

REV-03.18.2016.0

Exploring the Use of Metrics for Software
Assurance

Carol Woody, Ph.D.
Robert Ellison, Ph.D.
Charlie Ryan

December 2018

TECHNICAL NOTE
CMU/SEI-2018-TN-004

CERT Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

http://www.sei.cmu.edu

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA
01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM18-1366

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Table of Contents

Acknowledgments iii

Abstract v

1 Introduction to Software Assurance 1
1.1 Examples of Product and Process Confidence 1
1.2 Structure of This Report 4

2 Structuring Software Assurance Practices for Measurement 5
2.1 Defining the Software Assurance Target 5
2.2 The SAF 5
2.3 Justifying Sufficient Software Assurance Using Measurement 6
2.4 An Implementation Process for Each Metric 8

2.4.1 Collect Data 10
2.4.2 Analyze and Identify Issues and Gaps 10
2.4.3 Evaluate and Determine the Need for Response 11
2.4.4 Implement a Response and Determine Needed Monitoring 11

3 Selecting Measurement Data for Software Assurance Practices 12
3.1 Example Software Assurance Target and Relevant SAF Practices 12
3.2 Example for Selecting Evidence for Software Assurance Practices 14
3.3 Example for Finding Metrics Data in Available Documentation 15
3.4 Sustainment Example 16

4 Challenges for Addressing Lifecycle Software Assurance 18
4.1 Acquisitions Can Initiate Software Assurance with Independent Verification and

Validation 18
4.2 Monitoring the Development of a Custom Software Acquisition 20
4.3 Monitoring Integration of Third-Party Software 22
4.4 System-of-Systems Assurance 25

5 Conclusions 27

Appendix A: RMF Controls 29

Appendix B: SAF Process Management 32

Appendix C: SAF Project Management 36

Appendix D: SAF Engineering 42

Appendix E: SAF Support 51

References/Bibliography 54

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

List of Figures

Figure 1: Failure Distribution Curves 2

Figure 2: Lifecycle Measures 3

Figure 3: Software Assurance Framework 6

Figure 4: Metrics Development Process 9

Figure 5: SQL-Injection Assurance Case 22

Figure 6: Supply Chain Monitoring 23

List of Tables

Table 1: Engineering Questions 7

Table 2: Practices/Outputs for Evidence Supporting Sustainment Example 17

Table 3: Requirements (SAF Engineering Practice Area 3.2) 20

Table 4: Evidence of Supplier Capabilities and Product Security 24

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Acknowledgments

The development of this report was sponsored by the Department of Defense Cruise Missile De-
fense Systems (CMDS) Project Office. We thank James Wessel and Eileen Wrubel from the Car-
negie Mellon University Software Engineering Institute (SEI) for coordinating the funding that
allowed us to assemble and publish our research in this area and for their input as reviewers.

In addition, we thank William Richard Nichols and Timothy Chick for their support and insights
as reviewers. Also, we thank Barbara White and Sandy Shrum for providing editing support.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Abstract

The Software Assurance Framework (SAF) is a collection of cybersecurity practices that pro-
grams can apply across the acquisition lifecycle and supply chain. The SAF can be used to assess
an acquisition program’s current cybersecurity practices and chart a course for improvement, ulti-
mately reducing the cybersecurity risk of deployed software-reliant systems.

This report proposes measurements for each SAF practice that a program can select to monitor
and manage the progress it’s making toward software assurance. Metrics are needed to determine
how effectively a practice is performed and how well software assurance is addressed. This report
presents an approach for determining which SAF practices should be measured and how. It pro-
vides acquirers, program managers, and contractors with an approach for using metrics to estab-
lish confidence that the systems they plan to field will have sufficient software assurance.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

1 Introduction to Software Assurance

There is always uncertainty about a software system’s behavior. Rather than performing exactly
the same steps repeatedly, most software components function in a highly complex networked and
interconnected system of systems that changes constantly. Measuring the design and implementa-
tion yields confidence that the delivered system will behave as specified. Determining that level
of confidence is the objective of software assurance, which is defined by the Committee on Na-
tional Security Systems (CNSS 2010)1 as

Implementing software with a level of confidence that the software functions as intended and
is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part
of the software, throughout the lifecycle.

Measuring the software assurance of a product as it is developed and delivered to function in a
specific system context involves assembling carefully chosen metrics that demonstrate a range of
behaviors to confirm confidence that the product functions as intended and is free of vulnerabili-
ties. Measuring software assurance is challenging, since it is a complex and difficult problem with
no readily available solutions.

The first challenge is evaluating whether a product’s assembled requirements define the appropri-
ate behavior. The second challenge is to confirm that the completed product, as built, fully satis-
fies the specifications for use under realistic conditions.

Determining assurance for the second challenge is an incremental process applied across the
lifecycle. There are many lifecycle approaches, but, in a broad sense, some form of requirements,
design, construction, and test is performed to define what is wanted, enable its construction, and
confirm its completion. Many metrics are used to evaluate parts of these activities in isolation, but
establishing confidence for software assurance requires considering the fully integrated solution to
establish overall sufficiency.

1.1 Examples of Product and Process Confidence

As an example of the complexity in establishing confidence, consider one aspect of product per-
formance. When used, the product must meet some level of performance (e.g., sub-second re-
sponse time). Assurance includes tests to confirm that the final product meets the requirements.
Best practices start with building a computational model during design and using simulations to
demonstrate assurance using engineering analysis. Assurance continues into the implementation.
For example, unit testing provides assurance that a component behaves as specified by the model.
If necessary, corrective action can be taken during the design and implementation phases.

An additional complexity for software assurance is recognizing that software is never defect free,
and up to 5% of the unaddressed defects are vulnerabilities [Ellison 2014]. According to Jones

1 This same definition is applied in the National Defense Authorization Act (NDAA) of 2013 [PL 112-239, Sec.

933(2)].

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

and Bonsignour, the average defect level in the U.S. is 0.75 defects per function point or 6,000 per
million lines of code (MLOC) for a high-level language [Jones 2011]. Very good levels would be
600 to 1,000 defects per MLOC, and exceptional levels would be below 600 defects per MLOC.

Thus, software cannot always function perfectly as intended. How can confidence be established?
One option is to use measures that establish reasonable confidence that security is sufficient for
the operational context. Assurance measures are not absolutes, but information can be collected
that indicates whether key aspects of security have been sufficiently addressed throughout the
lifecycle to establish confidence that assurance is sufficient for operational needs.

At the start of development, much about the operational context remains undefined, and there is a
general knowledge of the operational and security risks that might arise as well as the security be-
havior that is desired when the system is deployed. This vision provides only a limited basis for
establishing confidence in the behavior of the delivered system.

Over the development lifecycle, as the details of the software and operational context incremen-
tally take shape, it is possible, with well-selected measurements, to incrementally increase confi-
dence and eventually confirm that the delivered system will achieve the level of software assur-
ance desired. When acquiring a product, if it is not possible to conduct measurement directly, the
vendor should be contacted to provide data that shows product and process confidence. Independ-
ent verification and validation should also be performed to confirm the vendor’s information.

A comparison of software and hardware reliability provides some insight into challenges for man-
aging software assurance. An evaluation of hardware reliability uses statistical measures, such as
the mean time between failures (MTBF) since hardware failures are often associated with wear
and other errors that are frequently eliminated over time. A low number of hardware failures in-
creases our confidence in a device’s reliability.

The differences between software and hardware reliability are reflected in their associated failure-
distribution curves shown in Figure 1. A bathtub curve, shown in the left graph, describes the typ-
ical failure distribution for hardware. The bathtub curve consists of three parts: a decreasing fail-
ure rate (of early failures), a constant failure rate (of random failures), and an increasing failure
rate (of wear-out failures), as wear increases the risk of failure. Software defects exist when a sys-
tem is deployed. Software’s failure distribution curve, shown in the right graph of Figure 1, re-
flects changes in operational conditions that exercise those defects as well as new faults intro-
duced by upgrades. The reduction of errors between updates can lead system engineers to make
reliability predictions for a system based on a false assumption that software is perfectible over
time. Complex software systems are never as error free as described above.

Figure 1: Failure Distribution Curves

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

As noted in the 2005 Department of Defense Guide for Achieving Reliability, Availability, and
Maintainability (RAM),2 a lack of observed software defects is not necessarily a predictor for im-
proved operational software reliability. Defects are inserted into the software before it is de-
ployed, and operational failure results from environmental conditions that were not considered
during testing. Too little reliability engineering was a key reason for the reliability failures de-
scribed in the DoD RAM guide. This lack of reliability engineering was exhibited by failure to de-
sign-in reliability early in the development process and the reliance on predictions (i.e., using reli-
ability defect models) instead of conducting engineering design analysis.

The same problem applies to software assurance. Software assurance must be engineered into the
design of a software-intensive system. Designing in software assurance requires going beyond
identifying defects and security vulnerabilities towards the end of the lifecycle (reacting) and ex-
tending to evaluating how system requirements and the engineering decisions made during design
contribute to vulnerabilities. Many known attacks are the result of poor acquisition and develop-
ment practices.

This approach to software assurance depends on establishing measures for managing software
faults across the full acquisition lifecycle. It also requires increased attention to earlier lifecycle
steps, which anticipate results and consider the verification side as shown in Figure 2. Many of
these steps can be performed iteratively with opportunities in each cycle to identify assurance lim-
itations and confirm results.

Figure 2: Lifecycle Measures

2 https://acc.dau.mil/CommunityBrowser.aspx?id=378067

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

1.2 Structure of This Report

This report was developed to provide acquirers, program managers, and contractors with an ap-
proach for using metrics to establish confidence that the systems they plan to field will have suffi-
cient software assurance.

Section 2 provides insight into how measurement can be linked to practices and used as evidence
of software assurance.

Section 3 provides insights into the range of available metrics that can be collected for software
assurance practices and how the most useful ones, in a specific situation, might be selected.

Section 4 provides insights into the challenges of using lifecycle practices and suggests metrics to
support software assurance.

Section 5 presents conclusions and proposed next steps.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

2 Structuring Software Assurance Practices for
Measurement

2.1 Defining the Software Assurance Target

Software assurance needs context to measure its practices usefully. Some software assurance tar-
gets3 must be defined for the system to be fielded. It is then possible to identify ways that engi-
neering and acquisition ensure—through policy, practices, verification, and validation—that the
software assurance targets are addressed.

For example, if the system being delivered is a plane, a key mission concern is that the plane can
continue to fly and perform its mission even if it’s experiencing problems. Therefore, our stated
software assurance goal for this mission might be “mission-critical and flight-critical applications
executing on the plane or used to interact with the plane from ground stations will have low cy-
bersecurity risk.”

To establish activities that support meeting this software assurance goal, software assurance prac-
tices should be integrated into the lifecycle. The Software Assurance Framework (SAF), a base-
line of good software assurance practices for system and software engineers assembled by the
SEI, can be used to confirm the sufficiency of software assurance and identify gaps in current
lifecycle practices [Alberts 2017]. A range of evidence can be collected from these practices
across a lifecycle to establish confidence that software assurance is addressed.

Evaluation of this evidence should be integrated into the many monitoring and control steps al-
ready in a lifecycle, such as engineering design reviews, architecture evaluations, component ac-
quisition reviews, code inspections, code analyses and testing, flight simulations, milestone re-
views, and certification and accreditation. Through the analysis of the selected practices, evidence
and metrics can be generated to quantify levels of assurance, which, in turn, can be used to evalu-
ate the sufficiency of a system’s software assurance practices. A well-defined evidence-collection
process can be automated as part of a development pipeline to establish a consistent, repeatable
process.

2.2 The SAF

The SAF [Alberts 2017] defines important software assurance practices for four categories: pro-
cess management, project management, engineering, and support. (See Figure 3.) Each category
comprises multiple areas of practice, and specific practices are identified in each area. To support
acquirers, relevant acquisition and engineering artifacts—where evidence can be provided—are
documented for each practice, and an evaluator looks for evidence that a practice is implemented
by examining the artifacts related to that practice.

3 In this report, use of the word target refers to a goal or claim.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Because most organizations use unique lifecycle models structured to support the specific systems
and software products they deliver, using a framework of practices allows tailoring based on the
specific needs of a program in any organization.

Many relevant practices focus on cybersecurity, which is defined in Merriam-Webster4 as
“measures taken to protect a computer or computer system (as on the Internet) against unauthor-
ized access or attack.” A system containing vulnerabilities that can be compromised to allow un-
authorized access reduces the confidence of software assurance.

Figure 3: Software Assurance Framework

2.3 Justifying Sufficient Software Assurance Using Measurement

Just as there is no single practice that addresses software assurance, there is no one single meas-
urement that demonstrates that a software assurance target has been achieved. The use of many
metrics is required to determine that a range of practices is sufficiently addressed and the product
performs as expected. These metrics must be connected to the software assurance target in a man-
ner that supports increased confidence (or not) across the lifecycle.

One form of structuring metric information is an assurance case.5 Metrics provide evidence in
support of a software assurance target based on justification of the value of the evidence (aka ar-
gument). Such evidence does not imply any kind of guarantee or certification. It is simply a way
to document rationale behind software assurance decisions. Assurance cases were originally used
to show that systems satisfy their safety-critical properties. For that use, they are called safety
cases. Effective measurements require planning to determine what to measure and analysis to de-
termine what the measures reveal as evidence in support of a target.

4 https://www.merriam-webster.com/dictionary/cybersecurity

5 An assurance case is defined as a documented body of evidence that provides a convincing and valid argument
that a specified set of critical claims about a system’s properties are adequately justified for a given application
in a given environment.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

An assurance case simply documents the verification of a claim. For example, an assurance case
for the performance example described in Section 1.1 consists of the computational model, simu-
lations that verify that model, unit tests that verify the implementation of the model, and tests of
the integrated system.

Several observations about how an assurance case can be used include the following:

 Creating a verification argument and identifying supporting evidence should be the expected
output of normal development activities.

 An assurance case is developed incrementally. For this example, the outline of an assurance
case was developed during design. It is likely refined during implementation to satisfy verifi-
cation requirements.

 Independent reviewers can evaluate the assurance argument and sufficiency of proposed or
supplied evidence throughout the development lifecycle.

Software assurance metrics are needed to evaluate both the practices in a software assurance prac-
tice area as well as the resulting assurance of the product. For example, in the SAF Engineering
practice area, the engineers must (1) know what to do, (2) actually do it, and (3) provide evidence
that what they did is sufficient.

However, there are many competing qualities (e.g., performance, safety, reliability, maintainabil-
ity, usability) an engineer must consider in addition to software assurance, and the result must
provide sufficient assurance to meet the target. Answers to the questions in Table 1 provide evi-
dence that the engineering was performed effectively. Further evidence is needed to determine if
the software assurance results based on the engineering decisions meet the target.

Table 1: Engineering Questions

Effectiveness Was applicable engineering analysis incorporated in the development practices?

Trade-offs When multiple practices are available, have realistic trade-offs been made between the
effort associated with applying a technique and the improved result that is achieved? (The
improved result refers to the efficiency and effectiveness of the techniques relative to the
type of defect or weakness.)

Execution How well was the engineering done?

Results applied Was engineering analysis effectively incorporated into lifecycle development?

The Goal/Question/Metric (GQM) paradigm6 can be used to establish a link between the software
assurance target and the engineering practices that should support the target. The GQM approach
was developed in the 1980s as a mechanism for structuring metrics and is a well-recognized and
widely used metrics approach.

To focus the use of GQM on software assurance, consider an example. An engineering practice
for software assurance identifies and protects the ways that a software component can be compro-

6 Read about the Goal Question Metric Approach on the University of Maryland website:

https://www.cs.umd.edu/~basili/publications/technical/T78.pdf.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

mised (aka attack paths). Such a practice must integrate into all phases of the acquisition and de-
velopment lifecycles. Measures to provide assurance evidence can be collected from activities that
implement this practice in several lifecycle steps, such as the following:

 Requirements: What are the requirements for software attack risks, and are they sufficient for
the expected operational context?

 Architecture through design: What security controls and mitigations must be incorporated
into the design of all software components to reduce the likelihood of successful attacks?

 Implementation: What steps must be taken to minimize the number of vulnerabilities inserted
during coding?

 Test, validation, and verification: How will actions performed during test, validation, and ver-
ification address software attack risk mitigations?

For each of these engineering questions, explore relevant outputs and metrics that can be used to
establish, collect, and verify appropriate evidence. Since each project is different in scope, sched-
ule, and target assurance, actual implemented choices should be the metrics that provide the great-
est utility.

2.4 An Implementation Process for Each Metric

Selecting a metric is only the first step in establishing useful measurement of software assurance.
Metric data must also be collected, analyzed, and evaluated to identify potential concerns. Each
concern triggers a response determination and an implementation of that response. Figure 4 de-
scribes the steps for establishing and using a metric.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Figure 4: Metrics Development Process

Implement a Response and Determine Needed Monitoring

• Determine where impact and response are needed.
• Communicate the impact and response needs to appropriate stakeholders.
• Determine monitoring needs.
• Adjust data collection and measurement analysis as needed for future analyses.

Collect Data
• What data should be collected, and where should it be collected?

• What is the data’s level of fidelity?

• How many sources of data are there?

• How should data be assembled for analysis and passed to the next step?

Analyze and Identify Issues and Gaps
• What is the criteria for abnormal conditions? (It requires a baseline of expected behav-

ior.)

• How frequent should the data be analyzed? (If nothing looks abnormal, terminate the
flow and revisit in the next review.)

Evaluate and Determine the Need for Response
• Confirm the validity of indicators, including the accuracy of the data and its sources, and

the validity of the metrics used to determine the condition.
• Identify the potential impacts, including the mission, requirements variance, future sys-

tem performance (i.e., product impact), and operational capability (i.e., predicting future
problems).

• Establish the criteria for evaluating the severity of impact and response, including crises
requiring immediate action, changes needed in measurements, changes needed in re-
quirements, and product changes required (i.e., engineering changes).

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

2.4.1 Collect Data

Collecting measurement data starts with answering the following standard questions of who,
what, where, when, and how.

Who performs the practice(s) selected to measure? If there is direct access to who performs the
practices, it is possible to request the data. However, in many cases, the practices are performed
by contracted resources, and a deliverable must be added to performance criteria to ensure prac-
tices are performed. This addition may mean contract modifications and increased costs.

What should be collected and by whom? In some cases, the data is already available and is being
used for a related secondary purpose. It’s likely that no one is collecting the information because
it hasn’t been required, or what is being collected is imprecise or insufficiently correlated to what
must be evaluated. Are mechanisms available to collect the needed data? Are there log entries that
can be assembled or tools that can be applied to collect the data? If there is no way to collect the
data needed, a surrogate may be able to provide a close approximation of what is needed.

Where might the data be collected and how many sources should be used? How granular should
the data be? Is information needed about every line of code, every software module, every compo-
nent, or each product within the system? Or is information needed at an integration level? Is it
necessary to collect detailed data and construct the combined view, or can the data be collected at
a point where it will reflect the combinations? Is there a single point where the practice being
measured is performed, or is it spread throughout many separate steps, separate lifecycle activi-
ties, and separate contractors? Are the practices being inserted into the lifecycle, and do the meas-
urement activities need to be part of that transition? How many sources must participate to make
the measurement useful? In many cases, the volume of data may be too high for manual analysis,
and the collection process should be automated to be practical.

When should the metric be collected to be useful? If a metric is used for prediction, then it must
be part of early lifecycle activities. If it’s used for lifecycle performance verification, then it
should be part of later lifecycle activities. How frequently (e.g., daily, weekly, monthly, at the end
of a cycle, or as part of planned reviews) is this information needed? There is no reason to expend
resources to collect data more frequently than needed.

How should the information be assembled for analysis? Data is useful only if it’s analyzed, and
data analysis is time and resource intensive. Mechanisms must be in place to isolate data needed
to conduct assurance analysis from the many log files and other data repositories that potentially
contain millions of records. Data that is classified and cannot be shared with decision makers is
useless unless the analysis is framed so the decisions the data is intended to influence are ad-
dressed within the classification boundaries.

2.4.2 Analyze and Identify Issues and Gaps

Measurement data is collected so that it can be used to influence action. Measurements can show
that work is proceeding as expected, and no action beyond continuing the current course is re-
quired. Measurements can show deviations from a desired range of performance, indicating the
need for further evaluation, possible engineering changes, or different measures because the data
does not correlate to expectations. Any of these outcomes requires knowledge of what constitutes

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

expected data so that undesirable behavior can be identified. A worthy measurement plan prede-
fines what the collected data means and how it should be used to influence actions so that the in-
terpretation of the results and selected responses are appropriate.

Who reviews the data for potential response? How do they determine what is out of acceptable
bounds and when action is required? Is there a single decision point? Or are performers at a gran-
ular level expected to (1) correct issues related to measures within a certain range and (2) notify
decision makers at the next level when those bounds are exceeded? Each selected measure can
have different responses to these questions based on how the organization chooses to implement
its decision making.

2.4.3 Evaluate and Determine the Need for Response

There are several possible responses to measures that are considered out of bounds. Initially, the
data should be confirmed to ensure its validity. Were the collection and submission processes fol-
lowed so that the data has integrity? Are the metrics appropriate to indicate specific action, or are
they potential warning indicators that should trigger further monitoring, data collection, and anal-
ysis?

If the data is believable, then what are the potential impacts indicated by an out-of-bounds condi-
tion? There could be mission success impacts, system/product performance impacts, operational
capability impacts with future limitation implications, etc.

If the measures can be considered predictive, then what actions should be considered to prevent,
mitigate, or monitor the possible impact? If the possible impact is unacceptable, what must
change to align the predicted outcome with the desired result?

If the measures verify capability, are the conditions posed by the unexpected variance great
enough to justify rework of some or all of the system? Or will responsibility, and possibly future
change requests, be transferred to operations?

Any of the above responses requires criteria for evaluating the severity of impact and the immedi-
acy of expected response. Mechanisms for communicating the need for response to current or fu-
ture performers is also required.

2.4.4 Implement a Response and Determine Needed Monitoring

Once the desired response is determined, it’s necessary to communicate to those expected to re-
spond so that they (1) know what they must do, (2) understand the expected response time, and
(3) have the proper authorization to act. How are such situations tracked to determine resolution?
Will additional measures be needed to confirm the expected outcome, or is future monitoring of
the existing measures sufficient?

It’s beneficial to periodically monitor and tune this process to improve the metrics used and the
actions that are determined and implemented based on those metrics. Also system and organiza-
tional changes can impact the metrics process.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

3 Selecting Measurement Data for Software Assurance
Practices

The SAF documents practices for process management, program management, engineering, and
support. For any given software assurance target, there are GQM questions that can be linked to
each practice area and individual practice to help identify potential evidence. In this section, this
approach is used to develop an example that shows how practices in each area can be used to pro-
vide evidence in support of a software assurance target.

The SAF provides practices as a starting point for a program, based on the SEI’s expertise in soft-
ware assurance, cybersecurity engineering, and risk management. Each organization must tailor
the practices to support its specific software assurance target—possibly modifying the questions
for each relevant software assurance practice—and select a starting set of metrics for evidence
that is worth the time and effort needed to collect it.

3.1 Example Software Assurance Target and Relevant SAF Practices

Consider the following software assurance target: Supply software to the warfighter with accepta-
ble software risk. To meet this software assurance target, two sub-goals are needed (based on the
definition of software assurance):

Sub-Goal 1: Supply software to the warfighter that functions in the intended manner. (Since
this is the primary focus of every program, and volumes of material are published about it,
this sub-goal does not need to be further elaborated.)

Sub-Goal 2: Supply software to the warfighter with a minimal number of exploitable vulner-
abilities. (The remainder of this section provides a way to address this sub-goal.)

SAF-Based Questions

Using the SAF,7 the following questions should be asked to address sub-goal 2: Supply software
to the warfighter with a minimal number of exploitable vulnerabilities.

1. Process Management: Do process management activities help minimize the potential for ex-
ploitable software vulnerabilities?

1.1. Process Definition: Does the program establish and maintain cybersecurity processes?

1.2. Infrastructure Standards: Does the program establish and maintain security standards for
its infrastructure?

7 See Figure 3 for the SAF’s structure of practice areas.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

1.3. Resources: Does the program have access to the cybersecurity resources (e.g., personnel,
data, assets) it needs?

1.4. Training: Does the program provide security training for its personnel?

2. Program Management: Do program management activities help minimize the potential for
exploitable software vulnerabilities?

2.1. Program Plans: Has the program adequately planned for cybersecurity activities?

2.2. Program Infrastructure: Is the program’s infrastructure adequately secure?

2.3. Program Monitoring: Does the program monitor the status of cybersecurity activities?

2.4. Program Risk Management: Does the program manage program-level cybersecurity
risks?

2.5. Supplier Management: Does the program consider cybersecurity when selecting suppli-
ers and managing their activities?

3. Engineering: Do engineering activities minimize the potential for exploitable software vul-
nerabilities?

3.1. Product Risk Management: Does the program manage cybersecurity risk in software
components?

3.2. Requirements: Does the program manage software security requirements?

3.3. Architecture: Does the program appropriately address cybersecurity in its software archi-
tecture and design?

3.4. Implementation: Does the program minimize the number of vulnerabilities inserted into
its software code?

3.5. Testing, Validation, and Verification: Does the program test, validate, and verify cyber-
security in its software components?

3.6. Support Tools and Documentation: Does the program develop tools and documentation
to support the secure configuration and operation of its software components?

3.7. Deployment: Does the program consider cybersecurity during the deployment of soft-
ware components?

4. Support: Do support activities help minimize the potential for exploitable software vulnera-
bilities?

4.1. Measurement and Analysis: Does the program adequately measure cybersecurity in ac-
quisition and engineering activities?

4.2. Change Management: Does the program manage cybersecurity changes to its acquisition
and engineering activities?

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

4.3. Product Operation and Sustainment: Is the organization with responsibility for operating
and sustaining the software-reliant system managing vulnerabilities and cybersecurity
risks?

There are many possible metrics that could provide indicators of how well each practice in each
practice area is addressing its assigned responsibility for meeting the goal. The tables in Appen-
dices B-E provide metric options to consider when addressing the questions for each practice area
except 3.1 Product Risk Management, which, for this example, was not useful since the system
under development is the product.

There are many ways that the information provided in Appendices A-E can be used for practices,
outputs, and metrics. An organization can start with

 existing practices to identify related metrics

 known outputs to identify useful software assurance metrics

 known attacks to identify useful practices and measures for future identification

Three examples are included in this section.

3.2 Example for Selecting Evidence for Software Assurance Practices

A reasonable starting point for software assurance measurement is with practices that the organi-
zation understands and is already addressing. Consider the following example, which draws prac-
tices and metrics from Appendix D.

The DoD requires a program protection plan, and evidence could be collected using metrics for
engineering practices (see Figure 3, practice group 3) that show how a program is handling pro-
gram protection.

In Engineering practice area 3.2 Requirements, data can be collected to provide a basis for com-
pleting the program protection plan. Relevant software assurance data can come from require-
ments that include the following:

 the attack surface

 weaknesses resulting from the analysis of the attack surface, such as a threat model for the
system

In Engineering practice area 3.3 Architecture, data is collected to show that requirements can be
addressed. This data might include the following:

 the results of an expert review by those with security expertise to determine the security ef-
fectiveness of the architecture

 attack paths identified and mapped to security controls

 security controls mapped to weaknesses identified in the threat modeling activities in practice
3.2

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

In Engineering practice area 3.4 Implementation, data can be provided from activities, such as
code scanning, to show how weaknesses are identified and removed. This data might include the
following:

 results from static and dynamic tools and related code updates

 the percentage of software evaluated with tools and peer review

In Engineering practice area 3.5 Verification, Validation, and Testing, data can be collected to de-
termine that requirements have been confirmed and the following evidence would be useful:

 percentage of security requirements tested (total number of security requirements and MLOC)

 code exercised in testing (MLOC)

 code surface tested (% of code exercises)

Each selected metric must have a process that establishes how data is collected, analyzed, and
evaluated based on information provided in Section 2.4 of this report.

3.3 Example for Finding Metrics Data in Available Documentation

For each SAF practice, a range of outputs (e.g., documents, presentations, dashboards) is typically
created. In Appendices B through E, examples of these outputs are provided for each SAF prac-
tice. The form of an output may vary based on the lifecycle in use. An output may be provided at
multiple points in a lifecycle with increased content specificity. Available outputs can be evalu-
ated and tuned to include the desired measurement data.

In Engineering practice area 3.2 Requirements, the SAF includes the following practice:

A security risk assessment is an engineering-based security risk analysis that includes the at-
tack surface (those aspects of the system that are exposed to an external agent) and abuse/mis-
use cases (potential weaknesses associated with the attack surface that could lead to a compro-
mise). This activity may also be referred to as threat modeling.

A security risk assessment exhibits outputs with specificity that varies by lifecycle phase. Initial
risk assessment results might include only that the planned use of a commercial database manager
raises a specific vulnerability risk that should be addressed during detailed design. The risk as-
sessment associated with that detailed design should recommend specific mitigations to the devel-
opment team. Testing plans should cover high-priority weaknesses and proposed mitigations.

Examples of useful data related to measuring this practice and that support the software assurance
target appear in the following list:

 recommended reductions in the attack surface to simplify development and reduce security
risks

 prioritized list of software security risks

 prioritized list of design weaknesses

 prioritized list of controls/mitigations

 mapping of controls/mitigations to design weaknesses

 prioritized list of issues to be addressed in test, validation, and verification

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

The outputs of a security risk assessment depend on the experience of the participants as well as
constraints imposed by costs and the schedule. An analysis of this data should include considera-
tion for missing security weaknesses or poor mitigation analysis, which increases operational risks
and future expenses.

Another practice in Engineering practice area 3.2 Requirements is

Conduct reviews (e.g., peer reviews, inspections, and independent reviews) of software secu-
rity requirements.

Output from reviews includes issues raised in internal reviews, review status, and evaluation plans
for software security requirements.

Analysis of the issues arising in various reviews should answer the questions shown in following
list to determine data that would be useful in evaluating progress toward the software assurance
goal.

 For software security requirements, what has not been reviewed? (Examples include the num-
ber, difficulty, and criticality of “to be determined” [TBD] and “to be added” [TBA] items.)

 Where are there essential inconsistencies in the analysis and/or mitigation recommendations?
(Examples include the number/percentage, difficulty, and criticality of the differences.)

 Is there insufficient information for performing a proper security risk analysis? (Examples in-
clude emerging technologies and/or functionality where there is a limited history of security
exploits and mitigation.)

3.4 Sustainment Example

The Heartbleed vulnerability is an example of a design flaw. Could software assurance practices
and measures have identified this type of problem before it was fielded?

The assert function for the flawed software accepts two parameters: a string S and an integer N
and returns a substring of S of length N. For example, assert (“that”,3) returns tha. A vul-
nerability existed for calls where N is greater than then the length of S. For example, as-
sert(“that”,500) returns a string starting with “that” followed by 496 bytes of memory data
stored adjacent to the string that. Calls such as this one enable an attacker to view what should
be inaccessible memory contents. The input data specification that the value of N was less than or
equal to the length of the string was never verified.

The practices listed in Table 2 come from several SAF practices in the Engineering practice area
that should provide enough evidence to justify the claim that the Heartbleed vulnerability was
eliminated.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Table 2: Practices/Outputs for Evidence Supporting Sustainment Example

Practice Output

Threat modeling Software risk analysis identifies “input data risks with input verification” as requiring
mitigation.

Design includes
mitigation

Input data verification is a design requirement.

Software
inspection

Software inspections confirm the verification of all input data.

Testing Testing plans include invalid input data.

Test results show mitigation is effective for supplied inputs.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

4 Challenges for Addressing Lifecycle Software Assurance

As mentioned earlier in this report, the role of assurance metrics and data varies with the type of
assurance target. Earlier examples demonstrated that the effective use of metrics for software as-
surance in engineering practices requires coordinating data across many practices in the Engineer-
ing practice area.

Functional requirements typically (1) describe what a system should do and (2) focus on required
behavior that can be validated. Assurance requirements are more likely expressed in terms of what
a system should not do and are much more difficult (if not impossible) to confirm. However, we
should consider evaluations that show that a behavior is less likely to occur.

For example, we can verify that the authentication and authorization functions meet requirements
and that authorization is confirmed when sensitive data is accessed. However, that evidence is in-
sufficient to demonstrate assurance because only authorized users can access a data set. An at-
tacker does not need to exploit a weakness in those functions. Instead, they can use a vulnerability
in the functional software to change software performance and bypass authentication checks. In
other words, vulnerabilities enable an attack to bypass system controls. To reduce the likelihood
of this bypass occurring, practices that remove vulnerabilities are critically needed.

4.1 Acquisitions Can Initiate Software Assurance with Independent
Verification and Validation

Challenge: Contractors are required to address a risk management framework based on existing
policy; contractors need to consider software assurance as well. Can the two be combined?

Many government agencies use the NIST Risk Management Framework (RMF) [NIST 2014] to
identify practices for cybersecurity that also address software assurance. These practices are in-
cluded in a contract and evaluated as part of an independent verification and validation (IV&V)
process to confirm the level of cybersecurity and software assurance risk addressed.

As an example, three areas of interest that could be combined were selected. (Additional exam-
ples are provided in Appendix A.)

1. The first area of interest is Software Flaw Remediation, which covers five RMF controls as
follows:
 SI-2 Flaw Remediation

 SI-2(1) Flaw Remediation | Central Management

 SI-2(2) Flaw Remediation | Automated Flaw Remediation Status

 SI-2(3) Flaw Remediation | Time to Remediate Flaws/Benchmarks for Corrective
Actions

 SI-2(6) Flaw Remediation | Removal of Previous Versions of Software/Firmware

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This area of interest is handled by SAF Engineering practice area 3.2 Implementation as part
of “Evaluation practices (e.g., code reviews and apply tools) are applied to identify and re-
move vulnerabilities in delivered code (including code libraries, open source, and other re-
used components).”

The same metrics could be selected to demonstrate meeting both RMF and software assur-
ance expectations from the following list:

 % of vendor contracts requiring the use of evaluation practices and reporting vulnerabil-
ity metrics

 code coverage (aka % of code evaluated [total and by each type of review])

 vulnerabilities per MLOC identified and removed

 unaddressed vulnerabilities per MLOC

 % code libraries evaluated

 % open source components evaluated

 % legacy components evaluated

 count of high-priority vulnerabilities identified and the count of those removed

2. The second area of interest is Malicious Code Protection, which covers the following four
RMF controls:

 SI-3 Malicious Code Protection

 SI-3(1) Malicious Code Protection | Central Management

 SI-3(2) Malicious Code Protection | Automatic Updates

 SI-3(10) Malicious Code Protection | Malicious Code Analysis

This area of interest is be handled by the SAF Engineering practice area 3.2 Implementation
as well. Specific metrics for these practice areas are provided in Appendix D.

3. The third area of interest is Software Supply Chain Protection, which covers the following
seven RMF controls:

 SA-12 Supply Chain Protection

 SA-12(1) Supply Chain Protection | Acquisition Strategies/Tools/Methods

 SA-12(5) Supply Chain Protection | Limitation of Harm

 SA-12(8) Supply Chain Protection | Use of All-Source Intelligence

 SA-12(9) Supply Chain Protection | Operations Security

 SA-12(11) Supply Chain Protection | Penetration Testing/Analysis of Elements, Pro-
cesses, and Actors

 SA-22 Unsupported System Components

This area of interest is addressed by practices in SAF Project Management practice area 2.5
Supplier Management, which includes five practice activities and a range of metrics for each
practice as shown in Appendix C.

An additional 15 cybersecurity areas that map to an additional 20 RMF controls (listed in Appen-
dix A) can cross-reference to SAF practice areas and practices. These SAF practice areas and

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

practices link to potential metrics that can be collected and analyzed at checkpoints throughout the
acquisition lifecycle to confirm that they are addressed.

For the DoD, milestone reviews in an acquisition lifecycle can be used to review selected metrics
and monitor how well the contractor is addressing the selected RMF controls and practices for
software assurance. As described in Sections 2 and 3 of this report, the acquirer must determine
which data to collect and how it will be evaluated to determine if the results are sufficient.

4.2 Monitoring the Development of a Custom Software Acquisition

Challenge: What evidence is needed to ensure that vulnerabilities are addressed by a contractor?

It is a common practice for a vendor to report the tools it uses to address vulnerabilities as part of
its execution pipeline. This source of evidence should map to the expected practice that this evi-
dence supports to determine how well each part of the practice is addressed. Also, all lifecycle ac-
tivities must be considered since potential vulnerabilities can be introduced at any stage of the
lifecycle. Therefore, the acquirer should not just accept what a vendor reports that it performs, but
the acquirer should also map what is reported to the needed practices and identify gaps and oppor-
tunities for improvement.

Capers Jones analyzed over 13,000 projects for the effects of general practices (e.g., inspections,
testing, and analysis) on improving software quality [Jones 2012]. His analysis shows that using a
combination of techniques is best. Many of the limitations associated with tools such as static
analysis, which have high rates of false positives and false negatives [Wedyan 2009], can be miti-
gated by other development practices.

Jones’ analysis of projects showed that a combination of inspections, static analysis, and testing
was greater than 97% efficient in identifying defects. However, these analyses address only the
identify part of SAF Engineering practice area 3.2 Implementation as part of “Evaluation practices
(e.g., code reviews and apply tools) are applied to identify and remove vulnerabilities in delivered
code (including code libraries, open source, and other reused components),” and additional ac-
tions must be performed to remove them.

The Security Development Lifecycle (SDL) encouraged other developers to include security analy-
sis earlier in the development lifecycle [Howard 2006]. Vulnerabilities created during design
should be identified and removed during risk assessments or in design and implementation. As-
surance now depends, in part, on how well a developer anticipates how a system can be compro-
mised and how well the developer chooses and implements effective mitigations. Practices that
anticipate software weaknesses are included in SAF area 3.2, as shown in Table 3.

Table 3: Requirements (SAF Engineering Practice Area 3.2)

Activities/Practices Outputs

Conduct a security risk analysis, including threat
modeling and abuse/misuse cases.

Prioritized list of software security risks

Prioritized list of design weaknesses

Prioritized list of controls/mitigations

Mapping of controls/mitigations to design weaknesses

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Threat modeling analyzes how a software design can be compromised. Such analysis typically
considers how an attack can compromise the information, flows, data stores, and software that
processes the data and can draw on the extensive documentation of security exploits as repre-
sented by the Common Weakness Enumeration (CWE),8 the Common Vulnerabilities and Expo-
sure Enumeration (CVE),9 and the Common Attack Pattern Enumeration and Classification
(CAPEC).10 The output can describe the likelihood of various classes of threats, such as a denial
of service or disclosure of information.

Verification should guide the choice of mitigations. Can claims about a mitigation be verified? In
other words, what is the level of confidence an acquirer should have with the choice of mitiga-
tions? Creating an argument that a developer reduced or eliminated vulnerabilities (i.e., a devel-
oper’s assurance case) should start with risk analysis. The strength of the assurance argument and
its eventual verification depends, in part, on the evidence provided to support the mitigation of
software risks. An acquirer should consider the evidence that supports the following:

1. validity of the risk analysis

2. cost effectiveness of the mitigations with respect to their effects on mission outcomes

3. effective implementation of the chosen mitigations

The output of a risk assessment includes predictions of how a system can be compromised with
the risk priorities weighted by likelihood and consequences. Metrics now evaluate the engineering
analysis in items 1 and 2, while the incorporation of that engineering analysis is determined in
later lifecycle activities (item 3).

Instead of trying to confirm that the evidence provided for a practice is sufficient, instead ask why
the evidence may be insufficient or defective [Goodenough 2010]. For example, unanticipated
risks raised during a program technical review or by an independent product risk assessment re-
duce the confidence in a developer’s risk analysis. Examples of other doubts that could arise in-
clude the following:

 The test plans did not include all hazards identified during design.

 The web application developers had limited security experience.

 The acquirer did not provide sufficient data to validate the modeling and simulations.

 Integration testing did not adequately test recovery after component failures.

A developer should be able to provide evidence that confirms items 2 and 3 were addressed. For
example, assume a data flow includes an SQL database as a data store. A risk assessment does the
following:

 estimates the risk of an SQL-injection attack as described in CWE-135

 describes how a successful exploit could lead to a malicious modification of data or the expo-
sure of information to individuals who are not supposed to have access to it

8 http://cwe.mitre.org/community/swa/index.html

9 https://cve.mitre.org/cve/

10 https://capec.mitre.org/

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

 recommends mitigations to reduce the risk of an SQL-injection vulnerability

It is difficult to verify that a routine, even written by an experienced coder, prevents an SQL injec-
tion. A CWE-recommended mitigation is to use a vetted library or framework. Such a recommen-
dation is an engineering decision expressed as a coding rule to be enforced during implementa-
tion. The Consortium for IT: Software Quality (CISQ) states that the validation of the use of such
a library can be automated by scanning the source code and does not require the coder to have ex-
tensive security expertise [CISQ 2012]. A developer following the CISQ approach can provide an
acquirer with an assurance justification (as shown in Figure 5).

Figure 5: SQL-Injection Assurance Case

The CISQ approach, like static analysis, is based on the analysis of developed source code. How-
ever, the objective of the approach is to eliminate vulnerabilities during coding rather than identi-
fying defects after they are injected.

Confidence in reducing defects, as demonstrated by Capers Jones, depends on evidence that the
security risks and recommended mitigations were (1) considered during design and design re-
views, and during inspections; and (2) incorporated in test plans (like what was done for the SQL-
injection example).

4.3 Monitoring Integration of Third-Party Software

Challenge: Why is supply chain risk management such a growing source of acquisition concern?

An increasing proportion of software development involves integrating commercial software. An
acquirer has limited visibility into the engineering of that software and may rely on test labs and

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

other alternative practices. Such software includes database management systems and infrastruc-
ture services, such as identity management for authorization and authentication. The appropriate
security measures depend on the context, which only the acquirer knows.

Supply chain risk management refers to the collection of practices that manage the risks associ-
ated with the external manufacture or development of hardware and software components. There
are two sources of supply chain risks:

1. The supply chain is compromised, and counterfeit and tampered products are inserted.

2. Poor development and manufacturing practices introduce vulnerabilities.

For example, there was a vulnerability in a widely used implementation of the secure socket layer
protocol that was used for securing web communications. The vulnerability potentially exposed
memory data (e.g., passwords, user identification information, and other confidential information)
to unauthorized users. At the time of the announcement in 2014, there did not appear to be any
tools available that would have discovered the vulnerability [Kupsch 2014]. The vulnerability oc-
curred because the validity of the input to a software function was not verified. In all likelihood,
the defect could have been found during a code inspection, but this activity was not part of the de-
velopment process for this software.

For commercial development, most of the practices that address defects are early in the lifecycle.
The acquirer does not see the product until integration and will only be able to monitor the early
lifecycle activities through provisions in the contract. This separation is shown in Figure 6. Moni-
toring vendor development practices depends entirely on information provided by the vendor.
When the acquirer simply receives the final product at integration, it does not have direct visibil-
ity into the vendor’s development practices.

Figure 6: Supply Chain Monitoring

An acquirer must not only monitor a supplier’s development practices, but they must also under-
stand how that supplier monitors its suppliers. For example, how does the prime contractor reduce
supply chain risks associated with subcontractors and commercial suppliers? Supply chains can be
many layers deep, linking organizations with a wide range of defect management approaches.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Product Development

Characteristics of commercial product development that can be available to an acquirer might in-
clude the following:

 vulnerability history for the product as reported to the NIST National Vulnerability Database

 standards that a product developer applies, such as The Open Group’s Open Trusted Technol-
ogy Provider Standard11 (O-TTPS) (ISO 20243), which uses evidence of a supplier’s capabil-
ities and product security as shown in Table 4

Table 4: Evidence of Supplier Capabilities and Product Security

Evidence of Quality
Product Development

Supplier practices conform to best practice requirements and recommendations
primarily associated with the activities relating to the product’s development.

Evidence of Secure
Development

Providers employ a secure engineering method when designing and developing their
products. Software providers and suppliers often employ methods or processes with
the objective of identifying, detecting, fixing, and mitigating defects and vulnerabilities
that could be exploited as well as verifying the security and resiliency of the finished
products.

Evidence of Supply
Chain Security

Suppliers manage their supply chains through the application of defined, monitored,
and validated supply chain processes.

Integrated System Development

A commercial product developer can take advantage of a relatively stable set of suppliers and
knowledge of the security risks associated with earlier versions; however, a system integrator re-
quires general knowledge that is applicable across multiple components and suppliers. Character-
istics of integrated development include the following:

 integration of independently developed components with limited visibility into the actual
code

 inconsistencies in security assumptions among components

 component behavior that is dynamic over time (i.e., each component supported and updated
separately)

 components that provide extensibility and customization

 ongoing product upgrades

 multiple components that compound threat analysis and mitigations

 supply chain risk management that includes integration and product risks

While threat modeling for a product can be incrementally upgraded as functionality and threats
evolve over time, a distinct threat model must be constructed for each system by the acquirer. For
a product to be integrated into a commercial product, the supply chain must be managed by the
integrator. For the acquirer of the integrated product, visibility into how the integrator manages its
suppliers may be difficult.

11 http://www.opengroup.org/certifications/o-ttps

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Commercial software typically can customize and extend capabilities so that an organization can
tailor that software to its requirements and operational environment. The implementation of a mit-
igation might take advantage of such capabilities, but it is more likely that an attack exploits these
features. Threat modeling should be applied to identify any new risks and the effect of the
changes on recommended mitigations.

4.4 System-of-Systems Assurance

Challenge: Systems are typically integrated with other systems to address a mission. Can software
assurance be applied to a system of systems?

The assurance discussed for custom development and for supply chain assurance were associated
with eliminating identified defects and vulnerabilities. Threat modeling attempts to reduce the risk
of vulnerabilities associated with unexpected conditions. Assurance should also be considered for
an organization’s work processes, which are based on systems working together to address a mis-
sion or business process.

A good example is the August 2003 power grid failure. Approximately 50 million electricity con-
sumers in Canada and the northeastern U.S. were subject to a cascading blackout. The events pre-
ceding the blackout included a mistake by tree trimmers in Ohio that took three high-voltage lines
out of service and a software failure (a race condition12) that disabled the computing service that
notified the power grid operators of changes in power grid conditions. With the alarm function
disabled, the power grid operators did not notice a sequence of power grid failures that eventually
lead to the blackout [NERC 2004].

The alert server was a commercial product. The integration of that component into the power
company’s system included a rollover to a second server if there was a hardware failure in the pri-
mary server. However, the software error that disabled the primary server also disabled the sec-
ondary server. This event was the first time that this software fault had been reported for the com-
mercial product.

A key observation by the technical reviewers was that the blackout would not have occurred if the
operators knew the alarm service failed. Typically, a response involves finding alternative sources
of electricity, and this response typically can be implemented in 30 minutes. Instead of analyzing
the details of the alarm server failure, the reviewers asked why the following software assurance
claim had not been met [NERC 2004]:

Claim: Power grid operators had sufficient situational awareness to manage the power grid
to meet its reliability requirements.

The reviewers proposed the following assurance case. The claim is met if one out of five of the
subclaims are satisfied.

12 The software failure was caused by a race condition. An error in the implementation of the software controls

that managed access to the data by multiple processes caused the alarm system to stall while processing an
event. With the software unable to complete the alarm event and move to the next one, the alarm processor
buffer filled and eventually overflowed.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Sub-Claim Status

A server provides alarms for condition changes. Alarm server recovery was designed for a hardware
failure. The alarm service did fail over to the secondary
server, but the software failure that disabled the pri-
mary server also disabled the backup.

Server recovery can be completed within ten minutes. The commercial system required 30 minutes for a re-
start.

Operators are notified of the loss of the alarm server. Automatic notification of server failure was not imple-
mented.

Operators periodically check the output from contin-
gency analysis and state estimators.

This practice was not done since those tools had re-
peated failures in the preceding week.

An independent real-time monitor of the regional power
grid provides alerts.

The independent monitoring organization had concur-
rent failures.

This operational assurance case should guide the acquisition and integration of commercial power
grid software.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

5 Conclusions

The Object Management Group established that software measurement relies on discrete indica-
tors to support real-world decision making. It also established that a software assurance indicator
is a metric or combination of metrics that provides useful information about the development pro-
cess, the how the project was conducted, or the characteristics of the product itself.13

A key aspect of software assurance in practice is performing activities associated with sound soft-
ware results. These activities help determine whether the software functions as intended and is
free of vulnerabilities. Experience shows that just performing what has traditionally been done for
hardware is not sufficient for software. The SAF was used as a set of software practices for ex-
ploring possible measurement options. A set of candidate metrics was identified that can connect
to some aspect of the execution of each practice in the SAF.

There are many lifecycles used to address software acquisition and development. Each SAF prac-
tice can be performed at varying points in a specific lifecycle. The level of specificity available at
each point in the lifecycle can be different. Measures taken at some points in the lifecycle are pre-
dictive, since they are connected with what is planned. Measures taken after plans are executed
can be used to verify that what was planned is what was actually performed.

Identifying a measurement for a practice by itself does not really tell us anything about software
assurance. To associate measures with software assurance, it is necessary to determine what a
measure tells us in relation to a target, but there is limited field experience in making this associa-
tion. The examples in this report were provided to demonstrate ways to navigate the various as-
pects of assurance goal, practice, and measurement in a logical structure. This report also covered
use of GQM and aspects of an assurance case to structure examples and show how measurement
can demonstrate some aspects of a practice.

The selection of a metric is only the first step in establishing a useful measurement of software as-
surance. Metric data must be collected, analyzed, and evaluated to identify potential concerns.

Measurement is not unique to software assurance. Performing sound software engineering also
includes considering measures for monitoring and controlling results. The examples in this report
explore aspects of integrating software assurance measurement into what is already being done for
other qualities instead of defining an entirely separate approach.

This report explores what is different about software assurance that must be added to what soft-
ware engineers are already doing. Based on this exploration, it is asserted that improved software
assurance depends on improved engineering. The DoD RAM guide makes that statement for relia-
bility, and the examples in this report confirm the criticality of good engineering for software as-
surance. Engineering requires that evidence is collected across the lifecycle since the product and
what can be measured changes.

13 www.dtic.mil/dtic/tr/fulltext/u2/a592417.pdf

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Motivating vendors to address software assurance requires establishing criteria for evaluating the
products they produce as well as the processes used to produce them at strategic points in the
lifecycle. These evaluations must depend on expert opinion since the range of available data is in-
sufficient for researchers to structure useful patterns of “goodness.” However, the selection and
consistent collection of metrics at various points in the lifecycle provide indicators over time that
an acquirer can use to monitor and incentivize software assurance improvement.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Appendix A: RMF Controls

 Critical Software
Cybersecurity Requirements

RMF Controls Addressed SAF Practice Areas

1 Secure System/Software
Development Lifecycle

SA-3 System Development Life
Cycle

SA-4(3) Acquisition Process |
Development
Methods/Techniques/Practices

1.1 Process Definition

2.1 Project Plans

2 Software Development Process,
Standards, and Tools

SA-15 Development Process,
Standards, and Tools

1.1 Process Definition

1.2 Infrastructure Standards

1.3 Resources

1.4 Implementation

1.5 Verification, Validation and
Testing

1.6 Support Documentation and Tools

4.3 Product Operation and
Sustainment

3 Software Security Requirements SA-4 Acquisition Process

SA-4(1) Acquisition Process |
Functional Properties of Security
Controls

1.1 Process Definition

2.5 Supplier Management

3.2 Requirements

4 Software Security Architecture
and Design

SA-17 Developer Security
Architecture and Design

SA-4(2) Acquisition Process |
Design/Implementation Information
for Security Controls

1.3 Resources

3.3 Architecture

5 Software Configuration
Management

SA-10 Developer Configuration

SA-10 (1) Developer Configuration
Management | Software/Firmware
Integrity Verification

1.2 Infrastructure

2.2 Project Infrastructure

3.1 Project Risk Management

3.6 Support Documentation and Tools

3.7 Deployment

4.2 Change Management

4.3 Product Operation and
Sustainment

6 Developer Security Testing and
Evaluation

SA-11 Developer Security Testing
and Evaluation

3.4 Implementation

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
Sustainment

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

 Critical Software
Cybersecurity Requirements

RMF Controls Addressed SAF Practice Areas

7 Static Code Analysis SA-11 (1) Developer Security
Testing and Evaluation | Static
Code Analysis

3.4 Implementation

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
Sustainment

8 Dynamic Code Analysis SA-11 (8) Developer Security
Testing and Evaluation | Dynamic
Code Analysis

3.4 Implementation

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
Sustainment

9 Manual Code Reviews SA-11 (4) Developer Security
Testing and Evaluation | Manual
Code Reviews

3.4 Implementation

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
Sustainment

10 Attack Surface Reviews SA-11 (6) Developer Security
Testing and Evaluation | Attack
Surface Reviews

3.1 Product Risk Management

3.3 Architecture

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
Sustainment

11 Software Threat Analysis SA-11(2) Developer Security
Testing and Evaluation | Threat and
Vulnerability Analysis

3.1 Product Risk Management

4.3 Product Operation and
Sustainment

12 Penetration Testing/Analysis SA-11(5) Developer Security
Testing and Evaluation | Penetration
Testing/Analysis

3.5 Verification, Validation, and
Testing

4.3 Product Operation and
sustainment

13 Verifying Scope of Testing and
Evaluation

SA-11(7) Developer Security
Testing and Evaluation | Verify
Scope of Testing/Evaluation

3.5 Verification, Validation, and
Testing

14 Independent Verification of
Assessment Plans/Evidence

SA-11(3) Developer Security
Testing and Evaluation |
Independent Verification of
Assessment Plans/Evidence

3.5 Verification, Validation, and
Testing

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

 Critical Software
Cybersecurity Requirements

RMF Controls Addressed SAF Practice Areas

15 Software Flaw Remediation SI-2 Flaw Remediation

SI-2(1) Flaw Remediation | Central
Management

SI-2(2) Flaw Remediation |
Automated Flaw Remediation
Status

SI-2(3) Flaw Remediation | Time to
Remediate Flaws/Benchmarks for
Corrective Actions

SI-2(6) Flaw Remediation | Removal
of Previous Versions of
Software/Firmware

2.4 Project Risk Management

3.4 Implementation

4.3 Product Operation and
Sustainment

16 Malicious Code Protection SI-3 Malicious Code Protection

SI-3(1) Malicious Code Protection |
Central Management

SI-3(2) Malicious Code Protection |
Automatic Updates

SI-3(10) Malicious Code Protection |
Malicious Code Analysis

2.4 Project Risk Management

3.4 Implementation

4.3 Product Operation and
Sustainment

17 Software and Firmware Integrity SI-7 Software, Firmware, and
Information Integrity

SI-7(1) Software, Firmware, and
Information Integrity | Integrity
Checks

1.2 Infrastructure Standards

2.5 Supplier Management

4.3 Product Operation and
Sustainment

18 Software Supply Chain
Protection

SA-12 Supply Chain Protection

SA-12(1) Supply Chain Protection |
Acquisition
Strategies/Tools/Methods

SA-12(5) Supply Chain Protection |
Limitation of Harm

SA-12(8) Supply Chain Protection |
Use of All-Source Intelligence

SA-12(9) Supply Chain Protection |
Operations Security

SA-12(11) Supply Chain Protection |
Penetration Testing/Analysis of
Elements, Processes, and Actors

SA-22 Unsupported System
Components

2.4 Project Risk Management

2.5 Supplier Management

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Appendix B: SAF Process Management

SAF Practice Area 1.1 Process Definition: Does the program establish and
maintain cybersecurity processes?

Activities/Practices Outputs Candidate Metrics

Establish and maintain a standard
set of cybersecurity policies, laws,
and regulations with which projects
must comply.

Organizational Cybersecurity Poli-
cies

% of program managers trained in
cybersecurity policy

% of senior managers trained in cy-
bersecurity policy

of updates to the organization’s
cybersecurity policy in the last year

Establish and maintain standard
cybersecurity processes (including
lifecycle models) that align with
policies, laws, and regulations.

Organizational Cybersecurity
Processes

Organizational Cybersecurity
Lifecycles

% cybersecurity policy require-
ments directly addressed in the or-
ganization’s Cybersecurity Pro-
cesses

and % of organization’s applica-
ble processes updated and inte-
grated with the organization’s Cy-
bersecurity Processes

% of organization’s staff trained in
the organization’s updated pro-
cesses that include cybersecurity

of Organizational Cybersecurity
Lifecycles

% current programs using Organi-
zational Cybersecurity Lifecycles

% current applicable staff trained in
one or more Organizational Cyber-
security Lifecycles

Establish and maintain tailoring
criteria and guidelines for the
organization’s cybersecurity
processes (including lifecycle
models).

Organizational Cybersecurity Tai-
loring Criteria and Guidelines

and % of Organizational Cyberse-
curity Lifecycles with applicability
and tailoring guidance

and % of applicable staff trained
in Organizational Cybersecurity Tai-
loring Criteria and Guidelines

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 1.2 Infrastructure Standards: Does the program establish and
maintain security standards for its infrastructure?

Activities/Practices Outputs Candidate Metrics

Establish and maintain cybersecu-
rity standards for information tech-
nology systems and networks.

Organizational Cybersecurity
Standards

% Organizational Cybersecurity
Standards planned vs actual

% Organizational Cybersecurity
Standards updated within the last
year

% Applicable personnel trained on
Organizational Cybersecurity
Standards planned vs actual

Establish and maintain physical se-
curity standards for physical work
spaces and facilities...

Organizational Physical Security
Standards

% Organizational Physical Security
Standards planned vs actual

% Organizational Physical Security
Standards updated within the last
year

% Applicable personnel trained on
Organizational Physical Security
Standards planned vs actual

SAF Practice Area 1.3 Resources: Does the program have the cybersecurity
resources (e.g., personnel, data, assets) it needs?

Activities/Practices Outputs Candidate Metrics

Establish and maintain standard cy-
bersecurity process assets (e.g.,
procedures, tools) that align with
processes and maintain them in a
repository.

Organizational Cybersecurity
Process Assets

Security Resource Repository

% processes with supporting proce-
dures

% processes with supporting tools

% staff trained in applicable pro-
cesses and tools

% processes changed/updated in
last 12 months

% tools changed/updated in last 12
months

Collect and maintain security-re-
lated intelligence data (e.g., attack
data, vulnerabilities, design weak-
nesses, abuse/misuse cases,
threats).

Security-Related Intelligence Data Amount of applicable attack data

staff (planned vs actual) responsi-
ble for collecting, organizing, and
maintaining security related intelli-
gence data

% applicable staff trained in collect-
ing, organizing, and maintaining se-
curity related intelligence data

Amount of resources (budget, tools,
equipment) (planned vs actual) re-
sponsible for collecting, organizing,
and maintaining security related in-
telligence data

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Develop and document security
features, frameworks, and patterns.

Approved Security Features,
Frameworks, and Patterns

(planned vs actual) approved Se-
curity Features, Frameworks, and
Patterns

Amount of time (planned vs actual)
to develop and approve Security
Features, Frameworks, and Pat-
terns

disapproved Security Features,
Frameworks, and Patterns

pending Security Features,
Frameworks, and Patterns

Establish and maintain guidance for
classifying data.

Data Management System # data types

classification categories

% data typed and classified

(planned vs actual) personnel re-
sponsible for maintaining Data
Management System

% applicable staff trained in Data
Management System

% applicable staff trained in classi-
fying data

Provide specialized security experts
to assist project personnel.

Security Roles and Responsibilities # (planned vs actual) specialized
security experts assigned to assist
project personnel

Budget (planned vs actual) for spe-
cialized security expert support

staff trained in use of specialized
security experts

% Security Roles and Responsibili-
ties with specialized security ex-
perts assistance (% full, % partial,
% no support)

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 1.4 Training: Does the program provide security training for its
personnel?

Activities/Practices Outputs Candidate Metrics

Provide security awareness training
for program personnel (including
vendors, contractors, and out-
sourced workers).

Project Training Plan

Training Products

Vendor Contracts and Service
Level Agreements

% project personnel trained

% support personnel trained

% contractor personnel trained

% contracts and service level
agreements with security aware-
ness training requirement

Provide role-based security training
for technical staff (including ven-
dors, contractors, and outsourced
workers).

Project Training Plan

Training Products

Vendor Contracts and Service
Level Agreements

% project personnel trained

% support personnel trained

% contractor personnel trained

% contracts and service level
agreements with security role-
based training requirement

Track completion of security train-
ing activities.

Program Status Reports % project personnel scheduled

% project personnel scheduled to
date vs completed

% support personnel scheduled

% support personnel scheduled to
date vs completed

% contractor personnel scheduled

% contractor personnel scheduled
to date vs completed

% contracts and service level
agreements with security training
requirements

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Appendix C: SAF Project Management

SAF Practice Area 2.1 Program Plans: Has the program adequately planned for
cybersecurity activities?

Activities/Practices Outputs Candidate Metrics

Attend training for developing cy-
bersecurity plans (for program man-
agers and senior managers).

Training completed % of program managers trained in
cybersecurity planning

% of senior managers trained in cy-
bersecurity planning

Define and document cybersecurity
objectives in the Program Plan.

Published Program Plan

Published System Engineering Plan
(SEP)

Cybersecurity objectives defined
and documented in the Program
Plan or SEP

% cybersecurity objectives defined
and documented in the Program
Plan or SEP vs. the applicable
number required in the organiza-
tion’s policies

Integrate cybersecurity tasks into
the project plan.

Program Plan

Documented cybersecurity tasks.

Bi-directional traceability of Cyber-
security tasks to cybersecurity ob-
jectives.

Cybersecurity tasks integrated with
other program tasks into Program
Plan

Traceability

 Number of cybersecurity tasks
without corresponding cyberse-
curity objectives

 Number of cybersecurity objec-
tives without corresponding cy-
bersecurity tasks

 % cybersecurity tasks integrated
into the Program Plan

Define and assign cybersecurity
roles and responsibilities.

Defined and documented cyberse-
curity roles and responsibilities.

Cybersecurity roles and responsibil-
ities assigned in Program Plan

Completed Roles and Responsibili-
ties Matrix

Completeness

 Number of to be determined
(TBD) and to be added (TBA)
roles and responsibilities for cy-
bersecurity in Program Plan

Traceability

 Number of cybersecurity tasks
not mapped to cybersecurity
roles and responsibilities

 Number of cybersecurity roles
and responsibilities without cy-
bersecurity tasks

 % cybersecurity roles and re-
sponsibilities assigned in the
Program Plan

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Provide adequate resources to im-
plement planned cybersecurity
tasks.

Required resources needed to
complete program cybersecurity
roles and responsibilities are identi-
fied and provided

Funding for required resources is
identified and provided

Training is identified, scheduled,
and provided

Training procured or developed in-
house

Facilities identified, planned, and
provided

Equipment and tools identified and
provided

For each category (personnel, train-
ing, facilities, equipment, and tools):
% funding required vs approved

% personnel positions filled

% personnel positions open

% training available

% training procured vs developed

% training scheduled

% training complete

% training complete by role

facilities not yet available and
type

% and type equipment not yet avail-
able

% and type tools not yet available

Select and implement a secure
software development lifecycle
(SSDL).

Program Processes selected, de-
veloped, documented, trained, and
maintained

Process tailoring guidelines devel-
oped and applied

Process waiver guidelines devel-
oped and applied

and % program processes TBD

and % program processes added,
changed, and deleted

and % program processes
mapped to roles and responsibili-
ties

and % program processes trained

% processes with existing tailoring
guidelines

% processes tailored

% processes with existing waiver
guidelines

% processes with requested waiv-
ers

% requested waivers approved

Define and implement a project
compliance initiative for cybersecu-
rity.

Program Compliance Documents
developed and maintained

Roles and Responsibilities as-
signed

Program compliance planned,
scheduled, and initiated

% project compliance planning and
scheduling completed

% of project compliance planning
and scheduling tasks behind sched-
ule

of project compliance planning
and scheduling tasks TBD

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 2.2 Program Infrastructure: Is the program’s infrastructure
adequately secure?

Activities/Practices Outputs Candidate Metrics

Attend training for developing cy-
bersecurity plans (for program man-
agers and senior managers).

Project Cybersecurity Documenta-
tion

Training provided

% of program managers trained in
cybersecurity planning

% of senior managers trained in cy-
bersecurity planning

Establish and maintain the physical
security of the project’s physical
work spaces and facilities.

Project Physical Security Documen-
tation completed

% physical security objectives im-
plemented for the project vs physi-
cal security objectives defined and
documented in the Program Plan or
SEP

Number of physical security inci-
dents per month

Number and frequency of changes
made to the Physical Security Doc-
umentation

SAF Practice Area 2.3 Program Monitoring Does the program monitor the status of
cybersecurity activities?

Activities/Practices Outputs Candidate Metrics

Monitor the progress of the pro-
ject‘s cybersecurity tasks.

Program Status Reports (monitor
and control status against the Pro-
gram Plan)

% scheduled tasks completed

% tasks completed on schedule

% tasks completed within budget

and percent tasks 10% over
budget

and percent tasks 20% over
budget

Note: An EVM system could pro-
vide the above if implemented

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Monitor project compliance with cy-
bersecurity policies, laws, and regu-
lations.

Program Compliance Documents

Program Plan

Program Master Schedule

Roles and Responsibilities identi-
fied and assigned

Program Compliance Audit Results

project compliance audits com-
pleted

findings per audit by category

% findings by per audit category

findings closed by category

% findings closed by category

Average time to close a finding by
category

findings last audit

findings by category

% findings by category

findings closed by category

% findings closed by category

Average time to close a finding by
category

Conduct independent cybersecurity
reviews of project tasks

Independent Review Results # independent cybersecurity re-
views completed

% program tasks reviewed

findings per review by category

% findings by per review category

findings closed by category

% findings closed by category

Average time to close a finding by
category

findings last review

% program tasks reviewed

findings by category

% findings by category

findings closed by category

% findings closed by category

Average time to close a finding by
category

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 2.4 Program Risk Management: Does the program manage
program-level cybersecurity risks?

Activities/Practices Outputs Candidate Metrics

Ensure that project strategies and
plans address project-level cyber-
security risks (e.g., program risks
related to cybersecurity resources
and funding).

Program Plan

Technology Development Strategy
(TDS)

Analysis of Alternatives (AoA)

% program managers receiving cy-
bersecurity risk training

% programs with cybersecurity re-
lated risk management plans

Identify and manage project-level
cybersecurity risks (e.g., program
risks related to cybersecurity re-
sources and funding).

Risk Management Plan

Risk Repository

% programs with cybersecurity re-
lated risks

cybersecurity related risks
tracked per month

SAF Practice Area 2.5 Supplier Management: Does the program consider
cybersecurity when selecting suppliers and managing their activities?

Activities/Practices Outputs Candidate Metrics

Integrate cybersecurity considera-
tions (e.g., risks, compliance re-
quirements) into the proposal pro-
cess.

Acquisition Strategy

Request for Proposal (RFP)

Statement of Work (SOW)

Software Development Plan (SDP)

Integrated Master Plan (IMP)

and % of Key acquisition docu-
ments that include supplier cyber-
security considerations/require-
ments

Define cybersecurity requirements
for suppliers

Acquisition Strategy

Request for Proposal (RFP)

Statement of Work (SOW)

Service Level Agreement (SLA)

of cybersecurity requirements for
suppliers in RFP

of cybersecurity requirements for
suppliers in SOW/CDRL

of cybersecurity requirements for
suppliers in SLA

Select suppliers based on their abil-
ity to meet specified cybersecurity
requirements.

Source Selection Criteria # of supplier cybersecurity related
criteria in Source Selection Criteria

Relative raking/importance of sup-
plier cybersecurity related criteria in
Source Selection Criteria

Provide oversight of cybersecurity
activities that are performed by sup-
pliers.

Program Management Documenta-
tion

% of Program Management Docu-
mentation (PMP, SOW, CDRL,
IMP, SLA) containing monitor-
ing/oversight requirements of sup-
plier cybersecurity activities (includ-
ing supplier monitoring/oversite
activities of subs)

of supplier cybersecurity related
monitoring/oversite requirements in
Program Management Documenta-
tion (PMP, SOW, CDRL)

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Conduct independent cybersecurity
reviews of tasks being performed
by suppliers.

Independent Review Results # of independent reviews con-
ducted per month

and % of independent reviews
with significant findings per month

Average time required to ad-
dress/mitigate significant findings

Evaluate supplier deliverables
against cybersecurity acceptance
criteria.

Supplier Deliverables # of cybersecurity related supplier
deliverables

of recurring cybersecurity related
supplier deliverables per month

% of cybersecurity related supplier
deliverables evaluated against ac-
ceptance criteria

% of recurring cybersecurity related
supplier deliverables per month
evaluated against acceptance crite-
ria

and % of cybersecurity related
supplier deliverables rejected or
with significant findings

and % of recurring cybersecurity
related supplier deliverables per
month rejected or with significant
findings

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Appendix D: SAF Engineering

SAF Area 3.2 Requirements: Does the program manage software security
requirements?

Activities/Practices Outputs Candidate Metrics

Attend training for developing
security requirements for software
(for selected software engineers).

Training completed % of software engineers trained in
security requirements development

Conduct security risk analysis
(includes threat modeling and
abuse/misuse cases).

Prioritized list of software security
risks

Prioritized list of design weak-
nesses

Prioritized list of controls/mitigations

Mapping of controls/mitigations to
design weaknesses

Number of software security risks
controlled/mitigated (e.g., high and
medium risks)

Number of software security risks
accepted/transferred

Number of software security con-
trols/mitigations selected for re-
quirements development

Define and document software
security requirements.

Documented software security re-
quirements

Traceability of software security re-
quirements to controls/mitigations

Traceability

 Number of selected
controls/mitigations without
corresponding security
requirements

 Number of security
requirements traced to high
and medium risks

Conduct reviews (e.g., peer
reviews, inspections, and
independent reviews) of software
security requirements.

Defects identified in internal
reviews

Completeness

 Number of to be determined
(TBD) and to be added (TBA)
items for software security
requirements

Correctness

 Number of software security
requirements not validated

 % of software security
requirements that have not
been validated

Understandability

 Number of software security
requirements not understood
by reviewers

Manage changes to software
security requirements.

Change requests for software
security requirements

Volatility

 Number of change requests for
software security requirements

 % of software security
requirements changed

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 3.3 Architecture Does the program appropriately address
cybersecurity in its software architecture and design?

Activities/Practices Outputs Candidate Metrics

Attend training for secure/resilient
software architectures (for selected
software engineers).

Training completed % of software engineers trained in
secure/resilient software architec-
tures

Incorporate security requirements
into software architecture.

Security features in architecture
(e.g., authentication, access con-
trol, encryption, and auditing)

Traceability of software security re-
quirements to security features

Number of applicable security re-
quirements not implemented in
software architecture

Number of security features without
corresponding security require-
ments

% of security requirements ad-
dressed by the architecture

Conduct security risk analysis of ar-
chitecture.

Prioritized list of software architec-
ture security risks

Prioritized list of architecture design
weaknesses

Mapping of architecture security
features to design weaknesses

List of architecture design weak-
nesses without security con-
trols/mitigations

Number of software security risks
controlled/mitigated (e.g., high and
medium risks)

Number of software security risks
accepted/transferred

Number of architecture design
weaknesses without security con-
trols/mitigations

Address design weaknesses identi-
fied during architectural security
risk analysis.

Security controls/mitigations imple-
mented in software architecture

Number of architecture design
weaknesses without security con-
trols/mitigations

Conduct security reviews of soft-
ware architecture (e.g., peer re-
views, inspections, and independ-
ent reviews).

Security defects in software archi-
tecture identified in internal reviews

Number of security defects in soft-
ware architecture

Manage security changes to soft-
ware architecture.

Security change requests for soft-
ware architecture

Number of security change re-
quests for software architecture

SAF Practice Area 3.4 Implementation: Does the program minimize the number of
vulnerabilities inserted into the code?

Activities/Practices Outputs Candidate Metrics

Secure coding standards are ap-
plied

Policy that requires the use of se-
cure coding standards

Contract language to ensure ven-
dor(s) practices require use of se-
cure coding standards

% of vendor contracts including re-
quirements for the use of secure
coding standards

% of system developed using se-
cure coding standards

% of code verified for secure coding
standard conformance

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Code developers are trained in the
use of secure coding standards

Competency standards for code de-
velopers require training in secure
coding standards

Hiring qualifications require training
in secure coding standards

Contract language requires use of
developers trained in secure coding
standards

% of software developers trained in
secure coding standards

% of code supported by developers
trained in secure coding standards

Evaluation practices (e.g. code re-
views and apply tools) are applied
to identify and remove vulnerabili-
ties in delivered code (including
code libraries, open source, and
other reused components)

Policy that requires the use of eval-
uation practices to identify and re-
move vulnerabilities and reporting of
metrics

Output of evaluations

Corrections documented

Contract language requires use of
evaluation practices to identify and
remove vulnerabilities and metrics
reporting

% of vendor contracts requiring use
of evaluation practices and reporting
of vulnerability metrics

Code coverage: % of code evalu-
ated (total and by each type of re-
view)

Vulnerabilities per MLOC identified
and removed

Unaddressed vulnerabilities per
MLOC

% code libraries evaluated

% open source evaluated

% legacy components evaluated

Count of high priority vulnerabilities
identified and count of those re-
moved

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

SAF Practice Area 3.5 Testing, Validation, and Verification: Does the program test,
validate, and verify cybersecurity in its software components?

Activities/Practices Outputs Candidate Metrics

Develop cybersecurity test cases
based on software requirements
and risks and issues from prior
agency/program/element experi-
ence

Cybersecurity related test cases
based on software requirements,
risks, and prior lessons learned

Policy level and legal requirements
included in test cases

Requirements Traceability and Ver-
ification Matrix (RTVM)

Also build off of requirements met-
rics in addition to those provided
below.

Cybersecurity SW spec require-
ments in test spec

 RTVM (% in test spec - RTVM)

Policy level requirements (% ad-
dressed)

Legal requirements (% addressed)

Cybersecurity requirements tested
successfully?

 (% passed without issues) (%
passed with issues) (% failed)
(% tests to be rerun) (% prob-
lems open by category) (# prob-
lems open per category) (avg.
time open per category)

Number of test cases

Average Number of test cases per
program/function (normalized by
size or function or function point or
other)

% requirements covered

% requirements passed

Defect Rates

 Total number of defects

 Categories of defects

 Criticality (Low, Med, High)

 Number by Criticality

 Number by Criticality over time

 Number remaining open by Criti-
cality over time

 Average time to correct a defect
by Criticality over time

 Total Time to fix defects by cate-
gory over time

Perform a Software requirements
based test coverage analysis

Software requirements based test
coverage analysis results

% SW requirements covered in test

Perform a Code Coverage Data
Flow analysis

Code Coverage Data Flow analysis
results

of code decision paths not
exercised

% of code decision paths not
exercised

Perform a Software structural test
coverage analysis

Software structural test coverage
analysis results

% of code not exercised

% of code not accessible

of functions not exercised

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Perform a Functional Test Cover-
age analysis

 Stress Test

 Test Cases

Functional Test Coverage analysis
results

functions tested

% functions tested

functions stress tested

% functions stress tested

test cases per function

Avg. # test cases per function

Perform Regression Testing on all
code impacted by SW changes

 How Much

 Test Cases

Regression Testing results # changes

regression tests

test cases per regression test

% SW tested

Size SW tested

Time to perform each regression
test

Avg. time to perform regression
tests

defects inserted by category
based on SW changes

Defect density based on SW
changes

Perform Peer Reviews of select test
products throughout the SW life cy-
cle

Peer Review results # products peer reviewed

% products peer reviewed

defects removed by category

Avg. number of defects removed by
category

Perform Independent Reviews of
select test products throughout the
SW life cycle

Independent Review results # products independently reviewed

% products independently reviewed

defects removed by category

Avg. number of defects removed by
category

Perform a SW requirements analy-
sis to determine which are to be
verified using Modeling and Simula-
tion (M&S)

Modeling and Simulation verifica-
tion analysis results

Modeling & Simulation Test Cases
for

 Flight Test

 Ground Test

SW requirements to be verified
using M&S

% SW requirements to be verified
using M&S

% safety SW requirements to be
verified using M&S

% mission critical SW requirements
to be verified using M&S

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Perform a detailed resources analy-
sis to determine system level ca-
pacity

Resources usage analysis results % CPU Usage during peak perfor-
mance and stress

% memory Usage during peak per-
formance and stress

Avg. Time to Restore System to
baseline state

Total Time to Restore System to
baseline state

Verify coding standards have been
followed

Coding standards verification re-
sults

Number of code standard violations

Number of code standard violations
per module

SW Complexity per module

Avg. SW Complexity

% modules in each complexity cat-
egory

Number of Memory Leaks

Number of Memory Usage Issues

Avg. Number of Memory Leaks per
SCI

Avg. Number of Memory Usage Is-
sues per SCI

Conduct cybersecurity test readi-
ness reviews as part of a Test
Readiness Review (TRR)

Cybersecurity test readiness review
results

An indication of extent of Bi-direc-
tional traceability provided between
requirements under test and test
cases and test procedures in which
requirements will be verified (see
also RTVM first row)

An indication of extent of Bi-direc-
tional traceability provided between
SW requirements specs and SW
requirements under test (see also
RTVM first row)

Number of issues per Readiness
Review

Avg. Number of issues per Readi-
ness Review

Number of issues per Readiness
Review per hour (or normalized by
some size measure)

% SW requirements with Bi-direc-
tional traceability provided between
requirements under test and test
cases and test procedures in which
requirements will be verified

% SW requirements with Bi-direc-
tional traceability provided between
SW requirements specs and SW
requirements under test

% SW requirements with full test
coverage

% SW requirements with partial test
coverage

% SW requirements with no test
coverage

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Perform functional and risk-based
cybersecurity testing for selected
software components at various
levels of integration

Functional and risk-based cyberse-
curity testing of the integrated sys-
tem

Functional and risk-based cyberse-
curity testing results at lower levels
of integration

 Test results at various levels of
integration

An indication of which levels of inte-
gration were not tested and why

%Safety components tested and %
passed and % open over time

%Mission critical components
tested and % passed and % open
over time

of levels of integration where
tests were performed

% levels of integration where tests
were performed

Number of functional tests and %
passed and % open

Number of risk-based tests and %
passed and % open over time

% levels of integration tested

Perform operational security testing
for the integrated system

Operational security testing results Number of operational security test
cases completed and % passed
and % open

of total issues by category

of total issues by criticality

of open issues by category

of open issues by criticality

% of total issues open by category

% of total issues open by criticality

Red Team Assessments have been
completed and results addressed

Completed Red Team Assessment
results

Report on issues and how they
were or will be addressed

of total red team findings by
category

of total red team findings by
criticality

of open red team findings by
category

of open red team findings by
criticality

% of total red team findings open
by category

% of total red team findings open
by criticality

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

SW scanned for Vulnerabilities us-
ing Scanning Tools

 Scanning Tools’ Capabilities are
known

Dynamic/Static Analysis

 Developer

 Independent

Identified vulnerabilities from per-
formed scans

Coverage analysis available

Dynamic/Static Analysis results
available

Confidence levels in results catego-
rized (very high, high, medium, low,
very low)

% results in each confidence cate-
gory

Coverage analysis metrics TBD

% operational code scanned for
vulnerabilities

% of known Vulnerabilities Covered
(Scanning Tool Capabilities)

vulnerabilities by category

vulnerabilities by criticality

% vulnerabilities addressed by
category

% vulnerabilities addressed by
criticality

% scanned Dynamic Analysis

% scanned Static Analysis

Perform independent cybersecurity
validation of selected components

Independent validation results % components validated

Number of validation test cases
completed and % passed and %
open

of total issues by category

of total issues by criticality

of open issues by category

of open issues by criticality

% of total issues open by category

% of total issues open by criticality

Avg. Time issues open by category

Avg. Time issues open by criticality

Number of defects per LOC per
hour (or some other normalization)

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Perform independent cybersecurity
verification of selected compo-
nents?

Independent verification results % components verified

Number of verification test cases
completed and % passed and %
open

of total issues by category

of total issues by criticality

of open issues by category

of open issues by criticality

% of total issues open by category

% of total issues open by criticality

Avg. Time issues open by category

Avg. Time issues open by criticality

Number of defects per LOC per
hour (or some other normalization)

Review/inspect Test procedures for
compliance with test plans and de-
scriptions, adequacy to accomplish
test requirements, and satisfying
subsystem specification require-
ments for verifications

Review/inspection results # issues identified

retests

% tests redone

Total retest time

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Appendix E: SAF Support

SAF Practice Area 4.1 Measurement and Analysis: Does the program adequately
measure cybersecurity in acquisition and engineering activities?

Activities/Practices Outputs Candidate Metrics

Define and improve cybersecurity
measures.

Published Program Plan

Program Status Reports

 # cybersecurity measures defined

and % cybersecurity measures
implemented

% cybersecurity measures im-
proved over time

Collect and analyze cybersecurity
measures..

Published Program Plan

Program Status Reports

and % cybersecurity measures
collected and analyzed

SAF Practice Area 4.2 Change Management: Does the program manage
cybersecurity changes to its acquisition and engineering activities?

Activities/Practices Outputs Candidate Metrics

Incorporate cybersecurity changes
into the strategy and plan docu-
ments and artifacts.

Change Requests

Configuration/Change Management
System

Updated cybersecurity related
plans

change requests related to
cybersecurity

and % changes incorporated in
existing cybersecurity related plans
and other artifacts

Incorporate cybersecurity changes
into the engineering documents and
artifacts.

Change Requests

Configuration/Change Management
System

Updated engineering documents
and artifacts

change requests related to cyber-
security

and % changes incorporated in
existing cybersecurity related engi-
neering documents and other arti-
facts

SAF Practice Area 4.3 Product Operation and Sustainment: Does the organization
responsible for operating and sustaining the software-reliant system manage
vulnerabilities and cybersecurity risks?

Activities/Practices Outputs Candidate Metrics

Perform detailed cybersecurity risk
analyses of operational systems

Operational Risk Management Plan

Operational Risk Repository

Established definition of Cat 1, 2, 3
Risks

Cat 1 risks per month

new Cat 1 risks per month

Cat 2 risks per month

new Cat 2 risks per month

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Assess cybersecurity during
maintenance testing.

Maintenance Testing Results

Established definition of Cat 1, 2, 3
defects

of new defects per month

defects per line of code

Avg. time to close a defect

of new Cat 1 defects per month

Cat 1 defects per line of code

Avg. time to close a Cat 1 defect

of new Cat 2 defects per month

Cat 2 defects per line of code

Avg. time to close a Cat 2 defect

Conduct periodic penetration test-
ing of all software to identify cyber-
security vulnerabilities.

Penetration Testing Results

Relationship to 4.3.1 above

of vulnerabilities per month

of vulnerabilities remediated per
month

of new vulnerabilities per month

Conduct deep-dive penetration test-
ing of critical software to identify cy-
bersecurity vulnerabilities.

Penetration Testing Results

Relationship to 4.3.1 above

of vulnerabilities per month

of vulnerabilities remediated per
month

of new vulnerabilities per month

Run vulnerability scanning tools on
operational systems.

Vulnerability Management Reports

Relationship to 4.3.1 above

of vulnerabilities per month

of vulnerabilities remediated per
month

of new vulnerabilities per month

Remediate identified cybersecurity
vulnerabilities and risks.

Defect Management System

Relationship to 4.3.1 above

of vulnerabilities per month

of vulnerabilities remediated per
month

of new vulnerabilities per month

Monitor the behavior of operational
software/systems to identify signs
of attack.

Software Monitoring Results

Relationship to 4.3.1 above

attacks per month (may need to
be more frequent)

false positive attacks per month
(may need to be more frequent)

successful attacks per month
(may need to be more frequent)

times per month necessary to re-
store system to operational state

Avg. time to restore system to oper-
ational state

attacks per month discovered at a
future time (may need to be more
frequent)

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Activities/Practices Outputs Candidate Metrics

Respond to cybersecurity incidents
as appropriate

Incident Response Ticketing
System

attacks per month (may need to
be more frequent)

incident response tickets per
month (may need to be more fre-
quent)

incident response tickets closed
per month (may need to be more
frequent)

Avg. time to close incident re-
sponse tickets per month (may
need to be more frequent)

false positive attacks per month
(may need to be more frequent)

successful attacks per month
(may need to be more frequent)

times per month necessary to re-
store system to operational state

Avg. time to restore system to oper-
ational state

attacks per month discovered at a
future time (may need to be more
frequent)

Ensure the ability to roll back to a
previous version of the system
when needed and maintain the ex-
pected level of cybersecurity.

Configuration/Change Management
System

times per month necessary to re-
store system to operational state

Avg. time to restore system to oper-
ational state

changes per month to Configura-
tion/Change Management System

Avg. time to complete change to
Configuration/Change Management
System (by month)

Communicate suggested product
changes or improvements related
to cybersecurity to the engineering
team.

Field Change Requests

Configuration/Change Management
System

changes per month suggested
per product

changes per month accepted per
product

Avg. time to complete change by
product per month

Avg. time to complete change to
Configuration/Change Management
System (by month)

changes per month to Configura-
tion/Change Management System

Avg. time to complete change to
Configuration/Change Management
System per month

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[Agrawal 2013]
Agrawal, A. & Khan, R. A. Software security metric development framework (an early stage ap-
proach). American Journal of Software Engineering and Applications. Volume 2. Issue 6. Decem-
ber 2013. Pages 150–155. http://www.sciencepublishinggroup.com/journal/paperinfo?jour-
nalid=137&doi=10.11648/j.ajsea.20130206.14

[Ahmad 2007]
Ahmad, N. & Laplante, P. A. Employing expert opinion and software metrics for reasoning about
software. Pages 119–124. In Proceedings of the Third IEEE International Symposium on Depend-
able, Autonomic and Secure Computing (DASC 2007). September 2007. http://ieeex-
plore.ieee.org/document/4351396/

[Alberts 2017]
Alberts, Christopher J. & Woody, Carol C. Prototype Software Assurance Framework (SAF): In-
troduction and Overview. CMU/SEI-2017-TN-001. 2017. https://resources.sei.cmu.edu/library/as-
set-view.cfm?assetid=496134

[Allen 2007]
Allen, Edward B.; Gottipati, Sampath; & Govindarajan, Rajiv. Measuring size, complexity, and
coupling of hypergraph abstractions of software: An information-theory approach. Software Qual-
ity Journal. Volume 15. Issue 2. June 2007. Pages 179–212. http://dl.acm.org/cita-
tion.cfm?id=1232684.1232687

[Almutairi 2013]
Almutairi, Abdulrahman; Shawly, Tawfeeq A.; Basalamah, Saleh M.; & Ghafoor, Arif. Policy-
Driven High Assurance Cyber Infrastructure-Based Systems. Pages 146–153. In Proceedings of
the 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering (HASE
2014). January 2014. http://ieeexplore.ieee.org/document/6754599/

[An 2012]
An, W.; Jiang, C.; Lin, J.; Zhang, X.; & Yuan, W. GB/T 20274-based information system security
technical assurance evaluation and computer realization. Huadong Ligong Daxue Xuebao/Journal
of East China University of Science and Technology. Volume 38. Issue 5. October 2012. Pages
645-651.

[Azuwa 2012]
Azuwa, M. P.; Ahmad, R.; Sahib, S.; & Shamsuddin, S. A propose technical security metrics
model for SCADA systems. Pages 70–75. In Proceedings of the 2012 International Conference
on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec 2012). June 2012.
doi:10.1109/CyberSec.2012.6246089. http://ieeexplore.ieee.org/document/6246089/

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[Barabanov 2011]
Barabanov, Rostyslav; Kowalski, Stewart [ed.]; & Yngström, Louise [ed.]. Information Security
Metrics: State of the Art. DSV Report Series No 11-007. March 2011 https://www.diva-por-
tal.org/smash/get/diva2:469570/FULLTEXT01.pdf

[Black 2007a]
Black, Paul E.. Software Assurance With SAMATE Reference Dataset, Tool Standards, and Stud-
ies. Pages 6C11–6C16. In Proceedings of the 26th AIAA/IEEE Digital Avionics Systems Confer-
ence (DASC 2007). October 2007. http://ieeexplore.ieee.org/document/4391957/

[Black 2007b]
Black, Paul E. SAMATE and Evaluating Static Analysis Tools. Ada User Journal. Volume 28.
Issue 3. September 2007. Pages 184–188. https://hissa.nist.gov/~black/Papers/staticAnalyEx-
per%20Ada%20Geneva%20Jun%20007.pdf

[Black 2011]
Black, Paul E. Counting Bugs is Harder than You Think. Pages 1–9. In Proceedings of the 11th
IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM
2011). September 2011. http://ieeexplore.ieee.org/document/6065191/

[Black 2012]
Black, Paul E. Static Analyzers: Seat Belts for Your Code. IEEE Security & Privacy. Volume 10.
Issue 3. May–June 2012. Pages 48–52. http://ieeexplore.ieee.org/document/6127855/

[Bowen 2011]
Bowen, Brian M.; Devarajan, Ramswamy; & Stolfo, Salvatore. Measuring the human factor of
cyber security. Pages 230–235. In Proceedings of the 2011 IEEE International Conference on
Technologies for Homeland Security (HST 2011). November 2011. http://ieeexplore.ieee.org/doc-
ument/6107876/

[Breier 2014]
Breier, Jakub. Security Evaluation Model Based on the Score of Security Mechanisms. Infor-
mation Sciences and Technologies Bulletin of the ACM Slovakia. Volume 6. Number 1. 2014.
Pages 19–27. http://acmbulletin.fiit.stuba.sk/vol6num1/breier2014.pdf

[Brotby 2013]
Brotby, W. Krag & Hinson, Gary. PRAGMATIC Security Metrics: Applying Metametrics to Infor-
mation Security. Auerbach Publications. January 2013. ISBN-13: 1439881529.

[CISQ 2012]
Consortium for IT Software Quality. CISQ Specifications for Automated Quality Characteristic
Measures. CISQ–TR–2012–01. Consortium for IT Software Quality. 2012. http://it-cisq.org/wp-
content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf

[CNSS 2010]
Committee on National Security Systems. National Information Assurance (IA) Glossary CNSS
Instruction. CNSS Instruction No. 4009. Fort George G. Meade, MD: s.n. 2010.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[DAU 2017]
Defense Acquisition Guidebook. Defense Acquisition University (DAU) Website. March 2017 [ac-
cessed]. https://www.dau.mil/tools/dag

[Da-wei 2007]
Da-wei, E. The Software Complexity Model and Metrics for Object-Oriented. Pages 464–469. In
Proceedings of the 2007 IEEE International Workshop on Anti-Counterfeiting, Security, and
Identification (ASID 2007). April 2007. http://ieeexplore.ieee.org/document/4244872/

[Delaitre 2013]
Delaitre, Aurelien; Okun, Vadim; & Fong, Elizabeth. Of Massive Static Analysis Data. Pages
163–167. In Proceedings of the 7th International Conference on Software Security and Reliability
Companion (SERE-C 2013). June 2013. http://ieeexplore.ieee.org/document/6616339/

[Ellison 2014]
Ellison, Robert J Assuring Software Reliability. CMU/SEI-2014-SR-008. Software Engineering
Institute. Carnegie Mellon University. 2014. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=301625

[Feiler 2012]
Feiler, Peter; Goodenough, John; Gurfinkel, Arie; Weinstock, Charles; & Wrage, Lutz. Reliability
Improvement and Validation Framework. CMU/SEI-2012-SR-013. Software Engineering Insti-
tute. Carnegie Mellon University. 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=34069

[Garousi 2013]
Garousi, Vahid & Zhi, Junji. A survey of software testing practices in Canada. Journal of Systems
and Software. Volume 86. Issue 5. May 2013. Pages 1354–1376.
http://dx.doi.org/10.1016/j.jss.2012.12.051

[Gaudan 2008]
Gaudan, Stéphanie; Motet, Gilles; & Auriol, Guillaume. Metrics for Object-Oriented Software
Reliability Assessment – Application to a Flight Manager. Pages 13–24. In Proceedings of the
Seventh European Conference on Dependable Computing (EDCC 2008). May 2008. http://ieeex-
plore.ieee.org/document/4555986/

[Geer 2003]
Geer, Daniel; Hoo, Kevin Soo; & Jaquith, Andrew. Information security: Why the future belongs
to the quants. IEEE Security and Privacy. Volume 99. Issue 4. July–August 2003. Pages 24–32.
http://ieeexplore.ieee.org/document/1219053/

[Geer 2011]
Geer, Daniel. Index of Cyber Security website. 2011. http://cybersecurityindex.org/

[Goodenough 2010]
Goodenough, J. B. Evaluating Software’s Impact on System and System of Systems Reliability.
Software Engineering Institute. Carnegie Mellon University. March 2010.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=28933

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[Haddad 2011]
Haddad, S.; Dubus, S.; Hecker, A.; Kanstrén, T.; Marquet, B.; & Savola, R. Operational security
assurance evaluation in open infrastructures. In Proceedings of the 6th International Conference
on Risk and Security of Internet and Systems (CRiSIS 2011). September 2011. http://ieeex-
plore.ieee.org/document/6061831/

[Hallberg 2009]
Hallberg, J. & Lundholm, K. Information security metrics based on organizational models. Linkö-
ping: FOI, Swedish Defence Research Agency. 2009.

[Harrington 2013]
Harrington, David; Montville, Adam; & Waltermire, David. Using Security Posture Assessment
to Grant Access to Enterprise Network Resources. Analysis. 2013.

[Heinzle 2013]
Heinzle, Bernhard & Furnell, Steven. Assessing the Feasibility of Security Metrics. Pages 149–
160. In Proceedings of the 10th International Conference on Trust, Privacy, and Security in Digi-
tal Business (TrustBus 2013). Volume 805. August 2013. http://dl.acm.org/cita-
tion.cfm?id=2954132.2954150

[Hendradjaya 2007]
Hendradjaya, B. & Narasimhan, V. L. Some theoretical considerations for a suite of metrics for
the integration of software components. Information Sciences. Volume 177. Issue 3. February
2007. Pages 844–864.

[Herrmann 2007]
Herrmann, Debra S. Complete Guide to Security and Privacy Metrics. Measuring Regulatory
Compliance, Operational Resilience, and ROI. Auerbach Publications. 2007. ISBN-13: 978-
0849354021.

[Hindle 2008]
Hindle, A.; Godfrey, M.W.; & Holt, R.C. Pages 133–42. Reading beside the lines: indentation as
a proxy for complexity metrics. In Proceedings of the IEEE 16th International Conference on Pro-
gram Comprehension (ICPC 2008). June 2008. http://ieeexplore.ieee.org/document/4556125/

[Howard 2006]
Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press. 2006.

[Izurieta 2013]
Izurieta, C.; Griffith, I; Reimanis, D.; & Luhr, R. On the Uncertainty of Technical Debt Measure-
ments. Pages 1–4. In Proceedings of the 2013 International Conference on Information Science
and Applications (ICISA 2013). June 2013. http://ieeexplore.ieee.org/document/6579461/

[Jaquith 2007]
Jaquith, Andrew. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-Wesley.
2007. ISBN-13: 978-0321349989.

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[Jones 2011]
Jones, Caper and Bonsignour, Oliver. The Economics of Software Quality. s.l. Addison-Wesley
Professional. 2011.

[Jones 2012]
Jones, Capers. Software Quality in 2012: A Survey of the State of the Art. Nancook Analytics
LLC. May 2012. http://sqgne.org/presentations/2012-13/Jones-Sep-2012.pdf

[Jones 2014]
Jones, Capers. Evaluating Software Metrics and Software Measurement Practices. Version 4.
Namcook Analytics LLC. March 2014.

[Jonsson 2013]
Jonsson, Erland; & Pirzadeh, Laleh. Identifying Suitable Attributes for Security and Dependabil-
ity Metrication. Pages 1–7. In Proceedings of the Seventh International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE 2013). August 2013. http://publi-
cations.lib.chalmers.se/records/fulltext/182820/local_182820.pdf

[Kupsch 2014]
Kupsch, James A. & Miller, Barton P. Why Do Software Assurance Tools Have Problems Finding
Bugs Like Heartbleed? WP003. Software Assurance Marketplace. April 2014.
https://www.swampinabox.org/doc/SWAMP-WP003-Heartbleed.pdf

[Martin 2007]
Martin, C. & Refai, M. A Policy-Based Metrics Framework for Information Security Performance
Measurement. Pages 94–101. In Proceedings of the 2nd IEEE International Workshop on Busi-
ness-Driven IT Management. BDIM 2007. May 2007.
http://ieeexplore.ieee.org/document/4261105/

[McCabe 1976]
McCabe, Thomas J. A complexity measure. IEEE Transactions on Software Engineering. Volume
SE-2. Issue 4. Pages 308–320. December 1976. http://ieeexplore.ieee.org/document/1702388/

[Misra 2008]
Misra, Sanjay & Akman, Ibrahim, A unique complexity metric. In Proceedings of the 8th Interna-
tional Conference on Computational Science and Its Applications (ICCSA 2008). June – July
2008. https://www.researchgate.net/publication/221433680_A_Unique_Complexity_Metric

[NERC 2004]
North American Electric Reliability Corporation. Technical Analysis of the August 14, 2003
Blackout. July 2004. http://www.nerc.com/docs/docs/
blackout/NERC_Final_Blackout_Report_07_13_04.pdf

[NIST 2014]
Joint Task Force Transformation Initiative. Guide for Applying the Risk Management Framework
to Federal Information Systems: A Security Life Cycle Approach. SP 800-37 Rev. 1. February
2010 (Updated June 5, 2014). https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[Nord 2008]
Nord, R. L.; Ozkaya, I; Kruchten, P.; & Gonzalez-Rojas, M. In Search of a Metric for Managing
Architectural Technical Debt. Pages 91–100. In Proceedings of the 2012 Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA). August 2012. http://ieeexplore.ieee.org/document/6337765/

[Ohlhausen 2014]
Ohlhausen, P.; Poore, M.; McGarvey, D.; & Anderson, L. Persuading Senior Management with
Effective, Evaluated Security Metrics. ASIS Foundation. 2014. https://capindex.com/wp-con-
tent/uploads/ASIS_Report_Complete1.pdf

[Olague 2008]
Olague, H. M.; Etzkorn, L. H.; Messimer, S. L.; & Delugach, H. S. An empirical validation of ob-
ject-oriented class complexity metrics and their ability to predict error-prone classes in highly iter-
ative, or agile, software: a case study. Journal of Software Maintenance and Evolution: Research
and Practice. Volume 20. Issue 3. May 2008. Pages 171–197.
http://dl.acm.org/citation.cfm?id=1379052.1379053

[Ouedraogo 2012a]
Ouedraogo, M. Towards security assurance metrics for service systems security. Lecture Notes in
Business Information Processing. Volume 103. 2012. Pages. 361–370. ISSN: 1865-1348.
http://link.springer.com/chapter/10.1007%2F978-3-642-28227-0_28

[Ouedraogo 2012b]
Ouedraogo, M.; Khadraoui, D.; Mouratidis, H.; & Dubois, E. Appraisal and reporting of security
assurance at operational systems level. Journal of Systems and Software. Volume 85. Issue 1. Jan-
uary 2012. Pages 193–208. http://dl.acm.org/citation.cfm?id=2064367

[Ouedraogo 2013]
Ouedraogo, M.; Savola, R.M.; Mouratidis, H.; Preston, D.; Khadraoui, D.; & Dubois, E. Taxon-
omy of quality metrics for assessing assurance of security correctness. Software Quality Journal.
Volume 21. Issue 1. March 2013. Pages 67–97.
http://dl.acm.org/citation.cfm?id=2431353.2431368

[Paul 2002]
Paul, R. A.; Kunii, T.; Shinagawa, Y.; & Khan, M. F. Software metrics knowledge and databases
for project management. IEEE Transactions on Knowledge and Data Engineering. Volume 11.
Number 1. August 2002. Pages 255–264. http://ieeexplore.ieee.org/document/755633/

[Pieters 2012]
Pieters, Wolter; van der Ven, Sanne H. G.; & Probst, Christian W. A move in the security meas-
urement stalemate: elo-style ratings to quantify vulnerability. Pages 1–14. In Proceedings of the
2012 Workshop on New Security Paradigms (NSPW 2012). September 2012.
http://dl.acm.org/citation.cfm?doid=2413296.2413298

CMU/SEI-2018-TN-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

[Savola 2010]
Savola, R.M.; Kanstrén, T.; & Evesti, A. First International Workshop on Measurability of Secu-
rity in Software Architectures—MeSSa 2010. Pages 151–154. In Proceedings of the Fourth Euro-
pean Conference on Software Architecture (ECSA 2010): Companion Volume. August 2010.
http://dl.acm.org/citation.cfm?doid=1842752.1842785

[Savola 2011]
Savola, R. M. & Heinonen, P. A visualization and modeling tool for security metrics and meas-
urements management. Pages 1–8. In Proceedings of Information Security South Africa (ISSA
2011). August 2011. http://ieeexplore.ieee.org/document/6027518/

[Sedigh-Ali 2001]
Sedigh-Ali, S.; Ghafoor, A.; & Paul, R. A. Software engineering metrics for COTS-based sys-
tems. IEEE Computer. Volume 34. Number 5. May 2001. Pages 44–50.
http://ieeexplore.ieee.org/document/920611/

[Ting 2010]
Ting, W. W. & Comings, D. R. Information Assurance Metric for Assessing NIST's Monitoring
Step in the Risk Management Framework. Information Security Journal: A Global Perspective.
Volume 19. Issue 5. January 2010. Pages 253–262. http://dl.acm.org/citation.cfm?id=1882988

[Vaughn 2003]
Vaughn, R. B., Jr.; Henning, R.; & Siraj, A. Information assurance measures and metrics – state
of practice and proposed taxonomy. In Proceedings of the 36th Annual Hawaii International Con-
ference on System Sciences. January 2003. http://ieeexplore.ieee.org/document/1174904/

[Wedyan 2009]
Wedyan, F.; Alrmuny, D; Bieman, J.M. The Effectiveness of Automated Static Analysis Tools for
Fault Detection and Refactoring Prediction. International Conference on Software Testing Verifi-
cation and Validation. 2009. https://ieeexplore.ieee.org/document/4815346

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2018

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Exploring the Use of Metrics for Software Assurance

5. FUNDING NUMBERS

FA8702-15-D-0002

6. AUTHOR(S)

Carol Woody, Robert Ellison, & Charlie Ryan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2018-TN-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrative Agent
AFLCMC/AZS
5 Eglin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. abstract (maximum 200 words)

The Software Assurance Framework (SAF) is a collection of cybersecurity practices that programs can apply across the acquisition
lifecycle and supply chain. The SAF can be used to assess an acquisition program’s current cybersecurity practices and chart a course
for improvement, ultimately reducing the cybersecurity risk of deployed software-reliant systems.

This report proposes measurements for each SAF practice that a program can select to monitor and manage the progress it’s making
toward software assurance. Metrics are needed to determine how effectively a practice is performed and how well software assurance
is addressed. This report presents an approach for determining which SAF practices should be measured and how. It provides acquir-
ers, program managers, and contractors with an approach for using metrics to establish confidence that the systems they plan to field
will have sufficient software assurance.

14. SUBJECT TERMS

software assurance framework, SAF, cybersecurity, supply chain, acquisition, software-reliant
systems

15. NUMBER OF PAGES

69

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Exploring the Use of Metrics for SoftwareAssurance
	Table of Contents
	Lists of Figures and Tables
	Acknowledgments
	Abstract
	1 Introduction to Software Assurance
	2 Structuring Software Assurance Practices forMeasurement
	3 Selecting Measurement Data for Software AssurancePractices
	4 Challenges for Addressing Lifecycle Software Assurance
	5 Conclusions
	Appendix A: RMF Controls
	Appendix B: SAF Process Management
	Appendix C: SAF Project Management
	Appendix D: SAF Engineering
	Appendix E: SAF Support
	References/Bibliography

