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Abstract

Often in genomic studies, understanding the heterogeneity among the samples can
be helpful to address scientific questions directly, as well as to better understand how to
model the data in downstream analyses. As an example of the former, geneticists are
interested in understanding which regions of genome of tumor cells are erroneously too long
or too short when compared to their control cells counterparts – a phenomenon known
as copy number variation (CNV). Geneticists deploy comparative genomic hybridization
(CGH) methods to collect data, which are analyzed by changepoint methods to detect
heterogeneity among segments of the genome to directly address this scientific question.
As an example of the latter, single-cell RNA-sequencing (RNA-seq) data give geneticists
new opportunities to understand how individual cells express different genes at different
intensities. In these studies, capturing the heterogeneity among cells is often the first step
for improved downstream analyses.

In this thesis, we design various high-dimensional statistical methods to address the
types of heterogeneity often found in genomic data. We provide a high-level overview of
genomics in the first chapter. In the second chapter, we develop a method to determine,
among a collection of different microarray expression datasets, a large subset of datasets
that have similar covariance matrices, which is applied in an analysis pipeline to help detect
genes associated with autism spectrum disorder (ASD). In the third and fourth chapters,
we develop theoretical understandings of changepoint detection methods and quantify their
detected changepoints’ statistical significance, which are applied to CGH data to infer which
segments of the genome display copy number variation. In the fifth chapter, we develop a
non-linear dimension reduction method based on matrix factorization for one-parameter
exponential-family distributions and study its theoretical properties. Our method is applied
to study the cell developmental trajectories of oligodendrocytes – a particular cell type that
plays an important role in the central nervous system.
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One

Introduction

Genomic data such as DNA copy number variation, microarray expression, and RNA-
sequencing data have led to many new discoveries about the genome over more than the
three decades, but statistical methods to analyze such datasets have to account for non-trivial
heterogeneity within the datasets in order to meaningfully estimate the desired parameter
of interest. In this thesis, we broadly interpret heterogeneity to refer to the phenomenon
that the genomic data we collect can not be trivially modeled as i.i.d. drawn from a fixed
distribution. The source of the heterogeneity could arise from technical variation in new
biotechnology (for example, the measurement uncertainty in the laboratory machines that
measure gene expression) or from biological noise in cells or tissues with possibly different
genomic makeup (for example, the gene expression differences that naturally arise from cells
at different stages of development). Modeling and accounting for these different sources
of heterogeneity has lead to developments in numerous areas in statistics such as batch
correction (Sun et al., 2012), imputation (Chen and Zhou, 2018), low-dimensional embedding
(Pierson and Yau, 2015), clustering (Zhu et al., 2019), feature selection (Witten et al., 2009),
changepoint detection (Chen et al., 2017), graphical models (Fan et al., 2018a), and many
more. Understanding the heterogeneity across among the samples can help address the
scientific question directly, but also inform how to model the data in downstream analyses.
In this thesis, we highlight a collection of four different papers, each its own chapter, that
address a particular aspect of heterogeneity in genomic data that can be improved upon
among this vast landscape of research.

All figures in this chapter are used only to demonstrate or visualize different concepts
needed for the remaining chapters of the thesis.

1.1 A brief primer on genomics

The purpose of this chapter is to provide a reader with a concise, simplified and targeted
overview of genomics so readers have the necessary biological background to approach the
upcoming chapters in this thesis. At the risk of over-simplifying decades of genomic research,
the so-called “central dogma” of biology states that DNA (the sequence of specific nucleic
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1. introduction

acids that offsprings inherit from their two parents, and is shared among the vast majority
of cells in an organism) transcribes into RNA, when translates into proteins. These proteins
are synthesized to perform various roles within the body, such as aiding in the structure,
function or regulation of the body’s tissues and organs. This process is often succinctly
depicted as

DNA =⇒ RNA =⇒ Protein,

and illustrated as a schematic in Figure 1.1. Although this central dogma provides a compact
summary of biology, understanding the specific biological factors that drive (or hinder) this
process require sophisticated data to be collected, as well as sophisticated statistical methods
to analyze said data. Different laboratory machines collect data via different biochemical
processes to investigate different aspects of this process. While modeling how the central
dogma works mechanically is well beyond the scope of this thesis (as it requires a deep
understanding of biochemistry and biophysics), the aim of this thesis is to design methods
that, when applied to genomic data, allow patterns within the data to reveal themselves.
Not only do these method provide a qualitative assessment of biological questions (ex: how
“similar” are these two cells in terms of their gene expression profiles, or how “significantly
different” is the copy number in this segment of DNA different from an adjacent segment?),
but they also provide a data-driven approach to inform the geneticist on what hypotheses
to investigate next in future experiments (ex: do this cell type develop into two different
cell types over time, or are copy number variations in these genes possibly causal of breast
cancer?)

Genetic variation is one central factor that drives or hinder transcription and translation
– that is, variation in the genome (i.e., the entire set of DNA in an organism) across all
humans. Broadly speaking, this genetic variation comes in two types – structural variation
(i.e., differences in the DNA sequence) or expression variation (i.e., differences in which
genes1 are expressed).

• Structural variation: Roughly speaking, structural variation asks what is different
in the genome (i.e., how the specific sequence of nucleotides in the DNA differs)
between individuals (or cells within an individual, if tumor cells arise). This variation
can be caused by many mechanisms, such as mutations. Mutations are permanent
alternations within a segment of the DNA which often occurs due to errors during
cell replication (i.e., mitosis or meiosis). While most mutations are non-damaging,
sometimes mutations can accumulate over time, especially if the mutation itself affects
the cell replication process. The accumulation of such mutations in certain genes
(designed segments within the genome that encode for RNA or a protein) can lead to

1In our thesis, we define a gene to be a particular continuous segment of DNA that encodes for RNA or a
protein.
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1.1. A brief primer on genomics

Figure 1.1: Figure taken from a chapter from Lumen’s course “Boundless biology,” available at https:
//courses.lumenlearning.com/boundless-biology/chapter/the-genetic-code/. Transcrip-
tion is shown at top, where RNA is made from DNA. The letters A, T, C, G, and U represent
different nucleotides. RNA processing is shown in the middle, where the introns (regions of mRNA
that do not code for proteins) are removed in a process called RNA splicing, leaving on the exons
(regions of mRNA that code for proteins). Translation is shown at the bottom, where the exons are
used to dictate which amino acid sequences are built via a polypetide chain.

eventual development of autism spectral disorder in the individual, or the formation
of tumor cells within certain tissues in the individual. This can lead to de novo
loss-of-function mutations (discussed in §1.2) or copy number variation (discussed in
§1.3).

• Expression variation: Roughly speaking, expression variation asks how the genes
function differently across different cells, tissues, or individuals. The term “gene
expression” often colloquially refers to the relative amount of RNA produced by a

3
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1. introduction

particular gene. This varies naturally among cells due to differing cell types (such as
different types of cells in the central nervous system, as discussed in §1.2 and §1.4),
but can also vary among cells or individuals due to the structural variations mentioned
above.

Geneticists often strive to understand these two forms of genetic variation, as these variations
can cause differences in phenotypes (for example, cause a development in autism spectral
disorder) or determines how different cells function within an organism. To achieve these
goals, geneticists use a variety of laboratory machines to collect data across different samples,
where the particular type of machine is chosen so that the genetic variation to be studied
induces heterogeneity within the collected data. As statisticians, we hope to model the
heterogeneity in the data to meaningfully reverse-engineer and advance our understanding
of the genetic variation.

1.2 Overview of covariance selection, applied to microarray expression
data

In Chapter 2, we focus on assessing the heterogeneity of microarray data measuring ex-
pression variation among brain tissues originating from different brain regions and different
developmental age. The broader scientific question addressed in this chapter is to discover
which genes are highly associative with autism spectrum disorder (ASD) when a damaging
mutation occurs within them. ASD is a neurodevelopmental disorder that is characterized by
impaired social functions and repetitive behavior. However, a lot of the statistical pipeline
to address this question has already been developed in work like He et al. (2013); Liu et al.
(2014, 2015). This chapter, broadly speaking, develops a statistical method to improve
the sample size for this analysis by finding a homogeneous subset of samples among a
heterogeneous dataset.

The work in this chapter resulted in the publication,

Lin, K. Z., Liu, H., and Roeder, K. (2020b). Covariance-based sample selection for
heterogeneous data: Applications to gene expression and autism risk gene detection.
Journal of the American Statistical Association, (To appear):1–22

1.2.1 Scientific background

Detecting which genes are highly associative of ASD when mutated can help future researchers
better understand the genomic basis of ASD as well as design better treatment, but searching
across the genome for so-called “autism risk genes” can be extremely timely and costly.
A standard analysis to find autism risk genes involves sequencing the genome of trios (an
individual with ASD as well as the two parents without ASD) and determining which

4



1.2. Overview of covariance selection, applied to microarray expression data

Figure 1.2: Figure taken from de Jong et al. (2012). This graph represents an exemplary gene
co-expression network. Here, each node represents a gene (shown by its gene symbol), and an edge
is present between two genes if the two genes are co-regulated or co-expressed biologically. This
graph can be inferred by many ways, but in the thesis, we infer it directly from the microarray data
measuring gene expression.

genes have a mutation in the individual with ASD that leads to severe disruption in how
it is expressed (if any). This type of mutation is called de novo loss-of-function (dnLoF)
mutations, which provides a great signal-to-noise ratio, but unfortunately, are extremely
rare to observe in sequencing data. In fact, among thousands of trios sequenced, only a few
dozens were genes were deemed as autism risk genes, and preliminary studies suggest there
are still hundreds of genes left to be identified (Buxbaum et al., 2012).

More modern analyses rely on pooling other forms of genomic information aside from
dnLoF mutations to infer likely autism risk genes. For example, using only sequencing
data, TADA (He et al., 2013) models other types of mutations or transmitted variation to
infer which genes are likely autism risk genes. Furthermore, a sequence of papers extended
this analysis by developing DAWN (Liu et al., 2014, 2015), a method which additionally
uses microarray data measuring gene expression to infer a gene co-expression network. An
example of a gene co-expression network is shown in Figure 1.2. This graph is shown to
bolster the power of previous analyses such as TADA since genes that are co-regulated with
autism risk genes are likely to be autism risk genes themselves.

The heterogeneity we tackle in Chapter 2 occurs within this microarray data within
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1. introduction

Figure 1.3: Figure taken from Lamas et al. (2012). This figure demonstrates how microarray
technology works. Specifically, this figure shows a two-channel microarray, where two different samples
of genetic material (Sample A and Sample B) are separately processed via RNA extraction and
labeling. They are combined and placed into different probes of the microarray, where hybridization
hames within each probe. This process releases light processed by a laser, where the light varies
from red to green in different intensities. The light color and intensity measures the relative gene
expression between the two samples. The resulting image is shown on the top right. This data then
is processed in a statistical analysis.

the DAWN framework. Microarray data designed to infer the expression variation, broadly
speaking, relies on reading light intensities arising from a chemical reaction to infer the
amount of mRNA that is produced by a particular gene. One example of this technology is
schematically explained in Figure 1.3. This light intensity is colloquially referred to as “gene
expression” as genes that are highly expressed produce a higher amount of mRNA. Such
datasets is exemplified in Figure 1.4. The amount of expression depends on many biological
factors such as what type of tissue is analyzed or the developmental age of the cells in that
tissue. Hence, to make the gene co-expression network as useful as possible to infer autism
risk genes, Liu et al. (2014) uses microarray data measuring the gene expression of brain
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1.2. Overview of covariance selection, applied to microarray expression data

Figure 1.4: Figure taken from Wikipedia (page for “Gene expression profiling”). This figure shows
a colorized example of a possible microarray dataset measuring gene expression, where each row i
represents a different sample and each column j represents a different gene (here, named using their
Ensembl IDs (ENSG)). Roughly speaking, this matrix is formed after restructuring the imaging data
exemplified in the top right panel of Figure 1.3. The saturation of each entry in this figure represents
the magnitude of the value in the microarray dataset, while the color of each entry represents its
sign. Hierarchical clusterings of the rows and the columns are also shown.

tissues, ranging from different regions of the brain and different developmental ages. This
dataset is first published in Kang et al. (2011) and is commonly known as the BrainSpan
dataset. This choice of analyzing brain tissue is natural, as ASD is a neurological disorder.
However, since gene expression varies wildly with the brain region as well as the tissue’s
developmental age, early analyses in Liu et al. (2014, 2015) focus primarily on microarray
data originating from a particular choice of brain region and developmental age, and discard
the remaining data.
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1.2.2 Statistical novelty and heterogeneity

In Chapter 2, instead of bluntly discarding microarray data originating from other brain
regions or developmental ages, we design a statistical method to model this source of
heterogeneity. We call this procedure Covariance-based Sample Selection (COBS). This is
useful for determining which microarray datasets are “similar enough” to that from our
initial choice of brain region and developmental age. Here, we design our metric of similarity
between two microarray datasets based on their covariance matrices, as we are planning to
estimate the gene co-expression network using a Gaussian graphical model in our downstream
analysis. After determining which microarray datasets are more-or-less homogeneous from
this statistical perspective, we can aggregate all such datasets together to improve the sample
size of our downstream analysis.

1.2.3 Scientific results

After deploying COBS to analyze the BrainSpan dataset, we obtain a set of microarray
data with a larger sample size. This in turn provides a better estimation of the Gaussian
graphical model, which is used in the DAWN framework to detect more autism risk genes.
We provide various diagnostics to demonstrate the validity of our method and results.

1.3 Overview of one-dimensional changepoint detection, applied to
comparative genomic hybridization data

In Chapters 3 and 4, we focus on as detecting heterogeneity within array comparative genomic
hybridization data (aCGH) to determine regions of copy number variation in the genome (a
particular type of structural variation often thought to be caused by mutations). The broader
scientific question addressed in this chapter is to understand how copy number variation
is associated with the developmental of tumor cells in an individual. Statistically, aCGH
data is often analyzed by using a one-dimensional changepoint detection algorithm such as
fused lasso (Tibshirani and Wang, 2008) or variants of binary segmentation (Olshen et al.,
2004), but the statistical properties of such algorithms has only been studied thoroughly
with the last decade. These chapters, broadly speaking, continue this line of statistical work
by first investigating the changepoint detection convergence rates and then investigating
the statistical uncertainty of the size of the detected changepoints within the post-selection
inference framework.

The work in these chapters result in the following publication and preprint respectively,

Lin, K. Z., Sharpnack, J., Rinaldo, A., and Tibshirani, R. J. (2017). A sharp error
analysis for the fused lasso, with application to approximate changepoint screening. In
Advances in Neural Information Processing Systems, pages 6884–6893
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1.3. Overview of one-dimensional changepoint detection, applied to comparative genomic
hybridization data

Figure 1.5: Figure taken from a blog post https://medium.com/intothegenomics/cnvs-

copy-number-variants-context-detection-methods-and-exploratory-data-analysis-with-

python-986de6a58072. In the middle, the both copies of the genome within an individual’s cells are
shown (one inherited from the father, the other inherited from the mother). Here, the letters A
through D represent four arbitrary segments of of the genome. A deletion (also called a loss) in copy
number variation is shown on the left, where one segment of genome (here, C) is erroneously deleted,
possibly from only one of the two copies. A duplication (also called a gain) in copy number variation
is shown on the right where one segment of genome is erroneously duplicated, possibly from only one
of the two copies.

Hyun, S., Lin, K. Z., G’Sell, M., and Tibshirani, R. J. (2018b). Post-selection inference
for changepoint detection algorithms with application to copy number variation data.
arXiv preprint arXiv:1812.03644

1.3.1 Scientific background

In this section, we are focus on a particular structural variation called copy number variation,
where long continuous segments of DNA are erroneously deleted or duplicated. Under normal
circumstances, all cells in a human have the same genome across all 23 chromosomes. However,
copy number variation is often caused by mutations that occur during cell replication (i.e.,
mitosis or meiosis), and is often attributed to the development of cancer tumors. Examples
of copy number variations are illustrated in Figure 1.5.

While §1.2 discuss using microarray technologies to infer expression variation, this section
uses microarray technologies to infer structural variation instead. These microarrays use a
process called comparative genomic hybridization (CGH) to determine the relative gains and
losses in the genome between a reference control cells (i.e., “normal cells”) and a collection
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Figure 1.6: Figure taken from Alzeyadi (2013). A cartoon of chromosome 8 is shown in Panel A,
where the gray spheres represents regions in the DNA where the microarray’s probes are designed to
target. The setup of a typical CGH analysis is shown in Panel B, where the reference control cells
are shown in the red solution and the tumor cells are shown in the green solution. Both solutions are
mixed together across all the probes of a microarray, where the light intensities resulting the chemical
reaction are measured. Based on the light intensities, which infer the relative prevalence of each
region of genome between the reference and tumor cells, the copy number analysis then reconstructs
which regions of the genome in the tumor cells had a gain (i.e., duplication) or loss (i.e., deletion),
shown in Panel C.

of tumor cells. These microarrays are different from the ones discussed in §1.2 since, instead
of the probe inferring the amount of mRNA produced by different segments of DNA, the
probes here are designed to hybridize directly with different segments of DNA. Roughly
speaking, if there are duplications at the genome region that the probe is designed for, there
are opportunities for that region to hybridize, yielding more reactions to happen that be
picked up by the microarray machine. This induces heterogeneity in the data, which we
aim to model and detect. One example of this technology is schematically explained in
Figure 1.6.

However, aCGH data is often very noisy. One reason is technical noise, since there is
noise during the hybridization or imaging steps that occur during data collection. However,
another reason is due to the fact that collection of tumor cells used in CGH analyses often
is not “pure”. That is, it often contains a mixture of tumor cells and normal cells, inducing
another source of noise in the collected data. An example of such data is shown in Figure 1.7.
Given such a dataset, which is a vector in Rn, geneticists often use a changepoint detection
method to model the observed aCGH data as noisy observations from a piecewise constant
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hybridization data

Figure 1.7: Figure taken from Talevich and Shain (2018). This figure show an example of a possible
aCGH dataset (i.e., a microarray dataset measuring copy number variation via CGH). The data
is represented a vector in Rn, where entry i (shown as a gray point) represents the relative light
intensity measured by the microarray machine at probe i, and all the probes are sorted based on
their position across all 22 autosomal chromosomes and both sex chromosomes. Here, the x-axis
shows the position of these probes across these chromosomes, while the y-axis shows the measured
ratio in copy number between the reference and tumor cells. The red line shows the fitted piecewise
constant function, estimated by a changepoint detection method.

function. This is a natural idea, since the different pieces of this function represent continuous
segments of the genome that have been duplicated or deleted. However, the changepoints
estimated by these methods are random, and there is need for statistical theory to quantify
how reliable these estimates are.

1.3.2 Statistical novelty and heterogeneity

In Chapter 3, we abstract the heterogeneity in aCGH data mathematically, and investigate
the theoretical properties of the estimated changepoints in a generic setting. Specifically,
we prove an intimate relation between the convergence rate of estimating the underlying
piecewise constant vector and the convergence rate of estimating the changepoints themselves.
We apply this relation to study the changepoint properties of fused lasso primarily (Tibshirani
et al., 2005), but show that is applies to other one-dimensional changepoint detection methods
more generally.

In Chapter 4, we focus on aCGH data directly, where we are additionally interested in
how to assess the statistical uncertainty of the estimated magnitude of the change between
neighboring segments of the piecewise constant function. We assess this uncertainty within
the post-selection framework, where we design various methods to output p-values that
quantify the estimated changepoint’s statistical significance. These different p-values reflect
different null hypothesis being tested. These methods can be used to either investigate
specific changepoints estimated in aCGH data, or can be applied in mass to multiple aCGH
datasets as a screening tool to remove spurious changepoints.
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1.3.3 Empirical results

In Chapter 4, we show that our post-selection inference method can be successfully applied
to a common benchmark aCGH dataset first published in Snijders et al. (2001). We show
that our method can successfully identify spurious changepoints whose p-values are larger
than a pre-specified significance level, and the remaining changepoints correspond to true
duplications or deletions in the genome, verified by karyotyping.

1.4 Overview of exponential-family embedding, applied to single-cell
RNA-sequencing data

In Chapter 5, we focus on quantifying the heterogeneity within single-cell RNA-sequencing
(RNA-seq for short) data that measures the gene expression of different oligodendrocytes.
The broader scientific question addressed in this chapter is to analyze how oligodendrocytes
develop over time, cells part of the central nervous system which provide support and
insulation to axons. Statistically and computationally, this task first requires embedding
each oligodendrocyte into a lower-dimensional space based on the measured single-cell
RNA-seq data. This chapter, broadly speaking, develops a non-linear dimension reduction
method based one-parameter exponential-family distributions to perform this embedding
task.

This work in this chapter resulted in the preprint,

Lin, K. Z., Lei, J., and Roeder, K. (2020a). Exponential-family embedding with
application to cell developmental trajectories for single-cell RNA-seq data

1.4.1 Scientific background

While Sections 1.2 and 1.3 discuss using microarray technologies to infer expression variation
or structural variation respectively, this section relies on using sequencing technologies
to infer the expression variation. This revolution of sequencing technologies to replace
microarray technologies is often called “next generation sequencing” (NGS) since sequencing
technologies count the amount of RNA produced by a gene more-or-less directly, whereas
microarray technologies rely on measuring light intensity as a proxy for the amount of RNA
produced. This technology is schematically explained in Figure 1.8. We will call the data
produced by this type of technology collectively as RNA-seq data. This is often also called
“count data” as the data matrix contains entries which measures how many times there was
a read within gene j in sample i. Here, each sample often refers to many cells from a certain
tissue within an organism. From a statistician’s perspective however, the data is visualized
very similarly to microarray data, as in Figure 1.6, as both technologies result in a matrix
that represent each gene as a different column and each sample as a different row.
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1.4. Overview of exponential-family embedding, applied to single-cell RNA-sequencing data

Figure 1.8: Figure taken from Ferdous and Ullah (2017). This figure demonstrates how RNA-
sequencing technology works generally. The RNA strands (presumably produced by the genome of
the cells in the sample of the interest) is shown on the left. The sequencing machine then fragments
the RNA into smaller strands, after which a reverse transcription (where cDNA is matched to the
RNA fragments) and amplification (where the RNA is copied multiple times, so cDNA can match to
more strands) occurs. Finally, the sequencing machine reads all the cDNA strands produced in this
process, shown on the right. Afterwards (not shown in the diagram), each read is matched onto the
genome, which determines which gene gets an additional count.

Within the last decade however, a new breakthrough allowed geneticists to apply this
technology on the cellular level. This is often called single-cell RNA-seq data, where the
sequencing technology is applied to individual cells. That is, the collected data is still
count data, but now sample i represents a specific cell in an organism, as opposed to many
cells from a certain tissue. One example of this technology is schematically explained in
Figure 1.9.

By measuring individual cells, geneticists can investigate biological questions at a much
finer resolution. For example, one can ask about the cell developmental lineage of a
particular cell type – that is, how do cells develop and specialize over an organism’s lifespan.
In this chapter, we focus specifically on single-cell RNA-seq data that measure the gene
expressions of oligodendrocytes, first published in Marques et al. (2016). Understanding how
oligodendrocytes develop and specialize over time is an important task, as the failure for
oligodendrocytes to specialize can lead to various disorders such as multiple sclerosis (MS).
This process of development and specialization is called the developmental lineage, and a
cartoon of oligodendrocytes’ lineage is shown in Figure 1.10. Geneticists estimate these
lineages using single-cell RNA-seq by assuming that the gene expression profiles smoothly
evolves across the lineage. To do this, geneticists first embed each cell into a meaningful
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Figure 1.9: Figure taken from Klein et al. (2015). This figure demonstrates of how a particular
single-cell RNA-sequencing technology works. Specifically, this figures shows a droplet-barcoding
schematic on how to obtain single-cell RNA-seq data. The cells and hydrogels are shown on the
left, where each hydrogel contains material to form a cell barcode. After combining each cell to a
different hydrogel (each with containing material for a different cell barcode) in a droplet, reverse
transcription happens separately in each droplet. Specifically, as mRNA and cDNA is formed within
each droplet, the cDNA retains the cell barcode. Then, the cDNA from all the droplets are collected
together, and then sequenced all together, as shown on the right. Because each cell’s unique barcode
remains on its corresponding cDNA, the machine can determine which reads belong to which cells
when sequencing.

lower-dimension space based on the single-cell RNA-seq data, where nearby points in this
space represents cells that are similar developmentally, and then apply various algorithms to
infer one-dimensional curves within this embedding space. These estimated curves would
represent the inferred developmental lineage. An example visualizing such results is shown
in Figure 1.11.

1.4.2 Statistical novelty and heterogeneity

In Chapter 5, instead of using the SVD embedding (which is arguably the most common
embedding), we develop an exponential-family SVD (eSVD), an embedding with respect to
an arbitrary one-parameter exponential-family distribution. This allows us to embed the
single-cell RNA-seq data in a non-linear fashion. Our embedding builds upon the existing
literature in matrix factorization, where we design our estimator to estimate a low-rank
matrix of natural parameters within a particular hierarchical dot product model. This
low-rank structure captures of the notion of heterogeneity in this chapter, as it implies that
each cell is associated with a different low-dimensional latent vector. While many such
embeddings of this flavor already exist, we design our method such that it is computationally
simpler than existing convex methods but still retains desirable statistical properties such as
identifiability and consistency.
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Figure 1.10: Figure taken from Newville et al. (2017). This cartoon demonstrates five possible
categories of different oligodendrocytes, developing from a neural stem cell shown on the left to a
mature myelinating oligodendrocyte shown on the right. However, in reality, such lineage might not
be as linear, as neural stem cell might develop to many different types of mature oligodendrocytes.

1.4.3 Scientific results

We apply eSVD using a curved Gaussian distribution (where the standard deviation is
proportional to the mean) to analyze the oligodendrocytes by embedding each cell into a
low-dimensional space. We then apply Slingshot (Street et al., 2018) (a competitor algorithm
to Monocle (Trapnell et al., 2014)) on the cells in this low-dimensional space to estimate the
cell developmental lineages. We find that the oligodendrocytes develop into two different
types of mature oliodendrocytes.
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Figure 1.11: Figure taken from Marques et al. (2016). This figure exemplifies the task of estimating
the cell lineage across six different cell types. Here, each of the cell measured in the single-cell RNA-seq
dataset is embedded into two-dimensional space using independent component analysis (ICA), where
the different colors represent the six different cell types. Then, the authors use a particular cell
lineage estimator called Monocle (Trapnell et al., 2014) to estimate the lineage, represented by the
thick black line that roughly interpolates the center of the cell types.
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Assessing heterogeneity – Covariance-based
sample selection

Paper summary: Risk for autism can be influenced by genetic mutations in hundreds
of genes. Based on findings showing that genes with highly correlated gene expressions
are functionally interrelated, “guilt by association” methods such as DAWN have been
developed to identify these autism risk genes. Previous research analyzes the BrainSpan
dataset, which contains gene expression of brain tissues from varying regions and de-
velopmental periods. Since the spatiotemporal properties of brain tissue is known to
affect the gene expression’s covariance, previous research have focused only on a specific
subset of samples to avoid the issue of heterogeneity. This leads to a potential loss of
power when detecting risk genes. In this article, we develop a new method called COBS
(COvariance-Based sample Selection) to find a larger and more homogeneous subset of
samples that share the same population covariance matrix for the downstream DAWN
analysis. To demonstrate COBS’s effectiveness, we utilize genetic risk scores from two
sequential data freezes obtained in 2014 and 2020. We show COBS improves DAWN’s
ability to predict risk genes detected in the newer data freeze when utilizing the risk
scores of the older data freeze as input.

The work in this chapter was done jointly with Han Liu and Kathryn Roeder, and has
been accepted to JASA Applications and Case Studies under the title, “Covariance-based
sample selection for heterogeneous data: Applications to gene expression and autism
risk gene detection.”

2.1 Introduction

The genetic cause of autism spectrum disorder (ASD), a neurodevelopmental disorder that
affects roughly 1-2% individuals in the United States, remains an open problem despite
decades of research (Autism and Investigators, 2014). ASD is characterized primarily by
impaired social functions and repetitive behavior (Kanner et al., 1943; Rutter, 1978). To
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better understand this disorder, scientists identify specific genes that are liable for increasing
the chance of developing ASD when damaged or mutated (Sanders et al., 2015). These are
genes are called risk genes. While breakthroughs in genomic technologies and the availability
of large ASD cohorts have led to the discovery of dozens of risk genes, preliminary studies
suggest there are hundreds of risk genes still unidentified (Buxbaum et al., 2012). In this
work, we build upon the current statistical methodologies to further improve our ability to
identify risk genes.

We focus on statistical methods that use gene co-expression networks to help identify
risk genes. These networks are estimated from brain tissue’s gene expression data. Since
these gene co-expression networks provide insight into genes that regulate normal biological
mechanisms in fetal and early brain development, it was hypothesized that risk genes that
alter these mechanisms should be clustered in these networks (Šestan et al., 2012). Early
findings confirmed this hypothesis (Parikshak et al., 2013; Willsey et al., 2013). These results
led to the development of the Detection Association With Networks (DAWN) algorithm
which uses a “guilt by association” strategy – implicating new risk genes based on their
connectivity to previously identified risk genes (Liu et al., 2014, 2015). However, the previous
DAWN analyses suffer from statistical limitations that we will investigate and resolve in this
article.

We challenge previous analyses’ assumptions regarding the homogeneity of the covariance
matrix in gene expression data. Previous DAWN analyses assume that gene expression
samples from the same brain tissue type share the same covariance matrix. This assumption
was influenced by the findings in Kang et al. (2011) and Willsey et al. (2013), which showed
that gene co-expression patterns differ among different brain regions and developmental
periods on average. Statistically, this means that the covariance matrix among the gene
expressions may differ with respect to the spatiotemporal properties of the brain tissue.
Hence, previous DAWN analyses (Liu et al., 2014, 2015) use only samples from a particular
brain tissue type chosen by the findings in Willsey et al. (2013). However, no further
statistical analysis is performed to check for homogeneity of this specific subset of samples.
In addition, since previous DAWN analyses limit themselves to a subset of gene expression
samples, many other samples assumed to be heterogeneous are excluded. This leads to a
potential loss of power when identifying risk genes.

To overcome these limitations, we develop a method called COBS (COvariance-Based
sample Selection), a two-staged procedure in order to select a subset of gene expression
samples in a data-driven way that is more homogeneous and larger in sample size than the
fixed subset used previously. In the first stage, we take advantage of the recent developments
in high-dimensional covariance testing (Cai et al., 2013; Chang et al., 2017) to determine
whether if the gene expression from two different brain tissues share the same population
covariance matrix. We combine this with a multiple-testing method called Stepdown that
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accounts for the dependencies among many hypothesis tests (Romano and Wolf, 2005;
Chernozhukov et al., 2013). In the second stage, after determining which pairs of brain
tissues have statistically indistinguishable covariance matrices, we develop a clique-based
procedure to select which brain tissues to use in the downstream DAWN analysis. We
show that COBS selects brain tissues within the BrainSpan dataset that align with current
scientific knowledge and also leads to an improved gene network estimate for implicating
risk genes. This article addresses the numerous algorithmic challenges needed to implement
this idea.

In Section 2 in this chapter, we describe the data and statistical model for heterogeneity
in the covariance matrix. In Section 3, we provide a visual diagnostic to investigate the
homogeneity assumptions of previous DAWN analyses. In Section 4, we describe the different
stages of COBS to find a subset of homogeneous samples within a dataset. In Section 5,
we illustrate the properties of COBS on synthetic datasets. In Section 6, we apply our
procedure on gene expression data to show that, when combined with DAWN, we have an
improved gene network that can better implicate risk genes. Section 7 provides an overall
summary and discussion.

2.2 Data and model background

Due to the challenge of obtaining and preserving brain tissue, datasets recording the gene
expression patterns of brain tissue are rare. The BrainSpan project contributes one of
the largest microarray expression datasets available (the “BrainSpan dataset” henceforth),
sampling tissues from 57 postmortem brains with no signs of large-scale genomic abnormalities
(Kang et al., 2011). Many studies have favored this dataset because its 1294 microarray
samples capture the spatial and temporal changes in gene expression that occur in the brain
during the entirety of development (De Rubeis et al., 2014; Dong et al., 2014; Cotney et al.,
2015). While our paper focuses on this particular microarray expression dataset, our method
would apply to other gene expression datasets such as RNA sequencing data.

The heterogeneity of gene expression due to the spatiotemporal differences in brain
tissues presents statistical challenges. As documented in Kang et al. (2011), the region and
developmental period of the originating brain tissue contribute more to the heterogeneity
than other variables such as sex and ethnicity. To understand this heterogeneity, we use the
following schema to model the BrainSpan dataset. Each of the 1294 microarray samples is
categorized into one of 16 spatiotemporal windows, or windows for short, depending on which
brain region and developmental period the brain tissue is derived from. Within each window,
all microarray samples originating from the same brain are further categorized into the same
partition. There are 212 partitions in total. Figure 2.1 summarizes how many partitions
and microarray samples belong in each window in the BrainSpan dataset. This schema
allows us to model the microarray samples more realistically since the gene co-expression
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Figure 2.1: (A) 107 microarray samples grouped by the originating 10 brains. This forms 10 different
partitions. Since all these partitions originate from the same brain region and developmental period,
they are further grouped into the same window. (B) The 57 postmortem brains belong to 4 different
developmental periods (columns). Here, PCW stands for post-conceptual weeks. Each brain is
dissected and sampled at 4 different brain regions (rows). In total, over the 212 partitions, there are
1294 microarray samples, each measuring the expression of over 13,939 genes. Window 1B (outlined
in black) is the window that previous work (Liu et al., 2015) focus on, and the hierarchical tree from
Willsey et al. (2013) is shown to the right. Additional details about the abbreviations are given in
Appendix 2.B.

patterns vary greatly on average from window to window (Willsey et al., 2013). Additionally,
Willsey et al. (2013) find that among all the windows, the known risk genes in Window
1B are most tightly co-expressed. Window 1B is highlighted in Figure 2.1 and contains
the 107 microarray samples from the prefrontal cortex and primary motor-somatosensory
cortex from 10 to 19 post-conceptual weeks. Due to this finding, previous DAWN analyses
focus on all 107 samples from 10 partitions, assuming that these samples were homogeneous
without further statistical investigation, and discard the remaining 1187 samples, (Liu et al.,
2014, 2015). We seek to improve upon this heuristical sample selection procedure, first by
formalizing a statistical model.

2.2.1 Statistical model

We use a mixture model that assumes that microarry samples from the same partition are
homogeneous while samples from different partitions could be heterogeneous. For the pth
partition, let X

(p)
1 , . . . X

(p)
np ∈ Rd denote np i.i.d. samples, and let w(p) denote the window

that partition p resides in. These np samples are drawn from either a distribution with
covariance Σ, or another distribution with a different covariance matrix Σp. Our notation
emphasizes that the distributions in consideration are not necessarily Gaussian, and Σ
is the covariance matrix shared among all partitions, while Σp may vary from partition
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to partition. A fixed but unknown parameter γw(p) ∈ [0, 1] controls how frequently the
partitions in window w are drawn from these two distributions, meaning it controls the
amount of heterogeneity. For each partition p, this mixture model is succinctly described as,

I(p) ∼ Bernoulli(γw(p)),

X
(p)
1 , . . . , X(p)

np

i.i.d.∼

{
D(Σ) if I(p) = 1

D(Σp) otherwise,
(2.1)

where D(Σ) denotes an arbitrary distribution with covariance matrix Σ, and I(p) is the
latent variable that determines whether or not the samples in partition p have covariance Σ
or Σp. With this model setup, our task is to determine the set of partitions that originate
from the covariance matrix Σ, which we will call

P =
{
p : I(p) = 1

}
. (2.2)

The findings of Kang et al. (2011) and Willsey et al. (2013) inform us on how much
heterogeneity to expect within a window via γw(p). While analyses such as Liu et al. (2015)
assume that all the samples in Window 1B are homogeneous, it is noted in Kang et al. (2011)
that sampling variability in brain dissection and in the proportion of white and gray matter
in different brain tissues can cause variability in the gene co-expression patterns. This means
that scientifically, we do not expect all the partitions in Window 1B to be homogeneous
(i.e., γw(p) = 1). Furthermore, Willsey et al. (2013) find a hierarchical clustering among the
four brain regions. This is illustrated in Figure 2.1, where the gene co-expression patterns
in the brain regions represented in first row are most similar to those in the second row
and least similar to those in the fourth row. The authors also find a smooth continuum of
gene expression patterns across different developmental periods, represented as the columns
of the table in Figure 2.1. Hence, we expect γw(p) to decrease smoothly as the window w
becomes more dissimilar to Window 1B, in both the spatial and temporal direction.

2.2.2 Connections to other work

Other work use models similar to (2.1) on microarray expression data to tackle the different
co-expression patterns among different tissues and subjects, but their methods differ from
ours. One direction is to directly cluster the covariance matrices of each partition (Ieva
et al., 2016). However, this approach does not account for the variability in the empirical
covariance matrix, unlike our hypothesis-testing based method. Another approach is to
explicitly model the population covariance matrix for each partition as the summation of a
shared component and a partition-specific heterogeneous component. This is commonly used
in batch-correction procedures where the analysis removes the heterogeneous component
from each partition (Leek and Storey, 2007). However, we feel such an additive model is
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too restrictive for analyzing the BrainSpan dataset, as we do not believe there is a shared
covariance matrix across all windows of the brain. Instead, our approach will find specific
set of partitions with statistically indistinguishable covariance matrices.

2.3 Elementary analysis

In this section, we develop a visual diagnostic to investigate if the 10 partitions in Window
1B used in previous work (Liu et al., 2014, 2015) are as homogeneous as these previous
analyses assume. Using a hypothesis test for equal covariances, our diagnostic leverages
the following idea: we divide the partitions into two groups and apply a hypothesis test to
the samples between both groups. If all the partitions were truly drawn from distributions
with equal covariances, then over many possible divisions, the empirical distribution of the
resulting p-values should be roughly uniform. We can visualize this distribution by using
a QQ-plot. The less uniform the p-values look, the less we are inclined to interpret our
partitions to be all drawn from distributions with equal covariances. The following algorithm
summarizes this diagnostic.

Algorithm 1: Covariance homogeneity diagnostic

1. Loop over trials t = 1, 2, . . . , T :

a) Randomly divide the selected partitions in the set P̂ into two sets, P̂(1) and P̂(2),
such that P̂(1) ∪ P̂(2) = P̂ and P̂(1) ∩ P̂(2) = ∅.

b) For each partition p ∈ P̂(1), center the samples X
(p)
1 , . . . , X

(p)
np . Then aggregate

all samples in P̂(1) to form the set of samples

X =
⋃

p∈P̂(1)

{
X

(p)
1 , . . . , X(p)

np

}
.

Similarly, form the set of samples Y from the set of partitions P̂(2).

c) Compute the p-value for a hypothesis test that tests whether or not the samples
in X and Y have the same covariance matrix.

2. Produce a QQ-plot of the resulting T p-values to see if empirical distribution of the
p-values is close to a uniform distribution.

We remind the reader that the above procedure is a diagnostic. This is not necessarily a
recipe for a goodness-of-fit test since the T p-values are not independent, which makes it
difficult to analyze its theoretical properties without a carefully designed global null test.
However, as we will demonstrate in later sections of this article, this diagnostic is nonetheless
able to display large-scale patterns in our dataset.

22



2.3. Elementary analysis

2.3.1 Specification of covariance hypothesis test

To complete the above diagnostic’s description, we describe the procedure to test for
equality of covariance matrices. Following the model (2.1), let X = {X1, . . . , Xn1} and
Y = {Y1, . . . ,Yn2} be n1 and n2 i.i.d. samples from d-dimensional distribution with
covariance ΣX and ΣY respectively, both with an empirical mean of 0. We define X ∈ Rn1×d

and Y ∈ Rn2×d as the matrices formed by concatenating these samples row-wise. Define the
empirical covariance matrices as Σ̂X = X>X/n1, and Σ̂Y = Y>Y/n2, where we denote the
individual elements of these matrices as Σ̂X = [σ̂X,ij ]1≤i,j≤d and likewise for Σ̂Y .

We now discuss the hypothesis test for equal covariance, H0 : ΣX = ΣY , that we will
consider in this article based on the test statistic defined in Chang et al. (2017) which extends
Cai et al. (2013). In these works, the authors note that if ΣX = ΣY , then the maximum
element-wise difference between ΣX and ΣY is 0. Hence, Chang et al. (2017) defines the
test statistic T̂ as the maximum of squared element-wise differences between Σ̂X and Σ̂Y ,
normalized by its variance. Specifically,

T̂ = max
ij

(
t̂ij
)

where t̂ij =

(
σ̂X,ij − σ̂Y,ij

)2
ŝX,ij/n1 + ŝY,ij/n2

, i, j ∈ 1, . . . , d, (2.3)

where ŝX,ij =
∑n1

m=1(XmiXmj − σ̂X,ij)2/n1 is the empirical variance of the variance-estimator
σ̂X,ij , and ŝY,ij is defined similarly.

Then, Chang et al. (2017) constructs an empirical null distribution of T̂ under H0 :

ΣX = ΣY using the multiplier bootstrap (Chernozhukov et al., 2013). On each of the
b ∈ {1, . . . , B} trials, the multiplier bootstrap computes a bootstrapped test statistic T̂ (b) by
weighting each of the n1 + n2 observations by a standard Gaussian random variable drawn
independently of all other variables, denoted collectively as (g

(b)
1 , . . . , g

(b)
n1 , g

(b)
n1+1, . . . , g

(b)
n1+n2

).
Specifically, we construct the bootstrap statistic for the bth trial as

T̂ (b) = max
ij

(
t̂
(b)
ij

)
where t̂

(b)
ij =

(
σ̂

(b)
X,ij − σ̂

(b)
Y,ij

)2
ŝX,ij/n1 + ŝY,ij/n2

, i, j ∈ 1, . . . , d, (2.4)

where

σ̂
(b)
X,ij =

n1∑
m=1

g(b)
m

XmiXmj − σ̂X,ij
n1

, and σ̂
(b)
Y,ij =

n2∑
m=1

g
(b)
n1+m

YmiYmj − σ̂Y,ij
n2

.

We compute the p-value by counting the proportion of bootstrap statistics that are larger
than the test statistic,

p-value =

∣∣{b : |T̂ (b)| ≥ |T̂ |}
∣∣

B
.
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2. assessing heterogeneity – covariance-based sample selection

Chang et al. (2017) prove that this test has asymptotically 1 − α coverage under the
null hypothesis as long as the all distributions in the distribution family D in (2.1) have
sub-Gaussian and sub-exponential tails, even in the high-dimensional regime where d �
max(n1, n2).

2.3.2 Application to BrainSpan

Equipped with a complete description of the diagnostic, we apply it to the BrainSpan
dataset. Among the 10 partitions in Window 1B, we divide the partitions into two groups
uniformly at random 250 times, and compute a p-value using Method 1 (with normalization)
for each division using 200 bootstrap trials. The QQ-plot of the resulting p-values are shown
in Figure 2.2A, where we see that the p-values are biased towards 0. This implies the 10
partitions in Window 1B are heterogeneous since they do not seem to all share the same
covariance matrix. Furthermore, we apply this diagnostic to all partitions in the BrainSpan
dataset with 5 or more samples. This results in using only 125 of the 212 partitions shown
in Figure 2.1. The resulting p-values become more biased towards 0 (Figure 2.2B), implying
the dataset as a whole is more heterogeneous than the partitions in Window 1B. In the next
section, we develop a method to resolve this issue by finding the largest subset of partitions
possible among the 125 partitions in the BrainSpan dataset that share the same covariance
matrix.

2.4 Methods: COBS (Covariance-based sample selection)

While we have discussed a method to test for equivalent covariance matrices between any
two partitions in §2.3, we cannot directly apply this method to select a large number of
homogeneous partitions in the BrainSpan dataset without suffering a loss of power due to
multiple testing. Since there are r = 125 partitions with more than 5 samples, applying
the hypothesis test to each pair of partitions results in

(
r
2

)
= 7750 dependent p-values.

These p-values are dependent since each of the r partitions is involved in r − 1 hypothesis
tests. Hence, standard techniques such as a Bonferroni correction are too conservative when
accounting for these dependencies, likely leading to a loss of power.

To properly account for this dependency, we introduce our new method called COBS,
which comprises of two parts. First, we use a Stepdown method in Subsection 2.4.1 that
simultaneously tests all

(
r
2

)
hypothesis tests for equal covariance matrices, which builds upon

the bootstrap test introduced previously in §2.3. After determining which of the
(
r
2

)
pairs of

partitions do not have statistically significant differences in their covariance matrices, we
develop a clique-based method in Subsection 2.4.2 to select a specific set of partitions P̂.

2.4.1 Stepdown method: multiple testing with dependence

We use a Stepdown method developed in Chernozhukov et al. (2013) to control the family-
wise error rate (FWER). We tailor the bootstrap-based test in Subsection 2.3.1 to our specific
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2.4. Methods: COBS (Covariance-based sample selection)

Figure 2.2: QQ-plots of the 250 p-values generated when applying our diagnostic to the BrainSpan
dataset. (A) The diagnostic using only the partitions in Window 1B, showing a moderate amount of
heterogeneity. (B) The diagnostic using all 125 partitions in the BrainSpan dataset, showing a larger
amount of heterogeneity.

setting in the algorithm below. We denote T̂(i,j) as the test statistic formed using (2.3) to
test if the covariance of samples between partition i and partition j are equal. Similarly,

let T̂
(b)
(i,j) denote the corresponding bootstrap statistics on the bth bootstrap trial. Here,

quantile({x1, . . . , xn}; 1− α) represents the empirical (1− α) · 100% quantile of the vector
(x1, . . . , xn).

Algorithm 2: Stepdown method

1. Initialize the list enumerating all
(
r
2

)
null hypotheses corresponding to the set of

partition pairs, L =
{

(1, 2), . . . , (r − 1, r)
}

.

2. Calculate T̂` for each ` ∈ L, as stated in (2.3).

3. Loop over steps t = 1, 2, . . .:

a) For each bootstrap trial b = 1, . . . , B:
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2. assessing heterogeneity – covariance-based sample selection

i. Generate N =
∑

p np i.i.d. standard Gaussian random variables, one for each

sample in each partition, and compute T̂
(b)
` for all ` ∈ L, as stated in (2.4).

ii. Compute

T̂ (b) = max
{
T̂

(b)
` : ` ∈ L

}
. (2.5)

b) Remove any ` ∈ L if

T̂` ≥ quantile
(
{T̂ (1), . . . , T̂ (b)}; 1− α

)
.

If no elements are removed from L, return the null hypotheses corresponding to
L. Otherwise, continue to step t+ 1.

Using techniques in Romano and Wolf (2005) and Chernozhukov et al. (2013), it can be
proven that this method has the following asymptotic FWER guarantee,

P
(

no true null hypothesis among H null hypotheses are rejected
)
≥ 1− α+ o(1) (2.6)

under the same assumptions posed in Chang et al. (2017). The reason Algorithm 2 is able
to control the FWER without a Bonferroni correction is because the null distribution in
the Stepdown method is properly calibrated to account for the joint dependence among the(
r
2

)
tests. Specifically, when

(
r
2

)
tests are individually performed as in Subsection 2.3.1, the

test statistics (2.3) are dependent, but the bootstrapped null distributions do not account
for this dependence. Hence, accounting for the dependence via a Bonferroni correction
after-the-fact can lead to a substantial loss in power. However, in the Stepdown procedure,
the bootstrapped null distributions retain the dependencies jointly since they are generated
from the same N Gaussian random variables in each trial. See Chernozhukov et al. (2013)
(Comment 5.2) for a further discussion.

Robustness concerns. In practice, due to the maximum function in the test statistic T̂`
displayed in (2.3), the Stepdown method could possibly erroneously reject a hypothesis
due to the presence of outliers. One way to circumvent this problem to purposely shrink

the value of the test statistic T̂` while leaving the bootstrapped statistics T̂
(b)
` in (2.4) the

same. Specifically, we can replace maxij(t̂ij) in (2.3) with the quantile({t̂ij}ij ; 1− ε), where
ε is a positive number extremely close to 0. This has the desired effect of “discarding” the
large values in {t̂ij}ij . Observe that this procedure would potentially lead to a slight loss in
power, but the inferential guarantee in (2.6) still holds since there can only be strictly less
rejections.
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2.4. Methods: COBS (Covariance-based sample selection)

Computational concerns. While we use the test statistics (2.3) when describing the Step-
down method, we note that this method applies to a broader family of test statistics. In
Appendix 2.C, we discuss in detail one alternative to the test statistic in (2.3) that can
dramatically reduce up the computation complexity of the Stepdown method. However,
we defer this to the appendix because in our specific problem setting of testing equality of
covariances, it does not seem to perform well empirically.

2.4.2 Largest quasi-clique: selecting partitions based on testing results

After applying the covariance testing with the Stepdown method described in the previous
subsection, we have a subset of null hypotheses from H that we accepted. In this subsection,
we develop a clique-based method to estimate P, the subset of partitions that share the
same covariance matrix defined in (2.2), from our accepted null hypotheses.

We conceptualize the task of selecting partitions as selecting vertices from a graph that
form a dense subgraph. Let H0,(i,j) denote the null hypothesis that the population covariance
matrices for partition i and j are equal. Let G = (V,E) be an undirected graph with vertices
V and edge set E such that

V =
{

1, . . . , r
}
, E =

{
(i, j) : H0,(i,j) is accepted by the Stepdown method

}
. (2.7)

Since each of the
(|P|

2

)
pairwise tests among the partitions in P satisfies the null hypotheses,

the vertices corresponding to P would ideally form the largest clique in graph G. However,
this ideal situation is unlikely to happen. Instead, due to the probabilistic nature of our
theoretical guarantee in (2.6), there are likely to be a few missing edges in G among the
vertices corresponding to P . Hence, a natural task is to instead find the largest quasi-clique,
a task that has been well-studied by the computer science community (see Tsourakakis
(2014) and its references within). We say a set of k vertices form a γ-quasi-clique if there are
at least γ ·

(
k
2

)
edges among these k vertices for some γ ∈ [0, 1]. The largest γ-quasi-clique

is the largest vertex set that forms a γ-quasi-clique . We justify the choice to search for
this γ-quasi-clique since, by our model (2.1), the prevalent covariance matrix among the r
partitions is the desired covariance matrix Σ we wish to estimate. Here, γ is an additional
tuning parameter, but we set γ = 0.95 by default throughout this entire paper.

Unfortunately, many algorithms that could be used to find the largest γ-quasi-clique do
not satisfy a certain monotone property in practice, which hinders their usability. Specifically,
consider an algorithm A that takes in a graph G and outputs a vertex set, denoted by A(G),
and for two graphs G′ and G, let G′ ⊆ G denote that G′ is a subgraph of G. We say that
algorithm A has the monotone property if

G′ ⊆ G ⇒ |A(G′)| ≤ |A(G)|, for any two graphs G,G′. (2.8)

We are not aware of such a property being important in the quasi-clique literature, but it is a
natural property to inherit from the multiple testing community. That is, a multiple testing
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2. assessing heterogeneity – covariance-based sample selection

Figure 2.3: (A) Visualization of an (example) adjacency matrix that can be formed using (2.7),
where the ith row from top and column from the left denotes the ith vertex. A red square in position
(i, j) denotes an edge between vertex i and j, and a pale square denotes the lack of an edge. (B)
Illustration of the desired goal. The rows and columns are reordered from Figure A, and the dotted
box denotes the vertices that were found to form a γ-quasi-clique.

procedure has the monotone property if increasing the signal-to-noise ratio (i.e., decreasing
the p-values) yields more rejections (see (Hahn, 2018) and references within). Similarly in
the quasi-clique setting, it is natural to expect that increasing the signal-to-noise ratio (i.e.,
removing edges in G) yields less partitions selected. The monotone property is crucial in
practice since it can be shown that the chosen FWER level α and the graph G defined in
(2.7) have the following relation,

α ≥ α′ ⇒ G ⊆ G′,

where G and G′ are the graphs formed by FWER level α and α′ respectively. Hence, an
algorithm that does not exhibit the property in (2.8) will be fragile – using a smaller α to
accept more null hypotheses might counterintuitively result in less partitions being selected.
As we will demonstrate in §2.5 through simulations, many existing algorithms to find the
largest quasi-clique do not satisfy the monotone property empirically. Therefore, we develop
the following new algorithm to remedy this.

We describe the algorithm below. It starts by constructing a list containing all maximal
cliques in the graph based on (2.7). A maximal clique is a vertex set that forms a clique but
is not subset of a larger clique. The algorithm then proceeds by determining if the union
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2.4. Methods: COBS (Covariance-based sample selection)

Figure 2.4: Schematic of Algorithm 4’s implementation. Step 2 is able to leverage hash tables
which stores previous calculations to see if the union of vertices in a pair of children sets forms
a γ-quasi-clique. This has a near-constant computational complexity. This can save tremendous
computational time since Step 3, which checks if the union of vertices in both parent sets form a
γ-quasi-clique, has a computational complexity of O(r2).

of any two vertex sets forms a γ-quasi-clique. If so, this union of vertices is added to the
list of vertex sets. The algorithm returns the largest vertex set in the list when all pairs of
vertex sets are tried and no new γ-quasi-clique is found. We demonstrate in §2.5 that this
algorithm exhibits the monotone property (2.8) empirically.

Algorithm 4: Clique-based selection

1. Form graph G based on (2.7).

2. Form Q, the set of all vertex sets that form a maximal clique in G. Each vertex set is
initialized with a child set equal to itself.

3. While there are vertex sets A,B ∈ Q the algorithm has not tried yet:

a) Determine if C = A∪B forms a γ-quasi-clique in G. If so, add C as a new vertex
set into Q, with A and B as its two children sets.

4. Return the largest vertex set in Q.

A naive implementation of the above algorithm would require checking if an exponential
number of vertex set unions C = A∪B forms a γ-quasi-clique, and each check requires O(r2)
operations. However, we are able to dramatically reduce the number of checks required
by using the following heuristic: we only check whether the union of A and B forms a
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2. assessing heterogeneity – covariance-based sample selection

γ-quasi-clique if the union of two children sets, one from each A and B, forms a γ-quasi-clique.
This heuristic allows us to exploit previous calculations and reduce computational costs. We
implement this idea by using one hash table to record which vertex sets are children of other
vertex sets, and another hash table table to record if the union of two vertex sets forms a
γ-quasi-clique. This idea is illustrated in Figure 2.4. Additional details on how to initialize
and optionally post-process Algorithm 4 are given in Appendix 2.D.

2.5 Simulation study

We perform empirical studies to show that COBS has more power and yields a better
estimation of the desired covariance matrix Σ over conventional methods as the samples
among different partitions are drawn from increasingly dissimilar distributions.

Setup: We generate synthetic data in r = 25 partitions, where the data in each partition
has n = 15 samples and d = 1000 dimensions drawn from a non-Gaussian distribution.
Among these r partitions, the first group of r1 = 15 partitions, second group of r2 = 5
partitions and third group of r3 = 5 partitions are drawn from three different nonparanormal
distributions respectively (Liu et al., 2009). The goal in this simulation suite is to detect
these r1 partitions with the same covariance structure. The nonparanormal distribution is a
natural candidate to model genomic data with heavier tails and multiple modes (Liu et al.
(2012) and Xue and Zou (2012)), and serves to demonstrate that our methods in §2.4 does
not rely on the Gaussian assumption. Formally, a random vector X = (X1, . . . , Xd) ∈ Rd
is drawn from a nonparanormal distribution if there exists d monotonic and differentiable
functions f1, . . . , fd such that when applied marginally, Z = (f1(X1), . . . , fd(Xd)) ∼ N(µ,Σ),
a Gaussian distribution with proxy mean vector µ and proxy covariance matrix1 Σ. We
provide the details of how we generate the three nonparanormal distributions in Appendix
2.E, but we highlight the key features regarding Σ below.

We construct three different proxy covariance matrices Σ(1),Σ(2), and Σ(3) in such a
way that for a given parameter β ∈ [0, 1], we construct Σ(2) and Σ(3) to be more dissimilar
from Σ(1) as β increases. We highlight the key features of our constructed proxy covariance
matrices here. All three proxy covariance matrices are all based on a stochastic block model
(SBM), a common model used to model gene networks (Liu et al., 2018a; Funke and Becker,
2019). The first r1 partitions are generated using proxy covariance matrix Σ(1), which is
an SBM with two equally-sized clusters where the within-cluster covariance is a = 0.9 and
the between-cluster covariance is b = 0.1. The second r2 partitions are generated using
proxy covariance matrix Σ(2), which is similar to Σ(1) except a and b are shrunk towards 0.5
depending on the magnitude of β. The last r2 partitions are generated using proxy covariance
matrix Σ(3), which is similar to Σ(1) except an equal fraction of variables from both clusters

1We emphasize “proxy” covariance matrix, for example, since the covariance of X, the random variable
we sample, is not Σ.
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2.5. Simulation study

Figure 2.5: (Top row) Heatmap visualizations of the empirical covariance matrix of the three
partitions, each drawn from a different nonparanormal distribution when β = 0.3. The distribution
using Σ(1), Σ(2) and Σ(3) are shown as the left, middle and right plots respectively. The darker
shades of red denote a higher covariance. (Bottom row) Visualizations similar to the top row except
β = 1, so the dissimilarity comparing Σ(2) or Σ(3) to Σ(1) is increased.

break off to form a third cluster, depending on the magnitude of β. By generating Σ(1),Σ(2),
and Σ(3) in this fashion, the parameter β can control the difficulty of the simulation setting –
a larger β means COBS would ideally have more power in distinguishing among the first r1

partitions from the other partitions. Figure 2.5 visualizes the resulting covariance matrices
for the three nonparanormal distribution we generate in this fashion for β = 0.3 and β = 1.

Multiple testing: We use the Stepdown method described in Subsection 2.4.1 on
our simulated data where β = {0, 0.3, 0.6, 1} to see how the true positive rates and false
positive rates vary with β. Let L = {(i1, j1), (i2, j2), . . .} denote the returned set of partition
pairs that correspond to the accepted null hypothesis. Since our goal is to find the first r1

partitions, we define the true positive rate and false positive rate for individual hypotheses
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Figure 2.6: RoC curves for the accepted null hypotheses, for settings where β = (0, 0.3, 0.6, 1),
where each curve traces out the results as α varies from 0 to 1. (A) The curves resulting from using
a Bonferroni correction to the

(
r
2

)
individual hypothesis tests. (B) The curves resulting from using

our Stepdown method.

to be

True positive rate (TPR) for hypotheses =

∣∣{(i, j) ∈ L : i ≤ r1 and j ≤ r1

}∣∣(
r1
2

) ,

False positive rate (FDR) for hypotheses =

∣∣{(i, j) ∈ L : i > r1 or j > r1

}∣∣(
r
2

)
−
(
r1
2

) .

We plot the RoC curves visualizing the TPR and FPR in Figure 2.6. Each curve
traces out the mean true and false positive rate over 25 simulations as α ranges from 0
(top-right of each plot) to 1 (bottom-left of each plot), where we use 200 bootstrap trials
per simulation. Figure 2.6A shows the naive analysis where we compute all

(
r
2

)
p-values,

one for each hypothesis test comparing two partitions, and accept hypotheses for varying
levels of α after using a Bonferroni correction. Figure 2.6B shows the Stepdown method.
In both plots, we see that as β increases, each method has more power. However, as we
mentioned in Subsection 2.4.1, there is a considerable loss of power when comparing the
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2.5. Simulation study

Figure 2.7: Number of selected partitions for a particular simulated dataset as the number of
accepted null hypotheses varies with the FWER level α. (A) Results using our clique-based selection
method developed in Subsection 2.4.2 and spectral clustering. (B) Results using the methods
developed in Tsourakakis et al. (2013) and Chen and Saad (2010). See Appendix 2.D for more details
of these methods.

Bonferroni correction to the Stepdown method. This is because the Bonferroni correction is
too conservative when accounting for dependencies.

Partition selection: After using Stepdown, we proceed to select the partitions as
in Subsection 2.4.2 to understand the monotone property and see how the true and false
positive rates for partitions vary with β.

Figure 2.7 shows that three methods currently in the literature that can be used to find
the largest quasi-clique in (2.7) fail the monotone property (2.8), whereas COBS succeeds.
In Figure 2.7A, we compare our clique-based selection method, described in Subsection 2.4.2,
against spectral clustering, a method used in network analyses designed to find highly
connected vertices (Lei and Rinaldo, 2015), whereas in Figure 2.7B, two methods recently
developed in the computer science community are compared (Chen and Saad (2010) and
Tsourakakis et al. (2013)). These three methods are detailed in Appendix 2.D, and all the
methods receive the same set of accepted null hypotheses as the FWER level α varies. Recall
that since the Stepdown method accepts more hypotheses as α decreases, the graph formed
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Figure 2.8: A) Similar RoC curves to Figure 2.6, but for selected partitions selected by COBS.
B) The mean spectral error of each method’s downstream estimated covariance matrix for varying
β over 25 trials. The four methods to select partitions shown are COBS for α = 0.1 (black), the
method that selects all partitions (green), the method that selects a fixed set of 5 partitions (blue),
and the method that selects exactly the partitions that contain samples drawn from a nonparanormal
distribution with proxy covariance Σ(1) (red).

by (2.7) becomes denser as α increases. However, as we see in Figure 2.7, the number of
partitions selected by all but our method sometimes decreases as number of accepted null
hypotheses increases, hence violating the desired monotone property.

Figure 2.8A shows the RoC curves for varying β as the FWER level α varies. This figure
is closely related to Figure 2.6B. We use our clique-based selection method to find the largest
γ-quasi-clique for γ = 0.95. Let P̂ denote the selected set of partitions. Similar to before,
we define the TPR and FPR in this setting as

TPR for partitions =

∣∣{p ∈ P̂ : p ≤ r1

}∣∣
r1

,

FDR for partitions =

∣∣{p ∈ P̂ : p > r1

}∣∣
r2 + r3

.

We see that the power of the COBS increases as β increases, as expected.

Covariance estimation: Finally, we show that COBS is able to improve the downstream
covariance estimation compared to other approaches. To do this, we use four different methods
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to select partitions and compute the empirical covariance matrix among the samples in
those partitions. The first three methods resemble analyses that could be performed on the
BrainSpan dataset in practice. The first method uses the COBS. The second method always
selects all the partitions, which resembles using all the partitions in the BrainSpan dataset.
The third method always selects the same 5 partitions – 3 partitions contain samples drawn
from the nonparanormal distribution with proxy covariance Σ(1), while the other 2 partitions
contain samples from each of the remaining two distributions. This resembles previous work
(Liu et al., 2015) that consider only partitions in Window 1B. For comparison, the last
method resembles an oracle that selects exactly the r1 partitions containing samples drawn
the nonparanormal distribution with proxy covariance Σ(1).

Figure 2.8B shows that our partition selection procedure performs almost as well as the
oracle method over varying β level. Notice that for low β, COBS and the method using all
partitions yield a smaller spectral error than the oracle method. This is because for low β,
the covariance matrices Σ(1), Σ(2), and Σ(3) are almost indistinguishable. However, as β
increases, the dissimilarities among Σ(1), Σ(2), and Σ(3) grow. This means methods that do
not adaptively choose which partitions to select become increasingly worse. However, our
procedure remains competitive, performing almost as if it knew which partitions contain
samples drawn the nonparanormal distribution with proxy covariance Σ(1). Additional
simulations that go beyond the results in this section are deferred to Appendix 2.F.

2.6 Application on BrainSpan study

We demonstrate the utility of COBS by applying it within the DAWN framework established
in Liu et al. (2015). Specifically, in this section, we ask two questions. First, does COBS select
reasonable partitions within the BrainSpan data, given our current scientific understanding
outlined in §2.2? Second, does using COBS within the DAWN framework lead to a more
meaningful gene co-expression network that can implicate genes using a “guilt-by-association”
strategy?

Here, we discuss the different datasets relevant to the analysis in this section. DAWN
relies on two types of data to identify risk genes: gene expression data to estimate a gene
co-expression network and genetic risk scores to implicate genes associated with ASD. For
the former, we use the BrainSpan microarray dataset (Kang et al., 2011), which has been
the primary focus of this article so far. For the latter, we use the TADA scores published
in De Rubeis et al. (2014) which are p-values, one for each gene, resulting from a test
for marginal associations with ASD based on rare genetic variations and mutations.2 For
enrichment analysis, we use a third dataset consisting of TADA scores from Satterstrom et al.
(2020). We use this third dataset only to assess the quality of our findings, and these TADA

2TADA stands for Transmission and De novo association (He et al., 2013).
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scores are derived as in De Rubeis et al. (2014), but include additional data assimilated
since 2014. Relying on a later “data freeze,” this 2020 study has greater power to detect risk
genes compared to the 2014 study: the two studies report 102 and 33 risk genes, respectively,
with FDR cutoff of 10%. Additional details of our analysis in this section can be found in
Appendix 2.G.

2.6.1 Gene screening

We first preprocess the BrainSpan data by determining which genes to include in our analysis.
This is necessary since there are over 13,939 genes in the BrainSpan dataset, most of which
are probably not correlated with any likely risk genes. Including such genes increases the
computationally cost and is not informative for our purposes. Hence, we adopt a similar
screening procedure as in Liu et al. (2015), which involves first selecting genes with high
TADA scores based on De Rubeis et al. (2014), and then selecting all genes with a high
Pearson correlation in magnitude with any of the aforementioned genes within the BrainSpan
dataset. We select a total of 3,500 genes to be used throughout the remainder of this analysis.

2.6.2 Partition selection

Motivated by the findings in Willsey et al. (2013), we analyze the BrainSpan dataset using
COBS to find many partitions that are homogeneous with most partitions in Window 1B
(Figure 2.1). We use the Stepdown method with 200 bootstrap trials and FWER level
α = 0.1. This simultaneously finds which null hypotheses are accepted among the

(
125
2

)
hypotheses tested. Based on these results, we select the partitions that form the largest
γ-quasi-clique for γ = 0.95.

We visualize the results of the Stepdown method in Figure 2.9, illustrating that COBS
finds 24 partitions which have statistically indistinguishable covariance matrices, 7 of which
are in Window 1B. We form the graph G based on the accepted null hypotheses, as described
in (2.7). Figure 2.9A shows the full graph with all 125 nodes, while Figure 2.9B shows the
connected component of G as an adjacency matrix. We can see that the 24 partitions we
select, which contain 272 microarray samples, correspond to 24 nodes in G that form a dense
quasi-clique.

We visualize the proportion of selected partitions per window in the BrainSpan dataset
in Figure 2.10A to demonstrate that our findings are consistent with the findings in Willsey
et al. (2013). As mentioned in §2.2, Willsey et al. (2013) find that partitions in Window
1B are mostly homogeneous and are enriched for tightly clustered risk genes. The authors
also found that, on average, gene expression varies smoothly across developmental periods,
meaning there is greater correlation between the gene expressions belonging to adjacent
developmental windows. The authors also estimate a hierarchical clustering among the
four brain regions. Indeed, our results match these finding. We select a large proportion of
partitions in Window 1B, and the proportion of selected partitions smoothly decreases as
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Figure 2.9: (A) The graph G containing all 125 nodes. Red nodes correspond to the 24 selected
partitions, while pale nodes correspond to partitions not selected. (B) The adjacency matrix of a
connect component of G, where each row and corresponding column represents a different node,
similar to Figure 2.3. A red pixel corresponds to an edge between two nodes, while a pale pixel
represents no edge.

the window representing older developmental periods as well as brain regions become more
dissimilar to Window 1B.

Lastly, we apply the same diagnostic as in §2.3 to show in Figure 2.10B that the 272
samples within our 24 selected partitions are much more homogeneous than the 107 samples
among the 10 partitions in Window 1B. The p-values we obtain after 250 divisions are much
closer to uniform that those shown in Figure 2.2.

2.6.3 Overview of DAWN framework

As alluded to in §2.1, DAWN estimates a gene co-expression network using the microarray
partitions to boost the power of the TADA scores using a “guilt-by-association” strategy.
Figure 2.11 illustrates this procedure as a flowchart. The first step uses COBS to select 24
partitions from the BrainSpan dataset, as stated in the previous subsection. In the second
step, DAWN estimates a Gaussian graphical model via neighborhood selection (Meinshausen
and Bühlmann, 2006) from the 272 samples in these partitions to represent the gene co-
expression network. In the third step, DAWN implicates risk genes via a Hidden Markov
random field (HMRF) model by combining the Gaussian graphical model with the TADA
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Figure 2.10: (A) The number of partitions and samples (n) selected within each window. Partitions
from 6 different windows are chosen, and the estimated γw is empirical fraction of selected partitions
within each window. The more vibrant colors display a higher value of γ̂w. (B) A QQ-plot of the 250
p-values generated when applying our diagnostic to the 24 selected partitions, similar to Figure 2.2.
While these p-values are slightly left-skewed, they suggest that the selected partitions are more
homogeneous when compared to their counterparts shown in Figure 2.2.

scores. The details are in Liu et al. (2015), but in short, this procedure assumes a mixture
model of the TADA scores between risk genes and non-risk genes, and the probability that
a gene is a risk gene depends on the graph structure. An EM algorithm is used to estimate
the parameters of this HMRF model, after which a Bayesian FDR procedure (Muller et al.,
2006) is used on the estimated posterior probabilities of being a risk gene to output the final
set of estimated risk genes. The methodology in the second and third step are the same as
those in Liu et al. (2015), as we wish to compare only different ways to perform the first
step.

2.6.4 Investigation on gene network and risk genes

In this subsection, we compare the DAWN analysis using the 24 partitions selected by COBS
(i.e., the “COBS analysis”) to using the 10 partitions in Window 1B originally used in Liu
et al. (2015) (i.e., the “Window 1B analysis”) to show how COBS improves the estimated
gene network.

Closeness of genes within co-expression network. We demonstrate that the 102 genes
detected by the newer TADA scores (Satterstrom et al., 2020) are roughly 10%-30% closer
to the 33 genes detected by the older TADA scores (De Rubeis et al., 2014) in the gene
network estimated in the COBS analysis than in the Window 1B analysis. This suggests
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Figure 2.11: Flowchart of how COBS (Stepdown method and clique-based selection method) is used
downstream to find risk genes within the DAWN framework. Step 2 and 3 are taken directly from
Liu et al. (2015).

that the COBS analysis estimates a more useful gene network, because when future TADA
scores are published after Satterstrom et al. (2020), the next wave of detected risk genes are
more likely to also be closer to the original risk genes detected in De Rubeis et al. (2014).
We defer the details to Appendix 2.G, but highlight the procedure to derive this result
here. Effectively comparing the distances between genes in a network is a difficult problem
since the estimated gene networks in the COBS and Window 1B analyses have different
number of edges. In addition, current research has suggested that natural candidates such
as the shortest-path distance or the commute distance do not accurately capture the graph
topology (Alamgir and Von Luxburg (2012) and Von Luxburg et al. (2014)). Hence, we use
two different distance metrics to measure the closeness of two sets of genes that potentially
overcome this problem. The first is using the path distance via the minimum spanning tree,
and the second is using the Euclidean distance via the graph root embedding (Lei, 2018).
Using either of these metrics lead to the same conclusion.

Enrichment analysis. We demonstrate that COBS improves DAWN’s ability to predict
risk genes based on the newer TADA scores (Satterstrom et al., 2020) when utilizing the
older TADA scores (De Rubeis et al., 2014) as input. Specifically, the COBS analysis and
the Window 1B analysis implicate 209 and 249 risk genes respectively an FDR cutoff of
10%, respectively. The risk genes implicated in the COBS analysis have a better enrichment
for the 102 genes detected using the newer TADA scores (Satterstrom et al., 2020): 18.8%
(COBS analysis) versus 14.6% (Window 1B analysis). We note that genes implicated by
DAWN but not by the TADA scores are not considered false positives. In fact, He et al.
(2013) suggests that there are upwards of 500 to 1000 genes that increase risk for ASD.
Hence, we are unlikely to detect all of the true risk genes based on tests that rely on rare
genetic variation alone.
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Robustness to γ. We additionally verify the robustness of the above enrichment results
to the parameter γ. Recall that γ controls the density of the edges in the quasi-clique, as
introduced in Subsection 2.4.2, and we typically set γ = 0.95 by default. When we re-run
the entire analysis with different values of γ varying from 0.85 to 0.97 at intervals of 0.01, we
obtain 13 different sets of estimated risk genes. We stop at γ = 0.97 since larger values result
in no partitions selected outside of Window 1B. When we intersect all 13 sets of risk genes
together, we find that 144 risk genes are implicated regardless of the value of γ, of which
22.9% are in the list of 102 risk genes found using only the newer TADA scores (Satterstrom
et al., 2020). This is a promising result, as it demonstrates that the implicated risk genes
in the COBS analysis are more enriched than those in the Window 1B analysis for a wide
range of γ.

2.7 Conclusion and discussions

In this article, we develop COBS to select many partitions with statistically indistinguishable
covariance matrices in order to better estimate graphical models for ASD risk gene detection.
Our procedure first applies a Stepdown method to simultaneously test all

(
r
2

)
hypotheses,

each testing whether or not a pair of partitions share the same population covariance
matrix. The Stepdown method is critical since it can account for the dependencies among
all
(
r
2

)
hypotheses via bootstrapping the joint null distribution. Then, our procedure uses a

clique-based selection method to select the partitions based on the accepted null hypotheses.
The novelty in this latter method is its ability to preserve monotonicity, a property stating
that less partitions should be selected as the number of accepted null hypotheses is smaller.
We demonstrate empirically that the COBS achieves this property while common methods
such as spectral clustering do not. When we apply COBS to the BrainSpan dataset, we find
scientifically meaningful partitions based on the results in Willsey et al. (2013). We also find
that COBS aids in clustering the risk genes detected in Satterstrom et al. (2020) closer to
the risk genes detected in (De Rubeis et al., 2014) within the estimated gene co-expression
network and in getting a better enrichment in implicated risk genes via the DAWN analysis.

The theoretical role of the FWER level α is not well understood mathematically. Specifi-
cally, while (2.6) provides a theoretical guarantee about the set of null hypothesis accepted,
we would like to prove a theoretical guarantee about the set of selected partitions P̂ . Towards
this end, we suspect that with some modification to COBS, closed testing offers a promising
theoretical framework (see Dobriban (2018) and references within). This will be investigated
in future work.

COBS is applied directly to help implicate risk genes for ASD, but this line of work has
broader implications in genetics. Due to the improvement of high throughput technologies,
it has become increasingly accessible to gather large amounts of gene expression data. This
includes both microarray and RNA sequencing data. However, as we have seen in this article,
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gene expression patterns can vary wildly among different tissues. Hence, it is challenging to
select samples that are relevant for specific scientific tasks. Beyond analyzing brain tissues,
Greene et al. (2015) develop procedures to select relevant samples amongst a corpus of
microarray expression data to estimate gene co-expression networks for different tissue types.
While Greene et al. (2015) does not motivate their method from a statistical model, our
work provides a possible statistical direction for this research field to move towards.

Acknowledgments: We thank Bernie Devlin and Lambertus Klei for the insightful discus-
sions about our analysis and results. We thank Li Liu and Ercument Cicek for providing
the code used in Liu et al. (2015) to build off of. We also thank the anonymous reviewers
for helpful suggestions on how to restructure the simulations and analyses.

2.A Code and dataset

The R code for replicating all analyses and figures in this article are hosted on GitHub in
the repository https://github.com/linnylin92/covarianceSelection. The three major
datasets used in this article are also included in the repository. The first dataset is the
BrainSpan microarray samples collected by (Kang et al., 2011). While the original dataset
is publicly available on GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE25219), we provide a locally preprocessed dataset, which was created to be amendable for
our analysis in R. The second dataset is the older TADA scores (De Rubeis et al., 2014). The
third dataset is the list of 102 risk genes detected using the newer TADA scores (Satterstrom
et al., 2020).

2.B Brain region details

There are four primary brain regions, each containing smaller subregions.

• PFC-MSC: The prefrontal cortex (PFC) and primary motor-somatosensory cortex
(MSC) consist of six smaller regions: primary motor cortex, primary somatosensory
cortex, ventral prefrontal cortex, medial prefrontal cortex, dorsal prefrontal cortex and
orbital prefrontal cortex.

• V1C, ITC, IPC, A1C, STC: A region consisting of the primary visual cortex (V1C),
inferior temporal cortex (ITC), primary auditory cortex (A1C), and superior temporal
cortex (STC).

• STR, HIP, AMY: A region consisting of the stratum (STR), hippocampal anlage
or hippocampus (HIP) and amygdala (AMY).

• MD, CBC: A region consisting of the mediodorsal nucleus of the thalamus (MD) and
the cerebellar cortex (CD).
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2.C Extension to the Stepdown method

One of the largest drawbacks of the Stepdown method lies in its intensive computational cost.
For r partitions, at most

(
r
2

)
bootstrap statistics need to be computed in each bootstrap trial,

each requiring a computational cost of O(d2 ·np). In this section, we develop a computational
extension to the Stepdown method that yields a more computationally efficient algorithm as
long as the test statistic T̂ satisfies the triangle inequality and the number of variables d is
large. That is, for any bootstrap trial b and for any partitions i, j and k, we require that
the bootstrap statistics satisfy

T̂
(b)
(i,k) ≤ T̂

(b)
(i,j) + T̂

(b)
(j,k). (2.9)

This property can potentially save expensive calculations when calculating (2.5) in Algorithm
2 by reducing the number of bootstrap statistics we need to explicitly calculate. Since we
only care about the maximum bootstrap statistic T̂ (b) in each trial, the triangle inequality

gives an upper bound on the bootstrap statistic T̂
(b)
(i,k) between partitions i and k, leveraging

bootstrap statistics already calculated within a specific bootstrap trial. As we sequentially

iterate through all pairs of partitions (i, k), if the upper bound for T̂
(b)
(i,k) is smaller than the

current maximum bootstrap statistic within a specific bootstrap trial b, we do not need to

explicitly compute T̂
(b)
(i,k).

Unfortunately, the test statistic (2.3) described in Subsection 2.3.1 originally from Chang
et al. (2017) does not satisfy the triangle inequality (2.9). Hence, we consider a new test
statistic defined as

T̂ = max
ij

(
t̂ij
)

where t̂ij =
∣∣σ̂X,ij − σ̂Y,ij∣∣, i, j ∈ 1, . . . , d, (2.10)

and we make a similar modification for its bootstrap counterpart, T̂ (b). It can easily be shown
that the above bootstrap statistics satisfies the desired triangle inequality. Additionally,
using the techniques in Chernozhukov et al. (2013), it can be proven that this test statistic
will still yield a hypothesis test with asymptotic 1− α coverage under the null, analogous
to (2.6). We will call the Stepdown procedure that uses (2.10) the “Accelerated Stepdown”
procedure.

To formalize how to take advantage of this triangle inequality property, we describe
a subroutine that leverages this property to compute T̂ (b) in (2.5) by representing the

individual bootstrap statistics T̂
(b)
(i,j) as weighted edges in a graph. The algorithm uses

Dijsktra’s algorithm to find the shortest path between vertices. This implicitly computes the
upper bound in the bootstrap statistic between two partitions using the triangle inequality.
This algorithm can provide substantial improvement in computational speed by leveraging
the fact that determining the shortest path on a fully-dense graph has a computational

complexity of O(r2), whereas computing T
(b)
(i,j) has a computational complexity of O(d2 · np).
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Algorithm 3: Distance metric-based procedure to compute T̂ (b)

1. Form graph G = (V,E) with r nodes and all
(
r
2

)
edges, and initialize each edge to have

a weight of infinity.

2. Arbitrarily construct a spanning tree T and compute all T̂
(b)
(i,j)’s corresponding to edges

(i, j) ∈ T . Record z = max(i,j)∈T T̂
(b)
(i,j).

3. Construct a set of edges S = LAckslashT which represents the bootstrap statistics
between specific pairs of partitions that have yet to be computed.

4. While S is not empty:

a) Arbitrarily select an edge (i, j) ∈ S and remove it from S. Compute the shortest-
path distance from vertex i to j in G.

b) If the shortest-path distance is larger than z, update the edge (i, j) to have weight

T̂
(b)
(i,j), and update z to be max(z, T̂

(b)
(i,j)).

5. Return z.

As we will see in §2.F, while (2.10) can take advantage of this computational speedup,
it yields a much less powerful test when compared to test using (2.3). This is intuitive, as
(2.10) does not normalize by the sum of the empirical variances, unlike (2.3). Hence, we do
not use the Accelerated Stepdown procedure within COBS when analyzing the BrainSpan
dataset in this paper. However, we believe there are potentially other settings outside of
covariance testing where this computational speedup idea can be utilized more effectively.
We leave this as direction for future work.

2.D Details of algorithms to find quasi-cliques

The first subsection remarks on possible extensions to the clique-based selection method
described in Algorithm 4. The second subsection describes the three other algorithm used
in §2.5 for us to compare against. Throughout this section, for a generic graph G, we use V
to denote the set of vertices in G, GS to denote a subgraph formed by a vertex set S ⊆ V ,
and E(G) to denote the number of edges in G.

2.D.1 Extensions to clique-based selection method

We mention two extensions to clique-based selection method (Algorithm 4) that can be
useful in practice.
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• Initializing algorithm around a desired set of vertices: In certain cases, the
user would want the γ-quasi-clique to be initialized around a desired subset of vertices
in G = (V,E). For instance, in our setting, since Liu et al. (2015) applies DAWN to
the 10 partitions in Window 1B, it is natural for us to encourage COBS to select as
many partitions in Window 1B as possible to enable a meaningful comparison.

To resolve this, first, we run Algorithm 4 at the desired level γ on GS . This would
output a subset of vertices Score ⊆ S that form the largest γ-quasi-clique in GS . Then,
we run Algorithm 4 at the same level γ on the full graph G but perform an additional
operation after (2.): after Q is initialized with all maximal cliques in G, we check each
vertex set A ∈ Q if A∪Score forms a γ-quasi-clique. If yes, we replace A with A∪Score

in Q. If not, we remove A from Q. The algorithm then proceeds to (3.) as usual. By
applying this simple change, we are ensured the returned vertex set by Algorithm 4
contains Score.

• Post-processing the returned vertex set: In certain cases, the returned vertex
set of Algorithm 4 has a few vertices with a very low degree when compared to the
other vertices. To resolve this, we post-process this vertex set by removing vertices
that are connected to less than half the other vertices in the returned set.

In this paper, we use the initialization extension only when analyzing the BrainSpan
dataset in §2.6, where we initialize the largest quasi-clique around the 10 partitions in
Window 1B.

2.D.2 Overview of other algorithms

We overview the three algorithms introduced in §2.5 that are designed to find large quasi-
cliques.

• Chen and Saad (2010): This algorithm recursively splits a graph G into two in a
hierarchical-clustering type approach with respect to a carefully constructed weight
matrix. This forms a tree-type data structure, and then the algorithm scans the tree
in a breath-first-search type fashion for the largest subgraph with an edge density
larger than γ.

• Tsourakakis et al. (2013): This algorithm performs a local search by adding vertices
mypoically and then removing vertices occasionally until no more myopic improvements
can be made. Specifically, it first initializes the set S of vertices to contain a vertex
that maximizes the ratio between the number of triangles and the degree, and includes
all of the neighbors of said vertex. Then algorithm iteratively tries to incrementally
improve the fγ(S) = E(GS) − γ

(|S|
2

)
as much as possible by adding neighbors of S.

When it is no longer able to improve fγ(S), the algorithm tries removing a vertex from
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S to improve fγ(S). The algorithm then iterates between such adding and removing
vertices from S for a fixed number of iterations.

• Spectral clustering: While many different community detection methods for random
graphs now exist (for example, see Abbe (2017) and Athreya et al. (2017) and the
references within), we choose spectral clustering as described in Lei and Rinaldo
(2015) as a prototypical example of how many of such methods fail to demonstrate
the monotone property as described in Subsection 2.4.2. Specifically, this method
applies K-means clustering to the top K eigenvectors of the adjacency matrix, where
K is a tuning parameter to specify. To find large quasi-cliques, we iteratively try
spectral clustering for a range of K’s (i.e., K = 2, . . . , 5), and for each detected cluster
in any of the estimated clusterings, we compute if the corresponding vertices of said
cluster forms a γ-quasi-clique. If any γ-quasi-clique is found, we return the largest
γ-quasi-clique discovered in this fashion.

2.E Formal description of simulation setup

We say a multivariate vector X ∈ Rd is distributed based a nonparanormal distribution
with proxy mean vector µ, proxy covariance matrix Σ, and monotonic and differentiable
functions f1, . . . , fd if the density of X is

p(X) =
1

(2π)d/2|Σ|1/2
exp

{
− 1

2

(
f(X)− µ

)>
Σ
(
f(X)− µ

)} d∏
j=1

∣∣f ′j(xj)∣∣, (2.11)

where f(X) = (f1(x1), . . . , fd(xd)). This is defined in Liu et al. (2009). In our simulation
suite, we set µ = 0. Let this distribution be denoted as NPN(0,Σ, f). In the next two
subsections, we formalize the details of Σ and f1, . . . , fd.

2.E.1 Details on proxy covariance matrices Σ

The following three bullet points detail the construction of Σ(1), Σ(2) and Σ(3) respectively.
As mentioned in §2.5, β ∈ [0, 1] is a user-defined parameter that controls the dissimilarity
among these three matrices.

• Construction of Σ(1): As mentioned in §2.5, Σ(1) ∈ Rd×d+ follows an SBM with two
equally-sized clusters. Specifically, the first cluster contains indices 1, . . . , bd/2c and
the second cluster contains indices bd/2c+ 1, . . . , d. Then, we construct Σ(1) where

Σ
(1)
ij =


1 if i = j,

a if i 6= j, i is in the same cluster as j,

b if i 6= j, i is not in the same cluster as j,

(2.12)
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for all i, j ∈ 1, . . . , d and a = 0.9 and b = 0.1.

• Construction of Σ(2): Σ(2) is constructed the same as Σ(1), except

a = 0.9− β · 0.4, and b = 0.1 + β · 0.4.

When β = 1, this means that Σ(2) is a matrix with 0.5 everywhere along the off-diagonal.

• Construction of Σ(3): Σ(3) is constructed in a similar way to Σ(1), except there are
three clusters. The first cluster contains indices 1, . . . , bβ · d/6c, bd/2c+ 1, . . . , bd/2 +
β · d/6c. The second cluster contains indices bβ · d/6c+ 1, . . . , bd/2c. The third cluster
contains indices bd/2 + β · d/6c+ 1, . . . , d. Observe that this partitions 1, . . . , d, and
when β = 1, this results in three clusters of the roughly the same size. We then
construct Σ(3) using (2.12) but using these three clusters.

2.E.2 Details on functions f1, . . . , fd

At a high-level, these functions f1, . . . , fd ensure that these marginal distributions of our
sampled nonparanormal random variables are similar to the marginal distributions of
the BrainSpan data. These marginal distributions are constructed in the following way.
We first randomly sample d variables (i.e., genes) uniformly from the BrainSpan dataset,
{g1, . . . , gd} ⊆ {1, . . . , n}. Next, for each j, let p̂gj denote the kernel density estimate of
variable gj in the BrainSpan dataset, using the default bandwidth selection used by the
stats::density function in R.

We now formalize how to construct f1, . . . , fd. As described in Liu et al. (2009), we
actually construct the inverse of these functions f−1

1 , . . . , f−1
d as they are more amendable

for sampling, which must exist since f1, . . . , fd are monotonic and differentiable. Recall that
µ = 0. We first sample a vector z = (z1, . . . , zd) from a Gaussian distribution N(0,Σ). Let
Φ(t;P ) denote the cumulative distribution function evaluated at t for a univariate density
P . For any j ∈ 1, . . . , d, we construct f−1

j such that

Φ
(
t;N(0,Σjj)

)
= Φ

(
f−1
j (t); p̂gj

)
, ∀t ∈ R.

That is, we construct f−1
j so that zj is at the same quantile with respect to N(0,Σjj) as

f−1
j (zj) is with respect to the kernel density estimate p̂gj . Notice that by constructing

f−1
1 , . . . , f−1

d in this fashion, each function is monotone and differentiable. We then set

X =
(
x1, . . . , xd

)
=
(
f−1

1 (z1), . . . , f−1
d (zd)

)
as one sample from the nonparanormal distribution NPN(0,Σ, f).

Notice that by introducing non-Gaussianity into our simulation suite in this fashion, we
ensure that the marginal distribution of all r partitions resemble the BrainSpan dataset,
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Figure 2.12: Two scatter plots of bivariate distributions sampled from the nonparanormal for β = 0.
The densities shown on the top and the right of each plot represents the targeted kernel density
estimates from the BrainSpan data that the nonparanormal is sampling from, captured by f1, . . . , fd.

and also ensure that the first r1 partitions still are drawn from the same population
covariance matrix. Also, by generating data in this fashion, we are able to obtain complicated
dependencies between the mean and variance, as well as observe multi-modal distributions
and heavier-tailed distributions compared to the Gaussian. See Liu et al. (2009) for a more
detailed discussion.

2.E.3 Example of sampled nonparanormal distribution

We provide a visual illustration of what the sampled nonparanormal distribution could
look like. We sample 375 samples from NPN(0,Σ(1), f) when β = 0, and plot two of the
resulting pairwise scatterplots in Figure 2.12. We can think of the 375 samples as equivalent
to aggregating all r = 25 partitions together, each having n = 15 samples. These two
scatterplots show that the nonparanormal can display multiple modes marginally or heavier
tails.

2.F Additional simulation results

2.F.1 Covariance homogeneity diagnostic in simulation

In this section, we apply the diagnostic developed in §2.3 to the simulation suite described
in §2.5. Our goal is to determine how the QQ-plots behave as the selected partitions become
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less homogeneous. As done in §2.5, we consider four partition selection strategies: COBS
(using α = 0.1 and γ = 0.95), Base (which selects 3 partitions contain samples drawn from
the nonparanormal distribution with proxy covariance Σ(1), while the other 2 partitions
contain samples from each of the remaining two distributions), All (which selects all r
partitions) and Oracle (which selects exactly the r1 partitions containing samples drawn the
nonparanormal distribution with proxy covariance Σ(1)).

We see in Figure 2.13 and Figure 2.14 that the QQ-plot is a reasonable diagnostic in this
simulation suite. Between these two figures, we vary β among 0, 0.3, 0.6 and 1. We notice
that as β increases, the QQ-plot derived from COBS remains relative uniform, similar to
that of the Oracle. When β = 1, COBS selects one erroneous partition in this particular
trial shown, which results in the QQ-plot showing a deviation away from uniform. The
QQ-plots derived from the Base procedure looks relative uniform when β = 0 (which is to be
expected, as all r partitions share the same covariance matrix when β = 0), but quickly has
QQ-plots that deviate from uniform as β increases. Note that the since the Base procedure
selects only 5 partitions, there are a limited number of ways to split the partitions into two
groups, which yields a limited number of points in the QQ-plot. The QQ-plots derived from
the All procedure follow a similar trend as the Base procedure, but not as severe. These
plots match the findings shown in Figure 2.8.

2.F.2 Simulation under Gaussian setting

While the simulations in §2.5 use nonparanormal distributions, we demonstrate that similar
results hold for Gaussian distributions. This demonstrates that there is nothing particularly
special about the nonparanormal or the Gaussian distribution that enable COBS to work
well, and suggests COBS can work in much more general settings. Specifically, in this
simuation suite, everything is the same as in §2.5, except all the functions f1, . . . , fd are set
to be the identity function. Hence, this means that the first r1 partitions are drawn from
Gaussian distributions with covariance Σ(1), the next r2 partitions are drawn from Gaussian
distributions with covariance Σ(2), and so on.

When we use Bonferroni or the Stepdown method in this Gaussian setting, we observe
ROC curves for the individual hypotheses that strongly resemble Figure 2.6. This is shown
in Figure 2.15.

Similarly, when we use COBS to select partitions, the ROC curves as well as the spectral
error curves strongly resemble Figure 2.8A and B. This is shown in Figure 2.16.

2.F.3 Simulation using Accelerated Stepdown

In this subsection, we apply the Accelerated Stepdown procedure described in §2.C within
the COBS procedure in the simulation setting described in §2.5. Specifically, we use the test
statistic (2.10) and analogous bootstrap statistics, but keep all other parts of the simulation
suite the same.
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Figure 2.13: QQ-plots from the covariance homogeneity diagnostic using four different selection
procedures: COBS (left-most), Base (center left), All (center right) and Oracle (right-most). The top
row represents the simulation setting where β = 0, while the second row represents the simulation
setting where β = 0.3. The plots are created from one instance of COBS, Base, All and Oracle
procedures, and 250 trials are used within the covariance homogeneity diagnostic.

When we plot the ROC curve for the individual hypotheses in Figure 2.17, we already
notice a dramatic loss of power when compared to its original counterpart using the test
statistic (2.3) shown in Figure 2.6. In fact, it seems like the Bonferroni procedure has almost
no power at all, even when β = 1.

Due to the loss of power for the individual hypotheses, we observe a loss of power for
the selected partitions as well (Figure 2.18A) and spectral errors that strongly resemble
selecting all the partitions (Figure 2.18B).

2.G Additional details on BrainSpan analysis

The first subsection describes the analysis pipeline we used throughout §2.6 in more detail.
The second subsection describes the two distance metrics used in Subsection 2.6.4. The
third subsection describes additional results alluded to in Subsection 2.6.4.

2.G.1 Description of analysis pipeline

We now summarize the pipeline used in §2.6 for clarity.
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Figure 2.14: QQ-plots derived in a similar way as in Figure 2.14. However, in this plot, the top
row represents the simulation setting where β = 0.6, while the second row represents the simulation
setting where β = 1.

1. Screening of genes: This is the step described in Subsection 2.6.1, derived from
Liu et al. (2015). We first select all genes whose p-value in the older TADA dataset
(De Rubeis et al., 2014) is less than 0.01. Then, we rank all remaining genes by their
maximum Pearson correlation in magnitude with any of the formerly selected genes in
decreasing order based on the BrainSpan partitions within Window 1B aggregated.
We select genes based on this ranking in order until we have selected a combined total
of d = 3500 genes. We analyze all 125 partitions using only these d genes for the
remainder of the analysis.

2. Applying COBS: This is the two-staged procedure we developed in this paper,
detailed in §2.4. In the first stage, we apply the Stepdown procedure using α = 0.1.
In the second stage, we select the clique-based selection method where γ = 0.95, as
well as using both extensions discussed in Subsection 2.D.1. This results in 24 selected
partitions within the BrainSpan dataset, as detailed in Subsection 2.6.2. We then
combine all the 24 selected partitions to form a dataset X ∈ Rn×d with n = 272
microarray samples and d genes to be used for the remainder of the analysis.

3. Estimating the Gaussian graphical model: This step is described in Subsec-
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Figure 2.15: ROC curves for the hypothesis under the Gaussian setting. These plots are similar to
those in Figure 2.6.

tion 2.6.3 and is the same as in Liu et al. (2015). We fit a Gaussian graphical model
using neighborhood selection (Meinshausen and Bühlmann, 2006) based on X, where
the tuning parameter λ (which controls the sparsity of the graphical model) is chosen
such that the resulting graph has high scale-free index as well as a comparable number
of edges to the estimated graph when COBS is not used. This choice of λ is detailed
at the end of this subsection. We defer the remaining estimation and computation
details to Liu et al. (2015). We denote the adjacency matrix of the estimated graphical
model as Â ∈ {0, 1}d×d.

4. Estimating the HMRF: This step is also described in Subsection 2.6.3 and is the
same as in Liu et al. (2015). We briefly summarize this step here, as it is less common
in the statistical literature. Let Z ∈ Rd denote the Z-scores for the selected genes,
derived from the TADA scores in De Rubeis et al. (2014). We model Z using a HMRF,
where for each gene in j = 1, . . . , d, Zj is an i.i.d. random variable drawn from a
mixture of two Gaussians,

Zj ∼ P(Ij = 0)N(0, σ2) + P(Ij = 1)N(µ, σ2),

where Ij ∈ {0, 1} is an unobserved Bernoulli random variable and µ ∈ R and σ ∈ R+
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2. assessing heterogeneity – covariance-based sample selection

Figure 2.16: A) ROC curves for the partitions selected by COBS under the Gaussian setting. This
plot is similar to Figure 2.8A. B) Mean spectral error of the estimated covariance matrix for varying
β level under the Gaussian setting. This plot is similar to Figure 2.8B.

are two unknown scalars to be estimated. The first Gaussian distribution represents
the Z-scores for genes that are not associated with ASD, and the second Gaussian
distribution represents the Z-scores for risk genes. The distribution of entire vector
I ∈ {0, 1}d follows an Ising model with probability mass function,

P(I = η) ∝ exp
(
b ·

d∑
j=1

ηj + c · ηT Âη
)
,

for any η ∈ {0, 1}d and two unknown scalars b, c ∈ R to be estimated. An EM algorithm
is used to fit this HMRF model, and we obtain the estimated posterior probability
p̂j = P(Ij = 0|Z), representing the probability gene j is not a risk gene given the risk
scores. We defer the estimation and computation details to Liu et al. (2015).

5. Applying Bayesian FDR: This step is also described in Subsection 2.6.3 and is
the same as in Liu et al. (2015). We apply a procedure (Muller et al., 2006) to p̂ to
select a set of genes where the Bayesian FDR is controlled at level 10%. We defer the
computation details to Liu et al. (2015). This results in the set of 209 detected risk
genes detailed in Subsection 2.6.4.
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Figure 2.17: ROC curves for the hypothesis using the Accelerated Stepdown procedure described in
§2.C in the nonparanormal setting. These plots are set up in the same as in Figure 2.6.

Usage of De Rubeis et al. (2014). We note that the older risk scores dataset (De Rubeis
et al., 2014) is used twice, once in the screening stage (Step 1 above) and again to estimate
the parameters of the HMRF (Step 4 above). As argued by Liu et al. (2015), it is important
for this dataset to be the same in both steps, as the goal of DAWN is to boost the power
of the risk scores by a “guilt-by-association” strategy. Hence, it is important to ensure the
genes with low TADA scores remain in the analysis after screening, so they can implicate
genes with TADA scores that are not as low.

Choice of λ. We use the following procedure to tune λ when estimating the Gaussian
graphical model using only the 10 partitions from Window 1B as well as when using the
24 partitions selected by COBS. We tune λ on a grid between 0.05 and 0.1, equally spaced
into 15 values, for both graphical models. Our criteria for selecting λ within this grid is
inspired by Liu et al. (2015), who use a scale-free index, a number between 0 and 1 that
measures how well the graph follows a power law. Specifically, we ensure the scale-free
indices from both graphical models are approximately comparable as well as that both
estimated graphical models have about 10,000 edges. Our focus on this number of edges
comes from Liu et al. (2015), which estimated a graphical model with 10,065 edges. By
ensuring both of our estimated graphical models have around 10,000 edges, we are able to
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Figure 2.18: A) ROC curves for the partitions selected by COBS using the Accelerated Stepdown
procedure described in §2.C in the nonparanormal setting. This plot is set up in the same way as in
Figure 2.8A. B) Mean spectral error of the estimated covariance matrix for varying β level using the
Accelerated Stepdown procedure in the nonparanormal setting. This plot is set up in the same way
as in Figure 2.8B.

ensure that both graphical models pass roughly the same amount of information into the
HMRF stage of DAWN.

Using this procedure, we set λ = 0.05 when estimating the graphical model using only the
10 partitions from Window 1B (for 9990 edges and a scale-free index of 0.77) and λ = 0.064
when estimating the graphical model using the 24 partitions selected by COBS (for 9142
edges and scale-free index of 0.83).

2.G.2 Methods to measure distance of two nodes in a graph

As alluded to in Subsection 2.6.4, the shortest path distance and the commute distance
do not seem like appropriate candidates to measure the distance between two genes (i.e.,
vertices) in a gene co-expression network (i.e., graph) due to the fact that the network
estimated in the Window 1B analysis has more edges than in the COBS analysis (9990 and
9142 edges respectively). Hence, both of these distance metrics would naturally favor the
denser graph.

To overcome this problem, we use two distance metrics that we believe enable a more
fair comparison.
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• Minimal spanning tree (MST) distance: This is a natural alternative to measure
the distance between two vertices. Given a graph G = (V,E), we first find the MST
G(MST) ⊆ G, and then compute the path distance between the two vertices in G(MST).

• Graph root embedding distance: A more statistically motivated way to measure
the distance between two vertices is to first embed all vertices V into a latent space.
As shown in Lei (2018), the graph root embedding is a natural candidate to do this, as
it can theoretically represent a wide range of random graphs. This is essentially a more
sophisticated spectral embedding. We first represent the graph G as an adjacency
matrix A, and compute the top-k eigenvectors (corresponding both the largest k
positive eigenvalues and largest k negative eigenvalues in magnitude). Each vertex is
then represented as a latent vector of length 2k. The distance between two vertices is
then defined as the Euclidean distance between their corresponding latent vectors. We
defer the remaining details to Lei (2018).

It is important to use both positive and negative eigenvalues since a scree plot reveals
there are almost the same number of positive and negative eigenvalues for the adjacency
matrices estimated in both the COBS and Window 1B analyses.

2.G.3 Additional results about closeness of genes

We provide more details that the 102 genes detected by the newer TADA scores (Satterstrom
et al., 2020) are roughly 10%-30% closer to the 33 genes detected in the older TADA scores
(De Rubeis et al., 2014) in the gene network estimated in the COBS analysis than in the
Window 1B analysis. We call the 33 genes detected in De Rubeis et al. (2014) as the De
Rubeis genes, and the 102 genes detected in Satterstrom et al. (2020) that are not part of
the former 33 genes as the Satterstrom genes.

We use the MST distance defined above to ask: how far away are the closest k De Rubeis
genes from any Satterstrom gene on average (mean). Figure 2.19A plots this average distance
against k. We use the graph root embedding distance to ask: how close is the nearest De
Rubeis gene from any Satterstrom gene on average (mean) when using an embedding of
latent dimension 2k. Figure 2.19B plots this average distance against k. In both instances,
regardless of how the parameter k is chosen, the plot shows that the Satterstrom genes are
closer to the De Rubeis genes on average. Both metrics show that the red curve is roughly
10%-30% lower than the pale curve across all values of k, hence giving our stated result.
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Figure 2.19: A) Average MST distance from a Satterstrom gene to the closest k De Rubeis genes
against k. B) Average graph root embedding distance from a Satterstrom gene to the closest De
Rubeis genes against the half of the embedding dimension k.
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Three

Detecting heterogeneity – Fused lasso
analysis

Paper summary: In the 1-dimensional multiple changepoint detection problem, we
derive a new fast error rate for the fused lasso estimator, under the assumption that the
mean vector has a sparse number of changepoints. This rate is seen to be suboptimal
(compared to the minimax rate) by only a factor of log logn. Our proof technique is
centered around a novel construction that we call a lower interpolant. We extend our
results to misspecified models and exponential family distributions. We also describe
the implications of our error analysis for the approximate screening of changepoints.

The work in this chapter was done jointly with James Sharpnack, Alessandro Rinaldo,
and Ryan J. Tibshirani, and has been accepted at Advances in Neural Information
Processing Systems under the title “A sharp error analysis for the fused lasso, with
application to approximate changepoint screening.”

3.1 Introduction

Consider the 1-dimensional multiple changepoint model

yi = θ0,i + εi, i = 1, . . . , n, (3.1)

where εi, i = 1, . . . , n are i.i.d. errors, and θ0,i, i = 1, . . . , n is a piecewise constant mean
sequence, having a set of changepoints

S0 =
{
i ∈ {1, . . . , n− 1} : θ0,i 6= θ0,i+1

}
. (3.2)

This is a well-studied setting, and there is a large body of literature on estimation of the
piecewise constant mean vector θ0 ∈ Rn and its changepoints S0 using various estimators;
refer, e.g., to the surveys Brodsky and Darkhovski (1993); Chen and Gupta (2000); Eckley
et al. (2011).
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In this work, we consider the 1-dimensional fused lasso (also called 1d fused lasso, or
simply fused lasso) estimator, which, given a data vector y ∈ Rn from a model as in (3.1), is
defined by

θ̂ = argmin
θ∈Rn

n∑
i=1

(yi − θi)2 + λ
n−1∑
i=1

|θi − θi+1|, (3.3)

where λ ≥ 0 serves as a tuning parameter. This was proposed and named by Tibshirani
et al. (2005), but the same idea was proposed earlier in signal processing, under the name
total variation denoising, by Rudin et al. (1992). Variants of the fused lasso have been
used in biology to detect regions where two genomic samples differ due to genetic variations
(Tibshirani and Wang, 2008), in finance to detect shifts in the stock market (Chan et al.,
2014), and in neuroscience to detect changes in stationary behaviors of the brain (Aston and
Kirch, 2012). Popularity of the fused lasso can be attributed in part to its computational
scalability, the optimization problem in (3.3) being convex and highly structured. There
has also been plenty of supporting statistical theory developed for the fused lasso, which we
review in Section 3.2.

Notation. We will make use of the following quantities that are defined in terms of the
mean θ0 in (3.1) and its changepoint set S0 in (3.2). We denote the size of the changepoint
set by s0 = |S0|. We enumerate S0 = {t1, . . . , ts0}, where 1 ≤ t1 < . . . < ts0 < n, and for
convenience we set t0 = 0, ts0+1 = n. The smallest distance between changepoints in θ0 is
denoted by

Wn = min
i=0,1...,s0

(ti+1 − ti), (3.4)

and the smallest distance between consecutive levels of θ0 by

Hn = min
i∈S0

|θ0,i+1 − θ0,i|. (3.5)

We use D ∈ R(n−1)×n to denote the difference operator

D =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . .
. . .

0 0 . . . −1 1

 . (3.6)

Note that s0 = ‖Dθ0‖0. We write DS to extract rows of D indexed by a subset S ⊆
{1, . . . , n− 1}, and D−S to extract the rows in Sc = {1, . . . , n− 1} \ S.

For a vector x ∈ Rn, we use ‖x‖2n = ‖x‖22/n to denote its length-scaled `2 norm. For
sequences an, bn, we use standard asymptotic notation: an = O(bn) to denote that an/bn
is bounded for large enough n, an = Ω(bn) to denote that bn/an is bounded for large
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enough n, an = Θ(bn) to denote that both an = O(bn) and an = Ω(bn), an = o(bn)
to denote that an/bn → 0, and an = ω(bn) to denote that bn/an → 0. For random
sequences An, Bn, we write An = OP(Bn) to denote that An/Bn is bounded in probability.
A random variable Z is said to have a sub-Gaussian distribution provided that E(Z) = 0
and P(|Z| > t) ≤ 2 exp(−t2/(2σ2)) for all t ≥ 0, and a constant σ > 0.

Summary of results. Our main focus is on deriving a sharp estimation error bound for the
fused lasso, parametrized by the number of changepoints s0 in θ0. We also study several
consequences of our error bound and its analysis. A summary of our contributions is as
follows.

• New error analysis for the fused lasso. In Section 3.3, we develop a new error
analysis for the fused lasso, in the model (3.1) with sub-Gaussian errors. Our analysis
leverages a novel quantity that we call a lower interpolant to approximate the fused lasso
estimate (once it has been orthogonalized with respect to the changepoint structure of
the mean θ0) with 2s0 + 2 monotonic segments, which allows for finer control of the
empirical process term.

When s0 = O(1), and the changepoint locations in S0 are (asymptotically) evenly
spaced, our main result implies E‖θ̂ − θ0‖2n = O(log n(log log n)/n) for the fused lasso
estimator θ̂ in (3.3). This is slower than the minimax rate by a log logn factor. Our
result improves on previously established results from Dalalyan et al. (2017), and after
the completion of this paper, was itself improved upon by Guntuboyina et al. (2020)
(who are able to remove the extraneous log log n factor).

• Extension to misspecified and exponential family models. In Section 3.4, we
extend our error analysis to cover a mean vector θ0 that is not necessarily piecewise
constant (or in other words, has potentially many changepoints). In Section 3.5, we
extend our analysis to exponential family models. The latter extension, especially,
is of practical importance, as many applications, e.g., CNV data analysis, call for
changepoint detection on count data.

• Application to approximate screening and recovery. In Section 3.6, we establish
that the maximum distance between any true changepoint and its nearest estimated
changepoint is OP(log n(log log n)/H2

n) using the fused lasso, when s0 = O(1) and all
changepoints are (asymptotically) evenly spaced. After applying simple post-processing
step, we show that the maximum distance between any estimated changepoint and
its nearest true changepoint is of the same order. Our proof technique relies only on
the estimation error rate of the fused lasso, and therefore immediately generalizes to
any estimator of θ0, where the distance (for approximate changepoint screening and
recovery) is a function of the inherent error rate.
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The supplementary document gives numerical simulations that support the theory in
this paper.

3.2 Preliminary review of existing theory

We begin by describing known results on the quantity ‖θ̂ − θ0‖2n, the estimation error between
the fused lasso estimate θ̂ in (3.3) and the mean θ0 in (3.1).

Early results on the fused lasso are found in Mammen and van de Geer (1997) (see also
Tibshirani (2014) for a translation to a setting more consistent with that of the current
paper). These authors study what may be called the weak sparsity case, in which it is that
assumed ‖Dθ0‖1 ≤ Cn, with D being the difference operator in (3.6). Assuming additionally
that the errors in (3.1) are sub-Gaussian, Mammen and van de Geer (1997) show that for a
choice of tuning parameter λ = Θ(n1/3C

−1/3
n ), the fused lasso estimate θ̂ in (3.3) satisfies

‖θ̂ − θ0‖2n = OP(n−2/3C2/3
n ). (3.7)

The weak sparsity setting is not the focus of our paper, but we still recall the above result to
give a sense of the difference between the weak and strong sparsity settings, the latter being
the setting in which we assume control over s0 = ‖Dθ0‖0, as we do in the current paper.
Prior to this paper, the strongest result in the strong sparsity setting was given by Dalalyan
et al. (2017), who assume N(0, σ2) errors in (3.1), and show that for λ = σ

√
2n log(n/δ),

the fused lasso estimate satisfies

‖θ̂ − θ0‖2n ≤ Cσ2 s0 log(n/δ)

n

(
log n+

n

Wn

)
, (3.8)

with probability at least 1 − 2δ, for large enough n, and a constant C > 0, where recall
Wn is the minimum distance between changepoints in θ0, as in (3.4). Our main result in
Theorem 1 improves upon (3.8) in two ways: by reducing the first log n term inside the
brackets to log s0 + log log n, and reducing the second n/Wn term to

√
n/Wn.

After our paper was completed, Guntuboyina et al. (2020) gave an even sharper error
rate for the fused lasso (and more broadly, for trend the family of higher-order filtering
estimates as defined in Steidl et al. (2006); Kim et al. (2009); Tibshirani (2014)). Again
assuming N(0, σ2) errors in (3.1), as well as Wn ≥ cn/(s0 + 1) for some constant c ≥ 1,
these authors show that the family of fused lasso estimates {θ̂λ, λ ≥ 0} (using subscripts
here to explicitly denote the dependence on the tuning parameter λ) satisfies

inf
λ≥0
‖θ̂λ − θ0‖2n ≤ Cσ2 s0 + 1

n
log

(
en

s0 + 1

)
+

4σ2δ

n
, (3.9)

with probability at least 1 − exp(−δ), for large enough n, and a constant C > 0. The
above bound is sharper than ours in Theorem 1 in that (log s0 + log log n) log n+

√
n/Wn
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is replaced essentially by logWn. (Also, the result in (3.9) does not actually require
Wn ≥ cn/(s0 + 1), but only requires the distance between changepoints where jumps al-
ternate in sign to be larger than cn/(s0 + 1), which is another improvement.) Further
comparisons will be made in Remark 3 following Theorem 1.

There are numerous other estimators, e.g., based on segmentation techniques or wavelets,
that admit estimation results comparable to those above. These are described in Remark 4
following Theorem 1. Lastly, it can be seen the minimax estimation error over the class of
signals θ0 with s0 changepoints, assuming N(0, σ2) errors in (3.1), satisfies

inf
θ̂

sup
‖Dθ0‖0≤s0

E‖θ̂ − θ0‖2n ≥ Cσ2 s0

n
log

(
n

s0

)
, (3.10)

for large enough n, and a constant C > 0. This says that one cannot hope to improve the
rate in (3.9). The minimax result in (3.10) follows from standard minimax theory for sparse
normal means problems, as in, e.g., Johnstone (2015); for a proof, see Padilla et al. (2016).

3.3 Sharp error analysis for the fused lasso estimator

Here we derive a sharper error bound for the fused lasso, improving upon the previously
established result of Dalalyan et al. (2017) as stated in (3.8). Our proof is based on a concept
that we call a lower interpolant, which as far as we can tell, is a new idea that may be of
interest in its own right.

Theorem 1. Assume the data model in (3.1), with errors εi, i = 1, . . . , n i.i.d. from a
sub-Gaussian distribution. Then under a choice of tuning parameter λ = (nWn)1/4, the fused
lasso estimate θ̂ in (3.3) satisfies

‖θ̂ − θ0‖2n ≤ γ2c
s0

n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

with probability at least 1 − exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are
constants that depend on only σ (the parameter appearing in the sub-Gaussian distribution
of the errors).

An immediate corollary is as follows.

Corollary 2. Under the same assumptions as in Theorem 1, we have

E‖θ̂ − θ0‖2n ≤ c
s0

n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

for some constant c > 0.
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We give some remarks comparing Theorem 1 to related results in the literature.

Remark 3 (Comparison to Dalalyan et al. (2017); Guntuboyina et al. (2020)).
We can see that the result in Theorem 1 is sharper than that in (3.8) from Dalalyan et al.
(2017) for any s0,Wn, as log s0 ≤ log n and

√
n/Wn ≤ n/Wn. Moreover, when s0 = O(1)

and Wn = Θ(n), the rates are log2 n/n and log n(log log n)/n from Theorem 1 and (3.8),
respectively.

Comparing the result in Theorem 1 to that in (3.9) from Guntuboyina et al. (2020), the
latter is sharper in that it reduces the factor of (log s0 + log log n) log n+

√
n/Wn to a single

term of logWn. In the case s0 = O(1) and Wn = Θ(n), the rates are log n(log logn)/n
and log n/n from Theorem 1 and (3.8), respectively, and the latter rate cannot be improved,
owing to the minimax lower bound in (3.10). Similar to our expectation bound in Corollary
2, Guntuboyina et al. (2020) establish

inf
λ≥0

E‖θ̂λ − θ0‖2n ≤ Cσ2 s0 + 1

n
log

(
en

s0 + 1

)
, (3.11)

for the family of fused lasso estimates {θ̂λ, λ ≥ 0}, for large enough n, and a constant C > 0.
Like their high probability result in (3.9), their expectation result in (3.11) is stated in terms
of an infimum over λ ≥ 0, and does not provide an explicit value of λ that attains the
bound. (Inspection of their proofs suggests that it is not at all easy to make such a value of
λ explicit.) Meanwhile, Theorem 1 and Corollary 1 have the advantage this choice is made
explicit, as in λ = (nWn)1/4.

Remark 4 (Comparison to other estimators). Various other estimators obtain com-
parable estimation error rates. In what follows, all results are stated in the case s0 = O(1).
The Potts estimator, defined by replacing the `1 penalty

∑n−1
i=1 |θi − θi+1| in (3.3) with the `0

penalty
∑n−1

i=1 1{θi 6= θi+1}, and denoted say by θ̂Potts, satisfies a bound ‖θ̂Potts − θ0‖2n = O(log n/n)
a.s. as shown by Boysen et al. (2009). Wavelet denoising (placing weak conditions on the
wavelet basis), denoted by θ̂wav, satisfies E‖θ̂wav − θ0‖2n = O(log2 n/n) as shown by Donoho
and Johnstone (1994). Pairing unbalanced Haar (UH) wavelets with a basis selection method,
Fryzlewicz (2007) developed an estimator θ̂UH with E‖θ̂UH − θ0‖2n = O(log2 n/n). Though
they are not written in this form, the results in Fryzlewicz et al. (2018) imply that his “tail-
greedy” unbalanced Haar (TGUH) estimator, θ̂TGUH, satisfies ‖θ̂TGUH − θ0‖2n = O(log2 n/n)
with probability tending to 1.

Here is an overview of the proof of Theorem 1. The full proof is deferred until the
supplement, as with all proofs in this paper. We begin by deriving a basic inequality
(stemming from the optimality of the fused lasso estimate θ̂ in (3.3)):

‖θ̂ − θ0‖22 ≤ 2ε>(θ̂ − θ0) + 2λ
(
‖Dθ0‖1 − ‖Dθ̂‖1

)
. (3.12)
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To precisely control the empirical process term ε>(θ̂ − θ0), we consider a decomposition

ε>(θ̂ − θ0) = ε>δ̂ + ε>x̂,

where we define δ̂ = P0(θ̂ − θ0) and x̂ = P1θ̂. Here P0 is the projection matrix onto the
piecewise constant structure inherent in θ0, and P1 = I − P0. More precisely, writing
S0 = {t1, . . . , ts0} for the set of ordered changepoints in θ0, we define Bj = {tj + 1, . . . , tj+1},
and denote by 1Bj ∈ Rn the indicator of block Bj , for j = 0, . . . , s0. In this notation, P0

is the projection onto the (s0 + 1)-dimensional linear subspace R = span{1B0 , . . . ,1Bs0
}.

The parameter δ̂ lies in an low-dimensional subspace, which makes bounding the term ε>δ̂
relatively easy. Bounding the term ε>x̂ requires a much more intricate argument, which is
spelled out in the following lemmas.

Lemma 5 is a deterministic result ensuring the existence of what we call a lower interpolant
ẑ to x̂. This interpolant approximates x̂ using 2s0 + 2 monotonic segments, and its empirical
process term ε>ẑ can be finely controlled, as shown in Lemma 6. The residual from the
interpolant approximation, denoted ŵ = x̂− ẑ, has an empirical process term ε>ŵ that is
more crudely controlled, in Lemma 7. Put together, as in ε>x̂ = ε>ẑ + ε>ŵ, gives the final
control on ε>x̂.

Before stating Lemma 5, we define the class of vectors containing the lower interpolant.
Given any collection of changepoints t1 < . . . < ts0 (and t0 = 0, ts0+1 = n), let M be
the set of “piecewise monotonic” vectors z ∈ Rn, with the following properties, for each
i = 0, . . . , s0:

(i) there exists a point t′i such that ti + 1 ≤ t′i ≤ ti+1, and such that the absolute value
|zj | is nonincreasing over the segment j ∈ {ti + 1, . . . , t′i}, and nondecreasing over the
segment j ∈ {t′i, . . . , ti+1};

(ii) the signs remain constant on the monotone pieces,

sign(zti) · sign(zj) ≥ 0, j = ti + 1, . . . , t′i,

sign(zti+1) · sign(zj) ≥ 0, j = t′i + 1, . . . , ti+1.

Now we state our lemma that characterizes the lower interpolant.

Lemma 5. Given changepoints t0 < . . . < ts0+1, and any x ∈ Rn, there exists a vector
z ∈M (not necessarily unique), such that the following statements hold:

‖D−S0x‖1 = ‖D−S0z‖1 + ‖D−S0(x− z)‖1, (3.13)

‖DS0x‖1 = ‖DS0z‖1 ≤ ‖D−S0z‖1 +
4
√
s0√
Wn
‖z‖2, (3.14)

‖z‖2 ≤ ‖x‖2 and ‖x− z‖2 ≤ ‖x‖2, (3.15)
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Figure 3.1: The lower interpolants for two examples (in the left and right columns), each with
n = 800 points. In the top row, the data y (in gray) and underlying signal θ0 (red) are plotted across
the locations 1, . . . , n. Also shown is the fused lasso estimate θ̂ (blue). In the bottom row, the error
vector x̂ = P1θ̂ is plotted (blue) as well as the interpolant (black), and the dotted vertical lines (red)
denote the changepoints t1, . . . ts0 of θ0.

where D ∈ R(n−1)×n is the difference matrix in (3.6). We call a vector z with these properties
a lower interpolant to x.

Loosely speaking, the lower interpolant ẑ can be visualized by taking a string that lies
initially on top of x̂, is nailed down at the changepoints t0, . . . ts0+1, and then pulled taut
while maintaining that it is not greater (elementwise) than x̂, in magnitude. Here “pulling
taut” means that ‖Dẑ‖1 is made small. Figure 3.1 provides illustrations of the interpolant ẑ
to x̂ for a few examples.

Note that ẑ consists of 2s0 + 2 monotonic pieces. This special structure leads to a sharp
concentration inequality. The next lemma is the primary contributor to the fast rate given
in Theorem 1.

Lemma 6. Given changepoints t1 < . . . < ts0, there exists constants cI , CI , NI > 0 such

64



3.4. Extension to misspecified models

that when ε ∈ Rn has i.i.d. sub-Gaussian components,

P

(
sup
z∈M

|ε>z|
‖z‖2

> γcI
√

(log s0 + log log n)s0 log n

)
≤ 2 exp

(
− CIγ2c2

I(log s0 + log log n)
)
,

for any γ > 1, and n ≥ NI .

Finally, the following lemma controls the residuals, ŵ = x̂− ẑ.

Lemma 7. Given changepoints t1 < . . . < ts0, there exists constants cR, CR > 0 such that
when ε ∈ Rn has i.i.d. sub-Gaussian components,

P
(

sup
w∈R⊥

|ε>w|√
‖D−S0w‖1‖w‖2

> γcR(ns0)1/4

)
≤ 2 exp(−CRγ2c2

R

√
s0),

for any γ > 1, where R⊥ is the orthogonal complement of R = span{1B0 , . . . ,1Bs0
}.

3.4 Extension to misspecified models

We consider data from the model in (3.1) but where the mean θ0 is not necessarily piecewise
constant (i.e., where s0 is potentially large). Let us define

θ0(s) = argmin
θ∈Rn

‖θ0 − θ‖22 subject to ‖Dθ‖0 ≤ s, (3.16)

which we call the best s-approximation to θ0. We now present an extension of Theorem 1.

Theorem 8. Assume the data model in (3.1), with errors εi, i = 1, . . . , n i.i.d. from a
sub-Gaussian distribution. For any s, consider the best s-approximation θ0(s) to θ0, as in
(3.16), and let Wn(s) be the minimum distance between the s changepoints in θ0(s). Then
under a choice of tuning parameter λ = (nWn(s))1/4, the fused lasso estimate θ̂ in (3.3)
satisfies

‖θ̂ − θ0‖2n ≤ ‖θ0(s)− θ0‖2n + γ2c
s

n

(
(log s+ log log n) log n+

√
n

Wn(s)

)
, (3.17)

with probability at least 1 − exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are
constants that depend on only σ. Further, if λ is chosen large enough so that ‖Dθ̂‖0 ≤ s on
an event E, then

‖θ̂ − θ0(s)‖2n ≤ γ2c
s

n

(
(log s+ log log n) log n+

λ2

Wn(s)
+

n

λ2

)
, (3.18)

on E intersected with an event of probability at least 1− exp(−Cγ), for all γ > 1, n ≥ N ,
where c, C,N > 0 are the same constants as above.
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The first result in (3.17) in Theorem 8 is a standard oracle inequality. It provides a
bound on the error of the fused lasso estimator that decomposes into two parts, the first
term being the approximation error, determined by the proximity of θ0(s) to θ0, and second
term being the usual bound we would encounter if the mean truly had s changepoints.

The second result in (3.18) in the theorem is a direct bound on the estimation error
‖θ̂ − θ0(s)‖2n. We see that the estimation error can be small, apparently regardless of the
size of ‖θ0(s)− θ0‖2n, if we take λ to be large enough for θ̂ to itself have s changepoints. But
the rate worsens as λ grows larger, so implicitly, the proximity of θ0(s) to θ0 does play an
role (if θ0 were actually far away from a signal with s changepoints, then we may have to
take λ very large to ensure that θ̂ has s changepoints).

Remark 9 (Comparison to other results). Dalalyan et al. (2017); Guntuboyina et al.
(2020) also provide oracle inequalities and their results could be adapted to take forms as in
Theorem 8. It is not clear to us that previous results on other estimators, such as those from
Remark 4, adapt as easily.

3.5 Extension to exponential family models

We consider data y = (y1, . . . , yn) ∈ Rn with independent components distributed according
to

p(yi; θ0,i) = h(yi) exp
(
yiθ0,i − Λ(θ0,i)

)
, i = 1, . . . , n. (3.19)

Here, for each i = 1, . . . , n, the parameter θ0,i is the natural parameter in the exponential
family and Λ is the cumulant generating function. As before, in the location model, we
are mainly interested in the case in which the natural parameter vector θ0 is piecewise
constant (with s0 denoting its number of changepoints, as before). Estimation is now based
on penalization of the negative log-likelihood:

θ̂ = argmin
θ∈Rn

n∑
i=1

(
− yiθi + Λ(θi)

)
+ λ

n∑
i=1

|θi − θi+1|, (3.20)

Since the cumulant generating function Λ is always convex in exponential families, the above
is a convex optimization problem. We present an estimation error bound the present setting.

Theorem 10. Assume the data model in (3.19), with a strictly convex, twice continuously
differentiable cumulant generating function Λ. Assume that θ0,i ∈ [l, u], i = 1, . . . , n for con-
stants l, u ∈ R, and add the constraints θi ∈ [l, u], i = 1, . . . , n in the optimization problem in
(3.20). Finally, assume that the random variables yi−E(yi), i = 1, . . . , n obey a sub-Gaussian
distribution, with parameter σ. Then under a choice of tuning parameter λ = (nWn)1/4, the
exponential family fused lasso estimate θ̂ in (3.20) (subject to the additional boundedness
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constraints) satisfies

‖θ̂ − θ0‖2n ≤ γ2c
s0

n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

with probability at least 1 − exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are
constants that depend on only l, u, σ.

Remark 11 (Roles of l, u). The restriction of θ0,i and the optimization parameters in
(3.20) to [l, u], for i = 1, . . . , n, is used to ensure that the second derivative of Λ is bounded
away from zero. (The same property could be accomplished by instead adding a small squared
`2 penalty on θ in (3.20).) A more refined analysis could alleviate the need for this bounded
domain (or extra squared `2 penalty) but we do not pursue this for simplicity.

Remark 12 (Sub-Gaussianity in exponential families). When are the random vari-
ables yi − E(yi), i = 1, . . . , n sub-Gaussian, in an exponential family model (3.19)? A
simple sufficient condition (not specific to exponential families, in fact) is that these cen-
tered variates are bounded. This covers the binomial model yi ∼ Bin(k, µ(θ0,i)), where
µ(θ0,i) = 1/(1 + e−θ0,i), i = 1, . . . , n, and k is a fixed constant. Hence Theorem 10 applies
to binomial data.

For Poisson data yi ∼ Pois(µ(θ0,i)), where µ(θ0,i) = eθ0,i, i = 1, . . . , n, we now give two
options for the analysis. The first is to assume a maximum achieveable count (which may be
reasonable in CNV data) and then apply Theorem 10 owing again to boundedness. The second
is to invoke the fact that Poisson random variables have sub-exponential (rather than sub-
Gaussian) tails, and then use a truncation argument, to show that for the Poisson fused lasso
estimate θ̂ in (3.20) (under the additional boundedness constraints), with λ = log n(nWn)1/4,

‖θ̂ − θ0‖2n ≤ γ2c
s0 log n

n

(
(log s0 + log log n) log n+

√
n

Wn

)
, (3.21)

with probability at least 1− exp(−Cγ)− 1/n, for all γ > 1 and n ≥ N , where c, C,N > 0 are
constants depending on l, u. This is slower than the rate in Theorem 10 by a factor of log n.

Remark 13 (Comparison to other results). The results in Dalalyan et al. (2017);
Guntuboyina et al. (2020) assume normal errors. It seems believable to us that the results of
Dalalyan et al. (2017) could be extended to sub-Gaussian errors and hence exponential family
data, in a manner similar to what we have done above in Theorem 10. To us, this is less
clear for the results of Guntuboyina et al. (2020), which rely on some technical calculations
involving Gaussian widths. It is even less clear to us how results from other estimators, as
in Remark 4, extend to exponential family data.
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3.6 Approximate changepoint screening and recovery

In many applications of changepoint detection, one may be interested in estimation of the
changepoint locations in θ0, rather than the mean vector θ0 as a whole. In this section,
we show that estimation of the changepoint locations and of θ0 itself are two very closely
linked problems, in the following sense: any procedure with guarantees on its error in
estimating θ0 automatically has certain approximate changepoint detection guarantees, and
not surprisingly, a faster error rate (in estimating θ0) translates into a stronger statement
about approximate changepoint detection. We use this general link to prove new approximate
changepoint screening results for the fused lasso. We also show that in general a simple
post-processing step may be used to discard spurious detected changepoints, and again apply
this to the fused lasso to yield new approximate changepoint recovery results.

It helps to introduce some additional notation. For a vector θ ∈ Rn, we write S(θ) for
the set of its changepoint indices, i.e.,

S(θ) =
{
i ∈ {1, . . . , n− 1} : θi 6= θi+1

}
.

Recall, we abbreviate S0 = S(θ0) for the changepoints of the underlying mean θ0. For two
discrete sets A,B, we define the metrics

d(A|B) = max
b∈B

min
a∈A
|a− b| and dH(A,B) = max

{
d(A|B), d(B|A)}.

The first metric above can be seen as a one-sided screening distance from B to A, measuring
the furthest distance of an element in B to its closest element in A. The second metric
above is known as the Hausdorff distance between A and B.

Approximate changepoint screening. We present our general theorem on changepoint
screening. The basic idea behind the result is quite simple: if an estimator misses a (large)
changepoint in θ0, then its estimation error must suffer, and we can use this fact to bound
the screening distance.

Theorem 14. Let θ̃ ∈ Rn be an estimator such that ‖θ̃ − θ0‖2n = OP(Rn). Assume that
nRn/H

2
n = o(Wn), where, recall, Hn is the minimum gap between adjacent levels of θ0,

defined in (3.5), and Wn is the minimum distance between adjacent changepoints of θ0,
defined in (3.4). Then

d
(
S(θ̃) |S0

)
= OP

(
nRn
H2
n

)
.

Remark 15 (Generic setting: no specific data model, and no assumptions on
estimator). Importantly, Theorem 14 assumes no data model whatsoever, and treats θ̃ as a
generic estimator of θ0. (Of course, through the statement ‖θ̃ − θ0‖2n = OP(Rn), one can see
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3.6. Approximate changepoint screening and recovery

that θ̃ is random, constructed from data that depends on θ0, but no specific data model is
required, nor are any specific properties of θ̃, other than its error rate.) This flexibility allows
for the result to be applied in any problem setting in which one has control of the error in
estimating a piecewise constant parameter θ0 (in some cases this may be easier to obtain,
compared to direct analysis of detection properties). A similar idea was used (concurrently
and independently) by Fryzlewicz et al. (2018) in the analysis of the TGUH estimator.

Combining the above theorem with known error rates for the fused lasso estimator—(3.7)
in the weak sparsity case, and Theorem 1 in the strong sparsity case—gives the following
result.

Corollary 16. Assume the data model in (3.1), with errors εi, i = 1, . . . , n i.i.d. from a
sub-Gaussian distribution. Let Cn = ‖Dθ0‖1, and assume that Hn = ω(n1/6C

1/3
n /
√
Wn).

Then the fused lasso estimator θ̂ in (3.3) with λ = Θ(n1/3C
−1/3
n ) satisfies

d
(
S(θ̂) |S0

)
= OP

(
n1/3C

2/3
n

H2
n

)
. (3.22)

Alternatively, assume s0 = O(1), Wn = Θ(n), and Hn = ω(
√

log n(log log n)/n). Then the
fused lasso with λ = Θ(

√
n) satisfies

d
(
S(θ̂) |S0

)
= OP

(
log n(log log n)

H2
n

)
. (3.23)

Remark 17 (Changepoint detection limit). The restriction Hn = ω(
√

log n(log log n)/n)
for (3.23) in Corollary 16 is very close to the optimal detection limit of Hn = ω(1/

√
n):

Duembgen and Walther (2008) showed that in Gaussian changepoint model with a single
elevated region, and Wn = Θ(n), there is no test for detecting a changepoint that has
asymptotic power 1 unless Hn = ω(1/

√
n).

Combining Theorem 14 with (3.21) gives the following (a similar result holds for the
binomial model).

Corollary 18. Assume yi ∼ Pois(eθ0,i), independently, for i = 1, . . . , n, and assume
‖θ0‖∞ = O(1), s0 = O(1), Wn = Θ(n), Hn = ω(log n

√
log logn/n). Then for the Poisson

fused lasso estimator θ̂ in (3.20) (subject to appropriate boundedness constraints) with
λ = Θ(log n

√
n), we have

d
(
S(θ̂) |S0

)
= OP

(
log2 n(log log n)

H2
n

)
.
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3. detecting heterogeneity – fused lasso analysis

Approximate changepoint recovery. We present a post-processing procedure for the esti-
mated changepoints in θ̃, to eliminate changepoints of θ̃ that lie far away from changepoints
of θ0. Our procedure is based on convolving θ̃ with a filter that resembles the mother Haar
wavelet. Consider

Fi(θ̃) =
1

bn

i+bn∑
j=i+1

θ̃j −
1

bn

i∑
j=i−bn+1

θ̃j , for i = bn, . . . , n− bn, (3.24)

for an integral bandwidth bn > 0. By evaluating the filter Fi(θ̃) at all locations i =
bn, . . . , n− bn, and retaining only locations at which the filter value is large (in magnitude),
we can approximately recovery the changepoints of θ0, in the Hausdorff metric. This idea is
very similar to the one proposed in Hao et al. (2013), which study the approximate false
discovery rate of a similar procedure. We wish to investigate the theoretical relations in our
future work.

Theorem 19. Let θ̃ ∈ Rn be such that ‖θ̃ − θ0‖2n = OP(Rn). Consider the following proce-
dure: we evaluate the filter in (3.24) with bandwidth bn at locations in

IF (θ̃) =
{
i ∈ {bn, . . . , n− bn} : i ∈ S(θ̃), or i+ bn ∈ S(θ̃), or i− bn ∈ S(θ̃)

}
∪ {bn, n− bn},

and define a set of filtered points SF (θ̃) = {i ∈ IF (θ̃) : |Fi(θ̃)| ≥ τn}, for a threshold level τn.
If bn, τn satisfy bn = ω(nRn/H

2
n), 2bn ≤Wn, and τn/Hn → ρ ∈ (0, 1) as n→∞, then

P
(
dH
(
SF (θ̃), S0

)
≤ 2bn

)
→ 1 as n→∞.

Note that the set of filtered points |SF (θ̃)| in Theorem 19 is not necessarily of a subset of
the original set of estimated changepoints S(θ̃), but it has the property |SF (θ̃)| ≤ 3|S(θ̃)|+ 2.

We finish with corollaries for the fused lasso. For space reasons, remarks comparing them
to related approximate recovery results in the literature are deferred to the supplement.

Corollary 20. Assume the data model in (3.1), with errors εi, i = 1, . . . , n i.i.d. from
a sub-Gaussian distribution. Let Cn = ‖Dθ0‖1. If we apply the post-processing pro-
cedure in Theorem 19 to the fused lasso estimator θ̂ in (3.3) with λ = Θ(n1/3C

−1/3
n ),

bn = bn1/3C
2/3
n ν2

n/H
2
nc ≤Wn/2 for a sequence νn →∞, and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2n1/3C

2/3
n ν2

n

H2
n

)
→ 1 as n→∞. (3.25)

Alternatively, assuming s0 = O(1), Wn = Θ(n), if we apply the same post-processing
procedure to the fused lasso with λ = Θ(

√
n), bn = blog n(log log n)ν2

n/H
2
nc ≤Wn/2 for a

sequence νn →∞, and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2 log n(log log n)ν2

n

H2
n

)
→ 1 as n→∞. (3.26)
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3.7. Summary

Corollary 21. Assume yi ∼ Pois(eθ0,i), independently, for i = 1, . . . , n, and assume
‖θ0‖∞ = O(1), s0 = O(1), Wn = Θ(n). If we apply the post-processing method in Theo-
rem 19 to the Poisson fused lasso estimator θ̂ in (3.20) (subject to appropriate bounded-
ness constraints) with λ = Θ(log n

√
n), bn = blog2 n(log log n)ν2

n/H
2
nc ≤Wn/2 for a sequence

νn →∞, and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2 log2 n(log log n)ν2

n

H2
n

)
→ 1 as n→∞.

3.7 Summary

We gave a new error analysis for the fused lasso, with extensions to misspecified models
and data from exponential families. We showed that error bounds for general changepoint
estimators lead to approximate changepoint screening results, and after post-processing,
approximate recovery results.

3.A Proofs

3.A.1 Proofs of Theorem 1 and Corollary 2

We denote by N(r, S, ‖ · ‖) the covering number of a set S in a norm ‖ · ‖, i.e., the smallest
number of ‖ · ‖-balls of radius r needed to cover S. We call logN(r, S, ‖ · ‖) the log covering
or entropy number. Recall that we write ‖ · ‖n = ‖ · ‖2/

√
n for the scaled `2 norm, and that

we say a random variable Z has a sub-Gaussian distribution provided that

E[Z] = 0 and P(|Z| > t) ≤ 2 exp
(
− t2/(2σ2)

)
for t ≥ 0, (3.27)

for some constant σ > 0.

In the proof of Theorem 1, we will rely on the following result from van de Geer (1990)
(which is derived closely from Dudley’s chaining for sub-Gaussian processes).

Theorem 22 (Theorem 3.3 of van de Geer 1990). Assume that ε = (ε1, . . . , εn) ∈ Rn
has i.i.d. components drawn from a sub-Gaussian distribution, as in (3.27). Consider a
set X ⊆ Rn such that ‖x‖n ≤ 1 for all x ∈ X , and let K(·) be a continuous function upper
bounding the ‖ · ‖n-entropy of X , i.e., K(r) ≥ logN(r,X , ‖ · ‖n). Then there are constants
C1, C2, C3, C4 > 0 depending only on σ (the parameter in the underlying sub-Gaussian
distribution) such that for all t > C1, with

t > C2

∫ t0

0

√
K(r) dr,

where t0 = inf{r : K(r) ≤ C3t
2}, we have

P
(

sup
x∈X

|ε>x|√
n

> t

)
≤ 2 exp(−C4t

2).
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3. detecting heterogeneity – fused lasso analysis

Now we give the proof of Theorem 1.

Proof of Theorem 1. We define three events that will be critical to our proof, and we will
show later on that each event occurs with high probability:

Ω0 =

{
sup
z∈M

|ε>z|
‖z‖2

≤ γcI
√

(log s0 + log log n)s0 log n

}
, (3.28)

Ω1 =

{
sup
w∈R⊥

|ε>w|
‖D−S0w‖

1/2
1 ‖w‖

1/2
2

≤ γcR(ns0)1/4

}
, (3.29)

Ω2 =

{
sup
δ∈R

|ε>δ|
‖δ‖2

≤ γcS
√
s0

}
, (3.30)

where γ > 1 is parameter free to vary in our analysis, cI , cR > 0 are the constants in Lemmas
6, 7, and cS > 0 is a constant to be determined below. Focusing on the third event, we will
lower bound its probability by applying Theorem 22 to X = R∩ {δ : ‖δ‖n ≤ 1}. Note that

logN(r,R∩ {δ : ‖δ‖n ≤ 1}, ‖ · ‖n) ≤ (s0 + 1) log(3/r),

as R is (s0 + 1)-dimensional, and it is well-known that in Rd, the number of balls of radius
r that are needed to cover the unit ball is at most (3/r)d. The quantity t0 in Theorem 22
may be taken to be t0 = inf{r : (s0 + 1) log(3/r) ≤ C3C

2
1} = 3 exp(−C3C

2
1/(s0 + 1)). The

restrictions on t are hence t > C1, as well as

t > C2

∫ t0

0

√
(s0 + 1) log(3/r) dr.

But, writing erf(·) for the error function,

C2

∫ t0

0

√
(s0 + 1) log(3/r) dr = (

√
s0 + 1) · 3C2

[
r

√
log

1

r
− erf

(√
log

1

r

)]∣∣∣∣t0/3
0

≤ C2
√
s0,

where the constant C2 > 0 is adjusted to be larger, as needed. Let us define cS = max{C1, C2}
and CS = C4. Then we have by Theorem 22, for t = γcS

√
s0 and any γ > 1,

1−2 exp(−CSγ2c2
Ss0) ≤ P

(
sup
δ∈R

|ε>δ|√
n‖δ‖n

≤ γcS
√
s0

)
= P

(
sup
δ∈R

|ε>δ|
‖δ‖2

≤ γcS
√
s0

)
= P(Ω2).

(3.31)
The rest of this proof is divided into subparts for readability.

Basic inequality. The basic inequality in (3.12) is established by comparing objective values
in (3.3) at θ̂ and θ0, writing y = θ0+ε, and rearranging. Using θ̂ − θ0 = P0(θ̂ − θ0) + P1(θ̂ − θ0) = δ̂ + x̂,
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3.A. Proofs

and using the fact that δ̂ and x̂ are orthogonal, we have

‖δ̂‖22 + ‖x̂‖22 ≤ 2ε>δ̂ + 2ε>x̂+ 2λ
(
‖Dθ0‖1 − ‖Dθ̂‖1

)
= 2ε>δ̂ + 2ε>x̂+ 2λ

(
‖DS0θ0‖1 − ‖DS0 θ̂‖1 − ‖D−S0 θ̂‖1

)
≤ 2ε>δ̂ + 2ε>x̂+ 2λ

(
‖DS0(θ0 − θ̂)‖1 − ‖D−S0 θ̂‖1

)
≤ 2ε>δ̂ + 2ε>x̂+ 2λ

(
‖DS0 δ̂‖1 + ‖DS0 x̂‖1 − ‖D−S0 x̂‖1

)
= 2ε>δ̂ + 2λ‖DS0 δ̂‖1︸ ︷︷ ︸

A0

+ 2ε>x̂+ 2λ
(
‖DS0 x̂‖1 − ‖D−S0 x̂‖1

)︸ ︷︷ ︸
B0

,

where in the third line, we used the triangle inequality, and in the fourth, we again used the
triangle inequality and the fact that D−S0 δ̂ = 0.

Bounding A0. Note that

A0 = 2

(
|ε>δ̂|
‖δ̂‖2

+ λ
‖DS0 δ̂‖1
‖δ̂‖2

)
‖δ‖2,

and observe

‖DS0 δ̂‖1 =

s0∑
i=1

|δ̂ti+1 − δ̂ti | ≤ 2

s0+1∑
i=1

|δ̂ti | ≤ 2

√√√√(s0 + 1)

s0+1∑
i=1

δ̂2
ti

≤ 4

√√√√s0

s0+1∑
i=1

ti − ti−1

Wn
δ̂2
ti

= 4

√
s0

Wn
‖δ̂‖2.

The second inequality used Cauchy-Schwartz, and the last equality used that δ̂ is piecewise
constant on the blocks B0, . . . , Bs0 , as δ̂ ∈ R = span{1B0 , . . . ,1Bs0

}. Hence, on the event
Ω2 in (3.30), we have

A0 ≤ 2

(
γcS
√
s0 + 4λ

√
s0

Wn

)
‖δ̂‖2 (3.32)

Bounding B0. In the definition of B0, let us expand x̂ = ẑ + ŵ, where ẑ ∈M is the lower
interpolant to x̂, as defined in Lemma 5, and ŵ = x̂− ẑ is the remainder. Using properties
(3.13) and (3.14) from Lemma 5, we arrive at

B0 = 2ε>ẑ + 2ε>ŵ + 2λ
(
‖DS0 ẑ‖1 − ‖D−S0 ẑ‖1 − ‖D−S0ŵ‖1

)
≤ 2ε>ẑ + 8λ

√
s0

Wn
‖ẑ‖2 + 2ε>ŵ − 2λ‖D−S0ŵ‖1. (3.33)
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3. detecting heterogeneity – fused lasso analysis

On the event Ω0 in (3.28),

ε>ẑ ≤ γcI
√

(log s0 + log log n)s0 log n‖ẑ‖2.

And, on the event Ω1 in (3.29), as P1ŵ ∈ R⊥, ‖D−S0P1ŵ‖1 = ‖D−S0ŵ‖1, and ‖P1ŵ‖2 ≤ ‖ŵ‖2,

ε>P1ŵ ≤ γcR(ns0)1/4‖D−S0ŵ‖
1/2
1 ‖ŵ‖

1/2
2 ,

Also, on the event Ω2 in (3.30), since P0ŵ ∈ R,

ε>P0ŵ ≤ γcS
√
s0‖ŵ‖2.

Hence, on Ω0 ∩ Ω1 ∩ Ω2, combining the last three displays with (3.33),

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0

Wn

)
‖ẑ‖2 + 2γcS

√
s0‖ŵ‖2 +

2γcR(ns0)1/4‖D−S0ŵ‖
1/2
1 ‖ŵ‖

1/2
2 − 2λ‖D−S0ŵ‖1. (3.34)

Consider the first case in which γcR(ns0)1/4‖D−S0ŵ‖
1/2
1 ‖ŵ‖

1/2
2 ≥ λ‖D−S0ŵ‖1. Then

‖D−S0ŵ‖1 ≤
(
γcR
λ

)2√
ns0‖ŵ‖2,

and from (3.34), on the event Ω0 ∩ Ω1 ∩ Ω2,

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0

Wn
+ γcS

√
s0 +

γ2c2
R

√
ns0

λ

)
‖x̂‖2. (3.35)

where we have used (3.15). In the case γcR(ns0)1/4‖D−S0ŵ‖
1/2
1 ‖ŵ‖

1/2
2 < λ‖D−S0ŵ‖1, we

have from (3.34), on the event Ω0 ∩ Ω1 ∩ Ω2,

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0

Wn
+ γcS

√
s0

)
‖x̂‖2.

Therefore, the bound (3.35) always holds on the event Ω0 ∩ Ω1 ∩ Ω2.

Putting it all together. Combining (3.32) and (3.35), we see that on Ω0 ∩ Ω1 ∩ Ω2,

‖δ̂‖22 + ‖x̂‖22 ≤ 2

(
γcS
√
s0 + 4λ

√
s0

Wn

)
‖δ̂‖2 +

2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0

Wn
+ γcS

√
s0 +

γ2c2
R

√
ns0

λ

)
‖x̂‖2.
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3.A. Proofs

Denote the right-hand side by A1‖δ̂‖2 +B1‖x̂‖2. Using the simple inequality 2ab ≤ a2 + b2,
twice, we have on Ω0 ∩ Ω1 ∩ Ω2,

‖δ̂‖22 + ‖x̂‖22 ≤
A2

1

2
+
‖δ̂‖22

2
+
B2

1

2
+
‖x̂‖22

2
.

Recalling that ‖δ̂‖22 + ‖x̂‖22 = ‖θ̂ − θ0‖22, this implies that on the event Ω0 ∩ Ω1 ∩ Ω2, there
exists a constant c > 0, such that for large enough n, and any γ > 1,

‖θ̂ − θ0‖22 ≤ γ4cs0

(
(log s0 + log log n) log n+

λ2

Wn
+

n

λ2

)
, (3.36)

on the event Ω0 ∩ Ω1 ∩ Ω2. Furthermore, using the union bound along with Lemmas 6, 7,
and (3.31), we find that

P
(
(Ω0 ∩ Ω1 ∩ Ω2)c

)
≤ 2 exp

(
− CIγ2c2

I(log s0 + log log n)
)

+

2 exp(−CRγ2c2
R

√
s0) + 2 exp(−CSγ2c2

Ss0) ≤ exp(−Cγ2),

for an appropriately defined constant C > 0. Optimizing the bound in (3.36) to choose the
tuning parameter λ yields λ = (nWn)1/4. Plugging this in gives the final result.

Next we give the proof of Corollary 2.

Proof of Corollary 2. Define the random variable

Z =
‖θ̂ − θ0‖22

cs0((log s0 + log log n) log n+
√
n/Wn)

,

which we know has the tail bound P(Z > z) ≤ exp(−C
√
z) for z > 1, and observe that

E(Z) =

∫ ∞
0

P(Z > z) dz ≤ 1 +

∫ ∞
1

exp(−C
√
z) dz.

The right-hand side is a finite constant, and this gives the result

E‖θ̂ − θ0‖2n ≤ c
s0

n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

where the constant c > 0 is adjusted to be larger, as needed.
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3.A.2 Proofs of Lemma 5, Lemma 6, Lemma 7, and (3.43)

Proof of Lemma 5. We give an explicit construction of a lower interpolant z ∈ M to x,
given the changepoints 0 = t0 < . . . < ts0+1 = n. We will use the notation a+ = max{0, a}
for the positive part of a. For i = 0, . . . , s0, define z(i+) ∈ Rti+1−ti by setting g+

i = sign(xti)
and

z
(i+)
j = g+

i ·min
{

(g+
i xti+1)+, . . . , (g

+
i xti+j)+

}
, j = 1, . . . , ti+1 − ti.

Similarly, define z(i−) ∈ Rti+1−ti by setting g−i = sign(xti+1−1) and

z
(i−)
j = g−i ·min

{
(g−i xti+j)+, . . . , (g

−
i xti+1)+

}
, j = 1, . . . , ti+1 − ti.

Note that z
(i+)
1 = xti+1 and z

(i−)
ti+1−ti = xti+1 ; also, {|z(i+)

j |}ti+1−ti
j=1 is a nonincreasing sequence,

and {|z(i−)
j |}ti+1−ti

j=1 is nondecreasing. Furthermore,

sign
(
z

(i+)
1

)
· sign

(
z

(i+)
j

)
≥ 0 and sign

(
z

(i−)
ti+1−ti

)
· sign

(
z

(i−)
j

)
≥ 0, j = 1, . . . , ti+1 − ti.

Lastly, notice that there exists a point j′ ∈ 1, . . . , ti+1 − ti − 1 (not necessarily unique) such
that

min
k∈{1,...,ti+1−ti}

∣∣z(i+)
k

∣∣ =
∣∣z(i+)
j′+1

∣∣ =
∣∣z(i+)
j

∣∣, j = j′ + 1, . . . , ti+1 − ti, (3.37)

min
k∈{1,...,ti+1−ti}

∣∣z(i−)
k

∣∣ =
∣∣z(i−)
j′

∣∣ =
∣∣z(i−)
j

∣∣, j = 1, . . . , j′. (3.38)

We define zti+j = z
(i+)
j for j = 1, . . . , j′, and zti+j = z

(i−)
j for j = j′+1, . . . , ti+1−ti. Letting

t′i = ti + j′ and repeating this process for i = 0, . . . , s0, we have constructed z ∈M.

We now verify the claimed properties for the constructed lower interpolant z. For
i = 0, . . . , s0, and any j = 1, . . . , ti+1 − ti, we have

sign(z
(i+)
j ) · sign(xti+j) ≥ 0, (3.39)

|z(i+)
j | ≤ |xti+j |, (3.40)

Further, for any j = 1, . . . , ti+1 − ti − 1,

sign
(

(Dz(i+))j

)
· sign

(
(Dx)ti+j

)
≥ 0, (3.41)∣∣∣(Dz(i+))j

∣∣∣ ≤ ∣∣(Dx)ti+j
∣∣. (3.42)

To see why (3.41) holds, note that the properties sign(Dz(i+))j ∈ {−1, 0}, (Dz(i+))j < 0
imply (D(g+

i x)+)ti+j < 0. To see why (3.42) holds, if (Dz(i+))j 6= 0, then we know that

|z(i+)
j+1 − z

(i+)
j | ≤

∣∣∣min
{

(g+
i xti+j+1)+, (g

+
i xti+j)+

}
− (g+

i xti+j)+

∣∣∣ ≤ |xti+j+1 − xti+j |,
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3.A. Proofs

where we used the observation that |min{a, b} − b| ≥ |min{a, b, c} −min{b, c}|.

It can be shown by nearly equivalent steps that z(i−), z both satisfy properties analogous
to (3.39)–(3.42). Using (3.39) and (3.40) on z gives (3.15). Using (3.41) and (3.42) on z
gives (3.13) (note that if sign(a) = sign(b) and |a| > |b|, then |a| = |b|+ |a− b|). Because
zti+1 = xti+1 and zti+1 = xti+1 for all i = 0, . . . , s0, we have the equality in (3.14) (as
Dtiz = zti+1 − zti = xti+1 − xti = Dtix).

Finally, for each i = 0, . . . , s0, define t′′i = t′i if |zt′i | ≥ |zt′i+1| and t′′i = t′i + 1 otherwise.
Observe that by (3.37) and (3.38), it holds that |zt′′i | = minj=1,...,ti+1−ti |zti+j |. The inequality
in (3.14) is finally established by the following chain of inequalities:

‖DS0z‖1 =

s0∑
i=1

|zti+1 − zti | ≤
s0∑
i=1

|zti+1|+ |zti |

=

s0∑
i=1

(
|zti+1| − |zt′′i |

)
+
(
|zti | − |zt′′i−1

|
)

+ |zt′′i−1
|+ |zt′′i |

≤ ‖D−S0z‖1 + 2

s0∑
i=0

|zt′′i | ≤ ‖D−S0z‖1 + 4

√
s0

Wn
‖z‖2,

where in the second inequality, we used |a| − |c| ≤ |a− c| ≤ |a− b|+ |b− c|, and in the last
inequality, we used the above property of zt′′i and

s0∑
i=0

|zt′′i | ≤ 2
√
s0

√√√√ s0∑
i=0

|zt′′i |
2 ≤ 2

√√√√s0

s0∑
i=0

ti+1 − ti
Wn

z2
t′′i
≤ 2

√
s0

Wn
‖z‖2.

This completes the proof.

Proof of Lemma 6. We consider ε ∈ Rn, an i.i.d. sub-Gaussian vector as referred to in the
statement of the lemma, and arbitrary z ∈ M. In this proof, we will also consider E(t)
and Z(t), real-valued functions over [0, n], constructed so that E(t) = εdte for all t (i.e., E(t)
is a step function), Z(t) = zt for t = 1, . . . , n, and Z(t) is continuously differentiable and
monotone over (ti, t

′
i] and (t′i, ti+1] for i = 0, . . . , s0. These functions will also satisfy the

boundary conditions E(0) = ε1 and Z(0) = z1.

Let F (t) =
∫ t

0 E(u) du. As ε is random, E(t) and F (t) are also random. It can be shown
that there exists constants cI , CI > 0 such that for any γ > 1,

P

(
|F (t)− F (ti)|√

|t− ti|
≤ γcI

√
log s0 + log log n, for t ∈ (ti, ti+1], i = 0, . . . , s0

)
≥ 1− 2 exp

(
− CIγ2c2

I(log s0 + log log n)
)
. (3.43)
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So as not to distract from the main flow of ideas, we now proceed to prove Lemma 6, and
we provide a proof of (3.43) later. Let Ω3 denote the event in consideration on the left-hand
side of (3.43). By integration by parts,∫ t′i

ti

E(t)Z(t) dt = Z(t′i)(F (t′i)− F (ti))−
∫ t′i

ti

Z ′(t)(F (t)− F (ti)) dt

where Z ′(t) = d
dtZ(t). Thus, on the event Ω3,∣∣∣∣∣

∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣ ≤ γcI√log s0 + log log n

(
|Z(t′i)|

√
t′i − ti +

∣∣∣∣∣
∫ t′i

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣
)
,

(3.44)
since Z ′ does not change sign within the intervals (ti, t

′
i], (t

′
i, ti+1] (as z ∈M). For n large

enough, we can upper bound the last term in (3.44) as follows∣∣∣∣∣
∫ t′i

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣+

∣∣∣∣∣
∫ t′i

ti+n−1

Z ′(t)
√
t− ti dt

∣∣∣∣∣ . (3.45)

Using integration by parts and the triangle inequality on the second term in (3.45),∣∣∣∣∣
∫ t′i

ti+n−1

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤ |Z(t′i)|
√
t′i − ti +

∣∣∣∣∣Z(ti + n−1)√
n

∣∣∣∣∣+

∣∣∣∣∣
∫ t′i

ti+n−1

Z(t)√
t− ti

dt

∣∣∣∣∣ . (3.46)

By Cauchy-Schwartz on the last term in (3.46),∣∣∣∣∣
∫ t′i

ti+n−1

Z(t)√
t− ti

dt

∣∣∣∣∣ ≤
(∫ t′i

ti+n−1

Z(t)2 dt

)1/2(∫ t′i

ti+n−1

1

t− ti
dt

)1/2

≤

(∫ t′i

ti+n−1

Z(t)2 dt

)1/2√
2 log n. (3.47)

Now examining the first term in (3.45),∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤ n−1/2

∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t) dt

∣∣∣∣∣ =
|Z(ti + n−1)− Z(ti)|√

n
.

But because we only require Z to be piecewise monotonic and continuously differentiable
then we are at liberty to make Z(ti + n−1) = Z(ti), forcing this term to be 0. In order to
bound Z(t′i), notice that because |Z(t)| is non-increasing over the interval (ti, t

′
i] we have

that

Z(t′i)
2|t′i − ti| ≤

∫ t′i

ti

Z(t)2 dt. (3.48)
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Combining (3.44)–(3.48), we have that on the event Ω3,∣∣∣∣∣
∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣ ≤ αn
(

2 +

√
log n

2

)(∫ t′i

ti

Z(t)2 dt

)1/2

+ αn
|Z(ti)|√

n
. (3.49)

where we have abbreviated αn = γcI
√

log s0 + log log n. Through nearly identical steps we
can show that on the event Ω3,∣∣∣∣∣

∫ ti+1

t′i

E(t)Z(t) dt

∣∣∣∣∣ ≤ αn
(

2 +

√
log n

2

)(∫ ti+1

t′i

Z(t)2 dt

)1/2

+ αn
|Z(ti+1)|√

n
. (3.50)

Therefore∣∣∣∣∫ n

0
E(t)Z(t) dt

∣∣∣∣ ≤ s0∑
i=0

(∣∣∣∣∣
∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ ti+1

t′i

E(t)Z(t) dt

∣∣∣∣∣
)

≤ αn
√

2s0 + 2

(
2 +

√
log n

2

)(∫ n

0
Z(t)2 dt

)1/2

+ 2αn
‖z‖1√
n
, (3.51)

where in the second line we used (3.49), (3.50), and the Cauchy-Schwartz inequality. Because
we can choose Z(t) to be arbitrarily close to zdte over all t, we can make the integral
(
∫ n

0 Z(t)2 dt)1/2 arbitrarily close to ‖z‖2 and likewise we can make
∫ n

0 E(t)Z(t) dt arbitrarily
close to ε>z. Furthermore, because ‖z‖1 ≤

√
n‖z‖2, the first term in (3.51) dominates.

Hence on the event Ω3, we have established that

|ε>z| ≤ γcI
√

(log s0 + log log n)s0 log n‖z‖2,

where the constant cI is adjusted to be larger, as needed. Noting that the event Ω3 does not
depend on z, the result follows.

Proof of claim (3.43). We will construct a covering for V = ∪s0i=0Vi, where for each i =
0, . . . , s0,

Vi =

{√
n

|A|
1A : A = {ti, . . . , t}, t = ti + 1, . . . , n

}
∪{√

n

|A|
1A : A = {t, . . . , ti}, t = 1, . . . , ti − 1

}
.

Our scaling is such that, for any a =
√
n/|A|1A, where A ⊆ {1, . . . , n}, we have ‖a‖n = 1.

Further, for any other b =
√
n/|B|1B, where B ⊆ {1, . . . , n}, we have

‖a− b‖2n =
|A ∩B|

(
√
|A| −

√
|B|)2

+
|A \B|
|A|

+
|B \A|
|B|

= 2

(
1− |A ∩B|√

|A||B|

)
. (3.52)
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We first construct a covering for each set Vi, i = 0, . . . , s0, and we restrict our attention
to a radius 0 < r <

√
2. Let α = d(1− r2/2)−2e, and consider the set

Ci =

{√
n

|A|
1A : A =

{
ti, . . . ,min{ti + αj , n}

}
, j = 1, . . . , dlog n/ logαe

}
∪{√

n

|A|
1A : A =

{
max{ti − αj , 1}, . . . , ti

}
, j = 1, . . . , dlog n/ logαe

}
.

Here, the set Ci has at most 2dlog n/ logαe ≤ 4 log n/ logα elements, and by (3.52), balls of
radius r around elements in Ci cover the set Vi. This establishes that

N(r,Vi, ‖ · ‖n) ≤ −2 log n

log(1− r2/2)
. (3.53)

For a radius 0 < r <
√

2, the covering number for V = ∪s0i=0Vi can be obtained by simply
taking a union of the covers in (3.53) over i = 0, . . . , s0, giving

N(r,V, ‖ · ‖n) ≤
s0∑
i=0

N(r,Vi, ‖ · ‖n) ≤ 2(s0 + 1)

(
− log n

log(1− r2/2)

)
. (3.54)

Using (3.52) once more, the diameter of the set V is
√

2, hence if r ≥ 1/
√

2, then we need
only 1 ball to cover V. Combining this fact with (3.54), we obtain

N(r,V, ‖ · ‖n) ≤

2(s0 + 1)

(
− log n

log(1− r2/2)

)
if 0 < r < 1/

√
2

1 if r ≥ 1/
√

2
. (3.55)

Now let us apply Theorem 22, with X = V. First, we remark that the quantity t0 in
Theorem 22 may be taken to be t0 = 1/

√
2. The bounds on t in the theorem are t > C1, as

well as

t > C2

∫ 1/
√

2

0

√
log

(
2(s0 + 1)

− log n

log(1− r2/2)

)
dr.

Next, we know that the right-hand side above is upper bounded by

C2

∫ 1/
√

2

0

√log
(
2(s0 + 1) log n

)
+

√
log

(
−1

log(1− r2/2)

)  dr
= C2

√
log
(
2(s0 + 1) log n

)
2

+ C2

√
2

∫ 1/2

0

√√√√log

(
1

log
(

1
1−x2

)) dx.
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One can verify that the the integral in the second term above converges to a finite constant
(upper bounded by 1 in fact). Thus the entire expression above is upper bounded by
C2
√

log s0 + log log n, where the constant C2 > 0 is adjusted to be larger, as needed. There-
fore, letting cI = max{C1, C2}, we may restrict our attention to t > cI

√
log s0 + log log n in

Theorem 22, and letting CI = C4, the conclusion reads, for t = γcI and γ > 1,

P
(

sup
a∈V

ε>a√
n
> γcI

√
log s0 + log log n

)
≤ 2 exp

(
− CIγ2c2

I(log s0 + log log n)
)
.

Recalling the form of a =
√
n/|A|1A ∈ V, the above may be rephrased as

P
(∑>

j=ti
εj√

|t− ti|
> γcI

√
log s0 + log log n, for t = 1, . . . , n, i = 0, . . . , s0

)
≤ 2 exp

(
− CIγ2c2

I(log s0 + log log n)
)
. (3.56)

Finally, consider the following event

Ω4 =

{
|F (t)− F (ti)|√

|t− ti|
≤ γcI

√
log s0 + log log n, for t = 1, . . . , n, i = 0, . . . , s0

}
.

Recalling that E(t) = εdte for all t ∈ [0, 1], we have F (t) =
∫ t

0 E(u) du =
∑t

j=0 εj for t =
1, . . . , n. In (3.56), we have thus shown P(Ω4) ≥ 1− 2 exp(−CIγ2c2

I(log s0 + log log n)). Note
that |F (t)− F (ti)| is piecewise linear with knots at t = 1, . . . , n and

√
|t− ti| is concave in

between these knots, so if |F (t)− F (ti)|/
√
|t− ti| ≤ γcI

√
log s0 + log log n for t = 1, . . . , n,

then the same bound must hold over all t ∈ [0, n]. This shows that Ω4 ⊇ Ω3, where Ω3 is the
event in question in the left-hand side of (3.43); in other words, we have verified (3.43).

For the proof of Lemma 7, we will need the following result from van de Geer (1990).

Lemma 23 (Lemma 3.5 of van de Geer 1990). Assume the setting of Theorem 22, and
additionally, assume that for some ζ ∈ (0, 1) and K > 0,

K(r) ≤ Kr−2ζ ,

where, recall, K(r) is a continuous function upper bounding the entropy number logN(r,X , ‖ · ‖n).
Then there exists constants C0, C1 depending only on σ such that for any t ≥ C0,

P
(

sup
x∈X

|ε>x|
√
n‖x‖1−ζn

> t
√
K

)
≤ exp(−C1t

2K).
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Proof of Lemma 7. Recall that for i = 0, . . . , s0, we let Bi = {ti + 1, . . . , ti+1}. For i =
0, . . . , s0, also define ni = |Bi|, the scaled norm ‖ · ‖ni = ‖ · ‖2/

√
ni, and

Xi =
{
w(i) ∈ Rni : (1(i))>w(i) = 0, ‖D(i)w(i)‖1 ≤ 1, ‖w(i)‖ni ≤ 1

}
.

Here, we write 1(i) ∈ Rni for the vector of all 1s, and D(i) ∈ R(ni−1)×n for the difference
operator, as in (3.6) but of smaller dimension. The set Xi is the discrete total variation space
in Rni , where all elements are centered and have scaled norm at most 1. From well-known
results on entropy bounds for total variation spaces (e.g., from Lemma 11 and Corollary 12
of Wang et al. (2017)), we have

logN(r,Xi, ‖ · ‖ni) ≤
C

r
,

for a universal constant C > 0. Hence we may apply Lemma 23 with X = Xi and ζ = 1/2:
for the random variable

Mi = sup

 |ε>Bi
w(i)|

√
ni‖w(i)‖1/2ni

: w(i) ∈ Xi

 ,

we may take t = γC0 in the lemma, for any γ > 1, and conclude that

P
(
Mi > γC0

√
C
)
≤ exp(−C1γ

2C2
0C).

Notice that we may rewrite Mi as

Mi = sup

 |ε>Bi
w(i)|

n
1/4
i ‖D(i)w(i)‖1/21 ‖w(i)‖1/22

: w(i) ∈ Rni , (1(i))>w(i) = 0

 ,

and therefore

P
(

sup
w(i)∈Rni , (1(i))>w(i)=0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γC0

√
Cn

1/4
i

)
≤ exp(−C1γ

2C2
0C).

Using the union bound,

P

 sup
w(i)∈Rni , (1(i))>w(i)=0

i=0,...,s0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γC0

√
Cn

1/4
i

 ≤ (s0+1) exp(−C1γ
2C2

0C).

82



3.A. Proofs

Define the constants cR = max{C0

√
C, 1} and CR = max{C1/2, 1}. This ensures that we

have 2CRγ
2c2
R

√
s0 ≥ log(s0 + 1) for any γ > 1 and any s0, thus

P

 sup
w(i)∈Rni , (1(i))>w(i)=0

i=0,...,s0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γcR(nis0)1/4

 ≤ exp(−CRγ2c2
R

√
s0).

The proof is completed by noting the following: if w ∈ R⊥, then (1(i))>wBi = 0 for
i = 0, . . . , s0, and so on the event in consideration in the last display,

|ε>w| ≤
s0∑
i=0

|ε>Bi
wBi | ≤ γcRs

1/4
0

s0∑
i=0

n
1/4
i ‖D

(i)wBi‖
1/2
1 ‖wBi‖

1/2
2

≤ γcRs1/4
0

 s0∑
i=0

‖D(i)wBi‖1

1/2 s0∑
i=0

n
1/2
i ‖wBi‖2

1/2

= γcRs
1/4
0 ‖D−S0w‖

1/2
1

 s0∑
i=0

n
1/2
i ‖wBi‖2

1/2

≤ γcRs1/4
0 ‖D−S0w‖

1/2
1

 s0∑
i=0

‖wBi‖22

1/4 s0∑
i=0

ni

1/4

= γcRs
1/4
0 ‖D−S0w‖

1/2
1 ‖w‖

1/2
2 n1/4,

by two successive uses of Cauchy-Schwartz.

3.A.3 Proof of Theorem 8

Let θ̂ denote the fused lasso estimate in (3.3), and θ̃ ∈ Rn denote an arbitrary vector. By
subgradient optimality, we know that y − θ̂ = λg for a subgradient g ∈ Rn of the function
x 7→ ‖Dx‖1 evaluated at x = θ̂. Thus,

(y − θ̂)>θ̂ = λ‖Dθ̂‖1.

Furthermore,

(y − θ̂)>θ̃ ≤ λ‖Dθ̃‖1.

Subtracting the second to last equation from the last gives

(y − θ̂)>(θ̃ − θ̂) ≤ λ
(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
,
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or
(θ0 − θ̂)>(θ̃ − θ̂) ≤ ε>(θ̃ − θ̂) + λ

(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
.

Using the polarization identity 2a>b = ‖a‖22 + ‖b‖22 − ‖a− b‖22 gives

‖θ̂ − θ0‖22 + ‖θ̃ − θ̂‖22 − ‖θ0 − θ̃‖22 ≤ 2ε>(θ̃ − θ̂) + 2λ
(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
.

As this holds for any θ̃, we can take θ̃ = θ0(s) in particular, and rearrange, to find that

‖θ̂− θ0‖22 + ‖θ̂− θ0(s)‖22 ≤ ‖θ0(s)− θ0‖22 + 2ε>(θ0(s)− θ̂) + 2λ
(
‖Dθ0(s)‖1−‖Dθ̂‖1

)
. (3.57)

The right-hand side above can be handled just as in the proof of Theorem 1. Dropping
‖θ0(s)− θ̂‖22 from the left-hand side above proves the first display (3.17) in the theorem.

To prove the second display (3.18) in the theorem, observe that on E, ‖θ̂ − θ0‖22 ≥ ‖θ0(s)− θ0‖22
by construction of θ0(s); thus from (3.57), we have

‖θ̂ − θ0(s)‖22 ≤ 2ε>(θ0(s)− θ̂) + 2λ
(
‖Dθ0(s)‖1 − ‖Dθ̂‖1

)
.

and the right-hand side here can be again handled as in the proof of Theorem 1.

3.A.4 Proofs of Theorem 10 and (3.21)

Proof of Theorem 10. For each i = 1, . . . , n, consider the univariate negative log-likelihood
function g defined by

gi(θi) = −yiθi + Λ(θi).

This is a strictly convex, twice continuously differentiable function, due to our assumptions
on the cumulant generating function Λ. Therefore, the second derivative of g satisfies

g′′i (θi) = Λ′′(θi) ≥ m,

i.e., its has a (strictly positive) minimum on the compact interval [l, u], which we denote as
m > 0. Now define f(θ) =

∑n
i=1 g(θi) as the negative log-likelihood loss over all n samples.

The above display implies that

f(θ)− f(θ0)−∇f(θ0)>(θ − θ0) ≥ m

2
‖θ − θ0‖22, for θi, θ0,i ∈ [`, u], i = 1, . . . , n. (3.58)

Returning to our estimate θ̂ in (3.20), by comparing the objectives at θ̂ and at θ0, we have

f(θ̂) + λ‖Dθ̂‖1 ≤ f(θ0) + λ‖Dθ0‖1.

Rearranging the terms in the above display and using (3.58), we have

m

2
‖θ̂ − θ0‖22 ≤ −∇f(θ0)>(θ̂ − θ0) + λ

(
‖Dθ0‖1 − ‖Dθ̂‖1

)
. (3.59)
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By assumption, the components of the random vector −∇f(θ0), namely

−∇if(θ0) = yi − Λ′(θ0,i) = yi − E(yi), i = 1, . . . , n,

follow a sub-Gaussian distribution. Thus the right-hand side in (3.59) can be analyzed
exactly as in the proof of Theorem 1, which leads to the desired result.

Proof of (3.21). From (3.59), observe

m

2M
‖θ̂ − θ0‖22 ≤

−∇f(θ0)

M

>
(θ̂ − θ0) +

λ

M

(
‖Dθ0‖1 − ‖Dθ̂‖1

)
, (3.60)

where M > 1 is a parameter free to vary, that we will specify below. Define an event

E = {y : ‖∇f(θ0)‖∞ ≤M} =
n⋂
i=1

{yi : |yi − µ(θ0,i)| ≤M},

On E, the random vector −∇f(θ0)/M has sub-Gaussian components (since it is bounded),
and the right-hand side in (3.60) can be analyzed as in the proof of Theorem 1. The final
error bound will be the usual error bound (i.e., that from Theorem 1) multiplied by a factor
of M .

Now we bound the probability of E. For W ∼ Pois(µ), by Poisson concentration results
(Pollard, 2015),

P(|W − µ| > x) ≤ 2 exp

(
− x2

2µ
ψ

(
x

µ

))
, for x > 0, where ψ(x) =

(1 + x) log(1 + x)− x
x2/2

.

Observe for any x ≥ 1,

x2

2µ
ψ

(
x

µ

)
≥ x2

2µ

1

1 + x/(3µ)
≥ 1/2

µ+ 1/3
x.

Setting M = δ log n for a constant δ > 0 to be determined, and using the last two displays,
as well as the bound µ(θ0,i) = eθ0,i ≤ eu, i = 1, . . . , n, yields

P(Ec) ≤ n exp

(
− 1/2

eu + 1/3
δ log n

)
= exp

((
1− 1/2

eu + 1/3
δ

)
log n

)
.

Now we simply need to choose δ large enough so that the right-hand side above equals 1/n,
i.e., we choose δ = 4(eu + 1/3), and this completes the proof.
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3.A.5 Proof of Theorem 14

Fix any ε > 0. By assumption, we know that there is a constant C > 0 and an integer
N1 > 0 such that

P
(
‖θ̃ − θ0‖2n >

C

4
Rn

)
≤ ε,

for all n ≥ N1. We also know that there is an integer N2 > 0 such that 2CnRn/H
2
n ≤Wn

for all n ≥ N2. Let N = max{N1, N2}, take n ≥ N , and let rn = bCnRn/H2
nc.

Suppose that d(S(θ̃) |S0) > rn. Then, by definition, there exists a changepoint ti ∈ S0

such that no changepoints of θ̃ are within rn of ti, which means that θ̃j is constant over
j ∈ {ti − rn + 1, . . . , ti + rn}. Denote

z = θ̃ti−rn+1 = . . . = θ̃ti = θ̃ti+1 = . . . = θ̃ti+rn .

We then form the lower bound

1

n

ti+rn∑
j=ti−rn+1

(
θ̃j − θ0,j

)2
=
rn
n

(
z − θ0,ti

)2
+
rn
n

(
z − θ0,ti+1

)2 ≥ rnH
2
n

2n
>
C

4
Rn,

where the first inequality holds because (x−a)2 +(x−b)2 ≥ (a−b)2/2 for all x (the quadratic
in x here is minimized at x = (a+b)/2), and the second because rn = bCnRn/H2

nc. Therefore,
we see that d(S(θ̃) |S0) > rn implies

‖θ̃ − θ0‖2n ≥
1

n

ti+rn∑
j=ti−rn+1

(
θ̃j − θ0,j

)2
>
C

4
Rn,

which implies

P
(
d
(
S(θ̃) |S0

)
> rn

)
≤ P

(
‖θ̃ − θ0‖2n >

C

4
Rn

)
≤ ε,

for all n ≥ N , completing the proof.

3.B Approximate changepoint recovery result, using post-processing

Here we state and prove a general result on approximate changepoint recovery using post-
processing. It is a precursor to the result in Theorem 19 and will be used to prove the
latter.

Theorem 24. Let θ̃ ∈ Rn be such that ‖θ̃ − θ0‖2n = OP(Rn). Consider the following proce-
dure: we evaluate the filter in (3.24) with bandwidth bn at all locations i = bn, . . . , n− bn,
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and only keep the locations whose absolute filter value is greater than or equal to a threshold
τn. Denote the resulting filtered set by

SA(θ̃) =
{
i ∈ {bn, . . . , n− bn} : |Fi(θ̃)| ≥ τn

}
.

For bandwidth and threshold values satisfying bn = ω(nRn/H
2
n), 2bn ≤ Wn, and τn/Hn →

ρ ∈ (0, 1) as n→∞, we have

P
(
dH
(
SA(θ̃), S0

)
≤ bn

)
→ 1 as n→∞.

Proof. The proof is not complicated conceptually, but requires some careful bookkeeping.
Also, we make use of a few key lemmas whose details will be given later. Fix ε > 0. Let
C > 0 and N1 > 0 be an integer such that for all n ≥ N1,

P
(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
.

Set ε = min{ρ, 1− ρ}/2. As bn = ω(nRn/H
2
n), there is an integer N2 > 0 such that for all

n ≥ N2,
2CnRn
bn

≤ (0.99εHn)2.

As τn/Hn → ρ ∈ (0, 1), there is an integer N3 > 0 such that for all n ≥ N3,

(ρ− ε)Hn ≤ τn ≤ (ρ+ ε)Hn.

Set N = max{N1, N2, N3}, and take n ≥ N . Note that ε ≤ ρ − ε and ρ + ε ≤ 1 − ε by
construction, and thus by the last two displays,√

2CnRn
bn

< τn < Hn −
√

2CnRn
bn

. (3.61)

Now observe

P
(
dH
(
SA(θ̃), S0

)
> bn

)
≤ P

(
d
(
SA(θ̃) |S0

)
> bn

)
+ P

(
d
(
S0 |SA(θ̃)

)
> bn

)
. (3.62)

We focus on bounding each term on the right-hand side above separately. For the first
term on the right-hand side in (3.62), observe that if Fti(θ̃) ≥ τn for all ti ∈ S0, then
d(SA(θ̃) |S0) ≤ bn. By the contrapositive,

P
(
d
(
SA(θ̃) |S0

)
> bn

)
≤ P

(
|Fti(θ̃)| < τn for some ti ∈ S0

)
≤ P

(
|Fti(θ̃)| < Hn −

√
2CnRn
bn

for some ti ∈ S0

)
, (3.63)
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where in the second line we used the upper bound on τn in (3.61). Suppose that ‖θ̃ − θ0‖2n ≤ CRn;
then, for ti ∈ S0, Lemma 26 tells us how small |Fti(θ̃)| can be made with this error bound
in place. Specifically, define

a = (−1/bn, . . . ,−1/bn︸ ︷︷ ︸
bn times

, 1/bn, . . . , 1/bn︸ ︷︷ ︸
bn times

) and c = (θ0,ti−bn+1, . . . , θ0,ti+bn),

and also r =
√
CnRn. Then Lemma 26 implies the following: if ‖θ̃ − θ0‖2n ≤ CRn, then

|Fti(θ̃)| ≥ |a>c| − r‖a‖2 ≥ |θ0,ti+1 − θ0,ti | −
√

2CnRn
bn

≥ Hn −
√

2CnRn
bn

.

Therefore, continuing on from (3.63),

P
(
d
(
SA(θ̃) |S0

)
> bn

)
≤ P

(
|Fti(θ̃)| < Hn −

√
2CnRn
bn

for some ti ∈ S0

)
≤ P

(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
.

It suffices to consider the second term in (3.62), and show that this is also bounded by
ε/2. Note that

P
(
d
(
S0 |SA(θ̃)

)
> bn

)
≤ P

(
|Fi(θ̃)| ≥ τn at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
≤ P

(
|Fi(θ̃)| >

√
2CnRn
bn

at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
.

(3.64)

In the second inequality we used the lower bound on τn in (3.61). Similar to the previous
argument, suppose that ‖θ̃ − θ0‖2n ≤ CRn; for any location i in consideration in (3.64),
Lemma 25 tells us how large |Fi(θ̃)| can be made with this error bound in place. Defining

a = (−1/bn, . . . ,−1/bn︸ ︷︷ ︸
bn times

, 1/bn, . . . , 1/bn︸ ︷︷ ︸
bn times

) and c = (θ0,i−bn+1, . . . , θ0,i+bn),

and r =
√
CnRn, as before, the lemma says the following: if ‖θ̃ − θ0‖2n ≤ CRn, then

|Fi(θ̃)| ≤ |a>c|+ r‖a‖2 =

√
2CnRn
bn

.

88



3.B. Approximate changepoint recovery result, using post-processing

Hence, continuing on from (3.64),

P
(
d
(
S0 |SA(θ̃)

)
> bn

)
≤ P

(
|Fi(θ̃)| >

√
2CnRn
bn

at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
≤ P

(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
,

completing the proof.

3.B.1 Lemmas 25 and 26

The proof of Theorem 24 above relied on two lemmas, that we state below. Their proofs are
based on simple arguments in convex analysis.

Lemma 25. Given a, c ∈ Rm, r ≥ 0, the optimal value of the (nonconvex) optimization
problem

max
x∈Rm

|a>x| such that ‖x− c‖2 ≤ r (3.65)

is |a>c|+ r‖a‖2.

Proof. We first consider the convex optimization problem

min
x∈Rm

a>x such that ‖x− c‖2 ≤ r, (3.66)

whose Lagrangian may be written as, for a dual variable λ ≥ 0,

L(x, λ) = a>x+ λ(‖x− c‖22 − r2).

The stationarity condition is a + λ(x − c) = 0, thus x = c − a/λ. By primal feasibility,
‖x− c‖2 ≤ r, we see that we can take λ = ‖a‖2/r, which gives a solution x = c− ra/‖a‖2.
The optimal value in (3.66) is therefore a>x = a>c− r‖a‖2. By the same logic, the optimal
value of the convex problem

max
x∈Rm

a>x such that ‖x− c‖2 ≤ r (3.67)

is a>c+ r‖a‖2. Now we can read off the optimal value of (3.65) from those of (3.66), (3.67):
its optimal value is

max
{
−
(
a>c− r‖a‖2

)
, a>c+ r‖a‖2

}
= |a>c|+ r‖a‖2,

completing the proof.
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Lemma 26. Given a, c ∈ Rm, r ≥ 0 such that |a>c| − r‖a‖2 ≥ 0, the optimal value of the
(convex) optimization problem

min
x∈Rn

|a>x| such that ‖x− c‖2 ≤ r (3.68)

is |a>c| − r‖a‖2.

Proof. The proof is nearly immediate from the proof of Lemma 25, above. Notice that
the optimal value of (3.68) is lower bounded by that of (3.66), which we already know is
a>c − r‖a‖22. But when the latter is nonnegative, this is also the optimal value of (3.68).
Repeating the argument with −a in place of a gives the result as stated in the lemma.

3.B.2 Proof of Theorem 19

We will show that {
dH
(
SA(θ̃), S0

)
≤ bn

}
⊆
{
dH
(
SF (θ̃), S0

)
≤ 2bn

}
, (3.69)

Since the left-hand side occurs with probability tending to 1, by Theorem 24, so will the
right-hand side. To show the desired containment, recall that, by the definition of Hausdorff
distance,{

dH
(
SA(θ̃), S0

)
≤ bn

}
=
{
d
(
S0 |SA(θ̃)

)
≤ bn

}
∩
{
d
(
SA(θ̃) |S0

)
≤ bn

}
. (3.70)

Inspecting the first term on the right-hand side of (3.70), we observe{
d
(
S0 |SA(θ̃)

)
≤ bn

}
⊆
{
d
(
S0 |SA(θ̃)

)
≤ 2bn

}
⊆
{
d
(
S0 |SF (θ̃)

)
≤ 2bn

}
, (3.71)

where the last containment holds as SF (θ̃) ⊆ SA(θ̃). Inspecting the second term on the
right-hand side of (3.70), we apply Lemma 27 which states that for each j ∈ {bn, . . . , n− bn},
there exists i ∈ IF (θ̃) such that |i− j| ≤ bn and |Fi(θ̃)| ≥ |Fj(θ̃)|. Using this, we see{

d
(
SA(θ̃) |S0

)
≤ bn

}
=
{

for all ` ∈ S0, there exists j ∈ SA(θ̃) such that |`− j| ≤ bn
}

⊆
{

for all ` ∈ S0, there exists i ∈ IF (θ̃) such that |`− i| ≤ 2bn

}
=
{
d
(
SF (θ̃) |S0

)
≤ 2bn

}
. (3.72)

Above, we have used Lemma 27 for the containment in the second line. Combining (3.70),
(3.71), and (3.72), we have established (3.69), as desired.
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3.B.3 Lemma 27

The proof of Theorem 19 relied on the following lemma.

Lemma 27. Let IF (θ̃) be the candidate set defined in Theorem 19. For each j ∈ {bn, . . . , n−
bn} where |Fj(θ̃)| > 0, there exists i ∈ IF (θ̃) such that |i− j| ≤ bn and |Fi(θ̃)| ≥ |Fj(θ̃)|.

Proof. To facilitate the proof, we define the concept of a local maximum among the absolute
filter values: a location i is a local maximum if its absolute filter value |Fi(θ̃)| is be greater
than or equal to the absolute values at neighboring locations, and strictly greater than
at least one of these values (where the boundary points are treated as having just one
neighboring location). Specifically, a local maximum i must satisfy one of the following
conditions

|Fi−1(θ̃)| < |Fi(θ̃)|, |Fi+1(θ̃)| ≤ |Fi(θ̃)|, if i ∈ {bn + 1, . . . , n− bn − 1}, (3.73)

|Fi−1(θ̃)| ≤ |Fi(θ̃)|, |Fi+1(θ̃)| < |Fi(θ̃)|, if i ∈ {bn + 1, . . . , n− bn − 1}, (3.74)

|Fi+1(θ̃)| < |Fi(θ̃)| if i = bn, (3.75)

|Fi−1(θ̃)| < |Fi(θ̃)| if i = n− bn. (3.76)

Let L(θ̃) denote the set of local maximums derived from the filter with bandwidth bn, i.e.,
the set of locations i satisfying one of the four conditions (3.73)–(3.76).

We first establish that L(θ̃) ⊆ IF (θ̃). Fix i ∈ L(θ̃). The boundary cases, i = bn or
i = n − bn, are handled directly by the definition of IF (θ̃). Hence, we may assume that
i ∈ {bn + 1, . . . , n− bn − 1}, and without a loss of generality,

|Fi(θ̃)| > |Fi−1(θ̃)| and |Fi(θ̃)| ≥ |Fi+1(θ̃)|,

as well as Fi(θ̃) > 0. This means that

Fi(θ̃) > |Fi−1(θ̃)| and Fi(θ̃) ≥ |Fi+1(θ̃)|,

which of course implies

Fi(θ̃) > Fi−1(θ̃) and Fi(θ̃) ≥ Fi+1(θ̃).

Applying the definition of the filter in (3.24) gives( i+bn∑
j=i+1

θ̃j −
i∑

j=i−bn+1

θ̃j

)
−
( i+bn−1∑

j=i

θ̃j −
i−1∑

j=i−bn

θ̃j

)
> 0

( i+bn∑
j=i+1

θ̃j −
i∑

j=i−bn+1

θ̃j

)
−
( i+bn+1∑

j=i+2

θ̃j −
i+1∑

j=i−bn+2

θ̃j

)
≥ 0,
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or, after simplification,

θ̃i+bn − 2θ̃i + θ̃i−bn > 0 and − θ̃i+bn+1 + 2θ̃i+1 − θ̃i−bn+1 ≥ 0.

Adding the above two equations together, we get

−
(
θ̃i+bn+1 − θ̃i+bn

)
+ 2
(
θ̃i+1 − θ̃i

)
−
(
θ̃i−bn+1 − θ̃i−bn

)
> 0,

which implies at least one of the three bracketed pairs of terms must be nonzero, i.e.,
a changepoint must occur at one of the locations i, i + bn, or i − bn. The proves that
L(θ̃) ⊆ IF (θ̃).

Now we show the intended statement. Let j ∈ {bn, . . . , n− bn}, and i ∈ L(θ̃) be in the
direction of ascent from j with respect to F (θ̃), where j ≤ i, without a loss of generality (for
the case i < j, replace `+ bn below by `− bn). That is, the location i is a local maximum
where

|Fj(θ̃)| ≤ |Fj+1(θ̃)| ≤ . . . ≤ |Fi−1(θ̃)| ≤ |Fi(θ̃)|. (3.77)

If |i − j| ≤ bn, then we have the desired result, due to (3.77). If |i − j| > bn, then there
must be at least one location ` ∈ S(θ̃) such that |` − j| ≤ bn. (To see this, note that if
θ̃j−bn+1 = . . . = θ̃j+bn , then Fj(θ̃) = 0.) Thus, at least one of `, `+ bn lies in between j and
i, and then again (3.77) implies the result, completing the proof.

3.C Comparison of Corollaries 20 and 21 to other results in the literature

Below are some remarks on the results in Corollaries 20 and 21.

Remark 28 (Recovery under weak sparsity, comparison to BS). The weak sparsity
result in (3.25) of Corollary 20 considers a challenging setting in which the number of
changepoints s0 in θ0 could be growing quickly with n, and we only have control on Cn =
‖Dθ0‖1. We draw a comparison here to known results on binary segmentation (BS). The
result in (3.25) on the (filtered) fused lasso and Theorem 3.1 in Fryzlewicz (2014) on the BS
estimator θ̂BS, each under the appropriate conditions on Wn, Hn, state that

dH
(
SF (θ̂), S0

)
≤ 2n1/3C

2/3
n log n

H2
n

vs. dH
(
S(θ̂BS), S0

)
≤ cn log n

H2
n

respectively, (3.78)

where c > 0 is a constant, and both bounds hold with probability approaching 1. The result
on SF (θ̂) is obtained by choosing νn =

√
log n and then bn = bn1/3C

2/3
n log n/H2

nc in (3.25).
Examining (3.78), we see that, when Cn scales more slowly than n, Corollary 20 provides
the stronger result: the term n1/3C

2/3
n will be smaller than n, and hence the bound on

dH(SF (θ̂), S0) will be sharper than that on dH(S(θ̂BS), S0).
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But we must also examine the specific restrictions that each result in (3.78) places on
s0,Wn, Hn. Consider the simplification Wn = Θ(n/s0), corresponding to a case in which
the changepoints in θ0 are spaced evenly apart. Corollary 20, starting with the condition
n1/3C

2/3
n log n/H2

n ≤Wn/2, plugging in the relationship Cn ≥ s0Hn, and rearranging to de-
rive a lower bound on the minimum signal gap, requires Hn = Ω(s

5/4
0 n−1/2 log3/4 n). If s0 =

Θ(n2/5), then we see that the minimum signal gap requirement becomes Hn = Ω(log3/4 n),
which is growing with n and is thus too stringent to be interesting (Sharpnack et al.
(2012) showed simple thresholding of pairwise differences achieves perfect recovery when
Hn = ω(

√
log n)). Hence, to accommodate signals for which Hn remains constant or even

shrinks with n, we must restrict the number of jumps in θ0 according to s0 = O(n2/5−δ),
for any fixed δ > 0. Meanwhile, inspection of Assumption 3.2 in Fryzlewicz (2014) reveals
that his Theorem 3.1 requires s0 = O(n1/4−δ), for any δ > 0, in order to handle signals
such that Hn remains constant or shrinks with n. In short, the (effectively) allowable range
for s0 is larger for Corollary 20 than for Theorem 3.1 in Fryzlewicz (2014). Even when
we look within their common range, Corollary 20 places weaker conditions on Hn. As an
example, consider s0 = Θ(n1/6) and Wn = Θ(n5/6). The fused lasso result in (3.78) requires
Hn = Ω(n−7/24 log4/3 n), and the BS result in (3.78) requires Hn = Ω(n−1/6+δ), for any
δ > 0. Finally, to reiterate, the fused lasso result in (3.78) gives a better Hausdorff recovery
bound when Cn is small compared to n; at the extreme end, this is better by a full factor of
n2/3, when Cn = O(1).

While the post-processed fused lasso looks favorable compared to BS, based on its approxi-
mate changepoint recovery properties in the weak sparsity setting, we must be clear that the
analyses for other methods—wild binary segmentation (WBS), the simultaneous multiscale
changepoint estimator (SMUCE), and tail-greedy unbiased Haar (TGUH) wavelets—are still
much stronger in this setting. Such methods have Hausdorff recovery bounds that are only
possible for the post-processed fused lasso (at least, using our current analysis technique)
when we assume strong sparsity. We discuss this next.

Remark 29 (Recovery under strong sparsity, comparison to other methods).
When s0 = O(1) and Wn = Θ(n), the result in (3.26) in Corollary 20 shows that the
post-processed fused lasso estimator delivers a Hausdorff bound of

dH
(
SF (θ̂), S0

)
≤ 2 log2 n

H2
n

, (3.79)

on the set SF (θ̂) of filtered changepoints, with probability approaching 1. This is obtained
by choosing (say) νn =

√
log n/ log log n and bn = blog2 n/H2

nc ≤Wn/2 in the corollary.
The effective restriction on the minimum signal gap is thus Hn = Ω(log n/

√
n), which is

quite reasonable, as Hn = ω(1/
√
n) is needed for any method to detect a changepoint with

probability tending to 1. Several other methods—the Potts estimator (Boysen et al., 2009),
binary segmentation (BS) and wild binary segmentation (WBS) (Fryzlewicz, 2014), the
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simultaneous multiscale changepoint estimator (SMUCE) (Frick et al., 2014), and tail-greedy
unbiased Haar wavelets (TGUH) (Fryzlewicz et al., 2018)—all admit Hausdorff recovery
bounds that essentially match (3.79), under similarly weak restrictions on Hn. But, it should
be noted that the latter three methods—WBS, SMUCE, and TGUH—continue to enjoy these
same sharp Hausdorff bounds outside of the strong sparsity setting, i.e., their analyses do
not require that s0 = O(1) and Wn = Θ(n), and instead just place weak restrictions on
the allowed combinations of Wn, Hn (e.g., the analysis of WBS in Fryzlewicz (2014) only
requires WnH

2
n ≥ log n). These analyses (and those for all previously described estimators)

are more refined than that given in Corollary 20: they are based on specific properties of the
estimator in question. The corollary, on the other hand, follows from Theorem 24, which
uses a completely generic analysis that only assumes knowledge of the estimation error rate.

Remark 30 (Recovery in the Poisson model). Corollary 21 gives an approximate
screening result for the post-processed fused lasso in the Poisson model, similar to the result
in the strong sparsity, sub-Gaussian error case discussed above. As with all of our other
approximate recovery results, this is established via the estimation error guarantees for the
Poisson fused lasso estimator. Analyzing changepoint detection properties directly in the
Poisson model seems like it could be a challenging task, and we are not aware of many
results in the literature that do so. (Likewise for the binomial model; we did not state formal
recovery results for this model but they follow from the estimation error bounds exactly as in
the Poisson case, and changepoint detection analysis in this model seems difficult and we are
not aware of extensive literature in this setting.)

3.D Choosing a threshold level in the post-processing procedure

We describe a data-driven procedure to determine the threshold level τn of the filter in
(3.24), used to derive a post-processed set of changepoints SF (θ̃) from an estimate θ̃, as
described in Theorem 19.

Let A(·) denote a fitting algorithm that, applied to data y, outputs an estimate θ̃ of θ0

(e.g., A(y) could be the minimizer in (3.3), so that its output is the fused lasso estimate). In
Algorithm 1 below, we present a heuristic but intuitive method for choosing the threshold
level τn, based on (entrywise) permutations of the residual vector y − θ̃. Aside from the
choice of fitting algorithm A(·), we must specify a number of permutations B to be explored,
the bandwidth bn for the filter in (3.24), and a quantile level q ∈ (0, 1). The intuition behind
Algorithm 1 is to set τn large enough to suppress “false positive” changepoints 100 · q% of
the time (according to the permutations). This is revisited later, in the discussion of the
simulation results.

Some example settings: we may take A(·) to be the fused lasso estimator, where the
tuning parameter λ is selected to minimize 5-fold cross-validation (CV) error, B = 100, and
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3.E. Numerical simulations to verify some of our theoretical results

Algorithm 1: Permutation-based approach for choosing τn

Data: Input a fitting algorithm A(·), number of permutations B, bandwidth bn,
and quantile level q ∈ (0, 1).

1 Compute θ̃ = A(y). Let S̃ = S(θ̃) denote the changepoints, and r = y − θ̃ the
residuals.

2 for b = 1, . . . , B do
3 Let r(b) be a random permutation of r, and define auxiliary data y(b) = θ̃ + r(b).
4 Rerun the fitting algorithm on the auxiliary data to yield θ̃(b) = A(y(b)).

5 Apply the filter in (3.24) to θ̃(b) (with the specified bandwidth bn), and record
the largest magnitude τ̂ (b) of the filter values at locations greater than bn away
from S̃. Formally,

τ̂ (b) = max
i∈{bn,...,n−bn}:
d(S̃|{i})>bn

∣∣Fi(θ̃(b))
∣∣.

6 end
7 Output τ̂n, the level q quantile of the collection τ̂ (b), b = 1, . . . , B.

q = 0.95. The choice of bandwidth bn is more subtle, and unfortunately, there is no one
choice that works for all problems.1 But, the theory in the last section provides some general
guidance: e.g., for problems in which we believe there are a small number of changepoints
(i.e., s0 = O(1)) of reasonably large magnitude (i.e., Hn = Ω(1)), Theorem 19 instructs us to
choose a bandwidth that grows faster than log n(log log n), so, choosing bn to scale as log2 n
would suffice. We will use this scaling, and the above suggestions for A(·), B, and q in all
coming experiments.

After running Algorithm 1 to compute τ̂n, the idea is to proceed with the filter SF (θ̃),
applied at the level τn = τ̂n, to the estimate θ̃ computed on the original data y at hand.

3.E Numerical simulations to verify some of our theoretical results

The code for the the results in this section can be found at https://github.com/linnylin92/
fused_lasso. In our experiments, we use the following simulation setup. For a given n, the
mean parameter θ0 ∈ Rn is defined to have s0 = 5 equally-sized segments, with levels 0, 2, 4,
1, 4, from left to right. Data y ∈ Rn is generated around θ0 using i.i.d. N(0, 4) noise. Lastly,
the sample size n is varied between 100 and 10, 000, equally-spaced on a log scale. Figure
3.2 displays example data sets with n = 774 and n = 10, 000.

1We note that in some situations, problem-specific intuition can yield a reasonable choice of bandwidth
bn. Also, it should be possible to extend Algorithm 1 to choose both τn and bn, but we do not pursue this,
for simplicity.
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3. detecting heterogeneity – fused lasso analysis
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Figure 3.2: An example from our simulation setup for n = 774 (left) and n = 10, 000 (right), where
in each panel, the mean θ0 is plotted in red, and the data points in gray.

For each sample size in consideration, we generated 50 example data sets from the setup
described above, and on each data set, computed the full solution path of the fused lasso
using the R package genlasso. We applied 5-fold CV to determine λ, as implemented in
genlasso: each consecutive, non-overlapping block of 5 points were grouped into 5 different
folds. When minimizing the out-of-sample test mean squared error, the average of the
immediate-left and immediate-right estimates were used as a proxy for the estimate at a
particular location.

Estimation error rate for fused lasso. Figure 3.3 displays the selected value of λ, as well as
the estimation error ‖θ̂ − θ0‖2n, averaged over the 50 trials, as functions of n. The results
support the theoretical conclusion in Theorem 1, as the achieved estimation error rate
scales as log n/n (perhaps even as log n(log logn)/n, although it would be hard to tell the
difference between the two). Also, CV appears to produce a choice of λ that scales as

√
n,

agreeing with the scaling of λ prescribed by the theory. The screening distance d(S(θ̂) |S0)
was at most 5 across the entire simulation, regardless of n.

Evaluation of the filter. We demonstrate that the filter in (3.24), with bn = b0.25 log2 nc,
can be effective at reducing the Hausdorff distance between estimated and true changepoint
sets. We first illustrate the use of the filter in a single data example with n = 774, in Figure
3.4. As we can see, the fused lasso originally places a spurious jump around location 250,
but this jump is eliminated when we apply the filter, provided that we set the threshold to
be (say) τn = 0.5.

Figure 3.5 now reports the results from applying the filter in problems of sizes between
n = 100 and n = 10, 000, using 50 trials for each n. We consider three different sets of
changepoint estimates: S(θ̂), the original changepoints from fused lasso estimate θ̂, tuning
λ via 5-fold CV; SF (θ̂), the changepoints after applying the reduced filter as described in
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3.E. Numerical simulations to verify some of our theoretical results
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Figure 3.3: The left panel shows the median values of λ chosen to minimize 5-fold CV error,
aggregated over repetitions in our simulation setup, as the sample size n varies. This scales
approximately as

√
n, which is drawn as a red curve (with a best-fitting constant), supporting

the choice prescribed by Theorem 1. The middle panel shows the corresponding estimation error
‖θ̂ − θ0‖2n, again aggregated over repetitions, as n varies. The scaling appears to be about log /n
(red curve). The right panel plots the median values of n‖θ̂ − θ0‖2n against log n; this looks close
to linear (red line), which provides empirical support to the claim that the fused lasso error rate
is log n/n (or perhaps even log n(log log n)/n, it would be hard to distinguish these two), which is
roughly in agreement with Theorem 1. In each panel, vertical bars denote ±1 standard deviations.

Theorem 19 to θ̂, with τn chosen by Algorithm 1; and SO(θ̂), an oracle set of changepoints
given by trying a wide range of τn values and choosing the value that minimizes the Hausdorff
distance after filtering (this assumes knowledge of S0, and is infeasible in practice). These
are labeled as “original”, “data-driven”, and “oracle” in the figure, respectively. As we
can see from the left and middle panels, the Hausdorff distance achieved by the original
changepoint set grows nearly linearly with n, but after applying the filter, the Hausdorff
distance becomes very small, provided that n is larger than 1000 or so. Empirically, the
Hausdorff distance associated with the filtered set appears to grow very slowly with n, nearly
constant (slower than the the log n(log logn) rate guaranteed by Theorem 19). The right
panel shows that our data-driven choices of τn are not substantially different from those
made by the oracle.
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3. detecting heterogeneity – fused lasso analysis
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Figure 3.4: In the top plot, an example with n = 774 is shown from our simulation setup, where
the data y is drawn in gray, the mean θ0 in red, and the fused lasso estimate θ̂ in blue. In the
bottom plot, the filter values Fi(θ̂), i = 1, . . . , n are drawn in blue, and the threshold τn is drawn as
a horizontal green line. Changepoints before and after filtering are marked by short black lines along
the bottom and top x-axes, respectively.
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3.E. Numerical simulations to verify some of our theoretical results
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Figure 3.5: In the left panel, the Hausdorff distances between original changepoints, filtered
changepoints with a data-driven threshold, and filtered changepoints with an oracle threshold, are
plotted (in black, blue, and red, respectively). The results are aggregated across 50 trial runs for
each sample size n; the solid dots display the median values, and the vertical segments display the
interquartile ranges (25th to 75th percentiles). The middle panel zooms in on the Hausdorff distances
for the data-driven and oracle filtering procedures, and the right panel displays the choices of τn for
these procedures.
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Four

Detecting heterogeneity – Post-selection
inference for changepoint significance

Paper summary: Changepoint detection methods are used in many areas of science
and engineering, e.g., in the analysis of copy number variation data to detect abnor-
malities in copy numbers along the genome. Despite the broad array of available tools,
methodology for quantifying our uncertainty in the strength (or presence) of given
changepoints post-selection are lacking. Post-selection inference offers a framework
to fill this gap, but the most straightforward application of these methods results in
low-powered hypothesis tests and leaves open several important questions about practical
usability. In this work, we carefully tailor post-selection inference methods towards
changepoint detection, focusing on copy number variation data. To accomplish this,
we study commonly used changepoint algorithms: binary segmentation, as well as two
of its most popular variants, wild and circular, and the fused lasso. We implement
some of the latest developments in post-selection inference theory, mainly auxiliary
randomization. This improves the power, which requires implementations of MCMC
algorithms (importance sampling and hit-and-run sampling) to carry out our tests. We
also provide recommendations for improving practical useability, detailed simulations,
and an example analysis on array comparative genomic hybridization (CGH) data.

The work in this chapter was done jointly with Sangwon Hyun, Max G’Sell, and
Ryan J. Tibshirani, and has been submitted to Biometrics under the title “Valid post-
selection inference for segmentation methods with application to copy number variation
data.”

4.1 Introduction

Changepoint detection is the problem of identifying changes in data distribution along a
sequence of observations. We study the canonical changepoint problem, where changes
occur only in the mean: let vector Y = (Y1, . . . , Yn) ∈ Rn be a data vector with independent
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entries,
Yi ∼ N (θi, σ

2), i = 1, . . . , n, (4.1)

where the unknown mean vector θ ∈ Rn forms a piecewise constant sequence. That is, for
locations 1 ≤ b1 < · · · < bt ≤ n− 1,

θbj+1 = . . . = θbj+1
, j = 0, . . . , t.

where for convenience we write b0 = 0 and bt+1 = n. We call b1, . . . , bt changepoint
locations of θ. Changepoint detection algorithms typically focus on estimating the number of
changepoints t (which could possibly be 0), as well as the locations b1, . . . , bt, from a single
realization Y . Roughly speaking, changepoint methodology (and its associated literature)
can be divided into two classes of algorithms: segmentation algorithms and penalization
algorithms. The former class includes binary segmentation (BS) (Vostrikova, 1981) and
popular variants like wild binary segmentation (WBS) (Fryzlewicz, 2014) and circular binary
segmentation (CBS) (Olshen et al., 2004); the latter class includes the fused lasso (FL)
(Tibshirani et al., 2005) (also called total variation denoising (Rudin et al., 1992) in signal
processing), and the Potts estimator (Boysen et al., 2009). These two classes have different
strengths; see, e.g., Cho and Fryzlewicz (2011); Lin et al. (2017) for more discussion.

Having estimated changepoint locations, a natural follow-up goal would be to conduct
statistical inference on the significance of the changes in mean at these locations. Despite
the large number of segmentation algorithms and penalization algorithms available for
changepoint detection, there has been very little focus on formally valid inferential tools to
use post-selection – after the changepoints have been selected. In this work, we describe
a suite of inference tools to use after a changepoint algorithm has been applied—namely,
BS, WBS, CBS, or FL. We work in the framework of post-selection inference, also called
selective inference. The specific machinery that we build off was first introduced in Lee et al.
(2016); Tibshirani et al. (2016), and further developed in various works, notably Fithian
et al. (2014, 2015); Tian and Taylor (2018), whose extensions we rely on in particular.

Basic inference procedure. The basic inference procedure we consider is as follows.

1. Given data Y , apply a changepoint algorithm to detect some fixed number of change-
points k. Denote the estimated changepoint locations by b̂1, . . . , b̂k, and their respective
changepoint directions (whether the estimated change in mean was positive or negative)
by d̂1, . . . , d̂k ∈ {−1, 1}. Let I1, . . . , Ik+1 denote the partition of {1, . . . , n} formed by
b̂1:k. The specifics of the changepoint algorithms that we consider are given in §4.2.1.

2. Form contrast vectors v1, . . . , vk ∈ Rn, defined so that for arbitrary y ∈ Rn,

vTj y = d̂j

(
1

|Ij+1|

( ∑
i∈Ij+1

yi

)
− 1

|Ij |

(∑
i∈Ij

yi

))
, (4.2)

102



4.1. Introduction

for j = 1, . . . , k where |Ij | denotes the cardinality of the set Ij . Hence, vTj Y represents
the difference between the sample means of segments to right and left of b̂j ,

3. For each j = 1, . . . , k, we test the hypothesis H0 : vTj θ = 0 by rejecting for large values
of a statistic T (Y, vj), which is computed based on knowledge of the changepoint

algorithm that produced b̂1:k in Step 1, and the desired contrast vector (4.2) formed
in Step 2. Each statistic yields a p-value under the null (assuming the model (4.1)).
The details of T (Y, vj) are given in Sections 4.2.2 and 4.3.

4. Optionally, we can use Bonferroni correction by multiplying the p-values by k, to
account for multiplicity.

It is worth mentioning that several variants of this basic procedure are possible. For
example, the number of changepoints k in Step 1 need not be fixed a priori and may be
itself estimated from data; the set of estimated changepoints b̂1:k may be pruned after Step
1 to eliminate changepoints that lie too close to others, and alternative contrast vectors to
(4.2) in Step 2 may be used to measure more localized mean changes; these are all briefly
described in §4.4. Though not covered in our paper, the p-values from our tests can be
inverted to form confidence intervals for population contrasts vTj θ for j = 1, . . . , k (Lee et al.,
2016; Tibshirani et al., 2016).

Contributions. At a more comprehensive level, our contributions in this work are to imple-
ment theoretically valid inference tools and provide practical guidance for each combination
of the following choices that a typical user might face in a changepoint analysis: the algorithm
(BS, WBS, CBS, or FL), number of estimated changepoints k (fixed or data-driven), the
null hypothesis model (saturated or selected model, to be explained in §4.2.2), what type of
conditioning (plain or marginalized, to be explained in §4.3.3), and the error variance σ2

(known or unknown). For unknown σ2, we develop a new hit-and-run sampling algorithm.
In §4.4, we summarize the tradeoffs underlying each of these choices.

Finally, as the primary application of our inference tools, we study comparative genomic
hybridization (CGH) data, making particular suggestions geared towards this problem
throughout the paper. We begin with a motivating CGH data example in the next subsection,
and return to it at the end of the paper.

4.1.1 Motivating example: array CGH data analysis

We examine array CGH data from the 14th chromosome of cell line GM01750, one of the
15 datasets from Snijders et al. (2001); more background can be found in Lai et al. (2005)
and references therein. Array CGH data are log2 ratios of dye intensities of diseased to
healthy subjects’ measurements, mixed across many samples. Normal regions of the gene
are thought to have an underlying mean log2 ratio of zero, and aberrations are regions of
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upward or downward departures from zero because the gene in that region has been mutated
– duplicated or deleted. The presence and locations of aberrations are well studied in the
biomedical literature to be associated with the presence of a wide range of genetically driven
diseases – as many types of cancer, Alzheimer, and autism (Bean et al., 2007; Mullighan
et al., 2007; Kao et al., 2009; Verhaak et al., 2010). All these aforementioned work use
one of the changepoint detection methods we cover in this paper. Accurate inference on
top of existing changepoint analyses of array CGH data can serve as an effective screening
mechanism for these previous work that can be applied in an automated fashion.

The data is plotted in the left panel of Figure 4.1. Two locations b̂1 < b̂2, marked A and
B respectively, were detected by running 2-step WBS. Ground truth in this data set can
be defined via an external process called called karyotyping; this is done by Snijders et al.
(2001) who finds only one true changepoint at location A. (To be precise, they do not report
exact locations of abnormalities, but find a single start-to-middle deviation from zero level.)

Without access to any post-selection inference tools, we might treat locations A and B
as fixed, and simply run t-tests for equality of means of neighboring data segments, to the
left and right of each location. This is precisely testing the null hypothesis H0 : vTj θ = 0,
j = 1, 2, where the contrast vectors are as defined in (4.2). P-values from the t-tests are
reported in the first row of the table in Figure 4.1: we see that location A has a p-value
of < 10−5, but location B also has a small p-value of 5× 10−4, which is troublesome. The
problem is that location B was specifically selected by WBS because (loosely speaking) the
sample means to left and right of B are well separated, thus a t-test on location B is likely
to be optimistic.

Using the tools we describe shortly, we test H0 : vTj θ = 0, j = 1, 2 in two ways: using a
saturated model and a selected model on the mean vector θ. The satured model assumes
nothing about θ, while the selected model assumes θ is constant between the intervals formed
by A and B. Both tests yield a p-value < 10−5 at location A, but only a moderately small
p-value at location B. If we were to use the Bonferroni correction at a nominal significance
level α = 0.05, then we would not reject the null at location B in both cases.

4.1.2 Related work

In addition to the references on general post-selection inference methodology given previously,
we highlight the recent work of Hyun et al. (2018a), which studies post-selection inference
for the generalized lasso, a generalization of the fused lasso. These authors characterize the
polyhedral form of fused lasso selection events, and study inference using contrasts as in
(4.2). While writing the current paper, we became aware of the independent contributions of
Umezu and Takeuchi (2017), who study multi-dimensional changepoint sequences, but focus
problems in which the mean θ has only one changepoint. Aside from these papers, there is
little focus on valid inference methods to apply post-detection in changepoint analysis. On
the other hand, there is a huge literature on changepoint estimation, and inference for fixed
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Figure 4.1: Left: array CGH data from the 14th chromosome of fibroblast cell line GM01750,
from Snijders et al. (2001). The x-axis denotes the relative index of the genome position, and the
y-axis denotes the log ratio in fluorescence intensities of the test and reference samples. The dotted
horizontal line denotes a log ratio of 0 for reference. The bold vertical lines denote the locations A
and B from running WBS for 2 steps. Right: the p-values using classical (naive) t-tests, saturated
model tests, and selected model tests, at each location A and B. The ground truth is also given, as
determined by karyotyping. The saturated model test used an estimated noise level σ2 from the
entire 23-chromosome data set. The selected model test was performed in the unknown σ2 setting.

hypotheses in changepoint problems; we refer to Jandhyala et al. (2013); Aue and Horvath
(2013); Horvath and Rice (2014), which collectively summarize the literature.

4.2 Preliminaries

4.2.1 Review: changepoint algorithms

Below we describe the changepoint algorithms that we will study in this paper. We will focus
on formulations that run the algorithm for a given number of steps k. In contrast, these
algorithms are typically described in the literature as recursively running until internally
calculated statistics do not exceed a given threshold level τ . The reason that we choose the
former formulation is twofold: first, we feel it is easier for a user to specify a priori a reasonable
number of steps k, versus a threshold level τ ; second, we can use the method in Hyun et al.
(2018a) to adaptively choose the number of steps k and still perform valid inferences. In
what follows, we use the notation ya:b = (ya, ya+1, . . . , yb) and ȳa:b = (b− a+ 1)−1

∑b
i=a yi

for a vector y. Similarly, for a set I, ȳI = |I|−1
∑

i∈I yi.

Binary segmentation (BS). Given a data vector y ∈ Rn, the k-step BS algorithm
(Vostrikova, 1981) sequentially splits the data based on the cumulative sum (CUSUM)
statistics, defined below. At a step ` = 1, . . . , k, let b̂1:(`−1) be the changepoints estimated
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so far, and let Ij , j = 1, . . . , ` be the partition of {1, . . . , n} induced by b̂1:(`−1). Throughout
this paper, we use the convention that for ` = 1, I1 = {1, . . . , n}. Intervals of length 1 are
discarded. Let sj and ej be the start and end indices of Ij . The next changepoint b̂` and
maximizing interval ĵ` are chosen to maximize the absolute CUSUM statistic,{

ĵ`, b̂`
}

= argmax
j∈{1,...,`−1}
b∈{sj ,...,ej−1}

∣∣gT(sj ,b,ej)y
∣∣, where

gT(s,b,e)y =

√
1

1
|e−b| + 1

|b+1−s|

(
ȳ(b+1):e − ȳs:b

)
. (4.3)

Additionally, the direction d̂` of the new changepoint is calculated by the sign of the
maximizing absolute CUSUM statistic, d̂` = sign(gT(sj ,b`,ej)y) for j = ĵ`+1.

Wild binary segmentation (WBS). The k-step WBS algorithm (Fryzlewicz, 2014) is a
modification of BS that calculates CUSUM statistics over randomly drawn segments of the
data. Denote by w = {w1, . . . , wB} = {(s1, . . . , e1), . . . , (sB, . . . , eB)} a set of B uniformly
randomly drawn intervals with 1 ≤ si < ei ≤ n, i = 1, . . . , B. At a step ` = 1, . . . , k, let J`
to be the index set of the intervals in w which do not intersect with the changepoints b̂1:(`−1)

estimated so far. The next changepoint b̂` and the maximizing interval ĵ` are obtained by{
ĵ`, b̂`

}
= argmax

j∈J`
b∈{sj ,...,ej−1}

∣∣gT(sj ,b,ej)y
∣∣,

where gT(s,b,e)y is defined in (4.3). Similar to BS, the direction of the changepoint d̂` is defined
by the sign of the maximizing absolute CUSUM statistic.

Circular binary segmentation (CBS). The k-step CBS algorithm (Olshen et al., 2004)
specializes in detecting pairs of changepoints that have alternating directions. At a step
` = 1, . . . , k, let â1:(`−1), b̂1:(`−1) be the changepoints estimated so far (with the pair aj , bj
estimated at step j), and let Ij , j = 1, . . . , 2`+ 1 be the associated partition of {1, . . . , n}.
Intervals of length 2 are discarded. Let sj and ej denote the start and end index of Ij . The
next changepoint pair â` and b̂`, and the maximizing interval ĵ`, are found by{

ĵ`, â`, b̂`
}

= argmax
j∈{1,...,2(`−1)+1)}

a,b∈{sj ,...,ej−1} : a<b

∣∣gT(sj ,a,b,ej)y
∣∣ where (4.4)

gT(s,a,b,e)y =

√
1

1
|b−a| + 1

|e−s−b+a|

(
ȳ(a+1):b − ȳ{s:a}∪{(b+1):e}

)
. (4.5)

As before, the new changepoint direction d̂` is defined based on the sign of the (modified)
CUSUM statistic, d̂` = sign(gT(sj ,a`+1,b`+1,ej)y) for j = ĵ`+1(y).
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Fused lasso (FL). The fused lasso estimator (Rudin et al., 1992; Tibshirani et al., 2005)
is defined by solving the convex optimization problem,

min
θ∈Rn

n∑
i=1

(yi − θi)2 + λ
n−1∑
i=1

|θi − θi+1|, (4.6)

for a tuning parameter λ ≥ 0. The fused lasso can be seen as a k-step algorithm by sweeping
the tuning parameter from λ =∞ down to λ = 0. Then, at given values of λ (called knots),
the FL estimator sequentially introduces an additional changepoint into the solution of (4.6)
(Hoefling, 2010). See Hyun et al. (2018a) for a more in-depth description.

4.2.2 Review: post-selection inference

We briefly review post-selection inference as developed in Lee et al. (2016); Tibshirani et al.
(2016); Fithian et al. (2014). Our description here will be cast towards changepoint problems.
For clarity, we notationally distinguish between a random vector Y distributed as in (4.1),
and yobs, a single data vector we observe for changepoint analysis. When a changepoint
algorithm—such as BS, WBS, CBS, or FL—is applied to the data yobs, it selects a particular
changepoint model M(yobs). The specific forms of such models are described in §4.3.1; for
now we may loosely think of M(yobs) as the estimated changepoint locations and directions
made by the algorithm on the data at hand. Post-selection inference revolves around the
selective distribution, i.e., the law of

vTY |
(
M(Y ) = M(yobs), q(Y ) = q(yobs)

)
, (4.7)

under the null hypothesis H0 : vT θ = 0, for any v that is a measurable function of M(yobs),
such as in (4.2). Here, q(Y ) is a vector of sufficient statistic of nuisance parameters that
need to be conditioned on in order to tractably compute inferences based on (4.7). The
explicit form of q(Y ) differs based on the assumptions imposed on θ under the null model.
Broadly, there are two classes of null models we may study: saturated and selected models
(Fithian et al., 2014). As shown in the literature, computationally, in either null models, it
is important for the selection event {y : M(y) = M(yobs)} be polyhedral. This is described
in detail in Section 4.3.1, where we show that this holds for BS, WBS, CBS, and FL.

Saturated model. The saturated model assumes that Y is distributed as in (4.1) with
known error variance σ2, and assumes nothing about the mean vector θ. We set q(Y ) = Π⊥v Y ,
the projection of Y onto the hyperplane orthogonal to v. The selective distribution then
becomes the law of

vTY |
(
M(Y ) = M(yobs), Π⊥v Y = Π⊥v yobs

)
. (4.8)
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Selected model. The selected model again assumes that Y follows (4.1), but additionally
assumes that the mean vector θ is piecewise constant with changepoints at the sorted
estimated locations ĉ1:k = ĉ1:k(yobs), assuming we have run our changepoint algorithm for k
steps. That is, letting sj and ej denote the start and end index of interval Ij , we assume

θsj = . . . = θej , j ∈ {1, . . . , k + 1}.

Under this assumption, the law of Y becomes a (k + 1)-parameter Gaussian distribution.
Additionally, with the contrast vector vj defined as in (4.2), for any fixed j = 1, . . . , k + 1,
the quantity vTj θ of interest is simply the difference between two of the parameters in this

distribution. Let Ij = {1, . . . , k + 1}\{j, j + 1}. Assuming σ2 is known, the sufficient
statistics q(Y ) for the nuisance parameters in the Gaussian family are then the sample
averages of the appropriate data segments, and the selective distribution becomes the law of(

ȲIj+1 − ȲIj
) ∣∣ (M(Y ) = M(yobs), ȲIj∪Ij+1 =

(
ȳobs

)
Ij∪Ij+1

, ȲI` =
(
ȳobs

)
I`

for ` ∈ Ij
)
.

(4.9)
The appeal of the selected model is that we can properly treat σ2 as unknown; in this case,
we must only additionally condition on the Euclidean norm of yobs to cover this nuisance
parameter, and the selective distribution becomes the law of

(
ȲIj+1 − ȲIj

) ∣∣ (M(Y ) = M(yobs), ȲIj∪Ij+1 =
(
ȳobs

)
Ij∪Ij+1

, ȲI` =
(
ȳobs

)
I`

for ` ∈ Ij ,

‖Y ‖2 = ‖yobs‖2
)
. (4.10)

4.3 Inference for changepoint algorithms

We describe our contributions that enable post-selection inference for changepoint analyses,
beginning with the form of model selection events for common changepoint algorithms. We
then describe computational details for saturated and selected model tests, and auxiliary
randomization.

4.3.1 Polyhedral selection events

We show that, for each of the BS, WBS, and CBS algorithms, there is a parametrization
for their models such that event {y : M(y) = M(yobs)} is a polyhedron—in fact a convex
cone—of the form {y : Γy ≥ 0}, for a matrix Γ ∈ Rm×n that depends on M(yobs) (and
we interpret the inequality Γy ≥ 0 componentwise). Throughout the description of the
polyhedra for each algorithm, we display the number of rows in Γ since it loosely denotes
how “complex” each model selection event is. The same was already shown for FL in Hyun
et al. (2018a), and we omit details, but briefly comment on it below. Overall, for a fixed
k, the Γ matrices for FL and BS are linear in n, while it is quadratic in n for CBS, and
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O(Bp) for WBS using intervals of length p. This number can grow faster than linear in n if
B ≥ n, which is recommended in practice (Fryzlewicz, 2014). All the proofs in this section
are provided in Appendix 4.B.

Selection event for BS. We define the model for the k-step BS estimator as

MBS
1:k (yobs) =

{
b̂1:k(yobs), d̂1:k(yobs)

}
,

where b̂1:k(yobs) and d̂1:k(yobs) are the changepoint locations and directions when the algo-
rithm is run on yobs, as described in Section 4.2.1.

Proposition 31. Given any fixed k ≥ 1 and b1:k, d1:k, we can explicitly construct Γ where{
y : MBS

1:k (y) = {b1:k, d1:k}
}

= {y : Γy ≥ 0},

where Γ has 2
∑k

`=1(n− `− 1) rows.

Selection event for WBS. We define the model of the k-step WBS estimator as

MWBS
1:k (yobs, w) =

{
b̂1:k(yobs), d̂1:k(yobs), ĵ1:k(yobs)

}
,

where w is the set of B intervals that the algorithm uses, b̂1:k(yobs) and d̂1:k(yobs) are the
changepoint locations and directions, and ĵ1:k(yobs) are the maximizing intervals. Note that
unlike BS, the maximizing intervals ĵ1:k are part of WBS’s model.

Proposition 32. Given any fixed k ≥ 1 and {w, b1:k, d1:k, j1:k}, we can explicitly construct
Γ where {

y : MWBS
1:k (y, w) = {b1:k, d1:k, j1:k}

}
=
{
y : Γy ≥ 0

}
.

The number of rows in Γ will vary depending on the configuration of w and b1:k, but if each
of the B intervals in w has length p, it will be at most 2

∑k
`=1((B − `) · (p− 1) + (p− 2)).

Selection event for CBS. We define the model for the k-step CBS estimator as

MCBS
1:k (yobs) =

{
â1:k(yobs), b̂1:k(yobs), d̂1:k(yobs)

}
,

where now â1:k(yobs) and b̂1:k(yobs) are the pairs of estimated changepoint locations, and
d̂1:k(yobs) are the changepoint directions, as described in Section 4.2.1.

Proposition 33. Given any fixed k ≥ 1 and {a1:k, b1:k, d1:k}, we can explicitly construct Γ
where {

y : MCBS
1:k (y, w) = {a1:k, b1:k, d1:k}

}
=
{
y : Γy ≥ 0

}
.

Let I
(`)
j denote the jth interval of B(`) intervals remaining for an intermediate step ` ∈

{1, . . . , k}, and let C(x, 2) =
(
x
2

)
. Then Γ has a number of rows equal to

2
k∑
`=1

[B(`)∑
j=1

C(|I(`)
j | − 1, 2)− 1

]
.
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Selection events for FL, and a brief comparison. The model for the k-step FL
estimator is

MFL
1:k (yobs) =

{
b̂1:k(yobs), d̂1:k(yobs), R̂1:k(yobs)

}
,

where b̂1:k(y) and d̂1:k(y) are changepoint locations and directions, and R̂`(y) ∈ Rn−`, ` = 1, . . . , k
whose elements represent signs of a certain statistic hi(y) calculated at location i in competi-
tion for maximization with b̂` at step `. These statistics hi(y) are weighted mean differences
at location i and are analogous to CUSUM statistics in BS. Hyun et al. (2018a) makes this
representation more explicit, proving that for any fixed k ≥ 1 and b1:k, d1:k, R1:k, we can
explicitly construct Γ such that{

y : MFL
1:k (y) = {b1:k, d1:k, R1:k}

}
= {y : Γy ≥ 0},

where Γ has the same number of rows as a k-step BS event.

4.3.2 Computation of p-values

Given a precise description of the polyhedral selection event {y : M(y) = M(yobs)}, we
can describe the methods to compute the p-value, i.e. the tail probability of the selective
distributions described in §4.2.2. Without loss of generality, all of our descriptions will be
specialized to testing the null hypothesis of H0 : vT θ = 0 against the one-sided alternative
H1 : vT θ > 0. For saturated model tests, this exact calculation has been developed in
previous work and we review it as it is relevant to our contributions on increasing its power.
For selected model tests, an approximation was described in previous work, but we develop
a new and more intuitive hit-and-run sampler that has not been implemented before.

Saturated model tests: exact formulae. As shown in Lee et al. (2016) and Tibshirani
et al. (2016), the saturated selective distribution (4.8) has a particularly computationally
convenient distribution when Y is Gaussian and the model selection event {y : M(y) =
M(yobs)} is a polyhedral set in y. In this case, the law of (4.8) is a truncated Gaussian
(TG), whose truncation limits depend only on Π⊥v yobs, and can be computed explicitly. Its
tail probability can be computed in closed form (without Monte Carlo sampling). That is,
the probability that vTY ≥ vT yobs under the law of (4.8) is exactly equal to

(Φ(Vup/τ)− Φ(vT yobs/τ))/(Φ(Vup/τ)− Φ(Vlo/τ)) (4.11)

where Φ(·) represents the standard Gaussian CDF, τ = σ2‖v‖22, ρ = Γv/‖v‖22 and

Vlo = vT yobs − min
j:ρj>0

(
Γyobs

)
j
/ρj , and Vup = vT yobs − max

j:ρj<0

(
Γyobs

)
j
/ρj . (4.12)

This above equation is commonly referred as the TG statistic. Since this statistic is a pivot,
it is the p-value used for the saturated model test.
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Algorithm 2: MCMC hit-and-run algorithm for selected model test with unknown
σ2

1 Choose a number M of iterations and set y(0) = yobs.
2 for m ∈ {1, . . . ,M} do
3 Uniformly sample two unit vectors s and t in the nullspace of A.
4 Compute the set I ⊆ [−π/2, π/2] that intersects the set{

y : y = y(m−1) + r(ω) sin(ω) · s+ r(ω) cos(ω) · t for any ω ∈ [−π/2, π/2]
}
,

for the radius function r(ω) = −2(y(m−1))T (sin(ω) · s+ cos(ω) · t), with the
polyhedral set implied by the selected model M(yobs) based on §4.3.1.

5 Uniformly sample ω(m) from I and form the next sample

y(m) = y(m−1) + r(ω(m)) sin(ω(m)) · s+ r(ω) cos(ω(m)) · t.

6 end
7 Return the approximate for the tail probability of (4.10),∑M

m=1 1[vT y(m) ≥ vT yobs]/M.

Selected model tests: hit-and-run sampling. To compute the p-value for selected
model tests, Fithian et al. (2015) proposed a hit-and-run strategy for sampling from the
distribution for the known σ2 setting, (4.9). This was implemented by the authors, and we
briefly review the details in Appendix 4.C. For the unknown σ2 setting, Fithian et al. (2014)
developed an importance sampling strategy for sampling the distribution (4.10). However,
we find that an alternative and intuitive hit-and-run strategy can be adapted to the unknown
σ2 setting and implement this as a new algorithm.

Given a changepoint j ∈ {1, . . . , k}, observe that we can design a segment test contrast
v where sampling from (4.10) is equivalent to sampling uniformly from the set

{
vTY : M(Y ) = M(yobs), ‖Y ‖2 = ‖yobs‖2, ȲIj∪Ij+1 =

(
ȳobs

)
Ij∪Ij+1

, ȲI` =
(
ȳobs

)
I`

for ` ∈ Ij
}
.

(4.13)
Note that the above set no longer depends on θ or σ2. This is because we conditioned all
the relevant sufficient statistics under the selected model. Our hit-and-run sampler then
sequentially draws samples vTY from the above set. For notational convenience, observe
that the last k constraints in (4.13) can be rewritten as AY = Ay(obs) for some matrix

A ∈ Rk×n. Our new hit-and-run algorithm is then shown in Algorithm 2.
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4.3.3 Randomization and marginalization

We apply the ideas of randomization in Tian and Taylor (2015) that improve the power of
selective inference to changepoint algorithms and devise explicit samplers. We investigate
two specific forms of randomization: randomization over additive noise and randomization
over random intervals. We specialize the following descriptions to saturated models. We
note that similar randomization of selected model inferences is also possible but is doubly
computationally burdensome.

Marginalization over additive noise. Tian and Taylor (2015) shows that performing
inference based on the selected model M(yobs + wobs) where wobs is additive noise and then
marginalizing over W leads to improved power. Here, wobs is a realization of a random
component W sampled from N (0, σ2

addIn), where σ2
add > 0 is set by the user. Fithian et al.

(2014) provides a mathematical framework for pursuing such randomization, stating that
less conditioning results in an increase in Fisher information. For additive noise, the above
model selection event is:

{y : Γ(y + wobs) ≥ 0} = {y : Γy ≥ −Γwobs}.

This means the new polyhedron formed by the model selection event based on perturbed
data yobs + wobs is slightly shifted.

Porting the ideas of Tian and Taylor (2015) to our setting, to test the one-sided null
hypothesisH0 : vT θ = 0, we want to compute the following tail probability of the marginalized
selective distribution,

T (yobs, v) = P
(
vTY ≥ vT yobs

∣∣ (M(Y +W ) = M(yobs +W ), Π⊥v Y = Π⊥v yobs

))
. (4.14)

It is hard to directly compute this. However, the formulas in (4.11) and (4.12) give us exact
formulas to compute the non-marginalized tail-probabilities,

T (yobs, v, wobs) = P
(
vTY ≥ vT yobs

∣∣ (M(Y+W ) = M(yobs+W ), Π⊥v Y = Π⊥v yobs, W = wobs

))
.

The following proposition shows that we can compute T (yobs, v) by reweighting instances of
T (yobs, v, wobs) via importance sampling. Here, let E1 = 1[M(Y +W ) = M(yobs +W )] and
E2 = 1[Π⊥v Y = Π⊥v yobs].

Proposition 34. Let Ω denote the support of the random component W . If the distribution
of W is independent of the random event E2, (4.14) can be exactly computed as

T (yobs, v) =

∫
Ω
T (yobs, v, wobs)·a(wobs) dPW (wobs) =

∫
Ω Φ
(
Vup/τ

)
− Φ

(
vT yobs/τ

)
dPW (wobs)∫

Ω Φ
(
Vup/τ

)
− Φ

(
Vlo/τ

)
dPW (wobs)

.

(4.15)
where the weighting factor is a(wobs) = P(W = wobs|E1, E2)/P(W = wobs).
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Algorithm 3: Marginalizing over additive noise

1 Choose a number T of trials.
2 for t ∈ {1, . . . , T} do
3 Sample the additive noise wj from N (0, σ2

addIn).
4 Compute k(wt) and g(wt).

5 end

6 Return the approximate for the tail probability (4.15),
∑T

t=1 k(wt)/
∑T

t=1 g(wt).

The first equality in (4.15) demonstrates the reweighting of T (yobs, v, wobs), but the
second equality gives a sampling strategy where we approximate the integrals. Algorithm 3
describes this, where for one realization wobs, we let k(wobs) and g(wobs) denote the integrand
of the last term’s numerator and denominator in (4.15) respectively. As mentioned in (4.11),
these can be computed exactly.

Marginalization over WBS intervals. In contrast to the above setting where W
represents Gaussian noise, in wild binary segmentation described in §4.2.1, W represents the
set of B randomly drawn intervals. Observe that Proposition 34 still applies to this setting,
where M(yobs + wobs) is now replaced with M(yobs, wobs), as described in §4.3.1. However,
unlike the additive noise setting, the maximizing intervals ĵ1:k in the model M(yobs, wobs) are
embedded in the construction of the matrix Γ representing the polyhedra. This prevents a
naive sampling of B new intervals. To overcome this, let {Wĵ1

, . . . ,Wĵk
} be the maximizing

intervals. We sample a new set of all other intervals, W` for ` ∈ {1, . . . , B}\{ĵ1, . . . , ĵk}.
Specifically, for each of such intervals W` = (s`, . . . , e`), s` and e` are sampled uniformly
between 1 to n where s` < e`. After all B − k intervals are resampled, a check is performed
to ensure that {Wĵ1

, . . . ,Wĵk
} are still the maximizing intervals when WBS is applied again

to yobs. The full algorithm is similar to Algorithm 3 and hence deferred to Appendix 4.C.

4.4 Practicalities and extensions

The above sections formalize the mechanisms to perform selective inference with respect to
the basic procedure highlighted in §4.1. We now briefly summarize all the combination of
choices mentioned in this work that the user faces based on the methods developed in the
above sections and their practical impact.
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4.4.1 Practical considerations

There are some practical choices that the user needs to make when implementing the
procedure. Here, we summarize these choice, as alluded to in §4.1.

• Algorithm (BS, WBS, CBS and FL): FL and BS have similar mechansims, but BS
has a simpler mechanism and a less complex selection event, potentially giving higher
post-selection conditional power. CBS is specialized for pairs of changepoints, and
WBS specializes in localized changepoint detection compared to BS, but both have
higher computational burden due to their more complex polyhedra.

• Conditioning (Plain or marginalized): Marginalizing over a source of randomness
yields tests with higher power than plain inference, but at two costs: increased
computational burden due to MCMC sampling being required, and worsened detection
ability when using additive noise marginalization. Also, the marginalized p-values are
subject to the sampling randomness, and the number of trials T needed to reduce the
p-values’ intrinsic variability scales with σ2

add.

• Number of estimated changepoints k (Fixed or data-driven): As currently de-
scribed in §4.2.1, we described methods to find a fixed number of changepoints k.
However, we can adopt stopping rules from Hyun et al. (2018a) to adaptively choose k.
This increases the complexity of the polyhedra compared to those in §4.3.1, leading to
lower statistical power than its fixed-k counterpart. This is shown in Appendix 4.D.

• Assumed null model (Saturated or selected): As mentioned in §4.2.2, selected
model tests are valid under a stricter set of assumptions but often yield higher power.
Computationally, saturated model tests are often simpler to perform than selected
model tests due to the closed form expression of the tail probability.

• Error variance σ2 (Known or unknown): Saturated model tests require σ2 to be
known. In practice, we need to estimate it in-sample from a reasonable changepoint
mean fitted to the same data, or estimated out-of-sample on left-out data. Selected
model tests have the advantage of not requiring knowledge of σ2, but require a larger
computational burden, as mentioned in §4.3.2.

4.4.2 Extensions

As mentioned in Hyun et al. (2018a), there are many practically-motivated extensions to
the baseline procedure mentioned in §4.1 to either improve power or interpretability. We
highlight these below. All of these extensions will still give proper Type-I error control under
the appropriate null hypotheses.
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• Designing linear contrasts: The user can make many types of contrast vectors v to
fit their analysis, in addition to the segment test contrasts (4.2), as long as it measurable
with respect to M(yobs). One example is the spike test from (Hyun et al., 2018a) of
single location mean changes. For CNV analysis, it could be useful to test regions
between an adjacent pair of changepoints away from the immediately surrounding
regions. Also, a step-sign plot (a plot that shows the locations and direction of the
changepoints, but not their magnitude) can help the user design contrasts (Hyun et al.,
2018a).
• Post-processing the estimated changepoints: Multiple detected changepoints

too close to one another can hurt the power of segment tests. Post-processing the
estimated changepoints based on decluttering (Hyun et al., 2018a) or filtering (Lin
et al., 2017) so the new set of changepoints are well-separated can lead to contrasts
that yield higher power. We show empirical evidence of this improving power of the
fused lasso, in Appendix 4.C.6.
• Pre-cutting: We can also modify all the algorithms in §4.2.1 to start with an initial

existing set of changepoints. This is useful in CGH analyses, when it is not meaningful
to consider segments that start in one chromosome and end in another. By pooling
information in this manner from separate chromosomal regions, the pre-cut analysis is
an improvement over conducting separate analyses in individual chromosomes.

4.5 Simulations

4.5.1 Gaussian simulations

In this section, we show simulation examples to demonstrate properties of the segmentation
post-selection inference tools presented in the current paper. The mean θ consists of two
alternating-direction changepoints of size δ in the middle as in (4.16), chosen to be a realistic
example of mutation phenomena as observed in array CGH datasets (Snijders et al., 2001).
Here, the sample size n = 200 is chosen to be in the scale of the chromosomal data. We
model this using the equation below,

Middle mutation: for i ∈ 1, . . . , n, yi ∼ N (θi, 1), θi =

{
δ if 101 ≤ i ≤ 140

0 if otherwise,
(4.16)

for the signal size δ ∈ {0, 0.25, 0.5, 1, 2, 4} with noise level σ2 = 1.

Methodology. In the following simulations, we consider the following four estimators (BS,
WBS, CBS and FL), each run for two steps. We perform saturated model tests on each
estimator, but only perform selected model tests on BS and FL for simplicity, for both
known and unknown noise parameter σ2. We use the basis procedure outlined in §4.1 with a
significance level of α = 0.05. Throughout the entire simulation suite, the empirical standard
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deviation in each of the power curves and detection probabilities is less than 0.02. For each
method, for each signal-to-noise size δ, we run more than 250 trials.

Calculating power. Since the tests are performed only when a changepoint is selected, it
is necessary to separate the detection ability of the estimator from power of the test. To
that end, we define the following quantities,

Conditional power =
# correctly detected & rejected

# correctly detected
(4.17)

Detection probability =
# correctly detected

# tests conducted
(4.18)

Unconditional power = Detection× Conditional power (4.19)

The overall power of an inference tool can only be assessed by examining the conditional
and unconditional power together. We consider a detection to be correct if it is within ±2
of the true changepoint locations.

Power comparison across signal sizes δ. For saturated model tests, we perform
additive-noise inferences using Gaussian N (0, σ2

add) with σadd = 0.2 for BS, FL, and CBS.
For WBS, we employ the randomization scheme as described in §4.3.3 with B = n. With
the metrics in (4.18)-(4.19), we examine the performance of the four methods. The solid
lines in Figure 4.2 show the “plain” method where model selection based on M(yobs). The
dotted lines show the marginalized counterparts where the model selection is M(yobs,W ),
margnialized over W .

WBS and CBS have higher conditional and unconditional power than BS. This is expected
since the former two are more adept for localized change-points of alternating directions. FL
noticeably under-performs in power compared to segmentation methods. This is partially
caused by FL’s detection behavior, and can be explained by examining alternative measures
of detection and improved with post-processing. This investigation is deferred to Appendix
4.C.6. The marginalized versions of each algorithm have noticeably improved power, but
almost unnoticeably worse detection than their non-randomized, plain versions (middle
panel of Figure 4.2). Combined, in terms of unconditional power, marginalized inferences
clearly dominate their plain counterparts.

Selected model inference simulations are shown in Figure 4.3. Surprisingly, there is
an almost inconceivable drop in power from unknown σ2 to known σ2. Compared to the
saturated model tests in Figure 4.2, there is smaller power gap between FL and BS. Also,
selected model tests appear to have higher power than saturated model tests. In general
however, it is hard to compare the power of saturated and selected models due to the clear
difference in model assumptions.
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Figure 4.2: Data was simulated from two settings over signal size δ ∈ (0, 4) with n = 200 data
points. Several two-step algorithms (WBS, SBS, CBS, FL) were applied, and post-selection segment
test inference was conducted on the resulting two detected changepoints from each method. The
dotted lines are the marginalized versions of each test.
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As an aside, additional simulations to verify that our procedure gives uniform p-values
under the global null θ = 0 as well as comparison against sample splitting are given in
Appendix 4.C.3.

4.5.2 Pseudo-real simulation with heavy tails

We present pseudo-real datasets based on a single chromosome – chromosome 9 in GM01750
– in order to investigate how heavy-tailed distributions affect our inferences. We only present
saturated model tests for brevity. From the original data, we estimate a 1-changepoint mean
θ, shown in the bold red line in Figure 4.4, and residuals r, both based on a fitted 1-step
wild binary segmentation model. The QQ plot shows that these residuals have heavier tails
than a Gaussian (panel A of Figure 4.4), and are close in distribution to a Laplacian. This
motivates us to generate synthetic data y = θ + ε by adding noise ε in three ways:

1. Gaussian noise ε ∼ N (0, σ2I) (black),
2. Laplace noise ε ∼ Laplace(0, σ/

√
2) (green), and

3. Bootstrapped residuals, ε = b(r), where b(·) samples the residuals with replacement
(red).

We then investigate the behavior of saturated model tests after a 3-step binary segmen-
tation across all three types of noises when the null hypothesis H0 : vT θ = 0 is true. To set
σ2 for these saturated model tests, we compute the empirical variance after fitting a pre-cut
10-step wild binary segmentation across the entire cell line. The results are shown in Figure
4.4. Exactly valid null p-values would follow the theoretical U(0, 1) distribution, optimistic
(superuniform) p-values would lie below the diagonal, and conservative (subuniform) p-values
would lie above the diagonal. We see that the inferences are exactly valid with Gaussian
noise but is optimistic with both Laplacian noise and bootstrapped residuals (panel B of
Figure 4.4).

To overcome this optimism, we modify the bootstrap substitution method (Tibshirani
et al., 2018). Let β denote θ̄, the grand mean of θ. Originally, the authors’ main idea is to
approximate the law of vTY used to construct the TG statistic (4.11) with the bootstrapped
distribution of vT (Y − β) by bootstrapping the residuals, y − ȳ. Here, the empirical grand
mean ȳ represents the simplest model with no changepoints. While this estimate will usually
restore validity, it is expected to produce overly conservative p-values if there exist any
changepoints (panel C of Figure 4.4).

Hence, we instead consider the bootstrapped distribution of vT (Y − θ), by bootstrapping
the residuals, y − θ̂, where θ̂ is a piecewise constant estimate of θ. For our instance, we use
a k-step binary segmentation model to estimate θ̂, where we choose k using two-fold cross
validation from a two-fold split of the data y into odd and even indices. This procedure is
not valid in general and should be used with caution. In order to combat the main risk of
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Figure 4.4: (Left) Bootstrapped residuals added to the artificially constructed mean, generated
from chromosome 9 in GM01750. (Panel A): QQ plot of residuals. The remaining 3 panels show the
p-values of saturated model tests under three different noise models, Gaussian (black), bootstrapped
residuals (red) and Laplacian (green). (Panel B): Application of vanilla saturated model tests (no
modifications). (Panel C): P-values after using the bootstrap substitution method (Tibshirani et al.,
2018). (Panel D): P-values after using our modified bootstrap substitution method that involves

bootstrapping y − θ̂ instead of y − ȳ.

over-fitting of θ̂, we may further modify this procedure by excluding shorter segments in
θ̂ prior to bootstrapping. For our dataset, these potential downsides do not seem to come
to fruition in practice. At the sample size n ' 100 and signal-to-noise ratio of our current
dataset, the resulting p-values in both heavy-tailed and Gaussian data are convincingly
uniform (panel D of Figure 4.4).

4.6 Copy Number Variation (CNV) data application

The datasets we study in this paper are originally from Snijders et al. (2001), and have
been studied by numerous works in the statistics literature, e.g. Lai et al. (2008); Hao et al.
(2013). Each dataset consists of individual cell lines with 2, 000 measurements or more across
23 chromosomes. Our analysis focuses on middle-to-middle duplication, the setting that was
studied in §4.5.
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In our analysis, we use a 4-step wild binary segmentation and perform marginalized
saturated model tests on two cell lines GM01524 and GM01750 in Figure 4.5. Recall that
the 14th chromosome of the latter cell line was shown in Figure 4.1. As decribed in §4.4,
we pre-cut both analyses at chromosome boundaries since the ordering of chromosomes 1
through 23 is essentially arbitrary. In GM01524, we can see that the our choice of methods –
segment test inferences on changepoints recovered from pre-cut wild binary segmentation,
after decluttering – deems two changepoint locations A and B of alternating directions in
chromosome 6 to be significant, and two other locations to be spurious, at the signifance level
α = 0.05 after Bonferroni correction. This result is consistent with karyotyping results of a
single middle-to-middle duplication. Likewise, in GM01750, the wild binary segmentation
inference correctly identified the two start-to-middle duplications in chromosomes 9 and 14
which were confirmed with karyotyping, and correctly invalidated the rest.

4.7 Conclusions

We have described an approach to conduct post-selection inference on changepoints detected
by common segmentation algorithms, using the same data for detection and testing. Through
simulations, we demonstrated the detection probability and power over signal-to-noise ratios
in a variety of settings, as well as our tools’ robustness to heavy-tailed data. Finally, we
demonstrated the application in array CGH data, where we show that our methods effectively
provide a statistical filter that retains the changepoints that validated by karyotyping and
discards the rest. Future work in this area could improve the practical applicability of these
methods such extending these methods to next-generation sequencing.

4.A Code

The code to perform estimation as well as saturated model tests are in https://github.

com/robohyun66/binseginf, while the code to perform selected model tests are additionally
in https://github.com/linnylin92/selectiveModel.

4.B Additional proofs

4.B.1 Proof of Proposition 31, (BS)

Proof. When k = 1, 2(n− 2) linear inequalities characterize the single changepoint model
{b1, d1}:

d1 · gT(1,b1,n)y ≥ g
T
(1,b,n)y, and d1 · gT(1,b1,n)y ≥ −g

T
(1,b,n)y, b ∈ {1, . . . , n− 1}\{b1}.

Now by induction, assume we have constructed a polyhedral representation of the selection
event up through step k−1. All that remains is to characterize the kth estimated changepoint
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Figure 4.5: “Pre-cut” changepoint inference using saturated model tests for wild binary segmentation
marginalized over random intervals conducted on two cell lines, from Snijders et al. (2001). Data
points are colored in two alternating tones, to visually depict the chromosomal boundaries. For each
cell line, the letters A through D denote the estimated changepoints, b̂1 through b̂4 respectively. The
bolded lines denote changepoints that were rejected under the null hypothesis H0 : vT θ = 0 at a
Type-I error control level α = 0.05 after Bonferroni-correction. (Top): The analysis for the cell line
GM01524, with all 23 chromosomes shown. (Bottom): The same setup as above, but for the cell line
GM01750.

121



4. detecting heterogeneity – post-selection inference for changepoint
significance

and direction {bk, dk} by inequalities that are linear in y. This can be done with 2(n− k− 1)
inequalities. To see this, assume without a loss of generality that the maximizing interval is
jk = k; then {bk, dk} must satisfy the 2(|Ik| − 2) inequalities

dk · gT(sk,bk,ek)y ≥ g
T
(sk,b,ek)y and dk · gT(sk,bk,ek)y ≥ −g

T
(sk,b,ek)y, b ∈ {sk, . . . , ek − 1}\{bk}.

For each interval I`, ` = 1, . . . , k − 1, we also have 2(|I`| − 1) inequalities

dk · gT(sk,bk,ek)y ≥ g
T
(s`,b,e`)

y and dk · gT(sk,bk,ek)y ≥ −g
T
(s`,b,e`)

y, b ∈ {s`, . . . , e` − 1}.

The last two displays together completely determine {bk, dk}, and as
∑k

`=1 |I`| = n, we get
our desired total of 2(n− k − 1) inequalities.

4.B.2 Proof of Proposition 32, (WBS)

Proof. The construction of Γ is basically the same as that for BS in Proposition 31; the only
difference is that, at step k, the inequalities defining the new rows of Γ are based on the
intervals wjk and w`, ` ∈ Jk\{jk}, instead of Ijk and I`, ` 6= jk, respectively. To compute the
upper bound on the number of rows m, observe that in step ` ∈ {1, . . . , k}, there are at most
B − `+ 1 intervals remaining. Among these, the interval jk contributes p− 2 inequalities,
and the remaining B − ` intervals contributes p− 1 inequalities.

4.B.3 Proof of Proposition 33, (CBS)

Proof. The proof follows similarly to the proof of Proposition 31. Observe that for any
k′ < k, the model MCBS

1:k′ (yobs) is strictly contained in the model MCBS
1:k (yobs). Hence, we can

proceed using induction, and let bi for i ∈ {1, . . . , k} denote b̂i for simplicity, and do the
same for ai, di and ji. Let C(x, 2) =

(
x
2

)
for simplicity as well.

For k = 1, the following 2 · (C(n− 1, 2)− 1) inequalities characterize the selection of the
changepoint model {a1, b1, d1},

d1 · gT(1,a1,b1,n)y ≥ g
T
(1,r,t,n)y, and d1 · gT(1,a1,b1,n)y ≥ −g

T
(1,r,t,n)y,

for all r, t ∈ {1, . . . , n− 1} where r < t, r 6= a1 and t 6= b1.

By induction, assume we have constructed the polyhedra for the model, MCBS
1:(k−1)(yobs) =

{a1:(k−1), b1:(k−1), d1:(k−1)}. To construct MCBS
1:k (yobs), all that remains is to characterize the

kth parameters {ak, bk, dk}. To do this, assume that jk corresponds with the interval Ik
having the form {sk, . . . , ek}. Within this interval, we form the first 2 · (C(|Ijk | − 1, 2)− 1)
inequalities of the form,

dk · gT(sk,ak,bk,ek)y ≥ g
T
(sk,r,t,ek)y and dk · gT(sk,ak,bk,ek)y ≥ −g

T
(sk,r,t,ek)y
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for all r, t ∈ {sk, . . . , ek − 1} where r < t and r 6= ak and t 6= bk. The remaining inequalities
originate from the remaining intervals. For each interval I`, for ` ∈ {1, . . . , 2k − 1}\{jk}, let
I` have the form {s`, . . . , e`}. We form the next 2 · C(|I`| − 1, 2) inequalities of the form

dk · gT(sk,ak,bk,ek)y ≥ g
T
(s`,r,t,e`)

y and dk · gT(sk,ak,bk,ek)y ≥ −g
T
(s`,r,t,e`)

y

for all r, t ∈ {s`, . . . , e` − 1} where r < t.

4.B.4 Proof of Proposition 34, (Marginalization)

Proof. For concreteness, we write the proof where W represents additive noise, but the proof
generalizes to the setting where W represents random intervals easily. First write T (yobs, v)
as an integral over the joint density of W and Y ,

T (yobs, v) = P (vTY ≥ vT yobs|M(Y +W ) = M(yobs +W ),Π⊥v Y = Π⊥v yobs)

=

∫
1(vT y ≥ vT yobs)fW,Y |E1,E2

(w, y)dwdy. (4.20)

Then the joint density fW,Y |E1,E2
(w, y) partitions into two components, whose latter com-

ponent (a probability mass function) can be rewritten using Bayes rule. For convenience,
denote g(w) = P(E1|W = w,E2).

fW,Y |E1,E2
(w, y)dydw = fY |W=w,E1,E2

(y) · fW |E1,E2
(w) dy dw

= fY |W=w,E1,E2
(y) ·

P(E1|W = w,E2)fW |E2
(w)

P(E1|E2)
dy dw

= fY |W=w,E1,E2
(y) · g(w)fW (w)∫

g(w′)fW (w′)dw′
dy dw,

where we used the independence between W and E2 in the last equality. With this, T (yobs, v)
from (4.20) becomes:

T (yobs, v) =

∫
1(vT y ≥ vT yobs) · g(w) ·

fW |E2
(w)∫

g(w′)fW (w′)dw′
· fY |W=w,E1,E2

(y) dy dw.

Now, rearranging, we get:

T (yobs, v) =

∫ [∫
1(vT y ≥ vT yobs) · fY |W=w,E1,E2

(y)dy

]
︸ ︷︷ ︸

T (yobs,v,w)

g(w)∫
g(w′)fW (w′)dw′︸ ︷︷ ︸

a(w)

fW (w)dw

=

∫
T (yobs, v, w)a(w) fW (w) dw. (4.21)
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This proves the first equality in Proposition 34. To show what the weighting factor a(w)
equals, observe that by applying Bayes rule to the numerator of a(wobs), and rearranging:

a(w) =
g(w)∫

g(w′)fW (w′) dw′
=

P(E1|E2,W = w)

P (E1|E2)
=

P(W = w|E1, E2)

P(W = w|E2)

=
P(W = w|E1, E2)

P(W = w)
.

Finally, to show the seocnd equality in Proposition 34, observe that we can also represent
a(w) as

a(w) =
g(w)

E[g(w)]
(4.22)

by definition, where the denominator is the expectation taken with respect to the random
variable W . Leveraging the geometric theorems of Lee et al. (2016); Tibshirani et al. (2016),
it can be shown that

g(w) = P
(
M(Y +W ) = M(yobs +W ) | Π⊥v Y = Π⊥v yobs

)
= Φ(Vup/τ)− Φ(Vlo/τ). (4.23)

Also from the same references as well as stated in §4.3.3, we know that

T (yobs, v, w) =
Φ(Vup/τ)− Φ(vT yobs/τ)

Φ(Vup/τ)− Φ(Vlo/τ)
(4.24)

Putting (4.22), (4.23) and (4.24) together into (4.21), we complete the proof by obtaining

T (yobs, v) =

∫
T (yobs, v, w)g(w)fW (w)dw∫

g(w)fW (w)dw
=

∫
Φ(Vup/τ)− Φ(vT yobs/τ)fW (w)dw∫

Φ(Vup/τ)− Φ(Vlo/τ)fW (w)dw
.

4.C Additional algorithmic details

4.C.1 Selected model tests, hit-and-run sampling for known σ2

The following is the hit-and-run sampler to estimate the tail probability of the law of (4.8).
This is for the known σ2 setting, which differs from the setting described in the main text
in §4.3.2. This was briefly described in Fithian et al. (2015) but the authors have later
implemented it in ways not originally described in the above work to make it more efficient.
We do not claim novelty for the following algorithm, but simply state it for completion.
The original code can be found the repository https://github.com/selective-inference,
and we reimplemented it to suite our coding framework and simulation setup.
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4.C. Additional algorithmic details

We specialize our description to test the null hypothesis H0 : vTj θ = 0 against the

one-sided alternative H1 : vTj θ > 0. There are some notation to clarify prior to describing
the algorithm. Let vj ∈ Rn denote the vector such that

vTj y = ȳIj+1 − ȳIj .

As in §4.3.2, let A ∈ Rk×n denote the matrix such that the last k equations in the above
display are satisfied if and only if AY = Ayobs. Based on §4.3.1, observe that our goal
reduces to sampling from the n-dimensional distribution

Y ∼ N (0, σ2In), conditioned on ΓY ≥ 0, AY = Ayobs. (4.25)

where In is the n× n identity matrix.

The first stage of the algorithm removes the nullspace of A in the following sense.
Construct any matrix B ∈ Rn×n such that it has full rank and the last k rows are equal to
A. Then, consider the following n-dimensional distribution.

Y ′ ∼ N (0, σ2BTB), conditioned on ΓB−1Y ′ ≥ 0, (Y ′)(n−k+1):n = Ayobs. (4.26)

Note that B−1Y ′ has the same law as (4.25). Observe that the above distribution is a
conditional Gaussian, meaning we can remove the last conditioning event. Towards that
end, let Γ′′ denote the first n− k columns of the matrix ΓB−1, and let u′′ denote the last
k columns of ΓB−1 left-multiplying Ayobs. Also, consider the following partitioning of the
matrix BTB,

σ2BTB =

[
B11 B12

BT
12 B22

]
,

where B11 is a (n− k)× (n− k) submatrix, B12 is a (n− k)× k submatrix, and B22 is a
k × k submatrix. Then, consider the following n− k-dimensional distribution.

Y ′′ ∼ N
(
B12B

−1
22 (Ayobs), B11 −B12B

−1
22 B

T
12

)
, conditioned on Γ′′Y ′′ ≥ −u′′. (4.27)

Note that Y ′′ has the same law as the first n− k coordinates of (4.26).

The next stage of the algorithm whitens the above distribution so its covariance is the
identity. Let µ′′ and Σ′′ denote the mean and variance of the unconditional form of the
above distribution (4.27). Let Θ be the matrix such that ΘΣ′′ΘT = In. This must exist
since Σ′′ is positive definite. Consider the following n− k dimensional distribution,

Z ∼ N (0, In), conditioned on Γ′′Θ−1Z ≥ −u′′ − Γ′′µ′′. (4.28)

Note that Θ−1Z+µ′′ has the same law as (4.27). Hence, we have constructed linear mapping

F and G between (4.25) and (4.28) such that F (Y )
d
= Z, and G(Z)

d
= Y .
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Algorithm 4: MCMC hit-and-run algorithm for selected model test with known
σ2

1 Choose a number M of iterations.

2 Set z(0) = F (yobs), as described in the text.
3 Generate p unit directions g1, . . . , gp, each vector of length n.

4 Compute U = Γ′′Θ−1z(0) + u′′ + Γ′′µ′′, which represents the “slack” of each
constraint.

5 Compute the p vectors, ρi = Γ′′Θ−1gi for i ∈ {1, . . . , p}.
6 for m ∈ {1, . . . ,M} do
7 Select an index i uniformly from 1 to p.
8 Compute the truncation bounds

Vlo = gTi z
(m−1) − min

j:(ρi)j>0
Uj/(ρi)j , and Vup = gTi z

(m−1) − max
j:(ρi)j<0

Uj/(ρi)j .

9 Sample α(m) from a Gaussian with mean gTi z
(m−1) and variance 1, truncated to

lie between Vlo and Vup.
10 Form the next sample

z(m) = z(m−1) + α(m)gi, and y(m) = G(z(m)).

11 Update the slack variable,

U ← U + α(m)ρi.

12 end
13 Return the approximate for the tail probability of (4.9),∑M

m=1 1[vT y(m) ≥ vT yobs]/M.

In order to set up a hit-and-run sampler, generate p unit vectors g1, . . . , gp. (The choice
of p is arbitrary, and the specific method of generating these p vectors is also arbitrary.)
Our hit-and-run sampler with move in the linear directions dictated by g1, . . . , gp. We are
now ready to describe the hit-and-run sampler in Algorithm 4, which leverages many of the
same calculations in (4.11) and (4.12). The similarity arises since Π⊥giZ = Π⊥gi(Z + gi) by
definition of projection.

The computational efficiency of the above algorithm comes from the fact that little
multiplication needs to be done with the polyhedron matrix Γ′′Θ−1, a potentially huge
matrix. U and ρ1, . . . , ρp, each vectors of the same length, carry all the information needed
about polyhedron throughout the entire procedure of generating M samples.
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4.C.2 Marginalization over WBS intervals

Below is the pseudo-code for the marginalization over WBS intervals, described in §4.3.3.

Algorithm 5: Marginalizing over random intervals

1 Choose a number T of trials.
2 for t ∈ {1, . . . , T} do

3 Sample the non-maximizing intervals w` = (s`, . . . , e`) for ` ∈ {1, . . . , B}\{ĵ1:k}
where s`, e` are uniformly drawn from 1 to n and s` < e`.

4 Check to see that {ĵ1:k} are still the indices of the maximizing intervals. If not,
return to the previous step.

5 Compute k(wt) and g(wt).

6 end
7 Return the approximate for the tail probability (4.15),∑T

t=1 k(wt)∑T
t=1 g(wt)

.

4.C.3 Additional simulation results

4.C.4 Type-I error control verification

We examine all our statistical inferences under the global null where θ = 0 to demonstrate
their validity – uniformity of null p-values, or type I error control. Specifically, any simulations
from the no-signal regime δ = 0 from the middle mutation (4.16) can be used. When there
is no signal, the null scenario vT θ = 0 is always true so we expect all p-value to be uniformly
distributed between 0 and 1. We verify this expected behavior in Figure 4.6. We notice that
the methods that require MCMC (marginalized saturated and selected model tests) requires
more trials to converge towards the uniform distribution compared to their counterparts
that have exact calculations.

4.C.5 Comparison with sample splitting

Sample splitting is another valid inference technique. After splitting the dataset in half
based on even and odd indices, we run a changepoint algorithm on one dataset and conduct
classical one-sided t-test on the other. This is the most comparable test, as it does not
assume σ2 is known and conducts a one-sided test of the null H0 : vT θ = 0. Instead of
±2 slack used for calculating detection in selective inference detection (dotted and dashed
lines), ±1 was used for sample splitting inference (solid line). The loss in detection accuracy
in the middle panel of Figure 4.7 shows the downside of halving data size for detection.
Unconditional power for marginalized saturated model tests and selected model tests are
noticeably higher than the other two.
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Figure 4.6: All plots showing the p-values of various statistical inferences under the global null,
with colors of lines given according to Figure 4.2 and 4.3. (Left): Saturated model tests, specifically
BS (black), WBS (blue), CBS (red) and FL (green). (Middle): Marginalized variants of the left plot.
(Right): Selected model tests, specifically BS (black) and FL (green), either with unknown σ2 (solid)
or known σ2 (dashed).
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Figure 4.7: Setup similar to Figure 4.2 but comparing sample splitting (black solid), plain saturated
model test (red dashed), additive noise marginalized saturated model test (green dashed), and
selected model test with unknown σ2 (blue dashed), all using a 2-step binary segmentation. (Middle):
Detection probability for the binary segmentation applied on the sample split dataset (black solid) or
the full dataset (red dashed). (Right): Unconditional power, computed by multiplying the conditional
power curve and its relevant detection probability curve.
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4.C. Additional algorithmic details

4.C.6 Power comparison using unique detection

Fused lasso was appeared to have a large drop in power compared to segmentation algorithms.
In addition to these three measures shown in §4.5, for multiple changepoint problems like
middle mutations it is useful to measure performance using an alternative measure of
detection called unique detection. This is useful because some algorithms – mainly fused
lasso, but to also binary segmentation to some extent, primarily in later steps – admit
“clumps” of nearby points. If this clumped detection pattern occurs in early steps, the
algorithm requires more steps than others to fully admit the correct changepoints. In this
case, detection alone is not an adequate metric, and unique detection can be used in place.

Unique detection probability =
#changepoints which were approximately detected

#number of true changepoints.
(4.29)

In plain words, unique detection is measuring how many of the true changepoint locations
have been approximately recovered.

We present a simple case study. In addition to a 2-step fused lasso, imagine using a 3-step
fused lasso, but with post-processing. For post-processing, declutter by centroid clustering
with maximum distance of 2, and test the k0 < 3 changepoints, pitting the resulting segment
test p-values against 0.05/k0. A 2-step fused lasso’s detection does not reach 1 even at high
signals (δ = 4) because of the aforementioned clumped detection behavior. The resulting
segment tests are also not powerful, since the segment test contrast vectors consist of left and
right segments which do not closely resemble true underlying piecewise constant segments
in the data. However, when detection is replaced with unique detection, two things are
noticeable. First, decluttered lasso’s detection performance is noticeably improved when
going from 2 to 3 steps. Also, when unconditional power is calculated using unique detection,
binary segmentation does not have as large of an advantage over the the several variants of
fused lasso. This is shown in Figure 4.8. We see from the right figure (compared to the left)
that the a “decluttered” version of 2- or 3-step fused lasso has much closer unconditional
power to binary segmentation.

4.C.7 Power comparison with different mean shape

The synthetic mean discussed here consists of a single upward changepoint piece-wise constant
mean, as shown in (4.30) and Figure 4.9 (right). This is chosen to be another realistic
example of the mutation phenomenon as observed in array CGH datasets from Snijders et al.
(2001), in addition to the case shown in the main text. We focus on the duplication mutation
scenario, but the results apply similarly to deletions. As before, the sample size n = 200
was chosen to be in the scale of the data length in a typical array CGH dataset in a single
chromosome. For saturated model tests, WBS no longer outperforms binary segmentation
in power. This is expected since there is only a single changepoint not accompanied by
opposing-direction changepoints.
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Figure 4.8: (Left): Various detections for FL, either using 2 or 3 steps, and either using decluttering
or not. (Middle): The unconditional power of various segmentation algorithms. (Right): The
unconditional power, but defined as the conditional power multiplied by the unique detection
probability.

Edge mutation: yi ∼ N (θi, 1), θi =

{
δ if 161 ≤ i ≤ 200

0 if otherwise
(4.30)

4.C.8 Sample splitting (continued)

The results in Figure 4.7 were based on approximate detection where, for methods used on
the entire dataset of length n, we defined a detection event as estimating ±2 of the true
changepoint locations. For sample splitting, this was defined as estimate ±1 of the true
changepoint location based on half the dataset. This choice of approximate detection is
somewhat arbitrary, and it is informative to see if the results would change if we considered
only exact detection. We can see from Figure 4.11 that randomized TG p-values have
comparable power with sample splitting inferences, among tests that are regarding exactly
the right changepoints.

4.D Model size selection using information criteria

Throughout the paper we assume that the number of algorithm steps k is fixed. Hyun
et al. (2018a) introduces a stopping rule based on information criteria (IC) which can
be characterized as a polyhedral selection event. The IC for the sequence of models
M1:`, ` = 1, . . . , n− 1 is

J(M1:`) = ‖y − ŷM1:`(y)‖22 + p
(
M1:`(y)

)
. (4.31)
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Figure 4.9: (Left) Example of simulated Gaussian data for middle mutation as defined in (4.16) with
δ = 4, with data length n = 200 and noise level σ = 1. The possible mean vectors θ for δ = 0, 1, 2 are
also shown. (Right) Analogous to the left figure, but representing edge mutations defined in (4.30).
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Figure 4.10: Same setup as Figure 4.2 but for edge-mutation data.
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Figure 4.11: The same setup as in Figure 4.7 but with exact detection.

We omit the dependency on y when obvious. We use the BIC complexity penalty p(Mk) =

σ2 · k · log(n) for this paper. Also define S`(y) = sign
(
J(M1:`)− J(M1:(`−1))

)
to be the sign

of the difference in IC between step `− 1 and `. This is a +1 for a rise and −1 for a decline.
A data-dependent stopping rule k̂ is defined as

k̂(y) = min{k : Sk(y) = Sk+1(y) = . . . = Sk+q(y) = 1} (4.32)

which is a local minimization of IC, defined as the first time q consecutive rises occur.
As discussed in Hyun et al. (2018a), q = 2 is a reasonable choice for the changepoint
detection. To carry out valid selective inference, we condition on the selection event
1[S1:(k+q)(y) = S1:(k+q)(yobs)], which is enough to determine k̂. A k-step model for k chosen
by (4.32) can be understood to be M

1:k̂
(Y ) = M1:k(yobs). The corresponding selection event

PM
1:k̂

is with the additional halfspaces, as outlined in Hyun et al. (2018a). Simulations in
Figure 4.12 show that introducing IC stopping is valid, by controlled type-I error, but comes
at the cost of considerable power loss.
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Figure 4.12: Similar setup as Figure 4.2. In the middle-mutation data example from (4.16). IC-
stopped binary segmentation inference (bold line) is compared to a fixed 2-step binary segmentation
inferences (thin line). We can see that the power and detection are considerably lower. The average
number of steps taken per each δ on x-axis ticks are 1.34, 1.86, 3.02, 3.64, 3.77, 3.72, respectively.
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Five

Modeling heterogeneity - Exponential-family
embedding

Paper summary: Single-cell RNA-seq data enable scientists to study cell developmen-
tal trajectories, but the statistical properties of these methods are not well developed. In
this article, we study the statistical properties of embedding each cell into a lower dimen-
sional space, an important component of cell trajectory estimation methods. Specifically,
we develop eSVD (exponential-family SVD), which estimates an embedding for each cell
with respect to a hierarchical model where the inner product between latent vectors is the
natural parameter of an exponential family random variable. Our estimation procedure
uses an alternating minimization approach, and we prove its the identifiability conditions
and convergence rate, in line with other theoretical works in the nonconvex optimization
literature. Our method is similar to other matrix factorization methods, but we adapt its
underlying algorithm and statistical theory to be more amendable for single-cell analyses.

We apply eSVD via Gaussian distributions where the standard deviations are pro-
portional to the means to analyze a single-cell dataset of oligodendrocytes in mouse
brains (Marques et al., 2016). While previous results are not able to distinguish the
lineages among the mature oligodendrocyte cell types, our diagnostics and results
demonstrate there are two major developmental lineages that diverge at mature oligo-
dendrocytes.

The work in this chapter was done jointly with Jing Lei and Kathryn Roeder, and has
been accepted to JASA Applications and Case Studies under the title, “Exponential-
family embedding with application to cell developmental trajectories for single-cell
RNA-seq data.”
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5.1 Introduction

Single-cell RNA-seq data give scientists an unprecedented opportunity to analyze the
dynamics among individual cells based on their gene expressions, but many analysis require
first embedding each cell in a lower-dimensional space in order to make downstream methods
more statistically or computationally tractable. For example, this low-dimensional embedding
can be used to visualize high-dimensional data, to control for ancestry across different sub-
populations, to cluster cells into cell-types, to impute values deemed as dropouts, or to
estimate trajectories to understand how cells develop over time. Typically, these embeddings
are computed from an n by p gene expression matrix, where each of the n rows represent
a different cell and each of the p columns represent a different gene. However, the most
commonly-used embedding is based on the singular value decomposition (SVD), which
implicitly assumes that distribution of each entry is a Gaussian random variable where
the variance is fixed regardless of its mean. However, this assumption is often violated
in sequencing data where the variance of each cell’s observations can vary dramatically
with their mean expression level (Love et al., 2014; Hicks et al., 2017). This consideration
motivates us to develop the eSVD (exponential-family SVD), a generalization of SVD, to
embed the cells into a lower-dimensional space with respect to any one-parameter exponential
family distribution, allowing the scientist to have much broader modeling flexibility. In
this article, we formalize this statistical idea and design a non-convex estimator based on
alternating minimization to estimate this low-dimensional embedding, provide theory to
prove its consistency and convergence properties, and apply it to single-cell RNA-seq data
to obtain better downstream analysis results.

To demonstrate the shortcomings of SVD throughout our paper, we focus on analyzing
oligodendrocytes – cells that enable rapid transmission of signals by producing myelin and
provide metabolic support to neurons in the central nervous system. These cells are intriguing
to study due to their constant development throughout a subject’s lifetime, unlike most other
cells that stop development during the adult years of an organism (Menn et al., 2006). As
mentioned in Marques et al. (2016), understanding how oligodendrocytes develop can lead
to new insights into the causes for myelin disorders such as multiple sclerosis. We discuss
the oligodendrocyte dataset and present a preliminary analysis in §5.2, where we provide
various diagnostics demonstrating the SVD embedding’s lack of fit. To better understand
this phenomenon, we review the hierarchical model that SVD implicitly assumes in §5.3.
Specifically, suppose a hierarchical model where each cell and each gene has its own low-
dimensional latent random vector. In the language of exponential family distributions, this
model assumes that the cell’s expression of a particular gene is a one-parameter exponential
family random variable whose relevant natural parameter is the inner product of the two
corresponding latent vectors. As mentioned above, SVD assumes specifically a Gaussian
distribution with constant variance. However, as we will review later, there is a rich line of
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work that extend hierarchical models of this type to analyze single-cell data (Pierson and
Yau, 2015; Townes et al., 2017; Durif et al., 2017; Risso et al., 2018), of which eSVD is a
continuation of.

eSVD builds upon algorithmic ideas developed in the field of matrix factorization, a field
which studies how to estimate a fixed but unknown low-rank matrix of natural parameters, a
task similar to the one we are pursuing. Specifically, eSVD uses alternating minimization, a
popular and computationally efficient approach to solve the nonconvex optimization problem
at hand, described in detail in §5.4. However, despite the vast amount of algorithmic
developments in matrix factorization, only a small subset of methods are amenable for
theoretical investigations of their statistical properties such as convergence rates. This is a
common criticism of alternating-minimization based methods, as stated in Liu et al. (2018b).
To address these critiques, we design eSVD different from other methods in the literature to
improve upon its usability while enabling us to study its statistical properties detailed in
§5.5. To ensure that these theoretical ideas empirically improve the analysis of single-cell
data, we compare eSVD to more recent embedding methods developed in the biostatistics
community in §5.6 using synthetic data.

We apply eSVD to improve our former analysis of oligodendrocytes in §5.7, where we show
that our new embedding helps to estimate cell developmental trajectories that match with
the latest scientific findings. These trajectories, also called lineages, explain the heterogeneity
among the oligodendrocytes by describing the smooth transition of gene expression among
individual cells along a continuum, reflecting the cells’ gradual transcriptional changes during
development (Trapnell et al., 2014). Although early research suggest oligodendrocytes develop
along a single trajectory (Kessaris et al., 2006), recent works suggest that oligodendrocytes
could potentially branch out into various mature types (Marques et al., 2016; van Bruggen
et al., 2017; Marques et al., 2018). Our improved analysis match these findings – we show
the eSVD embedding estimates two distinct trajectories. We develop a novel visualization
tool to show our developmental trajectory findings, and conclude in §5.8 with practical
extensions and theoretical questions left open for future work. While we focus on using the
eSVD embedding to estimate cell developmental trajectories in our paper, we emphasize
that this embedding can be used for other applications highlighted earlier in this section,
and provide additional analyses on other single-cell datasets in the appendix.

5.2 Preliminary analysis

We analyze a dataset of oligodendrocytes from mice brains collected by Marques et al. (2016)
as a prototypical example to demonstrate shortcomings of the SVD embedding when applied
to single-cell data. This dataset, henceforth called the Marques dataset, contains the gene
expression of 5,069 oligodendrocytes categorized into six major cell types that are manually
labeled based on marker genes, shown in Figure 5.1. The 5,069 cells in the dataset are
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Figure 5.1: SVD embedding of the oligodendrocytes from Marques et al. (2016) after preprocessing,
shown alongside a table summarizing the cell types. The six major cell types are listed in the table
with the number of cells in each type, along with how they are differentiated into the thirteen different
cell sub-types. The rows are organized from the “youngest” cell types to “most mature” cell types
from top to bottom. The first three major cell types are colored orange. while the latter three are
colored blue, green and yellow respectively. The first two latent dimensions are shown on the left,
along with contours of the estimated densities to visualize high-density regions (one for each color of
points).

clustered in Marques et al. (2016) into thirteen cell sub-types using a biclustering algorithm
(Zeisel et al., 2015). These cell sub-types were then grouped into six major cell types using
a biclustering algorithm (Zeisel et al., 2015), which were later manually labeled based on
cell-type specific marker genes (Zhang et al., 2014). The full details of our preprocessing
details can be found in Appendix 5.B, including our procedure for selecting informative
genes for all the remaining analysis in this paper. The goal of this preliminary analysis is to
previous various diagnostics and modeling concerns we wish to remedy prior downstream
analysis in the remaining sections of the paper.

We review the SVD embedding, as it provides motivation for eSVD in the next section.
Let A ∈ Rn×p represent the observed single-cell data matrix with rank m, where n is the
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number of cells and p is the number of genes. Here, A is a matrix of non-negative values,
where entry Aij measures how many instances of genetic material for gene j is observed

for cell i after appropriate pre-processing. Let the SVD of A be denoted as ÛD̂V̂ > where
Û ∈ Rn×m and V̂ ∈ Rp×m are both orthonormal matrices and D̂ ∈ Rm×m is a diagonal
matrix. For a given latent dimension k ≤ m, the SVD embedding for each cell i ∈ {1, . . . , n}
(denoted as X̂i ∈ Rk) and each gene j ∈ {1, . . . , p} (denoted as Ŷj ∈ Rk) becomes

X̂i =
(n
p

)1/4
·
(√

D̂1,1 · Ûi,1, . . . ,
√
D̂k,k · Ûi,k

)
, i = 1, . . . , n (5.1)

Ŷj =
( p
n

)1/4
·
(√

D̂1,1 · V̂j,1, . . . ,
√
D̂k,k · V̂j,k

)
, j = 1, . . . , p. (5.2)

The first two dimensions of such an embedding is shown in Figure 5.1. Later in this article, we
will show that this embedding implicitly assumes a constant variance Gaussian distribution
in §5.3, and show that this particular formulation for identifiability concerns that will be
discussed in detail in §5.4.

Now, we show that while the SVD embedding (or its equivalent reparameterizations) are
commonly used in the literature, it does not model the data well. First, we visualize the
quality of fit of the SVD embedding by purposefully omitting a small subset of randomly
selected entries in A and estimating the embedding as a missing data problem. We can then
assess the quality of fit of the embedding by comparing the values of these purposefully
omitted entries in A to their predicted values. Figure 5.2 demonstrates this diagnostic, where
the left plot shows the observed values in A that were not omitted (i.e., the “training set”)
verses their respective predicted values, while the right plot shows the observed values that
were purposefully omitted (i.e., the “testing set”) verses their respective predicted values.
We see that while the fitted values in the training set closely predict the observed values,
the fitted values for the testing set are wildly off in comparison. Furthermore, we see that
the variance among the testing set does not seem to constant, as the prediction error grows
as the predicted values grows. This missing-value diagnostic is commonly used as both a
goodness of fit heuristic as well as a model selection tool in work such as Li et al. (2016), and
we will return to it in detail in §5.4. Next, to further investigate if this constant-variance
is suitable for modeling the oligodendrocytes, we plot the standard deviation verses mean
expression for each gene, as well as the weighted average expression of each of the six cell
types in Figure 5.3. Both plots suggest that the variance in gene expression increases with
its mean. Combined, all the empirical diagnostics inspire us to develop a better embedding
that have desirable statistical properties such as identifiability and consistency. In the next
section, we review the optimization problem that the SVD embedding solves and see how it
can be extended to one-parameter exponential families more generally, which will motivate
our method, the eSVD.
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Figure 5.2: Diagnostic based on matrix completion to assess the fit using SVD embedding, fit using
softImpute (Mazumder et al., 2010). The red diagonal band is centered around the identity function
(ideal mean function) and marks the 10th to 90th quantiles of the constant-variance Gaussian model
(based on the empirical variance) for different values of the predicted mean. The blue dotted line
represents the principal angle between the observed values and their predicted value counterparts,
where we mark its divergence from the identity function’s 45◦. More details of this diagnostic is
discussed in §5.4, while details of the fitting process using softImpute can be found in Appendix
5.B. (A) Diagnostic plot showing the observed values that were not omitted (i.e., the “training set”)
verses their respective predicted values. (B) Diagnostic plot showing the observed values that were
purposefully omitted (i.e., the “testing set”) verses their respective predicted values.

5.3 Statistical model and background

In this section, we explain the latent hierarchical model that we investigate in this article, and
its relation to other works in the matrix factorization and single-cell biostatistics community.

5.3.1 Statistical model

In this article, we model the entries of the single-cell RNA-seq dataset A ∈ Rn×p as
conditionally independent random variables drawn from a random dot product model – a
hierarchical model where each of the n cells and each of the p genes has its own corresponding
low-dimensional latent vector. Specifically, for an appropriate one-parameter exponential
family distribution F parameterized by its natural parameter θij , we impose the random
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5.3. Statistical model and background

Figure 5.3: (A) The standard deviation of the expression verses the mean expression across all the
cells (on the logarithm scale), where each point represents one of the 983 genes in the preprocessed
single-cell RNA-seq dataset. The color of each point depends on how evenly the gene is expressed
among each of the six oligodendrocyte cell types show in Figure 5.1. The solid red horizontal and
vertical lines and the dashed red line denoting the line y = x are for visual reference. (B) Violin plot
of the average expression of the genes reweighted according to the first principal component amomg
the six oligodendrocyte cell types. The first three cell types are colored orange while the last three
cell types are each colored a different color. More details about how the data was preprocessed and
how both these plots were made are in Appendix 5.B.

dot product model used by other biostatistic works,

X1, . . . , Xn
i.i.d.∼ G, and Y1, . . . , Yp

i.i.d.∼ H,

Aij ∼ F
(
θij = X>i Yj

)
, for (i, j) ∈ {1, . . . , n} × {1, . . . , p}, (5.3)

where G and H represent two latent k-dimensional distributions. We assume all the variables
Xi’s and Yj ’s are jointly independent, and Aij ’s are independent conditioned on Xi’s and
Yj ’s. Let the density of the exponential family distribution F be

p(Aij | θij) = h(Aij) exp
(
η(Aij)

>T (θij)− g(θij)
)
, (5.4)

where g(·) is a known log-partition function for F with a domain R, η(·) is a known
natural parameter function, and T (·) is a known sufficient statistic function. For notational
convenience, we denote X ∈ Rn×k and Y ∈ Rp×k as the matrices that collect all the latent
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vectors X1, . . . , Xn and Y1, . . . , Yp row-wise, and denote Θ = XY > ∈ Rn×p as the natural
parameter matrix that collects all elements θij . For the above model to be valid, we require
the following assumption.

Assumption 1 (Bounded inner product). Let R denote the domain of the natural parameters
for the distribution F . Assume that for any Xi ∼ G and Yj ∼ H,

P(X>i Yj ∈ R) = 1, almost surely.

The most common choice is setting F to be the Gaussian distribution with a constant
variance. Other works such as Durif et al. (2017) and Risso et al. (2018) consider the Poisson
and Negative Binomial distribution specifically. While we design eSVD to work for any
one-parameter exponential family distribution, we highlight the curved Gaussian distribution
for F , which we will use to analyze the oligodendrocytes later in this article.1 That is, for a
fixed parameter τ > 0, consider the density,

p(Aij | θij) =
τ exp(−τ2/2)√

2π
exp

([ −τ2Aij
−τ2A2

ij/2

]> [
θij
θ2
ij

]
+ log(θij)

)
. (5.5)

To convert the natural parameter into its canonical parameter, it can be shown that the
above distribution has mean µij = 1/θij . This implies that this distribution is essentially
Aij ∼ N(µij , µ

2
ij/τ

2), where the standard deviation is proportional to the mean. Here,
R = R+, the positive half-line. This curved exponential family distribution is relevant
since in practice, if τ ≥ 2, this distribution would reflect the phenomenon that genes with
larger expression also exhibit larger variance, but yet most of the distribution’s mass is still
positive.

Given the above model, our goal is to estimate the random vectors X1, . . . , Xn since
these latent vectors encode the cell developmental trajectories.

5.3.2 Matrix factorization

One of the focuses of the matrix factorization field is to minimize the following negative
log-likelihood loss function for an exponential family distribution over all rank-k matrices X
and Y shown in (5.4),

Ln(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− η(Aij)

>T (X>i Yj)
]
, (5.6)

constrained to X>i Yj ∈ R for all pairs (i, j). The above loss function is nonconvex, but if F
is the the constant-variance Gaussian distribution, the above display is proportional to

1

np

∑
(i,j)

(Aij −X>i Yj)2,

1We call it a curved Gaussian distribution since this distribution is a curved exponential family distribution.

142



5.3. Statistical model and background

which is specifically what SVD minimizes. This particular hierarchical model is convenient to
use since SVD provides a closed-form solution to the corresponding nonconvex optimization
problem (Maezika, 2016). Specifically, the SVD embedding would be the vectors displayed in
(5.1) and (5.2). For any other exponential family distribution, such as the curved Gaussian
distribution mentioned in (5.5), we need to develop more sophisticated estimators to optimize
this nonconvex loss.

To the best of our knowledge, the first statistical results for estimators that minimized a
loss similar to (5.6) for general exponential family distributions come from Gunasekar et al.
(2014) and Lafond (2015). There, the authors minimize the loss over the natural parameter
matrix Θ and add a trace penalization term to encourage the estimate to be low-rank. While
this formulation yields a convex optimization problem, it computationally requires solving a
semi-definite program which hinders the analysis of large datasets. This consideration has
motivated researchers to investigate the statistical properties of estimators that minimize
the nonconvex function (5.6) directly. Specifically, alternating minimization is a suitable
candidate to minimize (5.6), where each iteration alternates between optimizing either one
of two low-rank matrices X and Y while treating the other fixed. This algorithmic strategy
pre-dates the convex relaxation approach (see Collins et al. (2002),Jain et al. (2013), Udell
et al. (2016) and the references within), but the statistical properties of such estimators have
only recently been characterized rigorously. These theoretical results are summarized in
Chi et al. (2019) and the references within. To accommodate the restriction in Assumption
1, works such as Yu et al. (2020) and Wang et al. (2016) adapt the theoretical framework
to study alternating projected gradient descent instead. However, all the aforementioned
theoretical results do not directly apply the random dot product model (5.3) due to the
additional source of randomness induced by the hierarchical structure. Our theory will
account for this additional source of randomness. Additional discussion contrasting eSVD
with other estimators in the literature is deferred to Appendix 5.C.

5.3.3 Relation to other work in biostatistics

A distinguishing feature of the random dot product model discussed in (5.3) is that the
latent vectors Xi and Yj are all treated as random. Random dot product models of this form
are commonly used in the biostatistics literature to model single-cell RNA-seq data, and
these models often include other random effects that influence Aij . For example, most of the
methods such as pCMF (Durif et al., 2017) allow researchers to incorporate dropout into the
model – a characteristic of single-cell data where a substantial fraction of the gene expression
for any cell are recorded as exactly 0 due to low amounts of RNA in the cell (Kharchenko
et al., 2014). Other methods such as ZINB-WaVE (Risso et al., 2018) go further and allow
covariate information such as gene length and cell size. Most recently, Lopez et al. (2018)
use deep autoencoders to estimate the latent embedding.

A common criticism of these more sophisticated models focuses on their lack of theoretical
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analysis. Concerns such as identifiability are typically not addressed rigorously, which cause
ambiguity on understanding the performance of the estimators of such models. Our analysis
of eSVD in the random dot product model shown in (5.3) is able to overcome this issue by
drawing upon connections to the network literature. Specifically, our random dot product
model is similar to those used in latent position random graphs studied in the network
literature (see Hoff et al. (2002); Athreya et al. (2017); Nielsen and Witten (2018) and the
references within). Hence, we draw inspiration from Lei (2018) on how to address these
identifiability concerns and develop proof techniques in this article.

While all the aforementioned works use an embedding where X>i Yj controls the distribu-
tion of Aij loosely speaking, there are other embeddings often used in single-cell analyses. For
example, certain cell trajectory methods first embed all the cells via independent component
analysis (ICA) (Trapnell et al., 2014; Street et al., 2018). There is not much statistical
theory for such embeddings however. UMAP (Becht et al., 2019) is another popular embed-
ding method, but this method is commonly used purely for visualization as the estimated
latent embedding does not reflect any statistical quantity. Also, other work such as Liu
et al. (2018b) and Zhang et al. (2018) estimate a low-rank covariance matrix for various
exponential-family distributions, as opposed to our goal to estimate a low-rank matrix of
natural parameters.

5.4 Method: eSVD (Exponential-family SVD)

We describe eSVD in this section, which is designed to be a general framework to minimize
(5.6) for any choice of a one-parameter exponential family distribution F . To keep its
presentation clear, we describe some of the more nuanced implementation details in Appendix
5.C. We also describe an important diagnostic which provides the user a tool to decide which
choice of F best suits the data at hand. This diagnostic can be also used as a tuning heuristic
if the choice of exponential family distribution relies on choosing a tuning parameter such as
τ in the curved Gaussian model (5.5).

5.4.1 eSVD

We lay down some notation needed to explain our method. Denoting a generic matrix and
its SVD by X = UDV >, let LeftSVD(X) = U , mapping matrices to the matrix of their left
singular vectors. Next, we use overhead bars like X and Y to denote orthonormal matrices
scaled to have spectral norm either

√
n or

√
p respectively for explicitness.

Similar to other nonconvex matrix factorization methods (Wang et al., 2016; Yu et al.,
2020), our method requires an initial estimate of the rank-k matrix of natural parameters, Θ̂′,
where k is pre-determined. The statistical theory later will explicitly state the requirements
that Θ̂′ needs to fulfill. We provide a concrete initialization method based on Wang et al.
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(2016) in the Appendix 5.C.1. Given this initial estimate, consider its SVD Θ̂′ = UDV >.

To start the alternating minimization stage of our method, we set Y
(0)

= V .

After initialization, eSVD then refines the estimate by performing alternating minimiza-
tion. Specifically, for iterations t = 0, . . . , T − 1,

X(t) = argmin
X∈Rn×k

Ln(X,Y
(t)

) : X>i Y
(t)
j ∈ R, ∀(i, j), (5.7)

X
(t+1)

=
√
n · LeftSVD(X(t)), (5.8)

Y (t+1) = argmin
Y ∈Rp×k

Ln(X
(t+1)

, Y ) : (X
(t+1)
i )>Yj ∈ R, ∀(i, j), (5.9)

Y
(t+1)

=
√
p · LeftSVD(Y (t+1)). (5.10)

After all T iterations, eSVD outputs the final estimate after a reparameterization. That is,

letting Θ̂(T ) = X
(T )

(Y (T ))> have a rank-k SVD of ÛD̂V̂ >, the final estimates are

X̂i =
(n
p

)1/4
·
(√

D̂1,1 · Ûi,1, . . . ,
√
D̂k,k · Ûi,k

)
, i = 1, . . . , n, (5.11)

Ŷj =
( p
n

)1/4
·
(√

D̂1,1 · V̂j,1, . . . ,
√
D̂k,k · V̂j,k

)
, j = 1, . . . , p. (5.12)

This is the same reparameterization used in (5.1) and (5.2).

Usability. In our implementation of our above estimator, we allow F to be the constant-
variance Gaussian, curved Gaussian, Poisson or Exponential distribution. Furthermore, if
the user wants to use our estimator for a different exponential family distribution F , all she
needs to pass into our implementation is the computation of the loss function (5.6) and its
gradients as well as information about the domain R.

Remarks about algorithmic design. We make a few remarks about our algorithm to explain
its design and relation to other methods. Unlike work such as Gunasekar et al. (2014), we
do not estimate Θ directly, where a convex penalty is appended to the objective function
to encourage a low rank solution. Instead, by optimizing over X and Y directly, where
XY > = Θ, we enforce that our estimate of Θ is at most rank k. However, optimizing over X
and Y directly raises identifiability issues, since any constant δ > 0, Ln(δX, Y/δ) = Ln(X,Y ).
Work such as Ge et al. (2017) append a penalty term

1

8
‖X>X − Y >Y ‖2F ,

while Zhao et al. (2015) use the QR-decomposition between iterations, unlike our choice of
the LeftSVD(·) operator. In practice, we found all these choices to behave similarly. The
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factors
√
n and

√
p in (5.8) and (5.10) are for theoretical reasons to ensure the spectrum of

the Hessian is well-controlled and to ensure the values to not underflow if n or p are too
large empirically. Also, the final reparameterizations in (5.11) and (5.12) are designed such
that the sample second-moment matrices of X̂ and Ŷ are both equal and diagonal, i.e.,

1

n
X̂>X̂ =

1

p
Ŷ >Ŷ .

Lastly, to perform the constrained optimization (5.7) and (5.9), we use Frank-Wolfe
(Jaggi, 2013), which we found more stable compared to using alternating projected gradient
approaches such as in Wang et al. (2016) where X(t) and Y (t) are separately updated
by taking one projected gradient step with respect to the loss function. While there are
theoretical guidelines of choosing step-sizes related to the convexity and smoothness for this
method, we found these choices often led to poor empirical performance.

5.4.2 Matrix completion diagnostic and tuning heuristic

We provide the following diagnostic to determine which choice of F is most appropriate for
our data. Inspired by network cross-validation work such as Li et al. (2016), we use matrix
completion to determine the quality of our model fit. To do this, we omit a small percentage
of the entries of A when estimating the embedding and compare the observed but omitted
values to their predicted expected value counterparts. To compute this expected value,
recall the basic property of exponential-family distributions (5.4) where the derivative of the
log-partition function g(·) yields the expected value. This is formalized in the algorithm
below.

1. For bootstrap trials b = 1, . . . , B:

a) Randomly sample m of the entries of A, denoted as O = {(i1, j1), . . . , (im, jm)},
which will be omitted for this matrix completion diagnostic. Here, m can be any
small number, such as d0.01 · (np)e.

b) Estimate the latent vectors by X̂ and Ŷ according to Subsection 5.4.1 where the
objective function Ln omits the entries in O and is parameterized to the desired
distribution of F .

c) Compute v1, defined as the first eigenvector of the matrix formed by the omitted
observed values AO = {Ai1,j1 , . . . , Aim,jm} and their predicted expected value

counterparts g′(X̂Ŷ >)O = {g′(X̂>i1 Ŷj1), . . . , g′(X̂>im Ŷjm)}.

d) Compute model fit quality, q(b) defined as the angle between v1 and the vector
(1, 1), representing the identity function.

2. Average the model fit qualities across all trials, q(1), . . . , q(B).
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If we try the above diagnostic for multiple distributions for F , the distribution that
yields the smallest average of q(1), . . . , q(B) is deemed the most appropriate model for A.
In this way, we can try this diagnostic as a tuning heuristic to select the dimensionality
of the latent space k, or parameters for exponential-family distributions such as τ in the
curved Gaussian distribution (5.5). Observe that we define the model fit quality q(b) as the
angle between the first (uncentered) principal component vector2 between between excluded
observed values AO and predicted values (X̂Ŷ >)O is to 45◦, represented by the vector (1, 1).
Having an eigenvector’s angle close to 45◦ means that on average, the predicted values
model the observed value well. We do not use MSE to define the model fit quality since the
variance can grow with the expected value for various exponential family distributions such
as our curved Gaussian model (5.5).

5.5 Statistical theory

We derive the statistical rate of convergence when eSVD is applied to the model described in
§5.3. The overall rate is divided into two components. First, we analyze the convergence of Θ̂
to Θ when conditioned on the latent vectors in X and Y . Second, we analyze the convergence
of X̂ to X, given some additional identifiability conditions, for a generic estimator Θ̂. By
combining the two components, applied to the curved Gaussian model, we can derive the
overall rate of convergence for eSVD as it pertains to the analysis in this paper. The
proofs for all the results are in Appendix 5.H. Our analysis draws inspirations from Zhao
et al. (2015) which also studies alternating minimization, but only for the constant-variance
Gaussian model.

Throughout this section, conditioned on X and Y (the matrix of random latent vectors
for each cell and gene described in (5.5) that we are trying to estimate), let the SVD of Θ
be denoted as

Θ = ŨD̃Ṽ >, (5.13)

where we denote the singular values as d̃1, . . . , d̃k. In addition, for a generic matrix A, let
‖A‖F denote its Forbenius norm. We use standard asymptotic notation throughout this
section. For two sequences an and bn, let an = O(bn) denote that an/bn is bounded for large
enough n, and for two random sequences An and Bn, let An = OP (Bn) denote that An/Bn
is bounded in probability for large enough n.

5.5.1 Estimation of matrix of natural parameters

We operate under the correctly-specified model setting, where eSVD uses the log-likelihood
of F . Our first set of assumptions ensure that the exponential family distribution F is

2By this, we mean v1 is equivalent to doing PCA on the matrix formed by the columns AO and (X̂Ŷ >)O
where we purposefully do not center the columns of this matrix, and extract the first principal component
vector.
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well-behaved. We define notation to distinguish between sample and population optimizers,

borrowing terminology from Balakrishnan et al. (2017). Let MX
n (Y

(t)
) and MY

n (X
(t+1)

)
denote X(t) and Y (t+1) respectively in (5.7) and (5.9). In the nonconvex literature, these
denote the sample minimization operators. Likewise, we define the population loss function,

L(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− E

[
η(Aij)

]>
T (X>i Yj)

]
, (5.14)

and the corresponding population minimization operators,

MX(Y
(t)

) = argmin
X∈Rn×k

L(X,Y
(t)

) : X>i Y
(t)
j ∈ R, ∀(i, j), (5.15)

MY (X
(t+1)

) = argmin
Y ∈Rp×k

L(X
(t+1)

, Y ) : (X
(t+1)
i )>Yj ∈ R, ∀(i, j). (5.16)

To handle identifiability issues, let us define the set of matrix pairs,

{X ∗,Y∗} =
{
{X,Y } : Θ = XY >

}
.

By the SVD of Θ in (5.13), we can see that the set X ∗ represents all matrices that are equal
to
√
n · Ũ up to rotation. Similarly, we can define the pair of spaces {X ∗,Y∗}.

Assumption 2 (Strong convexity and gradient Lipschitz). Assume that the population
negative log-likelihood function L(·, ·) is µ-strongly convex and its gradient is L-Lipschitz for
L ≥ µ > 0 after fixing one of the input matrices. Specifically, for any matrices X,X ′ ∈ Rn×k
and Y ∈ Rp×k satisfying Assumption 1,

µ

2
‖X −X ′‖2F ≤ L(X ′, Y )− L(X,Y )−

〈
X ′ −X,∇XL(X,Y )

〉
≤ L

2
‖X −X ′‖2F ,

and a similar assumption holds for any matrices Y, Y ′ ∈ Rp×k and X ∈ Rn×k.

Assumption 3 (Gradient Lipschitz with respect to alternating variable). Assume that there
exists a S > 0 such that for any orthonormal matrices Y and X rescaled to have spectral
norm

√
p and

√
n respectively, any pairs {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗,Y∗}

satisfy

‖∇XL(X∗, Y )−∇XL(X∗, Y
∗
)‖F ≤ S‖Y − Y

∗‖F ,
‖∇Y L(X,Y ∗)−∇Y L(X

∗
, Y ∗)‖F ≤ S‖X −X

∗‖F .

For the below assumptions, let

BF (r;Y∗) =
{
Y ′ ∈ Rp×k : there exists Y

∗ ∈ Y∗ such that ‖Y ′ − Y ∗‖F ≤ r
}
,

in other words, the union of Forbenius balls of matrices around any Y∗ with radius r.
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Assumption 4 (Uniform statistical error). Conditioned on X and Y , assume that with
probability at least 1− c/min{n, p} for some universal constant c that

sup
Y ′∈BF (r; Y∗)

‖MX(Y ′)−MX
n (Y ′)‖F ≤ εunif(n, p),

sup
X′∈BF (r; X ∗)

‖MY (X ′)−MY
n (X ′)‖F ≤ εunif(n, p),

where r = d̃kµ/(4 max{n, p}1/2S) and εstat(n, p) is some function of n and p (and possibly
other quantities). Assume that

εunif(n, p) ≤
d̃k

4 max{n, p}1/2
.

In Assumptions 2 and 3, the strongly convexity and smoothness enable fast convergence.
These assumptions are common in work that study matrix factorization, i.e. Wang et al.
(2016) and Yu et al. (2020). Likewise, Assumption 4 ensures the sample optimizer does not
deviate too far from the population optimizer, commonly used in work such as Balakrishnan
et al. (2017). Later in this section, we explain that Assumptions 2, 3 and 4 are satisfied in
the curved Gaussian model (5.5) in the appropriate setting.

Assumption 5 (Initialization condition). Conditioned on X and Y , assume that for some

pair of matrices Y
∗ ∈ Y∗, the initial estimate Y

(0)
satisfies

‖Y ∗ − Y (0)‖F ≤
d̃k

4 max{n, p}1/2
µ

S
.

Assumption 5 is an initialization condition similar to Wang et al. (2016) and Yu et al.
(2020) that ensures the alternating minimization steps can allow Θ̂(T ) to converge towards
Θ. This is described in the following proposition.

Proposition 35. Under Assumptions 1 and 2-5, conditioned on X and Y , if

4(np)1/2

d̃k

S

µ
< 1,

then for the number of iterations T large enough, with probability at least 1− 2c/min{n, p},
eSVD described in (5.7)-(5.10) achieves the rate

‖Θ− Θ̂(T )‖F = C ·
(max{n1/2, d̃1/n

1/2} · (np)1/2

d̃k − 4(np)1/2S/µ
· εunif(n, p)

)
,

for some universal constants c and C.
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To apply Proposition 35 to a particular model, one needs to compute the terms µ, L,
S, and ε(n, p) needed for Assumptions 2-4. This often requires positing assumptions in the
context of the particular model that imply Assumptions 2-4. We demonstrate this below
with minor modifications.

Application to the curved Gaussian model. Using broader assumptions that imply Assump-
tions 1, 2 and 3 as well as slightly modification of eSVD to make Assumption 4 easier
to analyze, we can apply Proposition 35 to the setting where F is the curved Gaussian
distribution (5.5) and Ln(·, ·) is its corresponding negative log-likelihood. More specifically,
assume the for each iteration t = 0, . . . , T − 1 uses a different set of observed matrices A.
This simplifying assumption has been used in other work such as Wang et al. (2015) where
this is no closed-formed solution to (5.7) or (5.9). Then, roughly speaking, if n = O(p) and
p = O(n), then

‖Θ− Θ̂(T )‖F = OP

(
n3/4 log1/4(n)

)
. (5.17)

We defer the details, including specific descriptions of the broader assumptions, to Appendix
5.D for brevity.

5.5.2 Estimation of latent vectors

Given the convergence rate for estimating Θ, we can next ask how how well we estimate
the latent vectors X1, . . . , Xn or Y1, . . . , Yp themselves. In fact, our theorem below requires
enforcing assumptions on G and H for identifiability reasons (see Assumption 7) and holds
generically for any method to estimate Θ as long as ‖Θ − Θ̂‖F = OP (ε) for some rate
function ε. We use the following notation to define the population second moment matrices
of Xi and Yj for any i = 1, . . . , n and j = 1, . . . , p as

E[XiX
>
i ] = C∗X = Φ∗Λ∗Φ∗>, and E[YjY

>
j ] = C∗Y = Ψ∗Γ∗Ψ∗>,

with their corresponding eigen-decompositions.

Assumption 6 (Sub-exponential distribution of latent vectors). Assume that the square of
Xi and Yj in the model (5.3) are multivariate sub-exponentially distributed. That is, there
exists a constant D such that for any vector V ∈ Rk and any c ≥ 1,(

E
[∣∣〈Xi, V 〉2 − E

[
〈Xi, V 〉

]2∣∣c])1/c
≤ Dc,

and a similar assumption holds for Yj with also the same constant D.

Assumption 7 (Second moment properties). The population second moment matrices
C∗X and C∗Y are equal and are both diagonal matrices, where (C∗X)i,i ≥ (C∗X)j,j for any

150



5.6. Numerical study

1 ≤ i < j ≤ k. Furthermore, assume there exists positive numbers c1 ≤ c2 and 1 < α ≤ β
such that for all ` = 1, . . . , k, the eigenvalues satisfiy

c1`
−α ≤ λ∗` ≤ c2`

−α, and λ∗` − λ∗`+1 ≥ c1`
−β.

Assumption 6 enables sharp rates for estimating the second-moment matrix C∗X and
C∗Y , while the second part of Assumption 7 enables our estimator to accurately estimate
its eigenvalues and eigenvectors. Both assumptions are common in work that study the
spectrum, i.e., Lei (2018). The first part of Assumption 7 is an identifiability condition,
which we show in Appendix 5.C can always be satisfied after some reparameterization.

Proposition 36. Assume the model in (5.3) where Assumptions 6 and 7 hold. If the
estimator Θ̂ satisfies ‖Θ̂−Θ‖F ≤ ε conditioned on X and Y , and k = o(min{n, p}), then
up to sign3, eSVD achieves the rate after reparamterizations (5.11) and (5.12)

1

n
‖X − X̂‖2F = OP

(
max

{ k4β−α+4

min{n, p}
,
k2β−α+2 max(ε2, ε)

np

})
. (5.18)

Discussion of rate. Notice that rate (5.18) gets worse the larger β is, representing a smaller
eigen-gap according to Assumption 7. Also, typically the latter term within the maximization
in (5.18) is the dominant term, unless ε = O((np/min{n, p})1/2). Also, a similar rate (5.18)
holds for estimating Y .

Application to curved Gaussian model. As discussed in §5.5.1, if we plug in the rate of
convergence applied to the curved Gaussian model shown in (5.17) after inheriting its
assumptions, for the setting n = O(p) and p = O(n), we obtain roughly

1

n
‖X − X̂‖2F = OP

( log1/2(n)

n1/2

)
.

We defer the details such as the assumptions to Appendix 5.D for brevity.

5.6 Numerical study

In this section, we study the performance of eSVD and compare it to other methods using
synthetic data. Our setup for all the simulations in this section are as follows: following
the model (5.3), we set the known k = 2 and sample X1, . . . , Xn i.i.d. uniformly from four
connected linear segments with additive Gaussian noise, as illustrated in Figure 5.4. These
four segments loosely represent four cell types. We also sample Y1, . . . , Yp i.i.d. from a

3We use “up to sign” similar to Fan et al. (2018b), where each column of X̂ can be multiplied by ±1
since the SVD is not unique.
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Figure 5.4: (A) The two-dimensional population density of G, visualized as a heat map with contour
lines along with the true trajectories (black lines). The mean vector for each of four cell types are

labeled in a different color (blue, yellow, green, orange). (B to D) The estimated embedding X̂1:n

of the synthetically-generated A for varying levels of n, (i.e., number of cells or number of rows),
colored by the true cell-type, with the estimated trajectories overlaid ontop.

mixture of two Gaussians that are well-separated. These sampling procedures represent G
and H respectively, up to identifiability conditions. We enforce that XT

i Yj < 0 for all pairs
(i, j). The distribution family F however changes between different simulations. We do not
use R packages such as Splatter (Zappia et al., 2017) to generate our synthetic data since
we want to have precise control over the true embedding. The full details of the simulation
setups and usage of various estimators in this section are in Appendix 5.E.

Asymptotic convergence to true embedding. In this first simulation suite, we demonstrate
that the estimated embedding converges towards the true latent embedding. Specifically, we
generate A ∈ Rn×p where each entry Aij is sampled independently from the curved Gaussian
(5.5) with a natural parameter θij = X>i Yj and τ = 2, and fit eSVD using the correctly
specified model. Figure 5.4 is an illustration that demonstrates the asymptotic properties
of eSVD. Specifically, we see that the distribution of the embedding X̂1, . . . , X̂n converges
towards G as n increases. We provide a thorough simulation study of the convergence rates
in Appendix 5.E.

Comparison of different embedding methods. For our second simulation suite, we demon-
strate that the estimated relative positions of the cells’ latent positions derived from eSVD
are more accurate than those estimated by other methods even when the distribution F is
misspecified. Here, we fix n = 200 and d = 240. We compare eSVD to five other methods
used to embed single cells: SVD, ZINB-WaVE (Risso et al., 2018), pCMF (Durif et al.,

152



5.6. Numerical study

Figure 5.5: (A) The density plot of each of the six embedding methods’s accuracy (eSVD, SVD,
ZINF-WaVE, pCMF, UMAP and t-SNE), based on our Kendall’s tau correlation metric. The circles
along each method’s x-axis denotes the median accuracy across the 200 trials. (B) For a particular
instance of A, the six estimated embedding, showing the two latent dimensions (first latent dimension
on the x-axis). The number in parenthesis denotes the accuracy of the embedding with respect to
the true embedding. The coloring of the samples persists from Figure 5.4.

2017), UMAP (Becht et al., 2019) and t-SNE (Maaten and Hinton, 2008), The second and
third methods are explained in Appendix 5.E. Importantly, SVD implicitly assumes F is a
constant-variance Gaussian distribution as mentioned in §5.1, while ZINB-WaVE and pCMF
assume F is a Negative Binomial and Poisson distribution respectively.

We simulate data from a negative binomial model in this simulate suite, which is the
distribution family that is most commonly used to model RNA-seq data (Love et al., 2014).
Specifically, we sample the observed count matrix A conditionally independent on X1, . . . , Xn

and Y1, . . . , Yp where

Aij ∼ Negative Binomial
(
50, exp(−X>i Yj

)
. (5.19)

Then, when we estimate the embedding using eSVD, we use the matrix-completion diagnostic
mentioned in §5.4 to select the most appropriate value of the dispersion parameter π from
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the set {5, 50, 100}.

We find that on average across 50 trials, our method estimates the relative latent positions
of each cell to be more accurate than other methods (Figure 5.5A). To define our notion
of accuracy, consider each cell i and its Euclidean distance to all other n − 1 cells in the
latent space in both the true and estimated embedding. We then compute the Kendall’s tau
correlation between these two vectors, which only relies on the ranks of the distances, and
then average this value over all n cells. Hence, a high mean Kendall’s tau value suggests that
the four different cell types we posited remain relatively well separated. We call this notion
of accuracy as the “relative embedding correlation.” Figure 5.5B compares the different
estimated embeddings to the true embedding as an illustration. We see that eSVD and
ZINB-WaVE both estimate embeddings where the four cell types are relatively in the correct
configuration, and their accuracy are quite high. In this example, the other four embeddings
do not perform as well.

Investigation using other generative models. We defer our third simulation suite to Appendix
5.E, where we empirically compare eSVD to other methods when F is misspecified. While the
theorems we developed in §5.5 are no longer valid under these settings, we are nonetheless
interested if our method roughly estimates the relative positions of the cells’ embedding
correctly. As we elaborate in Appendix 5.E, our takeaway message is that there are generative
models where any of the six methods is the most appropriate. Hence, it is important to
use diagnostics such as the one we provided in §5.4 to understand which method is most
suitable for the data at hand.

5.7 Single-cell analysis

We return to the Marques dataset (Marques et al., 2016), as described in §5.2, to determine
if the embedding based on the curved Gaussian model (5.5) is more appropriate than that
based on the constant-variance Gaussian model for modeling oligodendrocytes and if so,
continue our motivating task of investigating the developmental trajectories. As alluded to
in §5.2 the six major cell types in Figure 5.1 have a determined order, starting from Pdgfra+
precursors and ending at the mature oligodendrocytes. However, our goal in the analysis
to follow is to estimate the trajectories among the cell sub-types constrained to this order.
For example, in Marques et al. (2016), the authors estimated one developmental trajectory
connecting all the first five cell major types starting from the Pdgfra+ precursors after
embedding the cells into a lower-dimension space, but do not definitively conclude how the
six mature oligodendrocyte cell sub-types differentiate. Instead, they relied on region-based
analyses to hypothesize that these six sub-types differentiate into five different trajectories.
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5.7.1 Details of estimating cell developmental trajectory

We provide more details on how we estimate the developmental trajectories based on the
low-dimensional embedding X̂1, . . . , X̂n. As alluded to before, the trajectories show how
these different cell sub-types develop from one another, assuming the latent vectors X̂i

for each cell i gradually changes along the trajectories. We use Slingshot (Street et al.,
2018) (with minor modifications) to estimate these cell developmental trajectories. Roughly
speaking, Slingshot is a two-step algorithm that requires the latent vectors to already be
clustered, where we treat each cell sub-type as a cluster. In the first stage, Slingshot
estimates the number of trajectories and ordering of the cell sub-types based on minimizing
the distances between cell sub-type centers via a minimum spanning tree. In the second
stage, Slingshot fits principal curves (Hastie and Stuetzle, 1989) that passes through the
cell sub-type centers in the estimated ordering, while deploying algorithmic tricks to merge
different principal curves whose lineages share cell sub-types. These principal curves can be
thought as smooth curves that pass through high density regions in the latent dimensions.
More details about Slingshot and our modifications of it to make it more suitable for our
dataset are given in Appendix 5.F.

We briefly mention that the original study (Marques et al., 2016) uses a different
algorithm, Monocle (Trapnell et al., 2014), to estimate the cell developmental trajectories.
We use Slingshot instead as it is the current state-of-the-art method based on extensive
benchmarking comparisons in Saelens et al. (2019). As we will show below, despite using a
different method to estimate the cell trajectories, we reach the same scientific conclusion
as in (Marques et al., 2016) if we were to embed the cells according the constant-variance
Gaussian model.

5.7.2 Analysis using constant-variance Gaussian distribution

Building on the analysis in §5.2, we perform a trajectory analysis using the SVD embedding
shown in (5.1) and (5.2), which assumes the constant-variance Gaussian model. Applying
Slingshot directly to this embedding results in two trajectories, both heavily overlapping
one another (Figure 5.6A). These results are similar to Marques et al. (2016) in two ways.
First, the authors show that all cells develop from Pdgfra+ precursors to myelin-forming
oligodendrocytes in the same way, which we estimate as well. Second, the authors do
not definitively conclude if the mature oligodendrocytes diverge in their development. Our
trajectories themselves also leave this ambiguity unresolved due to the heavy overlap between
the two trajectories. However, we perform the following additional visual diagnostic to
quantify if these two trajectories are well approximated by a single trajectory in actuality.

To formalize to what degree the different trajectories are the same, we use bootstrap
resampling to construct a uniform uncertainty tube around each trajectory. These tubes
capture the variance of each estimated trajectory, and plotting these tubes is a useful
descriptive tool. This is an important component of our analysis since Slingshot is sensitive
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Figure 5.6: (A) Three-dimensional plot of the estimated latent positions via SVD with the two
estimated cell developmental trajectories laid on top, corresponding to the data shown in the
Figure 5.1. The thirteen bolded points correspond to the cluster centers of the thirteen cell sub-types,
where the color scheme persists from Figure 5.1. (B) The uncertainty tube overlaid on top of Figure
A.

to small perturbations in the data due to its graph-based strategy to estimate the ordering of
the cell sub-types. Hence, small variations can dramatically change the number of estimated
trajectories or ordering of cell sub-types within those trajectories. Our procedure samples
with replacement from all embedded cells within each of the thirteen cell sub-types. For
each bootstrap sample, we apply Slingshot to estimate a new set of trajectories. We then
compute the `2 distance between the new trajectories and the original trajectories. After
applying this procedure multiple times, the 95% quantile of the `2 distances determines the
uniform radius of the uncertainty tube, centered around the original trajectory. More details
of this procedure are in Appendix 5.F. Based on this construction, all five trajectories lie in
the uncertainty tube of the longest trajectory (Figure 5.6B). Hence, we conclude there is
effectively one trajectory that connects all thirteen cell sub-types. This result can explain
why embeddings based on less flexible statistical models such as in Marques et al. (2016) have
difficulty explaining how mature oligodendrocytes differentiate in their trajectory analysis.
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Figure 5.7: (A) Diagnostic plot showing the observed values that were not omitted (i.e., the “training
set”) verses their respective predicted values. (B) Diagnostic plot showing the observed values that
were purposefully omitted (i.e., the “testing set”) verses their respective predicted values. Both plots
are comparable to those in Figure 5.2, except the fit shown here is estimated via eSVD for the the
curved Gaussian model with k = 5 and τ = 2. The 10th to 90th quantiles of the curved Gaussian
model are more pronounced here, shown in the shaded red region.

5.7.3 Analysis using curved Gaussian model

The above conclusions, however, rest on the questionable constant-variance Gaussian dis-
tributional assumption (see Figure 5.3). As we’ve seen in Figure 5.2 in §5.2 that our
matrix-completion suggests that this assumption is not suited for modeling the oligodendro-
cyte dataset at hand.

This finding motivates us to analyze the data using eSVD to embed each cell with respect
to the curved Gaussian distribution (5.5), and re-examine the resulting diagnostics. Based
on our tuning heuristic, the curved Gaussian distribution with k = 5 and τ = 2 best fits
the data, determined among the candidate values of {3, 4, 5} and {0.5, 1, 2, 4} respectively.
When we plot the diagnostic using eSVD in Figure 5.7, we obtain results that suggest a
much better fit compared to that of SVD. Not only is the principal angle close to 45◦ in the
testing set, meaning eSVD models the mean function more appropriately, but also a larger
fraction of the observations lie within the 10% to 90% quantile region of the distribution.
We conclude that the curved Gaussian model is more appropriate than the constant-variance
Gaussian model for modeling our oligodendrocyte dataset. The eSVD embedding can be
compared to the SVD embedding (Figure 5.8A vs. Figure 5.1), where we similarly mark the
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Figure 5.8: eSVD embedding using curved Gaussian distribution with k = 5 and τ = 2. The coloring
of cells persists from Figure 5.1, with exception of mature oligodendrocytes which now are colored as
gray, yellow or blue based on the estimated trajectories shown in Plot B. The first and third latent
dimensions are shown. (A) The embedding along with contours of the estimated densities to visualize
high-density regions. This plot is comparable to Figure 5.1. (B) The embedding along with both
estimated cell developmental trajectories, colored in yellow and blue. These correspond with the
three of six mature oligodendrocytes cell sub-types unique to one trajectory (colored in yellow) and
the mature oligodendrocytes cell sub-type unique to the other trajectory (colored in blue). The two
remaining mature oligodendrocytes are common to both trajectories, prior to the branching (colored
in gray). The thirteen bolded points correspond to the cluster centers of the thirteen cell sub-types.

high density regions of various cell types using contour lines. We see that the cells within
each major cell type are relatively spread out, a promising feature that suggest eSVD was
able to capture the variance among the cells and can support developmental theories of
gradual transcriptional change.

When we apply Slingshot to the eSVD embedding, we find that we still retain the
conclusion that all cells from Pdgfra+ precursors to myelin-forming oligodendrocytes develop
in the same way, similar to Marques et al. (2016), as shown in (Figure 5.8B. However,
unlike that work, we are now able to observe a substantial differentiation among the mature
oligodendrocytes into two distinct trajectories. Specifically, within this major cell type, only
two of the six mature oligodendrocytes sub-types are shared between the two trajectories.
Among the five remaining mature oligodendrocytes sub-types, four sub-types branch off
in one trajectories while one sub-types branch into the other trajectory. Similar to before,
Figure 5.9 displays the embeddings in three-dimensions along with the uncertainty tubes.
We show the additional plots of the embedding and trajectory estimates in Appendix 5.G.

We see that in Figure 5.9B, even with the uncertainty tube, the two trajectories that we
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Figure 5.9: (A) Three-dimensional plot of the estimated latent positions via eSVD for curved
Gaussian distributions with τ = 2 with the estimated cell developmental trajectory laid on top,
corresponding to the data shown in Figure 5.8B. The thirteen bolded points correspond to the cluster
centers of the thirteen cell sub-types, where the color scheme persists from Figure 5.8. (B) The
uncertainty tubes overlaid on top of Figure A. Both plots are comparable to Figure 5.6.

estimate using the eSVD embedding are still well separated at the mature oligodendrocytes.
This is contrast with the analysis using SVD where all the estimated trajectories lied within
one uncertainty tube (Figure 5.6B). Hence, from the diagnostic shown in Figure 5.8, we
conclude that the curved Gaussian distribution is more appropriate for the Marques data,
and using this model results in estimating that the oligodendrocytes develop in two distinct
trajectories. This is an improvement from the Marques et al. (2016) analysis which suggested
five trajectories but was not able to determine how distinct these trajectories were. Our
comparison of results between using the SVD or eSVD embeddings can help explain why
previous scientific findings suggested that oligodendrocytes effectively a single developmental
trajectory, while newer analyses based on more flexible statistical models might suggest
multiple trajectories.

5.8 Discussion

In this article, we develop an estimator to embed the cells in a single-cell RNA-seq dataset into
a lower dimensional space with respect to a hierarchical model where the inner product of two
latent vectors is the natural parameter of a one-parameter exponential family distribution F .
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This embedding method can greatly improve the estimation of cell developmental trajectories
overall since it can handle distributions beyond the constant-variance Gaussian distribution,
both in theory and practice. While the spirit of such embedding is not new, our contribution
is two-fold. First, we develop eSVD, an efficient estimator that avoids using semidefinite
programs, and solidify its statistical properties such as identifiability and consistency. Second,
we apply our estimator to analyze the oligodendrocytes in mouse brains, showing results
that coincide with recent scientific hypotheses (van Bruggen et al., 2017; Marques et al.,
2018).

For future work, our work can be extended to analyze statistical embeddings that model
the dropout effect directly, such as Pierson and Yau (2015), Townes et al. (2017) and Risso
et al. (2018). In addition, models such as the one in Risso et al. (2018) allow additional
covariates to play a role in the embedding, such as the cell size or gene length. We also plan
to work on extending our hierarchical latent model to clustering and imputation uses, much
like Lopez et al. (2018). Unlike Lopez et al. (2018) however, since we have statistical theory
on what eSVD’s embedding converges towards, we hope to also theoretically analyze the
statistical performance of these downstream methods.

5.A Code and reproducibility

The code for the method, simulation, and data analysis, as well as the original data used,
can be found at https://github.com/linnylin92/esvd, in the eSVD, simulation, main
and data folders respectively. The dataset we analyzed was originally collected by Marques
et al. (2016), found at the Gene Expression Omnibus with accession number GSE75330
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330).

5.B Formal description of analysis pipeline

5.B.1 Main analysis pipeline

The following procedure describes how we preprocess the data prior to the preliminary
analysis in §5.2 as well as how the analysis was performed in §5.7.

1. Screening genes: Since not all 23,556 genes are informative for our analysis, we use
the following two methods to select genes, based loosely on Zhu et al. (2019).

• Sparse principal component analysis (Witten et al., 2009): This method
uses a tuning parameter that controls the `1-norm of the eigenvectors, of which
we try 10 values spaced exponentially between 0 and log(23, 556). We choose the
model such that the first K = 5 sparse eigenvectors involve more than 500 genes
and would capture more than 90% of the variance.
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• DESCEND (Wang et al., 2018): We find genes with a Gini index with a
normalized difference (compared to the mean) of 50.

Together, this results in 983 unique genes being selected. In the following parts of the
analysis, we will denote the preprocessed data as A ∈ Rn×p+ where there are n = 5069
cells and p = 983 genes.

2. Rescaling: We normalize each cell by its read-depth (i.e., divide each row by its sum)
and then multiply the entire matrix by a scalar such that the maximum value is 1000.
This is to prevent small numbers from underflowing our method later on.

3. Tuning the dimensionality of the embedding k and the nuisance parameter
of the curved Gaussian distribution τ : Omitting four entries per row and per
column of A (for a total of 24,193 unique entries) for each trial of b over a total of
B = 3 trials, we use the matrix completion heuristic outlined in Subsection 5.4.2 to
select τ from potential values of k ∈ {3, 4, 5} and τ ∈ {0.5, 1, 2, 4} (for a total of 12
different parameter settings). Based on which principal angle is closes to 45◦, we end
up selecting k = 5 and τ = 2. Note that it is important to refit across the different
values of k since non-linear embeddings are not typically nested, as discussed in Durif
et al. (2017).

4. Embedding via eSVD: We apply eSVD where F is the the curved Gaussian distri-
bution with k = 5 and τ = 2 to minimize (5.6), as prescribed in Subsection 5.4.1. The
initialization procedure is described in Appendix 5.C.1.

5. Estimating the cell developmental trajectories and uncertainty tube: Using
the thirteen cell sub-types from Marques et al. (2016) as the cluster labels, we apply
our modified Slingshot and construct the uncertainty tubes, as alluded to in §5.7 and
detailed in Appendix 5.F.

5.B.2 Additional details of analysis in §5.2

We describe additional details of the analysis used to produce the various figures in §5.2.

Details for Figure 5.1. The scatter plot is produced the SVD embedding described in (5.1)
and (5.2) for k = 2, where the coloring of the points is based on the cell-type information
provided in Marques et al. (2016). The contour of the densities estimated based on the
MASS::kde2d function (using the default bandwith), where the level of the contour is chosen
to be the 92.5% quantile of the estimated density across the grid of points in this two-
dimensional space. This quantile level is chosen solely based on the suitably of the figure,
and provides the reader a sense of the density of the points that is otherwise hard to gauge
based on only the scatterplot.
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Details for Figure 5.2. SoftImpute (Mazumder et al., 2010) requires the dimensionality
of the latent space k and a tuning parameter λ to determine the severity of the spectral
regularization. To choose this, we try 50 different value of λ from 1 to the value given in
softImpute::lambda0 (a function that computes the largest value of λ that still yields the
all-0 estimated matrix), as well as k ∈ {3, 4, 5} for a total of 150 different parameter settings.
We then choose λ and k based on the matrix completion heuristic outlined in Subsection
5.4.2, where F is set to be the Gaussian distribution with constant variance. Importantly,
this results in choosing k = 3, which is used when fitting the SVD embedding used for
downstream analysis in Subsection 5.7.2. (Note that this is different from k = 5 used for the
eSVD embedding shown in Subsection 5.7.3.)

Details for Figure 5.3. Figure A in Figure 5.3 is created by computing the logarithm of the
column-wise (i.e., gene-wise) mean and standard deviation of A, the preprocessed single-cell
RNA-seq dataset. The color of the point is based on the ANOVA p-value that tests if values
in each column of A(i.e., the expression of each gene) is equal across all 6 major cell types
shown in Figure 5.1, with blacker points denoting a p-value closer to 0 and more yellow
points denoting p-values closer to 1.

Figure B in Figure 5.3 is created by first computing the first principal component of A
(i.e., the leading eigenvector of the empirical covariance matrix of A), setting all the negative
entries to 0, and then renormalizing all the entries of the resulting vector to sum to 1. We set
all the negative values to 0 so the resulting vector can meaningfully represented a weighted
average. We then compute the inner product between the resulting vector and each row of
A, and then plot a violin plot based on the grouping the resulting inner product by the six
major cell types shown in in Figure 5.1.

5.C Discussion on estimator

5.C.1 Initialization method

We first define notation needed to describe the initialization method, inspired by Wang et al.
(2016). For a given one-parameter exponential family distribution, let g−1(·) be the inverse
function of the g(·), the log-partition function for F , which is guaranteed to exist by the
convexity of g(·). Furthermore, for a generic matrix Θ ∈ Rn×p that is rank k, let Ln(Θ) be
equivalent to the loss function Ln(X,Y ) defined in (5.6) for any X ∈ Rn×k and Y ∈ Rp×k
such that Θ = XY >. Lastly, define Πk(·) be the projection operator (based on alternating
between truncating the singular values and thresholding) to project a given matrix into the
set {

Θ ∈ Rn×p : rank(Θ) ≤ k, and θij ∈ R ∀(i, j)
}
. (5.20)
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We initialize our estimate, Θ̂(0) to be g−1(A), where the function g−1(·) is applied
entrywise. Afterwards, we perform projected gradient descent. That is, for t = 0, . . . , T ′ − 1
iterations, for a stepsize γ > 0, we iterate,

Θ̂(t+1) = Πk

(
Θ̂(t) − γ∇Ln(Θ̂(t))

)
.

Let Θ̂(T ′) = Θ̂′ defined in Subsection 5.4.1.

Determining γ. We found that the initialization without any projected gradient steps
works well in practice. However, in our implementation, we use only a few project gradient
steps where within each iteration, γ is selected within each iteration via binary search to
be the largest value such that the objective function Ln decreases. There is no theoretical
guarantee for such a heuristic however. We hope to provide a more concrete initialization
procedure in the future that is well supported by theory.

Lack of convergence. Unfortunately, in our experiments, we have found that there are
instances where the above projection (5.20) does not converge empirically. While there is
a rich body of literature studying the intersection of many convex sets (see Kundu et al.
(2017) and Tibshirani (2017) and the references within), the set of all rank-k matrices is not
convex. In instances where this occurs, we terminate the above initialization procedure, and
instead fit a k-block model to g−1(Θ) based applying k-means to both the first k left and
right singular vectors separately. This procedure is reminiscent of those used to fit stochastic
block models described in various papers such as Li et al. (2016). We hope to investigate a
more principled initialization scheme in future work, especially one that integrates well with
our theoretical results.

We do use non-negative matrix factorization (NMF) of g−1(Θ) since the computational
complexity of most non-negative matrix factorization methods is of a similar order to our
alternating minimization descent. See Subsection 5.C.4 for a more detailed discussion of
how NMF compares to eSVD.

5.C.2 Identifiability condition

Here, the following proposition shows that the first part of Assumption 7 can be interpreted
as an identifiability condition, since it can always be satisfied after performing an appropriate
linear transformation.

Proposition 37. Given two k-dimensional distributions G and H each with at least two mo-
ments where the population second moment matrices are full rank, consider two independent
random variables X ′ ∼ G and Y ′ ∼ H. Then there exists a linear and invertible transforma-
tion R such that the population second moment matrices of X = RX ′ and Y = R−>Y ′ are
the same, i.e.,

E[XX>] = E[Y Y >].
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Furthermore, both population second moment matrices above are diagonal matrices.

The proof is in Appendix 5.H. Note that since R is invertible, we guarantee that the
random vectors X and Y preserve the distribution of their inner product, i.e.,

P
(
(X ′)>Y ′ ≤ t

)
= P

(
X>Y ≤ t

)
, ∀t ∈ R.

Hence, Assumption 7 can be interpreted as an identifiability condition, since we can only
estimate G and H only up to this transformation that ensures their population second
moment matrices match.

5.C.3 Usage for common one-parameter exponential-family distributions

eSVD can be extended to any one-parameter exponential family distribution, so here, we
derive all the necessary ingredients (calculation of the objective function and gradient with
respect to X and Y ) for most common one-parameter exponential family distributions. We
explain the pipeline to derive how to fit a given one-parameter exponential family distribution
F into the eSVD framework.

1. Writing distribution in exponential-family form: With a given one-parameter
exponential distribution F in mind, write the probability density function (or proba-
bility mass function) in the form described in (5.4). That is, determine the functions
g(·) (the log-partition function for F ), η(·) (the natural parameter function) and T (·)
(the sufficient statistic function) such that

p(Aij | θij) = h(Aij) exp
(
η(Aij)

>T (θij)− g(θij)
)
.

2. Determine the domain: Next, based on the log-partition function g(·), determine
its domain R.

3. Determining the objective function: Next, with the functions g(·), η(·) and T (·)
explicitly derived, plug them into the objective function,

Ln(X,Y ) =
1

np

∑
(i,j)

[
g(X>i Yj)− η(Aij)

>T (X>i Yj)
]
.

4. Calculating the gradients: Lastly, derive the gradient of the above objective
function with respect to X and Y .

Using the above pipeline, we provide the derivations for the following five distributions
as an example for readers. We only write down the gradients with respect to X, as the
gradients with respect to Y are similar.
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• Gaussian: For a Gaussian with known variance σ2, the density is

p(Aij | θij) =
[ 1√

2πσ2
exp

(−A2
ij

2σ2

)]
· exp

( [
Aij/σ

2
]> [

θij

]
−

θ2
ij

2σ2

)
,

where θij = µij , and the domain of θij is R = R. Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[ (X>i Yj)
2

2σ2︸ ︷︷ ︸
=a2

−
[
Aij/σ

2
]> [

X>i Yj

]
︸ ︷︷ ︸

=2ab

]
.

However, we can complete the square to further simplify this expression. Adding the
term A2

ij/(2σ
2) into the summation yields a new objective function,

Ln(X,Y ) ∝ 1

np

∑
(i,j)

[((X>i Yj)√
2σ

− Aij√
2σ

)2]
∝ 1

np

∑
(i,j)

[(
(X>i Yj)−Aij

)2]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) ∝ 1

np

p∑
j=1

[
2
(

(X>i Yj)−Aij
)
· Yj
]
.

• Curved Gaussian: We do the full derivation. For a curved Gaussian with parameter
τ (i.e., N(µij , µ

2
ij/τ

2)),

p(Aij | µij) =
τ√

2πµ2
ij

· exp
(
− (Aij − µij)2

2µ2
ij/τ

2

)
=

τ√
2πµ2

ij

· exp
(
−
A2
ij − 2Aijµij + µ2

ij

2µ2
ij/τ

2

)

=
τ√

2πµ2
ij

· exp
(−τ2A2

ij

2µ2
ij

+
τ2Aij
µij

− τ2

2

)

=
[τ exp(−τ2/2)√

2π

]
· exp

(−τ2A2
ij

2
· 1

µ2
ij

+ τ2Aij ·
1

µij
− log(µij)

)
Hence, replacing θij = −1/µij , we obtain

p(Aij | θij) =
[τ exp(−τ2/2)√

2π

]
· exp

([ −τ2Aij
−τ2A2

ij/2

]> [
θij
θ2
ij

]
−
(
− log(−θij)

))
,
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where the domain of θij is R = (−∞, 0). Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
− log

(
−X>i Yj

)
−

[
−τ2Aij
−τ2A2

ij/2

]> [
X>i Yj

(X>i Yj)
2

] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) =
1

np

p∑
j=1

[(
− 1

X>i Yj
+ τ2Aij + τ2A2

ij(X
>
i Yj)

)
· Yj
]
.

• Exponential: The density is

p(Aij | θij) =
[
1
]
· exp

( [
Aij

]> [
θij

]
−
(
− log(−θij)

))
,

where θij = −λij (meaning E[Aij ] = −1/θij , and the domain of θij is R = (−∞, 0).
Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
− log(−X>i Yj)−

[
Aij

]> [
X>i Yj

] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) =
1

np

p∑
j=1

[( −1

X>i Yj
−Aij

)
· Yj
]

• Poisson: The density is

p(Aij | θij) =
[ 1

Aij !

]
· exp

( [
Aij

]> [
θij

]
− exp

(
θij
))
,

where θij = log(λij) (meaning E[Aij ] = exp(θij)), and the domain of θij is R = (0,∞).
Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[
exp(X>i Yj)−

[
Aij

]> [
X>i Yj

] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) =
1

np

p∑
j=1

[(
exp(X>i Yj)−Aij

)
· Yj
]
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• Negative Binomial: The negative binomial represents the number of successes before
a specified number of failures r occurs. (This is different from the binomial distribution
which represents the number of success among a fixed number of trials.) For a fixed
number of failures r,

p(Aij | θij) =
[(Aij + r − 1

Aij

)]
· exp

( [
Aij

]> [
θij

]
−
(
− r log(1− exp(θij))

))
,

where θij = log(pij) (meaning E[Aij ] = r exp(θij)/(1 − exp(θij)), and the domain of
θij is R = (−∞, 0). Hence, the objective function becomes

Ln(X,Y ) =
1

np

∑
(i,j)

[(
− r log(1− exp(X>i Yj))

)
−
[
Aij

]> [
X>i Yj

] ]
.

Then the gradient with respect to X is a n× k matrix where the ith row is

∇XiLn(X,Y ) =
1

np

p∑
j=1

[( r exp(X>i Yj)

1− exp(X>i Yj)
−Aij

)
· Yj
]

5.C.4 Additional comparison of eSVD to estimators in the literature

We discuss additional nuances for eSVD that makes it different from other methods in the
literature that were not already discussed in §5.3.

Comparison to alternating gradient descent. The majority of theoretical work that investi-
gate nonconvex estimators to perform matrix factorization use alternating projected gradient
descent to refine the initial estimate (see Wang et al. (2016), Yu et al. (2020), and Chi et al.
(2019)) where each iteration updates the current estimates with a gradient step instead. This
is in contrast with our choice of using alternating constrained minimization in eSVD. While
we have found alternating projected gradient descent is more amendable for theoretical
analysis, in practice, we have found alternating projected gradient descent more numerically
unstable due to its sensitivity to the chosen step-sizes. Hence, we found alternating projected
gradient descent harder to tune compared to the alternating minimization approach.

Comparison to low-rank covariance matrix estimation for exponential families. As men-
tioned in §5.3, Liu et al. (2018b) and Zhang et al. (2018) estimate a low-rank covariance
matrix where each entry in the observed matrix A is drawn from an exponential-family
distribution. While this task is non-trivial due to the possible dependency between the
mean and covariance (which prevents naively centering the variables around 0), this is
fundamentally a different task than the one posited in this paper in two ways. First, eSVD
estimates a low-rank matrix of natural parameters. Second, estimating a low-rank covariance
matrix does not immediately suggest a non-linear embedding procedure, unlike eSVD’s goal
of generalizing the SVD to exponential-family distributions.
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Comparison to non-negative matrix factorization. There is an extremely rich literature
on non-negative matrix factorization (NMF, see Donoho and Stodden (2004), Arora et al.
(2016), Gillis (2017) and references within), and upon first glance, it might seem like eSVD
similar to NMF. However, there are two importance distinctions. First, the key difference
between eSVD and NMF can be seen in Assumption 1. Specifically, eSVD only assumes
that the inner products between X and Y lie in R, such as the positive half-line. This
is in contrast to NMF, where either each entry in X or Y (or both) lie on the positive
half-line. Intuitively, this means eSVD’s task is easier than NMF’s task (loosely speaking),
since ensuring that each entry in X and Y lying on the positive half-line implies that the
inner product between each pair of rows in X and Y lies on the positive half-line. Second,
eSVD’s identifiability assumptions are much easier than NMF’s identifiability assumptions.
eSVD’s identifiability assumptions are outlined in Proposition 37, which shows that there
exists a transformation such that the population second moment matrix for X and Y are
equal. NMF’s identifiability conditions are much more nuances, and leads to concepts such
as simplicial cones, separability and anchor words as discussed in Donoho and Stodden
(2004) and Arora et al. (2012).

5.D Application of propositions to the curved Gaussian model

In this section, we detail the assumptions needed to imply Assumptions 2-3 and the
modifications to eSVD and Assumption 4 in order to apply Proposition 35 to the curved
Gaussian model (5.5). This entails introducing assumptions to help determine the values
of µ, L, and S used in Assumptions 2 and 3. We introduce some notation beforehand.
First, observe that we can rescale the normalization constants in (5.7) and (5.9). Hence, we
redefine the sample loss functions to be

L(X)
n (X,Y ) =

1

p

∑
(i,j)

[
− log(−X>i Yj)−

[
τ2Aij
−τ2A2

ij/2

]> [
−X>i Yj
(X>i Yj)

2

] ]
, (5.21)

L(Y )
n (X,Y ) =

1

n

∑
(i,j)

[
− log(−X>i Yj)−

[
τ2Aij
−τ2A2

ij/2

]> [
−X>i Yj
(X>i Yj)

2

] ]
, (5.22)

Their corresponding population loss functions that we analyze in this section are

L(X)(X,Y ) =
1

p

∑
(i,j)

[
− log(−X>i Yj)−

[
τ2E[Aij ]
−τ2E[A2

ij ]/2

]> [
−X>i Yj
(X>i Yj)

2

] ]
, (5.23)

L(Y )(X,Y ) =
1

n

∑
(i,j)

[
− log(−X>i Yj)−

[
τ2E[Aij ]
−τ2E[A2

ij ]/2

]> [
−X>i Yj
(X>i Yj)

2

] ]
, (5.24)
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where Aij follows the distribution (5.5). The change from 1/(np) in (5.7) and (5.9) to 1/p
and 1/n is for simplicity and facilitates to control the spectrum of the Hessian appropriately.
We define the minimization operators we will use in this section as

MX
n (Y ) = argmin

X∈Rn×k

Ln(X,Y ) : X>i Y j ∈ R, ∀(i, j)

MY
n (X) = argmin

Y ∈Rp×k

Ln(X,Y ) : (Xi)
>Yj ∈ R, ∀(i, j)

MX(Y ) = argmin
X∈Rn×k

L(X,Y ) : X>i Y j ∈ R, ∀(i, j)

MY (X) = argmin
Y ∈Rp×k

L(X,Y ) : (Xi)
>Yj ∈ R, ∀(i, j).

While we state results for both L(X)(·, ·) and L(Y )(·, ·) in this section, we prove only statements
for L(X)(·, ·) since the proofs for both loss functions are identical.

Assumptions. The following three assumptions are needed to analyze the curved Gaussian
setting.

Assumption 8 (Refinement of domain). Assume for the curved Gaussian distribution (5.5),
let R = [1/r, r] defined in Assumption 1, where r > 1.

Assumption 9 (Inner product error). Conditioned on X and Y , assume there exists

{X∗, Y ∗} ∈ {X ∗,Y∗} such that the initialization Y
(0)

satisfies for all (i, j) ∈ {1, . . . , n} ×
{1, . . . , p}

|(X∗i )>(Y
(0)
j − Y

∗
j )| ≤ c ·

1

log(min{n, p})
|(X∗i )>Y

∗
j |. (5.25)

In addition, conditioned on X and Y , assume for each iterations t = 1, . . . , T throughout
the algorithm, there exists {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗, Y ∗} where Θ =
X∗(Y

∗
)> = X

∗
(Y ∗)> such that for all (i, j) ∈ {1, . . . , n} × {1, . . . , p}

|(X∗i )>(Y
(t)
j − Y

∗
j )| ≤ c ·

1

log(min{n, p})
|(X∗i )>Y

∗
j |, (5.26)

|(X(t)
i −X

∗
i )
>Y ∗j | ≤ c ·

1

log(min{n, p})
|(X∗i )>Y ∗j |. (5.27)

Assumption 8 effectively ensures R is bounded away from 0, a condition to ensure the
Hessian is well-controlled. Assumption 9 is an assumption that is similar to the incoherence
assumption in Ma et al. (2018) and Chi et al. (2019). There, the authors prove that spectral
initialization ensures the requirement analogous to (5.25) is met with high probability, and
each iteration retains properties analogous to (5.26) and (5.27).
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Assumption 10 (Fixed statistical error). Conditioned on X and Y , for any matrices
X ′ ∈ Rn×k or Y ′ ∈ Rp×k, with probability at least 1 − c/min{n, p} for some universal
constant c that

max
{
‖MX(Y ′)−MX

n (Y ′)‖F , ‖MY (X ′)−MY
n (X ′)‖F

}
≤ εfixed(n, p),

where εfixed(n, p) is some function of n and p (and possibly other quantities). Assume that

εfixed(n, p) ≤ d̃k
4 max{n, p}1/2

.

As mentioned in §5.5.1, Assumption 10 is different from Assumption 4 but enables a
simpler analysis. The reason we impose this new assumption is that minimizing objective
functions such as (5.21) does not have a closed-form solution, so uniformly bounding the
error is difficult for the curved Gaussian model. By imposing Assumption 10 instead of
Assumption 4, eSVD now requires resampling, i.e., a fresh batch of samples every iteration,
for all T iterations. While this yields a different algorithm that is not practical to use, we
believe the theoretical properties we prove also roughly hold for the curved Gaussian model
without resampling.

Controlling µ, L, S and εfixed(n, p). The following lemma implies that L(X)(·, ·) is (2+τ2)/r2-
strongly convex and its gradient is (2 + τ2)r2-Lipschitz.

Lemma 38 (Spectrum of Hessian). For the loss function (5.23) and (5.24) where Aij follows
the distribution (5.5), under Assumption 8, the eigenvalues of the Hessian ∇2

XL(X)(X,Y )
and ∇2

Y L(Y )(X,Y ) are bounded between (2 + τ2)/r2 and (2 + τ2)r2.

The following lemma analyzes the gradient smoothness of L(X)(·, ·) with respect to the
alternating variable.

Lemma 39 (Gradient smoothness with respect to alternating variable). Conditioned on
X and Y , for the loss function (5.23) and (5.24) where Aij follows the distribution (5.5),
under Assumptions 8 and 9, for min{n, p} large enough, for each iterations t = 0, 1, . . . , T ,
any pairs {X∗, Y ∗} ∈ {X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗,Y∗} satisfy

‖∇XL(X)(X∗, Y
∗
)−∇XL(X)(X∗, Y

(t)
)‖F ≤ cτ2r2 ·

( (np)1/2

p · log(min{n, p})
+
d̃1

p

)
‖Y (t)−Y ∗‖F ,

and

‖∇Y L(Y )(X
∗
, Y ∗)−∇Y L(Y )(X

(t)
, Y ∗)‖F ≤ cτ2r2 ·

( (np)1/2

p · log(min{n, p})
+
d̃1

p

)
‖X(t)−X∗‖F ,

for some universal constant c.
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We now analyze the difference between the minimizers in (5.23) and (5.21) (or between
(5.24) and (5.22)).

Lemma 40. Conditioned on X and Y , let Aij follow the curved Gaussian distribution (5.5).
For a fixed Y , under the assumptions in Lemma 38, with probability at least 1− 6/p,

1

n
‖MX(Y )−MX

n (Y )‖F ≤ c
( log1/4(np)

n1/2p1/4

)
,

where c is a constant that depends only on k, τ and r. Similarly, for a fixed X, under
Assumption 8, with probability at least 1− 6/n,

1

p
‖MY (X)−MY

n (X)‖F ≤ c
( log1/4(np)

n1/4p1/2

)
,

The above corollary means that

εfixed(n, p) = c
(

max
{n1/2

p1/4
,
p1/2

n1/4

}
· log1/4(np)

)
,

where c is a constant that depends only on k, µ, L, τ and r.

Corollary 41 (Application of Proposition 35 to curved Gaussian model). Assume the
curved Gaussian model (5.5) where k, τ , α, β and r are constant, and Assumptions 5 and
9-10 hold conditioned on X and Y , and

4(np)1/2

d̃k

S

µ
< 1.

In addition, assume that there exists a universal constant c′ such that

d̃k > (4 + c′) · (np)1/2,

for large enough n and p. Conditioned on X and Y , for the number of iterations T large
enough and n = O(p) and p = O(n), eSVD described in (5.7)-(5.10) where each iteration
resamples the observation matrix A achieves the rate

‖Θ− Θ̂‖F = OP

(
n3/4 log1/4(n)

)
.

The following corollary is proved immediately after combining Corollary 41 with Propo-
sition 36.

Corollary 42 (Application of Proposition 36 to curved Gaussian model). Assume all the
setting and assumptions in Corollary 41. Then, eSVD after reparamterizations (5.11) and
(5.12) achieves the rate

1

n
‖X − X̂‖2F = OP

( log1/2(n)

n1/2

)
.
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5.E Additional simulation details/results

Throughout this section, we use the following notational scheme to parameterize different
distributions. The Negative Binomial and Bernoulli distributions are parameterized by
Negative Binomial(r, p) and Bernoulli(p) respectively where r is the number of failures and
p is the probability of success. The Gamma distribution is parameterized by Gamma(a, b)
where a and b are the shape and rate parameters respectively. The Poisson distribution is
parameterized by Poisson(λ) where the mean is λ.

5.E.1 Simulation setup

Generation of natural parameters. To sample from G (prior to identifiability conditions),
we uniformly sample an equal number of points along 4 connected line segments, where the
line segments collectively have endpoints at {(4, 10), (25, 100), (60, 80), (40, 10), (100, 25)} in
the Cartesian coordinate system. We then add Gaussian noise with σ = 0.05 to each of the
points. This generates X1, . . . , Xn (prior to identifiability conditions).

To sample from H (prior to identifiability conditions), we similarly uniformly sample
an equal number of points along 2 disconnected line segments. One line segment goes from
(1, 4.5) to (1.25, 5) while the other goes from (4.5, 1) to (5, 1.25) in the Cartesian coordinate
system. We then also add Gaussian noise with σ = 5 to each of the points. This generates
Y1, . . . , Yp (prior to identifiability conditions).

We then compute Θ where θij = X>i Yj . Our chosen noise level ensures (with high
probability) that all the entries will be positive. Letting the SVD of this matrix be
Θ = UDV >, we then output the target embedding we wish to estimate, X = (n/p)1/4 ·U ·

√
D

and Y = (p/n)1/4 · V ·
√
D, where the square root function is interpreted to be entry-wise.

Other methods. While SVD, UMAP and t-SNE are more common methods in statistical
and genomic analyses, ZINB-WaVE and pCMF are methods more specific to single-cell
analyses that we briefly overview here.

• ZINB-WaVE: ZINB-WaVE relies on the Negative Binomial distribution. Similar
to our model, Xi represents the fixed lower-dimensional latent vector for each cell,
and Yj and Wj represent two sets of fixed lower-dimensional latent vectors for each
gene. Let πj denote the a parameter for gene j. The generative model is, for any
(i, j) ∈ {1, . . . , n} × {1, . . . , p},

Zij ∼ Negative Binomial
(
πj ,

exp(X>i Yj)

exp(X>i Yj) + πj

)
,

Dij ∼ Bernoulli
(
1/(1 + exp(−X>i Wj))

)
Aij = Zij ·Dij , (5.28)
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where all the latent variables are independent of one another and Aij ’s are all con-
ditionally independent4. ZINB-WaVE estimates the parameters X, Y and W via
an alternating minimization scheme based on ridge-regression. We note that the
ZINB-WaVE model is able to handle additional covariate information about each cell
or gene.

• pCMF: pCMF relies on the Poisson distribution. Similar to our model, Xi repre-
sents the lower-dimensional latent vector for each cell, and Yj represents the lower-
dimensional latent vector for each gene, but explicit distributions for G and H are used
to facilitate a Bayesian approach. Let πj denote the unknown gene-specific dropout
rate. The generative model is,

Xi` ∼ Gamma(α`,1, α`,2), for (i, `) ∈ {1, . . . , n} × {1, . . . , k}
Yj` ∼ Gamma(β`,1, β`,2), for (i, `) ∈ {1, . . . , n} × {1, . . . , k}
Zij ∼ Poisson(X>i Yj), for (i, j) ∈ {1, . . . , n} × {1, . . . , p}
Dij ∼ Bernoulli(πj), for (i, j) ∈ {1, . . . , n} × {1, . . . , p}
Aij = Zij ·Dij ,

where all the latent variables are independent of one another and Aij ’s are all condi-
tionally independent. pCMF estimates the parameters via a variational EM algorithm.

We list the R packages used for comparisons with other methods. We use the zinbwave

package for ZINB-WaVE, and set the K parameter to 2, the maxiter.optimize parameter
to 100 and the normalizedValues parameter to False. We use the pCMF package for
pCMF and set the K parameter to 2 and the sparsity parameter to False. For UMAP
and t-SNE, we tune the methods’ respective parameters in an oracle-fashion in order
to maximize the relative embedding correlation described in §5.6. That is, this tuning
requires knowing the true embedding, which is unrealistic in practice but demonstrates
the performance of these methods under the most favorable conditions. We use the Rtsne

package for t-SNE, and set the k parameter to 2 and tune the perplexity parameter in
an oracle fashion among 10 values between 2 and 50. We use the umap package for UMAP,
and set the n components parameter to 2 as well as init to random. Additionally, we
tune the n neighbors and min dist parameters in an oracle fashion among the values
{2, 3, 5, 15, 30, 50} and {10−5, 10−3, 0.1, 0.3, 0.5, 0.9} respectively (for a total of 36 different
parameter settings).

4Their paper actually parameterizes the Negative Binomial distribution by its mean and inverse dispersion
parameter, but is equivalent to the one we describe.
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Figure 5.10: ‖X − X̂‖2F /n verses n, where the solid points represent thxe median performance over
200 trials and the error bars represent the 25th to 75th quantile.

5.E.2 Verification of convergence to G

Based on the first simulation suite described in §5.6, we plot the empirical performance of
eSVD when loss function is set to the likelihood of the curved Gaussian distribution with
τ = 2, which is correctly-specified model. We plot ‖X − X̂‖2F /n verses n in Figure 5.10.

5.E.3 Simulation under misspecified model

We present the additional simulations alluded to as the third simulation suite in §5.6. In
this simulation suite, we build on top of the negative binomial model shown in (5.19), but
include additional complexities that make the simulation more realistic according to the
generative model for ZINB-WaVE shown in (5.28). Specifically, compared to the negative
binomial model shown in (5.19), we vary the dispersion parameter so 25% of the genes have
a dispersion parameter of 80, another 25% have a parameter of 120, and the remaining 50%
have a parameter of 600. Additionally, a dropout term is now included based on a logistic
model. Both of these changes ensure that the negative binomial model that eSVD fits is
sufficiently misspecified. As our simulations reassuringly shows though, eSVD still estimates
the embedding relatively well when compared to other methods aside from ZINB-WaVE
itself.

When we fit eSVD via a negative binomial model, we use the matrix-completion di-
agnostic mentioned in Subsection 5.4.2 to search for a global dispersion parameter of
π ∈ {50, 100, 500, 1000} and set k = 3. Notice that we are using one dispersion parameter
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5.E. Additional simulation details/results

Figure 5.11: Results for the misspecified model simulation suite, where the plots are comparable to
those in Figure 5.5.

to model the simulated dataset, although our true generative model uses three different
dispersion parameters. Also, we increase the latent space to k = 3 since we found empirically,
the addition of the dropout factor can be reasonably captured by an extra latent dimension.

We demonstrate our results in Figure 5.11. We see that ZINB-WaVE performs the
best according to the relative embedding correlation metric, but this is unsurprising as
our generative model is correctly specified for ZINB-WaVE. However, even though it is
misspecified for eSVD using the negative binomial distribution, eSVD’s performance is still
quite good. The remaining methods all do not perform well in comparison. Hence, we believe
that eSVD using the negative binomial distribution, with appropriate tuning based on the
matrix-completion diagnostic, is comparable in performance to ZINB-WaVE in practice. As
we mentioned in the main text however, the benefits of using eSVD is that eSVD has a solid
theoretical foundation, can be easily extended to other one-parameter exponential-family
distributions, and can handle missing values to assess model fit. ZINB-WaVE, on the other
hand, does not have these three key advantages.
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5.F Details on Slingshot and uncertainty tube

5.F.1 Modifications to Slingshot

Our implementation of Slingshot differs from its original implementation in Street et al.
(2018) in a few aspects. The first two modifications is related to how the lineages (i.e., what
the different branches are and the ordering of the cell sub-types) are estimated, and the last
two modifications is related to how the trajectories are estimated given the lineages (i.e.,
what is the numeric curve that interpolates the points in the lower-dimensional space).

• Respecting natural order: Our implementation respects the order among the major
cell types (i.e., Pdgfra+ precusor, oligodendrocyte precursor cells, differentiation-
committed oligodendrocyte precursors, newly formed oligodendrocytes, myelin-forming
oligodendrocytes, and mature oligodendrocytes), but allows the lineage to link any of
the cell sub-types to one another within the same cell type.

• Construction of lineage: Our implementation determines the lineage via a shortest
path tree from the starting cluster as opposed to a minimum spanning tree (used by
the original Slingshot), where in either case the distance is determined by the Gaussian
distance, which is originally used by Slingshot.

• Enable upsampling: The original Slingshot did not weight clusters, so the lineage
curves naturally gravitated towards the larger clusters. To compensate for this
phenomenon, we upsampled the cells in each cluster via resampling with replacement
unclear each cluster has the same number of cells. This effectively adds larger weights
to these smaller clusters so each cluster is treated equally regardless of its original size.

• Smoothing choice: Our implementation uses a kernel smoother to smooth the data
jointly with respect pseudotimes prior to fitting the principal curves. Previously, the
original Slingshot fits a smoothing spline on each variable separately with respect to
pseudotimes, but this resulted in undesirable behavior in certain cases.

5.F.2 Construction of uncertainty tube

We construct the uncertainty tubes via a bootstrap-based approach to determine if the
different cell developmental trajectories are substantially different. This is done via the
following procedure.

1. Bootstrapping: For a specific trial, sample with replacement the low-dimensional
embedding X̂1, . . . , X̂n among each cell sub-type. This generates a new dataset with
the same proportion of cell sub-types. Run Slingshot on this new dataset to obtain a
new set of trajectories.
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2. Computing the quantile of `2 distance between lineage curves: Let T̂ be one
of possibly many estimated trajectories based on the original estimated embedding
X̂1, . . . , X̂n. For each trajectory estimate Tb from the newly generated dataset that
matches T̂ based on the order of cell sub-types, compute the pointwise `2 distance be-
tween the two respective curves. Specifically, letting {Tb,1, . . . , Tb,N} and {T̂1, . . . , T̂M}
denote the N and M discrete k-dimensional points in order that represent the trajec-
tory Tb and T̂ respectively, this pointwise `2 distance is computed as the 95% quantile
of the following set {

min
j∈{1,...,M}

‖Tb,i − T̂j‖2, ∀i ∈ {1, . . . , N}
}
.

After computing this distance for each of the bootstrapped trajectories, let σ(T̂ ) be
the the 95% quantile `2 distance among all the bootstrapped trajectories, denoting the
“margin of error” for a particular original estimated trajectory T̂ . Let σ be the maximum
value of such values among all the original estimated trajectories, representing the
width of the uncertainty tubes.

3. Computing the lineage tube: For each lineage in the original dataset, construct a
“tube” of radius σ around the lineage curve.

4. Pruning: If more than 90% of a particular lineage is “covered” in another lineage
curve’s tube, then we say that this lineage is “within the margin of error” and
concatenate the two lineages together.

5.G Additional plots of results

In Figure 5.12 and Figure 5.13, we show the two-dimensional plots of the estimated embed-
dings to provide more clarity to three-dimensional plots shown in Figure 5.6 and Figure 5.9
in the main text. In Figure 5.14 and Figure 5.15, we show the same three-dimensional plots
as in Figure 5.6 and Figure 5.9 in the main text, but from different viewing perspectives.

5.H Proofs

In Appendix 5.H.1, we prove Proposition 37. In Appendix 5.H.2, we prove Proposition 35
and its related lemmas. In Appendix 5.H.3, we prove Proposition 36 and its related lemmas.
In Appendix 5.H.4, we prove the results shown in Appendix 5.D.

Throughout these proofs, for generic matrices A and B, let ‖A‖op denote the spectral
norm, i.e., the largest singular value. If A is a square matrix, let tr(A) denote the trace of A,
i.e., the sum of its diagonal elements. We write A⊗B to denote the Kronecker product of
A and B, and if A and B are of the same dimensions, we write A � B if B −A is positive
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Figure 5.12: Two-dimensional plots of the SVD embedding, which corresponds to the three-
dimensional plots shown in Figure 5.6. Each cell is color coded using the same color scheme from the
aforementioned figure, the large dots represent the cluster centers for each of the thirteen cell sub-
types, and the estimated trajectories are overlaid on top, which correspond to the same trajectories
in the aforementioned figure. The three plots correspond to the three pairs of latent dimensions, one
of the plots being the same as Figure 5.1 (after rotation).

semidefinite. For two random sequences An and Bn, let An = ΘP (Bn) denote that Bn/An
is bounded in probability for large enough n. Also, let Ik denote the identity matrix of size
k×k and 1n×p represent the n×p matrix of all ones. Throughout these proofs, we implicitly
use different equivalent definitions of strong convexity and functions with Lipschitz gradients
as stated in Zhou (2018).

5.H.1 Proof for Proposition 37

Proof of Proposition 37. Define the eigendecompositions of the second moment matrices for
all i ∈ {1, . . . , n} and j ∈ {1, . . . , p},

C∗X = E[X ′iX
′>
i ] = ΦΛΦ>, and C∗Y = E[Y ′jY

′>
j ] = ΨΓΨ>, (5.29)

where Φ and Ψ are both k × k unitary matrices. Our construction of the invertible matrix
R ∈ Rk×k will be done in two steps. In the first step, we first construct an invertible matrix
R̃ ∈ Rk×k such that

R̃C∗XR̃
> = R̃−>C∗Y R̃

−1. (5.30)

This would yield a transformation matrix to ensure E[XiX
>
i ] = E[YiY

>
i ]. In the second step,

we adjust R̃ into R in order to ensure that both E[XiX
>
i ] and E[YiY

>
i ] are diagonal.

Step 1: Based on the definition (5.29) and the desired goal shown in (5.30), an equivalent
goal is to show that

R̃>R̃C∗XR̃
>R̃ = ΨΓΨ>.
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Figure 5.13: Three-dimensional plots of the estimated latent positions via SVD, without and with
the uncertainy tube overlaid ontop. This plot is of the same estimated embedding as shown in
Figure 5.6 but shown from a different perspective (each perspective represented by a different row).

Let Q ∈ Rk×k denote any unitary matrix. Since the matrices on both sides of the above
display are symmetric, we have

QΛ1/2Φ>R̃>R̃ = Γ1/2Ψ>.
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Figure 5.14: Two-dimensional plots of the eSVD embedding using the curved Gaussian distribution
with τ = 2, which corresponds to the three-dimensional plots shown in Figure 5.9. Each cell is color
coded using the same color scheme from the aforementioned figure, the large dots represent the
cluster centers for each of the thirteen cell sub-types, and the estimated trajectories are overlaid
on top, which correspond to the same trajectories in the aforementioned figure. The three plots
correspond to the three pairs of latent dimensions, one of the plots being the same as Figure 5.8B.

Rearranging, we have
R̃>R̃ = ΦΛ−1/2Q>Γ1/2Ψ>︸ ︷︷ ︸

B

.

Hence, we are done once we construct a unitary matrix Q that makes B symmetric. Observe
that if the matrix

Q>Γ1/2Ψ>ΦΛ1/2

were symmetric, then B would be symmetric. (This can be seen by multiplying the above
matrix on the left by E = ΦΛ−1/2 and on the right by E>.) Observe that Γ1/2Ψ>Λ−1/2Φ is
guaranteed to be full rank (by assumption of C∗X and C∗Y being full rank), so it admits a
rank-k SVD of UDV >. Since the product of two unitary matrices is still unitary, we set
Q = UV >. Hence, we finished our construction of R̃.

Step 2: Suppose R̃C∗XR̃
> (or equivalently, R̃−TC∗Y R̃

−1 based on (5.30)) has eigenvectors
W1, . . . ,Wk. Let W be the unitary matrix formed by concatenating these k eigenvectors
column-wise. By diagonalization, we know W>(R̃C∗XR̃

>)W is diagonal. This implies that

our final construction is R = W>R̃.

5.H.2 Proofs for Proposition 35

Similar to Balakrishnan et al. (2017), we first analyze the behavior of an iteration of eSVD
when using the population loss function L(·, ·). Then, by leveraging Assumption 4, we can
analyze the behavior of eSVD when applied on the sample loss function Ln(·, ·).
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Figure 5.15: Three-dimensional plots of the estimated latent positions via eSVD, without and with
the uncertainy tubes overlaid ontop. This plot is of the same estimated embedding as shown in
Figure 5.9 but shown from a different perspective (each perspective represented by a different row).

Lemma 43. Assume the population loss function L(·, ·) satisfies Assumption 2. Conditioned
on X and Y , then for any iteration t = 0, . . . , T − 1, there exists matrices {X∗, Y ∗} ∈
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{X ∗,Y∗} and {X∗, Y ∗} ∈ {X ∗,Y∗} such that

‖X∗ −MX(Y
(t)

)‖F ≤
S

µ
‖Y ∗ − Y (t)‖F ,

‖Y ∗ −MY (X
(t)

)‖F ≤
S

µ
‖X∗ −X(t)‖F .

Proof. Observe that by the first-order optimality conditions, for any Y
∗ ∈ Y∗, we have〈

∇XL(MX(Y
∗
), Y

∗
), X ′ −MX(Y

∗
)
〉
≥ 0, for all X ′ such that (X ′i)

>Y
∗
j ∈ R ∀(i, j)

and similarly,〈
∇XL(MX(Y

(t)
), Y

(t)
), X ′−MX(Y

(t)
)
〉
≥ 0, for all X ′ such that (X ′i)

>Y
(t)
j ∈ R ∀(i, j)

By combining the two inequalities by setting X ′ = MX(Y ) in the first display and X ′ =
MX(Y

∗
) in the second display with some algebra, we get〈

∇XL(MX(Y
(t)

), Y
(t)

)−∇XL(MX(Y
∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≤
〈
∇XL(MX(Y

∗
), Y

∗
)−∇XL(MX(Y

∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉
. (5.31)

By manipulating the properties of strong convexity assumed in Assumption 2, we can
lower bound the left-hand term in (5.31) by〈

∇XL(MX(Y
(t)

), Y
(t)

)−∇XL(MX(Y
∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≥ µ‖MX(Y
∗
)−MX(Y

(t)
)‖2F = µ‖X∗ −X(t+1)‖2F , (5.32)

where we plugged in the definition of X∗ ∈ X ∗ and X(t+1) in the last display.

Similarly, by the Lipschitz smoothness assumed in Assumption 2 with Cauchy-Schwarz
inequality, we can upper bound the right-hand term in (5.31) by〈

∇XL(MX(Y
∗
), Y

∗
)−∇XL(MX(Y

∗
), Y

(t)
), MX(Y

(t)
)−MX(Y

∗
)
〉

≤ S‖X∗ −X(t+1)‖F ‖Y
∗ − Y (t)‖F . (5.33)

Combining (5.32) and (5.33) into the original equation (5.31) yields

µ‖X∗ −X(t+1)‖2F ≤ S‖X∗ −X(t+1)‖F ‖Y
∗ − Y (t)‖F ,

which completes the proof after simple rearrangements.
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Similar to Zhao et al. (2015), we now prove Proposition 35 using the above lemma in
conjunction with Lemma 48 which describes the effect of the LeftSVD operator.

Proof of Proposition 35 . For simplicity, let κ = S/µ. By triangle inequality and Lemma 43,
we have

‖MY
n (Y

(t)
)−X∗‖F ≤ ‖MX

n (Y
(t)

) +MX(Y
(t)

)‖F − ‖MX(Y
(t)

)−X∗‖F

≤ εunif(n, p) + κ‖Y ∗ − Y (t)‖F .

Note that since εunif(n, p) < d̃k/(4 max{n, p}1/2) by Assumption 4, if ‖Y ∗ − Y
(t)‖F ≤

d̃k/(4 max{n, p}1/2κ), then by Lemma 48,

‖X∗ −X(t+1)‖F ≤
4(np)1/2

d̃k

(
εunif(n, p) + κ‖Y ∗ − Y (t)‖F

)
.

Similarly,

‖Y ∗ − Y (t)‖F ≤
4(np)1/2

d̃k

(
εunif(n, p) + κ‖X∗ −X(t)‖F

)
.

Therefore, by infinite geometric summation,

‖X∗ −X(T )‖F ≤
4(np)1/2

d̃k

(
εunif(n, p) + κ‖Y ∗ − Y (T−1)‖F

)
≤ 4(np)1/2

d̃k

(
εunif(n, p) + κ · 4(np)1/2

d̃k

(
εunif(n, p) + κ‖X∗ −X(T−1)‖F

))
≤ . . . ≤ 4(np)1/2

d̃k − 4(np)1/2κ
εunif(n, p) +

(4(np)1/2κ

d̃k

)(2T−1)
‖Y ∗ − Y (0)‖F ,

where the initialization condition Assumption 5 asserts ‖Y ∗ − Y (0)‖F ≤ d̃k/(4(np)1/2κ),

which in turn shows max{‖Y ∗−Y (t)‖F , ‖X
∗−X(t)‖F } ≤ d̃k/(4(np)1/2κ) for all t = 1, . . . , T .

Let Y (T ) = MX
n (X

(T )
). Therefore, for large enough T , we conclude for some universal

constant C,

‖Θ− Θ̂‖F = ‖X∗(T )
(Y ∗(T ))> −X(T )

(Y (T ))>‖F

= ‖X∗(T )
(Y ∗(T ))> −X(T )

(Y ∗(T ))> +X
(T )

(Y ∗(T ))> −X(T )
(Y (T ))>‖F

≤ ‖Y ∗(T )‖2︸ ︷︷ ︸
d̃1/n1/2

‖X∗(T ) −X(T )‖F + ‖X(T )‖2︸ ︷︷ ︸
n1/2

‖Y ∗(T ) − Y (T )‖F

= C ·
(max{n1/2, d̃1/n

1/2} · (np)1/2

d̃k − 4(np)1/2κ
· εunif(n, p)

)
.
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5.H.3 Proof for Proposition 36

We first introduce some notation. Let the SVD of X and Y be denoted as

X =
√
nUΛ1/2Φ>, and Y =

√
pV Γ1/2Ψ>,

Using this definition, the empirical second moment matrices are

CX = X>X/n = Φ>ΛΦ, and CY = Y >Y/p = Ψ>ΓΨ.

Prior to the proof, we offer a high-level description of the proof strategy. Similar to the
proof in Lei (2018), we introduce two levels of approximation. Let us focus on estimating

X
(C)
1 , . . . , X

(C)
n , the latent variables that are oriented based on the population covariance

matrix C∗X . Formally,

X(C) = XΦ∗.

(Recall by Assumption 7, since C∗X is diagonal, the columns of Φ∗ are the standard basis

vectors. To approximate this, we consider X
(S)
1 , . . . , X

(S)
n , the latent variables rotated by

their own right singular vectors,

X(S) = XΦ =
√
nUΛ1/2.

This approximation is driven by CX being close to ĈX . This is in turn estimated by

X
(Θ)
1 , . . . , X

(Θ)
n based on the SVD of Θ,

X(Θ) =
(n
p

)1/4
ŨD̃1/2.

This approximation is driven by C∗X being equal to C∗Y . Finally, this is approximated by a

quantity we can actually compute from data, our estimates X̂1, . . . , X̂n as in (5.11),

X̂ =
(n
p

)1/4
ÛD̂1/2,

where Û and D̂ are obtained by an SVD of our estimate Θ̂. This approximation is driven by
Θ̂ being close to Θ.

Proof of Proposition 36. Step 1: (Decomposition of error) By the triangle inequality, the
rate is dictated by the term,

1

n
max

{
‖X(C) −X(S)‖2F , ‖X(S) −X(Θ)‖2F , ‖X(Θ) − X̂‖2F

}
.

In the following three steps, we bound each term individually, of which the maximum of all
three terms concludes the proof.
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Step 2: (Approximation from X(C) to X(S)) First, we deduce the relations of the
eigenvalue λj and eigenvectors Φj . By applying Lemma 46, we obtain

‖C∗X − CX‖op = OP ((k/n)1/2). (5.34)

By using Weyl’s inequality and the Davis-Kahan theorem, this immediately implies

‖Φ∗j − Φj‖2 = OP (jβ(k/n)1/2), ∀j = 1, . . . , k, (5.35)

|λ∗j − λj | = OP ((k/n)1/2), ∀j = 1, . . . , k. (5.36)

Since k = o(min{n, p}) by assumption, this implies

λj = OP (j−α), ∀j = 1, . . . , k. (5.37)

Thus, using the trace function,

1

n
‖X(S) −X(C)‖2F =

1

n
‖X(Φ∗ − Φ)‖2F

= tr
{

(Φ∗ − Φ)>CX(Φ∗ − Φ)
}

= tr
{

(Φ∗ − Φ)>(CX − C∗X)(Φ∗ − Φ)
}

+

tr
{

(Φ∗ − Φ)>C∗X(Φ∗ − Φ)
}
.

For the first term,

∣∣∣ tr{(Φ∗ − Φ)>(CX − C∗X)(Φ∗ − Φ)
}∣∣∣

≤
k∑
j=1

∣∣∣(Φ∗j − Φj)
>(CX − C∗X)(Φ∗j − Φj)

∣∣∣
≤

k∑
j=1

‖CX − C∗X‖op‖Φ∗j − Φj‖22 = OP (k2β+5/2/n3/2).
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For the second term, recalling that α ≤ β and Parseval’s identity,

tr
{

(Φ∗ − Φ)>CX(Φ∗ − Φ)
}

=
k∑
i=1

(Φ∗i − Φi)
>
[ k∑
j=1

λ∗jΦ
∗
jΦ
∗>
j

]
(Φ∗i − Φi)

=
k∑
j=1

λ∗j

{ k∑
i=1

[
(Φ∗i − Φi)

>Φ∗j

]2}

=
k∑
j=1

λ∗j

{[
(Φ∗j − Φj)

>Φ∗j

]2
+

∑
i 6=j,i≤k

[
(Φ∗i − Φi)

>Φ∗j

]2}

=
k∑
j=1

λ∗j

{[
(Φ∗j − Φj)

>Φ∗j

]2
+

∑
p 6=j,i≤k

[
(Φ∗j − Φj)

>Φi

]2}

≤ 2
k∑
j=1

λ∗j‖Φ∗j − Φj‖22 = OP (k2β−α+2/n).

Step 3: (Approximation fromX(S) toX(Θ)) First, observe that Θ = XY > =
√
npUΛ1/2Φ>ΨΓ1/2V >,

and we would like show it is close to the matrix
√
npUΛ1/2Γ1/2V >, which has an an SVD of

U(
√
npΛ1/2Γ1/2)V >. Specifically,

‖√npUΛ1/2Γ1/2V > −√npUΛ1/2Φ>ΨΓ1/2V >‖op ≤ (5.38)
√
np‖Λ1/2‖op‖Γ1/2‖op‖Ik − Φ>Ψ‖op,

where we can bound the last term by using the submultiplicative property of the spectral
norm and C∗X = C∗Y ,

‖Ik − Φ>Ψ‖op = ‖Φ>(Φ−Ψ)‖op ≤ ‖Φ− Φ∗‖op + ‖Ψ∗ −Ψ‖op = OP

( kβ+3/2

(min{n, p})1/2

)
.

where the last inequality is due to Davis-Kahan. Hence, plugging the above display into
(5.38),

‖√npUΛ1/2Γ1/2V > −√npUΛ1/2Φ>ΨΓ1/2V >‖op = OP

((np)1/2 · kβ+3/2

(min{n, p})1/2

)
. (5.39)

First, we derive the difference in eigenvalues based on (5.39). We apply Weyl’s inequality to
the above display to conclude

|(npλjγj)1/2 − d̃j | = OP

((np)1/2 · kβ+3/2

(min{n, p})1/2

)
, ∀j = 1, . . . , k. (5.40)
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Note from (5.36) that we also have for all j = 1, . . . , k,

|λj − γj | ≤ |λj − λ∗j |+ |γ∗j − γj | = OP (k1/2/min{n, p}1/2). (5.41)

Hence, combining (5.40) and (5.41), noting that max{|λj − λ1/2
j γ

1/2
j |, |γj − λ

1/2
j γ

1/2
j |} ≤

|λj − γj |, we derive

|nλj − (n/p)1/2d̃j | = OP

( n · kβ+3/2

(min{n, p})1/2

)
, ∀j = 1, . . . , k. (5.42)

Combining the above display with Assumption 7 and (5.37) and given k = o(min{n, p}),
this implies

d̃j = OP ((np)1/2j−α), ∀j = 1, . . . , k. (5.43)

Second, we derive the difference in eigenvectors based on (5.39). Observe that based on

(5.36) and k = o(min{n, p}), we can derive that |(λ∗j )1/2(γ∗j )1/2 − λ1/2
j γ

1/2
j | is dominated by

ΩP (j−β). Hence, we can derive the spacing of the singular values of
√
npUΛ1/2Γ1/2V >,

(np)1/2
(
|λ1/2γ1/2 − λ1/2

j+1γ
1/2
j+1|

)
= ΩP ((np)1/2j−β), ∀j = 1, . . . , k − 1.

Hence, using the Davis-Kahan theorem by combining (5.39) with the above display, we
conclude

‖Uj − Ũj‖2 = OP

( jβkβ+3/2

(min{n, p})1/2

)
, ∀k = 1, . . . , k. (5.44)

Using (5.37), (5.42), and (5.44), along with Lemma 49,

1

n
‖X(S) −X(Θ)‖2F =

1

n

k∑
j=1

‖(nλj)1/2Uj − (n/p)1/4d̃
1/2
j Ũj‖22,

≤ 2

n

k∑
j=1

‖(nλj)1/2(Uj − Ũj)‖22 + ‖(nλj)1/2 − (n/p)1/4d̃
1/2
j )Ũj‖22,

≤ 2

n

k∑
j=1

nλj‖Uj − Ũj‖22 +O
(( |nλj − (n/p)1/2d̃j |

(nλj)1/2

)2)
= OP (k4β−α+4/min{n, p}).

Step 4: (Approximation from X(Θ) to X̂) By assumption, we have

‖Θ− Θ̂‖F ≤ ε. (5.45)
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This implies ‖Θ− Θ̂‖op ≤ (2k)1/2ε. By Weyl’s inequality, we conclude

|(n/p)1/2d̃j − (n/p)1/2d̂j | = OP ((kn)1/2ε/p1/2), ∀j = 1, . . . , k. (5.46)

In addition, following a similar logic as above, using the Davis-Kahan theorem along
with (5.42) to control the spacing of the eigenvalues, we can derive

‖Ũj − Ûj‖2 = OP (jβk1/2ε/(np)1/2), ∀j = 1, . . . , k. (5.47)

Hence, analogous to the derivation above, using (5.43), (5.46), and (5.47), along with
Lemma 49,

1

n
‖X(Θ) − X̂‖2F =

1

n

k∑
j=1

‖(n/p)1/4d̃
1/2
j Ũj − (n/p)1/4d̂

1/2
j Ûj‖22

≤ 2

n

k∑
j=1

‖(n/p)1/4d̃
1/2
j (Ũj − Ûj)‖22 + ‖(n/p)1/4(d̃

1/2
j − d̂1/2

j )Ûj‖22

≤ 2

n

k∑
j=1

(n/p)1/2d̃j‖Ũj − Ûj‖22 +O
(( |(n/p)1/2d̃j − (n/p)1/2d̂j |

(n/p)1/4d̃
1/2
j

)2)
= OP (k2β−α+2 max(ε2, ε)/(np)).

5.H.4 Proofs for Corollary 41 and Corollary 42

Useful facts. It is useful to have the following forms of the gradients and Heissan written
down.

• The gradient ∇XL(X)(X,Y ) ∈ Rn×k has the ith row equal to, for i = 1, . . . , n,

1

p

p∑
j=1

(
− 1

X>i Y j

− τ2E[Aij ] + τ2E[A2
ij ](X

>
i Y j)

)
Y j .

• Let ∇Y [∇XL(X)(X,Y )] ∈ R(nk)×(pk) denote the gradient of above function with respect
to Y . If we focus on a particular block of k rows corresponding to a specific Xi and a
particular block of k columns corresponding to a specific Y j , we have

1

p

[(
− 1

X>i Y j

+ τ2E[Aij ]− τ2E[A2
ij ](X

>
i Y j)

)
Ik +

( 1

(X>i Y j)2
+ τ2E[A2

ij ]
)
XiY

>
j

]
.
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• The Hessian matrix ∇2
XL(X)(X,Y ) ∈ R(nk)×(nk) is all 0, except for n k × k blocks

along the diagonal. The ith block is equal to, for i = 1, . . . , n,

1

p

p∑
j=1

( 1

(X>i Y j)2
+ τ2E[A2

ij ]
)
Y j(Y j)

>.

We list properties about the curved Gaussian distribution assumed in (5.3) that will be
needed. Recall that Aij ∼ N(µij , µ

2
ij/τ

2), where µij = −1/θij .

• (First and second moment):

E[Aij ] = 1/θij , and E[A2
ij ] =

( 1

τ2
+ 1
) 1

θ2
ij

. (5.48)

• (Squared random variable):

A2
ij

d
=

1

(τθij)2
Zij , where Zij ∼ χ2

(
k = 1, λ = τ2

)
.

Hence, the variance of A2
ij is upper-bounded by

κ =
2(1 + 2τ2) · r4

τ4
.

Proof of Lemma 38. We start with the lower bound. Observe that minimum eigenvalue of
one of the n k × k blocks will be the minimum eigenvalue of the overall Hessian matrix
∇2
XL(X)(X,Y ). Hence, inspecting one particular block for a specific i = 1, . . . , n, observe

that
1

p

p∑
j=1

( 1

(X>i Y j)2
+ τ2E[A2

ij ]
)
Y j(Y j)

> � 2 + τ2

r2
· 1

p

p∑
j=1

Y j(Y j)
>,

where
∑

j Y j(Y j)
> = pIk since the columns of Y are orthogonal. For the upper bound, we

apply the same logic.

Proof of Lemma 39. Recall by the multivariate Taylor expansion (Feng et al., 2013), we
have

∇XL(X)(X∗, Y
∗
)−∇XL(X)(X∗, Y ) =

∫ 1

0
∇Y [∇XL(X∗, Y

∗
+ tu)]du · t,

where t = Y
∗ − Y . This leads to the following inequality,

‖∇XL(X)(X∗, Y )−∇XL(X)(X∗, Y
∗
)‖F ≤ sup

u∈[0,1]

∥∥∥∇Y [∇XL(X∗, Y
∗

+ tu)]︸ ︷︷ ︸
B(u)

∥∥∥
op
‖Y ∗ − Y ‖F .
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Observe we can split the matrix B(u) into two matrices, one sparse matrix and one dense
matrix. That is, B(u) = B1(u) +B2(u), all matrices of dimension (nk)× (pk). The (i, j)th
k × k block of B1(u) has entries equal to

1

p

(
− 1

(X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))
− τ2E[Aij ] + τ2E[A2

ij ]
(
(X∗i )>(Y

∗
j + u(Y j − Y

∗
j )
))
Ik,

while the (i, j)th k × k block of B2(u) has entries equal to

1

p

( 1

((X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))

2
+ τ2E[A2

ij ]
)
X∗i (Y

∗
j + u(Y j − Y

∗
j ))
>. (5.49)

We first analyze B1(u). Plugging in (5.48), we obtain

1

p

(
− 1

(X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))
− τ2

(X∗i )>Y
∗
j

+ (τ2 + 1) ·
(X∗i )>(Y

∗
j + u(Y j − Y

∗
j ))(

(X∗i )>Y
∗
j

)2︸ ︷︷ ︸
C1

)
Ik,

To analyze C1 in the perspective of Assumption 9, we analyze

max
t

∣∣∣− r

(1 + t)
− τ2 · r + (τ2 + 1)(1 + t) · r

∣∣∣ : t ∈
[
− 1

log(min{n, p})
,

1

log(min{n, p})

]
.

By analyzing the Lagrangian of the above display, we see that for min{n, p} large enough,

C1 ≤ c ·
τ2r

log(min{n, p})

for some universal constant c. Hence, we derive that

B1(u) � cτ2r · 1

p · log(min{n, p})
· Ik ⊗ 1n×p.

Therefore,

‖B1(u)‖op ≤ cτ2r · (np)1/2

p · log(min{n, p})
. (5.50)

We next analyze B2(u). Plugging in (5.48), we obtain

1

p

( 1

((X∗i )>(Y
∗
j + u(Y j − Y

∗
j ))

2
+

τ2 + 1(
(X∗i )>Y

∗
j

)2︸ ︷︷ ︸
C2

)
X∗i (Y

∗
j + u(Y j − Y

∗
j ))
>.
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By analyzing C2 similar to how we analyzed C1, we derive that for min{n, p} large enough,

B2(u) � (τ2 + 2)r2 · 1

p
·X∗ ⊗

(
Y
∗

+ u(Y − Y ∗)
)>
.

Therefore,

‖B2(u)‖op ≤ (τ2 + 2)r2 · 2d̃1

p
. (5.51)

We conclude by combining (5.50) and (5.51) by a triangle inequality.

Proof of Lemma 40. Prior to proving Lemma 40, we need the following set of concentration
bounds.

Lemma 44. Conditioned on Θ, let Aij follow the distribution (5.5). Let κ = (2(1 +
2τ2))r4/τ4. Under Assumption 8, for a fixed i = 1, . . . , n, for some universal constant c, for
fixed matrices X and Y , each of the following four inequalities hold separately.

P
(∣∣∣1
p

p∑
j=1

−τ2X>i Y j(Aij − E[Aij ])
∣∣∣ ≥ t) ≤ e exp

[ −ct2
κ2τ4r2

· p
]
, (5.52)

P
(∥∥∥1

p

p∑
j=1

−τ2Y j(Aij − E[Aij ])
∥∥∥

2
≥ t
)
≤ ke exp

[−ct2
κ2τ4

· p
k2

]
, (5.53)

P
(∣∣∣1
p

p∑
j=1

τ2(X>i Y j)
2

2
(A2

ij − E[A2
ij ])
∣∣∣ ≥ t) ≤ 2 exp

[
− cmin

( 4t2

κ2τ4r4
,

2t

κτ2r2

)
· p
]
,

(5.54)

P
(∥∥∥1

p

p∑
j=1

(
τ2(X>i Y j)(A

2
ij − E[A2

ij ])
)
Y j

∥∥∥
2
≥ t
)
≤ 2k exp

[
− cmin

( t2

κ2τ4r2
,

t

κτ2r

)
· p
k2

]
.

(5.55)

Proof. (5.52) and (5.54) are direct applications of Hoeffding’s and Bernstein’s inequality
(Vershynin (2010), Proposition 5.10 and 5.16) since X>i Y j ≤ r. To show (5.53), observe
that for a particular coordinate ` = 1, . . . , k, we can apply Hoeffding’s inequality to show

P
(∣∣∣1
p

p∑
j=1

−τ2Y j`(Aij − E[Aij ])
∣∣∣ ≥ t) ≤ e exp

(−ct2
κ2τ4

· p
)
,
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since the `2-norm of any column of Y is
√
p. Applying a maximal inequality and then

summing over all k dimensions, we have

P
(∥∥∥1

p

p∑
j=1

−τ2Y j(Aij − E[Aij ])
∥∥∥

1
≥ t
)
≤ ke exp

(−ct2
κ2τ4

· p
k2

)
,

which upper-bounds the RHS of (5.53). The same technique using Bernstein’s inequality
can be used to show (5.55).

With these concentration statements, we are ready to proceed with the analysis of
εfixed(n, p) row-wise.

Lemma 45. Assume the conditions in Lemma 38. Let

Λ̂ = argmin
Λ∈Rk

1

p

p∑
j=1

[
− log(Λ>Y j)−

[
τ2Aij
−τ2A2

ij/2

]> [
Λ>Y j

(Λ>Y j)
2

] ]
, (5.56)

and

Λ∗ = argmin
Λ∈Rk

1

p

p∑
j=1

[
− log(Λ>Y j)−

[
τ2E[Aij ]
−τ2E[A2

ij/2]

]> [
Λ>Y j

(Λ>Y j)
2

] ]
. (5.57)

Then, conditioned on X and Y , with probability at least 1− 6/(np),

‖Λ∗ − Λ̂‖2 ≤ c
( log(np)

p

)1/4
,

where c is a constant that depends only on k, µ, L, τ and r.

Proof. Step 1: (Setup) Our proof is inspired by Lemma 4 of Candès and Sur (2018). The
proof is fairly straightforward and relies mainly on the convexity properties of L and the
concentration statements established in Lemma 44.

Throughout this proof, we let c1, c2, . . . denote constants depend on quantities that we
will explicitly state, but their explicit form can change from line to line. Let Ln(·) and L(·)
denote functions being minimized in (5.56) and (5.57) respectively throughout this proof
only. Since L is µ-strongly convex, we have

L(Λ) ≥ L(Λ∗) +
1

2µ
‖Λ∗ − Λ‖22.
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Define ‖Λ∗ − Λ‖2 = c1v and h = v2/(6c2
1µ) for some constant c1 that depends on quantity

defined later in the proof. Using these definitions, the above display equals

L(Λ) ≥ L(Λ∗) + 3h. (5.58)

Next, consider the sphere centered at Λ∗ with radius v, Bv(Λ∗) = {Λ : ‖Λ∗ − Λ‖2 = v}.
Consider the event E defined as

inf
Λ∈B(Λ∗)

Ln(Λ) > L(Λ∗) + h and Ln(Λ∗) < L(Λ∗) + h. (5.59)

Note that when event E occurs, by convexity of Ln, Λ̂ (the minimizer of Ln) must lie within
B(Λ∗), so hence, ‖Λ̂− Λ∗‖2 ≤ v.

Step 2: (Decomposition of E) We decompose E in the above display into three separate
events that we will control individually. Let the event E1 be defined as

max
i=1,...,M

|L(Λi)− Ln(Λi)| ≤ h. (5.60)

and the event E2 be defined as

inf
Λ∈Bv(Λ∗)

Ln(Λ) ≥ Ln(Λi)− h. (5.61)

Observe that from event E1, we have the following line of implications

max
i=1,...,M

|L(Λi)− Ln(Λi)| < h =⇒ ∀i = 1, . . . ,M, Ln(Λi) ≥ L(Λi)− h

=⇒ ∀i = 1, . . . ,M, Ln(Λi)− h > L(Λ∗) + h,

=⇒ inf
Λ∈Bv(Λ∗)

Ln(Λ) > L(Λ∗) + h,

where the second implication follows from the definition of h in (5.58), and the last implication
follows from E2. These together would imply the first part of E in (5.59).

Observe that the following event E3, defined as,

|L(Λ∗)− Ln(Λ∗)| ≤ h (5.62)

would imply the second part of E in (5.59). Hence, since the event E1 ∩ E2 ∩ E3 implies
event E, we have by union bound

P(Ec) ≤ P(Ec1) + P(Ec2) + P(Ec3).

Therefore, the remainder of the proof shows that for a rate of v, the summation of the
probability of the complementary events is small.
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Step 3: (Analysis of E1) Using at most M = (3/γ)k matrices, denoted as Λ1, . . . ,ΛM ,
we can construct an γ-net of the sphere B(Λ∗) via Lemma 9.5 of Ledoux and Talagrand
(2013), i.e.,

for any Λ ∈ B(Λ∗), min
i=1,...,M

‖Λ− Λi‖2 ≤ γ.

We analyze E1 in (5.60), the event that Ln(Λi) and L(Λi) are close along the γ-net. Using
a union bound along with concentration bounds shown in Lemma 44, for p large enough, we
have with probability at least 1− 2/(np) that event E1 occurs,

max
i=1,...,M

|L(Λi)− Ln(Λi)| ≤ c2

( log(np) + k log(3/γ)

p

)1/2
,

where c2 depends on κ, τ and r. Treating k as a constant, to set the left-hand side of the
above display to be equal to h, we need

v = c3

(
log(np)/p

)1/4
, (5.63)

where c3 depends on k, µ, κ, τ , and r, and is poly-logarithmic in γ.

Step 4: (Analysis of E2) Next, we analyze E2 in (5.61), the event that for any Λ ∈ Bv(Λ∗),
we have Ln(Λ) is close to Ln(Λi) for some i along the γ-net. By convexity, letting Λi be the
closest vector to Λ in `2 distance,

Ln(Λ) ≥ Ln(Λi) + 〈∇Ln(Λi),Λ− Λi〉 ≥ Ln(Λi)− ‖∇Ln(Λi)‖2‖Λ− Λi‖2. (5.64)

We know ‖Λ− Λi‖2 ≤ γ by construction. To bound ‖∇Ln(Λi)‖2, using a union bound and
Lemma 44 once again, we have with probability at least 1− 2/(np) for p large enough, event
E′2 occurs,

max
i
‖∇L(Λi)−∇Ln(Λi)‖2 ≤ c1k

( log(np) + k log(3/γ)

p

)1/2
. (5.65)

Furthermore, we know that since ∇L(Λ∗) = 0 and the gradient of L is L-Lipschitz smooth,
using the definition of v in (5.63), we have

‖∇L(Λi)−∇L(Λ∗)‖2 ≤ L‖Λi − Λ∗‖2 = Lv = Lc2

( log(np)

p

)1/4
. (5.66)

Therefore, combining (5.65) and (5.66), that on event E′2,

max
i=1,...,M

‖∇Ln(Λi)‖F ‖Λi − Λ̂‖F ≤
(
c2

( log(np)

p

)1/2
+ Lc2

( log(np)

p

)1/4)
· γ.

If we set γ = (log(np)/p)1/4, then plugging the above inequality back into (5.64), we have
on event E2,

Ln(Λ) ≥ Ln(Λi)− c3

( log(np)

p

)1/2
= Ln(Λi)− h, (5.67)
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where c3 depends on L, k, µ, κ, τ , and r, and is poly-logarithmic in γ. This shows E2.

Step 5: (Analysis of E3 and conclusion) From similar calculations above based on
Lemma 44, we can show that for p large enough, we have with probability at least 1− 2/(np)
that event E3 occurs,

|L(Λ∗)− Ln(Λ∗)| ≤ h.

Hence, we conclude the proof, where c1 initially stated is a constant that depends on L, k,
µ, κ, τ , and r, and is poly-logarithmic in γ. By Lemma 38, we know L and µ are constants
that depend on only τ and r.

We are now ready to prove Lemma 40.

Proof of Lemma 40. Let X̂ = Mn(Y ) and X∗ = M(Y ). By Lemma 45, we have with
probability 6/(np), for any i = 1, . . . , n,

‖X∗i − X̂i‖22 ≥ c
( log(np)

p

)1/2
.

Hence, applying a union bound over all i = 1, . . . , n, we have with probability 6/p,

max
i
‖X∗i − X̂i‖22 ≥ c

( log(np)

p

)1/2
.

This event implies that,

‖X∗ − X̂‖2F ≥ cn
( log(np)

p

)1/2
.

Proof of Corollary 41. The proof mainly follows from the proof of Proposition 35 above,
where we replace the term εunif(n, p) with εfixed(n, p), which requires us to take a union
bound over all T iterations.

Due to our invocation of Assumptions 6 and 7, we have shown already in (5.40) that d̃j
scales with (npλjγj)

1/2 asymptotically, completing the proof.

5.I Auxiliary results and proofs

The first result follows from Proposition 2.1 of Vershynin (2012).
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Lemma 46 (Probability bound of operator norm of a covariance matrix). Let X1, . . . , Xn

be i.i.d. k-dimensional random variables that satisfies Assumption 6. Then, with probability
at least 1− 1/k, ∥∥∥E[XiX

T
i ]− 1

n

n∑
i=1

XiX
T
i

∥∥∥
2
≤ CD ·

√
k

n
,

for some universal constant C.

The following perturbation result combines the result in Yu et al. (2014) with Hermatian
dilation (see, e.g. Tropp (2012)).

Lemma 47 (Davis-Kahan theorem for singular vectors). For any two n×p rank k symmetric
matrices M and M∗, let σ1 > . . . > σk and σ∗1 > . . . > σ∗k denote the singular values of
each matrix respectively, and U1, . . . , Uk and U∗1 , . . . , U

∗
k denote their corresponding left

singular vectors. Fix 1 ≤ r ≤ s ≤ k and let d = s − r + 1, and let U = [Ur, . . . , Us] and
U∗ = [U∗r , . . . , U

∗
s ] denote the concatenated matrix of left singular vectors. Then,

‖U∗ − U‖F ≤
23/2d1/2‖M∗ −M‖2

min(σ∗r−1 − σ∗r , σ∗s − σ∗s+1)
.

The following perturbation bound relates the Forbenius distance between two matrices
to the Forbenius distance between their matrix of singular vectors counterparts.

Lemma 48. Assume two matrices Z,Z∗ ∈ Rn×p with top rank-k SVDs of UDV > and
U∗D∗(V ∗)> respectively satisfy

‖Z − Z∗‖F ≤
σmin(Z∗)

2
.

Denote
Q̂ = argmin

R∈Ok×k

‖U∗ − UR‖F .

Then,

n1/2‖U∗ − UQ‖F ≤
4n1/2

σmin(Z∗)
‖Z∗ − Z‖F .

The proof for Lemma 48 can proven using the same techniques as in Lemma 45 of
Ma et al. (2018). The next result on random sequences can be easily verified by direct
calculation.

In the below lemma, for sequences an, bn, let an = o(bn) denote that an/bn → 0 and for
random sequences An, Bn, let An = Ωp(Bn) denote Bn/An is bounded in probability for
large enough n.
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Lemma 49. For two positive deterministic sequences an and bn, consider a random sequence
Xn = OP (an) and a random positive sequence Yn = ΩP (bn). If an = o(bn), then

(Yn +Xn)1/2 − Y 1/2
n = OP (anb

−1/2
n ).
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Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus,
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