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Abstract

Probabilistic record linkage (PRL) is the process of identifying pairs of records from two files or datasets

that correspond to the same underlying entity. In the absence of an error-free unique identifier, links

between records must be estimated and are inherently uncertain. Properly characterizing this uncertainty is

a prerequisite for correctly performing any statistical estimation or inferential task with the resulting linked

data. In nearly all real-world record linkage problems a lack of training data, which must be specific to the

records contained in both datasets, presents an additional challenge and necessitates the use of unsupervised

methods. Bayesian methods provide a powerful mechanism for quantifying uncertainty in the estimated link

structure via the posterior distribution. Furthermore, they allow for the inclusion of additional information,

such as structural constraints on the link structure, via an appropriate prior distribution. Incorporating

such information into the estimation can significantly improve performance, particularly for unsupervised

methods. The application of Bayesian methods to record linkage problems has thus far been limited by

a lack of methods that can practically be applied to sets of records containing more than a few thousand

entries.

In this dissertation we make several methodological advances that allow Bayesian methods to be applied

successfully to sets of records that are orders of magnitude larger than is possible with existing methods.

We first reexamine the standard two-step method for resolving a set of similarity weights between records

into a link structure consistent with one-to-one matching. We develop a joint procedure that uses a modified

optimization problem to induce sparsity, significantly reducing the computational complexity. This allows for

the efficient calculation of a maximum a posteriori (MAP) estimate of the link structure, under an appropriate

prior distribution over the link structure. We next address the more general question of estimating Bayesian

models for record linkage via a MCMC sampler. Due to the discrete nature of the link structure, standard

MCMC samplers converge extremely slowly and are impractical for almost all real problems. We develop

a data-driven blocking scheme that separates the link structure in a large number of small disjoint regions

within which a MCMC sampler can mix efficiently. Finally, we provide a method for transforming existing

prior distributions over the link structure that are informative only on the number of matches, to distributions
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that are also informative over the expected types of matches. Importantly the transformation maintains both

one-to-one matching constraints and invariance to the ordering of the records.

We demonstrate the scalability of our contributions by linking two historical voter registrations that

contain hundreds of thousands of records. Both files where generated by applying OCR to the original paper

voter registries and, therefore, contain numerous missing or incorrect entries. Despite lacking a high quality

blocking key, our approach allows a posterior distribution to be estimated on a single machine in a matter

of hours. We further demonstrate, using a set of hand-labeled record pairs, that a fully Bayesian estimate

significantly outperforms other methods, both linking more record pairs and achieving a lower false match

rate.
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Chapter 1

Introduction

1.1 Background

Probabilistic record linkage (PRL) is the process of identifying sets of records from different files or databases

that correspond to a unique underlying entity. In the absence of a uniquely identifying key, such as a social

security number, links or matches between pairs of records must be estimated. In many cases the available

fields, such as names, may not uniquely identify the underlying entity. Moreover, in many cases fields will

contain errors or may be missing entirely. The task of identifying records which correspond to the same

underlying entity is therefore a non-trivial one as the matches must be estimated using fields in common

between the two records. Any estimated matches are thus inherently uncertain. This uncertainty in the

estimated link structure must be incorporated into any analysis which relies on linked data.

With the explosion in digital data the demand for reliable methods for linking data, and for analyzing

linked data, has grown accordingly. PRL methods are applied in a wide variety of scenarios from

administrative data (Jaro, 1989; Winkler, 1988; Winkler and Thibaudeau, 1991; Winkler, 1993; Larsen

and Rubin, 2001) to healthcare (Gutman et al., 2013; Dusetzina et al., 2014; Alicandro et al., 2017) and

education (Mackay et al., 2015). Further recent applications include the estimation of casualty counts in

conflicts (Sadinle, 2013, 2017; Steorts et al., 2015, 2016; Chen et al., 2018) and energy projects (Dalzell et al.,

2017a). Traditionally, the results of many PRL models were reviewed for accuracy (Jaro, 1989; Winkler,

1991) with the most ambiguous cases could be sent for clerical review (Larsen and Rubin, 2001). However,

with PRL problems commonly containing millions of records (Xin et al., 2018) or more, there is a need for

unsupervised PRL models which nonetheless achieve a high level of accuracy.
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In this dissertation we make several contributions to the field unsupervised PRL methods for merging

two files each of which contains no duplicate records. For the remainder of this chapter we provide an

introduction to existing methods for PRL. In Chapter 2 we reexamine the standard approach to estimating

a link structure consistent with one-to-one matching. We find that advances from the optimization literature,

specifically auction algorithms (Bertsekas, 1998), can be applied to PRL in a manner that both reduces their

computational complexity and achieves better performance. Then, in Section 2.3, we use these advances

to develop a new penalized-likeihood estimator that operates similarly to existing methods but maintains a

one-to-one assignment constraint throughout the estimation processes. In Chapter 3 we introduce post-hoc

blocking, a method which allows Bayesian models for record linkage to be applied to PRL problems several

orders of magnitude larger than what can be handled by existing methods. We demonstrate the effectiveness

of post-hoc blocking by matching registered voters in Alameda county, CA in 1932 and 1936. Using post-hoc

blocking we successfully apply Bayesian PRL to these datasets, which contain hundreds of thousands of

records. Finally, in Chapter 4, we introduce a new iterative method for constructing an informative prior for

Bayesian PRL. The resulting prior allows expectations about what types of record pairs will be matched, in

addition to the expected number of such pairs, to be incorporated into the estimation processes benefiting

model performance.

1.2 Overview of the Record Linkage Process

We consider two sets of records, A and B, with each record containing identifying information, although the

information may not be uniquely identifying. The goal of record linkage is to use this information to identify

pairs of records (a, b), with a ∈ A and b ∈ B, such that both records correspond to the same underlying

entity. Let nA by the number of records contained in A and nB by the number of records contained in B.

We further assume, without loss of generality, that nA ≤ nB . Then let C be an nA × nB binary matrix,

where:

Cab =

 1 if record a matches record b

0 otherwise
. (1.1)

The value of C thus describes the linkage structure between records in A and B. An alternative

interpretation, which we will make use of throughout, is to view C as the adjacency matrix for bipartite

graph where each record corresponds to a node and links between them correspond to edges. We further

assume that each entity corresponds to at most one record in A and one record in B. Since entities appear

at most once in each dataset this implies that each record in A can be matched to at most one record in

B and each record in B to at most one record in A. This is a common assumption in the literature (Jaro,

1989; Fortini et al., 2001, 2002; Larsen, 2010; Tancredi et al., 2011; Sadinle, 2017), which we refer to as

one-to-one matching’. This contrasts with deduplication, the other canonical PRL problem, which seeks
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to identify groups of entries within a single dataset that correspond to the same underlying entity. While

there is significant overlap in approaches taken to these two problems we restrict our focus to record linkage

under one-to-one matching in this dissertation. However, many of the insights we present seem likely to be

application to deduplication problems as well.

Solving a PRL problem typically involves at least three stages: (1) the identification of a subset of the

record pairs which are considered for linking, (2) the generation of comparisons between records for each

record pair contained in this subset, and (3) estimation of the link link structure. We provide an overview

of each step in turn in Sections 1.3-1.6. Finally, many applications contain a fourth step of analysis with

linked data. That is, the goal of PRL is generally not the link structure itself but some quantity for which

an estimate of the link structure is required. We provide a brief discussion of methods for uncertainty

propagation in Section 1.7 and an example of an analysis with linked data in Section 3.3.1 of Chapter 3.

1.3 Blocking Methods

For PRL problems in which both A and B contain relatively few records a straight forward approach to

estimating the link structure might begin by comparing each of the nA records in A with all nB records

contained in B resulting in comparisons for nA×nB record pairs. However, due to the quadratic growth rate

for the number of record pairs, this quickly becomes computationally intractable for even moderately sized

sets of records. To make the generation of comparison vectors computationally tractable the set of record

pairs considered for matching must first be reduced to a small enough set that the necessary comparisons can

be made. Thus, in practice only a subset of the possible record pairs are considered for matching in all but

the smallest PRL problems (Larsen, 2002, 2010; Sadinle, 2013). For simplicity we will refer to any process

which reduces the set of record pairs considered for linking before modeling as either a blocking scheme’ or

an indexing scheme.

In an ideal setting a blocking scheme would included all record pairs corresponding to true matches, those

that would be matched by an oracle, and few if any additional record pairs. In practice there is generally

a trade-off based on the number of record pairs included within the blocking scheme. Selecting a blocking

scheme which includes fewer total record pairs will also tend to exclude some true matches, but will result

in a much easier problem from a computational standpoint. Since blocking is generally a first step before

estimating a full model we should generally be willing to accept a scheme with returns a large number of

non-matching record pairs, as long as it remains computationally tractable, to reduce the number of true

matching records that are excluded. Thus, blocking criteria can be viewed as necessary but not sufficient

condition for classifying a record pair as a true match. Alternatively, blocking can be thought to consider

only those records with some minimum level of similarity as possible links. The result of the blocking

scheme should be a large reduction in the set of record pairs considered for linking, equivalent to setting
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the link probability of all comparisons outside of the blocks to zero. There are a wide range of strategies

for conducting a blocking scheme and we offer only a brief overview here. For a more complete overview see

Herzog et al. (2007); Christen (2012b,a); Steorts et al. (2014) and citations therein.

1.3.1 Traditional Blocking

Traditional blocking relies on constructing a mapping from records to a blocking key, on which matching

records are assumed to match exactly. A blocking key thus partitions the two sets of records into disjoint

groups or blocks. Each record is then only considered for matching against other records within the same

block. Common examples of fields used as blocking keys include geographic identifies such as county or

zipcode, and fields that are unlikely to change over time such as first name. Blocking is straight forward to

implement and can dramatically reduce the number of record pairs that need to be considered for matching.

An ideal blocking key will contain no errors and partition the sets of records into a large number of relatively

small blocks. An additional benefit is that such a partition can be constructed without actually comparing

record pairs on the blocking key, this allows blocks to be computed in linear time with respect to the number

of records.

Consider a simple example: we are attempting to link two relatively small datasets which each contain

10,000 records (104). The full sets of possible record pairs therefore corresponds to 100,000,000 (108) total

record pairs. If however, the data contains a field, such as a zipcode, which takes 20 distinct values and each

value occurs with the same frequency (500 occurrences in each dataset). Then each record will only need

to be compared with a total of 500 other records, not 10,000. This reduces the number of comparisons to

“only” 5 million, a 95% reduction in the total number of comparisons which must be made.

While blocking can dramatically reduce the number of comparisons which must be made it comes with

some distinct challenges. First, because it requires that record pairs match exactly on a blocking key any

errors in the field (or fields) used in the blocking will be propagated through, potentially resulting in false

non-matches. For this reason it is important to select a blocking key that contains as few errors as possible,

something which may not always be available. Second, as the size of the datasets grow, a more discriminative

blocking keys is generally required, so that a larger reduction in the number of record pairs can be made.

This tends to exacerbate the first issue, since a more discriminating blocking key may be more error prone.

To address this problem a variety of relaxations to traditional blocking have been developed (Kelley, 1985).

1.3.2 Relaxations of Traditional Blocking

Traditional blocking requires that record pairs match exactly on the blocking key, a requirement that may

often be violated in practice. For continuous variables, such as ages or times, we might consider relaxing

this requirement by only requiring that records match within a certain tolerance. For a birth year this might
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be 5 years. As with traditional blocking an advantage to this approach is that the resulting set of record

pairs can be generated without actually making nA × nB comparisons by employing a sorted neighborhood

approach (Christen, 2012a). Roughly, this involves sorting both datasets on the blocking key and scanning

through them simultaneously to identify the regions for which is difference in the value of the blocking key

is within the tolerance. Unfortunately, this approach does not generalize well for many comparison methods

since it requires an ordering on the field. For example, this means that it cannot be applied to similarity

measures for string variables. Thus, while there is no theoretical reason why a similarity threshold for a

string similarity metric cannot be used to construct a blocking scheme in practice the computational costs

are generally prohibitive.

A second relaxation of traditional blocking is the use of multiple blocking keys. If we require that record

pairs match exactly on multiple blocking keys then we have in essence performed traditional blocking and

just combined the keys. If, however, we seek to include record pairs in our blocking scheme as long as they

match on one or more of several blocking keys then we have expanded the set of record pairs considered for

linking. Taking the union of the record pairs which would be considered by blocking on any of the individual

keys. Refer to this approach as indexing by disjuntions or simply indexing, the terminology used in Murray

(2016). An advantage to indexing is that it is robust to errors in any individual blocking key. All truly

matching record pairs will be included in the indexing scheme as long as both records are error-free on at

least one blocking key. We might, for example, consider record pairs which match on either first name or

last name. The results would include all true matches except for those for which the records fail to match

on both first name and last name.

A downside, relative to traditional blocking, of any approach relying on either approximate matching or

on the union of multiple blocking keys is that it will not generally produce distinct blocks. That is, there

will be overlap between the groups of record pairs. To use the example of applying indexing by disjuntions

to first and last name may will be a group of record pairs that are included because they all contain the first

name “james” and a second groups corresponding to the first name “william”. There may be a third group

of records which were included because they agree the last name, “smith”. Finally it may also be the case

that some records, those with the name “james smith” and “william smith”, will be present in both the first

group and the second group or the first and third group. Because of this overlap the link structure within

the blocks must be estimated jointly, that is when estimating links for records with the first name james we

must also consider the records with the first name william. This typically result, in a more computationally

challenging estimation problem than estimating the link structure separately within each of a set of disjoint

blocks. Given the computational advantages of having disjoint blocks we may wish to restore this property

to blocking schemes which do not exhibit it.
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1.3.3 Cluster based methods

A natural approach to creating disjoint blocks, such as those generated generated by a traditional blocking

scheme, is to apply clustering methods. Clustering has an intuitive appeal as we might expect truly matching

records to appear similar across a variety a metrics and therefore be relatively easy to place in the same

cluster. However, standard clustering methods, such as hierarchical clustering, rely on computing a similarity

measure (or distance) between observations to determine the clustering (Rokach and Maimon, 2005). While

a similarity measure for a single field can be employed (Enamorado et al., 2019) in PRL problems it can

often be challenging to determine a priori an appropriate field similarity. There are two common methods

for making the problem tractable: (1) to cluster only a reduced set of record pairs, such a set of record pairs

produced by an indexing scheme, for which more complicated distance measures can be computed or (2)

construct a function that directly maps records to clusters can be constructed. Such a function removes the

need for comparisons to be used in the clustering algorithm.

McCallum et al. (2000) provides an early example of the first approach, constructing what they refer to

as canopies. Canopies are constructed by using a cheap similarity measure to generate overlapping subsets of

record pairs, in essence generating a blocking scheme using indexing by disjunctions. More computationally

expensive comparisons can be made between record pairs within the canopies. Finally, a clustering algorithm

such as k-means or greedy agglomerative clustering is used to construct clusters of records. The clustering is

executed using the more costly comparison metric, which is assumed to be more accurate, and the similarity

between records which appear in none of the same canopies is set to zero. This approach yields identical

results to those that would be obtained from applying the more costly comparison metric to all record pairs,

as long as the clustering is covered by the canopies. For a clustering to be covered by the canopies all records

which share a cluster in the clustering must also share at least one canopy. That is, if all records that would

be placed in the same cluster given the full distance metric are grouped together by at least one canopy.

In contrast to the comparison-based approach taken by canopies, the second approach for generating

clusters of records involves constructing a function that directly maps each record to a cluster. This is

achieved by partitioning the space and then constructing a mapping that assigns each record to a partition.

Each partition is then treated as a block, with links allowed only between records assigned to the same block.

A naive and fast, implementation of this approach can be achieved by using a partitioning algorithm such as

a k-d tree (Marchant et al., 2019). However, a more common approach to constructing such a mapping is to

employ locality sensitive hashing (LSH) (Liang et al., 2014; Steorts et al., 2014). In most settings where hash

functions are employed the goal is for similar values to be mapped to values that are essentially uncorrelated.

In LSH the hash function is instead constructed in a manner such that similar input values are mapped to

the same value with high probability. The entire record can then be used as an input value to the locality

sensitive hash function and the resulting value used as a blocking key.
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While including more information than provided by a single feature makes LSH potentially more robust

than standard blocking, clustering methods do suffer from the same drawback of partitioning the records into

disjoint blocks as traditional blocking. Namely, that if two truly matching records are mapped to different

blocks there is no way to link them, no matter the quality of the model. They do, however, recover the

benefit of allowing link structure to be estimated separately within each block or partition, often an easier

task as we discuss further in both Chaper 2 and Chaper 3. As with other methods for constructing a blocking

scheme, clustering approaches create a trade-off between larger clusters, which are more likely to contain all

or most of the true links, and smaller clusters which offer larger computational benefits. Without access to

ground truth labels, many approaches for determining how to weight this trade-off are, by necessity, ad-hoc.

For many problems the more important features may be easy to identify, names are almost always important

when matching lists of people. In other applications identifying the most important features may be less

straight forward. However, if ground truth is known, for even on a subset of the data, then a variety of

methods can be used to supplement background knowledge in the choice of blocking scheme.

1.3.4 Supervised Methods

In the rare problem where training data is available it can be used to inform the choice of blocking in a variety

of ways. For example, Kelley (1985) suggests considering the space of admissible blocking schemes, those

that reduce the number of record pairs sufficiently that the problem is computationally tractable, and then

selecting the one that excludes the smallest share of matching record pairs. While Kelley (1985) uses a model-

based estimate of the false non-match rate, these quantities are more easily, and generally more accurately,

estimated when training data is available. Training data can also be used to select hyper-parameters, such as

the number or maximum size of clusters, through standard methods such as cross validation. In general the

reduction ratio, the fraction of the full nA×nB set record pairs that is excluded by the blocking scheme, and

pairs completeness, the fraction of true matches included by the blocking scheme, are useful in evaluating

the efficacy of any blocking scheme (Christen, 2012a).

Approaches to learning, as opposed to evaluating, blocking schemes have also been developed and fall

broadly into two categories: (1) those that estimate a classification model for identifying record pairs likely to

be linked and use it to aid in the construction of a blocking scheme and (2) methods that attempt to directly

learn a blocking scheme from a large set of possible choices. Examples of the first approach include Cohen

and Richman (2002) and Ventura and Nugent (2014). In the former a classifier, referred to as a pairing

function, is used to evaluate the similarity of record pairs. A greedy clustering algorithm is then applied

to split the records into a pre-specified number of clusters. In the latter training data is used to construct

an ensemble classifier, the scores of which are then used as the similarity metric to which a hierarchical

clustering is applied. These approaches contrast with approaches that select blocking keys themselves using
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data. Michelson and Knoblock (2006) develop an algorithm that does this in a greedy fashion while Bilenko

et al. (2006) use training to learn what is essentially a blocking scheme based on indexing by disjuntions

(which they refer to as disjunctive normal form). The draw back to this approach is that the choice of the

best possible subset of blocking keys is NP hard and so it can not generally be solved exactly.

More recent work has focused on learning blocking schemes even without training data. Kejriwal and

Miranker (2013) employ what is refered to as weakly labeled training data (we note that this terminology

appears in Bilenko and Mooney (2003) albeit only for negative training examples), record pairs that are

above a predefined similarity threshold for some similarity metric. These weakly labeled record pairs are

then used to learn a blocking scheme, as could be done with actual training data. This approach is somewhat

fraught in that it relies on pre-determined thresholds to apply the weak labels but the authors claim that

the thresholds are robust across a variety of problems (Kejriwal and Miranker, 2013). Several other authors

have developed related procedures, often for application to problems involving record linkage in real time

(Giang, 2015; Ramadan and Christen, 2015).

Selecting an appropriate blocking scheme is a crucial first step in the record linkage processes, and

essential to making the problem tractable. The choice of blocking scheme is important both for which record

pairs it includes, and which record pairs it excludes. This has ramifications for the estimation processes,

particularly of unsupervised models, as we discuss further in Section 1.5.4.

1.4 Comparing Record Pairs

After determining a blocking scheme and generating the resulting set of candidate record pairs the second

step in a typical record linkage processes is to generate a set of comparisons for each record pair. More

formally, consider two records a and b drawn from A and B respectively. We compute a set of d comparisons

between fields contained in A and fields in B. denote this set:

γab = {γ1ab, γ2ab, . . . , γdab}. (1.2)

The use of comparisons between fields allows flexibility in the model as the choice of comparisons can be

tailored to a given dataset. For some field types the selection of the comparison may be straight forward,

taking an absolute difference in values may be appropriate for many continuous values and categorical fields

can be compared using exact matching. However, for others field types including string-valued fields, dates,

and locations determining the appropriate comparison metric may be considerably more challenging. Here we

provide a brief overview of string comparison metrics, which are used widely in PRL and have constituted

the primary area of focus in the existing literature. For a more comprehensive overview of both string
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comparisons and comparisons metrics for other data types see Yancey (2005); Herzog et al. (2007); Christen

(2012a) and citations therein.

1.4.1 String Comparisons

While the use of comparisons means that generative models do not need to be produced for hard to model

fields, in many cases choosing an appropriate comparison metric is still challenging. Differences in string

fields can be particularly challenging to model because there is often little information as to the source of the

observed discrepancies. Typographical or transcription errors may be relatively straight forward to model

but more general error processes are much harder to model without access to massive sets of labeled training

data. In particular, string values fields such as names and addresses are common in PRL problems and are

hard to model distributionally.

A common type of error in string fields that must be dealt with in PRL problems is the typographical

error, when a value has been enter incorrectly or possibly omitted (Herzog et al., 2007). A natural approach

for comparing string fields is therefore to employ edit distances (Winkler, 1990). One of the most basic

string metrics is the Levenshtein distance, which counts the number of insertions, deletions or substitutions

that must be made for two strings to match. The number of required edits can then be normalized by the

greater of the two lengths of the strings being compared to yield a value between 0 and 1. A generalization

of this measure known as the Damerau-Levenshtein edit distance allows for transpositions as well.

A variety of extensions to the basic edit distance framework exist. In general, such extensions allow

different weights for different types of edits to be incorporated into the distance. Such weighting schemes

can vary from the relatively simple, assigning different weights to each edit type, to more complex, assigning

different weights to specific transpositions. This can be particularly effective if background information about

expected errors in the fields is available. A common scenario is that one or both of the datasets was generated

from scanned paper records and then converted to machine readable text using optical character recognition

(OCR). With this type of data some common errors such as the letter “o” being replaced with a “0” or an “l”

being replaced with a “1” (or vice versa) are known to occur frequently. Thus, one may wish to down weight

the effect making such an edit has on the resulting distance (see Christen (2012a) and references therein).

In other scenarios the field values may have been dictated and comparisons between strings that are spelled

differently but would sound the same if spoken can be identified with phonetic encodings, discussed later

in this section. Edit distances such as the Smith-Waterman metric can take advantage of such information

(Christen, 2012a).

Another common approach is to split the string into multiple pieces or tokens. If the string field is expected

to contain multiple words, such as commonly occurs with addresses, then the tokens often correspond to the

individual words. For string fields which may contain only a single word a common approach is to generate
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Q-grams, splitting the string into sequences of exactly q characters using a sliding window. For example, the

set of 3-grams generated by the string “terry” will be {ter, err, rry}. Regardless of the generation process,

once the tokens are generated the full set generated by each string can be compared, typically using a set-

based metric such as a Jaccard or overlap coefficient (Christen, 2012a). Such comparisons are often more

robust to changes in the order of the tokens and to omissions in the middle of the string than edit based

distances. Token based comparisons can also be combined with similarity measures between the tokens. One

example is the Monge-Elkan comparison metric, which combines a token-based approach with a similarity

measure between tokens.

An important extension to token based string comparisons is to consider not just the set of tokens (or

words) contained within a string but the frequency of occurrence. Frequencies are used to increase the

weight given to two types of terms, those that occur multiple times within a string, and weights associated

with uncommon terms, which may be a stronger marker of similarity than relatively common terms. For a

specific term (or token) the determinants of such distances are usually the term frequency (TF), with tokens

that occur more frequently within a string being given a higher weight, and the inverse document frequency

(IDF), which assigns lower weight to those terms that occur relatively frequently across some larger set of

records or documents. The combination of these two weights is typically abbreviated TFIDF (Cohen et al.,

2003). The background frequencies may be based on the empirical distribution observed in the full set of

records to be linked or from some larger database which is though to provide an appropriate baseline. In

the case of names this may be, for example, based on known frequencies for the target population from a

source such as a national census. Cohen et al. (2003) introduced a soft-TFIDF measure which applies a

(user-specified) string similarity measure to compare tokens, as in the Monge-Elkan similarity measure, and

then additionally weights the comparisons based on their relative frequencies with the weights combined via

a cosine distance. This metric has proven particularly popular within the computer science literature related

to record linkage.

Thus far we have discussed general sting metrics which may in principle be applied to any string field.

However, for fields containing names a variety of more specialized metrics have been developed. one of the

most common name specific string metrics is the Jaro string metric, which relies on a combination of edit

distances and q-grams was developed at the US Census Bureau (Yancey, 2005). An even more widely used

extension, the Jaro-Winkler string metric, adds additional weight to agreements observed among the first four

characters of the string as empirical research at the US Census Bureau has shown that typos in names occur

more frequently towards the end of the word. A second common approach, at least for English language, is

the idea of using phonetic encodings such as Soundex (Christen, 2012a). Such encodings attempt to map

strings to a numeric sequence corresponding to spoken sounds. This treatment is robust to names (and other

words) such as “Sean” and “Shawn” which may sound the same when spoken but which have significantly

different spellings. In some settings Soundex can also be applied to fields containing other English words
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We have covered only a small portion of the available literature on string metrics but have sought to

emphasize some of the important considerations when selecting an appropriate metric. Ideally the researcher

will have some knowledge as to the fields contained in the data and can pick a string metric which is robust

to the expected error types. As in other decisions to be made in developing a PRL algorithm, if ground truth

is known for even a subset of appropriate data a variety of metrics can be tested and the best performing

metric selected. If a supervised classification model is to be employed, it may be effective to compute multiple

comparisons for each available field. One downside to this approach is that it may be computationally costly.

We have not discussed the computational complexity of the string similarities addressed or algorithms for

computing them, a good overview of both is provided by Charras and Lecroq (2004).

1.5 Models for Unsupervised Record Linkage

Once a set of comparisons has been constructed, a PRL model can be applied. In this work we focus on

unsupervised models for PRL. The focus on unsupervised methods is driven both by the cost of acquiring

training data for use with supervised methods and the difficulty of applying training data broadly. In

general, the types of errors that a supervised method can model successfully will be specific to the dataset

and therefore may not generalize to other record linkage problems. In contrast, unsupervised methods may

perform somewhat worse that supervised methods on a specific problem but are more broadly applicable.

Throughout our review of PRL models we will generally assume the full nA × nB set of comparisons

vectors has been computed. Thus, the model will be fit on a set nA × nB comparison vectors, with each

comparison vector containing d comparisons. We denote the full set of comparison vectors Γ. This is the

data that is the basis for our inferences about the link structure C. As discussed in Section 1.3 it is generally

not feasible to compute this full set of comparisons but we wil proceed with this framework as it is consistent

with how most models have been constructed in the literature. In Section 1.5.4 we discuss issues that can

arise when these models are applied to a set of comparisons generated by a blocking scheme and some

techniques for mitigating this bias.

1.5.1 Fellegi-Sunter

The PRL problem was first introduced by Newcombe et al. (1959); Newcombe and Kennedy (1962) but

Fellegi and Sunter (1969), (here after FS), introduced a framework for modeling record comparisons and a

decision rule for classifying record pairs into matches or links and others non-matches. Consider the product

set of records pairs A×B generated by two files. Assuming that A and B contain some entities in common

this set will consist of both matching and non-matching records pairs. The framework introduced by FS
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models the distribution as a two component mixture model:

M = {(a, b) : record a matches record b}

U = {(a, b) : record a does not match record b.
(1.3)

As defined in (1.3) the M component contains comparisons between records that correspond to the

same entity, while the U component contains comparisons between record pairs that correspond to different

entities. For a link structure C, defined in Section 1.2, the M component corresponds to record pairs (a, b)

such that Cab = 1, and the U component record pairs such that Cab = 0. The distribution of comparisons

between record pairs is then modeled conditional on component membership. For a comparison vector g we

model two densities determined entirely by component membership:

m(g) = Pr (γab = g | (a, b) ∈M)

u(g) = Pr (γab = g | (a, b) ∈ U) .
(1.4)

Intuitively, these components should be well separated in most problems as the majority of record pairs

in the M component should show high levels of similarity across most if not all comparisons. While, record

pairs in the U component should agree on field only incidentally. We will refer to the log of the ratio of these

densities, as defined in (1.5) as the weight.

wab = log

(
m(γab)

u(γab)

)
(1.5)

We note, as did FS, that we need not concern ourselves with the case where m(g) = u(g) = 0 since it

will not arise in practice. Similarly, comparison vectors g for which only one of m(g) or u(g) is greater than

zero can be trivially assigned to the correct component. We therefore limit our discussion to cases where

m(g) > 0 and u(g) > 0. When a comparison vector g indicates significant agreement between the fields of

two records we generally expect m(g) >> u(g), so if γab = g then wab >> 0. In this case wab summarizes

information about the relative likelihood of a record pair being a match versus non-match, mapping the full

comparison vector to a single composite score (Newcombe and Kennedy, 1962).

High weight comparison vectors are much more likely to correspond to a matching record pair than a

non-matching one, while low (negative with large absolute value) weight comparison vectors are much more

likely to correspond to a non-matching record pair. We might therefore imagine a procedure in which all high

weight record pairs are classified as matches, and all low weight record pairs are classified as non-matches.

FS developed a formal version of this procedure where they define thresholds Tµ and Tλ such that a record

pair (a, b) with wab ≥ Tµ is classified as a match (Ĉab = 1), and a record pair with wab ≤ Tλ is classified as

a non-match (Ĉab = 0). If Tλ = Tµ then this procedure with yield a classification for all record pairs, record
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pairs with wab = Tµ = Tλ can be assigned proportional to achieve the desired rates. If however, Tλ < Tµ

then any record pairs where Tλ < wab < Tµ are given an indeterminate match status and are evaluated

manually. A summary of this procedure is shown in (1.6).

Cab =


Match Tµ ≤ wab
Indeterminate Tλ < wab < Tµ

Non-match wab ≤ Tλ

(1.6)

The thresholds Tµ and Tλ are set to simultaneously control the false positive or false match rate µ (the

probability a non-matching pair is classified as a match) and false negative or false non-match rate λ (the

probably a matching pair is classified as a non-match). This procedure was developed with the goal of

automatically making the easy designations, near perfect matches and obvious non-matches (Jaro, 1989).

FS prove that this procedure is optimal, minimizing the size of the indeterminate set, for given values of m

and u and error rates µ and λ. Crucial to this result is that the indeterminate cases can be resolved perfectly

through clerical review, an assumption which may not always be reasonable as we discuss in Chapter 3. The

FS decision rule also requires that m(g) and u(g) be known which is in practice rarely the case.

1.5.2 Conditional Independence

The saturated model implied by (1.4) is typically not identified without additional restrictions on the

parameter space. One frequently used restriction is to assume that the comparisons are independent

conditional on component membership. Under this assumption the distributions in (1.4) separate by field

and reduce to (1.7).

m(g) =

d∏
j=1

Pr
(
γjab = gj | (a, b) ∈M

)

u(g) =
d∏
j=1

Pr
(
γjab = gj | (a, b) ∈ U

) (1.7)

While the conditional independence assumption fixes the identifiability issue, it often does not hold in

practice (Smith and Newcombe, 1975). There is some disagreement in the literature as to how problematic

violations of this assumption are. Winkler (1985) finds that it is not crucial that the assumption hold for

some practical applications. However, Kelley (1986) finds that the error rate control of the FS decision rule,

described in (1.6), is sensitive to even small violations of the conditional independence assumption.
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Binned Comparisons

Many early applications made use of binary (0/1) comparison between fields (see e.g. (Jaro, 1989; Fortini

et al., 2001)) within the conditional independence framework. While, the use of binary comparisons is less

restrictive than simply employing exact matching, a similarity threshold can be used to distinguish between

agreement and non-agreement (Winkler, 1990), it still severely limits the flexibility of the model. A common

relaxation from binary comparison model involves binning a set of continuous comparisons (Winkler, 1990;

Sadinle, 2017). Such models take continuous similarity metrics, generally normalized to be contained in the

[0, 1] interval, and partition the interval into k separate intervals. This provides discretizes the continuous

comparison, transforming the continuous comparison into categorical one. The distributions within the M

and U components can then be modeled using a Multinomial distribution. We define the probability that

feature j records a similarity level (category) of h for each component as:

mjh = Pr
(
γjab = h | Cab = 1

)
ujh = Pr

(
γjab = h | Cab = 0

)
.

(1.8)

If we assume, as before, that a total of d comparisons are generated and that comparison j is partitioned

into kj possible levels then the model given in(1.7) can be written as:

m(g) =

d∏
j=1

kj∏
h=1

m
1(gj=h)
jh

u(g) =

d∏
j=1

kj∏
h=1

u
1(gj=h)
jh .

(1.9)

We also define the parameter set mj = {mj1, . . .mjkj} (with uj defined similarly). We adopt the model

given by (1.9) referring to the set of parameters within the M and U components as the m−parameters

and u−parameters respectively. To denote both sets of parameters we adopt the terminology matching

parameters.

The advantages of this formulation are twofold: (1) the transformation of continuous similarity measures

into discrete ones greatly simplifies model estimation, this is particularity in an unsupervised setting, and (2)

the model can always be made more flexible by increasing the number of bins allowing a better approximation

of the underlying continuous distribution. Originally developed by Winkler (1990), this model continues to

be frequently employed (see e.g. Sadinle (2017)). A limited version of this model, allowing for only three bins

per comparison and imposing additional constraints on the estimated parameters, was recently implemented

by Enamorado et al. (2019).
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Relaxing Conditional Independence

While models relying on the conditional independence assumption are widely employed, the assumption is

clearly violated in many applications. In such cases, work has been done to relax this assumption and develop

a more flexible class of models. Notably a model introduced by Winkler (1993) included up to three-way

interactions between comparisons. Similarly, Thibaudeau (1993) employed a model which accounted for

correlations between fields, particularly those pertaining to household membership. Thibaudeau (1993) also

included different sets of interactions within the M and U components as the correlation structures were

thought to differ. In practice, these models often outperform those which assume complete independence

between comparisons.

A related approach is to introduce additional components into the mixture model (Winkler, 1995; Larsen

and Rubin, 2001). The additional flexibility given by introducing addition components allows for models

which assume a simpler structure within the components (e.g. those without interactions) to perform better.

The components can then be aggregated into matching and non-matching categories. (Winkler, 1995) used

this approach where the three components were interpreted as (1) matches, (2) non-matches at the same

address, likely household members, and (3) non-matches as different addresses. A general discussion of

multi-component log-linear models is provided by Larsen and Rubin (2001) and references therein.

Frequency Weights

A final commonly employed method for improving model performance, particularly in the modeling of

recurring words such as names, is to adjust the weights to account for word frequency. The intuition behind

this approach is that agreement on common names such as “smith” is more likely to happen in a non-

matching pair than it is for uncommon names such as “zabrinksy” (Winkler, 1988). This approach is similar

to the similarity measures that incorporate inverse document frequencies such as the soft-TFIDF string

metric discussed in Section 1.4.1. With the obvious different that the information is incorporated at the

modeling stage rather than within the similarity metric. As with the IDF weights in some applications it

may make sense to use external sources for reference frequencies, such as the US Census for names, while

in others it may be sufficient to use the empirical frequencies observed in the data. For a more thorough

overview of frequency weighting see Winkler (1995).

1.5.3 Estimation

Fellegi and Sunter (1969) proposed computing the m and u parameters from known population values for

some special cases, or estimating m and u via the method of moments. However, it has become more common

to estimate these parameters using the expectation-maximization (EM) algorithm (Dempster et al., 1977)
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to maximize the likelihood given by:

L(m,u, π | Γ) =
∏

(a,b)∈A×B

πm(γab) + (1− π)u(γab), (1.10)

where π = Pr(Cab = 1), treating each comparison vector as an independent observation (Winkler, 1988).

While convenient for estimation this approach admits a large range of estimates which are inconsistent with

the one-to-one matching assumption. We note for example that in a one-to-one matching framework the

constraint π ≤ min(nA, nB)/(nA × nB) should always hold. While it is possible to enforce this particular

constraint within an EM framework (for example via regularization) the point is that(1.10) does not fully

capture the structure imposed by one-to-one matching. A method for resolving to a one-to-one matching

estimate in a post-hoc fashion is described in 1.5.6.

One reason for the popularity of the EM algorithm in the estimated of record linkage models is the

ability to account for missing data (Dempster et al., 1977), a common occurrence in nearly all record

linkage applications. This is usually done via a missing at random assumption (Sadinle, 2017). Within this

framework a variety of algorithms have been developed for different models, including frequency weighting

(Winkler, 1988) and convex constraints on the parameter space (Winkler, 1993).

EM estimates of the weights can work well in settings where there are many attributes available for

matching and where there is a high degree of overlap between the datasets, with many records in A

also appearing in B (Winkler, 2002). In contrast, when the two files have few fields in common, there

is s significant error rate in the fields available, or when there is limited overlap between the files, EM-

estimated weights can perform quite poorly (Winkler, 2002; Tancredi et al., 2011; Sadinle, 2017). More

reliable weights can be obtained by estimating the m and u parameters while accounting for the one-to-one

matching constraint. We introduce a new procedure which addresses this failing in Chapter 2.

1.5.4 Parameter Bias from Blocking

In our discussion of Many models for PRL, we have so far assumed that all nA×nB comparison vectors will

be used in estimating C. However, in most practical applications some sort of blocking scheme is employed

and thus only a subset of the record pairs are considered for linking. The use of a blocking scheme censors the

set of record pairs seen by the model, which can significantly alter the resulting estimates if not accounted

for. In theory this problem could be addressed as Fellegi and Sunter (1969) recommend, by restricting

inference to the specific subspace of interest (i.e. record pairs within the blocking scheme). Kelley (1986)

notes that different thresholds Tµ and Tλ should be used in the Fellegi-Sunter decision procedure in the

presence of blocking but that it is unclear how they should be selected. Under a traditional blocking scheme

each block can be modeled separately, with the information potentially combined in a hierarchical fashion
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(Larsen, 2002). It is less clear how to achieve this if a more general blocking scheme, such as indexing by

disjunctions, is employed.

As noted in Section 1.3, it is usually not the case that there are no matching record pairs outside of the

blocks (Jaro, 1989). Thus, blocking increases the number of false negatives, since all record pairs outside of

the blocking will be automatically declared non-matches. B, blocking can also affect the model estimates in

a less obviously way: by limiting the set of comparison vectors which the model uses to draw its conclusions.

For unsupervised models of the sort discussed in Sections 1.5.1 and 1.5.2, this introduces bias into the

estimated parameters (Murray, 2016), particularly those in the U component. The mechanism for this is

easy to observe, suppose blocking is performed so that only records with similar first names are considered.

As a result, every single comparisons vector computed will denote some minimal level of similarity on first

name. A model trained only on the computed comparison vectors will therefore estimate that, even for

non-matching records, first name always displays at least the minimum level of similarity. This bias can

be quite severe in practice (Neter et al., 1965). Furthermore, blocking can induce correlations between the

comparisons, violating the conditional independence many unsupervised models assume (Thibaudeau, 1993).

Fortunately, correcting for this bias in the u parameters is relatively straight forward. Since Cab is fixed to

zero for all record pairs outside of the blocking scheme, the distribution of these “missing” comparison vectors

can be easily estimated by randomly sampling record pairs excluded from the blocking scheme (typically

the vast majority of all record pairs) (Jaro, 1989). Under a conditional independence assumption, a more

precise adjustment is possible as the missing comparisons need only be generated marginally. That is, for

each record pair outside of the indexing or blocking scheme, it is not necessary to compute the comparisons

individually for each record pair. Instead, to calculate the frequency with which each similarity level occurs

for each feature it is sufficient to compute the set of unique comparisons separately for each field. This is a

result of the fact that under the conditional independence assumption the likelihood factors in such a way

that only the marginal frequencies with each component (match and non-match) are necessary, as can be

seen in (1.9). Computing these marginal frequencies is much more tractable as it can be done by computing

similarities only for observed unique values of each field and weighting appropriately. As we demonstrate

in Chapter 3, removing the bias from the u parameters can result in a substantial improvement in model

performance.

1.5.5 Supervised models

In this work we restrict our focus to unsupervised models for PRL. However, if training data is available,

or can be easily acquired, then it is easily applied to PRL problems. Perhaps the most straight forward use

is to use training data to train a standard classification model, which can be applied to the comparison

of record pairs. Popular classifiers include support vector machines (Christen, 2008a; Fu et al., 2011)
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and random forests (Ventura and Nugent, 2014; Frisoli and Nugent, 2018). The use of supervised models

also eliminates the need for the conditional independence assumption and can even allow the inclusion of

additional information, such as household membership, which span multiple observations and cannot be

incorporated into models which assume conditional independence. The inclusion of such additional features

often significantly improves model performance (Frisoli and Nugent, 2018).

As with other classification problems, care must be take to ensure that the training set is representative

of the data to be matched (Winkler, 2002). Given the costliness of the acquisition of labeled training data,

methods have been developed for the selection of appropriate training examples. Larsen and Rubin (2001)

developed a method for iteratively combining unlabeled data with labeled examples although, at least in some

cases, this procedure has been found to require a prohibitive number of training examples before converging

(Enamorado, 2018). Christen (2008b) developed a two-step method for record linkage in which the first step

involves automatically selecting training examples which are used to train a classifier employed in the second

step of the procedure. More recently, interest has been shown in applying active learning techniques to the

selection of training data ((Christen, 2012a, Chapter 6),Enamorado (2018)).

Finally, we note that while error rates can generally be estimated for classification models, this provides,

at best, a measure of the uncertainty for the misclassification rate of a single record pair. This generally does

not address the goal of quantifying uncertainty in the full link structure. To our knowledge quantification of

uncertainty in the link structure has, to date, primarily been achieved through the use of Bayesian methods,

although we discuss several proposed alternative approaches in Section 1.7.

1.5.6 Enforcing One-to-one Matching

As originally constructed, neither the methods for inferring the matching parameters, nor the FS decision

rule for generating an estimate of the matching structure C necessarily produce an estimate consistent with

one-to-one matching. In particular, in the FS decision rule, if wab > Tµ and wab′ > Tµ, for record pairs

(a, b) and (a, b′), then both are declared links. Even though this violates one-to-one matching. Jaro (1989)

proposed a three-step approach for adapting the Fellegi-Sunter decision rule to respect one-to-one matching.

In the first step are estimated by maximizing (1.10). In the second step C∗, a link structure consistent with

one-to-one matching is computed by solving the following assignment problem:
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C∗ = max
C

k∑
i=1

k∑
j=1

Cijŵij

subject to Cij ∈ {0, 1}
k∑
j=1

Cij = 1, for i = 1, . . . , k

k∑
i=1

Cij = 1 for j = 1, . . . , k.

(1.11)

Where the full set of weights Ŵ was assumed to be a square k × k matrix in the original formulation

given by Jaro (1989). Since A and B are rarely the same size in practice, Jaro (1989) proposed augmenting

Ŵ with additional columns or rows to make the problem square with the values of the augmented weight

set to negative values larger than any of the estimated weights to avoid assignment. In the final step, the

matching estimate Ĉ is obtained from C∗ by setting Ĉab = C∗ab1(ŵab ≥ Tµ), where Tµ plays the same role

as in the FS decision rule (1.6).

While this procedure leads to an estimate of C that respects one-to-one matching it comes with several

drawbacks. First, it is critically dependent upon good estimates of the matching parameters. However, it

has been observed empirically that failing to enforce the one-to-one constraint during estimation can lead

to poor estimates of the matching parameters (Tancredi et al., 2011; Sadinle, 2017). Second, attempting to

match all records, as initially done by the assignment problem, and then removing those that appear to be

non-matches may result in a sub-optimal set of estimated matches, as we shown in Chapter 2. Finally, the

procedure outlined in Jaro (1989) is inefficient from a computational perspective unless is it combined with a

relatively precise traditional blocking scheme. While several greedy procedures for resolving a set of matches

consistent with one-to-one matching have also been employed in the literature (Chipperfield and Chambers,

2015; Enamorado et al., 2019) these are typically employed on the basis of computational convenience rather

than some sense of optimality. In Chapter 2 we introduce a new estimator which mitigates all of these issues

by jointly estimating m, u, and C using a modified assignment problem which can be solved much more

efficiently than the one in 1.11. But, in the existing literature, the most common solution to the first two

problems appears to be full Bayesian modeling.

1.6 Bayesian Record Linkage

Bayesian models for PRL naturally enforce one-to-one matching via support constraints in the prior

distribution over C. Prior information on the matching parameters or the total number of linked records

can be incorporated as well. But perhaps the strongest advantage of employing Bayesian modeling is that it

naturally quantifies uncertainty in the link structure (through posterior samples of C) that can be propagated
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to subsequent inference. As we discuss in Section 1.7 there are other approaches to propagating uncertainty

in the estimate of C but none is as general.

Early approaches to Bayesian PRL utilized the same comparison-vector based model as in (1.7), typically

replacing the independent Bernoulli prior distributions on the elements of C with priors that respect one-

to-one matching constraints (e.g. Fortini et al. (2001); Larsen (2005)). Other Bayesian approaches avoid

the reduction to comparisons by modeling population distributions of fields and error-generating processes

directly (Tancredi et al., 2011, 2013; Steorts et al., 2015, 2016; Marchant et al., 2019) or specify joint models

for C and the ultimate analysis of interest, such as a regression model where the response variable is only

available on one of the two files (Gutman et al., 2013; Dalzell et al., 2017b). While we focus on comparison

based models, the method we introduce for scaling Bayesian record linkage in Chapter 3 is model-agnostic

and could be utilized in any of these models.

Modeling C directly

One of the main advantages of Bayesian methods is that the link structure C is modeled directly, rather

than being inferred separately from the parameter estimation as described in Section 1.5.6. Additionally,

estimation methods introduced in Section 1.5.3 generally assume that the observed record pairs are

independent. Under a one-to-one matching assumption this is clearly incorrect as Cab = 1 implies that

Cab′ = 0. We can easily observe this difference in the likelihood by noting that only the proportion of

matches, denoted π is present in (1.10). In contrast, in Bayesian models, where a specific value is assigned

to C throughout, the likelihood includes the interaction between C and specific comparison vectors:

`(m,u,C | Γ) =
∑

a,b∈A×B

log (m(γab))Cab + log (u(γab)) (1− Cab) (1.12)

=
∑

a,b∈A×B

[log (m(γab))− log (u(γab))]Cab +
∑

a,b∈A×B

log (u(γab))

=
∑

a,b∈A×B

wabCab +
∑

a,b∈A×B

log (u(γab)) . (1.13)

We show the equivalence of the formulations of (1.12) and (1.13) to draw the connection with (1.11). It

is obvious from 1.13 that to maximize (1.12) , with respect to C, one need only consider the weights not

the matching parameters. Although we note that under most models C may contain some rows, (records in

dataset A) which are unmatched in contrast to the approach taken by Jaro (1989), a point we discuss further

in Chapter 2. Enforcing one-to-one matching incorporates significantly more structure into the problem and

can lead to significantly improved estimates, particularly when the problem fails to meet the criteria set out

by Winkler (2002) for EM algorithm based estimates to perform well.
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1.6.1 Priors for one-to-one matching

Within a Bayesian framework one-to-one matching is enforced through the use of an appropriate prior

distribution over C. In general, constructing an informative prior for C is challenging, as it is difficult to

incorporate the information available before the analysis as to which record pairs are likely to correspond

to links, problem we address in Chapter 4. However, in many applications some prior information will be

available on the expected number or proportion of records that will be matched. It is therefore common to

construct a prior by first defining a distribution over the number of matches, which we denote L. The prior

probability of the link structure containing L links is then split uniformly across the set of link structures

containing exactly L links. This second feature is typically justified on the basis that it ensures that the

prior is invariant to the ordering of the records within either file. Zanella (2019) refers to this property as

invariance under permutation.

The number of possible values of the link structure C with L matches can be written in closed form for

datasets of known size. For a nA × nB link structure C the number of possible link structures with exactly

L matches is given by:

N(L, nA, nB) =
nA!nB !

L!(nA − L)!(nB − L)!
(1.14)

for 0 ≤ L ≤ min(nA, nB). We note the factorial nature of the relationship between the number of possible

link structures N(L, nA, nB) and L. This means that even if π(L), the prior probability of L matches and

π(L+ 1) take similar values π(CL), the prior probability of a specific value of C with L links, and π(CL+1)

may differ significantly.

Perhaps the most common prior distribution, which we refer to as a Beta-bipartite distribution, was

introduced by Fortini et al. (2001, 2002), generalized by Larsen (2005, 2010) and studied further by Sadinle

(2017). The Beta-bipartite distribution can be derived using the general approach described above. The

derivation first places a Beta-binomial distribution on the number of links, or equivalently places a Beta prior

distribution over the proportion of records (from the smaller file) that are expected to be linked and then

models the number of links as a binomial distribution. Then, given L, the prior density is split uniformly

matching matrices C with exactly L links, so that:

π(C | α, β, nA, nB) =
Beta-binomial(L, nA, α, β)

N(L, nA, nB)

=
(nB − L)!

nB !

B(L+ α, nA − L+ β)

B(α, β)
.

(1.15)

Zanella (2019) developed an alternative prior the same general process. First defining a truncated Poisson

distribution with parameter λ which models the distribution of the total number of unique entities across the

two datasets. Each entity then appears in both datasets with probability pmatch, in only A with probability
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(1− pmatch)/2 and in only B with probability (1− pmatch)/2. The resulting density is:

π(C | λ, pmatch, nA, nB) =
Poisson(nA + nB − 2L, λ)Multinomial (n, p)

N(L, nA, nB)

=
e−λλnA+nB−L

nA!nB !
(pmatch)

L

(
1− pmatch

2

)nA+nB−2L (1.16)

where the Multinomial parameters are n = {L, nA − L, nB − L} and p = {pmatch,
1− pmatch

2
,

1− pmatch
2

}.

Zanella (2019) further defines priors over pmatch and λ allowing posterior inference to be conducted on these

parameters.

A final example of a prior that enforces one-to-one matching is given by Green and Mardia (2006). The

derivation followed by Green and Mardia (2006) again proceeds in a similar fashion. They first assume

a homogeneous Poisson process with a rate λ over a volume v. Arriving points are then categorized as

appearing in both A and B, appearing only in A, appearing only in B, or appearing in neither A nor B with

probabilities ρpapb, pa, pb, and 1 − pa − pb − ρpapb respectively. The parameter ρ controls the correlation

between appearing in A and B. Conditional on the values of nA, nB , and the (unobserved) total number of

arrivals, the number of entities appearing only in A, only in B, and appearing in both A and B means that

the counts follow independent Poisson distributions and therefore:

π(L | λ, v, ρ, pa, pb, nA, nB) ∝ Poisson(nA − L, λvpa)Poisson(nB − L, λvpb)Poisson(L, λvρpapb)

=
e−λvpA(λvpA)nA−L

(nA − L)!

e−λvpB (λvpB)nB−L

(nB − L)!

e−λvρpapb(λvρpapb)
L

L!

=
e−λv(pA+pB+ρpApB)(λv)nA+nB−LpnAA pnBB ρL

(nA − L)!(nB − L)!L!

∝ (ρ/(λv))L

(nA − L)!(nB − L)!L!
.

(1.17)

Interestingly, we can observe from the final form of (1.17) that this implies:

π(L | θ, nA, nB) ∝ e−θLN(L, nA, nB) (1.18)

where we define θ = − log(ρ/(λv)). As with other priors Green and Mardia (2006) assume that, conditional

on L the distribution is uniform over the possible link structures and therefore:

π(C | θ, nA, nB) ∝ e−θLN(L, nA, nB)

N(L, nA, nB)
= e−θL. (1.19)

Thus, an alternative derivation of this prior is to define the ratio in prior probabilities between link structures

with different numbers of links rather than a distribution over L. That is, assuming a prior of the form given

in (1.19), for link structures C and C ′ of the same dimension that contain L and L + 1 links respectively

22



π(C ′ | θ, nA, nB)/π(C | θ, nA, nB) = e−θ. While this property is appealing, in practice the resulting

distribution over L can be extremely concentrated, especially when nA and nB are large. We discuss this

prior further in Chapter 2 but in general do not apply it to fully Bayesian record linkage problems. However,

we note that the concentration in the marginal distribution of L could in theory be mitigated by placing an

appropriate prior distribution over θ, as Zanella (2019) does with λ.

Given its simplicity and ease of interpretation, we will employ the Beta-bipartite prior defined in (1.15)

throughout in our simulations and real-world examples. However, none of the theory we develop is dependent

on this choice of prior and we do not expect that any of our results are an artifact of this choice.

1.6.2 Estimating Bayesian Models

The primary limitation of Bayesian approaches to PRL is their computational burden. In the best of

circumstances Bayesian inference can be computationally demanding, and making inference over a large

discrete parameter (the unobserved link structure) is particularly difficult. Computational considerations

have thus far limited the application of Bayesian methods for PRL to small problems, or large problems that

can be effectively made small using clean quasi-identifiers to construct an extremely high quality blocking

scheme.

With the exception of Sadinle (2017) most implementations of Bayesian PRL under one-to-one matching

update C using local Metropolis-Hastings moves within Markov chain Monte Carlo (MCMC) algorithm.

At each step the algorithm proposes to either add or drop individual links, or swap the links between two

record pairs, as described in e.g. Fortini et al. (2002); Larsen (2005); Green and Mardia (2006). A notable

exception is Zanella (2019), in which the current values of matching parameters are used to make more

efficient local MCMC proposals (often at significant computational cost). This is particularly effective when

combined with traditional blocking or a cluster based blocking scheme. In these cases the records in both

files are partitioned such that links between records can only occur within elements of the partition. With

high-quality blocking variables some of these blocks can be small enough to enumerate, which admits simpler

Gibbs sampling updates of the corresponding submatrices of C (Gutman et al., 2013; Dalzell and Reiter,

2018). While effective, this approach requires that the blocks be extremely small as the number of possible

link structures grows with factorial order (Gutman et al., 2013). For example, there are only 7 possible

linkage structures (distinct values of C) for a block of size 2× 2 and 34 for a block of size 3× 3. But for a

5× 5 block there are 1,546 possible structures. For generative models, which estimate a latent true entity, it

is sometimes possible to partition the space in such a way that mixing can be accelerated (see e.g. (Tancredi

et al., 2011; Marchant et al., 2019)) but this method does not apply generally to comparison based models.

The MCMC steps for other model parameters are generally standard Gibbs or Metropolis-Hastings

updates conditional on C. For all the Bayesian PRL models of which we are aware the primary bottleneck is
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updating the linkage structure C, due to its sheet size. We focus on this bottle neck in Chapter 3, proposing

a general method for scaling Bayesian inference to much larger problems.

1.7 Propagation of uncertainty

The final target of inference in PRL is almost never the link structure itself but some quantity which depends

on the estimated link structure. Therefore, a primary component of any PRL estimation is a characterization

of the uncertainty in the link structure. Common examples of quantities for inference include the degree

of overlap between the files, regression coefficients based on linked data (Tancredi et al., 2011; Lahiri and

Larsen, 2005). In such, scenarios, simply ignoring the uncertainty in the link structure and treating the links

as certain will typically result in biased estimates due to the presence of false matches in the set of links

considered (Neter et al., 1965).

A naive approach to reducing this bias might involve considering only a subset of the estimated links,

such as those that are nearly certain to correspond to true matches. While this approach may limit the bias

introduced by false matches it does not provide a characterization of the uncertainty inherent in the PRL

estimation. Furthermore, it may be the case that there are differences between the records for which links

can be estimated with a high degree of certainty and those for which estimated the links are more uncertain.

For example, in historical data it is often much easier to link men across time than women as women changed

their surname at marriage and were less likely to list an occupation other than housewife. Thus, an analysis

limited to near certain links will tend to exclude a large share of the women. An alternative approach is

to model the link structure and the quantity of interest jointly as done by Hof et al. (2017). However, this

requires the development of an appropriate model for each PRL limiting its application in practice. A more

general method of uncertainty propagation is therefore desirable.

Perhaps the most common setup for analysis with linked data involves fitting a regression model where the

response variable is contained in one dataset that is to be linked with another dataset containing the desired

covariates. The problem has been studied extensively, with Neter et al. (1965) first noting that errors in the

linking process will introduce bias into estimated regression coefficients and suggesting that if an estimate of

the false match rate was available that it might be used to remove this bias. Scheuren and Winkler (1993)

developed an estimator to reduce the bias introduced by false matches. The estimator considers the top two

candidates for each record, relying on estimates of the false match rate. In subsequent work Scheuren and

Winkler (1997) proposed an iterative procedure to further reduce bias in estimated regression coefficients.

Unbiased estimates of regression coefficients using linked data were developed by Lahiri and Larsen (2005).

With various extensions to logistic regression and estimating equations (Chambers, 2009), multiple datasets

(Kim and Chambers, 2012), and nested errors (Samart and Chambers, 2014) having been more developed
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more recently. Crucially, these approaches all rely on estimates of the false match rate such as those outlined

by Belin and Rubin (1995), which typically require labeled data to estimate accurately.

While the majority of existing work appears to have been done in the context of regression with linked

data, some additional problems have been considered. Chipperfield et al. (2011) developed an EM algorithm

based method for contingency tables and logistic regression and Chipperfield and Chambers (2015) introduced

a parametric bootstrap for tabulated data which can incorporate a one-to-one matching constraint. However,

to our knowledge a fully general approach for propagating linkage uncertainty has not been developed within

a frequentest framework. Although, we note that Goldstein et al. (2012) argues that full PRL is unnecessary

and that unbiased parameter estimates can be achieved through multiple imputation. In contrast to the

approaches discussed so far, Bayesian methods provide a general method for modeling uncertainty in the

linkage structure by estimating a posterior distribution. Because this approach allows posterior samples of

the full link structure to be generated, a posterior distribution is also easily generated for any quantity that

depends on the link structure. Hence, uncertainty propagation via a posterior distribution over the link

structure is generally more broadly applicable than the specific methods discussed in this section.
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Chapter 2

Improved Optimization for

One-to-one Matching

As introduced in Section 1.5.6 Jaro (1989) first applied a linear sum assignment problem (LSAP) to the task

of resolving estimated weights into an estimate of C consistent with one-to-one matching in record linkage

problems. Yet little, if any, advances have been made to methods for enforcing the one-to-one matching

constraint since the original work by Jaro. The recent R package fastLink (Enamorado et al., 2018) provides

a method for enforcing one-to-one matching but the accompanying paper does not provide any details about

the procedure, which appears to be based on a greedy algorithm (Enamorado et al., 2019). Chipperfield and

Chambers (2015) also employs a greedy algorithm for resolving a link structure consistent with one-to-one

matching. Yet, both of these methods seem to have been developed for speed and convenience without any

theoretical justification for the resulting estimate.

To address this gap we present a modified LSAP for enforcing one-to-one matching which, produces an

estimate of C that both theoretically preferable in that it is more closely aligned with the typical record

linkage problem. We then show how this modified LSAP can be transformed into a sparse assignment

problem allowing for significant computational gains. We use the computational improvements achieved

by inducing this sparsity to develop a new unsupervised record linkage penalized likelihood estimator which

incorporates one-to-one matching into the estimator. Finally, we demonstrate how our estimator can be used

to efficiently perform a sensitivity analysis in an unsupervised setting and yields considerable performance

gains over methods which fail to enforce the one-to-one matching constraint throughout the estimation

process.
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2.1 Modified one-to-one assignment problem

Given a set of estimated weights, Jaro (1989) suggested solving (1.11) by constructing a canonical LSAP,

which assumes that each record in A will be matched to some record in B. Since in practice nA and nB are

almost never equal we first define w̌ab:

w̌ab =

 wab a ≤ nA and b ≤ nB
w−max a > nA or b > nB

, (2.1)

where w−max is a negative value that is larger (in absolute value) than any of the observed weights. To

transform the nA × nB weight matrix into a square assignment problem the approach introduced by Jaro

(1989) adds columns (or rows) with values of w−max such that a square weight matrix is constructed. A set

of matches is then estimated by solving the following LSAP:

Č∗ = max
C

k∑
i=1

k∑
j=1

Cijw̌ij

subject to Cij ∈ {0, 1}
k∑
j=1

Cij = 1, for i = 1, . . . , k

k∑
i=1

Cij = 1 for j = 1, . . . , k,

(2.2)

where k = max(nA, nB). Finally, any matches with weights under a threshold Tµ are dropped, which

automatically removes any matches that correspond to augmented entries in C. The solution to this

optimization problem is typically found through the use of the Kuhn-Munkres or “Hungarian” algorithm

(Kuhn, 1955). In much of the optimization literature assignment problems are formulated as finding a

minimal assignment for a cost matrix. Here we will treat W as a reward matrix, the negative of a cost

matrix, and frame the problem as one of finding a maximal assignment. Since any reward matrix can be

transformed into a cost matrix (and any cost matrix into a reward matrix) this imposes no limits on the

set of algorithms for solving LSAPs which can be employed. For consistency with other chapters we will

use the term “weight matrix” instead of “reward matrix” unless we are directly referencing the optimization

literature.

While in its original formulation the Hungarian algorithm required a square problem with an equal

number of rows and columns in the cost matrix such as the one defined in (2.2), subsequent work has

provided algorithms for solving rectangular or asymmetric problems and such algorithms have since become

standard (Bourgeois and Lassalle, 1971; Bijsterbosch and Volgenant, 2010; Bertsekas and Castanon, 1992).
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In an asymmetric assignment problem there is no need to add the supplemental weights provided by w̌. We

will therefore proceed taking the asymmetric version of the optimization problem as defined in (2.3) as our

starting point.

C∗ = max
C

nA∑
a=1

nB∑
b=1

Cabwab

subject to Cab ∈ {0, 1}
nB∑
b=1

Cab = 1 ∀a ∈ A

nA∑
a=1

Cab ≤ 1 ∀b ∈ B.

(2.3)

For simplicity we will assume, without loss of generality, that nA ≤ nB . With the asymmetric modification

the solution to (2.3) requires that all records in A (the smaller of the two files) be matches with some record

in B (the larger file). For some applications, such as linking to the US census, this may be a reasonable

assumption. But in many applications, such as in a capture-recapture setting, or when files are believed to

be incomplete we may expect that at least some records from each file will not be present in the other. In

such scenarios it may be more desirable to find a only a partial assignment, leaving some records from A

unassigned. In this setting an estimate of C generated by solving (2.3) and then dropping matches with

weights below a threshold Tµ may not lead to the estimated matches with the highest total weight.

2.1.1 Thresholded Weights

The reason solving (2.3) may fail to result in an optimal estimate of C after removing matches with weights

below the threshold is due to the full assignment constraint. To maximize the objective function under

this constraint, high quality matches (large positive weights) must be maximized, while low quality matches

(those where the corresponding weight is large and negative) must also be minimized. Yet, because low

quality matches will correspond to weights below the threshold, they will be removed by the final step in

the Jaro procedure regardless. It is therefore suboptimal to apply a procedure which prefers to link record

pairs with weights marginally below the threshold to those significantly below the threshold.

Figure 2.1 provides a simple example of this dynamic. The optimal assignment for the weight matrix

shown in Panel (a) has a lower total weight as a result requiring that all records be assigned. Since the

solution to (2.3) makes a complete assignment, there are two feasible values of C that could be returned:

either a1 matches b1 and a2 matches b2, or a1 matches b2 and a2 matches b1. The latter matching (shown

in Panel (b)) corresponds to the optimal assignment, because of the negative weight on the pair (a2, b2).

But inspecting the weight matrix shows that the best overall matching – allowing some records to remain

unassigned – is obtained by linking a1 and b1, leaving a2 and b2 unmatched. Furthermore, leaving some
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a1

a2

b1 b2

2 −3

5 2

(a) estimated weights

a1

a2

b1 b2

2 −3

5 2

(b) standard solution

a1

a2

b1 b2

2 0

5 2

(c) thresholded weights

a1

a2

b1 b2

2 0

5 2

(d) modified solution

Figure 2.1: Simple assignment problem with and without thresholded weights. (a) shows an example of
estimated weights. (b) highlights the assignment that maximizes the assigned weights for the weights given
in (a) if all rows are assigned. (c) Adjusts the weights shown in (a) by thresholding at 0. (d) the maximal
assignment solution if the thresholded weights are used and zero weight assignments are then removed. The
resulting assignment has a larger total weight than the one given in (b).

records unassigned is consistent with the approach of Jaro (1989), which removes links below a predetermined

threshold after obtaining a full assignment. By thresholding the weights at zero, as shown in Panel (c), we

obtain a modified weight matrix for which finding a maximal full assignment will contain the best overall

matching, accounting for the subsequent removal of any assignments with weights below zero as shown

in Panel (d). Intuitively, when finding an assignment, we should not differentiate between record pairs

with weights below the assignment threshold. Such record pairs will be removed from the final set of

matches (classified as nonmatches) regardless of whether their corresponding weights are marginally below

the assignment threshold or well below the threshold. The example shown in Figure 2.1 demonstrates the

consequences of failing to include this information in the estimation processes. We might therefore wish

to incorporate the constraint that we only consider assigning record pairs if their corresponding weight is

greater than a threshold Tµ.

The solution to this problem is to incorporate the threshold directly into the LSAP. The procedure will

remove any links made where the corresponding weight is below a threshold Tµ. We therefore propose

thresholding the weights used in the optimization procedure so that all weights below the threshold are

assigned a value of zero. We then carry out a modified version of the procedure described in Jaro (1989)

utilizing the thresholded weights. In this formulation, removing all assigned record pairs for which the weight

is below a threshold is equivalent to removing assigned record pairs with thresholded weight of zero. We

define the thresholded weights as:

wab =

 wab wab ≥ Tµ
0 wab < Tµ

. (2.4)

Substituting the thresholded weights for the standard weights into the LSAP defined in (2.3) results in

the modified LSAP:
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C∗ = max
C

∑
a,b∈A×B

Cabwab

subject to Cab ∈ {0, 1}∑
b∈B

Cab = 1 ∀a ∈ A

∑
a∈A

Cab ≤ 1 ∀b ∈ B.

(2.5)

After solving (2.5) we remove all assignments where the thresholded weight wab is zero. To evaluate C∗ and

C∗ we sum the original weights wab for all record pairs which remain assigned after removing the entries of

C for which wab < Tµ. Thus, we define the post-removal objective functions:

f∗Tµ =
∑

a,b∈A×B

C∗abwab1(wab ≥ Tµ) =
∑

a,b∈A×B

C∗abwab

f∗
Tµ

=
∑

a,b∈A×B

C∗abwab1(wab ≥ Tµ) =
∑

a,b∈A×B

C∗abwab

(2.6)

Where C∗ and C∗ are obtained by solving (2.3) and (2.5) respectively.

Lemma 2.0.1 (Improved Objected Value from Thresholded Problem). For any real-valued weight matrix

W and any threshold Tµ f
∗
Tµ
≤ f∗

Tµ
.

Proof for Lemma 2.0.1.

f∗θ =
∑

a,b∈A×B

C∗abwab1(wab ≥ Tµ)

=
∑

a,b∈A×B

C∗abwab

≤
∑

a,b∈A×B

C∗abwab

= f∗
θ

Lemma 2.0.1 makes it clear that within the Jaro framework that C∗ (with zero thresholded weight

assignments removed) is generally a more desirable estimate of C than C∗. The key insight is that because

the framework requires the final estimate of C to correspond to a full assignment, this requirement should

not be enforced within the estimation processes. This suggests that we might consider solving a different

optimization problem to generate our estimate of C, namely one which does not require that all records be

assigned. Such an approach would correspond to solving the following LSAP:
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C∗partial = max
C

nA∑
a=1

nB∑
b=1

Cabwab

subject to Cab ∈ {0, 1}
nB∑
b=1

Cab ≤ 1 ∀a ∈ A

nA∑
a=1

Cab ≤ 1 ∀b ∈ B.

(2.7)

The problem formulated in (2.7) has the drawback that, as defined, it is not easily solved with standard

algorithms for assignment problems, which have been developed for finding full assignments. Define the

objective of (2.7):

f∗partial =
∑

a,b∈A×B

C∗partial,abwab (2.8)

We show in Lemma 2.0.2 that f∗partial = f∗
0
. Where f∗

0
is the objective achieved by (2.3) with Tµ = 0. An

intuition for Lemma 2.0.2 can be gained by observing that, absent the requirement to link all records (which

is removed in (2.7)) the objective in (2.3) is increased only by linking record pairs with positive weights.

Recalling the definition of the weights (1.5) we see that these weights correspond to record pairs for which

P (γab | Cab = 1) ≥ P (γab | Cab = 0). Given that the U component, which contains the non-matching record

pairs, is typically far larger, it makes sense to restrict our consideration to record pairs that are more likely

in the M component (for these record pairs it may still be the case that P (Cab = 1 | γ) < P (Cab = 0 | γ)).

In essence, setting Tµ = 0 and solving (2.3) removes the full assignment constraint. As we will discuss

in Section 2.2 setting many of the weights within the optimization procedure to zero yields computational

benefits in addition to the improved objective function. In the next Section we introduce an alternative

modification which may be made to the weights which achieves many of the same objectives.

Lemma 2.0.2 (Objective Equivalence of Zero-Thresholding and Partial Assignment). For any real-valued

weight matrix W f∗partial = f∗
0
.

Proof for Lemma 2.0.2. Let W be a set of real-valued weights, C∗0 be a solution to (2.3) using W with link

threshold Tµ = 0, and C∗partial a solution to (2.7) also using W .

Suppose that f∗partial > f∗
0
. Then construct C† from C∗partial by fixing all links in C∗partial and then

sequentially assigning any unassigned rows to the first unassigned column. Since by assumption W will have

at least as many rows as columns this will always result in a full assignment. Furthermore wab ≥ 0 for all
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a, b ∈ A×B. Hence,

∑
a,b∈A×B

C†wab ≥ f∗partial > f∗
0

=
∑

a,b∈A×B

C∗abwab.

Then C∗ is not a solution to (2.3) (⇒⇐).

Suppose that f∗partial < f∗
0
. Construct C‡ from C∗ by setting C‡ab = 0 for all links from C∗ where wab = 0:

C‡ab =

 C∗ab if wab > 0

0 otherwise

Because Tµ = 0, then wab ≥ 0 for all a, b where C‡ab = 1. Thus,

∑
a,b∈A×B

C‡wab = f∗
0
> f∗partial

where the equality holds because only links for which wab = 0 were removed from C∗ to construct C‡. Then

C∗partial is not a solution to (2.7) (⇒⇐).

Therefore f∗partial = f∗
0

2.1.2 Penalized Weights

An alternative adjustment to the hard thresholding used to constructed the weights defined in (2.4) uses a

penalty or soft-thresholding. The penalty θ is subtracted from all weight values and any weights for which

this would yield a negative value are set to zero. This transformation is defined in (2.9) and we will refer to

these values as penalized weights.

w̃ab =

 wab − θ wab > θ

0 wab ≤ θ
(2.9)

The transformations defined by (2.9) and (2.4) are equivalent when Tµ = θ = 0. Thus, Lemma 2.0.2

applies to the penalized weights for θ = 0 as well as the thresholded weights with Tµ = 0. This behavior

suggests that setting θ = Tµ might generally lead to similar estimates of C. However, despite the equivalence

between the thresholded and penalized weights at zero, these transformation can lead to significantly different

estimates of C for larger values of the penalty (or threshold). An estimate of C, C̃∗ can be acquired by

solving the LSAP given by (2.10).
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a1

a2

b1 b2

2 8

8 10

(a) Weights

a1

a2

b1 b2

2 8

8 10

(b) Thresholded weight Tµ ∈
[0, 8)

a1

a2

b1 b2

0 5

5 7

(c) Penalized weights θ = 3

a1

a2

b1 b2

0 1

1 3

(d) Penalized weights θ = 7

Figure 2.2: Example assignment problem where thresholded and penalized weights yield different estimates.
(a) shows example weights, (b) the optimal assignment using thresholded weights for any threshold Tµ ∈
[0, 8). (c) and (d) show the solution using penalized weights when θ = 3 and θ = 7 respectively. The solution
in (d) contains fewer links but favors those with large weights.

C̃∗ = max
C

∑
a,b∈A×B

Cabw̃ab

subject to Cab ∈ {0, 1}∑
b∈B

Cab = 1 ∀a ∈ A

∑
a∈A

Cab ≤ 1 ∀b ∈ B.

(2.10)

We consider an example set of weights in Figure 2.2. Panel (a) shows the original weights and (b) shows

the solution to the assignment problem that results from using thresholded weights for any Tµ ∈ [0, 8) ∗.

Panels (c) and (d) show penalized weights with θ = 3 and θ = 7 respectively as well as the solutions to the

corresponding assignment problem. The solution show in (c) would be found for any θ ∈ (−∞, 6)† and that

shown in (d) for any θ ∈ (6, 10). In these example setting identical threshold and penalty values does not

always yield the same assignment, notably if Tµ = θ = 7 then thresholding will yield the solution in (b) and

penalization will yield the solution in (d).

This difference in behavior can be understood as typical in the context of regularization. We can re-write

the objective in (2.10) as follows:

∑
a,b∈A×B

Cabw̃ab =
∑

a,b∈A×B

Cabwab1(wab > θ)− θ
∑

a,b∈A×B

Cab1(wab > θ) =
∑

a,b∈A×B

Cabwab1(wab > θ)− θL,

(2.11)

where L =
∑
a,b∈A×B Cab1(wab > θ), the number of assigned record pairs with nonzero penalized weights.

The formulation in (2.11) makes it clear that, allowing for some records to remain unlinked, the penalty

∗In fact this is the optimal assignment for any Tµ ∈ [−∞, 8) but we limit our investigation to the case where Tµ ≥ 0. As
selecting a threshold Tµ < 0 may result in a change in the ranking of the thresholded weights relative to the original weight.
†We allow the case where θ is less than it does disrupt the ranking of weights in the same manner
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serves to regularize the estimate of C. Hence, optimizing over the penalized weights will tend to yield fewer

links with larger weights than would result from optimizing over the thresholded weights. In fact (2.10)

finds, conditional on the weights, a maximum a posteriori (MAP) estimate of C under the prior introduced

by Green and Mardia (2006) and outlined in Section 1.6.1. A similar insight can be gained by observing

that the penalized weights optimize for total linked weight above the penalty while the thresholded weights

optimize the total weight, conditional on all linked record pairs having a weight above the threshold.

The penalized weights therefore place more emphasis on the margin by which a weight exceeds the penalty.

Within a one-to-one matching context the penalized weights may be more desirable as in many contexts

we would typically prefer extremely good matches over simply good matches, which might correspond to

individuals such as household members which are merely similar. However, regardless of the choice between

penalized and thresholded weights both transformations offer the possibility of significantly improving the

computation tractability of the optimization by inducing sparsity into the assignment problem as we discuss

in the next section.

2.2 Solving Sparse Assignment Problems

Since the number of non-matching record pairs is typically much greater than the number of matching record

pairs, the value of the vast majority of the penalized w̃ab will typically be zero. This means that there will

be many values of C which correspond to a maximal full assignment over these weights. While this level of

redundancy means that an optimal solution may be easier to find on average it does not reduce the size of

the solution space, which will remain large, and thus computationally costly. We can significantly reduce

the computational cost of solving (2.10) by transforming W̃ into a sparse matrix. While in this section we

will frame our discussion of sparsity in terms of penalized weights as they are our preferred measure, the

computational advantages of induced sparsity we discuss apply equally well to the thresholded weights wab

introduced in Section 2.1.1.

2.2.1 Connected Component Separation

There are a variety of ways that sparsity can be leveraged to increase the speed at which the assignment

problem can be solved. If a traditional blocking scheme has been applied to the record linkage problem then

the assignment problem need be solved only within the blocks, generally resulting in significant computational

gains given the O(n3) worst case complexity of traditional algorithms for solving dense LSAPs. Indeed this

approach was applied by Jaro (1989).

However, it is possible to apply this intuition in a more sophisticated manner, as we show in Figure 2.3.

Consider the link structure as a bipartite graph, with the non-zero entries of W̃ detonating an edge matrix E.
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(a) Weights
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(b) Thresholded Weights
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(c) Connected Components

a1

a2

a3

a4
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(d) Final Assignment

Figure 2.3: Example of how weight sparsity can reduce problem complexity. (a) shows an example of
estimated weights and (b) shows a penalized version. In (c) penalized weights are separated into connected
components with each row and column (records from A and B respectively) appearing in at most one
component. Finally, (d) shows the solution to the assignment problem, which can be computed separately
for each component.

Then we need solve the LSAP only within the connected components of this graph, as the assignment within

one component does not affect the set of assignments which can be made within a separate component. In

Figure 2.3 the blue entries in panel (b) correspond to the edges in E. The blocks outlined in panel (c) show

the separation which occurs between the connected components. It also need not be the case that all records

are assigned to a component. For example record b5 is included in none of the components and therefore is

not considered for linking. The assignments within the components, show in panel (d) are then significantly

easier to make than if the entire link structure is considered.

Finding the connected components of a bipartite graph has computational complexity of O(|E|+nA+nB)

(linear time with respect to the number of edges in the graph, i.e. the number of nonzero weights after

penalizing) (Tarjan, 1972). After partitioning the graph, computational demands are driven primarily by

solving the LSAP corresponding to the largest connected component. Since the computational complexity

of this step is at worst O(k3), with k being the maximum number of records from either file appearing in

the component. In the case where k << min(nA, nB) we can obtain dramatic reductions in computational

complexity by partitioning the original problem. This leads to the procedure outlined in Algorithm 1.

Algorithm 1 Connected-Component Based Assignment Problem

Input: Thresholded weight matrix W̃ (from Eq (2.9))

Output: Estimate Ĉ partial assignment with highest total weight

1. Find the connected components of the bipartite graph G which has edges between nodes a and b
where w̃ab > 0.

2. Solve the assignment problem for each component separately.

3. Merge assignment solutions.

If either traditional blocking or a cluster based blocking scheme has been applied to the problem then the

connected components are guaranteed to be no larger than the blocks or clusters. However, with a blocking
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scheme such as indexing by disjunctions it is possible for the largest component of the graph to contain all

or nearly all of the records. In such situations applying Algorithm 1 will yield little in terms of the overall

complexity of solving the assignment problem. The size of the largest component will in turn depend on θ

(with larger penalty values resulting in a smaller largest component).

An alternative approach is to simply apply an algorithm for solving assignment problems which is designed

to handle a sparse reward matrix. For example, a shortest augmenting path algorithm of this type was

introduced by Jonker and Volgenant (1987). Hong et al. (2016) describes a version of the Hungarian algorithm

for sparse problems with complexity O(nE) where n is the smaller of the number of rows and the number

of columns in the reward matrix and E is the number of entries. Practical performance is often much

better than these worst-case complexity results might suggest. In computational studies many algorithms

for solving LSAPs show substantially faster results on sparse problems (Carpaneto and Toth, 1983; Jonker

and Volgenant, 1987; Orlin and Lee, 1993; Hong et al., 2016).

Algorithms for solving sparse LSAPs generally require that a feasible solution exists but the transform

from W̃ to W̃ ′ guarantees that a trivial feasible solution exists: Ca,a+nB = 1 a = 1, . . . , nA. If desired these

can be applied jointly with the graph clustering procedure outlined in Algorithm 1. A class of algorithms

which appear particularly well suited to solving sparse assignment problems in a record linkage context are

auction algorithms.

2.2.2 Auction algorithms

The auction algorithm was inspired by price auctions in which people (rows) bid for objects (columns). The

value person a places on object b is given by the reward wab that would be achieved by assigning object b to

person a. As in other algorithms for solving assignment problems dual variables are updated and assignments

are made in cases where wab = ua + vb where ua is the profit person a expects and vb is the price object

b commands. The Hungarian algorithm and other shortest path algorithms maintain a similar set of dual

variables, although these are not typically given the same price interpretation.

Both types of algorithms work by successively adding assignments while adjusting the dual variables

until all rows have been assigned. A key difference however is that auction algorithms typically find only

an approximate solution to the assignment problem whereas shortest path algorithms will find an exact

solution. Auction algorithms find only an approximate solution enforcing a constraint on the dual variables

known as ε-complementary slackness. Under this condition the inequality wab − ε ≤ ua + vb is maintained

for all a, b throughout the execution of the algorithm. In shortest path algorithms the analogs constraint

requires wab ≤ ua + vb (i.e. ε = 0). One interpretation of ε-complementary slackness is that the solution

found is optimal for some reward matrix with rewards w′ab such that |wab − w′ab| ≤ ε for all a, b. The sum

of the assigned rewards is thus at most εnA less than the true optimum since each assigned reward is below
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the optimal reward by at most ε. Increasingly accurate solutions can be found through a process known as

ε-scaling, where a problem is solved repeatedly with successively smaller ε’s using the previous solution as a

starting point. This process will eventually yield an optimal solution‡.

As with the Hungarian algorithm, early auction algorithms worked only for rectangular problems. They

also frequently performed poorly on a subclass of assignment problems in which many entries in the reward

matrix contained similar values. In such problems the auction algorithms were prone to engaging in “bidding

wars”, in which assignments are updated frequently yielding only small changes in the dual variables.

However, modern implementations of the algorithm addressed both the bidding war issue and provided

a version appropriate for asymmetric problems (Bertsekas and Castanon, 1989, 1992; Bertsekas et al., 1993).

For a more comprehensive overview of auction algorithms see (Bertsekas, 1998, Chapter 7).

Auction algorithms have proven particularly successful when applied to sparse problems. One issue

that can arise in sparse assignment problems, although not in the problem we solve in (2.10), is that of

infeasibility, when no allowed full assignment exists. Auction algorithms can be designed in a manner to

detect this (infeasibility will cause the dual variables to diverge) (Bertsekas, 1992), a desirable property.

Finally, the computational complexity achieved by auction algorithms in sparse problems is as good or

better than that of competing algorithms.

Auction algorithms have a proven worst-case complexity of O(nE log(nWmax)) where n is the number of

rows of the reward matrix, E is the number of non-missing entries in the reward matrix, and Wmax the is

largest (in absolute value) reward(Bertsekas and Eckstein, 1988; Bertsekas and Tsitsiklis, 1989; Bertsekas,

1998). This bound can be further improved by combining an auction algorithm with a primal-dual method to

achieve O(E
√
n log(nWmax)) complexity, the best known worst-case complexity for an assignment problem

(Bertsekas, 1998, Chapter 7.1.4). However, this complexity analysis assumes that all rewards are integer

valued and therefore selecting ε < Wmax/n guarantees an optimal assignment. For non-integer rewards the

smallest margin between reward values governs how small ε must be to guarantee an optimum. This may

result in a somewhat worse complex but the log factor means that in practice this is not too problematic.

Importantly, this covers only worse case complexity and there is reason to believe that the average case may

be significantly faster, perhaps as fast as O(E log(n) log(nWmax))(Bertsekas, 1998, Chapter 7.1.4). Other

work supports this hypothesis that it may be possible to solve sparse assignment problems in near linear

time (on average) with respect to the number of edges (Orlin and Lee, 1993; Amini, 1994).

Intuition for why average complexity may be significantly better than the worse case can be gained

by considering the case where the graph is partitioned into several distinct components, as considered by

Algorithm 1. In this scenario the complexity will be, at worst, a product of the number of components

and the complexity of solving the problem in the largest component. Because auction algorithms only allow

‡Assuming that values of wab and wa′b′ which are not exactly equal differ by at least δ a choice of ε < δ/nA will guarantee
that the optimal solution is found.
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bids for feasible assignments they will leverage problem structure of this type automatically. However, even

if clusters are only “weakly” separated, that is allowing a few record pairs with membership of multiple

clusters, bids will still mainly fall within clusters. Thus, we might hope for performance close to that of the

case where the clusters are fully separated.

Several features of both auction algorithms and record linkage problems suggest that they may perform

particularly well together. First, auction algorithms include natural extensions to both parallel and

distributed settings (Bertsekas and Tsitsiklis, 1989; Amini, 1994). Thus, they can be employed practically

on potentially very large problems, an increasingly common setting for record linkage. There is also reason

to believe that the expected distribution of record linkage weights (rewards for the auction algorithm)

may be especially favorable in record linkage problems. For example, if a record linkage problem displays

the microclustering property (Betancourt et al., 2016) then we might expect relatively few large weights

occurring almost entirely within the clusters, similar to the cluster based scenario discussed above. Even

absent microclustering it was observed by Newcombe and Kennedy (1962) that the estimated weights are

usually split into many very low weights (near certain non-links), some large weights (near certain links)

with comparatively few intermediate values, which are harder to assign. We might therefore expect our

thresholded weights (2.9) to produce an especially sparse reward matrix. Finally, use of ε-feasibility within

algorithm iterations and ε-scaling can work well with the statistical estimation processes as we describe in

more detail in Section 2.3.

2.2.3 Ensuring a Feasible Sparse Problem

The computational advantages of applying a sparse transformation toW are clear. However, many algorithms

will fail if a feasible solution does not exist, that if after inducing sparsity some records have no possible

assignments. To address this potential complication we define the following transformation:

w̃′ab =


wab − θ wab − θ > 0, ab ∈ A×B

0 a ≤ nA, b = nB + a

−∞ otherwise

, (2.12)

Alternatively, W̃ ′ =
[
W̃sp | diag(0)nA

]
where W̃sp is a sparse (setting all values of zero to −∞) of W̃ and

diag(0)nA is a nA × nA diagonal matrix with the values of zero on the diagonal and −∞ for all off-diagonal

entries. The diagonal matrix is added to ensure that a feasible assignment always exists. While developed

independently, the transform to W̃ ′ appears similar to the transformation used in the k-cardinality LSAP

outlined by Bijsterbosch and Volgenant (2010).

An example of this transformation is shown in Figure 2.4. Panel (a) shows example weights, with those in

blue having values larger than the selected penalty θ and those in red having values smaller than the penalty.
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(d) C̃′∗

Figure 2.4: Example transformation of weights and solution equivalence. (a) shows an example of estimated

weights. (b) shows the effect of transforming W to W̃ . (c) demonstrates the transformation from W̃ to W̃ ′

adding sparsity and dummy observations. Finally, (d) shows C̃ ′∗ the optimal solution using the weights W̃ ′

with the dark green entries denoting assignments which will be kept and the light green denoting zero-reward
assignments which make the assignment feasible but do not affect the objective value and will therefore be
removed.

In Panel (b) we show the penalized weights, transforming W to W̃ with white entries corresponding to cases

where w̃ab = 0. Sparsity is induced in Panel (c) demonstrating the transformation from W̃ to W̃ ′. All white

entries from (b) are coded as grey indicating that they have been removed (assigned a weight of −∞) and

are not available for linking. To ensure the existence of a full assignment supplemental columns representing

the diagonal matrix are added with entries a, nB + a (labeled ai, b
′
i) available for linking. Finally, (d) shows

C̃ ′∗ the optimal solution to both W̃ and W̃ ′. The dark green entries in (d) denote assignments for which

w̃ab > 0 which will be retained and the light green entries are assignments for which w̃ab = 0 that will be

removed. The link in cell a4, b4 will be present if C̃∗ is estimated based on W̃ (Panel (b)) and the entry

a4, b
′
4 corresponding to a value of C̃ ′∗ estimated based on W̃ ′ (Panel (c)). Since w̃a4b4 = w̃′a4b′4

= 0 they do

not affect the objective value. The solution using the weights W̃ ′ displayed in (d) can be found by solving

the LSAP:

C̃ ′∗ = max
C

∑
a,b∈A×B

Cabw̃
′
ab

subject to Cab ∈ {0, 1}∑
b∈B

Cab = 1 ∀a ∈ A

∑
a∈A

Cab ≤ 1 ∀b ∈ B.

(2.13)

Adopting the formulation in (2.13) has the advantage of making the assignment problem easier to solve.

While relatively efficient algorithms exist for solving dense LSAPs, (e.g. the Hungarian algorithm (Kuhn,

1955)), they have a worst case complexity of O(n3) where n = max(nA, nB) (Jonker and Volgenant, 1986;

Lawler, 1976). However, after penalizing, the weight matrix will typically be very sparse. Indeed, depending
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on the degree of overlap between the two files there may be entire rows and columns of zeros (as in row a4

of Figure 2.4) – effectively reducing n and yielding an easier optimization problem.

Auction algorithms in particular can be effective for solving such sparse problems, as described in the

previous section. Thus, there is reason to believe that employing penalized weights to induce sparsity will

make it possible to solve (2.13) sufficiently quickly that it can be solved many times within an estimation

procedure as opposed to a single time, as done by Jaro. In the next section we introduce an estimator

which uses this approach to enforce one-to-one matching throughout the estimation procedure resulting in

considerable performance gains.

2.3 Penalized Likelihood Estimator

The standard approach for producing Ĉ, a point estimate of C, (summarized in Section 1.5.6) has several

drawbacks. The most significant of which is that the one-to-one matching constraint is not incorporated

into the (typically EM-based) estimates of the m− and u− parameters. In this section we outline a new

penalized likelihood estimator that significantly improves over the standard approach by incorporating all

three steps of the standard approach into a single-stage estimation procedure, simultaneously maximizing a

joint likelihood in C, m, and u while penalizing the total number of matches.

2.3.1 Algorithm

The penalized likelihood takes the following form, similar to that of the objective for the partial assignment

problem defined in (2.7) but with penalized weights:

l(C,m, u | Γ) =
∑
ab

Cabwab +
∑
ab

log(u(γab))− θ
∑
ab

Cab

=
∑
ab

Cab(wab − θ) +
∑
ab

log(u(γab))

=
∑
ab

Cabw̃ab +
∑
ab

log(u(γab)).

(2.14)

The last term in (2.14) is the penalty and the leading terms are the same log-likelihood corresponding

to the standard two-component mixture model 1.13. The form of the penalized likelihood in (2.14) shows

that θ plays a similar role to Tµ in the FS decision rule; only pairs with wab > θ can be linked without

decreasing the log-likelihood. This is also the unnormalized log posterior for C, m, and u under the prior for

C introduced in Green and Mardia (2006) (defined in (1.19)); the penalized likelihood estimate corresponds

to a MAP estimate under the corresponding Bayesian model.
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Finding a local mode of (2.14) is straightforward via alternating maximization steps, which are iterated

until the change in (2.14) is negligible:

1. Maximize C, given values of m and u. To maximize the penalized likelihood in C we need to solve the

following assignment problem:

max
C

∑
a,b∈A×B

Cabw̃ab

subject to Cab ∈ {0, 1}

Cab = 0 if w̃ab = 0∑
b∈B

Cab ≤ 1 ∀a ∈ A

∑
a∈A

Cab ≤ 1 ∀b ∈ B.

(2.15)

As discussed in the previous section we recommend solving (2.15) by first solving (2.13) with an auction

algorithm and then removing entries of C̃ ′∗ab = 1 for which w̃′ab = 0.

2. Maximize m and u probabilities, given a value of C. These updates are available in closed form under

the conditional independence model (Equation 1.9):

mjh =
nmjh +

∑
ab Cab1(γjab = h)∑

h nmjh +
∑
ab Cab

(2.16)

ujh =
nujh +

∑
ab(1− Cab)1(γjab = h)∑

h nujh +
∑
ab(1− Cab)

. (2.17)

where the n’s are optional pseudocounts used to regularize the estimates. (These terms correspond to

an additional penalty, omitted from (2.14) and(2.15) for clarity.) We suggest their use in practice to

avoid degenerate probabilities of zero or one. They are easy to calibrate as “prior counts” – i.e., nmjh

is the prior count of truly matching record pairs with level h on comparison j, and the strength of

regularization is determined by
∑
h nmjh (with larger values implying stronger regularization). In fact

they correspond to MAP estimate (conditional on Ĉ) under a Dirichlet prior for mj and mj

Conceptually this optimization procedure is straightforward, but iteration to a global mode is not

guaranteed. In general a global mode in all the parameters need not exist – for example, if a record a ∈ A

has two exact matches b, b′ ∈ B, then the penalized likelihood function will have at least two modes with the

highest possible value. However, the values of the m− and u−parameters will be the same in both modes

and these are the only objects of interest for defining weights. Of course it is also possible for an alternating

maximization approach to get trapped in sub-optimal local modes. Our experience running multiple starts
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from different initializations suggests that this not common – that is, when we iterate to distinct local modes

they tend to have similar values for the m− and u−parameters.

While the simultaneous maximization of the C, m, and u−parameters achieved by the penalized likelihood

estimator is conceptually appealing it is not at first clear that the procedure is computationally feasible

given that it may require solving many LSAPs. We have found that in practice the solutions are often

computationally tractable, particularly when auction algorithms (introduced in Section 2.2.2) are employed

to solve the LSAPs. First, by thresholding or penalizing the weights many record linkage problems can be

transformed to display a high level of sparsity meaning they are relatively easy to solve. But perhaps more

importantly the use of ε-scaling in auction algorithms means that the solution from a previous maximization

provides an extremely efficient starting value for the next LSAP. Exactly how efficient (corresponding to

what value of ε the procedure should be initialized at) depends on how much the weights have changed (due

to updates in the m and u−parameters) from the previous iteration. In many cases small updates to the m

and u−parameters mean the next LSAP can be solved extremely quickly. The u−parameters in particular

are typically very stable and closely match the overall empirical similarity distribution. We are not aware

of this feature of auction algorithms being used to solved a sequence of related assignment problems having

been exploited previously in the literature.

2.3.2 Italian Census Example (Tancredi et al., 2011)

We consider a small scale example dataset from the existing literature to illustrate the performance of the

penalized likelihood estimator. The data in this example was published by Tancredi et al. (2011) and comes

from a small geographic area in Italy; there are 34 records from the census (file A) and 45 records from

the post-enumeration survey (file B). The goal is to identify the number of overlapping records to obtain an

estimate of the number of people missed by the census count using capture-recapture methods.

Each record includes three categorical variables: the first two consonants of the family name (339

categories), sex (2 categories), and education level (17 categories). We generate comparison vectors as

binary indicators of an exact match between each field. We assume a conditional independence model for

m− and u−probabilities as in (1.9). Each vector of conditional probabilities is assigned a Dirichlet prior

distribution. We assume that mj ∼ Dir(1.9, 1.1) and uj ∼ Dir(1.1, 1.9) for j = 1, 2, 3 independently. These

priors where chosen to contain modes near 0.9 and 0.1 respectively, with a reasonable degree of dispersion.

We first estimate links between the two files using first a standard EM algorithm to estimate the matching

parameters and corresponding weights, and then resolve the link structure to one-to-one matching setting

the link threshold Tµ = 0.0. We next estimate the link structure using our penalized likelihood estimator

for several different values of the penalty θ. A summary of the record comparisons, estimated weights, and

estimated links are shown in Table 2.1. As expected, larger values of θ result in the penalized likelihood
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Observed Data EM Algorithm θ ∈ (0.0, 0.24) θ ∈ (0.24, 2.23) θ ∈ (2.23, 3.04) θ ∈ (3.04, 6.21)
Last Sex Edu Count Weights Matches Weights Matches Weights Matches Weights Matches Weights Matches

1 1 1 25 5.27 24 6.09 24 6.16 24 6.20 24 6.21 24
1 0 1 8 3.77 1 2.72 1 2.89 1 3.04 1 0.66 0
1 1 0 13 -0.94 0 2.04 3 2.23 3 -1.17 0 -1.11 0
0 1 1 126 2.68 4 0.24 3 -3.13 0 -2.91 0 -2.83 0
1 0 0 21 -2.45 0 -1.34 0 -1.03 0 -4.32 0 -6.66 0
0 0 1 78 1.18 0 -3.14 0 -6.39 0 -6.06 0 -8.38 0
0 1 0 601 -3.53 0 -3.81 0 -7.05 0 -10.28 0 -10.16 0
0 0 0 658 -5.04 0 -7.19 0 -10.32 0 -13.43 0 -15.71 0

Table 2.1: Comparison vectors observed in data, weights estimated using an EM algorithm and using our
penalized likelihood estimator for a range of θ values. Comparisons vectors for which the EM estimate of
the weights differs substantially from the penalized likelihood based estimate are highlighted in grey.

identifying fewer record pairs as matches. Setting Tµ to a larger value and relying on an EM-based estimate

of the weight would similarly cause the to identify fewer matches but would not result in different estimates

of the weights, as done by the penalized likelihood estimator. A comparison of the estimated weights yields

more insight as to where the estimates differ. Rows of Table 2.1 shaded grey highlighting specific comparisons

for which the penalized likelihood estimator and the EM algorithm estimate significantly different weights.

For the first grey row, corresponding to a comparison between records which agree on last name and sex

but not education level, this difference is determined by the value of θ. For θ < 2.23 the weights estimated

using the penalized likelihood estimator are significantly larger, and the estimated link structure several of

these record pairs. While for θ > 2.23 the estimated weights using the penalized likelihood estimate more

or less agree with those estimated by the EM algorithm. This might be taken to imply that the weights

estimated by the EM algorithm are similar to those estimated by the penalized likelihood estimator for

larger values of θ. However, we see that this is not the case by examining the estimated weights for the

additional comparison vectors. The remaining two highlighted rows both correspond to record pairs which

agree on education level and disagree on last name, the first also agrees on sex while the second comparison

vector disagrees on the sex comparison. For these record pairs the EM-based weights assign a positive value,

while the penalized likelihood estimates generally place a substantial negative weight (for θ = 0 the penalized

likelihood estimator places a small positive weight on the record pairs which also agree on sex). Overall we see

that for no value of θ does the penalized likelihood estimator assign a positive weight to any of the comparison

vectors (rows in the table) which show agreement on only one of the three fields. For larger values of θ even

some of the comparison vectors which correspond to agreement on two are assigned a negative weight. In

contrast the EM-based weights are positive, indicating that it is more likely to have been generated by the

M component than the U component, for every comparison vector which shows agreement on the education

level field. This suggests that the EM-based model views the education field as extremely informative in

determining the matching status of record pairs. However, even using the EM-based weights, none of the

record pairs which match only on education level are actually classified as links once the one-to-one matching
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Figure 2.5: Effect of θ on the estimated weights and the number of matches. The left panel shows the
marginal estimated weight for each field. In the right panel the number of estimated links is shown as a
function of θ in green and the expected number of links for the corresponding prior is shown in black with
a 99% interval shown in grey.

constraint is enforced. We might therefore suspect that a failure to enforce one-to-one matching results in a

worse estimate of the weight (i.e. that we should prefer the penalized likelihood estimator).

Under a conditional independence model the overall weight assigned to a comparisons vector is simply

the sum of the weights for each field. Therefore, it is straightforward to examine the marginal effect of

each field on the total estimated weight. We plot these marginal weights in the left panel of Figure 2.5,

with the solid lines showing the estimate for the penalized likelihood estimator, which vary with θ, and

the dashed lines the EM-based estimates. Because the marginal weights are simply the log-likelihood ratio

between the M and U components for the corresponding field, a positive weight indicates that a comparison

is estimated to occur with greater probability within the M component than the U component. Similarly,

a weight near zero indicates that the comparison vector occurs with a probability within each component,

and a negative weight indicates that it is more likely within the U component. Because the U component is

typically much larger than the M component it may still be the case that, even for comparison vectors with

positive weight, a greater absolute number of them are estimated to occur within the U component. We see

in Figure 2.5 that, for agreements on each of the fields (shown in green) the algorithms generally estimate

similar weights, with the penalized likelihood estimate estimating a larger marginal weight for last name,

and the EM algorithm estimating a larger marginal weight for education level. Looking again at Table 2.1

we can see that the total number of record comparisons which agree for each field is: 67 for last name, 237

for education, and 765 for sex. While ground truth is unknown for this dataset, at most 34 record pairs

can correspond to true matches under one-to-one matching. This suggests that among non-matching record

pairs agreement on education may be more frequent than agreement on last name, which takes many more
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unique values. In such a scenario we would expect to see a larger weight assigned to matching on last name

than matching on education level, the result yielded by the penalized likelihood estimator.

Among the marginal weights for disagreements (shown in brown) there is less consistency between the

algorithms, and a stronger dependence on θ for the penalized likelihood estimator. With the exception of the

education field the EM-base estimates are typically much closer to zero (although still negative), estimating

that disagreement on the field comparison occurs at a similar rate within both the matches and non-matches.

The effect of varying θ is also more clearly seen, as it increases the algorithm becomes more stringent in

the types of disagreements it views as disqualifying. For θ = 0 agreement on two fields is sufficient for a

record pair to be considered for matching, for θ > 0.24 the record pair is only allowed to disagree on sex or

education level, and for θ > 2.23 only disagreement on sex is allowed. Finally, for θ > 3.04 only record pairs

which agree on all three fields are considered for matching. This is consistent with θ defining a prior over

the link structure which places an increasingly large prior probability on link structures with fewer matches.

In the right panel of Figure 2.5 we plot the number of matches against θ (in green) as well as the expected

number of matches under the prior (black). The estimated number of matches varies from 31 when θ = 0

to 24 when θ > 3.04 (and θ < 6.21). The shaded grey region shows the range from the 0.5% quantile of the

prior to the 99.5% quantile. The fact that the green line stays within this region over a range of θ values

suggests that there is considerable uncertainty over the true number of matches. In the absence of ground

truth observations the right panel of Figure 2.5 suggests that the estimated link structure is sensitive to the

value of θ.

2.3.3 Robustness examples

To evaluate the performance of the penalized likelihood estimator we employ synthetic data from Sadinle

(2017) using a data generator developed by Christen and Pudjijono (2009); Christen and Vatsalan (2013).

From each of 100 data files we estimate the link structure between two sets of 500 records (nA = 500,

nB = 500). Each record contains four fields: given name, family name, age and occupation categories. We

run simulations for each data file where errors are introduced into 1, 2 or 3 of the 4 fields for each record

and the share of records which are linked is 100%, 50% or 10%, resulting in a total of 900 simulations.

Given name and family name are compared based on a Levenshtein similarity measure with similarity level

bins of: exact agreement, (0%, 25%] mild disagreement, (25%, 50%] moderate disagreement, and (50%,

100%] extreme disagreement. Age and occupation categories are coded as either matching or non-matching.

Following Sadinle (2017) we use a flat Dirichlet distribution as a prior on similarity levels for all fields for

both the matched and non-matched record pairs, that is both the M component and the U component of

the mixture model. See Sadinle (2017) for further details. As a pre-processing step we randomly permute

the records in data file A as, by construction, all matches occur on the diagonal within the original data. As
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such an artificial structure may be exploited by some assignment algorithms causing them to appear more

efficient on the synthetic data than could be expected in real-world settings.

We beginning by fitting the penalized estimator for each of the 900 simulations setting θ to 0, 2, 4, 6,

and 8. We fit estimator varying the algorithm used to solve the assigning problems within the penalized

likelihood estimator. This does not affect the performance of the estimator, but allows us to compare the

computational performance of each assignment algorithm. The assignment algorithms considered are: (1) the

standard Hungarian algorithm, (2) first running graph clustering and then applying the Hungarian algorithm

to each component (as described in Section 2.2.1), (3) a standard Auction algorithm, (4) first running graph

clustering and then applying the Auction algorithm to each component, and (5) an Auction algorithm using

price updating as suggested in Section 2.2.2§.

The resulting runtimes are shown in Figure 2.6, with runtimes shown on a log-scale. The runtimes

for the three estimation procedures that use an Auction algorithm return fairly similar runtimes across all

simulation parameters. As discussed previously, there is reason to believe that Auction algorithms may, to

an extent, implicitly apply clustering as rows and columns in different graph components will not compete

against each other in the auction bidding process. So it is unsurprising that addition a graph clustering step

does not substantially improve the runtime, and may increase it slightly, relative to a plain implementation

of the Auction algorithm. It is somewhat more surprising that adding cost updating between the iterations

of the penalized likelihood estimator does not decrease the runtime of the procedure. But, this may be a

case where the additional overheard required by such a step outweighs the performance gains, at least for

problems of this size.

In contrast procedures that rely on an Auction algorithm, the relative performance of the procedures

which employ a Hungarian algorithm vary strongly with the value of θ as well as the overlap between the two

files. In the 100% overlap simulations the standard Hungarian algorithm performs only marginally worse

than the Auction algorithm based procedures. While, for sufficiently large values of θ, the additional of a

graph clustering step with the Hungarian algorithm achieves performance comparable to that of the Auction

algorithm based procedures. This result, that adding the graph clustering step to the Hungarian algorithm

achieves performance comparable to the Auction algorithm based procedures, but only for larger values of

θ, holds across simulation parameters. Indeed, we observe this pattern even in the 10% overlap simulations,

a setting were we might expect the small number of true matches, which we expect to be high weight, to

result in a graph that readily separates into distinct components. However, in practice we see that for θ = 0

and θ = 2 combining graph clustering with the Hungarian algorithm yields little benefit, suggesting that the

graph clustering may be yielding a largest component that contains nearly all of the record pairs. In contrast,

for θ = 4, θ = 6 and, θ = 8 the Hungarian algorithm combined with graph clustering procedure achieves

§Both the Hungarian and Auction algorithms were implemented from in the Julia programming language by the author.
Code and additional implementation details are available here: https://github.com/brendanstats/AssignmentSolver.jl
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Figure 2.6: Timing of penalized likelihood estimate varying algorithm used to solve the assignment problem.
Across the board there is little difference between the three methods which employ an Auction algorithm.
In contrast the performance of the Hungarian algorithm is significantly improved by the inclusion of a graph
clustering step, but only for larger values of θ.
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Figure 2.7: Number of matches estimated for each dataset as a function of θ. The black line (with a 99%
coverage interval shown in grey) marks the expected value of the corresponding prior. Dashed lines plot the
true number of matches for each overlap level.

performance comparable to the Auction algorithm based procedures. This suggests that, for low values of

θ, across all simulation scenarios, the penalized weights w̃ estimated by the penalized likelihood estimator

are positive for a non-trivial fraction of the non-matching record pairs. We also note that the number of

error-free fields seems to have little effect on the runtime of the algorithm, this is perhaps unsurprising since

the model we estimate remains consistent with the underlying data generating process.

As in the Italian Census example from Section 2.3.2, the number of links identified by the penalized

likelihood procedure is strong influenced by the choice of penalty. To efficiently explore a range of penalty

values we first compute the penalized likelihood estimator with θ = 0, generating estimates of C, the m-

parameters, and the u-parameters. We then iteratively increase θ, selecting the new value such that, at each

iteration, the new value is larger than the smallest weight of the previously estimate to C. This ensures

that the value of C estimated in the next iteration will differ from the current estimate. As in the preceding

example we repeat this procedure for each of the 900 simulation scenarios from Sadinle (2017).

The number of matches found within each scenario is shown in Figure 2.7 plotted against the

corresponding value of θ with the true number of matches shown as a dashed line. We also plot the expected

number of links (with a 99% coverage interval shown in grey) under the distribution defined by taking θ as

a parameter for (1.19), the prior defined by Green and Mardia (2006). Across all scenarios the estimated

number of matches falls as θ is increased. Encouragingly, we note that the estimated number of matches

aligns closely with the true number of matches when the prior places significant weight near the true number

of matches. Indeed for the 50% and 10% overlap scenarios we can see that the estimated number of matches

is close to the true number of matches for a range of θ values roughly center on the value of θ for which the

prior expected number of matches equals the true value. Unsurprisingly, this range appears to be wider in

the scenarios with fewer erroneous fields, corresponding to higher signal generative processes.
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Figure 2.8: Precision and recall as functions of θ. Lower values of θ typically result in near perfect recall
but poor precision with the opposite occurring with larger values of θ

Just because the correct number of matches is estimated does not guarantee that the correct matches

have been identified. This is particularly true when there is less than 100% overlap between the datasets. We

therefore plot the precision and recall of the set of estimated matches in Figure 2.8. What we see is entirely

consistent with the results in Figure 2.7. For low values of θ, when too many matches may be identified, the

recall is near 1, meaning that all true matches are correctly identified, but precision is significantly below

1. As θ is increased precision increases with no cost to recall, until θ is raised to such a value that fewer

than the true number of matches is identified. Past this point precision remains close to 1, indicating that

nearly all estimated matches are made correctly, but recall falls with the number of estimated matches. For

values of θ near that at which the prior expected number of matches is near the true value both precision

and recall are at or near 1. Although it appears that in the scenario with three erroneous fields the signal to

noise ration may be such that perfect precision and recall cannot be achieved simultaneously for any value

of θ.

Finally, we examine the estimated m parameters, which correspond to the probabilities of observing an

exact match on the first and last name fields for a matching record pair. We select these parameters because

it is easy to determine what the true value is from the description of the generative model provided in

Sadinle (2017). We plot the estimated values as a function of θ in Figure 2.9 with the true values, which are

independent of the level of overlap, shown as dotted black lines. As observed in Figures 2.7 and 2.8 there is

general a range of θ values, coinciding with the prior expected number of matches is closely aligned with the

true value, in which the estimated values are close to the true value. For lower values of θ, under which too

many matches are estimated, the parameter tends to be underestimated. This is consistent with many non-

matching record pairs, which contain fewer exact agreements, are included in the M component. For large

values of θ, when very few matches are estimated, the behavior appears to be much less stable. In such cases

only a subset of the true matches are identified as such (as shown in Figure 2.8) but it is unclear how this
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Figure 2.9: Estimated probability of exact agreement on first name and last name comparison as a function
of θ. True values from the generative model are shown in the dashed black lines.

subset is selected, and for extreme values there may be multiple modes. In such a simulated setting, where

all true matches are expected to correspond to an equally strong signal, this processes is probably influenced

by incidental correlations between the distribution of comparisons within the M and U components. We see

for example that with 1 erroneous field, for large values of θ, the estimated probability of agreement on first

name typically approaches one, while the probability of agreement on last name approaches zero. Yet in a

non-trivial number of simulations the opposite happens. However, we note that for θ = 10 99% of the prior

probability is placed on between 4 and 19 matches occurring, far fewer than in even the 10% overlap case.

Thus, as long as some prior information on the expected number of matches is available such extreme values

of θ can be avoided.

2.3.4 Discussion

In this chapter we have made several contributions to the question of generating a point estimate of the link

structure under one-to-one matching. In particular we have reexamined the use of LSAPs to resolve a set

of weights into an estimate of the link structure. We have shown that using either thresholded or penalized

versions of these weights, as defined in (2.4) and (2.9) respectively, leads to both a better estimate of the link

structure and, through induced sparsity, a more tractable optimization problem. We then outline several

theoretical reasons why Auction algorithms may be particularly well suited to solving the resulting LSAPs.

Finally, we use the computational advances to develop a new penalized likelihood estimator which requires

many more LSAPs to be solved, but allows the one-to-one matching constraint to be enforced throughout
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Figure 2.10: Number of matches estimated in Alameda county voter data as a function of θ. The total
runtime of the estimation is under an hour.

the estimation of the matching parameters. However, we have yet to provide evidence that the penalized

likelihood estimator can be applied practically to truly large record linkage problems. Furthermore, it is clear

from the results that the performance of the penalized likelihood estimator is highly dependent on the value

of the penalty parameter θ. Yet, we have not provided guidance on the selection of this crucial parameter.

We address the first of these questions applying to penalized likelihood estimator to a larger record linkage

problem, the details of which will be discussed further in Chapter 3. For the second we suggest strategies

which may be employed to select θ depending on the level of evaluation which can be applied to the problem.

While the examples presented in this chapter are all relatively small, 500×500 or smaller, the algorithmic

advances presented in Section 2.2 make it possible to apply the penalized likelihood estimator to significantly

larger problems. In Figure 2.10 we plot the estimated number of matches from the penalized likelihood

estimator for two voter registrations files from Alameda county, data which we discuss in more detail in

Chapter 3. The two files to be matches contain approximately 260,000 and 290,000 record respectively,

nearly three orders of magnitude larger than the problems presented in this section. Yet, the total runtime

of the estimation on this problem is under an hour, similar to the amount of time required to compute the

comparison vectors. Finally, we note that, for even larger problems, if the runtime appears intractable the

level of sparsity (and hence the ease of solving) can always be increased by initialing the procedure at larger

θ value. Indeed, although not examined here, such an approach may be a reasonable method of initializing

the parameters before computing the estimator with a lower value of θ.

We next consider the problem of selecting an appropriate value of θ. In general we recommend, as a first

step, always computing the penalized likelihood estimator across a range of values for θ. Performing such a
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sensitivity analysis is straight forward and yields additional information. At a minimum it allows a sensitivity

analysis to be performed not just on the estimated link structure but on any down stream quantities. If these

appear relatively stable over a range of θ values, as seen in the precision plotted in Figure 2.8 for the 100%

overlap simulations, then it may be the case that the downstream estimation is not particularly sensitive to

the exact value of θ selected. If however, the quantity is more sensitive to the value of θ, such as the number

of estimated links shown in Figure 2.10 then the selection of θ can be aided by either the incorporation of

prior information on the expected number of links, or by the considering labeled data.

If for reasons of cost or difficulty of implementation no labeling of data is possible then we recommend the

selection of an appropriate value for θ by interpreting the penalized likelihood estimate as a MAP estimate

implied by the value of θ. This approach assumes a prior distribution over the link structure of the form

introduced by Green and Mardia (2006) (and defined in (1.19)). Under this framework one can, a prior, set an

expected number of links, which will in turn correspond to a value of θ. We plot this value in Figure 2.10 as a

black line. If no prior information on the expected number of links is available then an alternative approach is

to set θ to the value at which the expect number of links under the corresponding prior equals the estimated

number of links (where the lines cross). In the simulation study presented in Section 2.3.3 this approach

appears to perform well. However, we caution over interpreting these results as within the simulation study

the generative model closely aligns with the fitted model, whereas in real world examples it is common from

some model assumptions to be violated, particularly the conditional independence assumption.

In the absence of prior knowledge about the expected number of matches within a dataset we recommend

selecting a value of θ through the use of training data. If such data is already available then θ can be selected

be setting a loss function which will evaluate the cost of false matches (more likely under lower values of

θ) vs. false non-matches (more likely under larger values of θ). In the frequent scenario where labeled data

is not available, but can be generated at some cost then we recommend a more ad-hoc approach where

instead of evaluating all matches only the marginal matches are evaluated. Consider again Figure 2.10, at

θ = 10 approximately 175,000 matches are estimated, at θ = 15 110,000, and at θ = 20 90,000 matches.

Furthermore, it is likely that nearly all of the 90,000 matches found with θ = 20 are also included in the

110,000 estimated matches under θ = 15. We can exploit this by labeling a sample of the 20,000 matches

estimated when θ = 15 but not when θ = 20. If this set is found to contain mostly matches then we can

conclude that this likely true of the 90,000 matches we have not examined, indeed the set of 90,000 matches

identified under a larger penalty is likely to be higher quality. We may thus conclude that we should set θ

to 15 or lower. If however, we find that the labeled sample contains many non-matching record pairs then

we can instead conclude that we should set θ to some value larger than 20. We can repeat this processes

until we find a value of θ above which the marginal set of links is composed of the desired share of matches

and below which the marginal set contains an unacceptably high share of non-matches. Such an iterative

procedure bears some similarity to the one suggested by Larsen and Rubin (2001).
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A final shortcoming of the penalized likelihood estimator is that it fails to identify cases where a single

record is part of multiple record pairs which appear to be matches (correspond to high weights). As shown

in Table 2.1, there are a total of 25 record pairs in which the records match across all three fields. Yet, only

24 of them are linked, because the 25th contains a record that is also included in one of the other 24, so that

the two record pairs cannot be matched simultaneously under a one-to-one matching constraint. Because it

reports only a single assignment, for each value of θ, the penalized likelihood estimator is unable to identify

this uncertainty and simply links one of the record pairs, essentially at random (unless otherwise constrained

by the link structure). In contrast Bayesian methods, which estimate a posterior over the link structure, will

characterize this uncertainty but have thus far been intractable for large record linkage problems. In the

next chapter we show how the penalized likelihood estimator can be used in an initial pre-processing step in

a procedure which allows fully Bayesian models to be estimated for large record linkage problems.
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Chapter 3

Scaling Bayesian Probabilistic Record

Linkage with Post-Hoc Blocking: An

Application to the California Great

Registers

PRL is inherently computationally expensive; with files of size nA and nB there are nA × nB record

comparisons to be made. We saw in Chapter 2 that the introduction of sparsity, by excluding record

pairs weight low weights can make PRL problems significantly more tractable. Unfortunately, the penalized

likelihood estimator we introduce in Chapter 2 fails to include an estimate of the uncertainty in the link

structure, a serious shortcoming. Bayesian PRL, as introduced in Section 1.6, can easily estimate such

uncertainty via a posterior distribution. However, in the absence of a high-quality blocking field, Bayesian

PRL is generally not computationally tractable for files containing more around a thousand records. In

this chapter we introduce a method for estimating Bayesian PRL models which, by excluding low-quality

record pairs as done in Chapter 2, allows an approximate posterior distribution for the link structure to be

estimated for significantly larger files than was previously possible. Crucially, this method does not assume

the files contain high-quality fields suitable for use as blocking-key.

3.1 Post-Hoc Blocking for Bayesian PRL

Given their computational complexity, Bayesian implementations of PRL can benefit from stricter blocking

or indexing than other methods. Stricter indexing increases the risk of false non-matches, so it is important
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that the indexing be as efficient as possible by admitting plausibly matching record pairs while excluding

clearly non-matching pairs. We propose constructing a high-quality blocking key from the available fields

which separates most of the obviously non-matching pairs across blocks while keeping plausible matches

within the same block. This is difficult to do via traditional indexing a priori, especially in the absence

of labelled matches, so we suggest a data-driven approaches to choose the blocks (with or without labelled

matching and non-matching pairs) – hence the name post-hoc blocking.

Post-hoc blocking is straightforward: First, perform traditional blocking or indexing only to the extent

necessary to make computing comparison vectors feasible. Second, estimate matching weights or probabilities

for each record pair. We refer to these generically as post-hoc blocking weights. The only criteria for these

weights is that they reliably give relatively high weight to plausible matching pairs and low weight to true

non-matching pairs; they need not be well-calibrated probabilities or proper likelihood ratios. Third, conduct

an additional blocking pass using the estimated weights to construct the blocking key, reducing the number

of record pairs just enough to make running an MCMC algorithm feasible. With the post-hoc blocks in

hand, we run an MCMC algorithm as usual, restricting the proposal distribution to only consider matches

within post-hoc blocks.

Figure 3.1 illustrates the process of post-hoc block generation. The rows and columns of the heatmaps

correspond to records from file A and file B, respectively. Panel (a) shows a heatmap of the post-hoc blocking

weights for each pair, with darker squares signifying larger weights. To generate a set of post-hoc blocks

we begin by thresholding the matrix of weights at a low value w0. Panel (b) shows the thresholded matrix,

where black boxes correspond to the record pairs with weights over the threshold.

At this point we have defined a bipartite graph between the records in files A and B (shown below the

heatmap); an edge is present between records ai and bj if the weight for the record pair exceeds w0. The

sets of records corresponding to the nodes in each connected component are the post-hoc blocks; these are

labelled in Panels (c) and (d). Post-hoc blocking significantly reduces the number of candidate pairs while

identifying a block of records that appear to have multiple plausible configurations (post-hoc block 1, in

blue). After a first pass, if any of the remaining post-hoc blocks are too large, we increase w0 and apply this

procedure recursively within the large blocks.

The procedure for sampling from an approximate posterior distribution for C employing post-hoc blocking

is summarized in Algorithm 2 below; implementation details follow.

Weight estimation. Clearly the performance of post-hoc blocking will depend on the quality of the weights.

However, compared to using the weights to identify truly matching pairs, for the purposes of post-hoc blocking

we can tolerate lower quality weights. What is essential is that they give high weight to truly matching and

ambiguous record pairs, while giving low weight to clearly non-matching pairs (so the blocks are compact).

It is less important that the weights give a good rank ordering of the truly matching/ambiguous pairs – as
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Algorithm 2 Post-hoc Blocking with Restricted MCMC

Input: Comparison vectors Γ for a set of record pairs, initial weight threshold wmin, maximum post-hoc
block size Nc

Output: Approximate posterior distribution for C and other model parameters

1. Estimate post-hoc blocking weights ŵab.

2. Compute the matrix E where eab = 1(ŵab > w0) with w0 = wmin

3. Find the connected components of G, where G is defined as the bipartite graph with adjacency matrix
E. The set of records corresponding to the nodes in each connected component are the post-hoc
blocks

4. For post-hoc blocks larger than Nc repeat 2. and 3. with a threshold w′0 > w0. Apply recursively on
any resulting post-hoc blocks larger than Nc

5. Run a standard MCMC algorithm, fixing Cab = 0 for all record pairs outside of the post-hoc blocks.
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Figure 3.1: An example of post-hoc blocking: the top figure of each panel shows an edge matrix and the
corresponding bipartite graph is shown in the bottom figure. (a) shows an example of estimated weights
with darker cells corresponding to larger weights. (b) We construct a binary matrix where ones indicate
weights above the threshold; this is the adjacency matrix of a bipartite graph. (c) We number and color the
connected components of the graph; these are the basis of the post-hoc blocks. (d) We reorder the records
to group them into the post-hoc blocks. Note that record pair (a4, b1) (labelled 1∗) is included to complete
post-hoc block one, even though its weight was below w0.
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long as they end up in the same post-hoc block, the Bayesian model and MCMC algorithm will treat them

appropriately.

If labelled true matching and non-matching record pairs are available we could use these to predict

matching probabilities for the remaining pairs using standard classification methods. These predicted

probabilities will often fail to be well calibrated; for example, when a record in file A has multiple plausible

candidates in file B they may all receive high matching probabilities with a classifier trained treating record

pairs as iid observations. Regardless, these records will be gathered into the same post-hoc block and the

uncertainty in the matching structure will be accurately represented in the posterior distribution.

Alternatively, in the absence of labelled record pairs we could use EM estimates of the Fellegi-Sunter

weights (1.5) as post-hoc blocking weights. This can work well in settings where there are many attributes

available for matching and where most of the records in A also appear in B (Winkler, 2002). When the two

files have few fields in common, or there is significant error in the fields available, or when there is limited

overlap between the files, EM-estimated weights can perform quite poorly (Winkler, 2002; Tancredi et al.,

2011; Sadinle, 2017). More reliable weights can be obtained by getting coarse estimates of m− and u−

probabilities while accounting for the one-to-one matching constraint. We outline a method for obtaining

such weights using a novel penalized likelihood procedure in Section 3.2.1; this is how we generate the

post-hoc blocking weights for our application in Section 3.3.1.

Obtaining post-hoc blocks. For a given threshold w0, finding the post-hoc blocks is equivalent to finding

the connected components of a bipartite graph. This is a well-studied problem with computationally efficient

solutions (Tarjan, 1972; Gazit, 1986).

Selecting the maximum block size Nc. Choosing the maximum block size Nc requires balancing

statistical accuracy (the quality of our posterior approximation) against computational efficiency. Smaller

values of Nc are more likely to exclude true matching pairs, increasing the false non-match rate.

Excluding truly non-matching pairs which are not obviously non-matches also risks misrepresenting posterior

uncertainty. On the other hand, selecting a larger Nc decreases bias by admitting more record pairs and yields

a smaller number of post-hoc blocks of larger size. Larger post-hoc blocks lead to increased computation

time, as the most significant computational gains accrue when a large fraction of the post-hoc blocks are

small. Given these considerations we should choose the largest Nc that leads to a computationally feasible

MCMC algorithm. What constitutes a “feasible” problem will naturally be context dependent.

Implementing restricted MCMC algorithms. Post-hoc blocking can achieve massive reductions in

scale relative to traditional blocking schemes. Generally, a large number of small or singleton blocks are

produced, in addition to a smaller number of larger blocks. This distribution of block sizes makes possible

a restricted MCMC algorithm which mixes much more efficiently than standard approaches.

For very small blocks we perform Gibbs updates by enumerating all possible values of the corresponding

submatrix of C and sampling proprtional to their unnormalized posteriors. Other implementations of
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Bayesian PRL have taken advantage of this enumerability when a large number of high-quality traditional

blocking fields are available (e.g. Gutman et al. (2013)). However, post-hoc blocking is more likely to

produce a large number of small blocks than traditional blocking, especially in the absence of one or more

high-quality blocking keys.

For moderately-sized blocks, informative locally balanced Metropolis-Hastings proposals can be used

instead of simple add/drop/swap proposals (Zanella, 2019). Zanella (2019) showed that locally balanced

proposals can dramatically improve mixing over standard Metropolis-Hastings proposals in Bayesian PRL

models. However, locally balanced proposals also become prohibitively costly for large blocks: For a kA×kB
block containing L links at one iteration, the likelihood (up to a constant) must be computed 2(kAkB −

L(L−1)) times to perform a single locally balanced update. Zanella (2019) mitigated this issue by including

random sub-block generation as part of the locally balanced proposal. But as the file sizes increase random

sub-blocks, if held at a fixed size, are increasingly unlikely to capture all or even many of the plausible

candidates for each record in the block, increasing mixing time. The alternative, allowing the size of the

sub-blocks to grow with the file size, will result in a quadratic growth in the cost of performing the update.

In contrast, our post-hoc blocks are specifically constructed to capture all the plausible candidates for a

given record in the same compact block.

The integration of post-hoc blocking with locally balanced moves and Gibbs updates produces an MCMC

algorithm which mixes substantially faster for large problems than standard approaches. However, the

posterior distribution obtained under post-hoc blocking is only an approximation, as the posterior probability

of links between record pairs outside of the post-hoc blocks is artificially set to zero.∗

In small problems where we can check against the full posterior the practical effect of this approximation

seems to be limited, as shown in Section 3.2.2. In large problems, an approximation of some sort seems

unavoidable – it is infeasible to run any MCMC algorithm over datasets with hundreds of thousands of

records generating hundreds of millions or billions of candidate record pairs (after indexing) sufficiently long

to mix properly. The result is that in a practical MCMC run the vast majority of those entries we fix

at zero would have posterior probabilities estimated at or near zero anyway. With post-hoc blocking and

restricted MCMC using locally balanced proposals we are able to hone in on areas of non-negligible posterior

uncertainty, and spend more of our time sampling in these regions.

3.1.1 Post-hoc Blocking Versus Traditional Blocking/Indexing/Filtering

Post-hoc blocking combines ideas from indexing (specifically blocking) and filtering. However, it is not a

special case of either. In traditional indexing and blocking, the goal is to avoid a complete comparison of the

record pairs. As a result, the record pairs excluded by indexing are simply ignored and have no impact on

∗At the cost of significant additional bookkeeping it is possible in principle to include the post-hoc blocking thresholds as
part of a proposal distribution similar to Zanella (2019); we leave this extension for future work.
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model fitting. The same is typically true under filtering – the record pairs that are filtered after a complete

comparison have been made are ignored during model fitting, even though their comparison vectors are

available.

In post-hoc blocking we use of all the generated comparison vectors by fixing Cab = 0 for record

pairs outside the post-hoc blocks. Even though they cannot be matched, data from these record pairs

are used to estimate model parameters. We take a similar approach to record pairs excluded by the initial

blocking/indexing scheme – although their comparison vectors are not available, we can compute the relevant

summary statistics exactly under a conditional independence model (see Section 3.4.1 for details). This avoids

some of the more pernicious bias-inducing effects of blocking, indexing, and filtering on subsequent parameter

estimation described by Murray (2016). In the model introduced in Section 1.5.2 this amounts to adding

additional record pairs directly to the U component, so we call this step a U-correction. We examine the

effect of the U-correction further in Section 3.4.1.

3.2 Post-Hoc Blocking Weights under One-to-One Constraints

High-quality weights are important for efficient implementation of the post-hoc blocking algorithm. In

applications of PRL to historical data we often have relatively few fields available to perform matching,

many or all of which are subject to error. At the same time we know that the constituent files are at

least approximately de-duplicated, so imposing a one-to-one matching constraint makes sense. We also have

limited or no labelled matching and non-matching record pairs with which to construct weights or validate

results, suggesting the use of EM-estimated Fellegi-Sunter weights in post-hoc blocking.

However, we have observed that in this setting (one-to-one matching with a small number of noisy fields)

the Fellegi-Sunter weights can be unreliable. We provided one example of this in Section 2.3.2. Similar

observations have been made by Tancredi et al. (2011); Sadinle (2017). In this section we propose a new

method for estimating post-hoc blocking weights under one-to-one matching constraints by enforcing the

constraints during estimation.

3.2.1 Maximal Weights for Post-Hoc Blocking

The estimated m− and u− probabilities obtained via penalized likelihood maximum estimation can depend

strongly on the value of the penalty parameter θ. In general higher values of θ correspond to lower numbers

of matches, and one could potentially try to calibrate this parameter based on subject matter knowledge and

prior expectations. However, rather than banking on our prior expectations we propose a more conservative

approach: Rather than fixing a value of θ and obtaining weights for each pair, we vary θ over a range of

values, obtain estimated weights for every value of θ, and take the maximum observed weight for each record

60



Last Sex Edu Count EM Weight Maximum Weight
1 1 1 25 5.27 6.21
1 0 1 8 3.77 3.04
1 1 0 13 -0.94 2.23
0 1 1 126 2.68 0.24
1 0 0 21 -2.45 -1.03
0 0 1 78 1.18 -3.14
0 1 0 601 -3.53 -3.81
0 0 0 658 -5.04 -7.19

Table 3.1: Maximum weights used for post-hoc blocking, and EM weights for comparison

pair as the post-hoc blocking weight. This obviates the need to calibrate θ and assigns relatively high weight

to any record pair that is a plausible match candidate for some value of θ.

To define the sequence of values we suggest starting with θ = 0 and then selecting successively larger

penalty values. The actual sequence of penalty values can be chosen via a variety of different rules. A useful

rule of thumb, which we outlined in Section 2.3.3 is that the next penalty in the sequence should be larger than

the smallest weight in the previous solution, to ensure a change in the solution to the assignment problem.

Specifying a minimum gap size between successive values of θ provides further control over computation

time. As discussed in detail in Chapter 2, Auction algorithms can provide an efficient means of updating

the estimate of the link structure as the penalty is increased. Furthermore, since the weights need only be

approximately correct, if the computational cost of computing the sequence of weights becomes too high the

tolerance of the estimated link structure (controlled by the ε parameter of the Auction algorithm) to small

deviations from optimality can be increased.

3.2.2 Illustrations of Post-Hoc Blocking and Restricted MCMC

We again consider the small scale Italian Census data introduced in Section 2.3.2 to illustrate the performance

of post-hoc blocking with maximal weights. We consider the same model as in Chapter 2 but instead of

applying the penalized likelihood estimator we apply a full Bayesian model. The prior over the linkage

structure is set to a Beta-bipartite distribution with α = 1.0 and β = 1.0, which is uniform over

the expected proportion of matches (Fortini et al., 2001, 2002; Larsen, 2005, 2010; Sadinle, 2017). We

again assume a conditional independence model for m− and u−probabilities as in (1.9). Each vector of

conditional probabilities is assigned a Dirichlet prior distribution. We assume that mj ∼ Dir(1.9, 1.1) and

uj ∼ Dir(1.1, 1.9) for j = 1, 2, 3 independently. These priors where chosen to contain modes near 0.9 and 0.1

respectively, with a reasonable degree of dispersion.

We estimate post-hoc blocking weights using the maximal weight procedure in Section 3.2.1. The resulting

weights for each possible comparison vector are shown in Table 3.1, along with EM weights for comparison.

Notable discrepancies are in gray. The maximum weights are simply an aggregation of the different weights
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Figure 3.2: (a) Post-hoc blocks overlayed on posterior link probabilities estimated via MCMC using all
record pairs (b) Posterior probabilities from EM and restricted MCMC versus posterior match probability
considering all record pairs.

estimated by the penalized likelihood estimator presented in Table 2.1. Therefore we do not repeat our

discussion of the discrepancies but simply provide the table for reference.

Given the small size of the problem we select only a single post-hoc blocking threshold w0 to implement

the restricted MCMC. In our post-hoc blocking procedure we limit the size of the largest post-hoc block to

fewer than 100 record pairs. The resulting post-hoc blocks contain only 94 of the 1530 possible record pairs.

These are spread across 21 separate post-hoc blocks. Of the 21 post-hoc blocks, 14 contain only a single

record pair, 4 contain 2 record pairs, the remaining three contain 4, 8, and 60 record pairs respectively.

We then run both a MCMC algorithm containing all 1530 record pairs and our restricted MCMC under

identical model specifications. Results from both models are displayed in Figure 3.2(a), with the post-hoc

blocks overlayed. Nearly all of the posterior link density is contained within the post-hoc blocks, but a few

pairs with modest posterior probability are omitted from the post-hoc blocks. (Lowering the threshold to

capture these would have resulted in a single large block.)

In Figure 3.2(b) we compare the posterior match probability estimated by the full MCMC, our post-hoc

blocking restricted MCMC, and posterior probability estimates as computed from the EM output. The full

and restricted MCMC probabilities are quite similar, except the small cluster of points on the x-axis near

the origin. These are points that had modest posterior probability – less than 0.12 – in the full MCMC but

were excluded from the post-hoc blocks and assigned zero probability in the approximate posterior. Even

in this small example we obtain a significant improvement in runtimes: Using identical implementations

posterior sampling takes 3.4 seconds for the full MCMC algorithm versus 0.32 seconds when employing

62



post-hoc blocks. The order of magnitude reduction in runtime is almost certainly an understatement if we

also consider the mixing time of the two chains – the restricted chain targets its moves carefully and tends

to mix much faster.

The EM fit provides estimates of posterior probabilities, albeit posterior probabilities that do not respect

one-to-one matching constraints. These estimates do not align well with the MCMC output. This is in part

due to the problematic weight estimates in Table 3.1. But the failure to account for one-to-one matching,

discussed extensively in Chapter 2, seems to play a larger role. In general we would expect omitting the

constraint to lead the posterior probability estimates to be too high, which is what we see here – nearly all

the EM posterior probabilities exceed the Bayesian estimates.

In the next section we demonstrate the application of our post-hoc blocking method to the PRL problem

of linking voter registration files. These files are orders of magnitude larger than those presented so far,

containing hundreds of thousands of records. Yet, we are able to link them in a matter of hours. Furthermore,

we then use the estimated posterior distribution to propagate uncertainty in the link structure into estimates

derived from the linked data. The ease of uncertainty quantification is a significant advantage of Bayesian

PRL which we have yet to discuss fully.

3.3 Linking the California Great Registers

Beginning in 1900, California counties were required to publish a typeset copy of their voter lists in each

election year (Spahn, 2017), known as the California Great Registers, which contain the name, address, party

registration and occupation of every registered voter. This served as a record of the county’s voters and as

poll books on election day. The Great Registers provide a fine-grained tool for measuring the dynamics of

partisan change over an especially interesting period of American history – the New Deal realignment. From

1928 to 1936, a substantial number of Americans switched their partisan allegiance from the Republicans

(the party of Herbert Hoover) to the Democrats (the party of Franklin Roosevelt). While this change is

known to have taken place at the macro-level, the Great Registers are the first dataset that follows this

change at the individual level, provided we can link individual voters over time.

One quantity of interest to historians and political scientists is the frequency with which voters changed

party affiliation from 1932 to 1936, during Roosevelt’s first term as president (Erikson and Tedin, 1981;

Andersen, 1979). Decades of surveys conducted since 1948 have shown that voters rarely switch parties. But

this earlier period, before modern polling, featured the most dramatic and rapid change in partisanship in the

twentieth century, making individual-level panel data from this period especially interesting. In particular,

individual-level panel data would enable a more detailed study of party switching behavior by demographic
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groups (Sundquist, 1983; Corder and Wolbrecht, 2016; Norpoth, 2019). To construct such a panel, we link

records from the across the 1932 and 1936 registers based on the recorded name, address and occupation.†

Though the structure of the data is relatively simple, transferring it from the printed page into digital

format is challenging. Ancestry.com scanned and performed optical character recognition (OCR) on the

Great Registers, enabling use of the data by their subscribers for genealogical research. Since the quality of

the scan as well as the original organization of the page can make the OCR fail to produce recognizable text

or mistranscribe certain words and letters, much of the data was digitized imperfectly. Once digitized, the

data require further processing and standardization which is also subject to error. These errors, coupled with

natural variation (such as address changes and inconsistent recording of name variants and occupations),

make linking challenging.

Because erroneous matches will inflate the match rate (a randomly selected voter from 1932 will share

a party affiliation with a randomly selected voter from 1936 49% of the time), making quality matches

– and accounting for uncertainty in which records match – is essential to robustly estimating the party-

switching rate. In addition to linking these two files, we also estimated false match rates to understand the

performance of linkage algorithms and adjust our estimates, and compared the distribution of variables in the

linked dataset to cross-sections of the Great Registers to help gauge whether differential false non-matching

might threaten the representativeness of our linked sample.

3.3.1 Application to Alameda County

In our study of the Great Registers we link 1932 and 1936 voter registration files for Alameda county. We

chose this location and period because the data quality in Alameda is relatively good, prior work suggests

that the party switching rate over this period is relatively high, and we suspect that registers from presidential

election years have a higher degree of overlap than those from adjacent election years. Data preprocessing

details appear in Appendix 3.4. After cleaning and parsing the records from each year, we are left with

259,162 records from 1932 and 288,087 records from 1936.

We present two estimates of the links between the 1932 voter file and the 1936 voter file. The first are

based on the Bayesian model described in Section 1.5.2 with post-hoc blocking and restricted MCMC. The

second estimates are from a benchmark analysis using methods described in Enamorado et al. (2019), as

implemented in the fastLink R package (Enamorado et al., 2018). FastLink utilizes a Fellegi-Sunter based

model with parameter estimates computed via EM with specialized routines for blocking and post-estimation

imposition of one-to-one matching constraints. We present error rate comparisons between the estimated

links in Section 3.5.1 and differences in estimated party switch rates in Section 3.6.

†While party might be an informative field in making a match, we withheld it from the matching process so that our estimate
of the key quantity of interest – the party switching rate – is not biased toward stability.
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Similarity Level Similarity Range
6 [1]
5 [0.85, 1)
4 [0.6, 0.85)
3 [0.45, 0.6)
2 [0.25, 0.45)
1 [0.0, 0.25)

Similarity Level Similarity Range
5 [1]
4 [0.75, 1)
3 [0.5, 0.75)
2 [0.25, 0.5)
1 [0.0, 0.25)

Table 3.2: String similarity to ordinal mapping. Jaro-Winkler string similarity (left) and zero-padded
Levenshtein string similarity (right).

3.4 Data processing details

Before constructing comparison vectors we undertake a number of pre-processing steps. The suffix field is

coded as missing so frequently that we are forced to discard it entirely. Name prefix is also largely missing

but is useful in that the vast majority of non-missing entries are either “mrs”, “ms”, or “miss” indicating

that the individual is a woman, a feature which is not coded explicitly in the original data. We construct an

indicator variable for probable females if one of these prefixes appears, or if the occupation is recorded as

“housewife” or a variant thereof. We then code the occupation variable as missing for housewives, as chance

agreement on occupation for housewives is very common.

We split the given name field into separate first name and middle name fields. We also split the address

field into three parts: street number, street name, and street type. Street number is coded as missing in cases

where the street number is not included in the address. The street type was re-coded (e.g. mapping both

“rd” and “road” to “road”) to standardize common abbreviations. The street name contains the remains of

the original address field after removing the street number and street type from the original address string.

We discarded records missing two or more of the first name, surname, occupation, and street name fields.

3.4.1 Bayesian Model: Implementation Details

Before estimating the Bayesian model we reduced the set of potential matches via indexing by disjunctions

of blocking keys. A record pair was included as a potential match if the first three characters of the given

name or the first three characters of the surname matched exactly.‡ This left about 850 million record pairs

as potential matches.

Construction of comparison vectors

We used the Jaro-Winkler similarity score to compare first name, surname, occupation, and street name

fields. We compared the street number field with a Levenshtein distance, using zero-padding to ensure the

‡Women’s first names beginning with “mar” are exceedingly common in this period, so for records pairs with both first
names beginning with “mar” we used four characters of the first name.

65



distance is calculated between strings of equal length. The resultant string similarities were converted to

comparison vectors by binning (Table 3.2). We compared our constructed female indicator and the street

type using exact matching (coded as 2 for a match and 1 for a non-match).

Modeling the similarity in the middle name field required a more nuanced approach because in many

cases only a middle initial was recorded. We considered three cases: two full middle names present, two

middle initial initials present, and a full middle name present in one record and only a middle initial in the

other record. When two full names were present we used the same string comparison and cutoffs as for

comparing first and surnames. For two initials, or one full name and one initial, we used exact matching

between the first letter of the full name and the initial. This resulted in 10 possible similarity levels for

middle name, the six in Table 3.2 for two full middle names, two for comparisons between middle initials,

and two for comparisons between a middle initial and a full middle name.

Computing comparisons outside of the indexing for the “U-correction” on Bayesian models

It is well known that failing to account for the blocking or indexing scheme can result in bias in the estimated

u-parameters (Murray, 2016). This bias is introduced because, under any reasonable indexing or blocking

scheme, the distribution of even non-matching comparison vectors will differ substantially between record

pars within the scheme and those excluded from it. For example, in the indexing scheme employed for our

Bayesian model (Section 3.4.1) we consider only record pairs which match on the first three digits of first or

last name. By design the scheme excludes record pairs which are dissimilar on both first name and last name,

the overwhelming majority of record pairs. This means that record pairs displaying low levels of similarity

on first name or last name will be underrepresented, potentially massively so, relative to what would be

observed if all comparison vectors were computed.

Setting Cab = 0 for all record pairs outside of the blocking scheme then, under a conditional independence

assumption, the missing comparisons need only be generated marginally. That is, it is not necessary to

calculate the full comparison vector for each record pair outside of the indexing or blocking scheme, only to

determine frequency with which each similarity level would occur for each feature. This is a result of the

fact that, under a conditional independence assumption, the likelihood factors in such a way that only the

marginal frequencies with each group (match and non-match) are necessary as can be seen in (1.9).

Computing these marginal frequencies is much more tractable as it can be done by computing similarities

only for observed unique values and weighting appropriately. For example, the first name john occurs 8,173

times in the 1932 data and the first name william occurs 8,349 times in the 1936. Hence, there will be a

total of 68,236,377 record pairs (8,173×8,349) in which the first name in 1932 is john and the first name in

1936 is william but the string similarity need only be computed once.
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Field Unique Values 1932 Unique Values 1936 Required Comparisons
First Name 16,496 15,045 248,182,320
Middle Name 6,489 6,039 39,187,071
Middle Initial 37 32 1,184
Surname 55,648 54,715 3,044,780,320
Female 2 2 4
Occupation 17,164 18,115 310,925,860
Street Number 9,071 10,098 91,598,958
Street Name 15,256 8,316 126,868,896
Street Type 12 12 144

Table 3.3: Unique values observed within each year for each record field. Due to ORC errors numbers are
sometimes observed in the middle initial field causing the number of unique observed values to be greater
than 26.

In Table 3.3 we show the number of unique values observed for each field for each year. In total computing

the full set of comparisons requires approximately 5 billion different comparisons. We note that while this

is larger than the number of comparison vectors we generate for the analysis because multiple comparisons

are required for each comparison vector even computing the full set of comparisons is less computationally

costly than generating the comparison vectors. Furthermore, this is less than 1% of the nearly 675 billion

comparisons that would be required if all possible comparison vectors were generated individually. While

significantly more efficient approaches exist for generating the full set of comparison vectors (e.g. the

implementation in Enamorado et al. (2019) using a hash table), at large scales other constraints, such as

memory constraints, often become binding. Finally, while in our case we compute the marginal frequencies

exactly it is possible to approximate them closely by computing similarities for record pairs generated via

weighted random sampling of the unique values (with weights corresponding to observed frequencies). We

refer to the inclusion of these frequencies as making a “U-correction” since the main effect is on the estimates

of the u-parameters. We find that this correction is extremely important in practice.

Prior distributions, post-hoc blocking and restricted MCMC

Our prior specification for the model in Section 1.5.2 began with a Beta-bipartite prior on C with α = 1.0

and β = 1.0. For first name, surname, occupation, and street name, mj ∼ Dir(10, 6, 2, 1, 1, 1). For middle

name mj ∼ Dir(10, 5, 3, 6, 2, 1, 1, 1, 1, 1), where the weights of 5 and 3 correspond to exact matching between

two initials and exact matching between an initial and the first letter of a full middle name, respectively.

For street number mj ∼ Dir(10, 6, 2, 1, 1), and for female and street type we set mj ∼ Dir(5, 1). The prior

distribution for all uj vectors was uniform; these parameters are well-estimated from the data since most

pairs are non-matches.

We fit the model via restricted MCMC using post-hoc blocks based on the maximal weights procedure

detailed in Section 3.2.1 of the supplemental material. We set Nc, the maximum post-hoc block size, to
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Figure 3.3: Posterior means of m-parameters (top) and u-parameters (bottom) with and without the
U-correction.

250,000 record pairs. The resulting set of 94,997 distinct post-hoc blocks contains approximately 820,000 of

the record pairs, a reduction of 99.9%.

On a 2014 Linux workstation, constructing the comparison vectors took about 2 hours, while estimating

the weights and finding the post-hoc blocks took approximately 90 minutes. We ran the restricted MCMC

algorithm for 25,000 steps, where each “step” comprises an update to the m− and u− paramaters in addition

to a Metropolis-Hastings proposal within every post-hoc block (i.e., one step of the MCMC algorithm

constitutes nearly 95,000 add/delete/swap updates to C, one within each post-hoc block). The restricted

MCMC algorithm took 3.7 hours to run. In total it took under 7.5 hours to link these two files.

Effect of making the “U”-correction

We show the effect making the U-correction has on the parameter estimates in Figure 3.3. Examining the

u-parameters in the bottom row it is clear the largest effect is on first name, one of the indexing fields, and

the female indicator, which is likely correlated with first name. We see a smaller effect on surname, the other

indexing field. Interestingly we also see changes in the estimated m-parameters for the address fields street

number, street name, and street type. Here the observed change is a decrease in the estimated probability of

observing an exact agreement in the address fields, conditional on the record pair corresponding to a match.

This suggests that the model with the U-correction is matching a larger number of record pairs which differ

on address, corresponding to the mover category discussed in Sections 3.5.1 and 3.6. The differences in

parameter estimates also results in a larger number of estimated links.

Posterior distributions for the number of links with and without the U-correction are shown in Figure 3.4.

The posterior distribution for the model with the U-correction (center) indicates both a larger mean number

of estimated links, approximately 137,600 with the correction and only 87,200 without, as well as more

dispersion in the number of links. The right panel shows the number of matches that would be returned
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Figure 3.4: Posterior distribution of number of links for our Bayesian model with and without U-correction
(left).

by each model as a function of the posterior probability threshold for declaring a record pair a match. In

addition to identifying more matches, for all match thresholds, the larger slope of the U-correction line

indicates that the model identifies many more record pairs with a non-trivial level of uncertainty about

the match status, perhaps better characterizing the matching uncertainty. An inspection of a set of links

assigned a substantially high link probability by the model with the U-correction suggests that most of these

additional links correspond to true matches. In particularly, essentially all of the mover matches identified

by the Bayesian model discussed in Section 3.5.1 are assigned a non-trivial link probability only by the model

with the U-correction.

3.5 fastLink implementation

We relied on internal fastLink functions to block on first name, since fastLink was unable to use indexing

by disjunctions by design. We used fastLink’s built-in clustering function to generate blocks of maximum

size 10,000 by 10,000 – much larger than our post-hoc blocks – resulting in 123 distinct blocks containing

1.1 billion record pairs. To generate comparisons with fastLink we used the Jaro-Winkler similarity score on

all fields except for female and street type, for which we rely on exact matching. We were limited to three

categories for the string comparisons by the fastLink package, so we followed recommendations in Winkler

(1990); Enamorado et al. (2019) to set string similarity cutoffs; similarity above 0.92 corresponded to an

“exact” match, between 0.88 and 0.92 a partial match, and below 0.88 a non-match on the field.§.

§In very recent versions of the fastLink package the default 0.92 similarity threshold for an “exact” match was increased to
0.94.
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Enamorado et al. (2019) suggest declaring matches by thresholding estimated posterior probabilities

(derived from (1.10)) at a value between 0.75 and 0.95. Based on early inspection of the results we chose a

cutoff of 0.9. Like other EM-based methods, fastLink does not incorporate a one-to-one matching constraint

during estimation, so we relied on the fastLink’s deduplication procedure to produce a set of record pairs

consistent with the one-to-one matching assumption. Roughly, the fastLink deduplication procedure limits

declared matches to those record pairs for which the estimated posterior probability is the observed maximum

for both records across all possible record pairs involving one of two records. In the case where multiple

record pairs achieve the maximum, ties are broken by sampling uniformly among the candidates.

3.5.1 Comparing the Bayesian model and fastLink

Before estimating party switching rates we compared the links made by each method. In particular, we

focus on estimating the overall match rate and the rate of false matches. Overall, we find that the Bayesian

model makes many more true matches at a significantly lower false match rate. Since choices about string

similarities and blocking procedures do not explain the gap in results between the Bayesian model and

fastLink; we discuss some important remaining differences between the methods below, and how they might

impact performance.

Common versus distinct parameters and the U−correction. fastLink estimates a distinct Fellegi-

Sunter model (1.4) via regularized EM within each block, yielding 123 separate estimates for each model

parameter. Since fastLink does not make a U−correction this model makes some sense, as we would expect

the at least some of the u−probabilities – which roughly measure the probability that two randomly selected

records within a block will agree or partially agree by chance – to vary across blocks. (It is less clear why the

m− probabilities, which capture measurement/recording or reporting error, should vary by blocks defined

by the first name field.) Figure 3.5 shows histograms of these parameter estimates along with the posterior

means from the comparable Bayesian model (labelled “Comparable”). We see the expected variability of

fastLink’s first name u−parameters across blocks. We see similar variability in the u−parameter for female,

since the distribution of gender varies across fastLink’s blocks. There is marked variability in the fastLink

estimated m−probabilities across blocks, which is more difficult to explain by anything other than sampling

variability (even though many of the blocks are large, the proportion of matching pairs is small and fastLink

does not borrow information about the m−probabilities across blocks).

Constraints on the parameter estimates. fastLink imposes the following constraints on the parameter

estimates: mmatch ≥ mpartial−match ≥ mnon−match and umatch ≤ upartial−match ≤ unon−match (Enamorado

et al., 2019). It does not appear that this assumption is reasonable in our application. Consider the case

where random agreement on a field is relatively common but transcription errors are either uncommon or,

more plausibly, result in the a comparison falling into the lowest similarity bucket. In this scenario partial
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Figure 3.5: Distribution of fastLink parameters across blocks. Vertical lines show posterior means of
parameters for the Comparable model.

agreements may be observed less frequently than either matching comparisons among non-matched record

pairs (due to random agreement) or non-matching comparisons among matched record pairs (due to parsing

or transcription errors). This would violate the constraints imposed by fastLink and result in parameter

estimates on the boundary.

Concretely we see these effects in the Bayesian m−probability estimates for occupation and the address

fields. Conditional on the record pair being a true match, it is most likely that the street name, number and

occupation agree, but the next most likely outcome is disagreement, not partial agreement. This makes sense,

as occupations are often inconsistently recorded in a fashion leading to low similarity scores (a “stevedore” in

1932 might report his occupation as a “dockworker” in 1936) and addresses are subject to seemingly random

failures in the OCR and parsing. We might correct some of these effects with better pre-processing (e.g.

more intensive standardization of occupations), but both addresses and occupations are subject to change

over time. If these changes occur at a higher rate than minor typographical or OCR errors leading to partial

agreement then the constraint would still be violated.

Finally, note that as long as partial matches are relatively more common among truly matching record

pairs than non-matching pairs then an observed partial match will still, other features held constant, indicate

that the record pair is more likely to be a true match. Thus, we might expect to observe monotonicity among

the ratios of the parameters, mmatch/umatch ≥ mpartial−match/upartial−match ≥ mnon−match/unon−match

when the comparison under consideration is ordinal (but not, in general, among the parameters themselves).

In our application we do not impose this constraint although our parameter estimates, with U -correction,

satisfy it approximately.

Imposing the one-to-one constraint during or post-estimation.
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ID Year First MI Last Female Occupation Street Number Street Name Street Type
a1 1932 william e brown 0 carpenter 3200 high street
a2 1932 william e brown 0 carpenter 6401 outlook avenue
a3 1932 william j broun 0 carpenter 3026 shattuck avenue

fastLink Bayesian Model
a1 a2 a3 a1 a2 a3

1.00 1.00 0.00 0.00 1.00 0.00 1936 william e brown 0 carpenter 6401 outlook avenue
1.00 1.00 0.00 0.00 0.00 0.00 1936 william e brown 0 title examiner 6000 romany road
0.97 0.97 0.39 0.00 0.00 0.00 1936 william — brown 0 musician — — —
0.47 0.47 0.02 0.00 0.00 0.00 1936 william — brown 0 laborer — decoto —
0.21 0.21 0.01 0.00 0.00 0.00 1936 william h brown 0 carpenter — san lean —
0.03 0.05 0.00 0.00 0.00 0.00 1936 william — brown 0 clerk 25 linda avenue
0.03 0.05 0.00 0.00 0.00 0.00 1936 william — brown 0 clerk 2210 tenth avenue
0.01 0.01 1.00 0.00 0.00 1.00 1936 william j brown 0 carpenter 3026 shattuck avenue
0.01 0.01 0.00 0.64 0.00 0.00 1936 william m brown 0 carpenter 2205 woolsey street
0.00 0.00 0.99 0.00 0.00 0.00 1936 william j brown 0 laundry businese 1037 oakland avenue
0.00 0.00 0.99 0.00 0.00 0.00 1936 william j brown 0 shoe salesman 2200 grant street
0.00 0.00 0.99 0.00 0.00 0.00 1936 william j brown 0 candy maker 2311 fifth street
0.00 0.00 0.99 0.00 0.00 0.00 1936 william j brown 0 laborer 888 fiftysecond street
0.00 0.00 0.99 0.00 0.00 0.00 1936 william j brown 0 clerk 9223 holly street

Table 3.4: Example comparison of estimated posterior match probabilities from fastLink before
deduplication and those estimated by the Bayesian model. Posterior match probabilities in bold indicate
record pairs which are selected by the deduplication (fastLink) or contained in the Bayes estimator (Bayesian
model).

There are gains to enforcing the one-to-one constraint during estimation rather than post-hoc. For

example, consider Table 3.4. The first three rows are “William Brown”s found working as carpenters in

1932. The common names and occupation makes these individuals difficult to link. The remaining rows are

records from 1936 found to have non-negligible matching probability to one of these.

The Bayesian model has no problem identifying the two exact matches to a2 and a3. Compare this to the

fastLink estimated probabilities, which assigns significant matching probability between a2 the first three

1936 candidates, despite the fact that there is an exact match present and the other two candidates differ

on occupation, and one is missing an address and middle name. While fastLink’s deduplication procedure

makes the correct links here, the estimated matching probabilities are clearly nonsensical. And importantly,

if the William Brown on Outlook Ave. had failed to register in 1936 then fastLink would have happily

linked him to one of the other two records, as removing a single record pair has almost no influence on the

estimated model parameters.

Estimating False Match Rates

We compared the false match rate of fastLink and Bayesian estimators by manually confirming matches

declared by one or both methods, blind to which method actually made the match. We pre-registered the

design of this comparison ¶. For this exercise we needed to reduce the full Bayesian posterior over linkage

structures to one set of declared links. We used a simple point estimate, classifying any record pair with

a posterior match probability of greater than 0.5 as a match. This is the Bayes estimate under squared

¶Available at http://egap.org/registration/5452.
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Mover Non-Mover Overall
Stratum FM TM ND Labeled Total Matches FM TM ND Labeled Total Matches FM TM ND Labeled Total Matches
Intersection 2 88 10 100 14,276 4 96 0 100 38,968 6 184 10 200 53,244
Bayesian Only 12 118 20 150 18,525 26 121 3 150 60,562 38 239 23 300 79,087
fastLink Only 102 33 15 150 21,636 105 44 1 150 4,348 207 77 16 300 25,984

Table 3.5: Hand-coding results from mover (left) and non-mover (center) matches and overall (right). Each
matched record pair is labeled as either a false match (FM), a true matches (TM) or no determination (ND),
when insufficient information is available.

error or balanced misclassification loss functions (Tancredi et al., 2011). For the fastLink estimate we use

a conservative threshold of 0.9, which is within the recommended range of 0.75 to 0.95 (Enamorado et al.,

2019). These two thresholds are not directly comparable – fastLink’s estimated matching probabilities are

conditional on the block and are not proper posterior probabilities, since they fail to enforce the one-to-one

constraint and often sum to values larger than one. By contrast, the posterior matching probabilities from

our Bayesian model are proper probabilities and are not conditional on the indexing scheme due to our

U-correction. We begin by comparing the point estimates, which guided our hand labelling, before turning

to a more apples-to-apples comparison in the next subsection.

The two estimated sets of matches define three disjoint sets: record pairs classified as a match by both

models; Bayesian only matches (record pairs classified as a match by our Bayesian model but not by fastLink);

and fastLink only matches (record pairs classified as a match by fastLink but not by our Bayesian model). We

further subdivided these sets of matches into two strata: “mover” and “non-mover” matches. We suspected

that links made between individuals at different addresses would have higher error rates regardless of method.

We defined a matched record pair as a “mover” if the string similarity between the street names was less

than 0.85 or the similarity between the street numbers was less than 0.5‖. Otherwise the match was classified

as a non-mover, including cases where the address information is missing for one or both records.

For both mover and non-mover matches we drew a stratified sample, sampling 100 matches from the

intersection stratum and 150 matches from each of the Bayeisan only and fastLink only strata. This yielded

800 total pairs for labelling (400 mover matches and 400 non-mover matches). Each record pair was then

labeled as either a false match (FM), a true match (TM), or no determination (ND) (for record pairs where

there was not enough information to classify the record pair as either a match or a non-match with a

reasonable level of confidence). The labeller was presented with the record pair under question, as well as

similar records from each file, but was blind as to which method(s) had made the match. Results of the

labeling are shown in Table 3.5.

Our pre-registered comparison excluded matches labelled ND. Removing these pairs we estimated the

mover and non-mover false match rates for both our Bayesian model and for fastLink, computing estimates

and standard errors using standard methods for stratified samples (Rice, 2006). These appear in Table 3.6.

‖These similarity thresholds correspond to a similarity level of less than 5 for street name and less than 3 for street number
as listed in Table 3.2.
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ND Excluded ND as Non-match
Mover Non-Mover Overall Mover Non-Mover Overall

Bayesian Model 0.062 (0.031, 0.093) 0.123 (0.083, 0.164) 0.108 (0.077, 0.139) 0.173 (0.126, 0.219) 0.133 (0.092, 0.175) 0.143 (0.110, 0.176)
fastLink 0.464 (0.419, 0.509) 0.107 (0.071, 0.142) 0.269 (0.240, 0.297) 0.518 (0.470, 0.565) 0.107 (0.072, 0.142) 0.293 (0.264, 0.322)
Absolute Difference 0.402 (p<0.0001) 0.017 (p = 0.45) 0.161 (p<0.0001) 0.345 (p<0.0001) 0.026 (p = 0.24) 0.150 (p<0.0001)

Table 3.6: Estimated false match rates with 95% confidence intervals excluding ND record pairs (left) and
counting ND record pairs as false matches (right) by model.

ND Excluded ND as Non-match
Mover Non-Mover Overall Mover Non-Mover Overall

Intersection 0.022 (0.000, 0.053) 0.040 (0.002, 0.078) 0.035 (0.006, 0.065) 0.120 (0.056, 0.184) 0.040 (0.002, 0.078) 0.061 (0.029, 0.094)
Bayesian Only 0.092 (0.043, 0.142) 0.177 (0.115, 0.239) 0.157 (0.108, 0.206) 0.213 (0.148, 0.279) 0.193 (0.130, 0.257) 0.198 (0.147, 0.249)
fastLink Only 0.756 (0.683, 0.828) 0.705 (0.631, 0.778) 0.747 (0.685, 0.809) 0.780 (0.714, 0.846) 0.707 (0.634, 0.780) 0.768 (0.711, 0.824)

Table 3.7: Estimated false match rates with 95% confidence intervals excluding ND record pairs (left) and
counting ND record pairs as non-matches (right) by stratum.

The overall estimated false match rate is 0.11 for the Bayesian model and 0.27 for fastLink, a difference of

0.16 (p < 0.0001). The difference is driven primarily by fastLink’s high error rate in the mover stratum

(a difference of 0.40 ±0.05, p < 0.0001). For non-movers, the difference between the two methods was not

statistically significant, and the Bayes estimate captured many more matches (Table 3.5).

A more conservative approach would count all the “ND” labelled record pairs as false matches. While

this is likely to overestimate the true false match rate, since some ND matches correspond to true matches,

it furnishes something of an upper bound for the true false match rate. We repeated the analysis counting

ND record pairs as false matches. This gives higher estimated false match rates across the board, but results

in the same conclusions as when ND record pairs are excluded from the analysis (Table 3.6).

Examining the estimated false match rates for the individual strata, as shown in Table 3.7, helps to

explain the differences in error rates. As expected, the estimated false match rate in the intersection stratum

is lower than the Bayesian only or fastLink only strata for both movers and non-movers. However, the false

match rate in the fastLink only stratum is much larger than in the Bayesian only stratum. In fact, for both

mover and non-mover matches, we estimate that the majority of the matches in the fastLink only strata are

false matches. In contrast, the estimated overall error rate in the Bayesian only stratum is nearly five times

lower than the fastLink only stratum when excluding ND pairs (p < 0.0001), and over four times lower when

counting ND pairs as true non-matches (p < 0.0001).

False Match Rates as a Function of Linked Sample Size

One limitation of the estimates reported in Table 3.7 is that they correspond to only a single threshold for

each model, and for reasons described above these two thresholds are not directly comparable. This is a

common problem when evaluating record linkage methods; to mitigate this issue Hand and Christen (2018)

suggest comparing methods by plotting error rates or other performance metrics as a function of the number

of matches made as thresholds vary. Figure 3.6 shows these curves for the overall false match rate and the
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Figure 3.6: Estimated false match rates for mover matches (left), non-mover matches (center), and all
matches (right) for deduplicated fastLink (blue) and Bayesian model (green). Solid lines count ND (“no
determination”) record pairs as true non-matches, dashed lines exclude such pairs. Bands are the union of
95% confidence intervals counting ND pairs as non-match and excluding ND pairs.

false math rate in mover/non-mover strata. Overall the Bayesian method makes significantly more matches

than fastLink at any given false match rate. This is due mostly to the higher match rate in the non-mover

stratum, although a similar pattern can be observed in the mover stratum.

3.6 Party Switching Rates in Alameda County

Political scientists have postulated that the conversion of Republicans into Democrats was led by working

class voters and women, arguing that more members of these groups switched parties than other segments

of the electorate (Corder and Wolbrecht, 2016; Sundquist, 1983). That such a change occurred is readily

apparent in the Great Registers (Spahn, 2017). Based on cross-sectional data, before the realignment (in

1928) all demographic groups had a Democratic registration rate of about 20% (Spahn, 2017). This rate rose

significantly during the realignment period, indicating that most party switches were from the Republicans to

the Democrats. Among men registered with one of the two major parties, blue collar men were 21 percentage

points more likely to be registered as a Democrat in 1936 than in 1932. Among white collar men, the change

was just 14 points. In Alameda county, women and men moved about the same amount, each increasing

their support for the Democrats by a bit less than 20 percentage points.

However, cross-sectional data can only tell a limited story about party switching – for example, it is

unable to disentangle the effects of party switching from differential turnout. A more nuanced picture can be

drawn if individuals can be linked over time. Since name prefix and occupation are identified for individuals

in the Great Registers, and gender can be inferred with a fairly high degree of confidence, given a set of

links it is easy to estimate both the cross-sectional partisan composition and the party-switching rates for

individuals registered in both years and aggregate up to groups in order to shed light on these theories.
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In this section we consider links generated by our Bayesian model and fastLink. To simplify the

presentation of results, voters that were registered as neither Democrat nor Republican (10.4% in 1932

and 7.5% in 1936) in either of the two election years are excluded from the analysis in this section. The

largest possible number of links between such individuals is 232,106 (the number of voters with a major

party affiliation in the smaller 1932 register). In reality this is a very loose upper bound, as it would only be

attainable if everyone in registered in 1932 with a major party affiliation also registered in 1936 in the same

county (i.e. no drop-out, death, or out-migration).

Fitting the Bayesian model produced a posterior mean of about 117,000 individuals linked across the

two files with major party affiliation in both years. FastLink returned fewer links, identifying around 69,000

record pairs as matches. The composition of the linked sets were also markedly different; for example, both

methods linked approximately the same number of movers, so the proportion of fastLink’s matches that are

movers is about twice as high.

Party Switching Rates

We estimated the posterior distribution of party-switching rates from the Bayesian model by computing

them for every MCMC sample of C, after discarding the first 2,500 iterations as burn-in. For fastLink

we obtain a set of links by thresholding its estimated link probability at 0.9. Enamorado et al. (2019)

recommends weighting various estimates computed over linked data by its estimated match probabilities

to account for linkage uncertainty. However, when estimating the party switching rate it is necessary to

account for uncertainty both in the individual links and in the total number of links. This setting does not

seem to fit in the cases considered in Enamorado et al. (2019), and we are unaware of an adjustment that

appropriately characterizes linkage uncertainty here using only the output provided by fastLink. Moreover,

the fastLink estimated probabilities don’t seem to be well-calibrated posterior probabilities (see Table 3.4

for an example), so any adjustment based on them is perhaps questionable. For the purposes of comparing

the methods here we present only point estimates using the fastLink matches.

We also considered adjusting point estimates based on the estimated false match rate. We expect

erroneous matches to inflate the estimated match rate: Even over this period party switching is not the

norm, so false matches are more likely to show a switch in parties than true matches. Considering the

distribution of party affiliations in the two files linking two records at random will show a party-switch about

half the time. Assuming false matches occur completely at random, the set of estimated matches is composed

of a mixture of false matches with proportion πF , the false match rate, and true matches with proportion

(1− πF ), which have a switching rate of ρT (our target of inference). The observed switch rate is related to

ρT by

ρobserved = 0.5πF + ρT (1− πF ).
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Figure 3.7: Posterior distributions of party switching rate for interesting subgroups across samples of
record-pairs for the Bayesian model. The square points show the point estimates from fastLink. The bias-
adjusted switch rate (“Adjusted”) and the bias-adjusted switch rate treating indeterminate matches as false
matches (“Adjust+”) are also plotted.

Using this formula and an estimate of the false match rate we can convert the observed switch rate to an

estimate of the true switch rate using the relationship

ρT =
ρobserved − 0.5πF

(1− πF )
.

Using the labeled data from Section 3.5.1 we estimate false match rates both overall and within subgroups

(adjusting the stratum proportions to match those of the subgroups in the latter case). For the Bayesian

model we apply this adjustment to each MCMC sample to obtain the posterior of the adjusted switching

rates. We consider two estimates of the false match rate: “Adjusted” estimates use a false match rate in

which ND labelled pairs are excluded while the “Adjust+” estimates count ND labels as true non-matches

(errors)∗∗. We suspect that these error rates under- and over-estimate the true error rates respectively (for

reasons discussed in Section 3.5.1), so it seems reasonable to regard them as providing sensitivity bounds for

the true party switching rate.

The distribution of the mean party-switching rate overall and for interesting subgroups is displayed in

Figure 3.7. With the exception of non-movers, fastLink consistently shows higher unadjusted rates of party-

switching than the Bayesian model, save for the overall non-mover stratum where the two are nearly identical.

∗∗In estimating the false match rate for the Bayesian model record pairs falling into none of the strata sampled for labeling,
because they were assigned a low posterior link probability by every algorithm, are assumed to have either the maximum
estimated false match rate across strata (Adjusted) or a false match rate of 1 (Adjust+).
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Figure 3.8: Posterior distribution of the difference in mean switch rates between subgroups. Posteriors of
the bias-adjusted switch rate (“Adjusted”) and the bias-adjusted switch rate treating indeterminate matches
as false matches (“Adjust+”) are also plotted.

This is consistent with our findings in Section 3.5.1, where fastLink’s higher overall false match rates were

driven largely by its behavior in the mover stratum.

After adjustment most of the estimates exhibit better agreement between fastLink and the Bayesian

model. So why do we prefer the Bayesian model over fastLink? First, the Bayesian method returns a much

larger matched set – about 70% larger, or 48,000 links – with lower overall false match rate, and provides

uncertainty intervals via the posterior distribution. Second, the estimates are not always brought in line

by adjustments, for example in the case of married women in Fig 3.7. It seems reasonable to put more

trust in the Bayesian model with its lover overall false match rate here, especially because it estimates a

lower switching rate (consistent with making fewer false matches). Third, the adjustment is imperfect. It

assumes that false matches occur at random and that the only variation in false match rates by demographic

subgroup is due to the varying proportions of movers/non-movers within that group, both of which are likely

oversimplifications. Relaxing these assumptions would require at minimum a much more extensive labelling

exercise. Therefore we recommend choosing a method with low overall estimated false match rates, and then

applying false match rate adjustments as feasible, treating this as a form of sensitivity analysis. We do not

consider estimates from fastLink any further.

Demographic differences in party switching rates

To draw out the differences in switch rates based on gender and class we plot the difference in various switch

rates in Figure 3.8. The rightmost panel shows a stark difference in party switching rate between blue and

white collar men (the rate is estimated at about 8.5%, regardless of bias adjustment). The high switching

rates among blue collar voters confirm what’s long been known: that blue collar workers led the realignment

towards Roosevelt’s Democratic party. This particular fact has been known at the group level (Ladd and

Hadley, 1975), but has never been demonstrated with individual-level data.
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Separating the political attitudes of men and women is considerably harder because they tend to be

clustered together in space, voting in the same places. Though Corder & Wolbrecht (2016) use ecological

inference methods to try to separate the political behavior of men and women, such approaches will always

prove difficult because of low variation in the gender ratio. Individual-level data is much better suited to

the task. The leftmost panels of Figure 3.8 show that men switched parties at a considerably higher rate

than women, which at first glance seems contrary to what one would expect based on Corder & Wolbrecht’s

analysis. We return to this in the next subsection, where we disaggregate total party switching into flows to

and from Democratic party, providing a slightly more nuanced picture.

Relative Party Switching Rates

A high party switching rate does not in and of itself guarantee a large flow from one party to the other, as it

could be the case that large numbers of voters are switching parties but the flows roughly cancel in aggregate.

Figure 3.9 shows the fraction estimated fraction of party switchers that switch from the Republican party

to the Democratic party, indicating that the vast majority of switching was from Republicans to Democrats,

as expected.

As in the previous section we adjusted these estimates for potential false matches. Given the share

of voters registered to the Democratic and Republican parties in 1932 and 1936, randomly linked record

pairs which differ on party would appear to switch from the Republican party to the Democratic party

approximately 70% of the time. This proportion is nearly identical when computed separately for men

and women. We modify the adjustment introduced in Section 3.6 and compute the adjusted fraction as

τadj = (nR2D − 0.7nswitchπF )/nswitch(1− πF ) where nR2D is the observed number of voters switching from

the Republican to the Democratic party, nswitch is the observed number of voters switching party, and πF is

the false match rate. The false match rates used for the“Adjusted” and “Adjusted+” estimates remain the

same.

While Figure 3.8 shows that men switched parties at a considerably higher rate than women we see a

more mixed picture in Figure 3.9. While all groups switch to the Democratic party at a much higher rate

than the Republican part, the group with the most lopsided switching is married women (followed by blue

collar men). Thus, Figure 3.9 offers a picture more consistent with the findings of Corder & Wolbrecht’s:

Unmarried women appear to favor the Democratic party less than any other group except for white collar

men.

Though it’s hard to say for sure why unmarried women (who are presumably younger) would have

realigned less than their married women counterparts, one possibility is that they were more influenced

by the parents who are older (and, on average, more Republican) than married women’s spouses, who are

closer to the same age. The gap is not explained by different base rates of Democratic affiliation – in 1932,
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Figure 3.9: Posterior distributions of the fraction of party switchers who switch from the Republican party
to the Democratic party. The overwhelming move towards to Democratic party is readily apparent among
all subgroups but especially among married women and blue collar men.

the unmarried and married women posterior mean rate of Democratic registration of 26.5% and 26.2%,

respectively.

Of course, it may also be the case that our linked sample is somehow less representative for unmarried

women than for other groups – in general, over this time period women are more difficult to link than

men. However, for the estimands considered here, this differential non-linkage is only consequential if non-

linkage within the stratum of unmarried women is correlated with party-switching. (This is why we focus

on estimating rates rather than totals.) This seems relatively unlikely, although not impossible. Finally, we

note that our analysis cannot provide a complete picture of party affiliation for women over this period, as

our analysis of women excludes those who marry between 1932 and 1936. The vast majority of these women

would have changed their name and moved to a new address, and they are simply unlinkable using only the

Great Registers.

To further understand the implications of potential differential false non-match rates, we compared the

distribution of key demographics in 1932 and 1936 for the linked subsample to the distribution across the

entire register in each year (Section 3.7). The distributions are rather close, particularly for marital status

of women and occupation of men. Some observed differences are expected; our linked sample skews slightly

male, likely due in part to reasons discussed above. Indeed, while we expect these distributions to be grossly

similar, we would not expect all of them to match exactly even if linkage was done perfectly because of

differential voter turnout (including drop-out and new registrations). For example, based on the increase in
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the total number of voters in 1936 and the increase in Democratic registration over 1932 we might expect

the distribution of new registrants in 1936 to skew Democratic, which would tend to make a perfectly

linked subsample (all of whom were registered in 1932) proportionally more Republican than the registered

population in 1936. In fact, our linked sample skews slightly Republican by three percentage points in 1932

and five in 1936 (possibly due to compound effects of differential turnout and Republicans being on average

older, wealthier, and more stable, and therefore easier to link).

3.7 Comparing linked and cross-sectional populations

The lack of ground truth makes determining the representativness of the linked sample challenging to

evaluate. In particular, if false non-matches are concentrated among particular subgroups then bias may

be introduced into the analysis of the linked data. To examine this possibility we compare the marginal

distributions of different subgroups observed in observed record pairs with those in the linked sample.

We report marginal distributions for gender and female marital status in Table 3.8. Table 3.9 contains

the marginal distributions for occupation and party membership. For the observed records counts and

proportions are reported while for the linked sample we report the posterior mean estimated by our Bayesian

model.

The tables indicate that there is a high degree of similarity between the observed marginal distributions

and those in the linked sample. Table 3.8 shows that in the linked sample men are over represented relative

to women and married women are over represented relative to unmarried women. In both cases the findings

are unsurprising as the over represented groups, men and married women, would generally be thought easier

to link, relative to all women and unmarried women respectively. However, the discrepancy is a slight, with a

maximum discrepancy between population shares is 0.03 in Table 3.8. The difference between observed and

linked marginal distributions of white collar and blue collar workers is even smaller, just 0.01, as shown in the

left panel of Table 3.9. The right panel of Table 3.9 shows the marginal distributions in party membership.

The differences between marginal distributions of party membership in the observed and linked samples

are somewhat larger, up to 0.05, than in other subgroups. However, we note that from 1932 to 1936 saw

both an overall shift towards to Democratic party and a substantial increase in the number of registered

voters. By definition any new voters will be excluded from the linked sample since they are not present in

the 1932 records. If these new voters are heavily skewed towards the Democratic party, as it likely the case,

then we would expected a representative linked sample to contain a higher share of Republican voters than

the voter registrations overall. This is exactly what is observed with the observed and linked distributions

of party membership for 1932 matching more closely than those for 1936. Thus, while there are minor

compositional differences between the observed and linked data in general the share of different subgroups

display a surprisingly high level of agreememnt.
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Year Record Count All Men All Women
Observed 1932 259,162 0.53 0.47
Observed 1936 288,087 0.51 0.49
Linked 1932 137,640 0.54 0.46
Linked 1936 137,640 0.54 0.46

Year Record Count Married Women Unmarried Women
Observed 1932 122,596 0.82 0.18
Observed 1936 142,034 0.82 0.18
Linked 1932 63,553 0.83 0.17
Linked 1936 63,922 0.84 0.16

Table 3.8: Marginal distribtuion of gender (left) and marital status for women (right) in observed and
linked sample. For the linked sample posteriors means from our Bayesian model are reported. Both men and
married women are slightly over represented in the linked sample indicting that these records are somewhat
easier to link.

Year Record Count Blue Collar Men White Collar Men
Observed 1932 63,619 0.92 0.08
Observed 1936 66,921 0.92 0.08
Linked 1932 35,474 0.91 0.09
Linked 1936 33,501 0.91 0.09

Year Record Count Democrat Republican
Observed 1932 232,106 0.33 0.67
Observed 1936 266,465 0.53 0.47
Linked 1932 125,890 0.30 0.70
Linked 1936 128,508 0.48 0.52

Table 3.9: Marginal distribtuion of male occupation (left) and party (right) in observed and linked sample.
For the linked sample posteriors means from our Bayesian model are reported. Both white collar men and
republicans are slightly over represented in the linked sample.

3.8 Discussion

Bayesian probabilistic record linkage models provide an appealing framework for performing record linkage:

They can provide accurate point estimates of links between records, and they allow for uncertainty in the

links between to be quantified and propagated through to subsequent inference. The main barrier to their

adoption in practice has been computational. Post-hoc blocking and restricted MCMC make Bayesian

modeling for PRL feasible for much larger problems, as demonstrated by our analysis of the Great Registers.

Linking our extract from the Great Registers provides new insight into party switching over one of the

largest political realignments in American history. However, these insights are necessarily limited by the

information available on the registration rolls. In particular we are missing important demographics like age

and education, and variables like gender, marital status, and occupation type have to be reconstructed from

attributes available on the file. It may be possible to obtain a more fine-grained picture of party switching

by linking the registers to adjacent Census years to pick up more detailed demographic information about

voters, provided these additional links can be made accurately. Similarly, using additional data sources

like marriage records to help bridge the gap between election years could reduce error rates for difficult

subpopulations, such as women who marry during the “off” years.

Clearly it would be useful to adapt our methods to link multiple files simultaneously, both for linking in

the Great Registers and for many other applied problems. The computational challenges inherent in record

linkage grow rapidly as we consider linking multiple files; see e.g. Sadinle (2013); Steorts et al. (2015, 2016)

for some examples and discussion of model-based deduplication and multiple file linking. Adapting post-hoc

blocking to the multiple file setting (and to files with duplicates) is a promising area for future work. We

expect that the simplest multiple-file/de-duplication version of post-hoc blocking – stacking the multiple files
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and proceeding as in Section 3.1 as though we were matching this “meta” file to itself – should work well,

provided adequate post-hoc blocking weights can be constructed.

A second outstanding question is pertains to the construction of a post-hoc blocking scheme. While

we have discussed the construction of maximal weights for post-hoc blocking (Section 3.2.1), we have not

justified the choice of maximum size of a post-hoc block. We first note that this choice should be made

almost entirely on computational grounds, if computational constraints are not binding then post-hoc blocks

need not and should not be used. Thus in general the largest (i.e. including the most record pairs) post-hoc

blocking scheme for which a posterior distribution can be estimated in a reasonable amount of time should

be adopted. Under the locally balanced moves for updating the link structure outlined by Zanella (2019)

the cost of performing an update is linear with the number of record pairs included within the post-hoc

blocks. This is therefore a reasonable measure of the overall size of the scheme. We further note that in

our experience the total runtime of the MCMC algorithm can be extrapolated reasonably well from running

a few updates within each post-hoc block. It is thus possible to select a post-hoc blocking scheme (given

by defining a maximum component size) and estimate the corresponding runtime of the restricted MCMC

sampler with a reasonable degree of accuracy, which can aid in the selection of the blocking scheme. If an

automatic stopping rule is to be used for the MCMC sampler then this is somewhat harder to apply and we

suggest first running with a post-hoc blocking scheme which includes fewer record pairs. Using results from

this scheme can provided a basis for selecting the final set of post-hoc blocks.
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Chapter 4

An Informed Prior for Record

Linkage with One-to-one Matching

In this chapter we introduce an informative prior for use in Bayesian PRL. Existing priors for Bayesian PRL

can incorporate information about the expected number of links, but do not allow for additional information

about the expected link structure. In addition to prior information about the expected number of links,

our prior allows for the inclusion of expectations about which subregions of the link structure are mostly to

contain the estimated links. Specifically, we provide a framework for the incorporation into the prior of one

or more pre-specified blocking rules, which can be used to place significantly larger prior link probabilities on

the subset of the record pairs contained within the blocking scheme. For example, if the records correspond

to individuals, we might expect that two records are far more likely to match (correspond to the same

person) if they agree on both first name and last name. In contrast, a record pair which disagrees strongly

on first name, even if it matches on many other fields such as address and surname, is unlikely to be a match.

Importantly, because such rules can be specified prior to seeing the record comparisons our approach does

not violate the consistency of our Bayesian framework. We introduce a sequential approach for constructing

such a prior, while enforcing one-to-one matching constraint on the link structure. The approach we outline

is general and can easily be applied to incorporate alternative structural constraints on the link structure.

In Section 1.6.1 we introduced several existing priors for Bayesian PRL that enforce one-to-one matching.

These priors all have two features in common (1) they are informative on the number of links L and (2)

conditional on the number of links L, they place a uniform distribution over the possible values of C which

contain exactly L links. As a result, if C and C ′ are two possible values of the link structure, which contain

exactly L links, then π(C) = π(C ′) under every prior introduced in Section 1.6.1. The second condition,
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that of uniformity, is extremely restrictive and prevents the inclusion of any additional information within

the prior.

While prior information can also be incorporated via priors on the matching parameters these prior

encode an entirely different type of information, which is not directly informative about the expected link

structure. Specifically, they encode prior beliefs about the expected comparisons distributions within the M

and U components. Consider an example where we wish to place a higher prior probability of matching on

record pairs which display a high level of similarity on both first name and surname relative to other record

pairs. We might consider placing a larger prior density on values of the m-parameters that correspond to a

high similarity level on the first name and surname comparisons. Such a prior encodes the expectation that

matching record pairs are highly likely to show a high level of similarity on comparisons for these fields. This

is equivalent to a prior belief that the error rates in these fields are expected to be low. Alternatively, we

could place a prior on the u-parameters that assigns a low prior density to parameter values that correspond

to agreement on first name and surname within the U component. The information this encodes is that

random agreements on these fields are expected to be rare. Neither of these expectations need to be true for

it to be the case that most record pairs that show a high level of similarity on both first name and surname

correspond to matches. Indeed it is entirely plausible that all three of the following are true: (1) of record

pairs which show a high level of agreement on first name and surname a large portion are matches (2) due to

higher error rates a relatively large portion of matching record pairs fail to display a high level of similarity

on both first name and surname, and (3) random agreements on first and last names are at least somewhat

frequent. In order to incorporate the type of prior information given by (1) a method for placing a more

informative prior over C is needed.

It is common in record linkage problems to have some prior information on the number of expected

matches, or the overlap between the two files. However, a large amount of additional information, particularly

about what types of comparisons are likely to correspond to matches is typically also available. Indeed, the

basis for applying blocking schemes to record linkage problems is the belief that the blocking scheme will

capture all or nearly all of the truly matching record pairs. That is, the prior match probability conditional on

a record pair being contained within a blocking scheme is significantly higher than for record pairs excluded

from the blocking scheme. The construction of such blocks will often depend on the observed comparisons,

and therefore incorporating specific blocks into the prior is challenging. However, a method for constructing

blocks, or a blocking rule, can easily be defined prior to viewing the comparisons and therefore can be

specified in a manner consistent with a Bayesian analysis. It is useful to note that incorporating this type

of information leaves the prior invariant to permutation (Zanella, 2019, Supplement B) as a permutation of

the records in either file will also permute the block memberships.

Incorporating this type of prior information is appealing from a theoretical perspective but challenging

to do in practice. This is particularly true when other constraints, such as one-to-one matching, must also be
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(a) Subregion (b) Sample for subregion (c) Remaining region (d) Final links (e) Resulting density

Figure 4.1: (a) Shows a set of blocks for which a set of links is initially samples, as shown in (b).
Conditioning on the sampled links shown in (b) the region shown in blue in (c) is available for linking
in the second stage while the region shown in gray is not, due to the one-to-one matching constraint. In
stage two additional links are sampled as shown in (d) with the dark green link denoting a link that could
have been drawn in the first stage while the light green links are links which could have only been sampled
in the second stage. The overall density from this generating process is shown in (e).

incorporated into the prior. In the next section we outline a general procedure for constructing a generative

model which can both enforce a one-to-one matching constraint and place a larger prior match probability

on some subregions of C relative to others.

4.1 Generative Model

In constructing our model we take inspiration from a sequential procedure for identifying matching records.

In such a sequential approach we might first consider a subset of the overall set of record pairs and attempt

to find matches within this subset. Under a one-to-one matching assumption any records matched within the

subset could then be removed from further consideration. The remaining record pairs, including those not

considered in the initial subset, would then be reconsidered for matching, and additional matches possibly

added.

A simple two-stage example of this processes in shown in Figure 4.1. Panel (a) shows a set of blocks

within which we draw a set of links consistent with one-to-one matching. These sampled links are shown

as black squares is shown in panel (b). Then under a one-to-one match assumption, conditioning on the

sampled links, means that any record pairs that contains an already linked record is no longer available for

linking. In the link matrix this means that all record pairs contained in a row or column with a link from the

first stage are no longer available for linking. This is shown in panel (c), with gray squares corresponding

to record pairs which can no longer be linked as a result of the one-to-one matching assumption. The

remaining blue squares corresponding to record pairs which can still be linked without violating one-to-one

matching. Under a reordering of the record pairs the record pairs shaded in blue would correspond to a 6×5

rectangular subregion. Thus, the remaining records pairs can be treated as a single block, and a second set of

links sampled for this region. These links are shown in green in panel (d). The dark green link corresponds
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to a record pair that is included in the first stage blocking and thus could have been linked in the first draw

but wasn’t, while the lighter green links correspond to record pairs which are not within the blocks shown

in panel (a). Finally, in panel (e) we shown the overall link densities which would result if this processes

were repeated many times. Because the record pairs within the blocks are available for linking in both draws

(unless excluded by one-to-one matching) the final link probability is higher (darker blue) in panel (e) than

in panel (a) for these record pairs. Conversely, for record pairs outside of the first stage blocks the final

link probability is lower (lighter blue) in panel (e) than in panel (c). This dynamic occurs because in many

instances they will be unavailable for linking due to the one-to-one matching constraint.

By construction this sampling approach will link record pairs within the first stage blocks with a higher

probability than those excluded from the blocks. There is however, no need to limit this processes to only

two stages. Multiple sets of blocks can be considered. Within each stage we condition on the links made in

earlier stages, excluding already linked records from consideration. We then sample additional links within

the blocks corresponding to the current stage. The final set of links is then the union of the links sampled

across all stages. Such an approach will tend to place a higher sampling density on links contained in blocks

available for linking in earlier stages, and lower sampling densities on record pairs that can only be linked

in later stages.

We next define some notation for our multi-stage sampling procedure. To begin, assume that we are

given a sequence of T functions g(1), . . . , g(T ) which will return a subset of the full set of records pairs when

applied to the data. That is g(t)(A,B) 7→ H(t) where H(t) ⊆ A × B, the full set of record pairs for sets of

records A and B. Next, let C(t) define the link structure sampled in stage t. In Figure 4.1 the shaded region

in panel (a) corresponds to H(1), the links shown in panel (b) to C(1), H(2) is simply the full set of record

pairs, and the green links shown in in panel (d) to C(2). For sets of links across multiple stages, let C(i:j)

denote the set of links sampled in stages i through j:

C(i:j) =

j∑
t=i

C(t). (4.1)

We define the sets of linked records from A and B for a value as C as:

AC+ =

{
a : a ∈ A,

∑
b∈B

Cab = 1

}

BC+ =

{
b : b ∈ B,

∑
a∈A

Cab = 1

}
.

(4.2)

We denote the sets of remaining records available for linking in A and B as:

A \AC + and B \BC + . (4.3)

88



Under a one-to-one matching restriction if a record is linked in an earlier stage it cannot be linked in a

subsequent one. Thus, given values for C(1), . . . , C(t−1) the records from A and B which are still available

for linking in stage t are the sets A \ AC(0:t−1)+ and B \ BC(0:t−1)+ respectively. Finally, let π(1), . . . , π(T )

be densities that we use to sample C(1), . . . , C(T ) from H(1), . . . ,H(T ) respectively. Where π(t) depends

on parameters θ(t). We can thus write the probability of sampling a specific sequence of link structures

C(1), . . . , C(T ):

π
(
C(1), . . . , C(T ) | g(1), . . . , g(T ), θ(1), . . . , θ(T )

)
=

T∏
t=1

π(t)
(
C(t) | g(t)(A \AC(0:t−1)+, B \BC(0:t−1)+), θ(t)

)
(4.4)

where we take C(0) to be a nA×nB matrix of zeros. In theory a density π(C | g(1), . . . , g(T ), θ(1), . . . , θ(T ))

can be derived from (4.4) by marginalizing, (i.e. summing (4.4) over all sets of C(1), . . . , C(T ) for which

C(1:T ) = C). In practice this is extremely difficult unless T is small. Fortunately, we are generally more

interested in the prior probability places on aggregate quantities, such as the total number of link L, or

the number of links contained within a specific subset of the record pairs, the distribution of which can be

estimated via simulation.

The remaining challenge is to specify a reasonable set of g’s and π’s . In particular, the subregions

specified by the g’s must be consistent with the densities defined by the π’s. Alternatively, the π’s must be

able to draw samples from the subregions defined by the g’s that are consistent with one-to-one matching

and can accommodate the removal of some record pairs as a result of linking in earlier stages. If we restrict

the subregions to be sets of disjoint blocks, such as those defined by a traditional blocking scheme, then

existing priors for one-to-one matching can be used for such a sampling method. In the next section we

derive an informative prior based on the Beta-bipartite prior introduced in Section 1.6.1.

4.1.1 An Informative Prior Under Traditional Blocking

Going forward we assume that all functions g for restricting the set of record pairs to a subregion take the

form of tradition blocking. Thus, when applying g to datasets A and B, the generated subregion H will be

a set of K disjoint blocks. Where block Hi corresponds to the product set of record pairs Ai × Bi for sets

of records Ai and Bi, subsets of A and B respectively. These sets correspond to the records for which the

blocking key takes a specific value. Because the blocks are disjoint it follows that Ai∩Aj = ∅ and Bi∩Bj = ∅

for i 6= j. We let nai = |Ai| and nbi = |Bi|. Furthermore we do not require that g map all records to a

block and thus,
∑K
i=1 ni ≤ nai and

∑K
i=1 nbi ≤ nB . For each block Hi, we define qi = min(nai , nbi) and

ri = max(nai , nbi) and let quantities Q =
∑K
i=1 qi and R =

∑K
i=1 ri.
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We next consider sampling the link structure C such that all links are contained within a set of blocks H.

If we restrict links to only occurring within blocks then let Ci denote the set of links occurring within the set

of record pairs Hi. Since all record pairs outside of the blocks are unavailable for linking we define overall

link structure as the union of these subregions and hence C =
∑K
i=1 Ci. With the number of links L defined

as
∑K
i=1 Li where Li is the number of links contained within Ci denoted Li. Equivalently, Li =

∑
ab∈Hi Cab.

A sample of links for C can then be drawn either independently for each Ci or jointly across all of them

simultaneously.

One method sampling from a single block is given by the Beta-bipartite distribution introduced in

Section 1.6.1 (Sadinle, 2017). This distribution first places a Beta-binomial distribution over the number

of links and then, conditional on the total number of links, draws uniformly from the possible bipartite

matchings. This density was defined in (1.15) but for convenience we re-define it for Ci, using the notation

introduced aboveL

π(Ci | qi, ri, α, β) =
(ri − Li)!

ri!

B(Li + α, qi − Li + β)

B(α, β)
. (4.5)

Under this distribution Li ∼ Beta-binomial(qi, α, β).

We present a generalized version of the Beta-bipartite distribution which can be used to define a

distribution jointly over blocks. As with the Beta-bipartite prior we first define a link probability

p ∼Beta(α, β). With, p fixed to the same value for all blocks Hi within H. Then, conditional on p Li,

the number of links within block i, follows a Binomial distribution and the link structure Ci is then drawn

uniformly from the possible bipartite matchings with Li links. The resulting destiny is given by:

p(C1, . . . , CK | q1 . . . , qK , r1, . . . , rK , α, β) =

(
K∏
i=1

(ri − Li)!
ri!

)
B(L+ α,Q− L+ β)

B(α, β)
(4.6)

We refer to this as the Beta-bipartite with Blocking distribution. Within a Beta-bipartite with Blocking

distribution the number of links within each block follows a Beta-binomial distribution, as in Beta-bipartite

distribution, but the shared match probability parameter p introduces correlation between the number of

links across blocks. The result is that the total number of links L also follows a Beta-binomial distribution

with L ∼Beta-Binomial(Q,α, β). Thus, it follows that:

E [L] =
α

α+ β
Q and V [L] =

αβ(α+ β +Q)

(α+ β)2(α+ β + 1)
Q (4.7)

We show a more careful proof this fact in Appendix A.2.
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Assuming a Beta-bipartite with Blocking density for each stage we can re-write (4.4) as:

T∏
t=1

K(t)∏
i=1

(
r
(t)
i − L

(t)
i

)
!

r
(t)
i !

 B
(
L(t) + α(t), Q(t) − L(t) + β(t)

)
B
(
α(t), β(t)

) (4.8)

where θ(t) = {α(t), β(t)}. We refer to this density as an Iterated Beta-bipartite with Blocking. We note that

the conditioning of later stages on earlier stages given by (4.5) is contained in the Q(t) and r
(t)
i parameters,

which are functions of the earlier stages. That is Q(t) and r
(t)
1 , . . . , r

(t)
Kt

are functions of C(1:t−1).

As with a Beta-bipartite with Blocking density we focus our analysis on the behavior of the number of

links L. It is more likely that a researcher will have some expectation for this quantity. It is possible to

derive closed form expressions for the distribution of L in some simple scenarios. We consider the simple

case of only two blocking rulesL g(1) and g(2), with the further restriction that g(2) simply place all records

into a single block. For this scenario it is possible work work out the E [L] and V [L] in closed form, which we

do in Appendix A.3. Although, due to interactions between successive sets of blocks it is hard to determine

the behavior of even this quantity. In general we recommend evaluating the prior distribution over L via

simulation as we discuss further in Section 4.4.1.

4.2 MCMC Sampler

Sampling from the Iterate Beta-bipartite with Blocking prior is more complex than for the Beta-bipartite

prior employed in Chapter 3 as it requires monitoring a latent stage parameter. Tracking this parameter is

equivalent to maintaining T separate link structures: C(1), . . . , C(T ) over which the Iterate Beta-bipartite

with Blocking distribution is defined. The MCMC sampler employed in Chapter 3 relies heavily on locally

balanced updates for the link structure introduced in Zanella (2019). Because the post-hoc blocks are disjoint

the extension of locally balanced updates to post-hoc blocks is straightforward, a separate update can simply

be performed for each post-hoc block. Because the link structures in each stage are not disjoint, some record

pairs will be contained in multiple stages, the application of locally balanced moves to include mixing over the

stage parameter is more challenging. We outline a modified version of the Metropolis-within-Gibbs sampler

introduced by Zanella (2019) that includes a locally balanced update over the blocks within each stage of C

as well as a Gibbs update of the stage of each link within C.

In our model we assume the same prior distributions and record linkage model as in Chapter 3, with the

only difference in models being that we now place an Iterated Beta-bipartite with Blocking prior over C.

The assumed set of priors are therefore:
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π(mj) ∼ Dirchlet(αmj)

π(uj) ∼ Dirchlet(αuj)

π(C) ∼ Iterated Beta-bipartie with Blocking(g(1), . . . , g(T ), αC , βC)

(4.9)

where αmj and αuj are vectors of length kj for j = 1, . . . , d. In (4.9) αC and βC are vectors of length

T defining the parameters of the Beta-bipartite with Blocking distribution for each stage of the Iterated

Beta-bipartite with Blocking distribution.

As in Chapter 3 it is possible to update the m and u-parameters using a Gibbs step. Let nmji and

nuji be the number of record pairs with agreement level i for feature j within the M and U components

respectively∗:

nmji =
∑
ab

Cab1(γjab = h)

nuji =
∑
ab

(1− Cab)1(γjab = h).
(4.10)

We define nmj = {nmj1, . . . , nmjkj} and nuj = {nuj1, . . . , nujkj}. Then, as nuj and nmj follow a

Multinomial distributions, conditional on C:

mj | Γ, C ∼ Dirchlet (αmj + nmj)

uj | Γ, C ∼ Dirchlet (αuj + nuj) .
(4.11)

We therefore update these parameters via a draw from the distributions given in (4.11).

4.2.1 Mixing Over Iterated Link Structure

The challenging part of designing an appropriate MCMC sampler is ensuring efficient mixing over the link

structure. Under an Iterated Beta-bipartite with Blocking prior this mixing must occur in a way that samples

different sets of links within a stage and mixes of the stage parameter assigned to individuals links. While

in theory a proposal scheme could be designed which proposes joint updates to both the link structure and

stage of a link simultaneously updating the parameters C(1), . . . , C(T ) we have found such schemes to be

excessively complicated and challenging to implement. We instead introduce a MCMC sampler which first

updates the set of links within a stage, updating C(1), . . . , C(T ) separately, and then separately updates the

stage parameter of the existing links. With the update to the stage parameter allowing links to move from

C(t) to C(t′) while holding C(1:T ) fixed.

Proposing updates to the links within each stage separately creates a problem: the proposed update must

not violate the one-to-one matching assumption when links in other stages are considered. We therefore

∗If a field is recorded as missing then it is excluded from the count. This is a consistent with a missing at random assumption
(Sadinle, 2017)
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update the link structure within each stage holding all links assigned in other stages constant. Let C(−t) =

C(1:T ) − C(t), the set of linked record pairs in all stages but t. Then for a block H
(t)
i ∈ H(j) we remove all

linked records contained in the block, and define the remaining set:

H
(t−)
i =

(
A

(t)
i \AC(−t)+

)
×
(
B

(t)
i \BC(−t)+

)
. (4.12)

We then propose an update only to the link structure of H
(t−)
i , ensuring that the update will not violate

our one-to-one matching assumption. While this will exclude records linked in a stage other than t, it will

include records linked in stage t and all unlinked records. Relatively efficient mixing over the link structure

within a stage t can then be accomplished by using locally balanced proposals (Zanella, 2019) for H
(t−)
i , as

was done in Chapter 3. We perform such an update for each block H(t), and then repeat the processes for

each stage. Since all linked record pairs are assigned a stage this ensures that the status of each record pair

is considered in at least one update.

While a MCMC sampler relying only on the procedure for updating the link structure described in the

previous paragraph, with no additional updates to the stage parameter, will mix over both the link structure

and the stage parameter we would not expect the mixing to occur quickly. Consider the updates to the link

structure required for a link to switch from stage t to stage t′. The record pair must be deleted from stage t

and then, in a subsequent update, added to stage t′. If the record pair corresponds to a very high likelihood

link then removing the link from stage t may require many iterations of the MCMC sampler. Such a sampler

may therefore be extremely inefficient and slow to mix. We therefore add a step to our sampler which

updates the stage of each linked record pair. Because the stage parameter appears in the prior distribution,

but not in the likelihood, such an update need consider only the change in prior probability. Importantly,

updates to the stage of a link cannot introduce a violation of one-to-one matching and therefore the prior

can be evaluated based only on the block sizes and number of linked record pairs. Indeed, we can construct

a Gibbs update which samples from the full set of possible stages for which a record pair may be linked.

This set is of size at most T for each linked record pair, but may be smaller if a linked record pair is not

allowed (included in a blocking scheme) for all T stages.

The effect on the prior density of moving a link one stage later (from stage t to t + 1) is equivalent to

making the following three changes: (1) sampling one fewer link in stage t, (2) sampling one additional link

in stage t+ 1, (3) having the sampling in stage t+ 1 occur within a block with one additional row and one

additional column relative to the link existing in stage t. By examining (4.8) we can observe that each of

these changes results in a single multiplicative term. The ratio between the prior densities for these two terms

is thus easily computed (additional details are given in Appendix A.4). Starting by factoring out the density

when the link occurs with t = 1 (or the earliest stage in which the link is allowed) it is straightforward to

construct the required probabilities for the Gibbs sampler. Adding such an update ensures that the MCMC
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sampler mixes much more quickly over the latent stage parameter. This does not preclude the introduction

of a method for jointly updating the stage parameter along with the link structure but we leave such a

sampling scheme as an avenue for future work.

4.2.2 Algorithm

Combining the updates for the link structure, the stage parameter, and the matching parameters yields the

sampling algorithm given by Algorithm 3. This formulation also makes it clear that Algorithm 3 is simply a

generalization of the sampling procedure used in Chapter 3. In place of the update for each post-hoc block

done in Chapter 3, an update is performed on each stage-block pair, while holding links in different stages

constant. Then the other parameters, only the matching parameters in Chapter 3, but both the matching

parameters and the stage parameter here are updated via individual Gibbs steps, conditional on the link

structure.

Algorithm 3 Metropolis-within Gibbs Update

Input: C(1), . . . , C(T ), m, and u
Output: Updated values C ′(1), . . . , C ′(T ), m′, and u′

1. Update the set of links contained in C:

2. for stage t = 1 to T do

3. for all block i = 1 to K(t) do

4. Perform a locally balanced update to H
(t−)
i .

5. end for

6. end for

7. for all (a, b) ∈ C(1:T ) do

8. Update the stage of (a, b) via a Gibbs update over the allowed stages.

9. end for

10. Update the m and u−parameters via a Gibbs update.

While sufficient for fitting a Bayesian model for a moderately sized record linkage problem Algorithm 3

does not scale well to larger PRL problems. To achieve this we must combine Algorithm 3 with the post-hoc

blocking approach introduced in Chapter 3. The key to understanding how Algorithm 3 can be modified

to account for post-hoc blocking is to observe that adding the restriction that links can occur only within

post-hoc blocks means that we need only look at the intersections between the blocking scheme(s) defined

by the Iterated Beta-bipartite with Blocking prior and that defined by the post-hoc blocks.

Consider a set of post-hoc blocks H(phb) containing K(phb) distinct blocks. If for stage t of our prior we

have defined a set of blocks H(t) then all allowed linked record pairs for stage t must occur within both a

block H
(t)
i from stage t and a post-hoc block H

(phb)
j for i ∈ {1, . . . ,K(t)} and j ∈ {1, . . . ,K(phb)}. Thus there

are, at most K(t) ×K(phb) distinct blocks we must consider. While this number may be large, in practice

94



H
(t)
i ∩ H

(phb)
j = ∅ for many pairs of blocks (i, j). In fact the total number of record pairs considered in

stage t is upper bounded by the number of record pairs contained within the post-hoc blocks. Since the cost

of performing a locally balanced update to the link structure of a block scales linearly with the number of

record pairs contained in the block the problem will remain tractable unless a large number of stages, which

each contain many record pairs, are defined. Therefore the adoption of the more flexible prior does nothing

to reduce the ability of post-hoc blocks to scale Bayesian models for PRL.

Algorithm 4 Metropolis-within Gibbs Update with Post-hoc Blocking

Input: C(1), . . . , C(T ), m, and u
Output: Updated values C ′(1), . . . , C ′(T ), m′, and u′

1. Update the set of links contained in C:

2. for stage t = 1 to T do

3. for block i = 1 to K(t) do

4. for block j = 1 to K(phb) do

5. Perform a locally balanced update to H
(t−)
i

⋂
H

(phb)
j .

6. end for

7. end for

8. end for

9. for all (a, b) ∈ C(1:T ) do

10. Update the stage of (a, b) via a Gibbs update over the allowed stages.

11. end for

12. Update the m and u−parameters via a Gibbs update.

This allows us to introduce Algorithm 4 for performing an update when post-hoc blocking is employed.

In the next section we use this MCMC sampler to re-analyze the data from Alameda county introduced in

Chapter 3 under a more informative prior.

4.3 Application

To demonstrate the ability of the Iterated Beta-bipartite with Blocking prior to incorporate relevant prior

information we re-analyze the voter data from Alameda county introduced in Chapter 3. We adopt the

same specification as our preferred Bayesian model introduced in Chapter 3, varying only the prior over

the link structure. Holding the set of comparisons constant between the models means that, unlike with

the comparison with the fastLink model, a direct comparison between model parameters is possible. This

includes setting identical priors over the matching parameters. Because the prior over C does not impact

the estimation of the post-hoc blocks we use estimate these in the same manner as in Chapter 3 as well. We
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retain the prior over the link structure, a Beta-bipartite(1.0, 1.0), as our “base prior”. We compare these

results to those under a Iterated Beta-bipartite with Blocking prior, our “informative prior” .

For the informative prior we construct a two-stage Iterated Beta-bipartite with Blocking distribution.

The first stage is defined by selecting record pairs which displayed a level of similarity greater than 0.92

using a Jaro-WInkler string similarity on both first name and last name. The resulting record pairs are then

treated as edges in a bipartite graph and the resulting connected components used to define the blocks in the

first stage of the prior. This processes is similar to the construction of post-hoc blocks, with the exception

that the threshold is applied directly to a similarity measure rather than to an estimated weight.

The parameters for the Beta-bipartite distribution with Blocking used in the first stage were α1 = 1.0

and β1 = 2.0 while for the second stage we set α2 = 1.0 and β2 = 1.8. While the β parameters are both

greater than the β = 1.0 used in our base prior the multiple stages mean that the expected number of links

is similar under both the base prior and the informative prior. The parameters in the informative prior were

selected to ensure this. This was accomplished by using Monte Carlo draws to estimate the expected number

of links under different parameter values for the informative prior.

As in Chapter 3 both algorithms were run for a total of 25,000 iterations of the MCMC sampler. Under

the base prior an update was performed for each post-hoc block within each iteration, followed by an update

to the matching parameters via a Gibbs step. For the informative prior an update was performed for each

post-hoc block for each stage for each MCMC iteration. This is followed by a Gibbs update to the stage

of each link as described in Algorithm 4. The total runtime of the MCMC sampler under the base prior

was approximately 4 hours. Under the informative prior the runtime, which performed significantly more

updates overall, was approximately 6 hours. As in the previous analysis the first 2,500 iterations of the

MCMC sampler were removed as burn-in.

4.3.1 Estimated Parameters

We plot the posterior over the number of estimated links in the left panel of Figure 4.2. The estimated

posterior distribution of the number of links under the informative prior identifies significantly more links

than under the base prior. This is the behavior we would expect if the prior was placing a larger prior

density on regions of C that contain record pairs which the model subsequently identifies a large number of

high quality matches. Additionally, the right panel of Figure 4.2 shows that this is not only a result of a

number of low probability links being assigned somewhat higher posterior probabilities. Instead separation

between the dotted line (informative prior) and solid line (base prior) between match thresholds of 0.9 and

0.7 indicates that under the informative prior a higher posterior match probability is assign to record pairs

with a broad range of posterior match probabilities under the base prior.
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Figure 4.2: Posterior of the number of links (left) under the base and informative priors. The number of
links above the posterior match threshold (right) indicates that the shift in the posterior over the number
of links is not due simply to an increase among low probability links.

To better understand the effects of the informative prior we examine the change in estimated pairwise

posterior link probabilities in Figure 4.3. The left column of Figure 4.3 labeled “Similar Name” corresponds

to record pairs contained in the first stage blocks of the informative prior. The right column, “Dissimilar

Name” contains the record pairs excluded from the first stage blocks and thus, can only be linked in the

second stage. Additionally, Figure 4.3 separates mover record pairs (top row) and non-mover record pairs

(bottom row) using the same definition pf mover as in Chapter 3. Given the log color scale of Figure 4.3 the

dark red in the bottom left and top right of most of the panels suggests that the estimated pairwise match

probabilities display a high degree of similarity under the different prior specifications for the majority of

record pairs.

Examining the Dissimilar Name column we note that the estimated match probabilities under the

informative prior are generally lower than under the base prior, as we would expect. Although we note the

faint line on the diagonal within the non-mover panel indicates that, for a subset of these record pairs, the

two models estimate a similar posterior match probability. The agreement of the model under different priors

on these record pairs suggests that the posterior match probabilities may be at least partially determined

by the one-to-one matching constraint. A simple example of this can be see in the denser region close to the

point (0.5, 0.5). This may corresponds to cases where there are two records in one file which closely match

either a single record or a pair of records in the other file. In this case the algorithm will be uncertain of

the appropriate configuration and will therefore frequently switch back and forth between them, splitting

the posterior match probabilities and assigning approximately 50% match probability to each configuration.

Under appropriate likelihood ratios a similar dynamic could result in an 80/20 or 70/30 split. This ratio

will be only minimally affected by a change in prior if the prior match probability is changed identically for
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both record pairs (as it will be for two record pairs in the same name similarity group) yielding the region of

density on the diagonal. A shift in prior may however affect the probability on of a no link configuration (i.e.

neither possible link is made). Thus, we do not observe the higher density region on the diagonal among

the record pairs which are thought to correspond to movers with dissimilar names as are likely to have a

substantial posterior probability placed on being non-matches.

Among the Similar Name record pairs, shown in the left column, the picture is somewhat more

complicated. We again see a non-trivial density on the diagonal, which again likely corresponds to record

pairs where the posterior match probabilities are structurally constrained. We see a large number of mover

record pairs (top left panel) with an increased posterior match probability under the informative prior. As

noted in our description of Figure 4.3 this appears to occur across a range of posterior probabilities under the

base prior. We also see slight curves below the diagonal among both left panels indicating record pairs that

are avaiable for linking in the first stage of the informative prior but for which a lower posterior probability

is estimated under the informative prior than under the base prior. This result is somewhat surprising but

may be due to the shifts in the matching parameter values which are shown in Figure 4.4.

The posterior means of the matching parameters are extremely similar under the two priors as shown in

Figure 4.4. The estimated u-parameters are essentially identical, as we might expect given the extremely large

number of comparisons contained within the U component. The m-parameters estimates are also extremely

similar, with some small shifts: a slight increase in the probability of exact agreement (similarity level 6) on

first name and surname under the informative prior, as well as a slight decrease in the probability of exact

agreement on the three street fields. While the first shift is unsurprising given the prior specification the

second change suggests a change in the composition of matches, potentially affecting mover and non-mover

matches differently.

4.3.2 Labeling

To evaluate the effect of the informative prior on link accuracy we undertake a hand-labeling exercise similar

to that performed in Section 3.5.1. As between we divide record pairs into mover and non-mover categories

as the accuracy of the link estimates may differ significantly between these two groups. Within each category

we examine, under each prior, the set of links contained in the Bayes estimate of C, this corresponds to all

record pairs assigned a posterior link probability of greater than 0.5. We further divide the record pairs into

three groups: those classified as link under both priors, the “intersection”, those classified as links only under

the base prior “base prior only”, and those classified as links only under the informative prior “informative

prior only”. For both mover and non-mover matches we label 100 record pairs each, in the intersection

group, and 150 each from the sets of record pairs included in the Bayes estimate of C under only one of the

priors. This results in a total of 800 records pairs which are hand-labeled. In addition to the three labels
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Figure 4.3: Comparison between estimated pairwise posteriors between the base prior (x-axis) and the
informative prior (y-axis). The left column (similar name) contains record pairs which are available for
linking in the first stage of the informative prior while those in the right column (dissimilar name) are
available for linking only in the second stage.
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Figure 4.4: Posterior means of estimated matching parameters under base prior and informative prior.
There is essentially no difference in the estimated means in the U component and only a very minimal
difference within the M component.

which we applied in Section 3.5.1: false match (FM), true match (TM), no determination (ND) we add a

fourth label category: duplicate (DU).

While in theory each person should appear at most once in each voter register in practice it appears that

in some cases updates to a voter’s registration may have been included in the file along with the original

registration. This causes records pertaining to a single voter to appear multiple times within the register

for a single year†. In general these duplicates appear responsible for the relatively large number of record

pairs we see with estimated match probabilities very close to 0.5. As in the scenario where there are two

perfect, or near perfect, matches for a single record, the posterior probability will generally be split between

them. Allowing for a nonzero posterior probability of neither link being correct the true posterior match

probabilities(i.e. setting Monte Carlo error to zero) for these record pairs are likely to be just under 0.5.

However, because the threshold for inclusion as a link in the Bayes estimate of C is 0.5 this means that a

small amount of Monte Carlo error in the pairwise match probabilities for these record pairs can result in a

significant fraction of these record pairs being included in the Bayes estimator. In particular, if a pairwise

match probability of 0.5 is estimated under both the informative and base priors it may be the case that

the estimated probability is just over 0.5 under one prior and just under 0.5 the other. Thus, unless treated

appropriately, these record pairs may contribute disproportionately to any perceived differences in Bayes

estimates of C under different priors.

†This finding was made by Bradley Spahn and Jarred Murray based on an examination of scans of the original paper
registers.

100



The existence of some duplicate records mayb be common in practice, and has been noted in previous work

(Jaro, 1989) we are unaware of a generally accepted method for evaluating such record pairs, particularly

for assessing method accuracy. Such record pairs correspond to true matches in the sense that both possible

record pairs successfully link records referring to the same individual. However, as argued above, these

record pairs may be included in the Bayes estimate of C only as a result of Monte Carlo error. This suggests

that a conservative approach would classify any duplicate record pairs included in the estimate of C as false

matches. Alternatively, duplicate record pairs could simply be excluded from the estimate of the error rates

to avoid this issue. In our analysis, presented in Section 4.3.3, we therefore present estimates of the false

match rate under all three treatments of duplicate labels (true match, false match, and exclusion).

4.3.3 Labeling Results

The results of the hand-labeling are shown in Table 4.1. Examining the counts in the total columns it is

clear that the vast majority of record pairs fall into the intersection group for which the Bayes estimators

agree under the different priors. Among mover matches the informative prior finds several thousand more

matches, and most of these are labeled as true matches. In contrast, most of the mover matches found only

by the base prior are labeled as false matches. A similar pattern is evident among the non-mover matches.

Those found only by the informative prior are overwhelmingly labeled as duplicates, suggesting that the

source of disagreement between the priors on these record pairs is Monte Carlo error. While a full two-thirds

of the non-mover matches found only under the base prior are labeled as false matches.

Mover Non-Mover Overall
Strata FM TM DU ND Labeled Total FM TM DU ND Labeled Total FM TM DU ND Labeled Total
Intersection 2 87 2 9 100 31,476 3 96 1 0 100 96,741 5 183 3 9 200 128,217
Base Prior Only 85 53 4 8 150 1,321 100 10 37 3 150 2,779 185 63 41 11 300 4,100
Informed Prior Only 14 104 2 30 150 5,710 24 18 102 6 150 929 38 122 104 36 300 6,639

Table 4.1: Hand-coding results from mover (left) and non-mover (center) matches and overall (right). Each
matched record pair is labeled as either a false match (FM), a true matches (TM), a duplicate (DU), or no
determination (ND), when insufficient information is available.

Overall false match rates under the base and informative priors are shown in Figure 4.2. The left and

right sets of columns examine the sensitivity of the results to the treatment of the ND labels, with the ND

ND Excluded ND as Non-Match
Duplicates Mover Non-Mover Overall Mover Non-Mover Overall
Non-Match Base Prior 0.0674 ( 0.0269, 0.108) 0.0649 ( 0.0276, 0.102) 0.0655 ( 0.0357, 0.095) 0.1508 ( 0.0875, 0.214) 0.0649 ( 0.0276, 0.102) 0.0862 ( 0.0540, 0.118)

Informed Prior 0.0577 ( 0.0208, 0.095) 0.0479 ( 0.0099, 0.086) 0.0506 ( 0.0213, 0.080) 0.1571 ( 0.1002, 0.214) 0.0480 ( 0.0099, 0.086) 0.0781 ( 0.0464, 0.110)
Absolute Difference 0.0098 (p = 0.08139) 0.0170 (p<0.0001) 0.0149 (p<0.0001) 0.0063 (p = 0.37357) 0.0170 (p<0.0001) 0.0081 (p<0.0001)

Excluded Base Prior 0.0464 ( 0.0166, 0.076) 0.0548 ( 0.0220, 0.088) 0.0527 ( 0.0270, 0.079) 0.1334 ( 0.0733, 0.193) 0.0549 ( 0.0221, 0.088) 0.0744 ( 0.0455, 0.103)
Informed Prior 0.0372 ( 0.0097, 0.065) 0.0355 ( 0.0020, 0.069) 0.0359 ( 0.0105, 0.061) 0.1407 ( 0.0866, 0.195) 0.0360 ( 0.0025, 0.069) 0.0648 ( 0.0364, 0.093)
Absolute Difference 0.0091 (p = 0.07782) 0.0194 (p<0.0001) 0.0168 (p<0.0001) 0.0073 (p = 0.29786) 0.0190 (p<0.0001) 0.0095 (p<0.0001)

Match Base Prior 0.0452 ( 0.0161, 0.074) 0.0482 ( 0.0156, 0.081) 0.0474 ( 0.0219, 0.073) 0.1305 ( 0.0716, 0.189) 0.0483 ( 0.0158, 0.081) 0.0687 ( 0.0402, 0.097)
Informed Prior 0.0365 ( 0.0095, 0.063) 0.0313 (-0.0018, 0.064) 0.0327 ( 0.0076, 0.058) 0.1382 ( 0.0851, 0.191) 0.0316 (-0.0015, 0.065) 0.0610 ( 0.0329, 0.089)
Absolute Difference 0.0087 (p = 0.08866) 0.0169 (p<0.0001) 0.0147 (p<0.0001) 0.0076 (p = 0.27052) 0.0167 (p<0.0001) 0.0077 (p<0.0001)

Table 4.2: Estimated false match rates with 95% confidence intervals excluding ND record pairs (left) and
counting ND record pairs as false matches (right) by model.
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ND Excluded ND as Non-Match
Duplicates Mover Non-Mover Overall Mover Non-Mover Overall
Non-Match Intersection 0.044 (0.002, 0.086) 0.040 (0.002, 0.078) 0.041 (0.010, 0.072) 0.130 (0.064, 0.196) 0.040 (0.002, 0.078) 0.062 (0.029, 0.095)

Base Prior Only 0.627 (0.547, 0.706) 0.932 (0.891, 0.973) 0.834 (0.796, 0.871) 0.647 (0.570, 0.723) 0.933 (0.893, 0.973) 0.841 (0.804, 0.878)
Informed Prior Only 0.133 (0.073, 0.194) 0.875 (0.821, 0.929) 0.237 (0.184, 0.290) 0.307 (0.233, 0.380) 0.880 (0.828, 0.932) 0.387 (0.323, 0.451)

Excluded Intersection 0.022 (0.000, 0.053) 0.030 (0.000, 0.064) 0.028 (0.002, 0.055) 0.112 (0.050, 0.175) 0.030 (0.000, 0.064) 0.050 (0.021, 0.080)
Base Prior Only 0.616 (0.535, 0.697) 0.909 (0.855, 0.963) 0.815 (0.770, 0.859) 0.637 (0.559, 0.715) 0.912 (0.859, 0.964) 0.823 (0.780, 0.867)
Informed Prior Only 0.119 (0.060, 0.177) 0.571 (0.422, 0.721) 0.182 (0.128, 0.236) 0.297 (0.224, 0.371) 0.625 (0.488, 0.762) 0.343 (0.277, 0.409)

Match Intersection 0.022 (0.000, 0.052) 0.030 (0.000, 0.063) 0.028 (0.002, 0.054) 0.110 (0.049, 0.171) 0.030 (0.000, 0.063) 0.050 (0.020, 0.079)
Base Prior Only 0.599 (0.518, 0.679) 0.680 (0.605, 0.756) 0.654 (0.597, 0.711) 0.620 (0.542, 0.698) 0.687 (0.612, 0.761) 0.665 (0.609, 0.721)
Informed Prior Only 0.117 (0.059, 0.174) 0.167 (0.106, 0.228) 0.124 (0.074, 0.174) 0.293 (0.220, 0.366) 0.200 (0.136, 0.264) 0.280 (0.217, 0.344)

Table 4.3: Estimated false match rates with 95% confidence intervals excluding ND record pairs (left) and
counting ND record pairs as non-matches (right) by stratum.

labels either excluded from the calculation (left) or counted as false matches (right). While in the sets of

rows the treatment of the matches labeled as DU is varied. Across the board the informative prior performs

significantly better both overall (combining mover and non-mover matches) and when only the non-mover

matches are examined. When the ND labels are excluded from the analysis the estimated false match rate

for movers is lower under the informative prior while the base prior performs better when no determination

labels are counted as false matches. In neither case is the difference statistically significant at a 95% level

of confidence. Counting the ND labels as false matches is likely to be conservative, while excluding them

is likely to be anti-conservative. It is therefore reasonable to conclude that performance among the mover

matches under the two priors is similar. However, since the informative prior finds additional matches within

this group, without significantly increasing the false match rate, we prefer the results under the informative

prior for the mover matches as well.

We further examine the error rates within the different labeling strata in Table 4.3. Across all sensitives

the intersection strata performs significantly better (has a much lower estimated false match rate) than either

the base prior only or informative prior only strata. This result is not unexpected as we would expect this

stratum to contained essentially all record pairs which about which it is make a positive link determination

with the choice of prior affecting the link decision only in more uncertain cases. Therefore, we focus on

comparing the estimated error rates in the base prior only and informative prior only strata. Here we

find that the estimated error rate is significantly lower in the informative prior only stratum. There is no

overlap in the 95% confidence intervals for the estimated error rate, across nearly all sensitivities. The one

exception is among non-mover matches when matches labeled as duplicates are treated as non-matches. In

this scenario, particularly conservative for the informative prior only as it finds a much greater share of

duplicates which we have argued is primarily due to Monte Carlo error, the informative prior only error rate

is still found to be lower but the difference is not statistically significant. This pattern holds regardless of

how the no determination labels are treated. Perhaps more importantly, the error rates in the base prior

only strata are large in an absolute sense, exceeding 60% in almost all of the sensitivities. In contrast the

error rates in the informative prior only strata are typically much lower.
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Figure 4.5: Estimated false match rates for mover matches (left), non-mover matches (center), and all
matches (right) for deduplicated fastLink (blue) and Bayesian model (green). Solid lines count ND (“no
determination”) record pairs as true non-matches, dashed lines exclude such pairs. Bands are the union of
95% confidence intervals counting ND pairs as non-match and excluding ND pairs.

As a final comparison of the estimated false match rates under the base and informative priors we plot

the total number of record pairs classified as matches against the estimated false match rate as shown in

Figure 4.5. The lines shown are produced by classifying all record pairs with a posterior match probability

above a given threshold as matches, similar to Figure 4.2, with each threshold corresponding to both a false

match rate and a number of matches. To produce Figure 4.5 we vary the match threshold from ≥ 1 to > 0.5.

The estimated match rates are nearly identical under the two priors for both mover and non-mover matches.

We do however see that the informative prior identifies significantly more mover matches overall, and that at

around 32,000 matches it appears that the (more conservative) estimated false match counting ND matches

as non-matches under the informative prior is roughly equal to that for the base prior excluding ND matches.

In general we can clearly see that among the non-movers substantially more matches are identified under the

informative prior without a significant increase in the estimated false match rate, suggesting that many more

true matches are identified by the informative prior. Thus, we expected that the false non-match rate, which

we do not estimate, is significantly lower under the informative prior. We note that overall the uncertainty

in the false match rate dominates any difference between the estimates under the two priors. This is not

inconsistent with the results in Table 4.2, which show that the informative prior performs significantly better

as our labeling scheme was designed to have high power when examining the difference between the false

match rate under the two priors.

4.3.4 Party Switching Results

To examine the effects of the informative prior on our downstream estimates we recreate Figures 3.7 and 3.9

from Chapter 3 to compare the estimated party switching rates and party flows respectively. We make the

same false match correction described in Section 3.6 to yield our adjusted and adjusted+ estimates of the
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of party switching rate as shown in Figure 4.6. It is clear from Figure 4.6 that estimated unadjusted party

switching rate under the informative prior is lower across essentially all subgroups. Given that a higher

false match rate will tend to inflate the estimated party switching rate this suggests that the false match

is lower among the matches found under the informative prior. Interestingly, we see this even among the

mover matches, a group for which we estimated that the overall false match rate was similar between the two

priors. We focus on the mover and non-mover categories for our examination of the adjusted and adjusted+

switching rates as the estimated false match rates are computed separately for these groups allowing a more

straight forward comparison. Within the non-mover category the adjusted and adjusted+ party switching

rates are extremely similar. This is consistent with the findings shown in Table 4.1, which shows that

among the non-movers very few TM record pairs are found outside of the intersection stratum. We see a

somewhat different picture among the non-movers, with the estimated party switching rate under the two

priors differing somewhat under both the adjusted and adjusted+ estimates. From Table 4.1 we can see that

the informative prior matches nearly 4,000 additional TM record pairs not found by the base prior (the base

prior matches less than 500 TM record pairs not found under the informative prior) so it is possible that these

differences are due to compositional differences in the matched record pairs. However, if we consider that the

adjusted estimate of the party switching rate is probably somewhat anti-conservative, while the adjusted+

estimate is probably conservative then we might expect the correct value to lie somewhere between the two.

Under both priors there is substantial overlap in this range so we are hesitant to draw any firm conclusions

about differences in the overall estimated party switching rates.

We observe similar shifts in the estimated share of party switches flowing from the Republican party to

the Democratic party as shown in Figure 4.7. Across all groups we again see a higher unadjusted rate under

the informative prior. Because false matches that appear to be party switches will be relatively evenly split

distributed in terms which party they appear to be switching to the inclusion of false matches will tend to

make the estimated flow appear closer to 50%. The observed increase in the share flowing to the Democratic

party, the party we know most voters switched to, under the informative prior is consistent with the prior

identifying fewer false matches. We again observe this shift even among the mover matches, a group for

which the informative prior also identifies significantly more matches. Interestingly, we also observe a higher

estimated flow under the informative prior among the movers after adjusting for the estimated false match

rate. As with Figure 4.6 this is not sufficiently strong statistical evidence to conclude that the estimated

share of party switches is higher under the informative prior, even among mover matches, but the results

are suggestive.
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Figure 4.6: Posterior distributions of party switching rate for interesting subgroups across samples of
record-pairs for the base and informative priors. The bias-adjusted switch rate (“Adjusted”) and the bias-
adjusted switch rate treating indeterminate matches as false matches (“Adjust+”) are also plotted.
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Figure 4.7: Posterior distributions of the fraction of party switchers who switch from the Republican
party to the Democratic party. The larger move towards the Democratic party under the informative prior,
particularly in the unadjusted estimate suggest that this model identifies a smaller share of false matches.
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4.4 Discussion

We have introduced a framework for constructing an informative prior for Bayesian PRL under a one-

to-one matching assumption. This contribution is twofold: first we clarify the fact that in many record

linkage problems a large amount of prior information as to which fields matching record pairs are expect

to show a high level of similarity. Indeed, this is the basis on which the application of blocking methods

to PRL has been successful. Importantly, this information is different that simply providing an informative

prior over the matching parameters, which model the error rates (m-parameters) and the chance of random

agreements (u-parameters). Second, we provide a framework, inspired by a sequential approach to matching,

for constructing a prior consistent with one-to-one matching, which can incorporate this information, placing

a larger prior match probability on some record pairs relative to others. We derive a specific example of

such a prior, the Iterated Beta-bipartite with Blocking distribution. Finally, we show how to integrate this

approach with post-hoc blocking, introduced in Chapter 3. This combination makes it feasible to apply

priors of this type to large record linkage problems.

We then re-analyze the voter registration data for Alameda county, introduced in Chapter 3. We find that

a more informative prior distribution, that places greater density on record pairs which agree on both first

name and last name, significantly improves model performance. In particular, we identify a larger number of

mover matches without a significant increase in the false match rate among this group. Simultaneously, we

significantly reduce the estimated false match rate among estimated non-mover matches. We stress however

that our approach for prior construction is general and thus is likely to be easily applied to a variety of other

Bayesian record linkage problem. In particular the sequential approach to defining a generative model can

easily be applied to construct a prior consistent with constraint on the link structure other than one-to-one

matching.

4.4.1 Prior Parameter Selection

While we have introduced a new, more flexible, and therefore more informative prior for Bayesian PRL.

However, this additional flexibility comes with increased difficulty of construction. In general we find that it

is easiest to understand the densities placed on particular sets of links by sampling from the prior, as done

to select the parameters for the prior in Section 4.3. In general we find that the overall distribution of the

number of links in each stage is a useful quantity to examine. When considering these quantities it is help to

assign links, not to the stage in which the link was sampled, but rather to the earliest stage that the linked

record pair could have been linked. This allows the density for links first available for linking in a stage t,

a stylized version of which is shown in Panel (e) of Figure 4.1. This may be an easier overall quantity to

interpret.
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We also provide the expected value and variance of the Iterated Beta-bipartite with Blocking distribution

in a simple two-stage setting in Appendix A.3. The generalization of these quantities to additional stages

seems straight forward, although it requires some additional assumptions as to the structure of the blocks

in each stage. If these assumptions are met then examining these quantities may prove useful as well. We

acknowledge that a more straightforward interpretation of these quantities would be highly desirable and

this is an area for future work. Of particular use in developing such interpretations would be additional

PRL problems about which prior information is available. Through the encoding of additional types of

information, via different stage blocking schemes, and observing the effect on the posterior distribution it

may be possible to develop a more tractable method of prior construction.
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Chapter 5

Conclusions

5.1 Contribution

In this dissertation we have made several significant contributions to the set of available methods estimating

PRL models under a one-to-one matching constraint. In Chapter 2 we re-examined the problem of resolving

a link structure consistent with one-to-one matching from set of estimated weights. We outlined methods for

solving the corresponding LSAPs significantly faster than has been reported in the existing record linkage

literature and developed a new penalized likelihood estimator, which performs significantly better than

existing methods. In Chapter 3 we introduced post-hoc blocking, a data driven method for constructing a

blocking scheme which enables the estimation of an approximate posterior distribution over the link structure

using a MCMC algorithm. The use of post-hoc blocks allows this estimation to remain tractable even when

large files with noisy fields are being linked. Finally, in Chapter 4 we provided a method for constructing an

informative prior under one-to-one matching which maintains invariance under permutations of the records

contained within the files. In total we have developed methods for both significantly increasing the set of

problems to which Bayesian models for PRL can be applied and significantly improved the performance of

existing methods on large problems.

5.1.1 Incorporation of Structure into Assignment problems

We first re-examine the use of an assignment problem to resolve a set of weights into a link structure

consistent with one-to-one matching as first suggested by Jaro (1989). We construct a modified version of

the approach introduced by Jaro which directly incorporates the FS threshold into the assignment problem.

This leads to a sparse assignment problem, for which a solution can be computed at significantly lower

computational complexity, and maximizes an objective more closely aligned with the final set of links

generated by the Jaro procedure. We suggest the use of Auction algorithms for solving the resulting
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assignment problems, and outline several theoretical reasons why these might be expected to perform

significantly better than traditional assignment algorithms, such as the Hungarian algorithm. We also

provide a simulation study demonstrating the time improvements gained by applying Auction algorithms

across a range of PRL scenarios. To our knowledge auction algorithms have not been applied to assignment

problems in the record linkage literature previously.

Building on our computational advances we introduce a new penalized likelihood estimator, which uses

alternating maximization to find a MAP estimator of the link structure under a prior introduced by Green

and Mardia (2006). The penalized likelihood estimator maintains a one-to-one assignment throughout the

estimation processes. This contrasts to existing approaches, such as those based on an EM algorithm, which

enforce one-to-one matching only after estimating model parameters. The integration of the one-to-one

matching assumption into the estimation appears to significantly improve the performance of unsupervised

models. Additionally, we show how auction algorithms are uniquely suited to this type of iterative

maximization, in which successive reward matrices are closely related.

5.1.2 Post-hoc Blocking

While our penalized likelihood estimator finds a MAP estimate of the link structure under a specific prior, it

fails to characterize uncertainty in the link structure, as done by a full posterior distribution. Traditionally,

the application of Bayesian methods to PRL has been limited to problems where either an extremely high

quality blocking key is available, or the number of records to be linked is small. We introduce post-hoc

blocking, a data driven method for constructing high quality blocks, which vastly expands the size and scope

of record linkage problems to which Bayesian inference can be successfully applied.

We demonstrate the effectiveness of post-hoc blocking by linking two years, 1932 and 1936, of voter

registration data from Alameda county, California. These files, which contain approximately 260,000 and

290,000 records respectively, were constructed by scanning the original paper registers and as a result contain

numerous errors. The results yielded by the Bayesian model both identify significantly more matching record

pairs and achieve a lower error rate for the identified matches relative to standard models. In addition they

provide a straight forward approach to incorporating uncertainty in the estimated link structure into post-

linking quantities of interest such as the overall party switching rate.

5.1.3 Informative prior

Our final contribution involves the introduction of an informative prior, which can be used to place a higher

prior probability of linking on a subset of the record pairs. Our innovation is to specify into the prior

not the specific subregions, but rules for defining such subregions. This allows the prior beliefs to be fully

specified before observing the data, while allowing the distribution to appropriately model the observed data.
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We derive this distribution from a generative model based on iterative sampling, which places greater link

sampling density on regions available for sampling in earlier iterations. While we focus on integrating this

with the existing Beta-bipartite distribution, which enforces one-to-one matching, in principle this approach

can be combined with any distribution that enforces a one-to-one matching constraint. This approach fully

integrates the intuition on which standard practices, such as blocking schemes, are built with a Bayesian

modeling approach.

As with our other advances we demonstrate the performance gains from applying our more informative

prior on real data covering registered voters from Alameda county, California. We find that applying a prior

that places more weight on record pairs which display a high level of similarity on both first and last names

significantly improves the performance of the method overall. Encouragingly, the improved performance

comes in two ways: First we see a significant fall in the false match rate among record pairs with similar

addresses which are classified as matches. Second, we identify a greater number of, harder to link, record pairs

with dissimilar address. This increase to the number of matched record pairs occurs without a significant

increase in the false match rate, suggesting that more truly matching record pairs are being identified. While

a lower error rate is always desirable, it is the identification of additional matches which is perhaps more

important. As we show with our party switching rate in Chapter 3, it is possible in many analyses to

adjust for false matches if the error rate can be estimated. In contrast, in most record linkage problems a

reasonable estimate of the false non-match rate is much harder to obtain as the set of true non-matches is

so large that labels are needed for an enormous number of record pairs to estimate the false non-match rate

with a reasonable level of confidence.

5.2 Future Directions

Taken together the advances introduced in this dissertation significantly expand the scope of problems to

which Bayesian record linkage methods can be applied. Yet there remain significant improvements, many

of them straight forward, that can fruitfully continue this trend. These fall into three categories: usability,

improvements to existing algorithms, and new problems to which our methodological innovations can be

applied.

5.2.1 Usability

Superior statistical performance is often an insufficiently compelling feature for many practitioners to adopt

a new method. To be widely adopted a method must also be implement in such a way that it is easy and

(relatively) fast to run. As part of this work we have built a package in the Julia programming language

(Bezanson et al., 2017) implementing of all methods described. Yet, significant barriers remain to ease of
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use, perhaps most importantly the automatic computation of comparison vectors. Wrapper functions that

allow these methods to be run via the R and Python programming languages would also significantly expand

the scope of potential practitioners.

There also exist several, relatively straight forward, adaptions of the existing methods which could

significantly improve the runtimes, allowing for easier use on larger problems. For example, a distributed and

parallel implementation of the auction algorithm employed throughout Chapter 2 could significantly reduce

the runtime of the procedure while also allowing it to run on problems containing orders of magnitude

more record pairs. The biggest theoretical hurdle of such an algorithm, a distributed version of the auction

algorithm, is described in (Bertsekas and Tsitsiklis, 1989, 5.4) and need only be implemented. Similarly, it is

clear that a straight forward application of parallel or distributed computing to performing locally balanced

moves within or across the blocks generated by post-hoc blocking could significantly reduce the runtime of

the MCMC sampler. While specific improvements would clearly depend on the details of both the problem

and the computing architecture they would be necessary to apply the methods developed to many real-world

problems.

Additional runtime improvements could come from modifying parts of the existing algorithms. We have

found that while graph clustering can be performed relatively quickly (in O(n) time with respect to the

number of edges) performing the clustering many times can be quite costly. Thus, the runtime of Step 4

of Algorithm 2, which repeats Step 2 and Step 3, can be high if the weight threshold for retaining an edge

is increased too slowly. This can arise if the procedure performs the graph clustering many times with a

threshold too low to separate the problem into many components. This problem could be easily avoided by

adopting an agglomerative approach to the clustering, starting with each record pair in its own cluster and

then merging clusters. For larger problems such an approach could significantly faster runtimes, although it

is unclear if an agglomerative algorithm would result in the same clusters (post-hoc blocks) as Algorithm 2.

A final area where a more efficient algorithm design could yield significant improvements are the restricted

MCMC samplers described in Chapter 3 and Algorithm 4. In these samplers we perform a single locally

balanced update on each post-hoc block for each update to the matching parameters. Yet mixing is likely

to be much slower in the larger post-hoc blocks, it therefore seems sensible to update the link structure

within these blocks more frequently than for the smaller blocks. Performing multiple updates to a single

post-hoc block without updating the matching parameters can be done in a manner that is significantly more

computationally efficient, linear time with respect to the number of records rather than the number of record

pairs∗. If these, straightforward, improvements to the computational aspects of Bayesian record linkage were

to decrease the runtimes by a further order of magnitude it would constitute a significant advance in their

practical application.

∗This claim is based on a discussion the author had with Giacomo Zanella at the Bayes Comp 2020 conference
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5.2.2 Deduplication

In this dissertation we have confined our focus to record linkage under a one-to-one matching constraint.

However, it seems likely that pieces of this work are applicable to the other canonical record linkage problem:

deduplication. In a deduplication problem a single file may contain multiple records that correspond to the

same entity, with the goal being to cluster the records such that each cluster corresponds to a single unique

entity. Often deduplication problems involve very large databases, particularly if one considers the case

where a “single” file is created by simply stacking multiple files from different data sources.

The deduplication task is fundamentally a clustering problem, with clusters corresponding to each

underlying entity. As such it should be possible to extend some of the methods used for constructing

post-hoc blocks. For example, given a set of weights, it may be possible to combine our penalized likelihood

and post-hoc blocking procedures to develop an estimate of the set of latent entities, or at least a good

initialization for an MCMC sampler. As with other clustering problems choosing an appropriate place to

cut the dendrogram would be a challenging. In the one-to-one matching setting we incorporate information

from the prior to help set this cut-off within the penalized likelihood estimator. It may be possible to do

something similar for deduplication problems, but significantly more research would be needed to see if this

approach is feasible.
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Appendix A

Technical Details

A.1 MCMC Updates for Locally Balanced Moves

Zanella (2019) introduced “locally balanced moves” which allow informed (leveraging likelihood information)

proposals to be made on discrete parameter spaces within a Markov chain Monte Carlo (MCMC) sampler.

This is analogous to using gradient information when performing updates for continuous parameter spaces.

The incorporation of such information can significantly improve the mixing rate, and therefore efficiency of

the overall sampler. Zanella (2019) defines a transition kernel for sampling states C ′ based on the current

state C:

Q(C,C ′) ∝ g
(
L(C ′ | Γ,m, u)π(C ′)

L(C | Γ,m, u)π(C)

)
K (C,C ′) (A.1)

for a balancing function g. The move from C to C ′, which is proposed with probability Q(C,C ′) is the

accepted with probability:

min

{
L(C ′ | Γ,m, u)π(C ′)Q(C ′, C)

L(C | Γ,m, u)π(C)Q(C,C ′)
, 1

}
. (A.2)

The set of moves considered is controlled by the sampling kernel K, which defines non-zero sampling

probabilities to a set of possible moves. Figure A.1 shows the base proposal scheme (K) introduced in

Zanella (2019) to constructed the informed proposals. First a record pair is sampled, with each record pair

mapping to a specific proposed update. If neither the row (record from A) nor the column (record from A)

is linked then the sampled record pair is linked as shown in A.1a. Alternatively, if the sampled record pair

is already linked then the link is removed as shown in A.1b. If either the row or column is already linked,

but not both, then that link is moved to the sampled record pair as shown in A.1c and A.1d respectively.

Finally, if both the row and column are already linked then the assignments are swapped as shown in A.1e.

For the doubleswitch move, we note that there is an a second possible record pair ( a1, b4) which, if sampled,
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Figure A.1: Updates to C, the first row shows an existing link structure (links as black squares) with a
sampled record pair marked with a blue dot. The second row shows the corresponding update with new
links shaded green and removed links shaded grey.

would lead to an identical update. Thus, for an nA × nB set of records with L linked records there are only

nAnB − L possible updates.

For the balancing function g we employ the Barker balancing function:

t

1 + t
, (A.3)

see Zanella (2019) for additional details on choice of balancing functions.

A.2 Derivation of Beta-bipartite with Blocking

Suppose we have K different blocks of size na1 × nb1 , . . . , naK × nbK . As before let qk = min(nak , nbk)

and rk = max(nak , nbk). Let Lk, the number of links in block k follow a Binomial(qk, p) distribution.

Furthermore, conditional on the value of Lk let Ck, the link structure within block k, follow a uniform
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distribution. Then distribution of C, the overall link structure

π(C | p) =

K∏
i=1

(
qi
Li

)
pLi(1− p)qi−Li

((
qi
Li

)(
ri
Li

)
Li

)−1

=

K∏
i=1

(ri − Li)!
ri!

pLi(1− p)qi−Li

=

(
K∏
i=1

(ri − Li)!
ri!

)
p
∑K
i Li(1− p)

∑K
i qi−Li

=

(
K∏
i=1

(ri − Li)!
ri!

)
pL(1− p)Q−L

where L =
∑K
i=1 Li and Q =

∑K
i=1 qi. We note that since L is the sum of K independent Binomial

distributions with parameter p that L ∼Binomial(Q, p). If we let p ∼ Beta(α, β) then

π(C) =

∫
π(C | p) 1

B(α, β)
pα−1(1− p)β−1dp

=

∫ ( K∏
i=1

(ri − Li)!
ri!

)
pL(1− p)Q−L 1

B(α, β)
pα−1(1− p)β−1dp

=

(
K∏
i=1

(ri − Li)!
ri!

)
1

B(α, β)

∫
pL+α−1(1− p)Q−L+β−1dp

=

(
K∏
i=1

(ri − Li)!
ri!

)
B(L+ α,Q− L+ β)

B(α, β)

where B is the beta function. Abusing notation slightly define the Block Beta-bipartite distribution

BBB(C | L,Q,R, α, β) =

(
K∏
i=1

(ri − Li)!
ri!

)
B(L+ α,Q− L+ β)

B(α, β)

A.3 Iterated Blocked Beta-bipartite

Here we considered the specific case of an Iterated Blocked Beta-bipartite distribution with only two stages

where the second stage contains all record pairs. That is g(2)(A,B) = A×B. For this reduced case we derive

E [L] and V [L]. Under these assumptions given L(1) the second stage will sample from a (nA−L(1))× (nB−
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L(1)) block. Thus, conditional on L(1), L(2) ∼Beta-Binomial(nA − L(1), α(2), β(2)). Therefore

E
[
L(2)

]
= E

[
E
[
L(2) | L(1)

]]
= E

[
E
[

α(2)

α(2) + β(2)
Q(2)

∣∣∣L(1)

]]
= E

[
α(2)

α(2) + β(2)

(
nA − L(1)

)]
=

α(2)

α(2) + β(2)

(
nA − E

[
L(1)

])
=

α(2)

α(2) + β(2)

(
nA −

α(1)

α(1) + β(1)
Q(1)

)
(A.4)

Thus, it follows that

E [L] = E
[
L(1) + L(2)

]
=

α(1)

α(1) + β(1)
Q(1) +

α(2)

α(2) + β(2)

(
nA −

α(1)

α(1) + β(1)
Q(1)

)
(A.5)

where nA and Q(1) are known once A and B have been observed.

Under the same assumption set we can work out the variance

V [L] = E
[
V
[
L | L(1)

]]
+ V

[
E
[
L | L(1)

]]
= E

[
V
[
L(1) + L(2) | L(1)

]]
+ V

[
E
[
L(1) + L(2) | L(1)

]]
= E

[
V
[
L(2) | L(1)

]]
+ V

[
L(1) + E

[
L(2) | L(1)

]] (A.6)

We examine each of these terms in turn.

E
[
V
[
L(2) | L(1)

]]
= E

[
α(2)β(2)

(
α(2) + β(2) + nA − L(1)

)(
α(2) + β(2)

)2 (
α(2) + β(2) + 1

) (
nA − L(1)

)]

=
α(2)β(2)(

α(2) + β(2)
)2 (

α(2) + β(2) + 1
)E [(α(2) + β(2) + nA − L(1)

)(
nA − L(1)

)]
=

α(2)β(2)(
α(2) + β(2)

)2 (
α(2) + β(2) + 1

)
×
((

α(2) + β(2) + nA

)
nA −

(
α(2) + β(2) + 2nA

)
E
[
L(1)

]
+ E

[(
L(1)

)2])
=

α(2)β(2)(
α(2) + β(2)

)2 (
α(2) + β(2) + 1

)
×

((
α(2) + β(2) + nA

)
nA −

(
α(2) + β(2) + 2nA

) α(1)

α(1) + β(1)
Q(1) +

Q(1)α(1)
(
Q(1)

(
1 + α(1)

)
+ β(1)

)(
α(1) + β(1)

) (
α(1) + β(1) + 1

) )
(A.7)

128



V
[
L(1) + E

[
L(2) | L(1)

]]
= V

[
L(1) +

α(2)

α(2) + β(2)
Q(2)

]
= V

[
L(1) +

α(2)

α(2) + β(2)

(
nA − L(1)

)]
=

(
1− α(2)

α(2) + β(2)

)2

V
[
L(1)

]
=

(
1− α(2)

α(2) + β(2)

)2
α(1)β(1)Q(1)

(
α(1) + β(1) +Q(1)

)(
α(1) + β(1)

)2 (
α(1) + β(1) + 1

)
(A.8)

A.4 MCMC Updates for Informed Prior Prior Ratios

Here we derive the ratio in density between Beta-bipartite with Blocking densities. We first consider the

ratio between the same density at two adjacent values for the number of links L and L′. Where by adjacent

we mean that the number of links is identical in all blocks except for a single block, within which the number

of links differs by one. We then consider the ratio in densities between two Beta-bipartite with Blocking

distributions which are identical but contain a single block with either one more or one fewer record in both

datasets. Throughout we abbreviate the Beta-bipartite with Blocking density as BBB and make use of the

well known identity that for a complex number z if Re(z) > 0 then Γ(z + 1) = zΓ(z).

A.4.1 Add Link

Consider the case where L′i = Li for i 6= j and L′j = Lj + 1

BBB(C|L′, Q,R, α, β)

BBB(C|L,Q,R, α, β)
=

(rj − L′j)!
(rj − Lj)!

B(L′ + α,Q− L′ + β)

B(L+ α,Q− L+ β)

=
(rj − Lj − 1)!

(rj − Lj)!
B(L+ 1 + α,Q− L− 1 + β)

B(L+ α,Q− L+ β)

=
1

rj − Lj
Γ(L+ 1 + α)Γ(Q− L− 1 + β)/Γ(Q+ α+ β)

Γ(L+ α)Γ(Q− L+ β)/Γ(Q+ α+ β)

=
1

rj − Lj
Γ(L+ 1 + α)

Γ(L+ α)

Γ(Q− L− 1 + β)

Γ(Q− L+ β)

=
1

rj − Lj
L+ α

Q− L− 1 + β

In log scale this reduces to log(L+ α)− log(Q− L− 1 + β)− log(rj − Lj)
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A.4.2 Remove Link

Consider the case where L′i = Li for i 6= j and L′j = Lj − 1

BBB(C|L′, Q,R, α, β)

BBB(C|L,Q,R, α, β)
=

(rj − L′j)!
(rj − Lj)!

B(L′ + α,Q− L′ + β)

B(L+ α,Q− L+ β)

=
(rj − Lj + 1)!

(rj − Lj)!
B(L− 1 + α,Q− L+ 1 + β)

B(L+ α,Q− L+ β)

= (rj − Lj + 1)
Γ(L− 1 + α)Γ(Q− L+ 1 + β)/Γ(Q+ α+ β)

Γ(L+ α)Γ(Q− L+ β)/Γ(Q+ α+ β)

= (rj − Lj + 1)
Γ(L− 1 + α)

Γ(L+ α)

Γ(Q− L+ 1 + β)

Γ(Q− L+ β)

= (rj − Lj + 1)
Q− L+ 1 + β

L− 1 + α

In log scale this reduces to log(Q− L+ 1 + β)− log(L− 1 + α) + log(rj − Lj + 1)

A.4.3 Increase block size

Consider the case where q′i = qi, r
′
i = ri for i 6= j and q′j = qj + 1, r′j = rj + 1

BBB(C|L,Q′, R′, α, β)

BBB(C|L,Q,R, α, β)
=

(r′j − Lj)!
(rj − Lj)!

rj !

r′j !

B(L+ α,Q′ − L+ β)

B(L+ α,Q− L+ β)

=
(rj − Lj + 1)!

(rj − Lj)!
(rj)!

rj + 1!

B(L+ α,Q+ 1− L+ β)

B(L+ α,Q− L+ β)

=
rj − Lj + 1

rj + 1

Γ(L+ α)Γ(Q+ 1− L+ β)/Γ(Q+ α+ β + 1)

Γ(L+ α)Γ(Q− L+ β)/Γ(Q+ α+ β)

=
rj − Lj + 1

rj + 1

Γ(Q+ 1− L+ β)

Γ(Q− L+ β)

Γ(Q+ α+ β)

Γ(Q+ α+ β + 1)

=
rj − Lj + 1

rj + 1

Q+ 1− L+ β

Q+ α+ β

In log scale log(rj − Lj + 1)− log(rj + 1) + log(Q+ 1− L+ β)− log(Q+ α+ β)

130



A.4.4 Decrease block size

Consider the case where q′i = qi, r
′
i = ri for i 6= j and q′j = qj − 1, r′j = rj − 1

BBB(C|L,Q′, R′, α, β)

BBB(C|L,Q,R, α, β)
=

(r′j − Lj)!
(rj − Lj)!

rj !

r′j !

B(L+ α,Q′ − L+ β)

B(L+ α,Q− L+ β)

=
(rj − Lj − 1)!

(rj − Lj)!
rj !

(rj − 1)!

B(L+ α,Q− 1− L+ β)

B(L+ α,Q− L+ β)

=
rj

rj − Lj
Γ(L+ α)Γ(Q− 1− L+ β)/Γ(Q− 1 + α+ β)

Γ(L+ α)Γ(Q− L+ β)/Γ(Q+ α+ β)

=
rj

rj − Lj
Γ(Q− 1− L+ β)

Γ(Q− L+ β)

Γ(Q+ α+ β)

Γ(Q− 1 + α+ β)

=
rj

rj − Lj
Q− 1 + α+ β

Q− 1− L+ β

In log scale log(rj)− log(rj − Lj) + log(Q− 1 + α+ β)− log(Q− 1− L+ β)
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