint covariance matrix M−1 represents the volume of the confidence ellipsoid, which is a probabilistic
bound on estimation error. Increasing estimation accuracy is equivalent to decreasing the volume of the co-
variance ellipsoid or increasing the volume of the information ellipsoid, which yields the objective function
of (6.1).

75

76 CHAPTER 6. SENSOR RESOURCE ALLOCATION

For a fixed sliding window size, the number of motion states in the visual-inertial optimization problem
is constant. Therefore, keeping a constant optimization problem size requires limiting the number of features
used in optimization to a fixed feature budget, L. Assuming currently visible features that are already used
in optimization will remain in the next optimization, a maximum of L − |H| new feature trails may be
selected from F .

Although the upcoming sliding window information gain matrix is the sum of contributions from inertial
as well as visual observations, the former does not depend on the subset of features that is chosen.

M(G ∪ H) = Mimu + Mvisual(G ∪ H) (6.2)

Therefore, unlike [48] we do not compute the information gain associated with IMU observations via an
explicit IMU dynamics model to avoid unnecessary computational cost. Instead, we approximate it with a
diagonal matrix whose single parameter is a user-defined constant.

Mimu =
1

σ2
imu

I3n×3n (6.3)

The information gain due to visual observations is the sum of information gains associated with using a
set of feature trails in estimation, {Λl}l∈G∪H. We model the probability that the lth feature trail is success-
fully tracked in all keyframes it is visible in with the Bernoulli random variable bl, where bl = 1 denotes
success and bl = 0 denotes failure (i.e. the feature is not tracked in any keyframe).

Mvisual(G ∪ H) =
∑
l∈G∪H

blΛl (6.4)

Because of the introduction of stochasticity, we modify the objective in (6.1) to use the expectation over
{bl}l∈G∪H.

g(G) = E{bl}l∈G∪H

[
log det

(
Mimu +

∑
l∈G∪H

blΛl

)]
(6.5)

Next, apply Jensen’s inequality to obtain a lower bound on the expectation:

g(G) ≥ log det

(
E{bl}l∈G∪H

[
Mimu +

∑
l∈G∪H

blΛl

])
(6.6)

We assume that the probability pl of the outcome bl = 1 to be correlated with Shi-Tomasi corner quality
score in order to capture the intuition that more distinctive feature trails are more likely to be successfully
tracked. This implies E[bl] = pl, which can be substituted into (6.6):

g(G) ≥ log det

(
Mimu +

∑
l∈G∪H

plΛl

)
= f(G) (6.7)

The right hand side of (6.7) is used as the objective function in (6.1).

6.1.1 Log Determinant Evaluation
To ensure numerical stability when evaluating the objective function of (6.1), the log determinant of am×m
positive definite symmetric matrix M is computed via Cholesky decomposition.

M = LLT (6.8)

6.1. PROBLEM FORMULATION 77

log det M = log
[
det
(
LLT)] (6.9)

log det M = log
[
det L det LT] (6.10)

log det M = log [det L det L] (6.11)

log det M = 2 log [det L] (6.12)

Because the Cholesky factor L is triangular, its determinant is the product of its diagonal elements {lii}mi=1.

log det M = 2 log

[
m∏
i=1

lii

]
(6.13)

log det M = 2

m∑
i=1

log lii (6.14)

6.1.2 Feature Observation Prediction Model Assumptions
• There are no occlusions. Features are either tracked in all keyframes in which they are in the field of

view or in no keyframes at all.
• The set of currently visible features represents the set of all features in the environment that will be

visible in the upcoming sliding window’s keyframes.
• The set of currently visible features is accurately triangulated.
• The sensor platform perfectly tracks the trajectory reference used to simulate upcoming sliding win-

dow observations.

6.1.3 Feature Information Gain Evaluation
A simplified linear measurement model is used to evaluate feature trail l’s information gain. Let uckl be
the unit vector corresponding to the observation of feature l in keyframe k of camera c. A geometric
relationship between the unit vector observation and the estimated variables comes from the fact that that
the unit direction vector should be parallel to the feature’s 3D position in the camera frame (Fig. 6.1).

uckl ×
[
(RkRbc)

T (l− (pk + Rkpbc))
]

= 03×1 (6.15)

In the above expression, (Rk,pk) is the rigid body transform that takes vectors from the kth keyframe’s
body frame to the world frame, (Rbc,pbc) is the rigid body transform that takes vectors from the camera c
frame to the body frame, and l is feature l’s location in the world frame.

{� }

{�}

{�}

�

��

���

����

[� − (+)]()�����
T �� �����

��

���

Figure 6.1: Geometry associated with the simplified linear measurement model (6.15)

78 CHAPTER 6. SENSOR RESOURCE ALLOCATION

Expand and rearrange terms in (6.15) to isolate the observation on the left hand side.

− [uckl]× (RkRbc)
T Rkpbc = [uckl]× (RkRbc)

T pk − [uckl]× (RkRbc)
T l (6.16)

zckl = Fcklpk + Eckll (6.17)

Note that the observation model (6.17) is linear because it only depends on keyframe and feature positions
by assuming keyframe orientations to be known. This assumption is reasonable because roll and pitch are
directly observable in a visual-inertial odometry problem, while typical sliding window horizons are short
enough that yaw does not drift significantly.

For each feature l, we stack all keyframe observations (6.17) into a single matrix equation:

zcl = Fclp1:n + Ecll (6.18)

Rewrite (6.18) in terms of the joint state that consists of positions and feature locations.

zcl =
[
Fcl Ecl

] [p1:n

l

]
(6.19)

The information matrix associated with the position and feature location states is given by

[
Fcl Ecl

]T [
Fcl Ecl

]
=

[
FT
clFcl FT

clEcl

ET
clFcl ET

clEcl

]
(6.20)

Marginalize out the feature location using the Schur complement to obtain the information gain for the
position states of the upcoming sliding window.

Λl = FT
clFcl − FT

clEcl

(
ET
clEcl

)−1
ET
clFcl (6.21)

Note that we ignore the information gain of keyframe orientations as well as feature locations in (6.21)
and ultimately in the predicted estimation accuracy objective function (6.7). Ignoring the former is justified
because orientation estimation performance is typically quite good over short time horizons, while ignoring
the latter is justified because the goal is ego-motion estimation rather than mapping.

Evaluating (6.21) for all features in G ∪ H requires near-term pose predictions for all keyframes in the
upcoming sliding window, {Rk,pk}nk=1. These values can be obtained by interpolating the desired position
and orientation references output by the planner under the assumption that state estimation and control are
capable of accurately tracking the reference signal. Unit direction vectors uckl are computed by projecting
features into the appropriate keyframe’s camera frame, assuming that their 3D world frame locations have
been accurately triangulated and that there are no occlusions.

6.2 Greedy Feature Selection
Algorithm 1 describes a greedy algorithm for selecting a subset of features to maximize estimation accu-
racy1. Starting with an empty set, it adds the most informative feature on each iteration until the feature
budget is reached.

The main computational cost associated with Algorithm 1 is the repeated evaluation of (6.7) on line 8.
A much smaller computational cost is associated with evaluating the predicted future information gain of all
currently visible features, {Λl}l∈F∪H. The additional computational cost incurred by running the greedy in-
formative feature selection algorithm must be lower than the computational savings resulting from a reduced
optimization problem size in order for the sensor allocation strategy to be viable2.

1This is a simplified version of Algorithm 1 in [48]
2Figure 6.9c in Sect. 6.4 shows that this condition is satisfied when running on real sensor data

6.3. SIMULATION RESULTS 79

Algorithm 1 Greedy selection of informative features

1: Input: σimu, {Λl, pl}l∈F∪H, N = min(|F| , L− |H|)
2: Output: G
3: G = ∅
4: for i = 1, . . . , N do
5: fmax = −1
6: lmax = −1
7: for l ∈ F \ G do
8: if f(G ∪ l) > fmax then
9: fmax = f(G ∪ l)

10: lmax = l
11: end if
12: end for
13: G ← G ∪ lmax

14: end for

6.3 Simulation Results
We ran three simulation experiments to compare the performance of the proposed greedy feature selection
strategy with a baseline feature selection strategy. The simulation scenarios involve an aerial robot equipped
with a forward-facing and downward-facing camera in an environment with known feature locations along
planar surfaces. The 4 m × 2 m × 2 m hallway environment has features along the floor, ceiling, and two
lateral walls. The 4 m × 4 m × 2 m room environment has features along the floor, ceiling, and four lateral
walls. In each scenario, the robot has knowledge of the trajectory it is tracking over the duration of the next
sliding window time interval. The trajectory is evaluated at 5 keyframe times to obtain the position states
of the sliding window. Known camera intrinsic and extrinsic parameters enable the computation of future
feature observations along the sliding window.

The hall-ceiling scenario consists of robot motion down the hallway environment’s longitudinal axis
while maintaining velocity-aligned heading and cross-sectional position on the hallway centerline 40 cm
below the ceiling. The hall-floor scenario is the same as hall-ceiling, but with the robot maintaining a height
of 50 cm above the floor. The room-circle scenario consists of a counterclockwise motion with velocity-
aligned heading along the circumference of a 0.5 m radius circle at a height of 1 m in the center of the room
environment.

The baseline feature selection strategy splits up the feature budget evenly between the cameras. Within
each camera, features are chosen randomly in a way that maximizes the minimum angular distance between
neighboring feature bearing vectors to ensure uniform coverage of the field of view. If any camera does not
have enough features in its field of view that satisfy the above condition, its excess feature budget is dis-
tributed amongst the other cameras. The proposed method is implemented as described in Sections 6.1-6.2.
In order to highlight the impact of newly added features on the optimization, both the baseline and proposed
methods assume that the optimization at the time of feature selection does not include any previously used
features (i.e. H = ∅).

We run both the baseline and proposed feature selection strategies on each scenario with a feature budget
of 10. Because of the randomness in the baseline method, we run it 50 times and show average results. For
the sake of simplicity, feature quality is assumed to be constant for all features.

In each of the scenarios, the log determinant of the predicted information gain is higher for the proposed
strategy than for the baseline strategy. This is not surprising, as the greedy feature selection strategy specifi-
cally seeks to maximize information gain. Figures 6.2c, 6.3c, and 6.4c show that the proposed method yields

80 CHAPTER 6. SENSOR RESOURCE ALLOCATION

higher information gain and hence lower uncertainty for estimated position states over the upcoming sliding
window keyframes.

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

20

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

(a) Baseline feature selection

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

20

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

(b) Proposed feature selection

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

20

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

3

2

0

0.5

x [m]

1

1

1

z
 [

m
]

1.5

2

y [m]

0 0

-1 -1

(c) Predicted information gain

Figure 6.2: Comparison of baseline and proposed feature selection strategies for a robot with forward and downward-
facing cameras moving down the centerline of a hallway while staying close to the ceiling. The robot both faces and
moves along the +x-axis. In (a)-(b) the trajectory connecting sliding window positions is depicted as a green line,
features visible in the first sliding window keyframe are denoted by black dots, and large colored dots denote selected
features. Plot (a) shows the selected features for one of the many randomized baseline method trials. The plot in (c)
compares f(G) from (6.7) for the proposed and baseline feature selection strategies. Light red lines denote individual
Monte Carlo runs for the baseline method, while the dark red line denotes their average.

The features selected by the proposed approach in the hall-ceiling scenario are evenly split between
forward and downward cameras (Fig. 6.2b), while those in the hall-floor scenario are all from the forward
camera (Fig. 6.3b). When the robot is close to the floor, floor features in the downward camera’s field of
view go outside of it very quickly and are therefore less useful for position estimation. On the other hand,
wall features in the forward camera’s field of view remain in it for the entire sliding window and provide
more utility for position estimation. When the robot is close to the ceiling, floor features in the downward
camera’s field of view remain in it for longer and are more useful for estimation. Although both the baseline
and proposed approaches evenly split the feature budget between the two cameras (Fig. 6.2a-6.2b), the latter
still has a higher utility because it considers anticipated motion over the sliding window.

The features selected by the proposed approach in the room-circle scenario are all from the downward
camera (Fig. 6.4b). When executing a velocity-aligned circular trajectory, wall features visible to the forward
camera go out of view very quickly, while floor features visible to the downward camera remain in the field
of view for the entire sliding window.

The horizontal distance between the red and blue lines in the information gain plots of Figures 6.2-6.4
depicts the reduction in the number of features required to achieve a given level of estimation accuracy. For
example, the proposed method in the hall-floor scenario can achieve the same level of estimation strategy
using 3 features that the baseline strategy achieves with 8 features.

One note of caution is that the simulation results presented in this section do not represent the position
accuracy obtained from running the proposed 2-camera visual inertial state estimator over the upcoming
sliding window, but rather the position accuracy of a batch triangulation of the upcoming sliding window
with currently visible features. Achieving the former results requires implementing an interface between the
toy scenario’s oracle front-end and the proposed state estimator’s back-end, which is an item of proposed
work. The similarity between actual position uncertainty reduction and the simulation model will depend on
the validity of the simulation’s feature observation prediction model assumptions for the visual environment
under consideration.

6.3. SIMULATION RESULTS 81

2 4 6 8 10

number of features selected

2

4

6

8

10

12

14

16

18

20

lo
g
 d

e
te

rm
in

a
n
t
o
f
in

fo
rm

a
ti
o
n
 g

a
in

Baseline Average

Proposed

3

0

1

0.5

2

x [m]

1

z
 [
m

]

1.5

y [m]

0

2

1

-1 0

3

0

1

0.5

2

x [m]

1

z
 [
m

]

1.5

y [m]

0

2

1

-1 0

(a) Baseline feature selection

2 4 6 8 10

number of features selected

2

4

6

8

10

12

14

16

18

20

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

3

0

1

0.5

2

x [m]

1

z
 [

m
]

1.5

y [m]

0

2

1

-1 0

3

0

1

0.5

2

x [m]

1

z
 [

m
]

1.5

y [m]

0

2

1

-1 0

(b) Proposed feature selection

2 4 6 8 10

number of features selected

2

4

6

8

10

12

14

16

18

20

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

3

0

1

0.5

2

x [m]

1

z
 [

m
]

1.5

y [m]

0

2

1

-1 0

3

0

1

0.5

2

x [m]

1

z
 [

m
]

1.5

y [m]

0

2

1

-1 0

(c) Predicted information gain

Figure 6.3: Comparison of baseline and proposed feature selection strategies for a robot with forward and downward-
facing cameras moving down the centerline of a hallway while staying close to the floor. The robot both faces and
moves along the +x-axis. In (a)-(b) the trajectory connecting sliding window positions is depicted as a green line,
features visible in the first sliding window keyframe are denoted by black dots, and large colored dots denote selected
features. Plot (a) shows the selected features for one of the many randomized baseline method trials. The plot in (c)
compares f(G) from (6.7) for the proposed and baseline feature selection strategies. Light red lines denote individual
Monte Carlo runs for the baseline method, while the dark red line denotes their average.

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

lo
g
 d

e
te

rm
in

a
n
t
o
f
in

fo
rm

a
ti
o
n
 g

a
in

Baseline Average

Proposed

2

0

0.5

2 1

1

z
 [
m

]

1.5

x [m]

2

1

y [m]

0

0 -1

2

0

0.5

2 1

1

z
 [
m

]

1.5

x [m]

2

1

y [m]

0

0 -1

(a) Baseline feature selection

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

2

0

0.5

2 1

1

z
 [

m
]

1.5

x [m]

2

1

y [m]

0

0 -1

2

0

0.5

2 1

1

z
 [

m
]

1.5

x [m]

2

1

y [m]

0

0 -1

(b) Proposed feature selection

2 4 6 8 10

number of features selected

0

2

4

6

8

10

12

14

16

18

lo
g

 d
e

te
rm

in
a

n
t

o
f

in
fo

rm
a

ti
o

n
 g

a
in

Baseline Average

Proposed

2

0

0.5

2 1

1

z
 [

m
]

1.5

x [m]

2

1

y [m]

0

0 -1

2

0

0.5

2 1

1

z
 [

m
]

1.5

x [m]

2

1

y [m]

0

0 -1

(c) Predicted information gain

Figure 6.4: Comparison of baseline and proposed feature selection strategies for a robot with forward and downward-
facing cameras moving in a tight counterclockwise circle in a fully enclosed rectangular room with constant height
and velocity-aligned heading. In (a)-(b) the trajectory connecting sliding window positions is depicted as a green line,
features visible in the first sliding window keyframe are denoted by black dots, and large colored dots denote selected
features. Plot (a) shows the selected features for one of the many randomized baseline method trials. The plot in (c)
compares f(G) from (6.7) for the proposed and baseline feature selection strategies. Light red lines denote individual
Monte Carlo runs for the baseline method, while the dark red line denotes their average.

82 CHAPTER 6. SENSOR RESOURCE ALLOCATION

6.4 Experimental Results
This section presents postprocessed results that demonstrate the superiority of the proposed information
gain feature selection strategy for two cameras over the even split strategy for two cameras (described in
Sect. 5.3.3) and for one camera (described in Sect. 3.5.2) with a fixed total feature budget. Images and IMU
observations collected on a multirotor aerial robot were used to run sliding window visual-inertial odometry
with different feature selection strategies and compare their performance. The experimental results show
that the proposed information gain feature selection strategy achieves greater estimation accuracy than the
alternative methods given the same computational cost footprint.

All results were generated via postprocessing on a Lenovo Thinkpad T430s laptop3 running Ubuntu
16.04 LTS.

Information Gain Feature Selection Implementation Details

We use a prediction horizon of 3 s for all information gain feature selection postprocessing results. This
means that the future poses used to evaluate information gain are associated with n time instances spread
evenly over the 3 s after the latest sliding window keyframe, where n is the sliding window size. Note
that the prediction horizon is not need to be equal to the total time covered by the sliding window used in
optimization. Using longer prediction horizons encourages the selection of features that will be visible for
longer periods of time, while using shorter prediction horizons conforms more closely to feature observation
prediction model’s assumptions (Sect. 6.1.2).

Future trajectory predictions used by the information gain feature selection strategy were obtained by
querying ground truth or a previously computed single camera visual-inertial trajectory estimate (in datasets
without ground truth) at future timestamps. The motion capture results (Sect. 6.4.1) used ground truth,
while the outdoor results (Sect. 6.4.2-6.4.3) used previously computed single camera trajectory estimates
because total station ground truth measurements were incomplete and lack attitude. 4DOF alignment was
used to achieve position and yaw continuity between the estimate at the latest sliding window keyframe
and the queried future poses. Although ground truth and previously computed trajectory estimates are
a non-causal source of future pose predictions and therefore unsuitable for real-time operation, we use
them in postprocessing because our datasets lack planner reference signals from which future poses may be
queried during real-time operation. Future ground truth observations are queried in [48] to evaluate feature
selection in postprocessing on datasets that lack control or planner reference signals. Overall, the impact of
using ground truth instead of planner references is insignificant for short prediction horizons and when the
controller is capable of reliably following motion reference signals.

6.4.1 Motion Capture Arena
In this dataset the aerial robot flies along a 3D trajectory inside a motion capture arena (Fig. G.4). Although
the entire flight duration is over three minutes and postprocessing uses observations from the entire time
interval, the results in this section only pertain to the time interval between t = 45 s and t = 80 s. This
35 second time interval was chosen as a representative example of a dynamic motion where the choice of
feature selection strategy has a non-trivial impact on estimation accuracy. t = 45 s is much later than the
time of initialization to ensure that the sliding window optimization has marginalized out initial transients
prior to the interval of interest. Trajectory estimation accuracy values reported in this section are translational
absolute trajectory errors (H.13) over the time interval of interest (45 ≤ t ≤ 80 s) obtained using the multiple
position correspondences method (Appendix H.3.2).

Fixed Feature Budget Performance Comparison

In this set of experiments, each of the three feature selection strategies was run with a total feature budget
of 30. The 1 camera approach allocated the entire feature budget to the forward camera, the 2 camera even

3Intel Core i7-3520M at 2.9 GHz × 4, 8 GB RAM

6.4. EXPERIMENTAL RESULTS 83

split approach allocated a feature budget of 15 to each of the forward and downward cameras, and the 2
camera information gain approach allocated a feature budget of 30 for both cameras. Figure 6.5 depicts the
aligned position estimates and ground truth over the 35 second time interval of interest.

1

1

1.5

0

2

x [m]

1.5

z
 [
m

]

2.5

3

1

3.5

0.5

y [m]

0 -1
-0.5

-1
-1.5

Motion Capture

1 Camera

2 Camera Even Split

2 Camera Info Gain

Figure 6.5: 3D plots of the trajectories estimated by VIO with different feature selection strategies for the motion
capture flight. The ground plane is located at z = 0 m.

The top plot of Figure 6.6 shows that the trajectory segment of interest begins at a low altitude of around
1 m and transitions to a high altitude of around 3 m at t = 62 s. Accordingly, the downward camera is closer
to the ground and has higher optical flow during the first half the time interval than the last (compare Fig. 6.7b
with Fig. 6.7d). Higher optical flow causes features to exit the downward camera’s field of view faster and
yield feature reprojection factors that are less effective at mitigating motion drift in the optimization problem.
The 2 camera even split strategy allocates half of its feature budget to the downward camera and incurs the
highest z estimation error (middle plot in Fig. 6.6). The 2 camera information gain strategy starts reducing
the downward camera feature budget and increasing the forward camera feature budget at around t = 50 s
(bottom plot in Fig. 6.6). By increasing the number of forward camera features that remain in the field of
view for longer periods of time, the information gain strategy is able to achieve the lowest error. Although
this reasoning may also be applied to the 1 camera case where the entire feature budget is allocated to the
forward camera, it has lower accuracy than the 2 camera information gain strategy due to its poorer scale
estimate. The 2 camera information gain strategy outperforms the 1 camera case by virtue of choosing a few
longer-lived downward camera features that improve scale estimation and outperforms the 2 camera even
split strategy by virtue of avoiding short-lived downward camera features that yield poor motion constraints.

In the second half of the trajectory segment, the vehicle flies higher but also varies its heading signifi-
cantly. The downward camera’s optical flow is reduced, but the forward camera’s optical flow is increased.
Anticipating this by querying future motion predictions, the 2 camera information gain strategy increases
the downward camera feature budget and decreases the forward camera feature budget to maximize the
number of long-lived feature trails that yield good motion constraints for optimization. On the other hand,
the 2 camera even split and 1 camera methods both use a greater number of forward camera features in
optimization, many of which are short-lived and yield poorer motion constraints. Consequently, the 2 cam-
era information gain strategy achieves the lowest z estimation error (middle plot in Fig. 6.6) as well as the

84 CHAPTER 6. SENSOR RESOURCE ALLOCATION

50 55 60 65 70 75

time [s]

1

1.5

2

2.5

3

3.5

z
 [

m
]

Motion Capture

1 Camera

2 Camera Even Split

2 Camera Info Gain

50 55 60 65 70 75

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2
z
 e

rr
o

r
[m

]

50 55 60 65 70 75

time [s]

0

20

40

60

d
o

w
n

w
a

rd
 f

e
a

tu
re

s
 [

%
]

Figure 6.6: Top: Altitude estimates compared with motion capture ground truth. Middle: Altitude estimation error
with respect to motion capture. Bottom: Percentage of the total feature budget allocated to the downward camera.
The 2 camera information gain feature selection strategy achieves the lowest altitude estimation error because it
changes its feature budget allocation between forward and downward cameras based on the current scene structure
and predicted future motion.

lowest translational absolute trajectory error (Tab. 6.1) over the time interval of interest.

Table 6.1: Translational absolute trajectory errors of the 3 feature selection strategies between t = 45 s and t = 80 s
on the motion capture dataset

1 Camera 2 Camera Even Split 2 Camera Info Gain
Absolute Trajectory Error (m) 0.12 0.16 0.07

Figures 6.7 and 6.8 show the features selected for optimization by the 2 camera even split and informa-
tion gain strategies at t = 51.6 s and t = 70.6 s. Note that the number of selected features across the forward
and downward cameras does not sum to the total feature budget because the figures only depict features that
are visible in the latest sliding window keyframe. This discrepancy is explained by the fact that some of
the feature trails used in optimization have exited the camera field of view before the latest sliding window
keyframe.

At t = 51.6 s when the robot is closer to the ground, the 2 camera information gain approach allocates
a smaller number of downward camera features than the 2 camera even split approach (compare Fig. 6.7d
and Fig. 6.7b). At t = 70.6 s when the robot is at a higher altitude, the 2 camera information gain approach
allocates a greater number of forward camera features than than the 2 camera even split approach (compare
Fig. 6.8c and Fig. 6.8a). Furthermore, features selected by the 2 camera information gain approach are
spread out over a larger portion of the field of view than the 2 camera even split approach due to awareness
of the vehicle’s near-term yawing motion.

6.4. EXPERIMENTAL RESULTS 85

(a) Even split - forward camera features (b) Even split - downward camera features

(c) Info gain - forward camera features (d) Info gain - downward camera features

Figure 6.7: Distribution of features used in optimization between forward and downward camera during the motion
capture flight at t = 51.6 s. Red dots denote features used in optimization, while blue dots denote tracked features
ignored by optimization.

(a) Even split - forward camera features (b) Even split - downward camera features

(c) Info gain - forward camera features (d) Info gain - downward camera features

Figure 6.8: Distribution of features used in optimization between forward and downward camera during the motion
capture flight at t = 70.6 s. Red dots denote features used in optimization, while blue dots denote tracked features
ignored by optimization.

86 CHAPTER 6. SENSOR RESOURCE ALLOCATION

Compute Time and Estimation Accuracy

In this set of experiments, the total feature budget was varied from 10 to 90 and the motion capture dataset
was postprocessed using each of the three feature selection strategies at each total feature budget value.
Estimation accuracy is characterized using translational absolute trajectory error over the interval 45 ≤ t ≤
80 s, while compute time is the sum of optimization solve time and feature selection time. Feature selection
time is negligible for the 1 camera and 2 camera even split strategies, but it is non-negligible for the 2 camera
information gain strategy due to greedy feature selection (Sect. 6.2).

10 20 30 40 50 60 70 80

Number of features used in optimization

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
o
s
it
io

n
 e

rr
o
r

[m
]

1 Camera

2 Camera Even Split

2 Camera Info Gain

(a) Translational absolute trajectory error vs. number of fea-
tures used in optimization

10 20 30 40 50 60 70 80

Number of features used in optimization

6

8

10

12

14

16

18

C
o
m

p
u
te

 t
im

e
 [
m

s
]

1 Camera

2 Camera Even Split

2 Camera Info Gain

(b) Compute time vs. number of features used in optimization

8 9 10 11 12

Compute time [ms]

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
o
s
it
io

n
 e

rr
o
r

[m
]

1 Camera

2 Camera Even Split

2 Camera Info Gain

(c) Translational absolute trajectory error vs. compute time

Figure 6.9: Relationships between estimation accuracy, number of features used in optimization, and compute time
for the three feature selection methods over the time interval 45 ≤ t ≤ 80 s on the motion capture dataset

Figure 6.9 summarizes the relationships between estimation accuracy, compute time, and the number
of features used in optimization4. Each scatter plot data point represents a triplet of position error, number
of features used in optimization, and compute time extracted from the 45 ≤ t ≤ 80 s time interval of a
postprocessing run performed with one of the three feature selection strategies. The number of features

4The number of features actually used in optimization is sometimes less than the total feature budget when not enough suitable
features are tracked.

6.4. EXPERIMENTAL RESULTS 87

actually used in optimization and the compute time are both median values taken over all optimizations that
occurred in the interval 45 ≤ t ≤ 80 s.

Trendlines in Figure 6.9a show that over the entire range of total feature budgets, the 2 camera informa-
tion gain strategy achieves lower position error than the 2 camera even split strategy, which in turn achieves
lower position error than the single camera approach. Figure 6.9b shows the intuitive trend that compute
time increases as the number of features used in optimization increases for all feature selection approaches.
However, the greedy feature selection algorithm causes the 2 camera feature selection strategy to incur a
higher time cost for any given number of features used in optimization. Despite this, the 2 camera fea-
ture selection strategy still achieves lower position error than the other strategies for any given amount of
compute time (Fig. 6.9c). This advantage is greater for lower compute time limits for two reasons:

1. Greedy feature selection runs much faster on lower feature budgets.

2. There is less overlap between the set of features chosen by greedy feature selection and the set of
features chosen by the heuristics used in the other approaches when the total feature budget is low.

The motion capture dataset postprocess results indicate that the proposed 2 camera information gain
feature selection strategy achieves greater accuracy than standard feature selection strategies for a given
compute budget. This section’s results suggest that multi-camera information gain feature selection is an
effective technique for resource-constrained visual-inertial state estimation.

6.4.2 Pavement
In this dataset the aerial robot flies at a low altitude above a sloped asphalt surface in an industrial loading
dock and driveway area (Fig. 6.10). Position ground truth was obtained using a Leica TCRP 1205 total
station to track a crystal mounted on top of the aerial robot. Trajectory estimation accuracy values reported
in this section are translational absolute trajectory errors (H.13) obtained using the multiple position cor-
respondences method (Appendix H.3.2). Each of the three feature selection strategies was run with a total
feature budget of 30. Figure 6.11 depicts the aligned position estimates and ground truth over the entire
trajectory.

Figure 6.10: Paved asphalt driveway and loading bay environment used for a multirotor data collection flight test

Figure 6.11 and the top plot of Figure 6.12 show that the trajectory begins with the vehicle far away
from the origin. The vehicle quickly flies the approximately 40 m distance from its starting location back to
the origin while losing altitude between t = 5 s and t = 15 s. Finally, the vehicle turns around and regains
altitude between t = 15 s and t = 25 s.

Table 6.2 shows that the 2 camera information gain feature selection strategy achieves lower position

88 CHAPTER 6. SENSOR RESOURCE ALLOCATION

40

35

30

25

y [m]

20

15

10

-2

-1

0

z
 [

m
]

0

x [m]

2 54 6

Ground Truth

1 Camera

2 Camera Even Split

2 Camera Info Gain

Figure 6.11: 3D plots of the trajectories estimated by VIO with different feature selection strategies for the pavement
flight.

0 5 10 15 20

time [s]

-2

-1

0

z
 [

m
]

Ground Truth

1 Camera

2 Camera Even Split

2 Camera Info Gain

5 10 15 20

time [s]

-0.2

-0.1

0

0.1

0.2

0.3

z
 e

rr
o

r
[m

]

5 10 15 20

time [s]

0

20

40

60

d
o

w
n

w
a

rd
 f

e
a

tu
re

s
 [

%
]

Figure 6.12: Top: Altitude estimates compared with ground truth. Middle: Altitude estimation error with respect to
total station ground truth. Bottom: Percentage of the total feature budget allocated to the downward camera. The 2
camera information gain feature selection strategy achieves the lowest altitude estimation error because it changes its
feature budget allocation between forward and downward cameras based on the current scene structure and predicted
future motion.

6.4. EXPERIMENTAL RESULTS 89

error than the 2 camera even split strategy, which in turn achieves lower position error than the 1 camera
approach. When the vehicle yaws 180 degrees at t = 4 s and t = 20 s, the 2 camera information gain strategy
allocates a majority of its feature budget to the downward camera (bottom plot of Fig. 6.12) because those
downward camera features remain in the field of view longer than forward camera features during in-place
yaw maneuvers. At t = 5 s, the feature budget begins to heavily favor the forward camera as the vehicle
simultaneously increases its forward translational velocity and descends. By t = 10 s, the entire feature
budget has been allocated to the forward camera to avoid using downward camera frames that quickly exit
the field of view when flying fast and close the ground. However, as soon as the vehicle stops moving
forward (t = 18 s) and begins to rise while yawing, the feature budget swings back to favor the downward
camera. Intelligently changing feature allocation between forward and downward cameras because on near-
future motion predictions enables the information gain feature selection strategy to achieve lower position
estimation error than the alternative methods.

Table 6.2: Translational absolute trajectory errors of the 3 feature selection strategies on the pavement dataset

1 Camera 2 Camera Even Split 2 Camera Info Gain
Absolute Trajectory Error (m) 0.93 0.46 0.34

Figures 6.13-6.14 show the features selected for optimization by the 2 camera even spplit and informa-
tion gain strategies at t = 4.1 s and t = 7.6 s.

(a) Even split - forward camera features (b) Even split - downward camera features

(c) Info gain - forward camera features (d) Info gain - downward camera features

Figure 6.13: Distribution of features used in optimization between forward and downward camera on the over-
pavement flight at t = 4.1 s. Red dots denote features used in optimization, while blue dots denote tracked features
ignored by optimization.

When the vehicle is performing its initial in-place yaw at t = 4.1 s, the 2 camera information gain
approach allocates more features to the downward camera than the 2 camera even split approach (compare

90 CHAPTER 6. SENSOR RESOURCE ALLOCATION

Fig. 6.13d with Fig. 6.13b). Even though the 2 camera even split approach allocates more features to
the forward camera, its lack of consideration of future motion causes its forward camera features to not
be visible in the current keyframes (Fig. 6.13a). In contrast, the 2 camera information gain approach has
a greater number of forward camera features that are visible in the current keyframe even though it has
allocated a lower feature budget for the forward camera (Fig. 6.13c).

(a) Even split - forward camera features (b) Even split - downward camera features

(c) Info gain - forward camera features (d) Info gain - downward camera features

Figure 6.14: Distribution of features used in optimization between forward and downward camera on the over-
pavement flight at t = 7.6 s. Red dots denote features used in optimization, while blue dots denote tracked features
ignored by optimization.

When the vehicle begins to fly fast and lose altitude at t = 7.6 s, downward camera features used in
optimization are not visible in the latest keyframes of any of the feature selection strategies due to high
optical flow (compare Fig. 6.14b and Fig. 6.14d). However, the 2 camera information gain strategy achieves
a better distribution of forward camera features with respect to field of view coverage (compare Fig. 6.14c
with Fig. 6.14a) because it selects longer-lived features. Note that in this case, the 2 camera even split
strategy has selected more features that have already exited the field of view due to heading change.

6.4.3 Volleyball Court
This dataset consists of six different flight trajectories around a bowl-shaped hillside surrounding a volleyball
court (Fig. 6.15). Trajectory estimation accuracy was assessed using final position drift (Appendix H.4.2)
because tracking with the total station was unreliable. Each of the three feature selection strategies was run
with a total feature budget of 30 on each trajectory. Figure 6.16 depicts the unaligned position estimates
over each trajectory. Figure 6.17 shows that the two camera information gain strategy achieves lower final
position drift than both the two camera even split and single camera approaches. The superior performance
of the proposed 2 camera information gain strategy on the varied trajectories in the volleyball court dataset
indicate that it is a robust approach that improves estimation accuracy in multiple different flight conditions.

6.4. EXPERIMENTAL RESULTS 91

Figure 6.15: Volleyball court used for outdoor flight test data collection on a multirotor aerial robot

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(a)

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(b)

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(c)

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(d)

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(e)

1
2
3

10

4

z
 [
m

]

5

5
20

0

y [m]

15
-5

x [m]

10
-10

5
-15

0

0
20

2

10

4

z
 [
m

]

6

15

8

5
10

x [m]y [m]

0
5

-5
0

-10

0

5

z
 [
m

]

10

10

20

y [m]

0

x [m]

10
-10

0

30

25

20

x [m]

15
0

5

1010

z
 [
m

]

y [m]

10

55

00

0

20

2

15

z
 [
m

]

4

1510

x [m]

10

y [m]

5
50

0-5

200

15

5

z
 [
m

]

15

x [m]

10

10

y [m]

10
5

5
0

0

(f)

Figure 6.16: 3D plots of the trajectories estimated by VIO with different feature selection strategies for each of the 6
flight datasets taken around the volleyball court.

92 CHAPTER 6. SENSOR RESOURCE ALLOCATION

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

(a)

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10
fi
n

a
l
d

ri
ft

 [
m

]

(b)

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

(c)
1C 2C-ES 2C-IG

0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

(d)

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10
fi
n

a
l
d

ri
ft

 [
m

]

(e)

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10

fi
n

a
l
d

ri
ft

 [
m

]

1C 2C-ES 2C-IG
0

1

2

3

4

5

6

7

8

9

10
fi
n

a
l
d

ri
ft

 [
m

]

(f)

Figure 6.17: Final position drift of the 3 feature selection strategies for each of the 6 volleyball court trajectories

Chapter 7

Visual-Inertial-Depth Odometry

A major limitation of visual-inertial odometry systems is that they perform poorly in low light and repetitive
visual texture. We propose to address this shortcoming by integrating depth observations into the visual-
inertial odometry system described in Chapters 3-4. Depth sensors provide 3D metric information about the
non-occluded regions of the environment within their fields of view in the form of range images or point
clouds. Given a static scene, successive depth observations can be used to infer the sensor platform’s motion.
In order to exploit correspondences between depth and image data, we plan to use a depth sensor whose field
of view exhibits a high degree of overlap with one of the regular cameras. Many consumer grade RGB-D
sensors with hardware-level RGB-to-depth registration satisfy this requirement.

We use different strategies to incorporate depth observations into the primary and auxiliary estimators.
The optimization-based primary estimator utilizes depth in a loosely-coupled manner by computing 6DOF
transforms between keyframe depth images and including the resultant pseudo-observations as factors in a
sliding window factor graph. The filter-based auxiliary estimator computes frame-to-frame transformations
via 3D-to-2D feature correspondences between depth-augmented image features in the previous frame and
regular image features in the current frame. Relative pose pseudo-observations are loosely combined with
IMU observations via an Unscented Kalman filter.

7.1 Depth Sensor
We use a forward-facing Intel Realsense D435 RGB-D camera (henceforth referred to as Realsense) to pro-
vide depth observations to the state estimation framework. The Realsense contains a rolling shutter RGB
camera and a global shutter depth sensor. The depth sensor has a 87 × 58 degree field of view and an
advertised range of 0.1 to 10 m. It consists of a stereo pair of infrared cameras that use triangulation to com-
pute depth images1. Passive sensing enables the Realsense to work in outdoor environments where ambient
light can easily overwhelm projections of structured light patterns. If ambient illumination is insufficient, an
onboard projector projects an infrared pattern in front of the stereo pair. The ability to use both active and
passive sensing enables the Realsense to work in a variety of environments.

7.2 Relative Pose from Dense Depth Observations
We use Dhawale et al. [89]’s SLAM method for obtaining relative pose from dense depth images. Incoming
depth images are simultaneously used to update a global map of the environment and localize the depth
sensor with respect to the global map. In order to facilitate both efficient registration and high fidelity
representation of the environment, the global map is a hierarchical structure where each level consists of
multiple Gaussian distributions that represent raw depth observations.

1Stereo matching and triangulation are performed onboard the Realsense.

93

94 CHAPTER 7. VISUAL-INERTIAL-DEPTH ODOMETRY

To compute the depth sensor’s global 6DOF pose associated with an input depth image, an ICP-like
strategy is used to align raw depth observations with the Gaussians in the hierarchical map representation.
Unlike standard ICP, the cost function for rigid body alignment is a point to distribution distance rather
than point to point distance. Global pose is computed via a nonlinear optimization problem whose objective
function represents the log likelihood that raw observations are from the global map’s Gaussian distributions.
The covariance associated with the pose estimate is approximated as Σ ≈ JTJ, where J is the Jacobian at
the final iteration of the optimization. If a history of pose estimates corresponding to all received depth
observations is stored as {Tk}nk=1, the relative pose observation corresponding to depth sensor motion
between times ti and tj is given by T−1

i Tj .

7.3 Relative Pose from Depth-Aided 3D-to-2D Feature Correspondences
We use Zhang et al. [54]’s method for obtaining relative pose from 3D-to-2D feature correspondences over
successive image frames. Consider grayscale image observations at times tk−1 and tk, together with a set
of tracked features contained within them. Let hi,k−1 be the normalized image coordinates of the ith feature
detected in image frame k − 1 and hi,k be its normalized image coordinates in image frame k. Let di,k−1

be the feature’s depth with respect to the camera frame at the time tk−1, and di,k be its depth in the camera
frame at time tk. On a sensor with aligned depth and grayscale images, the value of d may be obtained by
querying the depth image at the feature’s pixel location within the grayscale image. Let R ≡ Rck,ck−1

and
p ≡ pck,ck−1

be the rotational and translational components of the rigid body transform that takes vectors
in the previous image’s camera frame {Ck−1} to the current image’s camera frame {Ck}. The relationship
between hi,k−1 and hi,k is

di,khi,k = Rdi,k−1hi,k−1 + p (7.1)

Expand this equation into its three component rows, where hi,k = [xi,k yi,k 1]T:

di,kxi,k = eT
1Rdi,k−1hi,k−1 + eT

1p (7.2)

di,kyi,k = eT
2Rdi,k−1hi,k−1 + eT

2p (7.3)

di,k = eT
3Rdi,k−1hi,k−1 + eT

3p (7.4)

We define {ei}3i=1 as the columns of the 3×3 identity matrix

I =
[
e1 e2 e3

]
=

1 0 0
0 1 0
0 0 1

 (7.5)

Multiply (7.4) by xi,k, substitute it into the left hand side of (7.2), and rearrange terms(
eT

1 − xi,keT
3

)
Rdi,k−1hi,k−1 +

(
eT

1 − xi,keT
3

)
p = 0 (7.6)

Multiply (7.4) by yi,k, substitute it into the left hand side of (7.3), and rearrange terms(
eT

2 − yi,keT
3

)
Rdi,k−1hi,k−1 +

(
eT

2 − yi,keT
3

)
p = 0 (7.7)

Note that (7.6)-(7.7) do not require the feature’s depth in the current image frame, di,k.
The frame-to-frame 6DOF delta transform p,R may be solved via nonlinear least squares optimization

(Appendix C) of the objective function

L (p,q) =
1

2

∑
i

‖ri (p,q)‖2 (7.8)

7.4. PRIMARY ESTIMATOR MODIFICATIONS 95

where ri consists of the stacked left hand sides of (7.6)-(7.7).

ri (p,q) =

[(
eT

1 − xi,keT
3

)
Rdi,k−1hi,k−1 +

(
eT

1 − xi,keT
3

)
p(

eT
2 − yi,keT

3

)
Rdi,k−1hi,k−1 +

(
eT

2 − yi,keT
3

)
p

]
(7.9)

We derive the Jacobian for position by inspection

∂ri
∂p

=

[
eT

1 − xi,keT
3

eT
2 − yi,keT

3

]
(7.10)

The Jacobian for the minimal coordinate rotational perturbation to q is derived by the perturbation method.
Apply an additive perturbation δri to the left side of (7.9) and a rotational perturbation Exp (δθ) to R on the
right side of (7.9).

ri + δri =

[(
eT

1 − xi,keT
3

)
R
(
I + [δθ]×

)
di,k−1hi,k−1 +

(
eT

1 − xi,keT
3

)
p(

eT
2 − yi,keT

3

)
R
(
I + [δθ]×

)
di,k−1hi,k−1 +

(
eT

2 − yi,keT
3

)
p

]
(7.11)

We assume that the rotational perturbation is small, so we make the small angle approximation Exp (δθ) ≈
I + [δθ]×. Subtract (7.9) from (7.11).

δri =

[
eT

1 − xi,keT
3

eT
2 − yi,keT

3

]
[δθ]× di,k−1hi,k−1 (7.12)

Apply the cross product anti-symmetric property

δri = −di,k−1

[
eT

1 − xi,keT
3

eT
2 − yi,keT

3

]
[hi,k−1]× δθ (7.13)

The Jacobian with respect to the rotational perturbation is

∂ri
∂θ

= −di,k−1

[
eT

1 − xi,keT
3

eT
2 − yi,keT

3

]
[hi,k−1]× (7.14)

7.4 Primary Estimator Modifications
Relative pose pseudo-observations from Sect. 7.2 are incorporated into the factor graph using a relative pose
factor. The cost of the relative pose factor is added to the visual-inertial optimization objective function as
the term

frelpose(x) =
1

2

∥∥rrelpose (xi,xj)
∥∥2

Σ
, (7.15)

where x is the optimization vector, xi is the motion state at keyframe i, xj is the motion state at keyframe j,
and Σ ∈ R6×6 is the relative pose covariance matrix. We select i to be the oldest sliding window keyframe
and j to be the newest to enable the relative pose factor constrain drift over the longest possible time interval
that can be optimized in the sliding window framework.

7.4.1 Relative Pose Residual
Under perfect sensing and estimation, the relationship between state variables and a relative pose observa-
tion, Tobs ∈ SE(3) is

Tobs = T−1
bc T−1

wbi
TwbjTbc (7.16)

96 CHAPTER 7. VISUAL-INERTIAL-DEPTH ODOMETRY

where Tbc ∈ SE(3) is the camera-to-body extrinsic transform and Twbk ∈ SE(3) is the estimated pose
of keyframe k with respect to a world frame. Due to sensing and estimation errors, there is always a pose
offset Tres between the observed and expected relative pose transform from keyframe i to keyframe j.

Tres = T−1
obsT

−1
bc T−1

wbi
TwbjTbc (7.17)

Expand (7.17)[
Rres pres
0 1

]
=

[
RT

obs −RT
obspobs

0 1

] [
RT
bc −RT

bcpbc
0 1

] [
RT
i −RT

i pi
0 1

] [
Rj pj
0 1

] [
Rbc pbc
0 1

]
(7.18)

and write translational and rotational components separately:

rp ≡ pres = RT
obs
{
RT
bc

[
RT
i (Rjpbc + pj − pi)− pbc

]
− pobs

}
(7.19)

Exp(rθ) ≡ Rres = RT
obsR

T
bcR

T
i RjRbc (7.20)

The translational component of the relative pose residual, rp ∈ R3, is given by (7.19). The rotational
component of the relative pose residual is given by the capitalized log map of (7.20).

rθ = Log
(
RT

obsR
T
bcR

T
i RjRbc

)
∈ R3 (7.21)

7.4.2 Relative Pose Jacobians
This section derives the nonzero Jacobians of the relative pose factor’s residuals.

Vector Space Jacobians

The Jacobians of the translational residual with respect to vector space parameter blocks pi and pj are

∂rp
∂pi

= −RT
obsR

T
bcR

T
i (7.22)

∂rp
∂pj

= RT
obsR

T
bcR

T
i (7.23)

Manifold Jacobians

Instead of taking Jacobians with respect to the quaternions qi and qj , we take Jacobians with respect to the
minimal parameterizations of their perturbations, δθi and δθj .

We use the perturbation method to determine the Jacobian of rp with respect to δθi and δθj . Apply an
additive perturbation to the left hand side of (7.19) and rotational perturbations to the right hand side.

rp + δrp = RT
obs

{
RT
bc

[
(Ri Exp(δθi))

T (Rj Exp(δθj)pbc + pj − pi)− pbc

]
− pobs

}
(7.24)

Assuming the rotational perturbations δθi and δθj are small, use the approximation (A.14).

rp + δrp ≈ RT
obs

{
RT
bc

[(
Ri

(
I + [δθi]×

))T (
Rj

(
I + [δθj]×

)
pbc + pj − pi

)
− pbc

]
− pobs

}
(7.25)

rp + δrp
(A.4)
≈ RT

obs
{
RT
bc

[(
I− [δθi]×

)
RT
i

(
Rjpbc + [δθj]× pbc + pj − pi

)
− pbc

]
− pobs

}
(7.26)

rp + δrp ≈ RT
obs
{
RT
bc

[
RT
i

(
Rjpbc + [δθj]× pbc + pj − pi

)
− [δθi]×RT

i (Rjpbc + pj − pi)− pbc
]
− pobs

}
(7.27)

δrp
(7.19)
≈ RT

obs
{
RT
bc

[
RT
i [δθj]× pbc − [δθi]×RT

i (Rjpbc + pj − pi)− pbc
]
− pobs

}
(7.28)

7.5. AUXILIARY ESTIMATOR MODIFICATIONS 97

δrp
(A.3)
≈ RT

obs

{
RT
bc

[
−RT

i [pbc]× δθj +
[
RT
i (Rjpbc + pj − pi)

]
× δθi − pbc

]
− pobs

}
(7.29)

δrp ≈ −RT
obsR

T
bcR

T
i [pbc]× δθj + RT

obsR
T
bc

[
RT
i (Rjpbc + pj − pi)

]
× δθi + const (7.30)

The approximate Jacobians of the translational residual with respect to rotational parameter blocks are

∂rp
∂δθi

≈ RT
obsR

T
bc

[
RT
i (Rjpbc + pj − pi)

]
× (7.31)

∂rp
∂δθj

≈ −RT
obsR

T
bcR

T
i [pbc]× (7.32)

We use the perturbation method to derive the Jacobians of rθ with respect to δθi and δθj . Apply an
additive perturbation to the left hand side of (7.21) and rotational perturbations to the right hand side.

rθ + δrθ = Log
[
RT

obsR
T
bc (Ri Exp(δθi))

T Rj Exp(δθj)Rbc

]
(7.33)

rθ + δrθ
(A.13)
≈ Log

[
RT

obsR
T
bc Exp(−δθi)RT

i Rj Exp(δθj)Rbc

]
(7.34)

rθ + δrθ
(A.46)
≈ Log

[
RT

obsR
T
bcR

T
i Rj Exp(−RT

jRiδθi) Exp(δθj)Rbc

]
(7.35)

rθ + δrθ
(A.46)
≈ Log

[
RT

obsR
T
bcR

T
i Rj Exp(−RT

jRiδθi)Rbc Exp(RT
bcδθj)

]
(7.36)

rθ + δrθ
(A.46)
≈ Log

[
RT

obsR
T
bcR

T
i RjRbc Exp(−RT

bcR
T
jRiδθi) Exp(RT

bcδθj)
]

(7.37)

rθ + δrθ
(A.49)
≈ Log

[
RT

obsR
T
bcR

T
i RjRbc Exp(−RT

bcR
T
jRiδθi + RT

bcδθj)
]

(7.38)

rθ + δrθ
(7.21)
≈ Log

[
Exp(rθ) Exp(−RT

bcR
T
jRiδθi + RT

bcδθj)
]

(7.39)

rθ + δrθ
(A.48)
≈ rθ + J−1

r (rθ)
[
−RT

bcR
T
jRiδθi + RT

bcδθj
]

(7.40)

δrθ ≈ J−1
r (rθ)

[
−RT

bcR
T
jRiδθi + RT

bcδθj
]

(7.41)

Apply the small angle approximation J−1
r (φ) ≈ I + 1

2 [φ]× for the inverse of the right Jacobian of SO(3).

δrθ ≈ −
(

I +
1

2
[rθ]×

)
RT
bcR

T
jRiδθi +

(
I +

1

2
[rθ]×

)
RT
bcδθj (7.42)

The approximate Jacobians of the rotational residual with respect to rotational parameter blocks are

∂rθ
∂δθi

≈ −
(

I +
1

2
[rθ]×

)
RT
bcR

T
jRi (7.43)

∂rθ
∂δθj

≈
(

I +
1

2
[rθ]×

)
RT
bc (7.44)

7.5 Auxiliary Estimator Modifications
In contrast with the original auxiliary estimator (Sect. 4.3, Fig. 4.4), the depth-aided auxiliary estimator does
not require a rangefinder and instead uses a depth sensor with aligned grayscale and depth image streams.
The horizontal velocity pseudo-observation computed via frame-to-frame planar homography (Sect. 4.3.1)
is replaced with a 3D frame-to-frame velocity using depth-aided point correspondences (Sect. 7.3).

To obtain planar frame velocity from camera frame relative pose, it is first necessary to compute camera
frame velocity by dividing the relative pose’s translational component (p) by the elapsed time between
frames.

vc =
p

tk − tk−1
(7.45)

98 CHAPTER 7. VISUAL-INERTIAL-DEPTH ODOMETRY

Next, compute the body frame velocity, vb, associated with vc using (4.33). Finally, the level frame velocity,
vl, is obtained by compensating for the roll and pitch of the current body frame.

vl = Ry(θ)Rx(φ)vb (7.46)

Note that unlike in (4.34), the z-component of the level velocity is kept.
The UKF logic is the same as in the original auxiliary estimator formulation, except that the velocity

correction model (4.47)-(4.48) is extended to the third dimension.

zv = vl + nv (7.47)

nv ∼ N

0,

s2
vx 0 0
0 s2

vy 0

0 0 s2
vz

 (7.48)

Note that the altitude observation model (Sect. 4.3.2) may still be used alongside the depth-aided frame-to-
frame velocity observation model.

7.6 Experimental Results
This section presents results that demonstrate the benefit of the depth-related modifications described in
Sections 7.4 and 7.5. Visual, inertial, and depth observations collected on a multirotor aerial robot were
used to run sliding window visual-inertial odometry and visual-inertial-depth odometry. Utilizing depth
observations enables the primary estimator to provide estimates in environments with poor feature tracking
and increases the auxiliary estimator’s accuracy. All results were generated via postprocessing on a Lenovo
Thinkpad T470p laptop2 running Ubuntu 16.04 LTS.

7.6.1 Primary Estimator
In this subsection, the nominal primary estimator is denoted as visual-inertial and the modified primary
estimator is denoted as visual-inertial-depth.

Motion Capture

We evaluated the modified primary estimator (Sect. 7.4) against ground truth and the original primary esti-
mator (Chapter 3) on a dataset obtained inside a motion capture arena. The dataset is comprised of forward
depth images, downward grayscale images, and IMU observations. Ambient illumination is drastically re-
duced roughly in the middle of the dataset via turning off indoor lights to simulate a transition between light
and dark environments.

Figure 7.1 visualizes feature tracking in the downward camera shortly before and after the lights turn off.
The sudden change in image brightness causes optical flow-based tracking methods to fail and feature trails
to be lost, which significantly reduces the number of feature trails used in the optimization problem (Fig. 7.2
top). With almost no reprojection factors in the sliding window optimization after the lights turn off, the
nominal primary estimator’s position estimate diverges because it no longer has any motion constraints to
counteract IMU preintegration factors (Fig. 7.2 bottom). On the other hand, the modified primary estimator
is able to mitigate position drift by relying on depth-derived 6DOF relative pose motion constraints when
vision-only reprojection factors become unavailable. Figure 7.3 shows that both the nominal and modified
primary estimators have comparable performance until the lights turn off, after which the former diverges
much more than the latter. Despite its superior performance, the modified primary estimator still has non-
trivial position drift (especially in the vertical direction) due to degeneracies in scene geometry.

2Intel Core i7-7820HQ at 2.9 GHz × 8, 32 GB RAM

7.6. EXPERIMENTAL RESULTS 99

(a) 150 ms before lights off (b) 50 ms after lights off (c) 250 ms after lights off

Figure 7.1: Downward camera feature tracking images before and after the motion capture arena’s ambient lights
are turned off. Red denotes denote long-lived feature trails while blue dots denote newly detected features. A sudden
decrease in illumination causes all feature trails to be lost (Fig. 7.1b). Afterwards, features are much fewer in number
and more likely to be incorrectly tracked (Fig. 7.1c).

5 10 15 20 25 30 35

time [s]

0

20

40

60

n
u
m

 f
e
a
tu

re
s
 u

s
e
d
 i
n
 o

p
t

5 10 15 20 25 30 35

time [s]

1

2

3

4

p
o
s
it
io

n
 e

rr
o
r

[m
]

Visual-Inertial

Visual-Inertial-Depth

Figure 7.2: Top: Number of features used in optimization vs. time. The lights turn off at approximately t = 25 s,
after which the number of features drops sharply. Bottom: The position error of visual-inertial odometry increases
significantly after the lights turn off due to a lack of features. However, the position error of visual-inertial-depth
odometry does not increase because depth observations still provide motion constraints in the dark.

100 CHAPTER 7. VISUAL-INERTIAL-DEPTH ODOMETRY

0

0.5

z
 [
m

]
1

12
1

x [m]

0

y [m]

0
-1 -1

-2

Motion Capture

Visual-Inertial

Visual-Inertial-Depth

Figure 7.3: A comparison of visual-inertial odometry and visual-inertial-depth odometry on a dataset where the
illumination decreases significantly.

Industrial Tunnels

We evaluated the modified primary estimator on a dataset where an aerial robot flies in a loop through four
connected industrial tunnels (Fig. 7.4) that together form a square. Although the ambient lighting in the
environment is low, the vehicle’s onboard light provides sufficient illumination for successful downward
camera feature tracking.

Figure 7.4: An aerial robot equipped with an onboard light flies around a corner in an industrial tunnel environment.

Figure 7.5 depicts the forward-facing realsense’s color and depth images when the vehicle travels along
the last of the four tunnels it encounters. The color image shows that the side walls and floor are smooth
concrete, while four pipes run in an axial direction along the ceiling. This effectively provides the final tunnel
with a constant cross section, which results in a geometric degeneracy along the corridor’s longitudinal axis.
The geometric degeneracy arises because the depth image (Fig. 7.5b) remains the same when the camera

7.6. EXPERIMENTAL RESULTS 101

moves forward or backward along the x = 0 m corridor in Figure 7.6.

(a) Color image (b) Depth image

Figure 7.5: The majority of the forward-facing depth image remains constant as the vehicle flies along the last corridor
because it has a mostly constant cross-section. Consequently, depth-based relative pose observations yield motion
constraints that underestimate the vehicle’s translation along the corridor axis.

As a consequence of the geometric degeneracy, relative pose observations computed by alignment of
depth images against a local map may differ significantly from the sensor’s true motion. Incorporating such
incorrect relative pose observations in the sliding window optimization leads to high position drift, as illus-
trated by the L-shaped segment at the end of the visual-inertial-depth trajectory estimate from (-1,3) m to
(2,8) m in Figure 7.6. In this example, incorporating depth-based relative pose observations in a geometri-
cally degenerate environment leads to underestimation of translation in the direction of the degeneracy. On
the other hand, avoiding depth observations entirely enables the final segment of the trajectory to align with
the initial segment along the y = 12 m corridor in Figure 7.6.

Figure 7.6: A comparison of visual-inertial odometry and visual-inertial-depth odometry on a flight through a square-
shaped collection of industrial tunnels. The starting point is (−4.7, 11.6) m. The trajectory estimates are aligned
against a colorized point cloud of the industrial tunnel environment formed by stitching multiple FARO scans together.
Ground truth is obtained by manually matching raw depth sensor scans against the composite FARO point cloud.

The motion capture and industrial tunnels results indicate that while depth-based relative pose observa-
tions are critical for avoiding motion estimate divergence in poor illumination conditions, they also degrade
the motion estimate when the surrounding environment is geometrically degenerate. Therefore, techniques

102 CHAPTER 7. VISUAL-INERTIAL-DEPTH ODOMETRY

that incorporate depth observations in sliding window optimization should weight them with covariances
that represent the level of geometric degeneracy in the environment.

7.6.2 Auxiliary Estimator
We evaluated the modified auxiliary estimator (Sect. 7.5) against ground truth and the original auxiliary
estimator (Sect. 4.3) on a dataset obtained inside a motion capture arena. The dataset was collected on a
platform with aligned forward realsense grayscale and depth images, downward grayscale images, IMU,
and downward rangefinder observations. Both cameras’ fields of view contain rich visual texture, while the
forward camera’s field of view also contains non-degenerate geometry (Fig. 7.7).

(a) Forward camera image (b) Forward depth image (c) Downward camera image

Figure 7.7: Example images from the realsense forward camera and depth sensors (left and middle) and the mvBluefox
downward camera. The realsense’s depth sensor is aligned with the forward-facing left infrared sensor, which is used
as the forward camera. The aligned depth image serves as a lookup table for depth values of features at arbitrary
pixel locations in the forward camera image.

Figure 7.8 depicts the navigation frame3 horizontal velocities of the original and modified auxiliary esti-
mator. Vertical velocity is not compared because it is not directly observed in the original auxiliary estimator
formulation. Using 3D-to-2D feature correspondences (Sect. 7.5) between successive frames produces a ve-
locity estimate with much less noise than using frame-to-frame planar homographies scaled by a downward
rangefinder (Sect. 4.3). While the former method incorporates depth information for every tracked feature,
the latter method uses a single depth value from the rangefinder and assumes that all features have that
depth. Because downward camera features only satisfy this assumption if the downward camera’s optical
axis is parallel to the normal of the planar scene it is viewing, the homography-based method yields noisier
velocity estimates. The consequence of this noise difference is that depth-aided navigation frame pseudo-
observations may be used in the UKF with lower correction noise than their homography-based counterparts,
leading to more accurate translation estimation during takeoff and emergency takeover scenarios.

3The navigation frame is a level reference frame whose x-axis is aligned with the instantaneous heading and z-axis is antiparallel
to the global gravity vector.

7.6. EXPERIMENTAL RESULTS 103

6 8 10 12 14 16 18

time [s]

-3

-2

-1

0

1

2

3

v
n
x

 [
m

/s
]

6 8 10 12 14 16 18

time [s]

-4

-2

0

2

4

v
n
y

 [
m

/s
]

Rangefinder-Aided Downward Camera

Depth-Aided Forward Camera

Motion Capture

Figure 7.8: Navigation frame horizontal velocity estimates using the rangefinder-aided downward camera frame-to-
frame planar homography (red) vs. depth-aided forward camera 3D-to-2D frame-to-frame feature correspondences
(green).

Chapter 8

Conclusion

This thesis addresses the problem of achieving accurate, reliable state estimation with multiple onboard
sensors on computationally constrained robotic platforms. Visual-inertial odometry achieves efficient mo-
tion estimation in many common flight scenarios, but struggles under visually degraded conditions such as
non-constant lighting, low brightness, and repetitive texture. These shortcomings may be mitigated with the
introduction of observations from additional cameras and depth sensors at the cost of increased computation
that may not be available on size, weight, and power-constrained platforms. This thesis proposes a set of
state estimation strategies to

1. Efficiently incorporate observations from multiple asynchronous cameras into an optimization-based
sliding window visual-inertial odometry algorithm

2. Improve estimation accuracy given a fixed computational budget by selecting features that are pre-
dicted to be highly informative over a near term time horizon

3. Leverage depth observations to enable operation in visually degraded environments with sufficient
geometric saliency

8.1 Summary of Contributions
Chapters 3-7 describe methodologies that achieve these objectives. Thus, the contributions of this thesis are:
• Computationally efficient sliding window visual-inertial odometry with multiple asynchronous

cameras: A tightly-coupled optimization-based state estimator fuses IMU and sparse feature obser-
vations from multiple asynchronous cameras. Image plane feature trail interpolation enables features
from secondary camera keyframes that are not synchronized with master camera keyframes to be
incorporated into the optimization problem without increasing the number of keyframes in the slid-
ing window. This lowers the computational cost associated with incorporating more diverse visual
observations that increase estimation accuracy. (Chapters 3-5)

• Sensor resource allocation for computationally constrained visual-inertial odometry: The in-
formation value of visible features is predicted using a short-term motion model, which enables the
highest value features to be selected greedily. Knowledge of a platform’s future motion drives the
selection of longer-lived feature trails that improve estimation accuracy for a given feature limit or
computational footprint. (Chapter 6)

• Depth-aided visual-inertial odometry: Depth observations are incorporated into a visual-inertial
odometry framework as relative pose constraints between keyframes that are efficiently computed via
an efficient local occupancy map representation. The use of depth information facilitates smooth state
estimation in visually degraded but geometrically salient environments. (Chapter 7)

Figure 8.1 shows the overall state estimation system together with the information flow between the

104

8.2. FUTURE WORK 105

modules described in this thesis.

Feature
Detection and

Tracking
IMU

Preintegration

Update Sliding
Window Factor

Graph

Sliding Window
Optimization

Marginalization

Structure from
Motion

Visual-inertial
Alignment

IMU-rate
Upsampling

IMU Downward
Camera

Forward
Camera

Feature
Detection and

Tracking

Forward Depth
Sensor

Unscented
Kalman Filter

Frame-to-frame
Relative Pose
Optimization

Odometry
Switcher

Front-end
Preprocessing

Back-end
Inference

Initialization

Sensors

Current
state

estimate

Auxiliary
State

Estimator

Information
Gain Feature

Selection
Relative Pose
Optimization

Figure 8.1: Information flow diagram of proposed state estimation system

Table 8.1 summarizes the results achieved with the techniques described in this thesis. Taken as a
whole, the results indicate that the proposed methodologies are able to achieve accurate and computationally
efficient state estimation in varying environmental conditions.

Table 8.1: Summary of thesis results

Result Source
Baseline VIO has equal or better performance than VINS-Mono on all EuRoC datasets Table 3.1
Baseline VIO achieves 3% position drift on 167 m forest and treetop flight Section 3.9.2
Baseline VIO achieves 1% position drift on 46 m cave flight Section 3.9.3
Multi-camera VIO reduces position and yaw drift over single camera VIO in parking
garage dataset

Section 5.4.2

Information gain feature selection halves position estimation error compared to even
split feature selection for a compute time of 7 ms per optimization on a motion capture
dataset

Figure 6.9c

Information gain feature selection reduces position estimation error by 25% compared
with even split feature selection on pavement dataset

Table 6.2

Information gain feature selection reduces final position drift over even split and single
camera approaches on 6 volleyball court flight datasets

Figure 6.17

Dense depth-based relative pose factors prevent estimator divergence in dark conditions Table 7.3

8.2 Future Work
Several avenues for future research build upon the approaches presented in this thesis. While this work
describes separate strategies to efficiently select visual feature observations and incorporate depth obser-
vations, further performance benefits may be achieved by more tightly integrating depth observations with

106 CHAPTER 8. CONCLUSION

the proposed visual-inertial odometry framework. For example, sparse depth observations can improve the
primary estimator’s initialization routine by enabling metric scale estimation during structure from motion
(Sect. 3.7.1). By using depth observations instead of IMU accelerometer observations to estimate scale,
it becomes possible to estimate acceleration bias independently of scale in the initialization routine. An-
other direction of research would be to extend the sensor resource allocation method described in Chapter 6
to depth sensors, which would allow for a more principled approach to allocate computational resources
between depth and purely visual observations.

Appendix A

Lie Theory

This appendix provides an overview of select concepts from Lie group theory that are used in this thesis
document.

A.1 Cross and Vee Operators
The cross operator [·]× turns a 3× 1 vector into a 3× 3 skew-symmetric matrix.

[a]× =

axay
az


×

=

 0 −az ay
az 0 −ax
−ay ax 0

 (A.1)

The resultant matrix is also known as the cross product matrix because it represents a cross product as a
matrix multiplication.

[a]× b = a× b =

axay
az

×
bxby
bz

 =

aybz − azbyazbx − axbz
axby − aybx

 (A.2)

The cross product has the anti-commutative property, which is expressed as

[b]× a = − [a]× b (A.3)

The skew-symmetric property of the cross operator is expressed as

[a]T× = − [a]× (A.4)

Matrix multiplication of two cross product matrices can be expressed in terms of the inner and outer products
of their corresponding vectors.

[a]× [b]× = baT −
(
aTb

)
I (A.5)

The cross operator applied to a vector that itself is a cross product can be expressed as the difference of outer
products of the vectors that form the cross product.[

[a]× b
]
× = baT − abT (A.6)

The cross operator is distributive across addition.

[a + b]× = [a]× + [b]× (A.7)

107

108 APPENDIX A. LIE THEORY

The vee operator [·]∨ is the inverse of the cross operator. It turns a 3× 3 skew-symmetric matrix into a 3× 1
vector.  0 −az ay

az 0 −ax
−ay ax 0

∨ =

axay
az

 (A.8)

A.2 Rotation Matrices
The Special Orthogonal Group SO(3) is the group of matrices that represent rotations in 3D space.

SO(3) =
{
R ∈ R3×3 |RTR = I,det R = 1

}
(A.9)

The product of two rotation matrices is a rotation matrix, and the inverse of a rotation matrix is simply its
transpose. SO(3) is a smooth manifold whose tangent space at R = I is the set of all 3×3 skew-symmetric
matrices

so(3) =
{

[φ]× | φ ∈ R3
}

(A.10)

A.2.1 Exponential Map
The exponential map from so(3) to SO(3) is defined as

exp
(
[φ]×

)
= I +

sin ‖φ‖
‖φ‖

[φ]× +
1− cos ‖φ‖
‖φ‖2

[φ]2× (A.11)

For convenience, the capitalized exponential map from R3 to SO(3) is defined as

Exp(φ) = exp
(
[φ]×

)
= I +

sin ‖φ‖
‖φ‖

[φ]× +
1− cos ‖φ‖
‖φ‖2

[φ]2× (A.12)

Evaluate (A.12) with −φ and apply property (A.4) to obtain the following identity:

Exp(−φ) = Exp(φ)T (A.13)

For small rotations, the capitalized exponential map can be approximated by

Exp(φ) ≈ I + [φ]× (A.14)

A.2.2 Logarithmic Map
The logarithmic map from SO(3) to so(3) is

log(R) = [φ]× =

{
03×3 if R = I
‖φ‖

2 sin‖φ‖
(
R−RT

)
otherwise

(A.15)

‖φ‖ = cos−1

(
trace(R)− 1

2

)
(A.16)

For convenience, the capitalized logarithmic map from SO(3) to R3 is

Log(R) = [log(R)]∨ = φ (A.17)

A.3. QUATERNIONS 109

A.3 Quaternions
We use the Hamilton convention (scalar part first) for representing quaternions as 4D vectors.

q =

[
qw
qv

]
=


qw
qx
qy
qz

 ∈ H (A.18)

The set of unit quaternions is a smooth manifold whose tangent space at the identity element is the set of all
quaternions with zero-valued scalar components, or pure quaternions. The inverse of a unit quaternion is

q−1 =

[
qw
qv

]−1

=

[
qw
−qv

]
(A.19)

The rotation matrix corresponding to a unit quaternion is

R(q) =
(
q2
w − qT

vqv
)
I + 2qvq

T
v + 2qw [qv]× ∈ SO(3) (A.20)

The product of two quaternions is defined as

p⊗ q =

[
pwqw − pT

vqv
pwqv + qwpv + pv × qv

]
(A.21)

and can be expressed as matrix multiplication

p⊗ q = QL(p)q = QR(q)p (A.22)

QL(q) =

[
qw −qT

v

qv qwI + [qv]×

]
(A.23)

QR(q) =

[
qw −qT

v

qv qwI− [qv]×

]
(A.24)

QL(·) and QR(·) are functions that return 4 × 4 matrices representing left quaternion multiplication and
right quaternion multiplication of the input quaternion.

We define the vec(·) function to extract the vector component of a quaternion

vec (q) = vec
([
qw
qv

])
= qv ∈ R3 (A.25)

and the sca(·) function to extract the scalar component of a quaternion

sca (q) = sca
([
qw
qv

])
= qw ∈ R (A.26)

A.3.1 Exponential Map
The capitalized exponential map for quaternions, Exp : R3 → H, is

Exp(φ) ,

 cos
(
‖φ‖

2

)
φ
‖φ‖ sin

(
‖φ‖

2

) (A.27)

and can be approximated for small φ as

Exp(φ) ≈
[

1
1
2φ

]
(A.28)

110 APPENDIX A. LIE THEORY

A.3.2 Logarithmic Map
The capitalized logarithmic map for quaternions, Log : H→ R3, is the inverse of the capitalized exponential
map.

Log(q) ,

2 vec(q)
‖vec(q)‖ tan−1

(
‖vec(q)‖

sca(q)

)
if sca(q) ≥ 0

−2 vec(q)
‖vec(q)‖ tan−1

(
‖vec(q)‖
−sca(q)

)
if sca(q) < 0

(A.29)

For quaternions that represent small rotations, the capitalized logarithmic map can be approximated as

Log(q) ≈ 2vec(q) (A.30)

This approximation is often used when evaluating residuals and Jacobians during optimization because it
does not require expensive calls to trigonometric functions.

Although the exponential and logarithmic maps for both rotation matrices and quaternions are denoted
by the same symbols, it should be clear which one is being used from context by looking at inputs and
outputs.

A.4 Euler Angles
Euler angles are a 3DOF minimum parameterization of a rotation. We use the ZYX Euler angle convention,
which represents a roll (φ) rotation about the initial body x-axis, a pitch (θ) rotation about the intermediate
y-axis, and finally a yaw (ψ) rotation about the resultant z-axis.

R (φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (A.31)

R (φ, θ, ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (A.32)

R (φ, θ, ψ) =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

 (A.33)

The ZYX Euler angle convention has a singularities at θ = π
2 + nπ, for n ∈ Z. Physically, this means that

roll and yaw are indistinguishable when the vehicle is pitched up or down 90 degrees. Consequently, the
ZYX Euler angle convention is unsuitable for describing vertical or inverted maneuvers.

As a minimum parameterization, Euler angles are useful for plotting the time history of a rigid body’s
orientation in a format that can be easily understood by humans. The ZYX Euler angle convention (or any
convention that has a separate yaw component) enables separate handling of the gravity-dependent (roll,
pitch) and gravity-independent (yaw) components of rotation, which is useful for defining level reference
frames and enforcing observability constraints.

A rotation matrix can be converted into ZYX Euler angles using (A.34)-(A.36).

φ =

{
atan2 (R32, R33) if 1−R2

31 > ε

0 otherwise
(A.34)

θ = −asin (R31) (A.35)

ψ =

{
atan2 (R21, R11) if 1−R2

31 > ε

0 otherwise
(A.36)

A.5. RIGID BODY TRANSFORMS 111

ZYX Euler angles can be converted to a quaternion using (A.37).

q =


qw
qx
qy
qz

 =


cos φ2 cos θ2 cos ψ2 + sin φ

2 sin θ
2 sin ψ

2

sin φ
2 cos θ2 cos ψ2 − cos φ2 sin θ

2 sin ψ
2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

 (A.37)

A quaternion can be converted into ZYX Euler angles using (A.38)-(A.40).

φ = atan2
(
2(qwqx + qyqz), 1− 2(q2

x + q2
y)
)

(A.38)

θ = asin (2(qwqy − qxqz)) (A.39)

ψ = atan2
(
2(qwqz + qxqy), 1− 2(q2

y + q2
z)
)

(A.40)

A.5 Rigid Body Transforms
A 4 × 4 matrix can be used to represent a 6DOF rigid body transform that rotates and translates a point in
3D space

T(p,R) =

[
R p
0 1

]
(A.41)

where R ∈ SO(3) and p ∈ R3. The inverse transform is

T(p,R)−1 =

[
RT −RTp
0 1

]
(A.42)

A 4DOF rigid body transform is defined by a heading and a position and is equivalent to a 6DOF rigid body
transform whose roll and pitch components are set to zero.

T(p, ψ) =

[
Rz(ψ) p

0 1

]
(A.43)

4DOF rigid body transforms are also known as level transforms because they describe poses whose z-axes
are aligned with the gravity vector.

A.6 Useful SO(3) Identities and Approximations
The right Jacobian of SO(3) and its inverse are given by:

Jr(φ) = I− 1− cos ‖φ‖
‖φ‖2

[φ]× +
‖φ‖ − sin ‖φ‖
‖φ‖3

[φ]2× (A.44)

J−1
r (φ) = I +

1

2
[φ]× +

(
1

‖φ‖2
− 1 + cos ‖φ‖

2 ‖φ‖ sin ‖φ‖

)
[φ]2× (A.45)

The following identity is taken from equation 11 of [70]:

Exp(φ)R = R Exp(RTφ) (A.46)

The following approximation for a 3×1 rotation vector φ and a small 3×1 rotation vector δφ is taken from
equation 68 of [90]:

Exp (φ+ δφ) ≈ Exp(φ) Exp (Jr(φ)δφ) (A.47)

112 APPENDIX A. LIE THEORY

The following approximation for a 3×1 rotation vector φ and a small 3×1 rotation vector δφ is taken from
equation 70 of [90]:

Log (Exp(φ) Exp(δφ)) ≈ φ+ J−1
r (φ)δφ (A.48)

Let δφ and δθ be two small rotation vectors. Small rotations can be approximated as being commutative:

Exp (δφ+ δθ) ≈ Exp(δφ) Exp(δθ) ≈ Exp(δθ) Exp(δφ) (A.49)

Appendix B

IMU Preintegration Derivations

The derivations in this appendix use terms defined in Section 3.2.

B.1 Continuous Time Error State Dynamics
Expand out the true state dynamics by substituting (3.37)-(3.42) into (3.43)-(3.47).

˙̄α+ δα̇ = β̄ + δβ (B.1)
˙̄β + δβ̇ = R (γ̄ ⊗ Exp δθ) La

(
â− b̄a − δba − na

)
(B.2)

d

dt
(γ̄ ⊗ Exp δθ) =

1

2
(γ̄ ⊗ Exp δθ)⊗

[
0

Lω
(
ω̂ − b̄ω − δbω − nω

)] (B.3)

˙̄ba + δḃa = nba (B.4)
˙̄bω + δḃω = nbω (B.5)

B.1.1 Position Error State Dynamics
Subtract (3.48) from (B.1) to obtain

δα̇ = δβ (B.6)

B.1.2 Linear Velocity Error State Dynamics
Rewrite (B.2) using rotation matrices instead of quaternions.

˙̄β + δβ̇ = R(γ̄) Exp(δθ) La
(
â− b̄a − δba − na

)
(B.7)

Apply the small angle approximation (A.14) for the capitalized exponential map.

˙̄β + δβ̇ ≈ R(γ̄)
(
I + [δθ]×

)
La
(
â− b̄a − δba − na

)
(B.8)

˙̄β + δβ̇ ≈ R(γ̄) La
(
â− b̄a − δba − na

)
+ R(γ̄) [δθ]× La

(
â− b̄a − δba − na

)
(B.9)

Subtract (3.49) from (B.9).

δβ̇ ≈ −R(γ̄) La (δba + na) + R(γ̄) [δθ]× La
(
â− b̄a

)
−R(γ̄) [δθ]× (δba + na) (B.10)

Drop the last term of (B.10) because it is second order in perturbations.

δβ̇ ≈ −R(γ̄) La (δba + na) + R(γ̄) [δθ]× La
(
â− b̄a

)
(B.11)

Apply (A.3) to the last term of (B.11) and expand.

δβ̇ ≈ −R(γ̄) Laδba −R(γ̄) Lana −R(γ̄)
[
La
(
â− b̄a

)]
× δθ (B.12)

113

114 APPENDIX B. IMU PREINTEGRATION DERIVATIONS

B.1.3 Attitude Error State Dynamics
Rewrite (B.3) in terms of rotation matrices instead of quaternions.

d

dt

(
R̄ Exp(δθ)

)
= R̄ Exp(δθ)

[
Lω
(
ω̂ − b̄ω − δbω − nω

)]
× (B.13)

Rewrite (3.50) in terms of rotation matrices instead of quaternions.

˙̄R = R̄
[
Lω
(
ω̂ − b̄ω

)]
× (B.14)

Apply product rule to the left hand side of (B.13)

˙̄R Exp(δθ) + R̄
d

dt
Exp(δθ) = R̄ Exp(δθ)

[
Lω
(
ω̂ − b̄ω − δbω − nω

)]
× (B.15)

Substitute (B.14) into (B.15) and then pre-multiply both sides by R̄T to get rid of the leading R̄ terms.[
Lω
(
ω̂ − b̄ω

)]
× Exp(δθ) +

d

dt
Exp(δθ) = Exp(δθ)

[
Lω
(
ω̂ − b̄ω − δbω − nω

)]
× (B.16)

Apply the small angle approximation (A.14) for the capitalized exponential map.

d

dt

(
I + [δθ]×

)
≈ −

[
Lω
(
ω̂ − b̄ω

)]
×
(
I + [δθ]×

)
+
(
I + [δθ]×

) [
Lω
(
ω̂ − b̄ω − δbω − nω

)]
× (B.17)

Apply the cross operator’s distributive property (A.7).

d

dt

(
I + [δθ]×

)
≈ −

[
Lω
(
ω̂ − b̄ω

)]
×
(
I + [δθ]×

)
+
(
I + [δθ]×

) [
Lω
(
ω̂ − b̄ω

)]
×

+
(
I + [δθ]×

)
[Lω (−δbω − nω)]× (B.18)

Expand both sides, cancel out a
[
Lω
(
ω̂ − b̄ω

)]
× term, and ignore second order terms.

d

dt
[δθ]× ≈ −

[
Lω
(
ω̂ − b̄ω

)]
× [δθ]× + [δθ]×

[
Lω
(
ω̂ − b̄ω

)]
× + [Lω (−δbω − nω)]× (B.19)

Apply the identity (A.5) to each of the first two right hand side terms.

d

dt
[δθ]× ≈ −

{
δθ
(
Lω
(
ω̂ − b̄ω

))T −
(
Lω
(
ω̂ − b̄ω

))T
δθ I

}
+ Lω

(
ω̂ − b̄ω

)
δθT − δθTLω

(
ω̂ − b̄ω

)
I + [Lω (−δbω − nω)]× (B.20)

Cancel out the two terms with the identity matrices.

d

dt
[δθ]× = −

{
δθ
(
Lω
(
ω̂ − b̄ω

))T − Lω
(
ω̂ − b̄ω

)
δθT
}

+ [Lω (−δbω − nω)]× (B.21)

Apply the identity (A.2) to the term in the curly brackets.

d

dt
[δθ]× ≈ −

[[
Lω
(
ω̂ − b̄ω

)]
× δθ

]
×

+ [Lω (−δbω − nω)]× (B.22)

Apply the cross operator’s distributive property (A.7).

d

dt
[δθ]× ≈

[
−
[
Lω
(
ω̂ − b̄ω

)]
× δθ + Lω (−δbω − nω)

]
×

(B.23)

Apply the vee operator to both sides.

δθ̇ ≈ −
[
Lω
(
ω̂ − b̄ω

)]
× δθ − Lωδbω − Lωnω (B.24)

B.2. MIDPOINT RULE PREINTEGRATION 115

B.1.4 IMU Bias Error State Dynamics
Subtract (3.51) from (B.4) to obtain

δḃa = nba (B.25)

Subtract (3.52) from (B.5) to obtain

δḃω = nbω (B.26)

B.1.5 Assembly into Linear Time Varying System
Combine (B.6), (B.12), (B.24), (B.25), and (B.26) and write the result in matrix form to obtain (3.56)-(3.58).

B.2 Midpoint Rule Preintegration
Let k − 1 and k be the time indices of two successive IMU observations. Define the time interval between
two successive IMU observations as ∆tk ≡ tk − tk−1.

B.2.1 Nominal State
Compute the average angular velocity with respect to the body frame at the beginning of the preintegration
time interval (k = 0) using bias-compensated gyroscope observations at time indices k − 1 and k.

ω̄avg = Lω

(
1

2
(ω̂k−1 + ω̂k)− b̄ω,k−1

)
(B.27)

The attitude nominal state gets updated with the average of the bias-compensated angular velocities at time
indices k − 1 and k.

γ̄k = γ̄k−1 ⊗ Exp
[
ω̄avg∆tk

]
(B.28)

Compute the average acceleration with respect to the body frame at the beginning of the preintegration time
interval (k = 0) using bias-compensated accelerometer observations and attitude estimates at time indices
k − 1 and k.

āavg =
1

2

[
R(γ̄k−1)La

(
âk−1 − b̄a,k−1

)
+ R(γ̄k)La

(
âk − b̄a,k−1

)]
(B.29)

Propagate the position and velocity nominal states forward using (B.29).

ᾱk = ᾱk−1 + β̄k−1∆tk +
1

2
āavg∆t2k (B.30)

β̄k = β̄k−1 + āavg∆tk (B.31)

B.2.2 Error State
The midpoint rule Jacobian that updates the error state from time index k − 1 to time index k is

Fk =


I Fαβ Fαθ Fαba Fαbω

0 I Fβθ Fβba Fβbω

0 0 Fθθ 0 Fθbω

0 0 0 I 0
0 0 0 0 I

 ∈ R15×15 (B.32)

with the following 3× 3 sub-blocks:

Fαβ = ∆tkI (B.33)

116 APPENDIX B. IMU PREINTEGRATION DERIVATIONS

Fαθ =
1

2
∆tkFβθ (B.34)

Fαba =
1

2
∆tkFβba (B.35)

Fαbω =
1

2
∆tkFβbω (B.36)

Fβθ = −1

2
∆tk

{
R(γ̄k−1)

[
La
(
âk−1 − b̄a,k−1

)]
× + R(γ̄k)

[
La
(
âk − b̄a,k−1

)]
×Fθθ

}
(B.37)

Fβba = −1

2
∆tk

[
R(γ̄k−1) + R(γ̄k)

]
La (B.38)

Fβbω = −1

2
∆tkR(γ̄k)

[
La
(
âk − b̄a,k−1

)]
×Fθbω (B.39)

Fθθ = I−∆tk
[
ω̄avg

]
× (B.40)

Fθbω = −∆tkLω (B.41)

The midpoint rule Jacobian that captures the noise state at time index k − 1’s contribution to the error state
at time index k is

Gk =


Gαna Gαnω 0 0
Gβna Gβnω 0 0

0 Gθnω 0 0
0 0 Gbanba

0
0 0 0 Gbωnbω

 ∈ R15×12 (B.42)

with the following 3× 3 sub-blocks:

Gαna =
1

2
∆tkGβna (B.43)

Gαnω =
1

2
∆tkGβnω (B.44)

Gβna = −1

2
∆tk

[
R(γ̄k−1) + R(γ̄k)

]
La (B.45)

Gβnω = −1

2
∆tkR(γ̄k)

[
La
(
âk − b̄a,k−1

)]
×Gbωnbω

(B.46)

Gθnω = −∆tkLω (B.47)

Gbanba
= ∆tkI (B.48)

Gbωnbω
= ∆tkI (B.49)

Substitute (B.32) and (B.42) into (3.59) to perform midpoint rule integration of the error state dynamics.

B.3 Extension to Support Online IMU Intrinsic Calibration
This section repeats the developments of Sections 3.2.3 and 3.3 for the case where La and Lω are being
jointly estimated in optimization. For convenience, we define

la =
[
La,xx La,yx La,yy La,zx La,zy La,zz

]T ∈ R6 (B.50)

lω =
[
Lω,xx Lω,xy Lω,xz Lω,yx Lω,yy Lω,yz Lω,zx Lω,yz Lω,zz

]T ∈ R9 (B.51)

as the vectorized forms of La and Lω in row-major order. We extend the true, nominal, and error states with
the following IMU intrinsic parameters

la = l̄a + δla (B.52)

B.3. EXTENSION TO SUPPORT ONLINE IMU INTRINSIC CALIBRATION 117

lω = l̄ω + δlω (B.53)

such that

x =



α
β
γ
ba
bω
la
lω


, x̄ =



ᾱ
β̄
γ̄
b̄a
b̄ω
l̄a
l̄ω


, δx =



δα
δβ
δγ
δba
δbω
δla
δlω


(B.54)

For convenience we define the operators [·]4 and [·]� for the 3× 1 vector a = [ax ay az]
T asaxay

az


4

=

ax 0 0 0 0 0
0 ax ay 0 0 0
0 0 0 ax ay az

 ∈ R3×6 (B.55)

axay
az


�

=

ax ay az 0 0 0 0 0 0
0 0 0 ax ay az 0 0 0
0 0 0 0 0 0 ax ay az

 ∈ R3×9 (B.56)

These operators allow us to write

δLa a = [a]4 δla (B.57)

δLω a = [a]� δlω (B.58)

B.3.1 True and Nominal State Continuous Time Dyanmics
The true state continuous time dynamics are given by (3.43)-(3.47) together with the following two differ-
ential equations:

l̇a = 0 (B.59)

l̇ω = 0 (B.60)

The nominal state continuous time dynamics are given by (3.48)-(3.52) together with the following two
differential equations:

˙̄la = 0 (B.61)
˙̄lω = 0 (B.62)

The expanded true state continuous time dynamics are given by (B.1)-(B.5) with (B.2) replaced by

˙̄β + δβ̇ = R (γ̄ ⊗ Exp δθ)
(
L̄a + δL̄a

) (
â− b̄a − δba − na

)
(B.63)

and (B.3) replaced by

d

dt
(γ̄ ⊗ Exp δθ) =

1

2
(γ̄ ⊗ Exp δθ)⊗

[
0

(Lω + δLω)
(
ω̂ − b̄ω − δbω − nω

)] (B.64)

and the addition of

˙̄la + δl̇a = 0 (B.65)
˙̄lω + δl̇ω = 0 (B.66)

118 APPENDIX B. IMU PREINTEGRATION DERIVATIONS

B.3.2 Error State Continuous Time Dynamics

Applying the techniques of Appendix B.1.2 to (B.63), we obtain

δβ̇ ≈ −R(γ̄) L̄aδba −R(γ̄) L̄ana −R(γ̄)
[
L̄a
(
â− b̄a

)]
× δθ + R(γ̄) δLa

(
â− b̄a

)
(B.67)

and rewrite the last term using (B.57)

δβ̇ ≈ −R(γ̄) L̄aδba −R(γ̄) L̄ana −R(γ̄)
[
L̄a
(
â− b̄a

)]
× δθ + R(γ̄)

[
â− b̄a

]
4 δla (B.68)

Applying the techniques of Appendix (B.1.3) to (B.64), we obtain

δθ̇ ≈ −
[
L̄ω
(
ω̂ − b̄ω

)]
× δθ − L̄ωδbω − L̄ωnω + δLω

(
ω̂ − b̄ω

)
(B.69)

and rewrite the last term using (B.58)

δθ̇ ≈ −
[
L̄ω
(
ω̂ − b̄ω

)]
× δθ − L̄ωδbω − L̄ωnω +

[
ω̂ − b̄ω

]
� δlω (B.70)

The continuous time error state dynamics for the accelerometer intrinsic parameters are obtained by sub-
tracting (B.61) from (B.65).

δl̇a = 0 (B.71)

The continuous time error state dynamics for the gyroscope intrinsic parameters are obtained by subtract-
ing (B.62) from (B.66)

δl̇ω = 0 (B.72)

Combine (B.6), (B.68), (B.70), (B.25), (B.26), (B.71), and (B.72) and write the result in matrix form to
obtain

δẋ = Fcδx + Gcn (B.73)

Fc =



03×3 I3×3 03×3 03×3 03×3 03×6 03×9

03×3 03×3 −R(γ̄)
[
L̄a
(
â− b̄a

)]
× −R(γ̄)L̄a 03×3 R(γ̄)

[
â− b̄a

]
4 03×9

03×3 03×3 −
[
L̄ω
(
ω̂ − b̄ω

)]
× 03×3 −L̄ω 03×6

[
ω̂ − b̄ω

]
�

03×3 03×3 03×3 03×3 03×3 03×6 03×9

03×3 03×3 03×3 03×3 03×3 03×6 03×9

015×30


(B.74)

Gc =



03×3 03×3 03×3 03×3

−R(γ̄)L̄a 03×3 03×3 03×3

03×3 −L̄ω 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

015×12

 (B.75)

to replace (3.56)-(3.58).

B.3. EXTENSION TO SUPPORT ONLINE IMU INTRINSIC CALIBRATION 119

B.3.3 Midpoint Rule for Error State Dynamics
We assume that La and Lω are constant over any preintegration time interval. The midpoint rule Jacobian
that updates the error state from time index k − 1 to time index k is

Fk =



I3×3 Fαβ Fαθ Fαba Fαbω Fαla Fαlω

03×3 I3×3 Fβθ Fβba Fβbω Fβla Fβlω

03×3 03×3 Fθθ 03×3 Fθbω 03×6 Fθlω

03×3 03×3 03×3 I3×3 03×3 03×6 03×9

03×3 03×3 03×3 03×3 I3×3 03×6 03×9

06×3 06×3 06×3 06×3 06×3 I6×6 06×9

09×3 09×3 09×3 09×3 09×3 09×6 I9×9


∈ R30×30 (B.76)

with 3 × 3 sub-blocks defined in (B.33)-(B.41) (substituting La → L̄a and Lω → L̄ω) as well as the
following new sub-blocks:

Fαla =
1

2
∆tkFβla (B.77)

Fαlω =
1

2
∆tkFβlω (B.78)

Fβla =
1

2
∆tk

{
R(γ̄k−1)

[
âk−1 − b̄a,k−1

]
4 + R(γ̄k)

[
âk − b̄a,k−1

]
4

}
(B.79)

Fβlω = −1

2
∆tkR(γ̄k)

[
L̄a
(
âk − b̄a,k−1

)]
×Fθlw (B.80)

Fθlw = ∆tk

[
1

2
(ω̂k−1 + ω̂k)− b̄ω,k−1

]
�

(B.81)

The midpoint rule Jacobian that captures the noise state at time index k − 1’s contribution to the error state
at time index k is obtained by padding the bottom of (B.42) with 15 rows of zeros.

B.3.4 IMU Bias and Intrinsics Perturbation Model
Replace (3.68)-(3.71) with the following:

δαn
δβn
δθn
δba,n
δbω,n
δla,n
δlω,n


=



Jαα Jαβ Jαθ Jαba Jαbω Jαla Jαlω
Jβα Jββ Jβθ Jβba Jβbω Jβla Jβlω
Jθα Jθβ Jθθ Jθba Jθbω Jθla Jθlω
Jbaα Jbaβ Jbaθ Jbaba Jbabω Jbala Jbalω
Jbωα Jbωβ Jbωθ Jbωba Jbωbω Jbωla Jbωlω
Jlaα Jlaβ Jlaθ Jlaba Jlabω Jlala Jlalω
Jlωα Jlωβ Jlωθ Jlωba Jlωbω Jlωla Jlωlω





δα0

δβ0

δθ0

δba,0
δbω,0
δla,0
δlω,0


+ . . . (B.82)

δαn ≈ Jαbaδba,0 + Jαbωδbw,0 + Jαlaδla,0 + Jαlωδlω,0 + . . . (B.83)

δβn ≈ Jβbaδba,0 + Jβbωδbw,0 + Jβlaδla,0 + Jβlωδlω,0 + . . . (B.84)

δθn ≈ Jθbωδbω,0 + Jθlωδlω,0 + . . . (B.85)

Note that Jθla = 03×6 because the accelerometer intrinsic parameters do not affect rotation. In the same
manner as (3.72)-(3.73), we obtain

δla,0 = la,0 − l̄a,0 (B.86)

δlω,0 = lω,0 − l̄ω,0 (B.87)

The right hand side terms of (3.74)-(3.76) now additionally depend on l̄a,0 and l̄ω,0.

120 APPENDIX B. IMU PREINTEGRATION DERIVATIONS

First order approximations of changes in motion deltas now depend on changes in IMU intrinsic param-
eter estimates as well as changes in initial IMU bias estimates. Replace (3.77)-(3.79) with the following:

α′n (ba,0,bω,0, la,0, lω,0) ≈ ᾱn
(
b̄a,0, b̄ω,0, l̄a,0, l̄ω,0

)
+ Jαba

(
ba,0 − b̄a,0

)
+

Jαbω
(
bω,0 − b̄ω,0

)
+ Jαla

(
la,0 − l̄a,0

)
+ Jαlω

(
lω,0 − l̄ω,0

)
(B.88)

β′n (ba,0,bω,0, la,0, lω,0) ≈ β̄n
(
b̄a,0, b̄ω,0, l̄a,0, l̄ω,0

)
+ Jβba

(
ba,0 − b̄a,0

)
+

Jβbω
(
bω,0 − b̄ω,0

)
+ Jβla

(
la,0 − l̄a,0

)
+ Jβlω

(
lω,0 − l̄ω,0

)
(B.89)

γ ′n (bω,0, lω,0) ≈ γ̄n
(
b̄ω,0, l̄ω,0

)
⊗ Exp

[
Jθbω

(
bω,0 − b̄ω,0

)
+ Jθlω

(
lω,0 − l̄ω,0

)]
(B.90)

B.3.5 IMU Preintegration Factor
Residual

The IMU preintegration factor residual vector is obtained by replacing (3.77)-(3.79) with (B.88)-(B.90)
in (3.82)-(3.86).

rimu(x) =


rα (pi,vi,qi,ba,i,bω,i,pj , la, lω)

rβ (vi,qi,ba,i,bω,i,vj , la, lω)
rθ (qi,bω,j ,qj , lω)

rba (ba,i,ba,j)
rbω (bω,i,bω,j)

 ∈ R15 (B.91)

x =
[
pT
i vT

i qT
i bT

a,i bT
ω,i pT

j vT
i qT

j bT
a,j bT

ω,j lT
a lT

ω

]T ∈ R47 (B.92)

The IMU preintegration factor residual’s covariance is the top-left 15 × 15 block of the covariance of the
motion delta error dynamics1 at the end of the preintegration time interval.

Jacobians

The Jacobians defined in (3.89)-(3.101), (3.110), (3.111), and (3.128)-(3.130) are still valid. The following
additional non-zero Jacobians with respect to the IMU intrinsics parameters are required.

∂rα
∂δla

= −Jαla (B.93)

∂rα
∂δlω

= −Jαlω (B.94)

∂rβ
∂δla

= −Jβla (B.95)

∂rβ
∂δlω

= −Jβlω (B.96)

∂rθ
∂δlω

= −
(

I +
1

2
[rθ]×

)
RT
jRiRγ̄ijJθlω (B.97)

B.3.6 IMU Intrinsics Factor
A single IMU intrinsics factor is added to the sliding window optimization problem if we wish to estimate
IMU intrinsic parameters jointly with the other optimization variables. The residual is given by

rimucalib(la, lω) =

[
la − l̄a
lω − l̄ω

]
∈ R15 (B.98)

where l̄a and l̄ω are the current estimates of the IMU intrinsic parameters at the beginning of the optimiza-
tion. The corresponding Jacobian is I15×15. The covariance for the IMU intrinsics residual is a 15 × 15
diagonal matrix with constant user-defined values.

1The motion delta error dynamics are given by (3.64) evaluated with Fk and Gk defined in Appendix B.3.3.

Appendix C

Nonlinear Least Squares Regression

A nonlinear least squares problem over a Euclidean parameter space x ∈ Rn can be expressed in the
following form:

x∗ = arg min
x

1

2
‖r(x)‖2 (C.1)

r(x) =
[
r1(x) . . . rm(x)

]T ∈ Rm (C.2)

Define the Jacobian of r with respect to x as

J(x) =
∂r

∂x
=


∂r1
∂x1

∣∣∣
x

. . . ∂r1
∂xn

∣∣∣
x

...
. . .

...
∂rm
∂x1

∣∣∣
x

. . . ∂rm
∂xn

∣∣∣
x

 ∈ Rm×n (C.3)

and the gradient as

g(x) = J(x)Tr(x) ∈ Rn (C.4)

Nonlinear least squares optimizers seek to find a local minimum x∗ by minimizing a sequence of
quadratic functions that locally approximate the original nonlinear function. Given an initial guess x0, the
first-order approximation of r(x) in the vicinity is r(x0) + J(x0) (x− x0). Solve the linear least squares
problem

∆x = arg min
∆x′

1

2

∥∥J(x0)∆x′ + r(x0)
∥∥2 (C.5)

to compute a step ∆x and use it to update the initial guess as x1 = x0 + ∆x. This process repeats until ∆x
is very small (i.e. convergence) or the iteration limit is reached.

C.1 Trust Region Minimization
Trust region methods control the size of ∆x∗ to improve convergence. They solve a modified version
of (C.5) subject to the constraint that restricts the step to lie within a neighborhood of the existing estimate
called the trust region.

∆x = arg min
∆x′

1

2

∥∥J(x)∆x′ + r(x)
∥∥2

‖D(x)∆x‖2 ≤ µ (C.6)

121

122 APPENDIX C. NONLINEAR LEAST SQUARES REGRESSION

µ is the trust region radius, while D(x) is a typically diagonal matrix that rescales the dimensions of the
input space. After solving the constrained optimization, a step quality factor is computed based on how
closely the quadratic approximation predicted the actual objective function change in the trust region. µ is
increased to enable larger step sizes if step quality factor is high and decreased to restrict step sizes if step
quality factor is low. The trust region inequality constraint can be incorporated into the linear least squares
cost function (C.6) using µ−1 as a Lagrange multiplier. The extra term corresponding to the soft constraint
can be eliminated by concatenating 1√

µD(x) below J and concatenating 0 ∈ Rn below r.

C.2 Dogleg Strategy
The Dogleg strategy computes two step candidates for (C.6):

∆xGN = arg min
∆x′

1

2

∥∥J(x)∆x′ + r(x)
∥∥2 (C.7)

∆xCauchy = − ‖g(x)‖2

‖J(x)g(x)‖2
g(x) (C.8)

The Gauss-Newton step (C.7) is the solution to the unconstrained linear least squares problem (C.5), while
the Cauchy step (C.8) is the minimum of the approximated objective function in the direction of steepest
descent (i.e. the negative gradient direction).

If ∆xGN is inside the trust region, the Dogleg strategy uses it as the trust region step. If both ∆xGN
and ∆xCauchy are outside the trust region, the Dogleg strategy chooses a step parallel to ∆xCauchy as large
as the trust region radius. If ∆xGN is outside the trust region but ∆xCauchy is inside the trust region, the
Dogleg strategy constructs the trust region step by finding a linear combination of ∆xCauchy and ∆xGN that
intersects the trust region boundary.

C.3 Schur Complement Linear Solver
The linear least squares problem (C.7) for finding the Gauss-Newton step in the Dogleg strategy is equivalent
to a linear system called the normal equations:

J(x)TJ(x)∆x = −J(x)Tr(x) (C.9)

H(x)∆x = −g(x) (C.10)

where H(x) is the Hessian and g(x) is the gradient. We rewrite (C.10) as

A∆x = b (C.11)

to reduce clutter. The Schur complement method takes advantage of the structure of bundle adjustment
problems, where the parameter vector can be partitioned into camera poses ∆xc and feature locations ∆xf .
Substituting these expressions into (C.11) and decomposing A and b into sub-blocks yields:[

B C
CT D

] [
∆xc
∆xf

]
=

[
c
d

]
(C.12)

Using block elimination, we have(
B−CD−1CT)∆xc = c−CD−1d (C.13)

D∆xf =
(
d−CT∆xc

)
(C.14)

Because bundle adjustment cost function terms never involve more than one feature, D is block diagonal
and D−1 is relatively easy to invert. The Schur complement method first solves (C.13) to get ∆xc and then

C.4. LOSS FUNCTIONS 123

back-substitutes ∆xc into (C.14) to solve for ∆xf . In time-critical applications, both (C.13) and (C.14) are
usually solved via Cholesky factorization followed by back-substitution.

Since the Schur complement B −CD−1CT does not have any special sparsity pattern, solving (C.13)
(O(dim(∆xc)

3) time complexity) is the dominant cost. This compares favorably with the naive method
of directly solving (C.11), which has O(dim(∆x)3) time complexity, because typical bundle adjustment
problems involve much fewer cameras than features (i.e. dim(∆xc)� dim(∆x)).

C.4 Loss Functions
Loss functions are used to reduce the influence of outlier observations on the optimization solution by down-
weighting their large residuals. A loss function λ(s) : R≥0 → R≥0 satisfies the following conditions

λ(0) = 0

λ′(0) = 1 (C.15)

λ′(s) ≥ 0

Additionally, loss functions are typically sublinear for values of s large enough to be considered outliers:

λ′(s) < 1 (C.16)

λ′′(s) < 0 (C.17)

Loss functions correspond to residual error probability distributions with longer tails than the Gaussian
distribution and therefore assign greater probability to outliers.

Applying a loss function to a cost term 0.5 ‖r(x)‖2 turns it into 0.5λ(‖r(x)‖2) ≡ 0.5λ. With this
change, the robustified gradient and Hessian from (C.10) become [91]

gλ(x) = λ′JT(x)r(x) (C.18)

Hλ(x) ≈ JT(x)
(
λ′ + 2λ′′r(x)r(x)T)J(x) (C.19)

The condition (C.16) down-weights the gradient and Hessian of an outlier residual, while (C.17) reduces the
Hessian’s curvature.

In order to use loss functions with the optimization techniques described in previous sections, replace
the non-robust residual (r(x)) and Jacobian (J(x)) with their robust counterparts [91]:

rλ(x) =

√
λ′

1− α
r(x) (C.20)

Jλ(x) =
√
λ′
(

1− αr(x)r(x)T

‖r(x)‖2

)
J(x) (C.21)

α =

{
0 if λ′′ < 0

1−
√

1 + 2λ
′′

λ′ ‖r(x)‖2 otherwise
(C.22)

C.5 Manifold Optimization
The previous sections described nonlinear least squares optimization over the Euclidean parameter space
Rn. Suppose the optimization variable lies on a manifoldM with fewer degrees of freedom (p < n) than
the ambient vector space (Rn) it is embedded in. In such cases it is necessary to perform optimization on
the manifold’s tangent space, T (M) = Rp, in order to prevent the normal equations (C.9) from becoming
underdetermined.

124 APPENDIX C. NONLINEAR LEAST SQUARES REGRESSION

Table C.1: Comparison of optimization in Euclidean space and manifold

Optimization Euclidean Space Manifold
Problem x∗ = arg minx∈Rn f(x) δx∗ = arg minδx∈Rp f(x� δx)

Update x← x + x∗ x← x� δx∗

Given the current estimate x ∈M, the� operator is a generalization of Euclidean space vector addition
that maps elements in the tangent space ofM at x to the neighborhood of x. Because tangent spaces are
Euclidean, we can apply the standard trust region step (Sect. C.1) to find the tangent space vector δx ∈ Rp
that minimizes the locally approximated objective function. The current estimate is updated using the �
with the optimal tangent space vector to ensure that the result remains inM.

A common application of manifold optimization involves quaternions in bundle adjustment. Quaternions
are embedded in a 4-dimensional ambient vector space but represent SO(3) rotations that only have 3
degrees of freedom. The � operator for quaternions can be defined either as a left-perturbation

q� δθ = Exp(θ)⊗ q ≈
[

1
1
2θ

]
⊗ q (C.23)

or a right-perturbation

q� δθ = q⊗ Exp(θ) ≈ q⊗
[

1
1
2θ

]
(C.24)

using the capitalized quaternion exponential map (A.27).

Appendix D

Offline Calibration

D.1 IMU to Motion Capture Model Extrinsics
Let frame {w} be the fixed reference frame in which a motion capture system provides its observations.
The motion capture system provides position (pwb) and rotation (Rwb) observations of a robot’s marker
centroid frame {b} (henceforth called the mocap body frame) relative to {w}. The robot receives IMU
linear acceleration (ai) and angular velocity (ωi) observations in the IMU frame {i}, which in general is not
the same as {b}. This section describes a method to compute the rigid body transform between {i} and {b}
using IMU and mocap observations collected during a period of dynamic motion. We formulate a nonlinear
least squares problem to find Rib and pib by minimizing the difference between IMU acceleration expressed
in frame {b} and mocap-derived acceleration expressed in frame {b}.
Mocap-Derived Body Acceleration
Double differentiate mocap position observations pwb to obtain the world frame coordinate acceleration of
{b}.

aw = p̈wb (D.1)

We use a Savitzky-Golay filter [92] to smooth the data before taking derivatives in order to suppress noise.
The Savitzky-Golay filter window size is left as a tuning parameter to control the level of smoothing and
should be set according to the amount of noise in the raw data. To obtain proper acceleration in the body
frame, we need to add gravitational acceleration and rotate the sum from the world frame to the body frame.

ab,mocap = RT
wb (aw + ge3) (D.2)

IMU Acceleration in Mocap-Derived Body Frame
We compute the measured IMU acceleration as seen in the mocap-derived body frame according to equation
2 in [93].

ab,imu = RT
ib [ai + ω̇i × pib + ωi × (ωi × pib)] (D.3)

IMU angular acceleration ω̇i is computed from angular velocity via Savitzky-Golay differentiation, with
window size being a user-tuned parameter chosen for noise suppression.

Nonlinear Least Squares Problem
We form a cost function can by summing the squared norms of the differences between (ab,mocap,ab,imu)
pairs,

f0 (pib,qib) =
1

2

n∑
k=1

∥∥ab,imu(pib,qib, k)− ab,mocap(k)
∥∥2
, (D.4)

125

126 APPENDIX D. OFFLINE CALIBRATION

where qib is the Hamilton quaternion representation of Rib.
The jacobian of the residual in (D.4) is nontrivial because both qib and pib appear in the first term (D.3).

To simplify the jacobian, multiply each residual by Rib so that each term in the residual involves only one
optimization variable. To save space we omit the index k from the expanded residual expression.

f1 (pib,qib) =
1

2

n∑
k=1

∥∥ai + ω̇i × pib + ωi × (ωi × pib)−R(qib) ab,mocap
∥∥2 (D.5)

f1 (pib,qib) =
1

2

n∑
k=1

∥∥ai + (ω̇i,× + ωi,×ωi,×) pib −R(qib) ab,mocap
∥∥2 (D.6)

f1 (pib,qib) =
1

2

n∑
k=1

‖r(pib,qib, k)‖2 (D.7)

The jacobians of the residual r(pib,qib, k) with respect to pib and the Lie algebra of qib are

∂r

∂pib
= ω̇i,× + ωi,×ωi,× (D.8)

∂r

∂θib
= R(qib) ab,mocap,× (D.9)

Use the above residual and jacobian expressions in a nonlinear least squares optimizer to compute the pib
and qib values that minimize f1.

Implementation Tip

A naive strategy to select n (ab,mocap,ab,imu) pairs from flight data is to choose them to be equally spaced in
time. A more efficient strategy is to compute the IMU acceleration norm over the entire flight duration and
choose n pairs from the time intervals when the acceleration norm exceeds a threshold. This strategy biases
the subsampling of raw data to favor time intervals of dynamic motion, which provide greater observability
of the IMU to mocap body frame transform.

D.2 Camera to IMU Extrinsics
Unlike extrinsic rotation and time offset, estimating extrinsic translation requires visual scale to either be
known beforehand or jointly estimated. The former can be achieved by using a known calibration target,
while the latter is used in target-free calibration. In both cases, IMU biases and noise must be accurately
modeled to obtain physically meaningful estimates. Since collecting enough data to model long-term noise
characteristics of an IMU subject to flight-induced vibrations is difficult, we were unable to achieve reason-
able calibrations with tools such as Kalibr [94] that jointly estimate spatial and temporal calibration param-
eters. Consequently, we designed procedures to calibrate extrinsic rotation and time offset independently of
extrinsic translation and rely on CAD model measurements for extrinsic translation.

Let {i} be the IMU reference frame and {c} be the camera reference frame. We compute the extrinsic
rotation Ric ∈ SO(3) by aligning camera and gyro delta rotations in corresponding time intervals. We com-
pute the time offset between the IMU and camera by wrapping the extrinsic rotation calibration procedure
inside a line search to find the time offset value for which alignment error is minimized.

Delta Rotation From Feature Correspondences

Let tk and tk+1 be two successive times when feature observations are published. The kth feature obser-
vation set consists of nk pixel coordinates {(IDi, (uki, vki))}nk

i=1 associated with unique feature IDs. The

D.2. CAMERA TO IMU EXTRINSICS 127

homogeneous point representation of (uki, vki) is given by

pki = K−1

ukivki
1

 , (D.10)

where

K =

fx 0 cx
0 fy cy
0 0 1

 (D.11)

is the camera’s intrinsic matrix. We normalize each homogeneous point to turn it into a bearing observation

p̄ki =
pki
‖pki‖

. (D.12)

We construct a set of m ≤ min (nk, nk+1) bearing observation pairs from times tk and tk+1 with matching
feature IDs,

{p̄k,j}mj=1, {p̄k+1,j}mj=1, (D.13)

and use the Kabsch algorithm [53] to find the delta rotation Rcam,k,k+1 between them.

Delta Rotation From Integrated Angular Velocity
Let {ωj}nj=0 be the set of all IMU gyro observations whose timestamps are within the interval [tk, tk+1]
between two successive feature observation sets. The timestamps corresponding to these gyro observations
are {tj}nj=0, where t0 = tk and tn = tk+1

1. We use midpoint integration to compute the delta rotation
arising from the set of angular velocities,

qk,k+1 =

n∏
j=1

[
1

1
2 (tj − tj−1)

ωj−1+ωj

2

]
, (D.14)

where
∏n
i=1 qi = q1 ⊗ . . .⊗ qn. The rotation matrix form of the quaternion qk,k+1 is

Rgyro,k,k+1 = QuatToR (qk,k+1) (D.15)

where QuatToR denotes the function defined in (A.20).

Rigid Body Alignment of Vector Sets
The Kabsch algorithm [53] finds the rigid body transformation that minimizes the root-mean-square (RMS)
deviation between two sets of D-dimensional vectors. In 3D, the Kabsch algorithm finds the rotation matrix
and translation vector that maps each vector in the set {ai}ni=1 as closely as possible to its counterpart in
{bi}ni=1.

First, compute the centroid of each set.

ā =
1

n

n∑
i=1

ai (D.16)

b̄ =
1

n

n∑
i=1

bi (D.17)

1Interpolated observations should be used for t0 and tn if no IMU observations align perfectly with tk and tk+1

128 APPENDIX D. OFFLINE CALIBRATION

Define matrices of stacked deviation row vectors.

A =


(a1 − ā)T

...
(ai − ā)T

...
(an − ā)T

 ∈ Rn×3, B =



(
b1 − b̄

)T

...(
bi − b̄

)T

...(
bn − b̄

)T


∈ Rn×3 (D.18)

Construct the cross covariance matrix.

C = ATB (D.19)

Perform a singular value decomposition of C.

C = USVT (D.20)

Apply a correction factor if VUT has a determinant of -1 to ensure that the optimal rotation R has a
determinant of +1 (i.e. it is a rotation between right-handed coordinate systems).

d = det
(
VUT) (D.21)

R = V

1 0 0
0 1 0
0 0 d

UT (D.22)

Obtain the translation vector

t = b̄−Rā (D.23)

The RMS deviation between {bi}ni=1 and the transformed {ai}ni=1 is

RMSD =
n∑
i=1

‖Rai + t− bi‖2 (D.24)

Axis Angle Delta Rotation Alignment
First, express corresponding pairs of delta rotations {

(
Rcam,k,k+1,Rgyro,k,k+1

)
}Nk=1, in the angle-axis parametriza-

tion as {
(
acam,k,k+1,agyro,k,k+1

)
}Nk=1. The relationship between the angle-axis parameterization and the

rotation matrix is given by

θ = arccos

[
1

2
(traceR− 1)

]
(D.25)

a(R) =


03×1 if |θ| � 1

θ
2 sin θ

R32 −R23

R13 −R31

R21 −R12

 otherwise
(D.26)

Although angle-axis parameters are not vectors because their addition is non-commutative, they can be
treated as vectors when the rotation angle θ is small. With this assumption, we apply the Kabsch algorithm
to {acam,k,k+1}Nk=1 and {agyro,k,k+1}Nk=1 to obtain Ric.

Time Offset
The above described procedure can be run repeatedly with different time offset values to find the time offset
with the lowest alignment cost. Because the range of possible time offset values is not too large, a simple 1D
optimization method such as bisection or golden section search suffices to find the best time offset value.

Appendix E

Online Calibration

E.1 Camera IMU Extrinsic Transform
This section uses the notation introduced in Section 3.4.

If we are interested in jointly optimizing the extrinsic transform between the camera and body alongside
the body frame motion states and features, we require Jacobians with respect to the extrinsic translation,
pbc, and rotation, qbc. Since pbc is a vector space parameter block, we obtain the Jacobian of a with respect
to it by expanding out (3.141), isolating the terms that use it, and then taking the derivative.

∂a

∂pbc
= R(qbc)

T [R(qj)
TR(qi)− I

]
(E.1)

Instead of taking a Jacobian with respect to the quaternion qbc, we take a Jacobian with respect to the
minimal parameterization of its perturbation δθbc. We use the perturbation method to obtain the Jacobian of
a with respect to δθbc. First rewrite (3.141) and consolidate terms that are not Rbc.

a = RT
bcR

T
jRiRbc

1

ρl
hl,i + RT

bc

(
RT
j (Ripbc + pi − pj)− pbc

)
(E.2)

a = RT
bcRjiRbcpl,ci + RT

bc∆p (E.3)

Apply an additive perturbation to the left hand side of (E.3) and a rotational perturbation to the base rota-
tion Rbc = R(qbc) on the right hand side of (E.3).

a + δa = [Rbc Exp(δθbc)]
T RjiRbc Exp(δθbc)pl,ci + [Rbc Exp(δθbc)]

T ∆p (E.4)

Assuming the rotational perturbation δθbc is small, use the approximation (A.14)

a + δa ≈
[
Rbc

(
I + [δθbc)]×

)]T
RjiRbc

(
I + [δθbc)]×

)
pl,ci +

[
Rbc

(
I + [δθbc)]×

)]T
∆p (E.5)

a + δa ≈
(
I + [δθbc]

T
×

)
RT
bcRjiRbc

(
I + [δθbc)]×

)
pl,ci +

(
I + [δθbc]

T
×

)
RT
bc∆p (E.6)

a + δa
(A.4)
≈
(
I− [δθbc]×

)
RT
bcRjiRbc

(
I + [δθbc)]×

)
pl,ci +

(
I− [δθbc]×

)
RT
bc∆p (E.7)

δa
(E.3)
≈ − [δθbc]×RT

bcRjiRbcpl,ci + RT
bcRjiRbc [δθbc]× pl,ci − [δθbc]×RT

bc∆p (E.8)

Note that in (E.8) we ignore terms that are second order in δθbc.

δa ≈ − [δθbc]×
[
RT
bc (RjiRbcpl,ci + ∆p)

]
+ RT

bcRjiRbc [δθbc]× pl,ci (E.9)

δa
(A.3)
≈
[
RT
bc (RjiRbcpl,ci + ∆p)

]
× δθbc −RT

bcRjiRbc [pl,ci]× δθbc (E.10)

129

130 APPENDIX E. ONLINE CALIBRATION

δa ≈
([

RT
bc (RjiRbcpl,ci + ∆p)

]
× −RT

bcRjiRbc [pl,ci]×

)
δθbc (E.11)

The approximate Jacobian of a with respect to δθbc is

∂a

∂δθbc
≈
[
RT
bc (RjiRbcpl,ci + ∆p)

]
× −RT

bcRjiRbc [pl,ci]× (E.12)

Rji = R(qj)
TR(qi) (E.13)

pl,ci =
1

ρl
hl,i (E.14)

∆p = R(qj)
T [R(qi)pbc + pi − pj]− pbc (E.15)

E.2 Camera IMU Time Offset
We account for time offsets between the IMU and camera timestamps in the reprojection factor using the
method proposed in Qin et al. [95].

E.2.1 Feature Velocity

A key assumption is that feature observations can be approximated as moving with constant velocity on
the normalized image plane over small time intervals. The feature’s velocity can be empirically computed
as a finite difference of the feature’s observed locations in the two most recent frames1. Let hl(t) be the
homogeneous coordinate representation of the observation of feature l at time t. Let tm−1 and tm be the
timestamps of two successive camera frames. The finite difference feature velocity of feature l at time t is

vl(tm) =
hl(tm)− hl(tm−1)

tm − tm−1
(E.16)

Note that
[
0 0 1

]
vl = 0 for all feature velocities because the z-component of a homogeneous point is

always 1.

E.2.2 Time Offset Definition

We consider the IMU clock to be true time. Let d be the time offset2 that must be added to camera frame
timestamps in order to make them temporally consistent with IMU timestamps.

ttrue = traw + d (E.17)

In (E.17), traw is the timestamp output by the camera driver for an image observation, while ttrue is the IMU
clock time corresponding to that time instant.

E.2.3 Time Shifted Feature Observations

Consider a feature observation hl(t) taken at time t whose empirical instantaneous normalized image plane
velocity is vl(t). Assuming that the feature moves at a constant velocity of vl(t) over the time interval
[t, t+ δt], at time t+ δt the predicted feature observation l is

hl(t+ δt) = hl(t) + vl(t)δt (E.18)

1Frames are much closer to together in time than keyframes and therefore provide a better approximation of instantaneous
feature velocity

2See Appendix E.2 for an online method to estimate d.

E.2. CAMERA IMU TIME OFFSET 131

E.2.4 Incorporating Time Offsets into the Standard Reprojection Residual
We seek to modify the standard reprojection residual (3.142) to incorporate the effect of a changing time
offset estimate. Let di be the time offset guess immediately before keyframe i was added to the sliding win-
dow and dj be the time offset guess immediately before keyframe j was added to the sliding window. Let
hl,i be a homogeneous point representation of observation l in keyframe i and vl,i be its empirical instan-
taneous normalized image plane velocity. Let hl,j be a homogeneous point representation of observation l
in keyframe j and vl,j be its empirical instantaneous normalized image plane velocity. Let d represent the
time offset that is part of the optimization vector.

First, we note that the motion states at keyframe indices i and j correspond to IMU times traw,i + di
and traw,j + dj , respectively, due to step 5 of Sect. E.2.6. When the time offset estimate d changes during
optimization, we need to ensure that the shifted feature observations correspond to their original times
traw,i + di and traw,j + dj in order to maintain consistency with the IMU preintegration motion constraints.
This requires feature observations to be shifted by the opposite of the change in the time offset estimate.

hl,i(traw,i + di) = hl,i(traw,i + d)− (d− di) vl,i(traw,i + d) (E.19)

hl,i(traw,i + d) is the raw, unshifted feature observation, while vl,i(traw,i + d) is its corresponding feature
velocity. We associate these quantities with the compensated timestamp traw,i + d based on the time offset
that is being optimized. The change in the time offset, d−di, is required to predict the feature observation at
the time traw,i + di that is consistent with the IMU preintegration motion constraints that involve keyframe
i.

Similarly to (E.19), we have

hl,j(traw,j + dj) = hl,j(traw,j + d)− (d− dj) vl,j(traw,j + d) (E.20)

for keyframe j. Substitute (E.19) into (3.141) to obtain

pl,cj = RT
bc

(
R(qj)

T
(

R(qi)

(
Rbc

1

ρl
(hl,i − (d− di)vl,i) + pbc

)
+ pi − pj

)
− pbc

)
(E.21)

Substitute (E.20) and (E.21) into (3.142) to obtain the standard reprojection residual with time offsets,

rproj (pi,qi,pj ,qj , ρl, d) = z
(
pl,cj

)
−
[
1 0 0
0 1 0

]
(hl,j − (d− dj)vl,j) (E.22)

E.2.5 Time Offset Jacobian
Because the time offset is a vector space quantity, we can take its Jacobian by applying chain rule and
product rule on (E.21)-(E.22).

∂r

∂d
=
∂z

∂a

∂a

∂d
−
[
1 0 0
0 1 0

]
∂

∂d
(hl,j − (d− dj)vl,j) (E.23)

∂r

∂d
= −∂z

∂a
RT
bcR(qj)

TR(qi)Rbc
1

ρl
vl,i +

[
1 0 0
0 1 0

]
vl,j (E.24)

The image projection Jacobian ∂z
∂a is evaluated by substituting (E.21) into (3.144).

E.2.6 Estimation Procedure
When performing sliding window visual-inertial bundle adjustment for a single camera with time offset
compensation, the IMU motion states for each keyframe correspond to the estimated IMU-consistent times-
tamps of each keyframe rather than the raw camera timestamps. The process for estimating time offsets over
successive sliding optimizations is as follows:

132 APPENDIX E. ONLINE CALIBRATION

1. Initialize the time offset to a prior guess if available or 0 if a prior guess is unavailable.

2. On the first optimization, choose keyframe motion states to correspond with the current best estimate
of the compensated keyframe timestamps. For each keyframe, store the current time offset estimate
when it was added to the sliding window.

3. Form IMU preintegration motion constraints between successive motion states by summarizing IMU
observations that fall within pairs of successive compensated keyframe timestamps.

4. Solve an optimization problem to obtain an updated time offset estimate (along with motion states,
extrinsics, and feature inverse depths).

5. Add a new keyframe to the sliding window and associate it with the updated time offset.

6. Form an IMU preintegration motion constraint between the latest original keyframe and the incoming
keyframe’s compensated timestamps. Note that the latest original keyframe’s compensated timestamp
is based on the previous time offset estimate, while the incoming keyframe’s compensated timestamp
is based on the updated time offset estimate.

7. Repeat steps 4-6 for as long as the state estimator is running. After each optimization the time offset
should approach closer to its true value and more of the sliding window’s keyframe motion states will
be closer to their true timestamps. Ideally, the time offset should converge to a constant value after a
few rounds of optimization as long as there is sufficient scene texture and motion excitation.

Appendix F

Interpolated Reprojection Factor

The interpolated reprojection factor derived in this appendix is related to the formulation described in Eck-
enhoff et. al [96] for a MSCKF. However, their work represents feature locations as 3D vectors that are
marginalized out before updating motion states via a structureless smart factor. In this appendix, we derive
the reprojection residual and Jacobians for a bundle adjustment problem where features are parametrized by
inverse depth and explicitly included in the optimization vector. We consider the case where there is a single
master camera and secondary camera in the optimization problem.

F.1 Master and Secondary Camera Keyframe Timestamps
Let {tm,1, . . . , tm,N} be the set ofN monotonically increasing offset-compensated master camera keyframe
timestamps. Let ts,i,raw and ts,j,raw be the camera driver timestamps associated with secondary camera
keyframes with indices i and j. Let dm denote the master camera’s time offset with respect to the IMU
clock and ds denote the secondary camera’s time offset with respect to the IMU clock. The compensated
secondary camera keyframe timestamps for keyframes i and j are

ts,i = ts,i,raw + ds (F.1)

ts,j = ts,j,raw + ds (F.2)

Define the master camera keyframe indices that bound the secondary camera keyframe i:

ia =


1 if ts,i ≤ tm,1
arg mink (ts,i − tm,k) s. t. ts,i > tm,k if tm,1 < ts,i < tm,N

N − 1 if ts,i ≥ tm,N
(F.3)

ib =


2 if ts,i ≤ tm,1
arg mink (tm,k − ts,i) s. t. tm,k > ts,i if tm,1 < ts,i < tm,N

N if ts,i ≥ tm,N
(F.4)

We also define ja and jb in an analogous manner as the master camera keyframe indices that bound the
secondary camera keyframe j.

F.2 Pose Interpolation
The pose at the offset-compensated time corresponding to secondary keyframe i, ts,i, is obtained by inter-
polating between or extrapolating from the poses at offset-compensated master keyframe times tm,ia and
tm,ib . Note that when the compensated secondary keyframe timestamp ts,i falls outside of the compensated
time range of the master camera keyframes, [tm,1, tm,N], extrapolation is performed with the two closest

133

134 APPENDIX F. INTERPOLATED REPROJECTION FACTOR

master keyframes instead of the two master keyframes that temporally bound ts,i. However, mathematically
the procedure for extrapolation is the same as that for interpolation, so from this point onward we use the
term interpolation to refer to both interpolation and extrapolation.

We define λi as

λi ,
ts,i − tm,ia
tm,ib − tm,ia

(F.5)

Expanding out (F.5) with raw timestamps and time offset estimates, we obtain

λi ,
ts,i,raw + ds − tm,ia,raw − dm

tm,ib,raw − tm,ia,raw
(F.6)

We obtain the position at time ts,i via linear interpolation:

p(ts,i) = (1− λi) p(tm,ia) + λip(tm,ib) (F.7)

We obtain the orientation at time ts,i via SO(3) interpolation:

R(ts,i) = Exp
[
λi Log

(
R(tm,ib)R(tm,ia)T)]R(tm,ia) (F.8)

This can be represented in quaternion form as

q(ts,i) = Exp
[
λi Log

(
q(tm,ib)⊗ q(tm,ia)−1

)]
⊗ q(tm,ia) (F.9)

To avoid clutter when deriving Jacobians, we simplify notation in (F.7)-(F.9) by replacing time-dependencies
with subscripts.

pi = (1− λi) pia + λipib (F.10)

Ri = Exp
[
λi Log

(
RibR

T
ia

)]
Ria (F.11)

qi = Exp
[
λi Log

(
qib ⊗ q−1

ia

)]
⊗ qia (F.12)

Using a similar development to (F.5)-(F.9), we define interpolated position and orientation at the offset-
compensated time of secondary camera keyframe j.

pj = (1− λi) pja + λjpjb (F.13)

Rj = Exp
[
λj Log

(
RjbR

T
ja

)]
Rja (F.14)

qj = Exp
[
λj Log

(
qjb ⊗ q−1

ja

)]
⊗ qja (F.15)

F.3 Reprojection Residual with Interpolated Poses
We obtain the reprojection residual with interpolated poses by substituting (F.10), (F.12), (F.13), (F.15) into
(3.141)-(3.142). However, the extrinsic translation pbc and rotation Rbc in the resultant expression must be
evaluated for the secondary camera instead of the master camera. Also, in this case hl and ρl pertain to a
feature observation in the secondary camera.

Compared with the expression in (3.142), the reprojection residual with interpolated poses depends
on two extra position parameter blocks, two extra quaternion parameter blocks, and two extra time offset
parameters.

r (pia ,pib ,qia ,qib ,pja ,pjb ,qja ,qjb , ρl, dm, ds) (F.16)

In the case when ib = ja, only one extra position parameter block and one extra quaternion parameter block
are needed. In the case when ia = ja and ib = jb, no extra position or quaternion parameter blocks are
needed.

F.4. JACOBIANS OF THE REPROJECTION RESIDUAL WITH INTERPOLATED POSES 135

F.4 Jacobians of the Reprojection Residual with Interpolated Poses
We require Jacobians with respect to each of the parameter blocks in (F.16). The quaternion parameter
blocks qia ,qib , and qja ,qjb require Jacobians with respect to minimal parameterizations of their perturba-
tions, which are δθia , δθib , δθja , and δθjb , respectively.

Because the reprojection residual with interpolated poses is a composition of functions (F.10), (F.12),
(F.13), and (F.15) into (3.141)-(3.142), we apply chain rule to compute Jacobians.

∂r

∂pia
=
∂z

∂a

∂a

∂pi

∂pi
∂pia

(F.17)

∂r

∂pib
=
∂z

∂a

∂a

∂pi

∂pi
∂pib

(F.18)

∂r

∂δθia
=
∂z

∂a

∂a

∂δθi

∂δθi
∂δθia

(F.19)

∂r

∂δθib
=
∂z

∂a

∂a

∂δθi

∂δθi
∂δθib

(F.20)

∂r

∂pja
=
∂z

∂a

∂a

∂pj

∂pj
∂pja

(F.21)

∂r

∂pjb
=
∂z

∂a

∂a

∂pj

∂pj
∂pjb

(F.22)

∂r

∂δθja
=
∂z

∂a

∂a

∂δθj

∂δθj
∂δθja

(F.23)

∂r

∂δθjb
=
∂z

∂a

∂a

∂δθj

∂δθj
∂δθjb

(F.24)

∂r

∂ρl
=
∂z

∂a

∂a

∂ρl
(F.25)

∂r

∂dm
=
∂z

∂a

(
∂a

∂pi

∂pi
∂dm

+
∂a

∂δθi

∂δθi
∂dm

+
∂a

∂pj

∂pj
∂dm

+
∂a

∂δθj

∂δθj
∂dm

)
(F.26)

∂r

∂ds
=
∂z

∂a

(
∂a

∂pi

∂pi
∂ds

+
∂a

∂δθi

∂δθi
∂ds

+
∂a

∂pj

∂pj
∂ds

+
∂a

∂δθj

∂δθj
∂ds

)
(F.27)

In the above expressions, δθi and δθj are minimal parameterizations of perturbations to the interpolated
poses qi and qj .

F.4.1 Position Jacobians
The Jacobians of the interpolated positions with respect to the master camera positions are obtained by
differentiating (F.12) and (F.15).

∂pi
∂pia

= (1− λi) I (F.28)

∂pi
∂pib

= λiI (F.29)

∂pj
∂pja

= (1− λj) I (F.30)

∂pj
∂pjb

= λjI (F.31)

136 APPENDIX F. INTERPOLATED REPROJECTION FACTOR

Table F.1: Evaluation of partial derivatives involving a in (F.17)-(F.27)

Partial Derivative Evaluation
∂z
∂a

Substitute (F.10), (F.12), (F.13), and (F.15) into (3.141) and then substitute the result
into (3.144).

∂a
∂pi

Substitute (F.15) into (3.145) and use the secondary camera extrinsic rotation for Rbc.
∂a
∂pj

Substitute (F.15) into (3.146) and use the secondary camera extrinsic rotation for Rbc.

∂a
∂δθi

Substitute (F.12) and (F.15) into (3.155) and use the secondary camera extrinsic transform
parameters for Rbc and pbc.

∂a
∂δθj

Substitute (F.10), (F.12), (F.13), and (F.15) into (3.164) and use the secondary camera ex-
trinsic transform parameters for Rbc and pbc.

∂a
∂ρl

Substitute (F.12) and (F.15) into (3.148) and use the secondary camera extrinsic rotation for
Rbc.

F.4.2 Jacobian of Interpolated Attitude Perturbation with respect to Earlier Master Cam-
era Attitude Perturbation

We derive the Jacobian ∂δθi
∂δθia

using the perturbation method. For conciseness, we introduce the variable

φ = Log
(
RibR

T
ia

)
(F.32)

First, apply a rotational perturbation δθi to the left hand side of (F.11) and a rotational perturbation δθia to
the base rotation Ria on the right hand side of (F.11).

Ri Exp(δθi) = Exp
[
λi Log

(
Rib (Ria Exp(δθia))T

)]
Ria Exp(δθia) (F.33)

= Exp
[
λi Log

(
Rib Exp(δθia)TRT

ia

)]
Ria Exp(δθia) (F.34)

(A.13)
= Exp

[
λi Log

(
Rib Exp(−δθia)RT

ia

)]
Ria Exp(δθia) (F.35)

(A.46)
= Exp

[
λi Log

(
RibR

T
ia Exp(−Riaδθia)

)]
Ria Exp(δθia) (F.36)

(F.32)
= Exp [λi Log (Exp(φ) Exp(−Riaδθia))] Ria Exp(δθia) (F.37)

(A.48)
≈ Exp

[
λi
(
φ− J−1

r (φ)Riaδθia
)]

Ria Exp(δθia) (F.38)

= Exp
[
λiφ− λiJ−1

r (φ)Riaδθia
]
Ria Exp(δθia) (F.39)

(A.47)
≈ Exp (λiφ) Exp

[
−Jr (λiφ)λiJ

−1
r (φ)Riaδθia

]
Ria Exp(δθia) (F.40)

(A.46)
= Exp (λiφ) Ria Exp

[
−RT

iaJr (λiφ)λiJ
−1
r (φ)Riaδθia

]
Exp(δθia) (F.41)

(A.49)
≈ Exp (λiφ) Ria Exp

[
δθia −RT

iaJr (λiφ)λiJ
−1
r (φ)Riaδθia

]
(F.42)

(F.32)
= Exp

[
λi Log

(
RibR

T
ia

)]
Ria Exp

[(
I− λiRT

iaJr (λiφ) J−1
r (φ)Ria

)
δθia

]
(F.43)

Use (F.11) to cancel out Ri from both sides of (F.43) and then apply the capitalized logarithmic map to both
sides.

δθi ≈
(
I− λiRT

iaJr (λiφ) J−1
r (φ)Ria

)
δθia (F.44)

∂δθi
∂δθia

≈ I− λiRT
iaJr (λiφ) J−1

r (φ)Ria (F.45)

F.4. JACOBIANS OF THE REPROJECTION RESIDUAL WITH INTERPOLATED POSES 137

Substitute (A.44) and (A.45) into (F.45).

∂δθi
∂δθia

≈ I− λiRT
ia

(
I− 1− cos(λi ‖φ‖)

λi ‖φ‖2
[φ]× + . . .

)(
I +

1

2
[φ]× + . . .

)
Ria (F.46)

Expand and drop terms that are second order in [φ]×.

∂δθi
∂δθia

≈ I− λiRT
ia

(
I +

(
1

2
− 1− cos(λi ‖φ‖)

λi ‖φ‖2

)
[φ]×

)
Ria (F.47)

When ‖φ‖ � 1, cos(λi ‖φ‖) ≈ 1 and λ−1
i ‖φ‖

−2 (1− cos(λi ‖φ‖)) ≈ 0. We use this approximation to
simplify (F.47)

∂δθi
∂δθia

≈ I− λiRT
ia

(
I +

1

2
[φ]×

)
Ria (F.48)

∂δθi
∂δθia

(F.32)
≈ I− λiRT

ia

(
I +

1

2

[
Log

(
RibR

T
ia

)]
×

)
Ria (F.49)

Note that the expression for ∂δθj
∂δθja

is the same as the expression for ∂δθi
∂δθia

except for the index (i vs. j).

F.4.3 Jacobian of Interpolated Attitude Perturbation with respect to Later Master Camera
Attitude Perturbation

We derive the Jacobian ∂δθi
∂δθib

using the perturbation method. First, apply a rotational perturbation δθi to
the left hand side of (F.11) and a rotational perturbation δθib to the base rotation Rib on the right hand side
of (F.11).

Ri Exp(δθi) = Exp
[
λi Log

(
Rib Exp(δθib)R

T
ia

)]
Ria (F.50)

(A.46)
= Exp

[
λi Log

(
RibR

T
ia Exp (Riaδθib)

)]
Ria (F.51)

(F.32)
= Exp [λi Log (Exp(φ) Exp (Riaδθib))] Ria (F.52)

(A.48)
≈ Exp

[
λi
(
φ+ J−1

r (φ)Riaδθib
)]

Ria (F.53)

= Exp
[
λiφ+ λiJ

−1
r (φ)Riaδθib

]
Ria (F.54)

(A.47)
≈ Exp (λiφ) Exp

[
Jr (λiφ)λiJ

−1
r (φ)Riaδθib

]
Ria (F.55)

(A.46)
≈ Exp (λiφ) Ria Exp

[
RT
iaJr (λiφ)λiJ

−1
r (φ)Riaδθib

]
(F.56)

(F.32)
≈ Exp

[
λi Log

(
RibR

T
ia

)]
Ria Exp

[
RT
iaJr (λiφ)λiJ

−1
r (φ)Riaδθib

]
(F.57)

Use (F.11) to cancel out Ri from both sides of (F.57) and then apply the capitalized logarithmic map to both
sides.

δθi ≈ λiRT
iaJr (λiφ) J−1

r (φ)Riaδθib (F.58)
∂δθi
∂δθib

= λiR
T
iaJr (λiφ) J−1

r (φ)Ria (F.59)

Substitute (A.44) and (A.45) into (F.59).

∂δθi
∂δθib

≈ λiRT
ia

(
I− 1− cos(λi ‖φ‖)

λi ‖φ‖2
[φ]× + . . .

)(
I +

1

2
[φ]× + . . .

)
Ria (F.60)

138 APPENDIX F. INTERPOLATED REPROJECTION FACTOR

Expand and drop terms that are second order in [φ]×.

∂δθi
∂δθib

≈ λiRT
ia

(
I +

(
1

2
− 1− cos(λi ‖φ‖)

λi ‖φ‖2

)
[φ]×

)
Ria (F.61)

When ‖φ‖ � 1, cos(λi ‖φ‖) ≈ 1 and λ−1
i ‖φ‖

−2 (1− cos(λi ‖φ‖)) ≈ 0.

∂δθi
∂δθib

≈ λiRT
ia

(
I +

1

2
[φ]×

)
Ria (F.62)

∂δθi
∂δθib

(F.32)
≈ λiRT

ia

(
I +

1

2

[
Log

(
RibR

T
ia

)]
×

)
Ria (F.63)

Note that the expression for ∂δθj
∂δθjb

is the same as the expression for ∂δθi
∂δθib

except for the index (i vs. j).

F.4.4 Time Offset Jacobians
The Jacobians of interpolated pose states with respect to the master camera to IMU time offset in (F.26) can
be further broken down using chain rule.

∂pi
∂dm

=
∂pi
∂λi

∂λi
∂dm

(F.64)

∂δθi
∂dm

=
∂δθi
∂λi

∂λi
∂dm

(F.65)

∂pj
∂dm

=
∂pj
∂λj

∂λj
∂dm

(F.66)

∂δθj
∂dm

=
∂δθj
∂λj

∂λj
∂dm

(F.67)

Jacobians of interpolated pose states with respect to the secondary camera to IMU time offset in (F.27) can
be further broken down in a similar manner as (F.64)-(F.67), with s replacing m.

∂pi
∂λi

= pib − pia (F.68)

∂pj
∂λj

= pjb − pja (F.69)

We derive the Jacobian ∂δθi
∂λi

using the perturbation method. First, apply a rotational perturbation δθi to the
left hand side of (F.11) and an additive scalar perturbation δλi to λi on the right hand side of (F.11).

Ri Exp(δθi) = Exp
[
(λi + δλi) Log

(
RibR

T
ia

)]
Ria (F.70)

(F.32)
= Exp [λiφ+ δλiφ] Ria (F.71)

(A.47)
≈ Exp (λiφ) Exp [Jr (λiφ) δλiφ] Ria (F.72)

(A.46)
= Exp (λiφ) Ria Exp

[
RT
iaJr (λiφ)φδλi

]
(F.73)

(F.32)
= Exp

(
λi Log

(
RibR

T
ia

))
Ria Exp

[
RT
iaJr (λiφ)φδλi

]
(F.74)

Use (F.11) to cancel out Ri from both sides of (F.74) and then apply the capitalized logarithmic map to both
sides.

δθi ≈ RT
iaJr (λiφ)φδλi (F.75)

F.4. JACOBIANS OF THE REPROJECTION RESIDUAL WITH INTERPOLATED POSES 139

∂δθi
∂λi

≈ RT
iaJr (λiφ)φ (F.76)

Substitute (A.44) into (F.76).

∂δθi
∂λi

≈ RT
ia

(
I− 1− cos(λi ‖φ‖)

λi ‖φ‖2
[φ]× + . . .

)
φ (F.77)

Drop terms that are second order in [φ]×.

∂δθi
∂λi

≈ RT
ia

(
I− 1− cos(λi ‖φ‖)

λi ‖φ‖2
[φ]×

)
φ (F.78)

When ‖φ‖ � 1, cos(λi ‖φ‖) ≈ 1 and λ−1
i ‖φ‖

−2 (1− cos(λi ‖φ‖)) ≈ 0.

∂δθi
∂λi

≈ RT
iaφ (F.79)

∂δθi
∂λi

(F.32)
≈ RT

ia Log
(
RibR

T
ia

)
(F.80)

Note that the expression for ∂δθj∂λj
is the same as the expression for ∂δθi∂λi

except for the index (i vs. j).
We derive the partials of λi and λj with respect to dm and ds by inspecting (F.6).

∂λi
∂dm

=
−1

tm,ib,raw − tm,ia,raw
(F.81)

∂λj
∂dm

=
−1

tm,jb,raw − tm,ja,raw
(F.82)

∂λi
∂ds

=
1

tm,ib,raw − tm,ia,raw
(F.83)

∂λj
∂ds

=
1

tm,jb,raw − tm,ja,raw
(F.84)

Appendix G

Experiment Infrastructure

An important goal of this thesis is to implement sliding window visual-inertial odometry algorithms on
physical systems and accurately estimate motion in real-world environments. To realize this objective, we
use multirotor aerial robots equipped with a variety of onboard sensors to assess the performance of proposed
state estimation techniques. This appendix describes the experimental infrastructure we have developed to
enable multirotor flight.

G.1 Hardware
G.1.1 First Generation Flight Platform

The first generation platform is a 3.5 kg hexrotor micro aerial vehicle that fits inside a box with dimensions
74 cm (L) × 81 cm (W) × 29 cm (H). It has a power to weight ratio of around 3 and a flight endurance of 7
minutes. Thrust is provided by six 10×4.5 plastic APC propellers, each mounted on a SunnySky X2212-10
KV1250 motor and controlled via ESC32v3 electronic speed controllers. The motors are powered from a
Turnigy 6000 mAh 4 cell lithium polymer battery, while the avionics (sensors and compute) are powered
from a Turnigy 3000 mAh 3 cell lithium polymer battery.

The platform consists of a DJI F550 hexrotor frame that sandwiches a custom fabricated printed circuit
board assembly that contains most of the avionics (this is called the avionics package). Structural support is
provided by carbon fiber rods that form a roll cage. The roll cage, arm tips, and carbon fiber landing gear
form a convex hull surrounding the avionics board, protecting sensors and onboard compute in the event of
a crash. The most common type of serious physical damage is broken arms, as they are made from plastic
rather than carbon fiber.

Computation is performed by an Nvidia Jetson TX2 computer with 6 cores running at 2 GHz and 8 GB
RAM. It sits on a CTI Elroy carrier board within the avionics package. The Pixracer autopilot is located
within the avionics package at the hexrotor frame’s center of symmetry. It contains an Invensense ICM-
20608-G IMU and communicates with the TX2 via a serial-to-USB connection.

Vision sensing is performed by two MatrixVision mvBlueFOX MLC-200w grayscale global shutter
USB2.0 cameras1. One bluefox camera is mounted at the rear end of the avionics package facing downward,
while another bluefox is mounted at the vehicle’s front end facing roughly 45 degrees above the horizontal.
A TeraBee TeraRanger One time-of-flight single-beam range sensor is mounted at the front end of the
avionics package facing downward. An Intel Realsense D435 depth camera is mounted at the front end of
the avionics package facing forward.

1When tracking simple features such as Shi-Tomasi corners, the best results are obtained when the scene changes as little as
possible between image frames. For this reason, we use a high rate low resolution operating mode (376×240 at 60 Hz) instead of
the default lower rate higher resolution operating mode (752×480 at 30 Hz).

140

G.1. HARDWARE 141

Figures G.1 and G.2 show planform and frontal views of the flight platform and identify key components.
Wired and wireless connections between components are depicted in Figure G.7.

roll cage

4S main
battery

3S avionics
battery

downward
bluefox
camera

TeraRanger
One TOF
altimeter

Realsense
D435 depth

camera
roll cage

Figure G.1: The left hand side shows the top-down view of the hexrotor flight platform, while the right hand side shows
the bottom-up view of the hexrotor flight platform.

roll cage forward
bluefox
camera

Realsense
D435 depth

camera

Figure G.2: A frontal view of the hexrotor flight platform.

G.1.2 Second Generation Flight Platform
The second generation platform is a 2.5 kg quadrotor aerial vehicle that fits inside a box with dimensions
36 cm (L) × 42 cm (W) × 25 cm (H). It has a thrust to weight ratio of around 3 and a flight endurance
of 5 minutes. Thrust is provided by four DAL Cyclone 7056C 7×5.6 plastic propellers, each mounted on
a T-Motor F80 Pro 1900KV motor and controlled via a Lumenier BLHeli 32 32bit 50A 4-in-1 electronic
speed controller. The motors and avionics (sensors and compute) are powered from a Lumenier 5200 mAh
4 cell lithium polymer battery.

The platform consists of an Armattan Chameleon 7 inch LR Ti quadrotor frame mounted above a sensing
and compute payload encased within a rectangular truss comprised of MakerBeam elements. The payload’s

142 APPENDIX G. EXPERIMENT INFRASTRUCTURE

structural elements form a convex hull around the onboard computers and sensors for protection in the event
of a crash. The payload has four landing legs formed by MakerBeam elements protruding down from the
main payload frame.

Onboard compute consists of two computers that communicate via an ethernet connection. The first
computer is an Nvidia Jetson TX2 with 6 cores running at 2 GHz and 8 GB RAM. The second computer
is a Gigabyte Brix 8550 computer with 8 cores running at 1.8 GHz and 32 GB RAM. The TX2 is used
for control and running the IMU, downward mvBlueFOX camera, and downward rangefinder. The more
powerful Brix is used for running realsense sensors and performing computationally intensive planning and
mapping tasks. A Pixracer autopilot is located at the center of the quadrotor frame and communicates with
the TX2 via a serial-to-USB connection.

Vision sensing is performed by two Intel Realsense D435 depth sensors mounted in forward-facing and
downward-facing configurations at the front and bottom of the payload, respectively. Although the payload
also has a downward-facing MatrixVision mvBlueFOX MLC-200w grayscale global shutter USB2.0 cam-
era, we avoid using it in favor of the downward realsense for the sensor resource allocation (Sect. 6.4) and
depth experiments (Sect. 7.6) to ensure that the image rectification applied to the forward and downward
cameras is as similar as possible.

Figure G.3: The second generation quadrotor flight platform. The forward-facing realsense is visible, but the
downward-facing realsense is occluded from view (it on the payload’s underside).

G.1.3 Motion Capture Arena
We use a motion capture arena (Fig. G.4) for collecting ground truth to evaluate performance of state esti-
mation and control algorithms. Most of the motion capture arena’s 5 m × 5 m × 4 m volume is contained
within the fields of view of at least two out of the thirteen Vicon infrared cameras mounted along the upper
edges, enabling sub-centimeter precision tracking of aerial robots equipped with reflective infrared markers.
A truss structure provides mounting locations for individual Vicon cameras and carries wires from each
Vicon camera to the computer running the motion tracking software. Nets cover the top and four sides of
the cubical motion capture arena to prevent aerial robots from escaping in the event of a malfunction, while
foam mats cushion the impact of hard landings and crashes. When testing state estimation algorithms, col-
orful carpets with high visual texture are laid over the largely textureless gray mats to ensure that the aerial
robot’s downward camera can detect a sufficient number of features.

G.2. SOFTWARE 143

Figure G.4: The Vicon motion capture arena.

G.1.4 Ground Control Station
The ground control station contains the equipment needed to communicate with and send commands to
the robot. A Netgear R6400 AC1750 router provides a 2.4 GHz wifi network that enables communication
between the robot and the base station laptop. In situations where wifi range is insufficient due to clutter or
distance, it is augmented with TP-Link RE210 AC750 Wifi Range Extenders.

A Futaba T8J 2.4 GHz RC transmitter is used for manual RC flight, bypassing the entire autonomy
pipeline. This capability is useful for quick flight tests after physical repairs to assess flightworthiness and
for emergency manual takeovers if mishaps occur in the autonomy pipeline. During nominal operations, the
RC transmitter is only used for arming and disarming the motors.

A Xbox One controller connected to the base station laptop via USB provides the teleoperation interface
for autonomous flight. Joystick inputs are converted to forward arc motion primitive trajectory references
that are followed by the robot’s onboard controller. When running flight experiments outdoors during day-
light hours, the laptop screen is often hard to see due to ambient sunlight. We use an IKEA DRONA Storage
box as a laptop hood to provide a dark environment to facilitate easy screen viewing. The top of the box
also serves as a convenient location to place the Xbox One controller.

Depending on the type of flight being conducted, the flight control station can be configured in two
different ways. When flying in a third-person view such that the operator walks behind the aerial robot at all
times, the ground control station is carried in front of the operator with a backpack harness and foam-padded
hip support bar. This configuration is called the walking ground control station (Fig. G.5). When flying in
first-person view (using an analog FPV camera mounted at the front of the robot), the ground control station
rests on a cart (Fig. G.6). In this configuration, the router is mounted on a vertical extension to improve wifi
range.

G.2 Software
G.2.1 Onboard Computer
High-level autonomy algorithms are executed by the robot’s onboard Nvidia Jetson TX2 computer using
Ubuntu 16.04 LTS. Autonomy modules are implemented in C++ within a ROS-based [97] software archi-
tecture. Visual-inertial state estimation algorithms are implemented with the Eigen [98] and OpenCV [99]
software libraries.

144 APPENDIX G. EXPERIMENT INFRASTRUCTURE

GoPro
Camera

Netgear
router

RC
Transmitter

Laptop
Xbox One
controller

Router
battery

Backpack
harness

Foam-padded 80-20
hip support bar

Figure G.5: The walking ground control station is designed to be carried in front of the robot operator.

Figure G.6: Cart-mounted ground control station. The router is on a vertical boom to improve wifi range. A black
IKEA DRONA storage box shields the base station laptop from direct sunlight.

G.2. SOFTWARE 145

Nvidia Jetson
TX2

Wifi Antennae

Ground Station
Laptop Netgear RouterXBox One

Controller
Futaba T8J RC

Transmitter

RC Receiver

Pixracer
Autopilot

ESCs / Motors

forward bluefox
camera

Realsense
D435 depth

camera

downward
bluefox camera

TeraRanger
One TOF
Altimeter

USB

USB

USB

USB

FTDI serial to USB

2.4 GHz
wireless 2.4 GHz

wireless

ethernet

Robot

Ground Station

Figure G.7: Diagram of wired and wireless connections between sensors, actuators, compute, and ground station
components.

RPM to PWM
Conversion

Signals to ESCs
and Motors

Attitude
Controller and

Mixer

Attitude
Estimator

IMU driver, low
pass filter, and

scale/bias
compensator

RPM
Passthrough

Attitude
Controller and

Mixer
Position

Controller
Trajectory
GeneratorJoystick Driver

Battery Voltage
Reader

Heartbeat
Receiver

State Estimator

Bluefox Camera
Driver

TeraRanger
Driver

Finite State
Machine

Signals from RC
Transmitter

Heartbeat
Sender

PX4
Autopilot

Nvidia
Jetson TX2

Base Station
Laptop

IMU Data
Passthrough

Figure G.8: Diagram of software components running on the base station laptop, onboard computer, and autopilot
computer. Information flows between components are indicated with arrows.

146 APPENDIX G. EXPERIMENT INFRASTRUCTURE

The blue panel in Figure G.8 contains the software components that run on the onboard computer. The
bluefox camera driver produces raw images from the downward camera that are rectified and fed into the
state estimator. The TeraRanger driver provides the state estimator with TOF altimeter range observations.
IMU observations and complementary filter attitude estimates from the PX4 are passed to the state estimator
via the MAVLink protocol.

The state estimator consumes sensor observations and outputs odometry to the planning and control
modules. IMU-rate upsampling and feature tracking occur in the main thread, while computationally inten-
sive tasks such as initialization and optimization are performed in a secondary thread to avoid interrupting
the stream of high-rate odometry estimates required by other autonomy modules.

Position and yaw estimates are fed into the trajectory generator for use in planning. Two types of
trajectory generators are used for flight experiments. Motion capture flight experiments use a trajectory
generator that fits minimum snap polynomial trajectories [100] to pre-loaded waypoints. Outdoor flight
experiments use a teleoperation trajectory generator [101] that turns joystick inputs to forward arc motion
primitive trajectory references. A finite state machine (different from the one described in Sect. 4.4.1)
governs the types of trajectories sent to the position controller for takeoff, hover, teleoperation, and landing.
During outdoor experiments, a heartbeat signal is sent from the base station to the onboard computer to
verify that the two are still connected via wifi. If the connection is lost for more than a threshold amount of
time, the finite state machine sends a hover command to prevent the vehicle from drifting further out of wifi
range. The finite state machine also receives battery voltage measurements from the autopilot and lands the
vehicle if the battery level is too low.

Position references from the trajectory generator are fed into a backstepping controller that consists
of an outer loop position controller using EPC [102] and an inner loop PD attitude controller [103]. The
position controller computes desired thrust, roll, and pitch signals at 100 Hz while the attitude controller
computes desired torque at 250 Hz. Force disturbances are handled by EPC, while torque disturbances
are compensated with the low pass filtered output of a nonlinear Luenberger observer. The desired thrust
for each rotor is computed using the Moore-Penrose pseudoinverse of the hexrotor mixing matrix (derived
from rotor geometry and moment scale). Finally, desired RPM commands are computed from desired thrust
values using quadratic RPM-to-thrust models empirically determined from static thrust tests and sent to the
autopilot computer via the MAVLink protocol.

Most of the data transfer between software components running on the base station laptop and onboard
computer occurs via publishing and subscribing to ROS messages. The reference signals in the planning
and control systems constitute an exception to this pattern, as they are accessed by pointer within the same
class object.

G.2.2 Autopilot Computer
A custom modified version of PX4 firmware [104] runs onboard the pixracer autopilot. After being read,
raw IMU observations are low pass filtered to eliminate the effects of chassis vibrations and then corrected
with calibration parameters obtained from offline calbiration routines. Corrected IMU observations are fed
into a complementary filter [105] to estimate attitude and gyro biases. We disable magnetometer correction
terms in the complementary filter to avoid large errors in roll and pitch estimates when operating indoors
near metallic objects2. Bias compensated angular velocity observations are sent to the onboard computer
for use in visual-inertial state estimation algorithms, while the attitude estimate is only used for RC control
and for the auxiliary estimator (Sect. 4.3.4).

Another important function of the autopilot computer is to send PWM signals to the ESCs to spin the
aerial robot’s motors at desired speeds. During nominal flight, RPM commands are sent from the onboard
computer via the MAVLink protocol and converted to PWM values. During RC flight, RPM commands

2The extra yaw estimate drift incurred by disabling the magnetometer correction is inconsequential for manual RC control and
for the auxiliary estimator

G.2. SOFTWARE 147

are computed by an attitude controller that uses RC throttle values as desired attitude and thrust references
and the complementary filter’s output for the state estimate. The autopilot’s attitude controller runs even
during nominal flight to enable the operator to instantaneously switch to manual RC flight in the event of an
emergency.

Appendix H

Motion Estimate Accuracy Evaluation

Evaluating the difference between an estimated trajectory and its corresponding ground truth is necessary
step in assessing a visual-inertial odometry algorithm’s performance. Both the estimated trajectory and
ground truth consist of a time history of poses (and optionally velocities) corresponding to a rigid body’s
motion. An estimated trajectory’s accuracy is characterized by a scalar value that represents its similarity
with the ground truth. Computing this number typically involves the following steps:

1. Shift the estimated trajectory’s timestamps to be temporally consistent with ground truth data times-
tamps1.

2. Interpolate the ground truth at the estimated trajectory’s corrected timestamps.

3. Transform the estimated trajectory into the same reference frame as the ground truth.

4. Summarize the error between all pairs of transformed estimated trajectory poses and interpolated
ground truth poses over the time interval of interest.

H.1 Time Offset Compensation
If the clocks used to timestamp trajectory estimates and ground truth measurements are not synchronized
before data collection, the time offset between them must be determined prior to trajectory alignment. For
visual-inertial trajectory estimates that use a motion capture system for ground truth, the time offset is
usually between the IMU clock and the motion capture system’s clock. The time offset between two times-
tamped sequences of observations is determined by identifying an observation from each sequence that
corresponds to the same physical event and then taking the difference of timestamps in the corresponding
pair.

The angular velocity norm is a convenient quantity to use for identifying time offset between an IMU
and a motion capture system because it is observable by both, frame-independent, and captures easily dis-
tinguishable physical events in the form of local maxima (peaks). We exploit these properties to compute
time offset by identifying a peak in the IMU angular velocity norm plot, finding the corresponding peak
in the motion capture angular velocity norm plot, and subtracting their timestamps. The process of finding
peak correspondences may either be performed manually by visually inspecting a plot or automatically by
first smoothing2 the IMU and motion capture signals and minimizing their difference as a function of time
offset.

1This assumes that the clocks used to timestamp the trajectory estimates and the ground truth measurements are drift-free.
2IMU gyros are inherently noisy. Motion capture angular velocity observations are noisy because they are numerically differ-

entiated from high rate direct attitude observations. Consequently, automatic alignment algorithms require smoothing to mitigate
the impact of noisy observations.

148

H.2. TRAJECTORY INTERPOLATION 149

H.2 Trajectory Interpolation
After visual-inertial trajectory estimates are temporally aligned with ground truth, the next step is to interpo-
late ground truth poses at the estimated trajectory timestamps. In order to avoid extrapolation, the interpola-
tion should only occur over a time interval where the trajectory estimate and ground truth are both available.
If the corrected estimate timestamps span [test,start, test,end] and the ground truth measurement timestamps
span

[
tgt,start, tgt,end

]
, then the overlap time interval is

[
max

(
test,start, tgt,start

)
,min

(
test,end, tgt,end

)]
.

Positions may be interpolated with local linear or cubic spline interpolation depending on the rate and
smoothness of the ground truth measurements. Rotations may be interpolated linearly using SLERP, or
using linear or cubic spline interpolation on individual Euler angles as long as singularities are accounted
for.

H.3 4DOF Trajectory Alignment
Interpolation produces a set of corresponding estimate-ground truth pose pairs. The goal of trajectory align-
ment is to find a transform that will express the estimated trajectory poses in the ground truth reference
frame. Visual-inertial odometry has four unobservable degrees of freedom consisting of a 3D translation
and a yaw rotation about the gravity vector. Because roll and pitch rotations are directly observable from
IMU observations during non-aggressive motions, visual-inertial trajectory estimates are typically aligned
with ground truth using a 4DOF rigid body transform (position and yaw only) instead of a full 6DOF rigid
body transform.

Let {ti}ni=0 be a set of timestamps associated with the pose pair correspondences. Let the subscript est
denote the original trajectory estimate, gt denote ground truth, and al denote the aligned trajectory estimate.
Let p ∈ R3 be a position, v ∈ R3 be a velocity, R ∈ SO(3) be a rotation matrix, and ψ ∈ R be a yaw. The
4DOF transform parameters ∆p,∆ψ are used to compute the aligned estimated trajectory3.

pal = ∆R pest + ∆p (H.1)

val = ∆R vest (H.2)

ψal = ψest + ∆ψ (H.3)

This notation will be used to describe two methods of performing trajectory alignment.

H.3.1 Using Initial Pose Correspondence
The simplest method of trajectory alignment utilizes the 4DOF transform between the first estimated and
ground truth poses at the time t0. Typically, t0 is chosen as the time of the visual-inertial optimization’s
initialization.

∆ψ = ψgt(t0)− ψest(t0) (H.4)

∆R =

cos ∆ψ − sin ∆ψ 0
sin ∆ψ cos ∆ψ 0

0 0 1

 (H.5)

∆p = pgt(t0)−∆R pest(t0) (H.6)

This method requires ground truth heading, which is provided by motion capture systems but not by
GPS or total stations. An advantage of the initial pose correspondence method is it agrees with the intuition
that trajectory estimation error increases with time and therefore is appropriate for assessing the consistency
of covariances estimates.

3Note that roll and pitch are unaffected by the 4DOF transform.

150 APPENDIX H. MOTION ESTIMATE ACCURACY EVALUATION

H.3.2 Using Multiple Position Correspondences
If ground truth yaw measurements are unavailable, trajectory alignment is still possible with only position
observations. Choose a set of times T ⊆ {ti}ni=1. The 4DOF transform is obtained by solving the following
optimization:

arg min
∆p,∆ψ

∑
t∈T
‖Rz(∆ψ)pest(t) + ∆p− pgt(t)‖2 (H.7)

The yaw component of the closed form solution of (H.7) is given by

∆ψ = atan2 (p12 − p21, p11 − p22) (H.8)p11 p12 p13

p21 p22 p23

p31 p32 p33

 =
1

|T |
∑
t∈T

(pest(t)− p̄est)
(
pgt(t)− p̄gt

)T (H.9)

p̄est =
1

|T |
∑
t∈T

pest(t) (H.10)

p̄gt =
1

|T |
∑
t∈T

pgt(t) (H.11)

The translational component of the closed form solution of (H.7) is given by

∆p = p̄gt −Rz(∆ψ)p̄est (H.12)

See Section III-C of [106] for a derivation of this result.
Note that the least squares formulation used in the multiple position correspondences alignment pro-

cedure assumes that all positions have the same uncertainty. Also, the numerical values of alignment er-
rors (Sect. H.4) computed using this method are lower than those arising from the initial pose correspon-
dence method because it spreads out the error over the entire trajectory.

The size of the set of times chosen for alignment, T , must be at least two in order for (H.7) to be well-
posed. However, choosing only two points for T is not advisable because it is highly suspectible to outlier
observations. In practice, T is chosen to consist of evenly spaced time points in the set {ti}ni=1. The other
extreme of choosing T = {ti}ni=1 may result in a poorer alignment if there are outliers in one or both of the
estimated and ground truth position signals.

H.4 Error Metrics
Given pairs of frame-aligned estimate and ground truth poses, the final step is to summarize the high-
dimensional data into a single scalar value. In this section we describe two methods for quantifying trajec-
tory estimation error. Note that either error measure may be used with either of the trajectory alignment
methods described in Appendix H.3.

H.4.1 Absolute Trajectory Error
Absolute trajectory error is defined as the root mean square of the errors between estimated and ground truth
poses for all corresponding pairs.

ATEpos =

√√√√ 1

n

n∑
i=1

∥∥pal(ti)− pgt(ti)
∥∥2
, (H.13)

ATErot =

√√√√ 1

n

n∑
i=1

{
cos−1

[
1

2

(
trace(Rgt(ti)TRal(ti))− 1

)]}2

(H.14)

H.5. COVARIANCE ALIGNMENT 151

Translational absolute trajectory error (H.13) is preferred over its rotational counterpart (H.14) when
only a single scalar value is required for trajectory evaluation because rotational error affects translational
error but not vice versa. Although absolute trajectory error is easy to compare because it is a single scalar
value, it is very sensitive to rotational errors near the beginning of the estimated trajectory.

H.4.2 Final Position Drift
The final position drift is the norm of the difference between the latest pair of estimate and ground truth
positions

∥∥pal(tn)− pgt(tn)
∥∥.

Final position drift is typically used when ground truth from motion capture systems or total stations
is unavailable. In these situations, the final position drift method can be applied assuming pgt(tn) = 0 by
ensuring that the robot returns to its starting location at time tn. More precisely, at time tn the robot must
return to its true physical location at time t0. For multirotor aerial robots, this condition is satisfied by taking
off and landing on a fixed landing pad and ensuring that initialization happens immediately upon takeoff.

H.5 Covariance Alignment
Position (Σpp) and velocity (Σvv) covariances must be aligned with ground truth before their uncertainty
levels are compared against the error between aligned estimate and ground truth. In the case where a 4DOF
transform was used to align the estimated trajectory with ground truth, translational covariance alignment
depends only on the yaw component of the translation.

Σpp,al = Rz(∆ψ) Σpp Rz(∆ψ)T (H.15)

Σvv,al = Rz(∆ψ) Σvv Rz(∆ψ)T (H.16)

Note that the attitude covariance (Σrr) does not require alignment.

Bibliography

[1] A. Martinelli, “Visual-inertial structure from motion: Observability and resolvability,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Tokyo, Japan, November 2013, pp. 4235–4242.
[Page 3]

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in IEEE and ACM
Int. Symp on Mixed and Augmented Reality, Nara, Japan, November 2007, pp. 225–234. [Page 4]

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile and accurate monocular
slam system,” IEEE Trans. Robotics, vol. 31, no. 5, pp. 1147–1163, October 2015. [Pages 4 and 7]

[4] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–inertial
odometry using nonlinear optimization,” Intl. Journal of Robotics Research, vol. 34, no. 3, pp. 314–
334, 2015. [Pages 4 and 5]

[5] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state esti-
mator,” IEEE Trans. Robotics, vol. 34, no. 4, pp. 1004–1020, August 2018. [Pages 4, 5, 12, 36,
and 45]

[6] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun, “Dense monocular depth estimation in complex dynamic
scenes,” in IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016,
pp. 4058–4066. [Page 4]

[7] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Trans. on Pattern Anal. and
Mach. Intell., vol. 40, no. 3, pp. 611–625, March 2018. [Pages 4 and 5]

[8] L. V. Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-inertial odometry using dynamic
marginalization,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Brisbane, Australia, May
2018, pp. 2510–2517. [Page 4]

[9] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and mapping in real-
time,” in Intl. Conf. on Computer Vision, Barcelona, Spain, November 2011, pp. 2320–2327. [Page 4]

[10] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in Proc. of the
Euro. Conf. on Comp. Vis., Zurich, Switzerland, 2014, pp. 834–849. [Page 4]

[11] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conf. on Computer Vision and Pattern
Recognition, Seattle, USA, June 1994, pp. 593–600. [Pages 4 and 10]

[12] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization
method,” Intl. Journal of Computer Vision, vol. 9, no. 2, pp. 137–154, 1992. [Page 4]

[13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Intl. Journal of Computer
Vision, vol. 60, no. 2, pp. 91–110, 2004. [Page 4]

[14] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Proc. of the Euro.
Conf. on Comp. Vis. Graz, Austria: Springer, 2006, pp. 404–417. [Page 4]

[15] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Proc. of the
Euro. Conf. on Comp. Vis. Graz, Austria: Springer, 2006, pp. 430–443. [Page 4]

[16] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant scalable keypoints,” in
Intl. Conf. on Computer Vision, Barcelona, Spain, November 2011, pp. 2548–2555. [Page 4]

152

BIBLIOGRAPHY 153

[17] S. Yang and S. Scherer, “Direct monocular odometry using points and lines,” in Proc. of the IEEE
Intl. Conf. on Robot. and Autom., Singapore, May 2017, pp. 3871–3877. [Page 4]

[18] Y. Ling, M. Kuse, and S. Shen, “Edge alignment-based visual–inertial fusion for tracking of aggres-
sive motions,” Auton. Robots, vol. 42, no. 3, pp. 513–528, March 2018. [Page 4]

[19] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, “Pl-slam: Real-time
monocular visual slam with points and lines,” in Proc. of the IEEE Intl. Conf. on Robot. and Au-
tom., Singapore, May 2017, pp. 4503–4508. [Page 4]

[20] X. Zuo, X. Xie, Y. Liu, and G. Huang, “Robust visual slam with point and line features,” in Proc.
of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Vancouver, Canada, September 2017, pp.
1775–1782. [Page 4]

[21] S. Li, B. Ren, Y. Liu, M. Cheng, D. Frost, and V. A. Prisacariu, “Direct line guidance odometry,” in
Proc. of the IEEE Intl. Conf. on Robot. and Autom., Brisbane, Australia, May 2018, pp. 1–7. [Page 4]

[22] D. B. Goldman, “Vignette and exposure calibration and compensation,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 32, no. 12, pp. 2276–2288, Dec 2010. [Page 5]

[23] X. Zheng, Z. Moratto, M. Li, and A. I. Mourikis, “Photometric patch-based visual-inertial odometry,”
in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Singapore, May 2017, pp. 3264–3271. [Page 5]

[24] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for rgb-d cameras,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Karlsruhe, Germany, May 2013, pp. 3748–3754. [Pages 5
and 8]

[25] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” Intl. Jour-
nal of Robotics Research, vol. 32, no. 6, pp. 690–711, 2013. [Page 5]

[26] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust and modular multi-sensor
fusion approach applied to mav navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots
and Syst., Tokyo, Japan, November 2013, pp. 3923–3929. [Page 5]

[27] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using a direct
ekf-based approach,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Hamburg,
Germany, September 2015, pp. 298–304. [Page 5]

[28] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A quadratic-complexity observability-constrained
unscented kalman filter for slam,” IEEE Trans. Robotics, vol. 29, no. 5, pp. 1226–1243, October 2013.
[Page 5]

[29] W. Liu, G. Loianno, K. Mohta, K. Daniilidis, and V. Kumar, “Semi-dense visual-inertial odometry
and mapping for quadrotors with swap constraints,” in Proc. of the IEEE Intl. Conf. on Robot. and
Autom., Brisbane, Australia, May 2018, pp. 1–6. [Page 5]

[30] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision-aided inertial
navigation,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Rome, Italy, April 2007, pp.
3565–3572. [Pages 5 and 6]

[31] Z. Huai and G. Huang, “Robocentric visual-inertial odometry,” in Proc. of the IEEE/RSJ Intl. Conf.
on Intell. Robots and Syst., Madrid, Spain, October 2018, pp. 6319–6326. [Page 5]

[32] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “An observability-constrained sliding window
filter for slam,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., San Francisco, USA,
September 2011, pp. 65–72. [Page 5]

[33] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and mapping,” IEEE
Trans. Robotics, vol. 24, no. 6, pp. 1365–1378, Dec 2008. [Page 5]

[34] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “isam2: Incremental
smoothing and mapping using the bayes tree,” Intl. Journal of Robotics Research, vol. 31, no. 2, pp.
216–235, 2012. [Pages 5 and 7]

154 BIBLIOGRAPHY

[35] T. Yap, M. Li, A. I. Mourikis, and C. R. Shelton, “A particle filter for monocular vision-aided odom-
etry,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Shanghai, China, May 2011, pp. 5663–
5669. [Page 6]

[36] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear systems,” in Proc.
SPIE, vol. 3068, Orlando, USA, July 1997, pp. 182–193. [Pages 6 and 52]

[37] R. van der Merwe, E. Wan, and S. Julier, “Sigma-point kalman filters for nonlinear estimation and
sensor-fusion: Applications to integrated navigation,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2004. [Page 6]

[38] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” Intl. Jour-
nal of Robotics Research, vol. 32, no. 6, pp. 690–711, 2013. [Page 6]

[39] L. E. Clement, V. Peretroukhin, J. Lambert, and J. Kelly, “The battle for filter supremacy: A com-
parative study of the multi-state constraint kalman filter and the sliding window filter,” in Conf. on
Computer and Robot Vision, Halifax, Canada, June 2015, pp. 23–30. [Page 6]

[40] H. Strasdat, J. Montiel, and A. J. Davison, “Visual slam: Why filter?” Image and Vision Computing,
vol. 30, no. 2, pp. 65 – 77, 2012. [Page 7]

[41] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A general framework for
graph optimization,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Shanghai, China, May
2011, pp. 3607–3613. [Page 7]

[42] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.org. [Page 7]
[43] V. Ila, L. Polok, M. Solony, and P. Svoboda, “Slam++-a highly efficient and temporally scalable

incremental slam framework,” Intl. Journal of Robotics Research, vol. 36, no. 2, pp. 210–230, 2017.
[Page 7]

[44] J. Graeter, A. Wilczynski, and M. Lauer, “Limo: Lidar-monocular visual odometry,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Madrid, Spain, Oct 2018, pp. 7872–7879. [Page 7]

[45] A. J. Davison, “Real-time simultaneous localisation and mapping with a single camera,” in Intl. Conf.
on Computer Vision, Nice, France, October 2003, p. 1403. [Page 7]

[46] G. Zhang and P. A. Vela, “Good features to track for visual slam,” in IEEE Conf. on Computer Vision
and Pattern Recognition, Boston, USA, June 2015, pp. 1373–1382. [Page 7]

[47] K. J. Wu, T. Do, L. C. Carrillo-Arce, and S. I. Roumeliotis, “On the vins resource-allocation problem
for a dual-camera, small-size quadrotor,” in Proc. of the Intl. Sym. on Exp. Robot., 2016, pp. 538–549.
[Page 7]

[48] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial navigation,” in Proc. of
the IEEE Intl. Conf. on Robot. and Autom., Singapore, May 2017, pp. 3886–3893. [Pages 7, 75, 76,
78, and 82]

[49] I. Dryanovski, R. G. Valenti, and Jizhong Xiao, “Fast visual odometry and mapping from rgb-d data,”
in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Karlsruhe, Germany, May 2013, pp. 2305–
2310. [Page 8]

[50] S. M. Prakhya, L. Bingbing, L. Weisi, and U. Qayyum, “Sparse depth odometry: 3d keypoint based
pose estimation from dense depth data,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Seattle,
USA, May 2015, pp. 4216–4223. [Page 8]

[51] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy, “Visual odom-
etry and mapping for autonomous flight using an rgb-d camera,” in Proc. of the Intl. Sym. of Robot.
Research, Flagstaff, USA, August 2017, pp. 235–252. [Page 8]

[52] M. Nowicki and P. Skrzypezyński, “Combining photometric and depth data for lightweight and ro-
bust visual odometry,” in Euro. Conf. on Mobile Robots, Barcelona, Spain, Sep. 2013, pp. 125–130.
[Page 8]

[53] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystallographica
Section A, vol. 32, no. 5, pp. 922–923, 1976. [Pages 8 and 127]

http://ceres-solver.org

BIBLIOGRAPHY 155

[54] J. Zhang, M. Kaess, and S. Singh, “Real-time depth enhanced monocular odometry,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Chicago, USA, Sep. 2014, pp. 4973–4980. [Pages 8
and 94]

[55] Y. Lu and D. Song, “Robust rgb-d odometry using point and line features,” in Intl. Conf. on Computer
Vision, Santiago, Chile, December 2015. [Page 8]

[56] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control
paradigms and data structures, vol. 1611. International Society for Optics and Photonics, 1992, pp.
586–606. [Page 8]

[57] Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Sacramento, USA, April 1991, pp. 2724–2729 vol.3. [Page 8]

[58] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Proc. of Robot.: Sci. and Syst., Seattle,
USA, June 2009. [Page 8]

[59] J. Shi, B. He, L. Zhang, and J. Zhang, “Vision-based real-time 3d mapping for uav with laser sensor,”
in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Daejeon, South Korea, Oct 2016, pp.
4524–4529. [Page 8]

[60] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton,
S. Hodges, and A. W. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and tracking.” in
IEEE and ACM Int. Symp on Mixed and Augmented Reality, vol. 11, no. 2011, 2011, pp. 127–136.
[Page 8]

[61] F. Steinbrücker, J. Sturm, and D. Cremers, “Real-time visual odometry from dense rgb-d images,” in
Intl. Conf. on Computer Vision Workshops, Barcelona, Spain, Nov 2011, pp. 719–722. [Page 8]

[62] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust real-time visual
odometry for dense rgb-d mapping,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Karlsruhe,
Germany, May 2013, pp. 5724–5731. [Page 8]

[63] D. Gutiérrez-Gómez, W. Mayol-Cuevas, and J. J. Guerrero, “Inverse depth for accurate photometric
and geometric error minimisation in rgb-d dense visual odometry,” in Proc. of the IEEE Intl. Conf. on
Robot. and Autom., Seattle, USA, May 2015, pp. 83–89. [Page 8]

[64] Pyojin Kim, Hyon Lim, and H. J. Kim, “Robust visual odometry to irregular illumination changes
with rgb-d camera,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Hamburg, Ger-
many, Sep. 2015, pp. 3688–3694. [Page 8]

[65] Z. Fang and S. Scherer, “Real-time onboard 6dof localization of an indoor mav in degraded visual
environments using a rgb-d camera,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Seattle,
USA, May 2015, pp. 5253–5259. [Page 8]

[66] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vi-
sion,” in Intl. Joint Conf. on Artificial Intell., Vancouver, Canada, August 1981, pp. 24–28. [Page 10]

[67] L. Kneip, M. Chli, and R. Y. Siegwart, “Robust real-time visual odometry with a single camera and
an imu,” in Brit. Mach. Vision Conf., 2011. [Page 10]

[68] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny,
J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comp.
Vis., Graphics, and Im. Proc., vol. 39, no. 3, pp. 355 – 368, 1987. [Page 12]

[69] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-dynamic motion in built envi-
ronments without initial conditions,” IEEE Trans. Robotics, vol. 28, no. 1, pp. 61–76, February 2012.
[Page 12]

[70] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time
visual–inertial odometry,” IEEE Trans. Robotics, vol. 33, no. 1, pp. 1–21, Feb 2017. [Pages 12
and 111]

[71] K. Eckenhoff, P. Geneva, and G. Huang, “Closed-form preintegration methods for graph-based vi-
sual–inertial navigation,” Intl. Journal of Robotics Research, pp. 1–24, 2019. [Page 12]

156 BIBLIOGRAPHY

[72] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Calibrating
the extrinsics of multiple imus and of individual axes,” in Proc. of the IEEE Intl. Conf. on Robot. and
Autom., Stockholm, Sweden, May 2016, pp. 4304–4311. [Pages 12 and 13]

[73] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv preprint arXiv:1711.02508,
2017. [Page 14]

[74] Y. Kanazawa and K. Kanatani, “Do we really have to consider covariance matrices for image fea-
tures?” in Intl. Conf. on Computer Vision, vol. 2, Vancouver, Canada, July 2001, pp. 301–306.
[Page 23]

[75] Y. Wang, R. Xiong, Q. Li, and S. Huang, “Kullback-leibler divergence based graph pruning in robotic
feature mapping,” in Euro. Conf. on Mobile Robots, Barcelona, Spain, September 2013, pp. 32–37.
[Page 28]

[76] M. Mazuran, W. Burgard, and G. D. Tipaldi, “Nonlinear factor recovery for long-term slam,” Intl.
Journal of Robotics Research, vol. 35, no. 1-3, pp. 50–72, 2016.

[77] J. Hsiung, M. Hsiao, E. Westman, R. Valencia, and M. Kaess, “Information sparsification in visual-
inertial odometry,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Madrid, Spain,
October 2018, pp. 1146–1153. [Page 28]

[78] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Initialization-free monocular visual-inertial
state estimation with application to autonomous mavs,” in Proc. of the Intl. Sym. on Exp. Robot.,
Marrakech, Morocco, 2014. [Page 31]

[79] T. Qin and S. Shen, “Robust initialization of monocular visual-inertial estimation on aerial robots,”
in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Vancouver, Canada, September 2017,
pp. 4225–4232. [Page 32]

[80] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 26, no. 06, pp. 756–777, June 2004. [Page 33]

[81] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to the pnp problem,” Intl.
Journal of Computer Vision, vol. 81, no. 2, July 2008. [Page 33]

[82] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart,
“The euroc micro aerial vehicle datasets,” Intl. Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016. [Page 36]

[83] M. Kaess and F. Dellaert, “Covariance recovery from a square root information matrix for data asso-
ciation,” Robot. Auton. Syst., vol. 57, no. 12, pp. 1198–1210, 2009. [Page 44]

[84] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and localization: A scalable real-time
causal approach,” Intl. Journal of Robotics Research, vol. 30, no. 4, pp. 407–430, 2011. [Page 44]

[85] Z. Zhang, G. Gallego, and D. Scaramuzza, “On the comparison of gauge freedom handling in
optimization-based visual-inertial state estimation,” IEEE Robot. Autom. Letters, vol. 3, no. 3, pp.
2710–2717, July 2018. [Page 45]

[86] B. Fu, K. S. Shankar, and N. Michael, “Rad-vio: Rangefinder-aided downward visual-inertial odom-
etry,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Montreal, Canada, May 2018. [Page 51]

[87] P. Geneva, K. Eckenhoff, and G. Huang, “Asynchronous multi-sensor fusion for 3d mapping and
localization,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., Brisbane, Australia, May 2018,
pp. 1–6. [Page 61]

[88] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline fusion: A continuous-time representation for
visual-inertial fusion with application to rolling shutter cameras.” in Brit. Mach. Vision Conf., vol. 2,
no. 5, 2013, p. 8. [Page 62]

[89] A. Dhawale, K. S. Shankar, and N. Michael, “Hierarchical gaussian distributions for real-time slam,”
in Proc. of the Euro. Conf. on Comp. Vis., Glasgow, United Kingdom, August 2020. [Page 93]

[90] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state estimation in robotics,” arXiv
preprint arXiv:1812.01537, 2018. [Pages 111 and 112]

BIBLIOGRAPHY 157

[91] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment—a modern
synthesis,” in Intl. Workshop on Vision Algorithms, 1999, pp. 298–372. [Page 123]

[92] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares
procedures.” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964. [Page 125]

[93] J. B. Bancroft and G. Lachapelle, “Data fusion algorithms for multiple inertial measurement units,”
Sensors, vol. 11, no. 7, pp. 6771–6798, 2011. [Page 125]

[94] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-sensor
systems,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Tokyo, Japan, Nov 2013,
pp. 1280–1286. [Page 126]

[95] T. Qin and S. Shen, “Online temporal calibration for monocular visual-inertial systems,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Madrid, Spain, October 2018, pp. 3662–3669.
[Page 130]

[96] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang, “Multi-camera visual-inertial navigation with
online intrinsic and extrinsic calibration,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.,
Montreal, Canada, May 2019. [Page 133]

[97] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source Software, Kobe, Japan,
2009. [Page 143]

[98] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010. [Page 143]
[99] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000. [Page 143]

[100] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor flight in
dense indoor environments,” in Proc. of the Intl. Sym. of Robot. Research, Singapore, December
2013. [Page 146]

[101] X. Yang, A. Agrawal, K. Sreenath, and N. Michael, “Online adaptive teleoperation via motion prim-
itives for mobile robots,” Auton. Robots, vol. 43, no. 6, pp. 1357–1373, 2019. [Page 146]

[102] V. R. Desaraju and N. Michael, “Experience-driven Predictive Control,” in Robot Learn. and Plan.
Workshop at RSS, Ann Arbor, MI, June 2016. [Page 146]

[103] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor uav on se(3),”
in Proc. of the IEEE Conf. on Decision and Control, Atlanta, USA, December 2010, pp. 5420–5425.
[Page 146]

[104] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open source robotics
framework for deeply embedded platforms,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.,
Seattle, United States, May 2015, pp. 6235–6240. [Page 146]

[105] R. Mahony, T. Hamel, and J. Pflimlin, “Nonlinear complementary filters on the special orthogonal
group,” IEEE Trans. Autom. Control, vol. 53, no. 5, pp. 1203–1218, June 2008. [Page 146]

[106] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory evaluation for visual(-inertial)
odometry,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Madrid, Spain, October
2018, pp. 7244–7251. [Page 150]

	Introduction
	Background
	Camera Configuration
	Stereo
	Monocular

	Image Processing
	Indirect Methods
	Direct Methods
	Sparse Methods
	Dense Methods

	Probabilistic Inference
	Loosely-Coupled vs. Tightly-Coupled
	Filtering
	Optimization
	Feature Selection

	Depth-based Methods
	Sparse Methods
	Dense Methods

	Sliding Window Visual-Inertial Odometry
	Feature Detection and Tracking
	Feature Detection
	Feature Tracking
	Outlier Rejection
	Implementation Details

	IMU Preintegration
	IMU Measurement Model
	Motion Integration
	Motion Delta Error Dynamics Model
	Implementation Details

	IMU Factor
	Residual
	Covariance
	Jacobians

	Reprojection Factor
	Reprojection Geometry
	Residual
	Covariance
	Jacobians

	Single Camera Optimization
	Problem Definition
	Incorporation of New Feature Trails into Optimization
	Implementation Details

	Marginalization
	Marginalization as an Approximation of Batch Optimization
	Prior Residual
	Selection of States to Marginalize
	Implementation Details

	Initialization
	Structure From Motion
	Gyroscope Bias Estimation
	Velocity, Gravity, and Scale Estimation
	Initial Guess for Optimization

	Public Dataset Evaluation
	Realtime Evaluation on Flight Platform
	Motion Capture Flight
	Outdoor Flight
	Cave Flight

	Practical Considerations for VIO Deployment
	Efficient Covariance Estimation
	Gauge Ambiguity Handling
	Problems Caused By Gauge Ambiguity
	Gauge Ambiguity Mitigation Strategies
	Gauge Prior Implementation Details
	Numerical Example

	Auxiliary Estimator
	Horizontal Velocity Estimation
	Altitude Estimation
	Unscented Kalman Filter
	Odometry Assembly

	Odometry Management
	Finite State Machine
	Smooth Odometry Source Switching

	VIO for Multiple Cameras with Disjoint Fields of View
	Multi-Camera Optimization Problem Formulation
	Synchronized Cameras
	Asynchronous Cameras

	Image Plane Feature Trail Interpolation
	Lagrange Polynomial Interpolation of Feature Observations
	Simulation Comparison of Pose Interpolation and Image Plane Feature Trail Interpolation

	Modifications to Single Camera VIO
	Selection of Keyframes from Streaming Image Frames
	Optimization
	Incorporation of New Feature Trails into Optimization
	Initialization
	Selection of Keyframes for Marginalization

	Experimental Results
	Motion Capture Arena
	Parking Garage

	Sensor Resource Allocation
	Problem Formulation
	Log Determinant Evaluation
	Feature Observation Prediction Model Assumptions
	Feature Information Gain Evaluation

	Greedy Feature Selection
	Simulation Results
	Experimental Results
	Motion Capture Arena
	Pavement
	Volleyball Court

	Visual-Inertial-Depth Odometry
	Depth Sensor
	Relative Pose from Dense Depth Observations
	Relative Pose from Depth-Aided 3D-to-2D Feature Correspondences
	Primary Estimator Modifications
	Relative Pose Residual
	Relative Pose Jacobians

	Auxiliary Estimator Modifications
	Experimental Results
	Primary Estimator
	Auxiliary Estimator

	Conclusion
	Summary of Contributions
	Future Work

	Appendices
	Lie Theory
	Cross and Vee Operators
	Rotation Matrices
	Exponential Map
	Logarithmic Map

	Quaternions
	Exponential Map
	Logarithmic Map

	Euler Angles
	Rigid Body Transforms
	Useful SO(3) Identities and Approximations

	IMU Preintegration Derivations
	Continuous Time Error State Dynamics
	Position Error State Dynamics
	Linear Velocity Error State Dynamics
	Attitude Error State Dynamics
	IMU Bias Error State Dynamics
	Assembly into Linear Time Varying System

	Midpoint Rule Preintegration
	Nominal State
	Error State

	Extension to Support Online IMU Intrinsic Calibration
	True and Nominal State Continuous Time Dyanmics
	Error State Continuous Time Dynamics
	Midpoint Rule for Error State Dynamics
	IMU Bias and Intrinsics Perturbation Model
	IMU Preintegration Factor
	IMU Intrinsics Factor

	Nonlinear Least Squares Regression
	Trust Region Minimization
	Dogleg Strategy
	Schur Complement Linear Solver
	Loss Functions
	Manifold Optimization

	Offline Calibration
	IMU to Motion Capture Model Extrinsics
	Camera to IMU Extrinsics

	Online Calibration
	Camera IMU Extrinsic Transform
	Camera IMU Time Offset
	Feature Velocity
	Time Offset Definition
	Time Shifted Feature Observations
	Incorporating Time Offsets into the Standard Reprojection Residual
	Time Offset Jacobian
	Estimation Procedure

	Interpolated Reprojection Factor
	Master and Secondary Camera Keyframe Timestamps
	Pose Interpolation
	Reprojection Residual with Interpolated Poses
	Jacobians of the Reprojection Residual with Interpolated Poses
	Position Jacobians
	Jacobian of Interpolated Attitude Perturbation with respect to Earlier Master Camera Attitude Perturbation
	Jacobian of Interpolated Attitude Perturbation with respect to Later Master Camera Attitude Perturbation
	Time Offset Jacobians

	Experiment Infrastructure
	Hardware
	First Generation Flight Platform
	Second Generation Flight Platform
	Motion Capture Arena
	Ground Control Station

	Software
	Onboard Computer
	Autopilot Computer

	Motion Estimate Accuracy Evaluation
	Time Offset Compensation
	Trajectory Interpolation
	4DOF Trajectory Alignment
	Using Initial Pose Correspondence
	Using Multiple Position Correspondences

	Error Metrics
	Absolute Trajectory Error
	Final Position Drift

	Covariance Alignment

